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Summary 

A queuing model is developed for the neurological rehabilitation unit at Rookwood Hospital 

in Cardiff. Arrivals at the queuing system are represented by patient referrals and service is 

represented by patient length of stay (typically five months). Since there are often delays to 

discharge, length of stay is partitioned into two parts: admission until date ready for discharge 

(modelled by Coxian phase-type distribution) and date ready for discharge until ultimate 

discharge (modelled by exponential distribution). The attributes of patients (such as age, 

gender, diagnosis etc) are taken into account since they affect these distributions. A computer 

program has been developed to solve this multi-server (21 bed) queuing system to produce 

steady-state probabilities and various performance measures. 

However, early on in the project it became apparent that the intensity of treatment received 

by patients has an effect on the time, from admission, until they are ready for discharge. That 

is, the service rates of the Coxian distribution are dependent on the amount of therapy 

received over time. This directly relates to the amount of treatment allocated in the weekly 

timetables. For the physiotherapy department, these take about eight hours to produce each 

week by hand. In order to ask the valuable what-if questions that relate to treatment intensity, 

it is therefore necessary to produce an automated scheduling program that replicates the 

manual assignment of therapy. The quality of timetables produced using this program was, in 

fact, considerably better than its alternative and so replaced the by-hand approach. Other 

benefits are more clinical time (since less employee input is required) and a convenient 

output of data and performance measures that are required for audit purposes. 

Once the model is constructed a number of relevant hypothetical scenarios are considered. 

Such as, what if delays to discharge are reduced by 50%? Also, through the scheduling 

program, the effect of changes to the composition of staff or therapy sessions can be 

evaluated, for example, what if the number of therapists is increased by one third? The effects 

of such measures are analysed by studying performance measures (such as throughput and 

occupancy) and the associated costs. 
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Chapter One Introduction 1 

Chapter 1: Introduction 

 

 

 

 

 

 

1.1 Background 

The specialist neurological rehabilitation unit at Rookwood hospital is the application of the 

theoretical work considered in this study. Rookwood hospital is a major Regional 

Rehabilitation Unit located in Cardiff, the capital of Wales. In addition to the specialist 

Neurological Rehabilitation Centre (NRC) the hospital is also home to the Welsh Spinal 

Injury Centre, the Artificial Limb and Appliance Service and a geriatric day unit. 

Rookwood hospital has a long history of rehabilitation medicine. In 1918 the site, formerly 

home to a British Colonel, was converted to a convalescent home for officers returning from 

the Great War. In subsequent years it was used to care for disabled ex-servicemen up until 

1932 when it was transformed to a general hospital. The latter half of the 20
th

 century saw the 

hospital develop as the premier location for specialist rehabilitation in Wales. It currently 

houses one of only twelve spinal rehabilitation units in the UK and one of only two 

neurological rehabilitation centres in Wales. 

1.2 Neurological Rehabilitation 

Neurological rehabilitation is the process that aids recovery following an Acquired Brain 

Injury (ABI). The Select Committee on Health in the UK (third report, 2000-2001 session) 

defines ABI as ‘an injury to the brain that has occurred since birth’. This includes Traumatic 

Brain Injury (TBI) which is the most common form of ABI (incidence is estimated at 250-

300 per 100,000 in western developed countries – Campbell, 2000). In the UK, the National 

Institute for Clinical Excellence (NICE) claims that ‘each year 1.4 million people attend 

hospitals in England and Wales after suffering a head injury, of whom 150,000 are admitted 
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to hospital’ (2003). In the same year it is reported in the National Clinical Guidelines for 

Rehabilitation following ABI (Turner-Stokes, 2003) that each year 25 people per 100,000 

will sustain a moderate
1
 to severe brain injury. Such patients are appropriate candidates for a 

specialist rehabilitation programme. 

Figure 1.1 describes a typical pathway for a patient with moderate to severe ABI in Wales. 

 

Figure 1.1 Typical patient pathway 

The University Hospital Wales (UHW) is a large District General Hospital (DGH) located in 

Cardiff. It is the only hospital in Wales to contain a neurosurgery unit and is therefore the 

source of the vast majority of referrals for Rookwood NRC. The values represent annual 

demand on the various NHS facilities in Wales and are based
2
 on the aforementioned studies. 

These are only approximate due to ‘considerable variation in different parts of the country’ 

(Turner-Stokes, 2003). 

Admission to the NRC at Rookwood hospital is by referral only. Patients are either directly 

referred by their hospital or are scouted by a clinical specialist from the NRC. Referrals that 

are deemed appropriate enter the queue; otherwise they are dismissed. This process is 

described in Figure 1.2. Note that due to the excessive demand for this service it is 

exceptional for a queue not to exist.  

                                                      
1
 See Teasell et al, 2003 for a definition of ABI severity 

2
 Assuming the respective populations of England and Wales are 51m and 3m 
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Figure 1.2 Referrals process 

A waiting list is kept that documents the name of each referral and whether they are ready for 

transfer to the NRC or not. Each time an appropriate referral is received the size of the 

waiting list increases by one. The ready waiting list is defined as the ‘queue’ since admission 

is only possible when the patient is ready for transfer. A patient from the non-ready waiting 

list can join the queue when they become ready and likewise a patient from the queue can 

join the non-ready waiting list should they deteriorate. The size of the waiting list is reduced 

either by the withdrawal of a referral (due to transfer, discharge or death) or by an admission. 

An admission can only occur if there is sufficient capacity to meet the demands of the 

incoming patient. Since the queue is priority-based, the emphasis is placed on admitting the 

patient with the highest priority. In order to promote fairness priorities are determined by 

severity as well as time spent in queue. This ensures that less severe patients are not kept 

waiting for extreme lengths of time. 

In the most basic of conceptions the capacity is dependent only on the availability of beds. 

Therefore, when a patient is discharged the bed is populated by the highest priority patient in 

the queue. However, this does not take into account the needs of the patient and the 

availability and proficiency of the staff. At Rookwood NRC such considerations are 

incorporated into the process of determining admissions; albeit in a qualitative manner. The 
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following example illustrates the complexity of this process. Assume that a bed is vacant but 

the availability and proficiency of the staff is insufficient to meet the needs of the highest 

priority patient in the queue. What do you do? If the supply-side (staff) issues are likely to 

persist then it may be best to admit the highest priority patient in the queue whose needs can 

be met. However, if another patient is close to discharge then it may be best to wait until this 

time so that the additional availability of staff could be used to adequately meet the needs of 

the highest priority patient. It is clear this process is far from an exact science. Figure 1.3 

describes this process; following on from Figure 1.2. 

 

Figure 1.3 Admissions process 

Once an appropriate referral has been cleared for admission the patient is transferred to the 

NRC at Rookwood hospital. This facility consists of two wards that, together, contain 

approximately 30 beds. Four of these beds are reserved for short-stay respite care and are 

used to provide relief for the carers of patients that have been discharged to the community. 

Since these beds are not used for rehabilitation they are, for the purpose of this project, not 

considered as part of the NRC. The availability of bedside oxygen prohibits the remainder of 

beds from being regarded as truly homogeneous. Since only eight of these have oxygen 

provision this can also complicate the admissions process. In recent years 21 beds have been 

used, on average, for non-respite care. 
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Within 24 hours of admission a comprehensive initial assessment of the patient is performed. 

In this, various performance measures, such as the FIM
3
 (see Ch 2.2.1), are scored and initial 

goals are set. For the remainder of this week a basic level of care is provided to the patient. 

Treatment is provided to patients at the NRC by a multidisciplinary team involving 

physiotherapy, occupational therapy, speech and language therapy, psychology, dietetics, and 

orthopaedics (in order of decreasing size
4
) in addition to nursing and medical staff. 

Following this, the patient enters a perpetual cycle of assessment and treatment until 

discharge. A ward round is undertaken each week to set short-term goals. Details are also 

recorded for the number and type of treatment sessions that are demanded, on behalf of each 

patient, to take place in the following week. These values represent the 'perfect world' level of 

treatment. Once determined, a treatment timetable for the forthcoming week can be 

constructed (see Chapters 3 and 4) for each patient. However, due to capacity considerations 

it is very unlikely that all demand for treatment sessions is met. 

Figure 1.4 Treatment and discharge process 

                                                      
3
 Functional independence measure 

4
 As measured by number of full time equivalents 
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An approximate discharge date is usually agreed upon at a goal planning meeting. These 

occur every six weeks and are used to set medium-term goals for the patient. They are also 

used to discuss discharge arrangements. Since it is difficult to accurately predict when a 

patient will be ready for discharge their condition must be continually assessed. When a 

patient is deemed to be ready the ability of the discharge destination to receive the patient 

must be evaluated. If the destination is not ready then the patient must remain at Rookwood 

hospital. This is commonly referred to as bed-blocking or delayed discharge. 

The reasons for a delay in discharge are detailed by the Select Committee on Health (third 

report, 2001-2002 session) in Table 1.1. 

Table 1.1 Reasons for delays in discharge

Reason for delay % of delays

Awaiting completion of an assessment of future care needs 
22.2

and identifying an appropriate care setting

Awaiting social services funding for residential or home care 21.9

Awaiting care home placement 20.4

Awaiting further NHS care 11.5

Awaiting domiciliary package 6.7

 

Bed-blocking is a major problem at Rookwood NRC with some discharges being delayed for 

over a year. Since the average bed cost per day
5
 is £480 this represents significant financial 

expense, not to mention the deterioration of patients kept waiting in the queue. 

The average length of stay (LOS) is approximately five months with a cost of £72,000. 

1.3 Mathematical Models 

Operational Research (OR) techniques are often used to construct mathematical models of 

healthcare facilities. OR is a mathematical discipline defined by the Association of European 

Operational Research Societies as ‘a scientific approach to the solution of problems in the 

management of complex systems’. A mathematical model can be defined as a description of a 

system in mathematical language. There are many OR techniques that can be used to produce 

a mathematical model of a healthcare facility. These include continuous and discrete 

simulation and queuing theory. 

                                                      
5
 Figure obtained from Rookwood NRC 
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According to Nance, 1993 continuous simulation ‘uses equational models, often of physical 

systems, which do not portray precise time and state relationships’. It is suitable for ‘systems 

in which the variables can change continuously’ (Ozgun & Barlas, 2009). System dynamics 

is a form of continuous simulation that is used to analyse a system of integrated states over 

time. These states are connected by various links that describe the dynamic interaction 

between components of the system. Differential equations are attached to these links to 

mathematically explicate such interactions. A causal loop diagram can also be used to 

graphically describe the system. Example applications of system dynamics include micro-

economics (buying and selling of assets between firms) and ecology (birth and death of 

species).  

It can also be used to model the flow of patients in a healthcare system. In this case the 

system could represent an NHS Trust and the states could represent individual hospitals. 

Feedback loops can be used to incorporate readmission or relapse. System dynamics is an 

effective modelling tool in this case because the system can be broken down into individual 

physical states. This is also true for a DGH which can be reduced to A+E, ICU, and a number 

of different wards. However, no such reduction exists for Rookwood NRC. Moreover, it 

would be inappropriate to model this facility through continuous simulation due to its low 

annual throughput. In order to accurately model admission and discharge (two major events 

at this facility) a determination of precise time and state relationships is required. 

This can be achieved through Discrete Event Simulation (DES) which ‘utilises a 

mathematical/logical model of a physical system that portrays state changes at precise points 

in simulated time’ (Nance, 1993). In the case of Rookwood NRC the principal discrete events 

are the arrival of a referral, an admission, and a discharge. If sample data is known for each 

of these then the inter-arrival distribution and service (LOS) distribution can be found. A 

computer package can then be used to simulate this system. Results for the probability of 

being in each state of the system and performance measures (e.g. mean waiting time) can 

then be output. 

What has been described is a DES model of a queuing system. Queuing theory, on the other 

hand, is a mathematical branch of OR that can be used to derive analytic (i.e. exact, not 

simulated) results for a queuing system. For more complex systems, however, the problem 

can become mathematically intractable, and so simulation is used. Ozgun & Barlas, 2009 



Chapter One Introduction 8 

state that DES ‘has been the major tool for arriving at conclusions about complicated 

queuing networks’ and that ‘it is very rare to see a study that uses continuous simulation’.  

The intended approach is to deduce analytic solutions using queuing theory. Should this not 

be possible (i.e. if mathematically intractable) then DES could be used. 

1.4 Queuing Theory 

Queuing theory is a mathematical sub-discipline of Operational Research that is used in the 

analytical study of queues and queuing systems. Central to the subject is the concept of 

customers arriving at a service facility, waiting in line, being served, and leaving.  

A very simple case is considered as an example. Assume that customers arrive at a single-

server facility at random and with mean rate  . The customer immediately enters service if 

the server is available and there is no queue. Otherwise, they join the back of the queue and 

wait their turn. Customers in the queue must wait for all those in front of them to begin 

service before they can proceed. Service times are exponential with mean rate  . There is no 

limit on the number of customers in the system. This system is illustrated in Figure 1.5. 

 

Figure 1.5 A simple queue 

Kendall’s notation provides a convenient classification of a queuing system in the form        

A | B | C | D | E where A is the inter-arrival distribution, B is the service distribution, C is the 

number of servers, D is the capacity of the system, and E is the queue discipline. Typically, 

M denotes Markovian inter-arrival/service times (i.e. exponentially distributed) and FIFO 

denotes the queue discipline first-in first-out. Therefore, the above example describes a 

| |1| |M M FIFO  queuing system.  

There are many mathematical methods that can be applied to solve such a system for both 

transient and stationary results. Essentially, transient results have a dependence on time and 

stationary, or steady-state, results assume the system has reached equilibrium. If the objective 
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is to investigate the behaviour of a queue of road traffic at rush hour then transient results are 

sought. On the other hand, if the aim is to investigate the behaviour of a continually operating 

machine in a factory then steady-state results are required. 

Over the years queuing theory has been applied extensively to healthcare facilities (see Ch 

2.1 for a review). The type of queuing model used is, of course, dependent on the healthcare 

facility under consideration. The number of servers could represent the number of GPs in a 

doctor’s surgery or the number of beds in a hospital ward. If arrivals represent people and not 

referrals then it is likely that a restriction on the capacity of the system is required. For 

example, at a doctor’s surgery there are a limited number of seats available in the waiting 

room. The discipline of the queue is also sensitive to the facility being modelled. It is typical 

for an A+E department to operate a priority-based queue so that those with the worst injuries 

are seen first. On the other hand, a day clinic may choose to operate a ticket-based system 

where arriving patients pick a ticket and are served in the order they arrive in (i.e. FIFO). 

The inter-arrival and service distributions must also be considered. These are determined by 

fitting statistical distributions to sample data obtained from the facility (see Chapter 5). In 

such an exercise the objective is usually to find the distribution that produces the best 

approximation to the data. However, the mathematical tractability of constructing a queuing 

theoretic model is heavily dependent on the distributions that are used (see Ch 5.1). 

Therefore, it is necessary to attain a balance between the goodness of fit and the tractability 

of the associated queuing model. 

Phase-type distributions are often used in queuing theory to this end. They are highly 

versatile and possess the necessary attributes that permit tractability. They are explained in 

greater detail in the following subchapter. 

1.5 Phase-Type Distributions 

A phase-type distribution is a stochastic process that describes a finite system of integrated 

Poisson processes occurring in phases. This concept was first introduced in Erlang, 1917 and 

generalised in Cox, 1955. A Poisson process is defined as follows. The process  N t
 
is a 

Poisson process with rate   if it is a counting process and: 

1.  0 0N   

2. The process has independent increments 
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3.       1P N t h N t h o h      

4.       2P N t h N t o h     

It follows that         
1

!
ntP N h t N h n e t n 

   
 
, i.e. the Poisson distribution. The 

distribution of time between consecutive events is now sought. By letting iT  denote the time 

of the i-th event the following is obtained: 

            1 | 0 | 0 t

n n nP T t T h P N h t N h T h P N h t N h e 

              

The time between consecutive events is exponentially distributed. Due to the memoryless 

property of this distribution the time until the next event in each phase is also exponentially 

distributed. The Poisson process is therefore a special case of a continuous-time Markov 

process (since the Markov property holds). 

Moreover, a phase-type distribution can be represented by a finite continuous-time Markov 

process. This describes the time until absorption of a Continuous-Time Markov Chain 

(CTMC). In this description the phases are represented by transient states. The stochastic 

process begins in a transient state and ceases upon entry to the absorbing state. If there are p 

phases in the distribution then there are p+1 states in the CTMC. The CTMC is defined on 

the state space 1,2,..., , 1p p .  

Continuous-time Markov processes can be characterised by their infinitesimal generator 

matrix, Q. This is a square matrix with dimension equal to the cardinality of the state space. 

The sum of values in each row must equal zero. Each non-diagonal element 
,i jQ  represents 

the transition rate from state i to state j. In constructing the infinitesimal generator matrix it is 

necessary to consider the parameterisation of the CTMC. There are two options. The first 

requires a specification of the rate parameter for all transient states and any associated 

transition probabilities. The second requires a specification of the transition rates between 

all states. Figure 1.6 describes these options for an example CTMC. 
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Figure 1.6 Alternate parameterisation for an example CTMC 

The infinitesimal generator matrices for these are 

   1 2 1 1 1 1 1 2 1 1 1 1 1 1 1

0 2 2 0 0 2 2 0
,

0 0 3 3 0 0 3 3

0 0 0 0 0 0 0 0

m a m a m a a m r a r b r c r b r a r c

m m r r
Q Q

m m r r

         
   

     
    
   
   

 

Note that it is trivial to re-parameterise, i.e. can obtain rate parameters and transition 

probabilities in terms of transition rates or vice versa. In this example, 

  1 1 1,  1 1 2,  1 1 1 1 2 ,  2 2,  3 3r a m a r b m a r c m a a r m r m           

Note also that the number of parameters that require estimation is independent of the choice 

of parameterisation. Let the formulation equivalent to the first and second option be referred 

to respectively as the probability parameterisation and the rate parameterisation. 

This infinitesimal generator matrix can be partitioned as follows 

 
0 0

T
Q

 
  
 

                 (1.5.1)  

Here, T  is the p p  generator matrix for the transient states henceforth referred to as the 

PH-generator matrix. The 1p  vector   represents the transition rates from the transient 

states to the absorbing state. Clearly ,1 ,

1

p

i i j

j

T


 . Therefore, T  is the minimal representation 

of Q . What is not detailed by the PH-generator matrix, however, is the state in which the 

stochastic process begins. The initial probability vector   is used to provide this 

information. This is a 1p   dimensional stochastic row vector whose entries represent the 
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probability of starting the process in each of the states. The minimal representation of a 

phase-type distribution is therefore  ,T . 

It can be shown (see Bladt, 2005 for proof) that the pdf 
6
 of a phase type distribution is 

      expf t P X t Tt                  (1.5.2)  

where  exp 
 
is the matrix exponential. This method of derivation is henceforth referred to as 

the matrix geometric approach. It is particularly effective when performed by a computer 

program such as Matlab. The cdf 
7
 is therefore derived by integration 

      1 expF t P X t Tt                   (1.5.3)  

since T    where   is a p dimensional column vector of ones. The n-th moments are 

given by the formula 

  1 !
nn nE X n T                      (1.5.4)  

Alternatively, the pdf can be obtained through the Laplace transform approach. The Laplace 

transform (LT) of the distribution of sojourn time
8
 is derived in two steps. First, the 

convolutions associated with each possible transition pathway are summed. Then, each 

convolution is multiplied by the respective probability of transition though that pathway. The 

number of terms summed is equal to the number of possible pathways from start to 

absorption. The probabilities associated with each pathway must sum to one. For the example 

previously considered there are three possible pathways (assuming the stochastic process 

begins in the first state). The LT of the sojourn time distribution is therefore (using 

probability parameterisation) 

    
1 3 1 2 3 1

( ) 1 2 1 1 2
1 3 1 2 3 1

m m m m m m
LT f t a a a a

m s m s m s m s m s m s
    

     
 

since    
1x

SLT e s  
   . The pdf is derived by applying the inverse LT. This approach 

is possible since Cox, 1955 proved that any distribution with a rational LT can be represented 

in a phase-type structure. 

                                                      
6
 Probability density function 

7
 Cumulative density function 

8
 The time from the start of the stochastic process until absorption 
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1.6 Treatment Intensity 

The objective of this project is to model activities at the NRC at Rookwood hospital. The 

main activities are the arrival of a referral and the admission and discharge of a patient. 

However, it was noticed
9
 early on that LOS (discharge date minus admission date) is 

dependent, not only on the particular attributes of the patient that are readily available on 

arrival (age, gender, diagnosis etc), but also on the intensity of treatment received post-

arrival. In fact, it is the active component of LOS that is affected by treatment intensity. This 

relates to the time, from admission, until the patient is ready for discharge. From this point 

until ultimate discharge they are said to be bed-blocking (Ch 1.2) and this period of time is 

referred to as the blocked component of LOS. 

At Rookwood NRC treatment is received according to timetables that are produced weekly 

for each of the departments. These stipulate which patients receive what treatment, by whom, 

and for how long. An automated scheduling program is developed for one department 

(physiotherapy) in order to replicate the procedure in which treatment is allocated (by hand). 

In brief, the scheduling of treatment requires information on patient demand, details, priority 

and availability in addition to staff attributes and availability. Such measures are variable and 

the effect of changes to them on treatment intensity can be quickly determined using the 

scheduling program. The consequent effect on (active) LOS can then be deduced if the 

relationship between treatment intensity and (active) LOS is known.  

Although the automated scheduling program was designed to replicate the manual 

timetabling procedure for the physiotherapy department it has since replaced the former by-

hand approach. This is due to the many advantages that an automated program can bring to 

employee scheduling such as an improved solution, less manual input, and better data 

storage. Whilst these advantages typically provide sufficient motivation to produce an 

automated schedule this is not the case here. It is therefore worth re-affirming that the aim of 

the automated program is to replicate the week-to-week scheduling of physiotherapy 

treatment such that the effects of changes to the aforementioned patient and staff details on 

treatment intensity can be quickly evaluated. The automated program is therefore successful 

in satisfying this aim of replicating the week-to-week scheduling of physiotherapy treatment 

since it actually creates the week-to-week schedules of physiotherapy treatment. 

                                                      
9
 From the literature review and discussions with clinicians 
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1.7 Summary 

In this project queuing theory and scheduling are used to model activities at the NRC at 

Rookwood hospital. The first phase is to produce an initial, representative model of the unit. 

This model can be described in the following four chronological stages. 

1.7.1 Phase One: Initial construction 

Historical data is used in the first stage to determine the characteristics of a small number of 

homogeneous patient groups. The objective is to deduce the range of values for appropriate 

branching variables (e.g. age, gender, diagnosis – Ch 6.2.6) that return a low variance of 

active LOS for each group. 

The second stage uses the automated scheduling program (Chapters 3 and 4) to produce 

treatment timetables by fitting patient demand to staff supply. The aim is to use the program 

to produce average values of treatment intensity for each patient group that are approximately 

equal to their empirical counterparts. This is achieved by initialising the program with 

variable values that are equivalent to the current situation on the ground at Rookwood NRC. 

That is, the number of beds for each group, number and band level of staff, and number of 

hours worked each day should all be realistic. 

Thirdly, these average values of treatment intensity are converted to average values of active 

LOS through a two-dimensional line graph for each patient group. These graphs are produced 

by using historical data to examine the relationship between treatment intensity and active 

LOS (Ch 6.4.2.3) for patients of each group. Assuming that these graphs and the average 

values of treatment intensity obtained through stage two are correct then the average values 

of active LOS should match their empirical counterparts (for each group). 

In the final stage, the queuing theoretic model is constructed (Chapter 9). This consists of a 

number of disconnected homogeneous server queuing systems; one for each patient group 

(Ch 8.4.2.1). The distribution of referral arrivals for each queuing system is (justifiably – Ch 

6.4.1) assumed Poisson and rates are derived from historical data (Ch 6.4.1). A Coxian phase-

type and exponential distribution are used to model active and blocked LOS respectively for 

each system. These are fitted using derived formulae for the parameter estimates (Chapter 5), 

the Matlab program (Ch 6.5.1) and the average values of active LOS of stage three. Each 

queuing system can then be solved for steady-state probabilities and performance measures 

using a purpose built program encoded in Maple (Ch 8.3.1.6). Ultimately, steady-state 
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probabilities, performance measures and costs are output for the holistic queuing model (Ch 

8.4.2.1). 

1.7.2 Phase Two: Hypothetical scenarios 

The second phase is to use the constructed model to consider hypothetical scenarios. Broadly 

speaking, these what-if questions relate to the major policy decisions (who to admit, what 

care to give, when to discharge) that clinicians have control over. For the purposes of the 

model such decisions are made not on an individual basis for particular patients but on a 

macro level. For example, consider the question: what if therapists work weekends? This 

affects the treatment received by all of the patients and relates to the second major policy 

decision (what care to give). It can be evaluated by making a change to the scheduling 

program at stage two. A consideration to the major policy decisions is shown throughout this 

thesis.  

1.7.3 Motivation 

The motivation for this project is simple. From the literature review (Chapter 2) no study has 

been found that applies queuing theory to a neurological rehabilitation setting. Such a study is 

needed since inpatient neurological rehabilitation is an expensive and highly sought after 

service. For the NRC at Rookwood hospital annual demand is about 375 (according to Ch 

1.2). This significantly exceeds the annual throughput which, with 21 beds (on average) and a 

mean LOS of five months, is just fifty. The (average) bed cost per day stands at £480. 

1.7.4 Outline 

A review of relevant literature is provided in Chapter 2. Following this the current process of 

scheduling treatment is discussed in Chapter 3 with particular attention restricted to the 

physiotherapy department. Thereafter, the automated computer program for scheduling 

physiotherapy treatment is described in Chapter 4. This program forms the basis of stage two 

(Ch 1.7.1). Distribution fitting and parameter estimation are considered in Chapter 5. Phase-

type distributions are central to this owing to the aforementioned advantages (Ch 1.5). 

Chapter 6 is divided into two parts with the first listing a number of models (of increasing 

complexity) alongside any associated pros and cons in addition to data requirements. The 

availability of data is considered in the second part and distributions are fitted to the LOS 

using the results of Chapter 5. A specially designed computer program that solves the multi-

channel, fixed buffer queuing system with Markovian arrivals and Erlang service times for 

steady-state results is detailed in Chapter 7. This is extended to Coxian (to model active LOS) 
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plus exponential (to model blocked LOS) service times in Chapter 8. In Chapter 9 balking 

and reneging are introduced to control for the size of the queue as the number in system 

approaches capacity. The patient groups (stage one) are also determined and so too are the 

relationships between treatment intensity and active LOS (stage three) for each of these 

groups. Finally, the queuing model (stage four) is constructed (using the computer program 

of Chapter 8) and some hypothetical scenarios (phase two) are considered. 
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Chapter 2: Background and Literature Review 

 

 

 

 

 

 

2.1 Introduction 

Operational Research (OR) is a relatively new discipline of mathematics. It is thought to have 

been conceived in the UK in 1936 as part of an MOD study into enemy aircraft detection and 

interception. Subsequent operations were successful enough that in 1941 an Operational 

Research Section was established. The objective was to find the most effective utilisation of 

limited military resources by the use of quantitative techniques. 

In the years after the Second World War the application of OR moved toward more domestic 

concerns. By the early 1950s over forty Operational Research sections had been established 

in Great Britain (Goodeve, 1953). These sections ranged in size and speciality. Many were 

based in the private sector whilst others could be found in government departments or 

research associations. Various applications of the discipline were studied; agriculture, civil 

aviation, the textile industry, property development, and healthcare. The paper entitled 

‘Operational Research in Medicine’ (Bailey, 1952) is perhaps the earliest publication that 

considers the application of OR in healthcare. Since then there has been a plethora of research 

within this field. 

At the core of such research is the production of mathematical models that are, to some 

extent, representative of real-life behaviour. Richard Gibbs defines three types of healthcare 

resource allocation models in the book ‘Operational Research applied to Health Services’ 

(Boldy, 1981). First considered are macro-econometric models. These contain aggregate 

variables such as consumption, supply and price of health services, and population attributes. 

They contain multiple linear equations and may be interpreted as a system dynamics type 
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model. Behaviour simulation models are considered next. These models are constructed by 

hypotheses that relate to the behaviour of physicians and patients. Finally, system 

optimisation models are considered. Here, resource allocations are determined based on a 

pre-defined objective function. There are many OR tools that can be employed to construct 

such models (see Ch 1.3). The most valuable of these with respect to modelling activities at 

Rookwood NRC is queuing theory (a justification is provided in Ch 1.3). 

Queuing Theory (QT) is one of many sub-disciplines of OR. The first academic paper in this 

field was published by Agner Krarup Erlang in 1909 and was entitled ‘The Theory of 

Probabilities and Telephone Conversations’. The author continued his studies into the next 

decade and in 1917 published some of his most influential work. The paper ‘Solution of some 

Problems in the Theory of Probabilities of Significance in Automatic Telephone Exchanges’ 

establishes formulae for loss and waiting time – these have since become prominent results in 

the field. Decades later in 1953, a standard for the characterisation of queues was introduced 

by David George Kendall. This is known as Kendall’s notation and is described in Ch 1.4. 

A year later, in 1954, a paper entitled ‘Queuing for Medical Care’ was published by Norman 

Bailey. The author relates his study of an inpatient facility to Erlang’s work on telephony by 

considering patients as telephone calls and hospital beds as telephone channels. The length of 

stay (LOS) is equivalent to the duration of the call. The author deduces the average waiting 

time (through Erlang’s formula) and calculates the optimal number of beds required in the 

hospital. In subsequent years and decades, research interest in healthcare modelling through 

QT has developed and there now exist a multitude of studies. 

QT has been applied to many healthcare related problems over the years. Cochran & Roche, 

2007 use the discipline to estimate demand for inpatient beds at a level 1 trauma facility in 

the United States.  The activities of an intensive care unit are modelled in Griffiths et al, 2006 

in which the optimal bed allocation is determined and what-if type scenarios examined. 

Optimal bed allocation is also sought in de Bruin et al, 2007. This is found with respect to a 

maximum permitted number of refused admissions for emergency cardiac patients. The 

application of QT has also been extended to outpatient activities. Mayhew & Smith, 2008 use 

a queuing model to examine patient LOS in an accident and emergency department. Their 

aim is to evaluate the impact of the government’s (2000) target to treat and discharge 98% of 

patients within four hours. Furthermore, a general medicine practice is modelled in Sobieraj, 

2006 by an M | G | 1 queue. In addition to these rather general applications, QT has also been 
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applied to more specialised healthcare problems (for example, the use of a portable X-Ray 

machine is modelled in Abujudeh et al, 2005). 

A more thorough review of QT applications in healthcare can be found in Fomundam & 

Hermann, 2007. The authors of this paper make an important distinction between model 

types. The first type defines models that ‘predict how particular healthcare configurations 

affect delay in patient service and healthcare resource utilisation’ whereas the second type 

defines models that ‘seek to determine the optimal allocation of resources necessary to attain 

the goals determined by healthcare providers and decision makers’. Alternatively put, the 

former outputs performance measures based on healthcare configuration whilst the latter 

outputs healthcare configuration based on performance measures. These may be considered 

as equivalent to the behaviour simulation and system optimisation models previously defined 

by Richard Gibbs. As an example, a representative model of an accident and emergency 

(healthcare configuration) is constructed in Mayhew & Smith, 2008 and the service time 

information (performance measures) is output. This is then compared to the government’s 

targets. De Bruin et al, 2007 exemplifies the second model type. The authors are given a 

maximum permitted number of refused admissions (performance measures) and seek to 

optimise the bed allocation (healthcare configuration) to avoid this being exceeded.  

2.2 Neurological Rehabilitation 

Neurological rehabilitation is defined in Wade, 1987 as ’the management of patients with 

neurological disability’. However, this ‘management’ has been inconsistent over time. It is 

reported in Burke, 1995 that after the Second World War, Acquired Brain Injury (ABI) 

patients tended to be treated alongside stroke patients. However, this was problematic since 

these units were typically populated by geriatric patients. This led to an increasing number of 

ABI patients being admitted onto more general rehabilitation programmes. These were also 

unsuitable due to the significant cognitive and behavioural dysfunction associated with ABI. 

By the 1970s brain injured patients were being denied opportunities for rehabilitative 

treatment in favour of transfer to nursing homes or psychiatric facilities. The 1980s saw a 

marked change in this practice with the development of specialised neurological 

rehabilitation programmes across the United States and Europe. Rookwood NRC has 

operated such a programme since (about) 1990. 

It is perhaps the recency of this conception that explains the absence of QT models within the 

literature. After a thorough search no articles relating QT to neurological rehabilitation could 
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be found. Despite this, there is evidence of extensive clinical research into the efficacy of 

these specialist programmes. These have been published widely within journals such as Brain 

Injury, Disability and Rehabilitation, Head Trauma Rehabilitation, and Neurorehabilitation 

and Neural Repair. The aim of this subchapter is to review such studies that are considered 

relevant to this project. 

An important limitation must first be addressed. As mentioned, Rookwood NRC provides 

care to those who have Acquired Brain Injury (ABI). However, the majority of studies within 

the literature consider only Traumatic Brain Injury (TBI) (Teasell et al, 2007). This is 

problematic since there is evidence of disparity in functional recovery between TBI and non-

TBI patients (Cullen et al, 2007). The authors report that ‘TBI patients achieve greater 

functional improvements compared to non-TBI patients’. Therefore, the limitations in the 

applicability of TBI studies to Rookwood NRC must be acknowledged. 

2.2.1 Prognostic models for outcome and length of stay 

Prognostic models are used to predict future values of outcome variables on the basis of 

current values of predictor variables. They can be used in neurological rehabilitation to 

predict patient performance measures (mortality, functional ability, LOS) on the basis of pre, 

or on, arrival attributes (age, gender, diagnosis). This is beneficial for the following reasons. 

Firstly, a smoother discharge can be facilitated for the patient since the discharge destination 

and date can be predicted far in advance. This decreases bed-blocking and so increases 

throughput. Secondly, support can be given to the major policy decisions (who to admit, what 

care to give, when to discharge) since a more accurate awareness of current and future 

capacity is available. This is because future demand for current and prospective (in queue) 

patients can be forecast.  

Owing to these advantages there exist a vast number of prognostic models within the research 

community. In a recent review (Perel et al, 2006) 102 prognostic models for TBI were 

identified across 53 studies. A total of 89 predictor variables were used in the models – the 

most common being Glasgow Coma Scale
1
 (50%), age (46%), and pupil reactivity (26%). 

Mortality (30%) and Glasgow Outcome Scale (28%) were the most widely used outcome 

variables. The authors conclude that ‘although publications of prognostic models are very 

frequent their quality is relatively poor’. Possible reasons are insufficient sample sizes (75% 

of models contained < 500 patients) and lack of external validity (only 11% of models were 

                                                      
1
 Teasdale & Jennett, 1974 
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validated externally). The lack of representation from low income countries (2% of models) 

is cited as a drawback to the review since such countries account for 90% of TBI cases. The 

authors point toward the (at the time, ongoing) MRC CRASH Trial to redress these concerns.   

The Medical Research Council (MRC) CRASH Trial is a large-scale international study of 

TBI prognostic models (MRCCT collaborators, 2008). The study seeks to develop and 

validate prognostic models for death at 14 days and death or severe disability at six months 

after TBI. An unprecedented number of patients (10,008) were studied, with many from low-

middle income countries (7,526). The authors construct a basic model using four predictor 

variables (age, GCS, pupil reactivity, presence of major extra-cranial injury) in addition to a 

more advanced model that requires CT scan results. The models are externally validated in a 

separate cohort of 8,509 TBI patients. In high income countries, such as the UK, age was 

found to be the most significant predictor of outcome. 

However, outcome in this study (and many others considered in Perel et al, 2006) is restricted 

to mortality and not functional ability. This is of potential irrelevance to rehabilitation since 

‘ABI is not thought to affect life expectancy after the initial acute phase’ (Dept of Health, 

1998). With respect to functional ability there are many assessment measures and scales that 

are available. The most common in TBI (Wilson et al, 1998) is the Glasgow Outcome Scale 

(Jennett & Bond, 1975). Two decades before, the Barthel Index (BI) was created (Mahoney 

& Barthel, 1965). The authors aim was to create a simple index of independence that was 

useful in scoring disability. However, this was considered ‘too crude and simple’ (van der 

Putten et al, 1999) and as a consequence, the Functional Independence Measure (FIM) (Keith 

et al, 1987) was developed. Another measure that is widely used is the Disability Rating 

Scale (DRS) (Rappaport et al, 1982). There are many studies into the efficacy and accuracy 

of such measures. For example, Hall et al, 1996 investigate the ceiling effects of the FIM and 

DRS in TBI and van der Putten et al, 1999 compare the responsiveness of the BI and FIM in 

TBI. 

Black et al, 2000 examine the effect of age, initial admission GCS, rehabilitation admission 

strength, standing balance and sitting balance on FIM scores at discharge. They find that 

these predictor variables account for 29% of the variance in the outcome measure. Age and 

sitting balance were found to be the most powerful predictors. Cognitive outcome (as 

measured by the Rancho Los Amigos Level of Cognitive Functioning) is studied in Finch et 

al, 1997. The authors conclude that the results from a simple examination of mental status 
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(involving tasks such as phrase repetition and eye movement) can account for 27% of the 

variance in this outcome measure. Many other studies point to early intervention in the 

rehabilitation of patients as a means of improving long-term functional ability. The articles 

Mackay et al, 1992 and Cope & Hall, 1982 support this. 

In addition to functional ability on discharge, some authors extend their prognoses to consider 

LOS. Cowen et al, 1997 investigate predictor variables for outcome (measured by motor and 

cognitive FIM) and LOS in TBI. They conclude that functional ability and LOS can be 

predicted ‘with a high degree of the variance explained by the data known at the time of 

rehabilitation admission’. The predictor variables are found to be initial GCS score, CT 

findings, etiology, presence of fractures, age, length of acute hospitalisation and admission 

motor and cognitive FIM scores. A similar study is conducted in Feigenson et al, 1977 with 

respect to stroke rehabilitation. In this investigation, age was found to be unrelated to 

functional ability on discharge or LOS despite the inclusion of patients from a variety of age 

groups. Lehmkuhl et al, 1993 confine their research to factors that predict LOS and not 

outcome in their study of over 300 TBI patients. They find severity of injury, as measured by 

GCS, to be of statistical significance in predicting LOS. 

A thorough review of predictor variables (split to pre-injury, injury, post-injury) for outcome 

and LOS of TBI patients can be found in Zasler, 1997. 

2.2.2 The effect of length of stay on outcome 

In addition to the multitude of pre/on arrival attributes that have been considered in the 

previous subchapter, there exist many post-arrival variables that also affect outcome 

(functional ability on discharge). Some of these are, to some extent, outside the control of the 

rehabilitation unit - such as illness or re-admission to acute care. Other variables are, 

however, under the direct control of clinicians. Patient LOS is one such variable. This is an 

important measure to consider since it relates to the major policy decisions (i.e. policy 3: 

when to discharge). It is intuitive to expect that longer LOS is associated with improved 

outcome. 

A recent study in Sandhaug et al, 2010 aims to assess the effect of pre-injury and injury-

related factors ‘as predictors of early recovery’ for TBI patients in Norway. The authors 

deduce that ‘a longer stay in the rehabilitation unit is associated with a better functional level 

at discharge’. It must, however, be noted that only 55 patients are used within the study. 
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Spivack et al, 1992 investigate the outcome of (95) TBI patients – but in this study patients 

are split into either a short or long LOS group. The authors conclude that ‘patients in the long 

LOS group consistently made more progress across all outcome variables than patients in the 

short LOS group’. The effect of rehabilitation LOS on the FIM outcome measure is studied in 

Cowen et al, 1997. The conclusion is as expected with p < 0.01. 

Note that there is considerable crossover with respect to the performance measures (LOS and 

outcome) and their predictor variables. The former subchapter begins by reviewing studies 

that predict outcome on the basis of pre/on arrival attributes and ends by extending these 

prognoses to LOS. The papers considered in this subchapter then support the expected result 

that LOS is indeed predictive of outcome. Therefore, the variables that predict LOS must also 

be included in the set of variables that are used to predict outcome.  

2.2.3 The effect of treatment intensity on length of stay and outcome 

Another post-arrival variable that affects outcome is treatment intensity. This is defined as the 

amount of treatment received over an interval of time. This is an important measure to 

consider since it relates to the major policy decisions (i.e. policy 2: what care to give). It is 

expected that treatment intensity will affect LOS (with outcome held constant) or outcome 

(with LOS held constant). This combined with the previously identified relationship between 

LOS and outcome infers a trilateral relationship between these three measures. 

The need for a sufficiently intensive rehabilitation programme is reported in Chapter 1.5 of 

the National Clinical Guidelines for Rehabilitation following Acquired Brain Injury (Turner-

Stokes, 2003). The authors advise that ‘following acute ABI, patients should be transferred to 

a rehabilitation programme of appropriate intensity’. However, in the same chapter, the 

authors cite a paper (which has since been published with complete results – Zhu et al, 2007) 

that asks ‘What is the optimal amount of rehabilitation that patients should receive?’, the 

answer being ‘there is no established standard’. This is indeed true. It is evident from the 

conflicting results of the many studies that there is a lack of agreement; not only with respect 

to optimal intensity but also with respect to the efficacy of varying treatment intensity in the 

first place. Due to the expected trilateral relationship between treatment intensity, LOS and 

outcome, these studies are henceforth reviewed. 
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Perhaps the earliest investigation into the effect of treatment intensity on outcome is that of 

Smith et al, 1981. The authors conduct an RCT
2
 involving 133 ‘appropriate’ stroke patients 

who have been discharged to the community from Northwick Park (a DGH in the UK). 

Patients were allocated at random to three groups; each involving a different level of 

treatment intensity. Results showed that improvement (measured at three and six months) 

was greatest in those receiving intensive treatment (twice the level of conventional treatment) 

and least in those who received no routine treatment. Improvement was intermediate in the 

group that received conventional treatment. The authors comment that not all patients are 

‘appropriate’ for the intensive treatment – over 300 patients ‘too elderly or too frail’ were 

excluded from the study. Four years later a paper was published ‘The Significance of Intensity 

of Rehabilitation of Stroke – A Controlled Trial’ (Sivenius et al, 1985). In the study, 95 stroke 

inpatients were divided into intensive and normal treatment groups. The amount of treatment 

received by each group varied over time since there was no fixed ratio (cf. Smith et al, 1981). 

At three months after stroke there was a statistically significant difference (p < 0.05) between 

the amounts received, but, this did not follow at six and twelve months. This trend was 

repeated when gains in ADL (Activities of Daily Living – an independence index also used in 

Smith et al, 1981) were studied. 

Later that decade, a study (Blackerby, 1990) investigating the effect of treatment intensity on 

LOS for ABI patients was published. This differed somewhat when compared to its 

predecessors. The author considers the retrospective analysis of the LOS of patients before 

and after a global change to the rehabilitation programme. That is, the experiment and control 

groups were not treated simultaneously. Secondly, patient LOS is the dependent variable in 

this study and not outcome (note that the ‘criteria for discharge from these programmes did 

not change’). After the change in programme, LOS was found to have decreased by 31% – 

this represented a 1.5 month reduction on average. In addition, the variability in LOS was 

found to have decreased. This enables the more accurate prediction of discharge date ergo the 

facilitation of smoother discharge. 

Some studies have investigated the effect of varying the intensity of specific treatments. In 

Slade et al, 2002 the intensity of physiotherapy and occupational therapy is increased by 67% 

for the experimental group in an RCT. Again, the outcome was held constant – ‘No 

significant difference in discharge Barthel scores was found’ – and the effect on LOS was 
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observed. The result was a significant (p < 0.01) reduction in LOS of 14 days. Five years 

later a similar study (Zhu et al, 2007) was conducted in which physiotherapy and 

occupational therapy were increased from two to four hours a day. Although there were no 

significant differences in the mean FIM scores at six and twelve months post-injury; this was 

not the case at three months (p = 0.016). This led the authors to conclude that ‘Intensive 

rehabilitation in this study speeded up recovery rather than changed the final outcome’. 

The effects of changes to both treatment intensity and LOS are considered in Spivack et al, 

1992. Patients are classified into high and low treatment intensity groups (for both their first 

month of rehabilitation and overall average daily amount) based on a median split. They are 

also classified into long and short LOS groups. 2 × 2 analyses of variance follow and are used 

to evaluate the effect of changes on cognitive and motor outcome. In a similar fashion to 

other studies, the authors control for pre/on arrival attributes by including these moderator 

variables as covariates in the analyses. Instead of deducing these statistically from their own 

cohort, they are obtained from the results of previous research. It is found that ‘patients with 

longer LOS made more progress across all outcome variables than patients with shorter 

LOS’. This is because patients with longer LOS were ‘significantly more disabled’ initially 

and so needed more rehabilitation to ‘reach the same levels at discharge as the short LOS 

patients’. Treatment intensity was shown to have a significant effect on cognitive outcome 

measures (higher-level cognitive skills and Rancho level) but not motor outcome measures. 

Research has also been undertaken in efforts to evaluate the effect of changes in intensity of 

individual therapy types on outcome and LOS. A multicentre survey involving 491 TBI 

patients is presented in Cifu et al, 2003 in which the effect of variations in speech, 

occupational, physical and psychological therapy is studied. In investigating the predictors of 

treatment intensity (as therapy levels were not fixed in the study) the authors find that ‘a 

lower age and a shorter onset-admission interval were significant predictors of increased 

psychological therapy intensity’ and that ‘FIM motor score at admission was a significant 

predictor of speech therapy’. It was also found that treatment intensity (of any type) was not 

predictive of gains in the FIM cognitive score. Other results show that ‘longer LOS in 

rehabilitation significantly predicted greater motor potential achieved’ and that ‘speech and 

physical therapy were significant predictors of motor outcome at discharge’. Many of the pre 

and on arrival attributes considered were found to be significant predictors of LOS, although, 

therapy intensity was not. A possible limitation to this survey is the ‘limited variance in 

intensities among patients’. Note that this survey is in fact a ‘replicate’ of Heinemann et al, 
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1995. Whilst many similarities exist with respect to the study designs these congruities did 

not extend to the results. Contrarily Heinemann et al find that ‘only intensity of psychology 

services seemed to have any relation to functional gain’. The authors cite spontaneous 

recovery and floor effects of the FIM as possible explanations of this. 

To conclude the review of this subchapter it can be firmly asserted that ‘there is a tenuous 

relation between the intensity of therapy services provided after TBI and the functional 

outcome’ (Cifu et al, 2003). This can be seen by the noticeable disparities between the results 

of the studies considered above. However, on the whole ‘more therapy is better’ (Cullen et al, 

2007) and, according to the authors, despite the short-term benefits of high over low intensity 

rehabilitation ‘these differences are gradually reduced over time’. This is an interesting 

concept that is supported by the results of Sivenius et al, 1985 and Zhu et al, 2007. 

2.2.4 Costing 

Costs usually form an essential part of any study in healthcare. Beecham et al, 2009 explain a 

simple method of calculating patient costs at healthcare facilities – ‘A unit cost for treatment 

and care is multiplied by the length of stay to obtain an average ‘episode’ cost for that 

placement’. However, a more accurate estimation can be achieved if a distinction is made 

between fixed and variable costs. The fixed costs represent generic overheads whilst variable 

costs are patient-specific and relate to the particular treatment that is received. This is 

supported by Turner-Stokes, 2007 ‘the cost of providing rehabilitation is largely determined 

by time and effort’, that is, by LOS and treatment intensity. 

There have been many papers published that have documented various costs associated with 

inpatient neurological rehabilitation. For example, in Beecham et al, 2009, the disposition of 

young adults with ABI is divided into four groups according to complexity. The groups range 

from short stay acute to long stay institutional with associated average costs of £240 (one-off) 

and £33,900 (per annum) respectively. Another example, in Whitlock et al, 1995, examines 

the ‘Functional Outcome after Rehabilitation for Severe TBI’. Severe TBI is defined in this 

study by a FIM score of 18 – the lowest value possible. The average daily cost of 

rehabilitation was ‘roughly $1,000’ and the efficacy of the rehabilitation programme was 

confirmed by an average discharge score of 65. 

However, ‘it is not sufficient to demonstrate merely that rehabilitation interventions are 

effective or lead to improvements in quality of life. They must also be demonstrably cost-
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efficient’ (Turner-Stokes, 2003). For a proposal to be cost-efficient, ‘the initial investment in 

rehabilitation must be offset by the ongoing savings on care within a reasonably short 

timeframe’ (Turner-Stokes et al, 2006). The earliest review of TBI rehabilitation efficacy is 

published in Cope, 1995. In this, the author cites a study (Max et al, 1991) which estimates 

the total annual cost associated with brain injury in the US at $44bn. The authors of this study 

find that 54% of this is due to work loss and disability and assert that ‘it is in this area that 

rehabilitation has the greatest potential to affect savings’. 

The validity of this assertion is strengthened by many subsequent studies, including Turner-

Stokes et al, 2006. In this paper two methods are compared for evaluating the cost efficiency 

of specialist rehabilitation for ABI patients. Firstly, (297) patients are divided into three 

groups according to Northwick Park Dependency Score
3
 on admission. For each of these 

groups the mean changes in NPDS, NPCNA
4
 and FIM (from admission to discharge) are 

calculated. Following this the NPCNA is used to estimate the mean reduction in weekly cost 

of community care as a result of inpatient rehabilitation. The time taken to offset the cost of 

inpatient rehabilitation is then calculated by dividing the mean cost of inpatient rehabilitation 

by the mean reduction in weekly cost of community care for each group. Results show that 

the low dependency group has an offset time of 38 months whilst the medium and high 

dependency groups have times of 21 and 16 months respectively. Since ABI patients who 

have survived past acute care can expect normal life expectancies (Dept of Health, 1998) this 

can represent significant long-term savings. 

The other method for evaluating cost-efficiency is related to the FIM measure. FIM 

efficiency is calculated by dividing the mean change in total FIM score by LOS. The values 

for the low, medium, and high dependency groups are 0.17, 0.25, and 0.16. Results for the 

low and medium groups ‘are to be expected’ and follow a trend similar to that exhibited by 

the NPCNA. However, FIM efficiency of the high dependency group fails to sufficiently 

acknowledge the evident financial benefits associated with inpatient rehabilitation for this 

                                                      
3
 The NPDS (Turner-Stokes et al, 1998) is an ‘ordinal scale that can be used to assess the impact of nursing 

time in a rehabilitation setting’. It was designed as part of a ‘larger project to develop a tool for predicting care 

needs in the community from hospital’. Measures such as the FIM and BI are inappropriate to this end because 

although they ‘have been shown to correlate with care needs’ they ‘cannot be used to assess them directly, as 

they do not indicate the number of people required to help with a task, nor the time taken’ – this is the role of 

the NPDS 
4
 The completion of the project was marked a year later with the publication of the Northwick Park Care Needs 

Assessment (Turner-Stokes et al, 1999). The NPCNA represents an algorithm that translates NPDS scores into 

an ‘estimate of care needs in total care hours, or a timetable of care’ ahead of discharge to the community 
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group of patients. The authors cite the reputable ‘floor effects’ of the FIM (van der Putten et 

al, 1999) as an explanation to this. 

A year later, the study is extended (Turner-Stokes, 2007) to examine the cost-efficacy of 

providing ABI patients with longer rehabilitation programmes. This study aims to ‘determine 

whether highly dependent patients who remain in rehabilitation beyond the average of 3-4 

months continue to make meaningful change’. This change must be justifiable with respect to 

cost-efficiency. Results are presented in a similar fashion as before. Although not implicitly 

referred to, it can be deduced from these results that after four months of rehabilitation the 

mean cost is £35,687 and the mean reduction in weekly community cost is equal to £833. 

Therefore, an offset time of ten months is estimated for a typical rehabilitation programme. 

However, since the mean LOS of these (51) patients is in fact six months, the effect of the 

additional time can be examined. The mean total cost is found to be £52,453 and the mean 

reduction in weekly community cost is equal to £950 – giving an offset time of 14 months. 

Note that the additional two months rehabilitation has reduced weekly community costs by 

£114 by reducing the amount of weekly care required from eight to five hours. The author 

concludes that ‘the additional investment … was offset relatively quickly by long-term savings 

in the cost of care’. 

Other studies examine the cost-efficacy of providing ABI patients with higher intensities of 

treatment. In the previously reported study of Blackerby (1990) it is found that higher 

intensity treatment (from five to eight hours per day) reduces LOS by 48 and 53 days 

respectively for comatose and acute patients. Since the ‘criteria for discharge from these 

programmes did not change’ this represents a saving in fixed costs of $16,950 and $18,504 

respectively (fixed cost per day is $350). However, the author fails to acknowledge the 

significant effect of treatment intensity on variable costs. The following analyses are 

therefore undertaken using raw results from the study. The average variable cost per day is 

calculated as $435 since the average total cost per day is given as $785.  If it is assumed that 

variable costs are linearly related to treatment intensity then the increase in treatment hours 

from five to eight hours per day lifts these costs from $435 to $696 per day. The average pre-

change costs can be calculated as $119,940 (152.79 × $785) and $129,760 (165.3 × $785) 

respectively and post-change as $109,160 (104.36 × $1,046) and $117,601 (112.43 × $1,046) 

respectively. Therefore, the average savings are $10,780 for comatose patients and $12,159 

for acute patients. Similar studies that also conclude favourably include Shiel et al, 2001 and 

Slade et al, 2002. 
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2.3 Queuing Theory Models (Geriatric) 

Queuing Theory (QT) models applied to geriatric care are considered within this literature 

review since, in the absence of neurological rehabilitation models, they represent the closest 

alternative. This is due to the similarities between the transition of geriatric and ABI patients 

through healthcare facilities – typically this consists of acute/rehabilitative care followed by 

some form of continued care (e.g. community visits, nursing home). There exists a 

considerable amount of research within the field of geriatric care modelling with substantial 

contributions made by Queens University Belfast in collaboration with St George’s Hospital 

in London. Some of these studies are systematically reviewed in order of complexity. 

The specification of the inter-arrival and service distributions are fundamental requirements 

in the characterisation of a queuing system. With respect to the modelling of healthcare 

facilities, most studies either find or assume the negative exponential distribution (Ch 5.5.1) 

to be the most appropriate in modelling inter-arrival times. This assumption has been shown 

to hold water in the case of unscheduled arrivals at an inpatient facility (Young, 1965). More 

recently, Irvine et al, 1994 and Taylor et al, 1998 are among those that have verified this 

assumption for geriatric data. What is usually more challenging is the specification of the 

service distribution. 

In an early study, (McClean & Millard, 1993), the service distribution for geriatric inpatient 

admissions is investigated. The study examined LOS data for 6,994 patients admitted to 

geriatric departments across a London borough over a 16 year period. The authors fit a two-

term mixed-exponential distribution (Ch 5.5.2.1) to the data. This has previously given a 

‘good fit’ when applied to geriatric data in Millard, 1988 and Harrison & Millard, 1991. The 

distribution has been chosen to represent the two different types of patients – those requiring 

acute/rehabilitative care and those requiring long-stay care. Whilst this distribution produces 

a satisfactory fit, a better result is sought by applying other distributions to the LOS data. The 

motivation for this is the failure of the mixed-exponential distribution to represent a high 

probability density that is found at a low, but nonzero, LOS. This peak is as a result of early 

discharges or deaths. The author concludes by commenting that a ‘log-normal and 

exponential mixture was seen to provide a better description’ but at the cost of ‘the 

estimation of an additional parameter’.  

Later that decade, a Coxian phase-type distribution (Ch 5.5.4) is fitted to male geriatric 

service time (LOS) data in Faddy & McClean, 1999. The covariates age and year of 
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admission were incorporated into the distribution by allowing the dependence of model 

parameters on these variables through log-linear functions. The fitting procedure is maximum 

likelihood and computations are performed in Matlab. Again, the emphasis is firmly placed 

on finding a distribution that represents the early peak (describing frequent early discharges 

and deaths) as well as the heavy tail (describing exceptional but significant long stays). A 

four phase distribution is decided upon. Note that whilst the mixed-exponential distribution 

of McClean & Millard, 1993 had phases in parallel, this distribution has phases in series. This 

means that a greater LOS is, on balance, associated with a greater number of phases occupied 

prior to absorption (death, discharge, transfer). In addition to the quality of fit the authors also 

praise the ‘interpretable structure’ of the distribution. For example, the phases could be 

interpreted as acute, rehabilitative, long stay and resident. 

Some years later a novel approach to incorporate the effect of patient-related variables on 

LOS is published in McClean & Marshall, 2003. To this end, the authors use a conditional 

phase-type distribution; a Coxian phase-type distribution conditioned by a Bayesian belief 

network
5
. In this case, ‘the phase-type distribution represents the continuous variable (LOS) 

and the BBN represents the network of interrelated variables’. The aim is to produce accurate 

estimations of patient LOS based on appropriate causal variables. The model is defined as 

‘consisting of causal nodes belonging to the causal network and process nodes representing 

the phase type distribution’. Figure 2.1 depicts the causal and process networks that are 

produced using the CoCo package (Badsberg, 1992). 

 

 

 

 

 

 

Figure 2.1 A conditional phase-type distribution for length of stay in a geriatric unit 

                                                      
5
 A BBN is a ‘directed acyclic graph where each node represents a domain variable and each arc between 

nodes represents a probabilistic dependency, quantified using a conditional probability distribution for each 

node’ (Cheng & Greiner, 2001). They are used in Marshall et al, 2001 to predict discharge destination and LOS 

for geriatric patients based on a number of causal variables (age, gender, admission method etc) 
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An association has been found between age, gender, and admission method. Consequently, 

admission method has a direct influence on Barthel grade and destination which in turn have 

direct influence over LOS. Since there are three discrete options for destination and four for 

Barthel grade there exists twelve Coxian LOS distributions. These are calculated by 

maximum likelihood through the Nelder-Mead algorithm and are composed of either one or 

two phases. According to the authors, the benefits of such a model include ‘providing users 

with a better understanding of the system’ and ‘facilitating the inclusion of prior specialist 

knowledge about variable dependencies and causal relationships’. 

Other studies have included post-discharge care as a consideration within their model. This 

permits a more comprehensive representation of geriatric care as those admitted to geriatric 

wards often require some form of support on discharge. The definition of service time is thus 

extended from LOS in hospital to include the duration of time spent in the community (with 

care provided by social services). The mathematical composition of this service time is 

investigated in Faddy & McClean, 2005. The authors fit phase-type distributions of orders 

three and four to hospital and community LOS respectively. Age and year of admission are 

included as covariates within the model. The hospital phases are interpreted as initial 

assessment, diagnosis, rehabilitation and long-stay and care ended with transfer, discharge or 

death. It was found that ‘75% of patients went through phases 1 and 2’ and that those who 

went through the first phase only were either discharged (younger patients with little wrong) 

or died (older patients with serious illness). If the disposition is discharge then the patient is 

discharged to the community and LOS modelled by the order three phase-type distribution. 

Care in the community ended with either re-admission to hospital or death. In conclusion, the 

authors comment that ‘models based on phase-type distributions were appropriate for 

describing times spent in care’. 

A QT model for describing the movement of geriatric patients between hospital and the 

community is presented in Taylor et al, 1998. The authors consider a three phase service 

distribution (two phases for hospital and a single phase for community) with readmissions 

and Poisson arrivals. The expected number of geriatric patients in each of the phases over 

time is deduced in graphical form. The steady-state results can be derived from this by 

choosing a sufficiently large warm-up period and can be used to estimate the number of beds 

required. The model verification is then addressed. A cohort of patients admitted in 

December 1976 is considered. The observed numbers of these both in hospital and the 

community are recorded for various times after admission. These numbers are contrasted 
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with expected figures obtained from the model. These differences are ‘not significant until 

200 days’ according to chi-square goodness of fit tests. The assumption of Poisson arrivals is 

also tested and verified to be appropriate. Finally, the authors move to look at the effect of 

what-if scenarios on the number of beds required. These include ‘a 10% reduction in the 

admission rate’ and ‘a 10% increase in the rate of release into the community’. 

A similar investigation is published in McClean & Millard, 2007. This builds upon the earlier 

work of Faddy & McClean, 2005 by including the service time distribution (found in this 

study) within a QT model with Poisson arrivals. In addition, relative cost ratios are estimated 

for each of the phases based on a £150 daily cost for the acute care phase of hospital care. 

The effect of policy changes can be represented by adjustments to the transition rates between 

phases; the output being the impact on hospital and community costs. The authors describe 

the notion that ‘keeping patients longer in hospital, and improving their fitness for discharge 

can reduce the transfer of patients to secondary care systems and may in the long-term both 

improve hospital performance and reduce costs’. 

The statement of this really does underline the congruity between geriatric and ABI care; not 

only in terms of the relationship between the hospital and the community but with regard to 

the advantages of providing greater functional ability on discharge (Turner-Stokes, 2007). 

Therefore, in the absence of neurological rehabilitation models, the mathematical 

formulations provided in these geriatric studies are of great interest when modelling the flow 

of ABI patients. 
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Chapter 3: Outline of Treatment Scheduling at 

Rookwood Neurological Rehabilitation Centre 

 

 

 

 

 

 

3.1 Introduction 

The Neurological Rehabilitation Centre (NRC) at Rookwood hospital provides specialist care 

to patients by means of a multidisciplinary team
1
. This team comprises six specialities; 

physiotherapy, occupational therapy, speech and language therapy, psychology, dietetics, and 

orthopaedics
2
. Therapists from these specialities form the therapeutic departments of the 

NRC whose efforts are directed toward improving cognitive and motor function. In addition, 

the nursing and medical departments are responsible for maintaining the physical health of 

the patient. Nursing staff operate around the clock and are available as and when required. 

Treatment is provided by the therapeutic departments by means of pre-arranged sessions. 

These involve the congregation of patient and therapist(s) at a particular time and for a pre-

determined duration. Such times are obtained from a timetable that is produced periodically 

and in advance of treatment. Timetabling is defined in Wren, 1996 as ‘the allocation, subject 

to constraints, of given resources to objects being placed in space time, in such a way as to 

satisfy as nearly as possible a set of desirable objectives’. Sessions may only be placed 

within typical working hours – approx 0800-1700 Monday to Friday. The scheduling process 

is undertaken entirely by hand. 

                                                      
1
 ‘Multidisciplinary teams are made up of a group of professionals who work alongside one another to meet the 

needs of the patients’ (Embling, 1995) 
2
 In approximate order of size measured by number of Full-Time Equivalents (FTEs) 
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The motivation for investigating the scheduling of treatment stems from the growing body of 

research that suggests a relationship between treatment intensity and length of stay (Ch 

2.2.3). Since length of stay (LOS) is ‘the primary significant predictor of rehabilitation 

charges’ (Cifu et al, 2003) it is important to study how this can be affected. It is also 

important since treatment intensity relates to policy two of the major policy decisions (what 

care to give) and LOS relates to policy three (when to discharge). 

This chapter commences by providing an overview of the treatment scheduling process. 

Motivation for an automated scheduling program is then discussed and possible applications 

are presented. Attention is then restricted to the case of physiotherapy scheduling for a more 

in-depth commentary. An introduction to the physiotherapy scheduling procedure at 

Rookwood NRC is then provided in Chapter 3.4. Following this, a formulation of the 

problem in terms of soft and hard constraints is presented in Chapter 3.5. Various limitations 

are thereafter discussed in the conclusion to this chapter. 

3.2 Scheduling Rehabilitation Treatment 

3.2.1 Literature review 

A literature search with respect to the scheduling of rehabilitation treatment yielded very few 

results. Furthermore, the studies that were found shared very little in common with the NRC 

at Rookwood hospital. Due to this lack of congruity only two papers are reviewed. 

The scheduling of patient care activities is studied in Beggs et al, 1971. This is with respect to 

a 53 bed inpatient rehabilitation facility. The hospital contains a number of therapy 

disciplines – physical, occupational, and vocational. A computer program is designed that 

produces individualised care plans for new patients based on ‘pre-admission diagnosis, 

impairments, and complications’. This takes the form of a daily schedule containing the times 

at which various events and activities occur. This is then printed and copies are handed to 

each department as well as to the patient. The same schedule is then used day-after-day. 

Modifications can be made to the personalised schedule in response to changing 

circumstances. 

Other less-related studies have also touched on the issue to some extent. Chien et al, 2008 

investigate the scheduling of rehabilitation therapy in an outpatient setting by using a genetic 

algorithm. Since some of the treatment must be provided in a chronologic order they structure 

their problem as a hybrid shop scheduling problem – ‘an open shop scheduling problem with 
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partial precedence constraints’. Whilst this is an interesting study it has little commonality 

with the neurological unit at Rookwood hospital.  

3.2.2 Treatment scheduling process at Rookwood NRC 

Each week (preparation week) a schedule is produced at Rookwood NRC that specifies 

patient treatment for the forthcoming week (treatment week). This is the patient timetable 

overview (PTO) and provides details of all scheduled sessions for each patient across all 

departments. The PTO contains as many individual timetables as there are patients; with each 

timetable specifying a patient's treatment for that week. It is constructed on a department-by-

department basis in order of increasing size
3
. This construction therefore represents a process 

of individual scheduling procedures that are now described. 

At the beginning of the preparation week the PTO is reset before any pre-planned patient 

engagements (such as home visits) are added. It is then ‘passed’ on to the smallest 

department. This department then schedules their treatment around the periods of patient 

unavailability. When complete the PTO is passed on to the next department where the 

process is repeated. This is continued until treatment from all departments has been 

scheduled. 

SAT SUN MON TUE WED THU FRI 

Nursing staff produce a 

care plan  

Smaller departments 

produce timetables 

 

Occupational 

Therapy 

produces 

timetable 

Physiotherapy 

produces 
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PTO 

printed and 

distributed 

Figure 3.1 Treatment scheduling process for the preparation week 

This is to ensure that a fair and appropriate number of session allocations are achieved for 

each department. Since patient availability is reduced with each session allocation the search 

space of feasible allocation options is also reduced. This limits the extent to which 

subsequent departments can provide treatment and so reduces the quality of care respective of 

that speciality. This is problematic for any department that schedules after others; however, 

the problem is exasperated for smaller departments due to restricted flexibility. It is less of a 

problem for larger departments owing to a greater coverage of time (due to more FTEs). 

                                                      
3
 Measured by number of FTEs (full-time equivalents) 
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Therefore it can be noted that whilst the departmental scheduling procedures appear 

unconnected they are, in fact, related since the scheduling of treatment by one department 

affects the subsequent scheduling of treatment by another. This is largely because of the 

above-mentioned effect of session allocation on patient availability but is also because of 

departmental co-operation in the provision of sessions. This is when therapists from more 

than one department provide treatment to a patient and is an example of inter-disciplinary 

teamwork (see Mandy, 1996). Such sessions are typically scheduled and added to the PTO by 

a department whose turn it is to timetable. This is often as a result of informal discussions 

between the departments concerned.   

The departmental scheduling procedures that are employed are at the discretion of the 

department. They typically concern the fitting of patient demand for treatment to the 

available supply of therapists. In the case of smaller departments this is done by roughly 

working out which patients need treatment and assigning as much as possible to available 

therapist times. However, a more formal approach is required for the larger departments. This 

is due to the added complexity associated with a larger search space of feasible session 

allocation options. Here, demand is typically determined in advance and fitted to the 

available supply of therapists by means of a simple algorithm. Some departments assign 

priority levels to patients in order to influence the likelihood that demanded sessions are 

received. By and large it is exceptional for demand to be less than supply. 

3.3 Automated Scheduling Program 

An automated program is proposed for inclusion within this project. Firstly, the background 

of such a program is presented. Secondly, the motivation is discussed. And thirdly, the 

capacity in which it can be applied is considered. 

3.3.1 Literature review 

An automated scheduling program is a computerised software package that is used in the 

production of timetables. They work by optimising a set of objectives whose values represent 

the quality of the timetable as defined by the user. This optimisation typically takes place 

with respect to a number of hard constraints whose satisfaction is essential. Whilst the actual 

scheduling is automated the user is still required to input certain details prior to the 

commencement of the program. These details provide a level of sensitivity with respect to the 

period of time that is being scheduled for. 
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Automated scheduling programs have been harnessing the power of computers for many 

decades. The first such example is in the 1960s where computer scheduling is applied in the 

field of education. Early in this decade a study is published that investigates the application of 

machines in the production of a high school master schedule that maps out ‘who is teaching 

what, to whom, and at what time and place’ (Bush et al, 1961). Following this, a computer 

scheduling package introduced as GASP (Generalised Academic Simulation Program) is 

presented in Kiviat & Colker, 1964. This too is a program for producing high school master 

schedules. It is trialled at three different schools across the United States for the academic 

year 1963-1964. According to the principal of one such school ‘the computer-built schedule 

has fewer conflicts than does the handmade schedule’ and has been produced with ‘less over-

all cost’. These benefits are echoed from the other schools. However, disadvantages are also 

acknowledged. Another principle remarks that ‘to use GASP well requires someone with the 

proper know-how, an expert’ and that ‘the educator feels somehow uncomfortable in 

relinquishing a measure of control of the schedule to a computer or even a computer man’.  

In these early days of automated scheduling there have been related studies in the field of 

education that have considered university examination timetabling. A method for scheduling 

final examinations to yield a minimal number of conflicts is published in Broder, 1964. This 

involves assigning courses to blocks of exam periods and production by hand is described as 

‘a tedious and frustrating task’. Therefore, a mathematical formulation of the problem is 

presented and solved through a computer program. The author then analyses the effects of a 

different number of blocks on the number of conflicts for two sample problems. In addition, 

it is mentioned that the objective can be extended to include the minimisation of consecutive 

exams. 

One of the early studies involving the application of automated scheduling to healthcare is 

presented in Miller et al, 1976. The authors investigate the cyclical scheduling of nursing 

staff to treatment shifts (cycle length is typically five weeks). The program aims to satisfy 

both the administrator’s need to ‘have enough nurses on duty’ and the nurse’s preference with 

regard to ‘rotation patterns, weekends off, long working stretches’. This is achieved firstly 

with the creation of an initial timetable. The work patterns of individual nurses are then 

varied whilst holding constant the patterns of others. Should these permutations result in a 

lower value of the cost function then the change is accepted; otherwise it is rejected. The 

terminating criterion is fulfilled when no change can be made that reduces the value of the 

cost function. This is known as iterative improvement (Ch 4.3.1). 
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Since these early studies there has been a plethora of further research within these fields. 

Burke & Petrovic, 2002, Burke et al, 1996 and Schaerf, 1999 review the developments made 

by automated scheduling in education whilst Petrovic & Berghe, 2008 review those made in 

nurse rostering. There have been many other applications of automated scheduling over the 

years; Elmaghraby & Park, 1974 study the scheduling of jobs on a number of identical 

machines, Yen & Birge, 2006 investigate the scheduling of airline crews, and Kendall, 2007 

studies the scheduling of English football fixtures over the Christmas and New Year period.  

Over the decades there have been many advances with regard to the automated scheduling 

process; existing optimisation algorithms have been developed, new ones have been found, 

computation times have decreased, GUIs are more user-friendly etc. Despite all of these, 

however, there are some things have remained unchanged – the benefits and drawbacks of an 

automated program are the same as they ever were back in 1961 when GASP was introduced. 

That is improved solution quality and reduced employee input at the expense of complexity 

to user and reluctance to relinquish control. 

3.3.2 Motivation 

The previously identified benefits associated with an automated scheduling program typically 

provide a sufficiently strong motivation to develop such a tool. However, this is not the case 

in this project. There is a substantial base of research to suggest a relationship between 

treatment intensity and LOS (Ch 2.2.3). With sufficient data from Rookwood NRC this 

relationship could be developed and used to condition a service time (LOS) distribution as 

part of a wider queuing theoretic model. This would enable the prognosis of LOS based on a 

typical intensity of treatment. It would also enable the extrapolation of the model to cover 

what-if type scenarios relating to changes in treatment intensity and their consequent effect 

on LOS, throughput, and other performance measures. 

However, treatment intensity is not a measure that can be expressly regulated by the 

therapists. It is, in fact, dependent on variables relating to the case-mix of both therapist and 

patient through the scheduling procedure. These controllable measures (see Ch 3.4.3) can be 

thought of as the independent variables (such as staff availability and patient demand) and 

can easily be related to by therapists.  

In order to ask what-if questions relating to treatment intensity it is necessary to produce a 

schedule with the test values of the controllable measures. For example, what if the number 
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of therapists was increased by 20%? Here, a couple of new therapists would be added to the 

roster and a schedule produced. Treatment intensity could then be deduced for this scenario. 

Because of the time it takes to produce a schedule and the number of potential scenarios that 

are of interest it is not a possibility to rely on the therapists to produce these schedules by 

hand. Hence an automated program that mimics the scheduling process is required. 

If the automated program is used to replace the current by-hand approach then there are other 

advantages. Data on the amount of care received could easily be collected and stored. This 

can then be used to develop the relationships between treatment intensity and LOS. Also, data 

required for audit purposes could be output. 

3.3.3 Application to Rookwood NRC 

The automation of multilateral treatment scheduling for all departments is a possibility that is 

considered. This involves the simultaneous scheduling of sessions from all departments 

through a computer program. Whilst this ensures the possibility of finding an optimal 

solution (with respect to the PTO), the scale of restructure and lack of research potential 

mean this approach would be inappropriate. 

Therefore, it is more appropriate to retain the sequential scheduling process of before whilst 

automating the individual procedures of each department. This is more amicable to the 

departments and requires less re-structuring.  However, the automation of scheduling is not 

an appropriate course of action for every department. There is little to be gained from the 

introduction of such a program to the smaller departments. This is because an optimal or 

near-optimal solution can be found with relative ease by hand due to the small search space. 

It is of greater benefit to larger departments such as speech and language, occupational 

therapy, and physiotherapy. Scheduling by hand for these departments is both ineffective, as 

it is difficult to find the optimal solution, and inefficient, as the process is heavily time-

consuming. 

Nevertheless, there exist significant differences between how these larger departments 

schedule. These differences relate to operating procedures and scheduling procedures. For 

example, the speech and language department can provide bedside therapy whereas the 

occupational therapy department require the use of specific rooms. An example of the latter 

can be seen more generally in the scheduling procedure; a single employee is tasked with 

timetable production in the physiotherapy department whilst employees schedule their own 
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treatment in occupational therapy. These differences make it impractical to produce a generic 

automated program that can be used across these departments.  

An automated program is therefore developed for the physiotherapy department only. This is 

because it is the largest department by a considerable measure (physiotherapy department has 

nine FTEs; next largest department is occupational therapy with only five FTEs, 2010). It is 

also because the current scheduling procedure of the physiotherapy department has an 

attractive foundation that an automated program can be built upon. This exists in the form of 

a clear framework of times at which patient sessions are permitted to occur as well as an 

algorithm governing assignment priorities. In addition, the largest study (Cifu et al, 2003) 

into the effect of treatment intensity on LOS ( 491n  ) found that the provision of 

physiotherapy was a significant predictor of motor outcome at discharge. Should this be the 

case then this grants considerable flexibility in influencing LOS or outcome by varying this 

measure. These qualities are useful in terms of providing coherent rules to which the program 

must adhere to and their existence ensures minimal disruption to the structure of the 

procedure for staff. 

3.4 Scheduling Physiotherapy Treatment 

3.4.1 Literature review 

A literature search was undertaken with the aim of identifying studies in which physiotherapy 

treatment is scheduled. Unfortunately, very little was found. Two studies are briefly 

reviewed. 

An outpatient physiotherapy clinic is considered in Bourque, 1980. The author states that the 

scheduling procedure ‘influences patient punctuality and compliance, congestion of the 

premises, working atmosphere and quality of care’. Since Rookwood NRC is an inpatient 

facility patient punctuality and congestion are measures that need not be taken into account. 

The appointment system described in this study ‘relies on specific descriptions of therapies 

with explicit reference to the human and material resources involved’. Since some therapy 

requires the consecutive use of different material resources over the course of a session the 

problem is formulated as a job shop scheduling problem. The difference is that ‘once initiated 

a patient treatment must be performed without interruption’. The aim is to homogenise the 

activities of therapists (i.e. distribute workloads evenly). This is achieved by evaluating the 
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objective function for each feasible appointment period and selecting one that produces a 

minimum. The objective function is defined as the sample variance of therapist activity.  

Ogulata et al, 2008 also consider an outpatient physiotherapy clinic. Before their study the 

clinic operated in an inefficient manner due to the poor weekly scheduling procedure. 

Patients were allocated days in which their treatment would occur but were not given specific 

times or even time windows. This meant that patient waiting time was ‘very long’. In 

addition, the assignment of patients to physiotherapists was made ‘randomly’ and ‘fairness 

among them is not taken into account’. The authors sought to ‘maximise the number of 

patients treated’, ‘obtain a balanced distribution of patients among physiotherapists’, and 

‘schedule patients to a particular period of time in a work-day’. These are achieved 

sequentially by splitting the procedure into three stages. The first stage selects a list of 

patients for inclusion within the treatment week. The second stage assigns these patients to 

therapists (based on a fair allocation), and the third stage schedules the therapy to particular 

windows throughout a work-day. The authors conclude that ‘a decision support system based 

on proposed mathematical models may further enhance the usefulness of these models’. 

3.4.2 Physiotherapy treatment sessions at Rookwood NRC 

Table 3.1 provides details of patient treatment sessions that can be provided by employees 

from the Physiotherapy department. Additional commentary is provided for the types of 

session that require further explanation. 
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Table 3.1 Therapy session attributes

Session Duration Number of Number of Departmental Therapist Specific

type: (minutes) physiotherapists patients provider preference day/time

Primary/
Single 45 or 60 1 1 Physiotherapy

secondary

Double 45 or 60 2 1 Physiothera



Primary/

py secondary

+ 1 assistant

Primary/

Triple 45 or 60 3 1 Physiotherapy secondary

+ 2 assistants

Group 45 or 60 1 2 4 Physiotherapy Any see text

Hydro Undefined Undefined 1 Physiotherapy Any see text

Stretch 30 1 or 2 1 P







hysiotherapy Any see text

Primary,
Joint Undefined 1 (typically) 1 Two depts

secondary

Patient Primary M,
45 or 60 1 1 Physiotherapy see text

meeting secondary M

Goal
Primary M,

planning Undefined 1 1 All
secondary M

meeting

O





ther

patient
Undefined Undefined Undefined Any Any

interactive

slot



 

Note an assistant is an untrained physiotherapist (band level less than five). 

Group sessions and stretches can take place only in certain periods of time. A start and end 

time is specified for each availability period on each day of the week. 

Hydrotherapy sessions take place in the purpose-built swimming pool of the hydrotherapy 

suite. Since the pool is used by the other wards of Rookwood hospital (spinal unit, ALAC
4
) 

there are specific access times available to the NRC. There is no formal requirement 

governing the ratio of physiotherapists to patients in the pool – this depends entirely on the 

ability of the staff and the condition of the patient(s). Neither is there a fixed amount of time 

                                                      
4
 Artificial limb and appliance centre 
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allocated for the individual patient sessions although they are predominantly of 30, 45, or 60 

minute duration. An employee is usually required to be present at the poolside when any 

hydrotherapy sessions are taking place. 

Patients are categorised as either requiring stretches for maintenance or treatment 

preparation. If for maintenance the stretches can be considered as stand-alone sessions whose 

assignment can be made independent of any other session type. If for treatment preparation it 

is desirable (but not essential) that any stretches be in advance of the treatment sessions that 

they are in preparation for – singles, doubles, triples and joint sessions
5
. The purpose of the 

stretch is to prepare the patient for their upcoming post-stretch session by reducing muscle 

tensions. This allows the patient to perform at a higher level in the session. If a stretch is not 

provided in advance of any post-stretch session then a basic stretch can be provided at the 

beginning of the session itself. This however is undesirable since it reduces the therapeutic 

time that is available for the single, double, triple or joint session. 

Patient meetings, if scheduled, must take place in advance of any goal planning meetings (if 

scheduled). There is typically a maximum of one patient meeting each week and it is 

mandatory that either the primary or secondary therapist be in attendance. 

Goal planning meetings take place every six weeks and are used to set targets on behalf of 

the patient for the duration of time running up to the next such meeting. They are attended by 

representatives of all departments
6
. Upon the exhibition of sufficient functional ability the 

nature of the meetings is changed from goal planning to discharge planning. 

Other patient interactive slots are miscellaneous sessions that can involve any number of 

therapists from any number of departments. Their duration is also undefined. 

3.4.3 Physiotherapy scheduling process at Rookwood NRC 

The determination of the scheduled recipients of weekly physiotherapy treatment sessions 

(i.e. treatment intensity) is dependent on variables that relate to the case-mix of both therapist 

and patient. These variables are known as the direct controls and consist of patient demand, 

attributes, priority and availability in addition to therapist availability and attributes. 

                                                      
5
 Henceforth referred to as post-stretch sessions 

6
 Must be primary or secondary therapist from physiotherapy department 
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Patient demand is deduced by means of a weekly ward- round. The number of requests for 

different types of physiotherapy sessions is thus recorded on behalf of each patient. This is 

carried out on a Wednesday afternoon and involves all therapists within the department.  

Patient attributes consist of various properties that relate to the patients. Included within 

these is a specification of the patient’s primary and secondary physiotherapist. The 

complexity of the patient and the therapist band level are factors that are taken into account 

when distributing primary and secondary roles. There may be a requirement for the primary 

or secondary therapist to be in attendance depending on the type of treatment session. There 

are other properties as well such as the preference to time of day, the number of employees 

required to stretch, and whether the patient attends lunch or not. However, these are typically 

known by most employees and are not formally documented. 

Patient priority levels are determined in the timetabling phase of the process; just before any 

scheduling actually occurs. This six point scale describes the extent to which emphasis should 

be placed on patients receiving requested sessions. A high priority patient is more likely to 

receive sessions than a patient of lower priority ceteris paribus. This emphasis is in practice 

relative to the numbers of patients in each priority level.  

Patient availability can be deduced from the Patient Timetable Overview. After the second 

largest department - occupational therapy - has scheduled their treatment sessions the PTO is 

‘passed’ on to the physiotherapy department.  

The therapist attributes relate to many definable aspects of the staff. Therapist band level is 

based on a nine point scale ranging from least qualified (assistant) to most qualified 

(superintendant). Technically, an employee with a band level of five or above is classed as a 

‘physiotherapist’; otherwise they are an ‘assistant’. An important consideration is also the 

ability of the therapists to perform different types of treatment session. 

Therapist availability is compiled over time within the staff diary. This contains pre-

planned times at which therapists are unavailable for clinical or administrative duties within 

the treatment week. Such unavailability could be due to pre-arranged (fixed) sessions, goal 

planning meetings, other meetings, training, or annual leave. The staff diary exists in paper 

form and is not stored electronically. 
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SAT SUN MON TUE WED THU FRI 

    PTO 

received 

Physiotherapy 

timetable 

produced 

PTO 

printed 

Ward round 

Timetable 

preparation 

Figure 3.2 Physiotherapy scheduling process for preparation week 

The chronological process of how physiotherapy treatment is scheduled is described in Figure 

3.2. The PTO is typically received before 1500 hours on a Wednesday afternoon. The ward 

round is conducted at 1500 and is usually complete by 1615. Following this the timetable 

preparation is undertaken. This takes one employee about an hour and is officially described 

on the first page of Appendix 3.1. It is summarised forthwith.  

First and foremost the type of week is determined. This falls into two categories: even and 

odd. This is since the shifts of employees are two-week periodic
7
. The basic details of each 

day of each week for each therapist are found in the unedited daily staff timetables (DSTs). 

These are stored as Excel Worksheets and feature the core structure of each day for each 

therapist (an example for an even-week Wednesday can be found in Appendix 3.2). They 

contain the start and end time of the day complete with various partitions throughout the day. 

These partitions are generally fixed and describe the durations of slots
8
 that are permissible. 

In addition, any events, engagements or activities that occur regularly from week-to-week are 

included. These would include the ward round on the Wednesday but not the timetabling on 

the Thursday since there is no fixed employee for this task. 

Secondly, the unedited DSTs are printed for the appropriate type of week (whether it be even 

or odd). Information on any events, engagements or activities that occur irregularly (i.e. are 

specific to that week) is then added from the staff diary to these printouts. This would include 

goal planning meetings but not regular commitments at other hospitals. The list of ‘relevant 

information’ on page one of Appendix 3.1 specifies all the events, engagements and activities 

that should have been entered at this stage. 

                                                      
7
 The employees are partitioned into a Red and Blue team. On a particular week one team is assigned to an early 

shift whilst the other is assigned to a late shift 
8
 Note that sessions relate to the patient assignment whilst slots relate to the employee assignment 
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On the Thursday morning the edited paper copies of the DSTs are passed on to the employee 

tasked with scheduling for that week. This procedure typically takes one employee the whole 

day to complete and is regarded as a frustrating and arduous task. The official procedure 

governing the scheduling of physiotherapy can be found on the second and third page of 

Appendix 3.1. It is summarised in the following subchapter. 

The conclusion of the process is marked by the printing and distribution of the PTO to 

patients at about 1500 on Friday.  

3.4.4 Physiotherapy scheduling procedure at Rookwood NRC 

Since the construction of the physiotherapy schedule consists of a number of steps (described 

in Ch 3.4.3) it may be described as a process of individual procedures. Perhaps the most 

integral procedure within this chain is the therapy scheduling itself. The official guidelines 

governing this allocation of treatment to patients is described on pages two and three of 

Appendix 3.1. It is briefly summarised forthwith. 

Firstly, any multi-department sessions
9
 that have been entered onto the PTO by another 

department are pencilled onto the DSTs
10

. Patients are then ascribed priority levels based on 

attributes regarding health, response to therapy, and timing of admission/discharge. The 

minimum score is zero whilst the maximum is five.  

Following this, therapy allocations are made in order of session type. Hydrotherapy sessions 

are scheduled first, followed by group, stretches, and then singles, doubles, and triples. Each 

session type is scheduled in order of decreasing priority. That is, the highest priority patients 

are scheduled first followed by patients from a lower priority level. There are no guidelines 

governing the exact allocation procedure of sessions to patients. It is assumed that these 

allocations are made by the intuition and experience of the employee tasked with scheduling. 

In terms of making an individual allocation the following practice has been observed. Firstly, 

the employee tries to assign the treatment to the most appropriate day. This is roughly 

determined by the current spread of sessions for that patient. The employee will try and 

ensure that treatment sessions are spaced as evenly as possible throughout the week; so will 

opt for the day with the least assignments. The PTO will then be studied to identify the times 

at which treatment is not possible due to other patient engagements. Then, the DSTs are used 

                                                      
9
 Treatment sessions that involve more than one department 

10
 At this stage these contain all regular and irregular events, engagements and activities that are listed on page 

one of Appendix 3.1 
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to assess the availability of the therapists (starting with the most preferable). If there is no 

correspondence between availabilities of the therapist(s) and the patient then another therapist 

or day is selected. 

There are many variables that affect the allocation of physiotherapy sessions. Generally, these 

are not formally detailed and it is employee intuition that accounts for their inclusion. For 

example, some patients respond better to treatment in the morning. This information is not 

recorded because such patients are known by the employee tasked with the timetabling. 

Appropriate allowances can then be made in the scheduling procedure of the sessions for 

such patients. This is important since ‘not taking patients’ preferences into account tends to 

affect compliance and punctuality’ (Bourque, 1980). 

This is a problem for an automated scheduling program since the effects of such variables 

cannot be incorporated unless there is a clear specification of their values. The following 

subchapter identifies these variables and their effects on the quality of the timetable. 

3.5 Problem Formulation 

The basic components of a typical optimisation problem are as follows: 

 Decision Variables – these affect the value of the objective function and constraints 

 Objective Function – whose value is to be minimised 

 Constraints – violations of which are to be avoided 

There are many different types of constraint within an optimisation problem. These often 

exist in a hierarchy of importance in which the satisfaction of some is valued more highly 

than the satisfaction of others. The most important constraints are known as hard constraints 

whose satisfaction is essential for the solution to be valid or feasible. Less important 

constraints are referred to as soft constraints. Here, it is the addition of these that form the 

objective function. 

The determination of these constraints can be partly attributed to the scheduling guidelines 

(see Appendix 3.1); however, these lack a sufficient description of the assignment procedure. 

An invaluable practice has therefore been to understand the various intuitive motivations of 

therapists when scheduling treatment by hand. This understanding matured over many 

meetings with therapists who were involved in the timetabling procedure. The rationale for 



Chapter Three Outline of Treatment Scheduling at Rookwood 48 

 Neurological Rehabilitation Centre 

various treatment allocations was deduced by questioning their thought processes when 

scheduling and by posing various what-if questions to them. 

The constraints are compiled using standard notation from set theory and Boolean algebra. A 

complete specification of the syntax used and its meaning can be found in Appendix 3.3. 

Note that variables operated on by a tilde are dummy variables whose only use is in aiding 

the explanation of constraints within this subchapter.  

3.5.1 Hard constraints 

These exist as discrete restrictions within the scheduling problem that are ‘rigidly enforced’ 

(Burke & Petrovic, 2002). A specification of the hard constraints is provided in Appendix 

3.4.  

3.5.2 Soft constraints 

The satisfaction of the soft constraints is ‘desirable but not absolutely essential’ (Burke & 

Petrovic, 2002). They are typically referred to as the objectives of the scheduling problem. 

They differ to hard constraints insofar as they do not represent discrete violations. Instead, 

they take on a continuous value that reflects the extent to which that objective has been 

satisfied. The summation of these (usually weighted) values defines the objective function, 

the aim of which is to minimise. Note that care should be taken in the interpretation of 

objective functions of this type since the soft constraints can differ in units of measurement. 

1 21 2 ...... nObj W SCON W SCON W SCONn                   (3.5.2.1) 

The value of this function can therefore be used to measure the quality of the solution. 

However, its ability to do so is dependent on the adequacy of the soft constraints to capture 

the effects of decision variables that affect the calibre of the schedule. Appendix 3.1 formally 

describes two such variables – session type and priority. These are used to govern the 

allocation precedence of treatment sessions. Since the assignment of stretches follow group 

sessions it can be surmised that unmet needs of group sessions are less desirable than unmet 

needs of stretches. Therefore a greater weight needs to be placed on group session unmet 

needs. In addition, priority levels are used to control assignments within each session type 

allocation. It is stated in Appendix 3.1 that ‘the highest scoring patients get timetabled first’ 

and that ‘unmet needs should only affect the low priority patients’. It is the specification of 

these two variables and their effects on solution quality that enable the construction of the 

first soft constraint.  
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SCON 1: Minimise unmet needs 

         

         

2 2 2 2 2
1 1 1 1 1 1 1 1 1 1

1 2 3 4 5

2 2 2 2 2
1 1 1 1 1 1 1 1 1 1

6 7 8 9 10

1
i

a i a i a i a i a i

cap

i
a i a i a i a i a i

w ds w dd w dt w dg w dh
SCON w

w dst w dpm w dgm w djs w dop

          
  
           
 






               (3.5.2.2) 

Unmet needs (type I) are defined as treatment sessions that have been demanded but not 

scheduled
11

. The number of unmet needs is equivalent to the remaining demand for a 

particular type of treatment session (i.e. initial demand minus number scheduled). This is 

represented by 
1*id
 
in the above where *  denotes the type of treatment session. These values 

are squared since it is undesirable for unmet needs to contribute similar costs should the 

remaining demand be different. For example, two patients of similar attribute both demand 

three stretches but are currently only scheduled one and two respectively. It is possible for 

one of the patients to receive another session. It is obvious that this patient should be the one 

with the greatest number of unmet needs – and this would be the choice of a therapist 

producing the schedule by hand. However, if the value of SCON1 depended linearly on 

remaining demand then no distinction would be made between the patients. The addition of 

the power function discourages this since the objective value has a quadratic dependence on 

the number of unmet needs.  

SCON 2: Optimise the spread of sessions throughout the week 

 
23

2

, , , ,

1 1

2

k
i

i

n
w

cap k i k x i k x

i k x

SCON w w ma mo


  

               (3.5.2.3)

  

An uneven spread of treatment sessions can reduce the efficacy of any therapy received. This 

is because patients benefit from a balanced and proportionate treatment schedule both 

mentally and physically. The mental advantages are borne from having a consistent regime of 

treatment. Physically, the functional ability of the patient may deteriorate if they do not 

receive a sufficient amount of therapy over time. For example, a patient who receives all of 

their treatment on a Monday could be mentally overwhelmed by the amount of therapy but 

could also deteriorate due to not being seen on the other days. 

An undesirable spread of treatment sessions can be deterred by reducing the time between the 

scheduled (actual) times, ma , and corresponding optimal times, mo . This is done by adding 

                                                      
11

 Type II are defined as treatment sessions that have been scheduled but not received 
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an amount to the objective function that is dependent on the time difference, ma mo . This 

dependence must be nonlinear so as to add proportionally more cost when this time 

difference is significantly large. The associated power factor is given by 
2w . 

The patient treatment session types are partitioned into the following three groups: 

1. Group sessions 

2. Stretches (if for maintenance
12

) 

3. Singles, doubles, triples, hydro, joint sessions, other patient interactive sessions, 

patient meetings, goal planning meetings 

This is because it is necessary for group sessions and stretches to be spread independently of 

any other session types. For example, assume there are three group sessions and two 

stretches. The optimal positions (for a five day week) are 

 

The remainder of the sessions are contained in the third group in order to improve the 

likelihood that employee hours are spread evenly among the patients for each day. 

In the mathematical specification of SCON2, the session type group is given by  1,2,3k

whilst the number of sessions of that group for that patient is given by 
k

in . The weights

2 0kw 
 
are used to vary the emphasis placed on sessions from different groups obtaining their 

optimal spreads. Since the guidelines of Appendix 3.1 state that group sessions are scheduled 

before stretches, this could provide a rationale for 
2 2

1 2w w . 

The scheduled and actual times are defined on the scale depicted below. Since the second 

week (7-14) describes the treatment week that is being scheduled for then , ,7 12i k xma  . As 

the integer values on this scale are used to denote 0000 hours the , ,i k xma
 
are generalised to the 

mid-points of these days, i.e. , , , ,7.5 11.5; 0.5i k x i k xma ma    . 

                                                      
12

 Since stretches for treatment preparation must be scheduled with consideration to the assignment of singles, 

doubles, triples, joint sessions (see Ch 3.4.2) 

M T W T F   and not, for example, M T W T F 

G St G St G  G G G St St 
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MON TUE WED THU FRI SAT SUN MON TUE WED THU FRI SAT SUN  

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

 

The optimal times follow similar restrictions but in this case integer values are also 

permissible, i.e. , , , ,7.5 11.5; 2i k x i k xmo mo    . This is because it is possible for an 

optimal time to straddle two days; thus showing no preference to either. Although it is only 

possible to schedule sessions in the forthcoming week (7-12), awareness must be shown to 

the sessions received in the previous week (0-5). This is so that the optimal times can reflect 

the aim to evenly space treatment; not just from the beginning of the forthcoming week, but 

from the time and day that treatment was last received ( ,i kT ) for that session group.  

Therefore, the raw values of the optimal times are calculated by the formula 

 
,

, , ,

14

1

i k

i k x i kk

i

T
mo x T

n


  


    1,..., k

ix n        (3.5.2.4)  

However, this might lead to an instance in which , ,1 7i kmo   or 
, ,

12k
ii k n

mo  . If treatment can 

be scheduled on weekends then this is no problem. However, if, like at present, treatment 

only occurs on weekdays then such an instance is obviously impermissible and so some form 

of action is required to enforce validity. Note that since , 5i kT 
 
then 

, ,
12k

ii k n
mo 

 
if 

, ,1 7i kmo  . Therefore, if , ,1 7i kmo 
 
then the optimal times must be compressed from the left 

to ensure that , ,1 7i kmo  (and so 
, ,

12k
ii k n

mo  ) using 

  , ,

7
1 7i k x k

i

mo x
n

        1,..., k

ix n        (3.5.2.5)  

If this results in 
, ,

12k
ii k n

mo 
 
then the optimal times must be compressed from both the left 

and right; 

  , ,

5
1 7i k x k

i

mo x
n

        1,..., k

ix n        (3.5.2.6) 
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SCON 3: Maximise number of sessions at preferred times 

 3

, ,3
icap i d s

i d s

SCON w 
  

              (3.5.2.7) 

For some patients the efficacy of treatment is dependent on the time of day. Preferential times 

are generalised to morning ( 1iapr  ) and afternoon ( 2iapr  ). 

The objective is to improve the likelihood that physiotherapy treatment sessions are assigned 

to these preferred times. This aim is formulated by adding a value to the objective function 

for instances when this is not the case. This value, as before, is controlled for by the priority 

level of the patient. 

In the case that a patient has no preference, the dummy variable, 3

, ,i d s , attains a value of zero. 

This is also the case should the treatment occur at a preferred time. A value of one is only 

returned if the treatment occurs at a time that is not of preference to the patient. The criterion 

for determining whether a session is in the morning or afternoon is described below. 
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           (3.5.2.8)  

SCON 4: Maximise number of sessions with primary or secondary therapists 

 4 4

, , , ,4
icap i d s i d s

i d s

SCON w v
  

                 (3.5.2.9)

  

Each patient has a primary ( iapp ) and a secondary ( iasp ) therapist. It is preferential 

(sometimes essential) for these therapists to be involved in the provision of certain 

physiotherapy sessions
13

. 

For such sessions a cost (
4

1w ) is therefore added to the objective function when the primary or 

secondary therapist is not present. A lesser cost (
4

2w ) is added for sessions in which the 

primary is absent but the secondary is present.  

                                                      
13

 Singles, doubles, triples, joint sessions, patient meetings, goal planning meetings 
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SCON 5: Minimise prevalence of multi-disciplinary cumulative sessions 
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Some patients do not respond well to back-to-back treatment sessions. This is typically 

because of agitation or a lack of endurance. It can result in patient refusal to participate or an 

unsatisfactory outcome of the therapy session. 

For the affected patients ( 1iamdc  ) a value is added to the objective function that is 

dependent on the time between consecutive sessions within a day (from all departments). It is 

intuitive that this value should be very large when the time between sessions is very small but 

should reduce as time increases. After a certain amount of time the value should be 

negligible. To this end, an exponential distribution was proposed to therapists. This was 

agreed upon with a parameter value 
5 12w  .  

SCON 6: Optimise placement of patient meetings and goal planning meetings 
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SCON w 


            (3.5.2.13) 

If a goal planning meeting is scheduled then it is a hard constraint (HCON16) that any patient 

meeting occurs before this session. This is because, in this case, the objective of the patient 

meeting is to discuss the upcoming goal planning meeting with the patient. However, it is 

undesirable for both of these to occur on the same day. 

The dummy variable, 
6

i
 , is therefore used to determine whether this is the case. If so, a cost 

is added to the objective function (dependent on priority level).
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3.5.3 Moderate constraints 

In the previous subchapters a number of hard and soft constraints have been introduced. Hard 

constraints represent discrete violations whose satisfaction is mandatory whilst, in this 

particular application, soft constraints represent a continuous value whose satisfaction is 

desirable but not essential. A new type of constraint is forthwith introduced whose definition 

and comprehension is in difference to those previously discussed. 

Moderate constraints can be thought of either as hard constraints whose satisfaction is 

nonessential or soft constraints with a discrete number of violations. The satisfaction of these 

can be regarded as being more important than soft constraints but less important than hard 

constraints. Since their satisfaction is nonessential the validity of the solution does not depend 

on the number of violations. It is thought that by representing these constraints as discrete 

violations a more concise picture of their incidence can be formed. This will allow for a more 

targeted approach in reducing the number of violations (Ch 4.5.2). The priority level of the 

patient is not a consideration within the specification of these constraints. 

Note that the third and fourth moderate constraints are only applicable for patients who 

receive stretches for treatment preparation. This is since the assignment of treatment is more 

complex for these patients and so requires additional constraints. This complexity is due to 

the absence of independence between the assignment of stretches and post-stretch sessions
14

 

(see Ch 3.4.2). MCON3 relates to the volumes of stretches and post-stretch sessions that are 

assigned to the schedule whilst MCON4 considers the optimal positions of these assignments 

within the week. 

MCON 1: Demand and supply 

3

,

1

1 i k

i k

MCON 
 

              (3.5.3.1) 

This constraint relates to the number of sessions that are scheduled and demanded from 

specific session groups. The aim is to ensure that at least one session is scheduled from each 

session group if demand exists. The groups of sessions that this is applicable for is as follows: 

1. Groups 

2. Stretches 
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 Singles, doubles, triples, joint sessions 
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3. Singles, doubles, triples 

Therefore, a violation is incurred for each instance in which no assignments are made when 

demand is nonzero. This is formulated as follows: 
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        (3.5.3.2) 

MCON 2: Session spread 
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             (3.5.3.3)  

The importance of having an even spread of sessions has been introduced in the specification 

of SCON2 (see Ch 3.5.2). The quality of the spread in this constraint is, however, determined 

by a different means. 

Constraint violations occur when there is a difference of more than one between the numbers 

of sessions scheduled on any two days. This is with respect to the following session groups: 

1. Groups 

2. Stretches 

3. Singles, doubles, triples, joint sessions, hydro 

The first two session groups are equivalent to those of SCON2. However, the third contains 

fewer patient sessions. This is because it is easier and more important to obtain an even 

spread with respect to these. It is easier because there are fewer fixed sessions such as goal 

planning/patient meetings and other patient interactive slots. It is more important because 

these sessions relate to patient treatment c.f. SCON2
15

. Since these are intensive sessions a 

patient may become exhausted if too many are carried out over a period of time. Conversely, 

if not enough are carried out then the condition of the patient can deteriorate.  For these 
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 SCON2 considers an even spread with respect to employee time and not patient treatment time  



Chapter Three Outline of Treatment Scheduling at Rookwood 56 

 Neurological Rehabilitation Centre 

reasons the satisfaction of this constraint takes precedence over SCON2 – hence achieving 

status as a moderate constraint.  

The number of violations is determined as follows. Firstly, the minimal (
2min

,

m

i kv ) and maximal 

(
2max

,

m

i kv ) permissible values for the daily number of sessions are deduced. These are defined 

as the floor and ceiling functions of the average number of sessions for each day of the 

week
16

. 
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5 if weekends excluded

7 if weekends included
d


 


  (3.5.3.4)  

Secondly, a score of either 0 or 1 is given to each day of the week depending on whether the 

number of sessions scheduled is contained within the acceptable range. 
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           (3.5.3.5)  

The number of violations is then calculated as the supremum of the summations of these 

values over each day of the week. 

MCON 3: Treatment preparation: Session volumes 

33 m

i i

i

MCON asm 


              (3.5.3.6) 

It is strongly desirable that the volumes of stretches and singles, doubles, triples and joint 

sessions scheduled are appropriately related to the volumes demanded. This is because the 

intended purpose of these sessions can be determined by the number of which are demanded. 

For an effective consideration of this issue the satisfaction of MCON4 is assumed. That is, 

those stretches and post-stretch sessions that are scheduled are optimally placed within the 

week. This means that there should be as few days as possible which contain a stretch 

without a post-stretch session or vice versa. It also means that the stretch is in advance of any 

post-stretch session. Three cases are considered.  
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is used to represent the number of scheduled sessions for session group k for patient i on day d 
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First considered is the case in which the demand for stretches is greater than the demand for 

singles, doubles, triples, and joint sessions. If the demand for post-stretch sessions is less than 

the number of treatment days in a week then it can be assumed that some of these stretches 

are intended for maintenance. However, at this stage these maintenance sessions are 

expendable. The emphasis, in this first case, is on ensuring that each post-stretch session is 

preceded by a stretch. For this to be achieved the number of stretches assigned must be 

greater than or equal to the number of post-stretch sessions assigned (assuming an even 

spread of sessions, i.e. MCON2 satisfied). It is automatically achieved if the number of 

stretches scheduled is greater than or equal to the number of treatment days in a week 

(currently five).

2 2 2 2 2 2

3 1 5

0

m i i i i i i

i i i i i i

dst ds dd dt djs dst
if dst ds dd dt djs then

otherwise


      
     





 

The second case describes the situation in which the demand for stretches and post-stretch 

sessions are equal. In this case there can be no possible intention to provide maintenance 

sessions. Following a similar rationale as above an equivalent determination of the dummy 

variable is arrived at; 

2 2 2 2 2 2

3 1 5

0

m i i i i i i

i i i i i i

dst ds dd dt djs dst
if dst ds dd dt djs then

otherwise


      
     



  

The third case considers the situation in which the number of stretches demanded is fewer 

than the number of post-stretch sessions demanded. Whilst it is still beneficial for a post-

stretch session to follow a stretch it is, in this case, by no means mandatory. This implies that 

either the patient is not too dependent on stretches or that it is acceptable to provide a basic 

stretch as part of their post-stretch session. It also implies that it is wasteful for such a patient 

to be assigned a stretch on a day in which there are no post-stretch sessions. If the demand for 

the stretches is less than the number of treatment days in a week then it can be assumed that 

some of these post-stretch sessions are intended for assignment in the absence of a stretch. 

However, at this stage the assignment of these stand-alone post-stretch sessions is 

unimportant. The issue here is ensuring that there are no days in which there are stretches but 

no post-stretch sessions. For this to be achieved the number of post-stretch sessions assigned 

must be greater than or equal to the number of stretches assigned (assuming an even spread of 

sessions, i.e. MCON2 satisfied). It is automatically achieved if the number of post-stretch 
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sessions scheduled is greater than or equal to the number of treatment days in a week 

(currently five). 

2 2 2 2 2

3 2 2 2 2
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i i i i i
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dst ds dd dt djs
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
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  

MCON 4: Treatment preparation: Optimal placements 

For stretches and post-stretch sessions to be optimally placed (regardless of the scheduled 

volumes) there should be as few days as possible in which a stretch occurs without a post-

stretch session or vice versa (MCON4.1). In addition, the stretch should be in advance of any 

post-stretch sessions (MCON4.2). 

MCON 4.1: Same day principle 

4.1
2

dst dsdtjs dso

i i i

i

n n n
MCON



 


  
          (3.5.3.7) 

The number of violations should reflect the number of sub-optimal days
17

 that are scheduled 

in relation to the minimal number of sub-optimal days that are possible with the scheduled 

volumes. For example, assume there are three stretches and two post-stretch sessions 

scheduled. Although in the first example there is a sub-optimal day (Wednesday) this is 

acceptable since there is not another day that contains just a post-stretch session without a 

stretch. This is in contrast with the second example which would sustain a violation. 

  

The constraint is structured this way to eliminate any double-counting affiliated with an 

undesirable volume allocation of stretches and post-stretch sessions (MCON3). 

For each patient the number of days which contain a stretch (
dst

in ) is calculated. Then the 

number of days which contain either a single, double, triple, or joint session (
dsdtjs

in ) is 

determined in addition to the number of sub-optimal days (
dso

in ). 
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The dummy variables are defined as: 
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(3.5.3.9) 

MCON 4.2: Order of precedence 
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The number of violations of this constraint is comprised of two parts: the number of post-

stretch sessions with no preceding stretch (
42

,

m a

i dn ) and the number of stretches without a 

proceeding post-stretch session (
42

,

m b

i dn ). 

The parts are formulated as follows: 
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A violation is only permissible if there are nonzero allocations of both stretches and post-

stretch sessions on that day, i.e. 
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3.6 Conclusion 

An overview of the treatment scheduling process at Rookwood NRC has been presented 

within this chapter. Attention has then been restricted to the process of scheduling 

physiotherapy treatment. The assignment procedure for physiotherapy treatment sessions is 

then described in the fourth subchapter. Finally a mathematical formulation of this scheduling 

procedure is produced. Some limitations are now addressed. 

First is the issue of obtaining a globally optimal schedule (with respect to the assignment of 

treatment sessions from all of the therapeutic departments). Since the proposed process does 

not involve the simultaneous assignment of all treatment sessions a globally optimal schedule 

is not possible. 

Second is the problem that whilst one department has an automated scheduling program, the 

others do not. There are no negative implications of this on producing relationships between 

treatment intensity and length of stay (see Ch 3.3.2) for these departments – provided that 

data on received treatment is collected. Neither is there a problem in evaluating the effects of 

changes to treatment intensity on LOS. However, since treatment intensity is linked to the 

direct controls (e.g. patient demand, priority – see Ch 3.4.3) through the department schedule 

it is not possible to evaluate the effect of changes to these on LOS. This is a problem since 

treatment intensity is not directly controllable by the therapists and so its use as an 

independent variable is limited. 

Third is a complication associated with multi-department sessions. The problem exists when 

the demand for the session has been specified but not a day or time. Whilst this is not a 

problem for those sessions that are fixed in advance, such as goal planning meetings, it is a 

problem for joint sessions
18

. The problem is borne from the informal way in which these are 

scheduled. By and large, if a department wishes to request a joint session with another 

department they must wait until it is their turn to timetable. At which point they can only 

request joint sessions with departments that are yet to schedule since the other departments 

would have finalised their allocations. This problem is therefore an obvious concern for those 

departments scheduling towards the end of the cycle. 

Whilst it is not feasible to resolve the problems associated with the first two limitations it is 

possible to resolve those of the third. It is proposed that joint sessions and other multi-dept 
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 The majority of multi-department sessions are joint sessions 
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sessions (where appropriate
19

) are scheduled first-thing on a Monday morning. This could 

take place as a brief meeting involving representatives from participating departments. The 

demand could be discussed at the outset of such a meeting followed by the allocation of 

therapists to patients. However, this is not without drawback. Since the predictability of 

future patient demand reduces over time it can be ineffective to schedule treatment too far in 

advance. In this case, joint sessions would be scheduled 7-12 days in advance of the actual 

treatment. In this time the requirement for such a session could have surpassed, so too could 

the ability of the patient to receive it. 

If an automated scheduling program is used to replace the current by-hand approach in the 

physiotherapy department then the process of scheduling treatment may change somewhat. 

Some aspects, however, will remain the same. The PTO will still be passed from 

occupational therapy to physiotherapy and there will still be a requirement for a ward round 

to determine patient demand. In addition, there will still be a need for timetable preparation 

but this would now be in respect to readying the automated program. Should this occur at the 

same time and for a similar duration then the maximal run-time for the program is 

approximately one and a half days from Wednesday (late afternoon) to Friday (morning). 

This would give the staff an opportunity to check the quality of the timetable before 

distribution at 1500 hours. It would also allow time for any possible alterations that need to 

be made. 

SAT SUN MON TUE WED THU FRI 

    PTO received  

 

 

...running… 

Physiotherapy 

timetable 

produced and 

checked 

Ward round 

Timetable 

preparation 

Start 

physiotherapy 

scheduling 

PTO printed 

Figure 3.3 Possible physiotherapy scheduling process for preparation week with the 

employment of an automated scheduling program 
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 Some are fixed in advanced (e.g. home visit involving physiotherapy and occupational therapy) 
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It has been mentioned previously (Ch 3.3.1) that the two main advantages of an automated 

program are improved solution quality and a reduction in employee time. The physiotherapy 

department therefore has much to gain from an automated scheduling program for the 

following reasons. Firstly, the complications associated with the constraints of Chapter 3.5 

make it very hard for an employee to produce a solution of optimal (or even near-optimal) 

quality. And secondly, the therapist tasked with scheduling takes approximately eight hours 

each week to produce the timetable – this time could be used to provide approximately as 

many as eight treatment sessions (Appendix 3.2).  

Whilst these advancements are obviously advantageous they do not epitomise our motivation 

for investigating treatment scheduling. It is the relationship between the direct controls, 

treatment intensity and LOS that rationalise this interest in timetabling (Ch 3.3.2). The 

automated scheduling program that has been developed for the physiotherapy department is 

presented in the next chapter. It is hoped that this program acts as an achievement that other 

departments can aspire to. 
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Chapter 4: The Automated Scheduling Program 

 

 

 

 

 

 

4.1 Introduction 

This chapter is concerned with the development of an automated scheduling program for the 

assignment of physiotherapy treatment at the Neurological Rehabilitation Centre (NRC) at 

Rookwood hospital. The mathematical formulation of the problem is laid out in Chapter 3.5 

and is used as a foundation for this work. This contains a specification of hard and soft 

constraints whose respective satisfaction is mandatory and desirable. Using other information 

such as treatment session details (Ch 3.4.2) and knowledge of the scheduling procedure (Ch 

3.4.4) an automated program is developed. 

This program must be built from scratch since it represents a very particular scheduling 

problem. Such an approach is necessary because ‘the unique characteristics of different 

organisations mean that specific mathematical models and algorithms must be developed for 

personnel scheduling solutions in different areas of application’ (Ogulata et al, 2008). The 

development of an automated program to represent this scheduling problem is not a 

straightforward task. Before it is constructed it is necessary to make a number of important 

observations and decisions. Firstly, a classification of the scheduling problem is considered. 

To this end, a number of common and relevant scheduling problems are classified in 

accordance to three criteria. Secondly, a number of heuristics and meta-heuristics are 

introduced. These are heuristic-based algorithmic frameworks that can be used to 

approximately solve the scheduling problem.  

Following this, some information on the graphical user interface (GUI) is presented. This 

includes details of the layout and some navigational options. Also included is a brief 
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walkthrough of how to use the program to construct a timetable. Chapter 4.5 contains an 

explanation of how the scheduling procedure actually works. The commentary of the GUI is 

then revisited as a number of post-production options are explained. 

4.2 Classification of the Scheduling Problem 

There are many different types of scheduling problems that can be found within the literature. 

For the benefit of this chapter a scheduling problem is defined as a well-known and accepted 

combinatorial optimisation problem that is associated with the assignment of some kind of 

resource in a particular domain of application. For example, the examination timetabling 

problem is a scheduling problem in which university examinations are assigned to particular 

periods of time. The resource is the examination rooms and the domain of application is 

education. 

After reviewing many papers and books it has become apparent that scheduling problems can 

be classified by three criteria. The first concerns the domain of application. The majority of 

scheduling problems can be categorised into the following fields: education, manufacturing, 

personnel, computing and sports. In the domain of education, Schaerf, 1999 splits the 

scheduling problems to school timetabling
1
, course timetabling

2
, and examination 

timetabling. The single processor scheduling problem and multi-processor scheduling 

problem are two examples that may be found within the computing domain. 

The second criterion is the type of scheduling problem. The scheduling problems that are 

typically studied are derived from a more broad and general type of scheduling problem. 

Routing, staff assignment and shop scheduling are all rather general scheduling problems that 

contain many variants. For example, shop scheduling
3
 contains the open-shop, flow-shop and 

job shop scheduling problems (JSSP) whilst routing problems include various vehicle routing 

problems (such as multi-trip and dynamic VRPs) in addition to the travelling salesman 

problem (TSP). 

The third distinction is the type of scheduling activity that is performed. Up to this point the 

terms timetabling and scheduling have been used interchangeably with no difference intended 

in their interpretation. A distinction is made between the activities of scheduling, timetabling, 

sequencing and rostering in Wren, 1996. The author describes scheduling as ‘the allocation, 

                                                      
1
 The weekly scheduling of school classes 

2
 The weekly scheduling of university course lectures 

3
 The allocation of N jobs to M machines. Can involve precedence constraints that govern the order in which 

jobs must be processed by machines. A machine can only process one job at a time 
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subject to constraints, of resources to objects being placed in space-time, in such a way as to 

minimise the total cost of some set of the resources used’ e.g. VRP and JSSP. Timetabling is 

defined similarly although the aim here is to ‘satisfy as nearly as possible a set of desirable 

objectives’. Examples include the class and examination timetabling problems. Sequencing is 

‘the construction, subject to constraints, of an order in which activities are to be carried out’ 

e.g. the flow-shop scheduling problem and the travelling salesman problem. Finally, rostering 

is defined as ‘the placing, subject to constraints, of resources into slots in a pattern’. 

Of these definitions timetabling is the activity that best describes the assignment of 

physiotherapy treatment at Rookwood NRC. This is because the aim is not to minimise the 

cost of resources used but to satisfy a set of objectives (Ch 3.5). Rostering is excluded as an 

option since this activity relates to the assignment of shifts. These definitions enable a 

scheduling problem to be classified on the basis of the scheduling activity rather than just the 

type of problem or the application domain. This is beneficial since it could be assumed that 

just because some scheduling problems belong to the same type of problem they are 

fundamentally similar. For example, the job-shop and flow-shop scheduling problems both 

belong to the shop scheduling problems but whilst the job-shop problem relies on scheduling 

the flow shop problem relies on sequencing. 

Since the scheduling problem at Rookwood NRC is very specialised (Ch 3.5) it is difficult to 

classify it as a particular type of scheduling problem. The review paper ‘Staff scheduling and 

rostering: A review of applications, methods and models’ (Ernst et al, 2004) is used to help 

with this classification. From the ‘Demand Modelling’ section (Ch 2.1) it can be surmised 

that the specification of demand at Rookwood NRC can be defined as task based demand. 

This is applicable since ‘tasks are usually defined in terms of a starting time and duration … 

and the skills required to perform the task’. Using the definitions of assignments in Chapter 

2.5 it can be inferred that the scheduling problem at Rookwood hospital is very closely 

related to a task Assignment problem. A formalisation of the problem is presented in Chapter 

4.1 of Shen et al, 2003.  Depending on the objective of the problem Lo, 1988 states that ‘the 

problem of finding an optimal assignment of tasks to processors is found to be NP-hard’. The 

scheduling problem at Rookwood hospital may also be comparable to an open-shop 

scheduling problem. These are similar to job-shop scheduling problems but have no 

precedence constraints. It has been shown that this problem is NP-complete (Gonzalez & 

Sahni, 1976) when the number of machines (staff) is greater than or equal to three. 
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These inconsistencies are typical in classifying a scheduling problem because the 

classifications can be non-unique. That is, a particular scheduling problem can belong to 

more than one of the classes of the above criteria. For example, in the domain of education, it 

is stated in Schearf, 1999 that 'classification is not strict, in the sense that there are some 

specific problems that can fall between two classes' (of problem type). This is echoed in 

Wren, 1996 in which the author states that 'some problems may fit more than one of the above 

definitions' (of scheduling activity). In addition, there are many authors that report 

equivalence (of some kind) between the groups of a particular classification criterion: 

‘computer and manufacturing processes’ (Blazewicz et al, 2007); 'shop world and multi-

processor computer world’ (Bugnon et al, 1995); 'the TSP and a simple job sequencing 

problem’ (Wren, 1996). 

The point here is that the classification of scheduling problems is by no means an exact 

science. There are many inconsistencies and discrepancies between the classifications that are 

made in the literature, and those that are made here. Although it is not essential to provide a 

classification of a particular scheduling problem it is, however, a useful exercise. This is 

because when a problem is classified there are many resources that can be exploited to 

provide information about similar problems that have been studied. 

4.3 Exact and Approximate Methods 

The scheduling of physiotherapy treatment at Rookwood NRC can be presented as a multi-

objective combinatorial optimisation problem. The aim is to determine the solution that 

yields the lowest cost. The cost of any solution is attainable and is dependent on the extent to 

which the objectives are satisfied. There exist two types of method that can be used to solve 

this problem; exact and approximate methods. 

Exact methods ‘are guaranteed to find the optimal solution’ (Dumitrescu & Stutzle, 2003). 

An example is an exhaustive search that enumerates every possible solution. However, as the 

size of the instance increases the running time becomes ‘forbiddingly large, even for 

instances of fairly small size’ (Woeginger, 2003). To increase the efficiency of these methods 

‘pruning rules’ are developed to discard parts of the search space that cannot contain the 

optimal solution (Stutzle, 1998). These give rise to familiar methods such as branch-and-

bound, dynamic programming and linear and integer programming. 
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Approximate methods do not guarantee optimality but they are able to find ‘good quality 

solutions in a limited time’ (Puchinger & Raidl, 2005).They may be categorised into two 

groups; heuristics and metaheuristics. A heuristic algorithm is defined in Reeves, 1993 as a 

‘technique which seeks good (i.e. near optimal) solutions at a reasonable computational cost 

without being able to guarantee either feasibility or optimality, or even in many cases to state 

how close to optimality a particular feasible solution is’. These methods are typically 

developed for a particular problem and so ‘cannot be used to solve another one’ (Ehrgott & 

Gandibleux, 2000). A metaheuristic, on the other hand, is defined in (Osman & Laporte, 

1996) as ‘an iterative generation process which guides a subordinate heuristic by combining 

intelligently different concepts for exploring and exploiting search space’. It has been 

suggested that local search is the ‘most successful class’ of approximate methods 

(Dumitrescu & Stutzle, 2003). 

From this point forward the discussion regarding the solution to the scheduling problem at 

Rookwood NRC is restricted to approximate methods only. This is because it is assumed that 

the scheduling problem is NP-hard and so cannot be solved in polynomial time (see Ch 7.1 of 

Burke & Kendall, 2005). In addition, the local search algorithms of approximate methods are 

‘intuitively understandable, flexible, generally easier to implement than exact algorithms, 

and in practice have shown to be very valuable when trying to solve large instances’ (Stutzle, 

1998). 

4.3.1 Heuristics 

Approximate methods may be categorised as constructive (Ch 4.5.1) or local search. Local 

search methods form a general class of heuristics (Osman & Laporte, 1996) that have become 

‘widely accepted’ for solving combinatorial optimisation problems (Aarts & Lenstra, 2003). 

‘The principle of local search is to refine a given initial solution point in the solution space 

by searching through the neighbourhood of the solution point’ (Wu et al, 1997). In the field 

of task assignment this often involves either the movement of a task from one employee to 

another or the exchange of tasks between two employees. The most basic form of local search 

involves the acceptance of a new solution only if it produces a lower cost function value. This 

is known as iterative improvement (see Chapter 7 of Burke & Kendall, 2005). The 

termination criterion is achieved when the neighbourhood of the current solution contains 

only solutions of higher cost function value. The problem is that a final solution will be 

locally optimal, but not necessarily globally optimal. 
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4.3.2 Metaheuristics 

These ‘general search schemes’ (Stutzle, 1998) are described in Ehrgott & Gandibleux, 2000 

as ‘powerful techniques applicable generally to a large number of problems’. They are 

developed to avoid any local optima whilst retaining the simplicity and generality of a local 

search approach (Osman & Laporte, 1996). A number of metaheuristics have been inspired 

by natural phenomena such as ant colony optimisation (ACO), evolutionary algorithms (EAs 

incl. genetic and memetic algorithms), simulated annealing (SA), and neural networks. 

Others that do not share this link with nature include tabu search (TS), GRASP, iterated local 

search (ILS), and variable neighbourhood search. These metaheuristics can also be 

categorised by whether they are population-based (e.g. EAs, ACO) or single-point search 

(TS, SA, GRASP, ILS) methods. The difference is that in single-point search only one 

solution is manipulated at each iteration.   

4.4 Graphical User Interface I 

The automated program for scheduling physiotherapy treatment at Rookwood NRC has been 

written in Visual Basic 6.0 (for MS Excel). This is for reasons that relate to practicality and 

convenience. Many of the employees within the physiotherapy department have very limited 

experience working with computers and MS Excel is used to perform most computer-based 

tasks that are undertaken. For a more comprehensive guide to the scheduling program the 

user documentation is available from the author. 

4.4.1 The patient timetable overview 

The scheduling program requires details of patient availability that can be computationally 

input from the patient timetable overview, or PTO. However, the PTO (an MS Excel file) was 

incompatible with the schedule and so it was necessary to produce an amended version. 
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Figure 4.1 The PTO after input from departments other than physiotherapy 

At the beginning of the preparation week
4
 the PTO is reset. This is done by entering the 

number of patients for the forthcoming week and clicking ‘Reset’. This builds an empty 

framework for each of the patients – removing any treatment details. The patient names and 

any planned treatment sessions may then be entered in by any of the other departments. For 

each treatment session it is necessary to input the initials of the department(s) providing the 

treatment in addition to the start and end time of the session. The ‘session type’ field is 

optional.  

It has been noticed that accuracy and consistency is a significant problem in the existing 

PTO. A major problem was the inability to input an end time for a session. Also, there was no 

separation between the fields of ‘department’ and ‘session type’. The new version redresses 

these concerns. It also adds a validation feature that can be used to identify any immediate 

problems with the user input. By clicking ‘Validate’ the program checks for any violations of 

the following restrictions: 

 A department must be entered if a session contains a start and/or end time 

 The department initials of a session must conform with those on the list of department 

initials 

 A start time must be entered if a session contains an end time and/or department 

                                                      
4
 The week before the week that is being scheduled for 
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 An end time must be entered if a session contains a start time and/or department 

 The start time of a session must be before the end time of a session 

 Session duration must be of 5 minute multiple 

 The start time of a later session must be after the end time of an earlier session 

Once the PTO has been completed by all other departments and validated (Figure 4.1) it is 

ready for use by the scheduling program of the physiotherapy department. 

4.4.2 The scheduling program 

The scheduling program consists of three stages. In chronological order these are 

‘Construction’, ‘Implementation’, and ‘Analysis’. Only one stage can be active at any time 

and movement through the stages is one-way. 

 

Figure 4.2 Main menu of the scheduling program 

Once the scheduling program is opened it must be reset (see Figure 4.2). The status will then 

read ‘No schedule has been created’ and a date can be added for the forthcoming week. All 

the buttons within the three stages should be disabled with the exception of ‘Create new’. 

Upon clicking this button a number of inputs are required from the user. These relate to the 

direct controls that have been discussed in the previous chapter. Before the user can enter (or 

modify) any of these inputs the relevant information on patient availability is automatically 

loaded from the PTO. This allows the user to update any information on the PTO without 
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having to restart the schedule. There is also an ‘Options’ button that takes the user to another 

screen which contains many details that can be modified. 

 

Figure 4.3 ‘Create new’ menu 

The first two inputs (Figure 4.3) require a specification of patient details and demand. Each 

button takes the user to a screen where the respective information can be entered. Data 

associated with patients who are not new or have not since been discharged are carried 

through from the previous week. Upon completion of these fields the user is returned to the 

screen displayed in Figure 4.3.  

The third input is the type of week. As mentioned previously the physiotherapy department 

operates an even/odd week rotation. The framework DSTs
5
 (that contain partitions, lunch, 

admin and regular events) for each type of week are stored in the program
6
. A facility for a 

‘custom week’ is also available. 

Once a type of week is chosen, the program creates a copy of the typical DSTs from that 

week. The user may now click 'Input multi-dept sessions' or 'Input staff availabilities/slots'. 

By selecting the former, the program cycles through all sessions that have been entered onto 

the PTO that involve the physiotherapy department (e.g. goal planning meetings). For each of 

                                                      
5
 Daily staff timetables (see Ch 3.4.3) 

6
 They may be modified by clicking the ‘Options’ button of Figure 4.3 
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these the user is asked for the initials of the physiotherapy employee(s) that are attending the 

session. The program automatically enters these sessions onto the copies of the DSTs. 

The user may also make other modifications to the (copied) DSTs, such as altering the 

partitions of employee slots or restricting availability for an employee who is ill or at a 

meeting. It is also possible to manually add treatment sessions. Since it has been determined 

that hydrotherapy and other patient interactive sessions are of a very specific nature and are 

not appropriate for computer assignment, they may be manually entered at this stage. 

 

Figure 4.4 ‘Input staff availabilities/slots’ menu (Monday) 

The example depicted in Figure 4.4 shows the DST (copy) for a Monday morning. The DST 

at this time is based on the framework DST for that day but contains modifications that are 

specific to that week. This example showcases how a double may be manually added for 

patient ‘LWM' from 1030 to 1115 hours. Note how the colour of the session denotes its type. 

A consistency check for all sessions on that day is automatically undertaken whenever the 

user attempts to navigate from this screen. 

Upon completion of these five inputs it is necessary to specify the time and date that the 

automated program can run until. Since Excel has a single-thread engine it is not possible to 

introduce a feature that can stop the program at any given time. 
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Once satisfied the user may click ‘GO!’. First of all, the program checks for any hard 

constraint violations. If some are found, they are pointed out to the user who is then directed 

to the ‘Create New’ screen in order to rectify them. Once no violations are found, all that 

remains is to enter the ‘session attributes’ for any (applicable) sessions that have been 

manually entered. The possible options for each session are as follows: 

1. Internally fixed
7
; externally fixed

8
; therapist fixed

9
 

2. Internally flexible; externally fixed; therapist fixed 

3. Internally flexible; externally fixed; therapist flexible 

4. Internally flexible; externally flexible; therapist flexible 

4.5 Construction 

The schedule is constructed in three stages based on the hierarchical satisfaction of hard, 

moderate and soft constraints (Ch 3.5). The first stage produces a valid
10

 and possibly 

feasible
11

 solution. The second stage optimises this solution with respect to the moderate 

constraints; ensuring that no hard constraints are broken as a result. Finally, the third stage 

attempts to minimise the cost function whilst making sure that no (more) hard or moderate 

constraints are violated. 

Note that the automated program is only responsible for the assignment of patient meetings, 

patient admin, group sessions, stretches, and single, double, and triple sessions. That being 

said, the quality of the solution is dependent on the assignment of all sessions – not just those 

that are scheduled by machine. 

Note also that the explanations provided in this subchapter are heavily abbreviated. For a 

more complete understanding the reader is referred to the code. 

4.5.1Stage One: Initial construction 

The objective at this stage is to effectively and efficiently produce an initial solution that 

contains no violation of any hard constraint. Following this the local search algorithms of 

stages two and three can be employed. 

                                                      
7
 The session cannot be moved to any other place within the week 

8
 The session cannot be removed from the DST/PTO 

9
 The session cannot be provided by any other employee(s) 

10
 Satisfies all hard constraints; not all events placed 

11
 Satisfies all hard constraints; all events placed 
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The development of an initial solution is made possible through specialised constructive 

algorithms
12

. Each type of patient session that is assigned by computer has a specialised 

constructive algorithm that produces an initial allocation of sessions. A generic algorithm is 

not possible due to the characteristic differences between the assignment procedures of 

different session types. 

The constructive algorithms that are used employ a greedy heuristic at each iteration
13

 to 

select the ‘best’ assignment for the current solution. First, appropriate elements (patients or 

patient sessions) are added to a candidate list. These elements are then ranked according to 

the quality of the solution their assignment would achieve. At each iteration, the ‘best’ 

element is selected for assignment. Greedy heuristics are ‘often’ used in the construction of 

an initial solution (Ehrgott & Gandibleux, 2000). Whilst this approach ‘rarely leads to an 

optimal solution’ (Bondy & Murty, 2008) it does ‘typically construct reasonably good 

starting points for a local search algorithm’ (Stutzle, 1998). 

Many procedures and heuristics are used within these constructive algorithms to produce an 

initial solution that is not just valid and/or feasible but is also of high quality. This reduces the 

workload of subsequent local search algorithms. It could also enhance the quality of the final 

solution because local search algorithms can struggle in highly constrained situations. Note 

that whilst the constructive algorithms are stochastic
14

 they are not randomised
15

. 

Patient meetings 

The first sessions that are scheduled by the automated program are patient meetings (see Ch 

3.4.2). The assignment of these sessions is given precedence over others because the demand 

is typically very low (zero or one). The rationale for this follows from the sequential 

scheduling process (see Ch 3.3.2) in which smaller departments schedule before larger ones. 

The constructive algorithm for the assignment of patient meetings is described as follows. 

                                                      
12

 These ‘generate solutions from scratch by adding to an initially empty solution components in some order 

until a solution is complete’ (Stutzle, 1998) 
13

 The process that concerns the assignment of one session 
14

 Random numbers ensure a different solution is generated on each run 
15

 Elements are not selected at random from a restricted candidate list of ‘good’ solutions (see Resende & 

Ribeiro, 2003) 
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Figure 4.5 Assignment of patient meetings 

1. The primary and secondary therapists are first and second choice respectively. If both 

are found to be unsuitable
16

 or unavailable, then any other suitable employee may be 

selected. 

2. A suitable employee slot is selected at random. An employee slot is suitable if: it is 

empty (i.e. contains no patients); is of 45/60 minute duration; does not clash with 

lunch-time if the patient attends lunch ( 1iaal  ) and if a goal planning meeting is 

scheduled then the patient meeting must end before this begins. If a slot is of 45/60 

minute multiples then it is appropriately partitioned into 45/60 minute slots. 

3. Slots that are not contained within group or stretch availability periods are given 

precedence over others to deter assignments at these times. This ensures that search 

space is available for allocations of group sessions and stretches. Attempts are also 

made to select slots that are at a preferred time of day (am/pm) for appropriate 

patients ( 0iapr  ). 

Groups 

Group sessions are assigned next. These are allocated in advance of patient admin, single, 

double and triple sessions because these sessions can occur at the specific times that group 

                                                      
16

 If not proficient in the provision of patient meetings (i.e 0jtpm  in Appendix 3.3) 
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sessions can occur (Ch 3.4.2) this is not the case vice versa. Therefore the overall heuristic 

governing the initial construction could be likened to a saturation degree heuristic. These 

select the ‘event which has the smallest number of valid periods available for scheduling’ 

(Burke & Petrovic, 2002). Assume that selection is made at random unless otherwise 

stipulated. 

 

Figure 4.6 Assignment of group sessions 

1. Determine whether any group slots have been manually input. 

2. Assess the proficiency of staff ( 1jtg  ) and their availability at each group slot 

availability period. 

3. Determine the number of patients that are available at each group slot availability 

period. 

4.  Select a slot that contains the greatest number of available patients on a day that 

contains the fewest number of group slot assignments. 

5. By level of priority. 

The approach taken in this (and following) constructive algorithm uses adaptive greedy 

heuristics. They are adaptive because the assignment procedure at each iteration ‘takes into 

account previous decisions in the construction’ (Osman & Laporte, 1996). This tends to 

produce a higher quality assignment.  
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Stretches 

There is no practical reason why group sessions are assigned before stretches since group and 

stretch availability periods typically occupy different times. They must, however, be assigned 

in advance of patient admin and single, double, and triple sessions for reasons that have been 

previously acknowledged. Assume that selection is made at random unless otherwise 

stipulated. 

 

Figure 4.7 Assignment of stretches 

1. An initial list of all days is constructed. First, any days that do not contain any stretch 

availability periods (see Ch 3.4.2) are removed. Second, the minimum number of 

stretches assigned for that patient on each of the remaining days is calculated. Any 

days which contain more than this minimum are removed. This enhances the 

likelihood of an equal spread of stretches. Furthermore, if stretches are for treatment 
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preparation (Ch 3.4.2) then any of the listed days are removed if they contain fewer 

than the maximal number of joint sessions (as calculated for the listed days). This 

consideration is made only for joint sessions because single, double and triple 

sessions have not yet been assigned. 

2. An initial list of all employees is constructed. Any employees that cannot ‘lead’ 

stretches ( 2jtst  ) are removed. Any employees whose slots do not hold the same 

start and end time as the availability period are removed. 

3. If the (empty) employee slot is of multiples of 30 minutes but not 60 minutes then 

every (2 1)i th   slot is selected before every (2 )i th  slot 1..(slot length / 60)i  . 

This is to enhance the likelihood that other session(s) of 60 minute length can be 

assigned to the remaining time if it remains empty. For example, if a stretch is 

assigned from 830-900 or from 930-1000 in the even week Wednesday of Appendix 

3.2 then this still allows time for a 60 minute session to be assigned. 

4. Employees that only assist ( 1jtst  ) are selected before those that lead ( 2jtst  ). 

This is because it is unnecessary for a stretch to have two lead employees assigned. 

Patient admin 

The constructive algorithm for patient admin sessions is similar to that of patient meetings. 

However, there is no dependence on goal planning meetings so these sessions can take place 

at any time in the week. Also, since group sessions and stretches have, at this point, been 

assigned there is no reason to deter assignments within these availability periods. 

Singles, doubles, and triples 

These sessions may be assigned using one constructive algorithm. This is because the 

assignment procedures are very similar; the only practical difference being the number of 

employees that it is necessary to assign. 
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Figure 4.8 Assignment of singles, doubles, triples 

1. Session types are selected on the basis of decreasing complexity (i.e. triples then 

doubles then singles). This represents a largest degree first type heuristic that is used 

because ‘events with a large number of conflicts are more difficult to schedule and so 

should be tackled first’ (Burke & Petrovic, 2002). 

2. An initial list of all days is constructed. The aim is to select a day that contains the 

least number of single, double, triple, joint, hydro and other patient sessions assigned 

for that patient. Therefore, any days that contain more than the minimum number 

assigned are removed. Furthermore, if stretches are required for treatment preparation 

then any of the listed days are removed if they contain fewer than the maximal 

number of stretches (as calculated for the listed days).  
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3. Providing the primary and secondary therapists can lead ( 1jtl  ) and are above the 

minimum band level of the patient ( j itb amb ) they are the first and second choice 

respectively. If both are unsuitable or unavailable then any other employee fulfilling 

these criteria is eligible for selection. In order to ensure that high-band therapists are 

not wasted the employees with the lowest band levels are selected first. 

4. An initial list of all employee slots is constructed. Any slots that are non-empty are 

removed. So too are any slots that are neither a multiple of 45 nor 60 minutes. 

Applicable slots are then appropriately partitioned into 45 or 60 minute slots. Any 

slots are removed that clash with lunch-time should the patient attend lunch. 

5. If the session is a double or a triple then additional employee(s) are required. Such 

employees must be able to assist ( 1jta  ). Since a lead therapist has already been 

assigned it is preferable for the remaining employees to be assistants (i.e. 5jtb  ). 

These are selected before higher-band employees and their availability is assessed. If 

all employees are found to be unavailable then a different first employee slot is 

sought. 

4.5.2 Stage Two: Moderate constraint optimisation 

The objective at this stage is to reduce the number of moderate constraint violations (Ch 

3.5.3) whilst respecting hierarchical precedence. That is, a change to the solution that reduces 

the number of moderate constraint violations can only be accepted if there remain no hard 

constraint violations. A hierarchy also exists within the moderate constraints. The satisfaction 

of higher-order moderate constraints is more important than the satisfaction of those that are 

of lower-order. The order is principally determined by the number that precedes the decimal 

point e.g. MCON1 is of higher-order than MCON2. In addition, there exists a hierarchy 

within each of the moderate constraints. This is determined by the number that follows the 

decimal point e.g. MCON3.2 is of higher-order than MCON3.3. As an example, if a new 

solution is found that contains fewer violations of MCON2.2 then this can only be accepted if 

there are any no (more) violations of MCON2.1, MCON1, or any HCON (hard constraint). 

The optimisation that is sought at this stage is reliant on specialised local search algorithms 

(see Ch 4.3.1) to effectively and efficiently reduce the number of moderate constraint 

violations. It is necessary to develop these algorithms singly for individual constraints 
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because of the differences that relate to their definitions. That being said, each of the 

algorithms is broadly governed by a similar form of local search. Firstly, a patient is selected 

that has one or more violations of the MCON in question. Secondly, the algorithm 

intelligently identifies any ‘problem’ sessions that are causing the violations. The 

neighbourhood of the solution is then appropriately inspected to determine whether 

neighbouring solutions deliver an improvement. If such a neighbour is found then the current 

solution is replaced and the next violation is addressed. This iterative process is illustrated 

below. When all violations have been studied the next moderate constraint is considered.  

 

Figure 4.9 General reassignment process for moderate constraint optimisation 

It can take much time to assess the quality of a neighbourhood. Therefore, to promote 

efficiency, only a fraction of neighbouring solutions are assessed. The neighbourhood is 

trimmed to contain only the solutions that result in fewer violations of the moderate 

constraint in question. This is done on a violation-by-violation basis. Firstly the session(s) 

that incur a particular violation are identified and then either a MOVE or SWAP is performed 

on these to generate a new solution. A MOVE is a one-way reassignment of a ‘problem 

session’ to an empty employee slot(s) whilst a SWAP involves the exchange of the problem 

session with another patient session. MOVEs and SWAPs can be internal or external. If 

internal then all of the sessions involved in the MOVE or SWAP remain assigned to the PTO 

and DSTs but their positions within the week are adjusted. Otherwise, the ‘problem’ session 

is removed from the week and either replaced with an unmet need (an unscheduled patient 

session for which demand exists) or left empty. 
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The search process that governs the acceptance of neighbouring solutions must also be 

addressed. Two popular options are first improvement and best improvement. First 

improvement selects the first neighbouring solution found that is of better quality than the 

original. Best improvement uses an exhaustive search to examine all neighbouring solutions 

and selects the one that is of the highest quality. It is intuitive that the former is more efficient 

whilst the latter is more effective. Best improvement (or steepest descent) is used here 

because the principal drawback of this (inefficiency) is negligible as the neighbourhoods are 

trimmed. In addition, it is found in Hansen & Mladenovic, 2006 that best improvement gives 

‘better and faster results’ (to the TSP) when the initial solution is generated using greedy 

constructive heuristics (c.f. Ch 4.5.1). 

A swap is rejected on the basis of the hierarchical precedence that is introduced at the outset 

of this subchapter. It is likely, however, that at least one swap remains that reduces the 

number of violations of the MCON in question whilst incurring no higher-order constraint 

violations. In such an event the lower-order constraint violations are inspected in turn. At 

each step any swaps are rejected that contain less violation reductions than the best possible 

swap with respect to the MCON in question. This process is terminated when only one swap 

is left or when the lowest-order MCON has been considered. In addition, there is a hierarchy 

within individual moderate constraints that is based on patient priority. If the number of 

MCON violations remains the same between two swaps then the individual patient MCON 

violations must be inspected to assess whether a low-priority patient has lost a violation at the 

expense of a high-priority patient gaining one. If a swap is not found that produces a better 

quality solution then the patient is removed from the list. 

Although not referred to at the time, the procedures for calculating the number of MCON 

violations (Ch 3.5.3) have been carefully developed to represent a minimal distance to 

feasibility. This term is typically used to quantify the extent to which the solution is 

infeasible. In this case it is used to specify the minimal number of SWAPs or MOVEs 

necessary to achieve MCON satisfaction. For example, if MCON2.1 was equal to two for a 

particular patient then at the very least two sessions would need to be reassigned in order to 

reduce this to zero. An understanding of this ‘distance’ is useful since it provides a lower 

bound on the complexity that is associated with efforts to satisfy the moderate constraints. 



Chapter Four The Automated Scheduling Program 83 

MCON1 

It has been found that in the vast majority of cases the violations of MCON1 (see Ch 3.5.3 for 

details) can be reduced to zero by modifying the constructive algorithms of stage one. Most 

of these algorithms work by firstly selecting a patient (by order of priority) and then 

attempting to make assignments until all demand is satisfied. The modification is to use a 

two-phase approach. On the first phase patients are selected (as before) but this time only one 

assignment is attempted. Once all patients have been considered phase two is initiated. This 

attempts to assign the remaining demand for the patients. By making this simple adjustment 

the need to develop specialised algorithms for the satisfaction of this MCON is redundant. 

MCON2 

The reassignment of problem session(s) in this moderate constraint is based on internal 

MOVEs and SWAPs. To avoid repetition in the explanation of the (similar) specialised 

algorithms for each of the individual moderate constraints only one is described in detail.  

The objective of the specialised algorithm for MCON2.1 is to produce an even spread of 

group sessions for all patients. The algorithm for ‘Assess Neighbourhood’ (in Figure 4.9) is 

described in Figure 4.10. Note that selection is random if not otherwise specified. Note also 

that any reassignment is referred to as a swap. This is appropriate since a MOVE is 

equivalent to a SWAP with an empty employee slot(s). 

 

Figure 4.10 Reassignment selection process for MCON2 
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1. A problem day has more than one group session in difference with the day that 

contains the least number of group session assignments for the patient. 

2. A problem session is any group session on the problem day that is not internally fixed. 

A problem slot refers to the employee slot(s) that contain the problem session. A 

‘problem employee’ is an employee that provides the problem session. 

3. A ‘swap slot’ is any ‘suitable’ employee slot on any ‘swap day’. A swap day is a day 

that contains the least number of group session assignments for the patient. A suitable 

employee slot is contained within a group availability period; has a group session 

assigned; is of appropriate duration (45/60 minutes); and is not internally or therapist 

fixed. In addition, if the problem session is ‘therapist fixed’ then the problem 

employee must match the ‘swap employee’. 

4. The problem patient is swapped with each of the ‘swap patients’ from each of the 

swap slots in turn. If there is space within a swap slot then a one-way swap is also 

made. This process requires the construction and use of temporary details for each of 

the swaps. Only the details of the problem and swap entities are replicated in order to 

promote efficiency. Each swap receives a ‘swap number’ and relevant details (HCON 

and MCON violations and SCON value) are stored against this. 

The specialised algorithm of MCON2.2 differs from this since swap slots are restricted to 

stretch availability periods and problem sessions can require two problem employees. The 

specialised algorithm of MCON2.3 relaxes the requirement of swap slots to be contained in 

availability periods, but does introduce the possibility of a third problem employee. This 

further increases the complexity since the neighbourhood grows exponentially with the 

addition of a problem employee to a problem session. If there are n possible swap slots for 

problem employee 1 then there are 1n  swap slots for problem employee 2. The number of 

trial solutions is therefore approximately equal to 2n  for two employees and 3n  for three 

employees (since n is typically large). 

MCON3 

The objective of the specialised algorithms for MCON3 is to obtain consistency with respect 

to the requested and assigned volumes of stretches and single, double, triple and joint 

sessions for patients who require stretches for treatment preparation. The reassignment of 

problem session(s) in this moderate constraint is based on external MOVEs and SWAPs. 
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Again, to avoid repetition in the explanation of the (similar) specialised algorithms for each 

of the individual moderate constraints only one is described in detail.  

The number of violations of MCON3.1 represents the shortfall in the number of assigned 

stretches. This constraint can be satisfied by removing single, double, triple, or joint sessions 

and/or assigning stretches for appropriate patients. Note that a stretch can only be added if the 

patient has a nonzero number of unmet needs in stretches. 

 

Figure 4.11 Reassignment selection process forMCON3 

1. A problem day is defined as any day that contains a single, double, triple, or joint 

session. 

2. A problem session is defined as any single, double, triple or joint session on the 

problem day that is not externally fixed. 

3. An external swap is performed between the problem slot(s) of the problem session 

and any appropriate unmet need(s). For example if there are two problem slots then 

any double sessions that are unmet will be externally swapped in turn. So too will any 

two single sessions (from different patients). In addition the one-way movement of 

the problem session to an unmet need is also considered. 
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4. Any slot that is contained in stretch availability periods; is of 30 minute duration; and 

is not externally or therapist fixed. 

5. An external swap is performed between the unmet stretch of the problem patient and 

any of the swap slots in turn. If the problem patient requires two employees to provide 

a stretch then two swap slots must be selected. 

MCON4 

Both algorithms for MCON4.1 and MCON4.2 employ internal swaps. Constraint violations 

are only possible for patients who require stretches for treatment preparation. 

MCON4.1 

The number of violations of MCON4.1 reflects the number of sub-optimal days that are 

scheduled in relation to the minimal number of sub-optimal days that are possible with the 

scheduled volumes. A sub-optimal day contains either (i) a stretch without a post-stretch 

session
17

 or (ii) vice versa. 

 

Figure 4.12 Reassignment selection process for MCON4.1 

1. A swap day is defined as any sub-optimal day. 
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 Single, double, triple, or joint session 
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2. If the swap day is a type (i) sub-optimal day then a problem day is any day that 

contains either two or more post-stretch sessions or one post-stretch session with no 

stretches. If type (ii) then a problem day is any day that contains either two or more 

stretches or one stretch with no post-stretch sessions. 

3. A problem session is any of the complimentary sessions
18

 on the problem day. 

4. Any slot that is on the swap day; is equal in duration to the problem session; and is 

not internally fixed. If the problem session is therapist fixed then the problem 

employee must match the swap employee. 

5. An internal swap is performed between the problem slot(s) and each of the swap 

slot(s) in turn. The number of problem and swap slots that are swapped depends on 

the number of employees assigned to the problem session. 

This systematic approach has been specifically designed so that all possible options are 

considered. For example, it is possible for a patient session to be used as both a problem and 

a swap session within one iteration. This evaluation of all appropriate neighbouring solutions 

means that the one producing the highest quality solution can be returned. 

MCON4.2 

The number of violations represents the number of instances in which it is possible for a 

stretch to be in advance of a post-stretch session, but is not. 

                                                      
18

 If type (i) then any post-stretch session; if type (ii) then any stretch 
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Figure 4.13 Reassignment selection process for MCON4.2 

1. A problem day is defined as any day that contains either a post-stretch session with no 

preceding stretch or a stretch with no proceeding post-stretch session. The day must 

contain a nonzero assignment of both stretches and post-stretch sessions. 

2. If, on the problem day, there are post-stretch session(s) that lack a preceding stretch 

then the problem sessions are defined as these post-stretch sessions in addition to any 

stretches that occur on that day for the patient in question. It is these sessions that can 

be (appropriately) swapped with others that can reduce this particular violation. 

Conversely, if there are stretches that lack a proceeding post-stretch session then the 

problem sessions are defined as these stretches in addition to any post-stretch sessions 

that occur on that day for the patient in question. 

3. If the problem session is a stretch then the list contains any slot that is on the problem 

day; is of 30 minute duration; and is not internally fixed. In addition, the slot must end 

before the start of the post-stretch session that is immediately before the problem 

session. If the problem session is a post-stretch session then the eligibility criteria 

differs insofar as the slot must be of 45/60 minute duration and must start after the end 

of the stretch session that is immediately after the problem session. If the problem 

session is therapist fixed then the problem employee must match the swap employee.  
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4. An internal swap is performed between the problem slot(s) of the problem session and 

each of the swap slot(s) in turn. The number of problem and swap slots that are 

swapped depends on the number of employees assigned to the problem session.  

4.5.3 Stage Three: Soft constraint optimisation 

The objective at this stage is to reduce the value of the cost function
19

 whilst respecting 

hierarchical precedence. This is done by using a generic local search algorithm to inspect 

appropriate neighbourhoods of the solution. If neighbouring solutions are found to contain 

(more) moderate or hard constraint violations then they are rejected. If they are found to 

contain fewer moderate constraint violations they are accepted with respect to the hierarchy 

that is addressed in the introduction to Ch 4.5.2. The possibility of this exists because the 

specialised local search algorithms for the MCONs can only consider solutions that are one 

neighbourhood away. 

The neighbourhood is iteratively explored as follows. In summary, an employee slot is 

selected at random. This can be empty (no patients assigned) or non-empty. If it is empty then 

a one-way external swap is performed to attempt to assign some unmet need. If it is non-

empty then both internal and external swaps are performed. 

                                                      
19

 The weighted addition of the soft constraint values (see Ch 3.5.2) 
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Figure 4.14 Generic reassignment process for soft constraint optimisation 

1. This list contains any employee slots that are not internally, externally and therapist 

fixed and are not ‘complicated’
20

. Suitable slots must either be of 30, 45 or 60 minute 

duration or must take place within a stretch availability period. 

2. If the problem slot is contained within a stretch availability period then all empty 

employee slots that are contained within this stretch availability period on that day are 

partitioned. This occurs, where appropriate, at 30 minute increments from the start of 

the availability period to the end. It is necessary to do this so that otherwise unsuitable 

slots (i.e. those that exceed 30 minutes) can be made available for the assignment of 

single and double stretches. Such slots are not permanently partitioned this way 

because it must also be possible for other sessions (of 45/60 minute duration) to be 

assigned within these periods. 

                                                      
20

 Slots/sessions that involve more than one patient and more than one employee 
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3. More than one slot is possible only when the problem slot is contained in a stretch 

availability period and at least two slots have been created as a result of the partition. 

The selected slot is thus known as the problem slot. 

4. Other employee slots are assessed to determine whether any additional employees 

have availability at the same time and for the same duration as the problem employee. 

If the problem slot is of 30 minute duration then a maximum of one additional 

employee can be selected. This is because the maximum number of employees 

attributed to a stretch session is two. This will therefore permit the possibility that a 

double stretch unmet need can be assigned. If of 45/60 minute duration then a 

maximum of two additional employees can be selected; making possible the 

assignment of a triple session unmet need or a single and double session unmet need 

etc. Any appropriate slots are also referred to as problem slots. 

5. An external swap is performed between the problem slot(s) and each (appropriate 

combination) of the unmet needs. 

6. Each patient assigned to the problem slot is, in turn, selected as the problem patient. 

7. The problem session corresponding to the problem slot is examined to determine 

whether there are any more employees assigned and thus if there are any more 

problem slots. 

8. This list contains any slot that has duration greater than or equal to that of the problem 

slot and is not internally fixed. If the problem slot is a stretch then any slots that are 

not contained in any of the stretch availability periods are excluded. If the problem 

session is therapist fixed then the problem employee must match the swap employee. 

9. An internal swap (of patients) is performed between the problem slot(s) of the 

problem session and each of the swap slot(s) in turn. If a swap slot is empty then a 

one-way swap is made. 

10. An external swap is performed between the problem slot(s) of the problem session 

and each (appropriate combination) of the unmet needs. 

11. A swap is selected based on the hierarchical precedence that has been previously 

discussed. However, if there remain a nonzero number of swaps after removing those 

that lead to (more) moderate or hard constraint violations then the following apply. If 
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there are fewer moderate constraint violations under any of the remaining swaps than 

the current solution then the neighbour that produces the lowest cost function value is 

selected. If there are no such reductions in moderate constraint violations then one of 

the following three options apply
21

. 

a. Accept a neighbour if the cost function value is less than the original (i.e. 

iterative improvement – see Ch 4.3.1) 

b. Accept a neighbour if the cost function value is less than or equal to the 

original 

c. Accept a neighbour if the cost function value is less than or equal to the 

original. Accept also if a random number, 0,1 , is less than 

current cost - swap cost
exp

T

 
 
 

. This approach is known as Simulated 

Annealing. This naturally inspired memoryless metaheuristic ‘starts with a 

high temperature (T ) to perform a coarse search of the solution space. The 

temperature is then reduced to focus on a specific region’ (Osman & Laporte, 

1996). There are a vast number of studies into how the temperature can be 

reduced. For this project a simple option is taken that involves the 

multiplication of the temperature by a reduction factor (< 1). For experimental 

purposes this multiplication can be carried out after a successful iteration; after 

an unsuccessful iteration; or after any iteration 

12. If a neighbouring solution is accepted then the list of problem slots is reset (see 1.). 

Otherwise the problem slot(s) are removed from the list. This is so that in the absence 

of reassignments they are not selected again. The search terminates when no problem 

slots remain on the list. This approach shares commonality with Tabu Search. The 

objective of this memory-based metaheuristic is to ‘prevent the reversal, or sometimes 

repetition, of certain moves – by rendering certain attributes of these moves 

forbidden’ (Glover, 1990). Upon acceptance of a neighbour any partitions between 

empty slots contained within a stretch availability period are removed. 

                                                      
21

 This depends on what the user has input in the options menu of Figure 4.3 
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4.6 Graphical User Interface II 

Upon completion of the schedule the user will be directed to the following screen: 

 

Figure 4.15 Main menu 

Before pressing ‘Accept’ the user should inspect the schedule that has been produced. The 

following screen is displayed once ‘View new’ is pressed: 

 

Figure 4.16 ‘View new’ menu 
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 ‘View Days’ - The generated DSTs may be viewed (see Appendix 4.1 for an 

example) 

 ‘View Other Details’ – Enables the user to view various attributes of the generated 

schedule, such as 

o percentage of (appropriate
22

) sessions provided by primary and secondary 

therapists 

o percentage of sessions assigned to preferred time of day 

o amount of employee time attributed to clinical, admin, other work 

 ‘Modify Days’ – Enables the user to modify the generated schedule. Basic validity 

and consistency checks are automatically executed upon a modification. Schaerf, 

1999 states that ‘most of the systems allow the user at least to modify the final output’ 

 ‘Re-schedule’ – This returns the user to the screen depicted in Figure 4.3. Note that 

upon return all buttons are enabled with the exception of week type and ‘Input multi-

dept sessions’. If ‘Input staff availabilities/slots’ is pressed then the user is directed to 

the DSTs equivalent to those pre-automation. 

Once the user is content with a schedule the ‘Export New’ button can be pressed. This 

automatically copies all details that are represented on the LHS of Figure 4.16 to a macro-free 

Excel workbook. Coded patient and employee names are replaced by full names. Following 

this the ‘Accept’ button of Figure 4.15 can be pressed. The PTO is then overwritten to 

contain all physiotherapy sessions. The ‘Produce Patient Handouts’ button (on the PTO) can 

then be pressed. This converts the information stored on the ‘User’ worksheet to a format that 

is easier to read for the patients. An example is given in Appendix 4.2. 

The ‘Implementation’ phase is then activated. This disables all buttons from the 

‘Construction’ phase. If sessions go as planned then it is not necessary for any action to be 

taken. However, if there is a shock such as employee unavailability or patient illness or 

refusal, then an employee must make this altercation to the DSTs in the ‘View/Update’ 

section. Note that the specification of unmet needs is related to these DSTs and so is kept up-

to-date. Once the treatment week is complete the ‘Terminate’ button can be pressed. 

This activates the ‘Analysis’ phase which enables various measures to be output. Details on 

therapies received and requested could then be exported directly into a specifically designed 

database (see Ch 6.3.2). The DSTs of the treatment week and a selection of performance 
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 Only includes sessions that a primary or secondary is necessary, i.e. excludes groups and stretches 
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measures can also be exported to macro-free workbooks. From here the two types of unmet 

needs (Ch 3.5.2.1) can be studied. 

Note that once a schedule has been produced but not yet activated the ‘Input Week’ button of 

Figure 4.15 is enabled. This allows a schedule produced by hand to be analysed. Hard and 

moderate constraint violations in addition to cost function value can be output once all the 

slots have been entered onto the DSTs. This allows for a quantitative comparison between 

any solutions produced by hand and machine. 

4.7 Results 

For three weeks in late 2010 treatment schedules have been produced by hand and by the 

computer program. These are now compared. 

Table 4.1 Comparison of timetable production by hand and by program (12 hrs run time)

Week start (2010): 20 Sep 4 Oct 1 Nov

Method: hand program hand program hand program

# MCON1 violations 2 0 0 0 0 0

# MCON2 violations 6 1 5 0 0 0

# MCON3 violations 0 0 0 0 0 0

# MCON4 violations 4 0 0 0 4 0

SCON value 280,435 147,385 207,720 125,350 318,050 151,765

Avg # clinical minutes demanded 279 279 290 290 258 258

Avg # clinical minutes scheduled 236 264 270 262 195 192

Avg # slots with neither primary
48% 28% 37% 16% 37% 18%

or secondary therapist

Average total minutes available
976 976 906 906 891 891

for work

Average total minutes worked 753 787 785 742 756 767

 

It can be seen that the computer program obtains far fewer violations of the moderate 

constraints. In two cases these are reduced to zero. Based on the large number of violations 

by hand it can be presumed that the first week is a ‘tough’ week in which demand is much 

greater than supply. The soft constraint value (or cost function) for the computer produced 

schedule is, on average, 46% lower than the solution obtained by hand. It is obviously not 

possible to always satisfy demand and this is supported by the figures for the average number 

of clinical (not admin) minutes demanded and scheduled. It has been observed that in order to 



Chapter Four The Automated Scheduling Program 96 

avoid MCON violations the computer program generally allocates fewer clinical minutes than 

by hand. This is evident in weeks two and three. It is not so in the first week and so it is 

postulated that the computer program is superior in dealing with ‘tough’ weeks in this 

respect. By hand twice as many (appropriate) sessions are scheduled with neither the patient’s 

primary nor secondary therapist in attendance when compared to the computer produced 

schedule. Here, only one fifth of (appropriate) sessions are scheduled with neither a primary 

nor secondary. Finally, it must be noted that, in general, the average number of clinical 

minutes scheduled is proportional to the average number of minutes worked (by therapists). 

However, this is not always the case (see week 3) since clinical sessions can be of different 

duration (45/60 minutes) and do not include patient admin. 

Figure 4.17 and Figure 4.18 show how the moderate constraint violations and soft constraint 

value decrease over time. Simulated annealing (11.c of Ch 4.5.3) is used as the soft constraint 

optimisation algorithm. 

 

Figure 4.17 Moderate and soft constraint reduction over time 
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Figure 4.18 Moderate and soft constraint reduction over time 

In the twelve hours the program was given to run it took two seconds for stage one (initial 

construction), 20 seconds for stage two (moderate constraint optimisation) and the remainder 

of time for stage three (soft constraint optimisation). In stage two eight iterations were 

performed which reduced the number of moderate constraint violations from five to three and 

the cost function from 294,190 to 285,190. In stage three 23,253 iterations were performed 

which further reduced the number of moderate constraint violations to one and the cost 

function to 163,280.  

A stage three iteration therefore takes on average 1.86 seconds to compute. The precise time 

is dependent on the number of therapists assigned to the problem slot. If one therapist is 

assigned then the number of swap slots is about 100 and so 100 unique solutions are 

evaluated within the iteration. If two therapists are assigned then approximately 10,000 

unique solutions are evaluated, i.e. for each of the 100 swap slots of the first therapist there 

are 100 swap slots for the second. Therefore, approximately one million unique solutions are 

evaluated within an iteration if three therapists are assigned to the problem slot. In this 

example, there were 5,054 iterations involving one therapist, 17,026 involving two and 1,173 

involving three. It can thus be deduced that approximately 1.3 billion solutions were 

evaluated as part of the soft constraint optimisation. 
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It can clearly be seen from Figure 4.17 that the notion of diminishing returns is prevalent 

here. In practice, the availability of time must be balanced with solution quality in 

determining a reasonable timescale to allow the program to run for. In this example, 92% of 

the (overall) reduction in cost function is achieved within the first two hours. Is the remaining 

8% worth the further ten hour wait? 

It is also obvious from Figure 4.17 that, in general, the cost function decreases as time 

elapses. However, this is not strictly decreasing since simulated annealing does not prohibit 

the acceptance of swaps that lead to a worse objective function, i.e. lower soft constraint 

value. Since the reduction factor decreases the cooling parameter (Ch 4.5.3 11.c) at each 

iteration the acceptance of such swaps is less likely as time passes. This is evident from 

Figure 4.17 where there are many quite large spikes in the initial two hours but nothing 

noticeable afterwards. This is because the algorithm has found an area of the search space 

that it seeks to develop. The existence of this volatility in the initial stages is also a reason for 

allowing the program a sufficiently large amount of time to run – otherwise the program 

could terminate whilst on a ‘spike’. 

This particular problem is not an issue for steepest descent (see 11.a of Ch 4.5.3) which only 

accepts swaps that improve the cost function or ‘steepest descent (+)’ (see 11.b) which 

accepts swaps that lead to an improved or equivalent cost function. These algorithms are 

compared, alongside simulated annealing, for the week used before (albeit with different 

random numbers – note initial cost function value), 
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Figure 4.19 Comparison of soft constraint optimisation algorithms 

The volatility of simulated annealing in this implementation is evident from Figure 4.19. If 

the program is stopped after 1,000 iterations (roughly half an hour) then ‘steepest descent (+)’ 

would have produced the best solution. This is despite simulated annealing producing a better 

solution around the 920
th

 iteration mark. Note that the steepest descent algorithm terminates 

at the 589
th

 iteration when a swap cannot be made that improves the cost function. By 

accepting swaps that neither decrease nor increase the cost function the second algorithm 

continues to improve upon this solution by further exploring the search space. Ultimately, 

when left to run for twelve hours, simulated annealing outperforms its rivals by a 

considerable measure. 

4.8 Conclusion 

A number of classification criteria for categorizing the scheduling problem of the 

physiotherapy department at Rookwood NRC are presented at the outset to this chapter. The 

use of exact and approximate methods for solving such a problem is then evaluated. Based on 

the decision to use approximate methods, the three stages of construction and optimisation 

are detailed. A brief step-by-step guide to the scheduling program is then presented. A 

number of important points and issues are forthwith discussed. 
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First the method of solution is considered. A three-stage local search based approximate 

approach is used to solve the hierarchical multi-objective combinatorial optimisation 

problem. In stage one an adaptive stochastic greedy constructive heuristic is used. In stage 

two specialised local search heuristics are used with a steepest descent based selection 

criteria. In stage three a generic local search heuristic is used alongside simulated annealing 

and elements of tabu Search. 

However, this method is problematic since it is only the first-order neighbouring solutions 

that are checked. It is possible for a vastly improved solution to lie in the neighbourhood of a 

worse-performing neighbour to the original. Should steepest descent be used exclusively then 

this would not be considered. Simulated annealing is a method that seeks to combat this 

problem. However, since this problem is highly constrained (with respect to MCON and 

HCON violations) then its ability to do so is limited. 

Other single-point metaheuristics (see Ch 4.3.2) that could conveniently be included to 

combat this problem are ILS and GRASP. ILS works by modifying a solution to provide a 

different one that cannot be found in the neighbourhood of the original. GRASP performs 

multiple runs simultaneously to construct different solutions. Population based metaheuristics 

(such as GAs) are inappropriate since the problem has been formulated otherwise. Other 

more unorthodox methods have been studied and found to be interesting but ultimately 

inappropriate, such as Puchinger & Raidl, 2005. In this article the authors investigate various 

combinations of exact and approximate methods in the solution of combinatorial optimisation 

problems. Results are favourable. 

A dynamic cost function could also be used to improve the quality of the final solution. This 

would involve real-time adjustments to weight values depending on the progress of the 

heuristic. For example, if moves and swaps are being persistently rejected because they incur 

unacceptable increases in a particular soft constraint then the weight attached to this 

constraint could be reduced over time until fluidity is regained. Also, if MCON violations 

were hampering the acceptance of neighbouring solutions then these could be transferred to 

continuous value soft constraints whose initial weights are very high but are reduced over 

time. 

The rationale for the construction of stage two MCON optimisation algorithms may be 

questionable. This is because the generic algorithm of stage three has the potential to achieve 

similar results – albeit in a longer time. However, since the scheduling program must respond 
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efficiently and effectively to, what are sometimes, very limited time constraints, the effort 

expended in the construction of stage two algorithms is justifiable. 

A further consideration is that of stochastic network design – the ability of a schedule to 

respond to shocks. A shock is an unexpected change in the environment that, to some extent, 

prohibits the use of the original schedule. Schedules based on this concept are designed to be 

robust and flexible in the event of such a shock occurring. Essentially, these terms relate to 

the ability of a schedule to adapt to the new environment. At Rookwood NRC a shock 

represents either excess demand for treatment sessions or excess supply of treatment slots. 

The former occurs when a patient unexpectedly requires more treatment or when an 

employee becomes unavailable. The latter occurs when a patient becomes unavailable, 

perhaps due to illness. Excess supply is more favourable as it is easier to satisfy (by finding a 

suitable unmet need or using slot for admin). 

The automated schedule underwent trials (debugging and fine-tuning weights
23

) from the 

summer of 2010 through to the end of the year. It was finally adopted by the physiotherapy 

department in January 2011. Up to the time of writing it has been used consistently on a 

weekly basis and has enjoyed praise from its users. Since its introduction it has required 

negligible maintenance and has not crashed once. This concludes the chapters that concern 

the specification and development of an automated scheduling program. The next chapter 

marks the move from scheduling to queuing theory by discussing methods for fitting 

statistical distributions to empirical data. 
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 See Appendix 4.3 for approximate values of weights 
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Chapter 5: Distribution Fitting and Parameter 

Estimation 

 

 

 

 

 

 

5.1 Introduction 

This chapter is concerned with the fitting of a probability distribution to patient length of stay 

(service time) at the Neurological Rehabilitation Centre (NRC) at Rookwood hospital. Patient 

length of stay (LOS) is defined as the total number of days spent in Rookwood NRC for a 

particular episode of care. This may also be referred to as the sojourn time. The process of 

fitting a distribution involves the selection of a probability distribution and the subsequent 

estimation of associated parameters. It is essential to fit a parametric model to the data 

because of the ability to utilise the many results often associated with well known 

distributions (Laplace transforms, moment generating functions etc). If the data being 

modelled represents service or inter-arrival times then useful performance measures (such as 

mean length of queue, mean wait in queue etc) may be derived depending on the distribution 

used. However, if a good fit between the raw data and the approximating distribution is not 

attained then any associated results may be unreliable. A good fit can be achieved by 

choosing a suitable distribution and selecting optimal parameter estimates.  

Selecting a suitable distribution requires not only an idea of the probability density function 

shape but also an insight into the potential advantages and drawbacks of each one. 

Advantages and drawbacks may relate to the mathematical complexity of the distribution in 

analysing the queue. The optimality of parameter estimates is dependent on the methodology 

that is used as well as the competency in deriving the results through the chosen process. 

Methods of parameter estimation include least squares, method of moments and maximum 
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likelihood. Increasing the flexibility may be possible for some but not all distributions and 

relates to the manipulation of the design of the distribution. This may be seen in the case of 

the shifted exponential distribution by the introduction of a new parameter or by the addition 

of a ‘phase’ in a phase-type distribution (Ch 1.5). 

The statistical distributions considered are split into two groups based on the underlying 

foundation of the distribution. Firstly, the following non phase-type distributions are 

considered: 

1. Log-normal  

2. Gamma  

3. Weibull  

4. Log-logistic  

Secondly, the following phase-type distributions are considered: 

1. Exponential  

2. Hypo-exponential (aka generalised Erlang) 

3. Hyper-exponential (aka sum of exponentials) 

4. Coxian phase-type  

5. Acyclic phase-type  

6. General phase-type  

Such distributions have been selected because of their potential ability to model LOS for 

patients at Rookwood NRC. Good fitting distributions are likely to be those that represent the 

behaviour of a typical patient’s LOS, i.e. positively skewed with a long-sided tail (Marazzi et 

al, 1998). The log-normal, gamma and Weibull have been used historically for such reasons 

(Hanson, 1973, Lee & Hahn, 1970, Steadman et al, 2001, Harper, 2002, Marazzi et al, 1998). 

The log-logistic distribution also exhibits such properties and can be similar to the log-normal 

distribution (Dey & Kundu, 2010) except for having a heavier tail (Ghalebsaz-Jeddi et al, 

2009). Faddy et al, 2009 compare the gamma and log-normal distributions with a phase-type 

distribution, concluding that the phase-type gives the best fit due to its versatility.  
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The application of phase-type distributions to patient LOS is, however, not new and has been 

widely covered in the research community. McClean & Millard, 1993 and Griffiths et al, 

2006 fit the hyper-exponential; Faddy, 1995 fits the generalised Erlang; and Xie et al, 2005 

fit the Coxian to name but a few. A significant advantage of phase-type distributions is their 

mathematical tractability in deriving performance measures in stochastic models. This is 

because they are composed of a system of inter-related Poisson processes that exhibit the 

memoryless property (Stewart, 2009). They are also highly flexible and can ‘approximate 

arbitrarily closely any distribution with support on the positive reals’ (Bladt, 2005). An 

advantage pertinent to the modelling of healthcare facilities is the ability to view the phases 

as having physical meaning. This is of particular interest when describing patient transition 

through a number of facilities (A+E, ICU, …) or through a number of stages of care within a 

facility (short-term, medium-term,…). Kolker, 2008 acknowledges the limitation of a non-

phase-type distribution when modelling an emergency department consisting of many steps 

from registration to discharge. 

A method for parameter estimation is now required so that the distributions can be tuned to fit 

the data as best as their design permits. There are many ways of achieving this. The least 

squares approach minimises the sum of squares of the residuals of the observed values from 

the approximating distribution. There are two categories of the least squares methodology – 

linear and non-linear. Whereas the former possesses a closed form solution, the latter does 

not and may only be solved through a process of iterative refinement. The method of 

moments is an alternative approach that matches sample moments with unobservable 

population moments. The sample moments are obtained, in absolute value, from the data 

whereas the population moments are determined from the theoretical distribution. However, 

the results from this method are often considered inferior to those of the method of maximum 

likelihood. This approach aims to determine the parameter values that maximise the 

likelihood of the sample data. It has been shown to include many asymptotic properties that 

are beneficial when using a sufficiently large amount of data. All three methods are described 

in the next subchapter. 

Upon the fitting of these distributions to sample data a criterion must be developed to select 

the most suitable. There are many goodness of fit tests that can be applied to determine 

whether a distribution approximates data sufficiently well. These include numerical 

assessments such as Pearson’s chi-square, Kolmogorov-Smirnov, Cramer-von-Mises and 

Anderson-Darling tests in addition to graphical assessments such as probability plotting 
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(D’Agostino & Stephens, 1986). However, if the aim is to determine the most suitable 

distribution then it is necessary to compare the fits of the distributions. A distinction is made 

between the comparison of nested distributions, i.e. distributions from the same family, and 

non-nested distributions. The former permits the use of Neyman-Pearson hypothesis testing 

(Atkinson, 1970). This gives rise to the likelihood-ratio test which can be used to test whether 

the distribution with more parameters fits significantly better than its alternative. However, 

when the distributions are non-nested then this test cannot be used. Faddy et al, 2009 

compare the log-normal, gamma and phase-type distributions by a comparison of the 

calculated Bayesian Information Criterion values and generalised Pearson statistics of each 

distribution. Marazzi et al, 1998 compare the log-normal, gamma and Weibull by robust Cox 

tests (Cox, 1962, Victoria-Feser, 1997) in addition to a self-developed assessment whilst Dey 

& Kundu, 2010 compare the log-logistic and log-normal distributions by log-likelihood 

values, K-S distance and chi-square values. Such findings further extend the motive for the 

separation of distributions into phase and non phase-type within this chapter. 

This chapter commences by introducing three common parameter estimation methods. Ch 5.3 

then addresses some numerical analytic approaches that are often required by the parameter 

estimation methods of Ch 5.2. Next, parameter estimation is considered for non phase-type 

distributions. And finally phase-type distributions are considered in Ch 5.5. 

5.2 Parameter Estimation Methods 

Three methods of parameter estimation are introduced and described. These methods have 

been used extensively within the literature for distribution fitting (Marshall & Zenga, 2010). 

5.2.1 Least squares 

The objective of the least squares method is to minimise the sum of squares of the residuals 

of the observed values from the model values. The residuals may relate to the perpendicular 

offsets of the data from the curve if there are uncertainties in both the x and y measurements 

of the data. However, most often, it is the vertical offsets that are chosen, providing a fitting 

function that estimates values of y given x, with the implicit assumption that there is 

negligible error in the x values. 

The above objective may be equivalently stated as minimising 
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where ( ; )i i ir y f x  
 
is the i-th residual and   is a vector of m parameters. 

Hence, the optimal parameter estimate is given by the value of   that minimises (5.2.1.1), i.e. 

2ˆ arg minLS ir              (5.2.1.2) 

This may be found by partial differentiation of (5.2.1.1) with respect to the m parameters, 

thus finding the gradient equations, and setting equal to zero, 
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Since ( ; )i i ir y f x  
 
it is trivial to show that (5.2.1.3) reduces to 
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For the case where the approximating function, ( ; )if x  , contains only a linear combination 

of the parameters, this is called a linear least squares problem. In such cases a closed form 

solution is possible and so calculation is typically straightforward. However, when the 

approximating function is non-linear then a closed form solution does not exist and so 

calculation may require time-consuming iterative refinement techniques. 

It is possible to ‘linearise’ such functions by means of a linear transformation thus enabling 

the calculation of parameter estimates without the need for numerical analysis. However, this 

process can produce unreliable results because the error values on the y measurements are 

also transformed. Hence, since the variances of the residuals are unequal it cannot be inferred 

from the Gauss-Markov theorem that the parameter estimate(s) are unbiased (as this requires 

homoscedasticity). Fraile & Garcia-Ortega, 2005 identify this issue with application to the 

exponential distribution, recognising that the linear transformation is in essence placing 

varying weights on the error terms that results in heteroscedasticity.  

5.2.2 Method of moments 

The j-th sample moment may be defined as 
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The j-th population moment may be defined as 

 j

jM E X                 (5.2.2.2) 

This expectation can be calculated as follows: 

 ( )j jE X x f x dx



                (5.2.2.3) 

Or alternatively through the moment generating function, ( )XM t , of the distribution 

    ( ) 0 0
j

j j X
X j

d M
E X M

dt
               (5.2.2.4) 

Parameter estimates are then deduced from setting equal respective sample and population 

moments. Gross & Juttijudata, 1997 conclude that equating the first two moments in a 

standard two parameter distribution is not usually sufficient. The authors recommend that it 

may be necessary to capture at least five moments in such cases (albeit with lower-order 

moments receiving more importance). There are many examples in the literature where the 

method of moments has been applied to phase-type distributions (see Johnson & Taaffe, 

1989, Telek & Heindl 2002, Bobbio et al, 2005). 

5.2.3 Maximum likelihood 

Pawitan, 2001 states that: 

‘Assuming a statistical model parameterised by a fixed and unknown  , the likelihood  L  is 

the probability of the observed data x considered as a function of  ’  

The objective is to find ̂  that maximises the likelihood, i.e. 

  1
ˆ arg max | ,...., nL x x             (5.2.3.1) 

where 

   1

1

| ,...., |
n

n i

i

L x x f x 


           (5.2.3.2) 

It is often easier to work in terms of the log-likelihood    1 1| ,...., ln | ,....,n nl x x L x x 
 
in 

which case the aim is to find ̂  that maximises this function, i.e. 
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  1
ˆ arg max | ,...., nl x x             (5.2.3.3) 

The validity of this approach is ensured by the logarithm being a strictly increasing function. 

Maximum likelihood estimation includes some attractive asymptotic properties. Consistency 

ensures that as the sample size tends to infinity the estimator tends to its true value (Severini, 

2000). The estimators are also the most efficient (Cousineau et al, 2004), meaning they attain 

the Cramer-Rao lower bound (for parameter variance) as the sample size tends to infinity. An 

estimator is said to attain asymptotic normality if the distribution of the estimator tends to the 

Gaussian distribution as the sample size tends to infinity. Ferguson, 1996 reports the 

maximum likelihood estimator to have this property provided the second derivative of the pdf 

exists and is continuous. 

It is common to require the use of iterative techniques in order to approximate estimator 

values and these are therefore discussed in the following subchapter.  

5.3 Numerical Analysis Methods 

The objective of the optimisation methods presented in this subchapter is to minimise the 

value of a function by manipulation of its parameters. 

5.3.1 Newton-Raphson method 

For a differentiable function ( )f x  the following formula may be used in repetition until an 

approximation for x is determined that minimises the value of ( )f x : 
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In the case of parameter estimation when an estimate is not readily available analytically the 

above process may be used (where the parameter is represented by x)  

On application to maximum likelihood, with   as a vector of unknown parameters and ( )g 

as a vector of first derivatives of the log-likelihood function respective of the parameters, the 

following may be obtained as a result of the Taylor expansion of  0g  : 
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where H  is defined as the Hessian matrix of second derivatives of the log-likelihood 

function (Garthwaite et al, 2002). 

5.3.2 Fisher’s method of scoring 

This method can be seen as a modification of the Newton-Raphson method (Osborne, 1992) 

in which the Hessian in (5.3.1.2) is replaced by its expectation. Thus  
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           (5.3.2.1) 

where  nI 
 
is the Fisher’s information matrix. 

One advantage is the absence of need to compute second derivatives (Garthwaite et al, 2002) 

because of the relation 
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          (5.3.2.2) 

5.3.3 Nelder-Mead ‘simplex’ algorithm 

The Nelder-Mead algorithm (1965) is an optimisation method that belongs to the general 

class of direct search methods, that is, it does not use gradient information within the search 

(Wright et al, 1998). Instead, function values are taken from a set of sample points and such 

information is used to continue sampling. The Nelder-Mead algorithm is part of a large 

subclass of direct search methods that operate a simplex of approximations to an optimal 

point (Kelley, 1999). Moreover, this n-dimensional simplex contains n+1 vertices that are 

ordered according to decreasing function value, i.e. 1 2 1( ) ( ) .... ( )nf x f x f x    . The 

algorithm works by attempting to replace the worst performing vertex by one that gives a 

lower function value. The terminating criterion is met when there is sufficiently small 

difference between the best and least performing vertices, i.e. 1 1( ) ( )nf x f x    . 

Note that depending on the complexity of the approximating function these methods can be 

extremely sensitive to the initial value(s) used at the first iteration. An unsuitable choice of 

initial value(s) may result in infeasibility or convergence to a solution that locally optimal but 

not so globally. 
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5.4 Non Phase-Type Distributions 

The distributions considered within this subchapter are all continuous univariate probability 

distributions that are supported on a semi-infinite interval 0,  
for a non-negative random 

variable. Parameter estimation for these distributions is based on the method of moments and 

maximum likelihood (described in subchapters 5.2.2 and 5.2.3 respectively). 

5.4.1 Log-normal distribution 

The log-normal distribution is a probability distribution in which the logarithm of the random 

variable is normally distributed. This is expressed as follows: 

 ( ; , ) (ln )F x N x               (5.4.1.1) 

By differentiation (Aitchison & Brown, 1957): 
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         (5.4.1.2) 

This distribution has previously been fitted to service times. Brown et al, 2005 fit a log-

normal distribution to service time data from a telephone call centre, stating a very close but 

not exact fit. In this paper the authors test the goodness of fit visually via a histogram of the 

logarithm of service times (checking for Gaussian shape) and a log-normal quantile-quantile 

plot of service times. A Kolmogorov-Smirnov test fails owing to the authors’ reluctance to 

infer an exact fit. Lawrence, 1984 uses a log-normal distribution to approximate the length of 

strikes in the UK in the 1960s using a refined moment approach to estimate the parameters. 

Applications to patient LOS have also been made by Hanson, 1973 and Lee & Hahn, 1970 

with the authors of both papers citing satisfactory fits. A major drawback to applying the log-

normal distribution to service time is that it does not possess a closed form Laplace transform 

(Wagner & Geyer, 1995). This is a problem as it substantially restricts the ability to analyse 

queuing systems (Fischer et al, 2001). To generalise, this is a problem for all heavy-tailed 

(typically sub-exponential) distributions including the Weibull and Pareto distributions. A 

solution to this is to approximate such distributions with a phase-type distribution (Greiner et 

al, 1999) or to approximate the Laplace transform of the distribution (as described in Shortle 

et al, 2003 by the transform approximation method). 

5.4.1.1 Maximum likelihood  

By application of the natural logarithm to the likelihood of (5.4.1.2) the log-likelihood 

function is obtained; 
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From partial derivatives of (5.4.1.1.1) with respect to the parameters the following estimators 

are deduced: 
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      (5.4.1.1.2) 

5.4.1.2 Method of moments 

The first and second population moments are 

 21
exp( )

2
    

2exp(2 2 )        (5.4.1.2.1) 

By equating these with the first and second sample moments (see Ch 5.2.2); 
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     (5.4.1.2.2) 

5.4.2 Gamma distribution 

The gamma distribution is a continuous probability distribution with shape parameter 0k 

and scale parameter 0   whose probability density function is defined as 
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            (5.4.2.1) 

This distribution is a generalisation of the Erlang distribution where k is restricted to positive 

integer values. An exponential distribution with rate parameter  is given if k=1 and 1  . 

The tail of the gamma distribution is shorter than that of the log-normal distribution looked at 

previously (Marazzi et al, 1998). The gamma distribution is used by Faddy et al, 2009 as part 

of a goodness of fit comparison of continuous distributions fitted to LOS data. It is compared 

with the log-normal and a phase-type distribution and was found to perform worse than its 

competitors when fitted to the data. However, a crucial advantage of the gamma distribution 

is that a closed form of the Laplace transform exists. 
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5.4.2.1 Maximum likelihood 

The log-likelihood function of (5.4.2.1) may be simplified to 
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The partial derivative of (5.4.2.1.1) with respect to the parameter   set equal to zero yields 
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Whilst the partial derivative of (5.4.2.1.1) with respect to k can be written 
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where   is the Digamma function defined ( ) ( ) ( )k k k    . 

The Newton-Raphson method (an iterative refinement technique) is used to solve (5.4.2.1.3). 

The second partial derivative of (5.4.2.1.1) with respect to k is 
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Therefore, using (5.3.1.1) the iterative process is defined 
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An initial value of k may be taken from a method of moments approximation or calculated as 

follows. 

By setting (5.4.2.1.3) equal to zero and approximating the Digamma function as 
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the following is obtained: 
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When the RHS of (5.4.2.1.7) is set to p and the quadratic equation is used a formula for the 

initial value of k is deduced; 
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Minka, 2002 provides an alternative approach that (according to the author) can converge in 

about four iterations. The algorithm is obtained via a generalised Newton method that the 

author explains in Minka, 2000. The estimation of the shape parameter is also considered in 

Miller & Bhat, 1997 in which the authors apply the distribution to model inter-arrival times 

of a renewal process. 

5.4.2.2 Method of moments 

The first and second population moments (as derived from the MGF: (1 )kt ) are 

 k   
2 ( 1)k k          (5.4.2.2.1) 

On equating these with sample moments, the following estimators are obtained: 
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       (5.4.2.2.2) 

where s denotes the sample standard deviation and sCV
 
denotes the sample coefficient of 

variation. 

5.4.3 Weibull distribution 

The Weibull distribution is a two-parameter continuous probability function with shape 

parameter 0k   and scale parameter 0   and probability density function 
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The Weibull distribution has been used extensively in reliability modelling. In its two-

parameter form (as shown in 5.4.3.1) it has been used to model failure times of machines etc 

(see Prabhakar et al, 2004 and references therein). It has also had application to patient LOS; 

such as in Perez-Hoyos et al, 2000, Steadman et al, 2001 and Harper, 2002. On application to 

queuing theory the Weibull distribution presents the same problem as described for the log-

normal distribution in relation to the nature of its Laplace transform (Fischer et al, 2001). 

5.4.3.1 Maximum likelihood 

The log-likelihood of the pdf given above may be written 
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The partial derivative of this with respect to set equal to zero yields the following estimator 

for the scale parameter: 
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The partial derivative of (5.4.3.1.1) with respect to k may be simplified to 
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by replacing the  ’s with the value of ̂ from (5.4.3.1.2). 

When (5.4.3.1.3) is set equal to zero, no closed form solution for k exists so iterative 

techniques may be applied – the Newton-Raphson method being the obvious choice. This 

approach has been suggested by Al-Fawzan, 2000, Gove, 2003 and Cohen, 1965. A trial and 

error approach involving linear interpolation is also put forward by Cohen, 1965. 

Balakrishnan & Kateri, 2008 introduce a graphical method to solve (5.4.3.1.3).  

Further differentiation of (5.4.3.1.3) gives the second derivative necessary for the Newton-

Raphson method. Gove, 2003 suggests using the Method of Moments estimators as initial 

values. On finding the value of k̂  the value of ̂ may be found through substitution into 

(5.4.3.1.2).  
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5.4.3.2 Method of moments 

The first and second population moments of the Weibull distribution are 
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On equating the first sample and population moments; 
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By substitution of (5.4.3.2.2) for  in the second moment equation; 
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the solution of which may be found through an iterative process. 

A related approach employed by Al-Fawzan, 2000 and Gove, 2003 is to equate the sample 

and population values of the coefficient of variation in order to find an estimator for k. This is 

in equivalence to the traditional approach of equating individual moments because the sample 

coefficient of variation is a function of the first two sample moments, i.e. 2

2

1

1s

m
CV

m
  . 

Therefore an estimator for k is obtained when the following equation is solved: 
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        
   

 
  (5.4.3.2.4) 

5.4.4 Log-logistic distribution 

The log-logistic distribution is a probability distribution that is derived by the application of 

the logarithmic transformation to the logistic distribution. This transformation is in 

equivalence to that required to obtain the log-normal distribution from the normal distribution 

(see Ch 5.4.1). Therefore the probability density function is as follows: 
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  , 0           (5.4.4.1) 

The log-logistic distribution is typically applied to the fields of hydrology, reliability and 

economics (see Ashkar & Mahdi, 2006, Srivastava & Shukla, 2008, Wang, 2008 and 

references therein). Attempts have also been made in fitting the distribution to service time. 

Kolker, 2008 used a program called stat:fit to fit various distributions to inpatient LOS in an 

emergency department concluding that the log-logistic performs best. It is possible to 

estimate parameters for this distribution by a number of methods including maximum 

likelihood, method of moments, and (ordinary and generalised) least squares since the pdf, 

cdf and inverse cdf may all be specified explicitly (Ahmad et al, 1988). However, the 

literature details many other methods that are employed. Ashkar & Mahdi, 2006 propose a 

generalised moments approach whilst Shoukri et al, 1988 take advantage of the existence of 

the closed form inverse cdf in equating probability weighted moments. A drawback of this 

distribution, shared by both the Weibull and log-normal distributions, is the absence of a 

closed form Laplace transform. 

5.4.4.1 Maximum likelihood 

The log-likelihood of the pdf given in (5.4.4.1) is 
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      (5.4.4.1.1) 

By partial differentiation with respect to the parameters and equating to zero; 
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      (5.4.4.1.2) 

These are solved by a successive iterative method in which initial values of the parameters,

0 0,  , are inserted into the first equation with   fixed and solved to give a new value of  . 

Then, 1 0, 
 
are inserted into the second equation with   fixed and solved to give a new 
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value of  . These two steps represent one iteration and the process is continued until 

sufficient convergence to the maximum likelihood estimators ˆˆ,   is attained. 

The equations may be solved at each step by the Newton-Raphson method, i.e. 

 

 

 

 

  
  

 

    

 

1

1

2
1

1 1

1 2

2
1

21

1

ln 1
ln

2 21

ln

21

n
i

i i

m m
n

i

i
i

n n
i i i

i ii

m m
n

i i

i i

x n

x

x

x

x x x n

x

x x n

x




















 

 

 

 

 
 

 









 








 



 


 








 



     (5.4.4.1.3) 

5.4.4.2 Method of moments 

The first and second population moments of the log-logistic distribution are 
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b
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22
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b
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
        (5.4.4.2.1) 

where b 


 . Equating the first population and sample moments gives rise to the estimator 

 
sin

ˆ
x b

b
            (5.4.4.2.2) 

Equating the second population and sample moments and substituting in (5.4.4.2.2) yields 

 

2

2 22 sin sin 2 0
ix

x b b b
n

 


        (5.4.4.2.3) 

which can be solved by the Newton-Raphson method. 

However, a more simple (Shoukri et al, 1988) and effective (Singh & Guo, 1995) approach is 

to use the class of probability weighted moments to derive estimators for which 
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where 
1 1

1 rn

r i

i j

i j
W x

n n j 





  . 

5.5 Phase-Type Distributions 

A phase-type distribution models the distribution of transient time in a finite state continuous-

time Markov chain (CTMC). The distributions considered within this subchapter are all 

continuous univariate probability distributions that are supported on a semi-infinite interval

[0, ) for a non-negative random variable, X. Their minimal representation is ( , )T where 

is the initial probability vector and T is the PH-generator matrix. The pdf can be expressed 

  ; , ( 1)Txf x T e T                  (5.5.1) 

where 1  is an order p column vector of ones (see Ch 1.5 for an introduction to phase-type 

distributions). Parameter estimation for these distributions is based on the method of 

moments (Ch 5.2.2) and maximum likelihood (Ch 5.2.3). 

5.5.1 Exponential distribution 

The exponential distribution describes the time between events in a Poisson process (see Ch 

1.5). An advantage of this distribution is the memoryless property. This enables the tractable 

derivation of performance measures in queuing theoretic models. For a distribution to be 

memoryless means that for a random variable X the conditional probability

 |P X s t X s  
 
is equal to the probability  P X t

 
for all , 0t s  . The exponential 

distribution is the simplest class of phase-type distributions and has a coefficient of variation 

equal to one. Its pdf is 

  ; xf x e                (5.5.1.2) 

This distribution forms the building blocks of any phase-type distribution. Each phase within 

a phase-type distribution is exponentially distributed and it is the number and inter-relation of 

these that uniquely describe T, the PH-generator matrix. 

5.5.1.1 Maximum likelihood 

The log-likelihood of (5.5.1.2) is 

 ln ln il L n x             (5.5.1.1.1) 
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The partial differential of this set equal to zero yields 

 
1ˆ

i

n

x x
  


          (5.5.1.1.2) 

5.5.1.2 Method of moments 

Equating the first sample and population moments returns an estimator equal to (5.5.1.1.2). 

5.5.2 Hyper-exponential distribution 

The hyper-exponential distribution is a phase-type distribution whose coefficient of variation 

is greater than one (see Stewart, 2009 for proof). Represented as a CTMC the states may be 

ordered in a parallel arrangement as follows: 

 

Figure 5.1 CTMC representation of a hyper-exponential distribution 

Thus the initial probability vector and the PH-generator matrix (both order p) are given by 
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      (5.5.2.1) 

Because  T  is a diagonal matrix the matrix exponential Txe  may be written
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            (5.5.2.2) 

Therefore, by (5.5.1), the pdf of sojourn time is  

1  p  2

 
2

 

EXIT 

1  p  
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             (5.5.2.3) 

The Laplace transform of (5.5.2.3) is found to be 
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by using the Shift theorem to derive  
0

( ) i x sx i
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with ( ) i x

i if x e
 

 . 

The number of parameters that needs to be estimated is  2 1p 
 
since 1i   

(thus one of 

the i ’s is determined by the values of the others). 

5.5.2.1 Two-term hyper-exponential distribution 

A hyper-exponential distribution with two phases is considered. Such a distribution has been 

applied to LOS for geriatric patients in McClean & Millard, 1993 with the two phases being 

used to represent acute/rehabilitative care and long-stay. This requires the estimation of three 

parameters. However, by fixing   the number of moment equations required to solve is 

reduced to two (  is set to 0.5 in Whitt, 1984). An alternative method (Johnson & Taaffe, 

1991) is to assume balanced means, i.e.  1 1

1 21     . This too requires the estimation of 

two, and not three, parameters. 

It is possible to select the i  
such that the mean service time of the distribution, i i  , is 

equal to a specified value, say 1  . This is of particular benefit when comparing the 

characteristics of more than one distribution whilst enforcing homogeneity of mean service 

time. It is possible to modify the pdf of the hyper-exponential distribution in order to 

incorporate this. This is done by taking the pdf as 
2( ) ip x

if x p e
   

 . 

5.5.2.1.1 Maximum likelihood 

The log-likelihood of (5.5.2.3) with 2p  and 1 21    
 
can be written 
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which must be solved iteratively since explicit solutions do not exist. The Nelder-Mead 

algorithm is the chosen approach for two reasons. Firstly, it is a direct search method and so 

does not require calculation of derivatives (this can become time-consuming when many 

parameters are considered). Secondly, in early iterations the convergence to some (but not 

all) local optima is avoided. A program that employs the Nelder-Mead algorithm to deduce 

maximum likelihood estimators has been encoded in Matlab – see Ch 6.5.1 for details. 

5.5.2.1.2 Method of moments 

To determine the first and second population moments the relationship  ( ) sX

sL f x E e     

is exploited by replacing s by -t to give the moment generating function (MGF) of the sojourn 

time, X. This gives  1 2

1 2

( ) 1XM t
t t

 
 
 

  
 

. Differentiating this once and setting t 

equal to zero yields the first population moment and further differentiation yields the second 

and third. Equating with the sample moments 1 2 3, ,m m m
 
gives 
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                 (5.5.2.1.2.1) 

The first of these equations yield 
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Substitution of this into the second equation of (5.5.2.1.2.1) returns 
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On substituting (5.5.2.1.2.2) into the third equation of (5.5.2.1.2.1); 

   1 2 1 1 2 3

1 2 1 1 2 2 3 2

1

6
m m                             (5.5.2.1.2.4) 

and by the subsequent substitution of (5.5.2.1.2.3) into (5.5.2.1.2.4); 
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      2 2 1 2

1 2 2 3 1 2 2 2 1 312 6 2 6 3 2 0m m m m m m m m                    (5.5.2.1.2.5) 

This may be solved by the quadratic equation, i.e. 
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where the auxiliary variables are defined as 
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By substitution of (5.5.2.1.2.6) into (5.5.2.1.2.3) it can be shown that 
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                          (5.5.2.1.2.8) 

depending on the value taken as 
1

2


in (5.5.2.1.2.6).  

Therefore the estimators for the three parameters are 
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                          (5.5.2.1.2.9) 

A similar method of estimation is used in Rider, 1961. A general check to ensure moment 

consistency has been developed in Karlin & Studden, 1966 for use with a non-negative 

random variable. The necessary and sufficient conditions for the first three sample moments 

are 
2 2

1 2 1 1 3 20; 0; 0m m m m m m     . On extending this to the hyper-exponential distribution 

these conditions remain necessary in determining moment consistency but are not sufficient 

(Whitt, 1982). The author then proposes that the values 1 2 3, , ,....m m m
 
are the moments of the 

hyper-exponential distribution if and only if 1 2 3, 2!, 3!,....m m m
 
satisfy the general moment 

consistency check (proof omitted). Therefore, the necessary and sufficient conditions for the 

second-order hyper-exponential distribution are 
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               (5.5.2.1.2.10) 

If a constraint is not satisfied then the sample moment values may be adjusted (Telek & 

Henidl, 2002). If, for example, the first two constraints are satisfied and the third is not then 

the value of the third sample moment may be adjusted so that its value is set to the closest 

possible value necessary to obtain consistency. 

5.5.3 Hypo-exponential distribution 

The Hypo-exponential distribution is a phase-type distribution whose coefficient of variation 

is less than one. Whilst the hyper-exponential distribution has phases in parallel the hypo-

exponential distribution has phases in series. The CTMC for the order p hypo-exponential 

distribution is given in Figure 5.2. 

 

Figure 5.2 CTMC representation of a hypo-exponential distribution 

Therefore the initial probability vector and the PH-generator matrix (both order p) are 
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It can be shown that the squared coefficient of variation is 
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whose upper 

bound is equal to one. The Cauchy-Schwarz inequality may be used in determining the value 

of the lower bound. By substituting i ia  and 1ib    1..i p
 
in     
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the following limit for the lower bound is obtained: 
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The upper limit of the coefficient of variation of a ‘generalised’ hypo-exponential distribution 

(where initial entry to any of the transient states is permitted) can be shown to be unbounded 

(Telek & Heindl, 2002). 

5.5.3.1 Two-term hypo-exponential distribution 

The sojourn time can be written 1 2x x x 
 
where 1x

 
and 2x

 
represent the amount of time 

spent in the first and second phases with probabilities 1 1( )f x
 
and 2 2( )f x

 
respectively. 

Therefore the joint probability is expressed as 1 1 2 1( ) ( )f x f x x . The pdf of sojourn time is 

deduced by integrating this joint probability over all values of 1x ; 
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This result may be confirmed by the Laplace transform approach or by the evaluation of 

(5.5.1) as part of the matrix geometric approach. 

5.5.3.1.1 Maximum likelihood 

The log-likelihood of (5.5.2.1.2) is 
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which may be solved by the Nelder-Mead algorithm. 

5.5.3.1.2 Method of moments 

As previously stated the Laplace transform of the exponential distribution with parameter i is 
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If two of these distributions are considered in series then the Convolution theorem may be 

applied to deduce 

       1 2
1 2

1 2

( ) ( ) ( )L f x L f x L f x
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                       (5.5.3.1.2.2) 

By differentiation of the MGF (found by replacing s by -t in (5.5.3.1.2.2)) the first two 

theoretical moments are found to be 
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On equating the first sample and population moments; 
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and equating the second sample and population moments and substituting in (5.5.3.1.2.4) for

1

1


returns 
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2 1 2 1 20.5 0m m m                      (5.5.3.1.2.5) 

This may be solved by the quadratic formula to give 

 1 21
1,2 2 1

1ˆ 2 3
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m
m m                    (5.5.3.1.2.6) 

making use of (5.5.3.1.2.4). This is confirmed by Whitt, 1982. The feasible values of the two 

sample moments are as follows. The first sample moment must be non-negative. It has 

already been proved that 
0.5 1p CV    and with 2p   it is simple to derive that

2 2

1 2 11.5 2m m m  .  

5.5.3.2 Erlang distribution 

The Erlang distribution is obtained from the hypo-exponential when all the i ’s representing 

transition rates between states are of equal value. It may also be seen as a special case of the 

gamma distribution when the shape parameter is confined to the set of positive integers. The 

coefficient of variation of this distribution is fixed at the lower bound of that of the hypo-

exponential distribution, i.e. 1CV p . This is because of the absence in variation of 

transition rates (homogeneity) associated with the Erlang distribution. Aldous & Shepp, 1987 
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prove a significant result, namely the title of their paper, ‘The least variable phase-type 

distribution is Erlang’. Therefore the lowest possible value of the coefficient of variation for 

an order p phase-type distribution is 1 p . 

Generalising the result obtained in (5.5.3.1.2.2) to a series of p phases with equal transition 

rates gives 

  ( )

p

L f x
s





 
  

 
         (5.5.3.2.1) 

On application of the Shift theorem to (5.5.3.2.1); 
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( )
( 1)!

p p xx e
f x

p

  




         (5.5.3.2.2) 

A hyper-Erlang distribution may be defined as the sum of Erlang distributions (see Johnson 

& Taaffe, 1989 and Wang et al, 2008 for details). 

5.5.3.2.1 Maximum likelihood 

The log-likelihood of (5.5.3.2.2) is 

 ln ln ( 1) ln ln( 1)!i il L np p x x n p                     (5.5.3.2.1.1) 

The partial differential of this (w.r.t ) set equal to zero yields 

 ˆ

i

np p

x x
  


                  (5.5.3.2.1.2) 

A closed-form solution for the shape parameter, p, is intractable. There are two options 

regarding the estimation of this parameter. The first method simply involves assessing the 

value of (5.5.3.2.1.1) (substituting in (5.5.3.2.1.2) for ) for a variety of integer values of k. 

When a value ik
 
has been found such that    1i iL k L k 

 
and    1i iL k L k 

 
then ˆ

ik k . 

This approach is valid because the Erlang distribution is unimodal, thus implying its log-

likelihood is also unimodal. The estimator should be found with relative ease – as according 

to Miller & Bhat, 1997 ‘in queuing contexts, usually only small values of k are relevant’. An 

alternative is suggested by Miller, 1999 based on the workings of Dahiya, 1981. This aims to 
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find p such that    1| |L p x L p x  . It follows that p̂ is defined as the greatest integer less 

than or equal to p , i.e. p̂ p    . It is therefore necessary to solve 

 

( 1)

2 ( 1) 11

( 1) ( )

n p np

p n p p np

n n

p p
x e x e

x x

p p


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   
   


  

 
             (5.5.3.2.1.3) 

Note the denominator of the Erlang pdf has been replaced by that of a gamma pdf. This is 

because p  at this stage. By manipulation of (5.5.3.2.1.3) the equation to be solved for p 

can be simplified to 
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1

1
1

p n
ix

p ex

 
  

 


                 (5.5.3.2.1.4) 

by making use of the result    1z z z    . 

5.5.3.2.2 Method of moments 

The population moments of the Erlang distribution can be deduced from the moment 

generating function that can be obtained in accordance with the approach employed in 

subsection 5.5.2.1.2. Hence, by replacing s by -t in (5.5.3.2.1) it follows that

 ( ) 1
p

XM t t 


  . By differentiation the first and second moments are 

 
p


    2

1
p

p


                (5.5.3.2.2.1) 

Equating these with the respective sample moments gives 
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ˆ p

m
    

2

1

2 2
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1
ˆ

s

m
p

m m CV
 


              (5.5.3.2.2.2) 

5.5.4 Coxian phase-type distribution 

The Coxian distribution is a phase-type distribution whose coefficient of variation occupies 

the set of positive real values 1 p CV  . It may be seen as a generalisation of the hypo-

exponential distribution in which transition from any transient state to the absorbing state is 

permitted. For this phase-type distribution a choice must be made with regard to 

parameterisation (see Ch 1.5 for details on parameterisation options). 
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Firstly the probability parameterisation is considered. The CTMC representation of the 

Coxian distribution with this parameterisation is illustrated in Figure 5.3. Here the
i  

represent the probability of transition from state i to i+1 for 1,2,..., 1i p  . 

 

Figure 5.3 CTMC representation of a Coxian distribution with probability parameterisation 

Thus the initial probability vector, (bi-diagonal) PH-generator matrix and exit vector are 
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     (5.5.4.1) 

where ( 1.. )i i p 
 
represents the rate parameter of phase i. The transition rates between states 

may be summarised as 
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where is
 
represents the i-th state.  

Secondly the rate parameterisation is considered. The CTMC representation of the Coxian 

distribution with this parameterisation is illustrated in Figure 5.4. Here the i  represent the 

rate of transition from state i to i+1 for 1,2,.., 1i p   whilst the i  represent the rate of 

transition from state i to the absorbing state. 

21   11   
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Figure 5.4 CTMC representation of a Coxian distribution with rate parameterisation 

Thus the following is obtained: 
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The probability of transition between states may be summarised as 
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Note that a Coxian distribution requires the estimation of  2 1p 
 
parameters. 

The Coxian distribution has been used in many fields of mathematics since its introduction 

(Cox, 1955) in 1955 by David Cox. One such area is healthcare for which it has become 

increasing popular to model survival times by the distribution (Marshall & Zenga, 2009). 

Faddy, 1998 identifies the adequacy of this distribution in reducing the trade-off between 

wide applicability and efficient parameterisation and claims that ‘little is lost by restricting 

attention to this Coxian sub-class of phase-type distributions’ (The author reasons this by 

stating a result produced in O’Cinneide, 1989 that ‘any acyclic phase-type distribution (see 

Ch 5.5.6) has an equivalent representation in Coxian form’). However, this claim is refuted 

by example in Fackrell, 2009 in which the author finds that a 24-phase Coxian distribution is 

unable to outperform a six-term general phase-type distribution when fitted to LOS data. This 

p  2  1  
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EXIT 
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example of over-parameterisation, a problem often associated with the general phase-type 

distribution, has also been observed when fitting Coxian distributions in Faddy, 1994. 

A generalisation of the Coxian distribution is to relax the condition that the process must 

begin in the first phase. 

5.5.4.1 Two-term Coxian distribution 

This distribution has been used historically to model LOS. For example in McClean & 

Millard, 2007 geriatric LOS is modelled by this distribution with acute care and long stay 

represented by the two phases. 

The probability parameterisation and Laplace transform approach are used to derive the pdf 

due to the low order of the distribution. In order to assist in the formulation of the Laplace 

transform of sojourn time a graph of the convex combination of all possible pathways is 

drawn (Figure 5.5). Note that the considered distribution has thus been transformed into a 

mixture of generalised Erlang distributions (Commault & Mocanu, 2003).  

 

Figure 5.5 Convex combination of possible pathways in a two-term Coxian distribution 

This representation of all possible pathways in terms of a mixture of generalised Erlang 

distributions enables a more convenient approach to the formulation of terms within the 

Laplace transform of sojourn time.  Therefore 
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and by application of the Shift theorem; 
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     (5.5.4.1.2) 

This result may be confirmed by the calculation of (5.5.1) with   and T  replaced by their 

respective values in (5.5.4.1) with 2p  . In cases where T is not in diagonal form the 

calculation of the matrix exponential, Txe , may be time-consuming. Mathematical packages 

such as Matlab and Maple can be used to produce quick and reliable results.   

In extending to higher-order cases  2p  the derivation of the pdf  becomes increasingly 

difficult via the Laplace transform approach when compared to the matrix geometric 

approach. This is, in part, down to the increased complexity of setting up  ( )L f x , but 

principally it is because of the extent to which desktop computers can be employed in 

calculating ( )f x  through the matrix geometric approach. 

Equivalent results are obtained using rate parameterisation. 

5.5.4.1.1 Maximum likelihood 

The log-likelihood of (5.5.4.1.2) is 
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              (5.5.4.1.1.1) 

which can be solved by the Nelder-Mead algorithm. 

5.5.4.1.2 Method of moments 

The Laplace transform of (5.5.4.1.1) may be simplified to 

  
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s s
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 
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                          (5.5.4.1.2.1) 

By employing the method (see 5.5.2.1.2 for details) that is used regularly throughout this 

subchapter the following estimators are deduced: 



Chapter Five Distribution Fitting and Parameter Estimation 132 

 
 

 

1

1 1

2

2 1 1

1

1 1 2

ˆ

ˆ2 1
ˆ

ˆ 2

ˆ ˆ ˆ

B A

C

m

m m

m








  









 

                           (5.5.4.1.2.2) 

There always exists two real solutions for 1 (Augustin & Buscher, 1982), however, it is 

possible that one solution may be negative. This possibility is eliminated by taking B A as 

the numerator of 1 .  

The following notation introduced in Altiok, 1985 is employed with the aim of attaining a 

more convenient form for the estimators: 

1 2X       1 2Y                 (5.5.4.1.2.3) 

By manipulating these two equations; 
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                  (5.5.4.1.2.4) 

and by calculation of X  and Y  with parameter values from (5.5.4.1.2.2), 
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The necessary and sufficient conditions required to achieve moment consistency are as 

follows. The first sample moment must be non-negative. The second sample moment is 

bounded only from below – it is inferred from 
20.5 sCV 

 
that 

2

2 10.5m m . With regard 

to the bounds of the third sample moment a distinction must be made between the case when

2 1sCV 
 
and 

20.5 1sCV  . Numerous authors (van der Heijden, 1998, Papadopoulos, 1998) 

have articulated that for case 
2 1sCV 

 
the third moment bound is equivalent to that of the 

third equation of (5.5.2.1.2.10), i.e. the third moment bound of the two-term hyper-

exponential distribution obtained in Whitt, 1982. For case 
20.5 1sCV 

 
the method 

introduced in van der Heijden, 1998 is adopted. Firstly the (non-negativity) restrictions on the 

rate parameters are converted to restrictions on the auxiliary variables 
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 20, 0, 4X Y X Y   . Then, these restrictions are subsequently converted to restrictions on 

the third sample moment (using 0 1  ) to obtain
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3 1
2 2
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.  

If the alternate (rate) parameterisation is used then the following estimators are obtained 

through the matrix geometric approach. Here 1  
and 2  

represent the transition rates from the 

first and second nodes to the absorbing state whilst 
1  

represents the transition rate from the 

first to the second phase. 
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                                     (5.5.4.1.2.6) 

It can be shown through algebraic manipulation  1 1 1 1 2 2; (1 ) ;          that the 

results of (5.5.4.1.2.2) and (5.5.4.1.2.6) are equivalent. 

5.5.5 Acyclic phase-type distribution 

The acyclic phase-type distribution may be regarded as a continuous-time Markov process in 

which no state is visited more than once. This is analogous to having an upper-triangular 

representation of the PH generator matrix. Therefore, in probability parameterisation 
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      (5.5.5.1) 

or in rate parameterisation 
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where , ( 1.. 1, 1.. )i j i p j i p     represents the transition rate from state i to j and 

( 1.. )i i p 
 
 is as before (see Ch 5.5.4). The probabilities of transition are summarised as 
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where ks
 
represents the k-th state. 

A theorem published in Cumani, 1982 states ‘A triangular PH-representation is equivalent to 

an ordered Cox representation of at most the same order’. This result means that the same 

distribution may be obtained but with the estimation of fewer parameters. It is also supported 

by Dehon & Latouche, 1982 and O Cinneide, 1987. There are a number of methods that may 

be employed to facilitate this reduction – see Pulungan & Hermanns, 2008 and references 

therein for details. However, it is not the case that analysis of the acyclic distribution may be 

omitted from this review since the complete data models will not be the same in such a 

distribution as in a Coxian (Asmussen et al, 1996). This can result in the production of 

different distributions for the acylic and Coxian distributions depending on the parameter 

estimation algorithms employed. It also depends on the prevalence of local minima/maxima 

and saddle points of the likelihood function if the maximum likelihood method of estimation 

is used. 

This is an important distribution to consider because it not only increases the flexibility of the 

distribution (at the expense of greater parameter estimation) but can also be used to exemplify 

a physical representation of the phases as compartments. This physical representation has 

been adopted when modelling LOS for geriatric patients. Xie et al, 2005 use a four phase 

distribution to model LOS for patients in residential and nursing home care for which two of 
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the phases are used to represent short and long stay in each institution. This may be viewed as 

a Coxian distribution with the addition of a nonzero transition probability from the first node 

(of residential care) to the first node of nursing home care. 

5.5.5.1 Three-term acyclic phase-type distribution 

A two-term distribution will not be considered as this would be equivalent to the 

consideration of a two-term Coxian distribution. In order to capture the characteristics of this 

distribution a three-term model is therefore examined.  
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   (5.5.5.1.1) 

The probability parameterisation has been selected in retrospect after the consideration of 

both parameterisations yielded the rate parameterisation to have a more complex 

representation of the moments and the pdf. The pdf is therefore as follows: 
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   (5.5.5.1.2) 

5.5.5.1.1 Maximum likelihood 

By application of the logarithm to the likelihood function of (5.5.5.1.2) the log-likelihood 

function is obtained as 
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           (5.5.5.1.1.1) 

This may, in conventional fashion, be solved by the Nelder-Mead algorithm. 
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5.5.5.1.2 Method of moments 

An alternative method of equating moments is developed due to the complexity associated 

with the traditional analytical approach that has been used thus far (see Bobbio et al, 2005 

and Horvath & Telek, 2007 for the intricacies associated with an analytical approach).  

The method that is used seeks to minimise the square of the deviation of sample moments 

from theoretical moments. This method is a heuristic in the sense that it produces 

approximations and not exact results (see Ch 4.3). Higher value weights may be placed on 

lower-order moments to emphasise the greater importance in solving these (Gross & 

Juttijudata, 1997). Johnson & Taaffe, 1990 employ this approach with three moments. The 

authors develop the following nonlinear programming problem: 

   
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The authors conclude by suggesting that ‘NLP methods have the potential to become a 

powerful tool for selecting approximating PH distributions’. 

The approach that is used forthwith is as follows: 
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in which theoretical (population) moments are calculated by the formula
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The optimisation can be performed via the Nelder-Mead simplex algorithm. 

5.5.6 General phase-type distribution 

The general phase-type distribution has the highest flexibility (Chakravarthy & Alfa, 1997) of 

all of the phase-type distributions covered thus far. This is because it imposes no restriction 

on state transitions and entry into initial state. This distribution is therefore a generalisation of 

all phase-type distributions covered within this chapter. By the same token, and noting 

Aldous & Shepp, 1987, the coefficient of variation is within the interval 1 p CV  . In 

rate parameterisation it is described 
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     (5.5.6.1) 

The number of parameters required for estimation is therefore 
2 1p p  (i.e. 1p  from 

and 
2p  from T ). Table 5.1 documents the number of parameters requiring estimation for 

both the Coxian and the general phase-type distribution. 

Table 5.1 Comparison of number of parameters requiring estimation

#  phases: 1 2 3 4 5 6 7 8 9 10

Coxian 1 3 5 7 9 11 13 15 17 19

General 1 5 11 19 29 41 55 71 89 109

 

It is because of this that the general phase-type distribution has not seen the scale of 

application and interest that the Coxian distribution has had within the research community. 

Some authors (Garg et al, 2009, Fackrell, 2009) refer to the general phase-type distribution as 

being over-parameterised; a problem defined by the fitting of excessive parameters to a 

model. This can result in a very good approximation for the sample data but a less than 

adequate fit for other samples from within the population (Svolba, 2006). However, as 

exemplified in Fackrell, 2009 (and mentioned in Ch 5.5.4) the author finds a 24-phase Coxian 

distribution to perform worse than a six-phase general distribution. Note here that the Coxian 

distribution requires the estimation of 47 parameters whilst the general distribution requires 

the estimation of six fewer. 
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The general phase-type distribution is of particular interest when a physical representation of 

a problem is sought. Griffiths et al, 2006 fit such a compartmental model to the HIV/AIDS 

epidemic in which the compartments (phases) represent different stages of the disease. 

Fackrell, 2009 also applies the general phase-type distribution to the field of healthcare by 

modelling six departments of a hospital (Theatre, ICU, Ward 1, etc). The author describes the 

cyclic transitions between the departments and remarks on how the sojourn time in each 

department can be modelled by distributions other than the single phase exponential 

distribution (e.g. Erlang, Coxian etc). 

Two variations of the general phase-type distribution are forthwith considered: the feedback 

Erlang and the feedback Coxian. These distributions were introduced in O’Cinniede, 1997 

and are equivalent to the respective Erlang and Coxian distributions of the same order albeit 

with a nonzero probability of transition from the final transient state to the first state. The 

respective number of parameters required for estimation is 2 and 2p. These distributions are 

considered firstly because of their relative simplicity when compared to distributions with a 

denser PH-generator matrix, and secondly, because the feedback concept could be useful in 

modelling readmissions or relapse within a healthcare facility. 

5.5.6.1 Two-term Erlang distribution with feedback 

First considered is a two-term feedback Erlang distribution which is the simplest case of a 

general phase-type distribution that exhibits cyclic behaviour. Its pdf cannot be found through 

the traditional Laplace transform approach because a convex combination of all pathways 

(see Ch 5.5.4.1) cannot be readily formulated. Therefore the pdf in probability 

parameterisation is found through the matrix geometric approach; 
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where   is the feedback probability. The Laplace transform is calculated to be 
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which is in agreement with (equation 25 of) Commault & Mocanu, 2003. 
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5.5.6.1.1 Maximum likelihood 

The log-likelihood function of (5.5.6.1.1) to be maximised is 
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5.5.6.1.2 Method of moments 

The first and second theoretical moments, as derived through (5.5.6.1.2), are 
2

( 1)    

and

2

2(3 )

( 1)



 




. On equating with sample moments the estimators of   and  are found to be 
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5.5.6.2 Two-term Coxian distribution with feedback 

The two-term feedback Coxian distribution is now considered. For equivalent reasons to 

those issued in Ch 5.5.6.1 the pdf in probability parameterisation is deduced to be 
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where  
2
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Laplace transform of (5.5.6.2.1) is 

 
 

 
2 1 1 2 2 1

2

1 2 1 2 1 2 1 2

s s
L

s s

     

       

  


   
       (5.5.6.2.2) 

5.5.6.2.1 Maximum likelihood 

The log-likelihood function of (5.5.6.2.1) to be maximised is 
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5.5.6.2.2 Method of moments 

The method employed within subchapter 5.5.5.1.2 (given by the objective (5.5.5.1.2.2)) is 

used here. This is due to the complexity associated with obtaining analytic results by equating 

moments in the usual fashion. 

The first three theoretical (population) moments are as follows 
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5.6 Conclusion 

A review of distribution estimation with application to healthcare studies has been presented. 

The aim of this review is to facilitate a greater understanding of probability distributions that 

are of potential interest when modelling arrival and length of stay data for healthcare 

facilities. A survey of the relevant literature is undertaken in the first subchapter. Three 

popular and commonly used methods of parameter estimation are introduced in Ch 5.2 and 

the following subchapter establishes the iterative techniques that are sometimes required to 

solve them. The estimation of parameters for four non phase-type distributions is addressed in 

Ch 5.4 and various types of phase-type distributions are investigated in Ch 5.5. An evaluation 

of limitations is now presented. 

Perhaps the most significant limitation of this review is the number of distributions 

considered. By examining a greater number of suitable distributions (e.g. Burr, logistic, 

Rayleigh) one could hold greater confidence that the best approximating distribution of those 

applied is in fact the best approximating distribution possible. This concept also has 

application to the flexibility of the phase-type distributions. By examining higher-order 

phase-type distributions (or those with a greater number of nonzero transition probabilities) it 

is expected that better approximations could be achieved. However, this would be at the 

expense of increased mathematical complexity in obtaining analytic results and may risk 

over-parameterisation. 
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Another limitation of this review is the number of parameter estimation methods that are 

considered. Although three were originally discussed only two are formally applied. This lack 

of diversity could result in sub-optimal approximations of the data. The validity and accuracy 

of the methods used may also be questionable. The maximum likelihood method requires the 

independence of sample values; however, this could be affected by patient readmission. The 

accuracy of the method of moments is dependent on the number of moments matched. Within 

this review two or three moments are typically matched. However, there is a difference of 

opinion with regard to a sufficient number.  Osogami & Harchol-Bolter, 2003 suggest that 

data is well-represented if three moments are equated whilst Gross & Juttijudata, 1997 advise 

matching at least five. 

A further limitation relates to the accuracy of the results obtained when iterative techniques 

are employed. It has been previously acknowledged that the optimality and feasibility of final 

solutions found via such techniques can be very sensitive to initial values. The problem is 

therefore to determine initial values that allow the globally optimal solution to be found. If 

possible, analytic results from the alternative estimation method can be used as initial values. 

For example, if the method of moments returns explicit estimators, then these may be used 

within an iterative process for maximum likelihood. However, if neither method can produce 

analytic results then there is a problem. This can be dealt with when using the method of 

maximum likelihood by plotting a graph of the likelihood surface. If there is only one 

parameter to be estimated then a two-dimensional graph may be plotted and the initial value 

may be selected as a point near to the global optimum. A similar approach may be used 

should two parameters require estimation. When faced with three or more free parameters 

then two parameters may be plotted ceteris paribus. This is of significant complication when 

high-order phase-type distributions are considered. 

The final matter addressed is that of purpose. Many authors have developed simple and user-

friendly programs capable of deducing parameter estimates quickly and easily for a wide 

variety of phase-type distributions, for example EMPht (Olsson, 1998) and PHFit (Horvath & 

Telek, 2002). However, a substantial base of theory would not have been covered if these 

programs had been used. It was felt by the author that this theory is a valuable foundation for 

subsequent consideration in relation to queuing theory. 
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Chapter 6: Model Development and Data Evaluation 

 

 

 

 

 

 

6.1 Introduction 

The aim of this project is to model the activities of the Neurological Rehabilitation Centre 

(NRC) at Rookwood hospital. The two phases are initial construction (Ch 1.7.1) and 

hypothetical scenarios (Ch 1.7.2). The data used in the initial construction of the model can 

also be used to produce valuable statistics that can support the major policy decisions (who to 

admit, what care to give, when to discharge). Such data can be used to create a prognostic 

tool for estimating various patient-related attributes such as length of stay (LOS). 

The accuracy of the model is determined by its ability to represent reality. This is dependent 

on two factors – the quality of the design and the quality of the data. The quality of the design 

is determined by the complexity of the model in relation to the complexity of the system. 

That is, a complicated system requires an equally complex model to capture all the 

underlying trends and variables within it. A sufficient understanding of the system is essential 

to create a model that is of appropriate complexity. A number of models of varying 

complexity are considered in Ch 6.2. 

For a model to be pertinent to a particular environment a level of sensitivity to the 

characteristics of that environment is required. This is done by using raw data obtained from 

the environment to estimate model parameters. The quality of this data is dependent on the 

amount collected and the reliability of the collection process. If raw data is unavailable then 

model parameters can be estimated by experienced clinicians. These are issues discussed in 

Ch 6.3. 
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A brief statistical analysis of the data is presented in Ch 6.4. Finally, a number of 

distributions are fitted to patient LOS by the method of moments and maximum likelihood. 

6.2 Model Development and Data Requirements 

The data requirements for models of varying complexity are discussed forthwith. The first 

model represents the most simplistic and complexity is thereafter increased. Note that in 

some cases this is progressive in the sense that former models are used as a foundation that is 

built upon. The subchapter concludes with the specification of the most representative model 

that is considered. The objective is to establish options with regard to model design – it is not 

to decide upon a particular model. 

Each model has potential benefit as well as drawback. In general, simpler models require less 

data (as fewer parameters require estimation) but are limited in their representation of reality 

(since important aspects of the data are not considered as variables). More complex models 

have the ability to incorporate such trends but carry a risk of being over-fitted. They also 

permit a wider range of hypothetical what-if type scenarios as a result of containing more 

variables as parameters. 

6.2.1 Queuing theory model 

This model is assembled from basic queuing theory principles. The suitability of queuing 

theory for use in modelling patient transition through a healthcare facility is discussed in 

Chapter 1.3. Let   be the mean arrival rate of patients at the queue and   be the mean 

service rate. The number of service channels is equivalent to the number of beds. 

 

Figure 6.1 Basic multi-server queuing system 
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Data is required for the following variables: 

 Date referral received 

 Date of admission 

 Date of discharge 

Upon the determination of the (inter) arrival and service distributions (see Chapter 5) 

performance measures such as mean wait in queue and mean service time can be studied. The 

ability to deduce such measures is dependent on the fitted distributions (see Ch 5.4.1). The 

model may now be extrapolated to study what-if type scenarios. However, due to the 

simplicity of this model, only a limited number of scenarios may be examined – a change in 

the number of service channels (beds) and modification to the arrival or service distribution. 

Whilst the first scenario details a reasonable policy option (hospitals often review the number 

of beds) it is much more difficult to find a practical connection with the other two. For 

example, the lowest mean wait in queue could be achieved by changing the service 

distribution to a two-term hypo-exponential but how would this change be replicated on the 

ground? It is clear that a more advanced model is required. 

6.2.2 Separation of LOS to active and blocked components 

A simple and effective advancement of the model is to partition total LOS (service time) into 

active LOS (ALOS) and blocked LOS (BLOS). ALOS is defined as the length of time (days) 

for which a patient is subject to rehabilitative treatment. The time at which the patient 

becomes ready for discharge defines the end of this rehabilitative care. Thereafter, their 

category is downgraded from therapeutic to nursing and treatment levels are reduced from 

rehabilitative to maintenance. Such patients are said to be bed-blocking (see Ch 1.2). BLOS 

is defined as the length of time (days) for which a patient is subject to maintenance treatment. 

If the patient is promptly discharged then they incur a zero BLOS, however, this is 

exceptional. Maintenance treatment is regarded as necessary (as in its absence patients would 

deteriorate) but wasteful (since resources are diverted from those engaged in rehabilitative 

care). This model is depicted in Figure 6.2 where 1  
represents the active service rate and 2

represents the blocked service rate. 
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Figure 6.2 Queuing system with length of stay partitioned into active and blocked 

components 

The variable that data are required for is 

 Date ready for discharge 

This enables the derivation of distributions for ALOS and BLOS and thus provides greater 

versatility in model design. It is practically speaking more meaningful to consider changes to 

ALOS and BLOS distributions than changes to LOS as a whole. This is because realistic 

policy decisions target either the ALOS or the BLOS independently of the other. For 

example, if through a more proactive arrangement with social services the mean BLOS was 

found to have decreased, then 2  
may be increased without affecting 1  

or its distribution. 

6.2.3 Separation of active LOS to departmental active LOS 

Patients may only be categorised as ready for discharge when all departments within the 

hospital (physiotherapy, occupational therapy etc) are in agreement that the patient is ready 

respective of their specialities. Hence date ready for discharge is in fact an upper bound of all 

such departmental readiness dates. If dept active LOS defines the length of time (days) for 

which a patient is subject to rehabilitative treatment for within a department then ALOS is an 

upper bound of these dept ALOSs.  

The variable that data is required for is 

 Date ready for discharge (dept) 

From this, distributions of dept ALOS can be produced for each department. The 

distributions may then be subject to adjustments in accordance to what-if scenarios and the 

effect on performance measures can be analysed. This is of particular interest because of the 
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potentially avoidable cost associated with patient maintenance. An extreme case of this is 

forthwith exemplified. 

Assume that the ALOS of one department dominates that of all others. This is illustrated in 

Figure 6.3 where yellow and grey shading are used to represent rehabilitative and 

maintenance departmental treatment respectively. 

 

Figure 6.3 Active and blocked length of stay for each department 

Despite early readiness from most departments, maintenance treatment must be provided to 

the patient for the remainder of time until discharge. Although this level of treatment is not as 

costly as rehabilitative treatment it still represents a significant cost to the departments. There 

are two ways of reducing this.  

The first is to decrease BLOS. However, this is problematic since it is not directly controlled 

by Rookwood hospital – the principle problem being the punctuality of the discharge 

destination in accepting the patient. The second option is to improve inter-department co-

ordination so that there is greater alignment between the dates of departmental readiness. 

Such a policy translates to the example as follows. A solution is to either reduce the ALOS of 

Dept 1 or raise the ALOS of the others. Reducing Dept 1 ALOS has additional benefit in 

increasing throughput due to the reduction in overall ALOS ceteris paribus. 

A potential tool for controlling the ALOS of a department is the intensity of treatment. 

6.2.4 Treatment intensity 

Treatment intensity is defined as the rate at which treatment is provided. The intensity of 

treatment is the largest controllable post-arrival factor that affects ALOS (see Ch 2.2.3 for a 
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literature review of this concept). To summarise, it is widely accepted that greater treatment 

intensity reduces patient LOS (Blackerby, 1989, Spivack et al, 1992) by advancing functional 

gains (Sivenius et al, 1985). Because LOS is the ‘primary significant predictor of 

rehabilitation charges’ (Cifu et al, 2003) then this is certainly a valuable tool. 

This relationship between ALOS and treatment intensity holds at a departmental level for 

some, but not all, types of therapy (Heinemann et al, 1995, Cifu et al, 2003). Treatment is 

split into four therapy types (speech, occupational, physical, and psychological) in Cifu et al, 

2003. The authors then study the effects of varying intensities of these therapies on cognitive 

and motor outcome. They find that whilst the intensity of speech and physical therapy were 

predictive of motor outcome, there were no therapy types that were predictive of cognitive 

outcome. 

To incorporate the effect of departmental treatment intensity within the model, data for the 

following variable is required for each department: 

 Number of hours of clinical treatment received (until date ready for discharge) 

This concept is integrated within the model as follows. Assume that the distribution of ALOS 

for a particular department is given by Figure 6.4. 

 

 

Figure 6.4 Probability density of departmental active length of stay 

This can be used to deduce the mean and variance of ALOS. With the introduction of a third 

variable, treatment intensity, it becomes necessary to move to a three-dimensional graph. For 

illustrational purposes, however, it is easier to look at two two-dimensional graphs. The first 

(Figure 6.5) considers the relationship between service (treatment) intensity and service time 

(ALOS) by means of a service curve. 
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Figure 6.5 Relationship between departmental service intensity and service time 

The dotted lines of Figure 6.5 illustrate an example in which the mean service time, 1t , can be 

deduced from a given service intensity, 1i . The area occupied by the dotted lines ( 1 1i t )  is 

defined as the expected service bulk (in yellow). This represents the total amount of service 

that the patient is expected to receive from the department. Note that if dept treatment 

intensity is not predictive of dept ALOS then the service curve would approach horizontality. 

Figure 6.6 details the variance of the expected service time.  

 

Figure 6.6 Probability density of scaled departmental active length of stay 

Note that the shape of this distribution is equal to that of Figure 6.4. The dept ALOS axis 

values are re-scaled so that the mean of this distribution is equal to the mean service time 

obtained in Figure 6.5. Thus, a duplicate representation of Figure 6.4 is achieved when the 

mean service time obtained in Figure 6.5 is equal to the mean service time of Figure 6.4. A 

similar shape distribution is obtained for the variance of service bulk because of its linear 

dependence on service time (i.e. bulk i t  ). 

This extension of the model has the following benefits and drawbacks. The inclusion of 

treatment intensity as a variable within the model enables its effect on ALOS to be 
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appreciated. This is a valuable consideration since the intensity of departmental treatment can 

differ significantly among patients.  

Such advances in the model design also serve to cover a more realistic range of what-if type 

scenarios. In the previous model (Ch 6.2.3) scenarios relate to changes in the distribution of 

dept ALOS. However, these changes are not easily replicated in real-life. In this model, 

technical modifications can still be made (i.e. to the service curve and distribution of scaled 

dept service time) but simple changes can also be made to treatment intensity. Such changes 

involve an increase or decrease to the dept service intensity of Figure 6.5. This is much more 

practical and relatable for therapists. However, it must be noted that a substantial amount of 

data are required in order to develop the relationships between departmental ALOS and 

treatment intensity. 

Unfortunately, treatment intensity cannot be expressly regulated by therapists (see Ch 3.3.2). 

Treatment intensity is, in fact, an output of the scheduling procedures used by each of the 

departments. By uniting the automated scheduling program and the queuing model (Chapter 

9), the effects of the direct controls (see Ch 3.4.3) of the therapists can be evaluated for the 

system. For departments that do not operate an automated scheduling program it is necessary 

to collect data on requested treatment so that an approximate ratio between treatment 

demanded and received can be determined. 

6.2.5 Destination attributes 

Patients are only considered ready for discharge from a department when they have exhibited 

a sufficient ability in that speciality to meet the demands of their prospective discharge 

destination. For example, if a patient is to be discharged to a multi-storey house that is on top 

of a steep hill then a high level of motor ability is necessary. It is likely that such a patient 

would require a greater amount of physiotherapy treatment in order to achieve this. Outcome 

is therefore defined as functional ability on discharge. 

It is intuitive to hypothesise some form of trilateral relationship between outcome and 

treatment intensity and LOS. Outcome is a consideration in many articles that are mentioned 

in Ch 6.2.4. As three related variables are considered it is logical to hold one of these constant 

whilst another is varied. The effect of this is measured by the consequent change in the 

remaining variable. Blackerby, 1989 holds constant patient outcome and varies treatment 

intensity – the effect on LOS is then studied. Here the independent variables are treatment 
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intensity and outcome and the dependent variable is LOS. Other authors (Sivenius, 1985) 

choose outcome as the dependent variable and so hold constant LOS. Spivack et al, 1991 also 

studies the effect on patient outcome but varies both LOS and treatment intensity. 

An approach to incorporate outcome within the model is proposed. First, a number of 

destination levels are constructed for each department. These represent echelons of required 

functional ability on discharge (outcome). Their simplest interpretation can be viewed as a 

diagonal shift in the service curve that represents a change in expected service bulk. The 

number of echelons is determined by the significance of the destination attributes (discharge 

destination and postcode) in dictating departmental outcome requirements. For example, 

consider the occupational therapy (OT) department. Assume that required patient outcome 

significantly differs between the following destinations: nursing/residential home, home with 

family support, home without family support. 

 

Figure 6.7 Relationship between occupational therapy service intensity and mean service 

time for a number of example destination levels 

According to Figure 6.7 the required OT outcome for discharge to a nursing or residential 

home is less than that required for discharge to the patient’s home with family support. This 

is intuitive since a patient discharged to a nursing or residential home is likely to be more 

reliant on assistance with everyday tasks such as self-care and cooking. The graph also 

reflects the further ability required should the patient be discharged home without family 

support. 

The following variables may be defined as destination attributes; 

 Discharge destination 

 Complexity of home – if destination is own home 

OT Service Intensity 
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OT 
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 Family support 

 Discharge postcode 

The variables family support and complexity of home could be Boolean or could be 

supported on some numeric scale. The value of these variables can affect the target 

destination level the patient is prescribed. For example, a patient cannot be assigned a level 

categorised as own home with family support if they do not have their own home or family 

support. The target destination level is also influenced by the attributes of the patient such as 

age, gender, condition etc (more on this in Ch 6.2.6). For example, it might be unreasonable 

to select home as a discharge destination for elderly or highly complex patients. 

The inclusion of destination attributes within the model has the following advantages. Firstly, 

it improves accuracy. There can be significant differences in the discharge criteria for certain 

destinations and if this is not included then homogeneity among patients is incorrectly 

assumed. Secondly, the target destination level may be used as a variable when assessing the 

impact of what-if type scenarios. For example, the effects of increasing discharge to own 

home (where appropriate) could be studied. This is of particular interest when considering 

wider cost implications. Should patients be prescribed higher-order destination levels then the 

greater degree of outcome achieved would reduce the cost borne by social services post-

discharge. These savings could be of significant magnitude for younger patients. 

6.2.6 Treatment control factors 

There are many factors that influence the care (treatment intensity, ALOS, outcome) that 

patients receive at Rookwood NRC. These factors can be used as part of a prognostic model 

to predict, say, LOS (see Ch 2.2.1) and as part of a queuing theoretic model. 

Consider first a prognostic model. The aim here is to predict the value of a measure for a 

subject given a number of attributes pertinent to that subject. In Rookwood NRC the measure 

is ALOS and the attributes are the characteristics that relate individually to that patient. Since 

the most important time to make such prognoses is before
1
 or at the time of

2
 admission these 

characteristics must be captured pre or on-arrival. A review of literature relevant to the 

specification of such characteristics can be found in Ch 2.2.1. Many details of possible 

characteristics that could be used within the model are contained within this review. One of 

                                                      
1
 To make decisions about who to admit 

2
 To inform social services (or other discharge destination) about expected discharge date 
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these studies (Perel et al, 2006) contains a survey of prognostic models for TBI patients. This 

is the largest
3
 systematic review of such models to date. The authors find the following 

attributes to be the most common characteristics analysed as predictor variables: 

 GCS 

 Age 

 Pupil reactivity 

The condition of requiring factors pre or on arrival is relaxed when considering a queuing 

model. This is because it is unimportant whether the variable is a prospective predictor of 

LOS (e.g. condition on arrival) or a retrospective predictor of LOS (e.g. condition on 

discharge) – the only aim is to reduce the variance of LOS. Three approaches to include the 

effect of such factors within the model are considered. The first uses covariates to control for 

the effects of certain variables. In Faddy & McClean, 1999 the authors use age and year of 

admission as covariates in their study of a geriatric facility. The second approach is to use a 

Bayesian belief network to condition a distribution, such as in McClean & Marshall, 2003, 

with a three-term phase-type distribution. They find a relationship between admission 

method, age, gender, destination and Barthel grade. The third approach is to determine, by 

some means (e.g. CART
4
 analysis), a number of homogenous patient groups for which 

distributions can be fitted to respective LOS data. 

The advantages of including the effects of patient attributes are as follows. First and 

foremost, the queuing model is more accurate since the heterogeneity in LOS of patients is 

taken into account. In addition, what-if type scenarios relating to particular patient 

characteristics can be explored. For example, the effect of admitting more complex patients 

could be studied. For the prognostic model, the reduction in variance of predicted ALOS for 

different types of patient serves to reduce BLOS since a more accurate predicted date of 

discharge can be given to the discharge destination (which increases the likelihood they are 

ready for the patient). Finally, if data for these variables is collected pre-arrival the 

predictions can be used to assist admission decisions. For example, if high band therapists are 

over-stretched then the disastrous effect of admitting a complex patient could be shown. 

                                                      
3
 66 models 

4
 Classification and regression tree 
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These advantages come at the price of additional model complexity. The amount of data 

could also limit the effective identification of predictor variables. 

6.2.7 Summary 

In summary, a number of possible components have been considered as add-ons to the basic 

queuing theory model of Ch 6.2.1. Some of these components are free-standing and other 

build on the foundations set by other components. Several choices with regard to the 

selection of these components are depicted in Figure 6.8 where the number contained in each 

circle corresponds to the component contained in the subchapter extension of Ch 6.2. That is 

(1) corresponds to the queuing model of Ch 6.2.1. 

 

Figure 6.8 Possible types of model 

It has been stated that models of greater complexity have the ability to better represent 

activities at Rookwood NRC. This infers more reliable prognoses of treatment, LOS and 

outcome through a reduction in the variance of such predictions. A complex design also has 

benefit with respect to what-if type scenarios. Not only can a broader number of these be 

considered but the variables used to control such studies are shown to be more relatable. 

However, these advantages come at the expense of a more complicated model in addition to 

the requirement for a significant amount of data. Therefore all of these factors must be taken 

into account when considering model design. 

Finally, the capacity of Rookwood hospital is determined by the availability of therapists and 

the demand of patients. The facility is said to be operating at full capacity if the demand is 
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equal to the availability, that is, if there is no excess demand or no excess availability. It is 

important that decisions are made with respect to a consideration of capacity since resources 

are limited (and quite often demand exceeds supply). 

6.3 Data Collection 

In order to construct any of the models introduced in the previous subchapter a separation 

between the analysis of arrival and service data is made. The Arrivals dataset (Ch 6.3.1) 

contains the variables that are pertinent to the arrival of referrals and the behaviour of the 

queue whilst the Service dataset (Ch 6.3.2) contains variables that are relevant to the 

admission and discharge of patients. 

Table 6.1 Availability of data 

Variable Source (raw dataset) From To 

Date referral ready for 

transfer to RWD 
Referrals dataset January 2010 April 2011 

Date referral removed 

Referral outcome 

CRN number 

Physio Notes dataset January 2003 May 2011 

Admission number 

Date of birth 

Admission date 

Discharge date 

Gender  

NHS Trust data request 

QH556 
January 2003 January 2011 

Home postcode  

Primary diagnosis 

description/code  

Referring practice 

Admission source description 

Admission method description 

Discharge destination 

description 

Date ready for discharge 

Therapies database 
January 2007 

(incomplete) 

January 2011 

(incomplete) 
Weekly total for 

physiotherapy received 
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It is necessary to strike a balance between the quality and quantity of data. The Physio Notes 

dataset does, in fact, stretch back to discharges since 1990. Whilst this would result in a 

larger amount of data the relevance of this data would be questionable (since it is likely that 

clinical practices have changed over such a large time). Such problems can be averted by 

considering data on a smaller timescale. However, with an average LOS of roughly five 

months and only about 21 beds the throughput of the unit is insufficient to capture enough 

observations in a limited amount of time. It has been decided that eight years (2003-2011) 

would give a sufficient quantity of data whilst ensuring that practices had not changed too 

much (the current superintendent physiotherapist has been employed since 2003). 

6.3.1 Arrivals dataset 

This dataset, stored as an MS Excel file, is constructed from just one source (raw dataset). 

Referrals dataset 

Every Thursday of each week since January 2010 the Referrals dataset has captured a 

snapshot of the waiting list for Rookwood NRC. This list contains the names of patients 

referred and whether they are ready for transfer or not. For this project, an arrival is defined 

as the submission of a referral that is ready or the instance at which a non-ready referral 

becomes ready. This is since it is only the ready referrals that are considered for admission. 

As mentioned in Chapter 1.2 the size of the waiting list can be reduced by either an admission 

or the removal of a referral. A referral is removed if the patient is transferred, discharged or 

deceased. For the purposes of this project, a ready referral can also be removed from the 

ready waiting list, or queue, if the patient deteriorates and becomes not-ready. Note that 

patients who never become ready are not of interest. 

Data is extracted as follows. The weekly waiting lists are inspected chronologically and the 

names corresponding to each ready referral are recorded. For each of these a date of arrival is 

found in addition to the date at which the referral is removed from the ready waiting list and 

the associated outcome. Observations are thereafter sorted by date referral received. 

6.3.2 Service dataset 

This is too stored as an MS Excel file and is comprised from the other (three) sources. 

Physio Notes dataset 

This dataset forms the foundation of the service dataset. It contains the variables given in 

Table 6.1 for each patient episode where columns represent variables and rows observations. 
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Columns representing data from other variables are removed. Data is sorted by discharge 

date. 

NHS Trust dataset 

Following a data request in early 2011 the QH556 dataset has been received as an MS Excel 

worksheet. This dataset contains variables (mentioned in Table 6.1) that can be used as 

predictors of LOS/outcome. Such details are extracted for as many of the patients on the 

Physio Notes dataset as possible by matching CRN number, surname and date of birth. Since 

not all patients on the Physio Notes dataset appear on the NHS Trust dataset the patients that 

data is available for is a subset of the total number under consideration. The service dataset 

now contains a list of patients from the Physio Notes dataset, many of which have additional 

fields obtained through the NHS Trust dataset. 

Therapies dataset 

A database capable of collecting data for all variables outlined in Ch 6.2 (including date 

ready for discharge and treatment intensity) has been developed in MS Access. Databases 

offer ‘improved reporting, operational efficiency, interdepartmental communication, data 

accuracy, and capability for future research’ (Vreeman et al, 2006). The motivation for 

developing a database is centred on the deficiency in variables that existing data has been 

collected for; particularly those relating to treatment intensity. The aim is to be able to collect 

prospective data for all such variables whilst being able to store historic data for the existing 

variables. 

Firstly, the relationships between the variables were determined. This is necessary to ensure 

consistency between the electronic tables which store the data. Appendix 6.1 contains a 

screenshot of the ‘relationships’ in MS Access. Secondly, the GUI was developed. This was 

handled by one of the technical assistants at Rookwood hospital. And thirdly, the database 

was debugged to ensure stability. 

As well as collecting data it was hoped that the database would be used as part of the 

scheduling process (Figure 6.9). When the PTO is reset (at the beginning of the week), a list 

of names, initials and CRN numbers for current patients would be copied from the database 

to the PTO. Whenever availability data is input to the schedule from the PTO these details 

would also be transferred. Finally, when the ‘Export database’ button is pressed (see Figure 
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4.2), the summary information pertinent to physiotherapy treatment received and requested 

would be transferred from the schedule to the database. 

 

Figure 6.9 Transfer of data between the PTO, schedule, and database 

However, despite our best efforts the database was not used to this end. In fact, the overall 

take-up of the database was poor. This is attributed to a lack of accountability of those tasked 

with inputting data in addition to a resentment to change. The data that was available for date 

ready for discharge and treatment intensity is added to the service dataset for the relevant 

patient episodes. 

6.4 Preliminary Analysis of Data 

The statistics and graphs contained in this subchapter are automatically produced
5
 from the 

arrivals dataset and the service dataset which are stored as Excel files. This allows for fast 

and simple analysis (including updated parameter estimates) as and when new data is input.  

6.4.1 Arrivals dataset 

In the sixteen months from January 2010 until April 2011 there have been 183 ready 

referrals (see Ch 6.3.1) in the queue for Rookwood NRC. Figure 6.10 depicts the arrival and 

removal date of each of these. Note that fifteen observations are left-censored, twelve are 

right-censored, and no observation is both left and right censored. 

                                                      
5
 Through the activation of some purpose-written VBA code 
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Figure 6.10 The arrival and removal of ready referrals over time 

The mean arrival rate is deduced by the total number of arrivals in a given interval of time 

divided by the length of that interval. The first week is excluded since it is not known how 

many of the fifteen referrals are new arrivals for that week. With 168 arrivals in the 

remaining 462 days there are 0.36364 arrivals per day or roughly 2.5 arrivals per week.  

Quite often in the study of queuing theory, arrivals are modelled by a Poisson process, i.e. 

exponentially distributed inter-arrival times (see Ch 1.5). Such a decision is typically 

motivated by mathematical tractability and appropriateness – since many arrival processes 

are inherently random. The appropriateness of the exponential distribution to model inter-

arrival times for Rookwood NRC is forthwith investigated. The specific time of arrival of 
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each referral is not recorded in the referrals dataset. All that can be deduced from this is the 

week in which referrals are added to the ready waiting list. The appropriate unit of time to 

consider is therefore the week. The concept of bulk arrivals is eminent here since more than 

one arrival can occur at a particular instant of time. However, it must be noted that in reality 

the arrival of ready referrals occur continuously in time.  

First, the 167 inter-arrival times between each of the 168 referrals are found. The minimum 

number of weeks between arrivals is zero whilst the maximum is three. Since the time 

between arrivals is discrete and not continuous the geometric distribution is used to test for 

randomness
6
. The pdf of this distribution is given by  1

k
p p  on support 0 1, 0p k     

and with mean 
1 1p  . The empirical mean inter-arrival time is approximately 0.4 and so p is 

equal to five sevenths. Figure 6.11 is thus obtained. 

 

Figure 6.11 Frequency plot for empirical data and geometric distribution 

The empirical data shows sufficient
7
 congruence with the geometric distribution to conclude 

that arrivals occur at the queue (ready waiting list) at random and thus in line with a Poisson 

process. 

Since a date is stipulated for the removal of ready referrals from the queue the appropriate 

unit to consider in evaluating departures is the day. Table 6.2 provides some basic statistics 

                                                      
6
 This is because the geometric distribution is the discrete equivalent of the exponential distribution. It too 

attains the memoryless property 
7
 Visually; not statistically tested 
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for the length of time spent in the queue. Note that here the (twelve) right-censored 

observations are excluded since the reason for their removal is unknown. 

Table 6.2 Analysis of length of time spent in queue

Outcome: RWD Other Total

Censored: left-cens non-cens left-cens non-cens Both

3 40 12 116 171

110 27.4 94.67 34.52 38.4

. . 97.68 41.04 122.58 52 61.65

min 1 0 7 0 0

max 238 257 469 399 469

n

mean

s d

 

Approximately
8
 one quarter of ready referrals result in transfer to Rookwood NRC. 

Excluding censored data such referrals spend, on average, one week fewer in the queue than 

those that are removed for other reasons. A program in Visual Basic has been written to 

determine the number of referrals in the queue on each of the 470 days. The midnight census 

is said to take place at the end of each day, i.e. new referrals are included but those removed 

are not. Figures 6.12 displays a line graph of the number in queue over time and Figure 6.13 

contains a histogram of the number in queue.  

 

Figure 6.12 Number in queue from January 2010 to April 2011 

                                                      
8
 25.64% non-censored data only; 25.15% non-censored and left-censored data 
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Figure 6.13 Histogram of the number in queue from January 2010 to April 2011 

The average number of ready referrals in the queue is 15.83 with a standard deviation of 

3.43. This gives a coefficient of variation of 0.217.  

It is presumed that the queue size has an effect on whether referrals are removed for reasons 

other than transfer to Rookwood NRC. That is, if there are many referrals in the queue then 

the likelihood of reneging
9
 is larger than when there are fewer. To investigate this postulation 

the number in system (at the beginning of each day) and the reason for removal (transfer to 

Rookwood or other) is considered for each removal. The probability of reneging is therefore 

deduced. 

 

                                                      
9
 Reneging occurs when queuing customers leave before entering service 
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Figure 6.14 Probability of reneging based on the number in queue 

Figure 6.14 provides no evidence to support the earlier postulation: there appears to be no 

relationship between reneging and queue size. The relationship between the probability of 

reneging and the length of time spent in queue is now investigated. 

 

Figure 6.15 Probability of reneging based on length of time spent waiting 

However, as can be seen from Figure 6.15, there is no conclusive trend. 

It must finally be noted that whilst the data indicates the continuous presence of a queue over 

the sixteen months, it cannot be concluded that all available beds were occupied during this 
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period. It could well be that the availability of therapists or other resources was in fact the 

limiting factor of the occupancy at Rookwood NRC (see Ch 1.2). 

6.4.2 Service dataset 

The VBA program that derives statistics and graphs from the service dataset allows the user 

to specify an upper and lower bound on LOS for episodes that are used in the analyses. The 

lower limit is set to exclude the episodes of patients who were discharged on the same day as 

their admission. Those with LOS of 1,000 days or more are defined as residents and are also 

excluded from the analyses. 

6.4.2.1 Summary statistics 

There have been 384 patient episodes from the beginning of 2003 until May 2011. Twenty-

two of these do not have NHS Trust data (i.e. gender, diagnosis etc) and a further four have 

LOS greater than or equal to 1,000 days. No patient episode has a LOS of zero days. 

The number of patient episodes used for this analysis is therefore 358. 

Table 6.3 details the basic statistics for patient episode LOS (measured in days). 

Table 6.3 Basic statistics   

1 2 3 4 5

10 12

. .

LOS 149.3 152 149.3 45408.4 20986875 1.25 10 8.63 10

mean s d m m m m m

 
 

Note km
 
is the k-th non-central sample moment. The coefficient of variation is 1.018. The 

shortest LOS is one whilst the longest is 933 days. The skewness is 2.1 and the excess 

kurtosis is 5.5. Figure 6.16 displays the annual average LOS for those discharged in the year 

specified. 



Chapter Six Model Development and Data Evaluation 164 

 

Figure 6.16 Average length of stay for each year from 2003 to 2010 

The mean number of episodes per patient is 1.03. The maximum number of episodes for a 

patient is three. Basic statistics are produced for stand-alone episodes (i.e. one patient, one 

episode) and those that are part of a number of episodes (i.e. one patient, more than one 

episode) in Table 6.4. 

Table 6.4 Basic statistics for stand-alone and multiple episodes

Episode type: Stand-alone Multiple

338 20

151.8 107.8

. . 154.1 103.4

min 1 10

max 933 455

n

mean

LOS

s d

 

Table 6.5 Basic statistics for multiple episodes for first, second, and third admission     

Episode #: 1 2 3

9 9 2

103.2 132 19

. . 67.7 129.7 1

min 38 11 18

max 308 455 20

n

mean

LOS

s d
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Nine patients have multiple episodes. Therefore, there are 347 patients in the dataset. 

The mean Age on Admission is 44.4 years with a standard deviation of 15.8. The patient 

episodes are sorted into appropriate bins. For each bin there is a specification of the number 

of patient episodes, the mean age on admission and the mean LOS. 

Table 6.6 Basic statistics for episodes categorised by age on admission

0 9 10 19 20 29 30 39 40 49 50 59 60 69 70 79 80 89 90 99 100 109

0 18 58 65 79 70 50 13 4 1 0

. 17.6 24.3 35.1 45 53.9 63.5 37.5 84 92 .

. 185.7 106.8 145 158.5 156.1 176.1 136.5 110.3 17 .

. . . 157.1 112.9 154.7 140.8 171.6 173.1 122

n

mean

age

mean

LOS

s d

          

.2 58.5 . .

min . 6 1 7 4 4 2 7 17 17 .

max . 611 542 933 780 918 757 455 178 17 .

 

The following procedure is employed (in VBA) for the remainder of variables that are 

studied. First, the unique values for the variable under consideration are determined. For each 

of these a tally is produced for the number of patient episodes that attain this value. Mean 

values of LOS are also calculated. 

Table 6.7 Basic statistics for episodes categorised by gender                 

Male Female

218 140

144.9 156.2

. . 146.1 160.6

min 1 2

max 933 918

n

mean

LOS

s d
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Table 6.8 Basic statistics for episodes categorised by local health board    

Cardiff & Vale Aneurin Bevan Cwm Taf Powys Hywel Dda Abertawe Bro Morgannwg Betsi Cadwaladr

187 91 48 11 7 6 5

155.8 145.7 134.2 112.3 193.7 1355.3 190

. . 162.4 134.1 161.9 92.3 167 64.9 113.7

min 1 6 4 25 10 35 36

max 933 735 780

n

mean

LOS

s d

329 472 211 353

              

Table 6.9 Basic statistics for episodes categorised by primary diagnosis (top 7; 10n  )

 

ABI MS TBI Anoxia GBS Other MS & other neuropathies

187 44 42 26 22 14 10

172.8 95.7 132.8 193.1 99 104.6 83.5

. . 170.3 100.9 126.8 155.1 88.3 91 131.2

min 4 2 6 17 9 4 17

max 933 488 542 561 415 347 472

n

mean

LOS

s d

 

Table 6.10 Basic statistics for episodes categorised by admission source

Cardiff & Vale hosp NHS hosp Usual residence Temp Unknown

229 78 49 1 1

146.3 200.1 73.6 352 387

. . 148.1 172.4 85.1 . .

min 4 6 1 352 387

max 933 780 349 352 387

n

mean

LOS

s d

 

Table 6.11 Basic statistics for episodes categorised by admission method

Transfer Waiting list A+E Emergency (GP) Emergency (OP clinic) Other immediate

305 43 4 2 2 1

160.4 78 116 39 63.5 387

. . 156.7 97.9 68.6 1 27.5 .

min 4 1 16 38 36 387

max 933 352 184 40 91 387

n

mean

LOS

s d

 



Chapter Six Model Development and Data Evaluation 167 

Table 6.12 Basic statistics for episodes categorised by discharge destination (top 5; n>5)

 

Usual residence Internal transfer (gen) Other Trust (gen) Non-NHS nurs. home Temporary residence

212 61 50 15 6

100.5 253.8 208.2 206.9 114.7

. . 109.1 215.4 136.6 111.5 135

min 1 16 7 25 28

max 735 933 561 408 413

n

mean

LOS

s d

 

This data is of great interest since it shows that, despite large variances, there is a clear 

difference in mean LOS between patient episodes of certain groups. For example, a patient in 

their twenties can expect to spend less time in RWD than any other patient below the age of 

ninety on admission (Table 6.6). Also, those admitted by transfer can expect to have a LOS 

over twice that of those admitted by waiting list (Table 6.11). Conversely, gender appears to 

have little effect on patient episode LOS (Table 6.7). 

To determine the statistical significance of such differences a number of hypothesis tests can 

be performed. A t-test can be used to assess whether there is a difference in mean LOS 

between two groups whilst an ANOVA test can be used to assess the difference between 

multiple groups. As an example, the data in Table 6.4 is used to test whether there is a 

difference in mean LOS between stand-alone episodes and those that are part of multiple 

episodes. 

Therefore, 1 1 1 2 2 2338, 151.8, 154.1, 20, 107.8, 103.4n x s n x s      . The test statistic for 

Welch’s t-test is therefore   2 1 2 1

1 2 1 1 2 2 1.789t x x s n s n     . The degrees of freedom is 

calculated by the formula       
2 1 12 1 2 1 4 2 4 2

1 1 2 2 1 1 1 2 2 21 1 24v s n s n s n n s n n
          . For the 

two-tailed test ( 0 1 2:H   and 1 1 2:H   ) the critical region (95%) is 2.064C  . Since 

the test statistic is not within this region the null hypothesis is not rejected – there is 

insufficient evidence to suggest a difference in means. The p-value is 0.086 (since

24,1.789 0.043z  ). This means that there is only a 8.6% chance that the means are the same. 
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6.4.2.2 Occupancy 

All 384 patient episodes from 1
st
 January 2003 until May 2011 are used to obtain daily 

figures for bed occupancy (in addition to the current patients as of May 2011). 

 

Figure 6.17 Bed occupancy from January 2003 to May 2011 

The minimum number of beds in use is fifteen whilst the maximum is 31.  The mean 

number of occupied beds is 23.16. Observe the below-average occupancy of 2003 and, to a 

lesser extent, 2005. This is as a result of ward closures due to refurbishment. During these 

times the NRC operated the same workforce across only one of the two wards. Interestingly 

enough, the annual average LOS was less at these times than others (see graph in previous 

subchapter – note 2006 is also low, probably due to a time lag as figures represent LOS of 

those discharged in that year). This supports the notion that treatment intensity does indeed 

have an effect on LOS. 

From mid 2005 to mid 2007 it was commonplace for over 25 beds to be in use at any time. 

However, since then, due to the restructuring of health services in Wales, the NRC at 

Rookwood hospital has had to cater for a more complex type of patient. With no increase in 

personnel, this has meant that the bed occupancy has reduced. In recent years there have 

been, on average, about 21 patients in the unit at any time. 
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6.4.2.3 Treatment intensity 

Date ready for discharge and treatment intensity are two very important variables that enable 

the model to progress further than the basic version characterised by Route 1 of Ch 6.2.7. If 

data is available for date ready for discharge then the LOS can be partitioned to its active and 

blocked component (Ch 6.2.2). If, in addition, data is available for treatment intensity then 

the effects of this influential variable can be appreciated (Ch 6.2.4). 

Unfortunately, such data has not been collected over the years at Rookwood NRC. What is 

available, however, is the physiotherapy date ready for discharge and the physiotherapy 

treatment intensity. This being said both sets of data are only available for 89 of the 358 

patient episodes considered in the analysis. This is because such data has not been routinely 

collected over the years. The data that is available has been obtained through either the 

database (see Ch 6.3.2) or clinical estimation (so not only the quantity but the quality is 

questionable). Figure 6.18 displays a scatter plot of physiotherapy treatment intensity versus 

physiotherapy active LOS (where physiotherapy active LOS is the difference between date of 

admission and physiotherapy date ready for discharge). 

 

Figure 6.18 Relationship between physiotherapy treatment intensity and active LOS 

As postulated in Ch 6.2.4 the underlying shape is similar to that of Figure 6.5. 

If the relationship between active LOS and treatment intensity is to be included within the 

model then one of two assumptions must be made. First, it could be assumed that any change 

to physiotherapy treatment intensity is replicated by the other departments. For example, if 
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physiotherapy treatment intensity increased by 20% then it would be assumed that other 

departments replicate this change for the effect on active LOS to be representative. Second, it 

could be assumed that the physiotherapy active LOS is approximately equal to the (overall) 

active LOS. In which case, the effect of varying physiotherapy intensity would be the same 

for (overall) active LOS as it would for that of the physiotherapy department. Clinicians at 

Rookwood NRC have some affinity to this notion as it is typically the patient’s motor 

functioning that dictates discharge readiness.  

6.5 The Distribution of Length of Stay 

Appropriate statistical distributions (see Chapter 5) are fitted to the LOS of the 358 patient 

episodes detailed in Ch 6.4.2.1. 

A graph is produced for each approximating distribution considered. Empirical data is 

represented by small fixed-width columns whose height is calculated by the number of 

observations contained in the interval divided by the product of interval length and total 

number of observations. The approximating distribution is represented by a line graph. Log-

likelihood values are deduced for each approximation. However, this measure should be 

treated with caution since it can promote over-fitting. The Akaike Information Criterion 

(Akaike, 1974) is therefore considered. This statistic consists of two parts: the first rewards 

goodness of fit whilst the second penalises the use of an excessive number of parameters. If L 

is the Likelihood function and k is the number of parameters then  2ln 2AIC L k   . The 

Bayesian Information Criterion (Schwarz, 1978) is similar but contains a larger penalty. If n 

is the number of observations then    2ln lnBIC L k n   . Unlike log-likelihood the 

lowest value is sought. The chi-square test statistic is also deduced. These four statistics can 

be used to compare the appropriateness of approximating distributions. 

For the graphical representation of the empirical data the lower and upper bounds are zero 

and 500 and the interval width is ten. Optimal parameter values for the calculation of the chi-

square test statistic are now sought. Sturges, 1926 predicts the number of classes, k, by the 

result
2log ( ) 1k n   where n is the sample size (358), ergo, 10k  . Scott, 1979 predicts the 

class width, h , by the result 1 33.49h n  where   is the standard deviation (152), thus,

74.7h  . To avoid sparsely populated classes the (already truncated) data can be curtailed 

above at about 500. Over 95% of the data is used since there are only thirteen patient 

episodes with 500 1,000LOS  . Therefore 7k   according to Scott’s result. However, by 
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considering the corresponding histograms it was observed that these values of k were 

insufficient in adequately representing the features of the data. A more effective and intuitive 

approach is to survey the histograms produced by various parameter values that are 

considered appropriate. A lower and upper bound of zero and 510 and a class width of 30 are 

found to sufficiently represent the features of the sample data. The number of classes is 

therefore 17.  

6.5.1 The Matlab fitting program 

A purpose-built program has been developed in Matlab to deduce parameter estimates for 

approximating distributions. 

First, the LOS data (obtained through the VB program) is copied to a single column within a 

'.txt' file. The program is then initialised by providing the upper bound and interval length for 

the graphical representation of the empirical data and the upper bound and number of classes 

for the calculation of the chi-square test statistic. A description of the approximating 

distribution must be provided. If the distribution is non phase-type then the pdf is input. 

Otherwise, it is more convenient to input the initial probability vector and PH-generator 

matrix (see Ch 1.5). 

It is then necessary to determine parameter estimates for the approximating distribution. 

Maximum likelihood (ML) estimators are determined through the Matlab optimiser 

fminsearch. This uses a derivative-free simplex method (similar to that of Ch 5.3.3) to 

determine the variable values that minimise the value of a function. In this case, the function 

is the negative log-likelihood of the distribution under consideration. To eliminate the 

possibility that inappropriate parameter values are returned the optimiser fminsearchbnd
10

 is 

used. This allows upper and lower bounds to be placed on the parameters. The minimal value 

of the function under these constraints is then sought. However, good
11

 initial values of the 

parameters are required by the optimiser. These are obtained from the method of moments 

(MOM) parameter estimates. 

There is no feature within the program to computationally derive the MOM estimators. They 

can be calculated through the results of Chapter 5. The densities corresponding to these two 

sets of estimators are plotted on the graph that contains the empirical data. Results for the 

four goodness of fit measures are also output. 

                                                      
10

 Developed by John D’Errico 
11

 See note at the end of Ch 5.3 
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6.5.2 Non phase-type 

Parameter estimation by ML and MOM is possible for each of the distributions considered 

here. The distributions are fitted by the purpose-built Matlab program for non phase-type 

distributions. The MOM estimators are derived from Ch 5.4. 

6.5.2.1 Log-normal 

 

Figure 6.19 Log-normal approximation to length of stay 
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6.5.2.2 Gamma 

 

Figure 6.20 Gamma approximation to length of stay 

 

6.5.2.3 Weibull 

 

Figure 6.21 Weibull approximation to length of stay 
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6.5.2.4 Log-logistic 

 

Figure 6.22 Log-logistic approximation to length of stay 

6.5.3 Phase -type 

The distributions considered here are fitted by the purpose-built Matlab program for phase-

type distributions. The MOM estimators are derived from Ch 5.5. 
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6.5.3.1 Exponential 

 

Figure 6.23 Exponential approximation to length of stay 

6.5.3.2 Hyper-exponential (two-term) 

 

Figure 6.24 Two-term hyper-exponential approximation to length of stay 



Chapter Six Model Development and Data Evaluation 176 

6.5.3.3 Hyper-exponential (three-term) 

No analytic results are detailed in Ch 5.5 for the MOM estimators of this distribution. Instead 

of deriving these, the approach detailed in Ch 5.5.5.1.2 is employed, i.e. minimising the 

distance between the sample and theoretical moments. The fminsearchcon
12

 algorithm in 

Matlab is used to this end. However, like fminsearchbnd this requires a specification of initial 

parameter values. A number of appropriate choices are experimented with including those 

based on the estimators of the two-term hyper-exponential distribution. 

 

Figure 6.25 Three-term hyper-exponential approximation to length of stay 

6.5.3.4 Hypo-exponential (two-term) 

Since the sample coefficient of variation is greater than one the upper bound on the second 

sample moment (see Ch 5.5.3.1.2) is not satisfied, i.e. 2

2 12m m . Therefore, one of the MOM 

estimators is negative which is obviously invalid. However, feasible estimations are possible 

for ML (due to the aforementioned advantages of fminsearchbnd). 

                                                      
12

 Same as fminsearchbnd but allows linear constraints to be put on the parameters. In this case the value of the 

two parameters of the initial probability vector must be less than one i.e. alpha1 + alpha2 < 1. 
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Figure 6.26 Two-term hypo-exponential approximation to length of stay 

6.5.3.5 Coxian (two-term) 

 

Figure 6.27 Two-term Coxian approximation to length of stay 

However, it has been noticed that using different starting values from the MOM estimators 

results in a better fit for ML estimation. 
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Figure 6.28 Two-term Coxian approximation to length of stay using MOM estimators 

6.5.3.6 Coxian (three-term) 

No analytic results are detailed in Ch 5.5 for the MOM estimators of this distribution. 

Therefore an equivalent approach is employed to that of the three-term hyper-exponential 

distribution. 

 

Figure 6.29 Three-term Coxian approximation to length of stay 
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6.5.4 Results 

Table 6.13 Goodness of fit results for approximating distributions

2 2

Est method: MLE MOM

Test: LogL AIC BIC LogL AIC BIC

Log normal 2154.8 4313.5 4321.3 2.0434 2257.6 4519.2 4527 5.5158

Gamma 2148.6 4301.2 4309 0.51 2151.2 4306.5 4314.2 0.7922

Weibull 2149.5 430 0.483.1 4310.9 2150.6 430545 .1

 

 

 

 

 

4312.9 0.6959

Log logistic 2155.3 4314.7 4322.4 1.8324 2182 4368.1 4375.9

Exponential 2150.2 4302.3 4306.2 0.607 2150.2 4302.3 4306.2 0.607

Hyper 2 2150.1 4306.2 4317.8 0.6535 2150.1 4306.3 4317.9 0.6685

H

1.325

yper (

3

3) 21

 

 

 

 50.1 4310.2 4329.6 0.6535

Hypo (2) 2145.6 0.5984

Cox (2) 2150.1 4306.2 4317.8 0.6535 2150.1 4306.3 4317.9 0.6764

Cox (2

4295.2 4302.9

214) a 4297 4308.7 0.6136

Cox (3) 4301

5.5

2145.5 4320.4 0

    









   

-2150.2 4310. 0.4 4 6329. 18

.6134 -2146.5 4303 4322.4 1.0961

 

The distributions corresponding to the results in red are optimal with respect to the equivalent 

statistical test. That is, the two and three-term Coxian distributions are optimal with respect to 

log-likelihood value. However, it is the two-term hypo-exponential distribution that is 

optimal with respect to AIC and BIC value since only two parameter estimates are required. 

This means that the 0.1 point improvement in log-likelihood value is not worth the estimation 

of a further one or three parameters. The Weibull distribution is optimal with respect to chi-

square test statistic. However, since these values are very sensitive to class width and number 

of intervals, their credibility as a performance measure is questionable. 

Four observations are made forthwith. For most of the phase-type distributions the MOM 

results are very close to the ML results. However, in general, the performance of MOM is 

surpassed by ML. There are only two cases (in blue) to which the converse is true. These are 

results for the chi-square test. It is indeed intuitive that MOM estimates are surpassed by ML 

estimates in the other statistical measures since these are all based on likelihood values. 

Secondly, it is interesting that the hypo-exponential distribution ( 1CV  ) provides such a 

good fit to the data considering that sample CV  is greater than one. Thirdly, it has been 

noticed that the Hyper (3) is reducible to the Hyper (2) since the rate value of two of the three 

nodes are equal. Finally, the Cox (3) is reducible to the Cox (2) a since the probability of 

transition to the third phase (under ML estimation) is zero. 
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The results in italics represent the three-term hyper-exponential and Coxian distribution 

whose MOM estimations are considered dubious and possibly not globally optimal. It is 

postulated that this could be due to an unstable surface of the minimisation problem. 

6.6 Conclusion 

This chapter commences by introducing the data requirements for models of varying 

complexity. The practical issues surrounding the collection of data are then discussed. This 

includes the presentation of a database that has been specifically designed to expand the 

range of data that is collected. A preliminary study of the data is then presented. Finally a 

number of distributions are fitted to empirical LOS data by the method of moments and 

maximum likelihood. 

All in all 183 referrals are used for the Arrivals dataset whilst 384 patient episodes are used to 

populate the Service dataset (of which 358 have additional NHS Trust variables and 89 have 

treatment intensity/date ready for discharge). It is hard to say whether these represent a 

sufficient number of observations to make credible conclusions about the data, but the only 

other alternative would have been to include possibly unreliable and irrelevant data from 

further back in time. As mentioned in the outset of Ch 6.3, a balance must be struck between 

the quantity and quality of the data. 

It is a presumption of method of moments and maximum likelihood estimation that sample 

observations are independent of one another. Since distributions have been fitted using these 

parameter estimation methods it is necessary to comment on this property of the data. Firstly, 

external independence is assumed. This means that the LOS of an episode of one patient does 

not affect the LOS of an episode of another. By virtue of this assumption, mutual 

independence is attained for the (338) observations that relate to stand-alone episodes. The 

question that remains is that of internal independence for those with multiple episodes, i.e. 

are the episodes of a single patient independent of one another? 

It is postulated that such episodes are independent if there is no significant difference in their 

means. A one-way ANOVA test is therefore conducted for the data described in the third 

table of Ch 6.4.2. The null hypothesis is that there is no difference in mean LOS between the 

first, second and third episodes. The alternate hypothesis is that there is a difference in mean 

LOS between at least two of the episodes. The grand mean is calculated as
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20

1 1 1

20 107.8
N k

GM i j i

i j i

X x n x
  

     where ix
 
is the value of the i th  observation, N is 

the total number of observations, 
jn
 
is the number of observations in the j th  group, and k 

is the number of groups. The between groups variation and within groups variation are 

calculated as    
2

1

21232.08
k

j j GM

j

SS B n x X


  
 

and     2

1

1 171244
k

j j

j

SS W n s


   . 

The ANOVA table is therefore summarised as 

. .

Between 21232.08 2 10616.04 1.054

Within 171244 17 10073.18

Total 239322.5 19

SS d f MS F

 

For the (one-tailed) test the critical region (95%) is 0.05,2,19 3.59F  . Since the test statistic is 

not within this region the null hypothesis is not rejected – there is insufficient evidence to 

suggest a difference in means. 

It can therefore be postulated that internal independence is attained. There is, however, a 

certain amount of scepticism surrounding this conclusion due to the low sample sizes 

(especially with regard to the third episode). In addition, it is hard to believe that, in real-life, 

the LOS of earlier admissions will have no affect on the LOS of later ones. 

Doubts must also be raised about the validity of the assumption of external independence. At 

the crux of this project is the notion that, due to constrained resources, all patients cannot 

receive the optimal intensity of treatment. Ergo, the allocation of treatment to one patient 

affects the allocation of treatment to others. Since treatment intensity is related to LOS (see 

Ch 2.2.3) this casts doubt over the assumption that the LOS of one patient is not affected by 

the LOS of another. The implications of these caveats on the validity of the parameter 

estimation methods are not fully understood and so it will have to suffice to simply 

acknowledge their presence.  

The appropriateness of phase-type distributions must also be addressed. There is no question 

of their use in determining analytic solutions to queuing problems but how good are they at 

representing empirical data?  It is stated in Bladt, 2005 that ‘care should be taken’ in using 

phase-type distributions to approximate heavy-tailed data. Moreover, the author comments 



Chapter Six Model Development and Data Evaluation 182 

that ‘the approximations will always be bad in the tails’. With this is mind the heaviness of 

the tail for the LOS data of Rookwood NRC is investigated. 

First and foremost it is necessary to define what it means for a distribution to be heavy-tailed. 

According to Hardle & Simar, 2007 a distribution is heavy-tailed ‘if it has higher probability 

density in its tail area compared with a normal distribution with the same mean and 

variance’. The authors state that ‘a heavy-tailed distribution has kurtosis
13

 greater than 

three’, i.e. greater than that of the normal distribution. However, this is not an exact measure. 

Ruppert, 2010 comments that ‘high kurtosis is nearly synonymous with having a heavy-tailed 

distribution’. Danielsson et al, 2006 are even more sceptical, claiming that ‘it is 

straightforward to construct a distribution with truncated tails, and hence thin tails, which 

exhibits high kurtosis’. Instead, they define a heavy-tailed distribution as ‘one characterised 

by the failure of the moments 0m  ’. 

The excess kurtosis
14

 for the data in which distributions are fitted to in Ch 6.5 is calculated as 

5.5. According to the kurtosis definition, the sample data that is approximated is therefore 

heavy-tailed. Despite this, the three-term Coxian distribution provides the best fit to the data 

in Ch 6.5 by log-likelihood value. Furthermore, by studying the fit to the tail in the 

corresponding graph there is no reason to suggest a bad fit. 

This concludes Chapter 6. The multi-server finite-buffer queue with Markovian arrivals and 

Erlang service times is investigated in the next chapter. 

                                                      
13

 Defined by the division of the fourth central moment by the square of the variance 
14

 Kurtosis minus three 
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Chapter 7: Queuing with Erlang Service Times 

 

 

 

 

 

 

7.1 Introduction 

A queuing system with Erlang distributed service times is considered in this chapter. The 

Erlang distribution is a phase-type distribution (Ch 1.5) that has been briefly discussed in 

Chapter 5.5.3.2. The pdf of sojourn time is given by equation (5.5.3.2.2). Since arrivals at the 

system are random (Ch 6.4.1) the exponential distribution is used to model inter-arrival times. 

This is therefore a type of Markovian Arrival process. Moreover, it is a Poisson process (Ch 

1.5) since the probability of a given number of arrivals occurring in an interval of time is 

deduced from the Poisson distribution. The discipline of the queue is first-in first-out. 

This chapter considers a variety of scenarios relating to the number of servers in the system, 

phases in the service distribution, and places available for waiting. The aim is to find exact
1
 

results for the steady-state probabilities of the | | |kM E r N  system being in each possible 

state. First, the two server case is considered with two phases (i.e. k=r=2) and finite capacity. 

The methodology is then generalised to consider a system with any number of phases, k. 

Finally the system with a general number of servers, phases and places available for waiting 

is studied. 

Unless specified all results and workings are produced independently in this chapter and next. 

                                                      
1
 That is, not approximate (see Ch 4.3) 
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7.2 Two Server 

 

Figure 7.1 Two server queuing system 

7.2.1 Two phase 

Each service channel has two exponentially distributed phases. A maximum of one customer 

may be in service at any service channel at any time. 

7.2.1.1 No waiting space 

The following differential-difference equations are formed by considering the possibility of 

events in an arbitrarily small unit of time, t . An event is an arrival (with rate  ) or a service 

phase completion (with rate  ). The ( )sP t
 
represent the probability of the system being in 

state s S  at time t  where S is the state space. Each s is defined by the triple 1 2, ,sn n n

whose elements represent the number in system, service phase one and phase two 

respectively. Note that any terms of magnitude 
2( )O t  are excluded. 
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  (7.2.1.1.1)     

In this case, the cardinality of S  is six. Since 
0

( ) ( ) ( )
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 

0 0 1,0,1

1,1,0 1,1,0 0 2,1,1

1,0,1 1,0,1 1,1,0 2,0,2

2,2,0 2,2,0 1,1,0

2,1,1 2,1,1 1,0,1 2,2,0

2,0,2

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) 2 ( )

( ) ( ) ( )

( ) ( ) ( ) 2 ( )

(

P t P t P t

P t P t P t P t

P t P t P t P t

P t P t P t

P t P t P t P t

P

 

   

   

 

  

   

     

     

   

    


2,0,2 2,1,1) 2 ( ) ( )t P t P t   

     (7.2.1.1.2) 

These are the time-dependent equations whose solution gives transient results. Steady-state 

results are obtained when the behaviour of the system has reached long-term equilibrium, i.e. 

when ( ) 0sP t  ;  

 

 

 

1,0,1 0

2,0,2 1,0,1

2,1,1 2,0,2

2,2,0 2,1,1 1,0,1

1,1,0 2,2,0

1,1,0 0 2,1,1

2 1

2

2

1

P P

P P

P P

P P P

P P

P P P









 



 



 



  

        (7.2.1.1.3) 

with   defined as 
1
. These equations have been written in such a way that each equation 

contains only the terms that have been previously defined (with the exception of the equation 
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for state 1,0,1). The final equation is superfluous since a defining equation for this state has 

already been written. By defining 
1

0:s sQ P P ; 

 

 

 

 

 

1,0,1

2,0,2

2,1,1

2

2,2,0

1,1,0

0.5 1

1

0.5 1 0.5

0.5 1 0.5

Q

Q

Q

Q

Q



 

 

  

 



 

 

  

  

        (7.2.1.1.4) 

By applying the normalisation equation, a result for 0P
 
can be obtained; 

  
1

0 1,1,0 1,0,1 2,2,0 2,1,1 2,0,21P Q Q Q Q Q


             (7.2.1.1.5)  

The solution of which can be substituted back into (7.2.1.1.3) to obtain the steady-state 

probabilities of the system being in each of the possible states. 

7.2.1.2 Waiting space for one customer 

An alternative way to set up the steady-state equations is to model the transitions between 

states by a continuous-time Markov chain (CTMC). This is appropriate since the Markov 

property
2
 holds. Note that this is a generalisation of the birth-death process that is 

synonymous with the CTMCs of the | |1M M  and | |M M C  systems. 

 

Figure 7.2 CTMC of 2/ / 2 / 3M E  queuing system (with l ,m   )  

                                                      
2
 The future state is dependent upon the current state and not on previous states 
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Equations are derived by equating the inward and outward flow of each state. The state space 

has been reduced from three to two dimensions by omitting 1n . Each state is now defined by 

the double 2,sn n . This is without loss since 
2

1

2

1 2

s s

s

n n n
n

n

 
 


. 

 

0 1,1

1,0 0 2,1

1,1 1,0 2,2

2,0 1,0 3,1

2,1 1,1 2,0 3,2

2,2 2,1

3,0 2,0

3,1 2,1 3,0

3,2 2,2 3,1

( )

( ) 2

( 2 )

( 2 ) 2 2

( 2 )

2

2 2

2

P P

P P P

P P P

P P P

P P P P

P P

P P

P P P

P P P

 

   

   

   

    

  

 

  

  



  

  

  

   

 



 

 

                                        (7.2.1.2.1) 

These equations, along with the normalisation equation, can be input into a matrix as follows: 

 

 

 

 

 

 

0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 2 0 0 0

0 0 2 0 0 0 0

0 0 2 2 0 0 0 2

0 0 0 0 2 0 0 0

0 0 0 0 0 2 0 0

0 0 0 0 0 2 2 0

0 0 0 0 0 0 2

1 1 1 1 1 1 1 1 1

M

 

   

   

   

    

  

 

  

  

 
 

  
  
 

  
  

  
  

 
 

 
 


 
 
 

 

Note that  1
T

TM Q where Q is the transition matrix
3
 between states and 1  is a row 

vector of ones. If P is a column vector of s SP  such that  0 1,0 3,2

T

P P P P
 
and

 0 0 1
T

B 
 
then the following linear system is obtained: 

 MP B           (7.2.1.2.2) 

                                                      
3
 T means transpose 
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This can be solved by a mathematical computer package to deduce the unknown vector P. 

 

Since a nonzero queue is permitted in this scenario (c.f. Ch 7.2.1.1) the distribution of waiting 

time (W) can now be considered. 

The probability that an arriving customer must wait is equal to the probability that there are 

two customers in the system (in service) at the time of arrival. 

   2 2,0 2,1 2,2Arriving customer must waitP P P P P        (7.2.1.2.3) 

where 
nP
 
is the probability of having n customers in the system. The waiting time 

distribution for an arriving customer may be written 

    | s

s S

P W t P W t s P
 

           (7.2.1.2.4) 

where   is the state of the system on arrival. By (7.2.1.2.3) this can therefore be reduced to 

    
2

2,

0

| 2,P W t P W t P 


 


          (7.2.1.2.5) 

If a customer is in phase one of service then the inverse cdf of time until exit ( ) is given by 

 

   

 

1

1

0

( ) 1

1
1 1

!

nt

t t

n

F t P t P t

e t
te e

n



 

 







 



    

 
     

 
 


      (7.2.1.2.6) 

If a customer is in phase two of service then the inverse cdf of time until exit is given by 

      2( ) 1 1 1 t tF t P t P t e e                  (7.2.1.2.7) 

Given 2sn 
 
and in the case of 2| | 2 | 3M E   the waiting time of an arriving customer is 

equal to the time until the next service completion, i.e. the minimum of the service times at 

each channel. This is obviously dependent on the state of the system at the arrival instance. 

Note that if X and Y are independent random variables and  min ,Z X Y then 
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          1 ( ) min , ,ZF z P Z z P X Y z P X z Y z P X z P Y z            (7.2.1.2.8) 

Therefore, if the system is in state 2,0  the distribution of time until service completion is 

    
2

1 2

1 1| 2,0 ( ) ( ) tP W t F t F t t e         

Similarly,           (7.2.1.2.9) 

 
   

 

1 2

1 2

2

2 2

| 2,1 ( ) ( )

| 2,2 ( ) ( )

t

t

P W t F t F t t e

P W t F t F t e





 



 



    

   
      

It follows, (7.2.1.2.5), that the unconditional distribution of waiting time is 

       
2

1 1 2

2,2 2,1 2,2

tP W t P t P t P e                       (7.2.1.2.10) 

The distribution of sojourn time (T) for an arriving customer may also be calculated. If there 

are fewer than two customers in the system on arrival then the distribution of sojourn time is 

equal to that of a two phase Erlang distribution.  

 

 

 

 

1

1

1

| 0 ( )

| 1,0 ( )

| 1,1 ( )

P T t F t

P T t F t

P T t F t







  

  

  

                            (7.2.1.2.11) 

If the number in system is equal to two then the distribution of waiting time must be 

convoluted (*)with the two phase Erlang distribution; 

       
      

       

2

1 1

1 1 2

2

1 2

| 2,0 ( ) * ( )

| 2,1 ( ) * ( ) ( )

| 2,2 ( ) * ( )

LT P T t LT f t LT f t

LT P T t LT f t LT f t f t

LT P T t LT f t LT f t







  

  

  

             (7.2.1.2.12) 

The Laplace transform (LT) of an Erlang pdf (two phase) and an exponential pdf is
4

    
2

1

1( )sLT f t s 


 
 
and    

1

2( )sLT f t s 


  . Also, it can be shown (through 

integration by parts) that 

                                                      
4
 See Ch 5.5.3.1.2 
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     

    
     

4
2 1

1

2
1

1 2

2 1

2

( ) 2 2

( ) ( ) 2

( ) 2

s

s

s

LT f t s

LT f t f t s

LT f t s

 

  

  







 

 

 

                (7.2.1.2.13) 

Therefore, and by application of the Shift theorem, the following can be derived by inverting 

the LTs of (7.2.1.2.13) and integrating over the limit  ,t  : 

 

     

   

 

2 32

2

2

4
| 2,0 1 2 2

3

1
| 2,1 1 2

4

1
| 2,2

2

t

t

t

P T t e t t t

P T t e t

P T t e







   

  

 







 
      

 

   

  

             (7.2.1.2.14) 

In a similar manner to (7.2.1.2.4); 

    | s

s S

P T t P T t s P
 

                    (7.2.1.2.15) 

Through substitution of (7.2.1.2.14); 

       
2 32

2,0 2,1 2,2

4 1 1
1 2 2 1 2

3 4 2

tP T t e t t t P t P P         
         

  
    (7.2.1.2.16) 

However, there is a problem here. In the formulation thus far it is conjectured that an arrival 

cannot be permitted to occur when the number in system is equal to three. But it is also the 

case that arrivals are independent of the number in system. These are obvious contradictory 

statements. 

The effect of this inconsistency is that the waiting and sojourn time (as calculated through 

7.2.1.2.4 and 7.2.1.2.15) are, in fact, underestimations of their true values. 

The reason for this is that the expansions of 7.2.1.2.4 and 7.2.1.2.15 contain no terms linked 

to 3,0P , 3,1P or 3,2P . Therefore,   3,| 3, 0P W t P      and   3,| 3, 0P T t P    

for 0,1,2  . Since the solution of 7.2.1.2.2 gives 3,P   
as nonzero for 0,1,2  it can be 

inferred that  | 3,P W t   
 
and  | 3,P T t   

 
must equal zero. 
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This means that arrivals instantaneously exit when the number in system is equal to three. 

They do not join the queue and do not enter service. This can be thought of as having a guard 

that only allows customers into the service part of the system if 3sn 
 
upon arrival. 

 

Figure 7.3 Two server queuing system with waiting space for one customer 

The solution to this problem is as follows. If 2sn 
 
upon arrival, the customer will spend an 

amount of time in service and possibly in the queue before their exit. Since waiting and 

service times are continuous variables, they cannot equal zero exactly. Thus, it is possible to 

obtain a sojourn time distribution conditional on this requisite; 

  
 

2

0

|

| 0
s

s S

n

n

P T t s P

P T t T

P


 



 

  



               (7.2.1.2.17) 

This is the sojourn time distribution for non-trivial customers, i.e. those that, at some point, 

enter service. The waiting time distribution for non-trivial customers is derived in a similar 

manner; 

  
 

2

0

|

| 0
s

s S

n

n

P W t s P

P W t T

P


 



 

  



               (7.2.1.2.18) 

7.2.1.3 Waiting space for N customers 

A depiction of the CTMC for this case is given in Figure 7.4. 
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Figure 7.4 CTMC of 2/ / 2 /M E N queuing system 

The steady-state equations for the six ‘Initial’ states are equal to the first six equations of 

(7.2.1.2.1). The steady-state equations for the ‘Repetitive’ states, for 3 n N  , are given as 

 

 

 

,0 1,0 1,1

,1 1,1 ,0 1,2

,2 1,2 ,1

2

2 2 2

2

n n n

n n n n

n n n

P P P

P P P P

P P P

   

    

   

 

 



  

   

  

      (7.2.1.3.1) 

The ‘boundary’ state equations are 

 

,0 1,0

,1 1,1 ,0

,2 1,2 ,1

2

2 2

2

N N

N N N

N N N

P P

P P P

P P P

 

  

  









 

 

        (7.2.1.3.2) 

Once set up, these can be solved in a similar manner to the case of one waiting space. 

7.2.1.4 Infinite waiting space 

Knessl et al, 1990 provide an integral equation approach to the solution of the | | 2 |M G 

system. In this study the authors consider the case of two-term Erlang distributed service 

times. The steady-state results for 0P
 
and the other states are given by equations (60) and (61) 

in this paper. 
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7.2.2 k  phase 

It can be seen that the dimension of the CTMC is equal to the cardinality of the system state 

description given by s. The state of the system can be described by the k-tuple 2, ,...,s kn n n

where in
 
is the number of customers in service phase i for 2 i k  . Therefore, the 

dimension of the CTMC is equal to k. Note that 21

2

1 2

k

s i s

i

s

n n n
n

n




 

 
 


. An appropriate 

CTMC can be constructed and solved in a method analogous to that of the two phase case for 

a finite or zero waiting space. 

Knessl et al, 1990 use their derived integral equation (50) to explain how results can be 

obtained for the | | 2 |kM E   system, although they do not show any working or result. 

7.3 r Server 

 

 

Figure 7.5 r server queuing system 

7.3.1 Two phase 

The 2| | |M E r   system is considered in Shapiro, 1966 with heterogeneous servers. Steady-

state difference equations are set up and subdivided into two cases where sn r
 
and sn r . 

Since there are more unknowns than equations in case sn r  these equations are solved in 

terms of the unknowns from case sn r . The solutions for this case are obtained by an 

intricate method, details of which can be found in the paper. 
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7.3.2 k  phase 

The generalised system, | |kM E r , is considered next. 

7.3.2.1 Infinite waiting space 

Perhaps the earliest paper to study the steady-state version of this system is Mayhugh & 

McCormick, 1968. The authors obtain the solution to ‘Initial’ and ‘Repetitive’ state 

equations. There are no ‘Boundary’ equations since there is infinite waiting space. The 

‘Repetitive’ equations are solved by virtue of a generating function approach. A year later, a 

similar paper (Heffer, 1969) is published. This too uses a generating function approach but is 

apparently less complex ‘both analytically and computationally’. 

Others (Poyntz & Jackson, 1973 and Adan et al, 1992) have investigated the further 

generalised | | |c kE E r  systems. 

7.3.2.2 Finite waiting space 

As can be seen from the cited studies the solutions to the infinite waiting space queuing 

system can be, at times, abstruse and time consuming to not only comprehend, but also to 

implement. Since the number of beds (servers) at Rookwood NRC can vary quite 

substantially over time (Ch 6.4.2.2), it is necessary to produce an automated approach that is 

computationally fast and simple to use. Therefore, the following has been produced
5
 to 

determine the steady-state solution of the | | |kM E r N
 
system. 

Computationally, the process is two-stage. The first stage is to populate the matrix, M (see Ch 

7.2.1.2) with the appropriate transition rates. The second stage is to solve the linear system 

(7.2.1.2.2). 

                                                      
5
 Independently 
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7.3.2.2.1 Specification of the transpose transition matrix 

0,0 0,1

1,0 1,1 1,2

, 1 , , 1

1, 1, 1

1, 2 1, 1 1,

, 1 ,

r r r r r rT

r r r r

N N N N N N

N N N N

t t

t t t

t t t
Q

t t

t t t

t t

 

  

    



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

     (7.3.2.2.1) 

The dimension of this square tri-diagonal matrix is equal to the number of unique values of 

sn
 
for all s S . This is equal to N+1 since the domain of sn

 
is [0, ]N . The ,i jt

 
are (not 

necessarily square) matrices defined on 0 , ; 1, , 1i j N j i i i      . When 1, , 1j i i i  

the respective matrices are known as LEFT, MIDDLE and RIGHT. The matrix ,i jt
 
relates to 

transitions to states in which sn i
 
from states in which sn j . The dimension of each ,i jt

 

is thus dependent on the number of states for which sn i
 
and sn j . 

The first consideration must be to determine the number of states, ,k i , for which sn i  for 

the support given above. The table below lists the values of ,k i
 
given a particular value of k 

and assuming i r . 

Number 

of states 

i 

0 1 2 3 4 

k
 

1 1 1 1 1 1 

2 1 2 3 4 5 

3 1 3 6 10 15 

4 1 4 10 20 35 

5 1 5 15 35 70 

 

For example, if 2, 3i k   there are six possible states of the system; 

2,0,0 , 2,1,0 , 2,0,1 , 2,2,0 , 2,1,1 , 2,0,2 . Clearly it can be seen from the above table 
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that the number of states is given by the Binomial coefficient 
1i k

i

  
 
 

. For mathematical 

rigour this is proved forthwith. By considering the difference ,k id
 
in the number of states for 

k and k+1 for each i the following is obtained: 

Difference 

in the 

number of 

states 

i 

0 1 2 3 4 

k
 

1 0 1 2 3 4 

2 0 1 3 6 10 

3 0 1 4 10 20 

4 0 1 5 15 35 

 

Note that 
1

, ,

1

1
k

k i l i

l

d




  . It can be seen that the series given in the above four rows can be 

written 

 1

1 2

1 2

1 2 3

1,

2,

0

3, 2

0 0

4, 3

0 0 0

i

i

i

l

li

i

l l

l li

i

l l l

d i

d l

d l

d l



 

  















         (7.3.2.2.2) 

Since 
0

i

l

l



 

is a triangular number, its value can be written 
( 1)

2

i i 
. 

Substituting this into 3,id
 
gives 

 

1 1 1

1 1 2

3, 1 1

0 0 0

1 1 1

2 2 2

i i i

i

l l l

l l
d l l

  


     . By Faulhaber’s (or 

Bernoulli’s) formula, 
1

2

1

0

( 1)(2 1)

6

i

l

i i i
l



 
 . Therefore, 

3,

( 1)( 2)

6
i

i i i
d

 
 (the tetrahedral 

number). 
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The fourth equation of (7.3.2.2.2) can then be written

  

1 1 1 1

1 1 1 3 2

4, 1 1 1

0 0 0 0

1 2 1 1 1

6 6 2 3

i i i i

i

l l l l

l l l
d l l l

   

 
       . Again, by Faulhaber’s formula,

1

2

3

1

0

( 1)

2

i

l

i i
l



 
  
 

 . This means 
4,

( 1)( 2)( 3)

24
i

i i i i
d

  
 (the Pentatopic number). 

It is thus postulated that the difference between states k and k+1 for each i is

2

1 1

, 1

0 0

( 1)( 2) ( 1)

!

k

k

li

k i k

l l

i i i i k
d l

i







 

   
   . This is a Figurate number whose value can be 

represented by the Binomial coefficient 
1i k

i

  
 
 

. 

Therefore, 
1

,

1

1
1

k

k i

l

i l

i






  
   

 


 

which simplifies to 
1

,

0

1 1k

k i

l

i l i k

i i






      
    

   
  as 

required. If i r  then , ,

1
k i k r

r k

r
 

  
   

   

since the only difference in state definition is 

the value of sn . This is because additional customers do not enter service if their arrival 

occurs when the number in system is above (or equal to) the number of service channels; they 

simply wait in the queue. 

The total number of states in the system | | |kM E r N  is therefore 

 , , ,

0 0

1 1
( ) ( )

r r

k total k i k r

i i

i k r k
N r N r

i r
  

 

      
        

   
     (7.3.2.2.3) 

7.3.2.2.2 Ordering of the states 

The state of the system can be described by the k-tuple 2, ,...,s kn n n , where in  is the number 

of customers in service phase i for 2 i k   and 21

1

k

s i s

i

s

n n n r
n

n r




 

 
 


. The states are 

principally ordered by increasing value of sn . The matrix 
,i jt specifies transition rates from 

states in which sn j
 
to states in which sn i . Since the number of states in which the 
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number in system is equal to i and j is 
,k i

 
and 

,k j
 
respectively then the dimension of the 

matrix 
,i jt

 
is 

,k i
 
(rows) by 

,k j
 
(columns). 

Each of the states within this matrix is thereafter sorted by decreasing value in the lowest-

order phase. The following example of the ordering of states for 3sn   with 3k   illustrates 

this; 3,0,0 , 3,1,0 , 3,0,1 , 3,2,0 , 3,1,1 , 3,0,2 , 3,3,0 , 3,2,1 , 3,1,2 , 3,0,3 . Note 

that there are 5

3,3 3

3 3 1
10

3
C

  
   
 

 states here. When ordered, the latitudinal states 

(positioned on the horizontal of the transpose transition matrix) are known as the FROM 

states, whilst the longitudinal states are known as the TO states. For example, the element of 

the matrix 
TQ  given by the co-ordinate  col= 3,0,1 , row= 2,0,0 refers to the rate at which 

transitions occur from state 3,0,1
 
to state 2,0,0 . 

The justification for choosing this ordering will become clear when populating the sub-

matrices of 
TQ . 

7.3.2.2.3 Specification of the sub-matrices for i = 0,1,…,r 

The LEFT matrices 

These are the matrices 
, 1i it   

that are defined on 1 i r   . Each matrix specifies the 

transition rates from states in which there are 1i   customers in the system to states in which 

there are i customers in the system. This is only possible when an arrival occurs. 

The sub-matrix 
, 1i it 

 contains ,k i
 
rows and 

, 1k i 
 columns. Since an arrival from any of the

, 1k i 
 states in this sub-matrix can take the system to one state only, there will be empty rows 

within this sub-matrix when 2k  . These empty rows will populate the lower end of the sub-

matrix because the higher-order states in the MIDDLE matrix,
 ,i it , cannot be reached by an 

arrival. For example, when 2, 4k r   the state 4,4
 
cannot be reached by an arrival, but 

the lower-order states, 4,0 , 4,1 , 4,2 , 4,3  can. 
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The sub-matrix 
, 1i it   

can therefore be written  , 1,1 0
T

i it   
where 

, 1,1i it 
 is a diagonal square 

matrix of dimension 
, 1k i   

whose nonzero entries are populated by the parameter,  . The 

zero matrix is of dimension 
, 1k i   

(columns) by 
, , 1k i k i  

 
(rows). 

For example, the sub-matrix 
, 1i it   

for 3k i r    has dimension 10 (rows) by 6 (columns); 

 
3,2

T

t













 
 
 
 

  
 
 
  
 

     (7.3.2.2.4)

 

If 
,i j

 
denotes the value of the element in the i-th column and j-th row of the sub-matrix then 

 ,
0

i j

i j

otherwise





 


 

The RIGHT matrices 

These are the matrices 
, 1i it   

that are defined on 0 1i r    . Each matrix specifies the 

transition rates from states in which there are i+1 customers in the system to states in which 

there are i customers in the system. This is only possible upon the completion of service at 

one of the channels, i.e. a phase completion from the k-th phase. 

The sub-matrix 
, 1i it 

 contains 
, 1k i   

columns and
 ,k i

 
rows. It is not diagonal but is sparse and 

contains only 
,k i

 
nonzero elements. Each row of the sub-matrix contains an element since it 

is always a viable possibility that a service can complete, i.e. it is always possible to reach a 

TO state through a service completion when 0 1i r    .  

The sub-matrices 
2,3t

 
for 2k   and 4k   with 3r   are given below. 

 3,0 3,1 3,2 3,3 

2,0 

 
m 

  2,1 

  
2m 

 2,2 

   
3m 
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m 

                

      
m 

             

        
m 

           

         
2m 

          

            
m 

       

              
m 

     

               
2m 

    

                 
m 

  

                  
2m 

 

                   
3m 

   (7.3.2.2.5) 

As an example, for 2k   the transition rate from state 3,2
 
to state 2,1

 
is 2 (in red). 

This is because there is twice the chance of a service completion since there are two 

customers in the final phase. Upon completion, there is one less in both the system and the 

final phase. 

The identification of the nonzero elements is a more advanced task than for the LEFT 

matrices. So too is the determination of their values. For the example of 4k   above, it can 

be seen that the following holds: 

 
,cc x c cz     1 10c     

where cz
 
is the c-th term in the expansion of    

1 2

1 2 3

3

3

1 1 1

l l

l l l

l
  


 

and cx
 
is the c-th term in the 

expansion of  
1 2

1 2 3

3 3

1 1 1 1

2

3

l l
p

l l l p

l p

p   

    
  

  
  . 

After careful examination of other scenarios, the general case for , ,0 1r k i r       is 

found; 

 
,cc x c cz     ,1 k ic     

where cz
 
is the c-th term in the expansion of   

21

1 2 1

1

1

1 1 1

k

k

lli

k

l l l

l








  

 
 

and cx
 
is the c-th term in 

the expansion of 
21

1 2 1

1 1

1 1 1 1

2

1

k

k

lli k
p

l l l p

l p k

k p





 

   

     
  

   
   . 

This can be used to verify 
2,3t

 
for 2k   in the example above. 
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The MIDDLE matrices 

These are the matrices 
,i it
 
that are defined on 0 i r   . Each matrix specifies the 

transition rates from and to states in which there are i customers in the system. This is only 

possible upon the completion of a service phase that is not the k-th phase. The state of the 

system is therefore changed but the number in system remains the same. 

The square sub-matrix 
,i it
 
is of dimension 

,k i . The first consideration is the diagonal 

elements. Each row of the transpose transition matrix, 
TQ , represents an equation deduced by 

equating the inward and outward flow for a particular state of the system. The value of the 

diagonal element of a particular row is therefore equal to the outward flow of that state. This 

is dependent only on the number in service. The diagonal elements are equal to  i   . 

This can be easily verified by example, e.g. see Ch 7.2.1.3. Thus,  ,c c i    
 
for

,1 k ic    .Note that if r N  then 0   when i r since no more (non-trivial) arrivals 

can occur.  

The second consideration is that of service completion from any of the phases 1,2,..., 1k  . 

The sub-matrices 
2,2t  for 2k   and 4k   with 3r   are given below

6
. 

  2,0 2,1 2,2 

2,0 -(l+2m) 
  2,1 2m -(l+2m) 

 2,2 

 
m -(l+2m) 

 

 2,0,0,0 2,1,0,0 2,0,1,0 2,0,0,1 2,2,0,0 2,1,1,0 2,1,0,1 2,0,2,0 2,0,1,1 2,0,0,2 

2,0,0,0 -(l+2m) 
         2,1,0,0 2m -(l+2m) 

        2,0,1,0 

 
m -(l+2m) 

       2,0,0,1 

  
m -(l+2m) 

      2,2,0,0 

 
m 

  
-(l+2m) 

     2,1,1,0 

  
m 

 
2m -(l+2m) 

    2,1,0,1 
   

m 
 

m -(l+2m) 
   2,0,2,0 

     
m 

 
-(l+2m) 

  2,0,1,1 

      
m 2m -(l+2m) 

 2,0,0,2 

        
m -(l+2m) 

 

                                                      
6
 Note that by ordering the states in accordance to the policy outlined in Ch 7.3.2.2.2 a lower triangular matrix is 

obtained for each of the MIDDLE sub-matrices 



Chapter Seven Queuing with Erlang Service Times 202 

Again, through careful assessment of these and other scenarios, the general result for the 

population of the non-diagonal elements of 
,i it  is found for , ,1r k i r     . Since 

there are a total of 1k   phases whose service completion is pertinent to the MIDDLE sub-

matrix, it is necessary to perform 1k   repetitions of the following result. For 1,2,..., 1k   :  

,c cc x c y cz      , 11 k ic 

    

where cz  is the c-th term in the expansion of   
1 1

1 2 1

2

1

1

1 1 1 1

1

l k

kl li

l l l l

l l





 





 





   
 

  



   

    , cx  is the   c-

th term in the expansion of 

1

1 2

1 2 1

1

1

1 1 1 1 1

2

1

l k

kl li
p

l l l l p

l p k

k p





 



 







   
 

  

    

     
  

   
    , and cy  is the c-th 

term in the expansion of 
1 1

1 2 1

2

1

1 1 1 1 1

2

1

l k

kl li
p

l l l l p

l p k

k p





 



 



   
 

  

    

     
  

   
    . 

This can be used to verify 
2,2t  for 2k   and 4k   in the examples above. 

7.3.2.2.4 Important patterns and trends 

The identification and understanding of underlying trends in the matrix 
TQ  for a variety of k 

and r has led to the results in Ch 7.3.2.2.3. A brief description of these is now given. 

The LEFT matrices 

The ’s in these matrices are contained exclusively in the rows whose corresponding TO 

states contain at least one customer in the first phase. For example in (7.3.2.2.4) the TO states 

of the rows that contain  ’s are 3,0,0 , 3,1,0 , 3,0,1 , 3,2,0 , 3,1,1 , 3,0,2 . This is 

because the arriving customer always joins the first phase of a service channel (for i r ). 

The RIGHT matrices 

The ’s in these matrices occur only in columns in which the corresponding FROM state 

contains a nonzero entry for kn . In fact, the coefficient of   is equal to this value of kn . This 

is because the rate at which services complete at phase k is linearly proportionate to the 

number in phase k. 
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Note also, the pattern in (7.3.2.2.5). From right to left the number of consecutive columns 

that are populated is 3 2 1, 2 1, 1. Let the three shaded boxes denote the groups. There is a 

spacing of one column between elements of each group and a spacing of two between groups. 

There is also a certain degree of repetition. The sub-matrix 
2,3t described in (7.3.2.2.5) is, in 

fact, an extension of the sub-matrix 
1,2t which contains only the first two groups of 

2,3t . If

4r   the sub-matrix 
3,4t thus contains a fourth group (4 3 2 1). The addition of a group is due 

to the growth in the combination of system states borne by an additional customer in service. 

The MIDDLE matrices 

As with the RIGHT matrices, the  ’s in these matrices occur only in columns in which the 

corresponding FROM state contains a nonzero entry for n  for 1,2,..., 1k   . For example, 

the column corresponding to the FROM state 2,1,1,0
 
contains an element for 2  

and 3 . 

Thus 2 3 1n n 
 
and since service rates are equal (   ) there are two separate nonzero 

elements in this column; both of value  . 

By studying the sub-matrices 
3,3t  and 

4,4t  for this value of k (i.e. 4) and others a pattern and 

level of repetition similar to that of the RIGHT sub-matrices is found. An evaluation of this 

here would be lengthy and digressive and is therefore omitted. 

7.3.2.2.5 Specification of the sub-matrices for i = r+1, r+2,…,N 

The LEFT matrices 

These are the matrices 
, 1i it 

 that are defined on 1r i N    . The dimension of these is 

equivalent to that of 
,r rt since , , 1 , 2 ,...k r k r k r k N         (see Ch 7.3.2.2.1). Since it is 

possible
7
 to access any state with sn i  from a state with 1sn i  the matrix is a (square) 

matrix with diagonal entries equal to  . That is, 
,c c   for ,1 k rc    . 

The RIGHT matrices 

These are the matrices 
, 1i it 

 that are defined on 1r i N    . The dimension of these is, 

as before, equivalent to that of ,r rt . It is possible to write  , 1 1, 0
T

i i r rt t  . The number of 

                                                      
7
 Because arrivals after sn r serve only to increase the value of sn (and not 1n )  
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zero row vectors is equal to 
, , 1k r k r   . The TO state corresponding to each zero row vector 

indicates a state that cannot be reached by a service completion. For example, if 2k   and 

3r   then it would not be possible to reach state 3,3
 
by a service completion. However, it 

would be possible to reach states 3,0 , 3,1 , 3,2
 
since these contain at least one customer 

in the initial phase. 

The MIDDLE matrices 

These are the square matrices 
,i it
 
of dimension 

,k r
 
that are defined on 1r i N    . 

These matrices are identical in value to 
,r rt . Note that any   contained in the final MIDDLE 

sub-matrix (i.e. 
,N Nt ) must be set equal to zero to indicate that a non-trivial arrival is not 

possible when capacity is reached. 

7.3.2.2.6 Traffic intensity 

This is defined by the division of the mean arrival rate by the mean service rate. The mean 

rate into the system is  . To determine the mean rate of service of the system, it is first 

necessary to determine the service rate of each service channel. The mean service time of 

each service channel is 
1k
 since the mean service time of each service phase is 

1 
. 

Therefore the service rate per channel is 
1k 

. The service rate of the system can thus be 

written 
1rk 

 since there are r service channels. In a system with no upper bound on capacity 

it is a well known result that traffic intensity must be less than one for steady-state results to 

exist. Thus, the arrival rate is chosen such that 1rk  . Otherwise, the queue length would 

grow ever larger over time and the concept of equilibrium results would be nonsensical. 

However, this is not the case for a system with limited capacity since arrivals to the queue are 

not possible when the maximum number in system is reached. Any arrivals that do occur 

when the system is at capacity are rejected. The probability that an arrival is rejected is 

therefore 

n Ns

R N s

s S

P P P


                 (7.3.2.2.6) 

The mean non-trivial arrival rate is hence defined 

  1 RP  
 
          (7.3.2.2.7)  
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For a stable system the arrival rate is equal to the departure rate and so 

 1k              (7.3.2.2.8)  

where   is the mean occupancy of the service channels defined as 

 
0 1

r N

n n

n n r

nP r P
  

            (7.3.2.2.9) 

The individual server utilisation,  , is defined 

 / r                     (7.3.2.2.10) 

Since the maximum attainable value of   is r then 1rk  . 

Note that it is indeed possible to obtain    with 
1rk   should N r  be too small. 

However, if 
1rk   then it is a certainty that   . 

7.3.2.2.7 Automation through computer 

So far, formulae have been developed to populate the transpose transition matrix, 
TQ . The 

next stage is to solve the linear system (7.2.1.2.2). For low-order this can be done by hand. 

However, as r and k are increased in value, it quickly becomes obvious that a computer is 

required. 

A program
8
 has been coded in the mathematics program Maple. There are five inputs that are 

required from the user. These are , , , 0, 0k r N r          . For symbolic 

results, the value of   and   should equal l and m respectively. Otherwise, they may equal 

any value (expressed as a fraction or decimal) providing traffic intensity is less than one.  

Steady-state probabilities for each state of the system can be deduced from a vector of results, 

P, whose dimension is equal to (7.3.2.2.3). If symbolic results are sought, each element is 

expressed as a function of the parameters l and m. Otherwise; they are expressed either as a 

fraction or a decimal. 

                                                      
8
 Obtainable from the author 
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7.3.2.2.8 Validity 

For each run of the program the validity of the result can be confirmed by the normalisation 

equation, i.e. sum of steady-state probabilities equal to one. The summation of the elements 

of vector P is calculated automatically by the program and so validity is ensured by checking 

this is equal to one. 

Another Maple program has been set up to test the overall validity of the methodology. This 

produces multiple runs of the (original) program for, initially low-order, k, r, N and checks 

that the normalisation equation holds. The program terminates when a scenario is found to 

which the contrary is true. After a significant amount of time no such instance was recorded. 

It must be noted that whilst this can give a good indication of validity, it cannot give explicit 

verification. 

A more efficient test is to check the validity of the transpose transition matrix. This matrix is 

valid if the sum of each column is equal to zero. It is postulated that if this matrix is valid 

then the solution vector obtained by Maple is also valid. Therefore, the program does not 

need to solve the linear system (7.2.1.2.2). This reduces the time required to test validity, thus 

enabling more solutions to be checked in a given time. After a sufficient
9
 amount of time 

with no instance of invalidity it was determined that the methodology is sound.  

7.3.2.2.9 Efficiency 

The following tables contain results for the computational time required to calculate the 

solution vector, P, on a modern desktop computer
10

. As part of the computer program 

introduced in Ch 7.3.2.2.7 the user is required to input a level of precision that Maple works 

to. This is expressed as a number of digits
11

 that Maple uses when making calculations. A 

higher level of precision enables greater accuracy whilst a lower level enables greater 

efficiency. For symbolic results (4 digit precision): 

                                                      
9
 In my opinion only 

10
 Windows XP, Core 2 Duo 3GHz, 3 GB RAM 

11
 Default is 10 
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Table 7.1 Transition matrix dimension and solution time for symbolic results

, time (s)

1 1 1 2 2

2 5 2 15 4

5 10 2 51 19

10 20 2 176 956

2 5 3 28 6

5 10 3 161 824

2 5 4 45 14

k totalr N k 

 

Clearly as the number of states in a system increases the time taken to solve it becomes 

larger. This is due to the increase in the dimension of the transition matrix. For numerical 

results, the values of and  are both converted to fractions. For numeric results (

0.1, 2   , 4 digit precision): 

Table 7.2 Transition matrix dimension and solution time for numerical results

, time (s)

10 20 2 176 10

20 30 2 441 80

20 50 2 861 533

5 10 3 161 9

10 15 3 616 494

5 10 4 406 107

k totalr N k 

 

Whilst higher-order systems can be solved this requires a greater amount of time, RAM
12

 or 

both. 

7.4 Conclusion 

A multi-server finite-buffer
13

 queuing system with Markovian arrivals and Erlang distributed 

service times has been studied in this chapter for a number of low-order systems and for the 

general case. The principal objective has been to determine stationary probabilities for the 

system being in each possible state s S . For the general case an approach is developed to 

populate a transition matrix by the use of a number of specifically designed formulae. This 

                                                      
12

 Random access memory 
13

 i.e. limited waiting space for customers 
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process is automated through a computer program which also solves the transition matrix 

providing fast and reliable results. 

The use of a computer in setting up the transition matrix is essential since it is vital to be able 

to set up the linear system for any number of possible scenarios – not just the one that 

represents the current system on the ground. For example, it would be quicker to set up an 

3| | 21| 50M E  system than develop and code the formulae for the general case but in doing 

so it would require similar systems to be set up from scratch if a different scenario is 

considered. This is relevant since the occupancy varies over time (Ch 6.4.2.2). Even if a 

computer program is not used to set up the transition matrix it would certainly be required to 

solve it. In the most simple of models ( 2, 21, 21k r N   ) the dimension of the transition 

matrix would be 253; a system that could not be efficiently and effectively solved by hand. 

In conclusion, whilst the Erlang distribution delivers a reasonable amount of versatility as a 

service time distribution it is unsuitable for representing LOS at Rookwood NRC. This is 

because its coefficient of variation is less than one for 1k  (Ch 5.5.3.2) whilst the empirical 

coefficient of variation is greater than one (1.018 – Ch 6.4.2.1). It is also because it does not 

distinguish between active and blocked LOS. What is needed is a convolution of two 

distributions; one fitted to active LOS and the other fitted to blocked LOS. Both of these 

issues are considered in the following chapter. 
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Chapter 8: Further Queuing Systems 

 

 

 

 

 

 

8.1 Introduction 

This chapter builds upon the earlier work of the previous chapter on the | | |kM E r N queuing 

system. The aim is twofold: firstly – to develop a queuing system that is more representative 

of the Neurological Rehabilitation Centre (NRC) at Rookwood hospital, and secondly – to 

derive results for the performance measures of this system. 

The principle development is to partition total LOS into active and blocked LOS (see Ch 

6.2.2). The Coxian distribution (see Ch 5.5.4) is used to represent active LOS since this is a 

highly flexible distribution that has produced a good fit to total LOS (Table 6.13). The 

exponential distribution (see Ch 5.5.1) is used to represent blocked LOS due to its suitability 

in representing discharge delay times in previous studies (Baber et al, 2008). Total LOS is 

therefore modelled by an acyclic phase-type distribution. The corresponding queuing system 

is summarised 1| | |kM C M r N  .  

First, steady-state results and performance measures are derived for a low-order system in 

addition to the distribution of waiting and sojourn time. Next, the general case is considered. 

The formulae for the population of the transpose transition matrix for the | | |kM E r N system 

(see Ch 7.3.2.2) are amended to reflect the change in service time distribution. Performance 

measures are also deduced. Following this, various types of queuing systems with 

heterogeneous servers are studied. The chapter concludes with an evaluation of a queuing 

system deemed most appropriate for the NRC at Rookwood hospital.  
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The notation used in this chapter is similar to that of Chapter 7. 

8.2 Two Server, Three Phase 

8.2.1 Waiting space for one customer 

The 2| | 2 | 3M C M
 
system is forthwith examined. As before (Ch 7.2.1.2) the analogy of a 

guard is used to discriminate between trivial (if 3sn  ) and non-trivial (if 3sn  ) arrivals. 

 

Figure 8.1 The 2/ / 2 / 3M C M queuing system 

Note that in this queuing model ‘a’ denotes the probability of leaving the active part of the 

system. This is different from the consideration of phase-type distributions in Ch 5.5.4 where 

this probability was represented by ‘1  ’. 

8.2.1.1 Steady-state probabilities 

Using the same definition of state space as in the previous chapter (i.e. 2, ,...,s kn n n ), the 

continuous-time Markov chain (CTMC) of the above system is depicted in Figure 8.2. 
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Figure 8.2 CTMC representation of the 2/ / 2 / 3M C M  queuing system 

This system has the same state space, S, as the 3| | 2 | 3M E
 
system or, for that matter, any 

other 3| | 2 | 3M PH
 
system

1
. The difference is in the rate of transition between states. Here, 

the mean service rate of each phase is assumed to be non-uniform. In addition, it is possible 

(with probability  ) for a customer to move directly from the first service phase to the third.  

By equating the inward and outward rate of each of the states the following steady-state 

equations are found; 

                                                      
1
 kPH represents a k-th order phase-type distribution 
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    (8.2.1.1.1) 

As before (Ch 7.2.1.2) these equations can be used to form a linear system of equations 

(7.2.1.2.2). This can thereafter be solved to obtain the solution vector of steady-state 

probabilities. The transpose transition matrix (deduced from 8.2.1.1.1) can be written 
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           (8.2.1.1.2) 

The dashed lines are used to represent the sub-matrices of the system. (8.2.1.1.2) is therefore 

equivalent to 
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        (8.2.1.1.3) 

where the dimension of the diagonal square sub-matrices is equal to 1,3,6,6 respectively. 

8.2.1.2 Comparison with Erlang service times 

It can be seen that transpose transition matrix for the 2| | 2 | 3M C M
 
system shares much 

in common with that of the 3| | 2 | 3M E
 
system given below. 
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            (8.2.1.2.1) 

As previously mentioned, there are two critical differences. First is the heterogeneity of 

service rates between phases (not servers). The coefficients of the service rates ( 1 2 3, ,   ) in 

(8.2.1.1.2) are dependent on the values of 1 2 3, ,n n n
 
in the corresponding FROM state. For 

example, consider the ninth column. The FROM state that corresponds to this column is

2,1,1 , i.e. 1 0n 
 
and 2 3 1n n  . Any elements in this column that contain a phase service 

rate have a multiplier given by the corresponding value of in
 
for 1,2,3i  . Therefore, there 

are no nonzero entries for 1  
in this column. See also the tenth column. Since this 

corresponds to the FROM state 2,0,2 , the only nonzero service rate multiplier is for service 

phase three. This multiplier is equal to two because there are two customers in this service 

phase and so the rate of service completion from this phase is double the service node rate. 

The second difference is the possibility to bypass the second phase. Since this transition does 

not lead to a change to the number in system it affects only the MIDDLE sub-matrices. For 
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example, take the sub-matrix 1,1t . For Erlang service times there is a zero probability of 

transition from state 1,0,0
 
to state 1,0,1 . Therefore, the lower-left element in this sub-

matrix is equal to zero. However, in this case, where such a transition is possible (with 

probability  ), the value of this element is equal to 1 . Since the probability of progressing 

from phase one to phase two is equal to 1  , the value of the element immediately above 

the lower-left element is equal to   11   . This represents the rate of transition from state

1,0,0
 
to state 1,1,0 . 

8.2.1.3 Distribution of waiting time 

The waiting time (W) distribution (for non-trivial customers) is derived using a method 

similar to that used to derive the waiting time distribution for the 2| | 2 | 3M E
 
system (Ch 

7.2.1.2). Therefore, the following is written: 

  2 2,0,0 2,1,0 2,0,2Arriving customer must wait ......P P P P P           (8.2.1.3.1) 
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Since it is known that  | 0P W t s  
 
for 2sns S  , (8.2.1.3.2) is simplified to 
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          (8.2.1.3.3) 

The sP
 
are known (solution of 8.2.1.1.2) so all that remains is to determine  |P W t s 

for 2sns S  . Let ( )if t
 
represent the pdf of time until service completion for a customer in 

service at phase i; 
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By integration over the limit ,t   the following are obtained: 
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  (8.2.1.3.5) 

Therefore, by (7.2.1.2.8); 
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       (8.2.1.3.6) 

The distribution of waiting time for non-trivial customers is now calculated through 

(8.2.1.3.3). The conditional distribution for waiting time for non-trivial customers who have 

had to wait is found by 

  

 
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          (8.2.1.3.7) 
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8.2.1.4 Distribution of sojourn time 

The sojourn time (T) distribution is derived by the following formula: 

  
 
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| 0
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P T t T
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
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  



      (8.2.1.4.1) 

Since it is known that  | 0P T t s  
 
for 2sns S  , (8.2.1.4.1) is simplified to 
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             (8.2.1.4.2) 

where 

        
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

      (8.2.1.4.3) 

The results for  |P T t s 
 
and hence (8.2.1.4.2) follow when (8.2.1.4.3) are integrated 

over the limit ,t  . 

8.2.1.5 Performance measures 

There are four main performance summary measures in queuing theory that are inextricably 

linked. They are the mean waiting time  E W , the mean sojourn time  E T , the mean 

number in queue 
qE L   , and the mean number in system  E L . 

The non-trivial mean waiting time can be derived from (8.2.1.3.3) as follows. 

    
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   (8.2.1.5.1) 
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This is evaluated using the solution of (8.2.1.1.2). The solutions to (8.2.1.3.6) must also be 

used, but first they must be deducted from one and differentiated in order to obtain the

 |P W t s 
 
for 2sns S  . The output is in terms of the parameters 1 2 3, , , ,     . 

Upon the determination of this, or any other of the performance measures, the remainder can 

be found using two important results. The first states that the mean sojourn time is a sum of 

the mean waiting time and the mean service time; 

      E T E W E            (8.2.1.5.2) 

where is defined as the service time. The pdf of service time is     1( )t P t f t    
 

with 1( )f t
 
defined in (8.2.1.3.4). Therefore,    

0

E t t dt



   . The second is a well known 

result in queuing theory. Little’s law states that ‘the long-term average number of customers 

in a stable system is equal to the long-term arrival rate multiplied by the long-term average 

time a customer spends in the system’ (Little, 1961). Typically this is written    E L E T . 

However,  is the long-term arrival rate of the system and hence contains trivial arrivals. The 

non-trivial long-term (or mean) arrival rate is given by (7.3.2.2.7). Therefore 

    E L E T              (8.2.1.5.3)  

This result can also be applied to the queue; 

  qE L E W                 (8.2.1.5.4) 

Therefore,    , , qE T E L E L    
can be respectively deduced through (8.2.1.5.2), (8.2.1.5.3), 

(8.2.1.5.4) given that  E W
 
is known. 

Note also that the non-trivial mean sojourn time can be determined through (8.2.1.4.1); 
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   (8.2.1.5.5) 
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This requires an evaluation of the solution to (8.2.1.1.2) and (8.2.1.4.3). As before, the 

remainder of performance measures can be derived following the determination of this one 

result. 

8.2.2 Infinite waiting space 

Knessl et al, 1990 consider the steady-state solution of the | | 2 |M G   queuing system 

through an integral equation approach. The service channels need not be homogeneous but 

Markovian densities are required. The approach within this study is to make a number of 

consecutive transformations that ‘reduce the problem of determining the marginal 

probabilities of the number of customers present to the solution of a pair of coupled integral 

equations’. If the servers are homogeneous then it is only necessary to solve the single 

integral equation 

              1

0

, , ,
s z

t

sT s t e T s z z t T s z t z dz z dz


 


                (8.2.2.1) 

where s is the generating function variable,  t
 
is the service density , and  ,T s z

 
is the 

generating function to be found. The solution can then be used in the identities (51), (52) and 

(53) to obtain steady-state results. 

For the 2| | 2 |M C M 
 
queuing system the service density can be written more compactly 

as  
3

1

it

i

i

t e
 



 
 

where the i ’s are known constants involving only the parameters

1 2 3, , ,    . On substitution into (8.2.2.1) 

        
3 3 3

1 ( )

1 1 10

, , ,i i is z z t z ti
i i

i i i i

sT s t e T s z e T s z t e dz e
   

 



    

  

 
    

 
     (8.2.2.2) 

which can be expanded to give 
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A change of variable  u z t  yields
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               (8.2.2.3) 

This is a second-order mixed integral equation. The integral equation to the left-hand side is 

Fredholm type whilst the other is Volterra type (since the lower limit of integration is a 

function of the variable t). Unfortunately, this equation does not fit into a common 

classification to which a direct method of solution is available. Attempts are therefore made 

to convert this to a differential equation. 

After much deliberation a particular solution for  ,T s t
 
could not be found. Problems of a 

similar nature were also encountered when exponentially distributed service times were 

considered. For brevity, the process of finding a general solution is explained for this case. 

Firstly, with   tt e    , (8.2.2.3) can be rewritten (with 1 2 3, 0      ) as 
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The integral on the left-hand side may be eliminated on application of the operator 
t







; 
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The remaining integral may now be eliminated on application of the operator 

 1s
t

 


  


; 

            2, 1 , 1 , 0sT s t s s T s t s s T s t                   (8.2.2.4) 

This is a second-order homogenous differential equation with constant coefficients. With 

appropriate substitutions this equation can be expressed as 

      2 1 0, , , 0a T s t a T s t a T s t              (8.2.2.5) 

By making the substitution  , tT s t e
 
the characteristic equation is found to be 

 2

2 1 0 0a a a                (8.2.2.6) 

The roots of this equation are deduced by the quadratic formula; 
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  

Therefore 

   1

1 2 1 s s          

The general solution can now be written 

   1 2

1 2,
t t

T s t C e C e
 

             (8.2.2.7) 

The authors suggest that the unknown constants can be obtained by substituting (8.2.2.7) into 

(8.2.2.2). However, this approach was unsuccessful in determining a particular solution. 

Fortunately, the | | 2 |M M   system has been studied as an example within the paper and the 

solution is written, without working, as 

  
 

  

2 1
,

1 2

t
s

T s t e
s s

 

 
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
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          (8.2.2.8) 

This result is achieved if 2C
 
is assumed to equal zero and (8.2.2.7) is substituted into 

(8.2.2.2). However, after studying the methodology of this paper in detail, no boundary 

conditions could be found that support this assumption. Regrettably, this approach has not 

yielded the steady-state solution to the 2| | 2 |M C M 
 
system. 

8.3 k Phase, r Server, Waiting Space for N-r Customers 

The general case, 1| | |kM C M r N  , is now considered. This system shares much in 

common with the system | | |kM E r N . The similarities are discussed in Ch 8.2.2 for case

3, 2, 3k r N   . 

8.3.1 Steady-state probabilities 

The long-term results for the probability of the system being in each state, s S , are 

forthwith determined. 

8.3.1.1 Specification of the transpose transition matrix 

The transpose transition matrix, 
TQ , is equivalent to that defined by (7.3.2.2.1). That is, the 

matrix is tri-diagonal with LEFT, MIDDLE, and RIGHT sub-matrices. Since the number of 
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accessible service phases (k) is the same, the cardinality of the state space, S, is consistent 

with that of Erlang service. The number of states within each sub-matrix is also equivalent. 

Therefore, the dimension of the sub-matrices is unchanged. 

8.3.1.2 Ordering of the states 

The TO and FROM states of the 1| | |kM C M r N 
 
and | | |kM E r N

 
systems are identical 

in both value and order (see Ch 7.3.2.2.2). 

8.3.1.3 Specification of the sub-matrices for i=0,1,…,r 

The LEFT matrices 

These sub-matrices represent the rates of transition that result in an additional customer being 

present in system. This is only possible with an arrival. The sub-matrices are equivalent to 

those defined in Ch 7.3.2.2.3. 

The RIGHT matrices 

Rates of transition that result in one fewer customer present in the system are represented by 

these sub-matrices. This is only possible through the completion of service. Since exit from 

the system is (still) only possible through the final phase there is no difference between these 

sub-matrices and those defined in Ch 7.3.2.2.3 (apart from the replacement of   by k ). 

The MIDDLE matrices 

These sub-matrices contain transition rates that do not affect the number in system. They 

share some similarity with the MIDDLE sub-matrices of the system with Erlang based 

service times. There is still a probability attached to the progression from phase i  to  i+1 for

1 1i k    . For Erlang service this probability is equal to one (and so the rate is simply

 ). Whilst this remains the case for 1i k  , when 1i k   the probability is equal to 

1 i  
(and so the rate is  1 i i  ). The general result for the population of such elements of 

,i it  for , ,1r k i r    
 is therefore as follows. Since there are a total of 1k   phases 

whose service completion is pertinent to the MIDDLE sub-matrix, it is necessary to perform

1k   repetitions of the following result. For 1,2,..., 1k   : 
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, , 1

1 1 1 2

1 1

c c
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with , ,c c cz x y
 
given by the appropriate formulae in Ch 7.3.2.2.3. Recall 

,i j
 
denotes the value 

of the i-th column and j-th row of the sub-matrix in question. 

It will also be noticed that for 1 2k      there is an alternate transition to phase k  

that bypasses any intermediate phases. This occurs with probability equal to   
(rate:    ). 

The following result describes this. For 1,2,..., 2k   : 

 , , 11
c cc x c y c k iz c    

       

Consider the pair of alternate elements in the column. Since the FROM state is unchanged, 

the values of cx
 
are also unchanged, i.e. cx

 
is the c-th term in the expansion of 
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   
    . The TO state, however, is not the state that 

represents movement to the next phase, but the state that represents movement to the final 

phase. This TO state is equivalent to the TO state of the ( 1)-thk   . That is, the element is 

on the same row as the 1k  . This can be seen in (8.2.1.2) where the 1 's are on the same 

row as the 2 's. Therefore, cy
 
is the c-th term in the expansion of

21
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    . Since the number in each phase of service is 

equivalent to that of its alternate element, the rate multiplier is the same. Therefore, cz
 
is the 

c-th term in the expansion of   
1
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Whilst it is entirely possible to obtain a formula for the population of the diagonal elements, 

it is more convenient to make use of the condition that column values must sum to zero. 

Since, at this stage, the other column values are known, all that remains is to subtract these 

from zero to obtain the value of the diagonal elements. 

8.3.1.4 Specification of the sub-matrices for i=r+1,r+2,…,N 

See Ch 7.3.2.2.5. 
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8.3.1.5 Traffic intensity 

Applying the same rationale of Ch 7.3.2.2.6 the following is obtained: 

  
1

E 


             (8.3.1.5.1) 

Using (7.3.2.2.10) the individual server utilisation is therefore 

  E r             (8.3.1.5.2) 

The mean service time per channel,  E  , can be derived from the pdf of service time per 

channel through its Laplace transform; 
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            (8.3.1.5.3) 

Note that when 3k   this result is analogous to  1( )LT f t
 
in (8.2.1.3.4) where   1( )t f t  . 

The following is found by expanding the result contained in the square bracket: 

 1 2 2 3 2 3 3 2 3 2 2 2 3 1k k k kx x x x x x x x x                (8.3.1.5.4) 

where  1: 1 l
l l

l

x
s





 


. This series can be summarised within a more convenient 

formulation of (8.3.1.5.3) given below. 

     
1

1
1

1 21

1
ik

jk
s i j

i jk j

LT t
s s s


 

  





 

 
   

    
       (8.3.1.5.5)  

Note that 1 0k  
 
as the customer is always transferred to the final phase after a service 

completion in the  1 -thk   phase. The mean service time per channel can be calculated 

through 



Chapter Eight Further Queuing Systems 224 

 

   

 

0

1
1 1

1

1 210

1
ik

jk
s i j

i jk j

E t t dt

tLT dt
s s s


 

  



 




 

  

   
   

      



 

         (8.3.1.5.6)  

For the 2| | 2 | 3M C M
 
case considered in Ch 8.2 the value of (8.3.1.5.6) is found to be 

    
1 2 3

1 1 1
1E 

  
       1:       (8.3.1.5.7) 

There is, however, an alternative method of determining  E 
 
that is both more efficient and 

intuitive. Since a customer must pass through phases one and k their mean service time is at 

least the mean of these two phases. Furthermore, the customer passes through phase two with 

probability  11 
 
and phase three with probability   1 21 1  

 
and so on. It is therefore 

possible to write 

       1 1 2

1 2 3

1 1 1 1
1 1 1

k

E   
   

              (8.3.1.5.8)  

which simplifies to 

    
1 1

2 11

1 1 1
1

k i

j

i jk i

E 
  

 

 

             (8.3.1.5.9) 

This verifies (8.3.1.5.7) when k  is set equal to three.  

8.3.1.6 Computational efficiency 

The Maple program of the previous chapter has been amended
2
 to incorporate the differences 

outlined above. The following tables contain results for the computational time required to 

calculate the solution vector, P, on a modern desktop computer. For symbolic results (4 digit 

precision): 

                                                      
2
 Whilst retaining the original (Erlang service times) 
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Table 8.1 Transition matrix dimension and solution time for symbolic results

, time (s)

2 5 2 15 8

5 10 2 51 69

10 20 2 176 Not solvable

2 5 3 28 85

5 10 3 161 Not solvable

2 5 4 45 Not solvable

k totalr N k 

 

The results for solution time are in stark contrast to those obtained with Erlang service times 

(Table 7.1). This is not because of a difference in transition matrix dimension since the ,k total
 

are identical for each of the six comparable examples. Instead it is because of an increase in 

matrix density (measured by the proportion of the transition matrix populated by nonzero 

elements) in which nonzero elements contain a greater number of unassigned variables (e.g.

1 1 2, , ,    etc instead of just  and ). In three of the six examples this has led to Maple not 

being able to solve the system (error message: object too large) whilst in others the solution 

time is greatly inflated. For numerical results ( 1 2 3 4 10.1, 2, 3, 4, 5, 0.2,          

2 0.3  , 4 digit precision): 

Table 8.2 Transition matrix dimension and solution time for numerical results

, time (s)

10 20 2 176 12

20 30 2 441 80

20 50 2 861 542

5 10 3 161 11

10 15 3 616 550

5 10 4 406 107

k totalr N k 

 

It is interesting that, on comparison with the numerical results with Erlang service times 

(Table 7.2), there is little difference in solution time. The differences that do exist could be 

put down to a difference in transition matrix density. This would also explain why the 

solution time of a system with 616 states is greater than that of a system with 861 states. 

Through other trials, it has also been noticed that the number of digits precision can have a 

significant effect on the solution time for numeric results (since more RAM is required). 
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8.3.2 Performance measures 

It would be very difficult to derive the distribution of waiting or sojourn time for the general 

case considered here. However, it is still possible to obtain expected results for the 

performance measures , , ,qW T L L
 
(see Ch 8.2.1.5). It is only necessary to calculate the 

expected value for one of these measures since the remainder can be derived using equations 

(8.2.1.5.2), (8.2.1.5.3), and (8.2.1.5.4). 

First considered is a direct
3
 approach for the | |1|M M   system. Mean value analysis makes 

use of Little’s result (8.2.1.5.3) in addition to the arrival relation; 

            E T E W E E L E E                (8.3.2.1) 

i.e. mean sojourn time equals mean waiting time plus mean service time. These give 

        E L E L E E                           (8.3.2.2) 

With  E 
 
known (i.e. 

1 
) the value of  E L

 
is found to be

      
1 11E E   
      . Note that the equation (8.3.2.1) requires the application of 

the Poisson arrivals see time averages (PASTA) property. This infers that the probability of 

the state as seen by an outside observer is the same as the probability of the state seen by an 

arriving customer. Moreover, the mean number of customers in system seen by an arriving 

customer is equal to the mean number seen by an outside observer,  E L . This property is 

only applicable to systems with Poisson arrivals. 

The result (8.3.2.2) cannot readily be used for the system under consideration in this chapter. 

First, the result must be adjusted to take account of more general (Markovian) service times. 

To do this the mean waiting time given by    E L E 
 
in (8.3.2.2) is redefined. This is to 

reflect the difference in time spent in service for the active customer
4
 and those in the queue. 

Let the expected (remaining) time in service for the active customer be defined as

   SE E R  . The expected service time for the customers in the queue is obviously equal 

                                                      
3
 Does not require a determination of steady-state probabilities 

4
 At time of arrival 
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to  QE E     . Next, Little’s law for both the system (8.2.1.5.3) and the queue (8.2.1.5.4) 

is applied to equation (8.2.1.5.2) to give 

    qE L E L E                (8.3.2.3) 

Therefore, the expected number in service and in the queue is    SE L E 
 
and

Q qE L E L        
respectively. It follows that: 

 
         

             

S S Q Q

q

E W E L E E L E E L E

E E R E L E E E R E W E  

           

         

       (8.3.2.4)  

The mean waiting time can therefore be written 

    
| |1| 1M G

E W E R






             (8.3.2.5) 

where  , the non-trivial traffic intensity, is defined as  E  . The Pollaczek-Khintchine 

formula states that the mean waiting time for the | |1|M G   system is 

    
21

1 2

C
E W E






 


           (8.3.2.6) 

where     2 22 2C E E E


      
 
is the coefficient of variation of the service time 

distribution. Therefore, the expected remaining time in service for the active customer is 

  
 

2

2

E
E R

E

  


                       (8.3.2.7) 

Secondly, the generalisation of the number of service channels is considered. More of an 

intuitive approach is required here. In the | |1|M G   system detailed above,  E 
 
in 

(8.3.2.4) is defined as  SE L , the mean number of customers in service. It does, however, 

have another meaning; the probability that there is a customer in service. Put alternatively, 

this is the probability that a customer will have to wait, WP . In the | | |M G r   system this 

probability is defined when all service channels are occupied.  
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Care must also be taken in the interpretation of  QE E     . In the above workings  E 

is used to represent the mean service time (per channel) when in actual fact, what is of 

interest is the mean time between service completions,  . In the | |1|M G   system these 

results are equivocal, but this is not the case in the multi-server system. In the | | |M G r   

system the service rate is the product of r and the service rate per channel,  
1

E


 . 

Therefore, the mean time between service completions is given by 

  
1

E
r

              (8.3.2.8) 

This result is approximate since the time until a departure is not dependent on the state of the 

system before the departure. In other words, the actual positions of the r customers in service 

are not taken into account. By taking into account these two differences, (8.3.2.4) can be 

rewritten as 

       
1

WE W P E R E W E
r

                 (8.3.2.9) 

where  E R
 
is the expected remaining time until an active service completes. Therefore 

  
 
 | | |

W

M G r

rP E R
E W

r E


 
          (8.3.2.10) 

For exponential service times the derivation of an exact result is possible. This is because

   
11r E r 
  

 
since there is only one configuration for the positions of the r 

customers in service (as there is only one phase for each channel). In addition, WP
 
can be 

determined analytically
5
 to be 

 
 

   
1

1

0

1
! ! !

r n r
r

n

r r r

r n r

  







 
  

 
 

 . Therefore 

  
| | |

W

M M r

P
E W

r 



          (8.3.2.11)  

For 1kC M 
 
distributed service time  E R

 
can be calculated (through similar equations to 

(8.2.1.3.6)) by 

                                                      
5
 Proof omitted: standard result 
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  

 
1

1

|
n rs

n rs

s

s S

s

s S

P E R s

E R
P


 

 

 

 








         (8.3.2.12) 

where   is the state of the system upon arrival, and WP
 
can be calculated by 

 
1

0

1
N r

W n n

n r n

P P P


 

                (8.3.2.13) 

However, since these results require a determination of the steady-state probabilities, they 

cannot be used as part of a direct approach. After deliberation it is thought that a method to 

obtain a truly analytic solution to (8.3.2.10) is of substantial difficulty. This being said, there 

are many studies that approximate this performance measure. 

The following approximation has been suggested in Maaloe, 1973 and Nozaki & Ross, 1978: 

  
 

 
 | |1|

| | | | | |

| |1|

M G

M G r M M r

M M

E W
E W E W

E W



 



        (8.3.2.14) 

where     
1

| |1|M M
E W    




  ,  

| |1|M G
E W


 (8.3.2.5), and  

| | |M M r
E W


 (8.3.2.11). 

Cosmetatos, 1976 obtains the result 

           
| | | | | | | | |

var 1 var
M G r M M r M D r

E W E W E W
  
          (8.3.2.15) 

stating that ‘relative percentage errors incurred seem to be below 2% for most practical 

purposes’. It is reported in Boxma et al, 1979 that this is a ‘much sharper approximation, 

which is also particularly good in the heavy traffic case’, thus making it appropriate for 

Rookwood hospital. The authors to this paper produce their own approximation which is 

‘slightly better’ than that of Cosmetatos, 1976. They also provide an approximate result for

 
| | |M D r

E W


. 

A more efficient and effective method is to make use of the steady-state probabilities 

determined in Ch 8.3.1. For the | |1M M  system it is a well known result that   n

n

E L nP




where n is the number in system and nP
 
is the probability that there are n in the system. On 

extending this to the 1| | |kM C M r N 
 
system; 
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  
0

N

n

n

E L nP


              (8.3.2.16) 

If the steady-state probabilities have been determined by the Maple program then this result 

can be deduced with ease. Let the solution vector of steady-state probabilities equal  . The 

dimension of   is equal to the cardinality of the state space, ,k total , which can be deduced 

through equation (7.3.2.2.3). By letting  j
 
be the j-th element of the vector  , and ,k i

 

be the number of states for which sn i  (see Ch 7.3.2.2.1), 

 

  

,

,

1

,

1 0

, ,

1 0

0,1,...,

1 1, 2,...,

k n

k n

n

n k p

i p

r

n k p k r

i p

P i n r

P i n r n r r N







 



 

 

 
    

 

 
         

 

 

 

    (8.3.2.17) 

The Maple program automatically calculates (8.3.2.16) in addition to

   , , , , , , , . .R W q qP P E W E T E L CV L         , the coefficient of variation of the number in 

queue, and 
nP . Also calculated is the annual throughput, 

  365Tp E              (8.3.2.18) 
 

with  E 
 
deduced through (8.3.1.5.9). The output is given on the Maple script directly 

below the solution vector of steady-state probabilities,  . A graph of nP
 
is automatically 

plotted against n. 

8.4 Heterogeneous Servers 

The queuing systems that have been studied thus far have all involved homogenous servers. 

Now, the case of non-uniform service rates is considered. 

At the NRC at Rookwood hospital there are many factors
6
 that affect patient LOS (service 

time). If modelled by a homogenous server system then a significant standard deviation of 

service time would result. This has the effect of reducing the accuracy of the queuing 

theoretic model and LOS predictions since the individuality of patients are neglected. The 

                                                      
6
 Treatment control factors (Ch 6.2.6); treatment intensity (Ch 6.2.4); discharge destination (Ch 6.2.5) 
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influences of the aforementioned factors can be incorporated within the model by allowing 

the service rates to differ between the service channels. 

8.4.1 Integrated system 

An integrated system is defined as a queuing system that contains a single queue. It is 

analogous to all systems considered thus far. Setting up such a system with heterogeneous 

servers is far from a trivial exercise; a point illustrated in the following example. 

8.4.1.1 Erlang service, two-server, no waiting space 

This queuing system is identical to that of Ch 7.2.1.1 with the exception of uniform phase 

service rates. Specifically, the service rate of a phase in service channel one is 1  
whilst the 

service rate of a phase in service channel two is 2 . A state of this system is described by the 

double 1 2,z z
 
where jz

 
is the phase occupied by the customer in service channel j (if the 

service channel is empty then the value is zero). The CTMC for this system is 

 

Figure 8.3 The 2/ / 2 / 2M E  queuing system with heterogeneous servers 

Recall that the dimension of the CTMC for homogenous servers is equal to the number of 

phases of the service time distribution, k. In the case of heterogeneous servers, however, the 

minimal dimension is equivalent to the number of servers, r, for the case of no waiting space 

or r+1 otherwise. This is due to the alternate definition of system state. 
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In addition, since the state of the system contains information on individual servers it 

becomes necessary to assign probabilities that an arrival will enter service at each of the 

service channels. In the above example, there is no preference and so each probability is 0.5 . 

It will also be noticed that there are more states in the system with heterogeneous servers. 

Note that the number of states depends (only) on the order of the phase-type distribution (in 

this case, two), the number of servers, and the number of waiting spaces. 

8.4.1.2 The number of states in a k-th order phase-type service system 

The following matrices contain a description of the state space for the systems 2| |1|1M PH

and 2| | 2 | 2M PH : 

 2,1,1 0 1 2S    2,2,2

0,0 0,1 0,2

1,0 1,1 1,2

2,0 2,1 2,2

S

 
 

  
 
 

    

The dotted lines are used to separate areas of the matrices that contain differing numbers of 

customers in the system. For example, in 2,2,2S
 
the upper left and lower right sub-matrices 

refer to the states of the system in which there are zero and two customers present whilst the 

upper right and lower left sub-matrices both refer to states in which only one service channel 

is occupied. The number in system is denoted by i. The total number of states for these 

systems are  1 3k  
 
and  

2
1 9k  

 
respectively. 

For the 2| | 3 | 3M PH
 
system 

2,3,3

0,0,0 0,0,1 0,0,2 1,0,0 1,0,1 1,0,2 2,0,0 2,0,1 2,0,2

0,1,0 0,1,1 0,1,2 1,1,0 1,1,1 1,1,2 2,1,0 2,1,1 2,1,2

0,2,0 0,2,1 0,2,2 1,2,0 1,2,1 1,2,2 2,2,0 2,2,1 2,2,2

S

 
 

  
 
 

  

The total number of states is  
3

1 27k   . By defining the symbol as the concatenation of 

elements, 2,3,3S can be expressed as 

  2,3,3 2,2,2 2,2,2 2,2,2 2,1,1 2,2,20 1 2S S S S S S          

Moreover, ,3,3 ,1,1 ,2,2k k kS S S 
 
with 
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  ,1,1 0 1 2kS k   ,2,2

0,0 0,1 0,2 0,

1,0 1,1 1,2

2,0 2,1 2,2

,0 ,

k

k

S

k k k

 
 
 
 
 
 
 
 

 
 

and through a similar argument ,4,4 ,2,2 ,2,2k k kS S S  . 

By further generalising these results the following is obtained 

 

1

2

,1,1 ,2,2

, ,

2

,2,2 ,2,2

 odd

 even

r

k k

k r r r

k k

S S r
S

S S r


 

 




 

where, for example, 

1

2

,1,1 ,2,2

r

k kS S




 
with 5r   is ,1,1 ,2,2 ,2,2k k kS S S  . 

The following table displays the number of states, 
i , for which the number in system is 

equal to a particular value, i, for the matrices ,1,1kS
 
and ,2,2kS : 

,1,1 ,2,2

2

0 1 1

1 2

2

i k kS S

i

i k k

i k









 

Consider the matrix  ,3,3 ,1,1 ,2,2 ,2,2 ,2,2 ,2,2 ,2,20 1 2k k k k k k kS S S S S S k S       ; 

,2,2 ,2,2 ,2,2

2

2 2

0 1

0 1 0 0

1 2 1 1

2 2 2

3 0

k k kS S k S

i

i k

i k k k

i k k

  









 

The following is obtained by summing the values contained in the k+1 columns for each row: 
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,3,3

2

3

0 1

1 3

2 3

3

i kS

i

i k

i k

i k








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Next consider the matrix 

 

,2,2 ,2,2 ,2,2 ,2,2

,2,2 ,2,2 ,2,2

,2,2 ,2,2 ,2,2,4,4 ,2,2 ,2,2

,2,2 ,2,2

0,0 1,0 2,0 ,0

0,1 1,1 2,1

0,2 1,2 2,2

0, ,

k k k k

k k k

k k kk k k

k k

S S S k S

S S S

S S SS S S

k S k k S

    
 

   
     
 
 
   

 

where ,2,2 ,2,2k kS S . Note that the values to the left of   are the values of 1z
 
and 2z

 
whilst 

the values in ,2,2kS are the values of 3z
 
and 4z . There is only one state, 0,0,0,0 , that 

satisfies 0i  . Now consider the states that satisfy 1i  . There are 2k states in ,2,2kS
 
for 

which 1 2 1z z 
 
where 

0 0

1 0

j

j

j

z
z

z


 

   

and one state for which 3 4 0z z  . There is also 

one state in ,2,2kS
 
for which 1 2 0z z 

 
and 2k states in ,2,2kS

 
for which 3 4 1z z  . 

Therefore,    1 2 1 1 2 4k k k      . Through a similar argument, 

     2 2 2

2 1 2 2 1 6k k k k k        ,    2 2 2

3 2 2 4k k k k k       , and  2 2 4

4 k k k    . 

The following table displays further results: 

 

,1,1 ,2,2 ,3,3 ,4,4 ,5,5 ,6,6

2 2 2 2 2

3 3 3 3

4 4 4

5 5

6

0 1 1 1 1 1 1

1 2 3 4 5 6

2 3 6 10 15

3 4 10 20

4 5 15

5 6

6

i k k k k k kS S S S S S

i

i k k k k k k

i k k k k k

i k k k k

i k k k

i k k

i k

















 

It is now clear that the total number of states for the | | |kM PH r r
 
system is 
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0 0

r r
i

total i

i i

r
k

i
 

 

 
   

 
          (8.4.1.2.1) 

This is equivalent to the binomial series expansion of  1
r

k    – a result that has previously 

been acknowledged for 2, 1,2,3k r  . For the | | |kM PH r N
 
system  

  
0

r
i r

total

i

r
k N r k

i




 
   

 
         (8.4.1.2.2) 

since 1 2r r N r         (similar argument to that found in Ch 7.3.2.2.1). 

8.4.1.3 Comparison between homogenous and heterogeneous server systems 

The dimension of the transpose transition (square) matrix is equivalent to the total number of 

states in the queuing system. A matrix of greater dimension is harder to solve ceteris 

paribus
7
. The complexity, measured only by the total number of states, is forthwith 

compared
8
 for a number of queuing systems involving homogeneous and heterogeneous 

servers. 

Table 8.3 Number of states for equivalent homogeneous and heterogeneous queuing systems

2

2

2

2

3

3

3

Homogenous Heterogeneous

| |1| 1 1

| | 3 | 5 18 43

| |10 |15 121 64,169

| | 20 | 30 441 3,497,270,161

| | 30 | 50 1,116 205,912,606,931,129

| |10 |15 616 1,343,821

| | 20 | 30 1,606 2,229,556

| | 30 | 50

total

kM PH N Nk Nk

M PH

M PH

M PH

M PH

M PH

M PH

M PH



 

4

5

10

15,376 1,157,039,327,248,739,956

| |10 |15 2,431 15,008,505

| |10 |15 8,008 109,294,301

| |10 |15 646,646 75,937,424,601

M PH

M PH

M PH

 

It can be seen that the number of states for any heterogeneous multi-server system exceeds 

the number required to represent the corresponding homogeneous server system. In low-order 

                                                      
7
 i.e. if of similar, recurrent structure with similar density 

8
 Using (7.3.2.2.3) and (8.4.1.2.2) 
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systems this difference is relatively small (e.g. 25 states for 2| | 3 | 5M PH ) but extends 

rapidly as parameter values are increased (e.g. 109,286,293 states for 5| |10 |15M PH ).  

What is of particular concern, however, is the substantial increase in total
 
when the number 

of service channels is increased. For example, when the values of r and N are increased from 

three and five to 20 and 30 for the system with 2k   the value of total
 
increases by 2,350% 

for homogeneous servers and 98 10 %  for heterogeneous servers. Such a level of additional 

complexity is clearly unacceptable when modelling a facility which typically maintains 

around 21 service channels (beds). 

8.4.1.4 Multiple classes of server 

It is perhaps more appropriate to consider the integrated system with a number of classes of 

homogeneous servers. The number of servers and associated rates are permitted to vary 

between the classes. Customers are assigned to classes based on the value of certain personal 

attributes. This is well suited to healthcare facilities such as Rookwood hospital where 

patients are often grouped by characteristics such as age and gender. 

However, such a system is practically infeasible. It can be seen that the cardinality of the state 

space of the system with multiple classes of servers is bounded below by the cardinality of 

the state space of the equivalent homogeneous server system. Equality is only achieved when 

the number of classes is one. Even if a simple model (20 beds, 10 waiting spaces, three phase 

servers) is used to represent Rookwood hospital then the cardinality of the state space would 

easily exceed 1,606 (assuming there are at least two classes of server). This is unacceptable 

considering the processing limitations of a desktop computer. 

8.4.2 Disconnected system 

A disconnected system is defined as a queuing system that contains multiple integrated 

systems. Since the constituent systems are disconnected there exists independence between 

them. The order of the system is said to represent the number of constituent systems. 

8.4.2.1 Multiple classes of server 

Figure 8.4 depicts the disconnected system of order p in which each constituent system 

represents a different class of server. Therefore, there are p classes of server. Each 
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class/constituent system, 1,2,..,i p , has ir  
homogenous servers. The system can be 

expressed 
1 2 1 2 1 2, ,..., | , ,..., | , ,..., | , ,...,

pk k k p pM M M PH PH PH r r r N N N . 

 

Figure 8.4 The disconnected system with multiple classes of server 

The most significant difference between the integrated and disconnected systems is the 

routing of customers. In the integrated system customers arrive at a single queue. If, on 

arrival, there is more than one service channel available then the customer is routed 

probabilistically (see Ch 8.4.1.1). These probabilities can be manipulated in order to affect 

the throughput in each class of server. If only one service channel is available then the 

customer immediately enters service. Otherwise, they must wait. Therefore, there is no 

possibility of an unoccupied service channel when there are customers in the queue. This is 

not so in the disconnected system where customers arrive for service at a specific class of 

server. Instead of routing probabilities, the arrival rates into each class can be adjusted in 

order to affect class throughput and other performance measures. 

The major advantage of modelling a multiple class system by a disconnected system is the 

computational ease with which steady-state probabilities can be obtained. For the integrated 

system it is necessary to solve a square matrix of least dimension given by (7.3.2.2.3). For the 

disconnected system it is necessary to solve p matrices each of dimension (7.3.2.2.3) with
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ir r , N  the maximum capacity of the i-th constituent system and k the number of phases in 

the i-th class of server. The steady-state probabilities for the system can be deduced by the 

multiplication of the steady-state probabilities for each constituent system (due to 

independence). Therefore 

 
 
     

1 1 1 2 2 2

1 1 1 2 2 2

2 2 2

2 2 2

, ,..., , ,..., ... , ,...,

, ,..., , ,..., ... , ,...,

p p p

p p p

s r s r s r

s r s r s r

P n n n n n n n n n

P n n n P n n n P n n n

  

   

    (8.4.2.2.1) 

In addition, the performance measures can easily be determined for each class (see Ch 8.3.2) 

or for the system as a whole. If P is used to denote either W or T then 

 

    

 

1 1 2 2
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1 1
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...
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 
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   
    
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   (8.4.2.2.2) 

However, if P is used to denote either L or qL
 
then 

    1 2 ....sys pE E E E                    (8.4.2.2.3)  

8.5 Conclusion 

This chapter has built upon the work of the previous chapter in developing a more 

representative queuing model of the NRC at Rookwood hospital. The most significant 

advancement is the replacement of Erlang service times by Coxian (active) and exponential 

(blocked) service times. Steady-state results and performance measures are derived 

analytically for the low-order system. This is thereafter compared with the three phase Erlang 

system to evaluate any differences in the transition matrices. The Maple program of the 

previous chapter is then amended to incorporate these differences for the general case. 

Following this, direct approaches to the solution of the performance measures are considered. 

Indirect approaches are also considered and are embedded within the new Maple program. It 

is then explained why it is necessary to consider a level of heterogeneity with regard to the 

service channels. 

An integrated system with heterogeneous servers is rejected due to the substantial size of the 

associated transition matrix – it would be unreasonable to expect a desktop computer to solve 
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this. Another limitation of this system is the inability to obtain performance measures for 

patients of a particular group (since all patients are considered equal before they enter 

service). This is a drawback when considering the effects of what-if type scenarios on a 

specific patient demographic. 

The disconnected system is therefore studied. Firstly, on the topic of computational 

efficiency, this system is far more favourable than its alternative. For example, to model an 

integrated 3 3 3| , , | 8,8,8 | 48M PH PH PH
 
system requires a transition matrix of dimension at 

least 10,725. However, for an equivalent third-order disconnected system,

3 3 3, , | , , | 8,8,8 |16,16,16M M M PH PH PH  , the matrix dimension for each constituent 

system is only 525. It is possible to achieve numerical results for such a system in a 

reasonable amount of time (Ch 8.3.1.6). 

Secondly, the arrival rate of patients into each class of server can be individually 

manipulated. Since each class of server represents a particular group of patients this allows a 

more flexible and detailed approach to what-if type scenarios. For example, what if there was 

an increase in the number of referrals for elderly patients (due to an ageing population)? 

Thirdly, expected values for the performance measures can be readily calculated for each 

class of server. This enables a more detailed analysis for each group of patients associated 

with each class. This is particularly advantageous when considering the repercussions of 

what-if type scenarios. For example, what is the effect of increasing the number of beds for 

young male patients with TBI? 

Finally, some limitations must be acknowledged. Admission policy at Rookwood hospital 

NRC is made largely on an impromptu basis due to the many factors that must be taken into 

account when answering questions such as who to admit or how many beds to make 

available. There are no clear, coherent rules to answer these questions and it is therefore 

difficult to fully evaluate the extent to which reality is represented by the model. For 

example, the model allows for the possibility that a server can be unoccupied whilst patients 

are waiting. Whilst this can realistically occur due to a deficiency in employee hours or 

experience it is undesirable since the model does not take into account such variables. The 

prevalence of this can be minimised by ensuring the stationary probabilities of states in which 

a server is empty are negligible. Also, the model assumes that the partition of servers (i.e. the 

number of service channels in each class) is fixed over time. This is unlikely to be a realistic 
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assumption in the short-term since the number of servers in each class would depend on the 

demographic of the queue. 

In conclusion, the disconnected system with Coxian and exponential service time has been 

solved for steady-state probabilities and performance measures. In the next chapter this 

project concludes with the presentation of a model based on this system that is used to model 

activities at the NRC at Rookwood hospital. 
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Chapter 9: The Rookwood Model 

 

 

 

 

 

 

9.1 Introduction 

This chapter is concerned with the production of a queuing model that is representative of the 

major activities at the Neurological Rehabilitation Centre (NRC) at Rookwood hospital – a 

task that involves combining the various work contained in this thesis thus far. The first phase 

is to produce an initial, representative model of the unit which is described in the following 

four chronological stages. 

First, historical data is used to determine the characteristics of a small number of 

homogeneous patient groups. The objective is to deduce the range of values for appropriate 

branching variables (e.g. age, gender, diagnosis – see Ch 6.2.6) that return a low variance of 

active length of stay (LOS) for each patient group. 

In the second stage the scheduling program (Chapters 3 and 4) is used to produce treatment 

timetables by fitting patient demand to staff supply. The aim is to use the program to produce 

average values of treatment intensity for each patient group that are approximately equal to 

their empirical counterparts. This is achieved by initialising the program with variable values 

that are equivalent to the situation on the ground at Rookwood NRC. That is, the number of 

beds for each group, number and band level of staff, and number of hours worked each day 

should be realistic. 

Thirdly, these average values of treatment intensity are converted to average values of active 

LOS through a two-dimensional line graph for each patient group. These graphs are produced 

using historical data to examine the relationship between treatment intensity and active LOS 
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(Ch 6.4.2.3). Assuming that these graphs and the average values of treatment intensity 

obtained through stage two are correct then the average values of active LOS should match 

their empirical counterparts (for each group). 

In the fourth and final stage, the queuing model is constructed. This consists of a number of 

disconnected homogeneous server queuing systems; one for each patient group (Ch 8.4.2.1). 

The distribution of referral arrivals for each queuing system is (justifiably – Ch 6.4.1) 

assumed Poisson and rates are derived from historical data (Ch 6.4.1). A Coxian phase-type 

and exponential distribution are used to model active and blocked LOS respectively for each 

system. These are fitted using the results of Chapter 5, the Matlab program introduced in Ch 

6.5.1 and the average values of active LOS of stage three. Each queuing system is equivalent 

to that specified in Ch 8.3 and can so be solved for steady-state probabilities and performance 

measures using the Maple program mentioned in Ch 8.3.1.6. Ultimately, steady-state 

probabilities, performance measures and costs are output for the holistic queuing model (Ch 

8.4.2.1). 

This initial model is, in fact, equivalent to Route 4 (1-2-4-6) of Figure 6.8. That is, there is a 

queuing model (1) that has LOS partitioned to its active and blocked component (2) with a 

service rate dependent on treatment intensity (4) and subjects grouped by various predictor 

variables (6). The second phase is to extrapolate the model through a number of hypothetical 

what-if type scenarios that relate to the major policy decisions (who at admit, what care to 

give, when to discharge). These involve a modification to either the demand-side or the 

supply-side of treatment provision at the unit. For example, the effect of an ageing population 

can be modelled by increasing the arrival rate for the patient group that contains older 

patients (assuming age is a branching variable in stage one). An example of a supply-side 

modification is the employment of additional therapists. 

Contrary to the above, this chapter contains not just one model but three. The first subchapter 

introduces a very simple queuing model equivalent to Route 1. This is further developed in 

the following subchapter (model equivalent to Route 3). The chapter concludes with the final 

model under consideration which is equivalent to that mentioned above (Route 4). 

9.2 Model One 

The most simplistic of models (analogous to that of Ch 6.2.1) is considered here. Treatment 

intensity is not a consideration at present and so stages two and three are omitted. Stage one 
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is described as follows. The arrival rate (as determined in Ch 6.4.1) is 0.36364, i.e. roughly 

five arrivals every fortnight. The mean LOS for the 358 patient episodes that contain 

additional NHS Trust variables (Ch 6.4.2.1) is 149.3 days. The most appropriate service 

distribution was found to be the three term Coxian distribution (Ch 6.5.4). However, since 

this is intended to be an elementary model the exponential distribution (rate 0.006698) is 

used. The number of service channels is 21 since this is the mean number of beds occupied in 

recent years (Ch 6.4.2.2). No efforts are made to partition the 358 episodes into patient 

groups. This model is therefore analogous to Route 1 of Figure 6.8. 

9.2.1 Initial version 

Stage four therefore requires the solution of the | | 21M M  queuing system. This system is 

easily solved for an unbounded queue size (a result for WP , the probability that a customer 

must wait, is provided in Ch 8.3.2). Whilst analytic solutions can also be found by hand for a 

bounded queue size, it is simpler to use the computer program of Chapter 7.  Results are 

derived for the 1| | 21| 50M E
 
system, i.e. 21 beds and space in the queue for 29 referrals

1
. 

Instead of listing all 51 probabilities the graphical output of the Maple program is given. 

 

Figure 9.1 Probability density graph for number in system 

                                                      
1
 The number of referrals in the queue from January 2010 to April 2011 does not exceed 25 (see Ch 6.4.1) 
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Some summary statistics including the probability of rejection and the effective arrival rate
2
 

are deduced
3
; 
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Clearly, this cannot be representative of reality. The steady-state probabilities are skewed so 

far to the right since the rate of arrival (0.36364) is much greater than the (maximal) rate of 

departure ( 21 0.006698 ). The effective arrival rate attains this departure rate since  

under steady-state and in this case, r  (see Ch 7.3.2.2.6). The term divergent is used here 

to describe the limiting behaviour toward the x-axis as n N . To digress, the shape of the 

graphs corresponding to the systems where the arrival rate is equal (0.1407) and less than the 

rate of departure (say 0.12) are of interest here. 

 

Figure 9.2 Arrival rate equal to rate of departure 

                                                      
2
 The arrival rate of referrals that enter the queue (previously referred to as the non-trivial arrival rate) 

3
 Automatically by the Maple program 
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Figure 9.3 Arrival rate less than rate of departure 

The behaviour displayed in Figure 9.2 is described as neutral since it is neither convergent 

nor divergent to the x-axis. Obviously, the most realistic interpretation of Rookwood NRC is 

provided by the convergent behaviour depicted in Figure 9.3 corresponding to traffic 

intensity less than one. Of course, it would be nonsensical to arbitrarily set the arrival rate at a 

value less than the departure rate. Instead, there are two types of realistic customer behaviour 

that prevent divergent behaviour. These are balking and reneging. 

9.2.2 Balking 

Balking is a concept in which arriving customers do not join the queue. This could be for a 

number of reasons but is usually because of the size of the queue (e.g. too many customers at 

a supermarket checkout) or the perceived waiting time (e.g. each customer in the queue has a 

full trolley). Obviously balking for such reasons requires the arriving customer to have 

knowledge of the state of the queue, i.e. a visible queue. This does not exist in Rookwood 

NRC because of the mental disposition of prospective patients. Instead, the decision to balk is 

made by clinicians who have an insight into the state of the queue. Note that balking can be 

prevalent for both types of arrival, i.e. the submission of referrals for patients ready for 

transfer and the instance at which non-ready patients on the waiting list become ready (see 

Ch 1.2). 
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Balking is technically part of the finite buffer system
4
 of Ch 9.2.1 since when capacity is 

reached arrivals are lost. The effective arrival rate when the system is at capacity is therefore 

zero, otherwise, it is . This is intuitively unrealistic since, for this system, balking should be 

progressive. That is, the arrival rate of referrals should decreases as the queue length becomes 

larger, rather than just cutting-off at a certain value. This is because less of an effort is made 

to proactively ‘scout’ patients (see Ch 1.2) and prospective referrers are put off by the 

expected waiting time. This concept can be modelled by introducing an arrival rate that is 

dependent on the state of the system. 

The Maple programs developed to produce steady-state results for the | | |kM E r N
 
and

1| | |kM C M r N 
 
systems have been amended to include, as an option, a state-dependent 

arrival rate. There are many options that exist regarding the actual dependence of the arrival 

rate on the state of the system. For this model the following is used to define n , the arrival 

rate when n customers are present in the system: 

  1n nPb               (9.2.2.1) 

where nPb
 
is the probability of an arrival balking given n in system, defined as 

 

0 0
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                  (9.2.2.2)  

That is, the arrival rate is as prescribed (i.e.  ) when there are fewer customers in the system 

than servers. Otherwise, the arrival rate decreases polynomially (quadratically for 2  ) as 

the number in queue (given by n r ) increases. The denominator, in (9.2.2.2), is chosen so 

that the arrival rate into the state(s) with n N  is zero provided N r . This means that the 

probability of the system being in these state(s) is zero and so the probability of rejection is 

also zero. The convergence of the arrival rate for 1r n N    to zero is dependent on the 

parameter  .  

The expected number of customers in the system is derived through (8.3.2.16) using 

(8.3.2.17). The results (8.2.1.5.2), (8.2.1.5.3), and (8.2.1.5.4) are used to produce results for 

                                                      
4
 A fixed number of waiting spaces in the queue 
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the other performance measures, albeit, with a different interpretation of  . In the case of a 

fixed arrival rate (i.e. Chapters 7 and 8) this is defined as the mean non-trivial arrival rate 

given by (7.3.2.2.7). It is clear to see how this is formulated since RP 
 
is the rate at which 

customers are lost to the system. However, this result can be derived through a more 

comprehensive definition. The mean arrival rate is defined as 

  1 Pb                (9.2.2.3) 

where Pb  is defined as the mean balking probability, given as 
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from which it can be inferred, through (9.2.2.1), that
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and so  1 RP   , c.f. (7.3.2.2.7), as 

required. For the case of the state dependent arrival rate defined above in (9.2.2.1) 
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   

   

            

since 0nPb 
 
for 0 1n r    and 0nP 

 
for n N (as 1 1NPb   ). Thus 

 
1

1
N

n n

n r

Pb P 




 
  

 
              (9.2.2.5)  

This can also be derived through the (perhaps) more intuitive relation 

 
n n

n

P 


              (9.2.2.6) 

which gives 

 
1 1 1 1

0 0

0 0
r N r N

n n n n n n

n n r n N n n r

P P P P    
    

    

            
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since n  
and nP

 
are equal to zero for n N . By (9.2.2.1) this equals 

 

 
1 1 1 1 1

0 0

1 1 1 1

0

1

1 1

r N r N N

n n n n n n n

n n r n n r n r

N N N N

n n n n n n n

n n r n r n r

P Pb P P P Pb P

P Pb P Pb P Pb P

     

    

    

    

   

   

     

 
       

 

    

   
 

as required. Note that 1 1NPb  
 
and 1 0N   . 

Like the two original Maple programs (Chapters 7 and 8) the amended versions also include 

an automated derivation of steady-state probabilities, performance measures and a graph 

depicting the relationship between the number in system and the corresponding probability. 

In addition, graphs are also produced for the probability of balking versus the number in 

system and the arrival rate versus the number in system. These graphs provide much insight 

into the behaviour of the queuing system when studied together. The mean balking 

probability is also determined which can be compared with its empirical equivalent. 

However, no data on the prevalence of balking at Rookwood NRC is available and 

furthermore it has been made clear through discussions with clinicians that balking is not a 

significant issue on the ground. However, it is not without mathematical benefit since it can 

reduce what would otherwise be divergent or neutral behaviour to the more favourable 

convergent behaviour. The clinicians point to reneging as the dominant type of behaviour that 

prevents queue length from becoming unmanageable. 

9.2.3 Reneging 

Reneging occurs when queuing customers leave before entering service. As with balking this 

could be for a number of reasons but it is typically because of the perceived waiting time. At 

Rookwood NRC it is not the patient that decides if and when to renege but the clinician. 

Reneging occurs if a patient is discharged from their current facility (either back home or to a 

non-NHS facility e.g. nursing home), transferred to another NHS facility, or dies. 

Again, the original Maple programs have been amended to include, as an option, the concept 

of reneging. Like balking, this does not involve changing the model when there are fewer 

customers in the system than service channels. However, whereas balking affects the LEFT 

matrices for 1r n N    (i.e. transitions from n in system to n+1 – see Ch 7.3.2.2.5), 

reneging affects the RIGHT matrices for 1r n N    (i.e. transitions from n in system to
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1n ).  Consider the transpose transition matrix for the system 2| | 2 | 3M E
 
with balking and 

reneging. 

 

 

 

 

 

 

 

 

0

0 1

1

1 2

1

3

3

3

3

2

2

3

2

3

2

2

0 1,0 1,1 2,0 2,1 2,2 3,0 3,1 3,2

0

1,0

1,1 2

2,0 2

2,1 2 2 2

2,2 2

3,0 2

3,1 2 2

3,2 2



 

  

 





 



 

 





 

 





 







 

 

 

 





 

 

 











 

Balking is incorporated by defining the arrival rates (in blue) by (9.2.2.1). Reneging is 

incorporated by populating the diagonal entries (in red) in the appropriate (square) RIGHT 

matrices with the rates of reneging. Should the customer in the queue renege then this does 

not affect the state of the system with regard to those in service, i.e. upon reneging the value 

of sn
 
is reduced by one but the value of 2n , the number of customers in phase two of service, 

remains unchanged. Thus, the rate of reneging given by the 3  correspond to transitions 

from 23,n 
 
to 22,n 

 
for

 2 0,1,2n  . It is stated in Pla et al, 2004 that the mean 

probability that an arriving customer will renege before entering service is calculated from 

the mean reneging rate divided by the mean arrival rate. For the system considered here, this 

is equal to 

 
0 1 1 1

1 1 1 1 1
0 0 0

r N N

n n n n n n n

n n n r n N n r

Pr P P P P
    



       

                    (9.2.3.1) 

The rates of reneging are determined as follows. When the system is in a particular state, 

there are a number of events that can occur. For example, if the system is in state 2,1   a 

service completion in either of the phases could take the system to state 1,0   or 2,2   or 

an arrival could take the system to state 3,1  . The probability of these events occurring are

2   , 2   , and 2   . Moreover, a transition rate matrix can easily be 

converted to a (in this case, left
5
) stochastic transition probability matrix as follows: 

                                                      
5
 Column values must sum to one 
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1
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1 2

1 1

1 1 2

2

2 2

2

3,1 3,1 3,2

3,2 3,2 3,3

3,3 3,3
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2 2 3,2
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0

1,0 2

1,1 2 2

2,0 2 2

2,1 2 2 2 2 2

2,2 2 2

3,0 2

3,1 2 2 2
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    





 
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  
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


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

  
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





 

  

   

  

  

  



 

 





 

For example, the probability of the customer in the queue reneging when in state 3,1   is

3,23,2 3,2

3,2 3,2 3,2 3,2 3,2
2 2 2 2 2

 

    

   
         

. It is clearly more intuitive to 

ask the user to stipulate such probabilities than the actual transition rates. For the columns 

that involve reneging 

 (sum of all other non-negative column values) p          (9.2.3.2) 

and so these probabilities are converted to rates by the formula 

 (sum of all other non-negative column values) 1p p         (9.2.3.3) 

In total, N r  values of p, or nPr , the probability of reneging when there are 1r n N  

customers in the system, are required. There are two options to define these probabilities. The 

first is perhaps the most intuitive. The nPr
 
are calculated by summing the individual 

probabilities of reneging for each customer in the queue. The individual probability of 

reneging, n r  , is the probability of the  -thn r customer in the queue reneging. It is 

obvious that this should be a non-decreasing function and, as with balking, there are many 

ways to define this. The following function is chosen: 

n r

n r

N r



 

 
  

 
   1,...,n r N          (9.2.3.4) 

This is similar to (9.2.2.2) with the addition of a second parameter,  , that acts as a scaling 

factor. If there is only one customer in the queue then the probability of reneging is simply
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1 1rPr   . If there are two customers in the queue then the probability of reneging is

2 1 2rPr     and so on. Hence 

 
1

n r

n i

i

Pr 




     1,...,n r N          (9.2.3.5) 

Note that the two parameters must be chosen such that 1NPr  . However, such a description 

of reneging probabilities is not shared by the data (see the graph corresponding to the 

probability of reneging based on number in queue – Ch 6.4.1). 

A more flexible approach is offered as an alternative. This does not take into account the 

reneging probabilities of individuals and is defined 

n

n r
Pr

N r




 

  
 

   1,...,n r N          (9.2.3.6) 

Note NPr  is always equal to the scaling parameter, 0 1  . When 0 1   the curve of 

(9.2.3.6) is concave downward, when 1   it is concave upward and when 1   it is linear. 

Similar to the original Maple programs steady-state results and performance measures are 

output. It is important to note, however, that these performance measures are pertinent to all 

customers and not just those that ultimately enter service. Thus the expected waiting time, 

 E W , is actually defined as the mean time until a referral is removed (either because the 

patient is admitted or because they have reneged). A formula for the expected waiting time 

for those that are ultimately admitted has not been found. The interpretation of the expected 

total time in system,  E T , has also changed to include reneged referrals. This means that it 

is possible that    E T E  , the expected service time. These changes limit the usefulness 

of these performance measures and care must be taken in their interpretation. Unlike balking 

a nonzero probability of rejection is attainable since it is possible to reach the states 

corresponding to n N . The program outputs two graphs; one, as before, plotting the 

number in system against probability, and the other plotting the reneging probability over the 

same range ( 0,1,...n N ). The mean reneging probability (9.2.3.1) is also output. 

Upon testing the program it was noticed that the addition of many more nonzero fields in the 

transition matrix led to increased computational time. To get around this an optional 
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parameter, 1r N   , is introduced that can be defined as the minimum number in system 

at which reneging occurs. Therefore, instead of having many negligible values for the nPr

when the number in queue is small, these values are zero. This obviously has consequence for 

the function definitions above; however, a commentary of this is omitted. 

It can be seen from Ch 6.4.2.2 that average occupancy in recent years is about 21; whilst from 

January 2010 there have been about 25 available beds at the unit. Since there has always been 

a queue (from January 2010 to April 2011 – Ch 6.4.1) it can be surmised that the major 

limiting factor of occupancy is the skill mix of the staff in relation to the demands of the 

patients. Since the queuing model is not capable of representing such behaviour the approach 

taken is to set the number of service channels at the average occupancy (i.e. 21r  ) in order 

to ensure the properties of the queue are well represented. The probability of having fewer 

patients in the system than beds should be very small indeed.  

With a given service rate and number of service channels, this can only be achieved by 

setting the arrival rate at a sufficiently high value. However, even when the arrival rate is set 

equal to the maximal rate of departure (see second graph of this chapter) there is still a 15% 

chance that the system is in a state in which there is at least one bed available. Since this 

occurs when the traffic intensity is unitary this represents the lowest possible probability of 

such an event (as traffic intensity cannot exceed for stationary results). Even if this 

probability is acceptable, the associated characteristic of the queue is certainly not. It has 

been surmised from the referrals dataset that there are about sixteen ready referrals in the 

queue on average (min 10, max 25), which is obviously not attained by the initial model (Ch 

9.2.1). It would appear that the third graph of this chapter describes a system which attains 

realistic properties of the queue. However, the probability of at least one empty bed is a 

wholly unacceptable 62%. 

It is indeed true that a sufficiently high arrival rate is the only way to achieve a negligible 

probability of having fewer patients in the system than beds ceteris paribus. However, 

reneging or balking must also be included to control for the limiting behaviour of the queue. 

9.2.4 Balking and reneging model 

The two original Maple programs have been amended to include, as options, balking and 

reneging. 
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9.2.5 Second version 

The 1| | 21| 50M E
 
system of Ch 9.2.1 is now revisited to incorporate the concepts of balking 

and reneging. According to the Arrivals dataset (Ch 6.4.1) there is always a queue for the 

NRC. In the model, this would be put down to 100% bed occupancy (despite the possibility 

that there could well be empty beds due to insufficient human resources). It is therefore 

essential to ensure that the empirical and model properties of the queue are comparable. The 

metrics that will be assessed are: mean effective arrival rate, mean waiting time, mean 

number in queue, coefficient of variation of number in queue, and mean reneging probability. 

Note that the mean balking probability, Pb , is excluded because empirical results are not 

known. 

The empirical result for   has been determined using the 168 non-censored and right-

censored observations of the referrals dataset. The empirical result for  E W
 
has been 

calculated using all 183 observations but since 27 of these are either left or right-censored the 

result is a lower bound on the true value
6
. An explanation of the process deriving empirical 

results for 
qE L    

and . . qCV L    can be found in Ch 6.4.1. Finally, Pr  is determined from 

the table of results in Ch 6.4.1. 

The process of fitting the model is as follows. The service rate and number of servers are 

fixed at the values ascribed at the outset of this subchapter. The arrival rate, balking 

parameter,  , and the two reneging parameters,   and , are then varied in order to attain 

results for the aforementioned queue properties congruent to their empirical counterparts. The 

probabilities of reneging are given by the alternative description, i.e. (9.2.2.3) since the 

approach involving the addition of individual reneging probabilities retuned unrealistic 

results. The remaining questions are therefore: how are the parameters varied and how is 

congruency measured? 

There are many options available. An exhaustive search (see Ch 4.3) of the parameter values 

(to a reasonable number of decimal points) is an option. However, this would be 

inappropriate for more advanced models that take significant time to evaluate. In such cases, 

a heuristic method could well be employed. Both of these approaches rely on the 

specification of soft and hard constraints. An example of a hard constraint is 1NPr  . The 

                                                      
6
 Since they represent longer admissions (see Ch 6.4.1)  



Chapter Nine The Rookwood Model 254 

(weighted) difference between the model and empirical queue properties would form the 

objective function, the aim of which is to minimise. 

Since this is meant to be a simple model a straightforward alternative is favoured. The five 

queue properties have been compared for a number of sensible values of , , ,    . After a 

few experiments good results were found for 0.3885, 6, 0.702, 1.432       . 

Table 9.1 Summary of empirical and model performance measures

 

 

 

 

Figure 9.4 Probability density graph for number in queue with reneging and balking 

As can be seen the shape of the graph looks accaptable c.f. Figure 6.13. This is supported by 

the congruency of measurements based on the first two moments (
qE L    

and . . qCV L   ) for 

the empirical and model results. The model  E W
 
attains the lower bound of its empirical 

counterpart, but little else can be surmised from this value. What is of particular concern is 

the disparity in values for the mean reneging probability. This translates to an annual 

difference of about 19 reneged referrals (annual demand is 0.36364*365). Clearly something 

is fundamentally wrong. 

Consider the notion that under steady-state conditions the long term arrival rate is equivalent 

to the long term departure rate (see (7.3.2.2.7)). That is 

  
1

E Pr  


                 (9.2.5.1) 

 
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0.75 0.613

q

q

E W

E L

C V L
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
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  
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where   is the mean occupancy of service channels defined as (7.3.2.2.9) and, in this case, 

  1E   . 

Note that for all systems considered by the computer program the equation (9.2.5.1) is always 

balanced. If Pr  is adjusted then either   and/or   will adjust accordingly to enforce the 

equality of (9.2.5.1). The probability of reneging, given by (9.2.3.1), can be adjusted by 

altering the reneging rates which, in turn, are adjusted by altering the reneging parameters   

and   through (9.2.3.3) and (9.2.3.6). There is not a limitless range of values within  0,1
 
that 

can be attained for Pr . This is because the steady-state probabilities in (9.2.3.1) are, of 

course, dependent on the reneging rates and act as a stabiliser. 

For example, if balking is not employed and 
1

1
N

n

n r

P




  (i.e. , 0,Nr P     ) both before 

and after a change to the reneging rates then this change is absorbed by the consequent 

change in 
nP
 
without altering the values of Pr . However, if through an adjustment to the 

reneging rates the mean occupancy,  , has decreased then Pr  must have increased. This is 

understandable since if there are more reneged referrals then there are fewer customers that 

make it to service. If, instead, 
N RP P

 
has increased (above zero) then    which means 

that Pr  must have decreased. Again this is understandable, since the length of the queue 

would increase if fewer customers renege. Indeed balking also has an effect on   which 

affects the 
nP . 

To digress further, the effect of a change to the scaling factor,  , and the exponent,  , on 

both the expectation and variance of queue length is investigated. Changing the scaling factor 

has the effect of linearly stretching or contracting the nPr
 
defined in (9.2.3.6) whilst altering 

the exponent changes the concavity of the nPr
 
(note that 0nPr 

 
for n r  and NPr  ). 

First, the exponent is fixed (at one) and the scaling factor varied ( 0.38, 0.0067522   , 

no balking). 
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Figure 9.5 Probability density graph for number in system with varying scaling factor of 

reneging 

When the scaling factor is increased the likelihood of reneging is greater. Therefore the mean 

number in system/queue is reduced. Since, in this case, it is improbable for the system to be 

in a state in which sn r
 
(because r  ) this has the effect of bunching up the 

probabilities; thus reducing the variance. Next, the exponent is varied whilst the scaling 

factor is held constant at 0.8. 

 

Figure 9.6 Probability density graph for number in system with varying exponent of reneging 
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There are two types of behaviour present in this graph that relate to 1   and 1  . As   is 

increased from zero to one the graph of the nPr
 
becomes less concave downward and more 

linear. This has the effect of decreasing the rate at which the nPr
 
increase for n r  close to r 

but increasing it for n N  close to N up until, when 1  , the rate of increase is uniform 

over n. This leads to a larger mean number in system/queue since there is less difference 

between the nPr
 
for small n r  and so states which correspond to a larger number in system 

become more accessible. This also has the effect of increasing the variance since more states 

are frequented by the system. 

As   is increased from one the graph of the nPr
 
becomes less linear and more concave 

upward. When    not only does the numerical difference between the nPr
 
become 

negligible for the majority of values of n R  but so too do their actual values. This causes 

the mean number in system/queue to grow further. However, as n R  the rate of increase 

grows rapidly, thus reducing the steady-state probability density beyond this point, and 

obtaining a graph shape more like a spike (lower variance). These two forms of limiting 

behaviour are evident in the example above. 

 

To return to the issue of a lack of congruency in Pr  for empirical and model results, it may 

be stated that a higher value of Pr  is only attainable at the expense of other performance 

measures. For example, the n
 
could be chosen such that   is lower, and thus Pr  is larger 

(to a limit) but then 
qE L    

and  E W
 
become negligible. The only way

7
 to increase the 

congruency of all four performance measures is to change the fundamental parameters of the 

system, i.e. , , ,r N  . But surely it is wrong to meddle with measures that have been directly 

obtained through raw data? Whilst this is true, it is important to point out that the datasets 

these have been obtained through are representative of different timescales. , r  and N  have 

all been deduced from the Arrivals dataset (January 2010 to April 2011) whilst   is deduced 

from the Service dataset (January 2003 to May 2011). Upon discussions with clinicians it was 

                                                      
7
 Assuming the nature of the system remains, i.e. Markovian arrivals and services, first-in first-out etc 
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learnt that there was a gut feeling
8
 that in recent months the LOS may have been unusually 

high due to increased bed-blocking. 

9.2.6 Third version 

Obviously (9.2.5.1) does not hold with the empirical results 0.36364, 0.006698,    

21   and 0.75Pr   but using only ,   and Pr  the equation is solved for  ; 

 
 1 4329

0.004329
999989

Pr





             (9.2.6.1) 

Therefore, it is inferred that the average LOS for patients within the sixteen months from 

January 2010 to April 2011 is roughly 231 days – about 80 days more than the eight year 

average obtained from the Service dataset. After some
9
 fine-tuning a good fit was obtained 

with parameter values 0.3879, 6.1, 0.70405, 1.073       . 

Table 9.2 Summary of empirical and model performance measures

 

 

 

 

Figure 9.7 Probability density graph for number in queue with reneging and balking 

Note that this model is constructed only from the Arrivals dataset; taken from a period of 

time in which LOS is ‘unusually high’. The model can now be used for what-if analyses. 

                                                      
8
 Hard to verify since many patients admitted in 2010 and 2011 were excluded from the NHS Trusts data request 

since at the end of January 2011 they were still inpatients 
9
 Took approximately 30 minutes 

 

Empirical Model

0.36364 0.36364

41.04 43.54

15.83 15.83

. . 0.217 0.217

0.75 0.75

q

q

E W

E L

C V L

Pr



  

  
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However, before any hypothetical scenarios can be considered it is necessary to produce a 

cost-benefit measure in order to compare various configurations. 

This measure could be in the form of a single-valued cost function, whose minimum value is 

sought. The cost, per unit time, (in this case, days) is given by the formula 

 
 

/ /

/

Cost function  = Bed cost

 1 Deterioration cost Reneging cost

day day

q dayPr E L Pr







        

  

The (average) bed cost per day for an occupied bed is £480 (2011). The (average) 

deterioration cost per day is much harder to quantify. This represents the cost to restore the 

functional ability of patients to the level at when their (ready) referral was received. By and 

large, the longer a patient has queued the more they have deteriorated, and thus, the more 

therapy is needed to restore functionality. Without an in-depth study it is impossible to 

quantify this cost. The same applies for the reneging cost. This represents the cost of a patient 

reneging from the queue. Since the patient is not admitted to the NRC the cost is not borne 

directly by Rookwood hospital but by the wider community (social services, other NHS 

facilities etc) as a result of the patient not receiving the specialist rehabilitation. The 

deterioration and reneging costs serve only to act as a penalty to discourage excessive waiting 

time and reneging and do not form part of operating costs. However, due to the complexity 

associated with the determination of these costs an alternative measure of cost-benefit is 

favoured. 

The financial operating costs are simply compared with the performance measures for a 

particular configuration. The performance measures are given in Table 9.2 for this version of 

model one and the annual operating cost of the NRC is calculated as 

 21 £480 365 £3.679m    

9.2.6.1 Hypothetical Scenario One: Number of beds (2010-2011) 

It is mentioned in the outset of Ch 9.2 that the (simple) model under consideration here is 

analogous to Route 1 of Figure 6.8. In the corresponding subchapter to this route (Ch 6.2.1) it 

is stated that the only reasonable variable in this model is the number of service channels. A 

cursory example of a what-if type analysis in this variable is considered using the Maple 

program (Ch 7.3.2.2.7) with parameters of the third version but with arrival rate varied such 

that effective arrival rate is approximately equal to its empirical counterpart (0.36364). 
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Table 9.3 Performance measures and costs for varying number of beds

 

Number of beds: 19 20 21 22 23

0.36362 0.36364 0.36364 0.36363 0.36364

19 20 21 22 23

0.774 0.762 0.75 0.738 0.726

30.02 31.6 33.18 34.76 36.34

48.06 45.77 43.54 41.35 39.21

17.47 16.64 15.83 15.04 14.26

Cost pa £3.329m £

q

Pr

Tp

E W

E L





  

3.504m £3.679m £3.854m £4.030m

 

So, is the 3.2% reduction in the probability of reneging and 3.16 patient increase in 

throughput worth spending an extra £350k to raise capacity from 21 to 23? Or, in times of 

austerity, is the decrease in throughput to 30 patients per year acceptable if the budget is to be 

reduced to three and a third million? 

9.2.6.2 Evaluation 

What would appear to be a good fit has been obtained for the third version (Ch 9.2.6). Four of 

the five measurements assessed were accurate to at least four significant figures. It is not easy 

to assess the accuracy of the mean waiting time since only a lower bound on this value was 

attainable from the referrals dataset. The accuracy is in fact dependent on the extent to which 

the assumptions of this model are correct. The validity of the assumptions made by the model 

is forthwith assessed. 

Arrival distribution 

Assumption: Random (Poisson) arrivals. Validity: Justified. The inter-arrival times were 

shown to be exponentially distributed in Ch 6.4.1. 

Assumption: Balking. Validity: Unknown. Real-life prevalence not known. 

Service distribution 

Assumption: Homogenous servers. Validity: Unjustified. There are significant differences in 

LOS for patients of differing attribute (Ch 6.4.2.1). 

Assumption: Exponential service distribution. Validity: Unknown. Whilst the exponential 

distribution provides a reasonable fit to the Service dataset LOS (Ch 6.5.3.1) there was no 

LOS data available for the period of time considered here. 
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Assumption: Service rate = 0.004329. Validity: Unknown. Real-life data not available. 

Number of service channels 

Assumption: # servers = # beds. Validity: Unjustified. Occupancy depends on skill mix of 

staff and needs of patients (see Ch 1.2). The number of beds is an upper bound on occupancy. 

Capacity of system 

Assumption: Capacity = 50. Validity: Justified. Just because the number in system did not 

exceed fifty in the sixteen months of the Arrivals dataset this does not mean that it never 

does. However, most of the time the number in system has been well below this value and if 

it is indeed true that patients stayed longer during this time then this would only serve to 

reduce this number further. 

Queue discipline 

Assumption: First-in first-out. Validity: Unjustified. Queue is priority-based at Rookwood 

NRC (see Ch 1.2). 

9.2.7 Hypothetical Scenario Two: Number of beds (2003-2011) 

A what-if scenario similar to that of Ch 9.2.6.1 is now studied but for the period of time from 

2003 to 2011. In this case (9.2.5.1) is solved for the probability of reneging, Pr , since an 

empirical measure of this is not available for the timescale considered here. It can sensibly be 

assumed that the (effective) arrival rate during the sixteen month window of the Arrivals 

dataset is indifferent from its value over the eight years of the Service dataset. This 

assumption is valid since balking is not ‘a significant issue on the ground’ and it is used only 

to promote convergent behaviour of the queue. The mean LOS for this eight year period has 

been found to equal 149.3 days. It is assumed that the mean occupancy of the system is 

equivalent to the number of service channels, 21. Using these it is found that 0.614Pr  . It is 

impossible to determine numerical targets for the remaining three summary measures

 , qE W E L    
and 

qCV L    
because these are not available for the 2003-2011 timescale. It 

would be foolhardy to simply state that because LOS is, for example, 36% less (i.e. 231 to 

149 days) that  E W
 
and 

qE L    
target values should be 36% less than those given in Table 

9.2. 

There is therefore a fair amount of flexibility with regard to choosing the controls , , ,     

as it is only required to match two summary measures ( 0.36364  and 0.614Pr  ). It is 
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therefore essential for the user to inspect  , qE W E L    
and the probability graph of number 

in system to ensure that sensible values of the controls are selected. Appropriate values are 

found to be 0.3642, 10, 0.9, 1.2       . In an identical approach to before (Ch 9.2.6.1) 

the number of beds is varied whilst ensuring the effective arrival rate is (approximately) equal 

to 0.36364. 

Table 9.4 Performance measures and costs for varying number of beds

 

Number of beds: 19 20 21 22 23

0.36364 0.36364 0.36364 0.36364 0.36364

19 20 21 22 23

0.65 0.632 0.613 0.595 0.576

46.45 48.89 51.34 53.78 56.23

34.89 32.86 30.89 28.96 27.09

12.69 11.95 11.23 10.53 9.85

Cost pa £3.329m £

q

Pr

Tp

E W

E L





  

3.504m £3.679m £3.854m £4.030m

 

Perhaps of most interest is the mean probability of reneging and the throughput since the 

expected waiting time and length of queue include patients who will ultimately renege. 

Questions similar to those posed in Ch 9.2.6.1 can be asked. 

In changing the number of service channels it is assumed that mean LOS, and so treatment 

intensity, is unaltered. Therefore, the amount of treatment provided must increase or decrease 

by the same proportion as the number of beds increase or decrease. If the number of beds is 

increased then the additional cost of higher occupancy is borne from requiring more staff to 

achieve the same intensity of treatment for each patient. 

9.3 Model Two 

Whilst the third version of model one provides what would appear to be a very good fit (by 

the comparison of performance measures) it lacks the complexity to represent the various 

components of the system that exist in real-life at Rookwood NRC and limits the scope of a 

what-if analysis. Such a trade-off between simplicity and realism has been introduced in the 

outset of Ch 6.2. This subchapter introduces the various components of the system that are 

eminent at Rookwood NRC and culminates in a summary (Ch 6.2.7) which illustrates a 

number of possible combinations of components that can be used as part of a queuing model. 
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The model of this subchapter is a midpoint between the relatively simple model one and the 

more complex model three. It is analogous to Route 3 of Figure 6.8. 

That is, LOS is partitioned to active and blocked (Ch 6.2.2) and patients are grouped by 

treatment control factors (Ch 6.2.6). As before, treatment intensity is not (yet) a consideration 

and so stage two and three are excluded. The Coxian and exponential distributions are fitted 

to active and blocked LOS respectively (Chapter 8) whilst a disconnected system (Ch 8.4.2) 

with multiple classes of server (Ch 8.4.2.1) is used to account for the patient groups.  

9.3.1 Phase One; Stage One: Patient groups 

In the first stage an appropriate number, and criteria, of patient groups are determined for 

which active (not total) LOS is similar. This is done using regression tree analysis. However, 

there is a problem here as only 89 of the 358 patient episodes have a date ready for discharge 

(Ch 6.4.2.3). To overcome this, the total LOS is used in the regression tree analysis. Using 

total, and not active, LOS in this analysis means that patient groups are deduced for which 

total LOS is similar. By assuming homogeneity of blocked LOS within these groups it can be 

inferred that active LOS is also similar. 

Treeworks
10

 is used for the regression tree analysis. The dependent variable is total LOS 

whilst the independent variables are age on admission, gender, local health board, primary 

diagnosis, admission source, admission method, and discharge destination (see Ch 6.4.2.1). 

First, the data is split into two sets based on the branching
11

 of a certain variable that 

produces the largest reduction in variance. 

                                                      
10

 A CART (classification and regression tree) analysis program written by Evandro Leite and Paul Harper 
11

 Partition of data into sets based on variable value 
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Figure 9.8 Choice of branching variables in Treeworks for first split 

Clearly, discharge destination is the variable that, if branched on, would create the largest 

reduction in variance (17%). However, this is not the sole determining factor of which 

variable to branch upon. There are two conditions that must be met. First, the number in each 

group, , 1,...,in i p  where p is the number of groups after the split (at this stage 2p  ), must 

be sufficiently large (since the accuracy of a fitted distribution depends on the sample size). 

Second, the number of service channels assigned to the integrated system of each group (see 

Ch 8.4.2), ir , must be sufficiently large so that the likelihood of an empty bed in one group at 

the same time as a queue in another is very low indeed. The proportion of service channels 

assigned to the integrated system of each group is equal to the proportion of bed days 

occupied by patients of that group. Therefore 

 

1

total

i i
i p

total

t t

t

n LOS
r r

n LOS



 


            (9.3.1.1) 

must be large enough (note r is the total number of service channels). Branching on discharge 

destination yields 
1 1 2 2223, 99.86, 136, 231total totaln LOS n LOS   

 
which gives

1 28.71, 12.29r r  . Here, both in
 
and ir  

are sufficiently large. 



Chapter Nine The Rookwood Model 265 

After much deliberation the following splits have been made (21% reduction in variance) 

based on the aforementioned criteria. 

 

Figure 9.9 Final tree with four patient groups 

Table 9.5 and Table 9.6 summarise some details of each patient group. 

Table 9.5 Attributes of appropriate branching variables for each patient group

Group Discharge destination Admission source Diagnosis

Usual residence, Cardiff & Vale hosp,
1

Temporary residence Usual residence

Usual residence,
2 NHS hosp

Temporary residence

Internal transfer (gen), Other
3

Tru

GBS, MS, Anoxia,

st (gen), Non-NHS nursing home MS &other neuropathies

Internal transfer (gen), Other
4 ABI, TBI, other

Trust (gen), Non-NHS nursing home

 

Table 9.6 Sample size, average length of stay and number of beds for each patient group

Group,

1 183 86.27 6.2

2 40 162.02 2.55

3 41 175.49 2.83

4 94 255.21 9.42

total

i i ii n LOS r
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The 
ir  

must obviously be integer
12

 and are thus rounded such that 

1 2 3 46, 3, 3, 9r r r r                (9.3.1.2) 

The effect of rounding up and down the number of beds for a group is that constituent 

patients are over and under-represented in the model (albeit not by that much). Note that 

whilst discharge destination, a retrospective predictor of LOS, can be used in the queuing 

model, it cannot be used in a prognostic model (Ch 6.2.6). A regression tree excluding this 

variable is produced (with nine leaves) and is available in Appendix 9.1. However, the 

reduction in variance here is only 12%. If discharge destination can be estimated pre or on-

arrival then a tree with eight leaves can be produced with a reduction in variance of 23% 

(Appendix 9.2). 

Note that the number of patients from each group at Rookwood NRC varies from week to 

week in real-life. However, since the model is constructed under the steady-state condition 

these partitions are assumed to be fixed in the long run. 

9.3.2 Phase One; Stage Four: Queuing model 

9.3.2.1 Task One: Determine target arrival rates 

It is known (Ch 6.4.1) that the (effective) arrival rate of ready referrals to Rookwood NRC is 

0.36364. The task now is to determine what the effective arrival rate into each of the four 

disconnected queuing systems (that represent patient groups – see Ch 8.4.2) should be. On 

the face of it, such a task would appear trivial – first, simply find the proportion of the 168 

patient episodes of the Arrivals dataset (Ch 6.4.1) that belong to each of the patient groups. 

Then, if half of the patient episodes are from group three then it can be surmised that the 

effective arrival rate for the third queuing system should be 0.18182 (note that reneging from 

this group would have to be very high since the throughput, with only three servers and a 

LOS of 175 days, is very low indeed). 

However, since the (NHS Trust) attributes (age, gender, diagnosis etc) of referrals are 

unknown, an alternative approach is necessary. Essentially, the proportion of total arrivals to 

each patient group is set equal to their proportion of total throughput. That is, the arrival rate 

into the system that represents patient group i is given by 

                                                      
12

 Since whilst in the model the number of beds in each group must be fixed, in reality it varies over time 

depending on the demographic of the waiting list 
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1

i

total

i
i p

t

total
t t

r

LOS

r

LOS

 



 


         (9.3.2.1.1) 

This yields ( 4p  ) 

 1 2 3 40.18010, 0.04795, 0.04427, 0.09132            (9.3.2.1.2)  

The drawback to this approach is that the mean probability of an arriving customer reneging 

before entering service is assumed to be equivalent across all queuing systems (patient 

groups). The proof of this is as follows. 

Extending (9.2.5.1) to each group i (note:   total

i iE LOS  ); 

  
1

i i i i iE Pr  


             (9.3.2.1.3) 

Assuming that the model i s are chosen such that the effective mean arrival rates, i , into 

each group are equal to (9.3.2.1.2) and that the mean occupancy of each disconnected system 

is approximately equal to the number of servers yields 

  
1

i i i i ir E Pr 


             (9.3.2.1.4) 

and substituting (9.3.2.1.1) gives 

 
 

 
   

1

1

1

1

1
i i

i i ip

t t

t

r E
Pr r E

r E











 
   

 
      (9.3.2.1.5) 

which simplifies to 

 

 
1

11

p

t t

t
i

r E

Pr






 

 


        (9.3.2.1.6) 

Note the absence of dependence of the 
iPr
 
on i. With 0.36364   

0.614iPr            (9.3.2.1.7) 
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Therefore, the mean probability of an arriving customer reneging before entering service is 

the same for each of the four queuing systems. Moreover, and as is to be expected, the value 

of this probability is approximately equal to that of the second version of model one (c.f. Pr  

in first table of Ch 9.2.5). 

Without the appropriate data it is not possible to assess the validity of the result (9.3.2.1.7). It 

will suffice to say that in real-life it is entirely plausible that the diagnosis and admission 

source (or perhaps other attributes such as age) could influence the probability of reneging. 

9.3.2.2 Task Two: Determine buffer sizes 

Buffer size (or maximal number of customers in queue) for each patient group, ib , is deduced 

by the proportion of beds allocated to each group multiplied by the total buffer size, 29b  . 

Thus, 1
1 2 3 4

6
29 8.29, 4.14, 12.43

21

r
b b b b b

r
        . Of course the ib

 
must be integer 

and so, taking 

i
i

r
b b

r

 
  
 

           (9.3.2.2.1) 

yields 1 2 3 48, 4, 12b b b b    . Note that here b has been reduced to 28. 

9.3.2.3 Task Three: Fit service distributions 

The third task is to fit appropriate distributions to active and blocked LOS for each patient 

group. However, since not all patient episodes have a specified date ready for discharge there 

is incomplete information. Of the 183, 40, 41 and 94 observations in the patient groups only 

46, 13, 7 and 23 patient episodes have a specified date ready for discharge. This problem is 

dealt with as follows. 

For each patient group the observations with complete information are used to estimate the 

date ready for discharge for those with empty fields. For the ˆ
i in n

 
observations that have 

complete information a mean proportion, ˆ 1active

iP  , of active to total LOS is determined. If

,i jLOS
 
represents the LOS of the j-th observation with complete information of patient group 

i then, 

 

ˆ
,

1 ,

ˆ ˆ
i

activen
i jactive

i itotal
j i j

LOS
P n

LOS

         (9.3.2.3.1) 
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Therefore, the mean proportion of blocked to total LOS, ˆ blocked

iP , is given by 

 ˆ ˆ1blocked active

i iP P           (9.3.2.3.2) 

Since the exponential distribution is used to model blocked LOS (Chapter 8), 

 
1

exp
ˆ

blocked

i

total blocked

i i

LOS

LOS P

 
 
 

        (9.3.2.3.3) 

This distribution is now sampled to obtain exponential variates, , 1,2,..,k i is k n n  , for the 

observations with incomplete information using the relation
13

 

 ˆ ln( )blocked

k is P rnd            (9.3.2.3.4) 

where 0 1rnd   is a randomly generated number. Therefore, through (9.3.2.3.3), 

 
,

,

blocked

i k

ktotal

i k

LOS
s

LOS
          (9.3.2.3.5) 

and since the ,

total

i kLOS
 
are known for the i in n

 
observations with incomplete information, 

the generated values for blocked and active LOS are 

 
, ,

, , ,

blocked total

i k k i k

active total blocked

i k i k i k

LOS s LOS

LOS LOS LOS

 

 
  1,2,.., i ik n n     (9.3.2.3.6) 

However, the mean proportion of blocked to active LOS for each patient group is not 

necessarily the same for the ˆ
in
 
episodes that have information on date ready for discharge as 

it is for the in
 
episodes that include generated values. Defining 

 

ˆ ˆ
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1 1 1, , ,
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,

1 1,

ˆ ˆ1 1ˆ ˆ

i i i i

i i i
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n n LOS n n


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

 

 
    

 

   

  


ˆin



    (9.3.2.3.7)  

                                                      
13

 Easily derived using inverse transform sampling 
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using (9.3.2.3.5), it can be ensured that 
blocked

iP
 
is closer to the value of ˆ blocked

iP
 
if a linear 

scaling function, ia , is attached to the exponential variates such that 

 

ˆ

1

ˆ 1ˆ ˆ
i in n

blocked blockedi
i i i k

ki i

n
P P a s

n n





           (9.3.2.3.8)  

It follows that 

 
 

ˆ

1

ˆˆ

i i

blocked

i i i

i n n

k

k

n n P
a

s




 
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
          (9.3.2.3.9)  

Here 

 
1 2 3 40.15797, 0.16263, 0.30271, 0.30208blocked blocked blocked blockedP P P P       (9.3.2.3.10) 

Using Table 9.6, (9.3.2.3.10) and the formulae
blocked blocked total

i i iLOS P LOS  and

active total blocked

i i iLOS LOS LOS  ; 

 1 2 3 472.64, 135.67, 122.37, 178.12active active active activeLOS LOS LOS LOS      (9.3.2.3.11) 

 1 2 3 413.63, 26.35, 53.12, 77.09blocked blocked blocked blockedLOS LOS LOS LOS     (9.3.2.3.12) 

Since ,

active

i kLOS
 
and ,

blocked

i kLOS
 
are now known  1,2,..., ik n  , appropriate distributions can 

now be fitted to the (empirical and generated) data for active and blocked LOS. This is done 

using a similar approach to that employed in Ch 6.5. For active LOS the aim is not to find the 

best fitting distribution but to find the most appropriate Coxian distribution (for each group). 

That is, log-likelihood value can always be improved upon
14

 with an additional phase, but 

this increases the size of the transition matrix to be solved (Chapter 8) and so increases 

complexity. An appropriate distribution must balance goodness of fit with tractability (AIC 

and BIC can be used to measure this). 

                                                      
14

 Or strictly speaking – can never be worsened 
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Figure 9.10 Coxian approximations to active length of stay for each patient group 

1,1 1,2 1,1

2,1 2,2 2,3 2,1 2,2

3,1 3,2 3,3 3,1 3,2

P.G. 1 (2 phase): 0.0734, 0.0157, 0.08

P.G. 2 (3 phase): 0.1238, 0.1238, 0.0068, 0, 0.1813

P.G. 3 (3 phase): 0.0097, 0.0328, 0.0648, 0.5, 0.6721

P.G

  

    

    

  

    

    

4,1 4.2 4,1. 4 (2 phase): 0.0171, 0.0084, 0    
(9.3.2.3.13) 

It would appear that a good fit to active LOS is attained for each patient group (respective chi 

square test statistics: 0.46, 0.17, 0.54, 1.21). The only fit that is not so good is that of patient 

group four. Clearly additional phases are required to better represent this data but, with nine 

service channels and a buffer size of twelve, an extra phase would incur a transition matrix of 

dimension 3355. In fact, to aid tractability, 
4,1 , the probability of transition to the blocked 

phase, has been fixed at zero to reduce the number of nonzero entries in the transition matrix 

(see, for example, (8.2.1.1.2)). The results of Ch 8.3.1.6 show how it is not just the dimension 

of the transition matrix but also its density that determines the speed of solution. This 

effective reduction to a two term hypo-exponential distribution (Ch 5.5.3.1) has done little in 

reducing the quality of the fit. 
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Fitting the exponential distribution to blocked LOS is a far easier task as the two parameter 

estimation methods (ML and method of moments) agree on the value of the single parameter 

to be estimated. Therefore, by (5.5.1.1.2), 

  

  

Figure 9.11 Exponential distributions to blocked length of stay for each patient group 

 
1,3 2,4 3,4 4,0.0734, 0.0380, 0.0181, 0.0130x                    (9.3.2.3.14) 

Again, what would appear to be a good fit has been attained for each patient group. It is 

conjectured that a hyper-exponential distribution may well be better suited to these data; 

particularly patient group four. 

By definition the mean of each approximating distribution for blocked LOS is equivalent to 

the mean of the (empirical and generated) data. That is, one over the results of (9.3.2.3.14) 

returns the values (9.3.2.3.12). However, this is not the case for active LOS. Therefore, using 

(8.3.1.5.9) with (9.3.2.3.13) gives 

 1 2 3 472.22, 136.55, 120.87, 177.53active active active activeLOS LOS LOS LOS      (9.3.2.3.15) 



Chapter Nine The Rookwood Model 273 

Note these are similar but not equal in value to (9.3.2.3.11). 

9.3.2.4 Task Four: Construct queuing model 

The final task of phase one is to solve the system 

2 3 3 2, , , | , , , | 6,3,3,9 | 8,4,4,12M M M M C M C M C M C M     

Service rates are fixed at (9.3.2.3.13) and (9.3.2.3.14); arrival rates are not known; and the 

balking and reneging parameters are also not known. As before (Model One; Third version – 

Ch 9.2.7) the values of these are determined by targeting the effective arrival rate and mean 

reneging probability but this time, for each patient group – (9.3.2.1.2) and (9.3.2.1.7). 

As before, there is a fair amount of flexibility with regard to choosing the controls , , ,     

as it is only required to match two summary measures (for each patient group). It is therefore 

essential for the user to inspect  , qE W E L    
and the probability graph of number in system 

to ensure that sensible values of the controls are selected. The expected waiting time and 

length of queue for the entire disconnected system can be calculated through (8.4.2.2.2) and 

(8.4.2.2.3). 

The result (8.4.2.2.2) can be used to deduce a system average of either W or T denoted by P. 

This formula obtains a system average, 
sysE    , by summing the product of the class 

performance measure,  iE  , and the respective probability that a customer on exit has 

undergone service at that class
15

, 
1

p

i j

j

 


 , for each class, 1,...,i p . However, with the 

introduction of reneging
16

 these probabilities require a different formula. Since 1 iPr

represents the probability that an arriving customer at class i enters service, the probability 

that a customer on exit of the system has undergone service at that class is

   
1

1 1
p

i i j j

j

Pr Pr 


  . Therefore 

      
1

1 1

1 1
p p

sys i i i i i

i i

E Pr Pr E 



 

   
         

   
       (9.3.2.4.1) 

                                                      
15

 Equivalent to the respective probability that an arriving customer enters that class 
16

 Not balking as the effective arrival rate is, of course, dependent on the balking parameter through (9.2.2.1) 
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Note that the target for each i  
and 

iPr
 
is given by (9.3.2.1.2) and (9.3.2.1.7) respectively. 

The result (8.4.2.2.3) is unchanged with the introduction of reneging and balking. 

The probability graph of the (total) number in system is determined through the 
nP . To 

calculate this for 0,1,....,49n   the (readily available) ,i nP
 
17

 are used alongside (8.4.2.2.1) 

such that 

 
1 2

1 2

1, 2, ,

, ,....,

....
p

p

n n n p n

n n n

P P P P


       

1

0,1,....,i i

p

i

i

n r

n n





   (9.3.2.4.2) 

So, for the system described above with, for example, 1n  ; 

 1 1,1 2,0 3,0 4,0 1,0 2,1 3,0 4,0 1,0 2,0 3,1 4,0 1,0 2,0 3,0 4,1P P P P P P P P P P P P P P P P P                 

The Maple program automatically computes (9.3.2.4.1) and (9.3.2.4.2) for the one or more 

disconnected queuing systems. For clarity a summary of the Maple program is provided. The 

inputs must be provided in a text file named ‘data.txt’. The first five lines provide input 

details for the first system to be solved, whilst the second five provide information for the 

second, etc. The input details required for each system are 

1 2 3

1 2

line 1: misc 1

line 2: service rates ...

line 3: transition probabilities ...

line 4: balking

line 5: reneging

k

k

yn

yn st ip

k r N

b

r r r



   

 



 





 

If balking is to be included (for a system) then 1ynb  , otherwise 0ynb  . Similarly if 

reneging is to be included then 1ynr  , otherwise 0ynr  . The variable str
 
is used to define 

the number in system at which reneging occurs (clearly 1 str r N    ). Finally, if the 

nPr
 
are calculated by summing the individual probabilities of reneging for each customer in 

the queue then 1ipr  , otherwise 0ipr  . A simple modification to the code allows the 

determination of symbolic results with some or all of the following as free (undefined) 

variables: , ( 1,..., ), ( 1,..., 2), , ,l ll k l k        . 

                                                      
17

 The probability that there is n in the individual system of class i 
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Outputs are provided for each class of server as well as for the holistic system. First, for each 

class the following results are output:  

      , , , , , , , , , , , ,R W q q nP P Pr Pb Tp E L E T E L E W CV L P          

in addition to the graphs: 

 

# in system probability

# in queue probability

# in system balking probability

# in system arrival rate

# in system reneging probability

x axis y axis 

 

For the holistic system the following results are output: 

      , , , , , , ,qPr Tp E L E T E L E W      

as well as the graph of total number in system against probability. Note that the inputs and 

outputs for the Maple program for Erlang service are similar but are input directly to the 

maple worksheet. Obviously, there is only one value attributed to   and there are no  ’s. 

Note also that this program only solves one system at a time. 

A reasonable fit has been obtained for the following control values: 

Pat group : 1 2 3 4

0.1902 0.058 0.052 0.925

10 8 10 10

0.75 0.9 0.85 0.75

1.5 1.32 1.2 1.5







  

The full (20 line) input file is given in Appendix 9.3. The queuing systems corresponding to 

each of the four patient groups are detailed below in addition to that of the holistic system.  
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Figure 9.12 Probability density graphs for number in system for each patient group 
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Table 9.7 Empirical (target) and model performance measures for each patient group

,

,

Pat group: 1 2 3 4

Target Model Target Model Target Model Target Model

0.1801 0.1800 0.04795 0.04747 0.04427 0.4431 0.09132 0.09109

0 0 0 0

0.9806 0.9128 0.9163 0.9949

5.974 2.894 2.899 8.993

0.613 0.6141 0

i

R i

W i

i

i

P

P

Pr





   

   

   

 
 

 

,

.613 0.626 0.613 0.628 0.613 0.6114

0.05375 0.1816 0.1478 0.01524

25.4 6.486 6.004 12.892

9.15 4.121 4.088 13.8

50.83 86.81 92.96 151.5

3.175 1.227 1.189 13.8

17.64 25.84 26.82 52.7

i

i

i

q i

i

Pb

Tp

E L

E T

E L

E W

   

   

   

   

      

   

,

7

0.535 0.8598 0.860 0.4254q iCV L      

 

Table 9.8 Empirical (target) and model performance measures for the holistic system

 

 

Figure 9.13 Probability density graph for number in system 

As can be seen from the results, this is what would appear to be a reasonable
18

 representation 

of reality. It will be noticed, however, that the model 
iPr
 
are fairly larger than their target 

values for groups two and three whilst the model and target i  
are approximately equal. This 

                                                      
18

 A more accurate fit could no doubt be obtained given more trials 

,

Target Model

0.36364 0.3629

20.76

0.613 0.617

50.79

31.16

85.89

10.4

28.66

sys

sys

sys

sys

sys

q sys

sys

Pr

Tp

E L

E T

E L

E W



 



   

   

   

   
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is because the rounding of number of beds (9.3.1.2) was more significant for these groups as 

the unrounded 
ir  

were small. Table 9.9 provides information on the dimension of the 

transition matrix, number of digits (Ch 7.3.2.2.9) used in Maple calculations and the time 

taken (seconds) to solve each queuing systems. 

Table 9.9 Transition matrix dimension and solution time of each queuing system

Pat grp: Dimension Digits Time taken

1 308 4 136

2 115 4 10

3 115 4 10

4 880 4 5164

 

The annual running cost is estimated at 20.76 £480 365 £3.637m   . 

9.3.3 Phase Two: Hypothetical scenarios 

A greater number of what-if questions can be asked of this model than that of Ch 9.2 since 

there are more parameters owing to a higher design complexity. Two examples are given. 

9.3.3.1 Hypothetical Scenario Three: Blocked LOS 

What if the blocked component of LOS is reduced by 50% (for all patient groups)? 

Table 9.10 Performance measures and costs for 50% reduction in blocked length of stay

  Cost pa

0.3664 20.65 0.576 56.68 25.71 9.42 £3.618m

qPr Tp E W E L      

On comparison with the system results of Ch 9.3.2.4 it can be seen that expected waiting time 

(before a referral is admitted or reneges) has been reduced by about three days, the length of 

the queue is, on average, one referral fewer, and prospective patients are 7% less likely to 

renege. In addition, throughput has been increased by (almost) six patients per year. With the 

cost of an admission well into the tens of thousands of pounds (Ch 1.2) this represents 

significant financial gain. By spending less time in the queue it is also psychologically better 

for the patient as there is less waiting about. There are physical benefits too. If a patient is not 

in a facility where physiotherapy, for example, is administered then their condition 

deteriorates. The longer they are in such a state the more time is needed at Rookwood NRC to 

restore motor function. Perhaps most importantly, however, is the knock-on effect upstream. 

If a patient is ready for discharge at Rookwood NRC but for some reason this is delayed they 
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are said to be bed-blocking - the negative effects of which are documented in Ch 6.2.2. This 

is not just a problem for Rookwood NRC but for the facilities that discharge patients to the 

unit. Reducing the waiting time for the NRC reduces the problem of bed-blocking upstream 

at these facilities. 

But how can bed-blocking be reduced at Rookwood NRC in order to bring about the halving 

of blocked LOS? The reasons for bed-blocking are laid out in a table towards the end of Ch 

1.2.  Clearly, the majority of delays to discharge are caused by either waiting for an 

assessment of future care needs or waiting for a suitable discharge destination. If an estimated 

date of readiness could be provided to social services and the (expected) discharge 

destination then preparations could be made well in advance of the date the patient is actually 

ready for discharge. According to the model a patient can expect to spend 

 

 

 

4

1

4

1

ˆ1
ˆ 113

1

active

i i i
active i

i i

i

Pr LOS

LOS

Pr











 






       (9.3.3.1.1) 

days in Rookwood NRC before they are ready for discharge. However, this single figure does 

not account for the heterogeneity of patients. Treeworks has been used to create similar trees 

for active LOS as have been created for total LOS in Appendices 9.1 and 9.2. These give 

therapists increased predictability of active LOS based on the values of certain patient 

attributes (age, gender, diagnosis etc). 

But what if blocked LOS is reduced to zero? 

Table 9.11 Performance measures and costs for 100% reduction in blocked length of stay

  Cost pa

0.3674 20.4 0.452 59.54 22.33 8.21 £3.574m

qPr Tp E W E L      

It will be noticed that these interesting and very useful scenarios could not have been 

considered if LOS had not been partitioned into its active and blocked components. 

9.3.3.2 Hypothetical Scenario Four: Arrival rates 

The second example of an appropriate hypothetical scenario is to increase the arrival rate for 

older patients. This is studied due to the premise of an ageing population in the UK. But in 

the initial construction of the model (Ch 9.3.1, Ch 9.3.2) age is not a branching variable for 
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any of the four patient groups. In order to vary the arrival rate for patients of an older age it is 

necessary for age to be a branching variable for the patient groups. Therefore, stage one is 

recreated with this in mind; 

 

Figure 9.14 Final tree with two patient groups 

Only one split is made to keep things simple. The largest reduction in variance (just 1%) is 

attained when age on admission below and above 51.5 years is considered. The scale of the 

reduction in variance is on-the-whole unimportant here since the objective of the split is to 

obtain two patient groups whose arrival rates can be independently varied. Using (9.3.1.1), 

(9.3.2.1.1) and (a variation of) (9.3.2.2.1) yields 1 2 1 213, 8, 0.242, 0.1216r r       and 

1 218, 11b b  . Employing an approach similar to that of Ch 9.3.2.3 returns 

 

Figure 9.15 Exponential approximations to active length of stay for each patient group 
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Figure 9.16 Exponential approximations to blocked length of stay for each patient group 

Here 

 
1,1 1,2

2,1 2,2

P.G. 1 (1 phase active): 0.0091, 0.0345

P.G. 2 (1 phase active): 0.0079, 0.0227

 

 

 

 
      (9.3.3.2.1)

 

 

Note the poor fit of the exponential distribution to active LOS of patient group two – this 

could be averted by using a higher-order approximating distribution. However, this would 

require the solution of a transition matrix of least dimension 2,450. 

The queuing system , | , |13,8 | 31,19M M M M M M   is now constructed and a reasonable 

fit has been obtained. 

Table 9.12 Empirical (target) and model performance measures for the holistic system 

 

Target Model

0.36364 0.36367

20.98

0.613 0.614

51.23

28.52

10.37q

Pr

Tp

E W

E L



 





       

 

 

Figure 9.17 Probability density graph for number in system 
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The control values are 

Pat group:

1 0.2465 6 0.87 1.3

2 0.1255 6 0.87 1.3

   

 

Now that phase one is complete, appropriate what-if questions may be asked of the model. 

Such as what if the (effective) arrival rate of older (age on admission > 51.5 years) patients 

(patient group two) is increased by one third? 

Table 9.13 Performance measures and costs for a one-third increase in the arrival rate of 

older patients                             

  Cost pa

0.4045 20.99 0.653 51.27 27.44 11.1 £3.677m

qPr Tp E W E L      

Therefore the (overall) effective arrival rate target is 1 24 3 0.4047   . The probability of 

an older patient reneging has increased to 0.711 bringing the system average to 0.653. Since 

the system was operating at (almost) full capacity beforehand there is negligible difference in 

throughput. It may also be seen that the expected length of the queue has increased by about 

7%. What may appear confusing, however, is the drop in expected waiting time. This is 

because this does not represent the (average) time spent in queue before a referral is admitted 

but the (average) time spent in queue before a referral is removed whatever the outcome – 

admitted or reneged. Since the arrival rate for patient group two has increased by one third 

this has led to steady-state probabilities being denser for a greater number in system where 

the probability of reneging is at its highest. Thus, when an arrival occurs it is much more 

likely to renege than before, and so the referral spends less time in the queue. Since 71.1% of 

older patients renege these low durations have a profound impact on the value of  E W . A 

formula for the expected waiting time for those who are ultimately admitted has not been 

deduced. However, this value will not have changed (from before the increase in arrival rate) 

since the system was operating at (near) full capacity anyway. 

9.4 Model Three 

Until now the effect of treatment intensity on a patient’s LOS has not been a consideration. In 

this, the final model, the relationship between the intensity of treatment and the active 
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component of LOS is realised by including stages two and three. This model is the most 

complex under consideration within this project and is analogous to Route 4 of Figure 6.8. 

Since data is not available on treatment intensity (and readiness date) from departments other 

than physiotherapy (see Ch 6.4.2.3) it is the physiotherapy treatment intensity and 

physiotherapy active LOS that are used to develop the relationship outlined in Ch 6.2.4. Even 

if the other departments had such data it would be little use without a department specific 

automated scheduling program (Ch 3.3.3) that can be used to evaluate the effect of 

hypothetical scenarios on treatment intensity (Ch 3.3.2). 

9.4.1 Phase One: Construction 

The classification and size of each patient group is identical to that of Model Two. That is, 

stage one is unchanged. So too is stage four since the average active LOS for each of the four 

patient groups must remain the same. This is because the objective at phase one is to obtain a 

representation of reality – and so the typical treatment intensities (deduced by the scheduling 

program in stage two
19

) give rise to the typical active LOSs (stage three) that are, of course, 

equivalent in value to the means of the approximating distributions, i.e. (9.3.2.3.15). The 

question is how to obtain the treatment intensities in stage two and how are these converted to 

active LOS in stage three?  

9.4.1.1 Task One: Stage Three: Treatment intensity and average active LOS 

For reasons that will become clear stage three is considered before stage two. Here the 

relationship between intensity of treatment and average active LOS are determined for each 

patient group. A scatter plot of observations is made of treatment intensity (x-axis) against 

average active LOS (y-axis) for the 46, 13, 7, and 23 patient episodes of the patient groups 

that contain the relevant information
20

. A curve is then fitted to each of these plots by least 

squares regression (Ch 5.2.1). Whilst many studies reviewed in Ch 2.2.3 suggest a 

relationship between treatment intensity and LOS, not one of these provide either an 

empirical finding or hypothesis on the actual dependence of LOS on treatment intensity for a 

range of values. Therefore, there is a fair amount of flexibility in determining the equations of 

the curves. There are three conditions that must however be met for each patient group. First, 

average active LOS is inversely proportional to treatment intensity. Second, there are 

diminishing returns, i.e. the positive effect of treatment intensity on average active LOS 

                                                      
19

 See Ch 9.1 for an overview of the four stages 
20

 Date ready for discharge and treatment intensity 
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diminishes beyond a certain point. And third, the average active LOS, given by (9.3.2.3.15) 

must correspond to the average level of treatment intensity, defined shortly. A ‘one over x’ 

type curve can satisfy these conditions and is applied to the scatter plots. 

It is stated in Ch 5.2.1 that the objective is to minimise (5.2.1.1), i.e. 2

j

j

r


 , with, in this case 

 2
1j j

j

r y
x


             (9.4.1.1.1) 

since 

   2
1;j j

j

f x y
x


              (9.4.1.1.2) 

where the 
jx  and the 

jy  relate to the two values of the j-th observation. It is possible to 

linearise the function but owing to the drawbacks alluded to in Ch 5.2.1 a different approach 

is favoured. Since activey LOS  and x INT  the 
jy
 
and 

jx
 
represent the active LOS and 

treatment intensity of patient episode j  of class i  where ˆ1,2,..., ij n . These values are 

inserted to an MS Excel worksheet and solver is used to minimise 

ˆ

2

1

in

j

j

r



 

given two sensible 

starting values of 1   
and 2 . The following constraint is added to satisfy the third condition 

(mentioned above): 

 2
1

active

i

i

LOS
INT


           (9.4.1.1.3) 

where 
iINT
 
is the average treatment intensity (hours/day) of patient group i. The 

active

iLOS are 

given by (9.3.2.3.15). The most simple formulation of the 
iINT
 
is 

  
,

1

in

i k

k
i

i

INT

INT
n




         (9.4.1.1.4) 

where 
,i kINT

 
represents the treatment intensity of the k-th patient episode with relevant 

information of patient group i. However, a much more accurate formula is achieved by 

weighting each value of treatment intensity by their active LOS; 
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, ,

1

,

1

i

i

n
active

i k i k

k
i n

active

i k

k

LOS INT

INT

LOS











        (9.4.1.1.5) 

This formula yields 

 
1 2 3 40.44881, 0.40178, 0.60486, 0.52381INT INT INT INT       (9.4.1.1.6) 

This constraint is added since it is known that, typically, the active LOSs are equal to 

(9.3.2.3.15) and that treatment intensities are equal to (9.4.1.1.6). 

Consider first patient group two. The least squares fit is depicted in Figure 9.18. 

 

Figure 9.18 Relationship between treatment intensity and active length of stay for patient 

group two 

with 1 77.3 
 
and 2 23.81  , i.e. the lowest average active LOS possible is 77.3 days. For 

patient group one the value of the shape parameter 2  
is found to be negative. Clearly this is 

not appropriate. A non-negativity constraint was added but this yielded 2 0  ; a horizontal 

line. Finally, the following fit was obtained: 
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Figure 9.19 Relationship between treatment intensity and active length of stay for patient 

group one 

with 1 63.43 
 
and 2 3.95  . This was as a result of a modification to (9.4.1.1.1) designed 

to pull the curve closer to the three observations with 300activeLOS   by setting

3

2
1j j

j

r y
x




 
    
 

. Observe that average active LOS appears to be far less responsive to 

changes in treatment intensity for patients of this group than those of patient group two. This 

is shown by the flatness of the curve borne from a smaller shape parameter. For patient group 

three with 1 84.22 
 
and 2 22.17 
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Figure 9.20 Relationship between treatment intensity and active length of stay for patient 

group three 

Further modifications to 
jr
 
were required to yield a positive shape parameter, 2 24.85  , 

for patient group four which with 1 130.09 
 
produced 

 

Figure 9.21 Relationship between treatment intensity and active length of stay for patient 

group four 

It will be observed that the ‘one over x’ type curve provides a not entirely convincing fit to 

the data. That being said however, it is hard to see what other type of curve would better fit 

the little data that is available for (some more than others of) the patient groups. 
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9.4.1.2 Task Two: Stage Two: Determine treatment intensities 

The typical levels of treatment intensity for each patient group are known from the previous 

subchapter. The task now is to initialise the scheduling program with appropriate input values 

such that the outputs (i.e. patient group treatment intensity) correspond to (9.4.1.1.6). 

Firstly it is necessary to detail a modification to the scheduling program that enables it to deal 

with patient groups as opposed to individual patients. For the weekly scheduling of 

physiotherapy treatment to individual patients the original version (Chapter 4) is of course 

used. However, patients are grouped in the model and so (to avoid the repetition and 

complication of providing individual levels of demand, details and priorities) typical values 

for these are required only for each group in addition to the number of beds assigned to that 

group. Therefore, the ‘Input patient details’ section of the ‘Create New’ menu is amended. 

 

Figure 9.22 'Input patient details' screen of amended scheduling program 

The ‘Input patient demand’ section of the ‘Create New’ menu is also amended. 
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Figure 9.23 'Input patient demand' screen of amended scheduling program 

The major difference to the output is in the ‘View other details’ section of the ‘View New’ 

menu. Here, as well as having individual details for each patient of each group, there are 

averages (as well as variances) for each patient group. 
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Primary/ Preference Multi- Single/ Lead
Patient Attends Purpose

secondary Priority to time disciplinary double employee
group: lunch of stretch

band level of day cumulative slots stretch minimum band

1 5,6,7,8 3 1 S Tment pr  ep 5

2 5,6,7,8 2 1 S Tment prep 5

3 5,6,7,8 4 1 D Tment prep 5

4 5,6,7,8 3 D Tment prep 5

 

 

  

 

Figure 9.24 'View other details' screen of amended scheduling program 

Most important is the (highlighted) ‘Group avg clinical minutes received’. Dividing these 

(weekly) figures by seven (number of days in a week) and then by sixty (number of minutes 

in an hour) gives the group average treatment intensity in hours per day. Note that, due to 

simplicity, there is no PTO to detail patient unavailability and so it is assumed that, upon 

commencement of the scheduling, all patients of each group are available at any time. 

Table 9.14 and Table 9.15 display typical values for patient details and demand that have 

been deduced through discussions with clinicians and by examining historic records. 

Table 9.14 Typical patient details 
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Table 9.15 Typical patient demand

Patient Patient Patient
Single Double Triple Group Hydro Stretch

group: meeting admin

1 1 1 2

2 1 1 2

3 4 3 1

4 4 3 1

 

Patient groups three and four relate to patients with a higher severity of injury since these 

patients are too ill to return to usual residence or temporary residence (Ch 9.3.1). Such 

patients typically require two therapists for a treatment session (i.e. double and double 

stretch). Now that the inputs relating to the patients have been determined it is necessary to 

look at inputs relating to the therapists. Again through discussion and examining historic 

records the staff attributes and working hours have been deduced. 

Table 9.16 Typical staff attributes and working hours

Stretches
Goal 

Band 0-cannot Patient
Role Lead Group planning M T W T F

level 1-assist meetings
meetings

2-lead

Physio 9 Y Y 2 Y Y Y N N N Y

8 Y Y 2 Y Y Y Y N N am

7 Y Y 2 Y Y Y Y Y Y Y

6 Y Y 2 Y Y Y Y N Y N

6 Y Y 2 Y Y N Y Y N Y

6 Y Y 2 Y Y Y Y Y Y Y

6 Y Y 2 Y Y Y Y Y Y Y

6 Y Y 2 Y Y Y N Y N pm

5 Y Y 2 Y Y Y Y Y Y Y

8 8 8
Assistant 3 N Y 2 N N N Y

2.30 2.30 2.30

2 N Y 2 N N Y Y Y Y Y

Student 3 N Y 1 N N 0.5 0.5 0.5 0.5 0.5

  

 

The next consideration is staff availability. Whilst typical values could be deduced from 

historic records this is a time consuming task and inherent inaccuracies could also lead to 
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unsuitable results for treatment intensities. Staff availability is therefore used as a free 

variable that is manipulated to ensure that, with the above patient and staff details, 

appropriate values of treatment intensity are output. 

After varying therapist availabilities (i.e. adding meetings, annual leave etc on top of standard 

working hours) an appropriate configuration was found. Table 9.17 displays values for group 

average treatment intensity over five runs (time allowance: two hours). 

Table 9.17 Group average treatment intensity for each patient group

Run: 1 2 3 4 5 Avg

Patient Group 1 203 175 178 180 173 182

Patient Group 2 145 160 160 165 190 164

Patient Group 3 250 275 250 265 275 263

Patient Group 4 215 210 222 227 222 219

 

Dividing the averages by seven and then by sixty returns treatment intensity in hours per day; 

 
1 2 3 40.43333, 0.39048, 0.62619, 0.52143INT INT INT INT         (9.4.1.2.1) 

These are all within 5% of the empirical values given in (9.4.1.1.6). Despite this encouraging 

congruence the variances are rather large for some patient groups, particularly patient group 

two (range: 145 - 190 minutes per week). On the other hand patient group four has a range of 

only twelve minutes across the five runs. The reason for the variance is, of course, the 

random numbers that are used in the scheduling program (see Ch 4.5.1). 

Note that here it has been assumed that each of the 21 patients is in their rehabilitative phase 

of treatment, i.e. they are not yet ready for discharge. In reality, some of these patients would 

be in the maintenance phase and would require less treatment. 

9.4.2 Phase Two: Hypothetical scenarios 

What-if questions relating to treatment intensity are now studied. The automated scheduling 

program has been constructed specifically in order to efficiently evaluate these scenarios (Ch 

3.3.2). Without it, a schedule would have to be produced by hand (8 hours) for each scenario 

in question. Two examples are considered. 
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9.4.2.1 Hypothetical Scenario Five: Additional physiotherapists  

The employment of additional physiotherapists is firstly considered. For this example, two 

full-time band sixes and one full-time band three join the roster of Ch 9.4.1.2. 

Table 9.18 Group average treatment intensity for each patient group

Run: 1 2 3 Avg

Patient Group 1 248 253 255 252

Patient Group 2 205 211 205 207

Patient Group 3 345 325 320 330

Patient Group 4 297 298 305 300  

Thus 

 
1 2 3 40.6, 0.49286, 0.78571, 0.71429INT INT INT INT        (9.4.2.1.1) 

Using (9.4.1.1.3) alongside the 1  
and 2  

obtained in Ch 9.4.1.1 for each patient group returns 

 1 2 3 470.01, 125.61, 112.44, 164.88active active active activeLOS LOS LOS LOS       (9.4.2.1.2) 

So active LOS has been reduced by approximately 2, 11, 8 and 13 days respectively. Clearly, 

increasing treatment intensity for patient group one has had little impact on active LOS. This 

is due to the flatness of the approximating curve borne by having a low-valued shape 

parameter ( 2 3.95  ). Perhaps additional employee time can be better spent on patients of 

other groups. 

The active LOS distributions of Ch 9.3.2.3 are now amended such that their means are 

congruent to (9.4.2.1.2). This is done by making proportionate adjustments to the (active) 

service rates whilst holding constant the transition probabilities. So for a two phase 

distribution if service rate one is increased by 10% then service rate two must also be 

increased by 10%. This ensures that the underlying shape of the approximating distribution 

remains the same but the variable (patient group active LOS) values are appropriately scaled 

(see Ch 6.2.4). It is done by solving the following equation
21

 for ip , the scalar by which each 

service phase rate is multiplied by: 

                                                      
21

 Based on (8.3.1.5.9) 
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  
1 1

2 1,1 ,

1 1ˆ 1
ˆ ˆ

ik l
active

i j

l ji i i i l

LOS
p p


 

 

 

  
 

         (9.4.2.1.3)  

where ik
 
is the number of active service phases in patient group i. The new

,  ( 1,...,4; 1,..., )i j ii j k  
 
are deduced by multiplying each of the old 

,i j
 
by the respective

ˆ
ip . Solving (9.4.2.1.3) gives 1 2 3 4

ˆ ˆ ˆ ˆ1.0316, 1.0767, 1.0871, 1.0749p p p p    . Thus 

(9.3.2.3.13) can be rewritten 

1,1 1,2

2,1 2,2 2,3

3,1 3,2 3,3

4,1 4.2

P.G. 1 (2 phase): 0.0757, 0.0162

P.G. 2 (3 phase): 0.1333, 0.1333, 0.0073

P.G. 3 (3 phase): 0.0105, 0.0357, 0.0704

P.G. 4 (2 phase): 0.0184, 0.0090

 

  

  

 

 

  

  

 
     (9.4.2.1.4) 

Replacing these values in the queuing system of Ch 9.3.2.4 and solving yields 

Table 9.19 Performance measures for additional therapists

 

 

 

 

 

 

Figure 9.25 Probability density graph for number in system 

To summarise: throughput has increased by two patients per year, the probability of a 

prospective patient reneging has fallen by just over 2%, the expected queue length has 

decreased; and so too has waiting time by one day. But in order to achieve this an additional 

one band three and two band six therapists are required at an annual cost of £17k and 2 x 

£30k respectively. 

 

0.3651 20.73 0.604 52.78 27.62 10.08

qPr Tp E W E L    
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As mentioned in the outset of this subchapter, it is supposed that either assumption in the 

final paragraph of Ch 6.4.2.3 is valid. The first assumption is that other departments must 

replicate any change in treatment intensity in order to have the desired effect on active LOS. 

Here, it is assumed this is done by replicating any changes in personnel. The physiotherapy 

department has 6.4 qualified therapist
22

 FTEs and two non-qualified assistant FTEs. The two 

other departments with more than one FTE are Occupational Therapy (3.5 qualified FTEs and 

1.5 assistant FTEs) and Speech and Language Therapy (1.5 qualified FTE and 1 assistant 

FTEs). The additional employments in physiotherapy represent an increase in qualified and 

assistant FTEs by approximately one third each. Replicating this change in the other (two) 

departments means increasing the number of qualified therapists by 1.2 and 0.5 FTEs and 

assistants by 0.5 and 0.3 FTEs. This means that the annual operating cost is an additional 

   2 1.2 0.5 £30,000 1 1 0.3 £17,000 £150k         above the standard cost of

20.73 £480 365 £3.632m   . Thus total annual cost is £3.782m. 

The second assumption is that the readiness of the patient with respect to physiotherapy only 

dictates the (overall) date ready for discharge. In this case it is not necessary to alter the 

personnel of the other departments and so the total annual cost is £3.709m. 

9.4.2.2 Hypothetical Scenario Six: Group sessions 

In what is the final hypothetical scenario under consideration the effect of increasing the 

number of group sessions is studied. The typical levels of patient demand (Table 9.15) are 

replaced by those of Table 9.20. 

Table 9.20 Typical levels of demand after session reconfiguration

Patient Patient Patient
Single Double Triple Group Hydro Stretch

group: meeting admin

1 1 5

2 1 5

3 3 3 3 1

4 3 3 3 1

 

That is, one double session has been removed and three group sessions have been added for 

each patient group. The composition of staffing availabilities has not changed but more group 

                                                      
22

 Band level of at least five 
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session availability times (see Ch 3.4.2) have been added in order to cope with the additional 

demand. 

Table 9.21 Group average treatment intensity for each patient group

Run: 1 2 3 Avg

Patient Group 1 318 313 325 319

Patient Group 2 320 310 300 310

Patient Group 3 380 375 370 375

Patient Group 4 350 335 343 343

 

Note how the average number of minutes received by each group is much greater than the 

amount typically provided (Ch 9.4.1.2) or the amount provided when the number of FTEs is 

increased by one third (Ch 9.4.2.1). This is because a group session is provided by only one 

employee to about three patients (Ch 3.4.2). It may also be noted that the averages for the 

first two groups are similar despite patient group one being a higher priority than group two. 

This is because, over the three runs, all group sessions were allocated and the level of demand 

for these groups was equivalent. There did, however, still exist some unmet needs with 

respect to the double sessions of groups three and four. In hours per day 

 
1 2 3 40.75952, 0.7381, 0.89286, 0.81667INT INT INT INT        (9.4.2.2.1) 

Using (9.4.1.1.3) alongside the 1  
and 2  

obtained in Ch 9.4.1.1 for each patient group returns 

 1 2 3 468.63, 109.56, 109.05, 160.52active active active activeLOS LOS LOS LOS       (9.4.2.2.2) 

So active LOS has been reduced by approximately 4, 27, 12 and 17 days respectively. Again, 

increasing treatment intensity for patient group one has had little impact on active LOS. 

As before (Ch 9.4.2.1), the active LOS distributions of Ch 9.3.2.3 are now amended such that 

their means are (approximately) congruent to (9.4.2.2.2). Solving (9.4.2.1.3) gives

1 2 3 4
ˆ ˆ ˆ ˆ1.0523, 1.106, 1.2464, 1.1084p p p p    . Thus (9.3.2.3.13) can be rewritten 

1,1 1,2

2,1 2,2 2,3

3,1 3,2 3,3

4,1 4.2

P.G. 1 (2 phase): 0.0772, 0.0165

P.G. 2 (3 phase): 0.1543, 0.1543, 0.0085

P.G. 3 (3 phase): 0.0108, 0.0364, 0.078

P.G. 4 (2 phase): 0.0189, 0.0093

 

  

  

 

 

  

  

 
     (9.4.2.2.3) 
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Replacing these values in the queuing system of Ch 9.3.2.4 and solving yields 

Table 9.22 Performance measures for session reconfiguration

 

 

 

 

 

 

Figure 9.26 Probability density graph for number in system 

So compared to the (phase one) model of the current situation at Rookwood NRC (Ch 

9.3.2.4) the mean probability of reneging has decreased by (almost) 4% and throughput has 

increased by 3.61 patients per year. The annual cost is estimated at 

20.69 £480 365 £3.625m    – a saving of £12k. In addition, since the average LOS under 

this scenario is 138 days (see (9.3.3.1.1)) it would cost 3.61 £480 138 £239k    for the 

admission of the 3.61 extra patients each year. Also, the figure of £480 could be an over-

estimate since group sessions can be provided by an employee of any band level (Ch 3.4.2). 

Costs would be significantly lower if the skill mix is skewed toward the less expensive and 

less qualified therapists (whilst retaining sufficient numbers of qualified staff for stretches, 

goal planning meetings, hydro sessions etc). 

However, this example highlights an obvious but important drawback to the model. Whilst 

quantity of treatment is indeed a factor that influences LOS and patient outcome, so too is 

quality. Unfortunately, the quality of treatment sessions is not as easy to quantify as the 

intensity of treatment and so is not a consideration within this project. Therefore, the example 

given here must be treated with caution. As mentioned before (Ch 9.4.1.2) patients from 

groups three and four are more severely injured and require two therapists for treatment 

sessions. They are thus unlikely to perform in, or be able to receive, group sessions which 

involve only one therapist and two or more patients. 

 

0.3673 20.69 0.594 54.4 26.81 9.85

qPr Tp E W E L    
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There are a number of other hypothetical scenarios that relate to changes in treatment quality. 

For example, what if the same number of therapists work the same number of hours but over 

evenings and weekends as well as during normal working hours? Therefore, the treatment 

intensity would not change but the quality of the treatment would since the sessions can be 

more evenly spread throughout the week. This would have a significant effect on SCON2 (Ch 

3.5.2) and MCON2 (Ch 3.5.3) but would not alter the output of the queuing model (as 

treatment intensity is unchanged). It is hence useful to check the performance measures of the 

scheduling program (SCON value and MCON violations) in addition to the performance 

measures of the queuing model. 

9.5 Conclusion 

In this chapter three models of varying complexity have been analysed. For each of these, an 

initial, representative model has first been constructed (phase one) and subsequently used to 

study the effect of hypothetical what-if type scenarios (phase two). The first model (Ch 9.2) 

is the most simplistic fitting an exponential distribution to total LOS and not taking into 

account patient heterogeneity, treatment intensity, and the active and blocked components of 

LOS. The second model (Ch 9.3) makes the distinction between active and blocked LOS; 

fitting two and three-term Coxian distributions to active and exponential to blocked LOS. 

Patients are also split into four patient groups based on the effect of certain factors on LOS. 

In the final model (Ch 9.4), treatment intensity is incorporated through the use of the 

specially designed automated scheduling program (Chapters 3 and 4). 

For each of these models a number of performance measures are output in addition to an 

expected value for the annual running cost. These are summarised in table 9.23. The expected 

waiting time and expected length of queue are not displayed since these include details for 

reneged patients. Hypothetical scenario one (Ch 9.2.6.1) is not included since this is pertinent 

only to data from the sixteen months from January 2010 to April 2011. 
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Table 9.23 Summary of performance measures and costs for typical and hypothetical 

scenarios

Model type Modification Cost pa Cost per episode

Typical (Model One) 21 0.613 51.34 £3.679m £72k

Scenario Two beds 2 19 0.65 46.45 £3.329m £72k

beds 1 20 0.632 48.89 £3.504m £72k

beds 1 22 0.595 53.78 £3.854m £72k

beds 2 23 0

Pr Tp







 .576 56.23 £4.030m £72k

Typical (Model Two) 20.76 0.617 50.79 £3.637m £72k

Scenario Three blocked LOS 50% 20.65 0.576 56.68 £3.618m £64k

blocked LOS 100% 20.4 0.452 59.54 £3.574m £60k

arrival rate 33%
Scenario Four

for older 






20.99 0.653 51.27 £3.677m £72k

patients

Scenario Five physiotherapists 33% 20.73 0.604 52.78 see below see below

group sessions 3
Scenario Six 20.69 0.594 54.4 £3.625m £67k

double sessions 1







 

The cost per episode is simply calculated by dividing the annual cost by the throughput. This 

gives a single measure of financial value that is easily comparable. However, this does not 

take into account the financial implications of lost admissions. It can be seen from scenario 

two that the cost per episode is equal regardless of the number of beds. However, the mean 

probability of reneging varies considerably from 0.576 to 0.65. A higher value means that 

fewer patients ultimately receive the specialist care that is required at Rookwood NRC. 

Although this has no direct financial implications for the unit it does affect the healthcare 

system and wider economy. If patients are denied opportunities for the specialist 

rehabilitation programme then their ability to regain motor and cognitive function may not 

only be slower but may never reach the levels otherwise attainable (see Ch 2.2.4). This has a 

doubly negative effect since if the patient is too ill to re-enter the workforce then not only 

does the local economy suffer but social services must also commit resources to care for the 

patient. It is therefore crucial that the mean probability of reneging is examined alongside the 

expected cost per episode. 

Clearly, a reduction in blocked LOS is of substantial benefit. This reduces LOS and so 

increases the throughput of the unit without having to employ additional resources. Improved 

throughput is not just of great benefit to Rookwood NRC but also to other facilities upstream 
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(neuro ward and ICU – see Ch 1.2). Since the bed-cost per day is greater in these units than at 

the NRC this offers significant savings, not to mention the aforementioned benefits with 

reducing patient waiting time (Ch 9.3.3.1). However, just as the neuro wards rely on 

Rookwood for this, Rookwood must rely on social services and the other discharge 

destinations. An idea to make these more efficient has been put forward in Ch 9.3.3.1. There 

is, however, one problem with decreasing blocked LOS. If therapists are no longer working 

on maintenance patients, who typically require less treatment than rehabilitative patients, then 

are more therapists needed to deal with the additional treatment requirements? 

The fourth scenario considers the impact of a one-third increase in demand from older 

patients. If the number of beds (and/or treatment intensity) is not appropriately increased then 

this would push occupancy to capacity and significantly increase the mean probability of 

these patients reneging. Clearly more beds (and/or therapists) are needed to deal with the 

increased demands of an ageing population. 

The size of the physiotherapy workforce is increased by one third in scenario five. This 

reduces active LOS and increases throughput by two patients per year. If it is assumed that 

any change to the physiotherapy department must be replicated by the other departments (see 

Ch 6.4.2.3) then the average cost per episode would stand at £72k. Otherwise, if it is the 

readiness of the patient with respect to physiotherapy only that dictates the (overall) date 

ready for discharge then the average cost per episode would be £70k (Ch 6.4.2.1).  

Finally, a different composition of physiotherapy treatment sessions is studied. It is shown 

that if one less double session and three more group sessions are demanded for each patient 

then this can greatly increase treatment intensity. This leads to a significant reduction in 

active LOS in patient groups two, three and four that accounts for increased throughput. 

Since the (physiotherapy) workforce has not changed, savings are approximately £5k for each 

patient episode. Again, depending on the validity of either assumption in Ch 6.4.2.3 this 

change may or may not need to be replicated across the other departments. The principle 

problem with this scenario is the efficacy of group sessions for more severely injured 

patients. 

All of these what-if questions relate to the major policy decisions (Ch 1.7.2). Changes to the 

number of beds and arrival rates relate to who to admit whilst changes to blocked LOS relate 

to when to discharge. Changes to the composition of the workforce or therapy relate to what 

care to give. This thesis is concluded in the next, and final, chapter. 
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Chapter 10: Conclusion 

 

 

 

 

 

 

10.1 Objective 

The aim of this project is to model the activities at the Neurological Rehabilitation Centre 

(NRC) at Rookwood hospital. This is done using Queuing Theory (Ch 1.4) alongside phase-

type distributions (Ch 1.5) and a consideration of treatment intensity (Ch 1.6). The first phase 

is to construct an initial, representative model of the unit. The second phase is to use this 

model to evaluate the impact of various hypothetical what-if type scenarios. These relate to 

the major policy decisions (who to admit, what care to give, when to discharge), not for 

individual patients, but on a macro level. Performance measures and costs can then be used to 

compare different configurations. 

10.2 Approach 

There are four stages to the construction of the model (phase one). A description of these is 

available in Ch 1.7.1. A number of relevant hypothetical scenarios have been identified 

through discussions with clinicians at Rookwood NRC. These are evaluated by making 

appropriate modifications to some (or all) of the four stages of phase one. However, some 

scenarios can be more complex to evaluate than others. For example, if a scenario is tested 

that just changes the arrival rates of a pre-existing patient group then this can easily be 

evaluated by making a simple modification to stage four. But, if a new composition of patient 

groups is sought then changes need to be made as far back as stage one. Because the other 

stages have a sequential dependence then stages two, three and four all need to be modified 

as well. In general, the lower the stage that is affected, the more complex the evaluation. 
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10.3 Results 

The main results of the project are summarised (Table 9.23) and discussed in Ch 9.5. 

10.4 Evaluation 

In my opinion the greatest emphasis should be placed on reducing blocked length of stay 

(LOS). This would have outstanding effects on throughput and lost admissions without the 

need to employ additional resources (beds or therapists). However, how this can be achieved 

is another matter (although a possible solution has been suggested in Ch 9.3.3.1). Increasing 

the number of therapists could be another option to increase throughput and reduce lost 

admissions although the reduction in cost per episode would be small. The same applies for 

increasing the number of beds but in doing this there is no reduction in cost per episode at all. 

If the available budget for the NRC at Rookwood hospital increases by about £150k to 

£3.782m it is possible to increase throughput to 52.78 and reduce the mean probability of 

reneging to 0.604 by increasing the number of therapists by one third (across all 

departments). However, by spending an additional £70k the unit could, instead, open one 

more bed which would increase throughput to 53.78 and decrease the probability of reneging 

to 0.595. If this option is favoured then the number of FTEs would have to increase by 22 

over 21. Many other scenarios can be evaluated in this manner. 

It should also be mentioned that whilst, in these example scenarios, only one variable is 

changed and all others are held constant this is by no means essential. The model is perfectly 

capable of evaluating a scenario in which many simultaneous changes are made to the 

number of beds, intensity of treatment, blocked LOS, arrival rates etc. 

10.5 Limitations 

Many of the model limitations have been discussed along the way throughout this thesis (e.g. 

Ch 9.2.6.2). A handful of those that I feel are most significant are now summarised. 

In stage one CART analysis is used to determine a number of patient groups. The target 

variable here should be active LOS. However, since only 89 of the 358 patient episodes have 

data on their date ready for discharge, total LOS is used. This produces a number of patient 

groups for which total LOS is homogenous. The episodes within these groups that contain a 

date ready for discharge are then used to estimate such dates for those without this 

information. This makes the assumption that groups with homogeneity with respect to total 

LOS also have homogeneity with respect to active and blocked LOS. 
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In stage two the automated scheduling program is used to generate average values of 

treatment intensity for patients of each group. However, these values represent the amount of 

treatment that is scheduled whilst the relationship between treatment intensity and active LOS 

in the next stage is constructed using data on treatment that is actually received. It is therefore 

assumed by the model that the amount of treatment scheduled is equivalent to the amount that 

is received. Clearly, this is not always the case. 

Since only the scheduling of physiotherapy is studied it is necessary to make assumptions 

about the treatment intensity of other departments. As mentioned in Ch 6.4.2.3 it could be 

assumed that any change to treatment intensity (in stage two) must be replicated by the other 

departments. In this case the treatment intensity of stage three is an average over the 

departments. Otherwise, it could be assumed that the readiness of the patient with respect to 

physiotherapy only dictates the (overall) date ready for discharge. In this case it is not 

necessary for the treatment intensity of other departments to change. The validity of either of 

these assumptions is unknown. Another limitation in stage three is the amount of data used to 

construct the graphs for patient groups two and three (see Ch 9.4.1.1). 

One of the many assumptions of stage four is that of the queue discipline first-in first-out. 

Realistically it is known that the positions of referrals in the queue is based on patient priority 

which is calculated from injury severity and time spent in queue. However, not only would 

this be tricky to model but it would also require additional data. The full effects of this 

incorrect assumption on the model are not entirely understood. An additional limitation has 

been the inability to derive an expected waiting time for customers that ultimately enter 

service when reneging is employed. This would be very useful as it could be used to measure 

the cost of a patient’s deterioration in functional ability whilst waiting in the queue. This 

could be used alongside the mean occupancy and the mean reneging probability to form a 

single-valued cost function (see Ch 9.2.6). 

Generally speaking, the lack of data has been the largest limitation of this project. Whilst 

some data was readily-available (i.e. NHS Trust dataset) this did not include variables 

relating to treatment intensity. Neither did it include details that relate to the state of the 

queue over time. Such data was eventually obtained although this was a time-consuming task 

for both myself and the technician at Rookwood hospital. Even when the (Arrivals and 

Service) datasets were populated the number of observations was low. From the Service 

dataset, only 358 patient episodes were available from 2003 to 2011 of which only 89 of 
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these had details for treatment intensity and date ready for discharge. In addition, the Arrivals 

dataset only covered sixteen months of data and so there was a lack of congruency in the 

timescales of the two datasets. This was problematic since performance measures based on 

the state of the queue (i.e. mean length of queue) were not relevant for the period of time 

covered by the Service dataset. Finally, if more data had been available then the model could 

have been internally validated using a separate cohort. 

10.6 Further Work 

There are many matters that can be investigated based on the foundations of this project. 

Some of this work could relate to the shortfalls of the model identified in the previous 

subchapter. For example, the treatment intensity and active LOS of other departments could 

be integrated within the model (Ch 6.2.3). This would permit a wider range of what-if type 

scenarios that could be used to better co-ordinate the readiness of patients from each 

department; thus reducing maintenance treatment (see Ch 6.2.3). The model described by 

Route 6 (Figure 6.8) would be possible if discharge attributes (Ch 6.2.5) are also considered. 

Whilst discharge destination is an important branching variable in the determination of 

patient groups it does not include the level of family support. A consultant in rehabilitation at 

Rookwood hospital has said that this variable is crucial in predicting LOS, treatment intensity 

or outcome. 

As part of the trilateral relationship (see Ch 2.2.3), outcome is an important metric that has 

been held constant in this project. That is, changes to treatment intensity affect active LOS 

such that patient outcome is unaltered. The ability to have this as a free variable would permit 

the evaluation of some interesting hypothetical scenarios. The regional rehabilitation unit at 

Northwick Park hospital has produced a number of studies (Ch 2.2.4) in which outcome is 

varied and the effect on continuing care is evaluated. Basically, the notion is that more 

functional ability on discharge equates to less cost per unit time post-discharge. Typically, 

they investigate the time required to offset the additional costs associated with providing a 

higher outcome from rehabilitation. However, they do not have a model that can tell them 

how, exactly, a higher outcome can be achieved. According to the trilateral relationship this 

can be achieved through increased LOS or treatment intensity or both. If included in the 

queuing model then the consequent effect of such alterations on outcome could be evaluated. 

If the relationship between outcome and cost per unit time post-discharge is known then a 
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number of valuable what-if questions can be asked, such as, is it more cost-effective for 

younger patients to have a higher rehabilitation outcome? 

Clearly, the integration of Rookwood NRC with its related components (in this case, 

downstream) presents some interesting opportunities. The upstream facilities are now 

considered. It is known that the bed cost per day at a neuro ward (see Ch 1.2) is higher than at 

the NRC. Surely it would be better to spend more money at Rookwood NRC to reduce 

blocking (by increasing number of beds and/or therapists) in order to reduce the blockages at 

these more expensive units? An integrated model could evaluate this. Such a policy would 

also serve to reduce blockages at the ICU ward which is even more expensive. It is postulated 

that to increase the overall fluidity of a patient flow system it is essential that investments are 

made downstream where the costs are lowest. System dynamics (Ch 1.3) could well be a 

powerful tool for investigating this point in addition to the overall flow of ABI patients 

through the various healthcare facilities. 

10.7 Legacy 

At the time of writing and to the best knowledge of the author this is the first queuing theory 

study of a specialist neurological rehabilitation unit. In particular, a novel part of this project 

has been to condition the service rates on the treatment intensity received by patients. To this 

end an automated scheduling program (Chapters 3 and 4) has been developed. The 

objective of this was to mimic the, at the time, by-hand scheduling procedure so that what-if 

type questions pertinent to treatment intensity could be quickly evaluated. However, since the 

program was so much better than the manual alternative it was adopted in January 2011 and 

has been used weekly up to the time of writing. It is expected that this will be used for the 

foreseeable future. Note that it was also necessary to develop a new patient timetable 

overview (Ch 4.4.1) for use with the program. This too enjoys problem-free use by all 

departments in the unit. 

Treatment intensity has been incorporated within the model since many studies (Ch 2.2.3) 

have found that patient LOS in a neurological rehabilitation setting is affected by the intensity 

of treatment received. It has been found in this project that LOS is indeed dependent on 

treatment intensity but not for all patients (Ch 9.4.1.1). In order to deduce the relationship 

between treatment intensity and active LOS it is necessary to capture data on the amount of 

therapy received and the date ready for discharge. Since historical data did not exist a 

database was built in MS Access to prospectively store data for these variables. Whilst some 
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data was input by the clinicians this did not include all patients since its inauguration. It is 

hoped that, in time, as therapists get more comfortable with using the software its usage will 

improve. 

The data that has been used in this project has been amalgamated into two datasets. The 

Arrivals dataset (Ch 6.3.1) contains sixteen months of data on the state of the queue at 

Rookwood NRC. From this it is possible to automatically derive a number of summary 

measures (see Ch 6.4.1). If Rookwood NRC continues to populate this dataset then updated 

values of these can be conveniently output. The same is true for the Service dataset (Ch 

6.3.2) that contains approximately eight years of data on patient episodes. The program 

Treeworks uses this dataset to produce a CART analysis; the results of which can be used by 

the unit to accurately predict discharge readiness dates. If Rookwood NRC continues to 

populate this dataset then the accuracy and relevancy of such predictions will only increase. 

Distributions are fitted to active LOS data from the Service dataset using the purpose-built 

Matlab programs. One of the programs is for phase-type approximating distributions and 

the other is for non phase-type approximating distributions. It is necessary to provide the 

method of moments parameter estimates (which can be calculated through the formulae 

developed in Chapter 5) which are used as starting values for the maximum likelihood 

approach. Graphs for both approximating distributions are displayed against the sample data. 

Due to the flexibility and usefulness of these programs I fully expect to use them in future 

work unrelated to this project. 

The parameter estimates output from the Matlab program are thereafter used in either of the 

Maple programs (depending on whether the service distribution is Erlang or Coxian and 

exponential). Balking and reneging are two types of customer behaviour that are optional in 

each of these programs. To the best knowledge of the author the approach employed to 

populate the transition matrix using the formulae developed in Chapters 7 and 8 is new and 

does not appear in the literature. Following the determination of steady-state probabilities 

many performance measures and graphs are automatically output. These computer programs 

are not consigned for use exclusively with healthcare systems and can be used for a variety of 

applications. 

As a final note, it is hoped that the research carried out in this project will be developed in 

years to come and lead to further advancements in the management of patients with acquired 

brain injury. 
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Appendix 3.1 

How to Timetable for Neuro-Physiotherapy Team 

The timetable for physio is written on a Thursday for the following Monday to Friday, 

psychology, speech therapy and occupational therapy should already have done theirs. The 

individual timetables should be printed and given to the patients on a Friday afternoon and 

therapy overviews given to each ward. 

 

Timetable Prep (should be done before Thursday): 

 

 Check names and dates at the top of the sheets and that the hours are correct for the 
part-time staff. 

 Jakko’s Timetable – accessed from Outlook Calender by Pat Grundon or Sarah 
Duthie. Fill in any clinical time he has. 

 Fill in relevant information from diary: 
 Annual leave 
 Study leave 
 Staff meetings (check wall in staff room) 
 Goal planning meetings (stripey folder on ward 7) 
 Check ward diaries for patients appointments 
 Hydrotherapy 
 Group session Monday/Wednesday/Friday 11.15 
 Timetabling all day on a Thursday x1 person 
 Short term goals meeting Wednesday 3.15 
 Rookwood ward round Tuesday 8.30 – 11.15 
 Admissions meeting Thursday 9.00 – 10.00 Jo PJ or Sarah D. 
 UHW Ward round Wednesday 9-2 Jo PJ (Then Lieu) 
 In service training (Check diary) 
 Ward round feedback Tuesday 12.00 
 Slots preparation Tuesday 1 slot (Sarah D, Sarah A or Jo H) 
 Timetable prep 1 slot before Thurs (Any PTA or Tech) 
 Supervision time as requested 
 Student sessions with clinical educator – 2 slots 
 Admin x2 half days for Senior 1 
 Admin x2 per week for Static Senior II as requested. 
 Friday – splinting forms – I slot 
 Clean Gym – last slot Friday pm. 
 Slots for updating Clinical Workstation x1 slot for each physio at 12.00 

or 3.15 (can’t be at the same time as any one else) 
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Getting Started – What you need: 

 Timetable sheets should be in the yellow timetable folder  

 List of primary and secondary physiotherapists (black folder) 

 Request list from short term goals meeting 

 Departmental Diary 

 List of joint sessions with OT 

 Pencil and Rubber 

 Access to a computer 
 

Prioritisation of patients: 

Prioritise patients on the request sheet as follows: 

 

Score 1 point for:  Recent Admission (Less than 2 weeks) 

    Discharge due (Less than 2 weeks) 

    Poor Chest 

    Improving with physio input 

    Likely to deteriorate without physio input 

 

The scores should be written against the patients name on the timetable request form for 

ease of reference when timetabling. 

 

The highest scoring patients get timetabled first as they are the highest priority. Therefore 

unmet needs should only affect the low priority patients. 

 

Filling in the timetable: 

Log on to the computer using department log on and go to Rookwood neuro rehab on the S 

drive which should be found on the desk top. Open the file New Timetable and then 

Timetables therapies. This gives you the overview so you can see what other therapies have 

already put on the timetable. 

 

Check the date on the top is the correct one for the week you are timetabling for. 

 

Check for any joint sessions that have already been put in and write them on the timetable 

sheets. 

 

Start by filling in the hydrotherapy slots first, then group, then morning sessions (either 

stretches or joint sessions with nurses). 
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Continue with physio sessions for the high priority patients first by checking the request list 

and slotting patients in with their primary or secondary physiotherapist, using the PTA’s and 

Tech’s for doubles and triples. (Make sure that the patients put in to the 11.35 slot are peg 

fed patients) 

 

Each time you fill in a session make sure you enter it on the overview as well as the 

paper physiotherapy timetable sheets 

 

Finally list how many sessions you were not able to book, record them as unmet needs on 

the bottom of the timetable sheet for the relevant  day. 

 

Make sure you save all the changes you have made to the overview. 

 

Printing the Timetables: 

 

Timetables should be printed out on a Friday afternoon. 

 

Print out the overview and the individual timetables. 

 

The overview needs to be photocopied and given to each ward. (They are put in the folders 

labelled patient therapies, red folder on ward 7 and black folder on ward 8) 

 

The individual timetables should be given to the patient or put on their wall or in their rehab 

diary. 
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Appendix 3.2 

Even Week Wednesday 
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Appendix 3.3 

Syntax 

 

Affiliation Name Dependence Description 

Patient ps
 

i,d,s Start time of patient session s on day d for patient i 

 pe
 

i,d,s End time 

 nps
 

i,d Number of patient sessions on day d for patient i 

 pps
 

i,d,s Start time of patient physiotherapy session s on day d for patient i 

 ppe
 

i,d,s End time 

 ppea
 

i,d,s List of employees assigned 

 ppst
 

i,d,s Type of physiotherapy session 

 npps
 

i,d Number of physiotherapy patient sessions on day d for patient i 

Patient 

Demand 

d* i Demand for patient session type * 

 d*
0 i Remaining demand for patient session type * after manual input 

 d*
1 i Remaining demand for patient session type * after automation 

 d*
2 i Number of sessions scheduled of type * 

Patient 

Attributes 

ast i Returns value 1 if patient requires one employee for stretches or 2 if 

patient requires two employees 

 aal i Returns value 1 if patient attends lunch 

 amb i Minimum band therapist for patient i 

 apr
 

i Returns value 0 if patient has no preference; 1 if patient has 

preference to morning; 2 if patient has preference to afternoon 

 amdc i Returns value 1 if patient does not respond well to multidisciplinary 

cumulative sessions; 0 otherwise 

 app
 

i Primary therapist for patient i 

 asp
 

i Secondary therapist for patient i 

 cap
 

i Priority level of patient i 

Staff sss j,d,l Start time of staff slot l on day d for employee j 

 sse j,d,l End time 

 ssr j,d,l List of recipients 

 sst j,d,l Type of staff slot 
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Staff 

attributes 

tb j Band level of therapist j 

 tl j
 

Returns value 1 if therapist j can lead patient sessions 

 tg j
 

Returns value 1 if therapist j can provide group sessions 

 tst j
 

Returns value 1 if therapist j can assist in stretches or 2 if can lead 

stretches 

 tpm j
 

Returns value 1 if therapist j can provide patient meetings 

 tgm j
 

Returns value 1 if therapist j can provide goal planning meetings 

Lunch ls d Start time of lunch on day d 

 le d End time 

Groups gs
 

r,d Start time of group slot availability period r on day d 

 ge
 

r,d End time 

 minngsr
 

 Minimum number of patients in a group slot 

 maxngsr
 

 Maximum 

Stretches es f,d Start time of stretch availability period f on day d 

 ee f,d End time 

Weight ẁ * Weight value of patient priority level * 

 w *,**
 

Weight value ** of  SCON * 

Misc cci*  Coded colour index of employee slot * 

 md*  Day of patient session * 

 ma i,k,x The actual day/time of patient session x of session group k for patient 

i 

 mo i,k,x The optimal day/time 

 T i,k The day/time of the last occurring patient session of session group k 

for patient i in the previous week 
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Appendix 3.4 

Hard Constraints 

Patient related 

 

HCON 1: More than one treatment session cannot be received at any time by the patient 

 

 

, , , , , , , , , , , ,

, , , , , , , , , , , ,

, ,

, ,

a b b a b b

b a a b a a

i d s i d s i d s i d s i d s i d s

i d s i d s i d s i d s i d s i d s

ps ps pe pe ps pe

ps ps pe pe ps pe

   
 

   
 

 ; ; ;b a as s s d i      

HCON 2: A physiotherapy session must have at least one therapist assigned 

, , 0i d sppea           ; ;s d i    

HCON 3: The start time of the session must be before the end time 

 , , , ,i d s i d spe ps          ; ;s d i    

HCON 4: The number of sessions manually scheduled must be less than or equal to that 

demanded by each patient 

 
0 0 0 0 0 0 0 0 0 0 0, , , , , , , , , , 0i i i i i i i i i i ids dd dt dg dh dst dj dpm dgm dop dad     ; ;s d i    

HCON 5: The number of sessions computationally scheduled must be less than or equal to 

that demanded by each patient 

 
1 1 1 1 1 1 1 1 1 1 1, , , , , , , , , , 0i i i i i i i i i i ids dd dt dg dh dst dj dpm dgm dop dad     ; ;s d i    

HCON 6: Group slots must occur within permissible times 

 , , , , , ,! : i d s r d i d s r dr pps gs ppe ge       , ,: ; ;i d ss ppst ccig d i     

HCON 7: Stretches must occur within permissible times 

 , , , , , ,! : i d s f d i d s f df pps es pe ee       , ,: ; ;i d ss ppst ccist d i     
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HCON 8: No physiotherapy treatment may occur during the lunch break of patients who 

attend lunch 

 

 

, , , , , , , ,

, , , , , , , ,

, ,

, ,

a b b ai d s i d s i d s i d s d d

d i d s i d s d i d s i d s

pps ls le ppe ls le

ls pps ppe le pps ppe

   

    

    ; ;s d i    

HCON 9: A single session must be provided by one therapist to one patient 

 , , 1i d sppea         , ,: ; ;i d ss ppst ccis d i     

HCON 10: A double session must be provided by two therapists to one patient 

 , , 2i d sppea        , ,: ; ;i d ss ppst ccid d i     

HCON 11: A triple session must be provided by three therapists to one patient 

 , , 3i d sppea         , ,: ; ;i d ss ppst ccit d i     

HCON 12: A single stretch must be provided by one therapist to one patient 

 , , 1i d sppea       , ,: ; ; : 1i d s is ppst ccist d i ast      

HCON 13: A double stretch must be provided by two therapists to one patient 

 , , 2i d sppea       , ,: ; ; : 2i d s is ppst ccist d i ast      

HCON 14: A single/double/triple/group/patient meeting must be of duration 45 or 60 minutes 

 , , , , 45 60i d s i d sppe pps    , ,: ; ;i d ss ppst ccis ccid ccit ccig ccipm d i         

HCON 15: A stretch must be of duration 30 minutes 

 , , , , 30i d s i d sppe pps       , ,: ; ;i d ss ppst ccist d i   
 

HCON 16: The end time of any patient meetings cannot be before the start time of any goal 

planning meetings (if goal planning meeting scheduled) 

 p gmd md   , , , ,: : ; : : ;
p g

p g

i d s i d smd s ppst ccipm md s ppst ccigm i        

 
, , , ,p gi d s i d sppe pps   

, , , ,, : : ;
p gp g i d s i d ss s d ppst ccipm ppst ccigm i       



Appendix 3.4 Hard Constraints 315 

HCON 17: The band level of the lead employee of a session must be greater than or equal to 

the patient’s minimum permissible band level 

 , , :i d s j ij ppea tb amb      , ,: ; ;i d ss ppst ccis ccid ccit d i       

HCON 18: The sessions contained on the PTO must correspond to the sessions contained on 

the PPTO 

 
, , , , , , , ,:

p pp i d s i d s i d s i d ss pps ps ppe pe         ; ;s d i    

, , , , , , , ,:
p pi d s i d s i d s i d ss ps pps pe ppe        ; ;ps d i    

HCON 19: The sessions contained on the PPTO must correspond to the sessions contained on 

the (SDTs) 

 , , , , , , , , , , , , , ,: j d l j d l i d s j d l i d s j d l i d sl i ssr sss pps sse ppe sst ppst          

         , , ; ; ;i d sj ppea s d i    
 

HCON 20: At least one therapist providing a stretch must be a lead 

 , , : 2i d s jj ppea tst        , ,: ; ;i d ss ppst ccist d s     

Employee related 

 

HCON 21: An employee cannot provide more than one treatment session at any time 

 

 

, , , , , , , , , , , ,

, , , , , , , , , , , ,

, ,

, ,

a b b a b b

b a a b a a

j d l j d l j d l j d l j d l j d l

j d l j d l j d l j d l j d l j d l

sss sss sse sse sss sse

sss sss sse sse sss sse

   
 

   
 

 ; ; ;b a al l l d j      

HCON 22: An employee must provide treatment to at least one patient in a patient session 

 , , 1j d lssr           ; ;l d j    

HCON 23: A group session must be provided to no more than the maximum or no fewer than 

the minimum number of patients 

 , ,j d lminngsr ssr maxngsr       , ,: ; ;j d ll sst ccig d j     
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HCON 24: The sessions contained on the SDTs must correspond to the sessions contained on 

the PPTO 

 , , , , , , , , , , , , , ,: i d s i d s j d l i d s j d l i d s j d ls j ppea pps sss ppe sse ppst sst         

, , ; ;j d li ssr d j   
 

HCON 25: The therapist(s) assigned to patient sessions must be suitable 

 , , : 1i d s jj ppea tl                   , ,: ; ;i d ss ppst ccis d i   
 

 , , : 1i d s jj ppea tg                   , ,: ; ;i d ss ppst ccig d i   
 

 , , : 2i d s jj ppea tst  
                                       , ,: ; ;i d ss ppst ccist d i   

 

 , , : 1i d s jj ppea tpm  
                       , ,: ; ;i d ss ppst ccipm d i   

 

 , , : 1i d s jj ppea tgm                           , ,: ; ;i d ss ppst ccigm d i     
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Appendix 4.1 

Example: Computer Generated Solution (Tuesday) 
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Appendix 4.2 

Example: Patient Handout 
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Appendix 4.3 

Approximate Values of Weights used in Automated Scheduling Program 

The weights given below have been deduced following trials of the automated scheduling 

program. For each treatment week during the trials, schedules were created with a number of 

different weight values. These were presented to clinicians whose response determined 

whether values were increased or decreased. 
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CART Tree (Excl. Discharge Destination) 

 

Usual residence, C&V hosp. 

 

NHS hosp. 

 

Aneurin Bevan, 

Cwm Taf, Hywel 

Dda, Abertaw Bro 

Morgannwg, Betsi 

Cadwaladr 

Cardiff & Vale, Powys 

 

MS, TBI, GBS, other, MS & other neuropathies 

 

ABI, Anoxia 

 

Reduction in 

variance = 12% 

2 

3 

5 6 

8 

Usual residence, C&V hosp. 

 

NHS hosp., temporary residence 

 1 9 

Aneurin Bevan, Cwm Taf, Abertaw 

Bro Morgannwg, Powys 

7 4 

Cardiff & Vale, Hywel Dda, 

Betsi Cadwaladr 
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CART Tree (Incl. Discharge Destination) 

 

Usual residence, temporary residence 

 

Internal transfer (gen), Other Trust 

(gen), Non-NHS nurs. home 

 

Usual residence, C&V hosp. 

 

NHS hosp. 

 

MS, Anoxia, GBS, MS & other neuropathies 

 

ABI, TBI, other 

 

Usual residence C&V hosp. 

 

Male 

 

Female 

 

MS, GBS, other, MS & other neuropathies 

 

ABI, TBI, Anoxia 

 

Reduction in 

variance = 23% 

2 

3 

4 5 

6 

7 8 

1 
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Model Two Input File 

 

 

2 6 14 0.1902 

0.0734 0.0157 0.0734 

0.08 

1 10 

1 7 0.75 1.5 0 

3 3 7 0.058 

0.1238 0.1238 0.0068 0.0380 

0 0.1813 

1 8 

1 4 0.9 1.32 0 

3 3 7 0.052 

0.0097 0.0328 0.0648 0.0181 

0.5 0.6721 

1 10 

1 4 0.85 1.2 0 

2 9 21 0.0925 

0.0171 0.0084 0.013 

0 

1 10 

1 10 0.75 1.5 0 
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