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PREFACE

The evolution of a Hamiltonian system is reversible. The evolution of
a real system is not: it always returns to a state of thermal equilibrium at a
temperature determined by its surroundings. The explasnation of this phenomenon
is the fundamental problem of statistical mechanics. Beginning around 1900
with the work of Boltzmann anq Gibbs, herculean efforts have been made to solve
this in the context of the classical mechanics of systems with a finite number
of degrees of freedom. The main problem remains open, but some beautiful
theorems have been discovered: a new branch of mathematics, Ergodic Theory,
has arisen,” More .recently, there has been intense activity in the context of
the quantum mechanics of systems with an infinite number of degrees of freedom.
Again the harvest, so far, has largely been mathematical. One line of develop-
ment can be traced to the seminal paper of Ford, Kac and Mazur (1965); in
particular, this paper was studied in 1970-71 by an Oxford seminar run by one of
us (JTL) in collaborstion with E. B. Davies. Both of us owe Brian Davies a
debt of gratitude for what we have learned from him. These notes arose from a
Oublin seminar which in 1975-78 studied one of his papers (Davies 1972a}, ang
we thank G. Parravicini, J. H. Rawnsley and W. G, Sullivan for many stimulating
discussions during this period., We have attempted to present a self-contained
account of the mathematical results which are necessary for work in this field.
We do not claim to give a complete catalogue of results; for reviews of the
literature see Gorini et al. [lS?Eb] and Davies (1977e). The first draft was
written in Dublin in 1975-76. The second draft was completed in 1976-77 by one
of us (DEE) while in Oslo: he is grateful to Erling Stdrmer and his colleagues
for their warm hospitality and the stimulating atmosphere of their group.

It is a pleasure to thank Mrs. Eithne Maguire whose patience and skill
in typing have produced the camers-ready copy; and Miss Evelyn Wills, the

technical editor of this series, whose professional expertise we have relied on

*

For a descripticn of the present situsation in an historical context, see

Lebowitz and Penraose (1973],.



in preparing the manuscript. Needless to say,

remain are attributable solely to the authors.

those imperfections which

D. E. Evans
J. T. Lewis

Dublin 8. 11. 77.
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INTRODUCTION

The purpose of these notes is to consider the problem of whether
irreversible evolutions of a quantum system can be obtained as restrictions of
reversible dynamics in some larger System. In the classical theory of Markov
processes, the Fokker-Planck semigroup {Tt : t 2 0} can be factored as
Tt = N o Ut ° j, t 2 0, where j is an embedding, Ut is a group of automorphisms,
and N is a conditional expectation. Is such a factorization of an irreversible
evolution possible in algebraic quantum theory? In particular, we consider the
mathematical formulation of this question in Hilbert space and C*-algebrea
settings.

Positivity is a central theme in any probability theory; the theory of
non-commutative stochastic processes is no exception. In the first section we
give a brief account of the theory of reproducing kernel Hilbert 5paces. This
allows us to give a short, unified treatment of verious well-known dilatian
theorems, such as the Naimark ~5z.-Nagy unitary dilation of positive-definite
functions on groups, the GNS-Stinespring construction for C*-algebras, and
related Schwarz-type inequalities, the construction of Fock space, and the
algebras of the canonical commutation and anticommutation relations.

In our first attempt to construct reversihble dynamics from irreversible
systems we consider, in Chapter 3, the category whose objects are Hilbert spaces
and whose morphisms are contractions, Here we show how one can dilate certain
families of morphisms to automorphisms (unitary operators]). As shown by Lewis
and Thomas (1874, 1975), this is the mechanism behind the construction of the
FKM-model (Ford, Kac & Mazur, 1965). This Hilbert space theory is then 1lifted
to a C*-algebra setting using the algebras of the canonical commutation and
anticommutation relations. We are thus led naturally to the C*-algebraic
setting of guantum theory, where the bounded observables of the system are rep-
resented by the self-adjoint elements of the algebra, and the states by positive
linear functiorals.,

From this point on, we concern ourselves with the category whose objects

are C*-algebras, and whose morphisms are completely positive contractions.



Complete positivity is a property whose study may be motivated both by mathemat-
ical ‘and by physical arguments. It is a much stronger property thaen positivity.

However, for commutative C*-algebras the concepts of complete positivity and

positivity coincide; for this reason the distinction does not arise in classical

probability theory. It follows from the Schwarz inequality for completely
positive maps that a morphism which has an inverse which is also a morphism is
in fact an algebraic *-isomorphism (and hence merits the name 'isomorphism’).
This is not so if one has mere positivity. Completely positive maps have an
interesting physical interpretation (Kraus, 1971, Lindblad 187Ba]. They arise
physically with the study of operations on systems in interaction. We adopt
the view that reversible behaviour is described by a one-parameter group of
*_automorphisms on a C*-algebra, and irreversible Markovian behaviour is des-
cribed by a semigroup of completely positive maps (Lindblad, 1976a).

In Chapter 5 we are concerned with the mathematical formulation of the
embedding of a quantum mechanical system in a larger one, and the dual operation
of restriction to 2 subsystem. We thus require a ncon-commutative analogue of
the conditional expectation of classical probability theory; this will be an
injection of the states of the system into those of a larger system (the
Schrgdinger picture), or the dual operation of averaging or projection of the
observables of a large system onto those of a subsystem (the Heisenberg picturel.
Thus we seek a projection N from a unital C*-algebra A onto a unital C*-algebra
B. Since in the dual picture normalized states of B must go into normalized
states of A, we require that N be positive and that it take 1A to 18 i It is
shown that such a map is automatically completely positive. This observation
provides us with a second argument for taking irreversible evolutions to be
described by completely positive maps: the restriction to a subsystem of a
reversible evolution is necessarily completely positive.

An abstract dilation theorem for completely positive maps is obtained
for C*-algebras in Chapter 13. For the remainder of this work, we concentrate
on W*-algebras and norm continuous semigroups of completely positive normal

maps . A study of generators of such semigroups in Chapters 14 and 15 leads to



=

a unitary dilation in Chapter 17, via the isometric representation of Chapter 16.
We have not given any account of approximate dilations involving a
limiting process such as the weak coupling and the singular coupling limits.

We recommend the excellent reviews by Gorini et al.(1976b) and Davies (1977e).



0.  PRELIMINARIES

We give here a brief summary of the prerequisites for the main text, and
establish some notation. We assume that the reader is familiar with the
fundamental elements of funclional analysis on Banach spaces, in particular with
the theory of Hilbert spaces and algebras of operators on Hilbert spaces, such
as can be found in Dunford & Schwartz (1963), Reed & Simon (1972, 1975), Yosida
(1965), Dixmier. (1969a,bl, and Sakai (1971), We work throughout with vector
spaces over the complex field, although much of the work with the CAR and CCR

algebras is valid on real spaces.

0.1 DBANACH SPACES AND ONE-PARAMETER SEMIGROUPS

If X and Y are Banach spaces, B(X,Y) denotes the Banach space of all
bounded linear operators from X into VY. We write X* for B(X,C) and B(X) for
B{X,X). A contraction T from X into Y is an elemsnt of BIX,Y) such that
[T =s 15 i || 7] = || x|| for a11 x in X, then T is called an Zsometry.

If X is a Banach space, a one-parameter semigroup {Tt tt 2 0} is a map
T: R > B(X) such that T_ = 1. and TS'Tt =T, forells, tinR'; the
semigroup is said to be strongly continuous if the maps t =~ Tt[x] are narm
continuous for each x in X; or equivalently if t = < Tt(x),F > is continuous at
zero for all x in X, and all ¥ in X* (Dunford & Schwartz 1953, p.616, Yosida

1965, p. 233). In this case, there exists a closad densely defined linear

operator L such that Lx = 1lim (T x - x)/t on the domain D(L), and D(L) is pre-
t +0

cisely the set of x in X for which this limit exists in the norm topology
(Dunford & Schwartz 1963, p. BZ20, Yosida 1965, pp. 239, 241). The cperatcr L
is called the generator of the semigroup. The domain of L is globally invar-
iant under the semigroup; moreover, %tTtx = L Ttx = Tth far all x in O(L)
(Dunford & Schwartz 1563, p. 619, Yosida 1965, p. 239]. Thus we write the

formal symbol etL for Tt' There exist positive numbers M and w such that

1|etL]| <M BWt for all t = 0; for all complex A with Re A > w we then have thet

A lies 1in p(L), the resolvent set of L, and (X - L]_1 = fm etL e"At dt (Bunford

0
& Schwartz 1863, pp. 619, 622, Yosida 1965, pp. 232, 240). Conversely,



gt & lim (1 - tL/n) " gives the semigroup in terms of the resolvent of the
n + o
generator (Hille & Phillips 1957, p. 352). Moreover, etL is & contraction

semigroup if and only if the following equivalent conditions hold:
For all x in D(L), there exists f in X* with I|F[]: ity

Flx) = || x||, and Re < , Lx > < D. (0.1)

For all A 2 0 and x in D(L), we have

Ml o= - Lk

5 (0.2)
(Dunford & Schwartz 1963, p. 626, Yosida 1965, p. 248, Lumer & Phillips 1957.)
The semigroup etL is norm continuous if and only if L is in B(X) (Dunford &
Schwartz 1963, p. 621); in this case etL can be given by the usual power series

t o n ;
expansion e = X (tL) /nt If L is bounded, etL is a contraction semigroup
n=0 '

if and only if inf {(][1 + tL|| - 1)/t : t 2 0} = 14m (] 1+ L] - 13/t < 0
t+o0
(Lumer & Phillips 1957).

If L generates a strongly continuous one-parameter semigraoup etL, and

Z is a bounded operator on X, then L + Z generates a strongly continuous one-

. tlL+Z) . o s
paramater semigroup e which satisfies

F D () < othiny o ft GlESIL , slLlen)

o}

(x) ds

for t 2 0 and x in X (Dunford & Schwartz 1963, p. 631, Kato 1968, p. 495), The

perturbed semigroup is also given by the Lie-Trotter procuct formula

Et{L+Z]x 1im |:EtL/n etZ/n n

1'(x), t =0,

n - o

for all x in X (Trotter 1953, ChernofF 1974),

0.2 BANACH "-ALGEBRAS AND C*-ALGEBRAS
A Banach algebra A is a complete normed algebra with || xy|| < [ x|| Iyl

for all x, y in A, If A possesses an identity, written 1. or 1, we require

A
| 1]] = 15 in this case A is said to be unital.  An approximate identity for a .
Banach algebra A is a net {UA : A e A} in A such that ‘IUAIIS 1 for all A, and
such that for each x in A we have qu + x and qu -+ x in the norm topology -as

A+, A *-glgebra A (also called an algebra with <nvolution) is an algebra

equipped with a conjugate-linear idempotent antiautomorphism x — x*. An



element x in a *-algebra A 1s said to be self-adjoint (or hermitian) if x = X¥;

the set of self-adjoint elements of A is denoted by A Each element x in A

h'

has a unique decomposition x = %, * ix2 with X, and X5 in Ah.

between *-algebras A and B is said to be self-adjoint if T(Ah] = B

A linear map T
R or equiva-
lently if T(x*) = T{x)* for all x in A. An element x in a unital *-algebra is
said to be Zsometrie if x*x = 1, and unitary if both x and x* are isometric. A
Banach *-algebra is a Banach algebra with an isometric involution x » x*; e.g.,
if G is a locally compact group, then L1(G) with the usual operations is a
Banach *-algebra with approximate identity (Loomis 1853).

A C*-algebra A is a Banach *-algebra such that [| x*x|| = || x|| 2 for al1
x in A. If A is a Banach *-algebra, then the algebra ﬁ obtained from A by
adjoining an identity is a Banach algebra containing A as a Banach subalgebra;
moreover, if A is a C*-algebra, then so is A (Sakai 1871, §1.1.7). Every
C*-algebra has an appraoximate identity (Dixmier 18B69a, §1.7.2). ~ If T is a
bounded linear map from a C*-algebra A into a Banach'space, then ][TI] =
sup {|| Tx|| + x unitary in A}, because A {is the norm-closed convex hull of its
unitaries (Russo & Dye 19B8). If m is a *-homomorphism from a C*-algebra A
into another C*-algebra B, then w7 is a contraction and w(A) is norm closed in B;
if w is faithful it is an isometry (Dixmier 1969a, §1.3.7, Sakai 1971, §§1.2.8,
1.17.4). A;norm;clused *-subalgebra of a C*-algebraAis a C*-algebra,and is said
to be a C*-subalgebra of A.  For any Hilbert space H, the algebra B(H) is a
C*-algebra, and its C*-subalgebras are known as C*-algebras on H, or concrete
C*~algebras. A *-representation of a *-algebra A on a Hilbert space H is a
*~homomorphism from A into B(H). The Gelfand-Naimark-Segal representation
theorem says that every C*—algebra has a faithful representation as a concrete
C*-algebra on a Hilbert space (Dixmier, 1969a, §2.6.1, Sakai, 1971, §1.1B6.6).
If X is & locally compact Hausdorff space, then CO(X] (the space of continuous
functions which vanish at infinity, equipped with the supremum norm) is a
commutative C*-algebra. Conversely, every commutative C*-algebra is isomorphic

to some CD[X) (Dixmier, 1969a, §1.4.1, Sakai, 1971, §81.2.1, 1.2.2).



0.3 W*-ALcEBRAS

A W*-algebra A is a C*-algebra which is s dual Banach space (that is,
there exists a Banach space F such that A = F*). In this case F is uniquely
determined up to isometric isomorphism, and is called the pre-dual of A, written
A, (Sakai, 1971, §1.13.3). The weak *-topology o(A,A,) is also known as the
ultraweak, or o-weak (operator), topology. Every W*-algebra has an identity
(Sakai, 1871, §1.7). If A is a W*-algebra and B is a o(A,A,)-closed *-sub-
algebra of A, then B is a W*-algebra with predual A*/BD; here Bo is the
annihilator of B in A, (Sakai, 1971, §1.1.4). Then B is said to be a W*-sub-
algebra of A. The prefix "W*-" applied, for example, to a homomorphism means
a weak *-continuous homomorphism. Thus a W*-homomorphism n from a W*-algebra
A into a W*-~algebra B is a weak *-continuous homomorphism, and in this case w(A)
is a W*-subalgebra of B (Sakai, 1971, §1.16.2).

When H is a Hilbert space, B(H) is a W*-algebra; the pre-dual of B(H)
can be identified with the Banach space T(H) of all trace-class operators on H,
under the pairing < p,x > = tri{px) of p in T(H) and x in B(H) (Sakai, 1971,
§1.15.3). The W*-subalgebras of B(H) are also called W*-algebras of H. Con-
sider a W*-algebra A on a Hilbert space H. If A contains the identity of B(H]),
we say that A is a von Neumann algebra on H. In general, the identity 1A of A
is merely a projection on H; but A can be viewed also as a von Neumann algebra
on 1AH. If H is a Hilbert space and X a subset of B(H), then the commitant X'
of X is defined as X' = {y ¢ B(H) : Xy = yx, ¥x € X}.. If A is a *-subalgebra
of B(H) containing the identity of B(H), then A is a von Neumann algebra if and
only if A = A" (Dixmier, 1969b, p. 42, Sakai, 1971, §1,20.3). Sakai's represen-
tation theorem says that evary W*-algebra has a faithful W*-representation as a
von Neumann algebra on a Hilbert space (Sakal, 1871, §1.16.7).

If A 1s a C*-algebra, then A** is a W*-algebra, and can be identified
with the von Neumann algebra generated by A in its universal representation
(Sakai, 1871, §1.17.2). 1f T is a bounded linear map from a C*-algebra A into

a C*-algebra B, then T can be uniquely extended to an uvltraweakly continuous map

from A** into B**; 1f B 1s in fact a W*-algebra then T can be uniguely extended



to an ultraweakly continuous map from A** inta B (Sakai, 1971, 51.21.13).

0.4  ORDER

A (partial) ordering of a set is a reflexive, transitive relation,
denoted by =. If V is a vector space (over the complex field, as usuval), a
wedge P in V is a subset satisfying P + P ¢ P and R ".P c P. An ordered vector
space is a veclor space V equipped with a wedge V+; the elements of V which are
in V' are said to be positive. The wedge v’ oof positive elements induces an
ordering =2 in V: for x and y in V, x 2> v if x -y is din U+. A linear map T

between ordered vector spaces V and W is said to be positive if T(V+] c w+ w f

*

+
A is a *-algebra, we introduce the wedge A of all finite sums 2 a*a with a in

A; we note that A~ c Ah . If A is a C*-algebra, then EY o {a*a : a ¢ A} and

+ +
A" is a cone (that is, A- n A = {0}); each element x in Ah has a unigue decom-

position x = x_ - x_ with x_ and x_ in A" and x, X_ =0 (Sakai, 1971,81.4). A
linear map T between *-algebras A and B is positive if and only if T(a'a) 2z O
for all a in A.  Any positive linear map from a Banach *-algebra with approxi-
mate identity into a C*-algebra is automatically continuous (Sinclair, 1876,
§13.11). Moreover, if A and B are unital C*-algebras, then a bounded linear map
T from A into B, satisfying T[ﬂA) = WB » is positive if and only if T is of norm
one (Russo & Dye, 1966).

If A is a C*-algebra, we use the rotation 3\ + x to mean that
{XA :r A e A} is a net of self-adjoint elements of A, filtering upwards, with
least upper bound x. Then a positive map T between C*~algebras A and B is said
to be normal if Xy + x in A implies TXA 4+ Tx in B. A positive map between
W*-algebras is normal if and only if it is weak *-continuous (Sakai, 1971,

§§1.7.4, 1.13.2).

0.5 TENSOR PRODUCTS

If A and B are Banach spaces, we denote their algebraic tensor product
by A © B. Completions are denoted as follows: A ® B denotes the projective
tensor product (Grothendieck, 1955); if A and B are Hilbert spaces, A @ B

denotes the Hilbert space tensor praduct (Reed & Simon, 19727, If (Q, py)l is a



measure space, and H is a Hilbert space, we let L2[Q;H] denote the space of
(equivalence classes of] functions f : @ + H satisfying:
< f{+),x > is measurable for all x in H, (0.5.1)
there is a separable subspace HO in H such
that flw) lies in HD for almost every w, (0.5.2)
| FC)]] is in L2(R). (0.5.3)
Then L?(Q,p) is a Hilbert space when equipped with the inner product

< f,g > = f < flw), glw) > dulw).
1)

The map f ® x » f(-)x extends uniquely to a unitary map of L2(Q) @ H onto
L?(Q;H) (van Daele, 1876).

We define the C*- and W*-tensor products for concrete algebras as
follows: Let A, B be C*-algebras on Hilbert spaces H, K; the C*-tensor product
A ® B is the C*-algebra onH® K genersted by A ® B, If A and B are W*-algebras,
the W*-tensor product A ® B is the W*-algebra on H ® K generated by A © B. For
abstract algebras we take representetions, since the definitions of C*- and W*-
algebras which we have given are representation-independent (Sakai, 1971,
§61.22.9, 1.22.11).

Let (@,u) be a localizable measure space (that is, a direct sum of finite
megasure spacesl); then L7 (2), the space of all essentially bounded locally
p-measurable functions,is a commutative W*-algebra, whose predual can be
naturally identified with L1(Q). Conversely, every commutative W*Zalgebra is
*-isomorphic to L7(Q), for some (Q2,p) (Sakai, 1971, §1.18). The map
7 L(9) » B(L2(R)) given by

Cr(f) gllw) = Fflw) glw)
is a faithful *-representation of LW(Q] as a maximal abelian von Neumann algebra
on L2(Q) (Sakai, 1871, §2.9.3). Let M be a W*-algebra with separable pre-dual.
Then Lm(Q;M], the space of all M-valued, essentially bounded, weak '—u~loc§11y
measurable functions on Q,is a W*-algebra with pre-dual LIEQ;N,), the Banach
space of all M,-valued Bochner p-integrable functions on §. Moreover, the

mapping f © ar {(+)a extends uniquely to a W*-isomorphism of the W'-algebra
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L°(Q) & M onto L°(Q;M).  Under this identification, the pre-dual L!(Q;M,) of

L7(Q:;M) is naturally identified with the predual Litq) & M, of L7(Q) ® M (Sakai,

1971, §1.22.13).
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l. POSITIVE—DEFINITE KERNELS
Throughout this chapter X denotes a set and H a Hilbert space; a map
K+ X x X+ B(H) is called a kernel and the set of such kernels is a vector-

space denoted by K({X;HJ),

1.1 DeEFINITION A kernel K in K(X;H) is said to be positive-definite if, for
each positive h and each choice of vectors h1"""hn in H and elements x_,...,x

1 n
in X, the inequality

) < Kixg» ) hyo > 2 0 (1.1)
i,
holds.

1.2 ExampLE Let H' be a Hilbert space, let V be a map from X into B(H,H'),

and put

Kix, y) = V(x) V(y); (1.2)

then
I <Klxox)h, ho> = ) Tvix)h 220,
R A B J
1, h|
so that K 1s positive~definite.
The principal result of this chapter is that a kernel K is positive-

definite if and only if it can be expressed in the form (1.2).

1.5 DEFINITION Let K be & kernel in K(X;H). Let H be a Hilbert space
and V : X =+ B(H,HV] a8 map such that K(x, y) = V(x]*V(y] for all x, y in X. Then
V 1s said to be a Kolmogorov decomposition of K; if Hv = VIV(x)Jh : x ¢ X, h e H}
then V 1s said to be miﬁimal. Two Kolmogorov decompositions V and V! are said
to be equivalent if there is a unitary mapping U : HV > HV' such that V'(x) =
UW({x) for all x in X. A minimal Kolmogorov decomposition is universal in the

following sense:

1.4 LEMMA et K be in KIX;H) and let V be a minimal Kolmogorov decomposition
of K.  Then to each Kolmogorov deconposition V' of K there corresponds a unique
isometry W : Hy, > Hy,+ such that V'(x) = W(x) for all x in X. Moreover, if v'

is minimal then W is unitary.
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Proof: Since V is minimal the set of elements of the form Z Vix,) h, is dense
3 J
in H,- The map W({ V(xj] th =y V'(xj) hj is well-defined and isometric since

< Vlylk, VIx)h > = < K(x, ylk, h > =<V'(ylk, V'(x}h> ,

and hence it extends by continuity to an isometry W : HV -+ HV' . The rest is
routine.

We have yet to show the existence of a Kolmogorov decomposition for an
arbitrary positive-definite kernel; we remedy this by constructing a decompos-
ition canonically associated with the kernel. We employ a Hilbert space of H-
valued functions spanned by those of the form x » K(x, y)h, using the positivity

of K to get an inner product. For this purpose it is convenient to reformulate

Definition 1.1. But first we need another definition:

1,5 DEFINITION Let F_ = FD[X;H] denote the vector-space of H-valued func-
tions on X having finite support; 1let F = F(X;H) denote the vector-space of all
H-valued functions on X. We identify F with a sub-space of the algebraic anti-

dual Fé of FO by defining the pairing p, £+ (p, f) of F and FD by
(p, f) = {x ¢ x <P, FOO >

(Since f has finite support only a finite number of terms in the sum are non-
zero. ) Given K in K(X;H) we define the associated convolution operator
K : FD[X:HJ + F(X;H) by

(KF)(x) = {x o x KGGoy) fly).
Then Definition 1.1 may be reformulated as:

1.6 DEFINITION The kernel K in K(X;H) is positive-definite if and only if
the associated convolution operater K : FO(X;H] + F(X;H) is positive:
(Kf, f) 2 0 for all f in FO(X;HJ.

Next we need a vector-space result:

1.7 LEMMA  Let V be a complex vector—space, and let V' be its algebraic
anti-dual, with the pairing V' x V » T written v', vw (v', v). Let A : \V =+ V!

be a linear mapping such that (Av, v) 2 0 for all v in V. Then there is a well-



defined inner-product on the

< Av1, A

Proof: The sesquilinear o
that the Schwarz inequality
la(vq, v2?|2
It follows that the set VA =
ker A, and so the natural pr
into an inner-product <- s
The vector-space isomorphism

inner-product <- , ->A into

I8

< Av,_, Av2> <

1

1]

al

1.8  THEOREM For each p
Hilbert space R(K) of H-val

(a)  R(K) = V{k(- ,

(b) < f(x), h > =

13

tmage-space AV given by

Vy > = {Av1, v2].

rm Vs v2|+ a(v1, VZJ = (Av1, VZJ 1s positive, so
holds:

< a(vq. v1] a(vz, V2].

{fvev:al v = 0} coincides with the susspace
ojection m : V » V/ker A carries the form a(. , «)
>y 0n V/ker A given by <ﬂ(V1], n{v21>A = a[vQ. vz}.

I, : P - —_—

At V/kep A~ AV given by A T = A carries the

an inner-product <- » "> on AV, given by

t ! =
A n[v1J, A H[V2)> <w[v1J,w(v2J>A

v1, VZ] = (Avq, v2).

ositive—definite K in KIXsH) there exists g unique
ued functions on X such that
xJh @ xeX, heH} ,

< f, K{+, x)h > for all f in R(K],

X in X and h <n H.

Proof: Since the kernel K

operator K of F = F (X;H) i
0 o]

Lemma 1.7, Let EEO be the

got from the inner-product <

dense subset of EED. For e

by putting hx{yJ = hif y =

is positive-defipite the associated convolution
nto F' defined in 1.4 satisfies the hypotheses of

abstract completion of KF with respect to the norm

F2

Kf1, Kf2> = {KF1, FZJ, ang identify KFD with a

ach x in X and h 1in H define the function hx in FD

X and hx(y} = 0 otherwise; then (KthtyJ = Kly,x)h.

Define Kx on H by Kxh = Khx for all x in X and h in H; then

1
Tebll < ke 12 ] n),
A straightforward calculatio
of EFO into the space of a}

function x K;f is linear,

so that Kx is a bounded linear map from H into EEG 3
n shows that an KFU we have K;F = f(x). The mapping
1 H-valued functions on X which sends f into the

injective and compatible with the identification of

KF_ with a dense subset of EFO 3 Thus we can regard KFE as a Hilbert space
0

R(K) of H-valued functions on X. We have proved that R(K) satisfies (a) and (h);
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the uniqueness assertion clearly holds. R(K) is called the reproducing-kernel

Hilbert space determined by K.

1.9 THEOREM A kernel has a Kolmogorov decomposition if and only 1f it is
posiiitve-definite.

Proof: It follows from Example 1.2 that a kernel having a Kolmogorov decompos-
ition is positive-definite. If K is a positive-definite kernel, take

Vix) = Kx i H =+ R(K) as in the proof of Theorem 1.6; then K(x,y) = V(x)* V(y).

Thus (K., R(K)) is a Kolmogorav decomposition of K; from Theorem 1.8 it is

minimal.

1.10 REMARK It follows from Theorem 1.8 that a positive-definite kernel is

Hermitian symmetric: Kix,yl* = V(yl* V(x) = Kly,x).

1.11 DEFINITION The set K’ (X;H) of positive-definite kernels in K{X;H)
forms a cone; we define the induced partial ordering: put K 2 K' if and only

+
if K =~ K" is in K (X;H).  The next result says that R is functorial:

1-12| THEOREM Let K and K' be positﬁue—definite kernels; then K 2 K' if

and only if there is a (necessarily unique) contraction C : R(K) = R(K') such

that K; = CKX for all x in %.

Proof: Let K, K' be in K'(X;H). Then K = K' if and only if (Kv, v] = (K'v, v)
for all v in FO(X:HJ: this holds if and only if < Kv, Kv > 2 < K'v, K'v > for
all v in FO(X;HJ. This is the case if and only if there is a contraction

C : R(K) = R(K') such that Kv = CK'v for all v in F {XsH].  The result follows
by considering the generating set {hx t heH xe X} in FD[X;H], since

Kx h = Khx = CK'hx = CK;h for all x in X and h in H. Putting this result

together with Lemma 1.4 we have:

1.13 COROLLARY rLet K and K' be positive-definite kernels with Kolmogorov
decompositions V' and V' respectively. Then K z K' if and only if there is a

pogitive contraction T in B(H ) such that
v

K'(x,y) = V(x)* TV(y)

for all x, y in X.
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1,14 THEOREM Let K be in K+[X:HJ; then for each ¢ > 0 and each z in X we

have
KCe » <) 2 K(+, 2)Ce + K(z,2)) " K(z , +).

In particular, the Sclwarz inequality holds:

Kty ) |[K(z2) ]| 2 Kkte , 2) K(z , -).
Proof: Let V be a minimal Kolmogorov decomposition far K then we have

Kix,z) (e + K[z,z)]_1 Klz,y)

= VO* V(2] (e + v(2)* vz vz e vy
for all x, y, z in X. Thus by Theorem 1.9 it is enough to show that the
operator
W= (e + V(2)* V()1 yrzye

is a contraction. But

WiW*

IS

(e + V(z)* V(2))7% V(2)* Viz) (e + V(z)* viz)) "

(e + V(2)* V(2))7 " V(z)* viz) < 1

bi]

by the spectral theorem.
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2. POSITIVE-DEFINITE FUNCTIONS

The principal results in this chapter are two well-known representation
theorems: the Naimark-Sz.-Nagy characterization of positive-definite functions
on groups {Corollary 2.6) and the Stinespring decomposition far completely-
positive maps on Banach *-algebras (Theorem 2.13). We exploit the existence
and uniqueness of minimal Kolmogorov decompositions for certain functions on semi-

groups with involution.

2,1 DEFINITION Let S be a semigroup, and let J : S + S be a map of S inio
itself such that (i) J2 = is‘ (11) J(abJ‘= J(blJ(a) for all a, b in S; then J
is said to be an involution. An element a of a semigroup with involution (s,3)
is said to be an isometry if

J(s) J(a) at = J(s) t (2.1)

for all s, t in S. The set 53 of isometries in (S,J) is a sub-semigroup.

2.2 EXAMPLES 1. Llet S be a group and let J(a) =a—1 for all & in S; then

2. Let S be a *-algebra with unit, and let J(a) = a*; then SJ= {aes:a*a=1}
so that the elements of SJ are isometries in the usual sense, and the elements

of SJ n J(SJ) are the unitaries.

2,5 DEFINITION Let H be a Hilbert space and let (S,J) be a semigroup with
involution; then a function T : S + B(H) is said to be positive-definite if the
kernel a,b~ T(J(a)b) is positive-definite. A Kolmogorov decomposition for a

positive-definite function is a Kolmogorov decomposition for its associated

kernel.
2.4 ExampLE Let (S,J) be a group, as in Example 2.2(1) above. Let
1 : S+ B(Hv) be a unitary representation of S. Let W : H -+ Hrm be an isometry;

then the function

T(g) = Win(g)w (2.2)
is positive-definite and has a Kolmogorov decomposition. V where Vig) = Ulglw.
We shall see thalt every positive-definite function on a group can be put in this

form.
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2.5 THEOREM  Let (S,1) be a semigroup with tnvolution, let T : S » B(H)
be a positive-definite function on S, and let V be a mininal Kolmogorov decon—
position for T.  Then there exists a unique homomorphism ¢ of S, tnto the semi-
group of isometries on Hy » sueh that
¢(b) V(a) = V(ba)
for all b in S, and all a in S. It follows that
T(Jlalbe) = Via)' ¢(b) Vic)

for all b in 5 and all a, c in S, and that the restriction of ¢ to S. n J(5,)

J
18 a *-map:

$(b)* = ¢(Ib).
Moreover, if S is a topological semigroup then continuity in the weak operator

topology of the map aw Tl(a) entails the same for b+ 4(bl.

Proof: For all a, ¢ in S we have V(bal)*Vibc) = T(J(balbc) = T(J{ale) =V(al)*V(ic)

whenever b is in SJ. Hence, by Lemma 1.3, the minimality of V entails the
existence of & unigue isometry ¢(b) : HV -+ HV » such that
¢$(b) V(c) = V(be) (2.3)

for all c in S. It follows from (2.3) that ¢(b) ¢(b') = ¢(bb’) for all b, b'

in SJ . Now suppose that b is in SJ n J[SJ]; then for all a, ¢ in S we have

Vial* ¢(b)*Vic)

n

[¢(blV(a)]* Vie) = V(bal*V(c)

1]

T(J(bale) = TlI(a) Jible)

Vial*$(Jb) v(c) ,

so that ¢(b)*= ¢(Jb) by unigueness. The continuity assertion is clear,

2,6 COROLLARY Let G be a group, and let T : G -+ B(H) be a positive—definite
function on G.  Then theres exists a Hilbert space H,. a unitary representation

T : G+BH ) and a map V in B[Hﬂ] such that

T(g) = Vinu(g) Vv (2.4)
for all g in G.  If the decomposition (2.4) is minimal then it is unique up to
unitary equivalence.

2.7 DEFINITION Let A be a *-algebra with involution J(a) = a*. A map

T : A~ B(H) is said to be corpletely positive if it is linear and positive-
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definite. It follows that iT V is a minimal Kolmogorov decomposition for a

completely positive map then V : A ~ B(H,HVJ is linear.

2.8 EXAMPLES 1. Let W : H =~ H, be an isometry, and let A be a *-subalgebra
of B(Hw]. Then T : A =+ B(H) given by T(a) = Wa W is completely positive.
2. Llet m : A+ B(H) be a *-representation of a *-slgebra A; then 7 is com-

pletely positive.

2.9 DEFINITION An algebra 8 with involution J is said to be a U*-algebra
if it is the linear span cn‘-“SJ n J[SJ}. If S has a unit, then u is in

SJ n J[SJ3 if and only if J(ulu = 1 = uJ(u).

2.10 ExXAMPLE An element of Banach *-algebra with identity, A, can be
expressed as a linear combination of four unitaries in As hence every such

algebra is a U*-algebra.

2,11 THEOREM 1Iet (5,1) be a U*-algebra, let T : S + B(H) be completely
positive, and let V be a minimal Kolmogorov decomposition for T.  Then there
exists a unique *-representation m : S - B[HV) such that
m(a) V(c) = V(ac)
for all a, c in S. It follows that
T(b*ac) = V(b)*n(a) V(c)
fer all a, b, c in S,

Proof: Let ¢ : S‘J n J[SJ) -+ B[HVJ be the *-homomorphism of Theorem 2.3. Then

n
for a'in S we have a = X Z, U, where Zys wens zn are complex numbers and
i
. n
Ugs =».p, U are in S n J(S_); put wla) = E z ¢(u,). Then n(a)Vic) = V(ac)
1 n J J 429 1 i
for all ¢ in S, so that 7 is a well-defined *-homomorphism from S into B(H ).

v

From this follows the Stinespring decomposition for a completely positive map on

a unital U*-algebra.

2,12 COROLLARY Iet A be a unital U'-algebra and let T : A -+ B(H) be com—
pletely positive. Then there existe, uniquely up to unitary equivalence, q
*-representation v of A on a Hilbert space H,, and a bounded linear map V :H + H,,

such that
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Tla) = V'n(a) V -
for all a in A and H, = Vin(a)vh : ac A, heH) .
Stinespring decompousitions can also be obtained for more general algebras
(for example, for some non-unital algebras) in such a way that the Stinespring
representation is actually defined on a larger algebra. Rather than give the
details in very abstract situations, we give an example of an extension of
Stinespring's theorem. The result is quite adequate for our needs; the proof

illustrates the essential technigue.

2.13 THEOREM Let A be a Banach *-algebra with approximate identity, and
let T be a completely positive map from A into B(H). Then there exists, unique-
ly up to unitary equivalence, a Hilbert space H,, a *-representation m of A on
HV , and a map V in B[H,HVJ.such that
T(a) = V'r(a) v
for all a in A, and

HV = V{n(a) Vh : & e A, h e H} .

Proof: Let V be a minimal Kolmogorov decomposition for T, and let A'! denote the
unital Banach *-algebra obtained from A by adjoining an identity. Then A is an
ideal in A’ and
V(xa)* Vibe) = T((bal* (be)) = T(a*c) = V(a*) Vie)

for all a, c in A and all unitaries b in A'. Hence, since A'! is a U*-algebra,
there exists a unique representation w' of A'! on HV such that w'(blV(a) = V(ka)
for all b in A' and a in A. Let m denote the restriction of 7' to A, Tt
follows from §0.4 that T is bounded and hence so is V(-]), since ”V[xJH2 =
[F T || for all x in A.  We identify BIH,H,,) with the dual of the space of
trace-class operators from HV into . Let {UA} be an approximate identity for
A, then the net {V[uAJ} is bounded in B(H,HV} and so has a weak *-limit V say.
We see that w(alV = lim w(a) V(UA) = lim V[aul] = V(a) for all a in A.  The
result follows.

Note that the above theorem applies to a non-unital C*-algebra and to the

group algebra L1(G] of a locally compact group G. It 1s apt at this point to
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discuss Lhe intimatc relationship between positive-definite functions on groups
and completely positive maps on algebras, and in particular the relationship
between the Naimark~Sz.—Nagy representation and the Stinespring decomposition.
In the first place, consider @ unital U*-aslgebra A, and let G denote a subgroup
of ils group of unitaries such that Lin(G) = A, Clearly a completely positive
map on A restricts to a hositive-definite function on G. Conversely, if T is a
linear map on A such that its restriction to G iy positive-definite, then T is
complelely positive. For if ai. i=1, ..., n, are elements of A, then there
exist complex numbers zip and ‘elements gp of G, p =1, ..., m, such that

B, ® Zp Zip gp » since A = Lin(G). From the linearity of T we have

T(ala.) = ¥ z. T[g—1g )
1 P.q 1ip P q Jg

regarding the right-hand side as é matrix-element of the product of three
matrices, we see that [T(a;aj}] 1s a positive matrix since [T[g;1qu] is.
Moreover, T is a homomorphism if angd only if its restriction tg G is a unitary
represcentation. Thus the restriction map takes the Stinéspring decompasition
into the Naimark-5z.-Nagy representation.

This connection can pe taken further. Suppose G is a locally compact
group, and T is a strongly continuous positive-definite function on G (acting on

a Hilbert space H, say). Then it is easy to verify that

T = [ flg) T(g) dg ,
G

where dg is a left-invariant Haar messure on G, defines a completely positive
map T' of the Banach *-algebra Lj[G] into B(H), Moreover it caen be shown, using
the existence of an approximate identity for Lq[G], that each completely positive
map on LT[G] arises in this way; T' is a homomorphism of L1(G] if and ornly 1if
T is & unitary representation of G. Thus the (minimal) Naimark-Sz.-Nagy repre-
sentation of T on G (Corollary 2.8},
Tlg) = vulg) v,

gives the (minimal) Stinespring decomposition on L?{G) (Theorem 2.13),

THFY = viuree) v,

and vice-versa.
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3. DILATIONS OF SEMIGROUPS OF CONTRACTIONS

In this chapter we discuss some dilation theorems for semigroups of
operators on Hilbert space. They are of two kinds: one typified by Cooper's
Theorem (3.1), the other by Sz.-Nagy's Theorem (3.2). In 8186 we will produce

yvet a third kind.

5.1 THEOREM Let {TS !5 € E?+} be a strongly continuous semigroup of iso-
metries on a Hilbert space H; then there exists a Hilbert space H, » a wnitary
group {US : s e R} on H. > and an isometry V : H - H, - such that Vi = u.v for
all s in R .

If we assume less about {TS} we get the weaker result:

5.2 THEOREM Let {TS i se R }bea strongly continuous semigroup of con—
tractions on a Hilbert space H; then there exists a Hilbert space Hu’ a unitary
group {U_: s ¢ R} on Hp and an isometry V : H - H,» such that T_ = V*U_V for
all s in R .
We now discuss the extent to which the results of Thecrems 3.1 and 3.2 generalize
when I?+ is replaced by an arbitrary abelian semigroup S; we will obtain Theorem
3.1 as & special case of Theorem 3.4 and Theorem 3.2 as a special case of Theorem
3.11. Finally, we show (Theorem 3.13) that when the semi-group {Ts} in the
statement of Theorem 3.2 is strongly contracting to zero, the unitary group {US}
satisfies an abstract Langevin equation. Only Theocrems 3.1, 3.2 and 3.93 will
be required in the applications to irreversible evolutions.

In this chapter each abelian semigroup S is aésumed to have a zero. We
are given a homomorphism T : S =+ B(H) of S into the semigroup of isometries on a
Hilbert space H. We want to use T to construct a homomorphism U : S + B[Hu} of
S into the group of unitaries on somz Hilbert space Hu' and to examine its
relation to T. Now to each abelian semigroup S there correspands a group K(S)
and a homomorphism y : 5 + K(8) which is universal in the sense that every homo-
morphism of S into a group G factors through K(S): K(S)

-
there exists a unique homcmorphism k  such that
Y K
S ——m=> G
¢

the diagram commutes.
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The first step, then, is to use T to construct a homomorphism from K(S) into the
group of unitaries on some Hilbert space., It turns out that this is always

possible. First we recall one construction of K(S),

3.3 DEFINITION Let S be an abelian semi-group. Let A : S+ S x S be the
diagonal map, and let 7 : S x S = S x S/A(S) be the natural projection. Then

S x S/4(S) is a group (since w(s,t) + mlt,s) = w(0,0), every element has an
inversel), which is called the Grothendieck group of S, and denoted K(S}. The
map sk n(0,s) is a homomorphism, which we denote by Yg ¢ S =+ K(8]. If S is
itself a group then YS is an isomorphism, The construction is functorial: if
@ : S+ S’ is a homomorphism of semi-groups, then there is a unique‘hommmorphism

Klal : K(S) =+ K(S') such Y,

that the diagram commutes. S —— K(3)

‘ Kial

o
~y A
S > K(S")
Ys'
The universal praoperty of (YS, K(S)) follows from this. The homomorphism Te is

injective if and only if the cancellation law holds in St s + u =t + y implies
that s = t. When S is a topological semi-group we give K(S) the quotient topol-

ogy; this makes Ys centinucus,

~“a

3.4 THEOREM et s be an abelian semi-group. Let y : S -+ K(S) be the
eanonical homomorphism of S into the Grothendieck group of S. Let T : S + B(H)
be a homomorphism of S into the semi—group of isometries on a Hilbent space H.
Then there is a positive—definite funetion T' on KI(S) such that

T;(t)—ytsl ) T; Ty it
for all (s, t) in S x S,

Proof: Consider the function s,t H—T; T, on S x S; since TU is an isometry we

t
have TJ Tu = 1 and the function is canstant on A(S)-cosets and determines a

unigue function T’ on K(S) such that (3.1) holds. To prove that T' is positive-
definite, consider a fixed n-tuple h1, isE 3§ kn in K(S) and choose coset repre-

sentatives (s,, t,) of k,, 1 =1, ... i D
i i i
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: (-
Put 5y t1 # Sp *oeee By 3
sé =5, t2 + + s, >
(- §
sn 51 + 52 * iia ¥ tn 3
= & I [
then kj Ki W[Si, st
i *
so that Tk. -k, Ts! Tsf !
J i i J

and it is clear that T' is positive-definite.

5.5 DEFINITION A semi-group homomorphism T : S -+ B(H) of an abglian semi-
group into the bounded operators on a Hilbert space H such that TD = 1 1is said
to have a unitary dilation in the strong sense if there exists a Hilbert space Hv,
an isometry V : H =+ Hv,and a unitary representation U : K(S) + B(HV} of the

Grothendieck group of S such that

VTS = Uy[s) V. (3.2)

The relation (3.2) implies the weaker

T, =V UY(S3 v (3.3)

since V is an isometry. If (3.3) holds we say that S has a unitary dilation.

3.6 THEOREM  ret s be an abelian semi~group and let T : § - B(H) be a homo-
morphism such that TO =1. Then T has a unttary dilation (U, V) in the strong
sense if and only if‘TS 18 an tsometry for all s in S. If (U, V) s minimal
then it is unique up to a unitary equivalence. If S is a topological semi-

group then the continuity of s v TS in the weak-operator topology implies thé

same for Kk w Uk .
Proof: The 'only if' part is obvious since the Uy(s) and V are isometries. If
the T5 are isometries then it follows from Theorem 3.5 thet the associated func-
tion T' on K(S) is positive-definite. The remainder of the proof follows the

lines of that of Theorem 2.3 and its Corollary, but the particular Torm (3.1) of

T' yields more: (3.2) holds. It is enough to use the minimal Kolmogorov decom-

position T' associated with the reproducing kernel Hilbert space R(T') of the



kernel T'. We take HV to be R(T") and the isometry V : H =+ H to be

vV
(Vh) (k") = T! ,h

for all k in K(S). The representation U : K(38) = B(HV] is given on VH by
(U VRIK™) = T/ b

using (3.1) we get (3.27) when k = y(s).
Turning to semi-proups of contractions which are not necessarily iso-
metries, we ask if they have a unitary dilation (in the sense of (3.3)). To

adapt the proof of Theorem 3.5 to this case we have to assume more about S,

il REMARK The following two properties of S are equivalent:
(i) Y(8) n [-y(S)] = {0} . (3.4)
(i1) If s, t, u, v are in S and
S *Uu=wvandu-=t+y,

then s + w = w for some w in S. (3.5)

3.8 THEOREM et s be an abelian semigroup for which (3.4) holds, and let

T : K(S8) = B(H) satisfy

(i) T =1,
(8]
(i1) T; = T-K Jor all k 4in K(S),
I - ] r
(ii1) Tka’ Tk+k’ whenever k, k' gnd k+k

are not in [-y(S)].

e

Then T is positive-definite if and only if‘Tk 18 a contraction for each k in

K(S); in which case T has a unitary dilation.

Proof: Choose a fixed n-tuple of elements kq, e, Kn of K(S), ordered so that
Kj - ki is not in [-y(S)] if 1 < j. Consider the n = n matrix with entries
t =T 5
1] hj kl
and define
<
i tij if 1 = j,
W, =
+J 0 otherwise,
and - .
5 T 0y Tt gy 1



25

We claim that
t = w* dw; (3.6)

then t is positive if and only if d is, and d is positive if and only if the

Tk s =1, ..., n, are contractions. It remains to prove (3.6). Notice that
i
t = t, whenever i € j < Kk, and that t.,, = t. . If i £ 3 then
Tay i ik J 13 3k J
i
* — £l
(w*d W), L (w ik (dw)kj
k=1
Thus for i = 1 we have
* _ = =
(w’d Wiy, = Wy, 999 gy Tty 15 = By

for j 2 i > 1 we have

i
Wil tallg,,, = k§1(w ik Yk “kj
)
= t', d .t
k=1 ki Kk "kj
*
IR T B P S )
+ .
0 T T
ii ij i~1,4 T o

This establishes that T is positive-celinite; the existence of the dnitary

dilation follows from Corollary 2.4.

3.9 REMARK The following conditione on S are equivalent:
(1) y(S) v [-y(3)] = K(S) (3.7)
(ii) Whenever s, t are in S there exist u, v, w in S such that

either t+us=wv, s +y=yy + v,

(3.8)
or t+ru=v+w o5 +y = V.

2.10 DEFINITION We say tnet an abelian semi-group S is totally ordered if

{3.4) and (3.7) hold.

3,11 THEOREM Let s be a totally ordered abelian semigroup, and let

T+ S » 8MH) Le a homomorphism satisfying (i) TD = 1, (ii) f[qu]< 1, and the

cancellation lee: (i1i) <f h + s = h + t then Tq = Tt
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Then there is a unique positive-definite function T' on K(S) such that

' g ! . T
! y(s) Ts and T ~y(s) Ts (3.5

for all s in S; hence T has q unitary dilation.

Proof: Since (3.4) and (3.7) hold, there is a well-defined function T' on K(S)
which is uniquely determined by (3.9, It is easy to check that T' satisfies
conditions (i), (ii) and (iii) of Theorem 3.8; the result follows.

We began fhis chapter by looking at one extreme case of a semi-group of
contractions, where the contractions preserve the norm of each vector, We end
the chapter with a look at the opposite extreme, in which the norm of each vector
gues.to zero eventually under repeated action of each contraction. In this

case, a minimal unitary dilation of the semi-group satisfies an abstract Langevin

equation.

3,12 ]DEFINITION Let S be a locally Compact semi-group; a semi-group
{Ts i s € S} of contractions on a Hilbert space H is said to contract strongly
to zero (at infinity) if for all h in H we have

m o | Toh|| = 0.
S

5 o

First we require an alternative construction of a unitary dilation of a

+
semi-group of contractions over | » which contracts strongly to zero.

3,13 THEOREM Let {Tt :te R} be g strongly continuous semi—group of
contractions on a Hilbert space H which contracts strongly to zero. Then there
s a Hilbert space N and an zsometry W : H + L2(R ;N) such that

*
Tg=W UW, t=2a0, (3.10)

where {Ut : t e R} Is the strongly continuous unitary group of right-translations
on L2(R ;NJ:

[Uth[sJ = fls - t),
Proof: Let B denote the infinitesimal generator of T,+ Since tw~ i TthH 2 ig

monotonic decreasing we have, for all h in 0O(B),

<Bh, h>+<h, Bh>= ¢4 <T,h, Th> < g, (3.11)
‘d—f t t

o+
]
o
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Let N0 denote the null space of this quadratic form:
ND={heD(BJ:<Bh,h>+<h,8h>=0}.
Let A be the guotient map of D(B] onto D[BJ/N0 ; Then by [3:11) and the Schwarz
inequality there exists an inner product < « , > on D[BJ/NO such that
<Ah,Ak>B=—<Bh,k>~<h,Bk> (3.12)
for a1l h, k in D(B). Let N denote the separable Hilbert space got by complet-

ing D(BJ/ND i Then, for all h in D(B) and t > 0, we have by (3.11) and (3.12)

At nli2es < flnjiz- |z, (3.13)
B

Letting t + = , remembering that Tt contracts strongly to Zera, we see that there
is an isometric embedding W of H in L2(R™ ;N) given on D(B) by

(Whi(s) = AT_ h (3.14)

for all s < O,

We regard L2(R™ ;N) as a subspace of L2(R ;N) in the obvious way; then

we have, for each h in D(B) and t > 0,

-8

I

A Tt h, s < t,
[Ut Wh) (s)

0 , s> t,

[WTt@[SJ + wt(sJ,

+
where ws is in L2(R ;N) jat W(H)l . Thus for each t 2 0 we have

so that U is a unitary dilation of TeonH o= L2(R;N). It will be shown later
that this dilation is minimal. It is, in fact, a consequence of the Langevin
equation [3.1?] which we now propose to study.
Let £ : R - B(N, HVJ be the map given by
[ﬁt nj(s) = x[D‘t][s}n, tzo0,

-x[t,uj(sln, t <,

for each n in N, where X[a b] denotes the characteristic function of the interval
[a,b] in R. Then £ is a minimal Kolmogorov decomposition of the positive-

definite kernel s, t & s A t 1N on R x R:

13 Et =sAt1 , (3.15)
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for all s, t in R. The following lemma is useful in proving Theorem 3,15:

3,14 Lemma Let {Tt iteR') beaq strongly continuous semi-group of con-

tractions on a Hilbert Space H, and let B be its generator, Then D(B) ean be

regarded as a Hilbert space with respect to the norm given, for h in D(B), by
[h[2 = ||n|f2 [l Bh || 2 ; (3.16)

in which D(B?) 1s dense.

Proof: Since the generator B is a closed operator, its domain D(B) is a Hilbert

Space with respect to the norm (3.15). On it we define the semigroup

St Pm o> Ttm. The strong Dantinuity of t 1= Tt implies the same for St; hence

the domain of the generator of St is dense, and the proof is completed.

3.15 THEOREM Let {Tt - ot® :te R '} bea strongly continuous semi-group

of contractions, contracting strongly to zero, on a Hilbert space H. Let {Ut}
be a minimal unitary dilation of Tt . Then there exists:
(1) a Hilbert space N, and a bounded linear operator
A s (0B), [+])— N,

(i1) amap £ : R + B(N,HUJ satisfying

t
for s, t in R and

E ES = 85A%t 1N
Hy = V{gsn :se€ R, ne N},
such that

t
UWh = U Wh = [ du UMBh + (g, - € )Ah (3.17)

t
s
for all h in D(B).
Proof:  Take for {Ut} the dilation of Theorem 3.13; take for the map £ the
minimal Kolmogorov decomposition (3.15); then (8. 977 i easily verified by

integration-by-parts  for h in Dp(B2) and hence, by Lemma 3.14 for all h in O(B).

That the dilation {Ut} is minimal now follows from (3.17) and the minimality 5? E.

3.16 IQEMARK It 1s also possible to treat the semi-group N using this

procedure. In this case, let T be g contraction on the Hilbert space H such
n

that the semi-group {7 : n cf§I} contracts strongly to zero ot infinity, We

can show that
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0 0
Dollop v n 2« qnz, (3.18)

j:—m

1 -
for all h in H, whers DT (1 - T*1)° ., We take N = [DT Hl and A : H~+ N the

map given by Ah = D_h. We embed H isometrically in HU = L2(N) by

e
{AT"J,jso,
o, j > o0.

n ; ;
unitary group {U : n ¢ Z)} is defined on L2(N) by translation:

n

(ehl(j)

Th

@

(W) = £C3 - nd,
for j, n in Z and f in H,- Then {U"} is a minimal unitary dilation for 7. We

now define E. : ZZ "+ B[N,HU), as in the continuous case, so that

n

*
Em En mA N 1N

for all m, n in Z , and

H, = V{me tmelN , xe N},

In this case we have the discrete Langevin equation

m~1
Uleh = Uleh = [ 0%l - 1101 + (& - £ )An, (3.19)
u=n 1 i

valid for all h in H.



4, C*-ALGEBRAS AND POSITIVITY

The main results in this chapter concern a positive linear map T from
one C*-algebra A into another C*-algebra B. If either A or B is commutative,
then T is completely positive (Theorems 4.3 and 4.2). This allows us to deduce
certain Schwarz-type inequalities in Corollary 4.4, and the identities of Broise
in Corollary 4.5. In the proofs we make use of a characterization of the posi-
tivity of.an element of the matrix C*-algebra Hn(A} over a C*-algebra A (Lemma
4.1].

We end by deriving the: canonical decompasition of a normal completely
positive map on a von Neumann algebra (Thearem 4.6).

If A is a *-algebra, and n is a positive integer, we let Mn(A] denote the
*-algebra of all n x n matrices over A under the natural operations. If
{eij : 1 51, j £n} is a system of matrix units for Mn = Mn(E], then the
*~algebraic isomarphism [aij]i+ z aij ®EHJ allows us to identify Mn(A] with the
algebraic tensor praduct A ® Mn . If A is a C*-algebra, represented say on a

Hilbert space H, then Mn[A) is also a C*-algebra and can be faithfully represen-

tedonH' =He® ... ® HEHec as follows:

n
n n - n . n
[aijji,j,=1 [fj3j=,‘ [qu aijfjji=1 ; [aij] e M (A), [f-‘j] e H

Let A and B be *-algebras, and let T be a linear map from A into B; 1let
T denote the product mapping T ® 1n from Mn(A] into Mn(BJ where 1n denotes the
n

identity mapping on Mn[EJ. Then Tn acts elementwise on each matrix over A:

Tn : [aij]l+ [T(aijJ]

Suppose now B is a C*-algebra, Then T'_| 1s positive (80.4) if and only if

T (a*a) =2 0 for each a in Mn(A)' But if a ¢ [aij] € Mn[A], a*a dis the sum
n

n
Y[a*,a 1. Thus T_ 4is positive if and only if [T(aja,)] is a positive matrix
24 P1pJ n 17

p=1

for all 80 sees 8 in A. In particular, T completely positive is equivalent to

Tn positive for all n = 1. It would thus seem useful to study the order struc-

ture of matrix algebras more closely;

h,1 LEMMA et A be q C*-algebra, and a = [aiJJ be an element of M (A,



(a)

(bl

(c)

Proof:

(a)

(b)

(c)
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The following conditions are equivalent:

(i) azgl.

(11)  a Zs a finite sum of matrices, each of the form [b;bj]
where bys veu, bn € A.

(iii) 7§ a;aijaj 2 0, for all sequences s +es 8 in A

If A is commutative, then the above three conditions are also

equivalent to:

(iv)  § aijiixj = 0, for all sequences Ags woes An in C.

If for the C*-algebra A condition (iv) Zs equivalent to conditions

(1) - (i1i), then A must be commutative,

(1) = (4i) has already been observed;
(11) = (iii) is trivisl;
(1i1) = (4): If we represent A on a Hilbert 8pace H, we can decompose
H into cyclic orthogonal subspaces, Thus we can assume A has a cyclic
vector f ¢ H, Then

} < aij ajf, a,f > = <(} aj % 5 aij, Fe2l,
for all aq, Vi an in A. Thus, since f is cyclic, X <aijfj' fi> 20
for all f1, S5 Ton fn in H. That is, [aij] is positive.
(iv) = (iii): Represent A ag CD[X), the continuous functions vanishing
at infinity on a locally compact Hausdorff space X.
Then Z a; . 2 2 %0, for a1l Z.p cusyp B sdm,

J 1 7] i n

= Zz > E
> ) %4 (x) 2, z5 2 0, for all Zis o waa, z €L, xeX,

=2 la,, (x)1 20 (in M (C}), for all x e X,
ij n

= >
> ) % 4 (x) ai(xl aj(xJ 2 0, for all Qps eany a €A, xeX,

*

=y z aij a8, 8y 2 0, for all 8y vne, a, € A.

(1, 1i) =» (iv) is trivial.
Suppose A has the property that if a ¢ MZ{A] satisfies
a Z, z, >0
) 15 %1 % for all 2z,, 2z, ¢ €, (4.1)
then a is positive, The C*-algebra obtained from A by adjoining an

identity has the same property, Thus we can assume A is unital, Take
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b e A, and consider the matrix

E
a =
b* bb*
which clearly satisfies (4.1), so that a is positive. But
[b*, -1] 1 b b
bb* - b*p = b*  bb*| | -q| ¢
and so bb* 2 b*b, for all1 b in A, By symmetry each element of A is normal and

50 A is commutative.

4,2 THEOREM Let A, B be -C*~aqlgebras, with B commitative.  Then automati-
cally any positive linear map from A into 8 4s completely positive.
Proof: Suppose [aij] € Mn[A] is positive. Then

z, z, > - .
z aij i %y 0 for all 21, i Zn e C

Then if T is any positive map from A into B, and
Z >
T(Z aij z; sz 2 0, for all Zys ey 2 € C,
hence

Z, z. >0, 3 BiE .
] T(aij] z, zJ for all z, A
The conclusion follows from Lemma 4.1 (b).

Positive linear maps whose domains are commutative to C*-algebras auto-

.3 THEOREM  ret A, B be C*-algebras with A commitative.  Then any
positive Ilinear map from A into B s completely positive.
Proof: By going to the second dual, we can assume that A is a W*-algebra and
that the given positive linear map T from A into B is ultraweakly continuous.
We represent A as Lm(Q, 1l for some localizable measyre space (2, w), with pre-
dual L'(Q, ul), and we take 5 to act on a Hilhert space H. Then for all
f :geH, the map
am < Tla)f, g »

is ultraweakly continuous on Lm[Q, ul. Hence there exists hif, g) in L'(q, p)
such that

<Tlalf, g > = < a, hif, gl > ,

Moreover f, gm h(f, g) is sesquilinear, and h(f, f) 2 0 since T is positive.
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Let Fq’ . ey fn be elements of H;  then for all 21, i, zn in C:

X z, zj h{fi,Fj] = h() z, {1’ ) z, Fj) = 0,

= ¥ 2, EJ, h{-Fi,FJ.J(wJ 2 0 for almost all w in g, (4.2)
=  [h(f,,F)(w)] 20 a.e.
1]
Then, for all 61,'..., a_ in L (q, ul, Z< Tlata & of, &= o gy » P 3T B
n 13374 17 Jj’i
= é a; (w) aj(w] h[FJ,-Fi)(m] dulw) 2 0, by (4.2).

a,n COROLLARY Let T be g posttive linear map from a C*-algebra A into
another C*-algebra B. If a is a normal element of A, then
Tl Tta*a) > T(ay+ T(al. (4.3)

More generally:

| T]l Tta*a + aa*) » Tlal* Tla) + T(a) T(a)* (4.4)
for all a in A,
Proof: If C is the commutative C*-algebra generated by a normal element a, then
the restriction of T to C is completely positive, by Theorem 4,3, Hence we can
apply the Schwarz inequality of Theorem 1.14. If a is an arbitrary element of
A, we can apply (4.3) to the self-adjoint elements a + a* ang ila - a*),. The

inequality in (4.4) then follows by addition.

4.5 COROLLARY  ret T be a positive contraction from a C*-algebra A into
another C*-algebra B, and a g self-adjoint element of A, such that T(a?) = T(a)2.

Then

Hi

Tlab + ba) T(a) T(b) + T(b) T(a) - (4.5)

and

T(aba) Tla) T(b} T(a) (4.6)

for all b in A.
Proof: Fix ¢, a state on B, and consider the sesquilinear form D on A.
Dt (x,y) » ¢LTixy* + y*x) - T(x) TOy)® = Tly)* T(x)]
By Corollary 4.4, we have O(x.x) 2 0 for all x in A.  However D(a,a) = 0. by
assumption, and so O(a,x) = O by the Cauchy-Schwarz inequality applied to D;

hence (4.5) holds. Then (4.6) follows easily from Jordan identities,
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The Stinespring representation theorem can also be used to obtain a

description of completely positive normai maps:

4.6 THEOREM Let A be a von Neumann algebra on a Hilbert space H, and let
K be another Hilbert space. If ¢ 45 a completely positive ultraveakly contin-
uwous map from A into B(K), then there exist {Ai : 1 e X) in BIK,H) such that, for
all x in A,
.

Yix) = ¥ Ajx Ao
If K Zs infinite-dimensional, we can choose X such that its cardinality is at
most that of a complete orthonormal set for K,
Pfoof: By the Stinespring decomposition, we can assume that ¢ is a normal
representation with cyclic vector . Then since < Y(+)f,f > is a normal state
on A, there exist vectors {Fi i ER{} in H such that E[[fiH 2 ¢ w , and
< PlxIF,f > =7 < xfeof, > for all x in A, Since [IxfiII < vl £ for a1l x
in A, there exist contractions Ai from K into H such that Aiw[fo = xfi «  Then,
for all x, z in A, we have

<V, Y(2IF > = < Ylz*xz)f, £ > = ) < z*xzf,, f, >

1

=Y < xzf, . zf, > 1 < x Aplzlf, Awulz)f >

*
) < Ajx AW(Z)F, gl2)F >
*
Since f is a cyclic vector for ¥, we have y(x) = ZAix Ai for all x in A; the
series converges in the ultraweak topolaogy. The usual counting arguments in a

Hilbert space give the cardinality result.
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5. CONDITIONAL EXPECTATIONS

As we mentioned in the Introduction, we wish to define a class of
C*-algebraic maps which generalize the class of conditional expéctations of
classical probability theory. In this chapter, A will denote a unital C*-
algebra, and B a unital C*-subalgebra of A. To merit the description "condi-

tional expectation”, we will require the following properties of a linear map

of A onto B:
CE1: N is a projection of norm one such that N(?AJ = 18;
CEZ: N[aq N[azll = N(a1JN(azl, for all gy 4, in A, or equivalently,

N(ab) = N({a)b for all a in A, and b in B;
CE3: N is completely positive.
It is easily verified that these properties hold in the following

examples:

5.1 EXAMPLES 1. Let {pi : 1 € A} be a mutually orthogonal family of

7projectinns in a W*-algehra A, 1let p = Zpi and let N(x) = Epixpi for all x in
A; then N is a projection of A onto the intersection of PAp with the relative
commutant {pi :ie A}° = {xeaA : Xpy = p;x for all i in A}.

2. Let A and B be W*-algebras, and identify B with 1 @ B as a W*~sub-
algebra of the W*-tensor product A ® B, Let ¢ be a normal state of A, then
$ @1 is a projection of A ® B onto B; it is the dual of the injection of
states:

v+ ¢ ®y For all ¢ in B, .

(Similarly for C*-algebras with spatial or minimal tensor product.)

The main result (Theorem 5.3) is that CE1 entails both CE2 and CE3.

We are thus led to:

Dl DEFINITION Let B be a upital C*-subalgebra of a unital C*-algebra A.
A conditional cxpectation N is a projection of norm one from A onto B such that

N[1A} = 18

Taking C = B**, we see in the following theorem that a conditional

expectation 1s automatically completely positive (CE3), and has the module



mapping property (CE2).

5.3 THEOREM Let B be a unital C*-subalgebra of a unital C*—algebra A.

Let N be a linear map of norm one from A tnto a W'-algebra C such that the rcs-
triction of N to B is a homomorphism onto a weakly dense subalgebra of C, with
N[1A] = g Then N ig completely positive, and N(ab) = N(alN(b) for all a in
A, b in B,

Proof: That N is positive follows {Trom §0.4. By going to Lhe second duals we
can assume that A, B, C are all von Neumann algebras and N is normal. It is
enough to consider C in an irreducible representation, and so we may assume that
C = B(H) for some Hilbert space H. Let e be the central projection in B such
that Ker N 8 is the two-sided ideal B[1B - e). Then N(e) = 1C. For the

moment we will only consider the restriction NO of N to eAe, so that the res-

I

triction of ND to ebe BD is faithful. Via a spatial iscmorphism, we may
assume B_ = € © B(H), A_ = A ® B(H) and N_(1z © b = b, for all b in B(H). Then,
by Corollary 4.5, we have No(a ® f) = f No(a ® 1)f for all a in A and all pro-
jections f in B(H). After saome computation, we find that fND[a ® 1) =N0[a @ 1)f.
Thus ND(a ® 1) lies in B(H)' = T and ND[a ® 1] = w(a), where w is a normal state

on A; hence NO = w @ 1, which is completely positive, and No{ab] = NO{a]ND[b]

for all a in AO and b in BD. Then for all a in A, b in B, we have

N(e) N(ab) N(e)

1

N(ab) = N[ab]1c

n

N(eabe), by Corollary 4.5,

N(eaebe), since e is central in B,

n

N(eae) Nehe) = N{a)l Nib);

the theorem follows.
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6. Fock sPace

In this chapter we recall some elementary results about Fock space, and
show how the Boson and Fermion Fock spaces arise naturally with the Kolmogorov
decoimpositions of certain positive-definite functions.

Let H be a Hilbert space; +for each positive integer n, let Hn denote
the n-fold tensor product @nH, and let HD denote the one-dimensional Hilbert
space spanned by a single unit vector , called the Fock vacuum vector. Fock
space F(H) is then defined as

F(H) = o H .
n

Let T be a contraction from H to another Hilbert space K, let Tn denote the
contraction ©'T from Hy into K, and put T_ = 1; we define F(T) to be the
contraction from F(H) into F(K) given by

FIT) = & T .
n=o n

The assertions in the following lemma are then easily verified.

6.1 LEMMA 1. F 4s a functor on the category whose objects are Hilbert
spaces and whose morphisms are contractions:
F(ST) = F(S) F(T), F(1) = 1. (6.1)

2. F(0) Zs the projection on the Fock vacuum vector Q:

FIO) =Qeq. (6.2)
3: F 28 @ *-Wap:
FIT*] = F(T) %, “ (6.3)

We will not be interested in the whole of Fock spsce, but only in two of
its subspaces, namely the Boson and the Fermion Fock spaces,

For each positive integer n, let Sn denote the group of all permutations

on n symbols. There is a natural unitary action of Sn on the Hilbert space Hn
given by
nlf, ® ,...® Ff) = 7§ ® ... @ F
1 =] -
" n r ' n)
for all =« in Sn and f1. T Fn in H.

6.2 REMARK tlet T be a contraction between Hilbert spaces H and K; then Tn
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intertwines the actions of Sn on Hrl and Kn: Tnﬂ =7 Tn for all w7 in s

=]
Let.Pn = (n!) Z m; then P is the projection from H ontg the
T e S 2 n
n
=1 .
space Hn of symmetric tensors of degree n. Symmetric (or Boson) Fock space

F°(H) is then defined by

FRH) = oF WS .
n

Nett B6E T ¢ W+ K be 3 wentesstiony 9F Fallows Erom Bemask B2 fhai T, maps H®
into K » and so F(T) induces a contraction FS(ry : FS (H) » Fo(k). Note that
F inherits the properties (6.1) to (8.3) of the functor F in Lemma 6.1.

Let e{m) denote the signature of the permutation w, and let

Qn = [n!J_1 E elm)m; then Qn is the projection from Hn onto the space Hi
mTeS

n
of antisymmetric tensors of degree n over H. Antisymmetric (or Fermion) Fock
space Fa[HJ is defined hy

FIH) = o 12 |
n

Again, if T : H > K is a contraction, it follows from Remark 6.2 that T maps H
into K » and so F(T) induces a contraction F2 (M) & FIH) » F°@ (K), and F? inherits
the properties (6.1) to (6.3) from the functor F.

For use later in the study of some algebras naturally associated with the
Fock spaces, ‘'we relate the Fock Spaces to Kolmogorov decompositions of some
positive-definite kernels.

First we look at Boson Fock space: Let h he a vector in t%e Hilbert space
M. and let h, denote the n-fold tensor product h e ... ® h which lies in K>,
With hy = & Then < b .k >~ < hk >" for all h, Kk in H; thys hbh o isa
minimal Kolmogorov decomposition of the positive-definite kernel hok P < h,k- 30

on H x H. Now define Exp : H + F° (H) by

1]
= o | it
Exp(h) an (nt) hn ;

6.3 THEOREM The map Exp : H + F°(H) 4s a minimal Kolmogorov aecomposztzan
for the positive-definite kernel h,k exp<h,k> on H x H. Moreover,
{Exp(h) : h e H} ©8 a Linearly independent total set of vectors for FS(H).

Proof: That Exp (+) is a Kolmogorov decomposition for the kernel exp < « , « >
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follows by computation:
< Exp(h), Exp(K) > = exp < h,k > , (6.4)
Minimality is a consequence of the relation

n

1
g Exp(th) | = ()7,
dt t=0 n
It remains to prove the asserted linear independence. Suppase h1, — hn in

H and Zys wens z in C satisfy zg=1 Zj Exp[hj) = 0. Then, by the reproducing
property (6.4), Zg=1 Zj Bxpt<hj,k> = 0 for all t in R and k in H. But elt is
an eigenvector of the linear operator g¥ corresponding to the eigenvalue A, and
eigenvectors corresponding to distinct eigenvalues are linearly independent.
Thus, for each k in H, we have < hi,k > = < hj,k > for some i = j. Hence the

set {hi} cannot be distinct.

6.4 COROLLARY  There is a natural identification of F°(H @ k) with
Fo(H) ® F°(K) wnder which

Exp(h ® k) = Exp(h) ® Explk)
and

FPts e ) = Fo(s) ® FO(T) |
Proof:  This is a consequence of the uniqueness of a minimal Kolmogorov decom-
position (Lemma 1.4), Theorem 6.3, and the relation

< Exp[th ® Exp[K1J, Exp(hzl ® Exp[kzl >

=exp < h, & k1, h, ® k., > .

1 2 2

Next we consider Fermion Fock space:; Let Fq.‘..., fn lie in the Hilbert

space H, and define f1 A Lol A fn by

Bi=

= T
f1 A e A fn (n) Qn[F1 ® .., ® fnl .

Then we have

< f, A ,..AF, By A eee Ag > = (nl)< Qn{f1 ® ... ® fnJ,g1 ® ,.. @ B, >

© ... ®pg >
n

n
~
m
=
=
st
A
s
v
.
"
A
—*.,
-
10}
Vv

"
Q
m
cr
-~
A
iy
-
m
v
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Thus the map {fi]n i PRI Fn of H" into Hi is a minimal Kolmogorov
i=1

decomposition for the positive-definite kernel {fi}, {gi}l+ det(<fi, gj>} on
HY x H
In what follows we will drop the indices s and a when there is no risk

of confusion arising.
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/. REPRESENTATIONS OF THE CANONICAL COMMUTATION RELATIONS

In this chapter we recall some definitions and formulae associated with
the canonical commutation relations. The main result (Theorem 7.1) is a char-
acterization of generating funclions.

Let H be a Milbert space; in Theorem 6.3 we noted that Exp (+) is a

minimal Kolmogorov decomposition for the positive-definite kernel exp <-s . >

on H % H. Consider now the linearly independent total set of normalized vectors
{(E(h) = Exp(2 %) exp(- || h]| 2 74) : h e H} .
Then
< C(h), C(K) > = exp(- || h-k]| 2/4) exp(iIm< h,k > /2)
for all h, k in H, so that C(-) is a minimal Kolmogorov decomposition for the
positive-definite kernel
h, ki expl- || h-k|| 2 /4) exp(ilm< b,k > /2) . s B
In other words, F (H) can be identified with the reproducing kernel Hilbert
space Tor the kernel (7.1), Note that the map

w t h, ki explilm < h,k » /2) (7.2)

defines a multiplier in the sense of group representation theory.

Pl DEFINITION Let (G.+) be a group. A multiplier b on G is a map

from G x G into the unit circle {z € € : |Z| = 1}, such that

blg, o) = blo, g) = 1, (7+3]
blg, g') blg + g',g") = ble, g’ + g™ blg', g"), (7.4)
for all g, g', g" in G. A b-representation of a groub G with multiplier b is a

map U from G into the unitary operators on some Hilbert space such that

Ulo) =1 , (7.5)
Ulg) Ulg") = Ulg + g") blg, g') , (7.6)
for all g, g! in G, A projective representation is a b-representation for some

multiplier b.

7.2 REMARK The properties (7.3) and (7.4) of a multiplier are merely
consistency conditions for ihe existence of b-representations; for example,

(7.4) reflects the associative law.
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Since {C(h) : h € H} is a linearly independent total set of normalized

vectors, there is a well-defined unitary W(h), for each h in H, such that

W(h) C(k) = C(h + k) wlk, h) (7.7)
for all kK in H. Moreover, W(h) obeys the canonical commutation relations:
Wlh) W(K) = W(h + k) wlh, k). (7.8)

7.5 DEFINITIONS A representation of the CCR (canonical commutation
relations) 1s a projective representation of a Hilbert space H with multiplier

w given by (7.2). The C*-algebra generated by a representation W of the CCR is
denoted by W(H]. Thus W(h)»is the norm-closed linear span of the unitaries
{Wlh) : heH}. The representation of the CCR defined by (7.7) is called the
Fock representation, A representation W of the CCR is said to be non-singular
if the map t » W(th) is weakly continuous on R for each h in H, or equivalently,
if W is strongly continuous on all finite-dimensional subspaces of H. In this
case, by Stone's theorem, there is for each h in H a self-adjoint operator R(h),

called a field operator, such that W(h) = exp iR(h).

7.4 REMARKS 1. The Fock representation is non-singular.

b It is sometimes instructive to regard the field operators R(h)-as
the random variables of a non-commutative. probability theofy.' They satisfy, at
least forméily, the commutation relation

R(h) R(k) - R(k) R(h) = - iIm < h,k > 1,
as a consequence of the W(h) satisfving (7.8).

3. Defining the annihilation operator alh) by a(h) = 2—%(R(h)+ iR(ih)),

and the creation operator a*(h) by a*(h) = 2—%(R[h) - iR(in)), we have
alh) a*(k) - a*(k) a(h) = < k,h > 1.

iR(h)
= g

4, The Weyl operator W(h) can be written in terms of annihil-

ation and creation operators as follows:

-4
2

W(h) = exp(i 2 %a*(h)) exp(i 2 7alh)) expl- || h|| 2 /4).

Fid DEFINITIONS A representation W of the CCR over H is said to be eyelic
if fhere exists a (unit) vector Q in Hw such that

H, = ViWlme : hemn) .
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We then call @ the vacuum vector of the representation. The generating func-
tional v of a cyclic representation W with vacuum vector @ is the function
defined on H by

h ulh) = <Wh) @, Q>

7.6 REMARRS 1. We shall see (Theorem 7.9) that the Fock representation
is irreducible; hence every non-zero vector is cyclic. In particular, the
Fock vacuum vector is cyclic.

2. The generating functional is useful for the calculstion of the
expectation values of various operators (such as polynomials in the field oper-
ators, in the case of non-singular representations) in the vacuum state of a
cyclic representation. For a non-singular representation the generating func-
tional is given by

uth) = = B:'LR[hJ

2, 2>,
analagous Lo the characteristic function of a probability distribution. The
analogy will be strengthened in Theorem 7.8.

A generalization of the notion of cyclic representation has proved

useful:

7.7 DEFINITIONS Let H, K be Hilbert spaces; & representation W of the
CCR over H is said to be K-cyelie if there exists a V in B[K,Hw] such that
H, = VIW(h) Vk : heH, kek} .
Let (W,V) be a K-cyclic representation of the CCR over H, and define a map
M : H- B(K) by
b MCh) = V* WlhlV .
Then M is called the generating funeticn aof (W,V).
The following theorem, which is simply a 'projective version' of the

Naimark-Sz.-Nagy representation theorem for groups, provides a characterization

of generating functions:

/.3 THEOREM  Let H, K be Hilbert spaces, and M a map from H into B(K).
Then there exists a K-cyclic representation (W,V) having M as Lts generating

function if and only if the kernel
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h, k= Mk - h) w(k, h) (7.9)
is positive-definite on H x H, In this case (W,V) is uniquely determined up to

unitary equivalence; the representation W is non-singular if and only if the
map ¢+ Mlh + tk) Ts weakly continuous on R for all h, k in H.
Proof: Let M be the generating function of a K-cyclic representation, (W,V):
then
Mk - h) wlk, h) = V*W(h)* W(K) V,
and so (7.9) is a positive-definite kernel.' Conversely, suppose the kernel
(7.9) is positive-~definite with 8 minimal Kolmogorov decompasition V(+), so that
VIR)*VIK) = Mk - h) w(k, h)

for all h, k in H, Then, for all h, h', h" in H, we have

V(h + hM* V(ht + h™) w(h', b wolh, nM

—_—

MCh® = h) wlh + h", h' + h") w(h!, h") wlh, h")

n

1

M(h' - h) w(h!, h),

n

VIhI* v(h!),
Thus, by the unigueness of the minimal Kolmogorov decomposition, there exists a
well-defTined unitary W{h") such that
W(h) V(h) = V(h + h") wlh, h").

It is readily seen that W is a representation of the CCR over H, with cyclic map
V = V(o], such that M is the generating function of (W,Vv), The remainder of the
proof is clear.

Thus we see that the Fock representation of the CCR is determined by the
generating functional

he < Wih) 2, @ > = expl- || ]| 2 /4) . (7.10)

More generally, we have:

7.9 THEOREM For each X 2 1 there exists a cyclic representation W, of the

CCR over H, acting on a Hilbert space FA[H}’ with eyelic vector QA’ and gener-
ating functional W, given by
My (h) = exp( - x || nl| 2 /4). (7.11)

The representation W, is irreducible.
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Briogf: We can check directly that My is positive-definite, and then apply
Theorem 7.9, Alternatively, we can write down a cyclic representation NA
having (7.11) as generating functional. We choose the second approach. Let J
be a conjugation on H (that is, an antilinear map satisfying J2 = 1 and

< Jh,Jh'> = < h!',h > for all h, h! in HJ, Given A =2 1, choose o,B = 0 such

that a2 + B2 = ), a2 - BZ = 1, and put

NA[H) = W(ah) @ W(RJIh). (7.12)
Then wl. defined con

FA[H) = F(H) e F(H),
is a cyclic representation of the CCR with cyclic vector Q. = 0 @ Q. An easy

calculation shows that
<Wth) @, e > =expl - |[n] 2 /4.

To show that wA is an irreducible representation for each A > 1, it is
enough (by a tensor product argument) to show this for the case where H is a one-
dimensional Hilbert space, which we identify with € or R 2, In this case,
consider the Schradinger representation of the CCR over €, defined on L?(R ) as
follows:

. eix[23+y]/2

(Wix,ylg)(s) gls + y) (7.13)

for g in L2(R). One verifies that this defines a representation of the CCR

b e . -1 _-s?/2,
over £; moreover, by considering the cyclic vector Q(s) = 7 * g . one can
see that the Schrgdinger representation has the same generating functional (7.10)
as the Fock representation; so that the representations are upitarily equivalent.

We show that the Schrgdinger representation (7.13) on L2[(R ) is irreducible;

ﬂﬂuﬁlmilﬁﬁwﬁfgﬁﬁgﬁfwﬁfirwéﬁOthhathﬁhmgiuemwbwa%?¢2%r*Ts”éﬁﬁi??ﬁﬁUcih%eunap;g;

Let T be an element of W(C)', where W is the Schradinger representation
(7.13). Then, in particular, T commutes with W(x,0) for all x in R . But

W(x,0) is multiplication by the functicn s » g™

S; a8 density argument shows that
T commutes with multiplication by an arbitrary bounded measurable function. In

other words, T is in the commutant of Lm[]?). But Lm[I?] is a maximal abelian
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von-Neumann algebra (§0.3); hence T is itself a multiplication operator. More-
over, T commutes with W(o,y) for all y in R. But W(o,y) is a translation
operator, and so T must be multiplication by a constant function; hence the

Schrodinger representation is irreducible.
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8. REPRESENTATIONS OF THE CANONICAL ANTI-COMMUTATION RELATIONS

In chapter 7 we studied the CCR field operators R(h) through their

; iR(h) , . y ;
exponentials W(h) = e . This was done for technical convenience, since the
R{h) are necessarily unbounded. Nevertheless, this procedure carries a bonus:
the generating functions are very useful in computations. In this chapter we
turn to canonical anti-commutation relations,where the situation is very differ-
ent; the field operators are necessarily bounded, and there is no useful
analogue of a generating function, However, there is an associated projective

representation of a discrete group (Theorem 8.6) which will prove useful in

chapter 9.

8.]- DEFEPQTTIONS Let H be a Hilbert space. A representation of the
canonteal anti-commutation relations over H is a conjugate linear map a from H
into the bounded linear operators on some Hilbert space, which satisfies the
canonical anti-commutation relations (CAR):

alfl* alg) + alg) alfl* = < £, g > 1, (8.1}

al(f) alg) + alg) a(f) = 0, (8.2)

for all f, g in H. The norm closure of the linear span of the monomials in
{alh) : h e H} and {a(h)* : h € H} is a C*-algebra denoted by A(H). As a Banach
space, A(H]) is linearly generated by the Wick monomials

alh,¥J* ... alh )* a(h ] ... alh ),
i | n n

n+1 +m

s

with h1, W a1 in H, or alternatively, by the anti-Wick monomials

n+m

alh,) ... alh ) alh J* «.. alh I* .,
1 n n n

# +m

8.2 REMARKS It follows from (8.1) that || alh)|| < | hl] . since
alh)a(h)* 2 0 so that alh)*a(h) < || h|| 2. Cconsequently, h ™ a(h) is automati-
cally continuous. Moreover, if {Fn} l1s an orthonormal basis for H, we have
alh) = Z <fn,h> a(fn] in the sense of norm convergence, so that a(h) can be

recovered from the a - where a = a[fnJ. (For notational convenience, we assume

that H is separable, but this is not necessary.) Trivial computations yield:

8,3 LEMMA Let {an}:=1 satisfy the discrete version of the CAR:
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anam* + am"an = 5nm " (8.3)
8n8n * SECI 0. (8.4)

For cach n > 0, put
U2n_1 = i[a; P an], UZn = a; *a (8.58)

2 ; 5 5 . ,
then {Un} N1 .18 a sequence of unitartes satisfying
n:

u u +u u = 26 1. (8.8)
n o m m on mn

Conversely, if {Un}qu 15 a sequence of unitaries satisfying (8.8), then the
n= .

sequence {a_ = 3(U, + 1 U, ) :n =1, ..., N} satisfies the relations (8.3)

and (8.4).

Before going further, we look at an example: the Fock representation of

the CAR.

8.4 ExAMPLE Let f, hq, «+., h_be elements of a Hilbert space H. Let

n
L = tin{h,, «.., h_ } and put f = £, + f_ , where ¥, is in L and ¥_. in Ll. Then
1 n 9 2 1 2
A ¥ R = s ]
T h1 A hn fz A h1 A A hn

and so, by considering determinants,

fangaoan 2=l £[2llh, ... 4 h 2 < [l £l]2 [l n, & oo an |2

Thus there is a well-defined linear map, denoted by a(f);, from Hi to Hi*1 such
that
alfl* (h, A ... Ah)=TAh, A ... Ah , (8.7)
n 1 n 1 n
and

* S i u
faterrll < [ £
Hence we can define a bounded linear operator a(f)* : F(H) = F(H) which extends
the family {a[F]B}. Now let f be a unit vector in H, and put M = {f}*.  Then
a(F]; mans N: (regarded as a subspace of Hi) isometrically aonto f A H: and

a

annihiiates f A Hi_ . the orthogonal complement of Mi inH .  Thus, alf)*

1
a . . a a - a a

maps F (M) isometrically onto F (H) ® F (M) and annihilates F (H) ® F (M). That

is, al(fl*alf) + alflal(f)* = 1, or more generally, a(f)*al(f) + a(flalf)* = <F,f>1,

for all f in H. So by polarization

al(f)*alg) + algla(f)* = < ¥, g > 1
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for all f, g in H. We also have
alflalg)l + alglalf) = O
for all f, g in H, since f A g + g A f = (f +g)l A(f+g)=0. The represen-

tation of the CAR determined by (8.7) is called the Fock representation.

8.5 'THE(H?EM The Fock representation of the CAR is irreducible.
Proof: Consider the state u (called the Fock state) on the algebra A(H) given
by the cyclic Fock vacuum vector @ : u(x) = < xQ, © >, The Fock vacuum vector
2 is annihilated by every Wick monomial except the identity. Thus, if p
is any state on A(H) with p £ y,we have p(x*x) < leﬂllz = 0 for every Wick
monomial except the identity. Thus, by the Schwarz inequality, p annihilates
every Wick monomial except the identity, and so clearly p = u, and so § is a
pure state.

Finally, we show how to transform a representation of the CAR so that it

looks like a representation of the CCR.

8;6 ‘ﬁiEOREP1 Let H be a Hilbert space, let a be a representation of the
CAR over H, and let A(H) be the C*-algebra generated by a. Then there exists

a projective representation of the group %FZZZ , Wwhere N = dim H, which also
generates Al{H]. 1

Proof: For notational convenience we will assume that H is separable, but this

is not necessary. Let {hn :n =1, ..., N} be an orthonormal basis for h, and

put B, ® a(hn]. Then, by Lemma 8.3, there is a sequence {Un} of unitaries which

ZN
determine the an. It g = {gn : h=1, ..., N} is'an element of G = ® 222 ,
1
g, - 0 unless n is in a finite set of which g, = 1; define U for g in G by
g
2N Bp
U = 1 U
E n=1 n . (8.8)
Then we nave
u u = blg, g’ U . 8.
g gl g g g+gr [ 9]

where b 1s a multiplier taking values *1, Thus A(H) is generated by the pro-

Jective representation (8.8) of the discrete group G.
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9.  SLAWNY'S THEOREM
In this chapter we study projective representations of groups, in order
to prove that two representations of the CCR (or of the CAR) over & fixed Hilbert

space generate isomorphic C*-algebras.

9.1 DEFINITIONS Consider a locally compact abelian group G with continuous
multiplier b. Throughout this chapter, we will restrict attention to strongly
continuous b—fepresentations. This will.involve no loss of generality, since
in applications the group G is.given the discrete topology. Let B be the map
from G into the unitary operators on LZ(G) given by

[B(g)fl(g") = blg!, g) flg! + gl.
Then B is a strongly continuous b-representation called the b-regular represen—
tation. It is unitary, because the inner product on L2(G) is taken with respect
to Haar measure on G, which is translationally invariant. The regular represen—
tation R of G 1s the b-regular representation in the particular case in which

al= , =2} = 1.

9,2 LEMMA Let G be «a locally compact abelian group, and b a continuous
multiplier for G. Let U be a strongly continuous b-representation for G on a
Hilbert space H. Then the b-representations R ® U and B 1, are unitarily
equivalent, where R is the regular representation; and B the b-regular represen-
tation.

Proof: Identify L2(G) ® H with L2(G;H), as in §0.5. Define the unitary
operator A on L2(G;H) by (Af)l(g) = Ugf[g]; then a straightforward computation

yields

Ae(ReU) = (Bs 1H} ° A.

9.3 DEFINITION Let G be a locally compact abelian group; then the space
G of continuous characters on G can be endowed with the structure of a locally
compact abelian group. The Fourter transform is the unitary map f + F of
Lz(Gltonto L2(8), which on L) a L2 is given by

Foo = [ f6) @) dg .
G
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where dg is Haar measure on G. The Fourier transform implements a unitary
equivalence between the regular representation R of G on L2(G) and the represen-
tations R of G on L2(6) given by

(%g R (x) = x(g) h(x)

for all yx in G.

9.4 LEMMA Let G be a locally compact abelian group, and b a continuous
multiplier for G.  Then the C*-algebra generated by the b-representation ReuU
and the C*-algebra generated by the b-regular representation B are igomorphic,

Proof: The representations B and B @ 1H generate isomorphic C*-algebras; thus

the result follows from the remarks following Definition 8.3 and from Lemma 9.2,

since uniterily equivalent representations generate isomorphic C*-algebras.

9.5 DEFINITION Let G be a locally compact abelian group, and b a continuous
multiplier for G. Then there is a cenonical homomorphism ¥ from G into 8,
called the natural map, given by

X () = blg, h) beh, .

-~
Y. LEMMA Suppose that the natural map x : G + G is injective; then x(G)
is dense in G.
Proof: Put H = x(G); then (" = e/H° , where H® is the annihilator in G of H

~

(or of its closure H). But HD = {0}, sirce ¥ is injective, and so H = G.

9,7 LEMMA Let G be a locally compact abelian group, and let b be a con-
tinuous multiplier for G, such that the assoeiated natural map of G into G 45
injective.  Let U be a strongly continuous b-representation of G; then the
C*-algebra generated by U is isomorphic to the C*-algebra gemerated by R e u.
Proof: wWe will show that there is an isomorphism of the C*-algebra genarated by
R ® U onto the C*-algebra generated by U such that If[g][ﬁ ® Ulg = Ef[g) Ug »

for each function f on G with finite support. The problem is to show that this

map 1s well-defined, We have
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1) f[g)(a e || = ess sup | z flg) xtgd U || .
E X E,é g

., by Lemma 9.6,

58 sup [I 2 f[g]Xh(g) Ug |

heG

= eﬁs sup || ) flg) Uh Ug U; || , since U is a
e G :
b-representation,

= ess sup || U_ () flg) U) u* .|

heG h g h
= fFlg) U .

2 e u, i

Putting together the conclusions of Lemmas 9.4 and S.7, we have:

9.8 THEOREM  Let G be a Locally compact abelian group, and b a continuous

ey

multiplier for G such that the associated natural map x : G + G is injective.
Let u' and U2 be strongly continuous b-representations of G, and let Al and A%
be the C*-algebras which they generate. Then there exists a unique isomorphism
g from Al onto A% such that B[U;J = Uz

We now apply Theorem 8.8 to the case in which G is a Hilbert space H; we

give it the discrete topology in order to make it locally compact.

9.9 ExaMPLE Take G to be a Hilbert space H endowed with the discrete
topology, and define b + H x H - T by
blg, hl = exp(di Im < g,h >/2) .

Then b is a multiplier; the associsted natural map h » Xp of G into G is given

by
X}, (g) = exp(i Im < h,g >),

and 1s clearly injective. Thus from Theorem 9.8 we have

9,10 THEOREM Let H be a Hilbert space, and let u' and W be representations

of the CCR over H; let NQ[HE and NZ(H] be the C*-algebras which they generate,

Then there extists a (necessarily unique) tsomorphism B : wq(H] - w2(H] such that
Blw' (N1 = W2 (h)

for each h in H.

' 2N
9,11 ExAMPLE Take G to bc @ Z, and b to be the multiplier defined in (8.9).
1
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Y h.g.
Then the natural map h & x, is given by Xh{g) = (- 1i=j ~ J , and this is

injective. Thus from Theorem 9.8 we have:

9.12 THEOREM  Let H be a Hilbert space and let 5! and a2 be representations

of the CAR over H; let A1[H) and AQ{HJ be the C*~-algebras which they generate.

Then there exists a (necessarily unique} tsomorphism 8 : Aq[HJ i AZ(H} such that
Bla (h)] = a°(h)

for each h in H,
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10,  COMPLETELY POSITIVE MAPS ON THE CCR ALGEBRA

Now that we have completed the construction of the C*-algebras of the
CCR and CAR over & Hilbert space H, we turn to the study of their morbhisms, the
completely positive maps. In particular, we investigate those morphisms, known
as quasi-free maps, which are induced by morphisms of the Hilbert space H. In
this chapter we treat the CCR algebra W(H).

The following simple fact will prove to be useful:

18.1 THEOREM  Let H be a Hilbert gpace, B a C*-algebra, and M a map jfrom
H into B.  Then there exists a completely positive map T : W(H) - B such that
T(W(h)) = M(h) for all h in H, if and only if the fblloﬁing kernel is positive-—
definite on H x H:
h, k+# Mk ~ h) wlk, h).

Proof:  The result follows from Theorems 7.8 and 9.10. Alternatively, noting
that W(H) is the closed linear span of the unitaries {W(h) : h € H}, one can
argue as in §2.

The following is the most general result on quasi-free completely positive

maps which we will need:

10.2 THEOREM Let R, K be Hilbert spaces, A a linear map from Y into K,
and ¥ a map from H into €. Then there exists a completely postitive map
T ¢ W(H) + W(K) such that
TCW(R)] = W(AR) f(h)
for all h in H, if and only if the following kernel is positive-definite on
H = H:

h, k= fl(k - h) wlk, h}
wlAk, Ah)

(10.1)

Proof: Define M : H =+ W(K) by M(h) = W(AhJf(h). Then for &ll h, k in H, we
have

M(k - hlw(k, h) = W(ARI*W(AK) f(k - hlulk, h)/ w(Ak, AR].
Thus if the kernel (10.1) is positive-definite then so is the kernel

h, k+» M(k -~ hlwlk, h), and the existence of the required completely positive
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map T is a consequence of Theorem 10.1. Conversely, if the kernel h, k&
M(k - hlwlk, h) is positive-definite, it has a Kolmogorov decomposition V(.),
so that

flk - h) _wlk, h) = WIAR) V(h)* V(K) W(AK)*,
w(Ak, AR)

and the result follows.
In Theorem 7.9 we noted that for each Hilbert space H, and each A =z 1,

there exists a cyclic representation (WA, QA} of the CCR over H, with generating

functional Wy given by

uy(h) = < W (h) 2. 8, > =exp {- 2 [l nll 2 74},

(The Fock generating functional is got by putting A = 1.) The representation

A

concrete C*-algebra generated by the representation W

W, acts on the space FA(H] and is irreducible. We will denote by WA{HJ the

2" Since

”A(h ® k) = uk(h)ukfk], it follows that we can identify F,(H ® K) with

A
FA(H] ® FA[K]' and WA(h ® k) with wk(h] ® WA[k], and hence wl(H @ K} with the
spatial C*-tensor product (§0.5), written NA[H) ® WA[K]’ which is the C*-algebra

generated by the algebraic tensor product WR(H) ® wA[K].

10.3 THEOREM Let A 2 1 be fized. Let H, K be Hilbert spaces; for each
contraction T + H + K there is a completely positive map wl[T] : wA[H] - NA(K]

of C*-algebras such that

A
==zl 2 - Tl )
W, (TIDW, ()T = W,y (Th) e (10.2)

for all h in H.  Moreover, W

A

A 18 functorial:

W, (ST) = WA(S]WA(T], WA[1) = 1.

It has the additional properties:
wA[S ®T) =W, (s) ®ullT],
W, (0] is the state determined by My
Proof: We apply Theorem 10.1, checking that the kernel which appears is posi-
tive-definite, to prove that WX[T) is conpletely positive. The rest of the

proof is stroightforward.
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10.4 COROLLARY The\generating functional yw. is invariant under WA[T) for

A
each contraction T,

Proof: For each contraction T : H + K we have

My ° NA[TJ = WA[G)WA(T] = wl[O.T] = WA[D) = |

10.5 REMARK In the case in which X = 1 (the Fock representation), there is
a connection between the functor W and the Fock functor F. To see this, recall
that to each contraction T : H =+ K there corresponds a contraction

F(T) : F(H) + F(K) such that

F(T) W(R) @ = F(T) C(h)
- F(T) Explz iny o I DIIZ/4
- Exp(2 i o 110l 2/4
= ooty o LRI = I TR 234
- with) o o UInll 2 - Al TRl[ 2ha

But we have seen that there is a completely positive map W(T) such that

_ 2 . 2
WT) W3 = werhy o LRl I ]l 2374
Thus, for all h in H, we have
FOT) WiH) @ = WIT) [W(h)l & .

There is an analagous contraction FA(T} in the general case in which A 2 1:

10.6 THEOREM Let A 2z 1 be fiwed, Let H, K be Hilbert spaces; for each

contraction T : H + K there 18 a contraetion FX[T] : FA(H] - FA[K] such that

A
Y R RIS ,
FA(T) Wl(h) Q = wAETh] ﬂl [ (10.,3)

for all h in H. Moreover, Fy ig functorial:

Fl[ST] = FA[S] FA(T]’ FA[1J =1,
It has the additional properties:
FA(T]‘ = FA(T‘]'

FA[S*BT} = FA[S] e F.(T],

A

FA(Dl is the projection on the vacuwn.



57

Proof:  For each x in NA(H} we have

[IwA[T] [x] QAIIZ = < W T) Ix*) W, (T) [x] . 0, >

< < NA(T) [x*x] QA’ QA > by the Schwarz inequality
(Theorem 1.14)

< xX*x Q., Q. > by the invariance of p

A A A
(Corollary 10.4)

1t

2
FENES
Hence there is a well-defined contraction FA[T) : FA[H] -+ FA[K) such that
FA(TJEX QA] = W, (T) [x] @, for all x in wl[H}. The only remaining assertion
which is not immediately apparent is that FA(T*] = FA[TJ*. This can.be verified

3 *

by calculating < FA[TJ Wl[hl QA’ WA[KJ QA > and < Wl[h] QA’FA[T ) wl[kJ QA 2 3
using the definitions.

Thus we have a functor wA from the category of Hilbert spaces and con-
tractions to the category of unital C*-algebras and completely positive identily-

preserving maps, and a functor FA on the category of Hilbert spaces and contrac-

tions; the functors wl and FA are related by the following result:

107 THEOREM Let A 2 1 be fized. Let T : H > K be a contraction; then
the map
X H WA(TJ Eail = FA(TJ X FA(TJ*

A(T][-JFA(T]*

from wA[HJ into B[FA(KJ] is completely positive. We have WA(T] = F
if and only if T <s a co-isometry. Moreover, we have

pA{wA(TJ [x] y) = (. WA{T*J Lyl

by
- » 1 -
for all x in W, (H) and y in W, (KD
Proof: Suppose NA[T) = FAfTJ(') F)(TJ’: then, by evaluating at the identity, we
see that FA(TT‘] = FA{T] FA[T]' =1, and so TT* = 1. Conversely, if TT* = 1, we
can shcow that WA(T} = FA[T)['} FA(T*] by using (10.2) and (10.3) to evaluate
NA(T)[WA{h]] WAIKJ QA and FA[TJ WA[h} FA(T} NA[k] QA for all h, k in H. Now
let T : H =+ K be a contraction; then there exists a Hilbert space L and isomet-

ries V1 : - L and V2 ¢ K+ L such that T = Vé V, « Then we have the following

1
Stinespring decomposition for WA{T]:
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1

WA[T] = w}\[V2 V1] = wA[VZJ WA[Vql

. (10.4)
FA[VZJ* [WA[Vql[ 1) FA{VZIJ

since VE is a co-isometry. Moreover, we have FA[T) = FA[VZJ*FA[V1); thus it is
enougb to prove that WA[T] - FA(T}['] FA(T]* is completely positive when T is an
isometry. An isometry can be factored into a unitary and an injection, and so
it is enough to consider the case in which T is the canonical injection
T :H-=H®H! for some Hilbert space H',. In this case we have NA(TJ[x]=:<®1.
for each element x of NA[H]' where 1 is the identity on FA(H’J. On the other
hand, we have FX(T] E=E ®Q, far each £ in FA(H]’ where £ is the vacuum vector
in FltH}]. Thus we have

x b W, (T) [x] - F, (T} x F,(T)* = x ® (1 - el,
where e is the projection on @, and the map x b x @ (1 - e) is completely
positive.

Finally, for all x in NA(H) and y in WA[K)’ we have

ul(WA[TT [x] y) < WXETJ Exd y QA: QA >

= *
< yQA'.wA[T] [x*] QA >

= <yQ, F (T) x* o, >

AT A A

Q. >

= *
< X FA(T )y QA‘ A

= ul[x NX[T*] Cy1) .

10_8 REMARK In the course of the proof we obtained a Stinespring decom-

position (10.4) for NA(T}: if we identify H with a subspace of L, we have
NA(T] [x] = FA[VZ]*[X ® 1) F,(V,)

for ail x in wA[HJ. and so WA(T] has an ultraweak extension to a completely

po;itive map on B[FA[HJ) (which 1is, in fact, NA(HI" since the representation W,

is irreducible, by Theorem 7.8). Thus the ultraweak extension

WA[TJ : B[FA(H]] -+ B(FA(K]) is unique.

10.9 FEMARK  We have constructed a C*-algebra WA(H] ® NA(K] by taking the

spatial tensor product. It is interesting to note that the CCR-algebra is
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nuclear: given any C*-algebra B there is a unique way of completing the

*-algebra W(H) @ B to get a C*~algebra.

10,10 THEOREM For any Hilbert space H, the CCR algebra W(H) s nuelear.
Proof:  Showing that W(H) is nuclear is equivalent (see Effros (1977)) to
showing that the weak closure of the CCR algebra in any representation is injec-
tive (that is, given any representation W of the CCR, there is a projection of
norm one of B[Hw] onto W(H)"). But a von Neumann algebra is injective if and
only if its commutant is injective (see Effros (1977)). Thus, given any repre-
sentation W of the CCR, we seek a projection of norm one from B[HWJ onto W(H) ',
If h is an element of H, let a(h) denote the automorphism of B[Hw] given by

alh) x = W(R)*x W(h)
for all x in B(le. Then o is & representation of the abelian group H on
B[Hw}; but any abelian ETOUp is amenable (see Greenleaf (1968)), sao there exists
an invariant mean M for H. Then N = Mlal+«)] is & projection from B(HWJ onto
the fixed point algebra of a, namely W(H)’. Thus W(H) ' is injective, and the

result follows.

10.11 REMARK The CAR algebra A(H) is nuclear. T H is a finite-dimen-
sional Hilbert space, say of dimension n, then A{H) can be ddentified with the
full métrix algebra M n[E]. It follows that, for any infinite-dimensional

Hilbert space H, the SAR algebra A(H) is uniformly hyperfinite (that is, it is

an inductive limit of full matrix aigebras), and hence is nuclear (see Effros

(19771}).
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11, COMPLETELY POSITIVE MAPS ON THE CAR ALGEBRA
The results on quasi-free completely positive maps on the CAR are not as
extensive as those on the CCR algebra, because of the lack of any useful analopue

of the generating functional. However, we have the following analogue of

Theorem 10. 3:

11:1 THEOREM  Zet T : H » K be a contraction between Hilbert spaces; then
there exists a completely positive map A(T) : A(H) + A(K), whose action on Wick
monomials is given by

a(hq)* ‘e a(hm)*a(hm+1} R a(hm+n1

(11.1)

H'a[Thql* oo alTh Y*alTh ] ... alTh ].
m m m

+1 +n
Moreover, A is functorial:
A(ST) = A(S) A(T), A(1) = 1.
We have the additional property:
A(D) is the Fock state.
Proof: First, let T : H =~ K be an isometry; then the map h = a(Th) is a
representation of the CAR. Hence there is a faithful homomorphism
A(T) : A(H) + A(K) such that A(T) [a(h)] = a(Th).
Next, let T : H > K be a co-isometry. Consider the completely positive
map of A(H) into A(K) given, in the Fock representation, hy
X+ FIT) x F(T)* ;
direct calculation on a total set of vectors in Fock space shows that, on Wick

monomials, we have

FLT] afh1}* cen a[hm+nJ FIT)* = a{Th1J* e a[Thm+n] .

Finally, let T : H = K be a contraction; then there exists a Hilbert

space L. and isometries V1 : H -+ L, V2 : K= L such that T = Vévq. Put

A(T) [x] = F(VZJ* A[V1) [x] F(V2] (11.2)

for all x in A(H); then A(T) is a completely positive map whose action on Wick

monamnials is given by (11.1), The remaining assertions Tollow from this.

11.2 RELUU%K The relation between the functors A and W can be seen
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formally as follows: we have

Nt

= o
Wi exp O]l h]| 2741 = exp [i 2 % alh)*] exp [i 277 alh)].

The right-hand side is a sum of Wick monomials and, applying the rule of the A-
functor to them, we have

Wity w with) o - LRIl 2 - 1 TRl 2) ,

as for the W-functor.

In the Fock representation the functors A and F are related as follows:

11.3 THEOREM For each contraction T : H =+ K between Hilbert spaces we
have

F(T) x @ AlT) [x] Q

n

u

for all x in A(H).  We have A(T) = F(T)(-)F(T)* Zif and only if T is a co—
isometry, and A(H) is a homomorphism if and only if T is an tsometry. Moreover,
for the Fock state w we have

ulAC(T) [x] y) = pix A(TY [yl )
for all x in A(H) and y in A(K).

Proof: As for Theorem 10.7.



62

12 DiLATIONS OF QUASI-FREE DYNAMICAL SEMI-GROUPS

We now use the Hilbert space dilation theory which we described in
Chapter 3, together with the quasi-free caompletely positive maps.constructed in
Chapters 11 and 12, to obtain examples of dilations of dynamical semi~groups at

the C*-algebraic level.

12.1 EXAMPLE Let {Tt ¢ t 2 0} be a strongly continuous semi-group of
contractions on a Hilbert space H. Then, by Theorem 3.2, there is an isometric
embedding V of H into another Hilbert space K, on which there is & semi-group
{Ut t t 2 0} of unitaries such that

= *
Tt Vv UtV ,» £t 20,

Hence, for each XA =2 1, there is a strongly continuous semigroup {wk(Tt} : t 2 0}
of completely positive maps on WA[H) such that
- *
wl[Tt] NA(V ) wltut] NA[V), tz20.
Now NA{V] is an embedding of W(H) as a C*-subalgebra of W(K), and wA(v*] is a
conditional expectation of W(K) onto W(H). Furthermore,
= L] *
wltut) FA(Ut] L) FA[Ut]
is a unitarily implemented group of automorphisms of WA[KJ. If we identify i
as a subspace of K, we have
= ! *
W (1) [x] = (17e HI Ryl xe 1) FiUI*), t 20,
for all x in WA[H)' In particular, we have

A o
-2l - fnll 2

»

WA(Tt}[wlth]] = wA(Tth)
t 2 0, for all h in H.

12.2 ExampLE Let {Tt i t 20} be a semi-group of isometries on a Hilbert
space H. Then, by Thearem 3,1, we have the stronger dilation
VTt = UtV » t=z20.
In this case, at the C*-algebraic level we have
wA[VJ wA(Tt] = WA(Ut] wA(V), t =z 0; (12.1)

identifying H as a subspace of K, we have

wA[Tt] [x] ® 1 = FA[Ut)(x ® 11F1(ut}', tzo0,
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for all x in WA(H]. This is a very strong form of dilation: 1t transforms the
semi-group of homomorphisms {wA[Tt] : t 2 0} into the unitarily implemented

group of automorphisms {Wl(Ut] t:te R},

125 EXAMPLE Let {Tt : t = 0} be a semi-group of contractions on a Hilbert
space H, such that there is an isometric embedding V of H into a Hilbert space K

on which there is-a strongly continuous semi-group of isometries {Gt : t 2 0}

and
- *
VTt Gt vV, t=z20,
(In Chapter 16 we will show that such a co-isometric dilation exists for certailn
semi-groups.) For the CCR algebra, we have the follawing interesting isometric
representation:
= * . .
W, IVY W, (T, Fy (6™ W, (V) [-] F,(6) , € =2 0;
identifying H with a subspace of K, this gives

wl(Tt] [x] @1 = FA[Gt}* wA[V] [x] FA[Gt)’ t =0,
for all x in NA{H}.

Analagous results hold for the CAR algebra. In the remalning chapters
we will be concerned with finding dilations of more general dynamical semi-groups
on operator algebras. We nolice, by using a crossed-product construction, that
a dilation of the type (12.1) exists trivially for any semi-group of homomorph-
isms. In the C*-algebra case, this method gives a dilation of a family af com-

pletely positive maps - the subject of the next chapter.
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13,  DILATIONS OF COMPLETELY POSITIVE MAPS ON C*-ALGEBRAS

In Chapter 12 we gave some examples of dilations in a C*-algebraic
setting. We now take a more abstract approach. We show that a family of
completely positive maps on a C*-algebra can be dilated te a group of C*-auto-

morphisms on a larger C*-algebra.

I8 4 THEOREM Let A be a unital C*-algebra of operators on a Hilbert space
H; let {Tg : g € G} be a family of completely positive maps Tg : A =+ A,indexed
by the elements of a locally compact group G, and strongly continuous in the
sense that g v Tg[x] E 18 norm continuous for all x in A and £ Zn H. Suppose
that T = 1 and Tg(ﬁ] =1 for all g in G. Then there exists a C*-algebra B on
a Hilbert space K, a strongly continuous unitary representation U of G on K such
that UgBU*g = B for all g in G, an isometric *—homomorphism i : A + B, and a
conditional expectation N of B onto A such that
Tg[x] = N(Ug ilx] Ué)
for all g in G and x in A.
Proof: Let H' = L?(G;H), and define a completely positive map T : A » B(H') by
(T [x] F)(g) = Tg [x] flg) .
et U" be the strongly continuous unitary representation of G on H', defined by
[Ué f)(h) = f(hg), and let A' be the C*-algebra generated by T(A) and U'(G)].
Let {fl} be an Lz-aﬁproximate identity on G; for each A, define an isometric

embedding V. : H ~ H' by

A
[VA El(g) = ?A(gl E.

Then lim V; a VA exists in the weak operator topology for all a in A', and
A+ e

1im Vi Ut Tixd u'= Wy =T [x].
X o w5 24 23 g

Since T is completely positive, there exists a representation i of A on a Hilbert

space K; and an isometry V : H'" -+ K, such that T [x] = v=i [x]V for all x in A,

and i is faithful since

N— .
1im VA v* 1 [x] VVA X
A+ oo

for all x in A. . Let Ug be the strongly contlnuous unitary representation of G
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on K defined by

'U:VU[V*“"IJ"VV*
g g

for all g in G. Let B be the C*-subalgebra of B(H) generated by the set

{Ug T [ad Ué : gecG, xe Al. Then we have V*BV ¢ A'; thus, for each x in B,

0

the 1imit N(x) lim V; Vo x VV1 exists in the weak operator topology, and

A e
T [x] = N(U i [x] U*)
g g g

for all x in A and g in G.
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14,  GENERATORS OF DYNAMICAL SEMIGROUPS

In this chapter we examine the generators of norm-continuous one-
parameter semigroups of positive maps and, in particular, of completely positive
maps on C*-algebras. We sharpen the well-known result for reversible process:
derivations generate automorphism groups.

Recall that a derivation on an algebra A is a map L, whose domain D(L)
is a subalgebra of A, such that

L{ab)

L(alb + alL(b)

for all a, b in A.

v

4.1 THEOREM Let {etL 1 t 2 0} be a strongly continuous semigroup on a
Banach algebra A,  Then gtk for each t 2 0 s a homomorphism if and only if L
t5 a derivation.

Proof: Let L be a derivation, let %, y be elements of D(L), and put

Fikl = 2 lnyl » 8" lely = 8 8 0yi; B 2 6

then t+ f(t) is continuously differentiable,

v

FICE] = LA CURYD » L B td) 8 lyd ~ et rx) Lot lyl. % 5 T,

and for h in D(L) we have

EL— e[t—s]L[h] _ E[t-—s]L Ly, 0% &5 %
ds
Thus we have
£ree) - etleco) - ft% (et 8L £(e)7 s
& 8
= - ft g EEAL Lf(s)ds + ft et gy ds
[s] 8]
= ft e[t“SJL {L [ESL(X] eSL[y}] - [LESL[xJ] ESLy
(=]

- ESLEX) [ eSL(y]]} ds
0, since L is a derivation.

Thus if f(t) is identically zero, we have

etL[xy] = etL(x] etL[y], t 20,
for all x, y in D(L). The result follows, since D(L) is dense in A. The proof

of the converse is trivial.
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Next we need analagous results for the generators of positive semigroups
on C*-algebras, First recall that if S is a set of states on a C*-algebra A,
then S 1s said to be full if f(x) 2 0 for all f in S implies that x = D whenevar
x is a self-adjoint element of A. Moreover, if f belongs to S implies that
y B flx*yx]/f(x*x) belongs to S for all x in A such that f(x*x) = 0, then f is

said to be thnvartant.

L THEOREM Let L be a bounded self-adjoint Linear map on a unital C*-
algebra A,  Then the following conditions are equivalent:
1. e 48 positive for all positive t.
2 -7 s positive for all sufficiently large positive A,
3. IfyctsinA_, then ya = 0 implies a*Lly)a 2 O.
4.  For some full, invariant set of states S: if f ©s in S and y is in By

then fly) = 0 implies f(L(y)) = 0.
B L(x2) + xL(1)x 2 L{x)x + xL(x) for all self-adjoint x in A.
6. LO1) + u*L{Tu 2 Llu™)u + u*L(u). for all unitary u in A.
Proof: 4, = 3, let S be a full, invariant set of states satisfying 4.; 1let
y in A_ and a in A be such that ya = G. Then f(a*y a) = 0 for all f in S.
Hence, by 4. and the invariance of S, we have f(a*L(y)a)l > 0 for all f in S, and
so a*L(yla 2 0 since S is full,

1

3. = 2. Let X be greater than IIL[I. In order to show that (A - L) ' = 0,

it 1s enough to show that x 2 0 whenever x is self-adjoint and (A - L)x = O

+ + - -
Let x = x =~ x with x and x positive and x+x = 0, Then, by 3., we have
x—L[x+]x_ =z 0, so that

0<x [1-2 N7 x

= X x x = A~1x"L[xJ X
= = 0% - AT XL )T e T L)+
Thus © = (x )3 < A_1x—L[x"] x , and so [Ix_||3 g 1-1 | L] ||x_1[|3 ,
since || a|] = || b]| whenever 0 < a < b. Hence x_ = 0, since A o]l < 1.
2. = 1. We have etL =  lim (1 - % L
n -+ o

{3
1. = 5. Let K = - L{1)/2, and put L"(x) = Kx + xK. Then e'" (x] = etfy o
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tL" .
so that {e i t € R} is a group of positive maps. Applying the Lie-Trotter

t !
formula to L' = L + L', we have e‘L 2 0 for all t =z O. Using Kadison's

!
Schwarz ineguality {(Corollary 4.4) and the fact that etL (1) = 1, we have

I
etL (x2) 2 [etL

!
(x)]2 for t = 0. Differentiating at t = 0, we have
L7(x2) 2 LY(x)x + xL'(x) for all self-adjoint x in A, and so the result-follows

on substituting L' = L + L.

M=

5. = 4. Let y be in A_, f in AT with flyl = 0. Then ?[y%z] = flzy®) = 0
for all z in A, by the Schwarz inequality. Hence

Liy} + y% L[1]y% = L[y%]yé + y% L(y%]
implies that f(L(yl)) =z O.
1.¢<=> B. By the reduction employed above, it is enough to prove this when
.{1) = 0.

1. => 6.  Since & = i mnd etL(1] = 1 for all t =2 0, we have IIBtLlI:

1 for
tL . ; ;

all t =2 0. Thus || e {u]I]£ 1 for all unitaries u in A and all t = 0. Hence

etL(u*) etL[u] < 1 for all t = 0; differentiating this inequality at t = 0, we

have L{u*)u + u*L{u) < 0 for all unitaries u in A.

B. = 1. Since we have assumed that etL[1) = 1 for all t 2 0, it is enough

£
(by §0.4) to prove that e L is a contraction for all t =z 0. By §0.1, this is

the case if 1lim (|]1 + tLll - 1}/t < 0. Moreover
t + 0

|1+ ¢t} = sup {||]u + tL(w|] : u unitary}
(see §0.2). But if u is unitary and t = 0, we have

lu+ tL(w]] 2

n

[| 1+ tlLlu*)lu+ utL(u)] + t2L(W* LW ]

IA

|1 + t2Liw* L]

e iz

IA

Thus || 1 + t L]l s 01+ t2 \ILHZ]'3 , and so

1m ()1 + t U] -1/t € lim (01 + t2 Ll 22% - /7t = o
t + 0 t 40

hence etL is a contraction for each t 2 O.

A self-adjoint linear map on a C*-algebra is automatically continuous
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if it satisfies condition 5, of Theorem 14.2; we prove the following;

14.3 THEOREM Let L be a self-adjoint linear map on a unital C*—algebra
A, with the following property:
if yts inA_, fisin AY , and fly) = 0, then f(L(y)) = O. (14.1)

Then L is bounded, and so el Zs positive for all t > O,

Proof:  The map x # L(x) - 3[L(1)x + xL(1)] satisfies condition (4.1) whenever
L does, so we may assume that L(1) = 0O, We will show that, in this case, L is
dissipative on Ah (in the sense of §0.1):

Mixil < || ax - Lx|] for all x in A_ and A > O, (14.2)

h

"In order to prove this for some self-adjoint x, we may assume that there exists

a positive f in A* such that f(x) = |[x|[and || £|| = 1. Then f(|| x|l - x) = 0,

and so f(L(|| x]| - x)) 2 0; that is, we have F(L(x}) < O. Let A be strictly

positive, then Af(x) < flAx - Lx) < || ]| || ax - x]|. Hence
AMixl] < [ £l Il Ax - Lx|| for all self-adjoint x in A. It Tollows that L is
closed on Ah, and so L is bounded: Let {fn € Ah} be a sequence satisfying
fn + 0, LFn -+ g; then for all h.in Ah, and A > 0, we have

MEas + ]l s |- Litae o+ nf .
Letting n + = , we have Al{h|| s |[ath - g) - Lth)||; as A > » we have
I ]l =< |l n - g|] for a1l h in A, Hence g = 0. It then follows that et e
positive for all t =z 0O, Alternatively, this follows from (14.2) which shows
bhek ©1 ~ & LYY da o conbrastfon Har il & Bl . and nense 1s positive

since it preserves the identity (see §0.4).

The results listed in Theorem 14.2 relate mainly to the Jordan structure
of a C*-algebra, but they will be used to prove a result about its C*-structure
(Theorem 14.4). First we consider an example: let A = Mn[E] and let

& t
L(x) = x~ - x (where x = x~ is the transpose mapping); then L satisfies the

hypotheses of Theorem 14.3, but not those of Theorem 14.4.

14.4 THEOREM Let L be a bowided self-adjoint linear map on a C*-algebra

A. Then the following conditions are equivalent:

L
e

14 etL(x'x] 2 ett{x'] (x), t 20, for all x in A.
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2. Lix*x) 2 L{x*)x + x*L(x) for all x in A,
Proof: 1. =2 2. This follows by differentiating the inequality in 1. at t = O.
2. => 1. Suppose 2. holds; adjoin an identity 1 to A, and extend L to the
enlarged algebra by putting L(1) = 0O, Then, by Theorem 14.2, etL is positive
on the enlarged algebra for all t 2 0. Fix x in A and define

fle) = et i) - ethixt) ethx), t 20,
Than F7(8) = L et ixx) - [L e™tx*11 e™ix) - ehixeIlL e™ ()1, so that

f(t)

I

eth[U] = ft;gg [e(t-S]L f(s)] ds
0

Lf(slds + ft a(tha)L d

o _ jt 8(1:-*5}1.. 'F(S] dS
- ds

s}

i

jt e[t—S)L{LEESL(x*} eSL(x]]
o

- [L BSL(X*J] ESL(xJ

- BSL[x*J [L eSL[xJ]} ds.

But, by hypothesis, LEESL(x*] ESL(x]] 2 [L eSL[x*)] eSL(x] + eSL(x*]EL eSL[xJ]
for all x in A and s 2 O. Moreover, fsz[t"s]L is positive for 0 € s £ £; hence
flt) 2 eLtf(D] = 0 for all t 2 0. This means that

t
BtLix*x) z e L(x*} etL(x], t = 0,

for all x in A.

Before we go on to prove some characterizations of the generators of norm-
continuous one-parameter semigroups of completely positive maps on C*-algebras,
we will give a result which has a slightly more general setting, and which we

will need in the proof of Theorem 15.1.

14.5 LEMMA Let A be a C*-subalgebra of a C*-algebra B, and let L : A + B
be a self-adjoint bounded linear map. Then the following conditions are
equivalent:
1. For all a in A, the kernels
s, t » L(s*a*at) + s*L{a*alt - L(s*a®a)t - s*L(a*at)
are positive-definite on A x A.
2. The kernels

o®fa® L] - G - * - L] L]
[51,52),(t1.t2] M-L(..,leaztzt,l3 * s,lL[sth]t1 L[s152t2)t1 sﬁL[sztthl
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are positive-definite on (A x A) x (A x A).

3. The following holds for all n 7inN :

n . . 3
N bi L[aiaj] bj 2 0 for all Qyr ees 8 1A and
i,j=1
. ; n
bq' — bn wn B for which X‘ aibi = 0,

Proof: 1, =2 2,

1. = 3. Let a_,

i=1

This is trivial,

g ovees @ in A and bq, o bn in B satisfy E aibi = 0. Then
for all a in A we have
* * * *
Ziaj bi{L[ai a*a ajJ + a{ L(a*a) ay
- L(afa*a)la, - a* L(a*a a,)} b. > 0;
i J 1 J 3
thus by L{a¥ a*a a.) b, = 0,
Ei,,j i %7 7
; = L
since Ei aibi zi bi a} 0.
Teking a to be an approximate identity for A, we have
Y., bflLlara) b, 2o,
ij ¢t LN J
3. = 2. Suppose Cyr wres Cn' 91. Vo en in Ajand Fq, § wi fn in B are
arbitrary. Define
cy » 1 21 <n,
a, =
i ,
cl_n el_n » N <1 5 2n .
and
-e,f
. i e i » 1 21 < n,
y
LET- » N <1 2 2n,
2n
Then Z aibi = 0, so that
i=1 ;
2n i .
b} L(a? a,) b, = 0;
i,9=0 * 1 1
substituting for ai and bi ,» we have
n n
) f} Lletclc,e )f, + ¥ T2 e? Llctc,le,f
NP I R R T T A I A
n n
2§ fl Llefcle,de £, + f! e! Llc’c,e )f,
i,j=1 1 LG 1,j=1 T 1 17333
Thus 2. holds.
14.6 DEFINITION Let A be a C*-subalgebra of a C*-algebra B. A linear
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map L : A > B is sald to be conditionally completely positive if it satisfies
the conditions of Lemma 14.5.

We conclude this chapter with a characterization of the generators of

guantum dynamical semigroups:

14.7 THEOREM  Let L be a self-adjoint bqunded linear map on a C*-algebra

A.  Then L is conditionally completely positive if and only if'etL 18 completely
postitive for all t = 0.

Proof: Suppose L 1s conditionally completely positive; then L satisfies con-
dition 1. of Lemma 14.5. By going to the second dual (if necessary) we can
assume that A 1s unital; then, taking a = 1, the result follows from the impli-

cation 3. => 1. of Theorem 14.2, and the converse follaws from the implication
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15, CANONICAL DECOMPOSITION OF CONDITIONALLY
COMPLETELY POSITIVE MAPS

In Chapter 14 we gave a characterization of the generators of norm-
continuous one-parameter semigroups of completely positive maps: they are the
conditionally completely positive maps, characterized by certain inegualities.
For a lerge class of von Neumann algebras, a more detailed description of con-
ditionally completely pesitive maps can be given, in terms of a canonical decom-
position (Theorem 15.1). This result can be stated using a cohomology theory
for operator algebras, and one is tempted at this point to introduce all the
machinery of cohomology; resisting the temptation, we make use instead of a
little shorthand. Let A be a von Neumann subalgebra of a von Neumann algebra B;
we write Hl(A,BJf=O if the following is true: If W : A + B is a derivation (that
is, & linear map such that W(xy) = W(x)y + xW(y) for all x, y in A), then there
exists ﬁ in B such that W(x) = @x - XW for all x in A.

Let A be a van Neumann subalgebra of a von Neumann algebra B, and let
L: A-+B be a *-linear map such that both L and - L are conditionally completely
positive:

Lla*b*cd) + a*L{b*cld = Lla*b*c)d + a*L(b*cd)
for all a, b, c, d in A. Putting
L Ux) = Lix) = 3{L01)x + xL(1)}

for all x in A, we see that L is a derivation of A into B; if H1(A,B) = 0,

n

there exists a self-adjoint h in B such that LD i ad h. Hence we have

L({x) = k*x + xk for all x in A, where k = }L(1) + ih. Conversely, if k is an
element of B,then the map £ 3 A + B given by L(x) = k*x + xk is such that both

L and - L are conditionally completely positive. It is trivial that a complete-

ly positive map is conditionally completely positive. We are now ready to

describe the canonical decomposlition for conditionally completely positive maps.

15.1 THEOREM Let A be a W*'-algebra. Then the following conditions on A
are equivalent:
1. kWhenever A is faithfully represented as a W*-algebra on a Hilbert space H

we have H(A,B(H)) = O.
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2.  Whenever A ts faithfully represented as a W*-algebra on a Hilbert space H,
and L : A + B(H) Zs a conditionally conmpletely positive ultraweakly
continuous *-linear map, there exists k in B(H) and a completely positive
map ¥ : A =+ B(H) such that

Lix) = 9¥(x) + k*x + xk
for all x in A.

Proof: 1. = 2. Let A be faithfully represented on a Hilbert space H, and let

L : A~> B(H) be a *~linear ultraweakly continuous map such that if D is the tri-

linear map defined by

D(x, y, z) = Lixyz) + xL(y)lz - Lixylz - xL(yz)

for all x, Vs Z in A, then the map (51,a2), (b1,b21i+ D[aq.azbz,b1) is positive-

definite on (A x A) x (A x A). Then, by the results of Chapters 1 and 2, there

exists a Hilbert space K, a normal representation 7 of A on K, and a linear map

V : A~ B(H,K), such that D(x, y, z) = V(x*)*w(y} V(z) for all x, y, z in A, and

K = V{rn(a) V(blh : a, b e A, he H}. Then, for all x, y, a, b in A, we have

Vix*)*n(yl[V(ab) - nla) V(b) - V(alb]

= D(x, y, ab) - D(x, va, b) - D(x, y, alb = 0 .
Hence, by minimality of K, we have
V(ab) = w(a) V(b) + V(alb
for all a, b in A. Let 8 denote the feollowing normal faithful representation of
A on H & K: a o
Bla) = ( : ) s
o w(a)

where we identify elements of B{(H®K) with 2 x 2 matrices in the obvious way.

Let W be the followling linear map of 68{a) into B(H @ K):

o o
Wietal) = ( )
V(ia) o

Then W(0(a) 8(b)) B(a) Wlab) + W(6(a)) 8(b) for all a, b in A. Hence, since

Hl(e(a), B(H @ K)) 0, there exists

o= (00

in B(H & K} such that W(e8(al)) = Q 8lal) - B{a}ﬁ.
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In particular, V(a) = m(alr - ra for all a in A.  Then, for all x, y, z in A,

we have

Lixyz) + xL(ylz - Lixy)lz - xL(yz)

n

Dix, vy, 2) = V(x*)* wly) V(z)

[7(x*)r - rx*1* w(y)lw(z)r - rz]

[H

Ppixyz) + x¢lylz - Pixylz - xPlyz),

where Y is the completely positive map a~ r*n(alr. From the discussion pre-
ceding the statement of the theorem, and since H!(A,B(H)) = 0, we see that there
exists K in B{H) such that L(x) = ¢(x) + k*x + xk for all x in A.

2. = 1. Let A be faithfully represented on a Hilbert space H, and let

L : A= B(H) be a derivation. Put kD = elL(e) - L(e)e, where e is the identity
of A, and define LU : A =+ B(H) by LG(x) = L{x) - kox = xko; then Lo[e) £ 0y
Thus, without loss of generality, we may assume that L(e) = 0, and that L is a
*-map. Hence, by condition 2., there is an element k of B(H), and a completely
positive map ¢ : A = B(H), such that L(x) = ¢(x) + k*x + xk for all x in A.

Take a minimal Stinespring decomposition ¢(x) = r*n(x)r, where 7 is a represen-

tation of A on a Hilbert space K and r is an element of B(H,K). Then, as above,

we have
0 = Lixyz) + xL(ylz - Lixylz - xL(yz)
= [w(x*)r - rx*]1* w(y)lw(z)r - rz]
for all x, y, z in A. Hence we have w(zl)r = rz for all z in A; in perticular,
putting p = iy(e), we have y(z) = pz + zp for all z in A. But we can assume
that ek = k, so that k + k* + yle) = L{e) =0 and k + p = - k* - p = h, say.

Then we have

n

L(x) Plx) + kx + xk

"

(Fyle) + K*Ix + x(k + jyle))

]

hx - xh

for all x in A, so that H(A,B(H)) = 0.

15,2 REMARK Let A be a von Neumann algebra on a Hilbert space H, and let

{T, : t 2 0} be a norm-continuous semigroup of completely positive normal maps

t
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on A. Then it follows from Theorems 14.7 and 15.1 that, under suitable con-
ditions on the algebras, there existsk in B(H) and ¢ : A » B(H) a completely

positive normal map such that the generator L of Tt is given by

Lix) = ¢(x) + k*x + xk
for all x in A. If Tt preserves the identity of A, then L(1) = 0 and so
k + k* = - 1y¢{1) < 0. Hence k is the generator of a contraction semigroup,

{Bt : t = 0} say, on H. Let {St : t 2 0} be the contraction semigroup on B(H)
given by St(x} = B;x Bt for all x in B(H). The genearator of St is the map

X+ Kk*x + xk; by Banach space perturbation theory we have

- qt .
T (x) = 8, (x) + £ Sig ¥ T, (x)ds, tz20,
for all x in A. More generally, we make the following definition:

15:5 DEFINITION Let A be a von Neumann algebra on a Hilbert space H. A
dynamical semigroup of Lindblad type on A is a weakly continuous semigroup

{Tt : t 2 0} of normal completely positive unital maps such that there exists a
strongly continuous contraction semigroup {Bt : t 20} onH, and a completely
positive normal map ¢ :+ A - B(H), such that

t
T (x) =8 (x) + £ Sgig ® W o T (Xds, tzo,
; o Bl
for all x in A, where St[x) th Bt

15.” REMARK A dynamical semigroup of Lindblad type on A has an extension

to a dynamical semigroup of Lindblad type on B(H).
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16, ISOMETRIC REPRESENTATIONS OF QUANTUM DYNAMICAL SEMIGROUPS

In Chapter 3 the problem of dilating was considered at the Hilbert space_:
level. The results were used in Chapter 12, together with the CAR and CCR
functors, to obtain examples of dilations of dynamical semigroups at the
C*-algebra level. We now begin consideration of the general problem of dilating
dynamical semigroups. As in the Hilbert space situation (Chapter 3), and thus
in the CAR and CCR algebras (Chapter 12}, there are various ways of formulating
the concept of a dilation. The first general form which we treat for arbitrary
operator algebras is the isometric representation version (compare §12.2 and

§12.3).

16.1 THEOREM Let A be a von Neumann algebra on a Hilbert space H, and let
{Tt : t 2 0} be a weakly continuous dynamical semigroup of Lindblad type on A.
Then there exists a Hilbert space K and a strongly continuous semigroup
{Gt : t 2 0} of isometries on H © K, such that

Tt[xJ ® 1 = G;[x ® 1]Gt s B0,
for all x in A.
Proof:  We can assume (see Chapter 15) that A = B(H), and that there existsa

contraction semigroup {Bt : t 2 0} on H, and a normal completely positive map V

on B(H), such that

T, (m) = s (m) « gt Syog ° Ve T (mds, t=0, (16.1)
for all m in B(H), where St(m] = BEm Bt . The pre-adjeint semigroups *Tt and
*St on the pre-dual T(H) satisfy

JTlo) = .8, o) ¢ [0 T e Ve s (p) ds, t20 (16.2)

6]

Tor all p in T(H). By Theorem 4.6, there exists a family {Ax v o B of
bounded operators on H such that
Vim) = V.(m), V.(m) = A'm A, (16.3)
XX X X X
for all m in B(H]. Because of the particular form (16.3) of the perturbation
V, we con write the Neumann series for (16.1) and (16.2) in an unfamiliar, but
useful, wav.

Let X_ be the sct of all sequences {(x ,til € X x (0,o) : 0 <t < ... },

i 1



78

m=e m
regarded as a Borel subset of U { I X x (D,=)} in an obvious way. Let :
m=o0 n=1

be the Borel subset of X consisting of all sequences of finite length, and for
each t > 0 let Xt be the Borel subset of X_ given by all finite sequences
{[xi,ti] : 0 < t1 < vee € tn < tl}. For each t > 0, there is a Borel isomorphism

kt 3 Xt x X =+ Y defined by
n m
{0, {(yj,sj]}j:1

{xq,tql. ves [xn,tn). [y1,s1 +£), ., [ym,sm + t],
The inverse map is given by

n
{(yi‘si)}i=1 H (y1:51], TV (yp,sp], [yp+1,s Blde 33 ,{yn,sn -t),

p+1

where p is the unique integer such that sp <t < sp+1 i We denote by XD the

subset consisting of the single sequence z of zero length. We define the

measure ut on Xt to be the product measure constructed from counting measure

on each component X, and Lebesgue measure on each component (0,«); we assign

Dirac measure to the point z in X, . We define a measure ¥, on Xm in an

it
analogous fashion.  For each w in Xy define (,S,V.S)(w) by
(LS,V,S)w) = ,S, o,V o S _ oV o.,..o V o 5
t1 X t2 t1 X xn t tn
where w = {(xi,tii : 0 < By < e < t o< t}.  Then the Neumann series
T,(p) = ,S,.(p) + [F (.S, o Vos. .)(p) dt
* *t xt * t“'t 1
o] 4 1
# f* jt1 (,Sy =WV e .S,y = .V ,5 , )p) dtdt,
o O | 2 1 2
¥ ow o (16.4)
can be written as
J.0) = [ (,5,V,8)(w) (p) du, (w) (16.5)
X
t
and the adjoint series as
T, (m = [ L(,8,V.5)(w)1" (m) du, (w) . (16.6)
X
t

We take K to be LZ[Ym], and define the operator Gt on Lz[Ym:H] for t = 0O:

(th][w) = [BAB)[WEJF (wt) '
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where (wi_, th = A;1[w)1 the element (BAB){w') of B(H) is given by
t

(BAB) (w') = B A B A oo A B

for each w' = {{xi,ti] 0 < t1 % o & tn <t} in Xt p

We prove that G, is a strongly continuous semigroup of isometries on L2(Y ;H).

t
First we check that Gt is an isometry, by using (16.6), and by observing that

the measure u_ is the product of the measures u, and H under the Borel

t

isomorphism At 3 Xt X Ym -+ Ym § That is,

< G f, G f >

n

/< (BAB) (w) F(w, ), (BAB)(w.) £(w) > du(w)

t t
Ym
= [ TGSV flup), Flu) > dy (W)
Yw
= *
[ LGS, VLSIITP () Flw ), Flwy) > du (wg) du ()
Yo X
= [T 00 flw) flw) > du(w)
Ym
= [ Flw, ), Flw) > du (wl =< f f>.
Ym
Here we have used the normalization condition Tt(1J =1, Next we show that
{Gt : t =2 0} is a semigroup. Indeed, we have
(G (G, fl(w) = (BAB)(w_ )(G, fl(w, )
Yyt bt Y
= (BAB)(w~. ) (BAB)(w, <. ) f(w )
t1 t11t2 t1jt2
= (BAB)(w ) flw ] = (G Fl(w) ,
Bty R St

where we have used the following immediate consequences of the definitions:

L
n

[BAB][wi ) [BAB](Wt 7 [BAD)(wt T

1 1772 12

] x
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Now that we have shown that {Gt : t 2 0} is a semigroup of isometries, it is
enough to verify that it is weakly continuous at t = 0 on elements of the
algebraic tensor product Lz[YmJ ® H; this we do by noting that ut{Xt\{z}} =tet.
Finally, we derive the isometric representation property of Gt: taking x in BI(H)
and f in Lz(Ym:H], we have

<ny®’U[%ﬂF> =<[x®1](%ﬂ %f>

= [ < x(BAB) (wg) £lw ). (BAB) () Flwy) > dy(w)

Y

=]

= < [(*S*V*S)(w£]]*(x1 Flug)s Flw) > dy (W)
Y

o

= <[( *
/] SNVSI T £l ), Flw)> du Gws) du G)
Yo X,

= [ < Tt[xJ f[wt], flw, ) > d“t(wi}' by (16.86],
Y

= < [Tt[xJ ® 1)1f, f > .
The theorem follows.

Theorems 16.1 and 15.1 together show that all norm-continuous dynamical

semigroups on a large class of W*-algebras possess isometric representations.

We have, as a by-product, the follaowing Hilbert space dilation theorsm (mentioned

in Chapter 3, and used in Chapter 12 to dilate some quasifree dynamical semi-

groups):

16.2 THEOREM  Let H be a Hilbert space, and h a self-adjoint (possibly
unbounded) operator on H; let k be a positive bounded operator on H. Then
there exists an isometric embedding W of H into a Hilbert space K and a strongly

continuous semigroup {Gt : t 2 0} of Tsometries on K, suech that

W glih-Kit Gy W, tz0, (16.7)

Proof: Let Tt be the dynemical semigroup of Lindblad type on B(H] constructed
. . _(ih-k1t _ ) .

from the contraction semigroup B, = e on H, together with the completely

t
1 s
positive map V given by V(x) = k* x k? for x in B(H). By Theorem 16.1, there -

exists a strongly continuous semlgroup Gt of isomzstries on K = Lz[Yw;HJ such
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that Tt(x) ® 1 = GE[X ® 1) Gt i Consider the isometric embedding W of H in K

given by fr+'62 ® f; then, by the definition of Gt ,» we have [GtFJ(zJ = Btf(zJ.

& LY * 5 * - .
Thus W Dt Btw , and so Gtw WBt
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17. UNITARY DILATIONS OF DYNAMICAL SEMIGROUPS

In Chapter 16 we obtained isometric representations for semigroups of
Lindblad type on W*-algebras, We now investigate unitary dilations of such
semigroups, using Cooper’s unitary dilation of isometric semigroups (Theorem
3.13. In order to carry through the construction we need to place further
restrictions on either the algebra or the semigroup. In the first place, we
can handle injective von Neumann algebras; for simplicity, we give a detailed

discussion for B(H) only.

17.1 THEOREM  Let H be a Hilbert space, and let {Tt : t 2 0} be a weakly
continuous dynamical semigroup of Lindblad type on B(H). Then there exists a
von Neumann algebra M on a Hilbert space L, an embedding e of B(H) as a von
Neumann subalgebra of M, a conditional expectation N of M onto B(H), and a
strongly continuous unitary group {Ut : te R} on L, such that
U; mu = M forall tin R,
and
Tt(m] = N[U; e(m) Ut] s t20,
for all m in B(H). Moreover, we have
Bt m B; = N[Ut e(m) U;], t=20,
for all m Zn B(H).
Proof; We use the notation of Theorem 16.1. Let {Bt: t 2 0} be the semigroup
of isometries such that 1 @ T.(m) = GE{1 ® m]Gt for all m in B(H). By Cooper's
Theorem (Theorem 3.1), there exists a Hilbert space, an isometric embedding
ﬂz : L2(Ym;H] + L, and a strongly continuous unitary group {Ut tteR}onltL
such that
W2 Gt = Ut N2 , t =20, (47.1)

Let e, : B(H) - 1 ® B(H) ¢ B(Lz[Ym} ® H) be the canonical embedding x = 1 ® x,

and let e, : B(LZ(Y_;H)) » B(L) be the embedding given by 2,(x) = W, x W3 .

Define a conditional expectation N2 of B(L) onto B(LZ[Ym;H]J by Nz[x] = wé X wz.

Let w1 be the isometry from H into Lz(Ym;H] glven by w1€ = 62 ® f; then the map

X B N1(x) = wa X N1 is a conditional expectation of B[LZ(YN;H]] onta 8(H).
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[Warning: eq{-) 7 W1(-] w;.] Finally, we take M to be B(L), embedding B(H)

n

in M with e e, ° e, , and projecting back onto B(H) with N = N, ¢ N_ . For x

2 1 1 2
in B(H) and t =z 0, we have

It
=
*

Wr U* W_(1 ® xIW* U_ W, W

*
N(UE elx) Up) g Mo Up ¥y 2 Yg Wy ¥y

& * %
W Gt(1 ® xJGt w1

= * =
W 1 @ Tt(x] w1 Tt(x].

On the other hand, for y in B[Lz(Ym;H]], we have

* ] = * * * * '
N(Ut ez(y) Ut] W W2 Ut w2 y wz Ut W2 N1

= W! Gy GfW by (17.1) ,

T % 1 7

= *
B, N(yl B , by (16.7) .

This is more than enough to prove the theorem.

17.2 REMARKS In the course of the proof of Theorem 17.1 we noted that the
embedding e, ¢ B(H) — B[Lz[Ym;H)] given by x + 1 ® x 1is distinct from the em-

bedding e! given by x > W, x Wi = P_ ® x, where P_ is the projection in L0 3

given by the characteristic function of the singleton {z} in Yw ‘ However, it

turns out that the embedding e{ has its uses, and that N1 is a conditional

' (as well as with respect to e1J. Moreover, for

expectation with respect to e,

x in B(H) and t 2 0, we have

I
=
*

® * *
N1(Gt eqfx} Gt} 1 Gt W‘I X N1 Gt W1

- * =
Bt x B StExJ i

t
so that
St(x] = N,][G;(PZ ® x) Gt] = N[U; BZ(PZ ® x) Ut] )
while
T, = NIGH(T @ x) 6,1 = NCU} e, (1 @ x] ud .

More generally, for each Borel subset E of Y_ and its associated projection PE
in L2(Y_), we have

N[U; e2[PE ® x) Ut] = N1[G;(PE © x) Gt]

= [ [(,5.V.S)(w)1*(x) du, (W)
EnXt
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Thus we have a simultaneous dilation of the Markov kernels in Davies' non-
commutative probability theory,

In Theorem 17.1 we constructed an automorphism group, namely
{UE[-] Ut : t e R}, on the algebra B(L), which projects onto the given dynami-
cal semigroup {Tt : t 2 0} on B(H). In order to treat a von Neumann subalgebra
M of B(H) which is globally invariant under Tt > we must either project from
B(H) onte M, or work with some subalgebra of B(L]. To follow the first alter-

native, we need the concept of an injective von Neumann algebra.

17,5 DEFINITION A von Neumann algebra M is injective if, whenever M is
embedded as a von Neumann subalgebra of another von Neumann algebra M1, there
exists a conditional expectation (not necessarily normal) of H1 onto M. Thus
we see that weakly continuous dynamical semigroups of Lindblad type on injective
von Neumann algebras possess unitary dilations in the sense of Theorem 17.1.
However, it is known (see Effros (1977)) that a von Neumann algebra is injective
if and only if it is hyperfinite. Thus in general the first alternative is not
feasible. Turning to the second alternative, we seek a von Neumann subalgebra
M of B(L) which is at least invariant under {U;[-] Ut : t 2 0}, and contains
el(M). We also employ the following device: we do not attempt to project M
directly onto 1 ® M via the map N2 ., but rather onto some algebra B ® M, where B

is a judiciously chosen ven Neumann subalgebra of B[Lz[Ym)}. The following

diagram may clarify matters:

e e
1 2
Mé¢—s>1®M — 5 BOM— BILA(Y_;H)) —— B(L)
. N, -~
Mée&e——— 1T0M ¢«— BOMN & M

This programme is performed in the following theorem:

17.4  THEOREM Let H be a separable Hilbert space; Llet {T,: t20}bea
weakly continuous dynamical semigroup of Lindblad type on B(H), so that there
exists a strongly continuous contraction semigroup B, on H, and an ultraweakly

continuous completely positive linear map V on B(H), such that

*
Tt(m] = St[mJ + £ (T

oV oS J(m) ds,
t-s 5
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with St(m} = Bf mB, . Suppose that V has a decomposition
vim) = [ A*m A dulx) ,
X X
X
where (X,v) is a o-finite measure space, and x H-Ax is weakly measurable. If

M Zs a von Neumann algebra on H such that
R, lies in M for almost all x in X, {17.2]

B;M Elt c M forall t =0, (17.3)

then the dynamical semigroup {Tt : t 2 0} on M has a wunitary dilation. That is,
there exists a von Neumann algebra M on a Hilbert space L, a strongly continuous
unitary group {Ut : te R} on L, an embedding e of M as a von Neumann subalge—

bra of M, and a normal conditional expectation N of M onto M such that:

ur MU < M for all t = 0O , (17.4)
Tt(m) = N[U; elm) Ut] for all min Mand t =2 0 . (17.5)
Proof: For clarity, we give the details of the proof for the case where

M = B(H) and v is a counting measure. We employ the notation and construction
used in the proof of Theorem 16.1:; thus we have a strongly continucus isometric
semigroup {Gt : t 2 0} on LZ(Ym;H], and an isometric embedding W, of LZ[Yw;H]
into a Hilbert space L on which there is a strongly continuous unitary group

{Ut i t e R}, such that WZGt = Uth for t = 0. Take B to be the commutative
von Neumann algebra Lm(Ym], and take M1 to be Lm[Ym:M], which is a W*-algebra

with predual Ml = LI(YW:M*]. The mapping f @ ai+ f(+)a has a unigue extension

to a W*-isomorphism of LW(Ym] ® B(H) onto Lm(Ym;M] (see §0.5).

- 1 .
Put M = {UE 82[M JUt : t 2 0}, where e, * [“11 + B(L) is again defined
as eztxJ = w2 X w; : We will show that Nz[ﬁ] c M1 where N2 Mo B(LZ(YM;H]]
is defined as NZ[X) = NE X W2 . For this, it is convenient to have the explicit

form of the action of G{ on a vector f. We get this by inspecting < Gtg. f >
for arbitrary g:

< Gtg,f > = { f <{BAB](wE) g(th, F(At{w%.th]> dut[wE] dum[wt]

ooxt

5 { £ <g[wt3,[[8AB)[w£]3 {(At[wE'wt]}> dut[wi) dum(wt).
w Xt
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Hence GE is given by

Gy (w) = [ [(BAB)(w')]* FOL W', w)) du (w) .

Xt

t
In what follows we use w to denote At(w’.w), where w' is a variable of integ-

t
ration running through Xt; we remark that w'_ = w!, and wtt = W, We claim
t

that N2(ﬁ1 e f. Bor b & Band u Oy W, e Have

*
NZ(Ut ez(x] Ut]

I

* * *
w2 Bt W2 X WZ Gt w2

G* x G
t

1

.

t

We take x in Lm(Ym:M] and compute G{ x G, as an element af B(Lz[Yw;H]J, and show

t
that it lies in L (Y_;M); we have

11

* ' t
(67 x G,F)(w) [ [(BAB) (w 1D (%6, F) (W) du (w")

Xy

= [ [(BAB) (w") 1*x(wh) EBABJ(W?%E Pu) duy (w')

Xy

= [ UBAB) (W I*x(w") (BAB) (W) du (")

Xe

= [ LGS,V x(w) du (! F00)

.

Thus (GF x G ) (w) [ L(,5,V,S)(wt)]* x(w®) du, (w') lies in Lm[Ym;MJ, and so
X

t
G* M1G c M1. Formz1andt, 20, i =1, ..., n, we define a by
t 1 i n
s * * *
3, N2[Ut 92(x1} Ut Ut ez(sz Ut - Ut eztxn] Ut 1.
1 1 72 2 n n

It follows that

observing that for all s, t 2 0 we have W§ 5

of Thecorem 3.1. We have to show that an lies in M1. In order to state an

g, U* W, = G* G_ ., as a consequence
t s s

t

inductian hypothesis we introduce bn defined by
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and notice that b“l - " By direct calculation of the kind used above,
L =0 )
we have fred
_ By
(b, F)w) = [ [ b Cw'ww) flw ) du, (w') dy, (w')
X, X oY By
t t
1 2
where
- t1 £ &
b, (w/sw"sw) = [(BAB)(W')]* x (w ') [(BAB](w")]* (BAB)(w | Zt ).
1
Suppose that, for n 2 1, we have
t t t
CIT IR Y N CLERLA S R PO 2o ™y e
X, X 1 L Ly
t t d
1 n+1 n+1
.y dut (w ); (17.8)
n+1
then
_ t 4 t
(b, A1) = [ ... f bn(w'....,w[”+1J;wJ(x A8 6 LR 2 L™
% X n+17t 2 t e £ t
" £ n n 1 n
1 n+1
an, wh.an, (™)
t
1 n+1
t t
S P O W2 e, 12 n+1 Foez
4 4 Lo yie w5 s y Eww & " ]
t £ 1 n n+1
1 n+2
T LT LA (17.7)
4 472
1 r‘l"—
where
. (n+2) . (n+1) tt Eee
4 . = ' ] fl
bn+1(w s W 3w) bn(w Ph oW ,w]xn+1[w R . )
1 “'n
t t t
Ceeae) (w ™2y 1erBAgy (w | 2, ... M2l g,
t t
1 n+1

But (17.8) bholds for n = 1, and hence, by (17.7), for all n > 1. Evaluating

= 0, we have

(b F)(w) at t_

(a fl(w) = [ . En[w',...,w[n]z;w)f(w
hd
t

X
t1 n

It follows directly from the definitions that w - = W, s0 that

(a fllw) = a (w) flw),
n n
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where

(n) (n)

. '
yZ3W) dut (wh)... dut (w ).

an[w] = f ...i En(w',...,w
& 1 n

X
t2 n

'] —_
Thus a lies in M, so that NZ[M) c M1 by continuity. We complete the proof

by taking any conditional expectation N, of M1 onto B(H). For example, let y

1

be a normal state on Lw{Ym] (that is, Y is an element of Ll(Ym]] and put

N1 =y e 1 Lm(Yuj ®M + M, (If we take ¢ = 62 ., then N}{a] = alz) for a in

M1; in fact, in the notation of Theorem 17.1, the restriction of N1('] =w;(-3w1
to Mq coincides with ﬁq in this case.) We then put e = e, ° 91 and N = Nq o N2,

and we have,
= *
Tt(m] N[Ut elm) Ut] , t =20,

for all m in M.

17.5 REMARK The map t » U;(-) U, is weakly continuous. It cannot be

norm-continuous, even though t+» T, may be, unless Tt is a homomerphism of M.

t
Indeed, suppose t b Tt is strongly continuous with generator L, t+~ UEE-] Ut
is strongly continuous with genereator 8§, and Z = D(8) n M is a core for L, (that
is, L = (le)m). Then for x in Z we have BtLEx] = N[eta(x]], and so x is in
D(L)} and L(x) = N[&(x)]. Thus for x, y in the subalgebra Z, we have

Lixy) = N[8(xy)]

NLS(x)y + x8(y)]

NLS(x)]y + xNLS(y)]

n

Lix)y + xL(y),
and so L is a derivation if Z is a core for L; in this case it follows from

Theorem 14.1 that Tt is a semigroup of homomorphisms.
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1. The main result of this chapter is Theorem 1.9. For scalar-valued
kernels on Z x Z , it was proved by Kolmogorov (1941); he showed that a kernel
is the correlation kernel of a stochastic process if and only if it is positive-
definite (Parthasarathy & Schmidt, 1972). For operator-valued kernels, versions
of Theorem 1.8, with various restrictive assumptions on X, can be found in the
literature (Payen, 1964, Kunze, 1867, Ponomarenko, 1968, Allen, Narcowich &
Williams, 1975).

The idea of using the image-space rather than the quotient-space
(Naimark, 1843a) goes back to Afonsajn (1950); it has been exploited by Halmos
(1867) and Schrader & Uhlenbrock (1875) for Hilbert space dilations, and by
Kunze (1867) and Carey (1875) in group representation theory.

Remarks on the origins of Theorem 1.14 will be found in the notes on
Chapter 14.

2. The dilation theorem for positive-definite functions on groups (Corollary
2.6) is due to Neimark (1943b); it was extended to *-semigroups by Sz.-Nagy
(1955). The canonical decomposition of a completely positive scalar-valued map
(that is, of a state) on a C*-algebra is known as the GNS construction (Gelfand
& Naimark, 18943, Segal, 1947). It was extended by Stinespring (1955) to oper-
ator-valued completely positive maps on unital C*-algebras; the original proof
was simplified by Arveson (1968), and the result was extended to a larger class
of unital *-algebras by Powers (1974]. Lance (1976) obtained the Stinespring
decomposition for non-unital C*-algebras by going to éhe second dual. The
result for Banach *—aigebras with approximate identities (Theorem 2.13) is due
to Evans (1875); for some related results, see Paschke (1873), As can be seen
from the proof of Theorem 2.13, the Stinespring decomposition for a completely
positive map whose domain consists of a subspace N*N, where N is a left ideal in
an algebra A, can be obtained in such a way that it is constructed on the whole
of A. This is the decomposition used by Evans (1977a) to study unbounded com-
pletely positive maps on C*-algebras whose domains consist of hereditary

*-subalgebras.
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The reletionship between the Stinespring decomposition for algebras and
the Naimark dilation for groups has been described several times in the litera-
ture (see Suciu, 1973). If G is a locally compact group, there is a canonical
bijection between completely positive maps on L1(G) and those on C*(G), the
enveloping C*-algebra of L1(G). If 6 is abelian, C*(G) can be identified via
the Fourier transform with CD(GJ, the continuous functions vanishing at infinity
on 6, the dual of G.

G The'theory of dilations of continuous semigroups began with Cooper

(1947) who discovered Theorem 3.l1; it is interesting to note that his motive-
tion came from quantum mechanics (Cooper 1950a,b). Theorem 3.2, on the dilation
of semigroups of contractions, is due to Sz.-Nagy (1953); it is a powerful tool
in Hilbert space theory (Sz.-Nagy & Foias, 1970).

The idea of the proof of Theorem 3.8 comes from Sz.-Nagy (1955), who
discovered the connection between positive-definite functions on Z and *—sem;—
groups of contractions indexed byf@ . This method was generalized by Mlak
(1965) and Suciu (1873), and their work is the basis of our exposition.

The construction of a unitary dilation of & contraction semigroup
contracting strongly to zero (Theorem 3.13) is due to Lax & Phillips (1967);
this method can be modified to give an alternative proof of Theorem 3.2
(Sz.-Nagy & Foias, 1970, §1.10.2). The abstract Langevin eguation in Theorem
3,13 was obtained by Lewis & Thomas (1874) in connection with an analysis of the
Ford-Kac-Mazur model (Lewis & Thomas, 1975); see also Lewis & Pulé (1975).

4, There is an extensive recent literature on completely positive maps on
C*-algebras and the tensor-product construction; see the review by Effros
(1977). The equivalence of (1) and (ii) in Lemma 4.1(a) occurs in the work of
Stdrmer (1974) and Paschke (1873). The proof given heres of Lemma 4.1(c) is due
to Skau (private communication). Stdrmer (1963) showed that a positive map

from an arbitrary C*-algebra into a commutative C*-algebra is completely positive;
he used a slightly different method from the one given here (Theorem 4.2). That
any positive map from a commutative C*-algebra into an arbitrary C*-algebra is

completely positive was shown by Naimark (1343}, and by Stinespring (1955). The
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Schwarz inequality (4.3) in Corollary 4.4 was first obtained for self-adjoint
elements by Kadison (1952}, who used an entirely different method. Corollary
4.4 and its proof were first recorded by Stdrmer (1963, 1967) along with the
Schwarz inequality of Theorem 1.14 for completely positive maps (with essentially
the same proof as in Chapter 1). For other Schwarz-type inequalities, with
various positivity assumptions, see Araki (1960), Choi (1974), Evans (19764,
1977c), Lieb & Ruskai (1874). Corollary 4.5 is due to Broise (unpublished),
and is recorded by Stdrmer (1967), The proof given here is due to Evans &
Hdegh-Krohn (1977) and uses an observation of Evans (1377b).

Kraus (1971) cbteined the canonical decomposition of a normal completely
positive map on the von Neumann algebra of all bounded operators on a Hilbert
space. Choi (1875) showed that if, in Theorem 4.6, H and K are finite-dimen-
sional the decomposition can be chosen so that the cardinality of the set X is
at most dim (H). dim (K).

5 Conditional expectations on classical probability spaces were character-
ized by Moy(1954) in terms of positive maps with the module property (CE2), The
study of analogues of conditional expectations in the non-commutative setting
was begun by Umegaki (1854). A detalled discussion of Examples 5.1 and 5.2 can
be found in Davies (197Bc): the first arises in measurement theory, the second
in the composition of guantum systems. Theorem 5.4 is due to Tomiyama (1957)
and Broise (unpublished); the proof given here is taken verbatim from Stdrmer
(1967]. The definition of a conditional expectation adopted in this chapter is
guite adequate for many purposes in non-commutative probability theory, but not
for all; see Davies & Lewis (1970) and Accardi (1874, 19768) for more general
concepts.

6. - B. These chapters provide an exposition of some of the folk-lore of
mathematical physics. The fundamental paper on Fock space is by Cook (1953).
The characterization of a generating functional of the CCR is due to Araki (1960)
and to Segal (1961) indeperndently; the extension to the operator-valued case
was giver by Evans (1875).  The extremal universally invariant states (whose

generating functionals are of the form (7.141)) were introduced by Segal (15862).
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Our treatment of the CAR algebra and its representations is in the spirit of
Hugenholiz & Kadison (1975).
9, The main resulls of this section are due to Slawny (1972); we follow the
exposition of Simon (1972). The key Lemma (Lemma 9.2) is due to Fell (1862).
The construction employed in its proof has been used by Howland (1974} and by
Evans (1976b) in the study of scattering by time-dependent perturbations.
10, Quasi-free dynamical semigroups associated with representations of the
CCR were investigated in the thesis of Thomas (1871); see also Lewis & Thomas
(1975al. In the algebraic context they were studied by Davies (1972a, 1972b,
19768) and also by Demoen, Vanheuverzwijn & Verbeure (1976, 1977), Emch (1978),
Emch, Albeverio & Héegh-Krohn (1977), Evans & Lewis [1978b% and Lindblad (1976c).
Necessity in Theorem 10.7 was proved by Evans & Lewis (1976b), whilst sufficiency
was shown by Demoen et al. (1976). In fact, Demoen et al. (197B) introduce the
multiplier (h,k) v w(h,k)/w(Ah,Ak), and use it to construct a CCR algebra WA[H]
over H; they exploit the fact that the function f of Theorem 10.2 gives rise to
a completely positive map if and only if it is a generating functional of a
state of the algebra WA[H}.

Theorems 10.3, 10.4, 10.5 are an elaboration of the work of Evans &
Lewis (1976h). Essentially, the proof of Theorem 10.10 is due to Stdrmer
(private communication), who uses it to give an elementary procf of the fact
that any type I von Neumann algebra is injective.
11. Theorem 11.1 appears in Hugenholtz & Kadison (1975); for related work
see Nelson (1873), Schrader & Uhlenbrock (1975),
12, Dilations of gquasi-free dynamical semigroups induced by contraction
semigroups can be found in the FKM model (Ford et al,, 1965, Thomas, 1971, Lewis
& Thomas, 1975a,b). They have been studied in detail by Davies (1972a), Emch
(1976), Emch et al. (1977), Evans & Lewis (1976].

Araki (1870) has shown that a one-parameter unitary group on a Hilbert
space gives rise to a norm-continucus group of automorphisms in the CAR alggbra
if and onliy if the generator at the Hilbert space level is trace-class. Uavies

(1977c) has studied quasi-free dynamical semigroups on the CAR algebra in detail;
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it follows from his work that e contraction semigroup with a trace-class genera-
tor on a Hilbert space induces a norm-continuous dynemical semigroup on the CAR
algebra.

13, Theorem 13.1 and its proof are due to Davies (1876). It is unclear
how to extend the construction to the category of W*-algebras. Evans (1975,
18976a) had previously obtained this result for discrete groups; there is no
problem in modifying his construction to deal with von Neumann algebras.

The C*-algebra generated by T(A) and U’(G) is a generalization of the
C*-crossed product of a C*-algebra by a group of automorphisms (Turumaru, 1958,
Doplicher, Kastler & Robinson, 1866).

14. Theorem 14.1 was obtained by Evans (1975), who generalized the well-
known result for strongly continuous one-parameter groups. That (i) implies
(vi) in Theorem 14.2 is due to Tsui (1978), who observed also that (vi) implies
(i) is implicit in the work of Lindblad (1976a). The eguivalences (i) - (v) of
Theorem 14.2, and also Theorems 14.3, 14.4, are due to Evans & Hanche-Olsen
(19773 . Theorem 14.3 is an improvement on the work of Kishimoto (1976); we
use Sullivan's (1975) proof of Lumer & Phillip's {1961) result: a densely
defined dissipative linear map is closeable. Theorem 14.4 was first proved for
identity-preserving semigroups on unital C*-algebras by Lindblad (1976a); he
used a different method.

The concept of conditionally completely positive maps was introduced by
Evans (1977c); Lemma 14.5 is built on the work of Evans (1977c), Lindblad
(1976b,d) and Davies (13877d). Theorem 14.7 is a strengthening of the result of
Evans (1977c) for unital C*-algebras. For the analogous result for semigroups '
of positive-definite functions on groups, see Parthasarathy & Schmidt (1972).

For earlier work on the generators of dynamical semigroups, and dissi-
pativity, see Kossakowski {1972a,b, 1973) and Ingarden & Kossakowski (1975).

For recent work on the generators of strongly continuous dynamical semigroups,
see Davies (1976a - d). Note also the characterizations of the generators of
positive semigroups in a function space context by Simon (1976) and by Hess,

Schrader & Uhlenbrock (1977).
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15. The canonical decomposition of norm-continuous semigroups of completely
positive normal maps on a von Neumann algebra was first obtained independently
by Gorini, Kossakowski & Sudarshan (1978a) for finite-dimensional matrix
algebras, and by Lindblad (19768a) for hyperfinite von Neumann algebras. The
implication (i) => (ii) in Theorem 15,1 is an improved version 5f Lindblad
[197Bb];' the converse is due to Evans (1877c).

If A is a von Neumann algebra on a Hilbert space H, it is known that
HI(A,B(H)) = 0 if: (i) A is type I or hyperfinite (Johnson, 1872, Ringrose,
1972); (4ii) A is properly infinite {(Christensen, 1975). It is widely conjec-
tured that H1(A,B(H)) = 0 for all von Neumann algebras.

16, 17. These chapters are an improved version of the work of Evans & Lewis

{1976a) which was inspired by Davies (13972a).
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