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Pre-term birth is the leading cause of perinatal and neonatal mortality, 40% of which are attributed to the pre-term premature
rupture of amnion. Rupture of amnion is thought to be associated with a corresponding decrease in the extracellular collagen
content and/or increase in collagenase activity. However, there is very little information concerning the detailed organisation
of fibrillar collagen in amnion and how this might influence rupture. Here we identify a loss of lattice like arrangement in
collagen organisation from areas near to the rupture site, and present a 9% increase in fibril spacing and a 50% decrease in
fibrillar organisation using quantitative measurements gained by transmission electron microscopy and the novel application
of synchrotron X-ray diffraction. These data provide an accurate insight into the biomechanical process of amnion rupture and
highlight X-ray diffraction as a new and powerful tool in our understanding of this process.
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INTRODUCTION
The extraplacental fetal membranes which surround the amniotic

cavity are composed of the amnion and the chorion [1]. These

membranes form an adjustable container for a developing and

moving fetus. They are genetically identical to the fetus, but have

a limited lifetime, existing only to the point of programmed

rupture at term, which is a normal event during the first stage of

labour. In contrast, preterm premature rupture precedes 30–40

per cent of preterm births and carries significant risks for the infant

[2,3]. Therefore, an understanding of the basic structural

components of the human fetal membranes, and how they adapt

to changing needs as the uterine contents enlarge, is central to the

eventual control of this major health problem.

The most structurally robust of the fetal membranes is the

amnion [4]. The amnion consists of a single layer of epithelial cells

on a thick basement membrane which lies upon layers of

collagenous tissue interspersed with mesenchymal cells. The

compact and fibroblast layers of connective tissue beneath the

basement membrane form the main fibrous skeleton of the

amnion. Interstitial collagens (types I and III) predominate and

form parallel bundles of collagen fibrils that maintain the

mechanical integrity of the amnion [5].

It has been suggested that the rupture of the membranes is not

solely a passive process related to myometrial contractions and

cervical dilatation but that an enzymatic break-down of the

membranes causes a local or global weakening of the tissue before

rupture [6]. Although biochemical and microscopic perspectives

have provided important insights into how the extracellular matrix

of the amniotic membrane remodels during fetal development [6–

11], these approaches have not yet explained how gross changes to

the morphological and physical properties of the amnion, which

must occur during the rupture process, result in a large defect in

what had previously been intact tissue.

Non-crystalline X-ray diffraction (XRD) has been previously

used to great effect in studying fibrillar collagen organisation in

relation to development and disease within structural tissues such

as the cornea, breast, bone and cartilage [12–15]. However, to the

authors’ knowledge there have been no reported XRD studies on

the amniotic membrane. Low-angle XRD is a non-invasive

technique which produces structural information on the average

collagen fibril diameter, average spacing between fibrils and their

arrangement within the tissue. Previous studies using electron

microscopy do not apply directly to normal amniotic membrane

because the specimen preparation procedures involve fixation,

dehydration and chemical staining. XRD studies are important in

this context because they can investigate normal intact structure at

physiological hydration.

The aim of this study was to investigate the regular orientation

of collagen fibrils within human amnion by XRD, complemented

by transmission electron microscopy (TEM), to accurately quantify

gross differences in collagen fibril organisation between areas near

to and distant from the placenta at term.

MATERIALS AND METHODS

Collection of Amniotic Membrane
Following elective Caesarean section at term, unlinked anon-

ymised samples of amniotic membrane from nine patients’

placentas, were collected from the Department of Obstetrics and

Gynaecology, Queens Medical Centre, Nottingham, UK with

approval from the Local Research Ethics Committee (Notting-

ham). Within local operational and ethical guidelines it is

acceptable to use human amniotic membrane (material surplus
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to clinical requirements) for research without consent if it is

anonymous and unlinked.

The chorion was separated manually from the amnion and

discarded. Under sterile conditions samples (4 cm64 cm) of

amnion were taken from areas proximal to the placental disc

(proximal amnion) and approximately 10 cm distal to the

placental disc (distal amnion). The samples were chosen from

areas of the amnion which were coherent, translucent and without

blood clots. The dissected amniotic samples were washed with

phosphate-buffered saline (PBS) containing antibiotics (5 ml of

0.5% levofloxacin) to remove cellular debris and blood and stored

at 280uC in Dulbecco’s modified Eagle’s medium (GibcoBRL,

Rockville, MD) and glycerol (Wako Pure Chemical Industries,

Osaka, Japan) in the ratio of 1:1 by volume.

Transmission Electron Microscopy (TEM)
A 1 cm2 sample of each proximal and distal amniotic tissue was

thawed, and then fixed in 2% glutaraldehyde, 0.1M PBS for

1 hour. The tissues were then rinsed in PBS then treated with 1%

osmium tetroxide for 1 hour, followed by dehydration in ethanol.

The tissues were then cut into 1 mm63 mm strips, embedded in

Araldite (Agar Scientific, UK) and ultrathin sections cut at 90 nm.

The sections, held on uncoated grids, were then counterstained

with uranyl acetate for 15 min at 40uC [16] and lead citrate for

5 min [17]. Collagen fibrils within the fibroblast layer in both

proximal and distal AM were studied using a Philips EM208

transmission electron microscope.

Quantitative image analysis was achieved by digitizing the

micrographs at 600dpi using a conventional flatbed scanner

connected to a personal computer equipped with the image

analysis software, Image J (National Institutes of Health). Once

digitized, the background noise within each image was reduced

while retaining the size and position of each fibril [18]. These

images were then binarized and their relative fibril positions

calculated. Each micrograph analyzed contained approximately

300 fibrils in cross section. A representative measurement of the

relative position of collagen fibrils in cross section was determined

from the proximal and distal amniotic tissue. This information was

then used to calculate a radial distribution function, g(r),

a mathematical description of the positions of the fibrils with

respect to one another.

Calculation of Radial Distribution Function
The radial distribution, g(r), is a statistical measurement of the

average number density of fibril centers at a given distance, r, from

any other fibril center, relative to the bulk fibril number density r
(the number of fibrils per unit area in cross-section), resulting in

a histogram of g(r) plotted against an increasing r [19]. r was

calculated from the fibril positions taken from two representative

TEM digital images of fibrils in cross section. A radial distribution

pattern with a distinct peak followed by smaller undulations and

eventual stability indicates that neighboring fibrils are relatively

uniformly spaced, but without any long-range order. A flatter peak

and lower bulk fibril number density order reflects a lessening in

short-range order within a structure.

Synchrotron X-ray Diffraction
Low-angle X-ray diffraction was carried out at SRS, Daresbury,

UK and SPring-8, Hyogo Prefecture, Japan. The unfixed

proximal (n = 9) and distal (n = 9) amniotic tissues were defrosted,

washed in PBS then folded in half four times (each successive axis

of symmetry was perpendicular to the last) before being mounted

between Mylar windows in clear plastic cells to avoid tissue

dehydration during exposure to the X-ray beam. The plastic cells

were placed in the X-ray beam so that the X-rays passed through

the center of the folded tissue. Low-angle patterns were collected

at beam-line stations 2.1 (SRS) and 40xu (SPring 8) with finely

focused X-ray beams of l = 1.543Å, 1 mm63 mm and

l = 1.181Å, 25 mm625 mm, exposure times of 180 and 1 sec-

ond(s), at distances of 6.25 m and 2 m respectively. Diffraction

patterns were recorded on 2D image plates 8 m and 2 m behind

the specimen respectively. Rat-tail tendon was used to calibrate

data [12]. The interfibrillar Bragg spacing was calculated from the

position of the innermost equatorial reflection after background

subtraction (using a similarly obtained background pattern from

the Mylar windows of the empty specimen holder) and division of

fibril transform [20,21].

Wet weights of the samples were taken before and after

exposure to the X–ray beam and averaged. Hydration (H) values

were calculated by H = (wet weight-dry weight)/dry weight.

RESULTS

Transmission electron microscopy
Electron micrographs from the fibroblast layer (mid stroma) of

amnion proximal and distal to the rupture site displayed collagen

fibrils arranged loosely into bundles, each bundle containing fibrils

with a similar axial orientation. Between adjoining bundles (and

the similarly orientated fibrils within) there appeared to be large

angle difference. However, the fibrils within distal amnion

appeared to lack qualitatively the same degree of organisation

because the bundles were less apparent and the spacing between

neighbouring fibrils seemed increased (Fig. 1). High magnification

images of intra-bundle collagen fibrils in cross section from both

proximal and distal amnion were compared and no difference in

fibril diameter observed (Fig. 2).

Radial distribution function (RDF)
The RDF shows a distinct peak in both tissue types as the value of

g(r) rises from zero (for r = 0) upwards until a nearest neighbour

distance is reached (proximal amnion = 34 nm, distal am-

nion = 37 nm). The primary peak is followed by smaller undula-

tions (2nd and 3rd peaks) before stabilising to a constant value, the

bulk fibril number density, in the radial distribution histogram

(Fig. 3). The difference in primary peak size and shape reflects

upon the degree of fibrillar order within each tissue. The flatter

peak shown in the distal AM indicates a less well ordered internal

structure. The loss of fibril compaction seen by TEM in distal

amnion when compared to proximal amnion (Fig. 2) was also

Figure 1. Transmission electron micrographs from the fibroblastic
layer of amnion. Collagen fibrils appear more regularly aligned, closer
together and in more obvious bundles (bd) within the stroma of
amnion proximal to the placenta (a), than those shown in the tissue
distal to the placenta (b). Scale bar = 1 mm.
doi:10.1371/journal.pone.0001147.g001
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quantified by the radial distribution function as the bulk fibril

number density (number of fibrils per unit area) and was shown to

have decreased by 45% (proximal amnion = 86761026, distal

amnion = 48061026)

X-ray diffraction (XRD)
The moderate lattice structure observed by TEM suggested that

XRD patterns could be obtained from amnion. The subsequently

collected XRD patterns display an equatorial reflection which

corresponds to an interfibrillar Bragg spacing, an average measure

of the lateral separation of neighbouring collagen fibrils (Fig. 4).

The presence of a diffuse equatorial reflection in both tissue types

corresponds to regular, periodic configuration of fibrils throughout

the tissue volume investigated, indicating that a significant number

of fibrils are aligned parallel to one another forming a loose

arrangement with some degree of spatial order. Furthermore, the

equatorial reflection from the distal amnion shows a pronounced

anisotropic intensity, indicating that there are proportional more

aligned fibrils running in one direction within the folded tissue

(Fig. 4a). This anisotropic arrangement is less obvious in the

proximal amnion (Fig. 4b). Line scans across the diffraction

patterns reveal a similarity in the position and shape of the fibril

transform (the amplitude of x-rays diffracted by a single fibril)

suggesting no significant change in fibril diameter between the two

areas of amnion similar to the results gained by TEM (Fig. 5).

However, the line scans do show a dramatic difference in

interfibrillar Bragg spacing between proximal and distal amnion.

The interference function from the proximal tissue has a peak

position of approximately 68 nm, whereas the distal amnion has

a peak corresponding to an interfibrillar Bragg spacing of

approximately 74 nm. Furthermore, quantification of the peaks

shapes (height/width at half height) (proximal = 0.8, distal = 0.4)

suggests that there are considerably less regularly spaced fibrils

within the amnion distal to the placenta. Hydration values for the

proximal and distal tissues were 5.360.6 and 4.360.5 respectively.

DISCUSSION
Our electron microscopy results and RDF calculations have

allowed us to quantify the change in collagen organisation between

amnion proximal and distal to the placenta and our results support

Figure 2. High magnification transmission electron micrographs of
amnion collagen fibrils in cross section. No difference in fibril diameter
was observed between samples proximal (a) and distal (b) to the
placenta. However a marked decrease in fibril packing can be seen in
the amnion distal to the placenta. Scale bar = 300 nm.
doi:10.1371/journal.pone.0001147.g002

Figure 3. Radial distribution functions (RDF) calculated from
positions of amnion fibrils in cross section from representative
images. The primary RDF peak (*) from amnion distal to the placenta
was lower and broader than the corresponding peak from amnion
proximal to the placenta indicating less regular fibril spacing. The bulk
fibril number density (r) was also decreased in distal amniotic tissue
(arrows).
doi:10.1371/journal.pone.0001147.g003

Figure 4. Synchrotron X-ray diffraction patterns from amnion.
Representative (false colour) patterns collected from amnion proximal
(a) and distal (b) to the placenta. Arrows indicate position of the
interfibrillar reflection (magenta) other coloured rings close to the
beamstop are background/backscatter. X-ray diffraction patterns
displayed an anisotropic arrangement of collagen fibrils within the
distal amniotic tissue.
doi:10.1371/journal.pone.0001147.g004

Figure 5. Intensity profiles across representative X-ray diffraction
patterns collected from the amnion. Examination of intensity versus
distance plots provided interfibrillar Bragg spacing measurements from
amnion proximal (a) and distal (b) to the placenta. The lower broader
interference function with a mean peak position of 75 nm from the
distal amnion suggests that this region contains a less ordered fibril
collagen arrangement and a higher mean interfibrillar Bragg spacing
than that shown by proximal amniotic tissue.
doi:10.1371/journal.pone.0001147.g005
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the observations of Bou-Resli et al. [22] that within the fibroblast

layer there are fewer collagenous fibers (per unit area) and less

organization near the rupture site (distal amnion). However, we

have also shown that this change in organisation is not influenced

by fibril diameters as these remain unchanged, evidenced by our

TEM and XRD results.

The presence of a second, and possibly third, RDF peak

particularly from within the more organized proximal amnion

tissue indicates that the fibrillar order may extend up to 100 nm

from each fibril centre. Therefore, it seems probable that within

the bundles of collagen fibrils there exists a loose lattice structure.

The fact that we were able to obtain a first order equatorial X-ray

reflection from amnion signifies that the packing of collagen fibrils

within this tissue is indeed fairly regular.

The observation that the interfibrillar reflection from distal

amnion is less intense than that from the proximal amnion tells

us that either 1) the tissue is edematous at this point and collagen

fibrils are less likely to exist in bundles, 2) collagen fibrils exist in

groups and are regularly spaced, but not enough fibrils

(scatterers) are present to give rise to a similarly intense first-

order interfibrillar reflection, or 3) collagen fibrils do exist in

bundles but within these groups the interfibrillar spacing is not

particularly uniform. The first and second considerations are

unlikely since both the proximal and distal tissues had similar

hydration levels consistent with the findings of Halaburt et al.

[23] and despite tissue near the rupture site being normally

thinner than tissue near the placental margin [22,23] the total

amount of collagen per unit dry weight remains the same [23].

Therefore, the third explanation seems the most likely as this is

supported by the increased average Bragg spacing, and the flatter

RDF peaks.

Interestingly, the XRD results also uncovered a difference in

collagen orientation between the two areas of amnion, whereby

the distal amnion demonstrated a preferential orientation of its

constituent collagen fibrils. It is tempting to speculate that this

orientation is related to the biomechanics of amnion rupture as

these fibrils are strongest axially, and directions of preferred fibril

orientation thus associate with directions of heightened tissue

strength implying that rupture might occur perpendicular to the

fibril axis. However it is important to bear in mind that this

orientation phenomenon may be an artifact of tissue thickness

resulting from a change in preferential alignment of the collagen

fibrils as a function of depth through the amniotic membrane or

folding prior to XRD exposure as the initial fold was random with

respect to orientation within the intact tissue.

Fibril orientation may play a role in reinforcing amnion

structure but fibril diameters are also biomechanically important,

because they determine the fibrils critical length [24], (lc) given by

lc~dsf=2t ð1Þ

where d is the fibril diameter, sf is the fibril’s tensile strength and t
is the shear stress exerted on the fibril by the ground substance (we

define ground substance as being matrix elements other than

fibrillar collagen). The critical length is the minimum fibril length

required for effective tissue reinforcement [24]. As long as this

condition is met, the tensile strength of the tissue (st) is determined

by the volume fraction of collagen present (ß)

st~bsfz 1�bð Þsg ð2Þ

where sf and sg are the tensile strengths of the fibrils and ground

substance, respectively [24,25]. Therefore, it is our hypothesis that

a higher collagen fibril number density is necessary to maintain

tissue strength, and a lower fibril density will subsequently

contribute to the tissues rupture. Therefore, it is our hypothesis

that the higher bulk fibril number density of collagen fibrils we

have observed in the proximal amnion is necessary to maintain

tissue strength. Thus, a lower number density would contribute to

the membranes rupture. Inspection of equation 2 reveals that, for

sf.sg, decreasing the volume fraction of collagen produces

a proportional decrease in the mechanical strength of the tissue.

Hence, we expect increased fibril spacing and thus decreased

collagen volume fraction to result in a weaker amniotic membrane

tissue distal to the placenta. Such a mechanism could help in our

understanding of the causes of preterm rupture.

In conclusion this article provides proof of a previously

unreported loose lattice structure exiting within amnion evidenced

by electron microscopy and XRD, furthermore this lattice is

diminished within tissue distal to the placenta. The loss of this

regular structure may contribute to a weakening of the amnion

facilitating its eventual rupture. Therefore XRD represents an

untapped and powerful tool in our understanding of amnion

structure and preterm rupture.
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