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ABSTRACT

The High Frequency Instrument of Planck will map the entire sky in the millimeter and sub-millimeter domain from 100 to 857 GHz
with unprecedented sensitivity to polarization (ΔP/Tcmb ∼ 4 × 10−6 for P either Q or U and Tcmb � 2.7 K) at 100, 143, 217 and
353 GHz. It will lead to major improvements in our understanding of the cosmic microwave background anisotropies and polarized
foreground signals. Planck will make high resolution measurements of the E-mode spectrum (up to � ∼ 1500) and will also play a
prominent role in the search for the faint imprint of primordial gravitational waves on the CMB polarization. This paper addresses
the effects of calibration of both temperature (gain) and polarization (polarization efficiency and detector orientation) on polarization
measurements. The specific requirements on the polarization parameters of the instrument are set and we report on their pre-flight
measurement on HFI bolometers. We present a semi-analytical method that exactly accounts for the scanning strategy of the instru-
ment as well as the combination of different detectors. We use this method to propagate errors through to the CMB angular power
spectra in the particular case of Planck-HFI, and to derive constraints on polarization parameters. We show that in order to limit
the systematic error to 10% of the cosmic variance of the E-mode power spectrum, uncertainties in gain, polarization efficiency and
detector orientation must be below 0.15%, 0.3% and 1◦ respectively. Pre-launch ground measurements reported in this paper already
fulfill these requirements.

Key words. space vehicles: instruments – techniques: polarimetric – instrumentation: polarimeters – instrumentation: detectors –
cosmic microwave background – submillimeter: general

1. Introduction

The Planck1 satellite, launched on May 14th, 2009, will map the
whole sky in the range 30−857 GHz. One of the most exciting

1 Planck (http://www.esa.int/Planck) is a project of the
European Space Agency (ESA) with instruments provided by two sci-
entific Consortia funded by ESA member states (in particular the lead
countries: France and Italy) with contributions from NASA (USA), and

challenges for Planck is to measure the polarization anisotropies
of the cosmic microwave background (CMB), which offers a
unique way to constrain the energy scale of inflation.

CMB polarization can be decomposed into modes of even-
parity (E-mode) and odd-parity (B-mode). Gravitational waves

telescope reflectors provided in a collaboration between ESA and a sci-
entific Consortium led and funded by Denmark.
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generated during inflation (hereafter “primordial” gravitational
waves) create B-modes with a specific angular power spectrum,
whose amplitude is related to the energy scale of inflation. A de-
tection of these “primordial” B-modes would therefore provide
the first measure of the energy scale of inflation.

E-modes were first detected by Dasi in 2002, followed
by other ground and balloon-borne experiments (Kovac et al.
2002; Readhead et al. 2004; Wu et al. 2007; Montroy et al.
2006; QUaD collaboration: Pryke et al. 2009) covering a few
percent of the sky. These detections are complemented by the
Wmap satellite observations of the whole sky (Page et al. 2007).
All these measurements have confirmed the existence of an
E-mode polarization compatible with the ΛCDM model, and
are compatible with a B-mode polarization of zero. The tensor-
to-scalar ratio r parametrizes the amplitude of B-mode polariza-
tion. The most stringent upper limit on r is obtained by Komatsu
et al. (2009), combining Wmap measurements of TT, TE and
EE power spectra with baryon acoustic oscillations and super-
novae data. They obtain r < 0.22 if the scalar spectral index nS
is constant, or r < 0.55 if a running spectral index is allowed.

Planck has been designed to map the E-mode of polarization
with high precision and good control over the polarization fore-
ground contamination up to multipoles as large as � ∼ 1500.
Planck may also detect the B-mode polarization anisotropies,
if tensor modes contribute at a level of a few percent or more of
the amplitude of the scalar modes (Efstathiou & Gratton 2009).
However, various instrumental systematic effects, induced by
error on the knowledge of detector characteristics, may alter
these measurements. Most of the properties of the detectors,
such as the gain, time constant, bandpass and beam, are inde-
pendent of the sensitivity to linear polarization. These properties
are described in detail in companion papers (Pajot et al. 2010;
Lamarre et al. 2010; Tauber et al. 2010a; Maffei et al. 2010).
In this paper, we study the systematic effects induced by uncer-
tainties in temperature and polarization calibration (gains, polar-
ization efficiencies and orientations) on Stokes parameters and E
and B-mode power spectra. We also report on the ground cali-
bration of the polarization efficiencies and orientations of High
Frequency Instrument (HFI) detectors. A study of polarization
systematics for the Low Frequency Instrument (LFI) of Planck
is presented in Leahy et al. (2010).

The paper is organized as follows. In Sect. 2, we present
the polarization sensitive bolometers (PSBs) used by the Planck-
HFI and the layout of the focal plane. Section 3 gives the generic
expression of the polarized photometric equation and introduces
the polarization-related systematic effects discussed in Sect. 4.
In Sect. 5, we describe a semi-analytical method to propagate
uncertainties on temperature and polarization calibration of de-
tectors up to angular power spectra while exactly accounting
for the scanning strategy and the combination of multiple detec-
tors. We apply this method to the Planck-HFI in Sect. 6 and de-
rive requirements on the knowledge of these parameters. Finally,
Sect. 7 describes the procedure used to measure polarization pa-
rameters of the detectors on ground and compares them to the
requirements derived in the previous section.

2. Detectors and focal plane layout

HFI uses bolometric detectors cooled to 100 mK to measure
millimeter-wave radiation. They comprise a micro-mesh ab-
sorber in a form resembling a spider web to reduce cosmic ray
interactions (hence the name spider-web bolometer or SWB, see
Bock et al. 1995; Yun et al. 2004), heated by ohmic power dis-
sipation, and a neutron transmutation doped (NTD) germanium

Fig. 1. Sky projection of the Planck-HFI focal plane. The crosses sym-
bolize the polarization sensitive bolometers and indicate the orientation
of the two linear polarization measured in each horn. The scanning di-
rection is horizontal in this sketch, so that PSB pairs at same frequency
follow the same track on the sky.

thermistor that measures the temperature variation. Polarization
is measured with specifically designed polarization sensitive
bolometers (PSBs, see Jones et al. 2003), composed of a pair
of bolometers that couple to orthogonal linear polarizations, al-
lowing the measurement of I and (local) Q Stokes parameters
(respectively the sum and difference of the signals of the two
bolometers). The SWBs are only slightly sensitive to polariza-
tion, and PSBs do not perfectly reject the cross-polarization
component. We define precisely the cross-polarization leakage
in the next section. The HFI focal plane is composed of 20 SWBs
and 16 PSB pairs, i.e., 32 polarization sensitive bolometers
(see Fig. 1). The PSB pairs are grouped in pairs rotated by 45◦
and following the same track on the sky, with the angular sepa-
ration between associated pairs ranging from 0.◦5 to 2.◦5. Thus,
the difference signal within one pair measures Stokes Q (in some
local reference frame) while the difference signal within the
other pair measures Stokes U. Both pairs allow measurements
of the total intensity through the sum of signals. This layout was
chosen in order to minimize the noise on the Stokes parameters
and their correlation (Couchot et al. 1999).

The satellite scans the sky by spinning at 1 rpm. The spin
axis remains within 7.◦5 of the anti-solar direction (for a detailed
presentation of the Planck scanning strategy, see Tauber et al.
2010b). The angle between the spin axis and the line of sight
is 85◦ ± 2.◦5 depending on detector position in focal plane. The
ecliptic pole regions are thus much more covered than the equa-
torial region, both in terms of number of hits per pixel and in
different observation orientations. This means that around the
ecliptic poles, each detector observes the sky with several fo-
cal plane orientations and hence measures I, Q and U. In con-
trast, in the equatorial region, at least three detectors must be
combined to obtain the polarization signal. This is very different
from currently designed ground or balloon-borne experiments in
which the Stokes parameters can be measured using a single de-
tector. This impacts the propagation of errors, as discussed in
detail in Sect. 5.

3. Polarized photometric equation
In this section, we derive the expression for the power re-
ceived by a PSB. Following Jones’s notation (Jones 1941), the
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polarization state of a plane wave can be described by its trans-
verse electric field e = (Ex, Ey), where Ex and Ey are complex
amplitudes. The transmission through an instrument can be de-
scribed by its Jones matrix Jtot, a 2 × 2 complex matrix, which
relates the radiation edet that hits a detector to the incoming radi-
ation on the telescope esky:

edet(ν, n) = Jtot(ν, n) esky(ν, n)

= Jdet Jfilter(ν) Jbeam(ν, n) esky (1)

where ν is the electromagnetic frequency, n is the direction of
observation and we have decomposed the Jones matrix into op-
tical element Jones matrices. As the detector is sensitive to po-
larization, we can write the associated Jones matrix Jdet as:

Jdet =

(
1 0
0
√
η

)
, (2)

where η is the cross-polarization leakage. We assume it is inde-
pendent of the frequency of the incoming radiation, which is rea-
sonable as it is mainly due to absorption of the cross-polarization
component on the edge of the absorbing grid (Jones et al. 2003).

The filter can also be described by a Jones matrix, as it is not
a depolarizing element in the sense defined by Ditchburn (1976).
It is simply given by:

Jfilter =

( √
τ(ν) 0
0

√
τ(ν)

)
(3)

where τ(ν) is the bandpass transmission of the filter, which has
been measured accurately on ground.

Finally, the beam of both the telescope and the horns is de-
scribed by a generic Jones matrix, Jbeam(ν, n), which depends on
both radiation frequency and direction on the sky. The electric
field received by the detector is thus given by:

edet(ν, n) =
√
τ(ν) R

(
Jxx Jxy√
ηJyx

√
ηJyy

)
R−1esky(ν, n) (4)

where we have included the matrix R which rotates the incoming
radiation from the sky reference frame to the intrument reference
frame. The coefficients Ji j, with i, j in {x, y}, are the elements of
the beam Jones matrix Jbeam(ν, n).

The intensity measured by the detector is the sum of the in-
tensities coming from each direction and for each frequency:

Idet =

∫∫
〈edet(ν, n)† · edet(ν, n)〉 dndν. (5)

To describe the sky signal, we use the Stokes parameters I, Q, U
and V (see, e.g., Born & Wolf 1964):

I(ν, n) = 〈ExE∗x〉 + 〈EyE
∗
y〉

Q(ν, n) = 〈ExE∗x〉 − 〈EyE
∗
y〉

U(ν, n) = 〈ExE∗y〉 + 〈EyE
∗
x〉

V(ν, n) = −i
(
〈ExE∗y〉 − 〈EyE

∗
x〉
)
, (6)

where I is the intensity, Q and U charaterize the linear polar-
ization and V the circular polarization of the sky radiation. We
define analogously the beam Stokes parameters as:

Ĩα(ν, n) = Jαx J∗αx + JαyJ∗αy
Q̃α(ν, n) = JαxJ∗αx − JαyJ∗αy
Ũα(ν, n) = JαxJ∗αy + JαyJ∗αx

Ṽα(ν, n) = −i
(
JαxJ∗αy − JαyJ∗αx

)
(7)

(α = x, y). Note that in general the beam Stokes parameters de-
pend on both frequency and sky direction. Therefore, we can
write the intensity measured by the detector as:

Idet =
1
2

∫∫
τ(ν)

[
I(Ĩx + ηĨy)

+ Q
[
(Q̃x + ηQ̃y) cos 2θ − (Ũx + ηŨy) sin 2θ

]
+ U

[
(Q̃x + ηQ̃y) sin 2θ + (Ũx + ηŨy) cos 2θ

]
− V(Ṽx + ηṼy)

]
(8)

where θ is the angle of orientation between the sky and detector
reference frames, and we have not explicitly written the depen-
dency of radiation and beam Stokes parameters to frequency ν
and direction n for clarity.

4. Systematics for polarization

In Eq. (8) each term that couples to one of the Stokes parameters
may depend on the direction of observation, n, and on frequency
in non trivial ways. Several other instrumental effects could be
added to give an accurate description of a detector measurement,
such as its time constant, noise or pointing errors.

The final calibration and analysis of HFI data needs to ad-
dress all these effects and will rely on both ground and in-flight
measurements. This is beyond the scope of this paper. However,
some comments can already be made.

HFI beam patterns have been simulated with GRASP (see
Maffei et al. 2010; Tauber et al. 2010a) and these simulations
have been verified by ground calibration performed by Thales
Industries. It was shown that optical cross-polarization and cir-
cular polarization Ṽ due to telescope were less than 0.1%. Their
impact has been studied separately (Rosset et al. 2007).

We will thus consider in the following an ideal optical system
for which Jbeam is proportional to the identity matrix resulting in
Ĩx = Ĩy = Q̃x = −Q̃y and Ũx = Ũy = Ṽx = Ṽy = 0. Equation (8)
therefore simplifies to

Idet=
1
2

�
τ(ν)Ĩx[(1+η)I+(1−η)(Q cos 2θ+U sin 2θ)] dΩdν. (9)

Realistic bandpasses and frequency dependence of optical beam
coupling terms are non-trivial effects that affect absolute cali-
bration. More specifically, calibration could depend on the elec-
tromagnetic spectrum of the source. This is expected to impact
component separation. In this work, we focus on systematic ef-
fects on CMB polarization and rely on absolute calibration on
the CMB dipole, the amplitude f which is known to 0.5% ac-
curacy (Fixsen et al. 1994). We expect to measure in flight the
relative gain to an accuracy of better than 0.2%, given the gain
stability expected for HFI (i.e. better than WMAP, see Hinshaw
et al. 2009). Beam asymmetries and pointing errors couple to the
scanning strategy of the instrument. A general framework to as-
sess their impact is presented in Shimon et al. (2008) and O’Dea
et al. (2007).

Leaving these effects aside for this work, the measurement
of a detector reads:

m = g
(
I + ρ[Q cos 2(ψ + α) + U sin 2(ψ + α)]

)
+ n (10)

in which n is the noise, g is the total gain, ρ = (1 − η)/(1 + η) is
commonly referred to as polarization efficiency, ψ is the depen-
dence on the focal plane orientation on the sky and α stands for
the relative detector orientation with respect to it.
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5. Propagation of errors for polarization calibration

In this section, we propagate errors on gain g, on polarization
efficiency ρ and detector orientation α (as defined in the previous
section) up to Stokes parameters (Sect. 5.1) and angular power
spectra (Sect. 5.2).

This method applies to all polarization experiments observ-
ing with total power detectors such as HFI bolometers. It is
close to the approach taken by Shimon et al. (2008) and O’Dea
et al. (2007). A similar approach, focused on coherent receivers,
was first proposed by Hu et al. (2003). The main difference of
the method presented here is that it addresses the specific case
of Planck which combines different detectors to determine Q
and U.

5.1. Error on Stokes parameters

Given a pixelization of the sky and gathering all samples that fall
into the same pixel p in a vector m, Eq. (10) generalizes to the
usual matrix form:

mt = Atpsp + nt, (11)

in which s = (I,Q,U) is the pixelized polarized sky sig-
nal and n represents the noise vector. The pointing matrix A
encodes both the direction of observation and the photomet-
ric equation including the calibration parameters g, ρ and α.
Projection of time-ordered data into a pixelized map is done
by solving Eq. (11) for s, knowing m and the noise covari-
ance matrix N ≡ 〈nnT 〉. The maximum likelihood solution is
ŝ = (AT N−1A)−1AT N−1m = (AT A)−1AT m if we consider only
Gaussian, white and piece wise stationary noise, as we shall do
in the remaining part of this work in order to focus on systematic
effects.

We use a perturbative approach of assumed parameters g̃, ρ̃
and α̃ (leading to a pointing matrix Ã) around their true val-
ues g, ρ and α (leading to A). From Eq. (10), we can see that
for Q and U Stokes parameters, errors on the gain and polar-
ization efficiency are degenerate. In the following, we use an
effective polarization efficiency ρ′ ≡ gρ and keep g for intensity
only. The actual gain, polarization efficiency and orientation for
a given detector d are therefore gd = g̃d + γd, ρ′d = ρ̃d

′ + εd and
αd = α̃d + ωd respectively2. Thus, ignoring noise,

ŝ = (ÃT Ã)−1ÃT m (12)

=

⎡⎢⎢⎢⎢⎢⎣∑
d

ÃT
d Ãd

⎤⎥⎥⎥⎥⎥⎦
−1 ⎡⎢⎢⎢⎢⎢⎣∑

d

ÃT
d Ad

⎤⎥⎥⎥⎥⎥⎦ s (13)

≡
⎡⎢⎢⎢⎢⎢⎣∑

d

ÃT
d Ãd

⎤⎥⎥⎥⎥⎥⎦
−1 ⎡⎢⎢⎢⎢⎢⎣∑

d

Λd(γd, εd, ωd)

⎤⎥⎥⎥⎥⎥⎦ s. (14)

In this expression, Λd(γ, εd, ωd) is an explicit function of γ, εd
and ωd, and g̃, ρ̃′ and α̃ are only parameters.

Considering small variations around g, ρ′ and α, we can
write the perturbative expansion to first order for both γ � 1,
ε � 1 and ω� 1:

Δs = ŝ − s =

⎡⎢⎢⎢⎢⎢⎣∑
d

ÃT
d Ãd

⎤⎥⎥⎥⎥⎥⎦
−1 ⎡⎢⎢⎢⎢⎢⎣∑

d

Λd(γd, εd, ωd) − Λd(0, 0, 0)

⎤⎥⎥⎥⎥⎥⎦ s

�
⎡⎢⎢⎢⎢⎢⎣∑

d

ÃT
d Ãd

⎤⎥⎥⎥⎥⎥⎦
−1 ∑

d

[
∂Λd

∂γd
γd +

∂Λd

∂εd
εd +

∂Λd

∂ωd
ωd

]
s. (15)

2 In the following, when a relation holds for γ, ε or ω, we simply
write e.

Partial derivatives with respect to gain γd, polarization ef-
ficiency εd and orientation ωd uncertainties are derived in
Appendix A.

The errors Δs strongly depend on the scanning strategy
through the number of hits per pixel and the distribution of de-
tector orientations. These are accounted for exactly by taking the
scanning strategy of the instrument and the positions of all detec-
tors, and computing the pointing-related quantities per pixel on
which Λd and its derivatives depend. This part of the work may
be intensive in terms of memory or disk access requirements de-
pending on which experiment is being modeled but needs to be
performed only once. Then, given a sky model, the generation of
an arbitrary large set of error maps Δs requires fewer resources
and involves only distributions of γd, εd and ωd .

Note that in the particular case of an experiment whose scan-
ning strategy is such that each detector observes each pixel of
the map under angles uniformly distributed over [0, π], making
a combined map as in Eq. (12) is equivalent to making one set
of I, Q, and U maps per detector and co-adding them to obtain
the final optimal maps of the experiment. In that case, sums of
cosines and sines vanish, which means that off diagonal terms
of ÃT

d Ãd are zero and Eq. (15) reads simply

Δs = 〈γ〉d
⎛⎜⎜⎜⎜⎜⎜⎝ I

0
0

⎞⎟⎟⎟⎟⎟⎟⎠ + 〈 ερ′ 〉d
⎛⎜⎜⎜⎜⎜⎜⎝ 0

Q
U

⎞⎟⎟⎟⎟⎟⎟⎠ + 2〈ω〉d
⎛⎜⎜⎜⎜⎜⎜⎝ 0

U
−Q

⎞⎟⎟⎟⎟⎟⎟⎠ · (16)

Because of the linearization, the final map is sensitive to the av-
erages of these parameters. If errors are correlated (or identical
at worst), they do not average down; if they are randomly dis-
tributed around zero mean, they do. These results are in agree-
ment with O’Dea et al. (2007). As we will see in the Sect. 6,
this is not the case for HFI, for which none of these simplifica-
tions applies.

5.2. Errors on angular power spectra

Following conventions of Zaldarriaga & Seljak (1997), the pro-
jection onto spherical harmonics of intensity and polarization
reads:

aT
�m =

∫
I(n)Y∗lm(n) dn,

aE
�m = −

∫ [
Q(n)R+lm(n) + iU(n)R−lm(n)

]
dn,

aB
�m = i

∫ [
Q(n)R−�m(n) + iU(n)R+lm(n)

]
dn

where the R±lm = 2Y∗lm ± −2Y∗lm depend on the s-spin spherical
harmonic functions sYlm(n) (s = {0, 2,−2}).

Spherical harmonics transforms are linear, so derivatives of
a�m =

(
aT
�m, a

E
�m, a

B
�m

)
read

∂a�m
∂e
=

∫ ⎛⎜⎜⎜⎜⎜⎜⎜⎝
Y∗lm 0 0
0 −R+lm −iR−lm
0 iR−lm −R+�m

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(n)

∂s
∂e

(n) dn.

We use a simple pseudo-C� estimator, C̃�, which is χ2-distributed
with a mean equal to the underlying C�, ν� = (2� + 1) degrees of
freedom and a variance of 2C�/ν�:

C̃XY
� =

1
(2� + 1)

�∑
m=−�

aX∗
�maY

�m. (17)
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This estimator neglects the E − B mixing due to incomplete sky
coverage (Lewis et al. 2002) and assumes a cross-power spec-
trum for which noise bias is null (or if auto-spectra are used, that
the noise bias has been previously removed) because their inter-
action with the systematic effects introduced here are of second
order.

Using the previous relations, straightforward algebra leads
from Eq. (15) to its counterpart in harmonic space:

ΔC̃� =
∑

d

∂C̃�

∂γd
γd +

∑
d

∂C̃�

∂εd
εd +

∑
d

∂C̃�

∂ωd
ωd

+
1
2

∑
d,d′

[
∂2C̃�

∂γd∂γd′
γdγd′ +

∂2C̃�

∂εd∂εd′
εdεd′

+
∂2C̃�

∂ωd∂ωd′
ωdωd′

]
, (18)

where, for e = γ, ε or ω,

∂CXY
�

∂e
=

1
2� + 1

�∑
m=−�

⎡⎢⎢⎢⎢⎣∂aX∗
�m

∂e
aY
�m + aX∗

�m

∂aY
�m

∂e

⎤⎥⎥⎥⎥⎦ (19)

∂2CXY
�

∂e∂e′
=

1
2� + 1

�∑
m=−�

⎡⎢⎢⎢⎢⎣∂2aX∗
�m

∂e∂e′
aY
�m +

∂aX∗
�m

∂e

∂aY
�m

∂e′

+
∂aX∗

�m

∂e′
∂aY

�m

∂e
+ aX∗

�m

∂2aY
�m

∂e∂e′

⎤⎥⎥⎥⎥⎦ · (20)

We ignore cross-terms between different systematic parameters
so the previous expressions are only applicable when all but one
of the parameters are set to zero. The cross-terms have been
checked to be one order of magnitude below the direct terms.
Note that we push the perturbative expansion to second order,
since E-modes are much larger than B-modes and a second or-
der effect on E-modes has an impact comparable to a first order
effect on B-modes.

5.3. Monte-Carlo simulations

We have now everything in hand to perform the semi-analytical
estimate of the polarization calibration systematic effects. The
method can be described in 5 main steps:

1. From the scanning strategy of the instrument, for each de-
tector d, project into a map: cos 2ψ, sin 2ψ, cos 2ψ sin 2ψ,
and cos2 2ψ.

2. With these quantities, compute for each pixel of the map the

following 3 × 3 matrices:
[∑

d ÃT
d Ãd

]−1
, Λd, and its first and

second derivatives.
3. Use a simulated CMB sky s and Eq. (15) to compute partial

derivatives ∂s/∂e (up to second order).
4. Compute all cross-power spectra between s and its deriva-

tives.
5. Combine these results using gaussian random distributions

of γd, εd and ωd (with various rms σ) in Eq. (18) to obtain
the final error on the angular power spectrum.

The power spectra estimator used is a pseudo-C� estimator based
on the cross-power spectra algorithm (Tristram et al. 2005), ex-
tended to polarization (Kogut et al. 2003; Grain et al. 2009). The
semi-analytic method described in this section has been com-
pared to full Monte-Carlo simulations and gives results compat-
ible with statistical expectations for the number of simulations
performed.

6. Application to Planck-HFI focal plane

We apply the method described in the previous section to the
Planck-HFI to set requirements on gain, polarization efficiency
and orientation. We simulated HEALPix (Górski et al. 2005)
full-sky maps at a resolution of ∼3.5 arcmin (nside = 1024) so
that all pixels are seen and each pixel is uniformly sampled. This
avoids the complications of estimating power spectra on a cut
sky when allowing for the same conclusions, as our power spec-
trum estimator is not biased in the mean. The scanning strategy
that we use is a realistic simulation of what Planck will actually
do in a 14-month mission. The sky signal is pure CMB simu-
lated from the best ΛCDM fit to WMAP 5 years data (Dunkley
et al. 2009) with r = 0.05, supposing the CMB signal to be
dominant over foregrounds residuals (at least for intensity and
E-mode CMB signals).

As described in Sect. 2, the Planck scanning strategy and fo-
cal plane design do not allow the data from a single PSB pair
to provide independent maps of the Stokes parameters. Here,
we will use two PSB pairs calibrated in intensity and consider
small variations around their gain gd = 1, nominal angles αd =
{0◦, 90◦, 45◦, 135◦} and nominal polarization efficiency ρ′d = 1
(corresponding to perfect PSB).

6.1. Error on Stokes parameter for HFI

We refer to Appendix A for the explicit form of the deriva-
tive terms of the Stokes parameters. Here, we emphasize
the issues specific to HFI. In this case, Eq. (15) reads
(see Eqs. (A.9)−(A.14))

Δs =

⎛⎜⎜⎜⎜⎜⎜⎝ ΔII ΔIQ ΔIU

ΔQI ΔQQ ΔQU
ΔUI ΔUQ ΔUU

⎞⎟⎟⎟⎟⎟⎟⎠ s. (21)

For gain variations only, non-zero elements of the matrix are
given for each pixel, to first order, by

Δ
g
II =

1
4

(γ1 + γ2 + γ3 + γ4) (22)

Δ
g
QI =

1
4

(γ1 − γ2) 〈cos 2ψ〉 − 1
4

(γ3 − γ4) 〈sin 2ψ〉 (23)

Δ
g
UI =

1
4

(γ1 − γ2) 〈sin 2ψ〉 + 1
4

(γ3 − γ4) 〈cos 2ψ〉 . (24)

For polarization efficiency only, elements of the matrix are given
for each pixel, to first order, by

Δ
ρ
IQ =

1
4

(ε1 − ε2) 〈cos 2ψ〉 − 1
4

(ε3 − ε4) 〈sin 2ψ〉 (25)

Δ
ρ
IU =

1
4

(ε1 − ε2) 〈sin 2ψ〉 + 1
4

(ε3 − ε4) 〈cos 2ψ〉 (26)

Δ
ρ
QQ =

1
2

(ε1 + ε2)
〈
cos2 2ψ

〉
+

1
2

(ε3 + ε4)
〈
sin2 2ψ

〉
(27)

Δ
ρ
QU =

1
2

[(ε1 + ε2) − (ε3 + ε4)] 〈cos 2ψ sin 2ψ〉 (28)

Δ
ρ
UQ =

1
2

[(ε1 + ε2) − (ε3 + ε4)] 〈cos 2ψ sin 2ψ〉 (29)

Δ
ρ
UU =

1
2

(ε1 + ε2)
〈
sin2 2ψ

〉
+

1
2

(ε3 + ε4)
〈
cos2 2ψ

〉
. (30)
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In the case of orientation errors only, to first order,

ΔαIQ = −
1
2

(ω1 − ω2) 〈sin 2ψ〉 − 1
2

(ω3 − ω4) 〈cos 2ψ〉 (31)

ΔαIU =
1
2

(ω1 − ω2) 〈cos 2ψ〉 − 1
2

(ω3 − ω4) 〈sin 2ψ〉 (32)

ΔαQQ = − [(ω1 + ω2) − (ω3 + ω4)] 〈cos 2ψ sin 2ψ〉 (33)

ΔαQU = (ω1 + ω2)
〈
cos2 2ψ

〉
+ (ω3 + ω4)

〈
sin2 2ψ

〉
(34)

ΔαUQ = −(ω1 + ω2)
〈
sin2 2ψ

〉
− (ω3 + ω4)

〈
cos2 2ψ

〉
(35)

ΔαUU = [(ω1 + ω2) − (ω3 + ω4)] 〈cos 2ψ sin 2ψ〉 . (36)

In these Eqs. (22)–(36), the average is over the samples falling
into a given pixel. It depends only on the scanning strategy.
Figure 2 shows the angle distribution on the sky for a realistic
Planck scanning strategy. Planck shows large inhomogeneities
that induce additional terms with respect to the case of a single
bolometer.

Leakage from intensity to polarization. Error on gain only
produces leakage from intensity to polarization (see
Eq. (A.8)). This leakage is driven by the relative errors in-
side a given horn which indicates that an absolute error on
the gain (same for all detectors) will not produce any leak-
age. Neither polarization efficiency nor detector orientation
errors induce any leakage from I into polarization Q and U
(see Eqs. (A.9)−(A.14)).

Leakage from polarization to intensity. Both polarization ef-
ficiency and orientation error produce leakage from polariza-
tion to intensity. It is driven by the difference of errors within
one horn and the relative weight of each horn depends on the
distribution of ψ (see Fig. 2).

Polarization mixing. Polarization calibration parameters mix
both Q and U. This means that they induce leakage from Q
to U through the term ΔρQU (and from U to Q through the
term ΔρUQ) but also alter the amplitude of polarization (ΔρQQ

and ΔρUU � 0). If we consider identical errors for each
detector, we are in the limiting case where orientation er-
ror induces only leakage (Eqs. (34), (35)) and polariza-
tion efficiency only changes the amplitude of polarization
(Eqs. (27), (30)) as described by Eq. (16). In the case of
Planck-HFI, and considering independent errors, none of
these simplifications apply. In particular, different parame-
ter averages from one horn to the other induce both Q and U
mixing and amplitude modification.

6.2. Results for E and B-mode power spectra

The semi-analytical method described in Sect. 5 is able to prop-
agate instrumental errors up to the six CMB power spectra: TT ,
EE, BB, T E, T B and EB. In this section, we will focus on
the E and B-mode power spectra and discuss results obtained
for Planck-HFI in case of absolute (Sect. 6.2.1) and relative un-
certainties (Sect. 6.2.2). Other spectra (like T B and EB) that are
predicted to be null for CMB signal, can be very useful in reveal-
ing “leakage” due to systematics. However, many systematic ef-
fects can produce such leakage, which will make their separate
identification very complicated when using only these modes.

6.2.1. Global error over the focal plane/calibration
on the sky

Absolute calibration of total power is done using the orbital
dipole that has the same electromagnetic spectrum as the CMB

Fig. 2. Amplitude of the various terms in Eqs. (22)−(36) describing the
focal plane angle distribution on the sky for a mock but realistic Planck
scanning coverage (HEALPix maps at nside = 1024, Galactic coordi-
nates). From top to bottom: |〈cos 2ψ〉|, |〈sin 2ψ〉|, |〈sin 4ψ〉|/2, 〈cos2 2ψ〉.

and is not degenerate with the underlying sky signal as its sign
changes after 6 months of observation. From Eqs. (23) and (24),
absolute error on the gain g will not produce any leakage in po-
larization signals:

Δgs =

⎛⎜⎜⎜⎜⎜⎜⎝ γ 0 0
0 0 0
0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ s for gain. (37)

As far as polarization is concerned, we need a polarized source
on the sky. The Crab nebulae, a supernova remnant, is a good
candidate as it shows a large polarization emission in the Planck-
HFI frequency bands. It has been observed in a wide range
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of frequencies and shown to have polarization properties sta-
ble enough to be a calibrator for polarization experiments.
Dedicated observations of this source were done by IRAM at
89 GHz (Aumont et al. 2010). The impact of an approximate
knowledge of the polarization sky calibrator leads to a uniform
error over the focal plane. In this case, the ω and ε parameters do
not depend on the detector. From Eqs. (25)−(36), we found that
the intensity does not leak into polarization with polarization ef-
ficiency and orientation errors (ΔIQ = ΔIU = 0) and

Δρs =

⎛⎜⎜⎜⎜⎜⎜⎝ 0 0 0
0 ε 0
0 0 ε

⎞⎟⎟⎟⎟⎟⎟⎠ s for polarization efficiency, (38)

Δαs =

⎛⎜⎜⎜⎜⎜⎜⎝ 0 0 0
0 cos 2ω sin 2ω
0 − sin 2ω cos 2ω

⎞⎟⎟⎟⎟⎟⎟⎠ s for orientation. (39)

In terms of power spectra, an error in polarization efficiencies
only affects the amplitude of the E and B power spectra but does
not result in leakage from E to B. On the other hand, an error
in orientations mixes Q and U maps resulting in both a leakage
from E into B (as well as B into E) and a modification of E
and B amplitudes. However, as the E-mode signal is far above
that of the B-mode in amplitude, ΔC� is dominated by E-mode
to second order:

ΔCX
� = 2εCX

� + 4ω2CE
� , (40)

for X either E or B-mode.
Consequently, for E-mode, the polarization efficiency uncer-

tainty must be ε < 0.5% and the orientation uncertainty ω < 2.◦9
to obtain less than 1% error on the power spectrum amplitude.
Alternatively, the leakage is kept under 10% of the cosmic vari-
ance if ε < 0.3% and ω < 2.◦1 for � = 2−1000.

To go further and target the B-mode signal, we show that
the orientation must be known to better than 1.◦3 (0.◦4) in order
to keep the leakage from E to B-mode lower than 10% (1%)
of the expected CB

� for a tensor-to-scalar ratio of r = 0.05 at
large angular scales (� < 100). The error on its amplitude will be
driven by the polarization efficiency uncertainty (2ε).

6.2.2. Relative calibration between detectors

As discussed in Sect. 6.1, there is no generic case concerning
the a priori distribution of errors for polarization parameters on
HFI. We therefore performed 10 000 Monte-Carlo simulations
to propagate the errors through to the E and B polarized angular
power spectra. Errors were drawn from a gaussian distribution
with various dispersions σγ, σε and σω per detector. We then
propagated those uncertainties through to the E and B angular
power spectra.

The results show leakage coming from TT , EE and
BB depending on the parameter considered. The gain uncer-
tainty induces leakage from intensity into polarization so ΔC�

show leakage from TT and T E spectra (dominated by TT ).
For polarization efficiency and orientation, ΔC� is a combination
of EE and BB power spectra with relative weights that depend
on the distribution of uncertainties between the four bolometers
considered. Due to second order terms, the distribution of errors
in the angular power spectra is highly non gaussian, as shown in
Figs. 3−5.

We then compare the rms of those distributions for each mul-
tipole to the cosmic variance of the E-mode and to an r = 0.05
B-mode spectrum with lensing (Figs. 6−8).

Fig. 3. Distribution of ΔCEE
� (top) and ΔCBB

� (bottom) for σγ = 0.2%
gain errors for multipoles � = 10, � = 100, � = 500, normalized to their
rms (red line).

Fig. 4. Distribution of ΔCEE
� (top) and ΔCBB

� (bottom) for σε = 1% polar
efficiency errors for multipoles � = 10, � = 100, � = 500, normalized to
their rms (red line).

Using these results, we can set the requirements for Planck-
HFI on the calibration of gain, polarization efficiency and orien-
tation. More precisely, we demand that the errors on the temper-
ature and polarization calibration parameters to be such that the
induced leakage into the E power spectrum is lower than 10% of
the cosmic variance over the multipole range � = 2−1000. This
means that gains must be known to 0.15%, polarization efficien-
cies to 0.5% and detector orientations to 1◦.

According to Efstathiou & Gratton (2009), an extended
Planck mission should be able to measure gravitational B-mode
at a level of r = 0.05 and put an upper-limit of r = 0.03 when
considering foreground residuals and noise levels. To achieve
such a detection (or upper-limit), the constraints on the calibra-
tion parameters must be much tighter. For this goal, we set the
leakage into B power spectrum to be 10% of the B-mode model
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Fig. 5. Distribution of ΔCEE
� (top) and ΔCBB

� (bottom) for σω = 1◦ ori-
entation errors for multipoles � = 10, � = 100, � = 500, normalized to
their rms (red line).

Fig. 6. ΔC� in rms due to gain errors from 0.01% to 1% for E-mode
(top) and B-mode (bottom) compared to initial spectrum (solid black
lines). Cosmic variance for E-mode is plotted in dashed black line.

we want to target, for a multipole range from � = 2 to 100. With
such an hypothesis, we find that the gain precision should be
better than 0.05% and the orientations of the bolometers should
be known to better than 0.◦75. The leakage due to polarization
efficiency into B-mode is very small (see bottom plot in Fig. 7),
thus the constraint on the polarization efficiency determination
is not relevant in that case (we found 10%).

7. Ground measurements

The Planck-HFI polarization calibration on ground was di-
vided into two parts: polarization efficiencies were measured
for each detector separately, before focal plane assembly, at the
University of Wales in Cardiff in 2005, while orientations of
the PSBs with respect to the focal plane were measured during
the overall calibration of the Planck HFI in the Saturne cryostat
at Orsay, France, in 2006.

7.1. Polarization efficiency ground measurements

Detector-level polarization efficiency measurements were per-
formed in a 2-stage adiabatic demagnetization refrigerator

Fig. 7. ΔC� in rms due to polarization efficiency errors from 0.1% to 4%
for E-mode (top) and B-mode (bottom) compared to initial spectrum
(solid black lines). Cosmic variance for E-mode is plotted in dashed
black line.

Fig. 8. ΔC� in rms due to various orientation errors from 0.25 to
2 degrees for E-mode (top) and B-mode (bottom) compared to initial
spectrum (solid black lines). Cosmic variance for E-mode is plotted in
dashed black line.

(ADR) at a base temperature of 200 mK. The ADR was con-
figured to take six detectors per cooldown (in most cases all
of the same optical band per cooldown). Thermal blocking fil-
ters were used at the 4 K, 77 K and 300 K stages of the
testbed. The anti-reflective coating on the cryostat window was
matched to the optical band under test. The window, of 125 mm
diameter, and all the thermal blockers were sized such that they
filled the beams. The polarization source was a rotating po-
larizer grid positioned over an extended temperature-controlled
black body source of 75 mm diameter running at 126◦C. The
final source aperture was 70 mm in diameter. The mechan-
ical structure of the source was fully clad with non-rotating
Eccosorb (type AN-72). The source was positioned approxi-
mately 690 mm from the cryostat window, tilted 4.◦8 off the op-
tical axis, and mechanically chopped at 6 Hz. The experimental
setup was fully surrounded with Eccosorb (type AN-72) while
the data were recorded. Data were recorded in a step and sample
fashion over five full rotations of the polarizer grid with a 4◦ step
size and a 4 s integration time.

Detailed results are given in the appendix in Tables B.1
and B.2 for PSBs and SWBs, respectively. The polarization effi-
ciency of the SWBs is low, as expected, and range between 1.6%
and 8.6%. The statistical error is typically 0.5%, and as much
as 1.8% for one SWB. The polarization efficiency of the PSBs
is typically around 90%, ranging from 84% to 96%, with errors
below 0.3%.
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7.2. Orientation ground measurements

7.2.1. The calibration setup

The orientation calibration was performed within a 1-m diameter
cryostat cooled to 2 K, to be close to flight conditions (for a more
detailed description of the calibration setup and photographs, see
Pajot et al. 2010). The detectors were cooled to their nominal
operating temperature, 100 mK. For polarization measurements,
the source (Cold Source 2 or CS2) was a blackbody at 20 K
whose radiation was diluted within a 50 cm diameter sphere in
order to illuminate, after a reflection from mirror, the full focal
plane at once. The source was modulated by a diapason at a fixed
frequency of 10 Hz. The radiation was linearly polarized by an
aluminum grid deposited on a 138 mm diameter mylar film. The
aluminum strips of the polarizer were 5 μm wide, 5 μm thick
and spaced 5 μm apart. The Mylar film itself was 10 μm thick,
with a transmission coefficient greater than 0.9; the polarization
efficiency of the polarizer was measured to be better than 99.9%,
so it can be assumed equal to unity at HFI frequencies. The po-
larizer could rotate freely around its axis using a stepper motor.
There are exactly 32 000 steps in one rotation, so the precision
in relative angle is better than 1′.

7.2.2. Reference for angle measurement

The reference position was defined by a pin fixed to the polar-
izer, which was detected by electric contact with a copper strip
with a precision of ±5 motor steps, i.e. ±0.◦06. We measured the
angle of this reference position with respect to the focal plane
using the light of a laser diffracted by the strips of the polarizer;
the diffraction pattern is formed by points aligned orthogonally
to the strips (i.e. parallel to the transmitted polarization).

Two different methods were used to determine polarization
angles with respect to the focal plane. In the first method, we
measured the orientation with respect to the platform and used
the mechanical position of the instrument with respect to the
platform to get the absolute angle. In the second method, we
measured the angle directly with respect to the instrument. In
both cases, we measured the same angle and checked it was
constant across the polarizer. Both methods gave similar error
estimates on the reference position angle, which can safely be
assumed to be lower than 0.◦3:∣∣∣Δθabsolute

∣∣∣ < 0.◦3. (41)

7.2.3. Data analysis

For this measurement, the polarizer was rotated by 5◦ steps and
signal was inegrated for 20 s at each position. Eight full rotations
of the polarizer were performed.

At each polarizer position, the signal from the source is si-
nusoidal with a frequency of 10 Hz. It is demodulated fitting a
sine curve over a few periods, yielding around 60 independent
measurements for each stationary period of 20 s. The average
and standard deviation of these 60 measurements give the signal
and its error for each 20 s period, for a fixed position of the po-
larizer. The statistical error was found to be typically below 1%
of the signal.

We then fit the signal as a function of the polarizer an-
gle to estimate the polarization efficiency and the orientation
of the detectors. However, despite the good quality of the po-
larizer, we found cross-polarization leakage of around 30%,
much higher than that found in Sect. 7.1, with the Cardiff mea-
surements: it was probably due to standing waves between the

Fig. 9. Signal of PSB 100-1b with respect to the angle in the horn aper-
ture plane; each color represents one rotation of the polarizer (8 turns);
the signal is fitted using a standard sine curve. The difference exhibits a
systematic effect that can be explained by standing waves between the
polarizer and the focal plane (see text).

polarizer and the focal plane and made the detector polarization
efficiency unmeasurable with this setup. The angle that maxi-
mizes the signal gives the orientation of the polarizer; however,
the PSB angle must be given in the horn aperture plane, which
is slightly out of parallel with the polarizer plane. We have per-
formed ray-tracing simulations to estimate and correct for this
geometrical effect. The corrections lie between −0.◦5 to 0.◦5, and
the precision (set by the precision on the position of the polar-
izer) is better than 0.◦15.

Figure 9 shows the curve obtained for a PSB at 100 GHz
and the difference with the fitted model. The residuals show
a 90◦-periodic sine curve, which is present in some detectors.
Some detectors also have glitches, reproduced at the same po-
sition at each rotation of the polarizer. These glitches mostly
affect the highest two frequency channels (545 and 857 GHz),
i.e., only SWBs. As cos 2θ and cos 4θ are orthogonal functions
over 2π, the fitted values for the angle and the polarization ef-
ficiency are unchanged when adding such a term in the fitting
model. However, we cannot exclude that they may be contam-
inated by a systematic effect like some other modes (mainly in
mode cos 4θ). For example, if the incoming radiation is the sum
of two partially linearly polarized radiations, one with orienta-
tion θ (rotating with the polarizer) and one with fixed orienta-
tion θ0, the signal measured by the detector reads:

s(θ) ∝ 1 + ρ cos 2(θ − θdet)

+ ρ′ cos 2(θ − θ0) [1 − cos 2(θ − θdet)] (42)

where θdet is the polarization orientation of the detector. In this
model, the angle measured through the phase of the mode cos 2θ
will not be the detector polarization angle.

More generally, we can expand the signal as a Fourier series
s(θ) =

∑+N
n=−N cneinθ and fit its coefficients cn (which fulfill the

condition c�−n = cn, as s is a real quantity). The coefficient c2,
giving the dependence in cos 2θ, contains the information on
polarization efficiency and angle through its modulus and argu-
ment, and is independent of the other modes. To estimate the
error on the polarization angle without relying on a particular
model, we assume that the mode c2 is the sum of two contri-
butions, c2 = cpol

2 + csyst
2 (true polarization signal and induced
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systematic effect). The maximum systematic error on the angle
is then given by:

max
∣∣∣Δθsyst

∣∣∣ = arctan

∣∣∣∣∣∣∣
csyst

2

cpol
2

∣∣∣∣∣∣∣ · (43)

We draw an upper bound on the systematic error by assuming
that |csyst

2 /cpol
2 | <∼ maxn�0,2 |cn/c2|. However, as the systematic er-

ror is due to complex interference between the polarizer, the fo-
cal plane and the horns, we chose a conservative limit by taking
for all detectors the maximum of this estimate among all PSBs.
The statistical error on the coefficients cn being negligible com-
pared to the systematic error, we finally find the following upper
limit on the total error on the relative angle of each polarization
sensitive detectors:∣∣∣Δθrelative

∣∣∣ < 0.◦9. (44)

As an independent check, we compared the relative angle be-
tween PSBs within each horn (which is close but not exactly
equal to 90◦) with the angles found using the setup described
in Sect. 7.1. We found an agreement within the systematic er-
ror bars for all horns except one, which is, however, within the
statistical plus systematic error bar (the statistical error coming
from the Cardiff measurements).

The case of SWBs is treated separately, as the statistical er-
ror is not negligible in this case (due to the low polarization
efficiencies). We performed a similar analysis, taking into ac-
count the statistical error. The results are gathered in Table B.2.
Note that the SWBs are not meant to be used for polarization
measurements.

8. Discussion and conclusion

This paper focuses on the impact of polarized calibration pa-
rameters (gain, polarization efficiency and detector orientation)
on power spectra in the context of Planck-HFI. We have devel-
oped a semi-analytical method that allows us to compute quickly
and easily the impact of uncertainties on gain, polarization ef-
ficiency and orientation on the E and B-mode power spectra,
while exactly accounting for the scanning strategy and the com-
bination of different detectors. We used this method in the partic-
ular case of Planck-HFI and derived constraints on the gain, po-
larization efficiency and detector orientation needed to achieve
Planck-HFI’s scientific goals.

Planck will use the orbital dipole to calibrate the total power
for each detector. We find that the relative uncertainty on the gain
must be lower than 0.15% to keep systematic error on E-mode
power spectrum below 10% of the cosmic variance in the mul-
tipole range � = 2−1000. Given the 0.2% accuracy on relative
gain obtained by WMAP (Hinshaw et al. 2009), we expect that
HFI can achieve the 0.15% requirements, thanks to the higher
gain stability expected for HFI.

We show that the polarization efficiency uncertainty must be
below 0.3% in order to achieve the required sensitivity for the
E-mode. The error on the primordial B-mode power spectrum
will be kept below 10% of the signal expected from a tensor-
to-scalar ratio r = 0.05 in the multipole range � = 2−100 if
the polarization efficiency is known to better than 10.3%. In this
paper, we have presented the results of the ground measurements
on HFI PSBs polarization efficiency, which show an accuracy
of 0.3% that fulfills the requirements for both E and B-modes.

For the polarization orientation, we have distinguished a
global orientation error of the focal plane (which affects iden-
tically all detectors) from a relative error (different for each de-
tector). For E-modes, we show that the requirement is 2.◦1 on
the global orientation knowledge and 1◦ on the relative orienta-
tion to keep the error below 10% of the cosmic variance in the
range � = 2−1000. Both these requirements are already fulfilled
by the ground measurements, in which we found 0.◦3 and 0.◦9
respectively. In order to measure a B-mode signal with a system-
atic error lower than 10% for a tensor-to-scalar ratio r = 0.05,
the global orientation must be known to better than 1.◦2 and the
relative orientation at better than 0.◦75. While the ground mea-
surements fulfill the requirement on global orientation, the rel-
ative orientation knowledge will need to be improved in flight.
For Planck, we plan to use the Crab nebula as the primary po-
larization calibrator (Aumont et al. 2010), which will also allow
the results presented in this paper to be cross-checked. The ac-
curacy of the ground measurements of polarization efficiencies
and orientations will allow the E-mode power spectrum to be
measured, with systematic errors lower than 10% of the cosmic
variance, provided that the other sources of systematic effects
are controlled.
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Appendix A: Explicit forms of pointing related functions

We write the projection of the signal m into a sky map s as

ŝ = (ÃT Ã)−1ÃT m (A.1)

=

⎡⎢⎢⎢⎢⎢⎣∑
d

ÃT
d Ãd

⎤⎥⎥⎥⎥⎥⎦
−1 ⎡⎢⎢⎢⎢⎢⎣∑

d

ÃT
d Ad s

⎤⎥⎥⎥⎥⎥⎦ (A.2)

=

⎡⎢⎢⎢⎢⎢⎣∑
d

ÃT
d Ãd

⎤⎥⎥⎥⎥⎥⎦
−1 ⎡⎢⎢⎢⎢⎢⎣∑

d

Λd(γd, εd, ωd)s

⎤⎥⎥⎥⎥⎥⎦ . (A.3)

Where A is the pointing matrix. In this expression, Λd(γd, εd, ωd) is an explicit function of γd, εd and ωd. g̃, ρ̃ and α̃ are only
parameters. If we note t(d) the data samples of detector d, Λd reads

Λd =
∑
t(d)

⎛⎜⎜⎜⎜⎜⎜⎜⎝
(1 + γ) (ρ̃d + ερ) cos 2(ψ̃d(t) + ωd) (ρ̃d + ερ) sin 2(ψ̃d(t) + ωd)
(1 + γ)ρ̃d cos 2ψ̃d(t) ρ̃d(ρ̃d + ερ) cos 2ψ̃d(t) cos 2(ψ̃d(t) + ωd) ρ̃d(ρ̃d + ερ) cos 2ψ̃d(t) sin 2(ψ̃d(t) + ωd)
(1 + γ)ρ̃d sin 2ψ̃d(t) ρ̃d(ρ̃d + ερ) sin 2ψ̃d(t) cos 2(ψ̃d(t) + ωd) ρ̃d(ρ̃d + ερ) sin 2ψ̃d(t) sin 2(ψ̃d(t) + ωd)

⎞⎟⎟⎟⎟⎟⎟⎟⎠ . (A.4)

Considering small variations around g̃, ρ̃ and α̃, we can write the perturbative expansion to first order for both γ � 1, ε � 1 and
ω � 1:

Δs = ŝ − s (A.5)

=

⎡⎢⎢⎢⎢⎢⎣∑
d

ÃT
d Ãd

⎤⎥⎥⎥⎥⎥⎦
−1 ⎡⎢⎢⎢⎢⎢⎣∑

d

ÃT
d Ad − ÃT

d Ãd

⎤⎥⎥⎥⎥⎥⎦ s

≡
⎡⎢⎢⎢⎢⎢⎣∑

d

ÃT
d Ãd

⎤⎥⎥⎥⎥⎥⎦
−1 ⎡⎢⎢⎢⎢⎢⎣∑

d

Λd(γd, εd, ωd) − Λd(0, 0, 0)

⎤⎥⎥⎥⎥⎥⎦ s

�
⎡⎢⎢⎢⎢⎢⎣∑

d

ÃT
d Ãd

⎤⎥⎥⎥⎥⎥⎦
−1 ∑

d

[
∂Λd

∂γd
γd +

∂Λd

∂εd
εd +

∂Λd

∂ωd
ωd

]
s. (A.6)

Straightforward generalization to second order reads:

Δs =

⎡⎢⎢⎢⎢⎢⎣∑
d

ÃT
d Ãd

⎤⎥⎥⎥⎥⎥⎦
−1 ∑

d

⎡⎢⎢⎢⎢⎢⎢⎣ ∑
e∈{γ,ε,ω}

∂Λd

∂ed
ed +

1
2

∑
(e,e′)∈{γ,ε,ω}

∂2Λd

∂ed∂e′d
ede′d

⎤⎥⎥⎥⎥⎥⎥⎦ s. (A.7)

Derivatives of Λd(γd, εd, ωd) with respect to uncertainties of gain γ, polarization efficiency ε and detector orientationω are given by

∂Λd

∂γd

∣∣∣∣∣
(0,0,0)

=
∑
t(d)

⎛⎜⎜⎜⎜⎜⎜⎜⎝
1 00
cos 2ψ̃d(t)00
sin 2ψ̃d(t) 00

⎞⎟⎟⎟⎟⎟⎟⎟⎠ (A.8)

∂Λd

∂εd

∣∣∣∣∣
(0,0,0)

=
∑
t(d)

⎛⎜⎜⎜⎜⎜⎜⎜⎝
0cos 2ψ̃d(t) sin 2ψ̃d(t)
0ρ̃d cos2 2ψ̃d(t) ρ̃d cos 2ψ̃d(t) sin 2ψ̃d(t)
0ρ̃d cos 2ψ̃d(t) sin 2ψ̃d(t)ρ̃d sin2 2ψ̃d(t)

⎞⎟⎟⎟⎟⎟⎟⎟⎠ (A.9)

∂Λd

∂ωd

∣∣∣∣∣
(0,0,0)

=
∑
t(d)

⎛⎜⎜⎜⎜⎜⎜⎜⎝
0−2ρ̃d sin 2ψ̃d(t) 2ρ̃d cos 2ψ̃d(t)
0−2ρ̃d

2 cos 2ψ̃d(t) sin 2ψ̃d(t)2ρ̃d
2 cos2 2ψ̃d(t)

0−2ρ̃d
2 sin2 2ψ̃d(t) 2ρ̃d

2 cos 2ψ̃d(t) sin 2ψ̃d(t)

⎞⎟⎟⎟⎟⎟⎟⎟⎠ . (A.10)

And second order derivatives reads

∂2Λd

∂γ2
d

∣∣∣∣∣∣
(0,0,0)

= 0 (A.11)

∂2Λd

∂ε2
d

∣∣∣∣∣∣
(0,0,0)

= 0 (A.12)

∂2Λd

∂ω2
d

∣∣∣∣∣∣
(0,0,0)

=
∑
t(d)

⎛⎜⎜⎜⎜⎜⎜⎜⎝
0−4ρ̃d cos 2ψ̃d(t) −4ρ̃d sin 2ψ̃d(t)
0−4ρ̃d

2 cos2 2ψ̃d(t) −4ρ̃d
2 cos 2ψ̃d(t) sin 2ψ̃d(t)

0−4ρ̃d
2 cos 2ψ̃d(t) sin 2ψ̃d(t)−4ρ̃d

2 sin2 2ψ̃d(t)

⎞⎟⎟⎟⎟⎟⎟⎟⎠ (A.13)

∂2Λd

∂εd∂ωd

∣∣∣∣∣∣
(0,0,0)

=
∑
t(d)

⎛⎜⎜⎜⎜⎜⎜⎜⎝
0−2 sin 2ψ̃d(t) 2 cos 2ψ̃d(t)
0−4ρ̃d cos 2ψ̃d(t) sin 2ψ̃d(t)4ρ̃d cos2 2ψ̃d(t)
0−4ρ̃d sin2 2ψ̃d(t) 4ρ̃d cos 2ψ̃d(t) sin 2ψ̃d(t)

⎞⎟⎟⎟⎟⎟⎟⎟⎠ (A.14)

∂2Λd

∂γd∂εd

∣∣∣∣∣∣
(0,0,0)

=
∂2Λd

∂γd∂ωd

∣∣∣∣∣∣
(0,0,0)

= 0. (A.15)
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Appendix B: Polarization efficiencies and angles

Table B.1. Polarization efficiencies and orientations for Planck-HFI PSBs.

Bolometer (PSB) Polarization efficiency [%] Polarization angle

100-1a 94.7 ± 0.2 *21.◦1 ± 0.◦9 [rel] ± 0.◦3 [abs]
100-1b 94.3 ± 0.3 109.◦9 ± 0.◦9 [rel] ± 0.◦3 [abs]
100-2a 96.2 ± 0.2 *44.◦3 ± 0.◦9 [rel] ± 0.◦3 [abs]
100-2b 90.2 ± 0.2 133.◦5 ± 0.◦9 [rel] ± 0.◦3 [abs]
100-3a 90.1 ± 0.3 **0.◦7 ± 0.◦9 [rel] ± 0.◦3 [abs]
100-3b 93.4 ± 0.2 *90.◦6 ± 0.◦9 [rel] ± 0.◦3 [abs]
100-4a 95.7 ± 0.3 158.◦5 ± 0.◦9 [rel] ± 0.◦3 [abs]
100-4b 92.3 ± 0.2 *70.◦0 ± 0.◦9 [rel] ± 0.◦3 [abs]
143-1a 83.3 ± 0.2 *42.◦9 ± 0.◦9 [rel] ± 0.◦3 [abs]
143-1b 84.6 ± 0.2 135.◦2 ± 0.◦9 [rel] ± 0.◦3 [abs]
143-2a 87.5 ± 0.3 *44.◦2 ± 0.◦9 [rel] ± 0.◦3 [abs]
143-2b 89.3 ± 0.3 134.◦0 ± 0.◦9 [rel] ± 0.◦3 [abs]
143-3a 83.9 ± 0.2 **0.◦4 ± 0.◦9 [rel] ± 0.◦3 [abs]
143-3b 89.9 ± 0.2 *93.◦7 ± 0.◦9 [rel] ± 0.◦3 [abs]
143-4a 93.1 ± 0.2 **3.◦1 ± 0.◦9 [rel] ± 0.◦3 [abs]
143-4b 92.8 ± 0.2 *91.◦5 ± 0.◦9 [rel] ± 0.◦3 [abs]
217-5a 95.0 ± 0.1 *44.◦7 ± 0.◦9 [rel] ± 0.◦3 [abs]
217-5b 95.2 ± 0.2 133.◦9 ± 0.◦9 [rel] ± 0.◦3 [abs]
217-6a 94.9 ± 0.2 *45.◦0 ± 0.◦9 [rel] ± 0.◦3 [abs]
217-6b 95.4 ± 0.2 134.◦8 ± 0.◦9 [rel] ± 0.◦3 [abs]
217-7a 94.0 ± 0.2 **0.◦3 ± 0.◦9 [rel] ± 0.◦3 [abs]
217-7b 93.7 ± 0.1 *91.◦2 ± 0.◦9 [rel] ± 0.◦3 [abs]
217-8a 94.2 ± 0.1 **2.◦2 ± 0.◦9 [rel] ± 0.◦3 [abs]
217-8b 94.1 ± 0.1 *92.◦5 ± 0.◦9 [rel] ± 0.◦3 [abs]
353-3a 88.7 ± 0.1 *44.◦1 ± 0.◦9 [rel] ± 0.◦3 [abs]
353-3b 92.0 ± 0.1 132.◦4 ± 0.◦9 [rel] ± 0.◦3 [abs]
353-4a 87.0 ± 0.1 *45.◦3 ± 0.◦9 [rel] ± 0.◦3 [abs]
353-4b 91.4 ± 0.1 135.◦2 ± 0.◦9 [rel] ± 0.◦3 [abs]
353-5a 84.4 ± 0.1 178.◦4 ± 0.◦9 [rel] ± 0.◦3 [abs]
353-5b 87.4 ± 0.1 *90.◦3 ± 0.◦9 [rel] ± 0.◦3 [abs]
353-6a 87.3 ± 0.1 **1.◦3 ± 0.◦9 [rel] ± 0.◦3 [abs]
353-6b 88.5 ± 0.1 *91.◦2 ± 0.◦9 [rel] ± 0.◦3 [abs]

Notes. Ideal PSBs should have a 100% polarization efficiency. The error on polarization efficiency is only statistical. Error on polarization orienta-
tion is due to systematics: the absolute error is due to the error on the measurement of the reference position; the relative error is due to an optical
systematic effect in the Saturne cryostat. The statistical errors are negligible and therefore not shown in this table.

Table B.2. Polarization efficiencies and orientations for Planck-HFI SWBs.

Bolometer (SWB) Polarization efficiency [%] Polarization angle

143-5 6.6 ± 0.3 *65.◦7 ± 0.◦1 [stat] ± *0.◦6 [syst]
143-6 4.4 ± 0.3 *70.◦6 ± 0.◦2 [stat] ± *4.◦7 [syst]
143-7 1.7 ± 0.4 102.◦8 ± 0.◦2 [stat] ± *1.◦7 [syst]
143-8 1.6 ± 0.5 *75.◦7 ± 0.◦3 [stat] ± *4.◦4 [syst]
217-1 4.0 ± 0.2 *98.◦4 ± 2.◦3 [stat] ± *5.◦5 [syst]
217-2 2.1 ± 0.1 *82.◦5 ± 1.◦5 [stat] ± *4.◦9 [syst]
217-3 4.1 ± 0.2 170.◦9 ± 0.◦9 [stat] ± *2.◦1 [syst]
217-4 3.8 ± 0.6 120.◦0 ± 1.◦2 [stat] ± *2.◦7 [syst]
353-1 3.4 ± 0.2 103.◦1 ± 1.◦2 [stat] ± *3.◦6 [syst]
353-2 4.8 ± 0.1 114.◦6 ± 0.◦5 [stat] ± *2.◦7 [syst]
353-7 8.1 ± 0.1 121.◦5 ± 0.◦8 [stat] ± *4.◦2 [syst]
353-8 7.9 ± 0.1 133.◦0 ± 0.◦3 [stat] ± *1.◦9 [syst]
545-1 4.7 ± 0.1 129.◦1 ± 1.◦0 [stat] ± *2.◦4 [syst]
545-2 5.7 ± 0.1 139.◦1 ± 0.◦7 [stat] ± *1.◦3 [syst]
545-3 5.3 ± 0.1 150.◦3 ± 0.◦8 [stat] ± *2.◦4 [syst]
545-4 5.9 ± 0.1 145.◦6 ± 0.◦8 [stat] ± *1.◦7 [syst]
857-1 7.8 ± 1.8 157.◦3 ± 2.◦1 [stat] ± *5.◦1 [syst]
857-2 6.3 ± 0.1 108.◦4 ± 4.◦0 [stat] ± 16.◦5 [syst]
857-3 8.6 ± 0.8 176.◦8 ± 1.◦4 [stat] ± *2.◦6 [syst]
857-4 6.3 ± 0.8 161.◦9 ± 2.◦3 [stat] ± *6.◦2 [syst]

Notes. Ideal SWBs should have a null polarization efficiency. Global uncertainty (0.◦3) is common for all detector and not added.
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