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Abstract. We look at the construction of conformal field theories and their mod-
ular invariants via tools from subfactor theory.

1 Introduction

There is a hierachy or pyramid of understanding:

• conformal field theory

• statistical mechanical models

• subfactors, vertex operator algebras and twisted K-theory

• modular tensor categories, pre-projective algebras, Calabi-Yau algebras . . .

The most basic algebraic structure here, namely that of a modular tensor category,
may arise from subfactors, vertex operator algebras or twisted equivariant K-theory
which in turn may give rise to statistical mechanical models which at criticality
may produce conformal invariant field theories. That is to say, two-dimensional
conformal field theories can be understood from the vantage point of conformal
nets of subfactors or vertex operator algebras. In this paper we focus on the former
setting, using von Neumann algebras of operators to understand modular invariant
partition functions in statistical mechanics and conformal field theory. Our primary
interest here is the search for integrable models or solvable models beyond what
one can construct from loop groups and quantum groups or orbifolds from finite
groups and related constructions like coset theories. For this purpose, subfactors
are convenient. However, an alternative K-theoretic approach based on the twisted
equivariant K-theoretic description of Verlinde algebras by [23] has been proposed
by us in [13, 14, 16].
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1.1 Operator algebras

Let us start with the basics of analytic and measure theoretic objects of operator
algebras, i.e. with some fundamental examples of C∗-algebras and von Neumann
algebras. We will begin with a fundamental example of an operator algebra –
tensor powers of 2 × 2 matrices:

⊗nM2 'M2n ' End(
⊗nC2). We can complete

this under the embedding x→ x⊗ 1 in the norm topology to get a meaning for the
infinite tensor product, called the Pauli algebra:

⊗∞M2 'M2∞ .
To get some idea of the algebra, suppose we compute dimensions of projections

e = e∗ = e2 using the trace: dim(e) = trace(e)/trace(1) ∈ {0, 1
2n ,

2
2n ,

3
2n . . . , 1} .

Here we have really normalized the trace to be 1 on the identity operator so that
the possible values are these dyadic rationals. They generate the semigroup of
positive dyadic rationals N[1/2] and hence taking the Grothendieck completion the
group of dyadic rationals Z[1/2]. This is the K-group of this operator algebra,
namely K0(⊗NM2) . If we repeated this exercise with 3 × 3 matrices we would
get the triadic rationals and so the two algebras are very different – they are not
isomorphic.

What we are interested in though are von Neumann algebras, which are not
only closed in the norm topology but in the weak operator topology. Suppose we
complete this infinite tensor product in a different way. First represent the finite
tensors on a Hilbert space. This can be done by turning the matrices into a Hilbert
space using the trace as an inner product H2 = M2 , 〈x, y〉 = tr y∗x/tr 1 and letting
the algebra act on itself by left multiplication so that ⊗nM2 ⊂ End(⊗nH2). Using
the normalized trace, this is compatible as we increase n. We can then take the
weak completion and get a different algebra R = ⊗∞M2 ⊂ End(⊗∞H2). If we
compute the K-group using the dimensions of projections, we find that the gaps
get filled in in the dyadic rationals picture and we get the real numbers K0(R) ' R.
Remarkably, an isomorphic algebra is obtained from 3 × 3 matrices.

To get our definitions set up – factors are von Neumann algebras which cannot
be split as a sum. This is the same as having trivial centre R′ ∩ R = C, if R′

denotes the commutant, or requiring all non-zero representations to be faithful.
Factors are of three kinds. First are those of type I, the matrices and their infinite
dimensional counterpart of bounded linear operators on a Hilbert space. We are
only going to be concerned with hyperfinite factors [11], i.e. ones which can be
approximated by matrices – as naturally occurs in statistical mechanical transfer
matrix constructions. There is an unique hyperfinite factor which has a finite trace,
the hyperfinite type II1 R constructed above, and if the algebra is not type I and
has an infinite trace the algebra is type II∞ and is isomorphic to R⊗B(H). If the
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factor has no trace at all then the algebra is type III. Consequently, we have:
I : Mn , B(H) ; II : R, R⊗B(H) ; III

Indeed, all hyperfinite factors have been classified by Connes [11] with the III1
case completed by Haagerup [27]. One construction of type III hyperfinite is to
repeat the above construction of R with Hj

2 = M2 , 〈x, y〉j = tr (e−Hjy∗x)/tr e−Hj

and then complete ⊗nj=1H
j
2 with sufficiently non trivial Hamiltonians Hj . In the

conformal field theory picture, type III (nets of) factors naturally arise from loop
group representations.

1.2 Subfactors

A subfactor is an inclusion N ⊂ M of one factor in another. Suppose to begin
with that M is the hyperfinite II1 factor, then by Connes [11] a subfactor is either
a matrix algebra or (the case we are interested in) the hyperfinite II1 and so iso-
morphic to M by ρ : N → M. The larger algebra is a left module over the smaller
one, and if this module is finitely generated and projective this yields an element
of [NM ] ∈ K0(N) ' R. This is precisely when the Jones index [N,M ] is finite and
equals this K-theoretic element [NM ]. The fundamental result of Jones [31] is that
this index value is surprisingly constrained to be in {4cos2(π/n)} ∪ [4,∞).

We can extend the inclusion N ⊂ M either upwards or downwards to a tower
and a tunnel. There is a conjugate endomorphism ρ̄ on M so that ρρ̄ � idM just as
for group representations or inverses of group elements. That allows us to continue
the inclusion downwards. In the opposite direction we can extend upwards using a
bi-module description or using a projection e of M onto N and adjoin:

· · · ⊂ ρρ̄M ⊂ ρM ⊂M ⊂ 〈M, e〉 = M ⊗N M ⊂M ⊗N M ⊗N M ⊂ · · ·

← tunnel tower →
The sequence of projections ej constructed in this way describe a Temperley-

Lieb algebra. We then have a doubly-infinite sequence of inclusions of factors:
Mk ⊂Ml , k ≤ l , and in the finite index case, the relative commutants (Mk)

′ ∩Ml

are all finite dimensional and thus are sums of matrix algebras.

N ′ ∩Mk ⊂ N ′ ∩Mk+1 → A
∪ ∪ ∪

M ′ ∩Mk ⊂ M ′ ∩Mk+1 → B
(1)

An embedding between finite dimensional algebras , e.g. N ′∩Mk ⊂ N ′∩Mk+1 ,
gives rise to a multiplicity graph. However due to periodicity Mk ⊂Ml 'Mk+2 ⊂
Ml+2, which is related to Pontryagin duality, only two bi-partite graphs really arise,
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Figure 1: (i) Principal graphs examples (ii) Boltzmann diamond (iii) Yang-Baxter eqn.

called the principal and dual principal graphs, which adjoin as in the example of
Figure 1 (i). There is however more information in the square by comparing two
ways of embedding M ′ ∩Mk ⊂ N ′ ∩Mk+1. This is given by a connection in the
terminology of Ocneanu [36], (see also [18]), an assignment of a complex number
to each square whose edges are labelled by those of the two graphs. This is related
to Boltzmann weights of statistical mechanical models with local configurations
on the diamond of Figure 1 (ii). If we start with arbitrary graphs and try to
set up subfactors by using the model of (1) with squares of finite dimensional
approximations, we would need some integrability as in the Yang-Baxter equation
of Figure 1 (iii) to ensure that the subfactor B ⊂ A constructed in this way has
the original graphs as their principal graphs. For example, E7 does not appear in
this way as a principal graph, and if we try to build up a subfactor from it in the
natural way, then the principal graphs will both be D10.

We can think of these relative commutants via decomposing endomorphisms or
bimodules into irreducibles

(ρρ̄ρρ̄ · · ·M)′ ∩M ' EndN (M ⊗N · · · ⊗N M)N orM .

Going from one stage to the next is via multiplication by the fundamental object ρ
orM in the endomorphism or bi-module descriptions respectively. This is illustrated
in the Bratteli diagram examples of Figure 2, where the irreducibles ρi appear as
one decomposes higher and higher powers of ρ and ρ̄.

To give some concrete examples, suppose a finite group G acts outerly on a
hyperfinite factor R. We can form the inclusion RG ⊂ R of fixed points which
has the inclusion R ⊂ R o G as the natural extension. We can iterate using dual
actions, and the principal graphs in the case of the symmetric group S3 is precisely
as in Figure 1 (i). The upper vertices are labelled by group elements g ∈ G and the
lower ones by group representations π ∈ Ĝ, with multiplicity dim(π).

There are of course two groups of cardinality 4, but at the integer index 4 we
can construct examples, indeed all index 4 examples, via tensoring with 2 × 2
matrices and the natural adjoint SU(2) group action. Taking the inclusion R =
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Figure 2: (i) Decomposing irreducibles (ii) Bratteli diagram

⊗NM2 ⊂ R ⊗ M2, the larger algebra is clearly 4 copies of the smaller as an R
module and so the index is 4. The tower is the obvious one R = ⊗NM2 ⊂ R⊗M2 ⊂
R ⊗M2 ⊗M2 ⊂ R ⊗M2 ⊗M2 ⊗M2 ⊂ · · · with the relative commutants being
finite dimensional tensors of two by two matrices. Taking fixed point actions
under the product adjoint action of say G = SU(2) the tower is C = MG

2 ⊂
(M2⊗M2)G ⊂ (M2⊗M2⊗M2)G ⊂ · · · . The relative commutants are just the fixed
point algebras (⊗nM2)G generated through Weyl duality by transposition matrices
in End(C2⊗C2⊗ · · ·⊗C2) or a representation of the symmetric group. The eigen-
projections of these transpositions are precisely the Temperley-Lieb projections at
index 4. Comparing with the template of Figure 2, the graphs drawn there are
precisely what appears for this SU(2) example, and the irreducibles ρi of SU(2)
are the natural labelling. Deforming the action of SU(2) to a quantum group
reduces the index and yields certain representations of a Hecke algebra and related
integrability or braid group Yang-Baxter type relations as in Figure 1 (iii).

At index four there is a classification of subfactors by affine ADE diagrams
corresponding to subgroups of SU(2) and twisted by cohomology. In the deformed
case, with indices less than 4, there is an ADE classification but E7 and Dodd do not
appear. There is an analogous story for SU(3), with subgroups of SU(3) providing
index 9 subfactors though the corresponding subfactors of index less than 9 are
not so closely related. Figure 4, an embellishment of an atlas of [34] summarizes
the possible values of indices but also maps other classifying graphs, namely the
nimrep graphs of modular invariants which we will come to shortly.

The classification between 4 and 5 was recently completed by Izumi, Jones,
Morrisson, Penneys, Peters [35, 30] following the fundamental work of Haagerup
[28]. At index 5 there are certain group-like subactors but between 4 and 5 there
are only 10 finite depth subfactors. The first is that of Haagerup [28] at index
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Figure 3: Principal and dual principal graphs for the Haagerup subfactor

(5 +
√

13)/2 and its dual, followed by that of Asaeda-Haagerup and its dual with
index value a root of some cubic, the extended Haagerup (5 +

√
17)/2 and its dual

whose existence was shown in [28]. The conformal embedding subfactor of SU(2)10

in SO(5)1 has principal graph the star shaped graph 3311 (where n1n2 . . . nm has
m arms of length n1, n2, . . . nm) of index 3 +

√
3 and its dual. Finally there is the

self dual Izumi subfactor 2221 of index (5 +
√

21)/2 and its opposite.
The Haagerup subfactor is the first finite depth subfactor of index bigger than

4. It can be regarded as a deformation of the symmetric group S3, with even
vertices satisfying the non-commutative fusion rules: α3 = 1 , ρα = α2ρ , ρ2 =
1 + ρ+ ρα+ ρα2. The statistical dimension dρ = [M,ρM ]1/2 satisfies the relation
d2
ρ = 1 + 3dρ and so dρ = (3 +

√
13)/2. The index d2

κ = dρ + 1 of the Haagerup sub-
factor κM ⊂ M is then (5 +

√
13)/2. There are currently three ways to construct

this subfactor. One is by bare hands – Haagerup constructed basically 6j-symbols
or Boltzmann weights. Izumi showed the existence of this subfactor by constructing
endomorphisms on Cuntz algebras satisfying these fusion rules [29]. More recently
[5] found the Haagerup subfactor by constructing the planar algebra or relative
commutants. Izumi [29] put the Haagerup in a potential series of subfactors for the
graphs 33...3 (2n+ 1 arms) and an abelian group of order 2n+ 1, and established
existence and uniqueness for Z3 and Z5. We showed [15] that there are (respec-
tively) 1, 2, 0 subfactors of Izumi type Z7, Z9 and Z2

3, and found strong numerical
evidence for at least 2, 1, 1, 1, 2 subfactors of Izumi type Z11,Z13,Z15,Z17,Z19 .
We are confident there will be at least one subfactor of Izumi type, for the cyclic
group Z2n+1 (any n), and more than one whenever 4n2 +4n+5 is composite. More
recently [17], we generalised Izumi’s framework, weakening his equations and allow-
ing solutions for even order abelian groups. In particular, we have constructed new
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subfactors at indices 3 +
√

5 and 4 +
√

10 and with graphs 3333 and 333333, and
expect these to again fall into an infinite series.

2 Statistical Mechanical models at criticality

We are not only interested in subfactors but braided systems – in the type III
setting with systems of endomorphism reproducing the Verlinde fusion ring. Before
we indulge in the mathematical aspects of this, let us see how conformal field
theories naturally throw up such structures, beginning with statistical mechanical
models at criticality.

We can look in detail at the case of the Ising model which will exhibit many of the
features we wish to highlight. Take the nearest neighbour Ising hamiltonian on the
configuration space P = {±}Z2 , H(σ) = Σα,βJσασβ for σ ∈ P. Then the partition
function decomposes as Z = Σσexp(−H(σ)) = Σ Π Boltzmann weights for a
Boltzmann weight involving local interactions on a plaquette. We can compute this
by first taking the partition function Tζη of a column, with boundary distributions
ζ, η. This can be computed using vertical and horizontal interactions in the nearest
neighbour Hamiltonian:

T = V 1/2W V 1/2 = e−H

Here V = expKΣσxj σ
x
j+1 and W = expL∗Σσzj are the partition functions or trans-

fer matrices for interactions along columns and rows respectively, in terms of Pauli
matrices, where σx is the diagonal matrix with ±1 eigenvalues with eigenvectors
|±〉, and σz interchanges these vectors, and K and K∗ are temperature dependant
interaction constants. At zero temperature K∗ is zero and T = V has a degen-
erate 2-dimensional largest eigenspace, whilst at infinite temperature K vanishes
and T = W has a non-degenerate largest eigenspace spanned. To relate this to
the operator algebraic approach to the phase transition and subsequent algebraic
conformal field theory, it is slicker to work with a half lattice Z× N, but see [18]
for a discussion of the full lattice. Then by this transfer matrix formalism, the
classical one-dimensional lattice model is understood via a two-dimensional non-
commutative quantum model C{+,−}Z×N = ⊗Z×N(C2) → M2 ⊗M2 ⊗ · · · where
classicial expectation values are computed via quantum ones µ(F ) = φµ(Fβ) with
time development αt given by the quantum Hamiltonian H = log T ,
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Figure 4: Plotting the SU(n)-supertransitivity and the norm squared of the
SU(n) N -M nimrep graphs Gρ, n = 2, 3.
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αt = T it( )T−it = Ad eiHt. Equilibrium states in the classical model correspond to
ground states in the quantum model. At zero temperature, there are two extremal
states given by φ+

0 = ⊗Zω+ φ−0 = ⊗Zω−; and at infinite temperature φ+
∞ = ⊗Zω.

Here ω±A = 〈A±,±〉 are the vector states onM2 for the ± eigenspaces of σx and w
is the vector state for the equi-distribution (|+〉+ |−〉)/

√
2, the largest eigenspace

for σz. What interests us here is that the Kramers-Wannier high temperature - low
temperature duality, which interchanges the roles of V and W , relates the ground
states at infinite and zero temperature φ+

0 = φ∞ν if ν is the automorphism which
switches σxj σ

x
j+1 ↔ σzj . More precisely, define νσxj σ

x
j+1 = σzj+1 and νσzj = σxj σ

x
j+1.

Here ν is only defined on the even part of the Pauli algebra, if we grade σx as
odd and σz as even. Squaring ν2 is not the identity but a shift, the restriction of
σγj → σγj+1 to the even Pauli algebra. We can extend ν to the whole Pauli algebra
by defining a Jordan-Wigner formulation it to be νσxj = σz1σ

z
2 · · ·σzj , but ν2 is no

longer the shift. To understand the key role of ν it is convenient to extend to a
larger ambient algebra which is infinite with no trace - a Cuntz algebra O2 which
is the semi-direct product of the Pauli algebra by the shift ⊗NM2 oN. The algebra
O2 is generated by two isometries s+, s− with orthogonal ranges summing to the
identity, s+s

∗
+ + s−s

∗
− = 1 . The Pauli algebra is naturally contained in the Cuntz

algebra, e.g. s+s
∗
+, s−s

∗
−, s−s

∗
+, s+s

∗
− form a copy of the matrix units of M2.

This formalism enables amongst other things one to handle non-rectangular
transfer matrices algebraically with for example s+ on the right below:

We can extend ν to the Cuntz algebra with ν(s+ ± s−) =
√

2(s+s±s
∗
± + s−s∓s

∗
∓)

with the property on generators ν2(sσ) = s+sσs
∗
+ + s−s−σs

∗
− , and hence for any

x ∈ O2 we get ν2(x) = s+xs
∗
++s−αxs

∗
− if α denotes the automorphism of O2 which

interchanges + and −, i.e. s+ ↔ s− . What this means is that we can decompose
the underlying Hilbert space K on which O2 acts by K = s+K+ s−K so that ν2(x)
is represented as in Figure 5.(i), i.e. ν2 = id+ α. We are naturally led to systems
of endomorphisms on infinite algebras (type III if completed appropriately) with
fusion rules represented by Figure 5.(ii) so that vertices represent endomorphisms
and edges multiplication by the fundamental generator ν.
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Figure 5: (i) ν2 = 1 + α (ii) Ising endomorphisms
Taking lattice models, periodic in one direction, leads to cylinders with bound-

ary conditions, and then a torus with defect lines.

Figure 6: (i) lattice model (ii) cylinder with boundary conditions (iii) torus with defects

In the continuum limit we may expect to get a field theory with a partition function
Z which decomposes as relative to some underlying symmetry (the underlying
vertex operator algebra):

Z = tr e2πiτ(L0−c/24)e−2πiτ(L0−c/24) =
∑

Zλµχλ(τ)χµ(τ)∗ ,

where χλ = tr qL0−c/24 , q = e2πiτ , are the characters corresponding to irreducible
λ. It was argued by Cardy that the parition function is invariant under re-
parameterisations of the torus: Z(τ) = Z((aτ + b)/(cτ + d)). Since typically the
characters themselves transform linearly under the action of SL(2,Z), a modu-
lar invariant gives rise to a matrix of multiplicities Zλµ ∈ {0, 1, 2, . . .}, satisfying
Z = [Zλµ] ∈ SL(2,Z)′ and Z00 = 1 , where 0 denotes the vacuum.

In the case of the two-dimensional Ising model, there are three irreducibles
corresponding to the vertices of the A3 Dynkin diagram of Figure 5 (ii), with ±
labelling the end points and • the internal vertex. The transfer matrix formalism
allows a description in terms of fermion operators ga : a ∈ N − 1/2 or N with
half integer or integer labels and corresponding Hamiltonians and characters: L0 =
Σr∈N−1/2rg

∗
rgr → χ± , L0 = Σn∈Nng

∗
ngn → χ• . The half integer Hamiltonian is

reducible according to a parity with corresponding characters:

χ+ ± χ_ = q−1/48Πn∈N(1± qn−1/2) , χ• = q1/24Πn∈N(1 + qn)

The corresponding action of SL(2,Z) is given by:

τ → −1/τ S =
1

2

 1
√

2 1√
2 0 −

√
2

1 −
√

2 1


τ → τ + 1 T = diag(e−πi/24, e−πi/12, e−πi23/24)
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What we need are braided systems of endomorphisms – not necessarily commu-
tative but which commute up to an adjustment which can be chosen to satisfy the
Yang-Baxter or braid relations and braiding fusion relations. Crossings represent
intertwiners, from which one can form S and T matrices as scalar intertwiners from
the Hopf link and a twist.

There are two principal sources of examples. The first arises from loop groups,
e.g. that of SU(n), developed by Wassermann and his students [42]. Restricting to
loops concentrated on an interval I ⊂ S1 (proper, i.e. I 6= S1 and non-empty), the
corresponding subgroup denoted by LISU(n) = {f ∈ LSU(n) : f(z) = 1 , z /∈ I},
one finds that in each positive energy representation πλ we obtain hyperfinite type
III1 subfactors πλ(LISU(n))′′ ⊂ πλ(LIcSU(n))′ , where Ic denotes the comple-
mentary interval [42]. In the vacuum representation, labelled by λ = 0, we have
Haag duality in that the inclusion collapses to a single factor N(I) = N(I). More
generally, the inclusion can be read as providing an endomorphism λ of the local
algebra N(I) such that the inclusion πλ(LISU(n))′′ ⊂ πλ(LIcSU(n))′ is isomorphic
to λ(N(I)) ⊂ N(I). In this way we obtain systems of endomorphisms – which are
braided from locality considerations where to compare two endomorphisms on the
same interval we move one away to another disjoint interval, where commutativity
holds, and then back again.

The second class comes from taking the double of systems of endomorphisms
which themselves may not be braided nor even commutative, such as the quantum
double of a finite group, Haagerup subfactor etc. If NXN denotes a system of en-
domorphisms on a type III factor, then there is a subfactor ι : A ⊂ N⊗Nopp, whose
canonical endomorphism ῑι is expressible as Σλ∈Xλ⊗λopp, with a non-degenerately
braided system of endomorphisms on A. Thus doubles naturally come with braided
inclusions.

2.1 Subfactor framework for modular invariants and RCFT

To understand modular invariants of the form
∑
Zλµχλχ

∗
µ, let us first consider the

obvious one: the diagonal invariant
∑
χλχ

∗
λ or more generally

∑
χτχ

∗
στ for suitable

permutations σ of the irreducibles. In some sense, made precise in [7], every modular
invariant is of this form in some extended system. In subfactor language, the factor
N which carries the Verlinde algebra A as a system of endomorphims is embedded
in a larger von Neumann algebra with a system B of endomorphisms. When we
restrict to the smaller system, σ-restriction on characters χτ =

∑
bτλχλ should be

interpreted as στ =
∑
bτλλ as endomorphisms. In particular this will certainly

mean that NMN thought of as an endomorphism decomposes as a sum of λ’s.
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Moreover the diagonal modular invariant for the ambient B system decomposes as

Z =
∑
χτχ

∗
στ =

∑
(
∑
bτλχλ) (

∑
bστ λχλ)∗ =

∑
Zλµ χλχ

∗
µ

to yield a possibly non-trivial Zλµ =
∑
bτλbστ µ.

However, in practice we will not be given the ambient extended system B but
instead will start with an inclusion N ⊂ M such that NMN decomposes as a sum
of λ’s in A. In such a situation we can induce the system on N to systems on M .
Using the braiding and its opposite we get two ways of getting endomorphisms on
M , namely α± : λ −→ α±λ . What is important is their intersection.

When we decompose α+λ, α−µ into irreducibles, we count the number of common
sectors and get a multiplicity Zλµ = 〈α+

λ , α
−
µ 〉. The resulting

∑
Zλµχλχ

∗
µ is a

modular invariant. By associativity, we can regard the multiplication of the N -
N system on itself as a representation of the Verlinde algebra λµ =

∑
ν N

ν
λµν by

commuting matrices Nλ = [Nν
λµ]µν .

Such a family of commuting matrices can be straightforwardly diagonalised:
Nλ =

∑
κ Sλκ/S0κ|Sκ〉〈Sκ| . What is not straightforward is that the diagonalising

matrix is the same as the S matrix in the representation of SL(2,Z).
We can form a system of N -M sectors NXM from ιλ, where λ ∈ NXN and

ι : N ⊂M . Now, multiplication of N -N on N -M gives a nimrep – a representation
of the Verlinde algebra by positive integer matrices Gλ = [Gbλa]ab. These can
likewise be diagonalised: Gλ =

∑
κ Sλκ/S0κ|ψκ〉〈ψκ| , with spectrum σ(Gλ) =

{Sλµ/S0λ : multiplicity Zλλ} coinciding precisely with the diagonal part of the
modular invariant. In the case of SU(2) modular invariants, this is the conceptual
explanation of the ADE classification of Capelli-Itzykson-Zuber [10]. All SU(2)
[10] and SU(3) [25] modular invariants can be realised by subfactors following work
of Ocneanu, Feng-Xu, Böckenhauer, Evans, Kawahigashi and Pugh. We refer to
the review article [21] for precise references.

The map of Figure 4 describes a map of nimrep index values, i.e. the squares
of the norms of nimrep generators λ =fundamental weight, for SU(2) (roman) and
SU(3) (script). The SU(n)-supertransitivity measures how far the nimrep graph
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remains alike to the identity nimrep graph before diverging following Jones [32] in
the bi-partite or SU(2) case, with a precise definition in the review [21].

The larger family MXM ofM -M sectors is obtained from the irreducibles of ιλι and
co-incides with those generated by the images of the two inductions by decomposing
α+
λ α
−
ν when the braiding is non-degenerate. Remarkably, this can be identified with

the nimrep graph for the (usually non-normalized) modular invariant ZZ∗ .
In the cases we are interested in, the factor N is obtained as a local factor

N = N(I◦) of a conformally covariant quantum field theoretical net of factors
{N(I)} indexed by proper intervals I ⊂ R on the real line arising from current
algebras defined in terms of local loop group representations, and the N -N system
is obtained as restrictions of Doplicher-Haag-Roberts morphisms (cf. [26]) to N .
Taking two copies of such a net and placing the real axes on the light cone, then
this defines a local conformal net {A(O)}, indexed by double cones O on two-
dimensional Minkowski space (cf. [40] for such constructions). A braided subfactor
N ⊂ M , determining in turn two subfactors N ⊂ M± obeying chiral locality, will
provide two local nets of subfactors {N(I) ⊂M±(I)}. ArrangingM+(I) andM−(J)
on the two light cone axes defines a local net of subfactors {A(O) ⊂ Aext(O)} in
Minkowski space. The embedding M+ ⊗ Mop

− ⊂ B gives rise to another net of
subfactors {Aext(O) ⊂ B(O)}, where the conformal net {B(O)} satisfies locality.
As shown in [40], there exist a local conformal two-dimensional quantum field theory
such that the coupling matrix Z describes its restriction to the tensor products of
its chiral building blocks N(I). There are chiral extensions N(I) ⊂ M+(I) and
N(I) ⊂ M−(I) for left and right chiral nets which are indeed maximal and should
be regarded as the subfactor version of left- and right maximal extensions of the
chiral algebra.

2.2 Exotic possibilities

The most natural place to look for exotic possibilities of subfactors and hence of
conformal field theories is with the Haagerup subfactor and its siblings. However to
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get braided systems we need to take the doubles. The upper part of Fig. 7 shows
the double of the even part of the principal graph ∆ of the Haagerup subfactor,
computed by Izumi, and the lower part comes from the double of the even part of
the dual principal graph, computed in [15].

Figure 7: Dual principal graphs of the double of the Haagerup subfactor

This was the first time the dual graph was computed – using the theory of
modular invariants for the double which as we have noted come equipped with
canonical braided inclusions and hence canonical modular invariants. These should
be compared with the corresponding objects for the doubles of the symmetric group
and its dual. Note how we can recover the graph and dual graph for S3 from this
diagram by tracing from the vacuum sector on the bottom to the top, and vice
versa respectively.

Figure 8: Dual principal graphs of the double of the S3 subfactor
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The Haagerup modular data was computed by Izumi [29], with T being the diag-
onal matrix diag(1, 1, 1, 1, ξ3, ξ3, ξ

6
13, ξ

−2
13 , ξ

2
13, ξ

5
13, ξ

−6
13 , ξ

−5
13 ) . His S matrix though

was obscure and involved a complicated rational function in e2πß/13 and (1 +

ß
√

5 + 2
√

13)/(1+
√

13). We derived an explicit simple description for the S matrix:

S =
1

3



x 1− x 1 1 1 1 y y y y y y
1− x x 1 1 1 1 −y −y −y −y −y −y

1 1 2 −1 −1 −1 0 0 0 0 0 0
1 1 −1 2 −1 −1 0 0 0 0 0 0
1 1 −1 −1 −1 2 0 0 0 0 0 0
1 1 −1 −1 2 −1 0 0 0 0 0 0
y −y 0 0 0 0 c(1) c(2) c(3) c(4) c(5) c(6)
y −y 0 0 0 0 c(2) c(4) c(6) c(5) c(3) c(1)
y −y 0 0 0 0 c(3) c(6) c(4) c(1) c(2) c(5)
y −y 0 0 0 0 c(4) c(5) c(1) c(3) c(6) c(2)
y −y 0 0 0 0 c(5) c(3) c(2) c(6) c(1) c(4)
y −y 0 0 0 0 c(6) c(1) c(5) c(2) c(4) c(3)


,

for x = (13 − 3
√

13)/26, y = 3/
√

13 and c(j) = −2y cos(2πj/13). That this
bears some relation with the double of S3 may not be surprising given the relations
between the Haagerup fusion rules and those of S3 and Ŝ3. There is however also
a striking relationship with the affine algebra modular data B6,2 which has central
charge c = 12, and 10 primaries. The T -matrix is diag(−1,−1;−ß, ß;−ξ6l2

13 ), while
the S-matrix is [33]

S =
1

3



y/2 y/2 3/2 3/2 y y y y y y
y/2 y/2 −3/2 −3/2 y y y y y y
3/2 −3/2 3/2 −3/2 0 0 0 0 0 0
3/2 −3/2 −3/2 3/2 0 0 0 0 0 0
y y 0 0 −c(1) −c(2) −c(3) −c(4) −c(5) −c(6)
y y 0 0 −c(2) −c(4) −c(6) −c(5) −c(3) −c(1)
y y 0 0 −c(3) −c(6) −c(4) −c(1) −c(2) −c(5)
y y 0 0 −c(4) −c(5) −c(1) −c(3) −c(6) −c(2)
y y 0 0 −c(5) −c(3) −c(2) −c(6) −c(1) −c(4)
y y 0 0 −c(6) −c(1) −c(5) −c(2) −c(4) −c(3)


,

where y and c(j) is as before. Ignoring the first 4 primaries, the only difference
with the Haagerup modular data are some signs.

The question then arises as to whether there is a corresponding conformal field
theory. Some evidence in support of this is that characters χλ(τ) (with nonnegative
integer coefficients) which transform among themselves according to this SL(2,Z)
representation were found following the procedures developed by [3].
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