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1. Introduction
When considering an action a of a compact group G on a C*-algebra A, the notion
of an a-invariant Hilbert space in A has proved extremely useful [1, 4, 8, 14, 17,
18]. Following Roberts [13] a Hilbert space in (a unital algebra) A is a closed
subspace H of A such that x*y is a scalar for all x, y in H. For example if G is
abelian, and a is ergodic in the sense that the fixed point algebra A" is trivial, then
A is generated as a Banach space by a unitary in each of the spectral subspaces

Aa(y) = {x £ A: ag(x) = (g, y)x, geG}, ye 6,

which are then invariant one dimensional Hilbert spaces. If G is not abelian, then
Hilbert spaces (which are always assumed to be invariant) do not necessarily exist,
even for ergodic actions. For non-ergodic actions, it is also desirable to relax the
requirement to x*y being a constant multiple of some positive element of Aa. More
generally, if y is a finite dimensional matrix representation of G and n is a positive
integer, we define A"(y) to be the subspace

{xeA®Mnd:(ag®l)x = x(\®yg), geG},

where d is the dimension d(y) of y, and Mnd denotes nxd complex matrices.

(Usually we will denote the extended action of ag to a g 0 1 on A®Mnd again by

ag.) Let Aa(y) = {xi:(xi)eAUy)}.
If x,yeA°(y), then x / e A ° ® M , , but x*y is not necessarily in Aa®Md, even

for ergodic actions. For ergodic actions, the situation of full multiplicity, where
there exists a unitary in Ad(y), has been studied by Wasserman [18]. Techniques
exist for handling C*-dynamical systems, where Hilbert spaces exist in this sense,
or at least when there is one non-zero x in A"(y) for some n, and y e G, such that
x*x = 1 or more generally x*x e Aa ® 1, [3,8]. (If such x exists, the space spanned
by the d column vectors of x is a Hilbert space.) Note also that Araki et al. [1, 17]
avoided such difficulties for von Neumann algebras, by stabilising for example.

* Current address: Department of Mathematics and Computer Science, University College of Swansea,
Singleton Park, Swansea, SA2 8PP, Wales. :

i Science and Engineering Research Council Senior Visiting Fellow.
+ Permanent address: Department of Mathematics, College of General Education, Tohoku University,

Sendai, Japan.

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 25 Feb 2014 IP address: 131.251.254.13

174 D. E. Evans and A. Kishimoto

Our first result, namely theorem 2.1 can be regarded as a technique for generating
Hilbert spaces. Let a be an action of a compact group G on a separable C*-algebra
A, for which there exists an a-invariant pure state a> with GNS triple (77, H, il). If
Hu{y) are spectral stibspaces for the induced action u of G on H, p the restriction
of 77 to Aa, we let Jy = Jy denote the ideal ker (p\H"(y)), if ye G. Then we show
in § 2 that for any beAa\Jy there exists xebAa

d{y) such that x*xe(A"\Jl)®\,
where 1 denotes the trivial representation. In [8], a F-spectrum was introduced
which was useful in obtaining a covariant version of Glimm's theorem on non-type
I C*-algebras. In theorem 2.5, we characterise such a F-spectrum in terms of the
kernels {Jy: y e G}. More precisely, if there exists a pure invariant state 10 as before,
let F,,, denote

{yeG:\/b,ceAa\l,3xebA"(y)c, such that x*xe /TU01,,}.

If in addition to A being separable, Aa/Ji has no minimal projections, then

This could be used to compute the F-spectrum in certain situations, e.g. for product
type actions on UHF algebras (cf. [8, proposition 4.1]).

Versions of Tannaka duality in an operator algebraic context have been obtained
in [1, 17, 10, 15, 2]. Suppose a is an automorphism of a von Neumann algebra M,
on which there is an action a of a compact group G such that <r\ Ma = id. Then it
is shown in [1,17] that if there exists an action T of a group H which commutes
with a, and is ergodic in the sense that the fixed point algebra Mr is trivial, then
there exists g&G such that a= a(g). In particular, if M n ( M a ) ' = C, then we could
take T to be the action of the unitary group of Ma by inner automorphisms. In [10,
15, 2] C*-versions of Tannaka duality have been obtained for an automorphism a
of a C*-algebra A, which is trivial on the fixed point algebra A" of an action a of
a compact group G. If a commutes with an action T which is ergodic in the sense
of being topologically transitive^ [10] when G is abelian, or strongly topologically
transitive [2] when G is not necessarily abelian, then there exists geG such that
ar= a(g). In § 3 and § 4 we prove versions of Tannaka duality in C*-settings, partly
through exploiting the techniques of § 2 in manufacturing Hilbert spaces. Suppose
a is an action of a compact group G on a C*-algebra A, and a an automorphism
of A such that <j\Aa = id. Then we show that there exists g e G such that cr= a(g)
in each of the following situations:

(a) (THEOREM 3.1). A is separable and simple. There is a non-empty family P of
a-invariant pure states such that if JP = n , , e p Jf, Aa/ JP contains no minimal projec-
tions and for all y e G, b, ce Aa\Jp, there exists x e bA°(y)csuch thatx*xe Aa\Jp®\.

(b) (THEOREM 3.4). There exists a faithful irreducible representation 77 of A such that
Tr(A)"=rr(Aa)".

(c) (THEOREM 4.1). G is abelian, A is simple, A" is prime, and M(A)r\(Aa)' = Cl.

Note that under the hypotheses of theorem 3.4, the unitary group of M{A") acts
strongly topologically transitive on A, and so theorem 3.4 could be deduced from
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[2]; (see [5]). However the interest in our proof is that we actually manufacture
Hilbert spaces (see lemma 3.7).

The C* -algebras studied in this paper are inherently non-type I. In [S] a systematic
study is made for abelian group actions of the relations between the covariant
version of Glimm's theorem in [8], the existence of pure invariant states in (a), its
antithesis, namely the existence of highly non-covariant representations in (b),
topological transitivity of the unitary group of M(Aa) in (c), and duality.

THEOREM 2.1. Let a be an action of a compact group G on a separable C* -algebra
A. Suppose there exists an a-invariant pure state a> of A, and define a unitary
representation u of G on fflm by ug77(U(x)fl(U = 77̂  ° ag(x)fllu, x e A. Denote by p the
restriction of TTW to Aa, and Py the spectral projection of u corresponding to ye G, and
let Jy = ker(p|PT^( u) . Then for any be A" \Jy, there exists x e bAd(y) such that

x*xeAa\J,®l,

where t denotes the trivial representation of G, and d = dim (y).

LEMMA 2.2. Let b e A"\Jy, and B be the hereditary C* -subalgebra of A® Md generated
by {x*x:xebA"(y)}. Then Bn (A"©C1)£ JL.

Proof We identifyaeA with a®\ in A®Md. Then A"{y)Aa c Aj*(y), and so
AaBAa c B.

If p is the open projection of (A® Md)** corresponding to B, then

5 = {(p: pure state of A® Md, (p(p) = 0}

is the set of pure states <p of A®Md such that <p\B = 0. Hence B+ coincides with

{xe(A®Md)+:(p(x) = 0, for all <p e S), (*)

for if xethe set (*), then I/<[(1 -p)x(\ -p)] = 0 for all states i/> on A®Md, and so
x ( l - p ) = 0, and x =pxpe {A®Md)np{A®Md)**p = B. Define

1= f)

which is an ideal of Aa. If x e I+, then <p(x) — 0 for all q> e S, and so xe B, i.e. I <= B.
Conversely, if xe B n Aa, then axa'e Bn Aa, for a, a 'e A", and so (p(axa') = 0 for
all cp e S. Hence xe Ker TT{V>\A"} i.e. xe I. Thus I = B n A". Suppose I c Jt, Then w \Aa

can be regarded as a state of ( 0 v e S T7(,,|A<>))(/4
t*). Since co\Aa is pure, it is a

weak*-limit of some net tpu of vector states of ( 0 ^ e S ^{V\Aa)(.Aa) on @f^s ^u\Aa),
[9]. For each v, there exist tj*£[*•„(A")Clv]- such that I v e S | | ^ | | 2 = 1 , and

<PM)= I WM)CC), aeA"(=Aa®l).
res

Define a state <pv on A®Md by

VAx)= I (irv(x)C,tZ), ,xeA®Md. ' "

Since for XG B and a e Aa, a*x*xa e B, one has ^(x)7rv(a)fl<F = 0, for any <p e S.
Hence TTV(X)€1 = 0, for xe B, and so <pv\B = 0. Let i// be a weak*-limit point of {ipv}.
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Then tl>\Aa = co \Aa, and tp\ B = 0. Hence a> = J (i//| A) ° agdg, and since a> is pure,
we must have w = t//| A. Hence there exists a state / of Md such that a>®/ = (//, [16].
Now we show that 0, a contradiction.

Since bb* e Aa\J^ there are positive continuous functions /i,, h2 on R such
that /i,(0) = ft2(0) = 0, h,h2=h2, and /i,(bfe*), h2(bb*)e A"\Jy. Since V =

w, there exists a setifo,]~ is a non-zero w-invariant subspace of
of unit vectors such that £, e V and

By Kadison's transitivity theorem, there is an xoe A such that ||xo|| = 1, 77a,(x0)O(u =
^i, T J 4 ) f i = fl,u and 77a,(x^)^,=0, for i = 2,...,d, since (ft*,, £ , , . . . , & ) is an
orthonormal family. Define

= d I
Then x = ( x , , . . . , xd) e A°(y), and

Since ^r, = &, for i = 1 , . . . , d, this implies that

Thus since y = hx{bb*)xe bA"(y), one obtains that y*ye B, (oa®f)(y*y) = 1, and
so ( o ) ® / ) | B # 0 . (In fact letting {zk} be a decreasing sequence of positive elements
of A" such that \\zkazk — co(x)z2

k\\->0 for xeA and a>(zk) = l, [11], one has that
yzk 6 Mf(-y), || Zfcj/*^ | | ^ 1 , and (u)®f)(zky*yzk) = \. This implies | |(w®/) | B|| = l).
This contradiction leads to the conclusion that l £ /,. D

LEMMA 2.3. Lef b e Aa\Jy, and B be the hereditary C* -subalgebra of A® Md generated
by {x*x:xe bA"(y)}. Then

a®leAa®Cl:3xiebA"(y), such that

is dense in the positive part of Bn(Aa®C\).

Proof. Let a®l be a non-zero positive element of Bn(Aa®C1). Then for any
e > 0, there exist x,, yt e bA"(y) and z, e A®Md such that

xfz,y, < e.

Define/on R by/( t) = max (t-S, 0), for 5 e (e, ||a \\), and we shall show that/(a)® 1
is of the form X x*x,, which completes the proof since ||a —/(a)|| s 5. Let p be the
spectral projection of a corresponding to [S, \\a\\]. Since

pap®I- I (p®l)x*ziyi(p®l) <
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one has

! A I
2(8-e) LI =

if C =
Letting g(t)=f(t)U2t~V2 for f>0, and g(f) = O for r<0, and multiplying g(a)

from both sides of the above inequality we obtain:

where xn + ,=y,, for i = 1, 2 , . . . , n. Since x,g(a)® 1 e bA"(y), the conclusion of
Lemma 2.3 follows from Lemma 2.4: •

LEMMA 2.4. Suppose a is a positive element of Aa, and b an element of Aa such that
there exist xte bA"(y), i = \,...,n, with a ® 1 < £ " = 1 xfx,. Then there exist yte
bA"(y), i = 1 , . . . , n such that

a®l= I yfy,-
i = i

Proof Let

X =

and x = (xx*)1/2u be the polar decomposition of x in A**®Mnd, where Mnd is the
space of n x d matrices, uu* is the support projection of (xx*)' /2 in A**® Mn, and
ue A°(y)**. Let B, be the hereditary C*-subalgebra of A®Mn generated by xx*,
and B2 the hereditary C*-subalgebra of A®Md generated by x*x. We then have
an isomorphism of B, onto B2 denned by

ze B,-> u*zu e B2.

If z = (xx*)1/2>'(xx*)1/2, with yeA®Mn, then u*zu = u*(xx*)l/2y(xx*)U2u =
x*yxeB2. Hence u*Bxuc B2 as (xx*)1/2A®Mn(xx*)1/2 is dense in Bx. Similarly,
one can show uB2u* c B,.

Since a ® 1 < x*x, one has a ® 1 e B2, and

= (a1 / 2®l)M*w(a1 / 2®l).

Moreover, as >> = w(a1/2® l ) e A°(y)**, the lemma will follow, if we can show that
yeA®Mnd. This follows since u is a multiplier in the sense that wB2<= A®Mnd,
and B | « c A® Mnd. Hence ye A®Mnd, and writing

-r
\y-j
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one obtains a® 1 =Z,"=i y*yt. Since yy* - «(a® l)u*e B,, and 5, c Mfc*®Mn,one
has that y,yf e bAb*, i.e. yt e M ® Mld. D

Proof of Theorem 2.1. By lemmas 2.2 and 2.3, we see that for any be Aa\Jy, there
exists xe ftA°(y) such that x*xe (A"\ / t )®Cl. Let n be the smallest possible integer
for which there exists a e (A"\JJ+ and x,-e bA"(y) such that a® 1 = ZT= i x*xi- Take
such a and x,, and we may assume that there exists a', a"e (Aa\J,)+ such that
aa' = a', a'a" = a", \\a\\ = 1. S i n c e p { a ' ) p ( a " ) = p(a") 5^ 0 , K e r ( p ( a ' ) - 1) # 0 , a n d s o
by Kadison's transitivity theorem, we can find v in A" such that p(v)fle
Ker ( p ( a ' ) - l ) , and a>(u*a'u) = 1.

For <p = to(i>* • u), let Rv be the map of A®Md onto Md defined by /?„[>,,] =
M z , ) ] , [ z , ] eA®M, . Then

Since <p is a pure state of A, and A is separable, there exists a decreasing sequence
Zk of positive elements of A such that zx = a, and the limit of zfc is the support
projection of <p. We may assume that the zk are a-invariant, and zkzk+l = zk+x for
/c = 1, 2 , . . . . Then for any xeA, \\zkxzk - <p(x)z2

k\\ -»0 as A: -> oo, [11]. If ||Rv(xfx,)|| <
1 for some i, then for large fc, zkx*xtzk < 1. But

z£+1 -zk+1xfx,-zk+1 2 ( 1 - \\zkxf XjZk\\)z
2
k+i

and so from
n

z'k+\ = Z zk+lX*XjZk+i
J = l

we deduce

zi+i^Cl-llzfcxfx.z^l)"1 X zk+lxfXjzk+l.

This contradicts Lemma 2.4, as z 2
w e / l ° \ / , , and XjZk+1ebA°{y).

Hence ||/?v(xfx,-)|| = 1, for all i = 1 , . . . , n. Then as Rv(x*xt) is a positive matrix,
T r ^ ( x f x ; ) > l , and so

n<Tr i Rv(xfxi) = d. D
i = \

THEOREM 2.5. Let a be an action of a compact group G on a separable C* -algebra
A. Suppose there exists an a-invariant pure state u> of A, and define Jy, y e G as in
Theorem 2.1. Let F,u denote

{yeG:Vb,ceAa\Jl,3xebA'?(y)c such that x*xe AQ\/ t® ldiy)}.

Suppose that A"/ JL has no minimal projections. Then

rm={yeG:Jy^l}.

Proof. First we show that r^ <= {y e G: Jy<=- / J . Let yeFa, and beJy, and B the
hereditary C*-subalgebraof A® Md generated by {x*x: XG bA°(y)}. Then we claim
that B n (A Q ®Cl)c Jt, and this is enough to get the conclusion. (For if bi J,, then
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by definition of Tw, there would exist xe bA"(y)b<= bA"(y) such that x*xe Aa\Jt®
\d{y), which implies that b£Jy by the above claim. Consequently JyaJL).

Let a®\ e B n(Aa ®Cl). Then a is a limit of elements of the form where
1.1=1 x*\b*Zjbyn, w h e r e x,, = (xn,..., x , , ) , ^ = ( j , d , . . . ,yid)e A"(y), a n d z, E A.
Since TJ-(<)0>M)PX,C P ^ , and nJb)\Py3€ol=0, it follows that 7rw(a) |PX, =0,
i.e. aeJ,. For the reverse inclusion we need:

LEMMA 2.6. Let C be a C*-algebra, and J an ideal of C. Suppose that the quotient
C/J is prime and has no minimal projections. Then for any n = 2, 3 , . . . , there exist
vx,..., vn, e in C such that v*Vj = 0 if i ^j, vfv{e = e, and eiJ.

Proof. Since C/J has no minimal projections, there exists a self adjoint he C such
that h + J has an infinite spectrum in C/J. By using h it is shown that there exist
positive ax,..., an in C\J, of norm one such that a,a^ = 0 for i ̂ j. We may suppose
that there exists 6 , e ( C \ / ) + such that a1fo1 = fc1, and ||b,|| = l. Let f1 = a1. Now
suppose that we have defined D,ea,C\/ , bie(C\J)+ such that v*Vibk = bk and

| = 1, for i = 1 , . . . , k. Since ak+lCbk £ /, (as C/J is prime), choose a non-zero
vk+i e ak+iCbk\J, and assume that v*+xvk+i is a unit for some bk+xe{C\J)+ with
| j fofc -i-111 = 1 - Then 6 H 1 e bkCbk, and so ufu, is a unit for bk+i, i = l,...,k. This

concludes the proof with e = bn. •

Proof of Theorem 2.5. It only remains to show

Let y e G be such that Jy^Jt. Let beAa\JL. Now Aa'/JL is prime, since it has a
faithful irreducible representation. Hence applying lemma 2.5 to the C*-algebra
C = 6A"b* with J = J,nC, one obtains i>i , . . . , vd, e e bAab*, such that uf D, = 0 for
iVj, t;fu,e = e and ee bAab*\JLc: Aa\Jy. By theorem 2.1, there exists

x = \

such that x*xeA"\J,®l. Define

Then yeA"{y), and y*^ =£ xf uf u,x, =X xfx, = x*x £ Aa\JL® 1. Thus yEf.

COROLLARY 2.7. Under the assumptions of theorem 2.1, suppose in addition that
A"/Jl, has no minimal projections. Then for any beAa\Jy, yeG, there exists
xebAi(y) such that x*xe Aa\JL®\.

Proof. This follows from theorem 2.1 and the proof of theorem 2.5. •

COROLLARY 2.8. Let a be an action of a compact group G on a separable C*-algebra
A. Assume that there exists an a-invariant pure state on A, and let P be a non-empty
family of a-invariant pure states. Define an ideal J* for each <p e P, y £ G as in theorem
2.1, and let / f = P l ^ P J?. Suppose that A" is prime and has no minimal projections,
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and J> = {0}. Define

YP = {y e G: Vfo e Aa\{0}, 3x e bA"(y) s.t. x*x e Aa\{0}® 1 d{J.

Then

TP = {yeG:Jp
y={0}}.

Proof. Let yeG s.t. JP ^ {0}, and let b e JP\{0}. Then by the proof of theorem 2.5,
the hereditary C*-subalgebra B of A®Md generated by x*x forxe bA"d{y) satisfies

for any <p e P since b e J*. Hence

This implies that yiYP. Conversely suppose yeG, such that JP = {0}, and let
k A ° \ { 0 } . Then b£J*, for some cpe P, and by theorem 2.1, there exists x e bAa

d{y)
such that x*x6A"\J f®l<=A"\{0}®l . Thus yeTP.

THEOREM 3.1. Let G be a compact group and a an action of G on a separable simple
C* -algebra A. Assume that there exists an a-invariant pure state of A and let P be a
non-empty family of a-invariant pure states. Define

JP= 0 ker TT^A")
ipcP

and assume that the quotient algebra Aa/JP contains no miminal projections. Define

TP = {y e G| Vfo, c e Aa\JP, 3x e bA°(y)c, s.t. x*x e Aa\JP® 1}

and assume that FP = G.
Let a be an automorphism of A such that cr(x) = x for all x e A". Then there exists

ge G such that a = ag.

Remark. When G is abelian, P may be chosen so that JP = (0). (Let w be an
a-invariant pure state of A, and

P = {a)(a*°a):aeAa(y), yeG, <u(a*a) = l}).

Then the condition TP = G is equivalent to the Connes spectrum of a being G.

LEMMA 3.1. Adopt the assumptions of theorem 3.1 and also assume that Aa is prime
and that for any a-invariant hereditary C* -subalgebra B ofA one has M(B) n {Ba)' =
Cl where M(B) is the multiplier algebra of B. Ifu is an automorphism of A such that
o-(x) = x for any xe Aa, then there exists ge G such that a = ag.

Proof. Let u be a finite-dimensional unitary representation of G such that for some
n there exists xeA^(u) with x*xe Aa\{0}® 1. Then we claim that there is a d x d
unitary matrix A(u) such that a(x) = x\(u) for any xeA"(u), where a(x) =
(<T(X,), . . . , cr(xd)) and d is the dimension of u.
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Let xeA"n(u) be such that x*x = a® 1 6 A\{0}® 1. For small 5 > 0 define a
continuous function / on IR by

and by linearity elsewhere. Let y = xf{a) and e=f(a)af{a). Then yeA°(u) and
y*y = e®\. The non-zero hereditary C*-subalgebra

B = {beA: eb = be = b)

of A is a-invariant, and for beBa, one has yby* e Aa®Md. Then since yby* =
o-(y)ba(y*),

o-(y*)yb = a(y*)yby*y = a(y*)a(y)ba(y*)y

= ba(y*)y.

Denoting by p the open projection corresponding to B, one obtains that cr(y*)yp =
pa-(y*)ye M(B)®Mdn(Ba)'=Md. Let A be the matrix over C defined by
cr(y*)yp — A*/>- Then for be Ba one has that cr(yb) = ybA because

<r{b*y*) = <r{y*yb*y*) = cr{y*)yb*y*

= \*b*y*.

Further A is a unitary because \X*p = y*a(y)a(y*)yp = y*yy*yp = p. Define a
continuous function h on IR by

CO ts8

and by linearity elsewhere. Then since h(a)e B, and

it follows by approximation that for any xeA"(u) with x*xeA"®l, there exists
a d x d unitary matrix A such that o~{x) = xA.

Now fix a non-zero xe Aa
n{u) such that x*x = a® 1 e Aa® 1, and let A(u) be the

unitary matrix defined by <T(X) = XA(M). Let ye A"(u). Then since ybx*e Aa®Mn

for any be A", it follows that ybx* = cr(y)b\(u)*x*. Multiplying x from the right
one obtains that yba = a(y)ba\(u)*, i.e.

(a(y)-y\(u))ba=0

for any beAa. This implies that o-(y) = y\(u) because no non-zero element of A
is orthogonal to the ideal of Aa generated by a as Aa is prime. Since any y e A"(u)
can be regarded as an element of A°(u), this proves the assertion that cr(y) = y\(u)
for any ye A"(u).

Let &l be the set of finite-dimensional unitary matrix representations u of G such
that there is a non-zero xe A°(u) with x*xeAa®\ for some n. For each u e S one
has a unitary matrix A(u) such that o-(x) = xA(u) for xeA"(u). Now we claim that
3t is in fact the set of all finite-dimensional unitary representations of G and that
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A satisfies that

A(WM,W*) =

and A(M1) = A(M1), where u{e9i, and w is a unitary matrix. Then by Tannaka's
duality theorem (or by mimicking the proof of theorem 2.4 in [16] directly), one
would obtain ge G such that A(u) = ug for all u e R. Since the set of elements x,,
with (x,) eA°(u) , u e S is dense in A one would get the conclusion that a = aK.

By the assumption that F P = G, 2k contains all irreducible unitary representations
of G.

Let u, e 3? with i = 1, 2, and let x, e A"(«,-) be such that xfx, = a,® 1 e Aa\{0}® 1.
We may suppose that there is beAa such that alb = b, £>>0, and ||£>|| = 1. Since
Aa is prime, there is c e Aa such that a2cb ^ 0. Let yx = x,(foc*a2cb)'/2 and y2 = x2cb.
Then y{ e A^iiij) and

yf y, = bc*a2cb = y*y2,

and hence y = yt®y2e A°(u,©u2), with v*>'e A"\{O}®1. This proves that u,®
w 2 eS and that A(w,©u2) = A(u,)©A(u2), since a(y)= yl\(ul)®y2\(u2) =
(y,®y2)(X(ui)®X(u2)).

Let ue 2ft and let xe Aa
n{u) with x * x e A"\{0}® 1. Let w be a d ( u ) x d(u) unitary

matrix and let y = xw*. Then yeAa
n(wuw*) and >>*>> = x * x e A a \{0}® 1. Hence

wuw* e 2k and A (www*) = w\(u)w*, since a(y) = a(x)w* = xw*w\(u)w*.
The above three properties in particular imply that 2k is the set of all finite

dimensional unitary representations of G.
Let u, e 2li with ;' = 1, 2 and assume that w, are irreducible. Let x e A°(u,) be such

that x*x = a ® 1 e A ° \ / P ® 1. We may suppose that there is beAa\JP such that
b > 0 and ab = b. By the assumption that TP = G, there is y&bA"{u2) such that
y*yeAa\JP®\. Then xyz Aa

x{ux®u2) and (x>-)*(xy) = y*ye AQ\{0}® 1. This
proves that \(ux®u2) = A(u,)®A(u2) since

= 1 0y)*i(A(w,)®A(M2))Hii:/.

When M, e 2h are not irreducible, we may decompose u, into irreducible components
and apply the above properties to get the conclusion that A(M,® U2) = A(u,)® A(M2).

Let ue 91 and xe A°(u) be non-zero. Let y = x*T where T denotes transposition.
Then >>eA"(w) and A(w) = A(u) since a(y) = (X(u)*x*)T = y\{u).

Proof of Theorem 3.1. We have to prove that the two additional assumptions in
lemma 3.2 follow automatically from the assumptions of the theorem.

Since A is separable and Sp (a) = G, G must be countable. Let {y,} be a sequence
of elements of G such that each yeG appears infinitely often in {y,} and let
£ = t©-y, where L is the trivial representation of G. Let /3 be the infinite product
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action ®°li Ad £ of G on the UHF algebra C = ®Md((d where d(&) is the
dimension of £,. Then by theorem 3.1 in [8], there exists an a-invariant C*-
subalgebra B of A and a closed a**-invariant projection qe A** such that ge B',
qAq = Bq, and the C*-dynamical systems (Bq, G, a**\ Bq) and (C, G,/6) are
isomorphic.

Let T be the tracial state of C and define a state u> of A by

0){x) = r(qxq), xe A,

where we identified qAq = Bq with C Then we claim that TTw{A)"n Tra,(A
a)' = Cl.

Let e = 77U,(^)E T U ( A ° ) " , and let c(e) be the central support of e in ir^A")". We
first show that c(e) = 1.

Define a unitary representation u of G on $fu by

ugir0,(x)Q.w = TTul°ag(x)Q,0>, xeA,

by using the a-invariance of <o. Then c(e) commutes with wg, g e G, and if c{e) # 1,
there exist ye G and a set ( f t , . . . , & ) of orthonormal vectors in (1 — c(e))3ifa, such
that

where (y,j(g)) is a matrix representative of y. Let x 'e A be such that

| |wo,(x')fi<u-£I| |<e,

for small e > 0 and define

Then x = ( x , , . . . , xd)e A"(-y) and ^ . . . (x , - )^ -f,|| < de since

Let £;„ = ( u n l > . . . , fnd)e CS*(y) satisfy that {vni} is a central sequence in C and

(which can be chosen from the factors Mdi(l) with y, = y). Now uMl = unq, where
un e B. We define

' = 1, n

so that ( u n l , . . . , un d)e B"(y), and unjq = vnJ. Hence

and
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belongs to c{e)'Mlxl. Then we compute:

||7r<u(x1en)na)-7r(U(:x:,)fiJ|2

= rie^qxf xtqen) + r(qxf x,q) - T(<J,X?xxqen) - r{enqx^xxq),

which converges to d(d + l)~lT(qxfx1q) because T is a product state and r{en)-
{d + \y\ On the other hand,

Hence we obtain

Since \T(qxfx1q)l/2 —1| < de, this is a contradiction for small e > 0 , which implies
that c(e) = 1.

Let z 6 TT^iA)"n v^A")'. Then since e7r(U(A)"e = ^ ( B ) " ^ and eTrul{Aa)"e =
TTw{Ba)"e, one has that ze = eze 77u,(B)"en{7r(U(Ba)"e}' which is trivial by:

7rT(C)"n7rT(C")' = Cl.

To see this (see also [6]); note that any finite permutation automorphism among
the factors in the infinite tensor product C = ®T=i Mdiii) which commutes with j8
is implemented by a unitary of Ce [13]. Since those automorphisms leave T invariant,
they extend to automorphisms of TTT(C)". Thus any element of 77T(C)"n TT-T(C'J)'

is fixed under those automorphisms, and it is easy to check that they act ergodically
on 77T(C)" by using the fact that r is a separating factorial state and the permutation
group which commutes with fl acts ergodically on C.

Thus there is a AeC such that ze = Xe. Since the reduction Trm(A")'^ TTa){Aa)'e
is an isomorphism, because c(e) = 1, one obtains that z = A1, i.e. TTIO(A)"n ir^A")' =
Cl, as claimed. •

LEMMA 3.3 [12, lemma 2.1]. If N <= M are no« Neumann algebras and fa projection
in N, then (Nf)'n Mf = {N'n M)r.

Let 5 be an a-invariant hereditary C*-subalgebra of A. Then we claim that
M(B)n(Ba)' = C. By simplicity of A, TTU is faithful on A, and hence so is p = TT-̂  | B,
on fHw where f=na(eB) and eB is the open projection for B. Moreover, p, the
unique extension of p to B** is faithful on M(B). Thus

=/M/n(/M7)'
where M = 77(U(A)", and a denotes the unique extension of a to M. Since Mn
(Ma)' = C, it follows from lemma 3.3, that M(B)n(Ba)' = C.

By using that TTW(A)"n TTU1{A")' = Cl and the faithfulness of TT̂  it follows that
Aa is prime. This completes the proof of theorem 3.1.

THEOREM 3.4. Let G be a compact group and a an action on a C*-algebra A. Assume
that there exists a faithful irreducible representation 77 of A such that ir(A)" = n(Aa)".
Let a- be an automorphism of A such that cr(x) = x for all xe A". Then there exists
g £ G such that cr = ag.
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Remark. If we further assume that A is simple, separable, and unital, and that there
exists an automorphism T of A such that ||Tn(.x)_y-}>Tn(x)|| ->0 for all x,yeA, then
there exists an irreducible representation 77 of A such that n(A)"= ir(Aa)" (see
theorem 2.1 in [7]). Hence the present theorem gives an alternative proof to the
previous result in [15], at least when A is separable. The derivation version of the
above theorem was proved in [7] as theorem 1.1, and the method there can be
applied to the present situation if A is separable.

By taking G/ker a instead of G, we may assume, without loss of generality, that
a is faithful in the sequel.

LEMMA 3.5. Adopt the assumptions of theorem 3.4. Define a representation p of A by
the direct integral

r
1 = IT ° ag

Jc
dg

on the Hilbert space Hp = H^®L2(G). Then p(A)"= B{S€n)®Lx(G).

Proof. Since B{%W)®C1 =P(Aa)"^ p(A)"<= B(X7r)®Lcc(G), it suffices to prove
that p(A)"=>p®LX(G), where p is a fixed one-dimensional projection on %„.

Define a state <p of A by

(p(x)p = PTT(X)P, xe A.

Let {?„} be a decreasing net of positive elements of Aa such that lim ir(zv) = p (in
the strong topology). The existence of such {zv} follows from the fact that <p j Aa is
pure. Then defining a continuous function fx on G, for each x e A, by

it follows that p®fx = pp(x)p = lim p(zvxzv)e p(A)". Hence it suffices to prove that
{fx: x e A} separates the points of G, to conclude that p(A)"=>p®Lx(G). If there
are g and h in G such that fx(g) =fx(h) for all x e A, then one has that <p ° ag = <p ° ah.
Thus ag'h should be weakly extendible in the representation 77̂  ~ 77, which
is impossible as TT(AQ) is irreducible, unless agh' is the identity auto-
morphism. •

LEMMA 3.6. Under the assumptions of theorem 3.4, A" is prime, and for any non-zero
b, ce A", the spectrum of a restricted to bAc, written as Sp (a | Me) , is G.

Proof. Since TT\A" is a faithful irreducible representation, Aa is prime.
Let b,ceAa\{0}, and let x e Aj"(y)\{0} with ye G. Since X xfx, and I x,xf are

a-invariant, there exist b', e'e Aa such that

I x?b'*bb'x-)c'c*0.
i=l /

Thus bb'xc'c = (bb'xic'c)e bA"(y)c is non-zero, and this proves that Sp (d\bAc)
Sp (a). Note that lemma 3.5 immediately implies that Sp (a) = G.
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LEMMA 3.7. Under the assumptions of theorem 3.4, for any yeG and be Aa\{0},
there exists xe bA"(y) such that x*xe Aa\{O}®l, for some n =2, 3 , . . . .

Proof. Let B be the Jiereditary C*-subalgebra of A®Md generated by x*x with
xe bA"(y). It suffices to prove that B n A" ®C1 ^ {0}, because the rest of the proof
goes exactly as in lemma 2.2 and theorem 2.1.

To prove that BnAa®Cl ^{0}, we have to produce a pure state </» of Aa such
that any extension ijj of ijj to a state of A® Md{=> Aa ® 1) satisfies t/f|5#0.

Without loss of generality we assume that b is positive and there is a positive
non-zero ae A" such that ba = a. Fix a one-dimensional projection p in the range
of Tr(a), and note that Tr{b)p=p.

By lemma 3.5, pp(A)p, regarded as continuous functions on G, is dense in LX(G)
in the weak*-topology. By using the projections of A onto A"(y), it is shown that
pp(A(y))p is dense in, and so equal to, the finite-dimensional linear space spanned
by {yy- i,j = 1, • • •, d}. Thus by spectral calculations we can choose x e Ad(y) such
that

Let {zv} be a decreasing net of positive elements of A" such that zv<b and
lim n(zv) = p as in the proof of lemma 3.5. Let xv = zxj2xe bA^(y) and note that

\mipp(xfjzvxk,)p=p®yijyk,.

Let (p be the state of A defined by <p{x)p = pir(x)p, xe A, and let <A = <p | A". If /
is a functional in A** whose support is contained in p e A**, one has

l i m l / ( x £ z ^ ) = 5,,-l.
" &

Thus for any extension ijj of tA to a state of A® Md one has
lim tji(x*xv) = 1.

Since x*x,, e 5, this concludes the proof. •

Proof of theorem 3.4. Since 7r(A)"n 7r(Aa)' = Cl, it follows that M(B)n (£")' = Cl
for any a-invariant hereditary C*-subalgebra B of A, and that A" is prime. The
rest of the proof is similar to that of lemma 3.2 with

{yeG: V6eA"\{0}, 3xebA"(y) some n, x*xe Aa\{0}® 1}

playing the role of TP. •

4

THEOREM 4.1. Lef G be a compact abelian group and a an action of G on a simple
C*-algebra A. Assume that Aa is prime and M(A)n(Aa)' = C1. Let a be an
automorphism of A such that a(x) = x for x e A". Then there exists ge G such that
a = ag.

LEMMA 4.2. Let B be an a-invariant hereditary C*-subalgebra of A, and let B{ be
the C*-subalgebra of A generated by A"BAa (which is a hereditary algebra). Let eB

be the open projection in A** obtained as the limit of an approximate identity for B.
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Then the map

M(B1)n(B"y-»M(B)n(Ba)'

defined by multiplication by eB is a surjective covariant isomorphism.

Proof. Note that a induces an action on M(B,) by restricting (a|B,)** to M(BX).
We use the same symbol a to denote this action.

Since eB is a weak limit of an approximate identity for B" [4, lemma 4.1], one
has eB e (B°)** a A**. Thus any element z of M(Bj) n (B?)' commutes with eB and
one has that zeB e M(B) n (Ba)', because zeB- b = zbe B^n eBBeB = B,b- zeB = bze
B for b 6 B, and zeB • a = za = az = azeB for a £ B a (c B"). Hence the map is well
defined, and covariant.

Let c(eB) be the central support of eB in (A")**(<=• A**). Then the multiplication
map by eB:

c(eB)A**c{eB) n {c(eB)Aac(eB))'^ eBA**eB n (eBAaeB)'

is an isomorphism. Since c(eB) = eB], this is equivalent to saying that

Bt*n(B")'^B**n(Bay

is an isomorphism. If zeB e M(B), for z e B** n (fi°)', then we claim that z e M(B,).
For then zeBla = eBiaz for a s A", as ze (£?)', and so for beB, a,-e Aa:

zaxba2 = ax{zb)a2£ Bx etc.

This completes the proof. •

LEMMA 4.3. Le? B, B, i»e non-zero a-invariant hereditary C* -subalgebras of A with
B, e B. T7ien f/ie map

defined by multiplication by eBi is an injective covariant homomorphism.

Proof. The map is a well denned homomorphism since eB]e (B")**. The action a
is ergodic on M(B) n(Ba)', in the sense that the fixed point algebra is trivial because
M(B)an(Ba)'^M(Ba)r^(Bay, and Ba = A"nB is prime. Hence there are no
non-trivial a-invariant ideals in M(B)n(Ba)'. Multiplication eB2 preserves the
induced action, and so the kernel of this map is an a-invariant ideal which is either
zero or the whole algebra. Since the latter is impossible, the map must be injective.

LEMMA 4.4. Let yeG, and x a non-zero element of A"(y). Let B, = xAx*, and
B2 = x*Ax, and x = v\x\ be the polar decomposition of x with vv* being the range
projection of x. Then Ad (u*) gives a covariant isomorphism of'M(Bi) onto M(B2).

Proof. See the proof of lemma 2.4, noting that v e A"(y)**. •

LEMMA 4.5. Let B, be an a-invariant hereditary C*-subalgebra of A such that
AaBiA

a c Bj. Denote by B, v B2 the hereditary C*-subalgebra generated by B^ and
B2. Then

Sp (a | M(B!vB2)n((B,v B2)a)') = Sp (a | M(B1)n(B") ')nSp (a iM(B2)n(B2)')-
Proof. Let y e Sp (a | C,) n Sp (a | C2), where C, = M(Bt) n (Bf)'. By the ergodicity
of a on Cj there are unitaries vt in C"(y). Now B" are non-zero ideals of A", and
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so if B = B, n B2, then Ba = B" n B2 is a non-zero ideal. Now B, = B"AB", B =
BaABa, and so eBj, eB are central open projections of (Aa)**(<=: A**). Now v,eBe
Ca(y), where C = M(B)n {B01)', and so by ergodicity, there is a number A of
modulus one such that vxeB = Xv2eB. Define oeeB|VB,/l**eB|,B,, by

i + kv2{eB2-eB).

Now note that eB = eB] eB,. Because since eB, eBt, eB, are mutually commuting, eB < eB|

implies that eB<eBxeBj, and moreover eBieB,e (B°)**(B°)** = (Ba)** implies
^B.^S, — eB. Furthermore note that B" + B° = (B, v B2)

a. Because B, c B, v B2 implies
Bi+B^jB^ B2)

a. Moreover B^BfAB" are contained in the hereditary C*-
subalgebra (B° + B2)A(B" + B2), and so B, v B2<= (Bf + B2)A(B" + B2). Con-
sequently (B, v B2)a c Bf + B?. Thus (B, v B2)a = Bf v B2 , and in particular eBivB, =
eBi v eB,. Hence u is a unitary in eBivB,A**eBlvB2 and ve ((B, v B2)a)'. Finally v is
a multiplier of B, v B2 as:

ffe, = Vibt,

vb2 = \v2b2,

vb,xb2= vtb,xb2,

vb2xb, = kv2b2xbx,

for b, £ B,, b2 e B2, x s A etc. Thus D£M(BlvB2)n((B,v B2)")'and ag(v) = (g, y)u,
and so ye Sp (a |M(B, v B2)n ((B, v B2)°)'). The reverse inclusion follows from
lemma 4.3. •

Proof of theorem 4.1. We may assume that a is faithful. Since A is simple and /l°
is prime, we know from [11, 8.10.4] that Sp (a) is the same as the Connes spectrum
F(a). Since the latter is a group and a is faithful we see that F(a) = G. Thus
inspecting the proof of lemma 3.2, we see that we only have to show for any
a-invariant hereditary C*-subalgebra B of A that M(B) n (B'v)' = Cl. Suppose
there exists an a-invariant hereditary C*-subalgebra BQ of A such that M(B0)n
(Bo)' is not trivial. By lemma 4.2 we can assume AaB0A

a c Bo, and since a is
ergodic on M(B0) n (Bo)', Sp (a | M(B0) n (B?)') = // is not trivial.

Let {B,} be an increasing family of a-invariant hereditary C*-subalgebras such
that AaBlA

acBl, Bo^ B,, and Sp (a |M(B,)n (Bf)') = H. Let B be the hereditary
C*-subalgebra generated by B,. Then B is a-invariant, /laBAa <= B, and we claim
that Sp (a\M(B) n(Ba)') = H. Let yeH, and choose a unitary f, e
(M(B,)n(B°)')°(y), such that vieBn= v0, where i>0 is a fixed unitary in (M(B0)n
(Bo)')"(y). If B,<= B,, then u, = t^,eB, because of the ergodicity of a. Define v by
reB = Vj, for all i, in eA**e, where e is the supremum of (eB ). Since e = eB, and i;
is a multiplier for u B,, it is easy to conclude that ve M(B) n (B")', and ye
Sp (a | M(B) n (Ba)'). Thus Sp (a | M{B) n Ba)') = H using lemma 4.3.

Let B be a maximal a-invariant heredity C*-subalgebra A such that AaBAa c B,
B0<=B and Sp (a |M(B)n (Ba)') = H. We claim that B = A, which contradicts
M(A)n(Aa)' = Cl. Note first that the hereditary C*-subalgebra Ax generated by
{xBox*: x e A"(y), y e G} is equal to A. Because, as (X *,)(£ ^ )* s 2" X x,-xf for a
finite sequence (x,-) of length n, it follows that A, =>xBox* for any x in the linear
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space AF spanned by Aa(y), ye G. Since AF is dense in A, this implies that A, is
equal to the ideal generated by Bo, and hence, since A is simple, it follows that
A, = A. Suppose B # A, and then there must exist y e G, and x e Aa(y) such that
xBox*£ B. By replacing x by xe,,, where ev is an approximate identity for Bo, we
can assume x*xeB0, and so Bj = x*xBox*x<= Bo. Then by lemma 4.3 we have
Sp (a | M(B,) r> (Bf)') => Sp (a | M(B0) n (Bo)') = H. Moreover by lemma 4.4,

Sp (a | M(B,) n (Bf)') = Sp (a Af (xBox*) n ((xBox*)Q)'),

and by lemma 4.2

Sp (a | M(xBox*) n ((xBox*)a)') = Sp (a | M(B2) n (B2°)'),

if B2 = A"xBox*A". Hence Sp (M(B v B2) n ((B v B2)
a)') = H by lemma 4.5, which

contradicts maximality of B as B2^ B. This contradiction implies that M ( B ) n
(Ba) ' = C for any a-invariant hereditary C*-subalgebra B of A.
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