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We present a pilot application of the recently proposed quasi-variational coupled cluster method to
the energies, polarizabilities, and second hyperpolarizabilities of model hydrogen chains. Relative to
other single-reference methods of equivalent computational complexity, we demonstrate this method
to be highly robust and especially useful when traditional coupled cluster theory fails to perform
adequately. In particular, our results indicate it to be a suitable method for the black-box treatment of
multiradicals, making it of widespread general interest and applicability. © 2012 American Institute
of Physics. [http://dx.doi.org/10.1063/1.4738758]

I. INTRODUCTION

The nonlinear optical (NLO) properties of a molecule
are responsible for macroscopic phenomena such as refrac-
tive indices,1 and the design of materials exhibiting large
or systematically tunable NLO properties is of great inter-
est for use in both current and future generations of opto-
electronic devices.2–7 Owing to this interest, a great deal of
experimental8–12 and theoretical10–14 work has been targeted
at this area. Linearly conjugated organic polymer chains have
been extensively studied due to the discovery of relation-
ships between structural and NLO properties,15–22 and, for
singlet multiradicals in particular, studies on models have
found the second hyperpolarizability to depend strongly on
the diradical character.23, 24 This has been confirmed theoreti-
cally for systems such as graphene nanoflakes,25, 26 as well as
experimentally.27, 28

The first investigation of molecular NLO properties us-
ing highly correlated wavefunction methods was performed
by Bartlett and Purvis,29 and a correct treatment of electron
correlation has since been shown to be essential in obtaining
quantitatively accurate values of NLO properties from theo-
retical methods,30–38 especially second hyperpolarizabilities,
which Hartree-Fock39, 40 (HF) theory is known to systemat-
ically underestimate. Unfortunately, the common variants of
density functional theory41, 42 overestimate these same NLO
properties,43, 44 and while more novel approaches have less-
ened this problem, it has yet to be fully resolved.45, 46

Due to the size and complexity of many of the systems of
interest, ab initio calculations are typically applied to smaller
representative test cases24 or else resort to the investigation of
model hydrogen chains as prototypical multiradicals23, 47–52 in
order to benchmark other, less expensive methods.31, 36, 53, 54

However, since the NLO properties are extremely sensitive
to the treatment of electron correlation,30, 55, 56 it has also be-
come important to benchmark the ab initio methods amongst
themselves on these systems.32, 37 For this purpose, it has be-
come common to use traditional coupled cluster57–62 (TCC)

a)Electronic mail: KnowlesPJ@Cardiff.ac.uk.

limited to single and double excitations of the HF reference
determinant (CCSD) in order to achieve a highly correlated
approximation to the many-body Schrödinger wavefunction,
sometimes combined with a correction to the calculated en-
ergy motivated by perturbative estimates of the effect of triple
excitations.63–65

Unfortunately, TCC itself performs poorly when the
Hartree-Fock approximation on which it is based becomes
qualitatively wrong and a single-determinantal reference
wavefunction becomes a poor model of the exact electronic
wavefunction. This is especially problematic for multiradi-
cals and geometries far from equilibrium, which are often the
systems of interest in the context of applications to nonlinear
optics.24 If the TCC energy becomes poor as a result of this
problem, the effect will be magnified for higher order prop-
erties, such as second hyperpolarizabilities. Furthermore, the
multireference methods, such as multireference configuration
interaction66, 67 and related formulations that seek to approxi-
mately correct for size-extensivity errors,68–70 while more re-
liable in such situations, do not operate in a “black-box” fash-
ion, and are thus more difficult to deploy on large systems.
They also often suffer from unfavourable computational scal-
ing and problems stemming from the lack of rigorous exten-
sivity.

We have recently put forward a new single-reference
post-Hartree-Fock method, quasi-variational coupled
cluster71 (QVCC), that deals more effectively with non-
dynamic correlation at the doubles level (QVCCD). This is
the most advanced of a family of methods72, 73 that function
by constructing an infinite-order approximation to VCC
(Ref. 74) restricted to double excitations (VCCD), which has
been demonstrated previously by several other authors75–81 to
be significantly more robust than TCC, due to the stabilizing
property that calculated VCC energies are upper bounds on
the exact ground-state Schrödinger energy eigenvalue. In
fact, poor performance of CCSD can be directly attributed to
its divergence from VCCSD,82 and modifications of CCSD
have been devised to correct for this.83–85 Unfortunately, the
computational complexity of these corrections exceeds that
of the limiting step of a CCSD calculation, so they have
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not been widely adopted. In contrast, the limiting step of a
quasi-variational coupled cluster calculation is identical with
that of CCSD. When combined with orbital optimization86 to
deal with single excitations, as well as a standard perturbative
triples correction63 to capture remaining dynamic correlation
effects, the resulting OQVCCD(T) method is capable of pre-
dicting both a physically correct and quantitatively accurate
potential energy curve for the dissociation of dinitrogen,
N2,87 and other strongly correlated molecules.88 In this
article, we investigate whether the quasi-variational coupled
cluster method also provides a more robust description of the
electron correlation of multiradicals and their NLO properties
by investigating the singlet states of several model hydrogen
systems.

II. THEORY

Using the Einstein summation convention89 and a spin-
orbital notation in which the sets {i, j, k, . . . } and {a, b, c,
. . . } denote orbitals occupied and unoccupied in the single-
determinantal reference wavefunction, |�0 〉, respectively, the
QVCCD (Ref. 71) ground-state energy is the minimum of the
following functional with respect to the set, {T ij

ab}, of doubles-
only cluster amplitudes:

E = 〈�0|Ĥ (1 + 2 2T̂ )|�0〉 + 〈�0| 1T̂
†
Ĥ1T̂ |�0〉L. (1)

The q T̂ operators are defined as follows:

q T̂ |�0〉 = 1
4 qT

ij

ab

∣∣�ab
ij

〉
, (2)

qT
ij

ab = (1 − τab)( AU− q

2 )caT
ij

cb
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2 )ikT
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2 ( CU− q

2 )ijklT
kl
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− 1
2 (1 − τij )(1 − τab)(DU− q

2 )icakT
kj

cb , (3)
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ij
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ij
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2T

ij
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kl ,

BU
i
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j + 1
2T ik

ab T ab
jk DU

ib
aj = δib

aj + T ik
ac T bc

jk , (4)

where the operator τ pq permutes the labels p, q in what fol-
lows, and the L subscript denotes the inclusion of fully linked
terms only. Single excitations may be incorporated into this
scheme by minimization of the functional also with respect
to the orbitals (OQVCCD),86 or by the use of the Brueckner
constraint (BQVCCD).90–92 Our functional inherits pseudo-
variational upper bound character from its parent VCCD func-
tional,

EVCCD = 〈�0|eT̂
†

2 Ĥ eT̂2 |�0〉
〈�0|eT̂

†
2 eT̂2 |�0〉

= 〈�0|eT̂
†

2 Ĥ eT̂2 |�0〉L, (5)

which we have shown previously to be highly stabilizing,
even upon the addition of perturbative corrections for the ef-
fects of higher excitations.87, 88 For the case of non-HF ref-
erences, these perturbative corrections include the additional

terms noted by Watts et al.,93 making the method correct to
fourth-order in perturbation theory.

The TCC methods, on the other hand, are defined through
projection of the similarity-transformed Schrödinger equation
onto the manifolds of singly, doubly and (if applicable) more
highly excited determinants. For example, the equations for
the CCSD method,

〈�0|e−T̂ Ĥ eT̂ |�0〉 = ECCSD, (6)

〈
�a

i

∣∣e−T̂ Ĥ eT̂ |�0〉 = 0, (7)

〈
�ab

ij

∣∣e−T̂ Ĥ eT̂ |�0〉 = 0, (8)

and the closely related BCCD method,92

〈�0|Ĥ eT̂2 |�0〉 = EBCCD, (9)

〈
�a

i

∣∣Ĥ eT̂2 |�0〉 = 0, (10)

〈
�ab

ij

∣∣Ĥ eT̂2 |�0〉 = T ab
ij EBCCD, (11)

are as above, with the following definition of the cluster oper-
ator:

T̂ = T̂1 + T̂2, (12)

T̂1|�0〉 = T i
a

∣∣�a
i

〉
, (13)

T̂2|�0〉 = 1
4T

ij

ab

∣∣�ab
ij

〉
. (14)

Zero-frequency nonlinear optical properties may be cal-
culated from any of these methods by finite-difference differ-
entiation of the calculated energies with respect to the strength
of a small applied field; if the molecular Hamiltonian is per-
turbed by the application of a weak electric field, F , the total
energy, E, of the molecule may be written as a Taylor series
in orders of the field strength,94

E =
∞∑

n=0

Fn

n!

dnE

dFn

∣∣∣∣
F=0

. (15)

The dipole moment of the molecule in the direction of the
applied field, a measure of the separation of charge in the
molecule along that axis, is

〈μ〉 = −dE

dF

= −
∞∑

n=1

Fn−1

(n − 1)!

dnE

dFn

∣∣∣∣
F=0

. (16)

The first term in this series is the static (or permanent) dipole
moment, and the other terms represent the contributions to
the induced dipole moment. The coefficients of the second,
third, and fourth terms, which measure the response of the
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molecule to an applied field, are the electric polarizability, α,
the hyperpolarizability, β, and the second hyperpolarizability,
γ :

α = − d2E

dF2

∣∣∣∣
F=0

, (17)

β = − 1

2!

d3E

dF3

∣∣∣∣
F=0

, (18)

γ = − 1

3!

d4E

dF4

∣∣∣∣
F=0

. (19)

III. METHODOLOGY

In this article, we benchmark the performance of QVCC
against CCSD, CCSD(T), BCCD and BCCD(T) on several
model hydrogen systems, using either full configuration in-
teraction (FCI) or multireference averaged quadratic coupled
cluster69 (AQCC) as the standard for correct behaviour in
each case. The sensitivity of the NLO properties, in partic-
ular, to the treatment of electron correlation in these sys-
tems make them perfect tests of any new quantum chemical
method. In each case, a restricted Hartree-Fock (RHF) ref-
erence wavefunction is used. Although better results could
possibly be achieved by the use of an unrestricted Hartree-
Fock (UHF) reference wavefunction that correctly describes
molecular dissociation, by instead using RHF in each case a
fair comparison between each of the methods can be achieved.
We compare and contrast the effectiveness of the RHF-based
and UHF-based quantum chemical methods separately in
Sec. IV G. Additionally, in order to further establish a fair
benchmark of comparison between the methods, we substi-
tute optimization of the orbitals in the QVCC calculations for
the Brueckner condition, so that BQVCCD and BQVCCD(T)
may be compared directly with BCCD and BCCD(T).

We assign each model system two degrees of freedom,
and, in each case, we gain insight into how the properties of
interest vary by examining 1D cuts of the potential energy sur-
faces or the surfaces of the polarizability or second hyperpo-
larizability. For several of the systems we also systematically
gauge the accuracy of each of the single-reference electronic
structure methods by obtaining a set of errors (computed by
taking the value of the property of interest and subtracting
from it the value obtained from a more accurate calculation,
such as FCI, over a representative region of the corresponding
potential energy surface. We also supply a supporting selec-
tion of FCI or MRAQCC energies, polarizabilities, and sec-
ond hyperpolarizabilities for each of the models in order to
allow the scale of the errors presented to be established. This
is given in Table I.

Although much of the interest in model hydrogen sys-
tems is in the NLO properties of linear chains parallel to the
longitudinal axis, we relax this constraint and investigate sev-
eral different model hydrogen systems. However, we first in-
vestigate only the perpendicular NLO properties of each of
the model systems. We do this for several reasons. First, in

TABLE I. Calculated energies, polarizabilities, and second hyperpolariz-
abilities for a selection of geometries of the various model hydrogen systems
with the aug-cc-pVDZ basis. All quantities are in atomic units, and calculated
with either the FCI (H4) or MRAQCC (H6) methods.

D∞h H4 R1 (Å) R2 (Å) E α γ

1.00 1.00 −2.258545 9.891 × 10+0 5.206 × 10+1

1.00 4.00 −2.283675 1.158 × 10+1 5.107 × 10+1

2.00 1.75 −2.048722 1.615 × 10+1 8.584 × 10+1

2.50 2.50 −2.008549 1.673 × 10+1 1.072 × 10+2

3.00 4.00 −1.999858 1.688 × 10+1 1.055 × 10+2

C2v H4 R (Å) θ (◦) E α γ

2.25 0.0 −2.020093 1.593 × 10+1 8.977 × 10+1

2.50 0.0 −2.009633 1.626 × 10+1 1.016 × 10+2

2.75 0.0 −2.003707 1.643 × 10+1 1.070 × 10+2

3.00 0.0 −2.000577 1.653 × 10+1 1.075 × 10+2

3.25 0.0 −1.998985 1.661 × 10+1 1.055 × 10+2

D2h H4 R (Å) θ (◦) E α γ

1.75 80.0 −2.017706 1.632 × 10+1 9.883 × 10+1

2.00 70.0 −2.016094 1.668 × 10+1 1.050 × 10+2

2.00 80.0 −2.005927 1.655 × 10+1 1.078 × 10+2

2.25 70.0 −2.005764 1.675 × 10+1 1.084 × 10+2

2.25 80.0 −2.000833 1.664 × 10+1 1.074 × 10+2

C2h H4 R (Å) θ (◦) E α γ

1.0 45.0 −2.253203 9.792 × 10+0 7.684 × 10+1

1.5 45.0 −2.130547 1.441 × 10+1 6.347 × 10+1

2.0 45.0 −2.040944 1.641 × 10+1 8.920 × 10+1

2.5 45.0 −2.008522 1.671 × 10+1 1.068 × 10+2

3.0 45.0 −2.000026 1.676 × 10+1 1.056 × 10+2

D∞h H6 R1 (Å) R2 (Å) E α γ

1.0 1.2 −3.400172 1.471 × 10+1 6.743 × 10+1

1.2 1.8 −3.325041 1.895 × 10+1 7.127 × 10+1

1.4 1.6 −3.234402 2.065 × 10+1 7.499 × 10+1

1.6 1.6 −3.165001 2.217 × 10+1 7.866 × 10+1

1.8 1.8 −3.105677 2.370 × 10+1 8.935 × 10+1

each of the models that we test, there is a unique axis per-
pendicular to the plane of the system, whereas, for several
of the models, no such unique axis exists in the plane. Thus,
the perpendicular polarizabilities yield a single representative
test for each system. Second, the perpendicular nonlinear op-
tical properties are less sensitive to the applied field strength
and are thus more amenable to calculation by finite-difference
differentiation. Third, the polarizabilities perpendicular to a
bond axis are interesting in their own right, since they give a
measure of the shape of the electronic structure, and, in par-
ticular, the contraction of the electron distribution as atoms
are brought together to form covalent bonds. Finally, it is our
goal only to present further evidence that our new and robust
electronic structure ansatz that performs pseudo-variationally
for the calculation of potential energy curves allows the more
accurate prediction of NLO properties when TCC fails to per-
form adequately, making it potentially valuable for future in-
vestigations, and perpendicular properties suffice for this.

Four of the model systems that we test are illustrated
in Figure 1, which are, in clockwise order from the top-
left, D∞h, C2v, D2h, and C2h arrangements of four hydrogen
atoms. We also investigate the 6-atom equivalent of the D∞h

model. We further establish that our findings extend to parallel
polarizabilities and hyperpolarizabilities by investigating the
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FIG. 1. Clockwise from top-left, the D∞h, C2v, D2h, and C2h H4 models.

metal-insulator transition in D∞h H10 as the nearest neighbour
separation of the atoms is increased.

IV. RESULTS AND DISCUSSION

All calculations in this article were performed with the
MOLPRO95, 96 quantum chemistry software package and most
make use of the correlation-consistent basis sets of Dun-
ning and co-workers97 augmented with additional diffuse
functions.98

A. The D∞h H4 model

The D∞h H4 model consists of four hydrogen atoms ar-
ranged linearly, with R1 corresponding to the distance be-
tween the outer and inner atoms, and with R2 corresponding to
the distance between the two inner atoms, as is illustrated by
the top-left diagram of Figure 1. For large R2, the system cor-
responds to two isolated hydrogen molecules, each with bond
length R1, whereas for large R1, the outer hydrogen atoms be-
come isolated, leaving an inner hydrogen molecule with bond
length R2.

In Figure 2 we show how the energies vary for a uni-
form (R1 = R2) arrangement of the atoms as the common
bond length is increased. In the case of the energy, BQVCCD
clearly out-performs both CCSD and BCCD; the BQVCCD
curve remains above FCI throughout, and the peak BQVCCD
error, located around 2.2 Å, is significantly smaller in magni-
tude than the TCC peak errors. The BQVCCD curve also re-
mains fairly parallel to the FCI curve, and the error therefore
remains uniform throughout, whereas both CCSD and BCCD

FIG. 2. Calculated energies of the D∞h H4 model with R1 = R2 and the
aug-cc-pVDZ basis.

display large fluctuations in accuracy relative to FCI. Further-
more, it is apparent that the addition of the triples correction
to BQVCCD improves the overall description of the potential
energy curve, resulting in smaller errors throughout, whereas
it has the opposite effect on the TCC methods, magnifying
their errors.

An error analysis for the D∞h H4 model is given in
Table II, and supports the observations already made.
BQVCCD(T) possesses the smallest mean signed and mean
absolute errors of the methods tested, and by roughly an or-
der of magnitude in some cases. The standard deviation of
the BQVCCD(T) energy errors is also the smallest of any of
the methods, indicating that BQVCCD(T) maintains roughly
the same level of accuracy over the potential energy surface,
whereas the TCC methods are far less predictable or reliable.

The polarizability errors are similarly in favour of
BQVCCD(T). The BQVCCD(T) mean signed error is, at
50 μa.u., at least two orders of magnitude smaller than any
of the TCC values, and the mean absolute errors are between
3 and 4 times smaller than the values predicted by BCCD,
the best of the TCC methods in this case. Of all the methods
tested, BQVCCD(T) predicts the second hyperpolarizabilities
closest in value to FCI, with a mean absolute error at least 3
times smaller than both CCSD and BCCD.

TABLE II. Errors relative to FCI for calculated energies of, and polarizabilities perpendicular to the D∞h H4

model with the aug-cc-pVDZ basis. Results were obtained from the set of points {(R1, R2)}, where R1 ∈ {1.0,
1.5, 2.0, 2.5, 3.0}Å and R2 ∈ {1.0, 1.75, 2.5, 3.25, 4.0}Å.a

CCSD CCSD(T) BCCD BCCD(T) BQVCCD BQVCCD(T)

E ε̄ − 3.42 × 10−3 − 6.61 × 10−3 − 1.20 × 10−3 − 2.96 × 10−3 1.87 × 10−3 5.24 × 10−4

¯|ε| 4.49 × 10−3 6.65 × 10−3 2.33 × 10−3 3.01 × 10−3 1.87 × 10−3 7.07 × 10−4

σ 9.56 × 10−3 1.34 × 10−2 5.45 × 10−3 7.44 × 10−3 2.31 × 10−3 1.11 × 10−3

α ε̄ − 1.80 × 10−1 − 2.36 × 10−1 1.43 × 10−2 3.25 × 10−2 − 3.04 × 10−3 − 5.76 × 10−5

¯|ε| 1.82 × 10−1 2.49 × 10−1 1.02 × 10−1 1.24 × 10−1 4.17 × 10−2 3.06 × 10−2

σ 3.97 × 10−1 5.51 × 10−1 3.00 × 10−1 3.81 × 10−1 8.89 × 10−2 7.12 × 10−2

γ ε̄ 6.56 × 10−1 -7.40 × 10−1 2.06 × 10+0 1.25 × 10+0 7.43 × 10−1 4.53 × 10−1

¯|ε| 4.43 × 10+0 5.24 × 10+0 3.74 × 10+0 3.67 × 10+0 1.12 × 10+0 1.11 × 10+0

σ 9.82 × 10+0 1.11 × 10+1 1.02 × 10+1 1.02 × 10+1 1.48 × 10+0 1.74 × 10+0

aQuoted values are the mean signed error, ε̄, the mean absolute error, ¯|ε|, and the standard deviation of the signed errors, σ .
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FIG. 3. Calculated potential energy curves for the C2v H4 model with
R = 2.25 Å, and with the aug-cc-pVDZ basis.

B. The C2v H4 model

The C2v model, illustrated by the diagram in the top-right
of Figure 1, corresponds to a cis arrangement of the four hy-
drogen atoms, with the degrees of freedom chosen to be the
distance between nearest neighbours and the angle subtended
by lines from an outer atom to an inner atom and along the
perpendicular to the line joining the two inner atoms.

The most interesting degree of freedom to vary in this
system is the angle θ ; the outer hydrogen atoms are nearby
for θ < 0◦, but as the system is distorted through θ = 0◦,
corresponding to the square geometry, the outer atoms swing
apart and the optimum Hartree-Fock reference wavefunction
changes. This results in cusps in the potential energy curves
predicted by the single-reference methods at θ = 0◦, as can
be seen in Figure 3. The CCSD and BCCD methods level off
too quickly, forming concave cusps, whereas the BQVCCD
cusp is convex and the curve mimics the FCI shape more cor-
rectly overall. It is again true that the (T) correction to the
BQVCCD method results in an improved curve, even flatten-
ing the cusp, whereas the (T) correction to the TCC meth-
ods push the curves further from FCI quality and sharpen the
cusps.

The error analysis for C2v H4 is given in Table III. As can
be expected from the plot, the BQVCCD(T) method possesses
the smallest errors in the calculated energies across all the cat-
egories. It is particularly striking that the BQVCCD(T) mean

FIG. 4. Calculated potential energy curves for the D2h H4 model with
R = 1.75 Å, and with the aug-cc-pVDZ basis.

absolute error, at 0.4 millihartrees, is 25 times smaller than
the CCSD(T) error, at 11 millihartrees, and 15 times smaller
than the BCCD(T) value, at 7 millihartrees.

The polarizability errors are also quite impressive; the
BQVCCD(T) mean absolute error for the perpendicular po-
larizability is 0.025 a.u., whereas the CCSD(T) and BCCD(T)
errors are larger by factors of approximately 13 and 5, respec-
tively. The standard deviations of the polarizability errors are
also roughly an order of magnitude smaller for BQVCCD and
BQVCCD(T) than for the TCC methods. The BCCD method
predicts just slightly better second hyperpolarizability values
than BQVCCD for this system, as measured by mean abso-
lute errors. However, the standard deviation of the errors indi-
cates that the BQVCCD method still has the smallest spread
of errors, so that it remains the most reliable method for calcu-
lating second hyperpolarizabilities, despite its slightly poorer
mean accuracy here.

C. The D2h H4 model

Next, we examine the D2h H4 model,79 shown in the
bottom-right of Figure 1, in which four hydrogen atoms are
arranged in a rectangle that can be defined by the parame-
ters R, which controls the distance of each H atom from the
centre of mass, and θ , the angle subtended at the centre of
mass by radii to two neighbouring vertices of the rectangle.

TABLE III. Errors relative to FCI for calculated energies, and polarizabilities perpendicular to the plane, in
the C2v H4 model with the aug-cc-pVDZ basis. Results were obtained from the set of points {(R, θ )}, where
R ∈ {2.25, 2.5, 2.75, 3.0, 3.25}Å and θ ∈ {0, ±2, ±4, ±6, ±8}◦.

CCSD CCSD(T) BCCD BCCD(T) BQVCCD BQVCCD(T)

E ε̄ − 7.14 × 10−3 − 1.12 × 10−2 − 4.28 × 10−3 − 6.81 × 10−3 1.65 × 10−3 1.68 × 10−4

¯|ε| 7.17 × 10−3 1.12 × 10−2 4.32 × 10−3 6.81 × 10−3 1.65 × 10−3 4.35 × 10−4

σ 6.10 × 10−3 8.18 × 10−3 2.68 × 10−3 3.70 × 10−3 1.12 × 10−3 6.62 × 10−4

α ε̄ − 1.45 × 10−1 − 2.48 × 10−1 1.87 × 10−2 4.33 × 10−2 − 3.25 × 10−2 − 1.89 × 10−2

¯|ε| 2.32 × 10−1 3.29 × 10−1 9.78 × 10−2 1.18 × 10−1 3.26 × 10−2 2.48 × 10−2

σ 2.77 × 10−1 3.88 × 10−1 1.16 × 10−1 1.35 × 10−1 2.91 × 10−2 3.00 × 10−2

γ ε̄ 3.32 × 10+0 5.11 × 10+0 − 1.05 × 10+0 − 2.28 × 10+0 1.75 × 10+0 1.72 × 10+0

¯|ε| 5.23 × 10+0 6.84 × 10+0 1.57 × 10+0 2.60 × 10+0 1.77 × 10+0 1.79 × 10+0

σ 6.36 × 10+0 8.47 × 10+0 1.81 × 10+0 2.58 × 10+0 1.37 × 10+0 2.04 × 10+0
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FIG. 5. Calculated second hyperpolarizabilities perpendicular to the plane of
the D2h H4 model with R = 1.75 Å, and with the aug-cc-pVDZ basis

The system is symmetric about θ = 90◦, and the optimum
Hartree-Fock reference wavefunction differs on either side of
this line. Thus, the Hartree-Fock approximation breaks down
around θ = 90◦ as two determinants become equally impor-
tant to the description of the ground-state electronic structure,
and this makes the system an excellent test of single-reference
post-Hartree-Fock electron correlation methods.

We have previously shown that the QVCCD method
mimics the behaviour of VCCD (and thus FCI) well in this
system,71 and the improved shape of the potential energy
curve relative to the TCC methods around the square geome-
try can be seen in Figure 4. However, the BQVCCD method
additionally models the nonlinear optical properties of this
system extremely well, achieving the correct shape for the
second hyperpolarizability around θ = 90◦ despite a displace-
ment in the curve position, as can be seen in Figure 5. The
cusp present in the BQVCCD and BQVCCD(T) potential en-
ergy curves has also almost vanished in the second hyperpo-
larizability curves. In contrast, the poor quality of the CCSD
and BCCD methods in the interval [80◦, 100◦] that is appar-
ent in the calculated energies deteriorates even further for this
more challenging property, with CCSD, CCSD(T), BCCD,
and BCCD(T) all predicting curves with incorrect slope rela-
tive to FCI, and possessing even sharper cusps.

As measured by the mean absolute error data presented
in Table IV, it is clear that BQVCCD(T) predicts the poten-

FIG. 6. Calculated potential energy curves for the C2h H4 model with
R = 2.0 Å, and with the aug-cc-pVDZ basis.

tial energy curves and second hyperpolarizabilities that best
approximate the FCI values overall, and that BQVCCD pre-
dicts the best polarizabilities. Similarly, the BQVCCD and
BQVCCD(T) standard deviations are smaller than the equiv-
alent TCC values, from which we infer that not only are the
accuracies of BQVCCD-calculated energies, polarizabilities
and second hyperpolarizabilities greatly improved, but that
the calculations are also stabilized, resulting in more system-
atically predictable, consistent errors.

D. The C2h H4 model

The C2h model is a simple modification of the C2v model
such that one of the outer hydrogens is on the opposite side,
forming a trans structure. The diagram is given in the bottom-
left of Figure 1. Increasing the angle θ causes the outer hy-
drogen atoms to swap to opposite sides, with θ = 90◦ corre-
sponding to linear geometry.

A plot of the potential energy curves obtained by varying
the angle θ is shown in Figure 6. Both the CCSD and BCCD
curves lie below FCI throughout, and the effect of the (T)
correction is to push the curves lower still, further from FCI.
However, the BQVCCD curve lies significantly above the
FCI curve throughout, and the effect of the correction re-
mains to push the energy down, resulting in the BQVCCD(T)
curve being almost coincident with FCI. The calculated

TABLE IV. Errors relative to FCI for calculated energies of, and polarizabilities perpendicular to the D2h

H4 model with the aug-cc-pVDZ basis. Results were obtained from the set of points {(R, θ )}, where R ∈
{1.0, 1.75, 2.0, 2.25}Å and θ ∈ {70, 72, 74, 76, 78, 80, 82, 84, 86, 87, 88, 89}◦.

CCSD CCSD(T) BCCD BCCD(T) BQVCCD BQVCCD(T)

E ε̄ − 7.69 × 10−4 − 2.59 × 10−3 − 1.09 × 10−3 − 2.83 × 10−3 1.36 × 10−3 2.89 × 10−5

¯|ε| 1.85 × 10−3 2.63 × 10−3 2.16 × 10−3 2.89 × 10−3 1.36 × 10−3 3.01 × 10−4

σ 2.51 × 10−3 3.03 × 10−3 2.87 × 10−3 3.39 × 10−3 1.18 × 10−3 3.99 × 10−4

α ε̄ 4.36 × 10−2 2.92 × 10−2 8.18 × 10−3 1.79 × 10−2 − 1.53 × 10−2 − 1.37 × 10−2

¯|ε| 6.33 × 10−2 5.74 × 10−2 4.71 × 10−2 5.68 × 10−2 2.35 × 10−2 2.46 × 10−2

σ 7.85 × 10−2 8.55 × 10−2 6.88 × 10−2 8.58 × 10−2 3.09 × 10−2 3.51 × 10−2

γ ε̄ − 1.07 × 10+0 − 6.49 × 10−1 − 2.04 × 10−1 − 7.80 × 10−1 9.81 × 10−1 7.74 × 10−1

¯|ε| 1.59 × 10+0 1.09 × 10+0 9.08 × 10−1 1.27 × 10+0 9.88 × 10−1 8.18 × 10−1

σ 1.61 × 10+0 1.49 × 10+0 1.41 × 10+0 1.79 × 10+0 7.92 × 10−1 7.42 × 10−1
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FIG. 7. Calculated polarizabilities perpendicular to the plane of the C2h H4
model with R = 2.0 Å, and with the aug-cc-pVDZ basis.

polarizabilities are also shown in Figure 7, and although
each of the methods deteriorates in quality for the calculation
of this more difficult property, BQVCCD(T) remains in
extremely good agreement with FCI throughout.

These graphs add credence to the error analysis presented
in Table V, which indicates that BQVCCD(T) performs best
for each of the properties and by almost all error measures.
For example, the BQVCCD(T) mean absolute energy error is
16 and 9 times smaller than the CCSD(T) and BCCD(T) er-
rors, respectively. The polarizabilities and second hyperpolar-
izabilities are similarly impressive, with errors 13 and 7 times
smaller for the polarizabilities and by 5 and 4 times for the
second hyperpolarizabilities, respectively.

E. The D∞h H6 model

Analogous to the D∞h H4 model, we have also studied
the more severe test case of the D∞h H6 model in which six
hydrogen atoms are arranged linearly, with bond lengths al-
ternating as R1, R2, R1, R2, R1.

First, we investigated the line along the potential en-
ergy surface defined by R1 = R2, for which the potential en-
ergy curves are given in Figure 8. All methods perform sim-
ilarly well until approximately 1.6 Å. At this bond length,
the TCC methods begin to degrade significantly in quality,
dropping below the MRAQCC energy in a non-variational

FIG. 8. Calculated potential energy curves for the D∞h H6 model with R1
= R2 and with the aug-cc-pVDZ basis.

fashion. However, the BQVCCD and BQVCCD(T) energies,
supported by the approximately fulfilled upper bound prop-
erty, remain in excellent agreement with MRAQCC through-
out and do not appear to degrade at all.

These findings extend also to the perpendicular polariz-
abilities, given in Figure 9, and second hyperpolarizabilities,
given in Figure 10. The TCC methods predict a decreasing po-
larizability from approximately 1.8 Å, which is clearly at odds
with the smooth and monotonically increasing MRAQCC po-
larizability. The BQVCCD predicted polarizabilities, on the
other hand, are far superior, and although the polarizability
decreases around 2.2 Å, this is quickly corrected such that the
BQVCCD curve remains near the MRAQCC curve through-
out. The second hyperpolarizabilities are even more striking,
with the TCC methods predicting values several times too
large for 1.8–2.2 Å. The BQVCCD curves again experience
crossings with the MRAQCC curve, but the predicted values
remain quantitatively accurate at all points.

The error analysis for this system is given in Table VI. An
examination of the mean absolute errors for each of the three
properties confirms that BQVCCD(T) is the most accurate of
the single-reference methods, and by an order of magnitude
in each case. The standard deviations also attest the reliabil-
ity of the BQVCCD(T) method, with CCSD values factors of
5, 8, and 8 worse for the energy, polarizability, and second
hyperpolarizability, respectively. Finally, we note once again,

TABLE V. Errors relative to FCI for calculated energies of, and polarizabilities perpendicular to the C2h

H4 model with the aug-cc-pVDZ basis. Results were obtained from the set of points {(R, θ )}, where
R ∈ {1.0, 1.5, 2.0, 2.5, 3.0}Å and θ ∈ {− 15, 0, 15, 30, 45, 60, 75, 90}◦.

CCSD CCSD(T) BCCD BCCD(T) BQVCCD BQVCCD(T)

E ε̄ − 6.31 × 10−3 − 1.04 × 10−2 − 2.97 × 10−3 − 5.53 × 10−3 2.45 × 10−3 6.55 × 10−4

¯|ε| 7.54 × 10−3 1.05 × 10−2 4.13 × 10−3 5.64 × 10−3 2.45 × 10−3 6.55 × 10−4

σ 8.70 × 10−3 1.13 × 10−2 4.25 × 10−3 5.30 × 10−3 8.43 × 10−4 5.57 × 10−4

α ε̄ − 2.57 × 10−1 − 3.78 × 10−1 − 4.57 × 10−2 − 5.20 × 10−2 1.31 × 10−2 1.33 × 10−3

¯|ε| 2.58 × 10−1 3.78 × 10−1 1.33 × 10−1 1.79 × 10−1 5.23 × 10−2 2.74 × 10−2

σ 2.66 × 10−1 3.68 × 10−1 2.02 × 10−1 2.68 × 10−1 7.46 × 10−2 3.80 × 10−2

γ ε̄ 4.67 × 10−1 − 3.17 × 10−1 7.54 × 10−1 − 2.97 × 10−1 − 2.03 × 10−1 − 2.84 × 10−1

¯|ε| 6.87 × 10+0 9.08 × 10+0 6.14 × 10+0 7.63 × 10+0 2.14 × 10+0 1.95 × 10+0

σ 1.00 × 10+1 1.36 × 10+1 8.77 × 10+0 1.13 × 10+1 2.91 × 10+0 2.78 × 10+0
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FIG. 9. Calculated polarizabilities for the D∞h H6 model with R1 = R2 and
with the aug-cc-pVDZ basis.

that, for this set of data, the addition of the (T) correction to
the BQVCCD method yields smaller errors overall, whereas
its addition to the TCC methods tends to have the opposite
effect.

F. Towards the metal-insulator transition: H10

As a last example, we examine the NLO properties
parallel to the D∞h H10 model system as a function of the
separation between sites. Thus, this example is used to inves-
tigate whether our extremely positive findings for the calcu-
lation of perpendicular polarizabilities using the BQVCCD
and BQVCCD(T) methods are reflected in parallel polariz-
abilities also. The H10 system, along with other hydrogen
chains of similar length, have been investigated previously
in the context of metal-insulator transitions, for example in
Ref. 99. In order to closely reproduce the results of this ar-
ticle, and in order to make the FCI calculations practical, we
have made use of the minimal STO-3G basis set, rendering
the calculated polarizabilities of qualitative validity only.

The calculated energies for this system are given in
Figure 11, and polarizabilities in Figure 12, in which it is clear
that each of the methods is capable of describing the short
bond length region (the region of increasing slope), where the
system is thought to be metallic, but the methods based on
TCC struggle in the region of decreasing slope of the polar-

FIG. 10. Calculated second hyperpolarizabilities for the D∞h H6 model with
R1 = R2 and with the aug-cc-pVDZ basis.

izability, becoming catastrophically incorrect around a bond
length of 1.5 Å. The BQVCCD and BQVCCD(T) methods,
however, are in good agreement with FCI throughout, despite
underestimating the value of the polarizability itself. Thus, not
only is the BQVCCD ansatz similarly impressive for the eval-
uation of parallel polarizabilities, but this example illustrates
an application of the method to a metal-insulator transition;
a problem of widespread interest. For completeness, we have
also included a plot of the second hyperpolarizability paral-
lel to the longitudinal axis of the molecule in Figure 13, with
shows similar accuracy.

G. Comparison with UHF-CCSD

Finally, as we have already noted, all calculations pre-
sented so far have used RHF reference wavefunctions. How-
ever, very good results for these model systems can be ob-
tained at extended interatomic distances by the use of a UHF
reference wavefunction, which, unlike the RHF wavefunc-
tion, is qualitatively correct at dissociation; in RHF theory, the
α and β electrons are constrained to occupy the same spatial
orbitals. If a molecule dissociates into open-shell fragments,
which should be uncharged on physical grounds, this restric-
tion necessarily leads to ionic contamination of the wavefunc-
tion as the molecule dissociates.100 In UHF theory, this con-
straint is relaxed.

TABLE VI. Errors relative to MRAQCC for calculated energies of, and polarizabilities perpendicular to the
D∞h H6 model with the aug-cc-pVDZ basis. Results were obtained from the set of points {(R1, R2)}, where R1,
R2 ∈ {1.0, 1.2, 1.4, 1.6, 1.8}Å.

CCSD CCSD(T) BCCD BCCD(T) BQVCCD BQVCCD(T)

E ε̄ 3.03 × 10−3 − 4.09 × 10−3 2.54 × 10−3 − 3.29 × 10−3 5.42 × 10−3 1.12 × 10−4

¯|ε| 3.52 × 10−3 4.33 × 10−3 3.74 × 10−3 3.53 × 10−3 5.42 × 10−3 5.57 × 10−4

σ 3.03 × 10−3 6.65 × 10−3 3.97 × 10−3 6.24 × 10−3 3.77 × 10−3 6.29 × 10−4

α ε̄ − 1.35 × 10−1 − 2.35 × 10−1 − 1.61 × 10−1 − 2.16 × 10−1 9.16 × 10−3 − 2.40 × 10−2

¯|ε| 1.36 × 10−1 2.35 × 10−1 1.61 × 10−1 2.18 × 10−1 4.20 × 10−2 2.50 × 10−2

σ 2.36 × 10−1 3.79 × 10−1 3.32 × 10−1 4.56 × 10−1 6.07 × 10−2 3.13 × 10−2

γ ε̄ 5.74 × 10+0 5.82 × 10+0 6.23 × 10+0 5.90 × 10+0 9.74 × 10−1 1.09 × 10−1

¯|ε| 5.74 × 10+0 6.43 × 10+0 6.24 × 10+0 6.62 × 10+0 1.13 × 10+0 7.70 × 10−1

σ 9.79 × 10+0 1.21 × 10+1 1.35 × 10+1 1.61 × 10+1 1.19 × 10+0 1.20 × 10+0
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FIG. 11. Calculated energies of the D∞h H10 model with R1 = R2 and the
STO-3G basis.

FIG. 12. Calculated longitudinal polarizabilities of the D∞h H10 model with
R1 = R2 and the STO-3G basis.

FIG. 13. Calculated longitudinal second hyperpolarizabilities of the D∞h
H10 model with R1 = R2 and the STO-3G basis.

FIG. 14. Errors relative to FCI for calculated energies of the D∞h H4 model
with R1 = R2 and the cc-pVDZ basis.

Thus, it is of interest to explore whether our pseudo-
variational method that appears to predict quantitatively ac-
curate potential energy curves for these models produces re-
sults comparable to a UHF-based post-Hartree-Fock method.
In order to assess this, we performed additional UHF-CCSD
calculations on the D∞h H4 model. Our results, illustrated in
Figure 14, are quite surprising; as is to be expected, the UHF-
CCSD results are in agreement with the RHF-CCSD results at
short bond lengths and approach FCI quality at dissociation,
but there are large errors in the interval 1.2–2.4 Å. This can
be ascribed to spin contamination effects.101, 102 In contrast,
an RHF wavefunction is always an eigenfunction of Ŝ2, so
that the RHF-CCSD and RHF-BQVCCD methods yield exact
spin eigenstates, and therefore have the advantage over UHF-
CCSD that they do not suffer from spin contamination. How-
ever, while RHF-CCSD diverges at sufficiently long bond
lengths, RHF-BQVCCD displays an accuracy rivalling UHF-
CCSD and even exceeding it over regions of the potential en-
ergy curve, despite the fact that the reference wavefunction
becomes qualitatively wrong. This suggests the closed-shell-
reference QVCC approach to be generally useful and appli-
cable to problems in which a correct treatment of dissociation
is required and a wavefunction that is a spin eigenfunction
would also be desirable. In addition, it is clear that UHF-VCC
mitigates the effects of spin contamination in comparison to
UHF-TCC, and this has been noted previously.80 This gives
impetus to the further development of a UHF-QVCC theory.

V. CONCLUDING REMARKS

We have provided the results of benchmark calculations
on several prototypical multiradical model hydrogen systems.
As we and others have demonstrated previously, when the
single-determinantal Hartree-Fock approximation is a poor
description of the exact electronic structure, as occurs in these
examples, the traditional coupled cluster method can per-
form badly, predicting unstable potential energy curves that
may even collapse non-variationally to energies significantly
below FCI. However, the quasi-variational coupled cluster
method, in which an upper bound on the exact ground-state
Schrödinger energy eigenvalue is approximately preserved at
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the cost of no other methodological property, demonstrates re-
markable stability in situations where TCC predicts unphys-
ical results. Our previous studies have demonstrated this to
be particularly relevant for the single-reference description of
problems involving the breaking of multiple bonds, and the
present study additionally indicates that our method may be
useful in the investigation of singlet multiradical systems.

Furthermore, our results demonstrate that the property of
an approximate variational upper bound on the energy does
not simply improve the calculated energies themselves, but
in fact yields a more robust description of the overall elec-
tronic structure when static correlation is problematic, leading
to enhanced stability for the calculation of electrical response
properties as well. This may be compared and likened with
our previous observation that by successfully capturing the
non-dynamic correlation, indirect improvements in the sta-
bility of approximate corrections for triple excitations based
upon perturbation theory also emerge.87, 88 Thus, it is unfor-
tunate that the current generation of single-reference ab ini-
tio electronic structure methods has largely abandoned the
property of a variational upper bound in order to achieve
rigorous extensivity and an exact treatment of limiting sys-
tems because our work demonstrates that this extremely pow-
erful property should not, and indeed need not, be entirely
sacrificed.
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