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Abstract  

 

The alpha-synucleinopathies is a diverse group of diseases characterised by 

malfunctioning of alpha-synuclein protein. Parkinson’s disease is the most common 

of all alpha-synucleinopathies. 

Intracellular inclusions, like Lewy bodies and certain other abnormal structures are 

the pathological hallmarks of this group of neurodegenerative diseases. The main 

protein component of these structures is alpha-synuclien.  

Alpha-synuclein is a member of the synuclein family, which consists of 3 closely 

related proteins, alpha-, beta- and gamma-synucleins. Alpha-synuclein  is more 

extensively studied because of its direct involvement in human diseases, while our 

knowledge about two other family members is very limited. Neither beta-synuclein, 

nor gamma-synuclein is a component of Lewy bodies and other pathological 

structures typical for neurodegenerative diseases. 

However, there are several reports of accumulation of beta-synuclein and particularly 

gamma-synuclein in atypical pathological structure in brains of patients suffering 

from neurodegenerative diseases and mice carrying a deletion of UCHL1 gene. 

Therefore, it has been suggested that malfunction of gamma-synuclein could lead to 

neuronal pathology similar to pathology caused by malfunction of alpha-synuclein. 

To question this hypothesis, a transgenic mouse line expressing a high level of mouse 

gamma-synuclein under control of pan-neuronal Thy-1 promoter has been produced.  

A battery of various behavioural tests has been selected to test gamma-synuclein 

transgenic (heterozygous and homozygous) mice and their wild type littermates at 

different ages.  
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These tests included acoustic startle test, gait test, locomotor activity count test, rota-

rod test, and beam walking test. the Results of the locomotor activity test were 

unconvincing but the other four tests revealed that gamma-synuclein transgenic mice 

develop age-dependent motor dysfunction, the onset of which correlated with the 

genotype. These findings support the hypothesis that gamma-synuclein may play a 

role in pathogenesis of neurodegenerative diseases. 
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Chapter 1- Introduction 
 
 
1.1- The synuclein family 
 
 
Synucleins were discovered in 1988 by Maroteaux, while he was working on the 

pacific electric ray. Using an antiserum against cholinergic vesicles and the 

immuostaining technique a novel protein was identified and localised to the 

presynaptic terminals and the nuclear membrane of the electric organ neurons, 

therefore this protein was named synuclein (Maroteaux et al., 1988). Few years later, 

three isoforms of synuclein were found in the rat brain and designated SYN1, SYN2, 

and SYN3 (Maroteaux and Scheller, 1991). Subsequently, synucleins were identified 

in the human cerebral cortex, and the encoding cDNA was cloned and sequenced. 

Two abundant isoforms of 140 and 134 amino acids were named alpha-, and beta-

synucleins respectively (Jakes et al., 1994). More recently, another protein was 

identified as a protein highly expressed in breast cancer tissue (Ji et al., 1997) or in 

mouse peripheral nervous system (Buchman et al., 1998). Because of it is similarity to 

alpha- and beta-synuclein it was named gamma-synuclein (Lavedan, 1998). Using 

immunocytochemical and subcellular fractionation approaches it has been proved that 

synucleins are indeed abundant at presynaptic terminals of rat (Maroteaux and 

Scheller, 1991), song bird (George et al., 1995), and human brain (Jakes et al., 1994; 

Irizarry et al., 1996). The three human synucleins share 44% overall identity, however 

beta-synuclein has 78% identity with alpha-synuclein, while, gamma-synuclein shares 

60% identity with alpha-synuclein (Goedert, 2001).  

Human alpha-, beta-, and gamma-synuclein genes (SNCA, SNCB, and SNCG) are 

mapped to chromosomes 4q21.3-q22, 5q35, and 10q23, respectively (Campion et al., 
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1995; Shibasaki et al., 1995; Lavedan, 1998; Ninkina et al., 1998; Spillantini et al., 

1995). 

 

1.1.1Alpha synuclein 

Alpha-synuclein is a heat stable protein that is abundant in the brain; by some 

estimates this protein makes 1% of the total protein in the soluble cytosolic brain 

fraction (Iwai et al., 1995). Alpha-synuclein consists of 140 amino acids in human and 

rodents and the amino acid sequence identity between human and mouse or rat alpha-

synuclein is 95% (Maroteaux and Scheller, 1991) (Figure 1). 

 
 
             
Figure 1. Amino acid sequences of rat, mouse, and human alpha-synucleins. Amino 
acids inside boxes are different between at least two of these three species. 
 

Structurally, alpha-synuclein protein has three modular protein domains (Ueda et al., 

1993) (Figure 2).  The first one is a highly conserved amino terminal lipid binding 

domain (residues 1-61) that is capable of forming alpha-helix. Residues 61 to 95 

represent the second, internal hydrophobic (NAC) domain, which is the building 

block of synuclein aggregates - the GAV motif (residues 66-74) within the NAC 

domain has been demonstrated to be responsible for fibrilization of alpha-synuclein 
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(Du et al., 2003). The third structural domain is a carboxyl terminal acidic tail 

(residues 95-140). 

 
 

 
 
Figure 2. This scheme adapted from Moore et al., (2005) shows the three main 
regions of alpha-synuclein protein and the location of the three points of mutation 
(A53, A30P, and E46K). 
 
 
The primary structure of alpha-synuclein has seven imperfect 11-resdue repeat 

sequences capable of forming five amphapathic helices on the amino-terminal half 

(Davidson et al., 1998; Jao et al., 2004). Alpha-synuclein helices 1-4 were predicted 

to associate with lipid vesicles (Biere et al., 2000; Perrin et al., 2000), whereas, helix 

5 might be responsible for protein-protein interactions (Davidson et al., 1998). 

Three pathogenic missense point mutations in human alpha-synuclein gene have been 

identified in association with the early onset hereditary form of Parkinson’s disease. 

In 1997 Polymeropoulos and colleagues described a mutation in Greek and Italian 

families that resulted in substitution of alanine to threonine in the position 53 (A53T) 

of alpha-synuclein. This alteration may lead to the disruption of the alpha-helical 

structure, and expansion of the beta-sheet structure, which increases protein 

propensity to aggregate (Polymeropoulos et al., 1997). In 1998 Kruger and colleagues 

reported another alpha-synuclein gene mutation in a German family with an early 

onset hereditary form of Parkinson’s disease. This mutation results in changing of 

alanine to proline in position 30 (A30P) (Kruger et al., 1998). The third mutation was 

found in 2004 by Zarranz and colleagues in a Spanish family with a hereditary form 
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of Parkinson’s disease characterised by atrophy in substantia nigra, lack of 

Alzheimer’s pathology, and multiple alpha-synuclein and ubiquitin immunopositive 

Lewy bodies in cortical and subcortical areas. This mutation leads to substitution of 

glutamic acid to lysine in position 46 of human alpha-synuclein (E46K) (Zarranz et 

al., 2004). Moreover, overexpression of alpha-synuclein or Parkinson’s disease 

associated alpha-synuclein mutants, in mouse, fly, worm, and even yeast suggest that 

excess accumulation of alpha-synuclein leads to cellular toxicity (Moore et al., 2005; 

Lee and Trojanowaski, 2006). 

Alpha-synuclein gene duplication and triplication have been also associated with  

autosomal dominant familial forms of Parkinson’s disease (Singleton et al., 2003; 

Farrer et al., 2004; Forman et al., 2005; Savitt et al., 2006). Patients with alpha-

synuclein gene triplication show earlier onset of the disease with rapid cognitive 

decline, more severe non-motor symptoms, more widespread neurodegeneration and 

faster disease progression than patients with duplication of the gene, which suggests 

that gene dosage affects the pathogenesis of Parkinson’s disease (Singleton et al., 

2003; Farrer et al., 2004). 

It is commonly accepted the pathological effect of alpha-synuclein is connected with 

its ability to aggregate and form filaments and fibrils. Alpha-synuclein aggregates into 

cross β-amyloid type structure spontaneously, and the NAC region seems to play an 

important role in forming the aggregates (Giasson et al., 2001). The full-length 

recombinant wild type alpha-synuclein has the ability to self-aggregate and form 

fibrils (Hashimoto et al., 1998; Giasson et al., 1999). This process depends on the 

protein concentration, time, temperature, pH, and the presence of certain molecules 

and ions, particularly heavy metal ions (Ostrerova-Golts et al., 2000; Uversky et al., 

2001; Uversky et al., 2002; Golts et al., 2002). Atomic force microscopy and electron 
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microscopy demonstrated that filaments formed by recombinant protein in vitro have 

diameter of 8-10 nm (Conway et al., 1998, 2002; Giasson et al., 1999; Narhi et al., 

1999). These filaments have a straight appearance (Conway et al., 1998, 2002; Serpell 

et al., 2000) and are similar to those extracted from brain tissues of patients with 

Parkinson’s disease, Lewy body dementia (Conway et al., 1998; Spillantini et al., 

1997) or multiple system atrophy (Arima et al., 1998) although the diameter of the 

latter type is larger.  

All three known missense mutations (A53T, A30P and E46K) potentiate the 

aggregation of recombinant alpha synuclein (Conway et al., 2000; El Agnaf et al., 

1998; Woong et al., 2004). 

 
1.1.2 Beta- synuclein 
 
Beta–synuclein, the second member of the synuclein family, was first identified by 

Jakes and colleagues using a monoclonal antibody, which was raised against paired 

helical filaments of Alzheimer’s disease brains (Jakes et al., 1994). It was 

independently isolated from bovine brain and named phosphneuroprotein-14 (Tobe et 

al., 1992; Galvin et al., 1999).The human beta-synuclein consists of 134 amino acids 

and shares 78% identity with human alpha-synuclein, but lacks 11 hydrophobic amino 

acids located in the central region of alpha-synuclein molecule (Goedert, 2001). The 

absence of this fragment, which is thought to play an important role in alpha-

synuclein aggregation (Uversky et al., 2002), might be the main reason why beta-

synuclein shows very low propensity to aggregate.  

Mouse and rat beta-synucleins have identical amino acid sequences and share 97.8% 

identity with human beta-synuclein (Lavedan, 1998) (Figure 3).  

In the rat brain beta-synuclein immunoreactivity has been detected in the cerebral 

cortex, granular cell layer of the olfactory bulb, hippocampus, striatum, cerebral 
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cortex, caudate putamen, thalamic reticular nuclei, and brain stem (Nakajo et al., 

1994; Mori et al., 2002; Li et al., 2002). Lower levels of expression have been found 

in the locus coeruleus and in the perikarya of the neurons in the substantia nigra pars 

compacta (Li et al., 2002) and in non-neuronal tissues (Nakajo et al., 1996). In 

neurons beta-synuclein is found predominantly in the presynaptic nerve terminals 

where it co-localizes with synaptophysin (Jakes et al., 1994; Nakajo et al., 1994; 

Murphy et al., 2000).  

The human beta-synuclein gene has been mapped to human chromosome 5q35 

(Giasson et al., 2000; Clayton and George, 1999) and mouse beta-synuclein - to 

mouse chromosome 13 (Sopher et al., 2001). Two mutations of the gene encoding 

beta-synuclein that lead to amino acid substitutions (V70M and P123H) in highly 

conserved region of the protein have been associated with predisposition to dementia 

with Lewy bodies (Ohtake et al., 2004). However, in agreement with its low 

propensity to aggregate, beta-synuclein-positive inclusions have not been detected in 

the brain of patients with these mutations or in brains of patients with idiopathic forms 

of Parkinson’s disease or dementia with Lewy bodies.  

 

Figure 3. Amino acid sequences of rat, mouse, and human beta-synucleins. Amino 

acids inside boxes are different between the human and rodent proteins. 
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1.1.3 Gamma-synuclein  
 

Human gamma-synuclein is composed of 127 amino acids and shares 60%, and 56% 

similarity with human alpha- and beta-synuclein, respectively. It also shares 87.7% 

and 83.8% identity with mouse and rat gamma-synuclein, respectively (Figure 3).  

Gamma-synuclein is highly expressed in the embryonic and adult peripheral nervous 

system and spinal cord (Buchman et al., 1998). In the adult brain gamma-synuclein 

expression was detected in the substantia nigra, hippocampus, thalamus, caudate 

nucleus and amygdala but at lower levels than in the peripheral nervous system. 

Gamma-synuclein is also expressed in selected non-neuronal tissues, namely in skin 

epidermis (Ninkina et al., 1999) and white fat depots (Oort et al., 2008; Frandsen et 

al., 2009). In breast and ovarian malignant tumours and tumour cell lines very high 

levels of gamma-synuclein expression was detected (Ji et al., 1997; Ninkina et al., 

1998), while in the epithelial cells of the normal mammary gland and ovary the level 

of gamma-synuclein expression was hardly detectable (Lavedan, 1998; Bruening et 

al., 2000).  

The human gamma-synuclein gene has five exons, (Ninkina et al., 1998; Lavedan, 

1998) and has been mapped to chromosome 10q23 (Ninkina et al., 1998; Giasson et 

al., 2000; Clayton and George, 1999; Ji et al., 1997).  

Gamma-synuclein propensity to aggregate is much lower than of alpha-synuclein but 

substantially higher than of beta-synuclein. Recombinant gamma-synuclein forms 

amyloid fibrils but even in higher concentration solution the kinetics of their 

formation is ~20 fold slower than for recombinant alpha-synuclein (Uvesky et al., 

2002). 

Although, gamma-synuclein is not a component of the pathological inclusions typical 

for Parkinson’s disease and dementia with Lewy bodies (Spillantini et al., 1997; 
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Iwatsubo, 2003), high levels of gamma-synuclein have been detected in the brains of 

patients with sporadic cases of these diseases (Rockenstein et al., 2001). Moreover, 

gamma-synucleins have been detected in axonal spheroid-like lesions in the 

hippocampal dentate molecular layer of some Parkinson’s disease and dementia with 

Lewy bodies patients, but were not detected in control brains tissues (Galvin et al., 

1999).  

In Gad mice with inactivated ubiquitin carboxyl-terminal hydrolase L1 (UCH-L1) 

gene, a model of gracile axonal dystrophy, Wang and his colleagues found gamma-

synuclein immunoreactive spheroids in the gracile nucleus from 3 weeks of age. 

Accordingly they suggest that gamma-synuclein contributes in the pathogenesis of 

axonal swelling in gad mice (Wang et al., 2004). 

High levels of gamma-synuclein have been observed in patients with glaucoma 

(Surgucheva, et al., 2002) and in the retina of patients with Alzheimer’s disease 

(Surgucheva et al., 2001).  

 

 

 

Figure 4. Amino acid sequences of rat, mouse, and human gamma-synucleins. Amino 
acids inside boxes are different between at least two of these three species. 
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1.2- Function of synucleins in the nervous system 
 
The normal function of alpha-synuclein is still not fully understood and it is possible 

that this protein might have many different functions or might be involved in many 

intracellular processes as a chaperon-like protein (Ostrerova et al., 1999; Chandra et 

al., 2005). Indeed, numerous studies demonstrated effects of this protein on activity of 

various enzymes and intracellular systems. For example, alpha–synuclein is able to 

selectively inhibit phospholipase D2 by direct interaction with this enzyme at the 

membrane surface (Jenco et al., 1998). Alpha-synuclein has also been implicated in 

regulation of dopamine production(Perez et al., 2002 ; Liu et al., 2008). In the 

dopamine synthesis pathway tyrosine is converted to L.-3, 4-dihydroxyphenylalanine 

(L-DOPA) by the rate-limiting enzyme tyrosine hydroxylase (TH). Overexpression of 

alpha-synuclein in cells decrease levels of TH mRNA and protein (Baptista et al., 

2003; Yu et al., 2004), by reducing activity of the TH promoter (Gao et al., 2007). 

Also, alpha synuclein binds to TH and prevents its phosphorylation as well as inhibits 

its activity by promoting the activity of protein phosphatease 2A (PP2A) (Perez et al., 

2002; Peng et al., 2005). In contrast, increased phosphorylation of TH and elevation 

of its activity has been shown in cell culture models following suppression of alpha-

synuclein expression (Liu et al., 2008). Tehranian and his colleagues have found that 

alpha-synuclein interacts with another enzyme involved in dopamine synthesis, L-

aromatic amino acid decarboxylase (AADC), and demonstrated that overexpression of 

alpha-synuclein reduced serine phosphorylation and decreased AADC activity in 

dopaminergic cell models, possibly via altering PP2A activity (Tehranian et al., 

2006).  

In 1999 Kholodilov and colleagues found that in a rodent model alpha-synuclein has a 

protective role in neuronal cell injury (Kholodilov et al., 1999). Moreover, 
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overexpression of wild type alpha-synuclein protects neuronal cells from oxidative 

stress, while overexpression of mutated alpha-synuclein (A53T or A30P) increases 

susceptibility of these cells to the oxidative stress damage (Lee et al., 2001). Increased 

expression of alpha-synuclein also rescues neurological phenotype that leads to 

developmental retardation and premature death of mice lacking a presynaptic 

chaperone protein CSP-alpha (Chandra et al., 2005). It may also play a part in 

neuronal function by interacting with other proteins and regulating membrane 

biogenesis (Rochet et al., 2004; Lee et al., 2002; Danzer et al., 2007). 

Because alpha- and beta-synuclein are predominantly located in neuronal pre-synaptic 

terminals it has been suggested that the normal function of synucleins is related to this 

localisation. Sharon and colleagues suggested that alpha-synuclein may have a role in 

transportation of fatty acids between the aqueous and membrane phospholipid 

components of presynaptic terminals (Sharon et al., 2001). It also appears that alpha-

synuclein plays a role in maintenance and transport of synaptic vesicles (Marteaux et 

al., 1998; Jenco et al., 1998). However, alpha-synuclein is not important in 

synaptogenesis as it is expressed  after synapse formation (Murphy et al., 2000), and 

no abnormalities detected in synaptogenesis in mice lacking alpha-synuclein 

(Abeliovich et al., 2000). Recently, the role of alpha-synuclein in redistribution of 

secretory vesicle pools and neurotransmitter release in presynaptic terminals has been 

shown in cell culture and transgenic mouse models (Nemani et al., 2010). 

In the zebra finch (songbird) a high level of alpha-synuclein (synelfin) was observed 

in synaptic terminals of neurons involved in song learning only during learning 

period, and after that the quantity of synucelin decreased significantly, this support an 

idea that alpha-synucleins play an important role in neuronal plasticity (George et al., 

1995). 



 
 

17

Very recent experimental data clearly demonstrated that alpha-synucleins via 

interaction with synaptobrevin/VAMP2 promotes the SNARE complex assembly at 

the presynaptic membrane (Burré et al., 2010) and therefore, is important for the  

regulation of neurotransmitter release.  

Surprisingly, complete inactivation of the alpha-synuclein gene in knockout mice 

(Abeliovich et al., 2000; Cabin et al., 2002; Dauer et al., 2002; Schluter et al., 2003) 

leads to very limited changes of animal physiology and no clinical signs of pathology 

develop even in aged mice (Al-Wandi et al., 2010). This might be caused by 

functional substitution of missed alpha-synuclein by two other closely related 

members of the synuclein family. A similar absence of significant changes was 

observed in knockout mice lacking beta-synuclein or gamma-synuclein or even two 

members of the synuclein family (Ninkina et al., 2003; Robertson et al., 2004; 

Chandra et al., 2004). Inactivation of all three synuclein genes caused substantial 

changes in neurotransmission and neurodegeneration in ageing knockout mice (Burré 

et al., 2010; Greten-Harrison et al., 2010 and V.L.Buchman, personal 

communication), which confirms the idea of functional redundancy within the 

synuclein family. 

The normal function of beta-synuclein in the nervous system has been substantially 

less studied. Like alpha-synuclein, beta-synuclein interacts with and inhibits 

phospholipase D2 (Jenco et al., 1998). It also has p53-dependent anti-apoptotic 

activity and inhibits caspase-3 activity (da Costa et al., 2003).  

It has been suggested that because of its negligible propensity to aggregate and the 

ability to inhibit alpha-synuclein aggregation in vitro (Uversky et al., 2002; Park and 

Lansbury, 2003; Yamin et al., 2005) as well as accumulation in cell bodies of neurons 

that do not develop alpha-synuclein pathology in synucleinopathy patients (Mori et 
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al., 2003), beta-synuclein might reduce neuronal pathology caused by alpha-synuclein 

aggregation. Several studies in cell culture models and mice co-expressing both 

synucleins confirmed that beta-synuclein indeed could ameliorate alpha-synuclein 

pathology (Hashimoto et al., 2001; Hashimoto et al., 2004a; Fan et al., 2006). The 

mechanism of this effect is not clear and several mechanisms have been proposed 

including direct interaction with alpha-synuclein (Hashimoto et al., 2001, 2004a), 

regulation of alpha-synuclein expression (Fan et al., 2006), reduction of proteasomal 

inhibition by aggregated alpha-synuclein (Snyder et al., 2005) and activation of Akt 

protein kinase  (Hashimoto et al., 2004b). It has also been demonstrated that beta-

synuclein or beta-synuclein-derived peptides have neuroprotective effect in animal 

models of Alzheimer’s disease (Windisch et al., 2004).  

Information about the neuronal function of gamma-synuclein is even scarcer. Strong 

inhibition of ubiquitin-independent proteolitic activity of the 20S proteasome by 

gamma-synuclein has been demonstrated (Snyder et al., 2005). In cultured non-

neuronal cells overexpressed gamma-synuclein inhibits function of co-expressed 

serotonin transporter (Wersinger and Sidhu, 2009). In cultured primary neurons 

overexpression of gamma-synuclein leads to significant loss of neurofilament 

staining, suggesting that this protein affects neurofilament network integrity 

(Buchman et al., 1998). 

 
1.3  Synucleinopathies 
 
 
This term has been given to a group of degenerative diseases charactrized by the 

presence in neurons or/and glial cells of characteristic inclusions, whose main 

constituent is aggregated and fibrillated alpha-synuclein (Spallantini et al., 1997). 

This group includes Parkinson’s disease, Dementia with Lewy bodies (Spallantini et 
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al., 1997; Baba et al., 1998), multiple system atrophy (Arima et al., 1998; Tu et al., 

1998; Wakabayashi et al., 1998; Gai et al., 1999; Fujiwara et al., 2002), 

neurodegeneration with iron accumulation type 1 (Arawaka et al., 1998; Saito et al., 

2000) and Lewy bodies variant of Alzheimer’s disease. The most common of these 

disorders is Parkinson’s disease. 

 

1.3.1 Parkinson’s disease 
 

Parkinson’s disease symptoms were first time systematically described in 1817 by 

James Parkinson, although the disease was known for many years,  initially as 

paralysis agitans.  Only in 1862 Jean Martin Charcot has given Parkinson’s disease its 

current name. It is also known as primary Parkinsonism (Parkinsonism is a group of 

disorders that have similar symptoms) or idiopathic Parkinson’s disease (idiopathic 

means a disease which cause still unknown).  Parkinson’s disease is the most common 

movement disorder, and it has been considered second common and socially 

important neurodegenerative disorder after Alzheimer’s disease. In developed 

countries 1-2 % of general population over the age of 65 years are affected.  

 
1.3.2 Aetiology of Parkinson disease 
 

About 90% of Parkinson’s disease cases are sporadic (idiopathic), where the causative 

agent is unknown, but 10% is considered to be familial, caused by modifications of 

genetic information (Pallone et al., 2007). Among all the risk factors that were 

suggested to be involved in Parkinson’s disease development and progression, only 

advanced age has been proven as a critical one. However, some epidemiological and 
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experimental studies suggest that environmental factors, such as herbicides and metal 

ions may play a role in the pathogenesis of Parkinson’s disease (Andre et al., 2005).  

For long time Parkinson’s disease was considered as a purely non-hereditary disease. 

But since the PARK1 locus was discovered in 1996 (Polymeropoulos et al., 1996), 

several more loci have been identified that are linked to Parkinson’s disease. These 

loci have been designated PARK 1-13, and mapped to chromosomes 4q21, 6q25.2-

q27, 2p13, 4q21, 4p14, 1p35-p36, 1p36, 12q12, 1p36, 1p32, 2q36-q37, X-

chromosome, and 2p13 respectively.  

For both PARK1 and PARK4 that mapped to 4q21 genetic defects were identified in 

the same, alpha-synuclein, gene, which became the first evidence of its role in the 

pathogenesis of Parkinson’s disease (Polymeropoulos et al., 1997; Kruger et al., 1998; 

Spillantini et al., 1998). Alpha-synuclein mutations associated with the disease were 

described above. Some of PARK loci and corresponding gene mutations are 

associated with autosomal dominant (for instance alpha-synuclein and LRRK2 

mutations) and some – with autosomal recessive (for instance parkin, DJ-1 and 

PINK1 mutations) forms of familial Parkinson’s disease.  

 
1.3.3 Clinical signs and histopathological features of Parkinson’s  
         disease  
  

Parkinson’s disease is symptomatically characterized by resting tremor, muscles 

rigidity, bradykinesia (slowness of movement), and postural instability (impaired 

balance). These signs usually develop gradually and worsen with time. Moreover, in 

addition to these motor features the disease is characterised by certain non-motor 

symptoms. Surveys have demonstrated that about 90% of Parkinson’s disease patients 

suffering from at least one non-motor symptom, and about 10% display 5 such 
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symptoms (Miyasaki, 2006). These non-motor symptoms include neuropsychiatric, 

sleep disturbances, autonomic and/or sensory dysfunction, impulse control disorders, 

fatigue and weight loss. 

Major motor symptoms of Parkinson’s disease occurs as a result of neurons in the 

substantia nigra pars compacta die or become impaired. These neurons produce 

dopamine and use it for transmitting neuronal signals. Major histopathological 

features of Parkinson’s disease, which have been described by Lewy in 1912, are 

eosinophilic, round cytoplasmic inclusions, later named Lewy bodies, and dystrophic 

neurites also known as Lewy neurites (Lewy, 1912).  In Parkinson’s disease patients 

Lewy bodies are mainly but not exclusively found in dopamine neurons of the 

substantia nigra (Tretiakoff, 1919).  The loss of dopamine neurons, another hallmarks 

of Parkinson disease, is not uniform, it has been reported that the most pronounced 

nerve cell loss occur in the caudal and ventral parts of the substantia nigra (Hassler, 

1936). 

 
1.3.4 General principal of Parkinson’s disease treatment   

There is no drug or other type of treatment to effectively cure Parkinson’s disease and 

all currently used therapeutic interventions are able to control only disease symptoms 

and only temporarily. The medications used for Parkinson’s disease are divided into 

three categories, the aim of the first and most important is to increase the level of 

dopamine in the brain or enhance dopamine signalling. The second type of the 

medications works on other neurotransmitter systems that reduce some of the 

symptoms of the disease. The targets of the third category are various non-motor 

symptoms of the disease.  
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Levodopa (the generic name of drugs with L-DOPA as an active compound) 

treatment increases dopamine content by carboxylation of L-DOPA, which converts it 

to dopamine. This is the most efficacious treatment for Parkinson’s disease available 

now, but it is not recommended at the early stage of Parkinson’s disease to avoid early 

development of motor fluctuation and dyskinesia (Olanow et al., 2009). COMT 

inhibitors are often used to improve levodopa action by reducing L-DOPA and 

dopamine catabolism. Another drug commonly used in combination with levodopa 

and COMT inhibitors are inhibitors of aromatic-L-amino-acid decarboxylase (DOPA 

decarboxylase), like carbidopa or benserazide, that also increase L-DOPA half-life. 

Monoamine oxidase type B inhibitors that slow down dopamine catabolism are used 

in early, mild Parkinson’s disease. They are effective in reducing disability, believe to 

slow neuronal degeneration and have less adverse effects than levodopa or dopamine 

agonists (Caslake et al., 2009; Olanow et al., 2009). Various dopamine agonists 

activate dopamine receptors and may be effective in preventing dyskinesia. 

Examples of drugs that affect non-dopaminergic neurotransmission are amantadine, a 

gluatamate antagonist that indirectly promotes dopamine release and various 

anticholinergic drugs. Both type of drugs are commonly used at early stages of the 

disease progression and often in combinations with each other and other drugs. 

Managing of non-motor symptoms of Parkinson’s disease, autonomic dysfunction, 

sleep disorders, psychological and cognitive problems, and sensory abnormalities, is 

very important because they are often causes of morbidity. Various specific drugs and 

their combinations are used for treating each of these symptoms. 

Surgical technique was used a lot before the levadopa was introduced. In the last few 

decades after improving the surgical techniques, it has become used again in some 

advanced cases, when the drug treatments proved to be inefficient. 
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 These techniques included thalamotomy and thalamic stimulation, which are 

effective for reducing parkinsonian tremor (Kelly et al., 1987; Narabayshi et al., 

1982). In addition,  pallidotomy and pallidal stimulation technique helped in reducing 

and alleviate dyskinesias (Baron et al., 2000; Fine et al., 2000). 

Some studies suggest that deep brain stimulation technique may help in reducing 

dyskinesia and relieve tremor (Benabid et al., 2009).  

Regenerative approaches are seen as a future of the Parkinson’s disease therapy. So 

far, transplanting neural cells into corpus striatum to produce dopamine were used in 

several clinical trials but it does not work well.  Recently transplanting of fetal nigral 

cells has been found to improve symptoms in few patients ( Olanow et al. 1996).   

 

  

1.4 Behavioural testing of animals modelling neurodegenerative  
      diseases 
 

Numerous and various behavioural tests are used to analyse behavioural changes in 

animals that model human neurodegenerative diseases. Each test was designed to 

reveal changes in particular functional system, however in the majority of cases this 

aim has not been achieved because many neural systems are involved in the execution 

of even simple animal behaviour. Nevertheless, by using combination of several 

behavioural tests researchers sometimes manage to demonstrate dysfunction of a 

particular neural system. 

To achieve that a few steps should be taken in consideration before conducting any 

behavioural experiment. First, the number of animals in each experimental group 

should be sufficient for obtaining statistically significant data. Usually the minimal 

number required is 10 to 12 mice. If the effect of the genotype is studied, the age of 
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experimental animals in each group should be in the same range and, except of special 

cases, not lower than 70 days (Crawley and Paylor, 1997). Second, the animal’s 

general health should be screened before starting any experiment for presence of any 

physical or emotional problems. 

In this study five behavioural tests have been used to measure motor performance of 

three different genotype groups of animals, which are wild type, heterozygous and 

homozygous transgenic mice overexpressing gamma-synuclein.  

 
1.4.1 Beam walking test 
 
This test has been designed to assess the motor coordination and balance capabilities 

of mice by measuring their ability to traverse a narrow beam. 

In addition, there are two types of beams used in this test one of them is square and 

the other is round. 

There are three different diameters of square beam 28mm, 12mm, and 5mm, which 

used respectively for training and used according to animals age and weight. The 

round beams of three different diameters, 28mm, 17mm and 11mm, are usually used 

(Carter et al., 1999). The round beams were used in this study. 

 
1.4.2 Rotarod test 
 
The devise for this test was designed in 1957 by Dunham and Miya, and it was further 

developed in 1968 by Jones and Roberts (Jones and Roberts, 1968). The rotating rod 

of the apparatus has a soft rubber cover to prevent the animals from holding the 

rotating rod and rotating with it rather than running on top, or falling from it. This test 

is used to measure the motor coordination, balance, and ataxia. Moreover there are 

two variants of this test:  
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Constant mode: mice running for 180 seconds on constant speed of the rod rotation 

(i.e. 24 rpm). 

Accelerating mode: mice running for 300 second with gradual acceleration of the rod 

rotation (i.e. 4-40 rpm). 

 
1.4.3 Gait test (Foot print) 
 
This test shows the pattern of mouse walking and detect if there is any gait 

abnormalities, therefore it is a measure of the animal coordination. The gait test is  

designed to be conducting in a dark room and the starting point of the devise should 

provide with a light source. There are three main parameters that have to be measured 

in this test to analyze the foot print patterns of the mice (Carter et al., 1999).  

a-The first parameter is the stride length, which include four measurements:  

1- Right hind stride.  

2- Right front stride. 

3- Left hind stride. 

4- Left front stride. 

b-The second parameter is the front and hind base width, front base is the distance 

between right and left fore limbs in each step, while the hind base is the distance 

between the right and left hind limbs in each step. 

c-The front and hind limb overlap, which is the distance between the two centres of 

front and hind paws in each step. 

 
1.4.4 Locomotor activity count 
 
This test uses metal cages where the animals placed for testing their locomotor 

activity. Test cages have two infrared photo beams sources and sensors, and beams 
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breaks by mouse recorded by the software on the computer connected to these cages. 

And there are three parameters measured in this system: 

1- Perseveration, where one beam is broken repeatedly.  

2-Alternation, where the two beams are broken in sequence. 

3- Total activity. 

 
 
 

  

1.4.5 Acoustic startle stimulus and prepulse inhibition 

 
Startle reflex is a motor response to a sudden environmental stimulus, which consists 

of rapid contraction of head, neck, trunk, and legs muscles. Measurement of acoustic 

startle responses can provide general information regarding sensorimotor processing, 

however prepulse inhibition provide more important information than startle reflex.  

Prepulse inhibition is acoustic stimulus prior to the startle stimulus, and the intensity 

of prepulse inhibition is lower than startle stimulus, and it attenuates the response to 

the startle stimulus (Ison et al., 1997).`      

      

The device used to measure startle response consists of a wooden sound-proof box 

that isolates the animal from the surrounding environment. This cubical box provided 

with acoustic startle sound source, speakers producing white noise, a small fan for 

ventilation and also provides some level of background noise, and the light source. 

Within the wooden box is a plastic tube where an animal is placed for testing. This 

tube has two movable plastic doors to make it easy to place the animal inside this 
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tube. A computer with specialised software is connected to the apparatus for 

collecting the data for analysis 

.  

1-5 Generating of transgenic mice overexpressing gamma synuclein 

  
Mice expressing high levels of wild-type mouse gamma-synuclein were generated by 

using Thy-1 neuron-specific expression cassette, identical to the cassette that was 

previously used to generate lines expressing high levels of alpha-synuclein (van der 

Putten et al., 2000; Zhou et al., 2008) and beta-synuclein (Hashimoto et al., 2001) 

expression.  

Whereas, a fragment of mouse gamma-synuclein c DNA including 34 bp of 5’-UTR 

and 64 bp of 3’-UTR was PCR amplified using pD53 plasmid DNA(Buchman,et al. 

1998) as a template and oligonucleotides with XhoI linkers to facilitate subsequent 

cloning into XhoI site of Thy-1 promoter plasmid 323-p TSC21k (Van der Putten et 

al., 2000). The fragment for microinjecting mouse oocytes was isolated by digestion 

of the resulting plasmid DNA with NotI. Transgenic founders were produced on 

C57BI/6 genetic background. Mice positive for transgene expression were crossed 

with C57BI/6 wild-type mice. 

The colony of transgenic mice was maintained by backcrossing hemizygous 

Thy1mgamma-synuclein mice with C57BL/6 mice. 

During their first year of life hemizygous animals cannot be distinguished from their 

wild type littermates. Later on, these mice developed a clasping reflex, abnormal 

posture and gait, and other signs of motor impairments. Thy1mgamma-synuclein 

homozygous animals were generated to increase the pathology, and this resulted in 

doubling of the transgene expression. In the dorsal root ganglia of 12 month old mice 
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transgene expression levels were seven times higher than the level in endogenous 

gamma-synuclein mRNA. Although, homozygous animals expressed high level of 

gamma-synuclein mRNA throughout their nervous system they appeared normal 

during the first few months of life. 
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Chapter 2- Materials and methods 
 
 

2.1 Experimental animals 
 
Male mice of three genotypes, wild type and gamma-synuclein transgenic hemizygote 

(Het) or homozygote (TG/TG), were used for behavioural testing that was carried out 

at four age points (6, 9, 12, 18 months old). These animals were housed either in a 

separate cage for each animal, or up to five littermates in the same cage. Animals had 

free access to food and water, and the animal holding room had a 12 h light/dark 

cycle. 

All experiments were conducted in accordance with the United Kingdom Animals 

(Scientific Procedures) Act (1986) and local ethical review. Accordingly, animals 

which reveal paralysis of their limbs and loss of righting reflex were sacrificed to 

prevent further suffering. 

 
2.2 Acoustic startle test  
 
Startle apparatus 

Equipment manufactured by San Diego Instruments was purchased via Sandown 

Scientific, Surrey, United Kingdom.   

The system consists of a soundproof chamber, which contains a plexiglass cylinder (5 

cm in diameter by 12.8 cm long) mounted on a rigid plastic platform. The cylinder 

has two movable doors, which make the operation of placing the animals and taking 

them out of the cylinder more easy. The chamber contains a fan for ventilation and 

providing some level of background noise, and a loudspeaker 28 cm above the 
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cylinder, which is the acoustic sound source capable to produce full spectrum white 

noise that is computer controlled for duration and decibel level (Figure 5). 
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Figure 5. The startle apparatus used in this study. The picture shows two chambers 

connected to the computer, which save the data as Excel files. 

 

Procedure 

Prior to the onset of the trials mice were habituated in the chamber for 5 minutes 

under 70 dB background white noise. Each trial was preceded by a variable 20-30 

second interval, used to prevent the mice from predicting the stimulus presentation. 

Two startle intensities were used, 105 and 120 dBs of 50ms duration.  

 

For the PPI trials, pre-pulse duration was 20ms with a gap between the pre-pulse and 

the startle stimuli of 20ms. For each of the primary startle stimuli, trials with differing 

PP intensities were used: 0, 2, 4, 8, and 16dBs above background (70dbs), with an 

additional no-stimulus control trial, whereby neither pre-pulse or startle stimulus was 
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used. 11 trials types were used, each replicated 12 times in each session, hence each 

session consisted of 132 trials in total. The data was collected and stored on a PC. For 

each test values were collected for the peak startle response corrected for baseline 

movements prior to analyses. 

2.3 Gait test (footprinting) 
 

Gait test device 

The test device consists of a corridor runway (60cm length x10cm height) with 

adjustable width (5 or 10cm), lined with white paper. At the end of the device there is 

a black goal box (15x15cm), baited with food to encourage the mice to run down the 

runway (Figure 6). A light source (about 60 W) was placed above the starting point of 

the tunnel to stimulate animals to run toward the goal box. 

 

Figure 6. Gait test device that used in this study and it includes wooden base, Perspex 

corridor and black acrylic goal box. 
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Procedure 

Animals were trained for 5 consecutive days (one 5 minute session per day). The 

training and experiments were conducted in a darkened room. The fore and hind paws 

were brushed with blue and red non-toxic paints respectively and the mice placed at 

the starting point from where they ran down the runway to the goal box. 

From the footprints collected, eight parameters were measured (right hind stride, left 

hind stride, right front stride, left front stride, hind base, left base, right overlap, and 

left overlap). For each mouse measurements were taken for three full strides from the 

mid-run period, when mice were neither accelerating nor decelerating. The average 

then assessed for each parameter and used in statistical data analysis. Stride length 

was assessed by measuring the distance between the centre of front and hind paws of 

right and left side. Base widths were assessed by measuring the distance between the 

right and left front paws, and right and left hind paws. Overlap is the distance between 

the hind and fore paws centres. If the centre of the front footprint falls on the centre of 

the hind footprint the overlap value was recorded as zero.  

 
 
2.4 Beam walking test 
 
Beam test device 
 

The horizontal beam test device consists of a 62 cm long wooden strip of either 11 

mm or 17 mm diameters, used according to the age and size of animals, attached to a 

raised goal box (15x15 cm) (Figure 7). Animals from 4 months to 12 months old were 

tested on 11 mm beam, whilst the 17 mm beam was used to test coordination at 18 

months old due to the large size of wild type and some heterozygous mice.   
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Figure 7. Beam test device consists of a raised horizontal wooden beam and goal box. 

 

 

Procedure 

For training mice were placed near to the goal box, allowed to enter, then promtly 

removed, placed on the beam and the operation was repeated, each time increasing the 

distance between the animal and the goal box. For the last attempt the mouse was 

placed facing away from the goal box, enforcing the animal to turn 180º and cross 

along the beam to reach the goal box.  

 

On the day of testing, animals were transferred from the housing room to the testing 

room inside their home cages. The test was conducting by placing the mouse facing 

away from goal box on the free end of the strip and at the same time the timer 

switched on. The amount of time taken by the mouse to turn 180º to face the goal box 

was recorded, followed by the time taken to cross the strip to reach the goal box. As 
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some animals cannot complete this test, other parameters were recorded (freezing 

time, time to fall). If the animal was not able to move and stay as it is for more than 3 

minutes then freeze was recorded. If the mouse fell from the beam, fall time was 

recorded. 

2.5 Rota-rod test 
 
 
Rota-rod apparatus 
 
The apparatus (UGO BASILE COMERIO (VA) - ITALY) basically consists of a 3 

cm drum, divided by six flanges into five test areas, so five animals can be recorded at 

the same time. Each test area has a synchronized counter, which is stopped by the 

animal falling on a trip switch. 

The apparatus is provided by a geared motor that provides three modes of operation 

(Acceleration, Lock, Reset) controlled by a switch on the front panel (Figure 8). 

 

Procedure 

The animals were trained a day before the day of testing and in each training run five 

animals were placed on the rotation rod for 240 seconds, with the apparatus on a 

constant speed of 24 rpm. Each mouse had three training runs within a 90 minute 

interval. 

This test includes two methods, constant mode and accelerating mode, and allows 

constant mode conducting first. 

Constant mode 

The apparatus is set to run at a speed of 24 rpm. Animals were placed on the drum 

one by one and trip switches set. Each mouse had three trials of 240 seconds and the 

time each mouse spent on the drum recorded. 



 
 

36

Accelerating mode 

Animals were placed on the drum then the speed allowed increasing constantly from 

4-40 rpm per minute, over a 5 minutes period. The period of time each mouse spent 

on the rotating rod was recorded. Each mouse was tested three times with 90 minutes 

interval.   

 

 

Figure 8. Mice rota-rod test apparatus (UGO BASILE COMERIO (VA) - ITALY) 

used to analyse the mice motor coordination and balance performance. 
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2.6 Motor activity test 

 
The apparatus 
 
Eight metal cages (38x25x24 cm) were used in parallel to measure the general motor 

activity. Activity was recorded by two infrared photo beam emitters and sensors that 

detected beam breaks caused by movement. Sensors were positioned 13cm apart 

along the length of the cage, with one 12.5cm from the door (front wall) and the other 

12.5cm from the rear wall. The sensors were positioned 1cm above the floor surface 

(Figure 9). Three basic parameters were measured with this system, perseverative 

movement, where one beam was broken repeatedly, locomotor activity where both 

beams were broken in sequence, and total activity. The cages were connected to an 

Acorn Electron microcomputer and printer that stored and processed the data. The 

program controlling the computer was written using the Arachnid (Paul Frey Ltd, 

Cambridge, UK) computer programming software.  

 

Procedure 

Individual mice were placed in a cage with access to food and water and the recording 

software activated. The session length can be up to 24 hours, but in this study 1 hour 

session length was used, divided into twelve 5 minute blocks.  
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Figure 9. Motor activity apparatus comprising of cages and infrared detectors 

connected to a computer to record data. 

 
 
2.7. DNA Purification  
 
 DNA purification was conducted using the NucleoSpin Tissue Kit  according to the 

manufacturerOs( Macherey-Nagel ) instructions. 

Tissue samples were obtained by cutting about 25 mg of  tissue from the ear (ear 

biopsy). 

180µl of T1 buffer and 25 µl of Proteinase K solution were added to the tissue 

sample, vortexed to mix and incubated at 56oC for 1-3 hours or overnight until 

complete lysis is obtained. 200 µl of B3 buffer was added to the lysate and mixed 

vigorously, then 210 µl of ethanol (96-100%) was added and mixed.  
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For each sample, one NucleoSpin Tissue column was placed into a 2 ml collecting 

tube. The sample was loaded to the column and centrifuged for 1 minute at 11000-

13000 rpm. The content of the collecting tube was discarded and the column returned 

into the collecting tube. 

The silica membrane of the tube was washed twice, firstly, by adding 500 µl BW 

buffer and centrifuging for 1 minute at 11000 rpm and secondly by adding 600 µl of 

B5 buffer and centrifuging at 11000 rpm. The content of the collecting tube was 

discarded and the column returned into the collecting tube. 

The column was centrifuged once again for 1 minute to dry the silica membrane. 

The NucleoSpin Tissue column was placed into a 1.5 ml microcentrifuge tube and 

100 µl distilled water or prewarmed elution buffer BE was added to elute DNA, and 

centrifuge for 1 minute at 11000 rpm. 

Eluted purified DNA was used for PCR analysis immediately or kept at 4oC. 

 

2.7.1 Experimental groups and genotyping of gamma-synuclein  

         transgenic mice 
 

To prepare groups of experimental animals we bred hemizygous males and females 

from the colony of gamma-synuclein transgenic mice produced in collaboration with 

Dr. Herman van der Putten. These mice have additional copies of mouse gamma 

synuclein gene under control of neurospecific Thy-1 promoter. As the position of 

transgene integration in the genome of gamma-synuclein transgenic mice is not 

known, it was not possible to use PCR technique for discrimination between hemi- 

and homozygous transgenic mice. PCR technique was used to identify only the 

presence of additional copies of gamma-synuclein gene. However, two step process 
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allowed us to reveal whether there are two alleles (TG/TG) or one allele (Het) in the 

genome of each mouse: 

 

Step 1. Genotyping by using PCR technique for the presence of   

             gamma synuclein gene  

For PCR analysis 5 µl of purified DNA was mixed with 44 µl distilled water, 5 µl 

10XPCR buffer, 0.4 µl  25 mM dNTP mix, 0.25 µl 100 µM Forward primer (HP45 

ThyI f2: 5'-acacccctaaagcatacagtcagacc-3‘), 0.25 µl 100 µM Reverse primer (HP84 m  

Gsn 5'-ggccttctagtcttctccactcttg-3) and 0.25 µl Taq polymerase 25 cycles of 

amplification for 30 sec at 95oC/ 40 sec at 62oC/40 sec at 72oC were carried out.  

Reaction products were analysed on 1% agarose gel stained with ethidium bromide . 

A 1 kb band is detected when DNA from either homo- or hemizygous animals was 

used for amplification but DNA from wild type animals gives no amplification 

product.  

 

Step 2. Discriminating between hemi- and homozygous transgenic  

             mice by backcrossing 

Genotyping of males  

At the age of 7-8 weeks each TG positive male mouse was placed into a separate cage 

and mated with two CD1 females. 

Females were checked regularly for pregnancy and those obviously pregnant were 

separated to a separate cage to produce a litter. Pups were tested for the presence of 

transgene by PCR analysis of DNA samples from ear biopsies as described for Step 1. 

Cross-contamination of samples was avoided by cleaning the forceps and scissor each 

time. 
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Genotyping of females 

TG positive females (≥ 8 weeks old) were mated with a wild type C57BL/6 male. 

Females were checked regularly, those obviously pregnant were separated to a single 

cage, and when the litter was born, tissue biopsies were collected and PCR analysis of 

DNA samples carried out. 

Analysis of genotyping results 

If all pups in a litter were positive, their parent was suggested to be homozygous 

(TG/TG). For a conclusive determination of homozygosity ,at least two litters and 10 

pups in total have to be genotyped. If some pups in litters were negative, their parent 

was considered to be hemizygous (Het). 

2.8. Statistical analysis  
 
The statistical software used to analyse data of this study has been developed by 

statsoft (Statistica 1997). 

Statistical analyses were conducting by using ANOVA (one way or two -way  

ANOVA which was applied to the data as required), with a statistical significance of 

P<0.05.  

Beam walking data was subjected to non-parametric Mann-Whitney test. 
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Chapter 3-Results 
 

3.1 Preparation of experimental animal groups 
 

Heterozygous gamma-synuclein transgenic mice obtained by backcrossing with 

C57BL/6 wild type mice were intercrossed to obtain groups of wild type, hemizygous 

and homozygous transgenic mice. Transgenic and wild type animals were 

discriminated by the presence or absence of 1 kb product of PCR reaction after 

amplification of DNA extracted from the mouse ear biopsy (see Chapter 2.7.1). 

For confident discrimination between homo- and hemizygous animals they were 

backcrossed with wild type mice and the offspring was analysed for the presence of 

the transgenic allele as described in Materials and Methods, Chapter 2.7.2. The 

presence of wild type animals in the offspring (an example shown in Fig.10a) 

suggested that the parent carried only one transgenic allele (i.e. is hemizygous). Only 

if all offspring animals in at least two litters (total number >12) carried the transgenic 

allele (see Fig.10b) was the parent declared  homozygous. 

Experimental groups for behavioural studies were formed exclusively from male 

animals. 
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Figure 10a. This figure shows only three of six samples are positive which mean that 

this animal is hemizygous. 

 

Figure 10b. All the samples are positive which mean that this animal is homozygous. 

 

3.2 Prepulse inhibition of acoustic startle response 
 
 
The standard design of experiments to measure prepulse inhibition was used and all 

experimental data were analysed accordingly. The statistical analysis of acoustic 
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startle test data revealed that hemizygous and homozygous animals displayed 

significant differences compared with wild type mice as shown in figures (11a, b, c, 

d). A 2 way ANOVA test of PPI to 120 and 105 dB startle stimuli showed a 

significant effect between wild type and hemizygous mice, as well as between wild 

type and homozygous mice (P< 0.001). But some sets of data for transgenic mice 

were found strange and unreliable and the possible reason will be discussed in the 

discussion chapter.   

 

 
Figure 11a. Prepulse inhibition of acoustic startle response in hemizygous (HET) and 

homozygous (TG) compared to wild type (WT) mice at 6 months of age. Both 

hemizygous and homozygous show impaired prepulse inhibition  (n= 22 WT, 30 HET 

and 16 TG). 
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Figure 11b. Prepulse inhibition of acoustic startle response in hemizygous (HET) and 

homozygous (TG) compared to wild type (WT) mice at 9 months of age. Both 

hemizygous and homozygous mice show progressive decline comparing to animals at 

6 months of age (n=25 WT, 26 HET and 25 TG mice). 

 

 

Figure 11c. Prepulse inhibition of acoustic startle response in hemizygous (HET) 

compared to wild type (WT) mice at 12 months of age (n=23 WT, 27 HET mice). 
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Figure 11d. Prepulse inhibition of acoustic startle response in hemizygous (HET) 

compared to wild type (WT) mice at 18 months of age (n=12 WT, 12 HET mice). 
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3.3 Gait test 
 

Footprint patterns of 6-, 9-, 12- and 18-month old male mice were analysed to find if 

and when gamma-synuclein transgenic mice develop any gait abnormalities. No 

significant difference in stride length of wild type and hemizygous littermates has 

been found for 6, 9 and 12 months age groups (Fig. 12a-c). However statistical 

analysis of the stride length of 18-month old wild type and hemizygous mice revealed 

significant differences (genotype: F(1,110)=7.86, P<0.01), (Fig. 12d). 

No differences have been found for hind and front paws base width (genotype: F(1,42 

)=0.10 ; P=0.7) or overlaps measurements (genotype: F(1,42)= 3.7 ; P=0.598), for all 

ages of wild type and hemizygous gamma-synuclein transgenic mice (Fig. 12a-d). 

However, a statistically significant difference between stride length of wild type and 

homozygous transgenic mice was found for both studied ages (genotype: 

F(1,110)=116.16; P<0.001) (Fig. 12a, b). However, at these ages neither hind and 

front paws base width, nor overlaps measurements were different between wild type 

and homozygous transgenic mice (genotype: F(1,54)=0.372; P=0.39) and (genotype: 

F(1,54)= 0.0; P=0.517), respectively (Fig. 12a, b).  
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Figure 12a. The bar chart shows results (mean ± SEM) of the analysis of various 

parameters of 6-month old animal stride (R.H.S - right hind stride; L.H.S - left hind 

stride; R.F.S - right front stride; L.H.S - left front stride; H.B. - hind base; F.B. – front 

base; R.O.L. - right front and hind limb overlap; L.O.L. - left front and hind limb 

overlap). Groups of wild type (WT), hemizygous (HET) and homozygous (TG) 

transgenic mice were tested. Values statistically different from the wild type value for 

the same parameter are designated (**P<0.01, ANOVA test) . 
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Figure 12b. The bar chart shows results (mean ± SEM) of the analysis of various 

parameters of 9-month old animal stride (R.H.S - right hind stride; L.H.S - left hind 

stride; R.F.S - right front stride; L.H.S - left front stride; H.B. - hind base; F.B. – front 

base; R.O.L. - right front and hind limb overlap; L.O.L. - left front and hind limb 

overlap). Groups of wild type (WT), hemizygous (HET) and homozygous (TG) 

transgenic mice were tested. Values statistically different from the wild type value for 

the same parameter are designated (***P<0.001, ANOVA test). 
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Figure 12c. The bar chart shows results (mean ± SEM) of the analysis of various 

parameters of 12-month old animal stride (R.H.S - right hind stride; L.H.S - left hind 

stride; R.F.S - right front stride; L.H.S - left front stride; H.B. - hind base; F.B. – front 

base; R.O.L. - right front and hind limb overlap; L.O.L. - left front and hind limb 

overlap). Groups of wild type (WT) and hemizygous (HET) transgenic mice were 

tested. No statistically significant differences were found. 
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Figure 12d. The bar chart shows results (mean ± SEM) of the analysis of various 

parameters of 18-month old animal stride (R.H.S - right hind stride; L.H.S - left hind 

stride; R.F.S - right front stride; L.H.S - left front stride; H.B. - hind base; F.B. – front 

base; R.O.L. - right front and hind limb overlap; L.O.L. - left front and hind limb 

overlap). Groups of wild type (WT) and hemizygous (HET) transgenic mice were 

tested. Values statistically different from the wild type values for the same parameter 

are designated (**P<0.01, ANOVA test). 
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3.4 Locomotor activity count test 
 
 
The locomotor activity of male mice was assessed during 1 h in 5 min intervals using 

an automatic movement detection system described in the Material and Methods 

chapter. All tests were carried out between 10 am and 2 pm. 

Three groups of animals (wild type, homozygous and hemizygous gamma-synuclein 

transgenic animals) were tested at 6 and 9 month of age and two groups (wild type 

and hemizygous gamma-synuclein transgenic animals) – at 12 and 18 month of age. 

Data were collected for three parameters measured in this test (preservation beam 

breaks, alternation beam breaks, and total beam breaks) and results are presented in 

Figures 13a-l. statistical analysis using ANOVA  revealed no significant differences 

between the wild-type and transgenic mouse groups for any parameter and age group. 
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Figure 13a. The bar chart shows the number of alternation beam breaks (mean±SEM) 

during 1 h session. Groups of 6-month old wild type (WT), hemizygous (HET) and 

homozygous (TG) transgenic mice were tested.  

 

 

 

Figure13b. The bar chart shows the number of perservation beam breaks 

(means±SEM) during 1 h session. Groups of 6-month old wild type (WT), 

hemizygous (HET) and homozygous (TG) transgenic mice were tested.  



 
 

54

 

Figure 13c. The bar chart shows the total number of beam breaks (means±SEM) 

during 1 h session. Groups of 6-month old wild type (WT), hemizygous (HET) and 

homozygous (TG) transgenic mice were tested.  

 
 

 

 

Figure 13d. The bar chart shows the number of alternation beam breaks 

(means±SEM) during 1 h session. Groups of 9-month old wild type (WT), 

hemizygous (HET) and homozygous (TG) transgenic mice were tested.  
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Figure 13e. The bar chart shows the number of perservation beam breaks 

(means±SEM) during 1 h session. Groups of 9-month old wild type (WT), 

hemizygous (HET) and homozygous (TG) transgenic mice were tested.  

 
 

 

 

Figure 13f. The bar chart shows the total number of perservation beam breaks 

(means±SEM) during 1 h session. Groups of 9-month old wild type (WT), 

hemizygous (HET) and homozygous (TG) transgenic mice were tested.  
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Figure 13g. The bar chart shows the number of alternation beam breaks 

(means±SEM) during 1 h session. Groups of 12-month old wild type (WT) and 

hemizygous (HET) transgenic mice were tested.  

 
 

 

 

Figure 13h. The bar chart shows the number of perservation beam breaks 

(means±SEM) during 1 h session. Groups of 12-month old wild type (WT) and 

hemizygous (HET) transgenic mice were tested. 
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Figure 13i. The bar chart shows the total number of beam breaks (means±SEM) 

during 1 h session. Groups of 12-month old wild type (WT) and hemizygous (HET) 

transgenic mice were tested. 
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Figure 13j. The bar chart shows the number of alternation beam breaks 

(means±SEM) during 1 h session. Groups of 18-month old wild type (WT) and 

hemizygous (HET) transgenic mice were tested.  

 

 

Figure 13k. The bar chart shows the number of preservation beam breaks 

(means±SEM) during 1 h session. Groups of 18-month old wild type (WT) and 

hemizygous (HET) transgenic mice were tested.  
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Figure 13l. The bar chart shows the total number of beam breaks (means±SEM) 

during 1 h session. Groups of 18-month old wild type (WT) and hemizygous (HET) 

transgenic mice were tested.  

 
 
 
3.5 Rota-rod test 
 
The balance and coordination of male mice was tested using both constant speed and 

accelerating rotarod as described in the Material and Methods chapter. All tests were 

carried out between 10 am and 2 pm. 

Three groups of animals (wild type, homozygous and hemizygous gamma-synuclein 

transgenic animals) were tested at 2, 4, 6, 9 and 12 month of age and two groups (wild 

type and hemizygous gamma-synuclein transgenic animals) – at 18 month of age.  

Results of the constant speed rotarod analysis are shown in Figure 14a. One way 

ANOVA analysis revealed that in the performance of homozygous gamma-synuclein 

transgenic mice is not different from the performance of wild-type mice at the age of 
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2 months (F1,22) =1.648, P = 0.2 ) but is significantly impeded at the age of 4 months 

(F1,47) =29.945, P <0.0001 ), 6 months (F1,56) =65.742, P <0.0001 ), 9 months 

(F1,55) = 114.631, P <0.0001)  and 12 months (F1,35) = 1045.464, P <0.0001). In 

contrast, hemizygous animals exhibited motor dysfunction only at the age of 18 

months (F1,36)=7.211, P=0.011).  

 

 

 

Figure 14a. The bar chart shows means±SEM of the latency to fall of wild type 

(WT), hemizygous (HET) and homozygous (TG) transgenic mice in the constant 

speed (24 rpm) rotarod test. The number of tested animals in each group is shown. 

Values statistically different from the wild-type value for the same age group are 

designated (**P<0.01; ***P<0.001). 

 

Figure 14b shows the results of accelerating rotarod analysis. Similar to the results of 

the constant speed test, a statistically significant difference with wild-type mice was 

detected for homozygous gamma-synuclein transgenic mice at the age of 4 months 

(F1,30) = 49.6, P <0.0001 ), 6 months (F1,54) =69.494, P <0.0001 ), 9 months (F1,53) 
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= 173.962, P <0.0001 )  and 12 months (F1,37) = 177.01, P <0.0001). Surprisingly, 

this test revealed motor impairments of homozygous mice already at the age of 2 

months (F1,22)=25.22, P<0.0001). For hemizygous mice the results of the 

accelerating rotarod test were similar to results of the constant speed test – a 

difference with wild type mice becomes significant only when animals reach the age 

of 18 months (F1,37) =11.176, P=0.001). 

 

 

 

Figure 14b. The bar chart shows means±SEM of the latency to fall of wild type 

(WT), hemizygous (HET) and homozygous (TG) transgenic mice in the accelerating 

speed rotarod test. The number of tested animals in each group is shown. Values 

statistically different from the wild-type value for the same age group are designated 

(***P<0.001). 
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3.6 Beam walking test 
 

The beam walking test was used in this study to test animal balance and coordination.  

Table 1 shows the number and percent of animals able to turn on a wooden rood and 

then cross the distance to the escape box (for details see Materials and Methods) as 

well as average time required for animals from each experimental group to complete 

these two tasks.  

We found that the most useful parameter for analysis of gamma-synuclein transgenic 

mice performance in this test is percent of animals able to turn on the beam. Only a 

quarter of homozygous mice was able to perform this task at the age of 4 months, and 

a further reduction was obvious in groups of 6-month and 9-month old mice. 12-

month old homozygous mice were completely unable to turn on the beam. However, 

at the age of 4 months all animals that successfully turned on the beam were able to 

cross it. Results for older homozygous animals were unreliable because only a small 

number of them completed the first part of the test and therefore was not involved in 

the second, crossing task.  

Times required for completing each task significantly varied between individual mice 

within each genotype group because some animals “freeze” in the middle of the task 

for significant time periods. Statistically, homozygous animals revealed significant 

differences at the age of 4 months comparing to their wild-type letter mates for both 

tasks (ability to turn and ability to cross) (P< 0.0384, P< 0.0269). 

Hemizygous mice displayed a notable decline in performance only at the age of 12 

months - only about half of the animals were able to complete both turn and cross 

tasks at this age. While, statistical analysis of performance of heterozygous animals 

comparing to wild-type revealed significant differences at the age of 4, 6, 9 , and 12 
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months of age for the ability to turn task ( P= 0.001 at 4 months, P= 0.0486 at 6 

months, P= 0.0353 at 9 months, P= 0.0015 at 12 months).  Due to the large weight of 

older animals, testing of 18-month and 24-month old heterozygous and wild type 

mice required a stronger and thicker (17 mm) beam. Statistically, significant 

differences were observed in the performance of heterozygous mice comparing to 

their wild type littermate at both ages (18, 24 ) and for both tasks of the test ( P= 

0.004 at 18 month , P= 0.002 at 24 month for the ability to turn task) ( P= 0.0193 at 

18 month, P= 0.0005 for the ability to cross task) (Table 2). 
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Table 1. Performance of wild-type (WT), hemizygous (HET) and homozygous 

(TG) gamma-synuclein transgenic mice in the beam walking test (11 mm beam) 

 ( * P< 0.05 , ** P< 0.01 , Mann-Whitney test). 

4 
months 

Able to 
turn 

Time 
required to 
turn (sec) 

Able to 
cross 

Time 
required to 
cross (sec) 

% able to 
turn 

% able to 
cross after 
turn 

WT 
13 of 14 6.5±2.76 12 of 13 15.3±2.56 92.9 92.3 

HET ** 
21 of 22 16.8±3.96 

* 
17 of 21 27.7±3.81 95.5 81 

TG * 
5 of 20 12.0±4.44 

* 
5 of 5 26.0±3.19 25 100 

 

6 
months 

Able to 
turn 

Time 
required to 
turn 

Able to 
cross 

Time 
required to 
cross 

% able to 
turn 

% able to 
cross after 
turn 

WT 
32 of 33 4.5±0.70 25 of 32 26.2±5.57 97 78.1 

HET * 
35 of 41 15.3±4.10 25 of 35 32.2±5.18 85.4 71.4 

TG 2 of 13 6.0±2.00 0 of 2 N/A 15.4 0 

 

9 
months 

Able to 
turn 

Time 
required to 
turn 

Able to 
cross 

Time 
required to 
cross 

% able to 
turn 

% able to 
cross after 
turn 

WT 

31 of 33 9.8±3.00 28 of 31 33.6±4.95 93.9 90.3 

HET * 
27 of 33 11.7±5.20 18 of 27 27.3±4.07 81.8 66.7 

TG 
1 of 21 26.0±0.00 0 of 1 N/A 4.7 0 

 

12 
months 

Able to 
turn 

Time 
required to 
turn 

Able to 
cross 

Time 
required to 
cross 

% able to 
turn 

% able to 
cross after 
turn 

WT 
19 of 20 3.3±0.76 14 of 19 26.6±4.28 95 73.7 

HET ** 
13 of 24 10.9±1.81 7 of 13 25.7±4.37 54.2 53.8 

TG 0 of 12 N/A N/A N/A 0 N/A 
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Table 2. Performance of wild-type (WT) and hemizygous (HET) gamma-

synuclein transgenic mice in the beam walking test (17 mm beam) 

(*P< 0.05, **P<0.01, ***P<0.001, Mann-Whitney test). 

 

18 
months 

Able to 
turn 

Time 
required to 
turn 

Able to 
cross 

Time 
required to 
cross 

% able to 
turn 

% able to 
cross after 
turn 

WT 
16 of 16 4.7±1.12 16 of 16 13.9±1.88 100 100 

HET ** 
20 of 21 12.0±2.05 

* 
20 of 20 24.0±2.67 95.2 100 

 

24 
months 

Able to 
turn 

Time 
required to 
turn 

Able to 
cross 

Time 
required to 
cross 

% able to 
turn 

% able to 
cross after 
turn 

WT 
8 of 8 8.8±1.60 8 of 8 16.0±1.73 100 100 

HET ** 
11 of 13 18.3±2.06 

*** 
11 of 11 40.1±5.34 84.6 100 
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Chapter 4- Discussion 
 

The synuclein family consists of three members, alpha-synuclein and beta-synuclein, 

which are expressed in various regions of the brain, and gamma-synuclein, which is 

more abundant in the spinal cord and the peripheral nervous system (Akopian et al., 

1995, Buchman et al., 1998, Ninkina et al., 2003).  

Among these three proteins alpha-synuclein has been studied much more than other 

two members of the family. To study the role of this protein in pathogenesis of 

neurodegenerative diseases, knockout mice and different types of transgenic mice 

over expressing wild type or mutated alpha-synuclein were produced. 

The very first alpha-synuclein knock out mouse line was produced by Abeliovich et 

al. (2000), and the study conducted on these mice revealed no motor dysfunctions.   

Later several more mouse lines with inactivation of alpha-synuclein gene were 

produced (Cabin et al., 2002; Schluter et al., 2003; Drolet et al., 2004) and 

characterisation of their phenotypes confirmed that a constitutive absence of alpha-

synuclein has minimal effect on the animal motor function. 

In contrast, various transgenic mice expressing wild type or mutated forms of human 

alpha-synuclein displayed obvious progressive motor dysfunction. Mice expressing 

wild type human alpha-synuclein under the control of the PDGF-B promoter (Masliah 

2000) showed compromised performance on the rotarod at 12 months of age 

(Hashimoto et al., 2003). Mice with Thy1 promoter-driven expression of A53T 

mutated human alpha-synuclein displayed early and progressive decline of motor 

function (Van der Putten et al., 2000). In another study Fleming and his colleagues 

using a battery of sensorimotor tests, including beam test, pole test, inverted grid, 

spontaneous activity and gait analysis, also demonstrated early and progressive motor 
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impairments that could be detected as early as at 2 months in a different mouse line 

overexpressing human wild type alpha-synuclein under the control of Thy1 promoter 

(Fleming et al., 2004). However, another set of transgenic mouse lines expressing 

wild type or A30P alpha-synuclein under the control of Thy1 promoter showed no 

motor dysfunction (Kahle et al., 2000), probably due to significantly lower levels of 

transgene expression. 

In 2002 two groups independently reported that mice expressing wild type or A53T 

alpha-synuclein under the control of mouse prion protein gene promoter developed a 

marked motor deficit at the age of 8 months (Giasson et al., 2002; Lee et al., 2002) 

that led to premature animal death. Similarly, by using hamster prion protein gene 

promoter to express wild type, A30P, or A53T alpha-synuclein Gomez-Isla et al. 

(2003) produced transgenic mice with severe motor dysfunctions. 

After many promoters have been used to express human alpha-synuclein in many 

transgenic mouse lines, it became clear that those lines expressing highest levels show 

more remarkable motor dysfunctions, which support the idea that expression levels of 

alpha-synuclein can play an important role in pathogenesis of Parkinson disease and 

other synucleinopathies (Singleton et al., 2003). However, in all transgenic lines with 

alpha-synuclein expression driven by general (PDGF-B) or pan-neuronal (Thy1 or 

prion protein gene) promoters, motor dysfunction was caused predominantly by 

pathological changes in the spinal cord (Buchman and Ninkina, 2008), which is not 

typical for alpha-synuclein pathology in human neurodegenerative diseases. In 

contrast to alpha-synuclein, where expression in neurons of the spinal cord is low, 

gamma-synuclein expression in spinal motor neurons is high. Therefore, 

overexpression of gamma-synuclein in these neurons might be more relevant for 

modelling human motor neuron diseases than overexpression of alpha-synuclein, 
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although there is no direct evidence of gamma-synuclein involvement in these 

diseases. 

To reveal if pan-neuronal overexpression of gamma-synuclein would cause 

pathological changes similar to the changes previously observed in mice 

overexpressing alpha-synuclein, a line of transgenic mice expressing high levels of 

mouse gamma-synuclein under the control of Thy1 promoter was produced in 

Vladimir Buchman laboratory in collaboration with Herman van der Putten laboratory 

(Novartis Pharma AG). In homozygous mice of this line the level of transgene 

expression was approximately 7 times higher than in neural tissues expressing 

endogenous gamma-synuclein in wild type mice (Ninkina et al., 2009). It was 

important to study whether these gamma-synuclein transgenic mice develop motor 

dysfunction and how the observed behavioural deficiencies progress in ageing 

animals. 

Therefore, in this study five different types of behavioural tests were conducted on 

three mouse genotype groups (homozygous and hemizygous gamma-synuclein 

transgenic, and control wild type mice) to assess their balance and coordination as 

well as general locomotor activity and startle motor response. 

The results of gait test, beam test, and rota rod test revealed that there are significant 

differences between gamma-synuclein transgenic mice (both hemizygous and 

homozygous) compared to their wild type littermate mice. They also showed that 

motor dysfunction of homozygous and heterozygous animals is age dependent and 

correlated directly with the level of gene expression. It was not possible to test 

homozygous animals after the age of 12 months because even if they survived beyond 

this age, the mice develop severe motor impairments that prevented reliable testing. 

For example, pareses and paralyses of limbs led to smears instead of clear footprints 
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in the footprint test and completely prevented hanging on the inverted grid or staying 

on the beam/rod. 

Using constant mode rotarod test we found no differences between wild type and 

either hemizygous or homozygous mice at the age of 2 months. But from the age of 4 

months statistically significant differences between homozygous and wild type 

animals have been revealed. In contrast, hemizygous mice exhibited motor 

dysfunction detectable by this test only at the age of 18 months.  

Surprisingly, homozygous animals on accelerating mode of rotarod test revealed 

motor dysfunction already at the age of 2 months. This suggests that for detection of 

motor dysfunction caused by overexpression of gamma-synuclein accelerating mode 

rotarod test is more sensitive than the constant mode. Nevertheless, accelerating mode 

rotarod test still detected motor impairments in hemizygous mice only at the age of 18 

months.  

Several parameters were evaluated in the gait test but differences between genotype 

groups were detected only for the stride length. The width of hind and front paws base 

as well as the overlaps were the same for genotype groups at each of tested age. 

Hemizygous gamma-synuclein transgenic mice revealed no gait impairments at 6, 9 

and 12 months of age but at 18 months these animals showed significant decrease of 

the stride length. In contrast, homozygous gamma-synuclein transgenic mice 

displayed significantly decreased stride length already at 6 and 9 months of age.  

Compromised performance in the beam walking test was revealed for 12-month old 

hemizygous gamma-synuclein transgenic mice, which makes this test more sensitive 

than rotarod and gait tests for detecting motor deficit in this animals. Homozygous 

animals display compromised ability to turn on horizontal beam at 4 months of age 

and to cross the beam - at 6 months of age. Therefore, the ability to turn is a more 
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sensitive indicator of motor dysfunction in gamma-synuclein transgenic mice than the 

ability to cross the beam.   

In summary, overexpression of gamma-synuclein in neurons of transgenic mice leads 

to prominent and progressive motor dysfunction that could be detected by using 

rotarod, gait and beam walking tests.  

 

Although the above tests clearly revealed motor deficits at different age points, 

locomotor activity count was found unreliable for assessing motor dysfunction in 

gamma-synuclein transgenic mice. Experimental data obtained in this test was very 

variable between individual animals even within the same genotype group making 

results statistically insignificant. One explanation for this is the design of test cages 

that had only two detector beams. Increased number of beams might produce better 

and more reliable results.   

 

Another test that produced unreliable results for homozygous gamma-synuclein 

transgenic mice is prepulse inhibition. The acoustic startle test measures the response 

of animals to acoustic stimuli characterized by contractions of the major muscles of 

the body that leads to extension of the forepaws and hind paws followed by muscle 

flexion into a hunched position. In wild type mice presenting low intensity acoustic 

stimuli prior to the acoustic startle stimulus attenuates the response to the latter. From 

experimental data shown in Fig. 11a, b and their statistical analysis it could be 

concluded that in contrast to wild type mice at all studied ages, 6-month old 

homozygous gamma-synuclein transgenic mice do not display any prepulse inhibition 

and at the age of 9 months they show very limited inhibition and only to the highest 

amplitude prepulse.  However, analysis of the initial response to the acoustic startle 
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stimulus across studied genotype and age groups revealed that it was very low for 

homozygous gamma-synuclein transgenic mice at all ages (~10-15% of the values for 

wild type mice, see Table 3). Such low background startle values make the 

assessment of their inhibition very difficult and obtained results might be misleading.  

 

Table 3. Response of 6-, 9- and 12-month old wild type (WT), hemizygous (HET) 
and homozygous (TG) mice to 120Db or 105Db startle stimuli  
 
6 MONTHS WT – 

No 
stim 

HET -
No stim 

TG - No 
stim 

WT-
Startle 
105 dB 

HET- 
Startle 
105dB 

TG-
Startle 
105dB 

WT- Startle 
120dB 

HET-
Startle 
120dB 

TG-
Startle 
120dB 

MEAN 13.28 14.55 13.23 220.5 57.627 33.07 332.1955 55.009 38.556 
STDEV 7.724 7.575 5.722 96.8 34.125 8.486 200.467 25.017 8.824 
SQRT  4.69 5.47 4 4.69 5.477 4 4.69 5.477 4 
SEM 1.646 1.383 1.43 20.64 6.23 2.12 42.739 4.567 2.206 
 
 
9 MONTHS WT – 

No 
stim 

HET -
No stim 

TG - No 
stim 

WT-
Startle 
105 dB 

HET- 
Startle 
105dB 

TG-
Startle 
105dB 

WT- 
Startle 
120dB 

HET-
Startle 
120dB 

TG-
Startle 
120dB 

MEAN 14.4 14.8 10.88 212.6 63.21 33.8 274.06 99.9 42.972 
STDEV 7.834 8.621 5.276 97.58 43.6 13.736 134.332 95.22 16.623 
SQRT  5 5.09 5 5 5.09 5 5 5.09 5 
SEM 1.567 1.69 1.055 19.516 8.55 2.747 26.866 18.674 3.324 
 
 
12 MONTHS WT – 

No 
stim 

HET -
No stim 

TG – 
No 
stim 

WT-
Startle 
105 dB 

HET- 
Startle 
105dB 

TG-
Startle 
105dB 

WT- 
Startle 
120dB 

HET-
Startle 
120dB 

TG-
Startle 
120dB 

MEAN 16.16 16.55 N/A 212.443 58.922 N/A 255.89 81.41 N/A 
STDEV 6.618 6.7 N/A 103.7 49.26 N/A 111.353 59.73 N/A 
SQRT  4.795 5.196 N/A 4.795 5.196 N/A 4.795 5.196 N/A 
SEM 1.379 1.29 N/A 21.631 9.48 N/A 23.218 11.495 N/A 
 

The startle reflex is also substantially decreased in heterozygous gamma-synuclein 

transgenic mice at all studied ages although to the lesser extent than in homozygous 

mice (Table 3). Therefore, the decrease of amplitude of the response to the acoustic 

startle stimulus in gamma-synuclein transgenic mice correlates with the level on 

transgene expression. The reason of such striking effect seen even in young transgenic 

mice is not clear. Visual observation of animals during startle test suggested that they 

react to the stimuli, suggesting that hearing is not affected. However, this reaction was 

very weak and different from the described above normal reaction of wild type mice. 

It is possible that although various behavioural tests used in this study revealed very 
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limited signs of motor dysfunction in 6 month old homozygous and even older 

heterozygous gamma-synuclein transgenic mice, some of their motor neurons and/or 

their axons and synapses might be already substantially affected by transgene 

expression. These pathological changes can be sufficient for preventing normal 

pattern of muscle contraction in response to the acoustic startle stimulus. Further 

detailed studies are required to establish exact mechanism of the observed 

phenomenon.   

 

In conclusion, assessment of animal behaviour in several test clearly demonstrated 

that overexpression of gamma-synuclein in neurons of transgenic mice leads to the 

development of significant motor deficit. Observed behavioural changes are 

progressive and age-dependent. The onset and the degree of motor dysfunction 

correlate with the dose of transgene. Thus, increased production of gamma-synuclein 

causes pathological changes in the nervous system that closely resemble changes 

previously seen in animals overexpressing alpha-synuclein. These results suggest that 

in addition to alpha-synucleinopathies, certain animal and human neurodegenerative 

diseases, particularly some forms of motor neuron diseases, might represent gamma-

synucleinopathies. Therefore, it is feasible to intensify the search for gamma-

synuclein pathology in diseases, which so far was very limited.  
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