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Abstract 

Demand amplification (or “bullwhip” as it is now popularly called) is not a new 

phenomenon.   Industry typically has to cope with bullwhip measured not just in terms 

of the 2:1 amplification in orders which is frequently encountered across a single 

echelon, but sometimes it is as high as 20:1 across the extended enterprise.  In this 

Chapter we consider how bullwhip due to various “Forrester effects” may be avoided.  

This leads to our exploitation of a particular Replenishment Rule already widely used 

in industry and for which analytical formulae for bullwhip generation and inventory 

variance have been recently derived. 
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1.  Introduction 

We know that there are many causes of bullwhip (Geary et al, 2002).  In this Chapter 

we are concerned only with those causes leading to the “Forrester Effects” (Jay 

Forrester, 1958).  These particular causes include coping with practical lead times 

inevitably met within supply chains, the structure of information flow within the 

system, and how this is used within feedback paths and feed forward paths in 

inventory replenishment rules.  The latter aspects include incorporating forecasting 

mechanisms and both inventory and pipeline controls therein.  So the purpose of this 

paper is to ensure that our replenishment rule detects and follows genuine changes in 

customer trends.  At the same time random fluctuations are to be adequately damped 

(Dejonckheere et al. 2002).  In particular we ensure that feedback settings are selected 

which avoid the bullwhip effect due to this source.  As this decision is within our 

remit, there is no excuse for inducing avoidable bullwhip.  A bad example of this is 

clearly observable in the data for a real-world retail supply chain as shown in figure 1. 
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The replenishment rule used herein is frequently met in industry.  It may be embedded 

within commercial software, although often it is developed and implemented on an 

ad-hoc basis.  Either modus operandi can result in rather arbitrary settings of system 

parameters (Coyle, 1982 and Edghill et al, 1987).  Suitable theoretical models already 

exist, with much supporting simulation evidence (van Aken, 1978, John et al, 1994 

and van Ackere et al 1993) including optimisation procedures.  However Disney and 

Towill (2003) have now provided an analytic solution for calculating bullwhip and 

inventory variance in response to random customer demand.  We now exploit this 

solution herein by providing bandwidth contours for various values of replenishment 

lead time.  Hence given the expected lead time, the user may select replenishment rule 

settings so as to avoid bullwhip.  The analytic solutions additionally enable the system 

user to evaluate their particular performance trade-offs, including robustness. 
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Figure 1. Bullwhip in the Real World ~ Substantial Demand Amplification 
Observed in the UK Retail Sector 

(Source: Jones, Hines and Rich, 1997) 
 

2.  Choosing a Replenishment Rule 

Thus we seek to avoid bullwhip by designing it out of the system via the appropriate 

choice of replenishment rule and parameter settings which deliver the performance 

expected by the user.  Our rule uses exponential smoothing of demand as one 

component of a replenishment order.  To this is added a further two inputs.  These are 

a fraction of the inventory error, and a fraction of the “goods-in-the-pipeline” error.  It 
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is an important feature of the paper that these fractions are always equal, for reasons 

which will be detailed later.  This idea is originally due to Deziel and Eilon (1967).  

We show this is very powerful as an adjunct in bullwhip avoidance since it results in a 

very conservative design.  What follows is a condensed version of the paper which 

details our approach (Disney and Towill, 2005). 

 

The particular replenishment rule exploited in this paper is a special case of the 

Automatic Pipeline Inventory and Order Based Production System (APIOBPCS).  

This expressed in words is “Let the replenishment orders be equal to the sum of an 

exponentially smoothed demand (averaged over Ta time periods), plus a fraction 

(1/Ti) of the inventory difference between target stock and actual stock, plus a 

fraction (1/Tw) of the difference between target orders-in-the-pipeline and actual 

orders placed but not yet received” (John et al, 1994).  APIOBPCS encapsulates the 

general principles for replenishment rules as advocated by Popplewell and Bonney 

(1987).  In particular it gives due prominence to the importance of including pipeline 

feedback (OPL), a factor further emphasised by Bonney (1990). 

 

3.  Causal Loop Representation 

Of course, APIOBPCS is not new: it is well established in industry and has the 

additional advantage of describing data from some 2000 Beer Game “plays” as 

modelled by John Sterman (1989).  What we are doing herein is to show how the 

control parameters Ta, Ti and Tw depicted in the Causal Loop of Figure 2 can be set 

to avoid bullwhip.  The causal loop is a pictorial description of APIOBPCS which 

corresponds to the preceding verbal rule.  Note that there is a replenishment time 

delay of Tp units.  The practical interpretation of Tp (for mathematical reasons) is that 

if we update replenishment orders daily, deliveries become available (Tp + 1) days 

later.  So if supplies arrive on day 4, then Tp = 3 days.  Note also that to avoid 

inventory drift the OPL target is also set at a multiple of exponentially smoothed 

demand.  The OPL target multiplier is pT , our best estimate of current replenishment 

lead time. 
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Figure 2. Causal Loop Diagram of the APIOBPCS Replenishment Rule 
(Source:  John et al. 1994) 

 

We now propose to make a very simple, but operationally profound, modification to 

APIOBPCS by making Ti ≡ Tw.  This simplified model we describe as DE-

APIOBPCS, since this modification was first advocated by Deziel and Eilon (1967) in 

an OR context.  The importance of their contribution was first emphasised to the 

present authors by Bertrand (2001).  Our simple demonstration of the importance of 

the DE settings of (Ti ≡ Tw) is given in Figure 3, (Disney and Towill, 2002).  Here 

the stability boundary for the replenishment rule for the particular case where Tp = 3 

days is shown.  The critical stability contour separates the stable regime (controlled 

behaviour) from the unstable regime (uncontrolled behaviour).  It can be seen by 

inspection that the DE contour lies well within the stable regime with extremely well 

behaved dynamic response. 
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Figure 3. Relevance of the Deziel-Elion Line to System Design for Bullwhip 
Avoidance 

(Source:  Authors based on Disney and Towill, 2002) 
 

This realisation of the significance of the DE relationship has led to further research 

and the analytic determination of one particular bullwhip measure (order 

variance/demand variance) and associated (inventory variance/demand variance) on 

the assumption of random demand (Disney and Towill, 2003).  These formulae are 

shown in Table I.  Hence any potential user of this replenishment rule is now able to 

estimate the bullwhip associated with any particular settings proposed for the DE-

APIOBPCS model.  As we shall see in the next section, by setting the (order 

variance/demand variation) equation equal to unity, we can produce the bullwhip 

boundary.  It is then extremely straightforward to propose suitable parameter settings 

to guarantee bullwhip avoidance. 
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Table I. Formulae for the Bullwhip and Inventory Performance Metrics 
Corresponding to the Recommended Replenishment Rule 

(Source:  Disney and Towill, 2003) 
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4.  Bullwhip and Inventory Variance Performance Metrics 

We have solved the bullwhip and inventory equations previously presented in Table 

III for the DE-APIOBPCS replenishment rules to determine “zero bullwhip” contours.  

The bullwhip results are shown in Figure 4.  If the system design parameters are 

located above the contour indicated for a particular value of replenishment lead time, 

then bullwhip exists.  On the boundary the replenishment order variance is equal to 

the customer demand variance, hence in this respect the rule is “neutral”.  For 

parameter settings below the contour, the replenishment order variance falls below the 

demand variance.  In this case the ordering system “smoothes” demand, usually by 

filtering out the high frequency “noise” (Dejonckheere et al, 2002). 

 

                              

Figure 4. Bullwhip Contours Corresponding to Recommended  
Replenishment Algorithms 

(Source: Authors) 
 

The corresponding inventory variance in response to random customer demand is 

shown in Figure 5.  At the extreme values of inventory control (1/Ti), this variance is 

(1 + Tp), as can be determined by inspection of Table I.  This explicit dependence on 

lead time is yet further proof of the benefit of implementation of the Time 

Compression Paradigm (Towill, 1996).  It emphasises the need to reduce lead times 

throughout the supply chain if better material flow control is to be enabled.  The 

inventory variance does peak, but as Figure 5 shows, even for Tp=5 days the worst 

value is about eight i.e. only 46% greater than the minimum possible value for this 

replenishment lead time.  So provided we incorporate the Dezeil-Eilon parameter 

settings of for (Ti/Tw) = 1 and the associated values of Ta as shown in Figure 4 we 

can avoid bullwhip.  At the same time we have constrained the inventory variance so 
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that it does not exceed that determined by the replenishment lead time and the review 

period.  

                                

Figure 5. Associated Inventory Variance at the Bullwhip Boundaries 
(Source:  Authors) 

 

5.  Exploring Performance Trade-Offs and System Robustness 

To further examine and understand the performance of the recommended 

replenishment rule the solutions obtained have been cross-checked by sampling 

systems along the line of symmetry (45o slope through the origin) in Figure 4.  The 

results for Tp = 1; 2; 3; 4, and 5 days are shown in Disney and Towill (2005).  In each 

case the theoretical bullwhip and inventory variance predictions (calculated from 

formulae in Table 1) have been compared with the results obtained by extensive 

simulation of the system response to a random demand signal. To ensure convergence 

these tests were conducted on 30 trials each with a time span of 10,000 days.  The 

worst bullwhip difference observed between theory and simulation is only 0.4%!  

Finally, the worst observed inventory variance is 0.8%, hence considerable confidence 

may be attached to this replenishment rule theory as summarised in Table 1. 

 

As Parnaby (1991) has emphasised, the design of any delivery pipeline must be 

checked for robustness.  What exactly does this mean?  To date our discussion has 

been on the design and performance of the recommended replenishment rule under 

normal or steady state conditions.  That is, the analysis is conducted on the basis that 

the replenishment lead time is fixed at the value chosen at the start of the 

investigation.  So how well does our pipeline perform when things change from 
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nominal?  One obvious robustness check is therefore to estimate the impact on 

performance of the lead time actually being at some other (almost certainly greater) 

value. 

Replenishment Rule 
Settings 

System Performance for 
Expected Lead Time 

System Performance for 
Substantially Increased 

Lead Time 
 

1/Ti 
 

1/(1+Ta) 
 

Bullwhip 
(Tp=1) 

Inventory 
Variance 
(Tp=1) 

Bullwhip 
(Tp=3) 

Inventory 
Variance 
(Tp=3) 

 
0.1 0.803 1 2.205 1.352 4.781 

0.2 0.626 1 2.392 1.586 5.432 

0.4 0.371 1 2.541 1.727 5.915 

0.6 0.216 1 2.417 1.612 5.515 

0.8 0.102 1 2.209 1.356 4.794 

 
Table II. Checking the Robustness of the Recommended Replenishment 

Algorithm to Lead Time Changes 
(Source:  Authors) 

 

To demonstrate the robustness of the recommended replenishment rule, we have 

calculated the corresponding change in performance when our system has been 

designed under an assumption that Tp = 1 day, but the actual in-service value is 3 

days.  The results of our analysis are shown in Table II, for a range of combinations of 

the parameters Ta and Ti (=Tw) as we traverse the bullwhip = 1.0 contour.  Table II 

shows that under these adverse conditions bullwhip can increase by between 35% and 

73% depending on the design selected.  (This is still much less than the real-world 

bullwhip observed in the retail supply chain documented in Figure 1).  The 

corresponding increase in inventory variance is between 117% and 133% of the 

original value for that particular design.  Considering the excellent performance of he 

system achieved when Tp = 1, and acceptable behaviour of lead time inadvertently 

drops off to 3 days, this range of parameters might well be argued as providing a 

suitably robust (and certainly well controlled) system.  But this is a trade-off debate to 

be considered further in the user guideline section.  

 

6.  Some Recommended User Guidelines 

Having shown that bullwhip, as defined by the variance of the replenishment orders as 

a ratio of the variance of our customers’ orders is readily avoided by suitable system 
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design, how is this knowledge best exploited by the user?  Obviously, as shown in 

Tables IV and V, many combinations of replenishment rule parameters may be 

suitable.  Which one might be best for our purpose?  Unless the user is in a position to 

undertake a comprehensive investigation for every SKU in the catalogue, including 

simulation cross checks, a rough-but-reasonably-ready guideline needs to be used.  

Preferably such a guideline should be backed up by already existing and 

comprehensive knowledge and a range of proven practical applications. 

 

We believe that for the DE-APIOBPCS replenishment rule a useful and 

comprehensive guideline is already available (Mason-Jones et al 1997).  This was 

based on an exhaustive comparison of a number of “recommended” settings tested 

against a range of competing performance criteria.  For the purpose of this paper these 

published “user guideline” settings may be interpreted as follows:  Ti = Tw = (Tp+1), 

and Ta = 2 (Tp+1).  Substituting these values into the bullwhip equation in Table I, 

for a demonstration value of Tp = 3 days, gives an estimate of 0.378.  In other words 

the replenishment order variance is about 38% of our customer order variance.  In 

other words the range of the replenishment orders has been reduced (or “smoothed”) 

by about 40%. 
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Figure 6. Response of “User Guideline” Setting Replenishment Rule to UK Retail 
Sector Demand Pattern Demonstrating Bullwhip Avoidance 

(Source:  Authors) 
 

This is confirmed in the simulation study shown in Figure 6 on the same retail data.  

In contrast to the original real-world supply chain order patterns shown earlier herein 
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in Figure 1, where bullwhip undoubtedly exists, since the range of the replenishment 

orders is amplified by 100% (i.e. 2:1).  So the improvement may be viewed as 

resulting in an order of magnitude in bullwhip reduction, and not just a fractional 

change in performance.  It is obvious by comparing the replenishment orders actually 

placed in Figure 1 with those proposed in Figure 6 that the new rule is much better.  

Furthermore, this improvement is so blatant that detailed cost-benefit analysis to 

support the change is unnecessary.  This is fortuitous since as Buxey (2001) has 

demonstrated, such cost data is often noted for its absence from much of the real-

world industry.  Hence the bigger the expected improvement, the more likely is the 

business process to be re-engineered. 

 

7.  Conclusions 

We know that bullwhip is costly to all players in the supply chain.  Consequential 

alternating “boom-and-bust” scenarios incur additional acquisition costs and 

additional stock-out costs.  The ideal solution is to design and manage such on-costs 

out of the chain in such a way that the only uncertainty left is due to the marketplace 

(Childerhouse et al, 2003a, 2003b).  One major source of internally generated 

bullwhip is due to poorly selected ordering policies in use at all levels within the 

chain.  Our European retail supply chain provides ample evidence that this is indeed 

the case in the real-world.  Hence this paper is concerned with selecting a 

replenishment ordering rule which can be structured to avoid bullwhip as observed in 

order variance behaviour.  At least the various “players” can now adopt a policy to 

avoid self-induced bullwhip. 

 

The DE-APIOBPCS replenishment rule exploited herein is well established in the 

literature.  What we have demonstrated in the paper is that having the right decision 

making structure is insufficient.  Additionally we need to select the re-ordering rule 

parameters to suit the replenishment lead time appropriate to the SKU (and thence, by 

appropriate scaling, for each and every SKU under consideration).  We have therefore 

provided a formula for calculating both bullwhip and inventory variance when 

responding to our random customer demand.  The formula then permits us to project a 

set of contours identifying bullwhip regions thus enabling “boom-and-bust” operating 

scenarios to be avoided.  Finally we have interpreted these results via recommended 

and extremely robust replenishment rule settings which guarantee to avoid bullwhip 
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under these stated conditions.  If this is tackled automatically then executive efforts 

can be concentrated on interface management so as to reduce bullwhip at this more 

difficult level. 
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