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Abstract

Members of the Streptococcus anginosus group (SAGs) are significant pathogens. However, their pathogenic mechanisms are incompletely
understood. This study investigates the adherence of SAGs to the matrix proteoglycans decorin and biglycan of soft gingival and alveolar bone.
Recombinant chondroitin 4-sulphate(C4S)-conjugated decorin and biglycan were synthesised using mammalian expression systems.
C4S-conjugated decorin/biglycan and dermatan sulphate (DS) decorin/biglycan were isolated from ovine alveolar bone and gingival connective
tissue, respectively. Using surface plasmon resonance, adherence of the SAGs S. anginosus, Streptococcus constellatus and Streptococcus
intermedius to immobilised proteoglycan was assessed as a function of real-time biofilm formation. All isolates adhered to gingival proteo-
glycan, 59% percent of isolates adhered to alveolar proteoglycans, 70% to recombinant decorin and 76% to recombinant biglycan. Higher
adherence was generally noted for S. constellatus and S. intermedius isolates. No differences in adherence were noted between commensal and
pathogenic strains to decorin or biglycan. DS demonstrated greater adherence compared to C4S. Removal of the GAG chain with chondroitinase
ABC resulted in no or minimal adherence for all isolates. These results suggest that SAGs bind to the extracellular matrix proteoglycans decorin
and biglycan, with interaction mediated by the conjugated glycosaminoglycan chain.
© 2012 Published by Elsevier Masson SAS on behalf of Institut Pasteur.

Keywords: Streptococcus anginosus group; Decorin; Biglycan; Dermatan sulphate; C4S; Surface plasmon resonance

1. Introduction gastrointestinal and genitourinary tract. Whilst present in low

numbers in dental plaque, SAGs are frequently isolated from

The Streptococcus anginosus group (SAG) comprises
microaerophilic bacteria which are generally regarded as
members of the commensal flora of the body (Gossling, 1988;
Whiley et al., 1992). However, SAG members are frequently
isolated from a range of clinical sites, including liver and brain
abscesses, infective endocarditis and infections of the
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lewismao@cardiff.acuk  (M.A.O.  Lewis),  waddingtontj@cardiff.ac.uk
(R.J. Waddington).

polymicrobial infections; they are predominant components of
a number of orofacial infections, including dento-alveolar and
periodontal abscesses, and are frequently associated with
failed root canal treatment (Jacobs et al., 2003; Ledezma-
Rasillo et al.,, 2010; Lewis et al., 1986; Schuman and
Turner, 1999; Siqueira et al., 2002; Okayama et al., 2005;
Whiley et al., 1992). It has been proposed that SAGs are
present early in the pathogenic process and may actually
initiate infection, thereafter preparing the environment for
subsequent colonisation by anaerobic species (Aderhold et al.,
1981; Gossling, 1988; Nagashima et al., 1999; Shinzato and
Saito, 1994). As microaerophilic bacteria, SAGs can
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proliferate in regions of low oxygen tension, further reducing
both the oxygen concentration and redox potential to favour
the growth of strict anaerobes. They have a marked propensity
for haematogenous spread and thus infection involving SAGs
is often complicated by seeding of the infective process else-
where in the body (Gossling, 1988). Despite being almost
universally susceptible to penicillin, infections involving
SAGs are often difficult to treat (Green et al., 2001; Han and
Kerschner, 2001; Schuman and Turner, 1999). Although
a number of potential virulence factors have been investigated,
including platelet aggregation, fibrinogen and fibrin binding,
haemolytic and hydrolytic activity, the pathogenesis of SAGs
remains poorly understood (Jacobs et al., 2000; Kitada et al.,
1997; Shain et al., 1996; Willcox, 1995).

The extracellular matrix (ECM) of connective tissue
provides a prime site for the adherence or attachment of
bacteria in the establishment of infection. The principle
elements may be considered as a collagen fibrous network
providing structural support, embedded in and interacting with
a non-collagenous matrix consisting of proteoglycans (PGs)
and various glycoproteins. Across the breadth of connective
tissues, perhaps one of the most prominent PG families is that
of the small-leucine rich proteoglycans (SLRPs) decorin and
biglycan. As for all SLRPs, decorin and biglycan possess
a common protein core domain structure, dominated by
a central domain consisting of 6—10 leucine-rich repeat
sequences flanked by an N-terminal and C-terminal region
with a conserved cysteine pattern (Iozzo, 1999). Close to the
N-terminal, decorin and biglycan are conjugated to one and
two glycosaminoglycan (GAG) chains respectively. These
GAG chains represent long polymer disaccharide repeat
sequences of an uronic acid and an N-acetyl hexosamine,
with molecular weight 20—40 kDa (Iozzo, 1999). Within
mineralised matrices of bone and dentine, these GAG chains
are predominantly characterised as the glucuronic acid-
containing chondroitin sulphate (CS), whilst in soft connec-
tive tissues such as skin, ligament and tendon, the iduronic
acid-containing dermatan sulphate (DS) predominates
(Waddington and Embery, 1991). In addition, PGs are also
present on the cell surface, with the most prominent members
belonging to the syndecan family. These PGs are identified in
multiple forms on the majority of cell and tissue types,
although their expression is selectively regulated in a cell-,
tissue- and development-dependent manner (Kim et al., 1994).
Structurally, these molecules consist of a core protein which
crosses the cell membrane, and the extracellular domain
carries several heparin sulphate and/or chondroitin sulphate
glycosaminoglycan chains.

When considering  ECM/microbial interactions in the
establishment of infection involving streptococcal species in
general, much research in the literature has been restricted to
establishing binding of bacteria to heparin sulphate and
heparin (Rostand and Esko, 1997), with interactions facilitated
via the microbial surface cell recognition adhesion matrix
molecules (MSCRAMMs) present on the bacterial surface
(Almeida et al., 1999a,b; Almeida et al., 2003; Egesten et al.,
2011; Frick et al., 2003; Wang et al., 1993). There is evidence

that the binding to these cell surface receptors may result in
host cell responses, including intracellular signalling, influ-
encing host cell survival, promotion of antimicrobial peptide
synthesis and initiation of the inflammatory response (Baron
et al., 2009; Hoepelman and Tuomanen, 1992; Jockusch
et al.,, 1995; Wang et al., 2011), and thus they may be
significant in the establishment of infection. Although still in
their infancy, these studies have led to suggested options for
therapeutic strategies related to the elucidation of microbe/PG
interactions (Baron et al., 2009; Hoepelman and Tuomanen,
1992; Jockusch et al., 1995). Interactions with GAGs associ-
ated with decorin and biglycan, CS and DS, have been
demonstrated for species Streptococcus pyogenes (Frick et al.,
2003), Streptococcus uberis (Almeida et al., 1999a,b; Almeida
et al., 2003) and Streptococcus pneumonia (Tonnaer et al.,
2006). However, no studies have investigated binding of
Streptococcus species to the protein cores of these PGs.
Furthermore, no studies have investigated the interaction of
these PGs with SAGs.

Against this background, the aim of this study was to
explore the binding of various SAG of bacteria with the PGs
decorin and biglycan. Specifically, this study will assess the
attraction and binding strength of bacteria for PGs in real-time
using surface plasmon resonance (SPR), thus assessing
early events associated with bacterial biofilm formation and
colonization. This study will investigate SAG isolates recov-
ered from healthy body sites and clinical infections. These
findings will be compared and interpreted in terms of the
differential binding of the individual strains with the CS- and
DS-conjugated forms of decorin and biglycan, present in
mineralised and soft connective tissue.

2. Materials and methods
2.1. Recombinant proteoglycans

cDNAs for mouse decorin (mDCN-5) or biglycan (clone 3)
cDNAs were subcloned in the mammalian expression vector
pcDNA3.1 myc/his (Invitrogen) followed by liposomal
transfection into HeLa cells as previously described by Sugars
et al. (2002). Transfected cells were cultured in Eagles
Minimum Essential Medium (EMEM) with Earles Balanced
Salt Solution (EBSS), supplemented with 2 mM glutamine,
1% antibiotic/antimycotic solution and 2% foetal bovine
serum (FBS) at 37 °C, 5% CO,. Recombinant decorin or
biglycan was purified from the retained media using 1 ml
HiTrap nickel affinity chelating columns prepared as per
manufacturing instructions (GE Healthcare). His-tag
recombinant proteins were eluted with 0.02 M sodium phos-
phate, 0.5 M sodium chloride and 500 mM imidazole, pH 7.4,
dialysed exhaustively against double-distilled water (4 days
containing the protease inhibitors 5 mM benzamidine-HCI,
1 mM iodoacetic acid, 5 mM N-ethylmaleimide (Sigma
Aldrich) and 1 day double-distilled water only) and recovered
by lyophilisation.

Recombinant proteoglycans were further purified by anion
exchange using a 1 ml Resource Q column (GE Healthcare) in
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order to remove co-eluting o,HS-glycoprotein (Sugars et al.,
2002). Recombinant proteoglycans were applied to the
column in 7 M urea, 0.05 M tris—HCI buffer, pH 6.8 (1 mg/
ml) and eluted using an expanded 0—1 M sodium chloride
gradient. Pooled fractions were obtained according to peaks
within the 280 nm profile, exhaustively dialysed against
double-distilled water (with protease inhibitors as above),
lyophilised and re-dissolved in double-distilled water to
20 mg/ml, which was adjusted following determination of
protein concentration using the bicinchoninic acid (BCA)
assay kit (Pierce Endogen Ltd., Cheshire, UK). 1 pl of each of
the pooled fraction samples was applied to a nitrocellulose
membrane (Hybond™ C, Amersham Pharmacia Biotech)
which was then blocked in 10% non-fat milk (Marvel™), in
TBS (10 mM tris—HCI, 0.15 M sodium chloride, pH 7.4) for
30 min. Proteoglycan-rich fractions were identified by incu-
bation with mouse monoclonal anti-chondroitin sulphate,
CS-56 (Sigma Aldrich; 1:200 dilution in 3% non-fat milk in
TBS) for 1 h. Subsequent to washing with TBS, membranes
were incubated with goat anti-mouse IgM conjugated to
alkaline phosphatase (Sigma Aldrich; 1:10,000 dilution) for
1 h, washed with TBS and immunoreactivity was visualised
using NBT/BCIP chromogenic substrate (Promega).

2.2. Isolation of proteoglycans from gingiva and
alveolar bone

Gingiva was dissected 1—2 mm below the gingival-tooth
junction around the upper and lower dentition of 9-month-
old Welsh Mule breed sheep (within 1—2 h of slaughter at the
local abattoir). Buccal plates were removed from both
maxillae and mandibles using a dental drill, molar and
premolar teeth were extracted and bone from the immediate
areas around the sockets was removed using a surgical chisel.
Proteoglycans were isolated from alveolar bone according to
the method of Waddington and Embery (1991). Briefly, soft
adherent tissue was removed from the bone pieces with
collagenase dispase, dehydrated in ethanol washes, followed
by diethyl ether to remove lipids and then left at room
temperature for the residual solvent to evaporate. Bone was
powdered at —20 °C, demineralised with 10% EDTA (triso-
dium salt) solution, pH 7.45 and non-collagenous material was
extracted using 4 M guanidinium chloride, 0.05 M sodium
acetate, pH 5.9 and containing above named protease inhibi-
tors. Solubilised non-collagenous proteins were recovered by
centrifugation at 1800 g, 15 min, dialysed against double-
distilled water and lyophilised. Gingival tissue was washed
in phosphate-buffered saline (PBS) then sequentially washed
twice in ethanol, followed by diethyl ether for 10 min and left
at room temperature for the solvent to evaporate. Non-
collagenous gingival tissue components were extracted into
4 M guanidinium chloride extraction buffer and recovered as
for treatment of alveolar bone tissue samples.

Non-collagenous protein extracts from gingival or alveolar
bone were dissolved in 7 M urea, 0.05 M sodium acetate
buffer, pH 6.8, at a concentration of 10 mg/ml 1 ml samples
were applied to a HiLoad 16/10 Q-Sepharose column

(GE Healthcare), integrated into a fast performance anion
exchange chromatography system (GE Healthcare) and eluted
with 7 M urea, 0.05 M sodium acetate buffer, pH 6.8, 2 ml/
min. Bound material was selectively eluted with a linear
0—1 M sodium chloride gradient over 240 ml. Eluting frac-
tions were pooled according to the protein peaks identified in
the 280 nm profile, dialysed against double-distilled water
(as above) and recovered by lyophilisation. Samples were
dissolved to 20 mg/ml in double-distilled water, with the
concentration adjusted following determination of the
concentration using the BCA protein assay (Pierce Endogen
Ltd., Cheshire, UK), and proteoglycan-rich fractions were
identified by immunoreactivity with anti-chondroitin sulphate
antibody using the dot blot assay described above.

2.3. Chondroitinase ABC digestion

Samples of recombinant decorin, biglycan or proteoglycan
from gingival or alveolar bone were mixed with an equal
volume of 0.2 M tris—HCI buffer, 0.06 M sodium acetate, pH
8 containing 2 units/ml chondroitinase ABC (protease-free,
Seikagku Corporation, Tokyo) and incubated at 37 °C for
1—2 h. Core proteins were separated from chondroitinase
ABC and GAG fragments using gel filtration chromatography
on a pre-packed Sephadex 75 HR 10/30 column (Amersham
Pharmacia Biotech.), eluted with 4 M urea, 0.05 M Tris—HCI,
pH 8, containing 0.35 M sodium acetate, at a flow rate of
1 ml/min 280 nm absorbance was monitored and protein
fractions were pooled, dialysed against ddH,O with protease
inhibitors (as described above) and lyophilised. Decorin or
biglycan core protein fractions were identified by immuno-
reactivity with the polyclonal antibody rabbit anti-mouse
decorin (LF-113; raised against C-terminus of decorin) or
rabbit anti-mouse biglycan (LF-106; raised against
C-terminus of biglycan) (Fisher et al., 1995) using the above
described dot-blot analysis.

2.4. SDS PAGE and western blot analysis

Samples of intact proteoglycans and their respective core
proteins were mixed with an equal volume of 0.125 M
Tris—HCI, pH 6.8, 20% glycerol, 4% SDS, 10% 2-B-mer-
capthoethanol and 0.004% bromophenol blue and examined
by SDS-PAGE using the Phastsystem (GE Healthcare) as
previously described by Waddington et al. (1993). SDS-6H
molecular weight markers (Sigma Aldrich) were included on
each gel. Following separation, gels were stained using the
Silver Stain Kit (GE Healthcare). For western blot analysis,
separated gels were electroblotted onto a nitrocellulose
membrane (Hybond™ C, Amersham Pharmacia Biotech) with
transfer buffer, 25 mM Tris HCl buffer in 20% methanol,
containing 192 mM glycine, pH 8.3. Membranes were blocked
with 10% non-fat milk (Marvel™), in TBS (10 mM tris—HCI,
0.15 M sodium chloride, pH 7.4) for 30 min and then incu-
bated with primary polyclonal antibody rabbit anti-mouse
decorin (LF-113) or rabbit anti-mouse biglycan (both diluted
1:200 in 3% milk, TBS) for 1 h. Immunoreactivity was
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visualised following incubation with goat anti-rabbit IgG
conjugated to horse radish peroxidase (diluted 1:1000 in 3%
milk, TBS) and detection using the ECL Plus western blotting
detection reagent kit (GE Healthcare).

2.5. Identification of GAG constituents

Samples of intact proteoglycans were digested with an
equal volume of 10 mg/ml type XIV protease (Sigma Aldrich)
in 0.2 M tris—HCI and 10 mM calcium chloride pH 7.5 and
incubated at 55 °C for 20 h. Samples were subsequently
recovered by lyophilisation, reconstituted with ddH,O to the
equivalent of the original starting volume of the PG sample
and examined by cellulose acetate electrophoresis as previ-
ously described by Waddington et al. (2004). GAGs were
identified as judged by their electrophoretic mobility against
the standards hyaluronan (HA), heparin sulphate (HS), der-
matan sulphate (DS), chondroitin 4-sulphate (C4S) and
chondroitin 6 sulphate (C6S) (Sigma Aldrich) separated on the
same membrane.

2.6. Bacterial source and preparation

Isolates of SAG and sources are detailed in Table 1. The
isolates had previously been characterised and assigned to
Streptococcus constellatus, S. anginosus or Streptococcus
intermedius using a phenotypic identification scheme (Bartie
et al., 2000; Whiley et al., 1990). Bacteria were subcultured

Table 1
Identity and source of SAG isolates used in this study. GAG depolymerase
activity indicated where detected.

Species Reference  Clinical source ~ GAG depolymerase

activity detectable

350/96 Dento-alveolar
abscess
Lung abscess

Dento-alveolar

S. constellatus

S. constellatus  F436

S. constellatus ~ 322/95 Positive for chondroitinase

abscess and hyaluronidase activity
S. constellatus ~ 48C Tongue
S. constellatus ~ 34C Tongue Positive for chondroitinase

and hyaluronidase activity

S. intermedius ~ HW13 Dento-alveolar
abscess
S. intermedius ~ 127/95 Dento-alveolar  Positive for chondroitinase
abscess and hyaluronidase activity
S. intermedius ~ 447/96 Dento-alveolar
abscess
S. intermedius  11C Tongue
S. intermedius ~ 30C Tongue Positive for chondroitinase
and hyaluronidase activity
S. intermedius ~ 84C Plaque
S. anginosus 43586/96 High vaginal
swab
S. anginosus 39/2/14A Unknown
S. anginosus 670/95 Dento-alveolar
abscess
S. anginosus 16C Plaque
S. anginosus 19C Plaque
S. anginosus 43C Tongue

on Fastidious Anaerobic Agar (FAA) (Lab M™ International
Diagnostic Group plc, Bury, UK), supplemented with 5% v/v
defibrinated sheep blood (TCS Bioscience Ltd., Buckingham,
UK) and purity was confirmed regularly. Bacterial cells were
inoculated into 10 ml of brain heart infusion (BHI) broth
(Oxoid Ltd., Basingstoke, UK) and subsequently incubated
overnight in an anaerobic cabinet (10% v/v CO,, 20% v/v H,,
70% viv N,), at 37 °C (Don Whitley Scientific Ltd., Shipley,
UK) to the stationary growth phase (determined from growth
curves experiments). Bacterial cells were harvested by
centrifugation at 3000 g for 10 min and washed twice in
filtered, degassed HBS-EP buffer (0.01 M Hepes, 0.15 M
NaCl, 0.003 mM EDTA, pH 7.4, containing 0.005% surfactant
P20). The cells were sonicated (60 W, 10 s) to disrupt the
streptococcal chains and re-suspended in HBS-EP buffer to an
OD(s50 nm) = 0.5 (approximately 1 x 10® cfu/ml, determined
by serial dilutions, plated onto FAA plates and colony counts
following overnight incubation).

2.7. Detection of GAG depolymerase activity

Depolymerisation of GAG was assessed using the method
of (Tipler and Embery, 1985). Briefly, 4 ml BHI broth (Gibco)
supplemented with either chondroitin-4-sulphate (Whale
cartilage, type A, Sigma Aldrich) or hyaluronic acid (bovine
umbilical cord, grade 1, Sigma Aldrich), final concentration
400 pg/ml, was inoculated with 1 ml of bacterial suspension
(harvested at mid-log phase of growth) and incubated under
anaerobic conditions for 7 days. After incubation, samples
were centrifuged at 3000 g for 10 min, 20 pl of each super-
natant was added to 4 ml of distilled water and 232 nm
absorbance (due to unsaturated bond formation following the
elimination reaction of HA and CS) recorded against non-
inoculated broth (negative controls).

2.8. Surface plasmon resonance analysis

The interactions between mixed SLRP preparations from
ovine tissues and recombinant decorin and biglycan with the
SAG isolates were investigated by real-time biomolecular
interaction analysis (BIA) using surface plasmon resonance
(SPR) technology on a BIAcore® 3000 system (BIAcore,
Uppsala, Sweden) using a C1 sensorchip (BIAcore). The C1
chip has a carboxymethylated surface with no dextran matrix
and is useful when studying interactions where the analyte is
large, such as bacteria. Recombinant proteoglycans or tissue-
extracted proteoglycans (ligand) were dissolved in 10 mM
phosphate buffer, pH 7.1 (150 pg/ml; Biacore), whilst
deglycosylated protein cores were dissolved in 10 mM
sodium acetate buffer (150 pg/ml; BIAcore). At a flow rate of
10 pl/min, the docked chip was first treated with BIA nor-
malisation solution (70% w/w glycerol in water) (BIAcore)
to create a standardised total reflection and then
equilibrated with HBS-EP buffer. Proteoglycan ligands were
immobilised on the sensor chip surface of flow cell 2 using
amino coupling by first treating the surface (to produce
active ester groups) by injecting 70 pl of 400 mM 1-ethyl-3-
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(3-dimethylaminopropyl)-carbodiimide hydrochloride (EDC)/
70 pl 100 mM N-hydroxysuccinimide (NHS) solutions. After
activation, 35 pl of 150 pg/ml of ligand in appropriate buffer
was applied to the surface. The system was washed through
with HBS-EP buffer to remove any loosely associated ligand.
Finally, residual NHS esters were inactivated with 70 pl of
1 M ethanolamine hydrochloride, pHS8.5. Flow cell 1 was used
as an in-line reference for flow cell 2, where the blank surface
was exposed to amine coupling in the absence of ligand.
Thirty-five pl of fibronectin 10 mM sodium acetate buffer
(150 pg/ml; Biacore) coupled to the surface served as a posi-
tive control. Bacterial cells within the HBS-EP buffer, pH 7.4
were injected over the various ligand-prepared surfaces at
20 pl/min for 125 s at 25 °C, followed by a 5 min dissociation
phase (HBS-EP buffer only). The bacteria/ligand interaction
produces an increase in the SPR signal, measured as
a response unit (RU). Residual bound bacteria was washed off
with 100 mM NaOH, pH 9.5 for 1 min and the chip surface re-
equilibrated with HBS-EP buffer for 5 min between the
application of bacterial test isolates. Each isolate was analysed
in triplicate in a randomised order.

2.9. Statistical analysis

The RU data obtained was assessed by analysis of variance
(ANOVA) using SPSS 12. The data was evaluated both in
terms of differences between strains for a specific substrate
and differences for substrates within a particular strain.
Differences were considered significant at p < 0.05 and data
expressed as the mean value of triplicate assays + standard
deviation.

3. Results
3.1. Characterisation of proteoglycan ligands

Recombinant proteoglycans were synthesised by trans-
fected HeLa cells and purified from the culture media by
nickel affinity chromatography. Previous studies demonstrated
that recombinant proteoglycans copurify with a,HS glyco-
protein which is present within the serum of the culture media
(Sugars et al., 2002). Recombinant decorin and biglycan were
therefore further purified by anion exchange chromatography
using a resource Q column. A substantial amount of o,HS
glycoprotein was observed to elute from the column prior to
application of the sodium chloride gradient and recombinant
decorin or biglycan eluted at 0.3—0.35 M sodium chloride.
The elution profiles were consistent with those previously
published as part of detailed descriptions for the purification
protocols of these proteoglycans (Sugars et al., 2002). Silver-
stained SDS-PAGE gels of the purified recombinant proteo-
glycan are shown in Fig. 1A. For recombinant biglycan,
protein bands were prominent at approximately 98, 66 and
45 kDa, whilst for recombinant decorin, bands were prominent
at 66 and 45 kDa. Digestion of either recombinant decorin or
biglycan with chondroitinase ABC to remove the GAG chains
yielded a single band at 45 kDa, consistent with the known
molecular weight for the respective core proteins. Western blot
analysis confirmed the immunoreactivity of the 45 kDa band
with antibodies against decorin or biglycan, respectively
(Fig. 1B). Both recombinant biglycan and decorin were
identified as C4S-rich, as demonstrated by their immunore-
activity with monoclonal antibody CS56 (Fig. 1C). Previous
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Fig. 1. Characterisation of recombinant proteoglycans, decorin and biglycan. Proteoglycans were synthesised within a mammalian expression system and purified
by anion exchange chromatography. Core proteins relating to either decorin or biglycan were detected by SDS PAGE (A) or western blot analysis (B). The presence
of chondroitin sulphate chains was confirmed by immunoreactivity to the monoclonal antibody CS56. DCN: decorin; BGN: biglycan.
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analysis had indicated that recombinant decorin and biglycan
are synthesised with C4S chains, representing 76% of the total
GAG content. In addition, chondroitin sulphate chains with
reduced sulphation were also identified (approx 24% total
GAG) (Sugars et al., 2002).

Non-collagenous proteins isolated from ovine gingiva or
alveolar bone were fractionated using a two-stage anion
exchange chromatography procedure. 280 nm absorbance
profiles were similar to those previous reported for isolation of
proteoglycans from connective tissues (Waddington et al.,
1993, 2003) and have proven successful in purifying proteo-
glycans from other glycoprotein matrix components. For
extracts from gingival and alveolar bone, a broad
proteoglycan-rich fraction eluted from Q Sepharose with
sodium chloride concentrations within the range of
0.3—0.4 M. These proteoglycan-rich fractions were further
purified with Resource Q, eluting with 0.35 M sodium chlo-
ride. Silver-stained SDS PAGE analysis for alveolar bone
proteoglycan indicated a protein band at approximately
45 kDa with strong staining for protein material also identified
within the molecular weight range of 220—55 kDa, repre-
sentative of proteoglycan substituted by a GAG chain of
heterogeneous length (Fig. 2A). This was confirmed by the
appearance of a single 45 kDa band after digestion of the GAG
chains with chondroitinase ABC. Western blot analysis
confirmed this 45 kDa band to be the core proteins of decorin
and biglycan (Fig. 2B). Following removal of the protein core
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by protease digestion, the GAG chains were analysed by
cellulose acetate. Electrophoretic mobility of the released
GAGs compared to commercial GAG standards confirmed that
decorin and biglycan isolated from alveolar bone were
substituted by C4S. Analysis of gingival proteoglycans on
silver-stained SDS PAGE gels identified two strong bands at
approximately 45 kDa. In addition a sharp band was observed
at approximately 50 kDa and protein staining materials were
apparent at the top of the gel (molecular weight 220 kDa),
which were lost following removal of the GAG with chon-
droitinase ABC (Fig. 2A). Western blot analysis again
confirmed the 45 kDa band to be core proteins decorin and
biglycan (Fig. 2B). Cellulose acetate electrophoresis of the
GAG chains (core protein digested with protease) indicated
that these proteoglycans were substituted by C4S and DS.

3.2. Interaction of SAG with proteoglycans and
fibronectin

Fig. 3 shows typical sensograms obtained following injec-
tion of various SAG isolates over immobilised gingival
proteoglycans (Fig. 3A) or fibronectin (Fig. 3B). For all
ligands, sensograms recorded specific interactions of the SAG
isolates with the proteoglycan ligand. No interaction events
were reported for the flow of SAG isolates over the control cell
containing no ligand, indicating that, in these conditions, the
bacteria were unable to bind to the surface of the chip and did
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B Alveolar bone
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Fig. 2. Characterisation of the proteoglycans decorin and biglycan from alveolar bone and gingival connective tissues. Non-collagenous proteins were extracted
from demineralised tissues with 4 M guanidinium chloride and proteoglycans were purified by anion exchange chromatography. Proteoglycan-rich fractions
containing both decorin and biglycan were characterised by SDS PAGE (A) and western blot analysis. The GAG component conjugated to the proteoglycans was

identified by cellulose acetate electrophoresis (C). DCN: decorin; BGN: biglycan.
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Fig. 3. Typical SPR sensograms obtained following injection of various SAG isolates (S. constellatus, F436, 322/95, 48C and S. anginosus 39/2/14A and 19C
shown) over immobilised gingival proteoglycans (A) or fibronectin (B). Proteoglycan was chemically immobilised to a C1 sensorchip (BIAcore) and SAG isolates
(1 x 10% cfu/ml) were injected over the immobilised proteoglycans and bacterial/ligand interaction measured as a response unit (RU). Fibronectin provided
a positive control. Adherence was taken as the entire process of attachment and accumulation of bacteria in the formation of biofilm on the surface and measured as

the difference in RU value from before injection of cells to the end of injection.

not form large aggregates which could be recorded by surface
resonance technology. Sensograms for bacterial/ligand inter-
actions produced fluctuating profiles representing a series of
random association and dissociation events. This is likely to be
due to the SAG isolate forming electrostatic interactions with
the proteoglycan ligand, which are readily broken by the shear
force generated by the eluting buffer flowing over the surface.
This prevented calculation of affinity and dissociation
constants. In this study, the term adherence was therefore
taken as the entire process of attachment and accumulation of
bacteria in formation of a biofilm on the surface, considering
both initial cell-to-surface adherence and subsequent cell-to-
cell adherence of bacterial cells (Eifukukoreeda et al., 1991).
Adherence was observed as the difference in RU value from
immediately before injection of cells (binding response at
baseline) to the end of injection. Of note, the majority of
strains that bound to the ligand surface to form a biolayer did
not dissociate immediately from the surface following the end
of injection, but required the application of 100 mM sodium
hydroxide to remove bound bacteria and return the RU to
baseline.

Mean RU values =+ standard deviations from triplicate
assays are presented in Table 2 and graphically in Fig. 4,
illustrating trends in adherence patterns to the respective

proteoglycan ligands. All strains demonstrated the ability to
adhere to fibronectin, which was included as a positive control.
For the S. anginosus commensal strain, 19C, 16C, 43C, S.
constellatus commensal strain 34C, pathogenic strain F436
and S. intermedius pathogenic strains 127/95, HW13 and 447/
95, adherence to fibronectin was significantly higher compared
to adherence to the respective proteoglycan ligands (p < 0.01
for all comparisons). Gingival proteoglycans showed adher-
ence for all SAG strains, with significantly greater adherence
to gingival proteoglycans compared with other proteoglycans
noted for S. anginosus 43C, 43586/96, 670/95, 39/2/14A, S.
constellatus, 48C, F436, 322/95and S. intermedius, 84C447/95
(p < 0.01 for all comparisons). Adherence of S. anginosus 39/
2/14A and S. constellatus 48C to gingival proteoglycans was
significantly higher compared to adherence to fibronectin
(p < 0.05 for both comparisons). 59% percent of strains,
which included both commensal and pathogenic isolates,
demonstrated some ability to adhere to alveolar proteoglycans,
70% of strains bound to intact recombinant decorin and 76%
bound to recombinant biglycan. Almost all members of the S.
intermedius group were able to adhere to all proteoglycan
ligands examined, with all commensal strains showing strong
adherence to recombinant decorin and biglycan and alveolar
bone and gingival proteoglycans (p < 0.01 when compared
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Table 2

Mean response units (RUs) for strains of S. anginosus, S. constellatus and S. intermedius to recombinant and tissue-extracted proteoglycans, their respective core

proteins and fibronectin. Means determined from three independent assays (£SD). Response units were determined as the increase in the SPR signal after 125 s of
injection of bacterial isolates compared with the SPR signal at start of injection.

Strain Recombinant decorin Recombinant biglycan Gingiva Alveolar bone Fibronectin

Intact Core Intact Core Intact Core protein Intact Core

protein protein protein

S. anginosus
19C NBD NBD NBD NBD 41.7 £25.1 NBD 329 +£20.2 NBD 289 £+ 234
16C NBD NBD NBD NBD 95.8 +45.8 NBD 47 £ 14 NBD 2170.2 £ 2453
43C 9.2+ 49 NBD 9.6 £29 NBD 399 +34 NBD NBD NBD 328 £ 152
43586/96 169 = 1.2 NBD 46 £ 1.5 NBD 145.7 £ 59.7 NBD NBD NBD 56.2 £ 5.7
670/95 NBD NBD 9.0 £5.5 NBD 206.2 = 79.0 NBD NBD NBD 45.8 £ 263
39/2/14A NBD NBD NBD NBD 60.5 + 23.1 NBD 279+ 19 NBD 329+ 124
S. constellatus
48C 119 £39 NBD NBD NBD 119.5 £ 66.1 NBD NBD NBD 104 £+ 26.3
34C 384 +21.2 NBD 285 + 11.8 NBD 54.8 £ 25.8 NBD NBD NBD 82.6 £52
350/96 194 £58 NBD 40.6 £ 13.7 NBD 2044 + 1359 NBD 26.6 £ 13.4 NBD 75.1 + 14.6
F436 42 £ 1.1 NBD 7.7 £ 49 NBD 532 +233 NBD 11.2 £ 3.1 NBD 60.4 + 13.1
322/95 775.6 £ 90.1 NBD 724 £249 NBD 439.5 £ 148.7 NBD 169 £5.1 NBD 283 £ 46.1
S. intermedius
11C 1344 67.1 NBD 102.9 £ 37.7 NBD 139.8 £ 72.9 NBD 319 £ 159 NBD 109.5 £ 17.2
30C 136 £ 17.2 NBD 1378.1 £ 284.7 NBD 1532.2 £ 114.0 74.3 £ 589 112.4 £+ 50.1 NBD 1270.8 £ 115
84C 130.5 £ 40.2 NBD 266 £ 114.7 NBD 1133.7 £ 115.7 NBD 155 £+ 8.1* NBD 158.9 £ 23.5
127/95 168.1 £ 23.8 NBD 219.5 £91.5 NBD 258.1 £ 66.0 424 £39 NBD NBD 452 +48.2
HW13 23.6 + 14.9 NBD 29.8 +£17.3 NBD 147.3 £ 63.3 2505 64.0 + 13.1 NBD 251 £ 32.1
447/95 NBD NBD 19.1 £8.9 NBD 184.6 + 44.6 NBD NBD NBD 180.5 £ 23.1

*p < 0.05; Shaded boxes represent isolates recovered from healthy sites; Clear boxes represent isolates recovered from clinically infected sites; NBD = No binding

detected.

with other strains binding to the same ligand). Pathogenic
strains of S. constellatus showed higher adherence to alveolar
bone and gingival proteoglycans compared with the
commensal stains within the same subgroup. Generally,
bacterial strains appeared to demonstrate no preferential
binding to either recombinant decorin or biglycan (p > 0.05).
Exceptions were seen for S. constellatus 322/95, which
showed significant preferential adherence to recombinant
decorin (p < 0.001), while S. intermedius 30C showed
significant preferential adherence to recombinant biglycan
(p < 0.001). Removal of the GAG chains from the respective
proteoglycans abolished or significantly reduced bacterial
adherence to the ligand (p < 0.001for all comparisons).

3.3. GAG depolymerisation activity

S. constellatus strains 322/95 and 34C and S. intermedius
strains 127/95 and 30C were the only strains demonstrated to
possess high chondroitinase and hyaluronidase activity, as
demonstrated by an increase in 232 nm absorbance of 0.5 units
or greater compared with no bacterial control (Table 1).

4. Discussion

An increasing number of microbes have been shown to
depend upon extracellular matrix components for adhesion to
host cells and tissues (Menozzi et al., 2002; Rostand and Esko,
1997; Wadstrom and Ljungh, 1999). Moreover, adhesion of
microbes to host components has been proposed as the critical
initial step in the establishment of bacteria as commensals or

in the initiation of infection. Members of the SAG have
previously been shown to adhere to the matrix components
laminin, fibronectin and fibrinogen and weakly to collagens
type I and IV (Allen et al., 2002; Willcox and Knox, 1990). In
this study, we demonstrated the additional ability of the
extracellular matrix proteoglycans decorin and biglycan to
bind SAG, initiating the formation of microbial biolayers.
Significantly, the results demonstrate that the interaction is
mediated almost entirely by the GAG chains conjugated to the
respective core protein.

SPR technology using the Biacore® 3000 system enabled
the contribution of specific extracellular matrix components in
the early events of biofilm formation in real time. The
proteoglycan ligands represented either decorin or biglycan or
a mixture of the two proteoglycans, and were confirmed to
have been purified from other matrix components such as
serum proteins and fibronectin. The C1 chip used in this study
was devoid of dextran which, as a polysaccharide glucan,
could have produced additional potential binding sites.
Random covalent coupling was utilised to immobilise the
proteoglycans at the surface of the sensor chip and to ensure
the display of an ensemble of potential multivariant ligand
orientations on the proteoglycan. This solid phase ECM
adherence assay more closely mimics in vivo conditions,
where matrix components are tethered. Sensograms obtained
during the 250 s period indicated a fluctuating SPR signal.
This could be considered comparable to the in vivo formation
of biofilms, where models describe the initial reversible
attraction of passively transported bacteria to the protein
surface by long-range weak physicochemical forces, such as
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Fig. 4. Graphical comparison of adherence of different SAG isolates to the respective decorin and biglycan preparation. SAG isolates were analysed in triplicate
and injected over the immobilised proteoglycan in a random order. Means and SD were determined. Whilst this method does not provide highly accurate values, it

does allow identification of trends and gross changes in adherence patterns.

the van der Waals forces (Marsh and Martin, 2009). These
attractions can be broken by net repulsive forces between the
bacteria and the protein surface and by shear flow of liquid
across the surface, which is mimicked within the Biacore 3000
system. Attachment subsequently becomes less reversible by
stereochemical interactions forming between adhesins on the
bacteria and proteins within the extracellular matrix. Gener-
ally, S. intermedius exhibited moderate to strong adherence to
most proteoglycan ligands, whilst the majority of S. anginosus
strains exhibited low adherence of less than 50 RU, particu-
larly to the C4S-rich proteoglycans of recombinant decorin
and biglycan and alveolar bone. There appeared to be no
preferential adherence of commensal isolates compared to

pathogenic isolates or vice-versa. As a positive control, all
strains bound to fibronectin.

In this study, all SAG isolates were observed to adhere to
gingival proteoglycans. For S. intermedius and S. constellatus
strains, adherence was observed to be relatively strong and for
isolates 670/95, 48C, 305/96, 322/95, 11C, 30C and 84C,
adherence was statistically significantly greater than adherence
to fibronectin. It is recognised that SAG may interact with
a number of components within the extracellular matrix, such
as laminin, fibronectin and fibrinogen (Allen et al., 2002;
Willcox and Knox, 1990). However, the strong interactions
observed comparable to fibronectin provide support for
considering proteoglycans, particularly those in gingival
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tissues, as important constituents in facilitating SAG biofilm
formation. Only 59% bound to alveolar proteoglycans and
70—75% bound to recombinant proteoglycans, with only S.
intermedius 30C showing significantly greater adherence to
recombinant biglycan compared to fibronectin (p < 0.001).
Characterisation of the GAG chain demonstrated that a high
proportion of ginigival proteoglycans were substituted with
DS, whilst other proteoglycan ligands carried the C4S GAG
chain. Removal of the DS or C4S chain with chondroitinase
ABC abolished SAG adherence for the majority of isolates
(adherence reduced to very low levels for three S. intermedius
isolates). This suggests that the GAG chain plays a major role
in adherence of bacterial isolates, and DS chains facilitate
stronger binding compared with C4S chains. C4S and DS are
both composed of a linear polysaccharide assembled as
disaccharide repeat units containing N-acetyl-galactosamine
and hexuronic acid that are linked together by B-glycosidic
(B1,4 or B1,3) linkages. DS is structurally related to CS;
however, a high proportion of uronic acid of DS is epimerised
to iduronic acid, whilst CS contains mostly glucuronic acid.
Casu et al. (1988) reported that epimerisation of uronic acid to
iduronic acid provides additional degrees of rotation within the
GAG chain. This additional flexibility is proposed to enable
the negatively charged sulphate and carboxyl groups on the
chain an easier search for sites on basic receptors on inter-
acting molecules, thereby improving their adherence potential.
Of note, iduronic acid is also present in significant amounts in
heparin and heparin sulphate, which have also been reported to
bind readily to streptococci isolates (Almeida et al., 1999a;
Frick et al., 2003; Srinoulprasert et al., 2006; Tonnaer et al.,
2006). Within this study, the interaction of SAG with the
proteoglycan ligand was assessed at a physiological pH of 7.4.
Increases or decreases in pH would lead to respectively
increased ionisation or increased protonation of dissociable
groups, on both the GAGs and the bacterial cell surface
adhesins, the level of which depended upon the dissociation
constant of the functional groups involved in facilitating the
interaction. During inflammation, the pH of the gingival
pocket can vary from pH 6.5 to 8.5 (Leblebicioglu et al.,
1996), which could potentially influence GAG — bacterial
adherence, although in the absence of any observable extremes
in pH changes in inflamed tissues, these effects are likely to be
small.

The nature of the bacterial adhesins on the SAG that
facilitate binding to proteoglycans is unknown. Numerous
matrix binding adhesins have been described in streptococcal
species and, in general, fall into two groups (Lofling et al,
2010); the MSCRAMMs (microbial surface cell recognition
adhesion matrix molecules) and a class of adhesins which have
been reported to preferentially recognize sialylated glyco-
conjugates. Within the MSCRAMMSs, M protein and protein F
on the surface of S. pyogenes have been shown to adhere to
DS, heparin sulphate and heparin (Frick et al., 2003), the alpha
C protein adheres to heparin sulphate (Wang et al., 2011) and
the FOG (fibrinogen-binding protein) binds DS and heparin
sulphate in group G streptococci (Egesten et al., 2011).
Outside of the streptococcus group of bacteria, decorin

binding proteins (Dbp A, DbpB, Bgp) have been described in
the spirochete Borrelia burgdorferi sensu lato group (Leong
et al.,, 1998). The decorin binding site of DbpA has been
mapped to a conserved peptide motif (EAKVRA), with
binding mediated by the GAG chain, particularly DS (Salo
et al.,, 2011). In those studies, DbpA showed considerably
stronger binding under the flow conditions provided by SPR
analysis, compared with stationary incubation adhesion
assays. The authors hypothesise that the DbpA adhesion acts
as a “catch bond” and sheer force is required to induce
stronger interaction with the decorin (Salo et al., 2011).

The interaction between bacteria and the extracellular
matrix is proposed to promote bacterial colonisation, facilitate
bacterial invasion into deeper tissues and facilitate systemic
dissemination. The adherence to extracellular matrix compo-
nents may also be important in the pathogenesis of infection,
although the precise involvement of extracellular matrix
components such as decorin and biglycan is unclear. Binding
of Group B streptococcal alpha C protein to host cells has been
proposed to involve multiple binding to cell surface heparin
sulphate proteoglycans, and the competitive inhibition of
alpha C protein with exogenous GAGs promotes host cell
survival and lowers the bacterial burden (Baron et al., 2009).
Similar in vitro studies have demonstrated that cell surface
GAGs facilitate the interaction of Streprococcus pneumo-
coccus (Tonnaer et al., 20006), S. uberis (Almeida et al., 1999a)
and Streptococcus pyrogenes (Frick et al., 2003) with host
cells, which is interrupted by removal of the GAG by chon-
droitinases, GAG synthase inhibitors and exogenous GAGs.
This may suggest that other GAGs within the extracellular
matrix act as inhibitors of bacterial/host cell interactions.
However, in providing a novel mechanistic viewpoint, studies
have also suggested that GAGs may act as molecular bridges
in directing binding to other matrix components such as
vitronectin (Duensing et al., 1999). Most notably, pre-
incubation of S. uberis with GAGs, particularly the iduronic
acid-rich GAGs, enhanced beta-casein-mediated adherence to
and internalisation in mammary epithelial cells (Almeida
et al.,, 2003). In relation to the study reported herein, it is
unclear at present whether binding of bacteria to the GAG
chains of decorin or biglycan as an extracellular matrix protein
would inhibit subsequent cell binding or facilitate it. Of note,
selected isolates of S. constellatus and S. intermedius strains
(322/95, 34C, 127/95, 30C) possessed high chondroitinase
activity, which was absent from the more poorly-adhering S.
anginosus isolates which might be important in release of the
GAG chain from the parent molecule and subsequent inter-
actions, be it as an enhancer or an inhibitor.

In conclusion, this study has demonstrated the ability of
SAGs, particularly S. constellatus and S. intermedius, to
adhere to the GAG moiety of the extracellular matrix
proteoglycans decorin and biglycan. Adherence was greater
for the DS proteoglycans of the gingival proteoglycan. This
may be of significance in formation of dental abscesses, since
viridians-group streptococci are frequently encountered deep
inside the gingival connective tissue and associated peri-
odontal ligament, which contains similar DS proteoglycans.
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The ability of isolates of S. constellatus and S. intermedius to
adhere to C4S proteoglycans of alveolar bone may enhance
their survival and potential virulence in the periapical region
of a non-vital tooth, leading to infection and abscess forma-
tion. As with other bacterial ECM models, interactions formed
with the extracellular matrix may be significant in influencing
the metabolic activity of the host tissue and the phenotype/
genotype of the bacterial cell, thus determining whether or not
these “commensal” organisms initiate an infective process.
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