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Abstract 
 

A multi-product production planning problem is considered. Products can either share the same production line, 
or be produced on different lines. We study the influence of planning cycle length on inventory and production 
performance, first in terms of how these affect the variability of the states in the production system, and then 
how this translates into cost. Production costs are assumed to be dominated by labour costs, where we use a 
model with guaranteed hours and overtime. Inventory performance is measured using holding and backlog 
costs. The replenishment policy used is the Proportional Order-Up-To (POUT) policy, containing as a special 
case the classical OUT policy. It does this by having a controllable feedback parameter, which alters the relative 
dynamics of inventory and capacity. Demand is assumed to be normally, independently and identically 
distributed. Our analytical results show that there exists an optimal rescheduling frequency that minimises total 
cost. This frequency is determined by the relationship between the costs and lead time. The economic benefit 
from planning in larger buckets follows from ‘demand pooling’, which allows more effective use of guaranteed 
hours and reduces overtime. A balance must be struck between reducing inventory costs, which generally get 
smaller as we plan more frequently, and labour costs, which increase as we plan more frequently. We also 
demonstrate that the pursuit of ever-faster rescheduling leads to severe cost penalties. A comparison between the 
benefits of optimising the rescheduling frequency, production line consolidation, and POUT parameter tuning 
highlights the economic potential of optimising rescheduling frequency. 

 
Keywords: Rescheduling frequency, OUT policy, Inventory and capacity costs, multiple products 

 
1. Introduction 
Production plans are typically made on a cyclical basis, where production orders for the next 
period are issued, taking into account demand, forecasted demand, work-in-process levels, as 
well as the need for maintaining inventory around target levels. From the basic Order-Up-To 
(OUT) policy to more sophisticated applications of Manufacturing Resource Planning (MRP 
II), a rescheduling frequency must be set. This paper investigates the impact the rescheduling 
frequency when production costs and inventory costs are considered when production is 
scheduled with the Proportional Order-Up-To (POUT) policy. 
 
Alfred P. Sloan could be one of the first promoters of high-frequency rescheduling. In 1924, 
Sloan decided that General Motors (GM) Corporation’ production should be rescheduled 
every ten days instead of once every three months as was done previously. During the 1920’s 
GM managed to increase its total inventory turnover from 2 to nearly 7½ times p.a., due to 
various efforts of streamlining GM’s production and distribution network (Sloan, 1963). Fast 
rescheduling was also considered important at Toyota Motor Corporation. Ohno (1988) 
describes that slow rescheduling of production causes large inventory swings if the market 
demand should change unexpectedly, in turn leading to fluctuating production rates (Bicheno 
and Holweg, 2009). Toyota used a planning cycle of ten days, and considered moving to 
weekly, or even daily cycles (Shingo, 1989). The importance of fast rescheduling was also 
noted by John Burbidge, who states it as one of his “five golden rules to avoid bankruptcy” 
(Burbidge, 1983). Fast rescheduling was implemented within the Period Batch Control 
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method, which was used for the manufacture of the Spitfire aircraft. (Burbidge, 1988) states 
that the rescheduling frequency should be as high as capacity permits, and that set-up time 
reduction allows for further shortening of the scheduling cycle. 
 
Contrary to the idea of fast rescheduling is the concept of variability pooling, which occurs 
when two statistical populations are combined. As the variances are added, the resulting 
standard deviation per unit will be smaller. This logic is commonly used when production 
lines, or stock keeping units are consolidated (Maister, 1976). A common assumption is that 
faster rescheduling cycles offer a better trade-off between capacity requirements and 
inventory levels. This paper seeks to investigate the mechanism underlying this belief, as well 
as to quantify the relative benefits of some popular rescheduling frequencies. 
 
We first present our model in Section 2. We then evaluate the consequences of various 
rescheduling frequencies in Section 3. Section 4 investigates the economics of altering the 
rescheduling frequency compared with other production system improvement strategies. 
Finally, we summarise our findings and conclude in Section 5.  
 
2. Model development 
Daily demand for product  1..k n  is assumed to be an independent and identically 
distributed random variable drawn from a normal distribution 
 

 , , .k t k kd N    (1)

 
When the daily demand is aggregated into planning cycles of P days long the demand during 
each planning cycle is given by 
 

 , , , .P k t k kd N P P   (2)

 
Notice how we have used the 3-tuple in the subscripts. The first space is for, P , the 
length of the planning cycle, dimensioned in days. The second space is for the product index 
k, where k = 1 to n products. The third space is for time period t. Demand is satisfied from 
inventory. The inventory balance equation is given by  

 

, , 1 , 1 ,pk t k t k t T k tns ns o d     , (3) 

 
where ,k ti  is the inventory of product k at time t, ,k to  is the production orders for product k 
started at time t that will be completed a lead-time pT  and review period later. The lead-time, 

0pT  , is dimensioned in number of planning periods. The real-world lead-time (not 
including the sequence of events delay), 0L  , is dimensioned in days. The relationship 
between  , ,pT L P  is given by L

p PT     . We generate production order via the so-called 
Proportional Order-Up-To (POUT) policy [8]. The POUT orders are given by 

 
Inventory position

, , , 1 , , , 1 ,1 1

Forecast 

ˆ ˆ .
p

S

Tp Tp

k t k t t T k k t t j k t k t mj m

WIPDWIP

o d f TNS d i o     

  
        

    

 
 

 
 (4) 

 



Hedenstierna, C.P.T. and Disney, S.M., (2012), “Impact of scheduling frequency and shared capacity on production and inventory costs”, Pre-prints of the 
17th International Working Seminar of Production Economics, Innsbruck, Austria, February 20th–24th, Vol. 2, pp277–288. 

3 
 

Here , , 1
ˆ

pk t t Td    is the forecasted demand for product k, made at time t of demand in the period 
1pT  . kf  is a the proportional feedback controller used for damping the WIP and inventory 

feedback information for product k. 0 2kf   is required for stability. When 1f   then the 
classical Order-Up-To S policy is present. S  is the order-up-level and is made up of the sum 
of the safety stock or Target Net Stock  TNS  and the Desired Work In Progress  DWIP  or 
target “orders placed but not yet received”. DWIP is the sum of the forecasted demand over 
the lead-time, pT . From the order-up-to level we subtract the inventory position. The 
inventory position is made up of the net stock for product k in time t, ,k ti  and the actual Work 
In Progress, ,k tWIP . ,k tWIP  is the previous pT  orders for product k, that have been placed, but 
have not yet been received. The sequence of events within the planning cycle is illustrated in 
Figure 1. 
 

 
 

Figure 1. Sequence of events. 
 
As we have assumed that the daily demand is i.i.d. normally distributed then optimal 
forecasts, with minimum mean squared error, are simply multiples of the average demand. 
The multiples that are required are related to the lead-time, pT  and the length of the planning 
cycle, P and we require the following two forecasts within the POUT policy, 
 

, ,

, ,

ˆ
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




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

  
. (5)

 
Notice that in order to ensure linearity we have allowed the net stock position to become 
negative. A negative net stock position means that a backlog is present. Customers are willing 
to wait for their product, but we penalise backlogs with a cost per unit backlogged per day, B. 
Inventory holding is also penalised via inventory holding cost per unit per day, H. Thus the 
following inventory cost function holds 

 

    , ,Inventory cost in period  for product k k t k k tt k P H ns B ns
 

   , (6)

 
where  x


 is the maximum operator, that is    max 0,x x

  . Note that when we move 
from planning every day to buckets of P days then we need to scale the inventory holding and 
backlog costs by P. The Target Net Stock (TNS*) level, is given by 
 

*
,k NS k kTNS z (7)

 
which will ensure that 100%k

k k

B
B H   of periods end with inventory in stock (the availability 

metric). 1 k k k

k k k

B B H
B H B


   is known as the “economic stock out probability” as a critical 
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proportion of periods end in stock-out. This critical proportion minimises the expected 
inventory cost over time. Here is the standard deviation of the net stock levels over time and  
 

1 k
k

k k

B
z

B H
  

    
, (8)

 
where  1 12erf [2 1]x x     is the inverse of the cumulative normal distribution function. 
When the TNS is set to this optimal level for each of the 1 to k n  products, the annual 
inventory related cost (we assume that 5 days 4 weeks 12 months 240    days make up a 
year) will be given by 
 

   £ ,1
240

n

ns k k k kk
I B H z 


   (9)

 
where   21

22
exp xx


      is the probability density function of the standard normal 

distribution (Disney et al., 2012). We notice in (9) that the expected inventory holding and 
backlog costs are linearly related to the standard deviation of the net stock levels ,ns k . It 
should be remembered that this requires that the safety stock, the Target Net Stock (TNS) has 
been set according to (8). If this is not the case then the inventory costs are not linear in ,ns k  
and (9) does not hold.  
 
For capacity costs we consider a situation with guaranteed hours and overtime, detailed as 
Case 3 in Disney et al. (2012), another paper in these conference proceedings. In every period 
we pay a standard rate of kU  per unit produced within a capacity level of k kK  , no matter 
the actual production quantity. If production quantities are greater than the normal capacity, 
an overtime cost per unit, kW , applies for all orders exceeding normal capacity. This is given 
by 
 

    ,Capacity cost for period k k k k k t k kt U K W o K 


      (10)

 
where *

okK z  is the optimum slack capacity, which minimises the sum of normal 
production cost and the overtime cost. In *

kK , 1 k k

k

W U
k Wz       , gives the optimum 

proportion of normal to overtime hours, while o  is the standard deviation of the production 
orders. When an optimal slack capacity is present, the annual capacity costs are 

 

 ,* 1
£ 1

240 .k o k k k

k

n W W U
k kP Wk

C U
  


        (11)

 
In (11) we note that each product is effectively produced with it own separate capacity / 
workforce. If the capacity / workforce is flexible (in that it can produce any product with 
equal ability) then the orders can be combined and the capacity costs will be given by 
 

2
,1* 1

£, 1
240 .

n
k o kk k k

k

W P nW U
J k kP W k

C U


  


          
  (12)

 
The cost functions contain expressions for the standard deviation of net stock (for inventory 
cost) and for the standard deviation of orders (for capacity cost). To obtain these, we must 
know the variance of demand and the variance amplification caused by the replenishement 
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policy. The variance ratios for the POUT policy have been derived previously in (Disney et 
al., 2004). (13) describes the order rate variance and (14) the inventory variance. These 
expressions assume that we are using a minimum mean squared error forecast, where the 
forecast equals average long-term demand. 
 

 
Figure 2 illustrates how the variance of the inventory and orders behave for all lead-times (L) 
and planning cycle lengths, P. We note that the order variance is independent of the lead-time 
L, but the inventory variance is affected by L. The rescheduling frequency affects both the 
order variance and the inventory variance via P. The order variance is an increasing and 
convex function in f, which is zero at the origin. The inventory variance is a convex function 
in f with a minimum at f = 1. The sum of the order and inventory variance results in a convex 
function with a single minimum between 0 1f  . 
 

 
 

Figure 2. Variance of the orders and inventory generated by the POUT policy. 

 
3.   Optimising the length of the planning cycle 
 
3.1. The OUT policy with individual production lines 
Let’s consider a two product case with the OUT policy, (hence f = 1) and separate production 
lines.  The total costs in this scenario are obtained by bringing together equations (9) (11), 
(13) and (14) to create a cost function as shown in (15). Note that we have assumed that 
policy factors such as P and f, the costs, B, H, U and W and the demand parameters   and 
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 , are the same for each product and that we have been dropped the subscripts (k) in order to 
save space. 
 

 
     
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

 (15)

 
The factor that complicates matters is that C is a non-linear function in P due to the floor 
function that is used to obtain the lead-time expressed in units of the replenishment cycle 

L
p PT     .  This is needed to correctly determine the net stock variance and the inventory 

costs.  Let us first explore (15) numerically, see Figure 3.  Here we have plotted *C  with dots 
for different P.  We see that the dots have discontinuous breaks in their progression and these 
occur at the divisors of L, P L  for even L and at the divisors of L + 1, 1P L   for odd L.   
We can see when P L  then 0PT   and the solutions for P  always lie on the cost line given 
by 

0pT
C


.  Whenever we pass through a divisor of L, P L , to the left, then the lead-time, 

expressed as in units of the number of planning cycles, pT  increases by one. The solutions 
when P L  lie between two curves. The curves are given by 

pT
C P   and 1

p

L
PT

C     . 
The first curve will go through the divisors of L at P P L   1P P L  .  All of the other 
solutions will lie below 

pT
C P  but above 1

p

L
PT

C     .  For any given P, 

20 1L
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C C C
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C C


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  
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p pL T T         (16)

 
 and  
 

   2 2
1 /2 1

1 2 / 2 1 2W W
L L

L L      
     . (17)

 
This means that the optimal length of the planning cycle, *P , will always come from a 
solution that lies on the 

0pT
C


 line.  As we can see from Figure 3 

0pT
C


has a minimum in it.   

If the minimum lies below P = L + 1 then we should set * 1P L  .  If the minimum lies 
above L + 1 then we should set *P  to be the minimum. 
 
We can find the minimum in 

0pT
C


 line by differentiating (15)  with 0pT   w.r.t. P  
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
             , (18)

 
from which the following first order conditions can be obtained, 
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(19) 
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Figure 3. Total cost for the OUT policy with respect to P. 
 
It is interesting to note that *x  is solely a function of the costs involved rather than the lead-
time. Bringing (19) together with our insights from Figure 3 together we obtain (20) that 
describes the optimal length of the planning cycle *P  when we have 2 separate production 
lines. 
 

       1*
2 2

* * 1, 1 1;  xp 2 2e UBW
B H WH BP x L x 




      



 . (20)

 
3.2. The OUT policy with shared production capacity 
Let’s now consider the case of the OUT policy when the two products share production 
capacity. That is, they are both produced on the same production line. The cost function to 
minimise can be made up from (9), (12), (13) and (14), 
 

     
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
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 

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. (21)

 
By following similar reasoning as above we are able to show that when we have shared 
production capacity the following expression can be obtained that describes the optimal 
length of the planning cycle.  
 

         2 2
1 1* * *

2
, 1 ;  xp 2 1 2eW B

B
U
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


      



 . (22)

 
The only difference between (22) and (20) is the square root in the denominator, hinting at 
the possibility that a “ square root” law [7] exist for an arbitrary number of products.   
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3.3. The POUT policy with individual production lines 
The case of the proportional order-up-to policy is a little harder to study than the classical 
OUT policy.  The aspect that complicates matters is the fact that we have to optimise the 
feedback parameter f for each planning period P, before we can determine the total costs.  
The total costs are given by  
 

 

      
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


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


             
          

. (23)

 
The derivative of (23) w.r.t. f is  
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
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 
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(24)

Unfortunately (24) is a fourth order expression in f, and while its solution is obtainable, it is 
very lengthy, so we have not detailed it.  We are able to plot it, see 
Figure 4, which shows how the optimal f changes with L for the following numerical 
scenario: demand for each product has a mean of 10 and a standard deviation of 2; the 
inventory holding cost, H = £1 per day; the inventory backlog cost B = £9 per day and 
product; the unit cost production cost with normal working hours is U = £40 per unit; and the 
unit cost in over-time working is W = £60; the real-world lead-time is L = 20.  It is interesting 
to note that the optimal *f  is never unity (so the OUT policy is never optimal), but *f  
approaches unity as the lead-time L  . 

 

 
 

Figure 4. Optimal f for different lead times.  
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Via a brute force numerical analysis we have some confidence that  
 

* 1P L  (25)
 
as every one the of the one million combinations with 1000L    and 1000P    
resulted in the optimum length of planning cycle conforms to this rule. 
 
3.3. The POUT policy with shared capacity 
When the POUT policy is present and the two products share production capacity then the 
annual costs are given by  
 

 

      

2 21 2
2

22 12 1
2

2 exp erf
240

+ exp erf

fPW W U
P Wf

L B H
P B Hf f

U
C

B H P










 


 


        
  

        

. (26)

 
Taking the derivative w.r.t. f yields 
 

 
   

  2

2 22 22

2
2 2 1

2 2

exp erf ( 1)( ) exp erfd 240

d 2

W U B H
W B H

fP L
f Pf f

W f B H PC

f f f P







 

 


 

                   

, (27)

 
which again is a forth order expression in f.  We are able to solve for *f , but the solution is so 
lengthy that we cannot transpose it in this short conference paper.  However we are able to 
visualise its behaviour for the numerical situation that we used in earlier for the POUT with 
separate lines.  We have also plotted this in 
Figure 4.  We can see that the *f  for shared capacity is always smaller than the 

*f  with 
individual capacity. 
 
Using the same brute force search technique we are able to determine that optimal length of 
the planning periods with the POUT policy with shared capacity is always one day longer 
than the real lead-time, L as 
 

* 1P L  . (28)
 
Finally, we may compare the annual costs for all four scenarios in Figure 5.  We can see that 
the POUT policy with shared production facilities dominates all other situations. The 
classical OUT policy with individual production lines for each product has the worst 
economic performance.  The POUT policy with separate production lines is more economical 
that the OUT policy with shared production for small lead-times, but not for lead-times 
greater than nine.  
 
4. Comparative economic potential of optimising the rescheduling frequency 
To see how an optimisation of P compares to other production system improvements, we 
consider a classical OUT production system, making two products at separate production 
lines where capacity cannot be shared via shifting labour from one line to the other. We 
consider the cases where rescheduling initially is done in the daily, weekly, or monthly  
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Figure 5. Optimal total cost for different lead times, policies, and production systems. 

buckets as these are natural frequencies that fit into the rhythm of life. From these baselines 
we consider three potential improvements: 
 
1. Consolidation of capacity, so that any unit of labour can produce either product with 

equal capability. The variability of demand for products A and B is thus pooled. 
2. Application of POUT and optimisation of the f parameter. This seeks to lower total cost 

by changing the balance between inventory variance and production variance. 
3. Changing the rescheduling frequency P to the optimal one, *P , so that the variance in the 

production and inventory system can be reduced. 
 
Table 2 shows how the production system responds to all possible combinations of these 
improvements. It turns out that optimising P gives the single best improvement if we start 
with weekly or with monthly rescheduling, but starting with daily rescheduling, POUT 
parameter tuning is more effective. The best system overall uses all of the three 
improvements. Of particular interest is that the daily system is most sensitive to changes in f, 
while the system with an optimised *P  is fairly insensitive to this.  

 
The performance of the OUT policy is particularly affected by the choice of P. The POUT 
policy, on the other hand, sees a smaller economic benefit from optimising P. There is 
however another strong reason for advocating a *P  configuration for POUT systems, namely 
the cost function then has a slowly increasing derivative near the minimum, resulting in a 
more robust system. 

 
5. Discussion and conclusion 
Our findings dispel the myth that shorter rescheduling times improve the performance of 
manufacturing systems, even when no planning costs are present. Instead, there is an optimal 
rescheduling frequency at which production and inventory control systems should operate. To  
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Length of 
planning cycle 

Separated Capacity Consolidated Capacity 

f=1 f* f=1 f* 

Monthly 207 339 206 196 205 967 205 315 
f* - 0.628162 - 0.625263 

Weekly 209 790 204 929 207 047 203 948 
f* - 0.203937 - 0.254486 

Daily 220 664 204 613 214 530 203 613 
f* - 0.045914 - 0.059012 

Tuned P (21) 204 291 203 410 202 952 202 465 
f* - 0.628162 - 0.704936 

 
Table 2. Costs for OUT, numerically optimised costs for POUT. 

 
achieve minimum total cost, this period should be either one day longer than the physical lead 
time, or at a point that is defined by the costs involved as given by (18). 
 
Our work has been involved with systems that have large production volumes; we have not 
investigated the specific case of low-volume production. Set-up / changeover costs are also 
ignored, these may otherwise be an important, if not dominating factor. 
 
We have demonstrated that using a single production line for several products is preferable to 
running each product on a separate line, as this further exploits the demand pooling effect that 
is present. In our example, the savings made possible by consolidating production (or using 
multi-skilled labour) in this way are less than those of optimising the rescheduling frequency, 
but are still significant. As a final improvement to the system, the adoption of the POUT 
policy gives a further reduction of cost, albeit smaller than from the other efforts. 
 
Importantly there may be severe economic penalties involved when the planning cycle is too 
short and that these systems have an enhanced sensitivity to errors in setting an appropriate 
value for the proportional feedback controller in the POUT policy. The OUT policy, with a 
unity feedback controller, suffers particularly, as costs increase quite significantly when the 
rescheduling period is reduced beyond it optimal length.  
 
Interestingly the costs for an OUT system are never lower than the costs for an equivalent and 
optimised POUT system, while optimal POUT systems never reschedule more frequently 
than their OUT counterparts. This suggests that quickly responding systems are not 
necessarily more cost-efficient than slower ones. The fastest systems are plagued by higher 
costs and cannot easily compete with systems that have optimal rescheduling. 
 
As the optimum rescheduling cycle is always at least one day longer than the lead time, it 
follows that pT  should be zero, meaning that these policies do not need to consider work-in-
process (WIP) inventory when order rates are calculated. This obviates the need to monitor 
WIP (or goods in transit – which is often a rather difficult thing to do in an industrial setting) 
and at the same time allows the production and inventory system to perform optimally.    
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