This is an Open Access document downloaded from ORCA, Cardiff University's institutional repository: https://orca.cardiff.ac.uk/id/eprint/36569/

This is the author’s version of a work that was submitted to / accepted for publication.

Citation for final published version:

Publishers page: http://dx.doi.org/10.1136/bmj.1.6003.220-b

Please note:
Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may not be reflected in this version. For the definitive version of this publication, please refer to the published source. You are advised to consult the publisher’s version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made available in ORCA are retained by the copyright holders.
First-aid treatment of poisoning

Sir,—In considering the emergency treatment of the poisoned child it is perhaps fair to draw a distinction between the management by the full-time health workers listed in your leading article (29 November, p 483) (doctors, nurses, health visitors, and ambulance men) and the part-time first-aiders mentioned by Dr P A B Raffle and his colleagues in their letter (10 January, p 93). The former should have (if I do not say have do) a higher standard of training than the part-timers and are more likely to be asked for their advice and help; it is therefore reasonable to expect them to be able to use syrup of ipecacuanha effectively, as the advantages of induced emesis are considerable. I can appreciate, however, that voluntary first-aiders might be consulted so infrequently that it would not be right to train them in its use.

R H JACKSON
Children's Department, Royal Victoria Infirmary, Newcastle upon Tyne

Natural oestrogen replacement therapy and blood clotting

Sir,—Dr Jean Coope and her colleagues, reporting the results of a double-blind cross-over trial of equine ("natural") oestrogens against placebo in the treatment of 30 patients with menopausal symptoms (18 October, p 139) recorded raised plasma levels of the extrinsic clotting factors VII and X and accelerated prothrombin time after three months' treatment with conjunctured equine oestrogens (Premarin 1-25 mg daily). We have recently completed investigations of the effects of both "natural" and synthetic oestrogens on clots of normal subjects, blood biochemistry, and blood clotting in perimenopausal patients. We similarly found a significant increase in the levels of factors X and VII and accelerated prothrombin time in patients who had received either conjunctured equine oestrogens (1-25 mg daily) or ethinylestradiol (0-03 mg daily) for three months.

However, the study of Dr Coope and her colleagues was confined to equine "natural" oestrogens and their findings imply that other "natural" oestrogens might also accelerate blood clotting factors. Such a conclusion would be at variance with our own data, obtained in a double-blind, between-patient study over six months of the effects of oestrone piperazine sulphonate (Harmogen, 3 mg daily), ethinylestradiol (0-03 mg daily), and placebo in 60 perimenopausal patients. At each monthly assessment tests of blood clotting and platelet studies were performed, of which the following are relevant to the present communication: prothrombin time (BCRP); platelet aggregation time; fibrinogen assay; cephalin time; and assays of factors X and VII.

Of 79 patients admitted, 60 completed the six-month trial: eight of the 19 withdrawn developed adverse effects to the active treatment and 10 patients receiving placebo were withdrawn because of failure to control the severity of menopausal symptoms. The results of coagulation studies are shown in the accompanying table. Significant increases (P<0.05) in the levels of fibrinogen factors VII and X and acceleration (P<0.01) in prothrombin, cephalin, and platelet aggregation times occurred between the first and sixth months in the ethinylestradiol group. In the oestrone piperazine sulphate group there were no significant changes in any of these indices at any time during the trial. Follow-up of the 21 patients who continued with oestrone piperazine sulphate for a period of 18 months has not revealed any further change in these indices.

MANUEL ATILWAD
Clinical Research Laboratory, Cefn Coed, Merthyr Tydfil, Mid-Glamorgan

JEFFREY MADDICK PHILIP REES
Pathology Department,Singleton Hospital, Swansea

Medical writing

Sir,—The large attendance at the teaching seminar on medical writing and editing held on 14 November 1975 under the auspices of the BMJ (29 November, p 532) reflects a growing interest in the subject. One hopes that this interest will also be expressed by debate in your columns, and in the columns of other journals, on both the technical and the linguistic aspects of writing papers. May I raise three points now?

First I should like to say a word in defence of the passive voice, the use of which in medical writing is often criticised. The ambiguous "passive of modesty" is, admittedly, indefensible. "Ten patients were investigated by this method" could leave the reader in doubt as to who investigated, the patient or the investigator. "I investigated ten patients" or "X investigated 10 patients" is clear. On the other hand the passive, I submit, is better than the active if it enables a sentence, a

Results of coagulation studies (Mean ± SD) in the three treatment groups at initial assessment and after 6 months

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Oestrone piperazine sulphate (n = 23)</th>
<th>Ethinylestradiol (n = 20)</th>
<th>Placebo (n = 17)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Initial</td>
<td>6 months</td>
<td>Initial</td>
</tr>
<tr>
<td>Prothrombin time (s)</td>
<td>12 ± 2</td>
<td>12 ± 0.4</td>
<td>12 ± 3</td>
</tr>
<tr>
<td>Cephalin time (s)</td>
<td>41 ± 1.6</td>
<td>41 ± 0.2</td>
<td>41 ± 1.5</td>
</tr>
<tr>
<td>Factor VII assay (s)</td>
<td>12 ± 0.6</td>
<td>12 ± 0.4</td>
<td>12 ± 0.9</td>
</tr>
<tr>
<td>Factor X assay (s)</td>
<td>12 ± 0.6</td>
<td>12 ± 0.4</td>
<td>12 ± 0.9</td>
</tr>
<tr>
<td>Plasma fibrinogen (g/l)</td>
<td>24 ± 0.04</td>
<td>24 ± 0.06</td>
<td>24 ± 0.1</td>
</tr>
<tr>
<td>Platelet aggregation time (s)</td>
<td>63 ± 14</td>
<td>63 ± 10</td>
<td>63 ± 15</td>
</tr>
</tbody>
</table>

Significant changes from initial values: *P<0.05, **P<0.01.

Conversion: SI to traditional units: Fibrinogen 1 g/l = 100 mg/100 ml.

Department of Geriatrics, Northwick Park Hospital, Harrow, Middlesex

H M HODKINSON

Binnengasthuis, Amsterdam, Netherlands

A M VAN LEUWEN