Ergodic Theory and Dynamical Systems

http://journals.cambridge.org/ETS
Additional services for Ergodic Theory and Dynamical Systems:

Email alerts: Click here
Subscriptions: Click here
Commercial reprints: Click here
Terms of use : Click here

Ergodic theory and dynamical systems

Duality for automorphisms on a compact C^{*}-dynamical system

David E. Evans and Akitaka Kishimoto

Ergodic Theory and Dynamical Systems / Volume 8 / Issue 02 / June 1988, pp 173-189
DOI: 10.1017/S0143385700004405, Published online: 19 September 2008
Link to this article: http://journals.cambridge.org/abstract S0143385700004405

How to cite this article:

David E. Evans and Akitaka Kishimoto (1988). Duality for automorphisms on a compact $C^{*}-$ dynamical system. Ergodic Theory and Dynamical Systems, 8, pp 173-189 doi:10.1017/ S0143385700004405

Request Permissions: Click here

Duality for automorphisms on a compact C^{*}-dynamical system

DAVID E. EVANS* and AKITAKA KISHIMOTO $\dagger \ddagger$
University of Warwick, Coventry CV4 7AL, England

(Received 7 May 1986 and revised 15 June 1987)

1. Introduction

When considering an action α of a compact group G on a C^{*}-algebra A, the notion of an α-invariant Hilbert space in A has proved extremely useful $[\mathbf{1 , 4 , 8}, \mathbf{1 4}, \mathbf{1 7}$, 18]. Following Roberts [13] a Hilbert space in (a unital algebra) A is a closed subspace H of A such that $x^{*} y$ is a scalar for all x, y in H. For example if G is abelian, and α is ergodic in the sense that the fixed point algebra A^{α} is trivial, then \boldsymbol{A} is generated as a Banach space by a unitary in each of the spectral subspaces

$$
A^{\alpha}(\gamma)=\left\{x \in A: \alpha_{g}(x)=\langle\mathrm{g}, \gamma\rangle x, g \in G\right\}, \quad \gamma \in \hat{G},
$$

which are then invariant one dimensional Hilbert spaces. If G is not abelian, then Hilbert spaces (which are always assumed to be invariant) do not necessarily exist, even for ergodic actions. For non-ergodic actions, it is also desirable to relax the requirement to $x^{*} y$ being a constant multiple of some positive element of A^{α}. More generally, if γ is a finite dimensional matrix representation of G and n is a positive integer, we define $A_{n}^{\alpha}(\gamma)$ to be the subspace

$$
\left\{x \in A \otimes M_{n d}:\left(\alpha_{g} \otimes 1\right) x=x\left(1 \otimes \gamma_{g}\right), \quad g \in G\right\},
$$

where d is the dimension $d(\gamma)$ of γ, and $M_{n d}$ denotes $n \times d$ complex matrices. (Usually we will denote the extended action of α_{g} to $\alpha_{g} \otimes 1$ on $A \otimes M_{n d}$ again by α_{g}.) Let $A^{\alpha}(\gamma)=\left\{x_{i}:\left(x_{i}\right) \in A_{1}^{\alpha}(\gamma)\right\}$.

If $x, y \in A_{n}^{\alpha}(\gamma)$, then $x y^{*} \in A^{\alpha} \otimes M_{n}$, but $x^{*} y$ is not necessarily in $A^{\alpha} \otimes M_{d}$, even for ergodic actions. For ergodic actions, the situation of full multiplicity, where there exists a unitary in $A_{d}^{\alpha}(\gamma)$, has been studied by Wasserman [18]. Techniques exist for handling C^{*}-dynamical systems, where Hilbert spaces exist in this sense, or at least when there is one non-zero x in $A_{n}^{\alpha}(\gamma)$ for some n, and $\gamma \in \hat{G}$, such that $x^{*} x=1$ or more generally $x^{*} x \in A^{\alpha} \otimes 1,[3,8]$. (If such x exists, the space spanned by the d column vectors of x is a Hilbert space.) Note also that Araki et al. [1, 17] avoided such difficulties for von Neumann algebras, by stabilising for example.

[^0]Our first result, namely theorem 2.1 can be regarded as a technique for generating Hilbert spaces. Let α be an action of a compact group G on a separable C^{*}-algebra A, for which there exists an α-invariant pure state ω with GNS triple (π, H, Ω). If $H^{u}(\gamma)$ are spectral subspaces for the induced action u of G on H, ρ the restriction of π to A^{α}, we let $J_{\gamma}^{\varphi}=J_{\gamma}$ denote the ideal $\operatorname{ker}\left(\rho \mid H^{u}(\gamma)\right)$, if $\gamma \in \hat{G}$. Then we show in $\S 2$ that for any $b \in A^{\alpha} \backslash J_{\gamma}$ there exists $x \in \overline{b A_{d}^{\alpha}(\gamma)}$ such that $x^{*} x \in\left(A^{\alpha} \backslash J_{\iota}\right) \otimes 1$, where ι denotes the trivial representation. In [8], a Γ-spectrum was introduced which was useful in obtaining a covariant version of Glimm's theorem on non-type I C^{*}-algebras. In theorem 2.5 , we characterise such a Γ-spectrum in terms of the kernels $\left\{J_{\gamma}: \gamma \in \hat{G}\right\}$. More precisely, if there exists a pure invariant state ω as before, let Γ_{ω} denote

$$
\left\{\gamma \in \hat{G}: \forall b, c \in A^{\alpha} \backslash J_{t}, \exists x \in \overline{b A_{1}^{\alpha}(\gamma) c}, \quad \text { such that } \quad x^{*} x \in A^{\alpha} \backslash J_{\iota} \otimes 1_{d}\right\} .
$$

If in addition to A being separable, A^{α} / J_{i} has no minimal projections, then

$$
\Gamma_{\omega}=\left\{\gamma \in \hat{G}: J_{\gamma} \subset J_{\iota}\right\} .
$$

This could be used to compute the Γ-spectrum in certain situations, e.g. for product type actions on UHF algebras (cf. [8, proposition 4.1]).

Versions of Tannaka duality in an operator algebraic context have been obtained in $[1,17,10,15,2]$. Suppose σ is an automorphism of a von Neumann algebra M, on which there is an action α of a compact group G such that $\sigma \mid M^{\alpha}=i d$. Then it is shown in $[1,17]$ that if there exists an action τ of a group H which commutes with α, and is ergodic in the sense that the fixed point algebra M^{\top} is trivial, then there exists $g \in G$ such that $\sigma=\alpha(g)$. In particular, if $M \cap\left(M^{\alpha}\right)^{\prime}=\mathbb{C}$, then we could take τ to be the action of the unitary group of M^{α} by inner automorphisms. In [10, $\mathbf{1 5}, 2] C^{*}$-versions of Tannaka duality have been obtained for an automorphism σ of a C^{*}-algebra A, which is trivial on the fixed point algebra A^{α} of an action α of a compact group G. If α commutes with an action τ which is ergodic in the sense of being topologically transitive [10] when G is abelian, or strongly topologically transitive [2] when G is not necessarily abelian, then there exists $g \in G$ such that $\sigma=\alpha(\mathrm{g})$. In § 3 and $\S 4$ we prove versions of Tannaka duality in C^{*}-settings, partly through exploiting the techniques of $\S 2$ in manufacturing Hilbert spaces. Suppose α is an action of a compact group G on a C^{*}-algebra A, and σ an automorphism of A such that $\sigma \mid A^{\alpha}=i d$. Then we show that there exists $g \in G$ such that $\sigma=\alpha(g)$ in each of the following situations:
(a) (Theorem 3.1). A is separable and simple. There is a non-empty family P of α-invariant pure states such that if $J_{P}=\bigcap_{\varphi \in P} J_{i}^{\varphi}, A^{\alpha} / J_{P}$ contains no minimal projections and for all $\gamma \in \hat{G}, b, c \in A^{\alpha} \backslash J_{p}$, there exists $x \in b A_{1}^{\alpha}(\gamma) c$ such that $x^{*} x \in A^{\alpha} \backslash J_{p} \otimes 1$.
(b) (Тheorem 3.4). There exists a faithful irreducible representation π of A such that $\pi(A)^{\prime \prime}=\pi\left(A^{\alpha}\right)^{\prime \prime}$.
(c) (Theorem 4.1). G is abelian, A is simple, A^{σ} is prime, and $M(A) \cap\left(A^{\alpha}\right)^{\prime}=\mathbb{C} 1$.

Note that under the hypotheses of theorem 3.4, the unitary group of $M\left(A^{\alpha}\right)$ acts strongly topologically transitive on A, and so theorem 3.4 could be deduced from
[2]; (see [5]). However the interest in our proof is that we actually manufacture Hilbert spaces (see lemma 3.7).

The C^{*}-algebras studied in this paper are inherently non-type I. In [5] a systematic study is made for abelian group actions of the relations between the covariant version of Glimm's theorem in [8], the existence of pure invariant states in (a), its antithesis, namely the existence of highly non-covariant representations in (b), topological transitivity of the unitary group of $M\left(A^{\alpha}\right)$ in (c), and duality.

2
Theorem 2.1. Let α be an action of a compact group G on a separable C^{*}-algebra A. Suppose there exists an α-invariant pure state ω of A, and define a unitary representation u of G on \mathscr{H}_{ω} by $u_{g} \pi_{\omega}(x) \Omega_{\omega}=\pi_{\omega} \circ \alpha_{g}(x) \Omega_{\omega}, x \in A$. Denote by ρ the restriction of π_{ω} to A^{α}, and P_{γ} the spectral projection of u corresponding to $\gamma \in \hat{G}$, and let $J_{\gamma}=\operatorname{ker}\left(\rho \mid P_{\gamma} \mathscr{H}_{\omega}\right)$. Then for any $b \in A^{\alpha} \backslash J_{\gamma}$, there exists $x \in \overline{b A_{d}^{\alpha}(\gamma)}$ such that

$$
x^{*} x \in A^{\alpha} \backslash J_{l} \otimes 1,
$$

where ι denotes the trivial representation of G, and $d=\operatorname{dim}(\gamma)$.
Lemma 2.2. Let $b \in A^{\alpha} \backslash J_{\gamma}$, and B be the hereditary C^{*}-subalgebra of $A \otimes M_{d}$ generated by $\left\{x^{*} x: x \in b A_{1}^{\alpha}(\gamma)\right\}$. Then $B \cap\left(A^{\alpha} \otimes \mathbb{C} 1\right) \not \subset J_{t}$.
Proof. We identify $a \in A$ with $a \otimes 1$ in $A \otimes M_{d}$. Then $A_{1}^{\alpha}(\gamma) A^{\alpha} \subset A_{1}^{\alpha}(\gamma)$, and so $A^{\alpha} B A^{\alpha} \subset B$.

If p is the open projection of $\left(A \otimes M_{d}\right)^{* *}$ corresponding to B, then

$$
S=\left\{\varphi: \text { pure state of } A \otimes M_{d}, \quad \varphi(p)=0\right\}
$$

is the set of pure states φ of $A \otimes M_{d}$ such that $\varphi \mid B=0$. Hence B_{+}coincides with

$$
\begin{equation*}
\left\{x \in\left(A \otimes M_{d}\right)_{+}: \varphi(x)=0, \quad \text { for all } \varphi \in S\right\} \tag{*}
\end{equation*}
$$

for if $x \in$ the set $(*)$, then $\psi[(1-p) x(1-p)]=0$ for all states ψ on $A \otimes M_{d}$, and so $x(1-p)=0$, and $x=p x p \in\left(A \otimes M_{d}\right) \cap p\left(A \otimes M_{d}\right)^{* *} p=B$. Define

$$
\mathrm{I}=\bigcap_{\varphi \in S} \operatorname{Ker} \pi_{\varphi \mid A^{\alpha}},
$$

which is an ideal of A^{α}. If $x \in \mathrm{I}_{+}$, then $\varphi(x)=0$ for all $\varphi \in S$, and so $x \in B$, i.e. I $\subset B$. Conversely, if $x \in B \cap A^{\alpha}$, then $a x a^{\prime} \in B \cap A^{\alpha}$, for $a, a^{\prime} \in A^{\alpha}$, and so $\varphi\left(a x a^{\prime}\right)=0$ for all $\varphi \in S$. Hence $x \in \operatorname{Ker} \pi_{\left(\varphi \mid A^{\alpha}\right)}$ i.e. $x \in \mathrm{I}$. Thus $\mathrm{I}=B \cap A^{\alpha}$. Suppose $\mathrm{I} \subset J_{\iota}$. Then $\omega \mid A^{\alpha}$ can be regarded as a state of $\left(\oplus_{\varphi \in S} \pi_{\left(\varphi \mid A^{\alpha}\right)}\right)\left(A^{\alpha}\right)$. Since $\omega \mid A^{\alpha}$ is pure, it is a weak*-limit of some net φ_{ν} of vector states of $\left(\oplus_{\varphi \in S} \pi_{\left(\varphi \mid A^{\alpha}\right)}\left(A^{\alpha}\right)\right.$ on $\oplus_{\varphi \in S} \mathscr{H}_{\left(\varphi \mid A^{\alpha}\right)}$, [9]. For each ν, there exist $\xi_{\nu}^{\varphi} \in\left[\pi_{\varphi}\left(A^{\alpha}\right) \Omega_{\varphi}\right]^{-}$such that $\sum_{\varphi \in S}\left\|\xi_{\nu}^{\varphi}\right\|^{2}=1$, and

$$
\varphi_{\nu}(a)=\sum_{\varphi \in S}\left\langle\pi_{\varphi}(a) \xi_{\nu}^{\varphi}, \xi_{\nu}^{\varphi}\right\rangle, \quad a \in A^{\alpha}\left(=A^{\alpha} \otimes 1\right) .
$$

Define a state $\overline{\varphi_{\nu}}$ on $A \otimes M_{d}$ by

$$
\overline{\varphi_{\nu}}(x)=\sum_{\varphi \in S}\left\langle\pi_{\varphi}(x) \xi_{\nu}^{\varphi}, \xi_{\nu}^{\varphi}\right\rangle, \quad x \in A \otimes M_{d}
$$

Since for $x \in B$ and $a \in A^{\alpha}, a^{*} x^{*} x a \in B$, one has $\pi_{\varphi}(x) \pi_{\varphi}(a) \Omega_{\varphi}=0$, for any $\varphi \in S$. Hence $\pi_{\varphi}(x) \xi_{\nu}^{\varphi}=0$, for $x \in B$, and so $\overline{\varphi_{v}} \mid B=0$. Let ψ be a weak*-limit point of $\left\{\varphi_{\nu}\right\}$.

Then $\psi\left|A^{\alpha}=\omega\right| A^{\alpha}$, and $\psi \mid B=0$. Hence $\omega=\int(\psi \mid A) \circ \alpha_{g} d g$, and since ω is pure, we must have $\omega=\psi \mid A$. Hence there exists a state f of M_{d} such that $\omega \otimes f=\psi,[16]$. Now we show that $(\omega \otimes f) \mid B \neq 0$, a contradiction.

Since $b b^{*} \in A^{\alpha} \backslash J_{\vec{y}}$ there are positive continuous functions h_{1}, h_{2} on \mathbb{R} such that $\quad h_{1}(0)=h_{2}(0)=0, \quad h_{1} h_{2}=h_{2}, \quad$ and $\quad h_{1}\left(b b^{*}\right), \quad h_{2}\left(b b^{*}\right) \in A^{\alpha} \backslash J_{\gamma}$. Since $V=$ [$\left.\pi_{\omega}\left(h_{2}\left(b b^{*}\right)\right) P_{\gamma} \mathscr{H}_{\omega}\right]^{-}$is a non-zero u-invariant subspace of $P_{\gamma} \mathscr{H}_{\omega}$, there exists a set $\left(\xi_{1}, \ldots, \xi_{d}\right)$ of unit vectors such that $\xi_{i} \in V$ and

$$
u_{g} \xi_{i}=\sum_{j=1}^{d} \gamma_{j i}(g) \xi_{j} .
$$

By Kadison's transitivity theorem, there is an $x_{0} \in A$ such that $\left\|x_{0}\right\|=1, \pi_{\omega}\left(x_{0}\right) \Omega_{\omega}=$ $\xi_{1}, \pi_{\omega}\left(x_{0}^{*}\right) \xi_{1}=\Omega_{\omega}$ and $\pi_{\omega}\left(x_{0}^{*}\right) \xi_{i}=0$, for $i=2, \ldots, d$, since $\left(\Omega_{\omega}, \xi_{1}, \ldots, \xi_{d}\right)$ is an orthonormal family. Define

$$
x_{j}=d \int \overline{\gamma_{j 1}(g)} \alpha_{g}\left(x_{0}\right) d g
$$

Then $x=\left(x_{1}, \ldots, x_{d}\right) \in A_{1}^{\alpha}(\gamma)$, and

$$
\pi_{\omega}\left(x_{j}\right) \Omega_{\omega}=\xi_{j}, \quad \pi_{\omega}\left(x_{j}^{*}\right) \xi_{i}=\delta_{i j} \Omega_{\omega} .
$$

Since $\pi_{\omega}\left(h_{1}\left(b b^{*}\right)\right) \xi_{i}=\xi_{i}$, for $i=1, \ldots, d$, this implies that

$$
\pi_{\omega}\left(x_{i}^{*} h_{1}\left(b b^{*}\right)^{2} x_{j}\right) \Omega_{\omega}=\delta_{i j} \Omega_{\omega}
$$

Thus since $y=h_{1}\left(b b^{*}\right) x \in \overline{b A_{1}^{\alpha}(y)}$, one obtains that $y^{*} y \in B,(\omega \otimes f)\left(y^{*} y\right)=1$, and so $(\omega \otimes f) \mid B \neq 0$. (In fact letting $\left\{z_{k}\right\}$ be a decreasing sequence of positive elements of A^{α} such that $\left\|z_{k} a z_{k}-\omega(x) z_{k}^{2}\right\| \rightarrow 0$ for $x \in A$ and $\omega\left(z_{k}\right)=1$, [11], one has that $y z_{k} \in \overline{b A_{1}^{\alpha}(\gamma)},\left\|z_{k} y^{*} y z_{k}\right\| \rightarrow 1$, and $(\omega \otimes f)\left(z_{k} y^{*} y z_{k}\right)=1$. This implies $\left.\|(\omega \otimes f) \mid B\|=1\right)$. This contradiction leads to the conclusion that $I \not \subset J_{l}$.

Lemma 2.3. Let $b \in A^{\alpha} \backslash J_{\gamma}$, and B be the hereditary C^{*}-subalgebra of $A \otimes M_{d}$ generated by $\left\{x^{*} x: x \in b A_{1}^{\alpha}(\gamma)\right\}$. Then

$$
\left\{a \otimes 1 \in A^{\alpha} \otimes \mathbb{C}: \exists x_{i} \in \overline{b A_{1}^{\alpha}(\gamma)}, \quad \text { such that } \quad \sum_{i=1}^{n} x_{i}^{*} x_{i}=a \otimes 1\right\}
$$

is dense in the positive part of $B \cap\left(A^{\alpha} \otimes \mathbb{C} 1\right)$.
Proof. Let $a \otimes 1$ be a non-zero positive element of $B \cap\left(A^{\alpha} \otimes \mathbb{C} 1\right)$. Then for any $\varepsilon>0$, there exist $x_{i}, y_{i} \in b A_{1}^{\alpha}(\gamma)$ and $z_{i} \in A \otimes M_{d}$ such that

$$
\left\|a \otimes 1-\sum_{i=1}^{n} x_{i}^{*} z_{i} y_{i}\right\|<\varepsilon .
$$

Define f on \mathbb{R} by $f(t)=\max (t-\delta, 0)$, for $\delta \in(\varepsilon,\|a\|)$, and we shall show that $f(a) \otimes 1$ is of the form $\sum x_{i}^{*} x_{i}$, which completes the proof since $\|a-f(a)\| \leq \delta$. Let p be the spectral projection of a corresponding to $[\delta,\|a\|]$. Since

$$
\left\|p a p \otimes 1-\sum_{i=1}^{n}(p \otimes 1) x_{i}^{*} z_{i} y_{i}(p \otimes 1)\right\|<\varepsilon
$$

one has

$$
\begin{aligned}
p a p \otimes 1 & \leq \frac{\|a\|}{2(\delta-\varepsilon)}\left\{\sum_{i=1}^{n}(p \otimes 1)\left(x_{i}^{*} z_{i} y_{i}+y_{i}^{*} z_{i}^{*} x_{i}\right)(p \otimes 1)\right\} \\
& \left.\leq C \sum_{i=1}^{n}\{p \otimes 1) x_{i}^{*} x_{i}(p \otimes 1)+(p \otimes 1) y_{i}^{*} y_{i}(p \otimes 1)\right\},
\end{aligned}
$$

if $C=\left(\max _{i=1}^{n}\left\|z_{i}\right\|\right)\|a\| / 2(\delta-\varepsilon)$.
Letting $g(t)=f(t)^{1 / 2} t^{-1 / 2}$ for $t>0$, and $g(t)=0$ for $t \leq 0$, and multiplying $g(a)$ from both sides of the above inequality we obtain:

$$
f(a) \otimes 1 \leq C \sum_{i=1}^{2 n}(g(a) \otimes 1)\left(x_{i}^{*} x_{i}\right)(g(a) \otimes 1)
$$

where $x_{n+i}=y_{i}$, for $i=1,2, \ldots, n$. Since $x_{i} g(a) \otimes 1 \in b A_{1}^{\alpha}(\gamma)$, the conclusion of Lemma 2.3 follows from Lemma 2.4:

Lemma 2.4. Suppose a is a positive element of A^{α}, and b an element of A^{α} such that there exist $x_{i} \in b A_{1}^{\alpha}(\gamma), i=1, \ldots, n$, with $a \otimes 1 \leq \sum_{i=1}^{n} x_{i}^{*} x_{i}$. Then there exist $y_{i} \in$ $b A_{1}^{\alpha}(\gamma), i=1, \ldots, n$ such that

$$
a \otimes 1=\sum_{i=1}^{n} y_{i}^{*} y_{i}
$$

Proof. Let

$$
x=\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right) \in A_{n}^{\alpha}(\gamma)
$$

and $x=\left(x x^{*}\right)^{1 / 2} u$ be the polar decomposition of x in $A^{* *} \otimes M_{n d}$, where $M_{n d}$ is the space of $n \times d$ matrices, $u u^{*}$ is the support projection of $\left(x x^{*}\right)^{1 / 2}$ in $A^{* *} \otimes M_{n}$, and $u \in A_{n}^{\alpha}(\gamma)^{* *}$. Let B_{1} be the hereditary C^{*}-subalgebra of $A \otimes M_{n}$ generated by $x x^{*}$, and B_{2} the hereditary C^{*}-subalgebra of $A \otimes M_{d}$ generated by $x^{*} x$. We then have an isomorphism of B_{1} onto B_{2} defined by

$$
z \in B_{1} \rightarrow u^{*} z u \in B_{2} .
$$

If $z=\left(x x^{*}\right)^{1 / 2} y\left(x x^{*}\right)^{1 / 2}$, with $y \in A \otimes M_{n}$, then $u^{*} z u=u^{*}\left(x x^{*}\right)^{1 / 2} y\left(x x^{*}\right)^{1 / 2} u=$ $x^{*} y x \in B_{2}$. Hence $u^{*} B_{1} u \subset B_{2}$ as $\left(x x^{*}\right)^{1 / 2} A \otimes M_{n}\left(x x^{*}\right)^{1 / 2}$ is dense in B_{1}. Similarly, one can show $u B_{2} u^{*} \subset B_{1}$.

Since $a \otimes 1 \leq x^{*} x$, one has $a \otimes 1 \in B_{2}$, and

$$
a \otimes 1=\left(a^{1 / 2} \otimes 1\right) u^{*} u\left(a^{1 / 2} \otimes 1\right)
$$

Moreover, as $y=u\left(a^{1 / 2} \otimes 1\right) \in A_{n}^{\alpha}(\gamma)^{* *}$, the lemma will follow, if we can show that $y \in A \otimes M_{n d}$. This follows since u is a multiplier in the sense that $u B_{2} \subset A \otimes M_{n d}$, and $B_{1} u \subset A \otimes M_{n d}$. Hence $y \in A \otimes M_{n d}$, and writing

$$
y=\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right)
$$

one obtains $a \otimes 1=\sum_{i=1}^{n} y_{i}^{*} y_{i}$. Since $y y^{*}=u(a \otimes 1) u^{*} \in B_{1}$, and $B_{1} \subset b A b^{*} \otimes M_{n}$, one has that $y_{i} y_{i}^{*} \in \overline{b A b^{*}}$, i.e. $y_{i} \in \overline{b A} \otimes M_{1 d}$.
Proof of Theorem 2.1. By lemmas 2.2 and 2.3, we see that for any $b \in A^{\alpha} \backslash J_{\gamma}$, there exists $x \in \overline{b A_{n}^{\alpha}(\gamma)}$ such that $x^{*} x \in\left(A^{\alpha} \backslash J_{t}\right) \otimes \mathbb{C} 1$. Let n be the smallest possible integer for which there exists $a \in\left(A^{\alpha} \backslash J_{t}\right)_{+}$and $x_{i} \in \overline{b A_{1}^{\alpha}(\gamma)}$ such that $a \otimes 1=\sum_{i=1}^{n} x_{i}^{*} x_{i}$. Take such a and x_{i}, and we may assume that there exists $a^{\prime}, a^{\prime \prime} \in\left(A^{\alpha} \backslash J_{t}\right)_{+}$such that $a a^{\prime}=a^{\prime}, a^{\prime} a^{\prime \prime}=a^{\prime \prime},\|a\|=1$. Since $\rho\left(a^{\prime}\right) \rho\left(a^{\prime \prime}\right)=\rho\left(a^{\prime \prime}\right) \neq 0, \operatorname{Ker}\left(\rho\left(a^{\prime}\right)-1\right) \neq 0$, and so by Kadison's transitivity theorem, we can find v in A^{α} such that $\rho(v) \Omega \in$ $\operatorname{Ker}\left(\rho\left(a^{\prime}\right)-1\right)$, and $\omega\left(v^{*} a^{\prime} v\right)=1$.

For $\varphi=\omega\left(v^{*} \cdot v\right)$, let R_{φ} be the map of $A \otimes M_{d}$ onto M_{d} defined by $R_{\varphi}\left[z_{i j}\right]=$ $\left[\varphi\left(z_{i j}\right)\right],\left[z_{i j}\right] \in A \otimes M_{d}$. Then

$$
\sum_{i=1}^{n} R_{\varphi}\left(x_{i}^{*} x_{i}\right)=1=\left(\begin{array}{ccc}
1 & & 0 \\
& \ddots & \\
0 & & 1
\end{array}\right)
$$

Since φ is a pure state of A, and A is separable, there exists a decreasing sequence z_{k} of positive elements of A such that $z_{1}=a$, and the limit of z_{k} is the support projection of φ. We may assume that the z_{k} are α-invariant, and $z_{k} z_{k+1}=z_{k+1}$ for $k=1,2, \ldots$. Then for any $x \in A,\left\|z_{k} x z_{k}-\varphi(x) z_{k}^{2}\right\| \rightarrow 0$ as $k \rightarrow \infty$, [11]. If $\left\|R_{\varphi}\left(x_{i}^{*} x_{i}\right)\right\|<$ 1 for some i, then for large $k, z_{k} x_{i}^{*} x_{i} z_{k}<1$. But

$$
z_{k+1}^{2}-z_{k+1} x_{i}^{*} x_{i} z_{k+1} \geq\left(1-\left\|z_{k} x_{i}^{*} x_{i} z_{k}\right\|\right) z_{k+1}^{2}
$$

and so from

$$
z_{k+1}^{2}=\sum_{j=1}^{n} z_{k+1} x_{j}^{*} x_{j} z_{k+1}
$$

we deduce

$$
z_{k+1}^{2} \leq\left(1-\left\|z_{k} x_{i}^{*} x_{i} z_{k}\right\|\right)^{-1} \sum_{j \neq i} z_{k+1} x_{j}^{*} x_{j} z_{k+1}
$$

This contradicts Lemma 2.4, as $z_{k+1}^{2} \in A^{\alpha} \backslash J_{\iota}$, and $x_{j} z_{k+1} \in b A_{1}^{\alpha}(\gamma)$.
Hence $\left\|R_{\varphi}\left(x_{i}^{*} x_{i}\right)\right\|=1$, for all $i=1, \ldots, n$. Then as $R_{\varphi}\left(x_{i}^{*} x_{i}\right)$ is a positive matrix, $\operatorname{Tr} R_{\varphi}\left(x_{i}^{*} x_{i}\right) \geq 1$, and so

$$
n \leq \operatorname{Tr} \sum_{i=1}^{n} R_{\varphi}\left(x_{i}^{*} x_{i}\right)=d
$$

Theorem 2.5. Let α be an action of a compact group G on a separable C^{*}-algebra A. Suppose there exists an α-invariant pure state ω of A, and define $J_{\gamma}, \gamma \in \hat{G}$ as in Theorem 2.1. Let Γ_{ω} denote

$$
\left\{\gamma \in \hat{G}: \forall b, c \in A^{\alpha} \backslash J_{\iota}, \exists x \in \overline{b A_{1}^{\alpha}(\gamma) c} \quad \text { such that } \quad x^{*} x \in A^{\alpha} \backslash J_{\iota} \otimes 1_{d(\gamma)}\right\} .
$$

Suppose that A^{α} / J_{\imath} has no minimal projections. Then

$$
\Gamma_{\omega}=\left\{\gamma \in \hat{G}: J_{\gamma} \subset J_{c}\right\} .
$$

Proof. First we show that $\Gamma_{\omega} \subset\left\{\gamma \in \hat{G}: J_{\gamma} \subset J_{\iota}\right\}$. Let $\gamma \in \Gamma_{\omega}$, and $b \in J_{\gamma}$, and B the hereditary C^{*}-subalgebra of $A \otimes M_{d}$ generated by $\left\{x^{*} x: x \in b A_{1}^{\alpha}(\gamma)\right\}$. Then we claim that $B \cap\left(A^{\alpha} \otimes \mathbb{C} 1\right) \subset J_{t}$, and this is enough to get the conclusion. (For if $b \notin J_{t}$, then
by definition of Γ_{ω}, there would exist $x \in \overline{b A_{1}^{\alpha}(\gamma) b} \subset \overline{b A_{1}^{\alpha}(\gamma)}$ such that $x^{*} x \in A^{\alpha} \backslash J_{\iota} \otimes$ $1_{d(\gamma)}$, which implies that $b \notin J_{\gamma}$ by the above claim. Consequently $J_{\gamma} \subset J_{\iota}$).

Let $a \otimes 1 \in B \cap\left(A^{\alpha} \otimes \mathbb{C} 1\right)$. Then a is a limit of elements of the form where $\sum_{i=1}^{n} x_{i 1}^{*} b^{*} z_{i} b y_{i 1}$, where $x_{i}=\left(x_{i 1}, \ldots, x_{i 1}\right), y_{i}=\left(y_{i d}, \ldots, y_{i d}\right) \in A_{1}^{\alpha}(\gamma)$, and $z_{i} \in A$. Since $\pi_{\omega}\left(y_{i 1}\right) P_{\iota} \mathscr{H}_{\omega} \subset P_{\gamma} \mathscr{H}_{\omega}$, and $\pi_{\omega}(b) \mid P_{\gamma} \mathscr{H}_{\omega}=0$, it follows that $\pi_{\omega}(a) \mid P_{\imath} \mathscr{H}_{\omega}=0$, i.e. $a \in J_{\iota}$. For the reverse inclusion we need:

Lemma 2.6. Let C be a C^{*}-algebra, and J an ideal of C. Suppose that the quotient C / J is prime and has no minimal projections. Then for any $n=2,3, \ldots$, there exist v_{1}, \ldots, v_{n}, e in C such that $v_{i}^{*} v_{j}=0$ if $i \neq j, v_{i}^{*} v_{i} e=e$, and $e \notin J$.
Proof. Since C / J has no minimal projections, there exists a self adjoint $h \in C$ such that $h+J$ has an infinite spectrum in C / J. By using h it is shown that there exist positive a_{1}, \ldots, a_{n} in $C \backslash J$, of norm one such that $a_{i} a_{j}=0$ for $i \neq j$. We may suppose that there exists $b_{1} \in(C \backslash J)_{+}$such that $a_{1} b_{1}=b_{1}$, and $\left\|b_{1}\right\|=1$. Let $v_{1}=a_{1}$. Now suppose that we have defined $v_{i} \in \overline{a_{i} C} \backslash J, b_{i} \in(C \backslash J)_{+}$such that $v_{i}^{*} v_{i} b_{k}=b_{k}$ and $\left\|b_{i}\right\|=1$, for $i=1, \ldots, k$. Since $a_{k+1} C b_{k} \not \subset J$, (as C / J is prime), choose a non-zero $v_{k+1} \in \overline{a_{k+1} C b_{k}} \backslash J$, and assume that $v_{k+1}^{*} v_{k+1}$ is a unit for some $b_{k+1} \in(C \backslash J)_{+}$with $\left\|b_{k+1}\right\|=1$. Then $b_{k+1} \in \overline{b_{k} C b_{k}}$, and so $v_{i}^{*} v_{i}$ is a unit for $b_{k+1}, i=1, \ldots, k$. This concludes the proof with $e=b_{n}$.
Proof of Theorem 2.5. It only remains to show

$$
\Gamma_{\omega} \supset\left\{\gamma \in \hat{G}: J_{y} \subset J_{\iota}\right\} .
$$

Let $\gamma \in \hat{G}$ be such that $J_{\gamma} \subset J_{\iota}$. Let $b \in A^{\alpha} \backslash J_{\iota}$. Now A^{α} / J_{ι} is prime, since it has a faithful irreducible representation. Hence applying lemma 2.5 to the C^{*}-algebra $C=\overline{b A^{\alpha} b^{*}}$ with $J=J_{i} \cap C$, one obtains $v_{1}, \ldots, v_{d}, e \in \overline{b A^{\alpha} b^{*}}$, such that $v_{i}^{*} v_{j}=0$ for $i \neq j, v_{i}^{*} v_{i} e=e$ and $e \in \overline{b A^{\alpha} b^{*}} \backslash J_{\imath} \subset A^{\alpha} \backslash J_{\gamma}$. By theorem 2.1, there exists

$$
x=\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{d}
\end{array}\right) \in \overline{e A_{d}^{\alpha}(\gamma)}
$$

such that $x^{*} x \in A^{\alpha \prime} \backslash J_{\imath} \otimes 1$. Define

$$
y=\sum_{i=1}^{d} v_{i} x_{i} .
$$

Then $y \in A_{1}^{\alpha}(\gamma)$, and $y^{*} y=\sum x_{i}^{*} v_{i}^{*} v_{i} x_{i}=\sum x_{i}^{*} x_{i}=x^{*} x \in A^{\alpha} \backslash J_{i} \otimes 1$. Thus $\gamma \in \Gamma$.
Corollary 2.7. Under the assumptions of theorem 2.1, suppose in addition that A^{α} / J_{ι}, has no minimal projections. Then for any $b \in A^{\alpha} \backslash J_{\gamma}, \gamma \in \hat{G}$, there exists $x \in \overline{b A_{1}^{\alpha}(\gamma)}$ such that $x^{*} x \in A^{\alpha} \backslash J_{\iota} \otimes 1$.
Proof. This follows from theorem 2.1 and the proof of theorem 2.5.
Corollary 2.8. Let α be an action of a compact group G on a separable C^{*}-algebra A. Assume that there exists an α-invariant pure state on A, and let P be a non-empty family of α-invariant pure states. Define an ideal J_{γ}^{φ} for each $\varphi \in P, \gamma \in \hat{G}$ as in theorem 2.1, and let $J_{\imath}^{P}=\bigcap_{\varphi \in P} J_{\imath}^{\varphi}$. Suppose that A^{α} is prime and has no minimal projections,
and $J_{t}^{P}=\{0\}$. Define

$$
\Gamma_{P}=\left\{\gamma \in \hat{G}: \forall b \in A^{\alpha} \backslash\{0\}, \exists x \in b A_{1}^{\alpha}(\gamma) \text { s.t. } x^{*} x \in A^{\alpha} \backslash\{0\} \otimes 1_{d(\gamma)}\right\} .
$$

Then

$$
\Gamma_{P}=\left\{\gamma \in \hat{G}: J_{\gamma}^{P}=\{0\}\right\} .
$$

Proof. Let $\gamma \in \hat{G}$ s.t. $J_{\gamma}^{P} \neq\{0\}$, and let $b \in J_{\gamma}^{P} \backslash\{0\}$. Then by the proof of theorem 2.5, the hereditary C^{*}-subalgebra B of $A \otimes M_{d}$ generated by $x^{*} x$ for $x \in b A_{d}^{\alpha}(\gamma)$ satisfies

$$
B \cap\left(A^{\alpha} \otimes \mathbb{C} 1\right) \subset J_{\imath}^{\varphi}
$$

for any $\varphi \in P$ since $b \in J_{\gamma}^{\varphi}$. Hence

$$
B \cap\left(A^{\alpha} \otimes \subset 1\right) \subset J_{\imath}^{P}=\{0\} .
$$

This implies that $\gamma \notin \Gamma_{P}$. Conversely suppose $\gamma \in \hat{G}$, such that $J_{\gamma}^{P}=\{0\}$, and let $b \in A^{\alpha} \backslash\{0\}$. Then $b \notin J_{\gamma}^{\varphi}$, for some $\varphi \in P$, and by theorem 2.1, there exists $x \in b A_{d}^{\alpha}(\gamma)$ such that $x^{*} x \in A^{\alpha} \backslash J_{2}^{\varphi} \otimes 1 \subset A^{\alpha} \backslash\{0\} \otimes 1$. Thus $\gamma \in \Gamma_{P}$.

3
Theorem 3.1. Let G be a compact group and α an action of G on a separable simple C^{*}-algebra A. Assume that there exists an α-invariant pure state of A and let P be a non-empty family of α-invariant pure states. Define

$$
J_{P}=\bigcap_{\varphi \in P} \operatorname{ker} \pi_{\left(\varphi \mid A^{\alpha}\right)}
$$

and assume that the quotient algebra A^{α} / J_{P} contains no miminal projections. Define

$$
\Gamma_{P}=\left\{\gamma \in \hat{G} \mid \forall b, c \in A^{\alpha} \backslash J_{P}, \exists x \in b A_{1}^{\alpha}(\gamma) c, \text { s.t. } x^{*} x \in A^{\alpha} \backslash J_{P} \otimes 1\right\}
$$

and assume that $\Gamma_{P}=\hat{G}$.
Let σ be an automorphism of A such that $\sigma(x)=x$ for all $x \in A^{\alpha}$. Then there exists $g \in G$ such that $\sigma=\alpha_{g}$.

Remark. When G is abelian, P may be chosen so that $J_{P}=(0)$. (Let ω be an α-invariant pure state of A, and

$$
\left.P=\left\{\omega\left(a^{*} \circ a\right): a \in A^{\alpha}(\gamma), \quad \gamma \in \hat{G}, \quad \omega\left(a^{*} a\right)=1\right\}\right) .
$$

Then the condition $\Gamma_{P}=\hat{G}$ is equivalent to the Connes spectrum of α being \hat{G}.
Lemma 3. Adopt the assumptions of theorem 3.1 and also assume that A^{α} is prime and that for any α-invariant hereditary C^{*}-subalgebra B of A one has $M(B) \cap\left(B^{\alpha}\right)^{\prime}=$ $C 1$ where $M(B)$ is the multiplier algebra of B. If σ is an automorphism of A such that $\sigma(x)=x$ for any $x \in A^{\alpha}$, then there exists $g \in G$ such that $\sigma=\alpha_{g}$.
Proof. Let u be a finite-dimensional unitary representation of G such that for some n there exists $x \in A_{n}^{\alpha}(u)$ with $x^{*} x \in A^{\alpha} \backslash\{0\} \otimes 1$. Then we claim that there is a $d \times d$ unitary matrix $\lambda(u)$ such that $\sigma(x)=x \lambda(u)$ for any $x \in A_{1}^{\alpha}(u)$, where $\sigma(x)=$ $\left(\sigma\left(x_{1}\right), \ldots, \sigma\left(x_{d}\right)\right)$ and d is the dimension of u.

Let $x \in A_{n}^{\alpha}(u)$ be such that $x^{*} x=a \otimes 1 \in A \backslash\{0\} \otimes 1$. For small $\delta>0$ define a continuous function f on \mathbb{R} by

$$
f(t)= \begin{cases}0 & t \leq \delta \\ t^{-1 / 2} & t \geq 2 \delta\end{cases}
$$

and by linearity elsewhere. Let $y=x f(a)$ and $e=f(a) a f(a)$. Then $y \in A_{n}^{\alpha}(u)$ and $y^{*} y=e \otimes 1$. The non-zero hereditary C^{*}-subalgebra

$$
B=\{b \in A: \quad e b=b e=b\}
$$

of A is α-invariant, and for $b \in B^{\alpha}$, one has $y b y^{*} \in A^{\alpha} \otimes M_{d}$. Then since $y b y^{*}=$ $\sigma(y) b \sigma\left(y^{*}\right)$,

$$
\begin{aligned}
\sigma\left(y^{*}\right) y b & =\sigma\left(y^{*}\right) y b y^{*} y=\sigma\left(y^{*}\right) \sigma(y) b \sigma\left(y^{*}\right) y \\
& =b \sigma\left(y^{*}\right) y .
\end{aligned}
$$

Denoting by p the open projection corresponding to B, one obtains that $\sigma\left(y^{*}\right) y p=$ $p \sigma\left(y^{*}\right) y \in M(B) \otimes M_{d} \cap\left(B^{\alpha}\right)^{\prime} \cong M_{d}$. Let λ be the matrix over \mathbb{C} defined by $\sigma\left(y^{*}\right) y p=\lambda^{*} p$. Then for $b \in B^{\alpha}$ one has that $\sigma(y b)=y b \lambda$ because

$$
\begin{aligned}
\sigma\left(b^{*} y^{*}\right) & =\sigma\left(y^{*} y b^{*} y^{*}\right)=\sigma\left(y^{*}\right) y b^{*} y^{*} \\
& =\lambda^{*} b^{*} y^{*}
\end{aligned}
$$

Further λ is a unitary because $\lambda \lambda^{*} p=y^{*} \sigma(y) \sigma\left(y^{*}\right) y p=y^{*} y y^{*} y p=p$. Define a continuous function h on \mathbb{P} by

$$
h(t)= \begin{cases}0 & t \leq \delta \\ t^{1 / 2} & t \geq 2 \delta\end{cases}
$$

and by linearity elsewhere. Then since $h(a) \in B$, and

$$
\|x-y h(a)\|^{2}=\left\|a(f(a) h(a)-1)^{2}\right\| \leq 2 \delta
$$

it follows by approximation that for any $x \in A_{n}^{\alpha}(u)$ with $x^{*} x \in A^{\alpha} \otimes 1$, there exists a $d \times d$ unitary matrix λ such that $\sigma(x)=x \lambda$.

Now fix a non-zero $x \in A_{n}^{\alpha}(u)$ such that $x^{*} x=a \otimes 1 \in A^{\alpha} \otimes 1$, and let $\lambda(u)$ be the unitary matrix defined by $\sigma(x)=x \lambda(u)$. Let $y \in A_{n}^{\alpha}(u)$. Then since $y b x^{*} \in A^{\alpha} \otimes M_{n}$ for any $b \in A^{\alpha}$, it follows that $y b x^{*}=\sigma(y) b \lambda(u)^{*} x^{*}$. Multiplying x from the right one obtains that $y b a=\sigma(y) b a \lambda(u)^{*}$, i.e.

$$
(\sigma(y)-y \lambda(u)) b a=0
$$

for any $b \in A^{\alpha}$. This implies that $\sigma(y)=y \lambda(u)$ because no non-zero element of A is orthogonal to the ideal of A^{α} generated by a as A^{α} is prime. Since any $y \in A_{1}^{\alpha}(u)$ can be regarded as an element of $A_{n}^{\alpha}(u)$, this proves the assertion that $\sigma(y)=y \lambda(u)$ for any $y \in A_{1}^{\alpha}(u)$.

Let \mathscr{R} be the set of finite-dimensional unitary matrix representations u of G such that there is a non-zero $x \in A_{n}^{\alpha}(u)$ with $x^{*} x \in A^{\alpha} \otimes 1$ for some n. For each $u \in \mathscr{R}$ one has a unitary matrix $\lambda(u)$ such that $\sigma(x)=x \lambda(u)$ for $x \in A_{1}^{\alpha}(u)$. Now we claim that \mathscr{R} is in fact the set of all finite-dimensional unitary representations of G and that
λ satisfies that

$$
\begin{aligned}
& \lambda\left(u_{1} \otimes u_{2}\right)=\lambda\left(u_{1}\right) \otimes \lambda\left(u_{2}\right), \\
& \lambda\left(u_{1} \oplus u_{2}\right)=\lambda\left(u_{1}\right) \oplus \lambda\left(u_{2}\right), \\
& \lambda\left(w u_{1} w^{*}\right)=w \lambda\left(u_{1}\right) w^{*},
\end{aligned}
$$

and $\lambda\left(\overline{u_{1}}\right)=\overline{\lambda\left(u_{1}\right)}$, where $u_{i} \in \mathscr{R}$, and w is a unitary matrix. Then by Tannaka's duality theorem (or by mimicking the proof of theorem 2.4 in [16] directly), one would obtain $g \in G$ such that $\lambda(u)=u_{g}$ for all $u \in R$. Since the set of elements x_{i}, with $\left(x_{i}\right) \in A_{1}^{\alpha}(u), u \in \mathscr{R}$ is dense in A one would get the conclusion that $\sigma=\alpha_{g}$.

By the assumption that $\Gamma_{P}=\hat{G}, \mathscr{R}$ contains all irreducible unitary representations of G.

Let $u_{i} \in \mathscr{R}$ with $i=1,2$, and let $x_{i} \in A_{n}^{\alpha}\left(u_{i}\right)$ be such that $x_{i}^{*} x_{i}=a_{i} \otimes 1 \in A^{\alpha} \backslash\{0\} \otimes 1$. We may suppose that there is $b \in A^{\alpha}$ such that $a_{1} b=b, b \geq 0$, and $\|b\|=1$. Since A^{α} is prime, there is $c \in A^{\alpha}$ such that $a_{2} c b \neq 0$. Let $y_{1}=x_{1}\left(b c^{*} a_{2} c b\right)^{1 / 2}$ and $y_{2}=x_{2} c b$. Then $y_{i} \in A_{n}^{\alpha}\left(u_{i}\right)$ and

$$
y_{1}^{*} y_{1}=b c^{*} a_{2} c b=y_{2}^{*} y_{2},
$$

and hence $y \equiv y_{1} \oplus y_{2} \in A_{n}^{\alpha}\left(u_{1} \oplus u_{2}\right)$, with $y^{*} y \in A^{\alpha} \backslash\{0\} \otimes 1$. This proves that $u_{1} \oplus$ $u_{2} \in \mathscr{R}$ and that $\lambda\left(u_{1} \oplus u_{2}\right)=\lambda\left(u_{1}\right) \oplus \lambda\left(u_{2}\right)$, since $\sigma(y)=y_{1} \lambda\left(u_{1}\right) \oplus y_{2} \lambda\left(u_{2}\right)=$ $\left(y_{1} \oplus y_{2}\right)\left(\lambda\left(u_{1}\right) \oplus \lambda\left(u_{2}\right)\right)$.

Let $u \in \mathscr{R}$ and let $x \in A_{n}^{\alpha}(u)$ with $x^{*} x \in A^{\alpha} \backslash\{0\} \otimes 1$. Let w be a $d(u) \times d(u)$ unitary matrix and let $y=x w^{*}$. Then $y \in A_{n}^{\alpha}\left(w u w^{*}\right)$ and $y^{*} y=x^{*} x \in A^{\alpha} \backslash\{0\} \otimes 1$. Hence $w u w^{*} \in \mathscr{R}$ and $\lambda\left(w u w^{*}\right)=w \lambda(u) w^{*}$, since $\sigma(y)=\sigma(x) w^{*}=x w^{*} w \lambda(u) w^{*}$.

The above three properties in particular imply that \mathscr{R} is the set of all finite dimensional unitary representations of G.

Let $u_{i} \in \mathscr{R}$ with $i=1,2$ and assume that u_{i} are irreducible. Let $x \in A_{1}^{\alpha}\left(u_{1}\right)$ be such that $x^{*} x=a \otimes 1 \in A^{\alpha} \backslash J_{P} \otimes 1$. We may suppose that there is $b \in A^{\alpha} \backslash J_{P}$ such that $b \geq 0$ and $a b=b$. By the assumption that $\Gamma_{P}=\hat{G}$, there is $y \in b A_{1}^{\alpha}\left(u_{2}\right)$ such that $y^{*} y \in A^{\alpha} \backslash J_{P} \otimes 1$. Then $x y \in A_{1}^{\alpha}\left(u_{1} \otimes u_{2}\right)$ and $(x y)^{*}(x y)=y^{*} y \in A^{\alpha} \backslash\{0\} \otimes 1$. This proves that $\lambda\left(u_{1} \otimes u_{2}\right)=\lambda\left(u_{1}\right) \otimes \lambda\left(u_{2}\right)$ since

$$
\begin{aligned}
(\sigma(x y))_{i j} & =\sigma(x)_{i} \sigma(y)_{j} \\
& =\sum x_{k} \lambda_{k i}\left(u_{1}\right) \sum y_{i} \lambda_{l j}\left(u_{2}\right) \\
& =\sum_{k, l}(x y)_{k l}\left(\lambda\left(u_{1}\right) \otimes \lambda\left(u_{2}\right)\right)_{k l, i j} .
\end{aligned}
$$

When $u_{i} \in \mathscr{R}$ are not irreducible, we may decompose u_{i} into irreducible components and apply the above properties to get the conclusion that $\lambda\left(u_{1} \otimes u_{2}\right)=\lambda\left(u_{1}\right) \otimes \lambda\left(u_{2}\right)$.

Let $u \in \mathscr{R}$ and $x \in A_{1}^{\alpha}(u)$ be non-zero. Let $y=x^{* T}$ where T denotes transposition. Then $y \in A_{1}^{\alpha}(u)$ and $\lambda(\bar{u})=\overline{\lambda(u)}$ since $\sigma(y)=\left(\lambda(u)^{*} x^{*}\right)^{T}=y \overline{\lambda(u)}$.

Proof of Theorem 3.1. We have to prove that the two additional assumptions in lemma 3.2 follow automatically from the assumptions of the theorem.

Since A is separable and $\operatorname{Sp}(\alpha)=\hat{G}, \hat{G}$ must be countable. Let $\left\{\gamma_{i}\right\}$ be a sequence of elements of \hat{G} such that each $\gamma \in \hat{G}$ appears infinitely often in $\left\{\gamma_{i}\right\}$ and let $\xi_{i}=\iota \oplus \gamma_{i}$ where ι is the trivial representation of G. Let β be the infinite product
action $\otimes_{i=1}^{\infty} \operatorname{Ad} \xi_{i}$ of G on the UHF algebra $C=\otimes M_{d\left(\xi_{i}\right)}$ where $d\left(\xi_{i}\right)$ is the dimension of ξ_{i}. Then by theorem 3.1 in [8], there exists an α-invariant C^{*} subalgebra B of A and a closed $\alpha^{* *}$-invariant projection $q \in A^{* *}$ such that $q \in B^{\prime}$, $q A q=B q$, and the C^{*}-dynamical systems ($B q, G, \alpha^{* *} \mid B q$) and (C, G, β) are isomorphic.

Let τ be the tracial state of C and define a state ω of A by

$$
\omega(x)=\tau(q x q), x \in A
$$

where we identified $q A q=B q$ with C. Then we claim that $\pi_{\omega}(A)^{\prime \prime} \cap \pi_{\omega}\left(A^{\alpha}\right)^{\prime}=\mathbb{C} 1$.
Let $e \equiv \bar{\pi}_{\omega \omega}(q) \in \pi_{\omega}\left(A^{\alpha}\right)^{\prime \prime}$, and let $c(e)$ be the central support of e in $\pi_{\omega}\left(A^{\alpha}\right)^{\prime \prime}$. We first show that $c(e)=1$.

Define a unitary representation u of G on \mathscr{H}_{ω} by

$$
u_{g} \pi_{\omega}(x) \Omega_{\omega}=\pi_{\omega} \circ \alpha_{g}(x) \Omega_{\omega}, \quad x \in A
$$

by using the α-invariance of ω. Then $c(e)$ commutes with $u_{g}, g \in G$, and if $c(e) \neq 1$, there exist $\gamma \in \hat{G}$ and a set $\left(\xi_{1}, \ldots, \xi_{d}\right)$ of orthonormal vectors in $(1-c(e)) \mathscr{H}_{\omega}$ such that

$$
u_{g} \xi_{i}=\sum_{j=1}^{d} \gamma_{j i}(g) \xi_{j},
$$

where $\left(\gamma_{i j}(g)\right)$ is a matrix representative of γ. Let $x^{\prime} \in A$ be such that

$$
\left\|\pi_{\omega}\left(x^{\prime}\right) \Omega_{\omega}-\xi_{1}\right\|<\varepsilon
$$

for small $\varepsilon>0$ and define

$$
x_{j}=d \int \overline{\gamma_{j 1}(g)} \alpha_{g}\left(x^{\prime}\right) d g
$$

Then $x=\left(x_{1}, \ldots, x_{d}\right) \in A_{1}^{\alpha}(\gamma)$ and $\left\|\pi_{\omega}\left(x_{j}\right) \Omega_{\omega}-\xi_{j}\right\| \leq d \varepsilon$ since

$$
\pi_{\omega}\left(x_{j}\right) \Omega_{\omega}-\xi_{j}=d \int \overline{\gamma_{j 1}(g)} u_{g}\left(\pi_{\omega}\left(x^{\prime}\right) \Omega_{\omega}-\xi_{1}\right) d g
$$

Let $v_{n}=\left(v_{n 1}, \ldots, v_{n d}\right) \in C_{1}^{\alpha}(\gamma)$ satisfy that $\left\{v_{n i}\right\}$ is a central sequence in C and

$$
\begin{gathered}
v_{n 1}^{*} v_{n 1}=\cdots=v_{n d}^{*} v_{n d} \equiv e_{n}, \\
\sum_{i=1}^{d} v_{n i} v_{n i}^{*}+e_{n}=1,
\end{gathered}
$$

(which can be chosen from the factors $M_{d\left(\xi_{i}\right)}$ with $\gamma_{i}=\gamma$). Now $v_{n 1}=u_{n} q$, where $u_{n} \in B$. We define

$$
u_{n j}=d \int \overline{\gamma_{j 1}(g)} \alpha_{g}\left(u_{n}\right) d g, \quad j=1, \ldots, n
$$

so that $\left(u_{n 1}, \ldots, u_{n d}\right) \in B_{1}^{\alpha}(\gamma)$, and $u_{n j} q=v_{n j}$. Hence

$$
Q_{n}=\sum_{j=1}^{n} x_{j} v_{n j}^{*} \in A^{\alpha} q
$$

and

$$
\begin{gathered}
\bar{\pi}\left(v_{n 1}\right) \Omega_{\omega} \in e \mathscr{H}_{\omega} \\
\bar{\pi}_{\omega}\left(Q_{n}\right) \bar{\pi}_{\omega}\left(v_{n 1}\right) \Omega_{\omega}=\bar{\pi}_{\omega}\left(x_{1} e_{n}\right) \Omega_{\omega}
\end{gathered}
$$

belongs to $c(e) \mathscr{H}_{\omega}$. Then we compute:

$$
\begin{aligned}
& \left\|\bar{\pi}_{\omega}\left(x_{1} e_{n}\right) \Omega_{\omega}-\pi_{\omega}\left(x_{1}\right) \Omega_{\omega}\right\|^{2} \\
& \quad=\tau\left(e_{n} q x_{1}^{*} x_{1} q e_{n}\right)+\tau\left(q x_{1}^{*} x_{1} q\right)-\tau\left(q_{1} x_{1}^{*} x_{1} q e_{n}\right)-\tau\left(e_{n} q x_{1}^{*} x_{1} q\right),
\end{aligned}
$$

which converges to $d(d+1)^{-1} \tau\left(q x_{1}^{*} x_{1} q\right)$ because τ is a product state and $\tau\left(e_{n}\right)=$ $(d+1)^{-1}$. On the other hand,

$$
\begin{aligned}
\left\|\pi_{\omega}\left(x_{1} e_{n}\right) \Omega_{\omega}-\pi_{\omega}\left(x_{1}\right) \Omega_{\omega}\right\| & \geq\left\|\pi_{\omega}\left(x_{1} e_{n}\right) \Omega_{\omega}-\xi_{1}\right\|-\left\|\xi_{1}-\pi_{\omega}\left(x_{1}\right) \Omega_{\omega}\right\| \\
& \geq\left(\left\|\pi_{\omega}\left(x_{1} e_{n}\right) \Omega_{\omega}\right\|^{2}+1\right)^{1 / 2}-d \varepsilon .
\end{aligned}
$$

Hence we obtain

$$
d(d+1)^{-1} \tau\left(q x_{1}^{*} x_{1} q\right) \geq\left\{\left((d+1)^{-1} \tau\left(q x_{1}^{*} x_{1} q\right)+1\right)^{1 / 2}-d \varepsilon\right\}^{2} .
$$

Since $\left|\tau\left(q x_{1}^{*} x_{1} q\right)^{1 / 2}-1\right|<d \varepsilon$, this is a contradiction for small $\varepsilon>0$, which implies that $c(e)=1$.

Let $z \in \pi_{\omega}(A)^{\prime \prime} \cap \pi_{\omega}\left(A^{\alpha}\right)^{\prime}$. Then since $e \pi_{\omega}(A)^{\prime \prime} e=\pi_{\omega}(B)^{\prime \prime} e$ and $e \pi_{\omega}\left(A^{\alpha}\right)^{\prime \prime} e=$ $\pi_{\omega}\left(B^{\alpha}\right)^{\prime \prime} e$, one has that $z e=e z \in \pi_{\omega}(B)^{\prime \prime} e \cap\left\{\pi_{\omega}\left(B^{\alpha}\right)^{\prime \prime} e\right\}^{\prime}$ which is trivial by:

$$
\pi_{\tau}(C)^{\prime \prime} \cap \pi_{\tau}\left(C^{\beta}\right)^{\prime}=\mathbb{C} 1
$$

To see this (see also [6]); note that any finite permutation automorphism among the factors in the infinite tensor product $C=\otimes_{i=1}^{\infty} M_{d\left(\xi_{i}\right)}$ which commutes with β is implemented by a unitary of $C^{\beta}[13]$. Since those automorphisms leave τ invariant, they extend to automorphisms of $\pi_{\tau}(C)^{\prime \prime}$. Thus any element of $\pi_{\tau}(C)^{\prime \prime} \cap \pi_{\tau}\left(C^{\beta}\right)^{\prime}$ is fixed under those automorphisms, and it is easy to check that they act ergodically on $\pi_{\tau}(C)$ " by using the fact that τ is a separating factorial state and the permutation group which commutes with β acts ergodically on C.

Thus there is a $\lambda \in \mathbb{C}$ such that $z e=\lambda e$. Since the reduction $\pi_{\omega}\left(A^{\alpha}\right)^{\prime} \rightarrow \pi_{\omega}\left(A^{\alpha}\right)^{\prime} e$ is an isomorphism, because $c(e)=1$, one obtains that $z=\lambda 1$, i.e. $\pi_{\omega}(A)^{\prime \prime} \cap \pi_{\omega}\left(A^{\alpha}\right)^{\prime}=$ $\mathbb{C} 1$, as claimed.

Lemma 3.3 [12, lemma 2.1]. If $N \subset M$ are non Neumann algebras and fa projection in N, then $\left(N_{f}\right)^{\prime} \cap M_{f}=\left(N^{\prime} \cap M\right)_{f}$.

Let B be an α-invariant hereditary C^{*}-subalgebra of A. Then we claim that $M(B) \cap\left(B^{\alpha}\right)^{\prime}=\mathbb{C}$. By simplicity of A, π_{ω} is faithful on A, and hence so is $\rho=\pi_{\omega} \mid B$, on $f H_{\omega}$ where $f=\pi_{\omega}\left(e_{B}\right)$ and e_{B} is the open projection for B. Moreover, $\bar{\rho}$, the unique extension of ρ to $B^{* *}$ is faithful on $M(B)$. Thus

$$
\begin{aligned}
\bar{\rho}(M(B)) \cap \rho\left(B^{\alpha}\right)^{\prime} & \subset \bar{\rho}\left(B^{* *}\right) \cap \rho\left(B^{\alpha}\right)^{\prime} \\
& =f M f \cap\left(f M^{\bar{\alpha}} f\right)^{\prime}
\end{aligned}
$$

where $M=\pi_{\omega}(A)^{\prime \prime}$, and $\bar{\alpha}$ denotes the unique extension of α to M. Since $M \cap$ $\left(M^{\alpha}\right)^{\prime}=\mathbb{C}$, it follows from lemma 3.3, that $M(B) \cap\left(B^{\alpha \alpha}\right)^{\prime}=\mathbb{C}$.

By using that $\pi_{\omega}(A)^{\prime \prime} \cap \pi_{\omega}\left(A^{\alpha}\right)^{\prime}=\mathbb{C} 1$ and the faithfulness of π_{ω} it follows that A^{α} is prime. This completes the proof of theorem 3.1.

Theorem 3.4. Let G be a compact group and α an action on a C^{*}-algebra A. Assume that there exists a faithful irreducible representation π of A such that $\pi(A)^{\prime \prime}=\pi\left(A^{\alpha}\right)^{\prime \prime}$. Let σ be an automorphism of A such that $\sigma(x)=x$ for all $x \in A^{\alpha}$. Then there exists $g \in G$ such that $\sigma=\alpha_{g}$.

Remark. If we further assume that A is simple, separable, and unital, and that there exists an automorphism τ of A such that $\left\|\tau^{n}(x) y-y \tau^{n}(x)\right\| \rightarrow 0$ for all $x, y \in A$, then there exists an irreducible representation π of A such that $\pi(A)^{\prime \prime}=\pi\left(A^{\alpha}\right)^{\prime \prime}$ (see theorem 2.1 in [7]). Hence the present theorem gives an alternative proof to the previous result in [15], at least when \boldsymbol{A} is separable. The derivation version of the above theorem was proved in [7] as theorem 1.1, and the method there can be applied to the present situation if A is separable.

By taking $G /$ ker α instead of G, we may assume, without loss of generality, that α is faithful in the sequel.

Lemma 3.5. Adopt the assumptions of theorem 3.4. Define a representation ρ of A by the direct integral

$$
\rho=\int_{G}^{\oplus} \pi \circ \alpha_{g} d g
$$

on the Hilbert space $H_{\rho} \equiv H_{\pi} \otimes L^{2}(G)$. Then $\rho(A)^{\prime \prime}=B\left(\mathscr{H}_{\pi}\right) \otimes L^{\infty}(G)$.
Proof. Since $B\left(\mathscr{H}_{\pi}\right) \otimes \mathbb{C} 1=\rho\left(\boldsymbol{A}^{\alpha}\right)^{\prime \prime} \subset \rho(A)^{\prime \prime} \subset B\left(\mathscr{H}_{\pi}\right) \otimes L^{\infty}(G)$, it suffices to prove that $\rho(A)^{\prime \prime} \supset p \otimes L^{\infty}(G)$, where p is a fixed one-dimensional projection on \mathscr{H}_{π}.

Define a state φ of A by

$$
\varphi(x) p=p \pi(x) p, x \in A
$$

Let $\left\{z_{\nu}\right\}$ be a decreasing net of positive elements of A^{α} such that $\lim \pi\left(z_{\nu}\right)=p$ (in the strong topology). The existence of such $\left\{z_{\nu}\right\}$ follows from the fact that $\varphi \mid A^{\alpha}$ is pure. Then defining a continuous function f_{x} on G, for each $x \in A$, by

$$
f_{x}(g) p=p \pi \circ \alpha_{g}(x) p, \quad g \in G,
$$

it follows that $p \otimes f_{x}=p \rho(x) p=\lim \rho\left(z_{\nu} x z_{\nu}\right) \in \rho(A)^{\prime \prime}$. Hence it suffices to prove that $\left\{f_{x}: x \in A\right\}$ separates the points of G, to conclude that $\rho(A)^{\prime \prime} \supset p \otimes L^{\infty}(G)$. If there are g and h in G such that $f_{x}(g)=f_{x}(h)$ for all $x \in A$, then one has that $\varphi \circ \alpha_{g}=\varphi \circ \alpha_{h}$. Thus $\alpha_{g h}^{-1}$ should be weakly extendible in the representation $\pi_{\varphi} \approx \pi$, which is impossible as $\pi\left(A^{\alpha}\right)$ is irreducible, unless $\alpha_{g^{h}}^{-1}$ is the identity automorphism.

Lemma 3.6. Under the assumptions of theorem 3.4, A^{α} is prime, and for any non-zero $b, c \in A^{\alpha}$, the spectrum of α restricted to $b A c$, written as $\mathrm{Sp}(\alpha \mid b A c)$, is \hat{G}.
Proof. Since $\pi \mid A^{\alpha}$ is a faithful irreducible representation, A^{α} is prime.
Let $b, c \in A^{\alpha} \backslash\{0\}$, and let $x \in A_{1}^{\alpha}(\gamma) \backslash\{0\}$ with $\gamma \in \hat{G}$. Since $\sum x_{i}^{*} x_{i}$ and $\sum x_{i} x_{i}^{*}$ are α-invariant, there exist $b^{\prime}, c^{\prime} \in A^{\alpha}$ such that

$$
\begin{aligned}
b b^{\prime}\left(\sum_{i=1}^{d} x_{i} x_{i}^{*}\right) \neq 0, \\
\left(\sum_{i=1}^{d} x_{i}^{*} b^{\prime *} b b^{\prime} x_{i}\right) c^{\prime} c \neq 0 .
\end{aligned}
$$

Thus $b b^{\prime} x c^{\prime} c=\left(b b^{\prime} x_{i} c^{\prime} c\right) \in b A_{1}^{\alpha}(\gamma) c$ is non-zero, and this proves that $\mathrm{Sp}(d \mid b A c)=$ $\mathrm{Sp}(\alpha)$. Note that lemma 3.5 immediately implies that $\mathrm{Sp}(\alpha)=\hat{G}$.

Lemma 3.7. Under the assumptions of theorem 3.4, for any $\gamma \in \hat{G}$ and $b \in A^{\alpha} \backslash\{0\}$, there exists $x \in b A_{n}^{\alpha}(\gamma)$ such that $x^{*} x \in A^{\alpha} \backslash\{0\} \otimes 1$, for some $n=2,3, \ldots$.

Proof. Let B be the hereditary C^{*}-subalgebra of $A \otimes M_{d}$ generated by $x^{*} x$ with $x \in b A_{1}^{\alpha}(\gamma)$. It suffices to prove that $B \cap A^{\alpha} \otimes \mathbb{C} 1 \neq\{0\}$, because the rest of the proof goes exactly as in lemma 2.2 and theorem 2.1.

To prove that $B \cap A^{\alpha} \otimes C 1 \neq\{0\}$, we have to produce a pure state ψ of A^{α} such that any extension $\bar{\psi}$ of ψ to a state of $A \otimes M_{d}\left(\supset A^{\alpha} \otimes 1\right)$ satisfies $\bar{\psi} \mid B \neq 0$.

Without loss of generality we assume that b is positive and there is a positive non-zero $a \in A^{\alpha}$ such that $b a=a$. Fix a one-dimensional projection p in the range of $\pi(a)$, and note that $\pi(b) p=p$.

By lemma 3.5, $p \rho(A) p$, regarded as continuous functions on G, is dense in $L^{\infty}(G)$ in the weak*-topology. By using the projections of A onto $A^{\alpha}(\gamma)$, it is shown that $p \rho(A(\gamma)) p$ is dense in, and so equal to, the finite-dimensional linear space spanned by $\left\{\gamma_{i j}: i, j=1, \ldots, d\right\}$. Thus by spectral calculations we can choose $x \in A_{d}^{\alpha}(\gamma)$ such that

$$
p \rho\left(x_{i j}\right) p=p \otimes \gamma_{i j} .
$$

Let $\left\{z_{\nu}\right\}$ be a decreasing net of positive elements of A^{α} such that $z_{\nu} \leq b$ and $\lim \pi\left(z_{\nu}\right)=p$ as in the proof of lemma 3.5. Let $x_{v}=z_{\nu}^{1 / 2} x \in b A_{d}^{\alpha}(\gamma)$ and note that

$$
\lim p \rho\left(x_{i j}^{*} z_{\nu} x_{k l}\right) p=p \otimes \overline{\gamma_{i j}} \gamma_{k l} .
$$

Let φ be the state of A defined by $\varphi(x) p=p \pi(x) p, x \in A$, and let $\psi=\varphi \mid A^{\alpha}$. If f is a functional in $A^{* *}$ whose support is contained in $p \in A^{* *}$, one has

$$
\lim _{\nu} \sum_{k} f\left(x_{k i}^{*} z_{\nu} x_{k j}\right)=\delta_{i j} \cdot 1 .
$$

Thus for any extension $\bar{\psi}$ of ψ to a state of $\boldsymbol{A} \otimes M_{d}$ one has

$$
\lim _{\nu} \bar{\psi}\left(x_{\nu}^{*} x_{\nu}\right)=1 .
$$

Since $x_{\nu}^{*} x_{\nu} \in B$, this concludes the proof.
Proof of theorem 3.4. Since $\pi(A)^{\prime \prime} \cap \pi\left(A^{\alpha}\right)^{\prime}=\mathbb{C} 1$, it follows that $M(B) \cap\left(B^{\alpha}\right)^{\prime}=\mathbb{C} 1$ for any α-invariant hereditary C^{*}-subalgebra B of A, and that A^{α} is prime. The rest of the proof is similar to that of lemma 3.2 with

$$
\left\{\gamma \in \hat{G}: \forall b \in A^{\alpha} \backslash\{0\}, \exists x \in b A_{n}^{\alpha}(\gamma) \text { some } n, x^{*} x \in A^{\alpha} \backslash\{0\} \otimes 1\right\}
$$

playing the role of Γ_{P}.

4

Theorem 4.1. Let G be a compact abelian group and α an action of G on a simple C^{*}-algebra A. Assume that A^{α} is prime and $M(A) \cap\left(A^{\alpha}\right)^{\prime}=\mathbb{C} 1$. Let σ be an automorphism of A such that $\sigma(x)=x$ for $x \in A^{\alpha}$. Then there exists $g \in G$ such that $\sigma=\alpha_{g}$.

Lemma 4.2. Let B be an α-invariant hereditary C^{*}-subalgebra of A, and let B_{1} be the C^{*}-subalgebra of A generated by $A^{\alpha} B A^{\alpha}$ (which is a hereditary algebra). Let e_{B} be the open projection in $A^{* *}$ obtained as the limit of an approximate identity for B.

Then the map

$$
M\left(B_{1}\right) \cap\left(B_{1}^{\alpha}\right)^{\prime} \rightarrow M(B) \cap\left(B^{\alpha}\right)^{\prime}
$$

defined by multiplication by e_{B} is a surjective covariant isomorphism.
Proof. Note that α induces an action on $M\left(B_{1}\right)$ by restricting $\left(a \mid B_{1}\right)^{* *}$ to $M\left(B_{1}\right)$. We use the same symbol α to denote this action.

Since e_{B} is a weak limit of an approximate identity for B^{α} [4, lemma 4.1], one has $e_{B} \in\left(B_{1}^{\alpha}\right)^{* *} \subset A^{* *}$. Thus any element z of $M\left(B_{1}\right) \cap\left(B_{1}^{\alpha}\right)^{\prime}$ commutes with e_{B} and one has that $z e_{B} \in M(B) \cap\left(B^{\alpha}\right)^{\prime}$, because $z e_{B} \cdot b=z b \in B_{1} \cap e_{B} B e_{B}=B, b: z e_{B}=b z \in$ B for $b \in B$, and $z e_{B} \cdot a=z a=a z=a z e_{B}$ for $a \in B^{\alpha}\left(\subset B_{1}^{\alpha}\right)$. Hence the map is well defined, and covariant.

Let $c\left(e_{B}\right)$ be the central support of e_{B} in $\left(A^{\alpha}\right)^{* *}\left(\subset A^{* *}\right)$. Then the multiplication map by e_{B} :

$$
c\left(e_{B}\right) A^{* *} c\left(e_{B}\right) \cap\left(c\left(e_{B}\right) A^{\alpha} c\left(e_{B}\right)\right)^{\prime} \rightarrow e_{B} A^{* *} e_{B} \cap\left(e_{B} A^{\alpha} e_{B}\right)^{\prime}
$$

is an isomorphism. Since $c\left(e_{B}\right)=e_{B_{1}}$, this is equivalent to saying that

$$
B_{1}^{* *} \cap\left(B_{1}^{\alpha}\right)^{\prime} \rightarrow B^{* *} \cap\left(B^{\alpha}\right)^{\prime}
$$

is an isomorphism. If $z e_{B} \in M(B)$, for $z \in B_{1}^{* *} \cap\left(B_{1}^{\alpha}\right)^{\prime}$, then we claim that $z \in M\left(B_{1}\right)$. For then $z e_{B_{1}} a=e_{B_{1}} a z$ for $a \in A^{\alpha}$, as $z \in\left(B_{1}^{\alpha}\right)^{\prime}$, and so for $b \in B, a_{i} \in A^{\alpha}$:

$$
z a_{1} b a_{2}=a_{1}(z b) a_{2} \in B_{1} \text { etc. }
$$

This completes the proof.
Lemma 4.3. Let B, B_{1} be non-zero α-invariant hereditary C^{*}-subalgebras of A with $B_{1} \subset B$. Then the map

$$
M(B) \cap\left(B^{\alpha}\right)^{\prime} \rightarrow M\left(B_{1}\right) \cap\left(B_{1}^{\alpha}\right)^{\prime}
$$

defined by multiplication by $e_{B_{1}}$ is an injective covariant homomorphism.
Proof. The map is a well defined homomorphism since $e_{B_{1}} \in\left(B_{1}^{\alpha}\right)^{* *}$. The action α is ergodic on $M(B) \cap\left(B^{\alpha}\right)^{\prime}$, in the sense that the fixed point algebra is trivial because $M(B)^{\alpha} \cap\left(B^{\alpha}\right)^{\prime} \subset M\left(B^{\alpha}\right) \cap\left(B^{\alpha}\right)^{\prime}$, and $B^{\alpha}=A^{\alpha} \cap B$ is prime. Hence there are no non-trivial α-invariant ideals in $M(B) \cap\left(B^{\alpha}\right)^{\prime}$. Multiplication $e_{B_{2}}$ preserves the induced action, and so the kernel of this map is an α-invariant ideal which is either zero or the whole algebra. Since the latter is impossible, the map must be injective.
Lemma 4.4. Let $\gamma \in \hat{G}$, and x a non-zero element of $A^{\alpha}(\gamma)$. Let $B_{1}=\overline{x A x^{*}}$, and $B_{2}=\overline{x^{*} A x}$, and $x=v|x|$ be the polar decomposition of x with vv* being the range projection of x. Then $\operatorname{Ad}\left(v^{*}\right)$ gives a covariant isomorphism of $M\left(B_{1}\right)$ onto $M\left(B_{2}\right)$. Proof. See the proof of lemma 2.4, noting that $v \in A^{\alpha}(\gamma)^{* *}$.
Lemma 4.5. Let B_{i} be an α-invariant hereditary C^{*}-subalgebra of A such that $A^{\alpha} B_{i} A^{\alpha} \subset B_{i}$. Denote by $B_{1} \vee B_{2}$ the hereditary C^{*}-subalgebra generated by B_{1} and B_{2}. Then
$\operatorname{Sp}\left(\alpha \mid M\left(B_{1} \vee B_{2}\right) \cap\left(\left(B_{1} \vee B_{2}\right)^{\alpha}\right)^{\prime}\right)=\operatorname{Sp}\left(\alpha \mid M\left(B_{1}\right) \cap\left(B_{1}^{\alpha}\right)^{\prime}\right) \cap \operatorname{Sp}\left(\alpha \mid M\left(B_{2}\right) \cap\left(B_{2}^{\alpha}\right)^{\prime}\right)$.
Proof. Let $\gamma \in \operatorname{Sp}\left(\alpha \mid C_{1}\right) \cap \mathrm{Sp}\left(\alpha \mid C_{2}\right)$, where $C_{i}=M\left(B_{i}\right) \cap\left(B_{i}^{\alpha}\right)^{\prime}$. By the ergodicity of α on C_{i} there are unitaries v_{i} in $C_{i}^{\alpha}(\gamma)$. Now B_{i}^{α} are non-zero ideals of A^{α}, and
so if $B=B_{1} \cap B_{2}$, then $B^{\alpha}=B_{1}^{\alpha} \cap B_{2}^{\alpha}$ is a non-zero ideal. Now $B_{i}=\overline{B_{i}^{\alpha} A B_{i}^{\alpha}}, B=$ $\overline{B^{\alpha} A B^{\alpha}}$, and so $e_{B_{i}}, e_{B}$ are central open projections of $\left(A^{\alpha}\right)^{* *}\left(\subset A^{* *}\right)$. Now $v_{i} e_{B} \in$ $C^{\alpha}(\gamma)$, where $C=M(B) \cap\left(B^{\alpha}\right)^{\prime}$, and so by ergodicity, there is a number λ of modulus one such that $v_{1} e_{B}=\lambda v_{2} e_{B}$. Define $v \in e_{B_{1} \vee B_{2}} A^{* *} e_{B_{1} \vee B_{2}}$, by

$$
v=v_{1} e_{B_{1}}+\lambda v_{2}\left(e_{B_{2}}-e_{B}\right) .
$$

Now note that $e_{B}=e_{B_{1}} e_{B_{2}}$. Because since $e_{B}, e_{B_{1}}, e_{B_{2}}$ are mutually commuting, $e_{B} \leq e_{B_{1}}$ implies that $e_{B} \leq e_{B_{1}} e_{B_{2}}$, and moreover $e_{B_{1}} e_{B_{2}} \in\left(B_{1}^{\alpha}\right)^{* *}\left(B_{2}^{\alpha}\right)^{* *}=\left(B^{\alpha}\right)^{* *}$ implies $e_{B_{1}} e_{B_{2}} \leq e_{B}$. Furthermore note that $B_{1}^{\alpha}+B_{2}^{\alpha}=\left(B_{1} \vee B_{2}\right)^{\alpha}$. Because $B_{i} \subset B_{1} \vee B_{2}$ implies $B_{1}^{\alpha}+B_{2}^{\alpha} \subset\left(B_{1} \vee B_{2}\right)^{\alpha}$. Moreover $B_{i}=\overline{B_{i}^{\alpha} A B_{i}^{\alpha}}$ are contained in the hereditary C^{*} subalgebra $\overline{\left(B_{1}^{\alpha}+B_{2}^{\alpha}\right) A\left(B_{1}^{\alpha}+B_{2}^{\alpha}\right)}$, and so $B_{1} \vee B_{2} \subset \overline{\left(B_{1}^{\alpha}+B_{2}^{\alpha}\right) A\left(B_{1}^{\alpha}+B_{2}^{\alpha}\right)}$. Consequently $\left(B_{1} \vee B_{2}\right)^{\alpha} \subset B_{1}^{\alpha}+B_{2}^{\alpha}$. Thus $\left(B_{1} \vee B_{2}\right)^{\alpha}=B_{1}^{\alpha} \vee B_{2}^{\alpha}$, and in particular $e_{B_{1} \vee B_{2}}=$
 a multiplier of $B_{1} \vee B_{2}$ as:

$$
\begin{aligned}
v b_{1} & =v_{1} b_{1} \\
v b_{2} & =\lambda v_{2} b_{2} \\
v b_{1} x b_{2} & =v_{1} b_{1} x b_{2} \\
v b_{2} x b_{1} & =\lambda v_{2} b_{2} x b_{1}
\end{aligned}
$$

for $b_{1} \in B_{1}, b_{2} \in B_{2}, x \in A$ etc. Thus $v \in M\left(B_{1} \vee B_{2}\right) \cap\left(\left(B_{1} \vee B_{2}\right)^{\alpha}\right)^{\prime}$ and $\alpha_{\mathrm{g}}(v)=\langle g, \gamma\rangle v$, and so $\gamma \in \operatorname{Sp}\left(\alpha \mid M\left(B_{1} \vee B_{2}\right) \cap\left(\left(B_{1} \vee B_{2}\right)^{\alpha}\right)^{\prime}\right)$. The reverse inclusion follows from lemma 4.3.
Proof of theorem 4.1. We may assume that α is faithful. Since A is simple and A^{α} is prime, we know from $[11,8.10 .4]$ that $\mathrm{Sp}(\alpha)$ is the same as the Connes spectrum $\Gamma(\alpha)$. Since the latter is a group and α is faithful we see that $\Gamma(\alpha)=\hat{G}$. Thus inspecting the proof of lemma 3.2 , we see that we only have to show for any α-invariant hereditary C^{*}-subalgebra B of A that $M(B) \cap\left(B^{\prime \prime}\right)^{\prime}=\mathbb{C} 1$. Suppose there exists an α-invariant hereditary C^{*}-subalgebra B_{0} of A such that $M\left(B_{0}\right) \cap$ $\left(B_{0}^{\alpha}\right)^{\prime}$ is not trivial. By lemma 4.2 we can assume $A^{\alpha} B_{0} A^{\alpha} \subset B_{0}$, and since α is ergodic on $M\left(B_{0}\right) \cap\left(B_{0}^{\alpha}\right)^{\prime}, \mathrm{Sp}\left(\alpha \mid M\left(B_{0}\right) \cap\left(B_{0}^{\alpha}\right)^{\prime}\right)=H$ is not trivial.

Let $\left\{B_{i}\right\}$ be an increasing family of α-invariant hereditary C^{*}-subalgebras such that $A^{\alpha} B_{i} A^{\alpha} \subset B_{i}, B_{0} \subset B_{i}$, and $\operatorname{Sp}\left(\alpha \mid M\left(B_{i}\right) \cap\left(B_{i}^{\alpha}\right)^{\prime}\right)=H$. Let B be the hereditary C^{*}-subalgebra generated by B_{i}. Then B is α-invariant, $A^{\alpha} B A^{\alpha} \subset B$, and we claim that $\quad \operatorname{Sp}\left(\alpha \mid M(B) \cap\left(B^{\alpha}\right)^{\prime}\right)=H$. Let $\quad \gamma \in H$, and choose a unitary $v_{i} \in$ $\left(M\left(B_{i}\right) \cap\left(B_{i}^{\alpha}\right)^{\prime}\right)^{\alpha}(\gamma)$, such that $v_{i} e_{B_{0}}=v_{0}$, where v_{0} is a fixed unitary in $\left(M\left(B_{0}\right) \cap\right.$ $\left.\left(B_{0}^{\alpha}\right)^{\prime}\right)^{\alpha}(\gamma)$. If $B_{i} \subset B_{j}$, then $v_{i}=v_{j} e_{B_{i}}$, because of the ergodicity of α. Define v by $v e_{B_{i}}=v_{i}$, for all i, in $e A^{* *} e$, where e is the supremum of $\left(e_{B_{i}}\right)$. Since $e=e_{B}$, and v is a multiplier for $\cup B_{i}$, it is easy to conclude that $v \in M(B) \cap\left(B^{\prime \prime}\right)^{\prime}$, and $\gamma \in$ $\operatorname{Sp}\left(\alpha \mid M(B) \cap\left(B^{\alpha}\right)^{\prime}\right)$. Thus $\left.\operatorname{Sp}\left(\alpha \mid M(B) \cap B^{\alpha}\right)^{\prime}\right)=H$ using lemma 4.3.

Let B be a maximal α-invariant heredity C^{*}-subalgebra A such that $A^{\alpha} B A^{\alpha} \subset B$, $B_{0} \subset B$ and $\operatorname{Sp}\left(\alpha \mid M(B) \cap\left(B^{\alpha}\right)^{\prime}\right)=H$. We claim that $B=A$, which contradicts $M(A) \cap\left(A^{\alpha}\right)^{\prime}=\mathbb{C} 1$. Note first that the hereditary C^{*}-subalgebra A_{1} generated by $\left\{x B_{0} x^{*}: x \in A^{\alpha}(\gamma), \gamma \in \hat{G}\right\}$ is equal to A. Because, as $\left(\sum x_{i}\right)\left(\sum x_{i}\right)^{*} \leq 2^{n} \sum x_{i} x_{i}^{*}$ for a finite sequence (x_{i}) of length n, it follows that $A_{1} \supset x B_{0} x^{*}$ for any x in the linear
space A_{F} spanned by $A^{\alpha}(\gamma), \gamma \in \hat{G}$. Since A_{F} is dense in A, this implies that A_{1} is equal to the ideal generated by B_{0}, and hence, since A is simple, it follows that $A_{1}=A$. Suppose $B \neq A$, and then there must exist $\gamma \in \hat{G}$, and $x \in A^{\alpha}(\gamma)$ such that $x B_{0} x^{*} \not \subset B$. By replacing x by $x e_{\nu}$, where e_{ν} is an approximate identity for B_{0}^{α}, we can assume $x^{*} x \in B_{0}$, and so $B_{1}=\overline{x^{*} x B_{0} x^{*} x} \subset B_{0}$. Then by lemma 4.3 we have $\mathrm{Sp}\left(\alpha \mid M\left(B_{1}\right) \cap\left(B_{1}^{\alpha}\right)^{\prime}\right) \supset \mathrm{Sp}\left(\alpha \mid M\left(B_{0}\right) \cap\left(B_{0}^{\alpha}\right)^{\prime}\right)=H$. Moreover by lemma 4.4,

$$
\operatorname{Sp}\left(\alpha \mid M\left(B_{1}\right) \cap\left(B_{1}^{\alpha}\right)^{\prime}\right)=\operatorname{Sp}\left(\alpha \mid M\left(\overline{x B_{0} x^{*}}\right) \cap\left(\left(x B_{0} x^{*}\right)^{\alpha}\right)^{\prime}\right),
$$

and by lemma 4.2

$$
\operatorname{Sp}\left(\alpha \mid M\left(\overline{x B_{0} x^{*}}\right) \cap\left(\left(x B_{0} x^{*}\right)^{\alpha}\right)^{\prime}\right)=\operatorname{Sp}\left(\alpha \mid M\left(B_{2}\right) \cap\left(B_{2}^{\alpha}\right)^{\prime}\right),
$$

if $B_{2}=\overline{A^{\alpha} x B_{0} x^{*} A^{\alpha}}$. Hence $\operatorname{Sp}\left(M\left(B \vee B_{2}\right) \cap\left(\left(B \vee B_{2}\right)^{\alpha}\right)^{\prime}\right)=H$ by lemma 4.5, which contradicts maximality of B as $B_{2} \not \subset B$. This contradiction implies that $M(B) \cap$ $\left(B^{\alpha}\right)^{\prime}=\mathbb{C}$ for any α-invariant hereditary C^{*}-subalgebra B of A.

REFERENCES

[1] H. Araki, R. Haag, D. Kastler \& M. Takesaki. Extensions of KMS states and chemical potential. Commun. Math. Phys. 53 (1977), 97-134.
[2] O. Bratteli, G. A. Elliott \& D. W. Robinson. Strong topological transitivity and C^{*}-dynamical systems. J. Math. Soc. Japan 37 (1985), 115-133.
[3] O. Bratteli \& D. E. Evans, Dynamical semigroups commuting with compact abelian actions. Ergod. Th. \& Dynam. Sys. 3 (1983), 187-217.
[4] O. Bratteli \& D. E. Evans. Derivations tangential to compact groups: The non-abelian case. Proc. Lon. Math. Soc. 52 No. 3 (1986), 369-384.
[5] O. Bratteli, G. A. Elliott, D. E. Evans \& A. Kishimoto. Quasi-product actions of a compact abelian group on a C^{*}-algebra. Tôhoku Math. J. (to appear).
[6] O. Bratteli \& P. E. T. Jorgensen. Derivations commuting with abelian gauge actions on lattice systems. Commun. Math. Phys. 87 (1982), 353-364.
[7] O. Bratteli \& A. Kishimoto. Derivations and free group actions on C^{*}-algebras. J. Operator Theory 15 (1986), 377-410.
[8] O. Bratteli, A. Kishimoto \& D. W. Robinson. Embedding product type actions into C^{*}-dynamical systems. J. Funct. Anal. 75 (1987), 188-210.
[9] J. Glimm. A Stone-Weierstrass theorem for C^{*}-algebras. Ann. Math. 72 (1960), 216-244.
[10] R. Longo, C. Peligrad. Non-commutative topological dynamics and compact actions on C^{*}-algebras. J. Funct. Anal. 58 (1984), 157-174.
[11] G. K. Pedersen, C^{*}-algebras and their Automorphism Groups. Academic Press: London, New York, San Francisco, 1979.
[12] S. Popa. On a problem of R. V. Kadison on maximal abelian *-subalgebras in factors. Invent. Math. 65 (1981), 269-281.
[13] R. T. Powers \& G. L. Price. Derivations vanishing on $S(\infty)$. Commun. Math. Phys. 84 (1982), 439-447.
[14] J. E. Roberts. Cross products of a von Neumann algebra by group duals. Symposia Math. 20 (1976), 335-363.
[15] D. W. Robinson, E. Størmer \& M. Takesaki. Derivations of simple C^{*}-algebras tangential to compact automorphism groups. J. Operator Theory 13 (1985), 189-200.
[16] S. Sakai. C^{*}-algebras and W^{*}-algebras. Springer-Verlag: Berlin, Heidelberg, New York, 1971.
[17] M. Takesaki. Fourier analysis of compact automorphism groups. (An application of Tannaka duality theorem), Algebres d'Operateurs et leurs Applications en Physique Mathematique (Editor, D. Kastler), Editions du CNRS: Paris, 1979, pp. 361-372.
[18] A. J. Wassermann. Automorphic actions of compact groups on operator algebras. Thesis, University of Pennsylvania (1981).

[^0]: * Current address: Department of Mathematics and Computer Science, University College of Swansea, Singleton Park, Swansea, SA2 8PP, Wales.
 † Science and Engineering Research Council Senior Visiting Fellow.
 \ddagger Permanent address: Department of Mathematics, College of General Education, Tohoku University, Sendai, Japan.

