Ergodic Theory and Dynamical Systems

http://journals.cambridge.org/ETS

Additional services for **Ergodic Theory and Dynamical Systems:**

Email alerts: <u>Click here</u> Subscriptions: <u>Click here</u> Commercial reprints: <u>Click here</u> Terms of use : <u>Click here</u>

Duality for automorphisms on a compact *C**-dynamical system

David E. Evans and Akitaka Kishimoto

Ergodic Theory and Dynamical Systems / Volume 8 / Issue 02 / June 1988, pp 173 - 189 DOI: 10.1017/S0143385700004405, Published online: 19 September 2008

Link to this article: http://journals.cambridge.org/abstract_S0143385700004405

How to cite this article:

David E. Evans and Akitaka Kishimoto (1988). Duality for automorphisms on a compact C^* -dynamical system. Ergodic Theory and Dynamical Systems, 8, pp 173-189 doi:10.1017/S0143385700004405

Request Permissions : Click here

Duality for automorphisms on a compact C^* -dynamical system

DAVID E. EVANS* AND AKITAKA KISHIMOTO[†]‡

University of Warwick, Coventry CV4 7AL, England

(Received 7 May 1986 and revised 15 June 1987)

1. Introduction

When considering an action α of a compact group G on a C*-algebra A, the notion of an α -invariant Hilbert space in A has proved extremely useful [1, 4, 8, 14, 17, 18]. Following Roberts [13] a Hilbert space in (a unital algebra) A is a closed subspace H of A such that x^*y is a scalar for all x, y in H. For example if G is abelian, and α is ergodic in the sense that the fixed point algebra A["] is trivial, then A is generated as a Banach space by a unitary in each of the spectral subspaces

$$A^{\alpha}(\gamma) = \{ x \in A \colon \alpha_{g}(x) = \langle g, \gamma \rangle x, g \in G \}, \qquad \gamma \in \widehat{G},$$

which are then invariant one dimensional Hilbert spaces. If G is not abelian, then Hilbert spaces (which are always assumed to be invariant) do not necessarily exist, even for ergodic actions. For non-ergodic actions, it is also desirable to relax the requirement to x^*y being a constant multiple of some positive element of A^{α} . More generally, if γ is a finite dimensional matrix representation of G and n is a positive integer, we define $A_n^{\alpha}(\gamma)$ to be the subspace

$$\{x \in A \otimes M_{nd} : (\alpha_g \otimes 1) x = x(1 \otimes \gamma_g), \qquad g \in G\},\$$

where d is the dimension $d(\gamma)$ of γ , and M_{nd} denotes $n \times d$ complex matrices. (Usually we will denote the extended action of α_g to $\alpha_g \otimes 1$ on $A \otimes M_{nd}$ again by α_g .) Let $A^{\alpha}(\gamma) = \{x_i: (x_i) \in A_1^{\alpha}(\gamma)\}.$

If $x, y \in A_n^{\alpha}(\gamma)$, then $xy^* \in A^{\alpha} \otimes M_n$, but x^*y is not necessarily in $A^{\alpha} \otimes M_d$, even for ergodic actions. For ergodic actions, the situation of full multiplicity, where there exists a unitary in $A_d^{\alpha}(\gamma)$, has been studied by Wasserman [18]. Techniques exist for handling C^* -dynamical systems, where Hilbert spaces exist in this sense, or at least when there is one non-zero x in $A_n^{\alpha}(\gamma)$ for some n, and $\gamma \in \hat{G}$, such that $x^*x = 1$ or more generally $x^*x \in A^{\alpha} \otimes 1$, [3,8]. (If such x exists, the space spanned by the d column vectors of x is a Hilbert space.) Note also that Araki *et al.* [1, 17] avoided such difficulties for von Neumann algebras, by stabilising for example.

^{*} Current address: Department of Mathematics and Computer Science, University College of Swansea, Singleton Park, Swansea, SA2 8PP, Wales.

^{*} Science and Engineering Research Council Senior Visiting Fellow.

[‡] Permanent address: Department of Mathematics, College of General Education, Tohoku University, Sendai, Japan.

Our first result, namely theorem 2.1 can be regarded as a technique for generating Hilbert spaces. Let α be an action of a compact group G on a separable C^* -algebra A, for which there exists an α -invariant pure state ω with GNS triple (π, H, Ω) . If $H^u(\gamma)$ are spectral subspaces for the induced action u of G on H, ρ the restriction of π to A^{α} , we let $J^{\varphi}_{\gamma} = J_{\gamma}$ denote the ideal ker $(\rho | H^u(\gamma))$, if $\gamma \in \hat{G}$. Then we show in § 2 that for any $b \in A^{\alpha} \setminus J_{\gamma}$ there exists $x \in \overline{bA^{\alpha}_d(\gamma)}$ such that $x^*x \in (A^{\alpha} \setminus J_t) \otimes 1$, where ι denotes the trivial representation. In [8], a Γ -spectrum was introduced which was useful in obtaining a covariant version of Glimm's theorem on non-type I C^* -algebras. In theorem 2.5, we characterise such a Γ -spectrum in terms of the kernels $\{J_{\gamma}: \gamma \in \hat{G}\}$. More precisely, if there exists a pure invariant state ω as before, let Γ_{ω} denote

 $\{\gamma \in \hat{G} \colon \forall b, c \in A^{\alpha} \setminus J_{\iota}, \exists x \in \overline{bA_{1}^{\alpha}(\gamma)c}, \text{ such that } x^{*}x \in A^{\alpha} \setminus J_{\iota} \otimes 1_{d}\}.$

If in addition to A being separable, A^{α}/J_i has no minimal projections, then

$$\Gamma_{\omega} = \{ \gamma \in \hat{G} \colon J_{\gamma} \subset J_{\iota} \}.$$

This could be used to compute the Γ -spectrum in certain situations, e.g. for product type actions on UHF algebras (cf. [8, proposition 4.1]).

Versions of Tannaka duality in an operator algebraic context have been obtained in [1, 17, 10, 15, 2]. Suppose σ is an automorphism of a von Neumann algebra M, on which there is an action α of a compact group G such that $\sigma | M^{\alpha} = id$. Then it is shown in [1, 17] that if there exists an action τ of a group H which commutes with α , and is ergodic in the sense that the fixed point algebra M^{τ} is trivial, then there exists $g \in G$ such that $\sigma = \alpha(g)$. In particular, if $M \cap (M^{\alpha})' = \mathbb{C}$, then we could take τ to be the action of the unitary group of M^{α} by inner automorphisms. In [10, 15, 2] C*-versions of Tannaka duality have been obtained for an automorphism σ of a C^{*}-algebra A, which is trivial on the fixed point algebra A^{α} of an action α of a compact group G. If α commutes with an action τ which is ergodic in the sense of being topologically transitive [10] when G is abelian, or strongly topologically transitive [2] when G is not necessarily abelian, then there exists $g \in G$ such that $\sigma = \alpha(g)$. In § 3 and § 4 we prove versions of Tannaka duality in C^{*}-settings, partly through exploiting the techniques of § 2 in manufacturing Hilbert spaces. Suppose α is an action of a compact group G on a C*-algebra A, and σ an automorphism of A such that $\sigma | A^{\alpha} = id$. Then we show that there exists $g \in G$ such that $\sigma = \alpha(g)$ in each of the following situations:

(a) (THEOREM 3.1). A is separable and simple. There is a non-empty family P of α -invariant pure states such that if $J_P = \bigcap_{\varphi \in P} J_{\iota}^{\varphi}, A^{\alpha}/J_P$ contains no minimal projections and for all $\gamma \in \hat{G}$, b, $c \in A^{\alpha} \setminus J_P$, there exists $x \in bA_1^{\alpha}(\gamma)c$ such that $x^*x \in A^{\alpha} \setminus J_P \otimes 1$.

(b) (THEOREM 3.4). There exists a faithful irreducible representation π of A such that $\pi(A)'' = \pi(A^{\alpha})''$.

(c) (THEOREM 4.1). G is abelian, A is simple, A^{σ} is prime, and $M(A) \cap (A^{\alpha})' = \mathbb{C}1$.

Note that under the hypotheses of theorem 3.4, the unitary group of $M(A^{\alpha})$ acts strongly topologically transitive on A, and so theorem 3.4 could be deduced from

174

[2]; (see [5]). However the interest in our proof is that we actually manufacture Hilbert spaces (see lemma 3.7).

The C^* -algebras studied in this paper are inherently non-type I. In [5] a systematic study is made for abelian group actions of the relations between the covariant version of Glimm's theorem in [8], the existence of pure invariant states in (a), its antithesis, namely the existence of highly non-covariant representations in (b), topological transitivity of the unitary group of $M(A^{\alpha})$ in (c), and duality.

2

THEOREM 2.1. Let α be an action of a compact group G on a separable C^* -algebra A. Suppose there exists an α -invariant pure state ω of A, and define a unitary representation u of G on \mathcal{H}_{ω} by $u_g \pi_{\omega}(x)\Omega_{\omega} = \pi_{\omega} \circ \alpha_g(x)\Omega_{\omega}$, $x \in A$. Denote by ρ the restriction of π_{ω} to A^{α} , and P_{γ} the spectral projection of u corresponding to $\gamma \in \hat{G}$, and let $J_{\gamma} = \ker(\rho \mid P_{\gamma}\mathcal{H}_{\omega})$. Then for any $b \in A^{\alpha} \setminus J_{\gamma}$, there exists $x \in \overline{bA_d^{\alpha}(\gamma)}$ such that

$$x^*x \in A^{\alpha} \setminus J_{\iota} \otimes 1$$

where ι denotes the trivial representation of G, and $d = \dim(\gamma)$.

LEMMA 2.2. Let $b \in A^{\alpha} \setminus J_{\gamma}$, and B be the hereditary C^* -subalgebra of $A \otimes M_d$ generated by $\{x^*x: x \in bA_1^{\alpha}(\gamma)\}$. Then $B \cap (A^{\alpha} \otimes \mathbb{C}1) \not \subset J_{\iota}$.

Proof. We identify $a \in A$ with $a \otimes 1$ in $A \otimes M_d$. Then $A_1^{\alpha}(\gamma) A^{\alpha} \subset A_1^{\alpha}(\gamma)$, and so $A^{\alpha}BA^{\alpha} \subset B$.

If p is the open projection of $(A \otimes M_d)^{**}$ corresponding to B, then

 $S = \{\varphi : \text{pure state of } A \otimes M_d, \quad \varphi(p) = 0\}$

is the set of pure states φ of $A \otimes M_d$ such that $\varphi \mid B = 0$. Hence B_+ coincides with

$$\{x \in (A \otimes M_d)_+ : \varphi(x) = 0, \quad \text{for all } \varphi \in S\},$$
 (*)

for if $x \in$ the set (*), then $\psi[(1-p)x(1-p)] = 0$ for all states ψ on $A \otimes M_d$, and so x(1-p) = 0, and $x = pxp \in (A \otimes M_d) \cap p(A \otimes M_d)^{**}p = B$. Define

$$I = \bigcap_{\varphi \in S} \operatorname{Ker} \pi_{\varphi | A^{\alpha}},$$

which is an ideal of A^{α} . If $x \in I_+$, then $\varphi(x) = 0$ for all $\varphi \in S$, and so $x \in B$, i.e. $I \subseteq B$. Conversely, if $x \in B \cap A^{\alpha}$, then $axa' \in B \cap A^{\alpha}$, for $a, a' \in A^{\alpha}$, and so $\varphi(axa') = 0$ for all $\varphi \in S$. Hence $x \in \text{Ker } \pi_{(\varphi|A^{\alpha})}$ i.e. $x \in I$. Thus $I = B \cap A^{\alpha}$. Suppose $I \subseteq J_{\iota}$. Then $\omega | A^{\alpha}$ can be regarded as a state of $(\bigoplus_{\varphi \in S} \pi_{(\varphi|A^{\alpha})})(A^{\alpha})$. Since $\omega | A^{\alpha}$ is pure, it is a weak*-limit of some net φ_{ν} of vector states of $(\bigoplus_{\varphi \in S} \pi_{(\varphi|A^{\alpha})})(A^{\alpha})$ on $\bigoplus_{\varphi \in S} \mathscr{H}_{(\varphi|A^{\alpha})}$, [9]. For each ν , there exist $\xi^{\varphi}_{\nu} \in [\pi_{\varphi}(A^{\alpha})\Omega_{\varphi}]^{-}$ such that $\sum_{\omega \in S} ||\xi^{\varphi}_{\nu}||^{2} = 1$, and

$$\varphi_{\nu}(a) = \sum_{\varphi \in S} \langle \pi_{\varphi}(a) \xi_{\nu}^{\varphi}, \xi_{\nu}^{\varphi} \rangle, \qquad a \in A^{\alpha}(=A^{\alpha} \otimes 1).$$

Define a state $\overline{\varphi_{\nu}}$ on $A \otimes M_d$ by

$$\overline{\varphi_{\nu}}(x) = \sum_{\varphi \in S} \langle \pi_{\varphi}(x) \xi_{\nu}^{\varphi}, \xi_{\nu}^{\varphi} \rangle, \qquad x \in A \otimes M_d.$$

Since for $x \in B$ and $a \in A^{\alpha}$, $a^*x^*xa \in B$, one has $\pi_{\varphi}(x)\pi_{\varphi}(a)\Omega_{\varphi} = 0$, for any $\varphi \in S$. Hence $\pi_{\varphi}(x)\xi_{\nu}^{\varphi} = 0$, for $x \in B$, and so $\overline{\varphi_{\nu}} \mid B = 0$. Let ψ be a weak*-limit point of $\{\varphi_{\nu}\}$. Then $\psi | A^{\alpha} = \omega | A^{\alpha}$, and $\psi | B = 0$. Hence $\omega = \int (\psi | A) \circ \alpha_g dg$, and since ω is pure, we must have $\omega = \psi | A$. Hence there exists a state f of M_d such that $\omega \otimes f = \psi$, [16]. Now we show that $(\omega \otimes f) | B \neq 0$, a contradiction.

Since $bb^* \in A^{\alpha} \setminus J_{\tilde{\gamma}}$, there are positive continuous functions h_1 , h_2 on \mathbb{R} such that $h_1(0) = h_2(0) = 0$, $h_1h_2 = h_2$, and $h_1(bb^*)$, $h_2(bb^*) \in A^{\alpha} \setminus J_{\gamma}$. Since $V = [\pi_{\omega}(h_2(bb^*))P_{\gamma}\mathcal{H}_{\omega}]^-$ is a non-zero *u*-invariant subspace of $P_{\gamma}\mathcal{H}_{\omega}$, there exists a set (ξ_1, \ldots, ξ_d) of unit vectors such that $\xi_i \in V$ and

$$u_g \xi_i = \sum_{j=1}^d \gamma_{ji}(g) \xi_j.$$

By Kadison's transitivity theorem, there is an $x_0 \in A$ such that $||x_0|| = 1$, $\pi_{\omega}(x_0)\Omega_{\omega} = \xi_1$, $\pi_{\omega}(x_0^*)\xi_1 = \Omega_{\omega}$ and $\pi_{\omega}(x_0^*)\xi_i = 0$, for i = 2, ..., d, since $(\Omega_{\omega}, \xi_1, ..., \xi_d)$ is an orthonormal family. Define

$$x_j = d \int \overline{\gamma_{j1}(g)} \alpha_g(x_0) \, dg.$$

Then $x = (x_1, \ldots, x_d) \in A_1^{\alpha}(\gamma)$, and

$$\pi_{\omega}(x_j)\Omega_{\omega}=\xi_j, \qquad \pi_{\omega}(x_j^*)\xi_i=\delta_{ij}\Omega_{\omega}.$$

Since $\pi_{\omega}(h_1(bb^*))\xi_i = \xi_i$, for i = 1, ..., d, this implies that

$$\pi_{\omega}(x_i^*h_1(bb^*)^2x_j)\Omega_{\omega}=\delta_{ij}\Omega_{\omega}.$$

Thus since $y = h_1(bb^*)x \in bA_1^{\alpha}(\gamma)$, one obtains that $y^*y \in B$, $(\omega \otimes f)(y^*y) = 1$, and so $(\omega \otimes f) | B \neq 0$. (In fact letting $\{z_k\}$ be a decreasing sequence of positive elements of A^{α} such that $||z_k a z_k - \omega(x) z_k^2|| \to 0$ for $x \in A$ and $\omega(z_k) = 1$, [11], one has that $y z_k \in \overline{bA_1^{\alpha}(\gamma)}, ||z_k y^* y z_k|| \to 1$, and $(\omega \otimes f)(z_k y^* y z_k) = 1$. This implies $||(\omega \otimes f)| B|| = 1$). This contradiction leads to the conclusion that $I \neq J_{\alpha}$.

LEMMA 2.3. Let $b \in A^{\alpha} \setminus J_{\gamma}$, and B be the hereditary C*-subalgebra of $A \otimes M_d$ generated by $\{x^*x: x \in bA_1^{\alpha}(\gamma)\}$. Then

$$\left\{a\otimes 1\in A^{\alpha}\otimes\mathbb{C}1:\exists x_{i}\in\overline{bA_{1}^{\alpha}(\gamma)}, \quad such that \quad \sum_{i=1}^{n}x_{i}^{*}x_{i}=a\otimes 1\right\}$$

is dense in the positive part of $B \cap (A^{\alpha} \otimes \mathbb{C}1)$.

Proof. Let $a \otimes 1$ be a non-zero positive element of $B \cap (A^{\alpha} \otimes \mathbb{C}1)$. Then for any $\varepsilon > 0$, there exist $x_i, y_i \in bA_1^{\alpha}(\gamma)$ and $z_i \in A \otimes M_d$ such that

$$\left\|a\otimes 1-\sum_{i=1}^n x_i^* z_i y_i\right\|<\varepsilon.$$

Define f on \mathbb{R} by $f(t) = \max(t - \delta, 0)$, for $\delta \in (\varepsilon, ||a||)$, and we shall show that $f(a) \otimes 1$ is of the form $\sum x_i^* x_i$, which completes the proof since $||a - f(a)|| \le \delta$. Let p be the spectral projection of a corresponding to $[\delta, ||a||]$. Since

$$\left|pap\otimes 1-\sum_{i=1}^{n}(p\otimes 1)x_{i}^{*}z_{i}y_{i}(p\otimes 1)\right|<\varepsilon$$

one has

$$pap \otimes 1 \leq \frac{\|a\|}{2(\delta-\varepsilon)} \left\{ \sum_{i=1}^{n} (p \otimes 1)(x_i^* z_i y_i + y_i^* z_i^* x_i)(p \otimes 1) \right\}$$
$$\leq C \sum_{i=1}^{n} \{p \otimes 1)x_i^* x_i(p \otimes 1) + (p \otimes 1)y_i^* y_i(p \otimes 1) \},$$

if $C = (\max_{i=1}^{n} ||z_i||) ||a|| / 2(\delta - \varepsilon).$

Letting $g(t) = f(t)^{1/2} t^{-1/2}$ for t > 0, and g(t) = 0 for $t \le 0$, and multiplying g(a) from both sides of the above inequality we obtain:

$$f(a)\otimes 1 \leq C \sum_{i=1}^{2n} (g(a)\otimes 1)(x_i^*x_i)(g(a)\otimes 1),$$

where $x_{n+i} = y_i$, for i = 1, 2, ..., n. Since $x_i g(a) \otimes 1 \in bA_1^{\alpha}(\gamma)$, the conclusion of Lemma 2.3 follows from Lemma 2.4:

LEMMA 2.4. Suppose a is a positive element of A^{α} , and b an element of A^{α} such that there exist $x_i \in bA_1^{\alpha}(\gamma)$, i = 1, ..., n, with $a \otimes 1 \leq \sum_{i=1}^n x_i^* x_i$. Then there exist $y_i \in \overline{bA_1^{\alpha}(\gamma)}$, i = 1, ..., n such that

$$a\otimes 1=\sum_{i=1}^n y_i^*y_i.$$

Proof. Let

$$x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in A_n^{\alpha}(\gamma)$$

and $x = (xx^*)^{1/2}u$ be the polar decomposition of x in $A^{**} \otimes M_{nd}$, where M_{nd} is the space of $n \times d$ matrices, uu^* is the support projection of $(xx^*)^{1/2}$ in $A^{**} \otimes M_n$, and $u \in A_n^{\alpha}(\gamma)^{**}$. Let B_1 be the hereditary C^* -subalgebra of $A \otimes M_n$ generated by xx^* , and B_2 the hereditary C^* -subalgebra of $A \otimes M_d$ generated by x^*x . We then have an isomorphism of B_1 onto B_2 defined by

$$z\in B_1\to u^*zu\in B_2.$$

If $z = (xx^*)^{1/2}y(xx^*)^{1/2}$, with $y \in A \otimes M_n$, then $u^*zu = u^*(xx^*)^{1/2}y(xx^*)^{1/2}u = x^*yx \in B_2$. Hence $u^*B_1u \subset B_2$ as $(xx^*)^{1/2}A \otimes M_n(xx^*)^{1/2}$ is dense in B_1 . Similarly, one can show $uB_2u^* \subset B_1$.

Since $a \otimes 1 \leq x^* x$, one has $a \otimes 1 \in B_2$, and

$$a\otimes 1=(a^{1/2}\otimes 1)u^*u(a^{1/2}\otimes 1).$$

Moreover, as $y = u(a^{1/2} \otimes 1) \in A_n^{\alpha}(\gamma)^{**}$, the lemma will follow, if we can show that $y \in A \otimes M_{nd}$. This follows since u is a multiplier in the sense that $uB_2 \subset A \otimes M_{nd}$, and $B_1u \subset A \otimes M_{nd}$. Hence $y \in A \otimes M_{nd}$, and writing

$$y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix},$$

one obtains $a \otimes 1 = \sum_{i=1}^{n} y_i^* y_i$. Since $yy^* = u(a \otimes 1)u^* \in B_1$, and $B_1 \subset bAb^* \otimes M_n$, one has that $y_i y_i^* \in \overline{bAb^*}$, i.e. $y_i \in \overline{bA} \otimes M_{1d}$.

Proof of Theorem 2.1. By lemmas 2.2 and 2.3, we see that for any $b \in A^{\alpha} \setminus J_{\gamma}$, there exists $x \in \overline{bA_n^{\alpha}(\gamma)}$ such that $x^*x \in (A^{\alpha} \setminus J_{\iota}) \otimes \mathbb{C}1$. Let *n* be the smallest possible integer for which there exists $a \in (A^{\alpha} \setminus J_{\iota})_+$ and $x_i \in \overline{bA_1^{\alpha}(\gamma)}$ such that $a \otimes 1 = \sum_{i=1}^n x_i^* x_i$. Take such *a* and x_i , and we may assume that there exists $a', a'' \in (A^{\alpha} \setminus J_{\iota})_+$ such that aa' = a', a'a'' = a'', ||a|| = 1. Since $\rho(a')\rho(a'') = \rho(a'') \neq 0$, Ker $(\rho(a') - 1) \neq 0$, and so by Kadison's transitivity theorem, we can find *v* in A^{α} such that $\rho(v)\Omega \in \text{Ker}(\rho(a') - 1)$, and $\omega(v^*a'v) = 1$.

For $\varphi = \omega(v^* \cdot v)$, let R_{φ} be the map of $A \otimes M_d$ onto M_d defined by $R_{\varphi}[z_{ij}] = [\varphi(z_{ij})], [z_{ij}] \in A \otimes M_d$. Then

$$\sum_{i=1}^{n} R_{\varphi}(x_{i}^{*}x_{i}) = 1 = \begin{pmatrix} 1 & 0 \\ \ddots \\ 0 & 1 \end{pmatrix}.$$

Since φ is a pure state of A, and A is separable, there exists a decreasing sequence z_k of positive elements of A such that $z_1 = a$, and the limit of z_k is the support projection of φ . We may assume that the z_k are α -invariant, and $z_k z_{k+1} = z_{k+1}$ for $k = 1, 2, \ldots$. Then for any $x \in A$, $||z_k x z_k - \varphi(x) z_k^2|| \to 0$ as $k \to \infty$, [11]. If $||R_{\varphi}(x_i^* x_i)|| < 1$ for some i, then for large k, $z_k x_i^* x_i z_k < 1$. But

$$z_{k+1}^2 - z_{k+1} x_i^* x_i z_{k+1} \ge (1 - \| z_k x_i^* x_i z_k \|) z_{k+1}^2$$

and so from

$$z_{k+1}^2 = \sum_{j=1}^n z_{k+1} x_j^* x_j z_{k+1}$$

we deduce

$$z_{k+1}^2 \leq (1 - ||z_k x_i^* x_i z_k||)^{-1} \sum_{j \neq i} z_{k+1} x_j^* x_j z_{k+1}.$$

This contradicts Lemma 2.4, as $z_{k+1}^2 \in A^{\alpha} \setminus J_{\iota}$, and $x_j z_{k+1} \in bA_1^{\alpha}(\gamma)$.

Hence $||R_{\varphi}(x_i^*x_i)|| = 1$, for all i = 1, ..., n. Then as $R_{\varphi}(x_i^*x_i)$ is a positive matrix, Tr $R_{\varphi}(x_i^*x_i) \ge 1$, and so

$$n \leq \operatorname{Tr} \sum_{i=1}^{n} R_{\varphi}(x_{i}^{*}x_{i}) = d.$$

THEOREM 2.5. Let α be an action of a compact group G on a separable C*-algebra A. Suppose there exists an α -invariant pure state ω of A, and define $J_{\gamma}, \gamma \in \hat{G}$ as in Theorem 2.1. Let Γ_{ω} denote

$$\{\gamma \in \hat{G} \colon \forall b, c \in A^{\alpha} \setminus J_{\iota}, \exists x \in \overline{bA_{1}^{\alpha}(\gamma)c} \text{ such that } x^{*}x \in A^{\alpha} \setminus J_{\iota} \otimes 1_{d(\gamma)}\}.$$

Suppose that A^{α}/J_{ι} has no minimal projections. Then

$$\Gamma_{\omega} = \{ \gamma \in \hat{G} \colon J_{\gamma} \subset J_{\iota} \}.$$

Proof. First we show that $\Gamma_{\omega} \subset \{\gamma \in \hat{G} : J_{\gamma} \subset J_{\iota}\}$. Let $\gamma \in \Gamma_{\omega}$, and $b \in J_{\gamma}$, and B the hereditary C^* -subalgebra of $A \otimes M_d$ generated by $\{x^*x : x \in bA_1^{\alpha}(\gamma)\}$. Then we claim that $B \cap (A^{\alpha} \otimes \mathbb{C}1) \subset J_{\iota}$, and this is enough to get the conclusion. (For if $b \notin J_{\iota}$, then

by definition of Γ_{ω} , there would exist $x \in \overline{bA_1^{\alpha}(\gamma)b} \subset \overline{bA_1^{\alpha}(\gamma)}$ such that $x^*x \in A^{\alpha} \setminus J_{\iota} \otimes 1_{d(\gamma)}$, which implies that $b \notin J_{\gamma}$ by the above claim. Consequently $J_{\gamma} \subset J_{\iota}$).

Let $a \otimes 1 \in B \cap (A^{\alpha} \otimes \mathbb{C}1)$. Then *a* is a limit of elements of the form where $\sum_{i=1}^{n} x_{i1}^* b^* z_i b y_{i1}$, where $x_i = (x_{i1}, \ldots, x_{i1})$, $y_i = (y_{id}, \ldots, y_{id}) \in A_1^{\alpha}(\gamma)$, and $z_i \in A$. Since $\pi_{\omega}(y_{i1}) P_i \mathcal{H}_{\omega} \subset P_{\gamma} \mathcal{H}_{\omega}$, and $\pi_{\omega}(b) | P_{\gamma} \mathcal{H}_{\omega} = 0$, it follows that $\pi_{\omega}(a) | P_i \mathcal{H}_{\omega} = 0$, i.e. $a \in J_i$. For the reverse inclusion we need:

LEMMA 2.6. Let C be a C*-algebra, and J an ideal of C. Suppose that the quotient C/J is prime and has no minimal projections. Then for any n = 2, 3, ..., there exist $v_1, ..., v_n$, e in C such that $v_i^* v_j = 0$ if $i \neq j$, $v_i^* v_i e = e$, and $e \notin J$.

Proof. Since C/J has no minimal projections, there exists a self adjoint $h \in C$ such that h+J has an infinite spectrum in C/J. By using h it is shown that there exist positive a_1, \ldots, a_n in $C \setminus J$, of norm one such that $a_i a_j = 0$ for $i \neq j$. We may suppose that there exists $b_1 \in (C \setminus J)_+$ such that $a_1 b_1 = b_1$, and $||b_1|| = 1$. Let $v_1 = a_1$. Now suppose that we have defined $v_i \in \overline{a_i C} \setminus J$, $b_i \in (C \setminus J)_+$ such that $v_i^* v_i b_k = b_k$ and $||b_i|| = 1$, for $i = 1, \ldots, k$. Since $a_{k+1} C b_k \not\subset J$, (as C/J is prime), choose a non-zero $v_{k+1} \in \overline{a_{k+1} C b_k} \setminus J$, and assume that $v_{k+1}^* v_{k+1}$ is a unit for some $b_{k+1} \in (C \setminus J)_+$ with $||b_{k+1}|| = 1$. Then $b_{k+1} \in \overline{b_k C b_k}$, and so $v_i^* v_i$ is a unit for b_{k+1} , $i = 1, \ldots, k$. This concludes the proof with $e = b_n$.

Proof of Theorem 2.5. It only remains to show

$$\Gamma_{\omega} \supset \{ \gamma \in \widehat{G} \colon J_{\gamma} \subset J_{\iota} \}.$$

Let $\gamma \in \hat{G}$ be such that $J_{\gamma} \subset J_i$. Let $b \in A^{\alpha} \setminus J_i$. Now $A^{\alpha'}/J_i$ is prime, since it has a faithful irreducible representation. Hence applying lemma 2.5 to the C^* -algebra $C = \overline{bA^{\alpha}b^*}$ with $J = J_i \cap C$, one obtains v_1, \ldots, v_d , $e \in \overline{bA^{\alpha}b^*}$, such that $v_i^* v_j = 0$ for $i \neq j$, $v_i^* v_i e = e$ and $e \in \overline{bA^{\alpha}b^*} \setminus J_i \subset A^{\alpha} \setminus J_{\gamma}$. By theorem 2.1, there exists

$$x = \begin{pmatrix} x_1 \\ \vdots \\ x_d \end{pmatrix} \in \overline{eA_d^{\alpha}(\gamma)},$$

such that $x^*x \in A^{\alpha} \setminus J_{\iota} \otimes 1$. Define

$$y = \sum_{i=1}^d v_i x_i.$$

Then $y \in A_1^{\alpha}(\gamma)$, and $y^* y = \sum x_i^* v_i^* v_i x_i = \sum x_i^* x_i = x^* x \in A^{\alpha} \setminus J_i \otimes 1$. Thus $\gamma \in \Gamma$.

COROLLARY 2.7. Under the assumptions of theorem 2.1, suppose in addition that A^{α}/J_{ι} , has no minimal projections. Then for any $b \in A^{\alpha} \setminus J_{\gamma}$, $\gamma \in \hat{G}$, there exists $x \in \overline{bA_{1}^{\alpha}(\gamma)}$ such that $x^{*}x \in A^{\alpha} \setminus J_{\iota} \otimes 1$.

Proof. This follows from theorem 2.1 and the proof of theorem 2.5. \Box

COROLLARY 2.8. Let α be an action of a compact group G on a separable C*-algebra A. Assume that there exists an α -invariant pure state on A, and let P be a non-empty family of α -invariant pure states. Define an ideal J^{φ}_{γ} for each $\varphi \in P$, $\gamma \in \hat{G}$ as in theorem 2.1, and let $J^{P}_{\alpha} = \bigcap_{\varphi \in P} J^{\varphi}_{\alpha}$. Suppose that A^{α} is prime and has no minimal projections, and $J_{i}^{p} = \{0\}$. Define

$$\Gamma_P = \{ \gamma \in \hat{G} \colon \forall b \in A^{\alpha} \setminus \{0\}, \exists x \in bA_1^{\alpha}(\gamma) \text{ s.t. } x^* x \in A^{\alpha} \setminus \{0\} \otimes \mathbb{1}_{d(\gamma)} \}.$$

Then

$$\Gamma_P = \{ \gamma \in \hat{G} \colon J_{\gamma}^P = \{0\} \}.$$

Proof. Let $\gamma \in \hat{G}$ s.t. $J_{\gamma}^{P} \neq \{0\}$, and let $b \in J_{\gamma}^{P} \setminus \{0\}$. Then by the proof of theorem 2.5, the hereditary C^{*} -subalgebra B of $A \otimes M_{d}$ generated by $x^{*}x$ for $x \in bA_{d}^{\alpha}(\gamma)$ satisfies

$$B \cap (A^{\alpha} \otimes \mathbb{C} 1) \subset J_{\iota}^{\varphi}$$

for any $\varphi \in P$ since $b \in J^{\varphi}_{\gamma}$. Hence

$$B \cap (A^{\alpha} \otimes \mathbb{C}1) \subset J_{\iota}^{P} = \{0\}.$$

This implies that $\gamma \notin \Gamma_P$. Conversely suppose $\gamma \in \hat{G}$, such that $J^P_{\gamma} = \{0\}$, and let $b \in A^{\alpha} \setminus \{0\}$. Then $b \notin J^{\varphi}_{\gamma}$, for some $\varphi \in P$, and by theorem 2.1, there exists $x \in bA^{\alpha}_d(\gamma)$ such that $x^*x \in A^{\alpha} \setminus J^{\varphi}_{\iota} \otimes 1 \subset A^{\alpha} \setminus \{0\} \otimes 1$. Thus $\gamma \in \Gamma_P$.

3

THEOREM 3.1. Let G be a compact group and α an action of G on a separable simple C^{*}-algebra A. Assume that there exists an α -invariant pure state of A and let P be a non-empty family of α -invariant pure states. Define

$$J_P = \bigcap_{\varphi \in P} \ker \pi_{(\varphi|A^{\alpha})}$$

and assume that the quotient algebra A^{α}/J_{P} contains no miminal projections. Define

$$\Gamma_P = \{ \gamma \in \hat{G} \mid \forall b, c \in A^{\alpha} \setminus J_P, \exists x \in bA_1^{\alpha}(\gamma)c, \text{ s.t. } x^*x \in A^{\alpha} \setminus J_P \otimes 1 \}$$

and assume that $\Gamma_P = \hat{G}$.

Let σ be an automorphism of A such that $\sigma(x) = x$ for all $x \in A^{\alpha}$. Then there exists $g \in G$ such that $\sigma = \alpha_g$.

Remark. When G is abelian, P may be chosen so that $J_P = (0)$. (Let ω be an α -invariant pure state of A, and

$$P = \{ \omega(a^* \circ a) \colon a \in A^{\alpha}(\gamma), \qquad \gamma \in \hat{G}, \qquad \omega(a^*a) = 1 \} \}.$$

Then the condition $\Gamma_P = \hat{G}$ is equivalent to the Connes spectrum of α being \hat{G} .

LEMMA 3.2. Adopt the assumptions of theorem 3.1 and also assume that A^{α} is prime and that for any α -invariant hereditary C^* -subalgebra B of A one has $M(B) \cap (B^{\alpha})' = \mathbb{C}1$ where M(B) is the multiplier algebra of B. If σ is an automorphism of A such that $\sigma(x) = x$ for any $x \in A^{\alpha}$, then there exists $g \in G$ such that $\sigma = \alpha_g$.

Proof. Let u be a finite-dimensional unitary representation of G such that for some n there exists $x \in A_n^{\alpha}(u)$ with $x^*x \in A^{\alpha} \setminus \{0\} \otimes 1$. Then we claim that there is a $d \times d$ unitary matrix $\lambda(u)$ such that $\sigma(x) = x\lambda(u)$ for any $x \in A_1^{\alpha}(u)$, where $\sigma(x) = (\sigma(x_1), \ldots, \sigma(x_d))$ and d is the dimension of u.

180

Let $x \in A_n^{\alpha}(u)$ be such that $x^*x = a \otimes 1 \in A \setminus \{0\} \otimes 1$. For small $\delta > 0$ define a continuous function f on \mathbb{R} by

$$f(t) = \begin{cases} 0 & t \le \delta \\ t^{-1/2} & t \ge 2\delta \end{cases}$$

and by linearity elsewhere. Let y = xf(a) and e = f(a)af(a). Then $y \in A_n^{\alpha}(u)$ and $y^*y = e \otimes 1$. The non-zero hereditary C^* -subalgebra

$$B = \{b \in A: eb = be = b\}$$

of A is α -invariant, and for $b \in B^{\alpha}$, one has $yby^* \in A^{\alpha} \otimes M_d$. Then since $yby^* = \sigma(y)b\sigma(y^*)$,

$$\sigma(y^*)yb = \sigma(y^*)yby^*y = \sigma(y^*)\sigma(y)b\sigma(y^*)y$$
$$= b\sigma(y^*)y.$$

Denoting by p the open projection corresponding to B, one obtains that $\sigma(y^*)yp = p\sigma(y^*)y \in M(B) \otimes M_d \cap (B^{\alpha})' \cong M_d$. Let λ be the matrix over \mathbb{C} defined by $\sigma(y^*)yp = \lambda^*p$. Then for $b \in B^{\alpha}$ one has that $\sigma(yb) = yb\lambda$ because

$$\sigma(b^*y^*) = \sigma(y^*yb^*y^*) = \sigma(y^*)yb^*y^*$$
$$= \lambda^*b^*y^*.$$

Further λ is a unitary because $\lambda \lambda^* p = y^* \sigma(y) \sigma(y^*) y p = y^* y y^* y p = p$. Define a continuous function h on \mathbb{R} by

$$h(t) = \begin{cases} 0 & t \le \delta \\ t^{1/2} & t \ge 2\delta \end{cases}$$

and by linearity elsewhere. Then since $h(a) \in B$, and

$$||x-yh(a)||^2 = ||a(f(a)h(a)-1)^2|| \le 2\delta,$$

it follows by approximation that for any $x \in A_n^{\alpha}(u)$ with $x^*x \in A^{\alpha} \otimes 1$, there exists a $d \times d$ unitary matrix λ such that $\sigma(x) = x\lambda$.

Now fix a non-zero $x \in A_n^{\alpha}(u)$ such that $x^*x = a \otimes 1 \in A^{\alpha} \otimes 1$, and let $\lambda(u)$ be the unitary matrix defined by $\sigma(x) = x\lambda(u)$. Let $y \in A_n^{\alpha}(u)$. Then since $ybx^* \in A^{\alpha} \otimes M_n$ for any $b \in A^{\alpha}$, it follows that $ybx^* = \sigma(y)b\lambda(u)^*x^*$. Multiplying x from the right one obtains that $yba = \sigma(y)ba\lambda(u)^*$, i.e.

$$(\sigma(y) - y\lambda(u))ba = 0$$

for any $b \in A^{\alpha}$. This implies that $\sigma(y) = y\lambda(u)$ because no non-zero element of A is orthogonal to the ideal of A^{α} generated by a as A^{α} is prime. Since any $y \in A_1^{\alpha}(u)$ can be regarded as an element of $A_n^{\alpha}(u)$, this proves the assertion that $\sigma(y) = y\lambda(u)$ for any $y \in A_1^{\alpha}(u)$.

Let \mathscr{R} be the set of finite-dimensional unitary matrix representations u of G such that there is a non-zero $x \in A_n^{\alpha}(u)$ with $x^*x \in A^{\alpha} \otimes 1$ for some n. For each $u \in \mathscr{R}$ one has a unitary matrix $\lambda(u)$ such that $\sigma(x) = x\lambda(u)$ for $x \in A_1^{\alpha}(u)$. Now we claim that \mathscr{R} is in fact the set of all finite-dimensional unitary representations of G and that

nup://journais.campridge.org

 λ satisfies that

$$\lambda (u_1 \otimes u_2) = \lambda (u_1) \otimes \lambda (u_2),$$

$$\lambda (u_1 \oplus u_2) = \lambda (u_1) \oplus \lambda (u_2),$$

$$\lambda (wu_1 w^*) = w\lambda (u_1) w^*,$$

and $\lambda(\overline{u_1}) = \lambda(u_1)$, where $u_i \in \mathcal{R}$, and w is a unitary matrix. Then by Tannaka's duality theorem (or by mimicking the proof of theorem 2.4 in [16] directly), one would obtain $g \in G$ such that $\lambda(u) = u_g$ for all $u \in R$. Since the set of elements x_i , with $(x_i) \in A_1^{\alpha}(u)$, $u \in \mathcal{R}$ is dense in A one would get the conclusion that $\sigma = \alpha_g$.

By the assumption that $\Gamma_P = \hat{G}$, \mathcal{R} contains all irreducible unitary representations of G.

Let $u_i \in \mathcal{R}$ with i = 1, 2, and let $x_i \in A_n^{\alpha}(u_i)$ be such that $x_i^* x_i = a_i \otimes 1 \in A^{\alpha} \setminus \{0\} \otimes 1$. We may suppose that there is $b \in A^{\alpha}$ such that $a_1 b = b$, $b \ge 0$, and ||b|| = 1. Since A^{α} is prime, there is $c \in A^{\alpha}$ such that $a_2 cb \ne 0$. Let $y_1 = x_1 (bc^* a_2 cb)^{1/2}$ and $y_2 = x_2 cb$. Then $y_i \in A_n^{\alpha}(u_i)$ and

$$y_1^* y_1 = bc^* a_2 cb = y_2^* y_2,$$

and hence $y \equiv y_1 \oplus y_2 \in A_n^{\alpha}(u_1 \oplus u_2)$, with $y^* y \in A^{\alpha} \setminus \{0\} \otimes 1$. This proves that $u_1 \oplus u_2 \in \mathcal{R}$ and that $\lambda(u_1 \oplus u_2) = \lambda(u_1) \oplus \lambda(u_2)$, since $\sigma(y) = y_1 \lambda(u_1) \oplus y_2 \lambda(u_2) = (y_1 \oplus y_2)(\lambda(u_1) \oplus \lambda(u_2))$.

Let $u \in \mathcal{R}$ and let $x \in A_n^{\alpha}(u)$ with $x^*x \in A^{\alpha} \setminus \{0\} \otimes 1$. Let w be a $d(u) \times d(u)$ unitary matrix and let $y = xw^*$. Then $y \in A_n^{\alpha}(wuw^*)$ and $y^*y = x^*x \in A^{\alpha} \setminus \{0\} \otimes 1$. Hence $wuw^* \in \mathcal{R}$ and $\lambda(wuw^*) = w\lambda(u)w^*$, since $\sigma(y) = \sigma(x)w^* = xw^*w\lambda(u)w^*$.

The above three properties in particular imply that \mathcal{R} is the set of all finite dimensional unitary representations of G.

Let $u_i \in \mathcal{R}$ with i = 1, 2 and assume that u_i are irreducible. Let $x \in A_1^{\alpha}(u_1)$ be such that $x^*x = a \otimes 1 \in A^{\alpha} \setminus J_P \otimes 1$. We may suppose that there is $b \in A^{\alpha} \setminus J_P$ such that $b \ge 0$ and ab = b. By the assumption that $\Gamma_P = \hat{G}$, there is $y \in bA_1^{\alpha}(u_2)$ such that $y^*y \in A^{\alpha} \setminus J_P \otimes 1$. Then $xy \in A_1^{\alpha}(u_1 \otimes u_2)$ and $(xy)^*(xy) = y^*y \in A^{\alpha} \setminus \{0\} \otimes 1$. This proves that $\lambda(u_1 \otimes u_2) = \lambda(u_1) \otimes \lambda(u_2)$ since

$$(\sigma(xy))_{ij} = \sigma(x)_i \sigma(y)_j$$

= $\sum x_k \lambda_{ki}(u_1) \sum y_l \lambda_{lj}(u_2)$
= $\sum_{k,l} (xy)_{kl} (\lambda(u_1) \otimes \lambda(u_2))_{kl,ij}$

When $u_i \in \mathcal{R}$ are not irreducible, we may decompose u_i into irreducible components and apply the above properties to get the conclusion that $\lambda(u_1 \otimes u_2) = \lambda(u_1) \otimes \lambda(u_2)$.

Let $u \in \mathcal{R}$ and $x \in A_1^{\alpha}(u)$ be non-zero. Let $y = x^{*T}$ where T denotes transposition. Then $y \in A_1^{\alpha}(u)$ and $\lambda(\bar{u}) = \overline{\lambda(u)}$ since $\sigma(y) = (\lambda(u)^*x^*)^T = y\overline{\lambda(u)}$.

Proof of Theorem 3.1. We have to prove that the two additional assumptions in lemma 3.2 follow automatically from the assumptions of the theorem.

Since A is separable and Sp $(\alpha) = \hat{G}$, \hat{G} must be countable. Let $\{\gamma_i\}$ be a sequence of elements of \hat{G} such that each $\gamma \in \hat{G}$ appears infinitely often in $\{\gamma_i\}$ and let $\xi_i = \iota \oplus \gamma_i$ where ι is the trivial representation of G. Let β be the infinite product action $\bigotimes_{i=1}^{\infty} \operatorname{Ad} \xi_i$ of G on the UHF algebra $C = \bigotimes M_{d(\xi_i)}$ where $d(\xi_i)$ is the dimension of ξ_i . Then by theorem 3.1 in [8], there exists an α -invariant C^* -subalgebra B of A and a closed α^{**} -invariant projection $q \in A^{**}$ such that $q \in B'$, qAq = Bq, and the C^* -dynamical systems $(Bq, G, \alpha^{**}|Bq)$ and (C, G, β) are isomorphic.

Let τ be the tracial state of C and define a state ω of A by

$$\omega(x) = \tau(qxq), x \in A,$$

where we identified qAq = Bq with C. Then we claim that $\pi_{\omega}(A)'' \cap \pi_{\omega}(A^{\alpha})' = \mathbb{C}1$.

Let $e \equiv \bar{\pi}_{\omega}(q) \in \pi_{\omega}(A^{\alpha})''$, and let c(e) be the central support of e in $\pi_{\omega}(A^{\alpha})''$. We first show that c(e) = 1.

Define a unitary representation u of G on \mathcal{H}_{ω} by

$$u_g \pi_\omega(x) \Omega_\omega = \pi_\omega \circ \alpha_g(x) \Omega_\omega, \qquad x \in A,$$

by using the α -invariance of ω . Then c(e) commutes with $u_g, g \in G$, and if $c(e) \neq 1$, there exist $\gamma \in \hat{G}$ and a set (ξ_1, \ldots, ξ_d) of orthonormal vectors in $(1 - c(e))\mathcal{H}_{\omega}$ such that

$$u_g \xi_i = \sum_{j=1}^d \gamma_{ji}(g) \xi_j,$$

where $(\gamma_{ij}(g))$ is a matrix representative of γ . Let $x' \in A$ be such that

$$\|\pi_{\omega}(x')\Omega_{\omega}-\xi_1\|<\varepsilon,$$

for small $\varepsilon > 0$ and define

$$x_j = d \int \overline{\gamma_{j1}(g)} \alpha_g(x') dg.$$

Then $x = (x_1, ..., x_d) \in A_1^{\alpha}(\gamma)$ and $||\pi_{\omega}(x_j)\Omega_{\omega} - \xi_j|| \le d\varepsilon$ since $\pi_{\omega}(x_j)\Omega_{\omega} - \xi_j = d \int \overline{\gamma_{j1}(g)} u_g(\pi_{\omega}(x')\Omega_{\omega} - \xi_1) dg.$

Let $v_n = (v_{n1}, \dots, v_{nd}) \in C_1^{\alpha}(\gamma)$ satisfy that $\{v_{ni}\}$ is a central sequence in C and $v_{n1}^* v_{n1} = \dots = v_{nd}^* v_{nd} \equiv e_n,$

$$\sum_{i=1}^{d} v_{ni} v_{ni}^* + e_n = 1,$$

(which can be chosen from the factors $M_{d(\xi_i)}$ with $\gamma_i = \gamma$). Now $v_{n1} = u_n q$, where $u_n \in B$. We define

$$u_{nj} = d \int \overline{\gamma_{j1}(g)} \alpha_g(u_n) dg, \qquad j = 1, \ldots, n$$

so that $(u_{n1}, \ldots, u_{nd}) \in B_1^{\alpha}(\gamma)$, and $u_{nj}q = v_{nj}$. Hence

$$Q_n = \sum_{j=1}^n x_j v_{nj}^* \in A^{\alpha} q$$

and

$$\begin{split} \bar{\pi}(v_{n_1})\Omega_{\omega} &\in e\mathcal{H}_{\omega}, \\ \bar{\pi}_{\omega}(Q_n)\bar{\pi}_{\omega}(v_{n_1})\Omega_{\omega} &= \bar{\pi}_{\omega}(x_1e_n)\Omega_{\omega} \end{split}$$

Ξ.

belongs to $c(e)\mathcal{H}_{\omega}$. Then we compute:

$$\|\bar{\pi}_{\omega}(x_{1}e_{n})\Omega_{\omega} - \pi_{\omega}(x_{1})\Omega_{\omega}\|^{2} = \tau(e_{n}qx_{1}^{*}x_{1}qe_{n}) + \tau(qx_{1}^{*}x_{1}q) - \tau(q_{1}x_{1}^{*}x_{1}qe_{n}) - \tau(e_{n}qx_{1}^{*}x_{1}q)$$

which converges to $d(d+1)^{-1}\tau(qx_1^*x_1q)$ because τ is a product state and $\tau(e_n) = (d+1)^{-1}$. On the other hand,

$$\begin{aligned} \|\pi_{\omega}(x_1e_n)\Omega_{\omega} - \pi_{\omega}(x_1)\Omega_{\omega}\| &\geq \|\pi_{\omega}(x_1e_n)\Omega_{\omega} - \xi_1\| - \|\xi_1 - \pi_{\omega}(x_1)\Omega_{\omega}\| \\ &\geq (\|\pi_{\omega}(x_1e_n)\Omega_{\omega}\|^2 + 1)^{1/2} - d\varepsilon. \end{aligned}$$

Hence we obtain

$$d(d+1)^{-1}\tau(qx_1^*x_1q) \ge \{((d+1)^{-1}\tau(qx_1^*x_1q)+1)^{1/2} - d\varepsilon\}^2$$

Since $|\tau(qx_1^*x_1q)^{1/2}-1| < d\varepsilon$, this is a contradiction for small $\varepsilon > 0$, which implies that c(e) = 1.

Let $z \in \pi_{\omega}(A)'' \cap \pi_{\omega}(A^{\alpha})'$. Then since $e\pi_{\omega}(A)''e = \pi_{\omega}(B)''e$ and $e\pi_{\omega}(A^{\alpha})''e = \pi_{\omega}(B^{\alpha})''e$, one has that $ze = ez \in \pi_{\omega}(B)''e \cap \{\pi_{\omega}(B^{\alpha})''e\}'$ which is trivial by: $\pi_{\varepsilon}(C)'' \cap \pi_{\varepsilon}(C^{\beta})' = \mathbb{C}1.$

To see this (see also [6]); note that any finite permutation automorphism among the factors in the infinite tensor product $C = \bigotimes_{i=1}^{\infty} M_{d(\xi_i)}$ which commutes with β is implemented by a unitary of C^{β} [13]. Since those automorphisms leave τ invariant, they extend to automorphisms of $\pi_{\tau}(C)''$. Thus any element of $\pi_{\tau}(C)'' \cap \pi_{\tau}(C^{\beta})'$ is fixed under those automorphisms, and it is easy to check that they act ergodically on $\pi_{\tau}(C)''$ by using the fact that τ is a separating factorial state and the permutation group which commutes with β acts ergodically on C.

Thus there is a $\lambda \in \mathbb{C}$ such that $ze = \lambda e$. Since the reduction $\pi_{\omega}(A^{\alpha})' \rightarrow \pi_{\omega}(A^{\alpha})'e$ is an isomorphism, because c(e) = 1, one obtains that $z = \lambda 1$, i.e. $\pi_{\omega}(A)'' \cap \pi_{\omega}(A^{\alpha})' = \mathbb{C}1$, as claimed.

LEMMA 3.3 [12, lemma 2.1]. If $N \subset M$ are non Neumann algebras and f a projection in N, then $(N_f)' \cap M_f = (N' \cap M)_f$.

Let *B* be an α -invariant hereditary C^* -subalgebra of *A*. Then we claim that $M(B) \cap (B^{\alpha})' = \mathbb{C}$. By simplicity of *A*, π_{ω} is faithful on *A*, and hence so is $\rho = \pi_{\omega} | B$, on fH_{ω} where $f = \pi_{\omega}(e_B)$ and e_B is the open projection for *B*. Moreover, $\bar{\rho}$, the unique extension of ρ to B^{**} is faithful on M(B). Thus

$$\bar{\rho}(M(B)) \cap \rho(B^{\alpha})' \subset \bar{\rho}(B^{**}) \cap \rho(B^{\alpha})'$$
$$= fMf \cap (fM^{\bar{\alpha}}f)'$$

where $M = \pi_{\omega}(A)''$, and $\bar{\alpha}$ denotes the unique extension of α to M. Since $M \cap (M^{\alpha})' = \mathbb{C}$, it follows from lemma 3.3, that $M(B) \cap (B^{\alpha})' = \mathbb{C}$.

By using that $\pi_{\omega}(A)'' \cap \pi_{\omega}(A^{\alpha})' = \mathbb{C}1$ and the faithfulness of π_{ω} it follows that A^{α} is prime. This completes the proof of theorem 3.1.

THEOREM 3.4. Let G be a compact group and α an action on a C^{*}-algebra A. Assume that there exists a faithful irreducible representation π of A such that $\pi(A)'' = \pi(A^{\alpha})''$. Let σ be an automorphism of A such that $\sigma(x) = x$ for all $x \in A^{\alpha}$. Then there exists $g \in G$ such that $\sigma = \alpha_g$. *Remark.* If we further assume that A is simple, separable, and unital, and that there exists an automorphism τ of A such that $\|\tau^n(x)y - y\tau^n(x)\| \to 0$ for all $x, y \in A$, then there exists an irreducible representation π of A such that $\pi(A)'' = \pi(A^{\alpha})''$ (see theorem 2.1 in [7]). Hence the present theorem gives an alternative proof to the previous result in [15], at least when A is separable. The derivation version of the above theorem was proved in [7] as theorem 1.1, and the method there can be applied to the present situation if A is separable.

By taking $G/\ker \alpha$ instead of G, we may assume, without loss of generality, that α is faithful in the sequel.

LEMMA 3.5. Adopt the assumptions of theorem 3.4. Define a representation ρ of A by the direct integral

$$\rho = \int_G^{\oplus} \pi \circ \alpha_g \, dg$$

on the Hilbert space $H_{\rho} \equiv H_{\pi} \otimes L^2(G)$. Then $\rho(A)'' = B(\mathscr{H}_{\pi}) \otimes L^{\infty}(G)$.

Proof. Since $B(\mathscr{H}_{\pi}) \otimes \mathbb{C}1 = \rho(A^{\alpha})^{"} \subset \rho(A)^{"} \subset B(\mathscr{H}_{\pi}) \otimes L^{\infty}(G)$, it suffices to prove that $\rho(A)^{"} \supset p \otimes L^{\infty}(G)$, where p is a fixed one-dimensional projection on \mathscr{H}_{π} .

Define a state φ of A by

$$\varphi(x)p = p\pi(x)p, x \in A.$$

Let $\{z_{\nu}\}$ be a decreasing net of positive elements of A^{α} such that $\lim \pi(z_{\nu}) = p$ (in the strong topology). The existence of such $\{z_{\nu}\}$ follows from the fact that $\varphi \mid A^{\alpha}$ is pure. Then defining a continuous function f_x on G, for each $x \in A$, by

$$f_{\mathbf{x}}(g)p = p\pi \circ \alpha_{g}(x)p, \qquad g \in G,$$

it follows that $p \otimes f_x = p\rho(x)p = \lim \rho(z_\nu x z_\nu) \in \rho(A)''$. Hence it suffices to prove that $\{f_x : x \in A\}$ separates the points of G, to conclude that $\rho(A)'' \supset p \otimes L^{\infty}(G)$. If there are g and h in G such that $f_x(g) = f_x(h)$ for all $x \in A$, then one has that $\varphi \circ \alpha_g = \varphi \circ \alpha_h$. Thus α_{gh}^{-1} should be weakly extendible in the representation $\pi_{\varphi} \approx \pi$, which is impossible as $\pi(A^{\alpha})$ is irreducible, unless α_{gh}^{-1} is the identity automorphism.

LEMMA 3.6. Under the assumptions of theorem 3.4, A^{α} is prime, and for any non-zero b, $c \in A^{\alpha}$, the spectrum of α restricted to bAc, written as Sp ($\alpha | bAc$), is \hat{G} .

Proof. Since $\pi | A^{\alpha}$ is a faithful irreducible representation, A^{α} is prime.

Let $b, c \in A^{\alpha} \setminus \{0\}$, and let $x \in A_1^{\alpha}(\gamma) \setminus \{0\}$ with $\gamma \in \hat{G}$. Since $\sum x_i^* x_i$ and $\sum x_i x_i^*$ are α -invariant, there exist $b', c' \in A^{\alpha}$ such that

$$bb'\left(\sum_{i=1}^{d} x_i x_i^*\right) \neq 0,$$
$$\sum_{i=1}^{d} x_i^* b'^* bb' x_i c' c \neq 0.$$

Thus $bb'xc'c = (bb'x_ic'c) \in bA_1^{\alpha}(\gamma)c$ is non-zero, and this proves that $\operatorname{Sp}(d | bAc) = \operatorname{Sp}(\alpha)$. Note that lemma 3.5 immediately implies that $\operatorname{Sp}(\alpha) = \hat{G}$.

Ξ.

LEMMA 3.7. Under the assumptions of theorem 3.4, for any $\gamma \in \hat{G}$ and $b \in A^{\alpha} \setminus \{0\}$, there exists $x \in bA_n^{\alpha}(\gamma)$ such that $x^*x \in A^{\alpha} \setminus \{0\} \otimes 1$, for some n = 2, 3, ...

Proof. Let B be the hereditary C^* -subalgebra of $A \otimes M_d$ generated by x^*x with $x \in bA_1^{\alpha}(\gamma)$. It suffices to prove that $B \cap A^{\alpha} \otimes \mathbb{C} 1 \neq \{0\}$, because the rest of the proof goes exactly as in lemma 2.2 and theorem 2.1.

To prove that $B \cap A^{\alpha} \otimes \mathbb{C}1 \neq \{0\}$, we have to produce a pure state ψ of A^{α} such that any extension $\overline{\psi}$ of ψ to a state of $A \otimes M_d (\supset A^{\alpha} \otimes 1)$ satisfies $\overline{\psi} | B \neq 0$.

Without loss of generality we assume that b is positive and there is a positive non-zero $a \in A^{\alpha}$ such that ba = a. Fix a one-dimensional projection p in the range of $\pi(a)$, and note that $\pi(b)p = p$.

By lemma 3.5, $p\rho(A)p$, regarded as continuous functions on G, is dense in $L^{\infty}(G)$ in the weak*-topology. By using the projections of A onto $A^{\alpha}(\gamma)$, it is shown that $p\rho(A(\gamma))p$ is dense in, and so equal to, the finite-dimensional linear space spanned by $\{\gamma_{ij}: i, j = 1, ..., d\}$. Thus by spectral calculations we can choose $x \in A_d^{\alpha}(\gamma)$ such that

$$p\rho(x_{ij})p = p\otimes \gamma_{ij}$$

Let $\{z_{\nu}\}$ be a decreasing net of positive elements of A^{α} such that $z_{\nu} \leq b$ and $\lim \pi(z_{\nu}) = p$ as in the proof of lemma 3.5. Let $x_{\nu} = z_{\nu}^{1/2} x \in bA_{d}^{\alpha}(\gamma)$ and note that

$$\lim p\rho(x_{ij}^*z_{\nu}x_{kl})p=p\otimes\overline{\gamma_{ij}}\gamma_{kl}.$$

Let φ be the state of A defined by $\varphi(x)p = p\pi(x)p$, $x \in A$, and let $\psi = \varphi | A^{\alpha}$. If f is a functional in A^{**} whose support is contained in $p \in A^{**}$, one has

$$\lim_{\nu} \sum_{i} f(x_{ki}^* z_{\nu} x_{kj}) = \delta_{ij} \cdot 1$$

Thus for any extension $\overline{\psi}$ of ψ to a state of $A \otimes M_d$ one has

$$\lim \bar{\psi}(x_{\nu}^*x_{\nu}) = 1$$

Since $x_{\nu}^* x_{\nu} \in B$, this concludes the proof.

Proof of theorem 3.4. Since $\pi(A)'' \cap \pi(A^{\alpha})' = \mathbb{C}1$, it follows that $M(B) \cap (B^{\alpha})' = \mathbb{C}1$ for any α -invariant hereditary C*-subalgebra B of A, and that A^{α} is prime. The rest of the proof is similar to that of lemma 3.2 with

$$\{\gamma \in \widehat{G} \colon \forall b \in A^{\alpha} \setminus \{0\}, \exists x \in bA_n^{\alpha}(\gamma) \text{ some } n, x^*x \in A^{\alpha} \setminus \{0\} \otimes 1\}$$

playing the role of Γ_P .

```
4
```

THEOREM 4.1. Let G be a compact abelian group and α an action of G on a simple C^* -algebra A. Assume that A^{α} is prime and $M(A) \cap (A^{\alpha})' = \mathbb{C}1$. Let σ be an automorphism of A such that $\sigma(x) = x$ for $x \in A^{\alpha}$. Then there exists $g \in G$ such that $\sigma = \alpha_g$.

LEMMA 4.2. Let B be an α -invariant hereditary C*-subalgebra of A, and let B₁ be the C*-subalgebra of A generated by $A^{\alpha}BA^{\alpha}$ (which is a hereditary algebra). Let e_{B} be the open projection in A** obtained as the limit of an approximate identity for B. Then the map

$$M(B_1) \cap (B_1^{\alpha})' \to M(B) \cap (B^{\alpha})'$$

defined by multiplication by e_B is a surjective covariant isomorphism.

Proof. Note that α induces an action on $M(B_1)$ by restricting $(a | B_1)^{**}$ to $M(B_1)$. We use the same symbol α to denote this action.

Since e_B is a weak limit of an approximate identity for B^{α} [4, lemma 4.1], one has $e_B \in (B_1^{\alpha})^{**} \subset A^{**}$. Thus any element z of $M(B_1) \cap (B_1^{\alpha})'$ commutes with e_B and one has that $ze_B \in M(B) \cap (B^{\alpha})'$, because $ze_B \cdot b = zb \in B_1 \cap e_B Be_B = B$, $b : ze_B = bz \in$ B for $b \in B$, and $ze_B \cdot a = za = az = aze_B$ for $a \in B^{\alpha} (\subset B_1^{\alpha})$. Hence the map is well defined, and covariant.

Let $c(e_B)$ be the central support of e_B in $(A^{\alpha})^{**} (\subset A^{**})$. Then the multiplication map by e_B :

$$c(e_B)A^{**}c(e_B) \cap (c(e_B)A^{\alpha}c(e_B))' \to e_BA^{**}e_B \cap (e_BA^{\alpha}e_B)'$$

is an isomorphism. Since $c(e_B) = e_{B_1}$, this is equivalent to saying that

$$B_1^{**} \cap (B_1^{\alpha})' \to B^{**} \cap (B^{\alpha})'$$

is an isomorphism. If $ze_B \in M(B)$, for $z \in B_1^{**} \cap (B_1^{\alpha})'$, then we claim that $z \in M(B_1)$. For then $ze_{B_1}a = e_{B_1}az$ for $a \in A^{\alpha}$, as $z \in (B_1^{\alpha})'$, and so for $b \in B$, $a_i \in A^{\alpha}$:

$$za_1ba_2 = a_1(zb)a_2 \in B_1$$
 etc.

This completes the proof.

LEMMA 4.3. Let B, B_1 be non-zero α -invariant hereditary C*-subalgebras of A with $B_1 \subset B$. Then the map

$$M(B) \cap (B^{\alpha})' \to M(B_1) \cap (B_1^{\alpha})'$$

defined by multiplication by e_{B_1} is an injective covariant homomorphism.

Proof. The map is a well defined homomorphism since $e_{B_1} \in (B_1^{\alpha})^{**}$. The action α is ergodic on $M(B) \cap (B^{\alpha})'$, in the sense that the fixed point algebra is trivial because $M(B)^{\alpha} \cap (B^{\alpha})' \subset M(B^{\alpha}) \cap (B^{\alpha})'$, and $B^{\alpha} = A^{\alpha} \cap B$ is prime. Hence there are no non-trivial α -invariant ideals in $M(B) \cap (B^{\alpha})'$. Multiplication e_{B_2} preserves the induced action, and so the kernel of this map is an α -invariant ideal which is either zero or the whole algebra. Since the latter is impossible, the map must be injective.

LEMMA 4.4. Let $\gamma \in \hat{G}$, and x a non-zero element of $A^{\alpha}(\gamma)$. Let $B_1 = \overline{xAx^*}$, and $B_2 = \overline{x^*Ax}$, and x = v|x| be the polar decomposition of x with vv^* being the range projection of x. Then Ad (v^*) gives a covariant isomorphism of $M(B_1)$ onto $M(B_2)$. Proof. See the proof of lemma 2.4, noting that $v \in A^{\alpha}(\gamma)^{**}$.

LEMMA 4.5. Let B_i be an α -invariant hereditary C^* -subalgebra of A such that $A^{\alpha}B_iA^{\alpha} \subset B_i$. Denote by $B_1 \vee B_2$ the hereditary C^* -subalgebra generated by B_1 and B_2 . Then

 $\operatorname{Sp}\left(\alpha \left| M(B_1 \vee B_2) \cap \left((B_1 \vee B_2)^{\alpha} \right)' \right) = \operatorname{Sp}\left(\alpha \left| M(B_1) \cap (B_1^{\alpha})' \right) \cap \operatorname{Sp}\left(\alpha \left| M(B_2) \cap (B_2^{\alpha})' \right) \right.\right)$

Proof. Let $\gamma \in \text{Sp}(\alpha | C_1) \cap \text{Sp}(\alpha | C_2)$, where $C_i = M(B_i) \cap (B_i^{\alpha})'$. By the ergodicity of α on C_i there are unitaries v_i in $C_i^{\alpha}(\gamma)$. Now B_i^{α} are non-zero ideals of A^{α} , and

so if $B = B_1 \cap B_2$, then $B^{\alpha} = B_1^{\alpha} \cap B_2^{\alpha}$ is a non-zero ideal. Now $B_i = \overline{B_i^{\alpha} A B_i^{\alpha}}$, $B = \overline{B^{\alpha} A B^{\alpha}}$, and so e_{B_i} , e_B are central open projections of $(A^{\alpha})^{**} (\subset A^{**})$. Now $v_i e_B \in C^{\alpha}(\gamma)$, where $C = M(B) \cap (B^{\alpha})'$, and so by ergodicity, there is a number λ of modulus one such that $v_1 e_B = \lambda v_2 e_B$. Define $v \in e_{B_1 \vee B_2} A^{**} e_{B_1 \vee B_2}$, by

$$v = v_1 e_{B_1} + \lambda v_2 (e_{B_2} - e_B)$$

Now note that $e_B = e_{B_1}e_{B_2}$. Because since e_B , e_{B_1} , e_{B_2} are mutually commuting, $e_B \le e_{B_i}$ implies that $e_B \le e_{B_1}e_{B_2}$, and moreover $e_{B_1}e_{B_2} \in (B_1^{\alpha})^{**}(B_2^{\alpha})^{**} = (B^{\alpha})^{**}$ implies $e_{B_1}e_{B_2} \le e_B$. Furthermore note that $B_1^{\alpha} + B_2^{\alpha} = (B_1 \lor B_2)^{\alpha}$. Because $B_i \subset B_1 \lor B_2$ implies $B_1^{\alpha} + B_2^{\alpha} \subset (B_1 \lor B_2)^{\alpha}$. Moreover $B_i = \overline{B_i^{\alpha}}AB_i^{\alpha}$ are contained in the hereditary C^* -subalgebra $(B_1^{\alpha} + B_2^{\alpha})A(B_1^{\alpha} + B_2^{\alpha})$, and so $B_1 \lor B_2 \subset (B_1^{\alpha} + B_2^{\alpha})A(B_1^{\alpha} + B_2^{\alpha})$. Consequently $(B_1 \lor B_2)^{\alpha} \subset B_1^{\alpha} + B_2^{\alpha}$. Thus $(B_1 \lor B_2)^{\alpha} = B_1^{\alpha} \lor B_2^{\alpha}$, and in particular $e_{B_1 \lor B_2} = e_{B_1} \lor e_{B_2}$. Hence v is a unitary in $e_{B_1 \lor B_2}A^{**}e_{B_1 \lor B_2}$ and $v \in ((B_1 \lor B_2)^{\alpha})'$. Finally v is a multiplier of $B_1 \lor B_2$ as:

$$vb_1 = v_1b_1,$$

$$vb_2 = \lambda v_2b_2,$$

$$vb_1xb_2 = v_1b_1xb_2,$$

$$vb_2xb_1 = \lambda v_2b_2xb_1,$$

for $b_1 \in B_1$, $b_2 \in B_2$, $x \in A$ etc. Thus $v \in M(B_1 \vee B_2) \cap ((B_1 \vee B_2)^{\alpha})'$ and $\alpha_g(v) = \langle g, \gamma \rangle v$, and so $\gamma \in \text{Sp}(\alpha | M(B_1 \vee B_2) \cap ((B_1 \vee B_2)^{\alpha})')$. The reverse inclusion follows from lemma 4.3.

Proof of theorem 4.1. We may assume that α is faithful. Since A is simple and A^{α} is prime, we know from [11, 8.10.4] that Sp (α) is the same as the Connes spectrum $\Gamma(\alpha)$. Since the latter is a group and α is faithful we see that $\Gamma(\alpha) = \hat{G}$. Thus inspecting the proof of lemma 3.2, we see that we only have to show for any α -invariant hereditary C^* -subalgebra B of A that $M(B) \cap (B^{\alpha})' = \mathbb{C}1$. Suppose there exists an α -invariant hereditary C^* -subalgebra B_0 of A such that $M(B_0) \cap (B_0^{\alpha})'$ is not trivial. By lemma 4.2 we can assume $A^{\alpha}B_0A^{\alpha} \subseteq B_0$, and since α is ergodic on $M(B_0) \cap (B_0^{\alpha})'$, Sp $(\alpha \mid M(B_0) \cap (B_0^{\alpha})') = H$ is not trivial.

Let $\{B_i\}$ be an increasing family of α -invariant hereditary C^* -subalgebras such that $A^{\alpha}B_iA^{\alpha} \subseteq B_i$, $B_0 \subseteq B_i$, and Sp $(\alpha \mid M(B_i) \cap (B_i^{\alpha})') = H$. Let *B* be the hereditary C^* -subalgebra generated by B_i . Then *B* is α -invariant, $A^{\alpha}BA^{\alpha} \subseteq B$, and we claim that Sp $(\alpha \mid M(B) \cap (B^{\alpha})') = H$. Let $\gamma \in H$, and choose a unitary $v_i \in$ $(M(B_i) \cap (B_i^{\alpha})')^{\alpha}(\gamma)$, such that $v_i e_{B_0} = v_0$, where v_0 is a fixed unitary in $(M(B_0) \cap$ $(B_0^{\alpha})')^{\alpha}(\gamma)$. If $B_i \subseteq B_j$, then $v_i = v_j e_{B_i}$, because of the ergodicity of α . Define v by $ve_{B_i} = v_i$, for all *i*, in $eA^{**}e$, where e is the supremum of (e_{B_i}) . Since $e = e_B$, and vis a multiplier for $\cup B_i$, it is easy to conclude that $v \in M(B) \cap (B^{\alpha})'$, and $\gamma \in$ Sp $(\alpha \mid M(B) \cap (B^{\alpha})')$. Thus Sp $(\alpha \mid M(B) \cap B^{\alpha})') = H$ using lemma 4.3.

Let B be a maximal α -invariant heredity C*-subalgebra A such that $A^{\alpha}BA^{\alpha} \subset B$, $B_0 \subset B$ and $\operatorname{Sp}(\alpha | M(B) \cap (B^{\alpha})') = H$. We claim that B = A, which contradicts $M(A) \cap (A^{\alpha})' = \mathbb{C}1$. Note first that the hereditary C*-subalgebra A_1 generated by $\{xB_0x^*: x \in A^{\alpha}(\gamma), \gamma \in \hat{G}\}$ is equal to A. Because, as $(\sum x_i)(\sum x_i)^* \leq 2^n \sum x_i x_i^*$ for a finite sequence (x_i) of length n, it follows that $A_1 \supset xB_0x^*$ for any x in the linear space A_F spanned by $A^{\alpha}(\gamma)$, $\gamma \in \hat{G}$. Since A_F is dense in A, this implies that A_1 is equal to the ideal generated by B_0 , and hence, since A is simple, it follows that $A_1 = A$. Suppose $B \neq A$, and then there must exist $\gamma \in \hat{G}$, and $x \in A^{\alpha}(\gamma)$ such that $xB_0x^* \not\subset B$. By replacing x by xe_{ν} , where e_{ν} is an approximate identity for B_0^{α} , we can assume $x^*x \in B_0$, and so $B_1 = \overline{x^*xB_0x^*x} \subset B_0$. Then by lemma 4.3 we have $\operatorname{Sp}(\alpha \mid M(B_1) \cap (B_1^{\alpha})') \supset \operatorname{Sp}(\alpha \mid M(B_0) \cap (B_0^{\alpha})') = H$. Moreover by lemma 4.4,

$$\operatorname{Sp}\left(\alpha \left| M(B_1) \cap (B_1^{\alpha})'\right) = \operatorname{Sp}\left(\alpha \left| M(xB_0x^*) \cap ((xB_0x^*)^{\alpha})'\right)\right|,$$

and by lemma 4.2

$$\operatorname{Sp}\left(\alpha \left| M(\overline{xB_0x^*}) \cap ((xB_0x^*)^{\alpha})' \right) = \operatorname{Sp}\left(\alpha \left| M(B_2) \cap (B_2^{\alpha})' \right)\right)$$

if $B_2 = \overline{A^{\alpha} x B_0 x^* A^{\alpha}}$. Hence Sp $(M(B \lor B_2) \cap ((B \lor B_2)^{\alpha})') = H$ by lemma 4.5, which contradicts maximality of *B* as $B_2 \not\subset B$. This contradiction implies that $M(B) \cap (B^{\alpha})' = \mathbb{C}$ for any α -invariant hereditary C^* -subalgebra *B* of *A*.

REFERENCES

- H. Araki, R. Haag, D. Kastler & M. Takesaki. Extensions of KMS states and chemical potential. Commun. Math. Phys. 53 (1977), 97-134.
- [2] O. Bratteli, G. A. Elliott & D. W. Robinson. Strong topological transitivity and C*-dynamical systems. J. Math. Soc. Japan 37 (1985), 115-133.
- [3] O. Bratteli & D. E. Evans, Dynamical semigroups commuting with compact abelian actions. Ergod. Th. & Dynam. Sys. 3 (1983), 187-217.
- [4] O. Bratteli & D. E. Evans. Derivations tangential to compact groups: The non-abelian case. Proc. Lon. Math. Soc. 52 No. 3 (1986), 369-384.
- [5] O. Bratteli, G. A. Elliott, D. E. Evans & A. Kishimoto. Quasi-product actions of a compact abelian group on a C*-algebra. Tôhoku Math. J. (to appear).
- [6] O. Bratteli & P. E. T. Jorgensen. Derivations commuting with abelian gauge actions on lattice systems. Commun. Math. Phys. 87 (1982), 353-364.
- [7] O. Bratteli & A. Kishimoto. Derivations and free group actions on C*-algebras. J. Operator Theory 15 (1986), 377-410.
- [8] O. Bratteli, A. Kishimoto & D. W. Robinson. Embedding product type actions into C*-dynamical systems. J. Funct. Anal. 75 (1987), 188-210.
- [9] J. Glimm. A Stone-Weierstrass theorem for C*-algebras. Ann. Math. 72 (1960), 216-244.
- [10] R. Longo, C. Peligrad. Non-commutative topological dynamics and compact actions on C*-algebras. J. Funct. Anal. 58 (1984), 157-174.
- [11] G. K. Pedersen, C*-algebras and their Automorphism Groups. Academic Press: London, New York, San Francisco, 1979.
- [12] S. Popa. On a problem of R. V. Kadison on maximal abelian *-subalgebras in factors. *Invent. Math.* 65 (1981), 269-281.
- [13] R. T. Powers & G. L. Price. Derivations vanishing on $S(\infty)$. Commun. Math. Phys. 84 (1982), 439-447.
- [14] J. E. Roberts. Cross products of a von Neumann algebra by group duals. *Symposia Math.* 20 (1976), 335-363.
- [15] D. W. Robinson, E. Størmer & M. Takesaki. Derivations of simple C*-algebras tangential to compact automorphism groups. J. Operator Theory 13 (1985), 189-200.
- [16] S. Sakai. C*-algebras and W*-algebras. Springer-Verlag: Berlin, Heidelberg, New York, 1971.
- [17] M. Takesaki. Fourier analysis of compact automorphism groups. (An application of Tannaka duality theorem), Algebres d'Operateurs et leurs Applications en Physique Mathematique (Editor, D. Kastler), Editions du CNRS: Paris, 1979, pp. 361-372.
- [18] A. J. Wassermann. Automorphic actions of compact groups on operator algebras. Thesis, University of Pennsylvania (1981).