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Abstract. Let Q be a totally disconnected compact metrizable space, and let a be a
minimal homeomorphism of £2. Let a be a homeomorphism of order 2 on ft such that
aa = aa~l, and assume that a or ao has a fixed point. We prove (Theorem 3.5) that
the crossed product C(Q) xa Z xa Z2 is an AF-algebra.

0. Introduction
We prove the result stated in the abstract by an elaboration of Putnam's tower construction
in [Put2]. He proves, without the assumptions involving a, that any finite number of
elements in C(£2) x o Z can be approximated by elements in a unital subalgebra of the
form

c(T)] © Mh © MH © . . . e MJK

and as a consequence C(fi) xa Z has stable rank one.
In §1 we make a a-covariant version of Putnam's construction, and the main result is

Theorem 1.1.
In §2 we use spectral theory to prove, in a ff-covariant way, that C(£2) x a Z contains

an increasing sequence of algebras of the above form with dense union—see Theorem
2.1. A similar theorem, without <r-covariance and injectivity follows from Theorem 4.3
of [Ell]. As a corollary, C(ft) x a Z xCT la contains an increasing sequence of subalgebras
of the form

Bo © Mni © Mni ® ... © MnN,

f Present address: Mathematics Institute, University of Oslo, PO Box 1053 Blindern, N-0316 Oslo 3, Norway.
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where

Bo = {x e C(I, M2h) : Ex(-\) = x(-\)E and Ex(l) =

and / = [—1,1] is the unit interval, and E e Af2y, is a projection of dimension J\—see
Corollary 2.4.

In §3 we extend the methods of [BEEK1] to prove from Corollary 2.4, together with
the fact that C(ft) xa Z has real rank zero, that C(ft) xa Z x^ Z2 is AF, see Theorem
3.5.

Finally, in §4, we use Kumjian's method from [Kum2] to compute the Jf-theory of
C(ft) xa Z xff Z2.

In a subsequent paper, [BK], the methods of this paper will be extended to prove
that the flip-invariant part of the irrational rotation algebra is AF. The irrational rotation
algebra is the universal algebra generated by two unitaries U, V with VU = e^^UV,
where 6 is irrational, and the flip a is defined by <x(V) = V~\ <r(U) = U~l, [Rie],
[BEEK2], [BEEK3]. The methods used in [BK] are somewhat different from those of
[Put3]. Instead of cutting up the circle, the projections in [Kuml] are used.

1. The tower construction and Berg's technique for Z x a Z2

Let ft be a totally disconnected compact metrizable space. Let a : ft -*• ft be a minimal
action on ft, i.e. a is a homeomorphism of Q such that the orbit {ana>\ n 6 Z} is dense
in ft for each co e Q. Let a : Q -*• Q be an action of Z2 = Z/2Z on Q, i.e. a is a
homeomorphism of ft such that a2 = i, where i is the identity. Assume that

aa=oa~\ (1.1)

In particular, this entails that each of the homeomorphisms a"<j, n e Z, are of order two.
To prove our theorem we shall also need the assumption that there exists some w e f t
such that

aaco = co, (1-2)

and we do not know if the theorem is true without this hypothesis. It should, however,
be pointed out that since the relation between era and a is the same as that between a
and a, given by (1.1), one could replace cr by era = a~ 'a in all subsequent arguments,
and hence (1.2) could be replaced throughout by

aco = co (1.2)o

or, for that sake, by

anoa> = w (1.2)n

for any n e Z. But since e.g. (1.2)n implies an~l<ra~]w = co, i.e. an~2cr(a~1a>) = a~lco,
it follows that the assumption (1.2)n is the same as (1.2) if n is odd, and the same as
(1.2)o if n is even.

At this point it is instructive to consider the case that ft is finite, since the proof
in the general case is to some extent modelled on this case. Then ft is necessarily
homeomorphic to ZN — Z/NZ in such a way that a is homeomorphic to the shift

an = n + 1.
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A simple computation shows that a must have the form

on = M — n

for M = erO e ZN, SO if N is even a either has none or two fixed points whilst ao has
two or none, and if N is odd a and aa have exactly one fixed point each. In this case
an explicit computation shows that

C(Q) xaZ = MN® C(T)

and

C(fi) xa Z xa Z2 = [A e M2N ® C(/), A(0)E = EA(0), A(l)E = EA(l)},

where E is an N-dimensional projection in M2N, [BEEK1], [BE1]. Alternatively

C(ft) xa ZN = MN

and
C(Q) xa ZN xa Z2 = MN®MN.

Throughout the rest of the paper we shall assume that

ft is infinite. (1.3)

We shall also identify a, a with the corresponding actions on C(£2) by

af(co) = fiasco), af(co) = f(oco).

We shall follow the general notation of [Put2], but change the formalism a little. For
example, we keep the convention that a partition of £2 is a finite partition of £1 into closed
and open (clopen) subsets, and if V is a partition, then C(V) is the finite dimensional
abelian C*-algebra of functions on £2 which are constant over each set in V.

The part of the following theorem which does not involve a is Theorem 2.1 of [Put2],
and the new proof is executed by an extension of the techniques of [Put2], which again
is based on what is called Berg's technique in [Vcrl], [Ver2].

THEOREM 1.1. Adopt the notation and assumptions above. It follows that for any finite
partition VofQ (into clopen subsets) and any e > 0 there is a unital C*-subalgebra
A C C(Q) xa Z of the form

[Mh (8) C(T)] © Mh 0 . . . 0 MJK (1.4)

for some integers J\,..., JK such that C(V) Q A, and there is a unitary u' e A such that
\\u — u'|| < e, where u is the canonical unitary in C(fi) x a Z. Furthermore cr(A) = A,
and a acts on the canonical unitary z -*• z in ly, <g> C(T) by sending it into z -*• z, and
on a certain set of matrix units e\j, i, j = 0 , . . . , J\ — 1 of MJt igi 1 by sending them into
eljt-\-i y,-i-/> respectively. On the remaining part

Mj2®...® MJlc

of A, a acts by interchanging summands Mjn Mjt with Jt = Js or by globally fixing
summands Mjk, sending e\j into e* |_,- /,_!_,•• (In our construction J\ is even.)
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We first establish the following subsidiary result.

PROPOSITION 1.2. Adopt the notation and assumptions before Theorem 1.1. It follows that
for any finite partition VofQ. into clopen subsets and any N e N there exists clopen sets
Y\, Y2,..., YK in £2 and integers J\,..., JK such that
(1.5) Jk>2N + 2fork=l,...,K.
(1.6) The sets ak(Yi), k = 0 , 1 , . . . , /,; — 1, i = 1 , . . . , K are mutually disjoint with union
Q, and thus constitute a partition Vo of fi.
(1.7) P o is a refinement ofV.
(1.8) {o(Yx),...,o{YK)} = [aJ^-l(Yi),...,aJ*-l(YK)) (as unordered sets). Define
Y = Yx U Y2 U . . . U YK. Then, furthermore
(1.9) For k = 0,l,...,N there exists Ak,BkeV such that

ak(Y) c Ak aak(Y) = a-
ka(Y) c Bk.

Remark 1.3. It follows immediately from (1.6) and (1.8) that the tower structure defined
by Y\, y2, • • •, YK is a-invariant, i.e. if

a(Yi)=aJ'-i(Yj)

then Jj = Jt and
a{Yj)=aJ'-\Yi). (1.10)

(One uses the involutory nature of the homeomorphisms aka = aa~k together with an
induction argument, starting with the tower of greatest height 7,.)

Other consequences of Proposition 1.2 are

VQ is a -invariant. (1.11)

(In fact it follows from (1.8) and aak = a~ka that a applied to a tower, either reverses
the tower or interchanges it with another tower, reversing both.)

K

k-\

(follows from (1.6)).
aa{Y) = Y (1.13)

(follows from (1.12) and (1.8)).

As a preliminary to Proposition 1.2 again we prove:

LEMMA 1.4. Let Y be a clopen set in SI with the property (1.13):

ao(Y) = Y.

Define
k((o) = min{n > 0; un(a>) e Y]

for co € Y. Then X is continuous, and thus has a finite range
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where J\ < J2 < • • • < JK- Define

Yi=k~1{Ji).

Then

is a partition of Q into clopen sets, and

<x(Yi) = ccJ'-l(Yi) (1.14)

fori = \,...,K.

Proof. This lemma has already been established in §2 of [Put2] apart from the
property (1.14). (Note that the continuity of A, alternatively follows from the relation
X-1 (J) = crJ(Y) r\o<;<j(«"J &\Y)) n Y for J = 1,2 ) But as

aJ'(Xi) c Y

one has
aaJ'~\Yi) = aaaJ>(Yi) c ao(Y) = Y.

Now, assume

i.e. there is a co G Y, such that

p = aaJ'-\co) = a-Ji+la(a)) = a~Jiaa((o)

and thus

aJ'(p)=aa(.co) e Y.

It follows that

HP) < Ji-

Now, if Ji is the smallest of the 7's, i.e. i = 1, then necessarily k(p) = J\ and p e Y\.
Thus

But, conversely, as craJl~l is its own inverse

Y, CaaJl

and hence

Y1=aaJ'~l(Yi).

Repeating this argument for the successively higher values J% < J$ .< ... < JK one
establishes by induction that
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Proof of Proposition 1.2. We shall prove the proposition by making a careful choice of
Y in Lemma 1.3, and then refine the partition. At this point, we must use the existence
of a fixed point for aa, (1.2). So let COQ be a fixed point

For N given, there exist sets Ak, Bk in V for k = 0, 1 , . . . , N such that

aka>o € Ak era*<w0 = a~k(jcoo € Bk.

Put

*=o

Then a* e Z, and ak{Z) c A*, <ra*(Z) c Bk for A: = 0,1 W. Now, asa is minimal
and aawo = <wo, it follows that all the points aka>o, oaka>o = a~kacoo, k = 0,1,... are
distinct. Hence, choosing Z even smaller, but still containing COQ, we may furthermore
assume that the sets

ak(Z),aak(Z), k=0,l,...,N

are disjoint. Put
Y = Zr\aa(Z).

Then Y ^ 0 since w0 6 K, the sets

a*(y),aa*(y) fc = 0,1 N

are pairwise disjoint, and

a a * ( K ) C B t * - 0 , l , . . . , ^ . (1.9)

Now, constructing K j , . . . , J^ as in Lemma 1.3, all the conditions of Proposition 1.2 are
fulfilled with the possible exception of (1.7), since V has not entered the construction
yet. But by further cutting up the towers a'(Yk), i = 0 , . . . , Jk - 1 from bottom to
top as in [Put2], more precisely, partitioning each Yk into a aaJk~l-invariant family of
subsets, one may also ensure that (1.7) is fulfilled as well as (1.8). This ends the proof
of Proposition 1.2.

At this point, equip Q with a probability measure n which is both a- and a -invariant.
This is possible as £1 is compact and Z xCT Z2 is amenable. Let M(CK), U(O) be the
unitaries implementing a and a on L2(Q, fi),

) . (1.15)

Represent C(fi) on L2(Q, /i) in the standard way

/*(») = f(<oM<o). (1.16)

If X is a clopen subset of fi, x* denotes the characteristic function of X.
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LEMMA 1.5. Adopt the assumptions of Proposition 1.2, and let AQ be the C*-algebra
on L2(Q,ii) generated by C(Po) and the operator u(a)xn\o(Y)- It follows that AQ is
finite-dimensional, and the operators

eij = «(«)' XYku(<*)*J = «(«)'~'x«>ff» (1-17)

for i, j = 0 , 1 , . . . , Jk — 1, k = 1, 2 , . . . , K constitute a complete set of matrix units for
AQ. Furthermore, AQ is invariant under Ad(«(cr)) and

ij el
h_,_Uk_,_j, (1.18)

where k = I, or k ^ I with 7* = Ji.

Proof. It is easily verified from Proposition 1.2 that [e^] constitute a complete set of
matrix units, and (1.18) follows from (1.10) in Remark 1.3. One has

4 = X « < ( i W . i = 0 , . . . , J k - l , k = l , . . . , K (1.19)

and
K Ji-2 K Ji-2

J2 J J2Y1
k=\ i=O k=l i=0

where we used that the roof of the tower is o(Y) = U tU a>/'~1(l't)- These relations
imply that Ao = C*(C(Vo), u(a)xa-a(Y)) is exactly the C*-algebra defined by the matrix
units.

Still following [Put2], we next modify u(a) to a unitary operator VQ in Ao, i.e.

K Jk-2 K

k=\ i=0

k=l

K

Thus v0 is a sum of cyclic unitaries, one for each tower. The unitary VQ lifts each floor
of each tower one floor up except for the top floor which is mapped onto the bottom
one. We also introduce another unitary operator MO measuring how far vo is from u(a),
i.e.

u(a) = UQVQ. (1-22)

Thus
K

u0 = u(a)v*0 = XQ\Y + ^ ( a / ' X i v (1.23)
t=i

To proceed, we need even more structure in Proposition 1.2, i.e.

PROPOSITION 1.6. The clopen subsets Y\, Y2,. ..,YK in Proposition 1.2 may be chosen
so that they have the following further properties in addition to (1.5)-(1.9):

Yknaa(Yk) = 0 fork = I K. (1.24)
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Proof. Note that if the set Y in Lemma 1.4 is replaced by an aor-invariant clopen subset,
the tower over each point becomes higher. Thus we take the Y used in the proof of
Proposition 1.2 and throw away a clopen neighbourhood of the acr-fixed points in Y.
Since acr anticorrimutes with a, each a-orbit contains at most one fixed point for acr,
and since a is minimal, it follows that the set of acr-fixed points contains no open set.
Hence the complement of the set of acr-fixed points is open and dense, and hence we
may arrange that Y is still non-empty after throwing away the clopen neighbourhood of
the acr-fixed points. Since the new set Y contains no acr-fixed points, aa(Y) contains
no acr-fixed point, so replacing Y by acr(y) U Y, we may assume that the new Y still
satisfies

ao(Y) = Y.

Since Y does not contain any acr-fixed point we can find a partition V\ of Y such
that V\ is acr-invariant, and acr (A) D A = 0 for any A e V\. Now repeat the proof of
Proposition 1.2 from Lemma 1.3, but replace the old partition V by the joint refinement
of V and V\. This ensures the property (1.24), and since each of the new JVs are
contained in one of the old ones we do keep property (1.9).

We next explore some consequences of Propositions 1.2 and 1.6.

LEMMA 1.7. Assume that Y = Y\ U . . . U YK satisfy the conclusions of Propositions 1.2
and 1.6. It follows that there exist some Y^, Y] say, such that

There is awe Y\ such that aaJ'~l(w) = w, (1.25)

aaJi-l(Y1) = Yl, (1.26)

J\ is even. (1.27)

Moreover, Y\ can be taken to be any Yk such that an acr -fixed point <wo lies in the tower
over Y\.

Proof. Since (1.24) implies that Y contains no acr-fixed point, it is clear that the acr-fixed
point must lie in the tower over some Yk, say Y\, and not in the bottom floor Y\ of the
tower. Since a (crGJO) = (OQ, it follows that aco0 also lies in the Y\ tower in the floor
below COQ. Hence there is some k < J\ — 1 and a w e ^ such that

ak(o = cr(

But then, as oak is its own inverse,

a*o>o = cr((o).

Hence
coo = aacoo = ak+xco

and then
t \ k 2jfc+l / i 1Q\

0(CO) === Ot (On ^ Of W. ^I.AO^

Since cr reverses the towers by (1.18), and the two points WQ and CTWO are mapped into
each other by cr, it follows that these two points lie in the middle of the tower over Y\.
It follows from (1.28) and (1.8) that Jx =2k + 2, o(Y\) = ay '- '(Ki) and craJ'~lco = a.
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LEMMA 1.8. Assume that Y = Y\ U.. .UYg satisfy the conclusions of Propositions 1.2 and
1.6, and choose Y\ as in Lemma 1.7. It follows that Y\ contains three mutually disjoint
clopen subsets A, B, C such that

aJl~\A)=a{A), (1.29)

a y ' - ' (B)=<r(C) , (1.30)

aJ'-\C)=a(B), (1.31)

and ifk is the smallest positive integer such that akcr(A) D Y\ ^ 0, then

B = aka(A), ADaJ(A)=0 if0<j<k. (1.32)

Proof. By Lemma 1.7, aoc7'"1 is a homeomorphism of Y\ of order 2 with a fixed point co,
and hence co has a neighbourhood basis of clopen sets which is invariant under aa 7 ' " 1 .
Thus, if A is one of the sets in the basis, then

Since aJl~lco = aco and a is free, it follows that akaco ^ co for k = 1,2 Hence,
choosing A small enough, we may ensure that if k is the smallest positive k such that
aka(A) (~l Y\ ^ 0, then a*cr(A) n A = 0, and choosing A even smaller we may ensure
that akcr(A) c Y\ for this A:. By choosing /. even smaller we may also ensure that

aaJl-xaka{A) n aka(A) = 0.

This is possible since
a~Jl+l~k(o ^ akaa>

for all k = 1,2,..., because a 7 ' " ^ = aco. Now put

B=a*<7(A), C = aaJ'~lB,

and use (era7'"1)2 = i to verify (1.30) and (1.31). Finally, choosing A as an even smaller
clopen neighbourhood of co, one may ensure that

aJ(A)C\A = 0

for j = 0 ,1 , . . . ,k — 1, since a is free.
Next we shall repeat the tower construction with Y replaced by

X = AUacr(A), (1.33)

where A is defined in Lemma 1.8. Define v\,u\,A\ for the new tower construction as
VQ, UQ, AO were defined for the old, but such that the role of V is replaced by Vo> i-e. the
new tower partition V\ is a refinement of Vo.

LEMMA 1.9. One has i .

Ad(wo«(ff))(w!«5) = (wiwo)' d-3 4 )

and
A,. (1.35)
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Proof. Since V\ is a refinement of Vo, one sees from (1.17) that Ao c Ai, and hence
\)Q e Ai. Next, from (1.18) and (1.21)

*=1 i=O

and similarly

Thus

(1.37)

Ad(v0«(o-))(uii;o) =

To understand the significance of the next lemma, we have to analyse the action of v\ VQ
on the towers corresponding to X. Each of the towers are left globally invariant but the
floors are shuffled as follows displayed in Figure 1, in a typical tower.

T
T
T

T

T
T

T
T

T
t

T
T
T

l\
1\
V

• •

T
T
t

T

T
T
t

T
T

r

r

X
FIGURE 1.

Here the marked subtowers are parts of the K-towers. Hence inside each minimal
projection of the center of Ai, v\v$ is a direct sum of the identity and a cyclic unitary,
and the order of the cyclic unitary is equal to the number of floors which intersect Y
(and then are contained in Y).

LEMMA 1.10. / / X = Xx U X2 U . . . U XK> is the partition of X defined by the tower
construction, then for any k such that a maps the tower over Xk into itself (i.e.
aJk~xXk = oiXi)) the number of fioors in this tower contained in Y is odd, and hence
the restriction o/vivj to the corresponding central projection in A\ has odd order.

Proof. If a maps the tower over Xk into itself, then a reverses the floorplan, by (1.18).
Since <xo(Y) = Y, it follows that if D is a floor in the tower and D is contained in Y,
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then a(D) is a floor in the tower and hence, unless D is the ground floor X* (and thus
o(D) is the top floor), aa(D) is another floor in the tower and aa(D) is contained in
Y. Furthermore aa(D) is distinct from D since D is contained in some Yj, and Yt is
disjoint from aa(Yj) by Proposition 1.6. Thus, excluding the ground floor, the floors
contained in Y occur in distinct pairs Daa(D). Therefore, counting also the ground
floor, the number of floors in the tower which are contained in Y is odd.

LEMMA 1.11. There exists a unitary operator w € A\ such that

(1-38)

(1.39)

Ad(uOK(<x))(u0 = w* (1.40)

| |1 - to l l <n/2N. (1.41)

Proof. Let

be the spectral decomposition of V\VQ. It follows from (1.34) that

Ad(v0u(oMe(k)) = e(X).

Thus, if —1 is not in the spectrum of Uji»J, we may define

where zx/2N is the branch of the holomorphic function with l1/2N = 1 and cut along
the negative real axis. The properties (1.38)—(1.41) are then immediate. However, if
e(— 1) ^ 0, we must find a decomposition

e ( - l ) = e+ + e-

of e(—\) such that Ad(uo«(cr))(e+) = c_ and Ad(uo«(f))(e_) = e+, and then define

w = £ \l'2Ne(\) + e"i'2Ne+ + e~^2Ne_.

The existence of such a decomposition follows from Lemma 1.10. Given the central
projection PXt corresponding to the tower over X*, there are two possibilities: if this
tower is mapped into itself by a, then v\v%Pxk has odd order, hence —1 is not an
eigenvalue of U|i>5^xt and there is no problem. If on the other hand the tower is
interchanged with the tower over Xt by a, then a(Pxk) = Pxt and <r(Pxt) = Pxk- K
all such pairs are ordered, and P+ is the sum of the />xt's corresponding to the first
member of the pair, and P_ the sum over the second members, then P+, P- are central
projections in A\ such that cr(P+) = P-, a{P-) = P+ and P+P- = 0. Now put
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We have already computed that

and as VQ commutes with the central projections P+ and P- in A\, we have

Ad(vou(cr)XP+) = P_, Ad(vo«(a))(P_) = />+.

This establishes the desired properties

Ad(u0M(o-))(e+) = e_, Ad(vou(a))(e-) = e+.

We also have to construct another unitary operator u:

LEMMA 1.12. There exists a unitary operator u e A\ such tha*

"Xn\Y = Xn\r (1-42)

UNXY,U~N > w~N
XxwN (1.43)

Ad(vo(vo«(<7))(«) = u (1.44)

| | l - « | | < » r / t f . (1.45)

Proof. It suffices to construct a unitary operator M* in the finite-dimensional algebra
Aj with the properties

uNxn\r = XQ\Y (1-46)

uN
XY,u~N > w~NxxwN (1.43)

Ad(vou(a))(uN) = uN (1.47)

and then define u by spectral theory.
First note that as X = A U aa(A), one of the towers in the X-tower construction is

A, a(A), a2(A),...,aJi~\A) = a(A), and thus
=XA-

But this is also part of the tower over Y\ in the K-tower construction, and thus

Hence

V\VZXAVOV* = ViXa(A)V* = XA,

or
=XAV\V*0. (1-48)

In particular, this means that all the spectral projections e{\) of v\v$ commute with XA>
and since XA e At also the central projections P+ and P- constructed in the proof of
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Lemma 1.11 commutes with XA- Hence, inspecting the proof of Lemma 1.11, all the
spectral projections of w commute with XA> and thus

= XAW. (1.49)

Let k be the positive integer defined by (1.32) in Lemma 1.8, put

l = k - \ , (1.50)

and define an operator V by

V = W~NV^XB + vou(a)w-Nv;e
XBu(<j)v*o. (1.51)

As VOU(<J)W~N = wNvou(a) by (1.40) and

where the last equality follows from (1.31), we have

V = W-NV^1XB + wNv0u(o)vfu{o)vlxc (L52)

Since B and C are disjoint, we thus obtain, using the expression in (1.51) for the last
term,

VV* = W~NV\1XBV\WN + wNvou{q)v\txBv\u(a)vlw-N. (1.53)

But
1 \ (L54)

To prove this, we must verify that the iterates a'ao(A) for j = 0 , . . . , k do not hit
X = AL)aa(A) before hitting B for j = k. The iterates do not hit A (or even J^) before
they hit B by (1.32). But if

ajaa(A)C)aa(A) ^ 0

for some y = 0 , . . . , Jfc — 1, then, one has

aJ(A)DA ^ 0 ,

but this is impossible by the last statement of Lemma 1.8. This proves (1.54).
Inserting (1.54) into (1.53), using aaa = a"1, we obtain

VV* = w-N
XaaWwN + wNvoXa-HA)V^w-N. (1.55)

Now, as w2N = V\VQ we have

and inserting this in the last expression of (1.55) we obtain

V V = w-N
Xaa(A)w

N + w-NvlXa-HA)V>N- (1-56)
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By construction, V\ maps cr(X) into X. But

a(X) = o(A U uo(A)) = CT(A) U aaa{A) = <x(A) U a"1 (A),

where the union is disjoint. But o(A) is part of the roof of the X-towers and is mapped
onto A by v\. Thus cr(X)\a(A) = a~x(A) is mapped onto X\A = aa(A) by v\, i.e.

= Xaa(A)- (1.57)

Inserting (1.57) into (1.56) we see that

so V V* is twice a projection. Thus

V,

is a partial isometry with

On the other hand, by (1.52),

and by (1.51), as vou(a) has order two,

Now, extend Vj to another partial isometry V2 in A, by setting

Since Vi = VIXBUC and B U C is disjoint from A,

= XA + v, v; = x* + w

But XA commutes with u> by (1.49), and X = A Uaa(A) where the union is disjoint
and hence

N N N N (1.58)

Thus V2 is indeed a partial isometry, and

V2*V2<XAUBUC<XY,. (1.59)

Also, as

Ad(vou(a))(xA) = Ad(vo)(Xa(A)) = XA

we have
Ad(Uo«(or))(V2) = V2. (1.60)

Since V2 is contained in the finite-dimensional fixed-point subalgebra of A\ under the
automorphism Ad(u0M(^)), it follows that V2 can be extended to a unitary «" in this
algebra, and then from (1.58M1.59)
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which is (1.43), while (1.47) follows from the construction. Since V2 lives on
A U B U C c y, c K and V2V2* = w~N xxwN where X c y and u>xn\r =
it is clear that we can construct the extension uN of V2 such that

= Xn\Y-

(We use that Ad(vou(a))(xr) = Ad(«o)(x«r(y)) = XK to first construct « " inside xr> and
then extend it by setting it equal to 1 on the orthogonal complement of XY)

Next we use w and u to define still another unitary operator z in A\, with the following
properties:

LEMMA 1.13. There exists a unitary operator z in A\ with the following properties:

zXrX ^ Xx (1.61)

zu(a) = u(a)z (1.62)

= VIVO\LHY) (1-63)

| |<3»r/2tf. (1.64)

Proof. Define

z =
k=0

Since Vgk maps a*(K) onto Y, and I^*H(CT) maps a~*<7(y) via ak(Y) onto K for
0 < k < N by (1.21), (1.18) and (1.5), and both u and w restrict to unitary operators on
L2(Y) by (1.38) and (1.42), it is clear that z is unitary and leave each of the subspaces
L2(ak(Y)) and L2(a~ka(Y)) invariant for k = 0 , 1 , . . . , N. Also as A\ is <7-invariant,
z € A\. As u((T)xa-

ka(.Y) = Xa'do"^) li ls c l e a r that z is the mean of an operator in At

and its conjugate under a, and hence a(z) = z, which is (1.62). To prove (1.61) note
that when z hits XY, only the first term in the first sum defining z survives, and

ZXYtz* = WNUN
XY,U-NW-N > wNw-N

XxwNw-N = xx,

where the inequality follows from (1.43). As for (1.63) note that VQ maps L2(Y) onto
L2(a(Y)), and on L2(a(Y)) the unitary z* acts like u(a)u-Nw~Nu(a). Since

vou(p)u-N w~N u(o-)v*0 = u~NwN

by (1.40) and (1.44), zvQz*v0 acts on L2(Y) as

where the last equality is (1.39). This proves (1.63).
To prove (1.64), we first study the restriction of ZVOZ*VQ to eaph of the subspaces

L2(ak(Y)) and L2{a~ka{Y)) for k = 0,1 N. We have, for k ^ 0,
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Thus

(zvoz*v*o - l)\LHaHY)) = vk
ow

N-k(u~1w-1 - l)w-N+\k\LHaHY))

and hence

\\(zvoz*v*o - l)\LHaHY))\\ < l l w - ^ - ' - H I

< | |K_1| | + | | , _ 1 H ^ + Z_ = | £

by (1.45) and (1.41). But as

vlvo\LHQ\Y) = U2(£2\K), (1.66)

(see, e.g., the figure before the statement of Lemma 1.10), it follows that

\\(zvoz*v* - viv*)\L2(aHY))\\ < ^ (1.67)

for k = 1, 2 , . . . , N. But in the special case that t = 0we have already established that

in (1.63), so (1.67) holds also for k = 0 (with the right-hand side replaced by 0).
Similarly, for 0 < k < N - 1

zvoz*v*\L2(a-ta(Y)) =

As U(O)VQU(O) = VQ = VQJ by (1.36), we get further

and as before this implies

(1.68)

for 0 < k < N — 1. But if k = N one computes

and hence (1.68) holds, with right side zero, for k = N.
Next, one uses the fact that z acts as the identity outside Uf=o

to compute that ZVQZ*VQ = VOVQ = 1 on the L2-space on the complement of this set.
Since both zuoz*^ and viv^ leave all the spaces L2(ak(Y)), L2(a~ka(Y)) invariant for
k = 0 , 1 , . . . , TV, as well as the orthogonal complement of these spaces, it follows finally
from (1.67) and (1.68) that

which is (1.64).
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Proof of Theorem 1.1. Recall that u\ = u(a)v*, and define

A = C*(zAoz*, MI). (1.69)

We shall show that A is the subalgebra of the form (1.4) alluded to in Theorem 1.1.
First we show that

C(P) c zAoz* c A. (1.70)

We have already noticed in Lemma 1.5 that

C(V) c Ao.

Further, note that z leaves each of the spaces L2(ak(Y)), L2(a~ka(Y)), k = 0,l,...,N
invariant and acts as the identity L2(Q\(\J%=0a

k(Y) U \J%=oa~kcf(Y))). Since each of
the sets ak(Y), a~ka(Y) is contained in a single element of V by (1.9), it follows that
z commutes with C(V), and hence (1.70) is clear.

Next, as Mi € A and vo e Ao, we have

u! = u\zvoz* e A.

As u(a) = M]Ui we have

(1.71)

by (1.64). Thus, if N is chosen so large that 3n/2N < s, the canonical unitary in the
crossed product C(Q) x a Z is contained within e in A.

To prove the remaining properties of A we introduce the element

7,-1 7,-1

V = £(zw£xr,0«i(zxr,wo*z*) = £(z«Jo*>i(z««z*). d-72)
t=0 *=0

where we used the matrix units introduced in Lemma 1.5. (V should not be confused
with the V used in the proof of Lemma 1.12.) The last expression for V shows that V
commutes with zAoZ*. Furthermore, as

ze^z* = ZXY,Z* > Xx (1.73)

by (1.61), and u\ acts as the identity on L2(Q\X) by (1.23), it follows that u\ is contained
in the algebra generated by ZAQZ* and V, i.e.

A = C*(zAoZ*, V). (1.74)

Since ze\ z*, where ef are defined by Lemma 1.5, constitute a full set of matrix units
for zAoz*, and V is a unitary on z(X!i=o1 eh)z*L2(Si) commuting with zAoz*, in order
to prove that A has the form (1.4) it suffices to show that V has full spectrum, i.e.

Sp(V) = T. (1.75)

But by the AT-theoretic reasoning at the end of §2 in [Put2], [MJ] is the generator of
K\(C{Sl) xa Z) which is Z, and hence u\ has full spectrum. Since, as we already
remarked, u\ 'lives' on ze^z*, it follows from (1.72) that V has full spectrum, and
hence A has the form (1.4).
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Finally, we have to prove the statements of Theorem 1.1 pertaining to a. As
ZW(CT) = u{a)z by (1.62), the statements concerning the action of a on zAoz* are
immediate from (1.18) in Lemma 1.5. It only remains to show that

u(a)Vu(<x) = V*. (1.76)

But u(a)zu(cr) = z and M(CT)C^OM(CT) = e j ^ n , , ^ . , , and as u\ = u(a)v* we have

u(p)u\u(p) = u(a)*v\ = v*u*v\.

We conclude that

u(tr)Vu(a) = £ zelh_xz*v\u\vxze\_^kz*. (1.77)
*=0

But Cyi_ltyi_I = Xa(Y,) 5 Xa(Y), and z carries L2(a(Y)) into itself by the definition
(1.65), and

by (1.63). Hence, from (1.77),

./i-i

u(a)Vu(a) = J2zelj
k=0

and as v§e\ _, k == el
Ok by (1.21), we get

U(<J)VU(<T) = ^2 zelQz*u*xzelkz* = V*,
k=0

which is (1.76). This ends the proof of Theorem 1.1, apart from the last parenthetical
remark, which is (1.27).

2. Inductive limits
The main result of this section is the following Theorem 2.1, as well as Corollary 2.4.

THEOREM 2.1. Let A be a unital separable C*-algebra, and let a be an automorphism of
order 2 of A. Assume that for any e > 0, and any finite number x\,...,xn of elements in
A there exist a C*-subalgebra B of A, with the same unit as A, such that

B £ [Mh ® C(T)] @Mh®...®M]K (2.1)

for suitable natural numbers J\, Ji,..., Jg, with the following properties:
(2.2) There exists elements y\,...,yn in B with

for k = I,.. .,n.
(2.3) a{B) = B, and, moreover, a leaves the two subalgebras corresponding to

g> i ] e o e . . . e o
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and
0®0®Mh®...®MjK

invariant.
(2.4) a maps the canonical generator z —*• zfor\jx®C (T) into z —> z, and this generator
is in a nontrivial K\ -class, in A.

It follows that there exists an increasing sequence A\ c A2 £ . . . of unital C*-
subalgebras of A such that each At has the form (2.1), each Ak is c -invariant and the
action a\At has the properties (2.3) and (2.4), and, finally,

Ak = A, (2.5)
*=i

where the bar denotes norm closure.

Before going to the proof we remark that a similar theorem, but without the extra
structure given by a, and without injectivity of the embedding, Ak «^ A, is Theorem
4.3 in [Ell].

First, for completeness, we state a known lemma.

LEMMA 2.2 ([Gli, Bra]). For any e > 0 and any natural number n there exists a
S(e, n) > 0 with the following property: if A is a C*-algebra, and B is a finite-dimensional
*-subalgebra with (linear) dimension not exceeding n, and C is another C* -subalgebra
of A such that any element in the unit sphere of B has distance at most S(s, n) to C, then
there exists an injective morphism

<p: B-+C (2.6)

such that

ll«»&O-*ll<e||*ll (2-7)
for all x e B.

Proof. This is essentially [Gli, Lemma 1.10] or [Bra, Lemma 2.1].

LEMMA 2.3. If A is a unital C*-algebra with an automorphism a of order 2, and B is
a globally a-invariant C*-subalgebra of A with the same unit as A such that B has the
form (2.1), and the restriction of a to B has the form (2.3) and (2.4), and x\,..., xm

are elements in B, then for any e > 0 there exists a S > 0 (depending on x\,..., xn

and B) such that if C is another globally a-invariant C* -subalgebra of A such that the
generators c*., i, j = 0 , . . . , .4—1, k = 1 , . . . , K andz -*• z of B all can be approximated
by elements of C within S, then there exists an injective morphism

V.B-+C (2.8)

such, that

- * j | | < e | | * i | | , (2-9)

for i = 1 , . . . , m, and
cpax = a<px (2.10)

for all x e B.
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Proof. If B has the form (2.1), define Bo as the subalgebra corresponding to

\]®MJl®...®MjK (2.11)

and u as the unitary operator corresponding to

[ i ® ( z - » z ) ] e i e . . . e i . (2.12)

Then Bo is finite-dimensional, cr(B0) = Bo, cr(u) = u*, u commutes with Bo and B is
generated as C*-algebra by u and Bo. Moreover, B can be characterized abstractly as the
C*-algebra generated by a finite-dimensional C*-algebra Bo of the form (2.11) together
with a unitary u with spectrum T commuting with Bo such that

u(l - PJt) = 1 - Pj,, (2.13)

where PJx is the central projection in Bo corresponding to the first summand in (2.11).
As a have order two, for a given k = 1,2,. . . , K there are two possibilities. Either

a maps Mjt onto itself or a interchanges Mjk with some Mjt with Jk = Jt. (Here and
later we identify Bo with (2.11), to save notation.) When k = 1 only the first alternative
occurs. When the first alternative occurs, the restriction of a to Mjt is implemented by
a self-adjoint unitary since a has order two, and hence we may choose matrix units ek

tj

such that c(ef) is either +e*. or — efj for each pair (j, j). In particular <7(e*) = ek
it for

all i. When the second alternative occurs, we may use the choice

for matrix units for MJt once the matrix units ekj for Mjt are chosen, and then

Now, the elements x\,..., xn can be approximated arbitrary close by polynomials
in ef's, u and u*. Thus if we can find an injective morphism <p : B - • C such that
\\<p(e!j) - ek

u\\ and \\<p(u) - u\\ all are sufficiently small, then (2.9) will be fulfilled
since <p is contractive. We shall argue that we can find such a <p provided e\} and u
all are sufficiently close to C. First it follows from Lemma 2.2 that we can find a
set of matrix units /)* in C such that /)* is close to ekj for each i, j , k. We now use
techniques from [Gli] and [Bra] to modify the /)*. In fact we may first apply Lemma 2.2
to the pair BQ, C of fixed-point algebras under a instead of Bo, C to find a morphism
<Pa : BQ -*• C such that <pa is close to 1. (Note that if x e BQ and y e C with
\\x - y\\ < S, then ||* - {(a(y) + y)|| < S and ±(cr(y) + y) e C.) To extend ?>„
to Bo we operate as follows. If Mjt is a summand invariant under a, and ekj is a
matrix element, there are two possibilities: either cr(ekj) = efjt then simply replace ft

k

by gkj = (pa(e
kj), or a{e)j) = -ekj. In the latter case, as a(ef() = ek

H and ^(c^) = ek
n,

we have

If one now introduces

y=l
1(l-a)(gk

ifijgjj)
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then

o-(y) = ~y and y « efy.

Since y*y as e*y one computes that the spectrum of y*y is concentrated near 0 and 1. If
g\j is the partial isometry corresponding to that part of the partial isometry in the polar
decomposition of y which lives on the part of y*y near 1, then

and

and
Qk*pk — Qk

Sij Sij Sjj-

In this way one constructs gkj unless gkj can be defined from already constructed gfj's
by using

or

**• = Rk*Si] SJI

gij = 8u8tj-

(The most systematic way is to construct g^, ggV •••,gojt-\ as above, and then define
the other gfj's by matrix relations.)

The other main case is that MJk and M]t are interchanged by a. Then

form a complete set of matrix units for (Mjk + Mjt)
a. Put

gij = <Pa(eij).

Let / e C be a self-adjoint approximant to e^ - e^- We may assume goof = /goo = /
by cutting down with goo- Then

and

f2 « goo-

Replacing / by ^(1 —a), we may assume er(/) = —/. Then if h is the partial isometry
of the polar decomposition of / , then h is self-adjoint,

<x(h) = -h, h2 = goo.

Now define

£oo = \(goo + *) ôo = I(£oo - /»)

and verify

oo«oo = ° £oo + £oo = «oo ff(g5o) = £oo

= «00' «5o % «00. *00 * «00
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Next, define

and verify

k

O. Bratteli

~ giOg<X)gOj, &

a(gku) =

etal

,f.=

8h
etc.

We now extend <pa to a morphism Bo —*• C by setting

= «

and then <p is close to i on So and (79} = <pcr on £0.
We next have to extend <p to u, i.e. we have to construct a unitary operator u e C

such that
- / V , ) =*>(!-/>, ,) , (2.14)

(2.15)

S/>(H) = T, (2.16)

a{u) = it* (2.17)

u^u. (2.18)

So let x be an approximant to PJ,UPJ, in C. We may assume <p(Pjx)x(p{Pj^) = x,
and by integrating vxv* over v in the unitary group of <p(Bo) we may assume that
x e <p(Bo)' n C s C i , since it already approximately lies there. But as a{u)* « u we
have cr(*)* «* x, so replacing ^ by \{x + o(x)*) we may assume

o{x) = x*.

Now, let v be the partial isometry of the polar decomposition of x inside
The partial isometry is actually unitary and contained in

1) since x is approximately unitary there. As \x\2 = x*x we have

a(\x\2) = <r(x*)a(x) = xx* = \x*\2

and hence

ff(l*l) = l**|.

Now, applying a to both sides of
x = v\x\

we get
x* =a(v)\x*\.

But as |JC*I = v\x\v* we obtain

and hence
a(v)v =
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and
o(y) = v*.

Hence

u =* v + <p{\ - Ph)

has the properties (2.14), (2.15), (2.17) and (2.18). But just because u is close to u, it is
in the same K\ -class, and as this is nontrivial it follows that u has full spectrum, which
is (2.16). This ends the proof of Lemma 2.3.

Proof of Theorem 2.1. Let x\,xi,... be a dense sequence in A. We inductively
construct a sequence Bn of subalgebras of A of the form (2.1)-(2.4), as well as
elements yBii, yn,2, • • •, yn,k(n) m Bn a n ^ a dense sequence (zn,/)^i in Bn and injective
morphisms <pn : Bn -+ Bn+\, as follows. Let B\ = Cl , and when B\,...,Bn

have been constructed, choose fln+i as follows: apply Lemma 2.3 with e = 2~" and
{^i,..., jcm} = {yn,i , . . . , yn,t(n)} to find a S with the properties cited there. Then use
Theorem 1.1 to find a subalgebra Bn+\ of the apposite form such that the distances of
the generators efj, u of Bn to Bn+i are less than 5 and the distances of the elements
x\,..., xn+i to Bn+\ are less than 2~n. Construct q> = <pn as in Lemma 2.3, and let the
new set of y's be the union of the following three sets:

(1) The images of the previous y's under <pn.
(2) The images of zm,u ...,zm,n under <pn<pn-\...<»m for in = 1,.. . .n.
(3) A set of n + 1 new y's approximating JC],..., xn+\ to within 2~".

Then, let (zn+i,;)~i be any countable dense sequence in Bn+\ containing the new y's
and such that the set of elements in the sequence is closed under addition, multiplication,
involution and scalar multiplication by rational complex numbers. (If any dense
sequence is given, we obtain the latter property by considering all *-polynomials in
the sequence with rational complex coefficients.) In particular, we have constructed
injective morphisms

(pn:Bn^ Bn+l (2.19)

such that
ll^()'n,Jt)-)'n,ill<2-'I||yn,il|| (2.20)

for k = 1, . . . ,k(n), and
<pno=o<pn. (2.21)

Now let B be the inductive limit of the system

. . . -»• a, ̂  !»„+,-»•... (2.22)

and let a' be the automorphism of order 2 of B which is defined by a. The automorphism
a' is well defined because of (2.21). For each n, let q> be the canonical injection of Bn

into B. Then (p(Bn) is an increasing sequence of subalgebras of B with dense union in
B. Since each cp(Bn) has the form (2.1), Theorem 2.1 will be proved once we can show
that B is isomorphic to A by an isomorphism intertwining a and a'. We shall define
such an isomorphism r) explicitly as follows:
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First we define rj on <p(Bn), i.e. we define an injection t]n : Bn -*• A as follows: if
x e Bn and x = zn,k for a suitable k, then for m > max{n, k} we have

- <Pm<Pm-l ...(Pn(x)e V-Set of Bm+\.

It follows that

Ufa . - \)<Pm-X<Pm-l • ..<Pn(x)\\ < 2 - m | | V m _ , . . .(pn(x)\\ = 2-m\\x\\

for m > max{n, k}. Thus m -*• <pm<pm-\... (pn(x) is a Cauchy sequence in A. Let /?„(*)
be its limit. As \\(pm ...(pn(x)\\ = ||x|| for all n, we have that r)n is an isometry of the
'-algebra {Zn,;}^! over the rational complex numbers, and it is clear by limiting that r)n

is a *-morphism. We now extend r\n to Bn by continuity.
It is clear from the definition that

1n+l<Pn = In (2.23)

and hence we may consistently define an isometric *-morphism

by
=1n- (2.24)

Then rj extends by continuity to an injection of B into A, and

r\a' = err).

Furthermore, t) is surjective by the following reasoning. If x € A, then x lies in the
closure of the set {*/,}$£.!• Hence, for any e > 0 there is a natural number n such that

\\x-xn\\<e/3.

Now choose m > n so that 2~m+1 < e/3. There exists a y in the y-set of Bm such that

But as

IIVm(y)-)'ll<2-m

\\(pm+i<Pm(y) - <Pm(y)\\ <2-m-1

etc, we have
lh«(y)-y||<2-m

But t)m(y) = r)(<p(y)) and hence

Since ||JC — y\\ < | e , and e was arbitrary, it follows that x is contained in the closure of
the range of r/. But this range is closed, so r\ is surjective.

We have proved that the C*-dynamical systems (A,a) and (B,cr) are isomorphic,
and this ends the proof of Theorem 2.1.
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COROLLARY 2.4. Let SI be a totally disconnected compact metrizable space, and let a be
a minimal homeomorphism on £2. Let a be a homeomorphism of order 2 on Si such that

aa = era"1 (2.25)

and assume that a or aa has a fixed point. It follows that C(Q) x a Z xa In contains
an increasing sequence ofunital subalgebras Bn with dense union, such that each Bn has
the form

Bo © Mni © Mni © . . . e MHN (2.26)

where

Bo = {xeC(I,M4no):Ex(-l)=x(-l)E and Ex(l) = x(l)E). (2.27)

Here / = [—1, 1] is the unit interval, £ is a projection in M^ of dimension 2no, and
C(/, Min0) denotes the C*-algebra of continuous functions from / into M\nQ.

Proof. As mentioned after (1.2) we may for the purposes of this corollary assume that aa
has a fixed point, and hence, by Theorems 1.1 and 2.1, it suffices to prove that the crossed
product of an algebra of the form (1.4) by an automorphism a of order 2 satisfying the
conditions in Theorem 1.1 has the form (2.26). But if a is an automorphism of order 2
of any C* -algebra B then

where
B" = {xeB: a(x) = x) (2.29)

and
B"(-l) = {x e B : a(x) = -x} (2.30)

see e.g. [BEEK2,(4.3)]. From this it is easy to see that if a flips two summands MJk

and MJt, with Jk = Jt, this gives rise to a summand M2jt in the crossed product, and
if a leaves a summand Mjt invariant, this gives rise to a summand Mjk © MJk in the
crossed product. Finally, the crossed product of My, <8> C(T) by a has the form (2.27)
with 2no = Ju see e.g. [BEEK1], [BE1].

3. The AF-algebra
In this section we shall prove that C(Q) xa Z x o Z2 is an AF-algebra. We start with:

LEMMA 3.1 ([EU]). The algebra C(fi) x o Z has real rank zero.

Proof. This is referred to before the statement of Theorem 4.3 in [Ell]. By [Putl,
Corollary 5, p 345] there is a canonical one-one correspondence between tracial states
on C(ft) x o Z and or-invariant probability measures on Q. Since Q is totally disconnected,
the projections in C(S2) separate all probability measures on Q, and hence projections in
C(Q) x o Z separate the trace states on C(Ci) xa Z. Hence, by Theorem 1.3 of [BBEK],
or Theorem 2 of [BDR], together with Theorem 2.1, C(fi) x a Z has real rank zero.
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Now, let

be a definite increasing sequence of unital C*-subalgebras of C(Q) x o Z such that \Jk Bk
is dense, and such that the restriction of a to Bk has the form indicated in Theorem 2.1.
Let

Bk = Bk,o ®Mndk)®...® MnNt (k) (3.2)

be the corresponding sequence growing to C(Q) xa Z x a Z2, Corollary 2.4.
For k < I given, if z e T, then z defines an irreducible representation of

Bt = [MM0 <g> C(T)] ® Mh{k) ® . . .

by evaluation. The restriction of this representation to the first summand Bk,o == M
C(T) of fit decomposes into a certain number [£ : A;] of irreducible representations of
Bk,o< given by evaluation at [I : k] points Zi(z),...,Z[i-.k](z), where the number [I : k]
is independent of z, and the mapping <j>k,i '• T -*• S[t:k]T, which to z assigns the image
of (zi(z), • • •, Z[t.k](z)) in the [I: A;]-fold symmetric product 5[<:*]T of T, is continuous,
[DNNP], [BE2]. Here S[l:k]T = Tli:k]/ ^ [ / : t ] where the symmetric group on [I : A:]
elements acts on T[<;i) permuting the coordinates.

Note that as a acts on 1 ® C(T) by flipping the circle, whether in Bk or Bt, and the
morphism of Afi,^) ® C(T) into Afi,(<) ® C(T) intertwines a, we have

(3-3)

where the conjugation in T^:*'/5Z[€tj ' s coordinatewise.
Note that as St and Bt are finite-dimensional apart from the first summand and the

embedding of Bk and Bt is injective, the embedding of Bk,o into Bt,o is non-zero, and
hence [t: k] > 1 and the embedding is injective.

Now, by [BBEK, Theorem 1.3], the algebra C(Q) x a Z has small eigenvalue-variation
since it has real rank zero. By the characterization of small eigenvalue variation given
in [BE2], this means that C(£2) x a Z has small metric variation, i.e.

LEMMA 3.2. For any k and any e there exists an L such that if I > L, then the
diameter of the range of tpk.i in Slt:k]T is less than e. (The metric on 5"T is defined
by d(z, y) - inft6S/isup,<tSncf(zi, y r W ) /o r z = (z\ z n ) , y = (yi,..., yn)-)

We now embed each Bk into Bk. By (2.88)

B°k(-\) Bl

and by [BEEK2, (4.1)] the concrete embedding of Bk into Bk is given by

where P± = i ( l ±0).
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The embeddings 0 of B*,o into Bk,o can be described analogously. For our purposes,
it is convenient to describe the embedding more concretely as follows. An element
/ e Bk,a is then mapped into the function

, € [ _ i ^ ( / C + 'vT^) o \

while all of B*,o can be characterised as the set of functions

,€[_!,!] _>(««;') Suit))

(0 1\
which commute with the self-adjoint unitary I I at the points —1 and 1. This is

consistent with Corollary 2.4 which states that the spectrum 7 of Bk,o consists of the
open interval (—1,1) together with two limit points at —1 and two limit points at + 1 .
We may define a set-valued map 6 : f -*• T dual to 6 (analogously to 4>k,i dual to <pk,i)
by requiring that the point t e ( - 1 , 1) is mapped into the two points t ± iVl - 1 2 e T,
and the two points at —1 are both mapped into —1, and the two at +1 into + 1 . For our
purposes it is better to view § as a map from / into T by 9(t) — t ± iVl — t1.

If \lrk,i denotes the embedding Bkto '-*• Bi,o> then the dual \ftk,i maps / into subsets
of / . But since the diagram

(3.7)

commutes, the diagram

Bk,o
4, <j,kt

Bio

T

T fax

T

-*• Bkfi

4-0*.!
ff

z£z T

<̂ -

e

3

§

Bk,o

i fk.t

Bio

I

/
(3.8)

properly interpreted, commutes. A little consideration of the four particular subcases
that ^k,t maps some endpoint, respectively interior point of / into some end-point,
respectively interior point of / , show that $rttt can be lifted to a map / -*• I by merging
the two points at —1, resp.+l, whenever they occur, and then jfr^t maps any point of /
into a set of cardinality [I : k] in / . The set ^k,e(x) 1S tnen nothing but the spectrum
of the image of the function z -*• Rez in Bk,o over the point x in the spectrum Bt$
(when the end-points are merged). Hence, by Lemma 3.2, or directly by small eigenvalue
variation of this element, we obtain

LEMMA 3.3. For any k and any s there exists an L such that if I > L, then the diameter
of the range ofxffk.i in 51/:*'/ is less than e.

If we order the points k\(t), A.2(f),..., A.|W](0 in fkit{t) in increasing order, then
the condition in Lemma 3.3 can be expressed as
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for k — 1, ...,[£: k] and all pairs t,s e [ -1,1] , see [CE]. The functions t -*• kk(t) are
continuous, and if x e Bk,o is arbitrary its image ^rk,i{x) in Bio, evaluated at t € [—1,1],
is unitarily equivalent to the matrix

(3.9)

More precisely, this matrix should also have some more zeros on the diagonal coming
from the embedding of the other matrix summands of Bk into Bt,o, but we leave the
minor extra complications due to this to the reader.

Note that the unitary u(t) such that

Wk,tx)(t) = u(t)P(x)(t)u(ty (3.10)

can be taken to be independent of x, but it cannot in general be taken to depend
continuously on t at points where some of the eigenvalues X.\(x),..., A.[/:t](jc) coincide.
However, if Bkfi and Bi0 had been the full homogeneous algebras C(/ , M2j,(k)) and
C(I, M2j^i)) it was proved in [Tho, Theorem 3.1] that there exists a sequence un of
continuous unitary-valued maps such that

+ 0 O
un(t)p(x)(t)un(tr, (3.11)

uniformly in t for each x € C(I, M2j,{k))- In our case, we have the extra complication
with the two end-points of / . For example, y/r^i is not necessarily extendable to
a morphism of C(/ , MIMQ) into C(/ , M2J,(Q). For example, if Bkfi = [x e
C(/, M2)l*i2(-U = *2i( - l ) = *12(D = Jt2i(D = 0}, Bt,o = Bk,o and

where <p is a continuous function from (—1,1) into T, then V*,* is a morphism, but ^ <
is non-extendable if <p is not extendable to a continuous function on [—1, 1]. However,
Vot,* can be approximated strongly by extendable morphisms by replacing <p by, say, <pn

where

I ^ K - l + n - 1 ) if — l < r < - l + / r '

<p(f) if-l+n-' <t < l-n~l

(p{\-n-x) if 1 - « - ' < f < 1.
Employing this device systematically, and using Thomsen's theorem, we can also prove
(3.11) in our case. Moreover, since U{2J\(l)) is a compact group, we may assume that
u n ( - l ) and wn(+l) converge as n -*• co, and then, modifying un(t) near ± 1 , we may
assume that «„(—1) and un(+l) are independent of n. This is a plausibility argument
of:

LEMMA 3.4. There exists a sequence un of continuous U(2J](£))-valued maps such that

ifkAxKO = Hm uH(t)P(x)(t)uH(ty (3.12)
n » o o
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for all x e Bk0, where the convergence is uniform in t for each x, and such that

«n(- l) = M(-l), «B(+1) = «(+l) (3.13)

are both independent ofn.

Proof. We write Bk<0 = MJl(k) ® Ao where

Ao = {/ e C(/) ® M2 : / ( ± 1 ) e D2} (3.14)

and where D2 are the diagonal matrices of M2. The relative commutant of the image
of MMk) in C(/) ® A/ylW <g> A/2 is again of this form. This allows us to reduce to
the case Jx(k) = 1; we assume that * M = <p where y is a unital embedding of Ao in
C(I) ® Mm ® M2, and that d i r n d l <8> e,,)(0 = m for any t e I. In other words we
assume that n, o <p has e l , and E2_X (respectively e\ and e?) with the same multiplicity,
where n, : C(I) ® Mm® M2-* Mm® M2 is the evaluation at t e / , and el

±l : Ao -*• C
is defined by e^,( / ) = / ( ± 1 ) H .

First of all there is a unitary u e C(I) <g> Mm ® M2 such that

AdM o <p(\ ® gH) = 1 <g> 1 ® eit. (3.15)

TVvetc \s a max\ma\ Abe\\an subalgebta Q oi CU) ® Mm such that

Ad u o <p(C(/) ® Cf,) c C,«» en. (3.16)

Mm

Ad vu o (C(/) ® e,-i) C C(/) ®Dk® eu, (3.17)

where Dm are the diagonal matrices of Mm. Now take Ad vu o ^ for >̂.
Let A.,(/), / = 1 , . . . , m be continuous functions on / such that A.,(r) < A.,+I(0 and

n,<p ~ ®,£x,(r) where e* is the evaluation map of Ao at X. Note that U,{A. € 'K ' €

/ : |A,,-(0| = A.}0 ^ 0} is countable. We choose a sufficiently small 5 > 0 such that
{t e I : |A.,(r)| = 1 — 5} has no interior points for any i.

Define
M(0 = n, o

E-X(t) =n,o(p(xi-i,-i+s) ® e22) = £ - i ( ) ® 12
(3.1°)

E0(t) =n,o <p(xi-\+s,\-s] ® e22) = E0(t) ® e22

E\{t) = n,o ^(X(i-j,i) ® e22) = E\(t) ® e22

and similarly define F_i, Fo, F\ like E, with e n in place of e22. (The definition makes
sense by approximating the characteristic functions by continuous functions.) Here u(t)
is a partial isometry of Mk such that «(0*«(0 = ^o(0. «(0«(0* = ^b(0 and E, F are
projections of Mk such that £_i(0 + E0(t) + Ex(t) = 1, etc. .

Note that «(r), Et(t)F*(t) are continuous on fj/U e /|A,(f)[ ^ 1-8], which is
a dense open subset of / . For any t0 e I such that u(t) is not continuous at to, we
may choose 0 < 8' < S and construct w' = «, / ' etc, as above such that u'(t) etc, are
continuous at fo- Then u'(t) is an extension of u(t), i.e. u'(t)Eo(t) = u(t). Thus it
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easily follows that for each s e I, there is an interval (s — Ss, s + Ss) such that there is
a continuous function M.V on (s — Ss, s + Ss) D / into the unitaries of Af* such that

us(t)E0(t) = u(t)

H , ( O £ - I ( O M O * = F_,(0 (3.19)

u,(t)Edt)u,(t)# =

Since / is compact, there is a finite number of points s\ < . . . < sn such that

IJJCSJ — 8Sl,si + 8Si) 3 / and each s, has a uSl as above. To find a unitary v in

C(I) <g> Aft such that

v(t)E0(t) = u(t), v(t)E^(t)v(t)* = F_i(r). w(O£i(Ow(O* = ^i(O (3-20)

we have to connect u(1) = MJ( on {a\,b\) = (si — SSj,Si + SSi) and w(2) = ttJ|+i on
(02,^2) = (Si+i — SSi+\,si+i — SJ(+i) into one v on (01,^2). keeping the condition
(3.20). Since u, E, F are continuous on a dense open subset of / , there is an interval
[c,d] C (a2,bi) such that they are continuous on [c, d]. Then it is easy to find a
continuous w on [c, d] such that

w(t)E0(t) = M(r) (3.21)

Adw(t)(E±1)(t) = F±l(t).

Thus we obtain a v combining «( 1 ) , w, «(2) as desired.

By using v satisfying (3.20), we define a map q>& of C(I) ® Mi into C ( / ) ® A/* <8> Â 2

by

v ® en (3.22)

= <p(f ® e u ) + v* ® e 2 i9( / <g> eu)v ® c,2.

Since <p$(C.(I) ® 1) commutes with ^ ( 1 ® e,;), the map ^ actually defines a
homeomorphism. It is injective since <p is injective. We claim that if x e Ao is constant
on an open neighbourhood of [—1, — 1 + S] U [1 — S, 1], it follows that <ps(x) = <p(x).
First for x = f ® e,; with supp / c [— 1 + 8, 1 — &], the equality follows. For example,
if <p(f ® 1) = a ® e\\ + b ® e22 with a,b e C(I) ® Dm, then

= an ® C12

= ub ® ei2. (3.23>

Thus 6 = «*aw and so'

= v*av ®e22 —

= <p(f®e22). (3.24)
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(M is not in C(/) ® Mm but it behaves as a multiplier for a, b.) Next let x = f ® 2̂2
be such that f(t) = / ( - I ) for r e [ - 1 , - 1 + <5'] with 8' > 8 and supp / c [-1,1 - 8].
(We should also consider / <g> e\\, for this / , and similar elements concentrated at +1.)

For each t0 e / , we find 8" e (8,8') such that |A.,(fo)| ± 1 - 8", and the u", £", F"
constructed for 8" in place of 8 are continuous at fo- Then it easily follows that

<P(f ® ^22) = F", («b) ® e22 + nt0 o <p(g ® e22)

where g e C(/) satisfies suppg c [—1 + 8,1 —8]. (Express / as the sum of ( / — g)
and g such that / — g behaves like the characteristic function of [—1, —1 +8"].) Then

nto ° <P(g ® ^22)

(3.26)

where vOb)Fl',(foMfo) = £"i(«b) since 5" > 8.
The other cases can be treated similarly. This implies that <ps(x) -*• <p(x) for x e Ao

as 5 4 0. This ends the proof of Lemma 3.4.

We are now ready to prove

THEOREM 3.5. Let SI be a totally disconnected compact metrizable space, and let a be a
minimal homeomorphism ofQ. Let a be a homeomorphism of order 2 on Si such that

ao = aa~x (3.27)

and assume that a or aa has a fixed point.
It follows that C(Q) x a Z xCT Z2 is an AF algebra.

Proof. By [Bra, Theorem 2.2] and Corollary 2.4 it suffices to show that if s > 0 and
x\,...,xm € Bk0, then there exists a t > k and a finite-dimensional subalgebra FQ of
Bio such that the distance between each of the elements ijrk,i(Xi), i = 1 , . . . , m, and Fo
is less than e.

For this we first use Lemma 3.3 to choose £ so large that

\\P(x,)(t)-fi(.x,Ks)\\<e/3 (3.28)

for 1 = 1 , . . . , m, t, s e [—1,1], where p is defined by (3.9). Next we use Lemma 3.4
to choose n so large that

«/3 (3-29)

for i = 1 , . . . , m, t e [—1,1]. Now let

A = u*BkiOun (3.30)

i.e. the elements in A are continuous functions from / into Af27, (£> of the form

t -> un(t)*x(t)un(t), (3.31)
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where x e B«,o. Thus

A =

and[*(+l), « = 0}, (3.32)

where E is the projection defined in Corollary 2.4 (for n = i). In particular, since
«„(—!) = M(— 1) and «„(+!) = K ( + 1 ) are independent of n, we have

P(Bk,o) c A. (3.33)

Let D_i, resp. D+i, be the finite-dimensional (actually 2-dimensional) abelian subalgebra
of M2jx(k) generated by the projection E of Corollary 2.4 for n = k. (Of course,
D_i = D+\, but we view D ± ) as 'sitting over' the points ±1 in / , respectively.)
Let C_i, respectively C+\, be the Abelian algebra generated by «(—1)*£«(—1), resp.
M(1)*£M(1), where E now is the E for n = I. Thus

A = {x e C(I,M2Mt)Y,x(-l) e CL,,x(+l) e c;,}.

Define integers n_, n+, m_, m+ > 0 by

(3.34)

and

= X 2 ( D = .. . =

N = max{n_, m_}, A / = max{n+, m+}.
and

Let

Then, from (3.33) and (3.34),
C_, c fi_!

and from the definition of /8 on Bk.o, #-i has the form

I -1 ••• - i

B-i =

scalars or
scalar matrices
down diagonal

n+

(3.35)

(3.36)

(3.37)

(3.38)

(3.39)

(3.40)
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scalars
along

diagonal
(3.41)

is a maximal abelian algebra in B_i, and we can find a unitary V_i e £_i such that

V_iC_,V*i C F _ , . (3.42)

Now, repeat all this at +1 instead of - 1 , and find a unitary V+i e B+i = /5(fijt,o)(+l)'f~l
such that

; , C F + i . (3.43)

Finally, define the finite-dimensional subalgebra F of M2jt(t) by

F =

D'+i

D'
N M

+i

(3.44)

Then F commutes with both F_! and F+ 1, in fact F = F l , n F | , . Let V(t), - 1 < t < 1,
be a continuous family of unitaries such that

V(t) e B-x for - 1 < t < 0

V(0) = 1

e B+x for 0 < f < 1 (3.45)

For any of the ^, 's , define

Zi =
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MD

Ml)
N *?

(3.46)
Then the z;'s all lie in the finite-dimensional C* -algebra F. Defining

then V*nV all lis in the finite-dimensional algebra V*FV, and the latter algebra is
contained in A by (3.42) and (3.43).

We now argue that
\\P(Xi)-V*ZiV\\<2e/3 (3.47)

i.e. that

)* - zi\\ < 2e/3 (3.48)

for all t. But 0 (x , ) ( - l ) e B'_X and V(t) e B_i for - 1 < t < 0, hence by (3.28),

(

(3.49)

for - 1 < f < 0 . Similarly

II V(r)^(x,)(0V(0* - 0(*»)(+OII < e/3 (3.50)

for 0 < f < 1. But

Xi(-l)

*».+! (-D)

(3.51)
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Comparing this with (3.46), and using (3.28) (which implies that the variation of Xi(kk(t))
with t is at most e/3), it follows that

x,)(-l) - z,\\ < e/3, (3.52)

and similarly
\\fi(x,)(+l)-zi\\<e/3. (3.53)

Combining this with (3.49) and (3.50), we obtain (3.48) and hence (3.47).
Finally

where the last equality follows from (3.30). Combining (3.47) with (3.29) we have

iW < 2e/3 + e/3 = e.

Thus yj/k,ti.Xi) all lie within s of the finite-dimensional subalgebra un V*FV«* of Bt<0-
Thus, by the first remark of the proof, C(Q) x a Z xCT Z2 is AF.

4. K -theory
In this section we shall compute Ko(C(£2) x a Z x^ Z2) (as an abelian group) in the case
that a and aa have at most a finite number of fixed points. (The computation is valid
even when a and aa have no fixed points, i.e. outside the range of validity of Theorem
3.5.)

The starting point is that
K0(C(Q))=C(Q,Z) (4.1)

since Q is totally disconnected. The actions a»,<x, defined by a, a on Ko(C(Q)) are
given by

1©), (a./)(a>) = f(qw) (4.2)

for / e C(£2, Z), a t g Q . Now, by the Pimsner-Voiculescu exact sequence, [PV, Bla],
the following sequence is exact

0-> Z-+C(Q,Z)1^>r'C(Q,Z)4. K0(C(Q) xa Z) -» 0, (4.3)

where i maps Z into the constant functions and j : C(Q) ->• C(Q) xa Z is the natural
embedding. It follows that

xa Z) £ C(fi, Z)/(l - a,)(C({2, Z)) (4.4)

and a, acts naturally on the latter group.
(Note that (1 - a*)(C(fi, Z)) = CT.((1 - a,)(C(fi, Z))) since

a,((l - a,)(C(Q, Z))) = (1 - CI?)(<T,(C(Q, Z)))

= (a, - l)(a,-V,(C(fi, Z))) = (1 - o.)(C(n. Z)).) - .

We first state a general theorem, and later, in Corollary 4.4, consider the special case
that £2 = T0, where 9 is irrational and Tg is the circle cut up at all the points of the orbit
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THEOREM 4.1. Let Q be a totally disconnected compact metrizable space and let a be a
minimal homeomorphism of £2. Let a be a homeomorphism of order 2 on SI such that
aa = aa~\ and assume that a and aa has at most a finite number na and naa of fixed
points.

It follows that K0(C(£l) xa Z xa Z2) is isomorphic to

, Z))) 9 P ' + " " . (4.5)

Let Z2 * Z2 be the free group product, with generators 1*0 and 0*1. Define an action
y of la* Z2 on C(Q) by yuo = a and Yo*v — <*&• Then it follows from [Kum2] that
C(Q) xa Z xa Z2 is naturally isomorphic to C(ft) xy Z2 * Z2.

LEMMA 4.2. The following sequence is exact:

0 - • KoiCQO))ix'^' K0(C(n) xa Z2) © K0(C(Q) xaa Za)
J"-^2' K0(C(a) xa Z xa la) -+ 0, (4.6)

wherei] : C{Q.) ->• C(£2)xaZ2, j \ • C(£l)xaZ2 -> C(Q)xyZ2*Z2 ~ C(Q.)xaZxaZ2,
etc, are natural embeddings.

Proof. See [Nat] and [Kum2]. The injectivity of /1* —1'2» follows from minimality of a.
We now identify K0(C(£l)) with C(fl; Z). Let *i, JC2 xn<, be the fixed points of

a. Then C(Q) xa Z2 is isomorphic to

f} (4.7)

where u=( l \ . Thus it follows that K0(C(Q) xa Z) is identified with

Ga = {(/, a, b) e C(O, Z) © Z"- © Zn" : a ( / ) = / , /(x,) = « ,+* , , i = 1, . . . ,«„}
(4.8)

and under this identification, the map i u : C(fi, Z) - • GCT is given by

iu(h) = (h + a(h)) © (e£,*(xi)) © (e^,A(*j)). (4.9)

Similarly, using the fixed points y i , . . . , ^ , , of aa, we define Gaa and describe

From now, identify Jeo(C(fi) x a Z) with C(O, Z)/(l - a , ) ( C ( n , Z)) as in (4.4). We
define a map 0 : Ga © Ga(T -*• A:0(C(S2) xtt Z) © Z"» © Z""" as follows:

(a - *) 0 (c - </). (4.10)

It is obvious that./»(/) + j*(g) are ff»-invariant. We assert:

LEMMA 4.3. The sequence

C(O, Z) "*-22' Gff © Gaff 4- AT0(C(n) x a Z) © Zn° © Z"" (4.11)

w exact at Gn ffi GOa.
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Proof. It is obvious that ft o (iu — i2t) = 0. We only have to show that Im
(ii*-J2*) 3 Ker/S. Suppose that £( ( / , a, b)®(g, c, d)) = 0. Then Mf+g) = 0,a = b,
c = d and /(*,-) = 2a,- and g(yj) = 2CJ are even. By (4.3) there exists <p e
such that

Note that
/ + a(g) = o-(<p) - aa(cp), a(f) + g = aa(cp) - a{cp)

and that
/ - a ( / ) = <p - a(<p) - ao(<p) + cr((p)

g-v(g)=<p-a((p)-a(<p)

By computation it follows that

/ - o{<p) -<p- a(f - a(<p) -<p) = 0,

g + a(<p) + a((p) -a~\g + o((p) + a(<p)) = g + a(<p) + a{cp) - a(g + o((p) + a(<p)) = 0

since a""1 = a2a~l = a octa and g + a(<p) + a(<p) is aa -invariant. Thus

f -a(<p)-(p=Xl, g + a(<p)+a(<p) = nl

for some constants A., fi. Since

it follows that X + n = 0. Since /(x,) is even, A. = f(x-,) — 2<p(xi) is even. Let
h = a((p) + I*. Then h e C(fi, Z) and

f = h + a(h), -g = h + aa(h).

Thus it follows that (iu - i2*)(h) = (/, a, b) © (g, c, d).

To conclude the proof of Theorem 4.1 it suffices to show that

~ (1 + o-t)K0(C(S2) x Z) © Z"" © Z""".

Let {£,} be a mutually disjoint family of a -invariant clopen sets of ft such that £, 3 xt,
and [Fj] a mutually disjoint family of aa-invariant clopen sets of Si such that Fj B y-j.
We assert that the image of 0 is generated by

Ks(l+ a,)K0(.C(a) x a Z) © 0 © 0

j*XEt ® &i © 0, i = 1 , . . . , na

, j = \ naa,

where {5,} (resp. {yj}) is a canonical basis for TT- (respectively IT"). It is obvious that
they are contained in Im fi and that the latter nn + naa elements generate the subgroup
H, which is isomorphic to IT" © Z"«». It is also obvious that H C\ K = {0}. We now
conclude the proof by showing that H + K
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Let (/, a, b) e Ga and (g, c, d) e Gaa. Let

d(b-a)@OeG0x = U ( J^(bi - O,)XEA

Then >8(JC 0 y) e H and

where

<P\= f

Let

Since ^ i t e ) = 0 and a{\fr{) = î i (respectively ^2(37) = 0 and "^(^2) = ^2). it easily
follows that there is an element yjr[ (resp. ^2) m ^ ( ^ . Z) such that

i/fi = ^{ + or(^J) (respectively f 2 = ^2 +

Letting

<P\ = t\ + Yl biXE> (respective^ <P'T. = ^2 + EdjXFj)

one obtains that <p\ =<p\+ cr(<p[), and ^ = 9>2 + <x<r(<P2) f° r <Pi< <Pi e C(£2, Z). Hence

which imples that j,(<p\ + <pi) © 0 © 0 e K. This completes the proof of Theorem 4.1.

We next consider a special case of Theorem 4.1. Let 6 be an irrational number between
0 and 5 and let Te be the totally disconnected space obtained from T = R/Z ~ [0,1)
by replacing each xn = n6 + Z by two points JC+, x~ for n € Z, with topology induced
from the total order on Tg, inheriting the order on T, satisfying x~ < x+, n e Z. Define
a homeomorphism a of Te by

and a a by
a(x) = 1 -* (modZ) ,

n e

Note that aa has a fixed point, i.e. a(\Q) = \0 and that a is minimal. From the
previous sections it follows that C(Tg) xa Z xa lq is AF.
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COROLLARY 4.4. For Te, a, a as above,
(i) K0(C(Te) xa Z) ~ Z2

(ii) Jfo(C(T») x a Z x a Z2) ^ Z5.

Proo/ By Theorem 2.1 of [Putl], (i) follows since a"1 defines an interval exchange
transformation on [0,1), exchanging [0,9) and [6,1). Since a has one fixed point and
aa has two, (ii) follows since a* is the identity on K0(C(Q) xa Z).
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