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SUMMARY

Most functional plasticity studies in the cortex have
focused on layers (L) II/III and IV, whereas relatively
little is known of LV. Structural measurements of
dendritic spines in vivo suggest some specialization
among LV cell subtypes. We therefore studied expe-
rience-dependent plasticity in the barrel cortex using
intracellular recordings to distinguish regular spiking
(RS) and intrinsic bursting (IB) subtypes. Postsyn-
apticpotentials andsuprathreshold responses in vivo
revealed a remarkable dichotomy in RS and IB cell
plasticity; spared whisker potentiation occurred in
IB but not RS cells while deprived whisker depres-
sion occurred in RS but not IB cells. Similar RS/IB
differences were found in the LII/III to V connections
in brain slices. Modeling studies showed that
subthreshold changes predicted the suprathreshold
changes. These studies demonstrate the major func-
tional partition of plasticity within a single cortical
layer and reveal the LII/III to LV connection as amajor
excitatory locus of cortical plasticity.

INTRODUCTION

Sensory experience shapes receptive field structure during

distinct critical periods of development (Daw et al., 1992; Fox,

1992; Stern et al., 2001; Wiesel and Hubel, 1963). Changing

the whisker complement alters receptive fields in the barrel

cortex (Wallace and Fox, 1999) and altering visual input can

change ocular dominance in the visual cortex (Wiesel and Hubel,

1963). These adaptive processes are thought to tune sensory

neurons to the features they detect in the environment. In adult-

hood, plasticity persists in visual and somatosensory cortex

chiefly in extragranular layers (LII/III and LV) (Daw et al., 1992;

Diamond et al., 1994; Fox, 1992). Most of the functional studies

on experience-dependent plasticity to date have either investi-

gated plasticity in LIV or the superficial layers of cortex (LII/III),

while relatively little is known of the functional plasticity in LV
cells (Beaver et al., 2001; Diamond et al., 1994; Erchova et al.,

2003; Wilbrecht et al., 2010). Conversely, most of the studies

on structural plasticity to date have investigated spine plasticity

of LV neurons (Hofer et al., 2009; Trachtenberg et al., 2002;

Wilbrecht et al., 2010). LV is a major output projection layer of

the cortex and in the somatosensory system sends connections

to a variety of subcortical targets including trigeminal, pontine,

thalamic, striatal, and collicular locations as well as other cortical

areas (see Fox, 2008). The relative paucity of studies on LV plas-

ticity makes it difficult both to relate spine plasticity to functional

plasticity and to gain some understanding of how cortical plas-

ticity affects intracortical circuits and subcortical targets.

LV contains a major subdivision between LVa and LVb and

these layers are engaged by distinct cortical circuits (Manns

et al., 2004; Schubert et al., 2006; Shepherd et al., 2005; Shep-

herd and Svoboda, 2005). Within LVb, pyramidal cells have

diverse soma sizes, dendritic morphologies and synaptic targets

(Chagnac-Amitai et al., 1990; Hattox and Nelson, 2007; Larkman

et al., 1992; Mason and Larkman, 1990; Tsiola et al., 2003). The

intrinsic bursting (IB) and regular spiking (RS) cells within LVb can

be distinguished by their intrinsic firing patterns and their

somatic and dendritic morphology (Agmon and Connors, 1992;

Chagnac-Amitai et al., 1990; Zhu and Connors, 1999), although

it has been argued that the morphological distinctions may

represent two ends of a continuous spectrum rather than

discrete categories of cell type. IB cells fire bursts of spikes in

response to steady somatic current injection and tend to have

complex dendritic arbors and large somata. RS cells fire adapt-

ing trains of spikes in response to steady current injection and

tend to have relatively simple dendritic arbors and small somata.

The intracortical circuits for IB and RS cells are different (Schu-

bert et al., 2001) and IB cells project to thalamus, pons, and

colliculus while RS cells project to cortical and striatal targets

(Gao and Zheng, 2004; Le Bé et al., 2007). Spine plasticity also

differs between the two cell types, with complex tufted cells

showing greater spine plasticity in response to whisker depriva-

tion than regular spiking cells (Holtmaat et al., 2006; Knott et al.,

2006). Therefore, as a first step to understanding LV plasticity we

studied plasticity in IB and RS cells.

We used extracellular spike recording to map the time course

of cortical plasticity in LV of the barrel cortex of rats andmice fol-

lowed by intracellular recording in vivo to measure plasticity in IB
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Figure 1. The TimeCourse of Receptive Field Plas-

ticity in Different Layers (Rat and Mouse)

(A) Pattern of whisker deprivation. The D row whiskers

were removed from D1 to D8. Delta and Gamma were left

intact. This produced a single row of deprived barrels in

the cortex. We recorded from the D1, D2, and D3 deprived

barrel-related columns.

(B) Poststimulus time histograms were constructed and

analyzed for responses to stimulation of all whiskers

immediately surrounding the principal whisker. Control: an

example receptive field for a LV cell in an undeprived

animal. Right: A typical LV receptive field in an animal

deprived for 10 days. The shading indicates PSTHs cor-

responding to deprived whiskers. S1 and S2 refer to the

largest and second largest responses respectively

produced by surround whiskers. (St = whisker straddling

the rows, i.e., gamma and delta).

(C) Distribution of layer V responses to principal whisker

(PW), S1 and S2 surround whiskers. For each deprivation

length, response amplitude is plotted for each individual

cell (black symbols) and the population distribution is

shown at the side (shaded area, arrows: 20 cells for 0.05

spk/stim-wide bins). Red lines: response average versus

time-course.

(D) Time course of PW, S1, and S2 responses are plotted

for rats (D1) and mice (D2) against the numbers of days of

D-row deprivation. For rats, PW: note that LIV and LVa

responses do not change over this period. LII/III PW res-

ponses are lower at 10 days but not 3 days. LVb responses

decrease after 3 days deprivation. S1 and S2: LIV and LII/

III responses do not change while LVa and Vb responses

potentiate after 3 days and 10 days deprivation. See

results for statistics.

See also Tables S1 and S2.
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and RS cells characterized using their intrinsic firing properties.

We used quantitative laser scanning photostimulation to map

the circuits impinging on LVb neurons to understand the intra-

cortical circuits contributing to the plasticity in LV. We found

that plasticity was distinctly different between RS and IB cells

and that the LII/III to V projections terminating on RS and IB cells

are a major determinant of plasticity within the local cortical

microcircuit.
392 Neuron 73, 391–404, January 26, 2012 ª2012 Elsevier Inc.
RESULTS

In Vivo Extracellular Single-Unit
Recordings
Characterization andTimeCourse of Row

Deprivation Induced Plasticity in Rats

We measured extracellular spike responses to

whisker stimulation in order to obtain an overall

picture of the time course of deprivation

induced plasticity in different cortical layers.

Animalswere age P32–45 at the start of depriva-

tion. We recorded receptive fields of 452 single

cells in four layers at 3 time points in anaesthe-

tized Long Evans rats.

Principal whisker responses were affected by

D-row deprivation over the 10 day time course

only in LII/III and Vb (Figure 1). A two-way
ANOVA showed an effect of layer (F(3,3) = 66.5, p < 0.0001)

and deprivation time (F(2,2) = 13.0, p < 0.0001) and interac-

tions between deprivation and layer (F(6,6) = 3.7, p < 0.002)

(see Table S1 available online for all post hoc t tests). LVb neuro-

nes located in deprived barrels showed the earliest depression

of principal whisker responses before any other layer was

affected, showing a reduction to 52% of control levels after

just 3 days deprivation (t(71) = 5.3; p < 0.001). After 10 days of
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D-row deprivation, depression was also observed in layers II/III

(reduction to 60% of control levels, t(54) = 3.1; p < 0.01). Principal

whisker responses of neurones in layers IV and Va were unaf-

fected by deprivation at any time point (two-way ANOVA, no

effect of deprivation F(2,2) = 0.45, p = 0.636, nor interaction

between deprivation and layer F(2,2) = 0.05, p = 0.95).

We also characterized the responses to stimulation of the

spared row whiskers for the same cells. Responses of spared

surround whiskers were ordered from greatest to smallest for

each cell (i.e., S1, S2, . S8) before averaging the responses

across cells. The only cells showing clear and significant poten-

tiation in response to D-row deprivation were located in LVa and

Vb (Figure 1). A two-way ANOVA for the strongest S1 whisker

response showed an effect of layer (F(3,3) = 29.2, p < 0.0001),

deprivation (F(2,2) = 4.37, p < 0.02) and an interaction between

layer and deprivation (F(6,6) = 7.46, p < 0.0001) and similarly

for S2: layer F(3,3) = 43.3, p < 0.0001, deprivation F(2,2) = 6.9,

p < 0.001, interaction F(6,6,) = 7.0, p < 0.0001) (see Table S1

for all post hoc t tests). In LVa, the S1 and S2 responses

increased almost two fold at 3 days (197% and 205%, respec-

tively) and maintained that level at 10 days (203% and 206% of

control values), which was highly statistically significant (for S1,

t(60) = 2.95, p < 0.005 and for S2 t(60) = 3.0, p < 0.004). In LVb,

the S1 response also increased by about 2-fold at 3 days (to

201% of control) and the S2 response by 225% of control values

and while both fell back slightly after 10 days of deprivation (to

163% and 183% for S1 and S2, respectively), they were still

highly significantly greater than control values in both cases

(for S1 t(91) = 4.0, p < 0.0001 and for S2, t(91) = 4.2, p < 0.0001).

Comparison of the Time Course of Deprivation between

Mice and Rats

We repeated our experiments inmice to seewhether the findings

wouldgeneralize.Westudied the receptive fieldsof 474cells over

identical D-row deprivation conditions (Figure 1D). Mice had

slightly stronger principal whisker responses and slightly smaller

surroundwhisker responses.Receptive field kurtosiswasgreater

inmouse than rat in LIV (5.8 versus 5.16), LVa (3.1 versus 2.6), and

LVb (2.4 versus 2.2), but not in LII/III (3.6 versus 3.8).

With the notable exception of layer Va, the reaction of cells in

the different cortical layers to D-row deprivation was almost

identical in the two species and in particular for the main effects

described for layers Vb and LII/III above (Figure 1; see Table S2

for all similarities and differences). The S1 whisker response

potentiated after 3 days in mice in LVb and was the only layer

to show any potentiation (Figure 1D). The response increased

190% at 3 day and 155% at 10 days both of which were highly

significant (t(98) = 4.1, p < 0.0001; t(82) = 2.3, p < 0.03). The LII/

III surround whisker responses showed no potentiation in either

species, but the principal whisker response depressed in LII/III in

mice at 10 days but not at 3 days similar to the rat (for 3 day time

point t(127) = 0.35, p = 0.73; at 10 days, t(94) = 4.2, p < 0.0001). The

main difference between the rat and mouse results was the

plasticity in layer Va. We did not observe any potentiation of

the S1 or S2 whisker response in LVa in mice whereas this effect

was clear in rats (Figure 1D; Table S2). Conversely, the principal

whisker showed only a minor and statistically insignificant

depression in layer Va of the rat, but was clearly depressed in

the mice (Figure 1D; Table S2).
In Vivo Intracellular Recordings
Cell-Type Analysis and Receptive Field Mapping

We concentrated on layers Va and Vb in the rat and used intra-

cellular recording with sharp electrodes in order to identify RS

and IB pyramidal cell subtypes (Figure 2A; see Experimental

Procedures). Animals were age P32–45 at the start of deprivation

and recorded at 10 days after the start of deprivation. In agree-

ment with the literature (Nowak et al., 2003), RS cells (33 cells)

lay uniformly in both LVa and Vb (Kolmogorov-Smirnov test for

depth uniformity, p > 0.6) while IB (39 cells) cells were preferen-

tially located in LVb (Kolmogorov-Smirnov test for depth unifor-

mity, p < 0.01; Figure 2B). IB cells had higher capacitances

(Figure 2A; sum of rank test p < 10�7) and displayed a stronger

spike amplitude adaptation than RS cells (sum of rank test

p < 10�6). Cell morphology was recovered for a subset of cells

characterized by firing pattern and receptive field together with

cells for which the receptive fieldwas not determined (Figure 2C).

From this data set, we found that IB cells and RS cells differed in

soma diameter (t(31) = 3.80, p < 0.001), apical dendrite diameter

(t(31) = 4.03, p < 0.0005), ratio between apical dendrite diameter

and soma diameter (t(31) = 3.86, p < 0.001), distance between the

pia and the deepest bifurcation (t(30) = 2.54, p < 0.02), and total

apical dendrite length (t(30) = 3.33, p < 0.005). These observations

are consistent with the idea that IB cells are likely to correspond

to thick tufted and RS cells to thin slender pyramidal neurons

(Chagnac-Amitai et al., 1990; Gao and Zheng, 2004; Le Bé

et al., 2007). Average membrane potential and resistance did

not differ between control and deprived animals, neither for IB

cells (respectively, Vm = �64.0 ± 5.1 versus 64.1 ± 8.4 mV

and R = 28.4 ± 12.9 versus 27.3 ± 14.7 MU) nor for RS cells

(Vm = �61.3 ± 4.9 versus �63.0 ± 5.5 mV and R = 28.8 ± 10.7

versus 22.3 ± 12.1 MU). In control animals, IB cells had greater

whisker responses compared to RS cells (two-way ANOVA,

F(1,1) = 24.6, p < 10�5), in agreement with (de Kock et al., 2007).

RS and IB Cell Input Receptive Fields Show Inverse

Complementary Forms of Plasticity

We used sparse noise stimuli applied via a nine-whisker stimu-

lator (Jacob et al., 2010) to map receptive fields (Figures 3A

and 3B). Examples of LV receptive fields evaluated using peristi-

mulus time histograms (PSTH) and whisker-evoked postsyn-

aptic potentials (wPSP) are shown in Figure 3C (neurons 2 and

4 are D-row deprived).

We found that RS and IB cells’ suprathreshold receptive fields

were affected differently by whisker deprivation: an ANOVA for

all whisker responses confirmed a significant interaction

between deprivation and cell type (F(1,1) = 5.1, p < 0.05). This

was because the deprived whisker responses were depressed

for RS cells (F(1,1) = 13, p < 0.001) but not for IB cells (F(1,1) =

1.0, p > 0.3), whereas spared whiskers responses were potenti-

ated for IB cells (F(1,1) = 5.6, p < 0.02) but not for RS cells

(F(1,1) = 0.2, p > 0.6). Therefore, while the in vivo intracellular

recordings showed the same overall potentiation and depres-

sion components seen in the extracellular studies, remarkably

the potentiation and depression components were split between

IB and RS cells, respectively.

To understand the derivation of the suprathreshold responses,

we analyzed the time course of the wPSPs. The amplitude of

the first wPSP peak, the total area of the whisker-evoked
Neuron 73, 391–404, January 26, 2012 ª2012 Elsevier Inc. 393



Figure 2. In Vivo Classification of Pyramidal

Cell Types (Rat)

(A) Electrophysiological characterization. Left,

examples of firing pattern in response to current

injection used for classification. Right, quartile

representation of distribution of LV electrophysi-

ological parameters recorded during stimulation.

Cell capacitance was calculated from double

exponential fits of membrane response to nega-

tive current (10 pA, 0.2 Hz) injected in-between

stimulation sequences. The minimum ratio of

spike amplitudewas calculated from evoked spike

doublets. Kolmogorov-Smirnov test, **p < 10�6.

(B) Laminar distribution of the different cell types.

Only LV IB and RS cells were considered in

subsequent analysis.

(C) Morphological analysis of IB and RS cells. (C1)

Left, examples of biocytin-filled cells. Inset: zoom

along the cellular soma for the same two cells (bar:

20 mm). Right: dendritic tree reconstruction for the

two cells corresponding to the firing patterns

presented in (A). (C2) Cell type analysis of

morphologic parameters (mean ± SD). The width

of the apical dendrite was calculated 10 mm away

from the point where the dendrite emerges from

the soma. Unpaired Student’s t test, *p < 0.05;

**p < 0.005.

See also Figure S4.
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depolarization and the initial slope of the wPSP were calculated

for RS and IB cells (all significant differences found are shown in

Figure 4C and detailed further in Figure S1). Potentiation of the

spared whisker responses in IB cells was reflected by an

increase in all three parameters (peak: F(1,1) = 16.1, p <

0.0001; area: F(1,1) = 5.1, p < 0.05; slope: F(1,1) = 5.0, p <

0.05) and therefore corresponded in a simple manner with the

suprathreshold responses. However, the initial slope of the

wPSP was depressed for the deprived whisker response of

the IB cells (F(1,1) = 6.7, p < 0.02) without an apparent concom-

itant change in the suprathreshold response (Figures 4B and 4C).

Depression of the deprived whisker responses in RS cells was

reflected in a decrease in the area of the wPSP depolarization

(F(1,1) = 5.8, p < 0.02). This was the only parameter that changed

for the deprived whisker response and shows that a change in

area of the wPSP is sufficient for a decrease in surprathreshold

response. Consistent with this idea, the IB cells showed no

decrease in area and no decrease in surprathreshold response.

The changes in the subthreshold responses to spared whisker

stimulation for the RS cells were more complex and to some

extent cancelled each other out. While the slope of the wPSP

increased significantly (F(1,1) = 11.4, p < 0.001) the wPSP area

decreased significantly (F(1,1) = 6.6, p < 0.02). While this has

implications for the timing of the response as described in the

next section, it had no overall effect on the suprathreshold

responses (Figure 4B).

The initial slope of the wPSP reflects the activity of the first

inputs to activate the cell following whisker stimulation and was
394 Neuron 73, 391–404, January 26, 2012 ª2012 Elsevier Inc.
correlated with the early but not the late evoked spikes (early:

<15 ms after stimulation, linear regression from PW response

r2 = 0.17, p < 0.001; late: >15 ms after stimulation, r2 = 0.03, p >

0.15). In contrast, the area of the wPSP was correlated with the

late (r2 = 0.14, p < 0.002) but not the early evoked spikes (r2 =

0.02, p > 0.2). The wPSP amplitude peak occurred on average

at 12 ms after stimulation for the PW and 18ms for S1 and was

best correlated with the total spike count (r2 = 0.22, p < 10�4).

Further analysis revealed that deprivation produced correspond-

ing changes in wPSPs slope and early evoked spikes on the one

hand and between depolarization area and late evoked spikes on

the other (Figure S1). Indeed, an increase in wPSPs slope and

a decrease in depolarization area for RS cells corresponded to

a concomitant increase of the early component (F(1,1) = 5.3,

p < 0.05) and decrease of the late component (F(1,1) = 3.9,

p < 0.05) of the suprathreshold response. A decrease in the initial

slope for the IB cells appeared to correspond to a decrease in the

early component of the suprathreshold response, but this was

not statistically significant (F(1,1) = 3.9, p = 0.051; Figure S1).

Because the early or late components of the response are only

fractions of the total response, significant changes in either

component could be diluted (as with the trimmed whisker

responses in IB cells) or cancelled out because they changed in

opposite directions (as for spared whisker responses in RS cells)

so that total spike count was not affected significantly.

We found that a simple integrate and fire model applied to the

subthreshold activity was sufficient to explain deprivation-

induced changes in suprathreshold activity. The membrane



Figure 3. Stimulation Methodology and Receptive Field Case Studies (Rat)

(A) Pictures of the 3 3 3 whisker stimulation device. Each piezo is oriented at the natural angle of the whisker unless stimulated.

(B) Schematic representation of one sequence of stimulation applied for recordings in the D2 column. For D1 or D3 recordings, the stimulators are translated so

that the PW is always the central whisker. For each sequence the whiskers are stimulated with a dorsal deflection in a random order. An intracellular injection of

current is made at the end of each sequence (0.1 pA, 100 ms).

(C) Nine-whisker suprathreshold (PSTH) and subthreshold (wPSP) receptive fields for 4 example cells. Relative positions map the spatial arrangements of the

whiskers. Vertical lines indicate stimulus onset. Black PSTH and wPSP correspond to the principal whisker (D2 in the four cases). The shaded areas highlight the

responses to deprived whiskers stimulation.

See also Figure S5.
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voltage distribution was shifted by the amount of depolarization

(method 1) or recalculated for each time step around stimulation

(method 2). The probability of firing was then calculated and

used to create a predicted PSTH, which could be compared to

the real PSTHs (see Figure S2). The exact shapes of the PSTHs

were not closely reproduced for IB cells, but the effects of

sensory deprivation were. The complex time-specific modifica-

tions observed for RS cells were also reproduced by the model.

In conclusion, changes observed in suprathreshold activity

directly reflected changes at the subthreshold level, which

implies that synaptic and not spike generation mechanism

explain the observed plasticity.

The Time Course of the wPSP Is Altered by Deprivation

As whisker deprivation affected the timing as well as the ampli-

tude of the responses to whisker stimulation, we analyzed the

time course of response for RS and IB cells. Figure 5 represents

averaged wPSPs and PSTHs for one trimmed and one spared

whisker only. Note that the early spikes (<15 ms poststimulus)

were significantly depressed for PW stimulation in the IB cell

population (t(38) = 3.2, p < 0.005; see Figure S1), but not for the

other trimmed whiskers, as revealed in Figure 5A. The potentia-

tion in IB cells and the depression in RS cells appear to be
roughly uniform throughout the whole time course of the

response. In contrast, depression of PW responses in IB cells

was greater in the early part of the response (<30 ms poststim-

ulus). Similarly for RS cells, the best spared whisker was poten-

tiated for the early part of the response (<25ms poststimulus) but

depressed for the late component. The latter observation held

when all the spared whiskers were considered. We quantified

the area of the subthreshold response in four time windows

(0–25; 25–50; 50–75; 75–100 ms poststimulus) and the supra-

threshold response in three time-windows (0–15; 15–30;

30–45 ms poststimulus). RS cells’ response to spared whisker

stimulation displayed a significant interaction between depriva-

tion and time both for suprathreshold (F(2,2) = 6.8, p < 0.005)

and subthreshold (F(3,3) = 5.5, p < 0.005) parameters. These

data suggest that the early component of the response can be

potentiated (as with the RS cells) or depressed (as with the IB

cells) independently of later components of the wPSP.

Latency and jitter of evoked action potentials are important

temporal parameters for coding sensory information. Figure 5

shows sub- and suprathreshold latency and jitter of the first

action potential following stimulation for the PW and S1 (see Fig-

ure S1 for all whiskers). Both RS and IB cells’ latency and jitter
Neuron 73, 391–404, January 26, 2012 ª2012 Elsevier Inc. 395



Figure 4. Deprivation Induces Cell-Type-Specific Changes of LV

Receptive Fields (Rat)

(A) Left, schematic representation of the whiskers studied; right, illustration of

the calculated parameters.

(B) Suprathreshold receptive field. Principal whisker and two surround row-

associated whiskers (T1 and T2) were trimmed, while six surround whiskers in

the adjacent rows (S1 to 6) were left intact. Trimmed and spared surround

whiskers were ordered respectively in decreasing order of suprathreshold

response (mean ± SEM). Test: ANOVA, effect of deprivation on all spared or all

trimmed whiskers; *p < 0.05, **p < 0.001.

(C) Supra and subthreshold effects of deprivation on all trimmed whiskers

averaged and all spared whiskers averaged. Each parameter is normalized to
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were affected by deprivation in an inverse complementary way.

For IB cells, latency (F(1,1) = 16.6, p < 2.10�4) and jitter (F(1,1) =

11.2, p < 0.002) of the suprathreshold response to the deprived

whiskers were increased, but were unchanged for the spared

whiskers (latency, F(1,1) = 0.18, p > 0.6; jitter, F(1,1) = 0.001,

p > 0.9). For RS cells, deprivation did not affect the temporal

information in the response to stimulation of the deprived whis-

kers (latency, F(1,1) = 1.04, p > 0.3; F(1,1) = 0.006, jitter, p >

0.9), but both latency (F(1,1) = 7.6, p < 0.01) and jitter (F(1,1) =

15.0, p < 0.001) of action potentials evoked by deflections of

the spared whiskers were decreased. Action potential rate and

jitter can therefore change independently and did so in opposite

directions for the different inputs to RS and IB cells.

Finally, the rate of spontaneous activity preceding stimulation

was also affected by deprivation (Figure 5). We observed a

significant decrease for RS cells (10.6 ± 2.2 versus 3.9 ±

1.6 Hz, t(30) = 2.5, p < 0.05) but not for IB cells (11.8 ± 1.9 versus

16.0 ± 2.3 Hz, t(38) = 1.4, p > 0.1).

To understand which intracortical pathways might give rise to

these different components of plasticity, we studied the synaptic

responses of LV neurons in whisker deprived mice ex vivo using

laser scanning photo stimulation. As LVa showed no potentiation

in mice we concentrated the study on LVb.

Ex Vivo Laser Scanning Photostimulation
and Whole-Cell Recordings
Input Maps of LVb Neurons

We analyzed barrel cortex circuits in brain slices cut across

barrel rows (Allen et al., 2003; Finnerty et al., 1999) (Figure 6).

In selected slices, five large barrels corresponding to barrel

rows A–E could be identified under brightfield illumination (Fig-

ure 6A). LVb pyramidal neurons were distinguished by their

firing patterns in response to threshold injection of current

(Figures 6B and 6D; see Experimental Procedures). The

dendrites of a subset of recorded neurons were reconstructed

for morphological analysis (Figures 6A, 6B, and 6C). Again, we

observed that IB cells had thick apical dendrites with a dominant

bifurcation in LII/III or LIV (>230 mm below the pia) and an

elaborate apical tuft. RS cells had a relatively thin apical dendrite

and a small apical tuft branching close to the pia (<230 mm

below the pia). IB cells also had larger membrane capacitances

(Figure 6D; 264 ± 48 versus 175 ± 34 pF, rank sum test

p < 5.10�4), higher resting potential (�68 ± 3 versus�70 ± 5 mV,

rank sum test p < 0.005) and lower membrane resistances

(127 ± 48 versus 201 ± 80 MU, rank sum test p < 5.10�4) than

RS cells. Average membrane potential and resistance did not

differ between control and deprived animals, neither for IB cells

(respectively, Vm = �68.7 ± 3.7 versus �68.2 ± 3.6 mV and

R = 142.3 ± 53.5 versus 124.4 ± 54.5 MU) nor for RS cells

(Vm = �72 ± 4.8 versus �70 ± 5.1 mV and R = 229.2 ± 118.4

versus 164.7 ± 58 MU).

To map the strength of excitatory projections converging

onto LVb neurons we used laser scanning photostimulation
the control value. The subthreshold parameters (shaded areas) are calculated

from the wPSPs. Receptive fields are detailed as in (B) for each parameter in

Figure S1. Same statistics as in (B).

See also Figures S1 and S5.



Figure 5. Temporal Properties of the Receptive Fields Are Differentially Affected by Deprivation (Rat)

(A) IB cells response in control and deprived animals. Top: IB cell-population PSTH andwPSP for the principal and for the best spared whiskers in control and test

animals. The average Vm after the no-stimulation event has been subtracted, and the baseline periods aligned. The difference between control and test wPSP is

presented in gray. Dashed line: onset of stimulation. Bottom: Quantification of temporal parameters (mean ± SEM). The wPSP latency corresponds to the

beginning of the depolarization, the a.p. latency is the averaged timing of the first spike following stimulation and the a.p. jitter is the standard deviation of the first

spike timing. Unpaired Student’s t test, *p < 0.05.

(B) RS cell population PSTH and wPSP for the principal and for the best spared whiskers in control and test animals. Conventions as in (A).

See also Figure S2.
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(LSPS) by glutamate uncaging combined with whole cell record-

ings (Briggs and Callaway, 2005; Katz and Dalva, 1994; Shep-

herd et al., 2003; Shepherd and Svoboda, 2005; Yoshimura

et al., 2005) (Figures 6E and 6F). Using LSPS, we mapped excit-

atory projections onto LVb neurons in an area encompassing

three barrel columns (Figure 6E) and observed results in agree-

ment with the literature (Briggs and Callaway, 2005; Hooks

et al., 2011; Lefort et al., 2009; Schierloh et al., 2003; Schubert

et al., 2001; Thomson and Bannister, 2003). Both RS and IB cells

received input from all the cortical layers (Figures 7A and 7B) with

a prominent LII/III to LVb projection (Figure 7). The majority of

input from LII/III and LVI (the two layers where we could analyze

both the home and surround columns) came from the home

barrel column (68% ± 12%). Both cell types received smaller

but significant input from all the layers in the neighboring barrel

columns. IB cells had slightly broader input maps, receiving

more transcolumnar input than RS cells, especially from the sub-

granular layers (LV p < 0.005; LVI p < 0.05) (Figures 7J and 7K).

RS and IB Cell Input Maps Show Complementary

Forms of Plasticity

We induced experience-dependent plasticity in the barrel cortex

by trimming a single row of whiskers (row C or D) so that the

deprived barrel column was flanked on both sides by spared

barrel columns. Animals were aged P30 at the start of depriva-

tion. In brain slices from animals trimmed for 10–14 days we
again measured the input maps for IB and RS neurons in

deprived columns and compared them to input maps from

controls. Significant experience-dependent changes in input

maps of LVb neurons were seen in LII/III, LIV, and LV (Figures

7C, 7D, 7J, and 7K), but experience-dependent changes were

most robust in the LII/III to LVb projection (Figures 7E, 7F, 7J,

and 7K) both in RS and IB cells.

In spite of having similar input maps under control conditions,

inputmaps of RS and IB cells changed in inverse complementary

ways in response to whisker trimming (Figures 7E and 7F). The

LII/III to LVb RS projection was reduced within the home column

(60% ± 44% of control, p < 0.005) (‘‘center depression’’), while

inputs from the surrounding barrel columns remained

unchanged (86% ± 72%, p > 0.39) (Figures 7E, 7G, and 7J). In

contrast, inputs to LVb IB neurons within the home column

remained unchanged (LII/III, 114% ± 61%, p > 0.20; LVI

128% ± 111%, p > 0.32), while input from the surrounding barrel

columns increased (LII/III, 201% ± 102%, p < 0.00005; LIV,

198% ± 104% p < 0.0001; LV, 145% ± 76% p < 0.008)

(‘‘surround potentiation’’) (Figures 7F, 7H, and 7K). The excit-

atory projections to IB and RS neurons thus change in orthog-

onal patterns in response to whisker trimming.

The postsynaptic response to photostimulation (Q) depends

on the average strength of the synaptic connection with the

stimulated presynaptic neuron (qcon, defined here as the
Neuron 73, 391–404, January 26, 2012 ª2012 Elsevier Inc. 397



Figure 6. Measuring Synaptic Input Maps in Intrinsically Bursting and Regular Spiking Pyramidal Neurons (Mouse)

(A) Top: Two biocytin-filled neurons in LVb (left, IB cell; right, RS cell). Bottom: Brightfield image of an acute brain slice showing the five rows of barrels.

(B) Examples of dendritic morphologies (left, IB cell; right, RS cell) and the corresponding action potential firing patterns.

(C) Quantitative morphology of the dendritic arbors of RS (n = 7) and IB (n = 7) cells.

(D) First interspike interval (First ISI) versus membrane capacitance (solid circles, IB cell; open circles, RS cell). Cells with First ISI < 25 ms were classified as IB.

(E) Example of a LSPS input map for a single LVb neuron (soma position is indicated by the triangle). Dashed boxes indicate barrel boundaries. The colored

numbers in white circles indicate the locations of the UV stimulus generating the traces shown in (F). Pixels with direct responses are blacked out

(see Experimental Procedures).

(F) Examples of traces from themap shown in (E). 1, pure synaptic response; 2, direct response in the apical dendrite; 3, direct response in the perisomatic region.

The gray zone represents the time used to score direct responses.

See also Figures S3 and S4.
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postsynaptic charge per presynaptic neuron per action poten-

tial), the number of neurons stimulated, and the number of action

potentials fired per stimulated neuron (NAP). To confirm that

experience-dependent changes in input maps can be attributed

to synaptic plasticity (i.e., changes in qcon) we characterized the

photoexcitability of presynaptic neurons before and after depri-

vation by recording excitation profiles (Shepherd et al., 2003;

Shepherd and Svoboda, 2005). The average number of action

potentials per neuron elicited by UV uncaging (NAP) was not

affected by sensory deprivation (Figure S3). Similarly, the

distance from the soma from which neurons could be excited,

which together with NAP determines the number of neurons pho-

tostimulated, was unchanged by deprivation. The deprivation-

induced changes observed in the input maps therefore reflect

synaptic changes. We measured changes in input maps with

varying time between whisker trimming and LSPS mapping (Fig-

ure 8). Surround-potentiation in IB cells could already be de-

tected 3–5 days after trimming and increased monotonically

with time, but center-depression in RS cells could only be

observed in animals deprived for 10 days or longer (Figure 8G).

Deprived barrel input in IB cells and spared barrel input to RS

cells remained at control levels at all deprivation lengths

(Figure S6).

DISCUSSION

We used three different experimental methods to characterize

cell type specific plasticity in LV and the underlying changes in
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cortical connectivity. We find that plasticity in LV precedes

changes in other cortical layers, that potentiation and depression

are decoupled in spatially overlapping RS and IB subpopulations

within LV, and that changes in LII/III to LV excitatory connectivity

mirror changes in stimulus-evoked action potential rate within

the sensory-evoked response. All three methods are unanimous

in showing the rapidity and independence of LV plasticity. Both

intracellular studies are consistent in showing the striking parcel-

lation of potentiation in IB cells and depression in RS cells.

Furthermore, by comparing differences in plasticity revealed by

whisker stimulation and direct stimulation of cortical circuit

elements we can deduce that plasticity occurs in subcortical

projections to LV, that they differ between RS and IB cells and

that they are more concerned with the timing of sensory informa-

tion than the strength of drive to the circuit.

Relative Contribution of LII/III to V Pathways to
Receptive Field Plasticity
Ourmain finding is that changes in the LII/III to Vb pathway within

and between columns can explain most of the receptive field

plasticity observed in vivo as well as the differences between

RS and IB cells. The magnitude of potentiation seen in the three

different experimental methods used here are strikingly similar.

After 10 days of whisker trimming, the strength of cross-

columnar LII/III to LVb projections measured ex vivo and stim-

ulus evoked firing rates for spared whiskers measured in vivo

both increased by a factor of 2. This suggests that potentiation

of the cross-columnar LII/III to LVb connections is sufficient to



Figure 7. Plasticity of Synaptic Input Maps for RS and IB Cells in Deprived Barrel Columns (Mouse)

(A and B) Average synaptic input maps of RS (n = 26) and IB (n = 46) cells under control conditions. The positions of barrels are indicated by dashed lines. The

positions of the somata are indicated by white triangles. The areas in black indicate the regions where the number of traces not polluted by direct responses was

too small and were excluded from analysis.

(C and D) Average synaptic input maps of RS (n = 22) and IB (n = 33) cells in deprived barrel columns. The positions of spared (white) and deprived (red) barrels are

indicated by dashed lines.

(E and F) Horizontal spatial profiles of mean LII/III / LVB input to RS (E) and IB (F) cells in control (blue) and trimmed (red) animals. Dashed lines indicate the

boundaries of the barrel columns.

(G and H) Difference maps made by subtracting the averaged trimmed map (C and D) from the control map (A and B).

(I) Horizontal spatial profiles of mean LII/III to LVb input to RS (open circles) and IB (filled circles) cells in control conditions.

(J and K) Mean synaptic input sorted by layer of origin from the home (left) or surround columns (right) (indicated as gray boxes in the schematics) to RS (J) and IB

(K) cells, in control (blue) and trimmed (red) animals. Background due to spontaneous synaptic currents is indicated by dashed lines.

See also Figure S3.
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explain changes in the IB cells’ responses to spared whisker

stimulation.

Depression of deprived pathway responses can also be ex-

plained by a depression of the LII/III to LVb synapses onto RS

cells within the column from data obtained in the in vivo and

ex vivo recordings. In both cases, the change in overall supra-

threshold spike response could be attributed to a change in

the area and peak of the wPSP. This suggests that the LII/III to

V pathway controls a steady excitation to LV following whisker

stimulation over at least 50 ms (see Figures 5 and S1) and that

depression of this pathway leads to a decrease and potentiation

to an increase in spiking response. A lower level of principal

whisker response occasionally occurred in the IB cells too, which

was not seen in the LSPS studies and was manifest in the wPSP

as a decrease in the slope. This is most likely explained by
depression at an earlier synapse in the pathway. Consistent

with this, after 10 days of deprivation, the LII/III responses are

themselves depressed, most likely due to depression in the LIV

to LII/III pathway (Allen et al., 2003; Glazewski and Fox, 1996).

Our LSPS studies revealed similar changes in other intracort-

ical pathways in response to stimulation too, suggesting that the

orthogonal response to deprivation characteristic of RS and IB

cells is a general property of intracortical pathways. Recent

studies have highlighted the importance of the LII/III to LV

pathway in the barrel cortex for LV responses and plasticity.

Blocking LII/III responses can prevent LV cells from spiking in

response to principal whisker stimulation (Wright and Fox,

2010). During development, growth of the LII/III axons projecting

to LV are sensitive to whisker trimming (Bruno et al., 2009) and

could contribute to the plasticity described here if this form of
Neuron 73, 391–404, January 26, 2012 ª2012 Elsevier Inc. 399



Figure 8. Time Course of the LII/II to LVb RS Projection Center

Depression and the LII/III to LVb IB Projection Side Potentiation

(Mouse)

(A and B) Averaged synaptic maps of RS (n = 13) and IB (n = 18) cells under

control conditions.

(C and D) In deprived barrels, 3 to 5 days after whisker trimming (RS: n = 10;

IB:n = 13).

(E and F) In deprived barrels 10 to 14 days after whisker trimming (RS: n = 13;

IB:n = 16).

(G) Time course of LII/III to LVb RS input from the home barrel (open circles),

and LII/III to LVb IB input from the surround columns (filled circles), normalized

to controls.

See also Figures S3 and S8.
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anatomical plasticity is maintained into adulthood. Interestingly

sensory deprivation also affected the ongoing activity in absence

of stimulation, with an opposite effect in the two cell types. Such

changes could emerge from a general increase of cortical inputs

in IB cells and decrease in RS cells, as we observed ex vivo.

Relative Contribution of Subcortical Pathways
to Receptive Field Plasticity
Changes in cortical excitatory circuits are sufficient to account

for the experience dependent changes in action potential rate

across experimental methodologies. However, an increase in

the short latency component of the spike response in RS cells

corresponding to an increase in slope of the wPSP requires an

additional factor to be introduced and one that could not be de-

tected in the cortical photostimulation studies. The most likely

candidates are therefore thalamic inputs and/or cortical inhibi-

tion. To consider thalamic inputs first, direct thalamic inputs to

LV pyramidal neurons are known to exist (Bureau et al., 2006;

Petreanu et al., 2009; Wimmer et al., 2010; Wright and Fox,
400 Neuron 73, 391–404, January 26, 2012 ª2012 Elsevier Inc.
2010) and transmit fast enough to explain changes in the initial

slope of the wPSP. The VPM nucleus provides the shortest

latency synaptic drive to most S1 cortical neurons and therefore,

an increase or decrease in the direct VPM input to a LV cell might

be expected to change the initial component of the EPSP several

milliseconds before polysynaptic intracortical inputs take effect.

Many IB cells do not receive direct VPM inputs whereasmost RS

cells do (Agmon and Connors, 1992; Baranyi et al., 1993), which

is consistent with the greatest changes in the initial component

of the wPSP occurring in RS cells. VPM inputs (Wimmer et al.,

2010) may also underlie the LVb depression observed in vivo

3 days after trimming, when intracortical circuits haven’t yet

depressed. Inhibition can also be activated early in the PSP by

thalamic input (Gil and Amitai, 1996) and so could also conceiv-

ably be involved in modulating the amplitude of the direct

thalamic drive to the cells. Inhibition could have a differential

impact on RS and IB cells since RS cells are thought to receive

more inhibitory control than IB cells (Schubert, Staiger et al.,

2001). Testing which of these pathways are involved will require

specific further studies.

Classification of Pyramidal Cell Types
For practical reasons we were obliged to use different methods

to classify RS and IB cells in the in vivo and ex vivo aspects of the

study. Classically, injection of current at threshold elicits a

complex of action potentials in IB cells and a single action poten-

tial in RS cells, which is sufficient to classify them (McCormick

et al., 1985) and this method was used in the ex vivo studies.

In the in vivo studies, we used this method in addition to identi-

fying the action potential (AP) complexes that are characteristic

of IB cells where the APs decrease in amplitude and ride upon

a slow depolarization envelope (Baranyi et al., 1993; Connors

et al., 1982; Dégenètais et al., 2002; McCormick et al., 1985;

Nuñez et al., 1993) but see Nowak et al. (2003) for a quantitative

analysis. Both methods are judged to be equivalent and indeed,

in support of this view we described in the Experimental Proce-

dures section different post hoc tests confirming that RS and IB

cells have comparable properties in both our in vivo and ex vivo

studies. However, the following qualifications need to be kept in

mind: Schwindt and colleagues have reported high threshold

bursting neurons that do not fire bursts at threshold current

injections for producing APs (Schwindt et al., 1997; Steriade

et al., 1993); such neurons would likely be included in the

bursting neuron population in vivo but not ex vivo. Conversely,

while slow depolarizations in vivo can be generated intrinsically

they can also result from the activity of synchronized inputs, as

occurs during the generation of up-states. Moreover, synaptic

activity, release of neuromodulators in vivo or differences in

physiological temperature can preclude or obscure the occur-

rence of bursts in IB cells (Wang and McCormick, 1993; Waters,

2011; Steriade, 2001; Steriade et al., 1993). However, the

number of cells misclassified as a result of these confounds

appears to be negligible based on our post hoc test of RS

and IB cell properties (capacitance, morphology, bimodality of

interspike intervals and laminar distribution—see Experimental

Procedures). Therefore, the main observation that potentiation

is restricted to IB cells and depression is restricted to RS cells

holds for both in vivo and ex vivo data.
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Comparability of Rat and Mouse Studies
Our LSPS experiments were performed in mice while the in vivo

intracellular recordings were performed in rats. Could the

species difference alter the comparability of the results? It is

possible that slight quantitative differences might be species-

related, but the main qualitative result does not appear to be.

When we repeated the extracellular receptive field study in

mice we observed the same evolution of receptive fields across

the different layers following deprivation. The main difference

between plasticity in mice and rats was that potentiation

occurred in LVa in rats but not in mice. One possible explanation

for this would be the presence of fewer IB cells in LVa of mice.

Some laboratories have reported a clear layer separation of thick

tufted and thin slender cells in S1 (Groh et al., 2010; Meyer et al.,

2010). In other studies, including the present one, thin slender

regular spiking neurons were observed in LVb (Schubert et al.,

2007). At the very least, all studies so far conclude that the distri-

butions of pyramidal neuron types are not uniform throughout

LV. Therefore, it is reasonable to hypothesize that the differences

observed extracellularly between LVa and LVb result in part from

differences in the percentage of RS and IB cells. If most cells in

LVa of the mouse are of the RS type, we would not expect to see

potentiation from the extracellular studies and indeed we do not.

If LVa in the rat contains amixture of RS and IB cells, as we found

from our classification, then one would expect to see potentia-

tion from the extracellular studies, which is the case.

Cell-Type-Dependent Mechanisms
for Orthogonal Plasticity
Synaptic plasticity varies with layer in sensory cortices, a factor

that might be explained by the different connections within each

layer (Wang andDaw, 2003). Synaptic plasticity affects receptive

field organization both in supra- and infragranular barrel cortex

neurons (Jacob et al., 2007). However IB cells and RS cells,

which we show in this study to be differently potentiated during

deprivation, share the same layer and largely the same connec-

tions including input from LII/III neurons. What then could be the

mechanisms that drive their distinct forms of experience-depen-

dent plasticity? The basal level of activity differs between RS and

IB cells (de Kock et al., 2007), IB cells having larger spontaneous

and evoked activity. Postsynaptic spike pattern and frequency

influences the sign and amplitude of synaptic plasticity in vitro

in cortical LII/III (Froemke et al., 2006; Zilberter et al., 2009) and

LV pyramidal cells (Birtoli and Ulrich, 2004; Letzkus et al.,

2006). This suggests that IB cells may be more plastic due to

their propensity to fire more frequently and/or with bursts of

action potentials. Back-propagation of action potentials into

the dendritic tree associated with increased calcium influx has

been hypothesized to play a major role in plasticity (Colbert,

2001; Sourdet and Debanne, 1999) and differs qualitatively

between RS and IB cells (Grewe et al., 2010).

The parallels between structural spine plasticity and receptive

field plasticity are remarkable. They have similar time course

(Trachtenberg et al., 2002; Figures 6 and 7), express themselves

predominantly in the same cell types (Holtmaat et al., 2006; Fig-

ure 3), and depend on the same signal transduction mechanisms

(Wilbrecht et al., 2010). These similarities suggest strongly that

the growth of new spines and associated synapse formation
underlies receptive field plasticity (Knott et al., 2006). It remains

to identify the presynaptic partners to these spine changes. Our

studies strongly implicate LII/III to V projections and thalamic

inputs as major candidates for future studies.

EXPERIMENTAL PROCEDURES

Subjects and Whisker Deprivation

In vivo recordings were performed at Cardiff University and were approved

under the UK Scientific Procedures Act 1986. C57Bl/6HsdOla mice and

Long-Evans rats of both sexes were used for extracellular recordings (control:

7 rats and 9 mice; 3 day deprivation: 8 rats and 8 mice; 10 day deprivation: 10

rats and 8 mice). Intracellular recordings were performed in 23 control and 18

deprived Long-Evans male rats. In addition, 7 animals were required for

histology only. The LSPS ex vivo study was performed on C57Bl/6J male

mice at Cold Spring Harbor Laboratory, was approved by the Cold Spring

Harbor Laboratory animal care and use committee and followed National Insti-

tutes of Health guidelines.

Subjects were lightly anesthetized with isofluorane and had either the left C

or D row of whiskers trimmed to length <1 mm (same length as the fur hairs)

every 24 or 48 hr. For LSPS ex vivo; control animals were anesthetized and

handled in the same way as the deprived groups but their whiskers were left

intact; whisker trimming started at postnatal day (P) 30 and was continued

for 3 days or 10–14 days before the recordings. For in vivo recordings; whisker

trimming started at postnatal day (P) 32–45 and was continued for 3 days or

10 days before recording; the trimmed whiskers were kept and glued to the

whisker stump before stimulation. Control and deprived animals were re-

corded at the same age, i.e., P40–44 for ex vivo and P42–55 for in vivo. For

mouse cortex, we found no difference in response levels for normal mice

and those where we trimmed the whiskers and immediately reattached them

in layers II/III, IV, Va, or Vb (ANOVA, effect of layer F(3,3) = 2.7, p = 0.045; gluing

F(1,1) = 0.32, p = 0.56; interaction F(3,3) = 1.0, p = 0.37)) and similarly for rats

where we only sampled in layers Va and Vb (ANOVA, effect of layer F(1,1) =

0.78, p = 0.38; gluing F(1,1) = 0.53, p = 0.47; interaction F(1,1) = 0.94, p = 0.34).

In Vivo Recordings

In Vivo Surgery and Recording Procedures

Anaesthesia was induced with isoflurane and maintained with intraperitoneal

injection of urethane (1.5 g/kg body weight). Anesthetic depth was monitored

by observation of reflexes and breathing rate. As required, additional doses of

urethane were injected to maintain anesthesia (0.15 g/kg body weight). Body

temperature was maintained at 37�C. Specific procedures for extracellular

recordings are described in Supplemental Experimental Procedures. For intra-

cellular recordings, a 1mmdiameter craniotomy was performed over the D1–2

barrels. A separate craniotomywasmade caudally away from the barrel field in

order to insert a carbon fiber reference electrode at the cortical surface. Glass

micropipettes filled with 1M potassium acetate and 2% byocytin (50–100 MU)

were inserted in the brain through a small opening of the dura. Recordings

were performed in current-clampmode and the bridge was balancedmanually

(Axoclamp 2B). Electrode capacitance was compensated and no holding

current was applied. Recordings with a membrane potential to action potential

peak amplitude of less than 50 mV were excluded from the analysis. Between

each stimulation sequence, a short hyperpolarizing current (10 pA, 100 ms)

was injected in the cell and the series and membrane resistance were calcu-

lated through a double exponential fit. Four cells with an abnormal resistance

were discarded (double exponential fit failed) and 7 cells (10% of total) with

a low resistance for in vivo sharp recordings (<15 MU) were included.

In Vivo Whisker Stimulation

For extracellular recordings, whiskers were trimmed to similar lengths and

stimulated with a 200 mm deflection from a piezoelectric stimulator positioned

10 mm from the follicle. The principle whisker and all of the immediate

surrounding neighbor whiskers were consecutively stimulated with fifty ventro-

dorsal deflections at 1 Hz. For intracellular recordings, whiskers were de-

flected using nine independent computer-controlled piezoelectric actuators

(Physik Instrument, UK) arranged in a bespoke frame (Manufacturing Engi-

neering Centre, Cardiff University) designed to preserve the resting angle of
Neuron 73, 391–404, January 26, 2012 ª2012 Elsevier Inc. 401
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each whisker, similar to a previous study (Jacob et al., 2010). Piezoelectric

actuator movement was controlled by a 9 whisker stimulator (3901, CED

UK). The deflection amplitude of each actuator was calibrated with a laser

displacement-measuring system (Micro-Epsilon, Germany). Receptive fields

were mapped with sparse noise stimulations composed of pseudorandom

sequences of ventrodorsal deflections at 5 Hz (including a nonstimulation

event). Five to one hundred twenty-five sequences (mode 50) were considered

depending on the stability of the recording. The deflection lasted 30 ms (with

10ms plateau) to avoid oscillations andwere of 300 mmamplitude (see Figure 2

Jacob et al., 2010).

Analysis of In Vivo Data

All data were collected and analyzed using a CED1401 and Spike2 software

(CED, UK). Action potentials (a.p.) were counted during 3 to 53 ms after stim-

ulation unless specified. Spontaneous activity was subtracted (50 ms before

stimulation for extracellular recordings, 3–53 ms after the nonstimulation event

for intracellular recordings). Average latency and jitter (standard deviation) of

the first action potential after stimulation in the 3–53ms period after stimulation

was calculated for the intracellular recordings. To measure the subthreshold

activity, spikes were detected using the wavemark tool of the Spike 2 software

and subtracted from the membrane potential trace (see Figure S5 for an eval-

uation of the effect). Whisker-evoked postsynaptic potentials (wPSP) were

then averaged and latency, initial slope, amplitude of the first peak and area

of the positive phase were calculated (see Supplemental Experimental Proce-

dures for the details of the calculation).

Estimation of the Depth of In Vivo Recordings

Functional and histological methods were used to confirm that recordings

were performed in a deprived whisker-related column (see Supplemental

Experimental Procedures). Depths of layer borders were estimated indepen-

dently for extracellular and intracellular recordings. Surface of liquid and

subdural position, respectively, were chosen as references for sharp and

carbon fiber electrodes. For extracellular recordings, we found LII/III between

0 and 270 mm, LIV to be 270–440 mm, LVa to be 440-550 mm and LVb to be

550-750 mm from the pia in mice. In rats we found LII/III between 0 and

470 mm, LIV to be 470–750 mm, LVa to be 750–1000 mm and LVb to be

1000–1250 mm from the pia. For intracellular recordings LV lays between

950 and 1400 mm from the surface of the saline solution above the pia.

Ex Vivo LSPS Input Maps

Brain slices of the barrel cortex and whole cell recording were obtained as

described (Shepherd and Svoboda, 2005), with minor modifications (see

Supplemental Experimental Procedures). After whole-cell recording was es-

tablished, the objective lens was switched to 43 (0.16 NA; UPlanApo,

Olympus) and the stage was moved to align the barrel grid with respect to

the LSPS stimulus pattern. LSPS was performed as described (Bureau

et al., 2004; Shepherd et al., 2003; Shepherd and Svoboda, 2005). Briefly,

stimulation with an ultraviolet laser (DPSS Lasers) was set on a 16 3 16 grid

pattern spaced by 75 mm, covering 1.2 mm2 of cortex. This area included

the entire thickness of the cortical gray matter and three barrel columns.

NI-glutamate was uncaged for 1 ms with 30 mW of laser power at the spec-

imen plane. We verified that under our experimental conditions these stimula-

tion parameters elicited action potentials only when the laser beam was close

to the soma of the neurons (Figure S3). Only excitatory inputs were mapped as

cells were held at –65 mV, close to the reversal for fast inhibition. After the

recordings the apical dendrites were imaged using fluorescence microscopy.

Only themaps of cells where the apical dendrite ran parallel to the slice surface

were included in the analysis.

For statistical analysis, we calculated the mean pixel values within a region

of interest of the map for each individual cell, ignoring pixels that had direct

responses. Values for different groups of cells were compared using the Wil-

coxon rank-sum test. Significance is denoted as *p < 0.05, **p < 0.005, and

***p < 0.0005. Data are presented as mean ± SD. Error bars in all plots denote

standard errors of the mean.

Cell Type Classification

Firing patterns in response to current injection were used to classify the

recorded cells as RS or IB both for in vivo and ex vivo intracellular record-

ings (Connors and Gutnick, 1990; Schubert et al., 2001). For LSPS ex vivo
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(Figures 6B, 6C, and 6D), cells firing high frequency bursts of action potentials

at threshold (including doublets; first interspike interval (ISI) <25 ms, mean

frequency 99 ± 28 Hz) were classified as IB (Schubert et al., 2001; Schwindt

et al., 1997). Cells firing a train of action potentials with spike frequency

adaptation (first ISI > 25 ms, mean frequency 16 ± 9 Hz) were classified as

RS (Figure 6D). This criterion could not be used for in vivo recordings since

chronic firing rate at rest precluded stimulating at threshold. Indeed RS

cells exhibited irregular activity reflecting spontaneous inputs and IB cells

bursts occurred stochastically position after current injection. Firing patterns

were classified as IB when a characteristic burst shape occurred at least

once in response to current injection (Connors et al., 1982). The burst shape

was defined as high frequency action potential decreasing in size at the

top of a slow depolarization (‘‘calcium’’) event. Note LV bursts have

a characteristic shape compared to other layers. To double-check our

classification we compared it with the criterion for in vivo classification intro-

duced by Nowak et al. (2003), i.e., bimodality of the distribution of log inter-

spike interval (Figure S4). We calculated this during spontaneous activity

and found a match between both methods for 88% of the cells. The few

mismatches were often due to up & down state activity; occurrence of bursts

with little sodium channel adaptation and no slow depolarization; or a sparse

occurrence of bursts.

The different classification methods necessitated by the practicalities of

in vivo and ex vivo experiments nevertheless segregated comparable popula-

tions of neurons as judged by several post hoc comparisons. First, IB cells had

larger capacitance than RS cells both ex vivo (sum of rank test p < 0.0005) and

in vivo (sum of rank test p < 10�7). Apparent membrane capacitance is known

to be correlated with total membrane area and differs between thick tufted and

thin slender pyramidal neurons (Larkman et al., 1992). Second, the distribution

of the log inter spike interval was bimodal for IB cells and monomodal for RS

cells both in vivo and ex vivo (Figure S4). Third, a subset of recorded cells

was filled with biocytin. Ex vivo the dendrites of 7 RS cells and 7 IB cells

were reconstructed for morphological analysis with Neurolucida software

(Microbrightfield), and in vivo the dendrites of 25 IB cells and 8 RS cells

were analyzed in 2-D with a Neurolucida camera. Among them 7 IB cells

and 5 RS cells were used only for morphological analysis since no receptive

field was recorded. In both experiments IB cells had thick apical dendrites

with a dominant bifurcation in LII/III or LIV and an elaborate apical tuft (Cha-

gnac-Amitai et al., 1990; Le Bé et al., 2007; Schubert et al., 2001) (Figures

2C and 6D). RS cells had a relatively thin apical dendrite and a small apical

tuft branching close to the pia. Finally, ex vivo recordings were performed in

LVb and most in vivo recorded IB cells were located in LVb as expected

from the literature (Figure 2; Nowak et al., 2003). For further treatment of the

validity and limits of the classification methods see the Discussion.
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Steriade, M., Amzica, F., and Nuñez, A. (1993). Cholinergic and noradrenergic

modulation of the slow (approximately 0.3 Hz) oscillation in neocortical cells.

J. Neurophysiol. 70, 1385–1400.

Stern, E.A., Maravall, M., and Svoboda, K. (2001). Rapid development and

plasticity of layer 2/3 maps in rat barrel cortex in vivo. Neuron 31, 305–315.
404 Neuron 73, 391–404, January 26, 2012 ª2012 Elsevier Inc.
Thomson, A.M., and Bannister, A.P. (2003). Interlaminar connections in the

neocortex. Cereb. Cortex 13, 5–14.

Trachtenberg, J.T., Chen, B.E., Knott, G.W., Feng, G., Sanes, J.R., Welker, E.,

and Svoboda, K. (2002). Long-term in vivo imaging of experience-dependent

synaptic plasticity in adult cortex. Nature 420, 788–794.

Tsiola, A., Hamzei-Sichani, F., Peterlin, Z., and Yuste, R. (2003). Quantitative

morphologic classification of layer 5 neurons from mouse primary visual

cortex. J. Comp. Neurol. 461, 415–428.

Wallace, H., and Fox, K. (1999). Local cortical interactions determine the form

of cortical plasticity. J. Neurobiol. 41, 58–63.

Wang, X.F., and Daw, N.W. (2003). Long term potentiation varies with layer in

rat visual cortex. Brain Res. 989, 26–34.

Wang, Z., and McCormick, D.A. (1993). Control of firing mode of corticotectal

and corticopontine layer V burst-generating neurons by norepinephrine,

acetylcholine, and 1S,3R-ACPD. J. Neurosci. 13, 2199–2216.

Waters, T.H. (2011). Spiking patterns of neocortical L5 pyramidal neurons

in vitro change with temperature. Front. Cell Neurosci. 5, 1.

Wiesel, T.N., and Hubel, D.H. (1963). Single-cell responses in striate cortex of

kittens deprived of vision in one eye. J. Neurophysiol. 26, 1003–1017.

Wilbrecht, L., Holtmaat, A., Wright, N., Fox, K., and Svoboda, K. (2010).

Structural plasticity underlies experience-dependent functional plasticity of

cortical circuits. J. Neurosci. 30, 4927–4932.

Wimmer, V.C., Broser, P.J., Kuner, T., and Bruno, R.M. (2010). Experience-

induced plasticity of thalamocortical axons in both juveniles and adults.

J. Comp. Neurol. 518, 4629–4648.

Wright, N., and Fox, K. (2010). Origins of cortical layer V surround receptive

fields in the rat barrel cortex. J. Neurophysiol. 103, 709–724.

Yoshimura, Y., Dantzker, J.L., and Callaway, E.M. (2005). Excitatory cortical

neurons form fine-scale functional networks. Nature 433, 868–873.

Zhu, J.J., and Connors, B.W. (1999). Intrinsic firing patterns and whisker-

evoked synaptic responses of neurons in the rat barrel cortex.

J. Neurophysiol. 81, 1171–1183.

Zilberter, M., Holmgren, C., Shemer, I., Silberberg, G., Grillner, S., Harkany, T.,

and Zilberter, Y. (2009). Input specificity and dependence of spike timing-

dependent plasticity on preceding postsynaptic activity at unitary connections

between neocortical layer 2/3 pyramidal cells. Cereb. Cortex 19, 2308–2320.


	Regular Spiking and Intrinsic Bursting Pyramidal Cells Show Orthogonal Forms of Experience-Dependent Plasticity in Layer V  ...
	Introduction
	Results
	In Vivo Extracellular Single-Unit Recordings
	Characterization and Time Course of Row Deprivation Induced Plasticity in Rats
	Comparison of the Time Course of Deprivation between Mice and Rats

	In Vivo Intracellular Recordings
	Cell-Type Analysis and Receptive Field Mapping
	RS and IB Cell Input Receptive Fields Show Inverse Complementary Forms of Plasticity
	The Time Course of the wPSP Is Altered by Deprivation

	Ex Vivo Laser Scanning Photostimulation and Whole-Cell Recordings
	Input Maps of LVb Neurons
	RS and IB Cell Input Maps Show Complementary Forms of Plasticity


	Discussion
	Relative Contribution of LII/III to V Pathways to Receptive Field Plasticity
	Relative Contribution of Subcortical Pathways to Receptive Field Plasticity
	Classification of Pyramidal Cell Types
	Comparability of Rat and Mouse Studies
	Cell-Type-Dependent Mechanisms for Orthogonal Plasticity

	Experimental Procedures
	Subjects and Whisker Deprivation
	In Vivo Recordings
	In Vivo Surgery and Recording Procedures
	In Vivo Whisker Stimulation
	Analysis of In Vivo Data
	Estimation of the Depth of In Vivo Recordings

	Ex Vivo LSPS Input Maps
	Cell Type Classification

	Supplemental Information
	Acknowledgments
	References


