RESTRICTION MAPS IN EQUIVARIANT KK-THEORY.

OTGONBAYAR UUYE

ABSTRACT. We extend McClure’s results on the restriction maps in
equivariant K-theory to bivariant K-theory:

Let G be a compact Lie group and A and B be G-C*-algebras. Sup-
pose that KK,IL{(A,B) is a finitely generated R(G)-module for every
H < G closed and n € Z. Then, if KK (A,B) =0 for all F < G finite
cyclic, then KK (A, B) = 0.

0. INTRODUCTION

One of the basic facts about the representation theory of a compact Lie
group is that any virtual representation which restricts trivially to every
finite cyclic subgroup is itself trivial.

McClure studied how far this generalizes to equivariant K-theory and
proved the following. Recall that a finite group is called elementary if it is
a direct product of a cyclic group and a p-group.

Theorem 0.1 (McClure [McC86]). Let G be a compact Lie group and let
X be a finite G-CW-complez.
(a) If K3(X) =0 for all F < G finite cyclic, then K&(X) = 0.
(b) If v € Kg(X) restricts to zero in K (X) for every finite elementary
subgroup H of G, then x = 0.

Remark 0.2. (i) Theorem [0.1{a) was proved by Jackowski for G finite
(cf. [JacT7, Corollary 4.3]) and McClure proved the general case by
reducing to the finite case using Theorem [0.1|(b).

(ii) Theorem [0.1(b) cannot be strengthened by replacing “finite elemen-
tary” by “finite cyclic” (cf. [JacT7, page 89] and [McC86, page 404]).

We extend these to bivariant K-theory as follows. Let R(G) = Kq(x*)
denote the representation ring of G.

Theorem 0.3. Let G be a compact Lie group and A and B be G-C*-
algebms Suppose that KK (A, B) is a finitely generated R(G)-module
for every H < G closed and n € Z.

(a) If KKE(A, B) = 0 for all F < G finite cyclic, then KKS(A, B) = 0.
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(b) Suppose, in addition, that KKE (A, B) is a finitely generated group
for all F < G finite and n € Z. Then, if v € KK (A, B) restricts
to zero in KKH (A, B) for all H < G finite elementary, then = 0.

Remark 0.4. If A and B are both KK “-equivalent to the algebra of contin-
uous functions on a G-CW-complex, then the finite generation assumptions
in Theorem [0.3] are automatic. Hence Theorem [0.3] extends Theorem [0.1]

In fact, we prove the following. This is done mainly for clarity, but as
an added bonus, we see that Theorem holds for equivariant E-theory as
well.

Theorem 0.5. Let G' be a compact Lie group and let E‘E be an RO(G)-

gradable module theory over K. Suppose that EIZ(SO) is a finitely generated
R(G)-module for every H < G closed and n € Z. Let X be a finite based
G-CW-complex.

(a) If E:(X) =0 for all F < G finite cyclic, then Ef(X) = 0.

(b) Suppose, in addition, that E}}(SO) is a finitely generated group for
all F < G finite and n € Z. Then, if x € EE(X) restricts to zero in
E;{(X) for all H < G finite elementary, then x = 0.

The proof follows [McC86] rather closely. In Section |1, we show that
Theorem [0.5] implies Theorem [0.3] In Section [2], we extend the generalized
Atiyah-Segal completion theorem of [AHJMS88al] to modules over K-theory.
Using the completion theorem, we prove Theorem [0.5]in Section 3] However,
unlike [McC86], we prove part (a) of Theorem directly in order to avoid
the additional finite generation assumptions of part (b). In the final section,
we apply Theorem to prove a variation of [MNO6, Theorem 9.3].

Remark 0.6. (i) Chris Phillips extended the Atiyah-Segal completion
theorem to C*-algebras in [Phi89]. See also the comments at the end
of Section 2 of loc.cit.

(ii) Michel Matthey and Guido Mislin obtained results dual to McClure’s
theorem, for restriction maps in K-homology of spaces with proper
actions of discrete groups (cf. [MMO04]).

(iii) Heath Emerson studied C*-algebras with a circle action and showed
that there are many C*-algebras that are not equivariantly KK-equivalent
to a commutative C*-algebra, even though they and their crossed
products are KK-equivalent to commutative C*-algebras (cf. [Emel0]).
Hence Theorem covers many more examples than just the commu-
tative ones.
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1. RO(G)-GRADED COHOMOLOGY THEORIES

Let G be a compact Lie group. A based G-space is a G-space with a G-
fixed base point. In the rest of the paper, we assume that all G-spaces are
G-CW-complexes and all cohomology theories are equivariant and reduced
cohomology theories.

For a finite-dimensional representation V of G, we write SV for the one-
point compactification of V', considered a based G-space with base point the
point at infinity.

1.1. RO(G;U)-gradable theories. We fix a complete universe U. (cf.
[May96| Definition IX.2.1]).

Definition 1.1. An RO(G)-graded cohomology theory is an RO(G;U)-
graded cohomology theory in the sense of [May96| Definition XIII.1.1]. A
Z-graded cohomology theory is an RO(G;U%)-graded cohomology theory
(any trivial universe would work). We say that a Z-graded cohomology
theory is RO(G)-gradable if it is the Z-graded part of an RO(G)-graded
theory.

Let Eg be a Z-graded cohomology theory. For a closed subgroup H < G
and a based H-CW-complex X, we define
(1.1) E4(X) = E5(Gy A X).

Then E}‘{ is a Z-graded cohomology theory on based H-spaces. If X is ac-
tually a based G-CW-complex, then we have a natural G-equivariant iden-
tification

(1.2) GiNg X=2G/Hy NX
and the collapse map G/H — * gives rise to a natural transformation
(1.3) res$; : B, — EY

called the restriction map.

1.2. Bivariant K-theory. The following is the main example we have in
mind. First note that K¢ is an RO(G)-graded commutative ring theory
with K% (X) = KK%(Co(S"), Co(X)) and R(G) = Kg(S°).

Proposition 1.2. Let G be a compact Lie group and let A and B be G-C*-
algebras. For o finite based G-CW-complex X and finite-dimensional real
representation V of G, we define
(1.4) EL(X) = KKS(A® Cy(SY), B® Cy(X)).
Then the following holds.
(i) E}‘; defines an RO(G)-graded cohomology theory on the category of
finite based G-CW-complezes.

i) EY, extends to an RO(G -graded cohomology theory on the category of
G
based G-CW-complezes.
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(i) Eé is a module theory over IN(Z;

Proof. (i) See [Kas8§].

(ii) By Adams’ representation theorem [May96, Theorem XIII.3.4], EE is
represented by an Q-G-prespectrum, hence extends to an RO(G)-graded
cohomology theory on the category of G-CW-complexes. See [Sch92].

(iii) The module structure

(1.5) EL(X)x KY(Y) = EZTW(X AY).

is given by the Kasparov product

(1.6) KK“(A(SY), B(X)) x KK%(Co(S"), Co(Y))
(1.7) — KK9(A(SVTW), B(X A Y)).

It is well-known that for H < G,
(1.8) KK%(A,B® Cy(G/Hy)) = KK (A, B)

and the restriction map is induced by G/H, — S°. Hence we obtain the
following corollary.

Corollary 1.3. Suppose that Theorem [0.5 holds. Then Theorem [0.3 holds.
O

2. ATIYAH-SEGAL COMPLETION
First we abstract the main finiteness condition from Theorem [0.5

Definition 2.1. Let R be a unital commutative ring and let Eé be a Z-
graded cohomology theory with values in R-modules. We say that Ef, is

finite over R if E%(X) is a finitely generated R-module for every finite based
G-CW-complex X and n € Z.

Clearly, this is equivalent to asking that E}fl_"(SO) = EE(G/HJ'_ A S™) is
a finitely generated R-module for H < G.

Lemma 2.2. Let G be a compact Lie group and let R be a unital commuta-

tive ring. Let Eé be a Z-graded cohomology theory with values in R-modules.

Suppose that R is Noetherian and Ef, is finite over R. Then for any family
T of ideals in R, the following defines a Z-graded cohomology theory with
values in pro-R-modules:

(2.1) E&(X)p ={E5(Y) /T - E5(Y)}.
where Y C X runs over the finite based G-CW-subcomplexes of X and J

runs over the finite products of ideals in I.

Note that in this lemma, it is enough to have EE‘; to be a cohomology
theory on finite based G-CW-complexes (only finite wedges are considered
in the additivity axiom).
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Proof. Exactness follows from the Artin-Rees lemma. See the proof of
[AHJMS88b, Lemma 2.1]. O

2.1. Bott Periodicity. Let V be a complex G-representation. By Bott pe-
riodicity [Ati68] Theorem 4.3], IN(?;(SV) is a free IN(g(SO)—module generated
by the Bott element Ay € IN(%(SV). The Euler class of V' is defined to be
xv =e*(\y) € f(g(SO), where e : SY — SV is the obvious map.

Lemma 2.3. Let EE be an RO(G)-graded module theory over I?é Then
for any complex representation V', multiplication by the Bott element Ay €
K2(SV) gives an isomorphism

(2.2) E%(5%) = E%(SY).

If V. C W are complex representations and i : SV — SW is the inclusion,
then the following diagram commutes

(2.3) EX(S%) —— E%(SY) .

wav l

E2%(8%) —— EX(SV)

Proof. Let )\‘_/1 €K ‘G/ (8%) denote the inverse Bott element: it has the prop-
erty that

(2.4) AV A = A A =1 e KE(SY) =2 K2(S9).

Then multiplication by )\‘71 gives the inverse map

(2.5) E%(SY) = E5(SY) = E%(SY).

The second statement is shown for E‘E"; = IN(E“; in [AHJMS88a), page 4]. The

general case follows by functoriality. O

2.2. Completion. A class of subgroups of G closed under subconjugacy is
called a family. A family C of subgroups of G determines a class, again
denoted C, of ideals of R(G) by the kernels of the restriction maps:

(2.6) ker(res$ : R(G) — R(H)), HeC,

hence a topology on any R(G)-module.
The following is a straightforward generalization of [AHJMS88a, Theorem
3.1].

Theorem 2.4. Let G be a compact Lie group and let Eé be an RO(G)-
gradable module theory over Kf, which is finite over R(G).
Let C be a family of subgroups of G. For any based G-CW-complex X, if

E3(X)py =0 for all H €C, then E5(X)} = 0.
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Proof. By [Seg68, Corollary 3.3], R(G) = f(g(SO) is Noetherian. Hence, by
Lemma, E&(X )é is a cohomology theory.

Now the proof of [AHJMS88al, Theorem 3.1] carries over ad verbatum, once
we extend Bott periodicity to E& as in Lemma 2.3 (]

Corollary 2.5. Let EC denote the classifying space of C. For any finite
based G-CW-complex X, the projection map EC. — S° gives completion

(2.7) EL(EC, A X) 2 lim E5(Y A X) 2 lim E5(X)4,
where Y runs over finite based subcomplexes of EC,. .

Proof. The inverse system E&(X )é satisfies the Mittag-Leffler condition and

E’E(Y A X) is C-complete for any finite based subcomplex Y C ECy (cf.
[AHJMS88al, Corollary 2.1]). O

3. PROOF OF THEOREM

3.1. F-spaces. Let F be a family of subgroups of G. We say that a based
G-CW-complex X is an F-space if all the isotropy groups, except at the base
point, are in F. The following lemma says that in the proof of Theorem |0.5
we may assume that X is an F-space, for any F containing all finite cyclic
subgroups of G.

Lemma 3.1. Let G be a compact Lie group and let Eg be an RO(G)-

gradable module theory over [N(E, which is finite over R(G).

Let F be a family containing all finite cyclic subgroups of G. Then for any
finite based G-CW-complex X, the top horizontal map in the commutative
diagram

(3.1) E4y(X) —————limycpr, E5(Y AX)

J J

HFe]—'E}kT(X) 4>limyCE]:+ HFe]-‘E}(:“(Y/\X)

is injective. Here Y runs over the finite based subcomplexes of EF,, the
horizontal maps are induced by the projections Y AN X — X and the vertical
maps are restrictions.

Proof. The F-topology on E‘E(X ) is Hausdorff by [McC86, Corollary 3.3].
Hence, the claim follows from Corollary O

Let C denote the family of finite cyclic subgroups of G.

Proof of Theorem [0.5(a). By assumption, E};(X) =0forall FeC. Let Y
be a finite based G-CW-complex, which is a C-space. Then the zero skeleton
Y? and the skeletal quotients Y /Y™ ! are finite wedges of G-spaces of the
form G/Fy A S™ with F € C. Tt follows that EE(Y A X) = 0. Hence by

Lemma EE(X) = 0. O
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3.2. Induction. We write Og for the category whose objects are orbit
spaces G/H, where H < G is a closed subgroup, and whose morphisms
are homotopy classes of G-maps.

Recall that a compact Lie group is said to cyclic if it has a topological
generator (an element whose powers are dense) and hyperelementary if it is
an extension of a cyclic group by a finite p-group.

We write H for the class of hyperelementary subgroups of G and let Oy
denote the full subcategory of Og of orbits G/H with H subconjugate to a
subgroup in H.

Lemma 3.2. Let G be a compact Lie group and let Eé be an RO(G)-

gradable module theory over K. Then, for any based G-CW-complex, the
restriction maps induce an isomorphism

(3.2) E5(X) 2 lim B (X).
On
Proof. Follows from Propositions 2.1 and 2.2 of [McC86]. O

For any abelian group M, let M} denote its adic completion lim, M /nM.

Proof of Theorem ( b). Let F denote the family of finite subgroups of G.
By Lemma [3.2] we may assume that G is a hyperelementary group and
by Lemma, we may assume that X an F-space.
Let G be a hyperelementary group and X an F-space. Then the restric-
tion map
3.3 EL(X)) — lim Ex(X)).
(3.3) a(X)z Fg(glf F(X)z
is an isomorphism by [McC86, Theorem 1.1]. By [McC86, Corollary 3.3],
the adic topologies on E7(X) and Ej(X) are Hausdorff. This reduces the
problem to the case G is finite. Now an application of [McC86, Proposition

2.1] to the class of elementary subgroups finishes the proof. See the proof of
[McC86, Corollary B. O

4. AN APPLICATION

The following is a variation of [MNO6, Theorem 9.3].

Theorem 4.1. Let G be a Lie group (not necessarily compact) and let A and
B be G-C*-algebras. Suppose that the following finiteness condition holds:
for any closed subgroups H C K C G with K compact, K'(A) and K (B)
are finitely generated R(K)-modules.

Let x € KKG(A, B) be an element with the property that for any finite
cyclic subgroup F C G,

(4.1) res@(x),: KF'(A) = KF(B).

Then x induces an isomorphism Ki°°(G; A) = Ki°P(G; B) of the topological
K-groups (in the sense of [BCH94] ).
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Proof. By [CEOO04], it is enough to prove that for any compact subgroup
K C G, the restriction res% (z) induces an isomorphism KX (A) = KX(B).

For this we use the triangulated category structure of equivariant KK-
theory developed by Meyer-Nest (cf. [MNOG]). Let C' denote a mapping cone
of x so that we have a distinguished triangle

(4.2) YB C A—"-B.

in KK©. For any closed subgroup H C G, since restriction resg is a trian-

gulated functor and equivariant K-theory K is homological, we see that
induces an isomorphism on KX if and only if K (C) = 0.

Let K C G be a compact subgroup. Since G is a Lie group, so is K. More-
over, the assumptions on A and B imply that K/ (C) is a finitely generated
R(K)-module for any closed subgroup H C K and n € Z. Applying Theo-
rem [0.3((a) to K acting on (C,C), we see that KX(C) = 0. This completes
the proof. O

Remark 4.2. (i) For G discrete, compare [MMO04, Theorem 1.1].
(ii) It would be interesting to understand how much of the finiteness as-
sumptions in Theorem [0.3] and Theorem [4.1] are really necessary.
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