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1. Introduction

When considering an action « of a compact group G on a C*-algebra A, the notion
of an a-invariant Hilbert space in A has proved extremely useful [1, 4, 8, 14, 17,
18]. Following Roberts [13] a Hilbert space in (a unital algebra) A is a closed
subspace H of A such that x*y is a scalar for all x, y in H. For example if G is
abelian, and « is ergodic in the sense that the fixed point algebra A“ is trivial, then
A is generated as a Banach space by a unitary in each of the spectral subspaces

A%(y)={xe A: a,(x)=(g, V)x,gc G}, veG,

which are then invariant one dimensional Hilbert spaces. If G is not abelian, then
Hilbert spaces (which are always assumed to be invariant) do not necessarily exist,
even for ergodic actions. For non-ergodic actions, it is also desirable to relax the
requirement to x*y being a constant multiple of some positive element of A%. More
generally, if y is a finite dimensional matrix representation of G and n is a positive
integer, we define A;(¥) to be the subspace

{(xe AOM,;: (0, ®1)x =x(1Q7,), ge G},

where d is the dimension d(y) of vy, and M,,; denotes nXxd complex matrices.
(Usually we will denote the extended action of a, to a,®1 on A® M, again by
a,.) Let A%(y)={xi:(x)e AT(¥)}.

If x, ye A5(y), then xy*e A*® M, but x*y is not necessarily in A*® M, even
for ergodic actions. For ergodic actions, the situation of full multiplicity, where
there exists a unitary in Aj(vy), has been studied by Wasserman [18]. Techniques
exist for handling C*-dynamical systems, where Hilbert spaces exist in this sense,
or at least when there is one non-zero x in A;(y) for some n, and ye G, such that
x*x =1 or more generally x*xe A“®1, [3, 8]. (If such x exists, the space spanned
by the d column vectors of x is a Hilbert space.) Note also that Araki et al. {1, 17]
avoided such difficulties for von Neumann algebras, by stabilising for example.

* Current address: Department of Mathematics and Computer Science, University College of Swansea,
Singleton Park, Swansea, SA2 8PP, Wales. T

+ Science and Engineering Research Council Senior Visiting Fellow.

t Permanent address: Department of Mathematics, College of General Education, Tohoku University,
Sendai, Japan.


http://journals.cambridge.org

174 D. E. Evans and A. Kishimoto

Our first result, namely theorem 2.1 can be regarded as a technique for generating
Hilbert spaces. Let a be an action of a compact group G on a separable C*-algebra
A, for which there exists an a-invariant pure state w with GNS triple (7, H, Q). If
H"(vy) are spectral-sybspaces for the induced action u of G on H, p the restriction
of 7 to A% we let J¢ = J, denote the ideal ker (p|H“(y)), if ye G. Then we show
in § 2 that for any be A*\J, there exists x € bA3(y) such that x*xe (A"\J,)®1,
where « denotes the trivial representation. In [8], a I'-spectrum was introduced
which was useful in obtaining a covariant version of Glimm’s theorem on non-type
I C*-algebras. In theorem 2.5, we characterise such a I'-spectrum in terms of the
kernels {J,: ye G}. More precisely, if there exists a pure invariant state w as before,
let I', denote

{ye G: Vb, ce A°\J,Ixec bAS(y)c, suchthat x*xe A“\J®1,).
If in addition to A being separable, A*/J; has no minimal projections, then
I,={yeG:J cJ}
This could be used to compute the ['-spectrum in certain situations, e.g. for product
type actions on UHF algebras (cf. [8, proposition 4.1]).

Versions of Tannaka duality in an operator algebraic context have been obtained
in [1, 17, 10, 15, 2]. Suppose o is an automorphism of a von Neumann algebra M,
on which there is an action @ of a compact group G such that | M® = id. Then it
is shown in [1, 17] that if there exists an action 7 of a group H which commutes
with «, and is ergodic in the sense that the fixed point algebra M7 is trivial, then
there exists g € G such that o = «(g). In particular, if M n (M *)' = C, then we could
take 7 to be the action of the unitary group of M* by inner automorphisms. In [10,
15, 2] C*-versions of Tannaka duality have been obtained for an automorphism o
of a C*-algebra A, which is trivial on the fixed point algebra A* of an action a of
a compact group G. If @ commutes with an action 7 which is ergodic in the sense
of being topologically transitive [10] when G is abelian, or strongly topologically
transitive [2] when G is not necessarily abelian, then there exists g€ G such that
o=a(g). In § 3 and § 4 we prove versions of Tannaka duality in C*-settings, partly
through exploiting the techniques of § 2 in manufacturing Hilbert spaces. Suppose
a is an action of a compact group G on a C*-algebra A, and o an automorphism
of A such that UIA" = id. Then we show that there exists g € G such that o= a(g)
in each of the following situations:

(a) (TueoreM 3.1). A is separable and simple. There is a non-empty family P of
a-invariant pure states such that if Jp =m‘pel, J¢, A%/ Jp contains no minimal projec-
tions and forally € G, b, c € A*\J,, there exists x € bA} (y)csuch that x*x € A*\J,®1.

(b) (TueoreM 3.4). There exists a faithful irreducible representation = of A such that
7(A)" = m(A")"

(c) (THEOREM 4.1). G is abelian, A is simple, A° is prime, and M(A)~(A")' =C1.

Note that under the hypotheses of theorem 3.4, the unitary group of M(A”) acts
strongly topologically transitive on A, and so theorem 3.4 could be deduced from
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[2]; (see [5]). However the interest in our proof is that we actually manufacture
Hilbert spaces (see lemma 3.7).

The C*-algebras studied in this paper are inherently non-type I. In [§] a systematic
study is made for abelian group actions of the relations between the covariant
version of Glimm’s theorem in [8], the existence of pure invariant states in (a), its
antithesis, namely the existence of highly non-covariant representations in (b),
topological transitivity of the unitary group of M(A”) in (c), and duality.

2

THEOREM 2.1. Let a be an action of a compact group G on a separable C*-algebra

A. Suppose there exists an a-invariant pure state o of A, and define a unitary

representation u of G on #,, by u,m,(x)82, = m, © a,(x)Q,,, x€ A. Denote by p the

restriction of m,, to A®, and P, the spectral projection of u corresponding to y € G, and

let J,=ker (p|P,%,). Then for any be A*\J,, there exists x € bA5(y) such that
x*xe AN\J ®1,

where « denotes the trivial representation of G, and d = dim ().

LEMMA 2.2. Let b€ A®\J,, and B be the hereditary C*-subalgebra of A® M, generated
by {x*x: x€ bAT(y)}. Then BN (A*®Cl)z J.

Proof. We identifyae A with a®1 in AQM,. Then A7(y)A® < A¥(v), and so
A“BA”* c B.
If p is the open projection of (A® M, )** corresponding to B, then
S ={¢: pure state of AQM,, ¢(p)=0}

is the set of pure states ¢ of A® M, such that ¢|B =0. Hence B, coincides with

{(xe (AQM,),: ¢(x)=0, for all ¢ € S}, (*)
for if x e the set (*), then y[(1—=p)x(1—p)]=0 for all states ¢ on A® My, and so
x(1-p)=0, and x=pxpc (AQ M,) N p(A® M,;)**p = B. Define

I=() Ker Tyla®,

peS
which is an ideal of A% If xeI,, then ¢(x)=0forall o€ S, and so x€ B,i.e. Ic B,
Conversely, if xe B A% then axa'e Bn A%, for a,a'€ A”, and so ¢(axa’} =0 for
all ¢ € S. Hence x € Ker 7,4+, i.e. x€ 1. Thus I= B~ A® Suppose I< J,. Then w | A®
can be regarded as a state of (D, cs m(oja=))(A%). Since w|A* is pure, it is a
weak*-limit of some net ¢, of vector states of (P, Tglany(A%) on P s Hiyiax),
[9]. For each v, there exist £ € [m,(A*)Q,]” such that ¥ __¢ [£7]]*=1, and

¢.(a)= ZS<%(¢1)§T, £, acA*(=A°®1).

Define a state ¢, on A® M, by
e (x)= T (m,(NEL £, xeABM,. T
peS .

Since for x€ B and a € A®, a*x*xa € B, one has 7 (x)m(a)Q, =0, for any ¢ € S.
Hence 7, (x)¢% =0, for xe B, and so ¢, | B =0. Let ¢ be a weak*-limit point of {¢,}.

nup://journas.camoriage.org Downioaded: 25 Feb 2014 IP aqdress; 131.251.254.13
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Then ¢| A% = w|A®, and ¢|B=0. Hence = [ (¢/| A) ° a, dg, and since o is pure,
we must have w = | A. Hence there exists a state f of M, such that o ® f = ¢, [16].
Now we show that (w®f)| B#0, a contradiction.

Since bb*e A”\J, there are pbsitive continuous functions h,, h, on R such
that  h,(0)=hy(0)=0, hh,=h,, and h,(bb*), h,(bb*)e A*\J,. Since V=
[7.,(h,(bb*))P,%,] is a non-zero u-invariant subspace of P,%,,, there exists a set
(&, ..., &) of unit vectors such that &€ V and

d
uggi = _; Yii(g)gi-

By Kadison’s transitivity theorem, there is an x,€ A such that | x| =1, 7, (x,)Q,, =
&, T (x¥)&=Q, and 7, (x¥)& =0, for i=2,...,d, since (Q,,&,...,&) is an
orthonormal family. Define

x=d J Y1(g)ag(x,) dg.
Then x=(x;,...,x5)€ Af(y), and
T (5)Qu =&, w(xF)E=6,Q,.
Since =, (h,(bb*))¢& = ¢, for i=1,..., d, this implies that
7, (xFh (bb*)’x)Q,, = 8,0,

Thus since y = h,(bb*)x ¢ bAJ (), one obtains that y*ye B, (0 ®f)(y*y)=1, and
s0 (w®f)| B#0. (In fact letting {z,} be a decreasing sequence of positive elements
of A“ such that | zaz, —@(x)zi]|>0 for xe A and w(z)=1, [11], one has that
vz, € bBAT(Y), | zey*yzel| > 1, and (0 ® f)(zey* yz,) = 1. This implies | (w ® f) | B] = 1).
This contradiction leads to the conclusion that I J,. O

LEMMA2.3. Letbe A®\J,, and B be the hereditary C*-subalgebra of A® M, generated
by {x*x:x¢c bA{(y)}. Then

{a@leA“@Cl:Ex,»ebAi’(y), such that Y x?“xi=a®1}
i=1

is dense in the positive part of BN (A*®C1).

Proof. Let a®1 be a non-zero positive element of BN (A“®C1). Then for any
€ >0, there exist x;, y;€ bA{(y) and z;€ AQ M, such that

a®1-3% x?"z,-y,-]<e.
i=1

Define f on R by f(t) = max (t— 8, 0), for 8 € (¢, {{a||), and we shall show that f(a)®1
is of the form ¥, x¥x;, which completes the proof since ||a —f(a)| = 8. Let p be the
spectral projection of a corresponding to [, ||a||]. Since

<€

pap®1— % (p®1)X?‘z,-yi(p®l)l
i=1

ntp://journals.camoriage.orq Downloaded: 25 Feb 2014 IP address: 131.251.254.13



http://journals.cambridge.org

Duality for automorphisms 177

one has
lall

pap®ls——{ Z (p®1)(x?"z,-y,»+y?‘zl’-kx,~)(p®1)}
26 —¢) LiTh

=C T (PO (PO +(pOyIn(p@ 1),

if C=(max_, |z|)}lali/2(8—¢).
Letting g(r)=f(t)"*t""? for t>0, and g(t) =0 for t=0, and multiplying g(a)
from both sides of the above inequality we obtain:

f@®1=C ¥ (g(a)@ ()@@,

where x,.; =y, for i=1,2,...,n Since x;g(a)®1¢e€ bA{(v), the conclusion of
Lemma 2.3 follows from Lemma 2.4: O

LemMMA 2.4, Suppose a is a positive element of A, and b an element of A” such that
there exist x,€ bAT(y), i=1,...,n, with a®1=<Y]  x¥x, Then there exist y,€
bAY(vy), i=1,...,n such that

n

a®l= Z y.*y.-.
i=1
Proof. Let
Xy
x=| : €Ay
X,

and x = (xx*)'?u be the polar decomposition of x in A**® M,,,, where M, is the

space of n x d matrices, uu* is the support projection of (xx*)"/? in A**® M,,, and
ue An(y)**. Let B, be the hereditary C*-subalgebra of A® M,, generated by xx*,
and B, the hereditary C*-subalgebra of A® M, generated by x*x. We then have
an isomorphism of B, onto B, defined by

z€ By>u*zue B,.

If z=(0xx*)"2p(xx*)"? with ye AQM,, then u*zu=u*(xx*)"2y(xx*)"u=
x*yxe B,. Hence u*B,uc B, as (xx*)""?A® M, (xx*)"/? is dense in B,. Similarly,
one can show uB,u*< B,.

Since a®1=<x*x, one has a®1¢ B,, and

a®1=(a"’®@1)u*u(a'’’®1).

Moreover, as y = u(a'/?®1) e AZ(y)**, the lemma will follow, if we can show that
ye A®M,,. This follows since u is a multiplier in the sense that uB,< AQ M,,,
and Bjuc A®M,,;. Hence ye A® M,,, and writing

N
y=1 .1
Yn

http://|ournals.cambridge.org Downloaded: 25 Feb 2014 IP address: 131.251.254.13
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one obtains a®1=Y | y¥y,. Since yy*=u(a®1)u*e B,, and B, = bAb*®@ M,, one
has that y,y¥ e bAb* i.e. y,c PAQ M,,. 0
Proof of Theorem 2.1. By lemmas 2.2 and 2.3, we see that for any be A*\J,, there
exists x € bA, (y) such that x*x € (A*\J,)®C1. Let n be the smallest possible integer
for which there exists a € (A*\J,), and x; € bA](y) suchthata®1=Y"_, x¥x,. Take
such g and x;, and we may assume that there exists a’, a’€ (A®\J,), such that
aa'=a',a’a"=a", |all=1. Since p(a')p(a”)=p(a") #0, Ker (p(a’)—1) #0, and so
by Kadison’s transitivity theorem, we can find v in A® such that p(v)Qe
Ker (p(a’)—1), and w(v*a'v)=1.

For ¢ =w(v* - v), let R, be the map of A® M, onto M, defined by R [z;]=
[¢(z;)], [z;]e A©Q M,. Then

. 1 0
Z R:p(x:kxi)::l: .
e 0 1
Since ¢ is a pure state of A, and A is separable, there exists a decreasing sequence
z, of positive elements of A such that z; =a, and the limit of z, is the support
projection of ¢. We may assume that the z, are a-invariant, and z.zx, = 2, for
k=1,2,....Thenforany x € A, ||z.xz, — ¢(x)z3]| > 0as k> oo, [11]. If | R, (x¥x)|| <
1 for some i, then for large k, zx¥x;z, <1. But

Zha — Zem XXz = (1 - ”ka;kxizk“)ziwLI

and so from
n

R

2 _ *

Zi1= 2 Zk+1X5 XiZk+1
Jj=1

we deduce

Ziﬂ =(1- ”ka?kxizk”)_l ) Zk+1x,*szk+1-
J=i
This contradicts Lemma 2.4, as zi.,;€ A*\J,, and x,z,., € bA7(y).
Hence |R,(x¥x;)|| =1, forall i=1,..., n. Then as R, (x¥x;) is a positive matrix,
Tr R, (x¥x;)=1, and so

n=Tr Y R, (xfx)=d O

i=1

THEOREM 2.5. Let a be an action of a compact group G on a separable C*-algebra
A. Suppose there exists an a-invariant pure state w of A, and define J,, ye G as in
Theorem 2.1. Let ', denote

{vye G: Vb, ce A*\J,, Ix e bAT(y)c suchthat x*xe A°\J,®14.,}.
Suppose that A*/J, has no minimal projections. Then
r,={ye G: J,cJ}
Proof. First we show that I' ,c {ye G: J,=J} Let yel',, and beJ,, and B the

hereditary C*-subalgebra of A® M, generated by {x*x: x € bA(y)}. Then we claim
that BN (A“®C1)c J,, and this is enough to get the conclusion. (For if b £ J,, then

htto://iournals cambridae ora Downloaded: 25 Feh 2014 IP address 131 251 254 1%
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by definition of I',,, there would exist x € bAT(y)}b < bAJ(y) such that x*x € A*\J. ®
14(4), which implies that b€ J, by the above claim. Consequently J, < J,).

Let a®1e BNA(A“®C1). Then a is a limit of elements of the form where
Yo xkb*zby,, where x;=(xq,...,%X1), ¥i=ia,---,Yia)€AT(y), and z €A
Since =, (y)P.¥,< P, ¥, and m,(b)| P,%, =0, it follows that =,(a)|P,%, =0,
i.e. ae J,. For the reverse inclusion we need:

LEMMA 2.6. Let C be a C*-algebra, and J an ideal of C. Suppose that the quotient
C/J is prime and has no minimal projections. Then for any n=2,3, ..., there exist
Uty..., Uy, €in C such that v¥v; =0 if i # j, vive=e and e J.
Proof. Since C/J has no minimal projections, there exists a self adjoint h € C such
that h+J has an infinite spectrum in C/J. By using h it is shown that there exist
positive a,, ..., a, in C\J, of norm one such that a;a, =0 for i # j. We may suppose
that there exists b, € (C\J), such that a,b,=b,, and ||b,||=1. Let v, =a;. Now
suppose that we have defined v;€ q;C\J, b,e (C\J), such that v¥vb, = b, and
|6l =1, for i=1,..., k. Since a,,,Ch, 2 J, (as C/J is prime), choose a non-zero
Ukt € Qs 1 Ch\J, and assume that v¥,,vc., is a unit for some b, € (C\J), with
[lbisi]l =1. Then by, € b.Chy, and so v¥v; is a unit for by, i=1,..., k This
concludes the proof with e=b,,. |
Proof of Theorem 2.5. It only remains to show

I',>{ve G: J, < J}.
Let ye G be such that J,=J.. Let be A®\J,. Now A*/J, is prime, since it has a
faithful irreducible representation. Hence applying lemma 2.5 to the C*-algebra
C =bA”b* with J =J n C, one obtains v,, ..., v, e bA°D¥, such that v¥v; =0 for
i#j, vivie=e and ee bA°D*\J, < A*\ J,. By theorem 2.1, there exists

X
x=|: |eeAi(y),

Xa

such that x*xe A“\J, ® 1. Define

Then ye AT(v), and y*y =% xFofox, =Y x¥x,=x*xe A°\J ®1. Thus yeT.

CoRroLLARY 2.7. Under the assumptions of theorem 2.1, suppose in addition that
A®/J,, has no minimal projections. Then for any be A*\J,, ve G, there exists
x € bAT(y) such that x*xe A*\J,®1.

Proof. This follows from theorem 2.1 and the proof of theorem 2.5. O

COROLLARY 2.8. Let a be an action of a compact group G on a separable C*-algebra
A. Assume that there exists an a-invariant pure state on A, and let P be a non-empty
family of a-invariant pure states. Define an ideal J¥, for each ¢ € P, y € G as in theorem

2.1, and let JT = ﬂwgp J?¥. Suppose that A® is prime and has no minimal projections,
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and J? ={0}. Define
Tp={yeG:Vbe A*\{0}, Ixe bAT(y) s.t. x*x€ A*\{0}®14(,,}.
Then
Tp={yeG:J;={0}}.

Proof. Let ye G st J;’;ﬁ {0}, and let be Jf:\{O}. Then by the proof of theorem 2.5,
the hereditary C*-subalgebra B of A® M, generated by x*x for x € bA](y) satisfies
Bn(A*®C1) < J?

for any ¢ € P since be J¥. Hence
Bn(A*®Cl)c J] ={0}.

This implies that y &1 p. Conversely suppose ye G, such that J© ={0}, and let
be A*\{0}. Then b g J¢, for some ¢ € P, and by theorem 2.1, there exists x € bA5(y)
such that x*xe A*\J?®1< A*\{0}®1. Thus yeTp.

3

THEOREM 3.1. Let G be a compact group and « an action of G on a separable simple
C*-algebra A. Assume that there exists an a-invariant pure state of A and let P be a
non-empty family of a-invariant pure states. Define
Jp = m ker T (olA%)
e P

and assume that the quotient algebra A*/Jp contains no miminal projections. Define
Ip={yeG|Vb ce A*\Jp, Axe A (y)¢, s.t. x¥x € A°\Jp,® 1}

and assume that I'p = é.

Let o be an automorphism of A such that o(x)=x for all x€ A*. Then there exists
g€ G such that o = a,.

Remark. When G is abelian, P may be chosen so that J, =(0). (Let @ be an
a-invariant pure state of A, and

P={w(a*ca)acA*(y), veG, w(a*a)=1)).
Then the condition T'p = G is equivalent to the Connes spectrum of a being G.

Lemma 3.2. Adopt the assumptions of theorem 3.1 and also assume that A” is prime
and that for any a-invariant hereditary C*-subalgebra B of A one has M(B)n (B =
C1 where M(B) is the multiplier algebra of B. If o is an automorphism of A such that
o(x)=x for any x € A®, then there exists g€ G such that o = a,.

Proof. Let u be a finite-dimensional unitary representation of G such that for some
n there exists x € As(u) with x*x<€ A*\{0}® 1. Then we claim that there is a d x d
unitary matrix A(u) such that o(x)=xA(u) for any xe Af(u), where o(x)=
(o(xy),...,0(x;)) and d is the dimension of wu.
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Let xe A%(u) be such that x*x=a®1e€ A\{0}®1. For small §>0 define a
continuous function f on R by

0 t<é
= V2 =28

and by linearity elsewhere. Let y = xf(a) and e=f(a)af(a). Then y<c A, (u) and
y*y=e®1. The non-zero hereditary C*-subalgebra

B={bc A: eb=be=>b}
of A is a-invariant, and for be B®, one has yby*e A°*® M,. Then since yby*=
a(y)ba(y*),
a(y*)yb=a(y*)yby*y = o(y*)o(y)ba(y*)y
= bo(y*)y.

Denoting by p the open projection corresponding to B, one obtains that o(y*)yp =
po(y*)ye M(B)Y®M,; n(B*)'=M,. Let A be the matrix over C defined by
o(y*)yp = A*p. Then for b€ B* one has that o(yb) = ybA because

o(b*y*) = o(y*yb*y*) = a(y*)yb*y*
— /\*b*y*.

Further A is a unitary because AA*p=y*o(y)a(y*)yp=y*yy*yp=p Define a
continuous function h on R by

0
h(t) = 2
and by linearity elsewhere. Then since h(a) € B, and

Ix = yh(@)|* = la(f(a)h(a) - 1)*| =28,

t<4
t=258

it follows by approximation that for any x€ A;(u) with x*xc A“®1, there exists
a d X d unitary matrix A such that o(x)=xA.

Now fix a non-zero x € A;(u) such that x*x =a®1¢€ A°*®1, and let A(u) be the
unijtary matrix defined by o(x) = xA(u). Let y € Aj(u). Then since ybx*c A*@ M,
for any be A it follows that ybx* = o (y)bA(u)*x*. Multiplying x from the right
one obtains that yba = o(y)bai (u)*, i.e.

(o(y)—yA(u))ba=0

for any be A°. This implies that o(y) = yA{u) because no non-zero element of A
is orthogonal to the ideal of A® generated by a as A“ is prime. Since any y € AT (u)
can be regarded as an element of A (u), this proves the assertion that o(y) = yA(u)
for any ye A7 (u).

Let & be the set of finite-dimensional unitary matrix represertations u of G such
that there is a non-zero x € A%(u) with x*xe A*®1 for some n. For each u € & one
has a unitary matrix A (u) such that o(x) = xA(u) for x € AT(u). Now we claim that
R is in fact the set of all finite-dimensional unitary representations of G and that
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A satisfies that
AMu®@uy) = A(u))® A (uy),
Au @ uy) = A(u,) D A (uy),

Alwu,w*) = wA (u))w*,

and A(u;)=A(u,), where u;€ R, and w is a unitary matrix. Then by Tannaka’s
duality theorem (or by mimicking the proof of theorem 2.4 in [16] directly), one
would obtain ge G such that A(u)=u, for all ue R. Since the set of elements x,,
with (x;) € AT(u), ue R is dense in A one would get the conclusion that o = a,.

By the assumption that ['p = é, J contains all irreducible unitary representations
of G.

Let u;e & with i=1,2, and let x;,€ A%(u;) be such that x¥*x;,=a,®1c A*\{0}®1.
We may suppose that there is b€ A® such that a;b=>b, b=0, and | b|| =1. Since
A“ is prime, there is c € A* such that a,cb # 0. Let y, = x,(bc*a,cb)"/? and y, = x,cb.
Then y; € A (u;) and

)’T% =bc*a,ch = y3y,,

and hence y=y,®y,c A (u;Du,), with y*ye A*\{0}®1. This proves that u;®
€ R and that A(u;@u,) =A(u))@A(u,), since o(y)=yA(u,)DyA(u,)=
(@) (A (u) DA (ur)).

Let ue R and let x € Ay (u) with x*xe A“\{0}®1. Let w be a d(u) X d(u) unitary
matrix and let y=xw*. Then ye Ax(wuw*) and y*y=x*xec A*\{0}®1. Hence
wuw* e & and A(wuw™*) = wA (u)w*, since a(y) = a(x)w* = xw*wA (u)w*.

The above three properties in particular imply that & is the set of all finite
dimensional unitary representations of G.

Let u; € & with i =1, 2 and assume that u; are irreducible. Let x € A{(u,) be such
that x*x=a®1e€ A*\J,®1. We may suppose that there is be A*\Jp such that
b=0 and ab =b. By the assumption that I'p = é, there is y e bAT(u,) such that
y*ye A°\Jp®1. Then xyc AT(u;®u,) and (xy)*(xy)=y*yec A“\{0}®1. This
proves that A(u;® u,) = A(u,)® A(u,) since

(o(xy) = U'(x)ia'(J’)j
=Y X Auiu) L yl)\lj(uz)
= kZI (x)’)kz(/\(ul)®)\(uz))k1,g-

When u, € R are not irreducible, we may decompose u; into irreducible components
and apply the above properties to get the conclusion that A (u; @ u,) = A{u; ) @ A(u,).

Let ue ® and x € A} (u) be non-zero. Let y = x*” where T denotes transposition.
Then ye A7 (u) and A (@)= A(u) since o(y)=(A(u)*x*)7 = pA(u).

Proof of Theorem 3.1. We have to prove that the two additional assumptions in
lemma 3.2 follow automatically from the assumptions of the theorem.

Since A is separable and Sp (a) = é, G must be countable. Let {7} be a sequence
of elements of G such that each ye G appears infinitely often in {v,} and let
& =1®vy; where . is the trivial representation of G. Let B8 be the infinite product
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action &);<; Ad & of G on the UHF algebra C = ® M4, where d(§) is the
dimension of ¢. Then by theorem 3.1 in [8], there exists an «-invariant C*-
subalgebra B of A and a closed a**-invariant projection g € A** such that ge B,
gAg = Bg, and the C*.dynamical systems (Bg, G, a**|Bq) and (C, G, B) are
isomorphic.

Let 7 be the tracial state of C and define a state o of A by

w(x)=r1(gxq), x € A,

where we identified gAq = Bq with C. Then we claim that #»,(A)" n7,(A%) =C1.

Let e=7,(q)e 7,(A”)", and let c¢(e) be the central support of e in 7, (A”)". We
first show that c(e)=1.

Define a unitary representation u of G on ¥, by

u,m, (x)Q, = m, o a,(x)Q,, xXeA,
by using the a-invariance of w. Then c(e) commutes with u,, g € G, and if c(e) #1,
there exist ye€ G and a set (&, ..., &) of orthonormal vectors in (1 —c(e))#,, such
that

d
U & = El in(g)fj,

where (y;(g)) is a matrix representative of vy. Let x’€ A be such that
[7.(x)Q, — & <e,

for small £ >0 and define
x=d J Y1(8)ag(x) dg.
Then x=(x,,...,x4)€ Af(y) and ||m,(x;)Q, — &| = de since
T (%)~ & =d J ¥ir(8)up(ma (X)), — &) dg.

Let v, = (v, ..., Ung) € CT(y) satisfy that {v,;} is a central sequence in C and

* =...=p* =
UVnyUny = = UnaUng = €y,

d

* —
Z Univni+en - l,
i=1

(which can be chosen from the factors M ,,, with y; = v). Now v,, = u,q, where
u, € B. We define

unj:dJ' ’le(g)ag(un) dga j:19-"an
so that (u,,, ..., 4,y)€ B7(y), and u,;q = v,;. Hence
Q, = Zl xvhe A%
iz
and

ﬁ(vnl)ﬂw € e%w’
'ﬁ'w(Qn)'ﬁ'w(vnl)Qw = _w(xlen)Qw
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belongs to c(e)#,. Then we compute:
||ﬁw(xlen)Qw - 7Tau(xl)‘()muz
= T(en._qx;kxlqen) + T(qxikxMI) - T(qlx;kxlqen) - T(enqx;kxl‘”,

which converges to d(d+1) '7(gx¥x,q) because 7 is a product state and 7(e,) =
(d+1)"". On the other hand,
70 (X1€2) Q0 — 7, () Q0 || = |7, (x1€0) Q2 — &l — 16— 70 (x1) Q0|
= (||, (x1€,)Q, [P+ 1) — de.
Hence we obtain
d(d+1) 'r(gx¥x,q) ={((d+1) " r(gx¥x,q)+1)"? — de}’.

Since |r(gx{x,9)">— 1| < de, this is a contradiction for small & >0, which implies
that c(e)=1.

Let ze m,(A)' N 7, (A%). Then since ewm,(A)'e=m,(B)e and em, (A%)'e=
7,(B%)"e, one has that ze = ez 7,(B)"e n{m,(B")"e}’ which is trivial by:

m(C)' nm(CP)=C1.

To see this (see also [6]); note that any finite permutation automorphism among
the factors in the infinite tensor product C = ® 2, M, which commutes with
is implemented by a unitary of C* [13]. Since those automorphisms leave 7 invariant,
they extend to automorphisms of 7, (C)". Thus any element of 7.(C)" N w (C?Y
is fixed under those automorphisms, and it is easy to check that they act ergodically
on 7.(C)" by using the fact that 7 is a separating factorial state and the permutation
group which commutes with 8 acts ergodically on C.

Thus there is a A € C such that ze = Ae. Since the reduction 7, (A%)' > 7,(A%)e
is an isomorphism, because c(e) =1, one obtainsthat z= A1, i.e. m,(A)' "~ 7 (A¥) =
C1, as claimed. O

Lemma 3.3 [12, lemma 2.1]. If N © M are non Neumann algebras and f a projection
in N, then (N;)’ " M;=(N'"nM),.

Let B be an a-invariant hereditary C*-subalgebra of A. Then we claim that
M(B)~(B®) =C. By simplicity of A, =, is faithful on A, and hence sois p = 7| B,
on fH, where f=m,(eg) and ey is the open projection for B. Moreover, g, the
unique extension of p to B** is faithful on M(B). Thus

p(M(B))np(B%) < p(B**)np(B*)
=fMf o (fM°fY
where M =7,(A)", and & denotes the unique extension of « to M. Since M N
(M*) =C, it follows from lemma 3.3, that M(B)~(B*) =C.
By using that #,(A)" n 7, (A%) =C1 and the faithfulness of =, it follows that
A“ is prime. This completes the proof of theorem 3.1.

THEOREM 3.4. Let G be a compact group and « an action on a C*-algebra A. Assume
that there exists a faithful irreducible representation w of A such that w(A)" = 7(A”)".
Let o be an automorphism of A such that o(x)=x for all xe A®. Then there exists
g € G such thai 0 = «a,.
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Remark. If we further assume that A is simple, separable, and unital, and that there
exists an automorphism 7 of A such that ||7"(x)y — yr"(x)|| > 0 for all x, y € A, then
there exists an irreducible representation 7 of A such that w(A)"=7(A%)" (see
theorem 2.1 in [7]). Hence the present theorem gives an alternative proof to the
previous result in [15], at least when A is separable. The derivation version of the
above theorem was proved in [7] as theorem 1.1, and the method there can be
applied to the present situation if A is separable.

By taking G/ker « instead of G, we may assume, without loss of generality, that
a is faithful in the sequel.

LemMA 3.5. Adopt the assumptions of theorem 3.4. Define a representation p of A by
the direct integral

®
p=J' e a, dg
G

on the Hilbert space H,= H,® L(G). Then p(A)"= B(¥,)® L™(G).

Proof. Since B(¥,)®C1=p(A")' < p(A) < B(¥,)® L*(G), it suffices to prove
that p(A)" > p® L*(G), where p is a fixed one-dimensional projection on ..
Define a state ¢ of A by

@(x)p=pm(x)p, xe A

Let {z,} be a decreasing net of positive elements of A® such that lim #(z,)=p (in
the strong topology). The existence of such {z,} follows from the fact that ¢ |A® is
pure. Then defining a continuous function f, on G, for each x€ A, by

Sx(g)p =pm e ay(x)p, gegq,

it follows that p& f, = pp(x)p =1lim p(z,xz,) € p(A)". Hence it suffices to prove that
{f«: x € A} separates the points of G, to conclude that p(A)" > p® L™(G). If there
are g and hin G suchthat f,(g) = f.(h) forall x€ A, thenone hasthat g o a, = ¢ © a;,.
Thus ag, should be weakly extendible in the representation m,=m, which
is impossible as w(A%) is irreducible, unless @, is the identity auto-
morphism. O

LEMMA 3.6. Under the assumptions of theorem 3.4, A® is prime, and for any non-zero
b, c€ A®, the spectrum of « restricted to bAc, written as Sp (a|bAc), is G.

Proof. Since w|A® is a faithful irreducible representation, A® is prime.
Let b, ce A°\{0}, and let x€ AY(y)\{0} with ye G. Since ¥ x¥x; and ¥ x,x¥ are
a-invariant, there exist b’, ¢'€ A® such that

d
bb’( y x,-x?") #0,
i=1

d -
( D x}kb’*bb’xi>c’c #= Q. T

i=1

Thus bb'xc'c = (bb'x,c'c) € bAT(y)c is non-zero, and this proves that Sp (d|bAc) =
Sp (a). Note that lemma 3.5 immediately implies that Sp (a)=G.
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Lemma 3.7. Under the assumptions of theorem 3.4, for any ye Gand be A\{0},
there exists x € bAZ(y) such that x*xe A*\{0}®1, for some n=2,3,....

Proof. Let B be the hereditary C*-subalgebra of A® M, generated by x*x with
xe bAT(y). It suffices to prove that BN A“®C1 # {0}, because the rest of the proof
goes exactly as in lemma 2.2 and theorem 2.1.

To prove that Bn A“®C1 # {0}, we have to produce a pure state v of A* such
that any extension ¢ of ¢ to a state of A® M, (> A*®1) satisfies | B # 0.

Without loss of generality we assume that b is positive and there is a positive
non-zero a € A” such that ba = a. Fix a one-dimensional projection p in the range
of m(a), and note that w(b)p =p.

By lemma 3.5, pp(A)p, regarded as continuous functions on G, is dense in L™(G)
in the weak*-topology. By using the projections of A onto A%(y), it is shown that
pp(A(y))p is dense in, and so equal to, the finite-dimensional linear space spanned
by {yy: ,j=1,..., d}. Thus by spectral calculations we can choose x € A7(7y) such
that

pr(x;))p=p® .
Let {z,} be a decreasing net of positive elements of A“ such that z,<b and
lim 7(z,) = p as in the proof of lemma 3.5. Let x, = z/°x € bA%(y) and note that
lim Pp(xﬁzvxkl)P = P®'Y_ij7k1~
Let ¢ be the state of A defined by ¢(x)p=pm(x)p, xc A, and let y = ¢ | A" If f
is a functional in A** whose support is contained in p€ A** one has

lim}Y f(x¥kz,x;)=6; 1.
v %

Thus for any extension ¢ of  to a state of A® M, one has

lim ¢(x¥x,) = 1.

Since x¥x, € B, this concludes the proof. O
Proof of theorem 3.4. Since w(A)"n w(A*) =Cl1, it follows that M(B)n(B*)' =C1
for any a-invariant hereditary C*-subalgebra B of A, and that A® is prime. The
rest of the proof is similar to that of lemma 3.2 with

{ye G:Vbe A*\{0}, Ix € bAZ(y) some n, x*x c A°\{0}®1}
playing the role of I'p. 0

4

THEOREM 4.1. Let G be a compact abelian group and « an action of G on a simple
C*-algebra A. Assume that A® is prime and M(A)~(A%) =C1. Let o be an
automorphism of A such that o(x)=x for x € A®. Then there exists g€ G such that
g = ag.

LeMMA 4.2. Let B be an a-invariant hereditary C*-subalgebra of A, and let B, be
the C*-subalgebra of A generated by A*BA* (which is a hereditary algebra). Let ey
be the open projection in A** obtained as the limit of an approximate identity for B,
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Then the map
M(B,)n(BY) ~ M(B)n(B*)
defined by multiplication by eg is a surjective covariant isomorphism.
Proof. Note that « induces an action on M(B,) by restricting (a|B,)** to M(B,).
We use the same symbol a to denote this action.

Since eg is a weak limit of an approximate identity for B* [4, lemma 4.1], one
has eg € (B} )** < A** Thus any element z of M(B;) n(B}) commutes with ez and
one has that zeg€ M(B)n (B®)', because zeg- b=zbec B,negBeg =B, b: zeg =bz e
B for be B, and zeg- a=za = az=azey for ae B*(< BY). Hence the map is well
defined, and covariant.

Let c(eg) be the central support of eg in (A%)**(< A**). Then the multiplication
map by eg:

c(eg)A**c(ep) N (c(eg)A%c(ep)) > egA™ ep n(epAep)’
is an isomorphism. Since c(eg) = ey , this is equivalent to saying that
BY* ~(BSY > B** (B
is an isomorphism. If zeg € M(B), for z € B¥* n (B{)’, then we claim that ze M(B,).
For then zeg a = eg az for ac A%, as ze (BY), and so for be B, a;€ A*:

za,ba, = a,(zb)a, € B, etc.

This completes the proof. (I

LEMMA 4.3. Let B, B, be non-zero a-invariant hereditary C*-subalgebras of A with
B, < B. Then the map

M(B)n(B%)' > M(B,)n(BY)'
defined by multiplication by eg_is an injective covariant homomorphism.

Proof. The map is a well defined homomorphism since ep € (B{)**. The action «
is ergodic on M(B)~(B“)', in the sense that the fixed point algebra is trivial because
M(B)*n(B*)Y c M(B*)n(B*), and B*=A"n B is prime. Hence there are no
non-trivial a-invariant ideals in M(B)n (B®)'. Multiplication ep, preserves the
induced action, and so the kernel of this map is an a-invariant ideal which is either
zero or the whole algebra. Since the latter is impossible, the map must be injective.

LEMMA 4.4. Let ye é, and x a non-zero element of A*(vy). Let B,=xAx*, and
B,=x*Ax, and x = v|x| be the polar decomposition of x with vv* being the range
projection of x. Then Ad (v*) gives a covariant isomorphism of M(B,) onto M(B,).

Proof. See the proof of lemma 2.4, noting that ve A®(y)**. O

LEMMA 4.5. Let B; be an a-invariant hereditary C*-subalgebra of A such that
A°B,A” < B;. Denote by B,v B, the hereditary C*-subalgebra generated by B, and
Bz. Then -

Sp (| M(B,v Bo)n((Byv B2)*)) =Sp (a | M(B)) " (BY)) Sp (a | M(By) "~ (B3)).

Proof. Let yeSp (a|C,) nSp (a|C,), where C;= M(B;)n(B7)". By the ergodicity
of a on C,; there are unitaries v; in C{(y). Now B{ are non-zero ideals of A®, and
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so if B= B, B,, then B* = B n B is a non-zero ideal. Now B,= BJAB}, B=
B*AB“, and so ey, e are central open projections of (A%)**(< A**). Now v,ege
C“(y), where C=M(B)n(B®), and so by ergodicity, there is a number A of
modulus one such that v,es = Av,eg. Define ve ey, 5 A* ey 5., by

v=v,ep + Avs(ep, ~ eg).

Now note that ep = e, ep,. Because since eg, eg,, ep, are mutually commuting, eg = e
implies that e =epep,, and moreover epeg € (BY)* (B3)**=(B)** implies
ep ep, = eg. Furthermore note that Bf + B = (B, v B,)”. Because B; = B, v B, implies
By +BS<(B,v B,)*. Moreover B,= B AB{ are contained in the hereditary C*-
subalgebra (Bf+ B3)A(BT + B5), and so B,v B,< (B + B3)A(B{+ B3). Con-
sequently (B, v B,)* « Bf + BS. Thus (B, v B;)” = B{ v B7, and in particular ey , 5, =
ep, Vv eg,. Hence v is a unitary in ey, 5,A**ep, . p, and ve ((B,v B,)*). Finally v is
a multiplier of B, v B, as:

vb,=uv,b,,

vh, = Auv,b,,
vb,xb, = v,b,xb,,
vh,xb, = Av,b,xb,,

forb,e By, b, B.,xe Aetc. Thusve M(B,v B;) n((B,v B,)*) and e, (v} =(g, v)v,
and so yeSp(a|M(B,v B;)n((B;v B,)*)'). The reverse inclusion follows from
lemma 4.3. O

Proof of theorem 4.1. We may assume that « is faithful. Since A is simple and A®
is prime, we know from [11, 8.10.4] that Sp («) is the same as the Connes spectrum
['(a). Since the latter is a group and « is faithful we see that I'(a)= G. Thus
inspecting the proof of lemma 3.2, we see that we only have to show for any
a-invariant hereditary C*-subalgebra B of A that M(B)~(B")' =C1. Suppose
there exists an @-invariant hereditary C*-subalgebra B, of A such that M(B,)
(Bg)' is not trivial. By lemma 4.2 we can assume A°B,A"c B,, and since « is
ergodic on M(B,) n(Bg)', Sp (a|M(By) n(B§))= H is not trivial.

Let {B;} be an increasing family of a-invariant hereditary C*-subalgebras such
that A°B;A“ < B, B,< B;, and Sp (| M(B;) n(B{))= H. Let B be the hereditary
C*-subalgebra generated by B;. Then B is a-invariant, A“BA® < B, and we claim
that Sp(a|M(B)n(B%))=H. Let yeH, and choose a unitary uve€
(M(B;)n(B{))“(y), such that veg, = vy, where v, is a fixed unitary in (M(By)n
(B3))“(y). If B;< B, then v; = v;ez, because of the ergodicity of a. Define v by
veg = v;, for all i, in eA**e, where e is the supremum of (e ). Since e = eg, and v
is a multiplier for U B;, it is easy to conclude that ve M(B)n(B“), and ye
Sp (a|M(B)(B*)). Thus Sp (a|M(B) ~ B*)')= H using lemma 4.3.

Let B be a maximal a-invariant heredity C*-subalgebra A such that A°BA” c B,
Byc B and Sp(a|M(B)n(B®))=H. We claim that B= A, which contradicts
M(A)~(A®%) =C1. Note first that the hereditary C*-subalgebra A, generated by
{xByx*:x€ A*(y), v¢ G} is equal to A. Because, as (3 x;)(} x;,)*=2"Y x;x¥ for a
finite sequence (x;) of length n, it follows that A, © xByx™ for any x in the linear

http://iournals.cambridae.ora Downloaded: 25 Feb 2014 IP address: 131.251.254.1


http://journals.cambridge.org

Duality for automorphisms 189

space Ar spanned by A%(vy), v 6. Since Ap is dense in A, this implies that A, is
equal to the ideal generated by B,, and hence, since A is simple, it follows that
A, = A. Suppose B# A, and then there must exist ye é, and x€ A*(y) such that
xBox* ¢ B. By replacing x by xe,, where e, is an approximate identity for BS, we
can assume x*xe€ By, and so B;=x*xByx*x< B,. Then by lemma 4.3 we have
Sp (a|M(B,)n(B}))=Sp (a|M(B,) n(B§)') = H. Moreover by lemma 4.4,

Sp (a|M(B,)n(B$))=Sp («a | M (xByx*) n ((xByx*)*)'),
and by lemma 4.2
Sp (a| M(xBox*) n ((xBox*)*)') = Sp (a | M(B,) n (B3)"),

if B,=A"xB,x*A". Hence Sp (M(Bv B-)n((Bv B,)*)') = H by lemma 4.5, which
contradicts maximality of B as B,# B. This contradiction implies that M(B)n
(B*) =C for any a-invariant hereditary C*-subalgebra B of A.
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