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Summary 

Ribbed reinforcement is described as “high bond” in Eurocode 2 (EC2) and within the 

code serviceability checks make no allowance for variations in either the ductility or 

bond characteristics of these bars. In this work, this matter is explored, and the crack 

development and behaviour of concrete beams reinforced with various types of ribbed 

steel bar are investigated, using both numerical and experimental approaches. The 

objective of the experimental approach is to undertake a series of experiments to 

compare the performance of beams made with standard reinforcement with that of 

beams formed with a new high-ductility bar produced by CELSA UK. The relationship 

between the bond strength and the rib pattern of reinforcing steel was studied and the 

behaviour at SLS load levels of RC beams with reinforcement of different rib patterns in 

flexure is discussed. The cracking of beams was monitored both visually and using a 

non-destructive Digital Image Correlation system to trace in-plane deformations and 

strains on the surface of the specimens. The test results showed that specimens with 

bars which had the highest relative rib area (fR value) exhibited the smallest crack 

spacing and crack width. A numerical model was developed to explore the crack 

development of reinforced concrete beams under flexural loading. The model employed 

a non-linear material model for concrete and a smeared crack approach. In order to 

address the well known numerical stability problems, associated with softening models, 

a non-local gradient method was used. Crack widths cannot be obtained directly from 

such models, due to the diffuse nature of non- local simulations, therefore a 

post-processing procedure was developed to allow the crack characteristics to be 

calculated. Several numerical examples are presented to illustrate the satisfactory 

performance of the model. In addition, a series of numerical simulations of the 
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experimental beams tested in the present study were used validate the numerical model 

and conversely, to provide confidence in the consistency of the experimental results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



BOND AND CRACKING OF REINFORCED CONCRETE  Simon H.C. Chan 

Page vii 

Symbols and abbreviations 

The following symbols and abbreviations are used in this thesis:  

A Cross-sectional area of beam [mm^2] 

Ac Cross-sectional concrete area of beam [mm^2] 

As Cross-sectional steel area of beam [mm²] 

Ac,eff Effective area [mm²] 

An Nominal Cross-sectional area  [mm²] 

am Maximum height of the transverse ribs [mm] 

B Strain displacement matrix [-] 

b Breadth of beam [mm] 

c Spacing between the transverse ribs [mm] 

c Concrete cover [mm] 

d  Bar Diameter [mm] 

dagg Maximum course aggregate particle size [mm] 

D Elasticity tensor  [-] 

Dsec Secant stiffness matrix  [-] 

Dtan Tangent D matrix [-] 

E Young’s modulus [kN/mm²] 

Ecm Young’s modulus of concrete [kN/mm²] 

Es Young’s modulus of steel bar [kN/mm²] 

e Width of longitudinal ribs [mm] 

Fa Total applied force  [kN] 

fct,eff 
Mean value of the tensile strength of the concrete effective at the time 

when cracks are first expected to occur 
[N/mm²] 

fcm Target value of the strength class [N/mm²] 
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fc Concrete uniaxial strength  [N/mm²] 

fcu Cube strength (100mm cubes) [N/mm²] 

fct Concrete tensile strength  [N/mm²] 

fcyl Cylinder splitting strength [N/mm²] 

fR Relative rib area of the bar [-] 

ft Tensile strength of material [N/mm²] 

Gf Specific fracture energy [N/mm] 

h Height or depth of beam [mm] 

K, Ke Element stiffness matrix [-] 

k Bond characteristic parameter  [-] 

k1 Coefficient for bond properties of reinforcement [-] 

k2 Nature of strain distribution  [-] 

kt Factor dependent on the duration of the load [-] 

l Length of beam [mm] 

lch Characteristic length [mm] 

M Bending moment [Nmm] 

N Shape functions [-] 

P Applied tensile force [N] 

r Damage evolution parameter which controls damage evolution. [-] 

rm 
Damage evolution parameter r corresponding to a uniaxial tensile strain 

at the end of the tensile softening curve 
[-] 

rt Initial value of damage evolution parameter r [-] 

r  Rate of change of damage evolution parameter [-] 

S Crack Spacing [mm] 

So Transfer length [mm] 

Srm Mean crack Spacing [mm] 
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Sr,m code Design code calculation of mean crack spacing [mm] 

Sr,m exp  Experimental mean crack spacing [mm] 

Sr,m num  Numerical mean crack spacing [mm] 

Srmax Max crack Spacing [mm] 

Sr,max code Design code calculation of maximum crack spacing [mm] 

Sr,max exp Experimental maximum crack spacing [mm] 

Sr,max num Numerical maximum crack spacing [mm] 

x 
Distance from compressive face to the neutral axis for a theoretically 

fully cracked section 
[mm] 

e  Ratio cms EE  [-] 

β Coefficient of integration [-] 

 Local strain tensor [-] 

  Non-local strain tensor [-] 

cmc FE mean strain [-] 

eff Effective Strain [-] 

cm  Average concrete strain between cracks [-] 

sm  Average steel strain between cracks [-] 

ρ Poisson's ratio [-] 

ρ Reinforcement ratio ( cs AA / ) [-] 

eff Effective reinforcement ratio (As / As,ceff ) [-] 

 Stress tensors  [-] 

0


σ  Positive part of stress tensor [-] 

eσ  Effective stress. [N/mm²] 

eff   Effective stress in beam [N/mm²] 

s Peak steel stress at the position of a crack [N/mm²] 
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  Bond stress [N/mm²] 

  Effective stress parameter [-] 

x  
Shear stress along the tensile force at the surface between steel and 

concrete  
[N/mm²] 

max  Ultimate bond strength  [N/mm²] 

  Bar Diameter [mm] 

w Scalar damage parameter or tensor [-] 

wk Crack width [mm] 

wmax Maximum crack width [mm] 

Sr,mCEB  Design code CEB fib calculation of mean crack width [mm] 

wr,m code Design code EC2 calculation of mean crack width [mm] 

wr,m exp  Experimental mean crack width [mm] 

wr,m num Numerical mean crack width [mm] 

wr,max code Design code EC2 calculation of maximum crack width [mm] 

wr,max exp Experimental maximum crack width [mm] 

wr,max num Numerical maximum crack width  [mm] 

2  Laplace operator [-] 

DIC  Digital Image Correlation  

DSCM  Digital Speckle Correlation Method  

FE  Finite element  

LVDT  Linear variable differential transformer  

NDT  Non-Destructive Technology  

RILEM 
Reunion Internationale des Laboratories d'Essais et de Recherches sur 

les Materiaux et les Constructions 
 

XFEM  Extended finite element model  

 

 



BOND AND CRACKING OF REINFORCED CONCRETE  Simon H.C. Chan 

Page xi 

Content 

DECLARATION……………………………………………………………………..…………..i 

ACKNOWLEDGEMENTS……………………………………………………………………..ii 

DEDICATION………………………………………………………………………..………….iv 

SUMMARY……………………………………………………………………………...……....v 

SYMBOLS AND ABBREVIATIONS………………………………………………………….vii 

 

 

CHAPTER 1 INTRODUCTION…………………………………………………...…………1 

1.1 Background………………………………………………………………………………..1 

1.2 General Introduction……………………………………………………………………...1 

1.3 Motivation for the Research…………………………………………………………......3 

1.3.1 Experimental Investigation………………………………………………………...3 

1.3.2 Numerical 

Modelling..……………………………………………………...............3 

1.4 Objectives and Scope of the Research…………………………………………….….3 

1.5 Layout of the Thesis……………………………………………………………………...4 

 

 

CHAPTER 2 EXPERIMENTAL LITERATURE REVIEW………………………………....6 

2.1 Introduction…...…………………………………………………………………………...6 

2.2 Bond-Slip Mechanisms...………………………………………………………………...7 

2.2.1 Components of Bond-Slip Mechanisms.……………………………………......7 

2.2.2 Factors Influencing the Bond-Slip Mechanisms……….…………………...... 10 



BOND AND CRACKING OF REINFORCED CONCRETE  Simon H.C. Chan 

Page xii 

2.3 Crack Control………...…………………………………………………………………..14 

2.3.1 Crack Spacing.………….…………………………...........................................15 

2.3.2 Crack Width….…………………………………………....................................17 

2.3.3 Bond Tests…...………………………………………….................................... 19 

2.4 SLS and ULS Behaviour……………………………………………………...……….. 21 

2.5 Conclusion…...…………………………………………………………………………..22 

 

 

CHAPTER 3 NUMERICAL LITERATURE REVIEW…………………………………….24 

3.1  Introduction……………………………………………………………………………....24 

3.2  Constitutive Models for Concrete..………………………………………………….....24 

3.3  Computational Models for Fracture and Related Issues………………………........26 

3.4  Non-local Approaches..………………………………………………………………....29 

3.5  Conclusion…………………………………………………………………………….....32 

 

 

CHAPTER 4 EXPERIMENTAL STUDY…………………………………………………..33 

4.1 Introduction…...………………………………………………………………………….33 

4.1.1 General…...……………………………………….……………………………...33 

4.1.2 Background and Previous Research………………….…………….…….......34 

4.2 Material Properties……………………………………………………………………... 38 

4.2.1 Mixing, Casting and Curing Procedure……………….……………………….38 

4.2.2 Concrete Properties…………………………………………………………......40 

4.2.3 Reinforcement Properties…………………………………………………........43 



BOND AND CRACKING OF REINFORCED CONCRETE  Simon H.C. Chan 

Page xiii 

4.3 Test Specimens………………………………………………………………………….46 

4.3.1 Flexural Beam Test.……………………………………………….…………….46 

4.3.2 Bond Tests………………………………………………………….…………….48 

4.3.2.1 Pull-out Test.…………………………….………………………………….48 

4.3.2.2 Bond Beam Test…..………………………………………………………. 49 

4.4 Experimental Procedures………………………………………………………..……..50 

4.4.1 Bond Tests…………………………………………………………………….….50 

4.4.1.1 Pull-out Test.………………………………………………………………..50 

4.4.1.2 Bond Beam Test…..………………………………………………………..51 

4.4.2 Beam Test………………………………………………………………………...53 

4.4.2.1 Flexural Beam Test………………………………………………....……..53 

4.4.2.2 Digital Image Correlation……………………………………....……..…..54 

4.5 Experimental Results and Discussion……………………………...……....……..….58 

4.5.1 Bond Tests.……………………….………………………………………………58 

4.5.2 Flexural Beam Test……………………………………………………….……..68 

4.5.2.1 Parameter Test – Effect of Orientation of Reinforcing Bars………..….73 

4.5.2.2 Parameter Test – Effect of Existing Stirrups in the Central Zone….…..74 

4.5.2.3 The Relationship between fR Value,Crack Width and Crack Spacing..76 

4.6 Conclusions...……………………………………………………………………………83 

4.7 Modelling of Experiments.……………………………………………………………...85 

 

 

CHAPTER 5 NUMERICAL METHOD………………………………………………….....86 

5.1 Introduction………………………………………………………………………………86 



BOND AND CRACKING OF REINFORCED CONCRETE  Simon H.C. Chan 

Page xiv 

5.2 Numerical Model………………………………………………………………………...89 

5.2.1 Nonlocal Implementation………………………………………………………..89 

5.2.2 Concrete Constitutive Model……………………………………………………90 

5.2.3 Numerical Details……………………………….………………………………..93 

5.3 Equations for Crack Width Calculations………………………………………………95 

5.4 Crack Calculations from Finite Element Results…………………………………….98 

5.5 Examples………………………………………………………………………………. 100 

5.5.1 Axially Loaded Tests from Elfgren & Noghabai...……………………………101 

5.5.2 Beam Tests from Clark…………………………………………………………105 

5.5.3 Cardiff Celsa Test……………………………………………………………….108 

5.6 Discussion……………………………………………………………………………....121 

5.7 Conclusions…………………………………………………………………………….126 

 

 

CHAPTER 6 MODEL VALIDATION AND COMPARISON WITH 

EXPERIMENT……………………………………………………………………….……....128 

6.1 Introduction……………………………………………………………………………..128 

6.2 Initial Cracking Load and Ultimate Load…………………………………………….128 

6.3 P–δ Curves………………………………………………………………………....…. 131 

6.4 Average Tensile Strain in Main Steel Reinforcement………………………………133 

6.5 Evolution of Crack Development……………………………………………………..135 

6.6 Discussion of Results……………………………………………………………….... 136 

6.7 Comparison of Numerical Model and Experiment with Eurocode 2….………….. 136 

6.8 Conclusion……………………………………………………………………………...137 



BOND AND CRACKING OF REINFORCED CONCRETE  Simon H.C. Chan 

Page xv 

 

CHAPTER 7 CONCLUSION AND WAY FORWARD.………………………………… 138 

7.1 General……………………………………………………………………………........138 

7.2  Experimental Programme…….…………………………………………………........139 

7.2.1  Bond Tests...…………………………...……………………………….…........ 139 

7.2.2  Flexural Beam Tests...……………………………………………………….....139 

7.3  Numerical Simulation……………………………………………………………........ 140 

7.4  Model Validation and Comparison with Experiments....……………………….......141 

7.5  Further Work.………..……………………………………………………………........144 

 

 

REFERENCE………………………………………………………………………………..145 

APPENDIX I……………………………………………….………………………………...163 

APPENDIX II…………………………………………….………………………………..…171 

 

 

 

 

 

 

 

 



BOND AND CRACKING OF REINFORCED CONCRETE  Simon H.C. Chan 

Page xvi 

List of Figures 

Figure 2.1. Cracks formed in reinforced concrete beams 

Figure 2.2. Distribution of bond stress between cracks 

 

Figure 3.1. Example of continuum remeshing 

 

Figure 4.1. Four general types of failure in bond tests 

Figure 4.2. Concrete cube strength of specimens 

Figure 4.3. Rib pattern on reinforcing steel bars 

Figure 4.4a. Geometry of the specimens with stirrups all along the length 

Figure 4.4b. Geometry of the specimens with no stirrups in the central zone of 600mm 

Figure 4.5. Pull-out test specimen 

Figure 4.6. Beam specimen for bond test 

Figure 4.7. Set up of pull-out tests 

Figure 4.8a. Set up of bond beam experiment 

Figure 4.8b. Photo of bond beam experiment 

Figure 4.9a. Set up of flexural beam experiment 

Figure 4.9b. Photo of flexural beam experiment 

Figure 4.10. Calibration of DIC system with Calibration Grid Board 

Figure 4.11a. Distribution of deformation and crack width measurements as obtained from 

DIC post-processing software 

Figure 4.11b. Crack location and spacing determined by DIC post-processing software 

Figure 4.11c. Specimen being monitored by DIC camera system 

Figure 4.12a. Plot of bond stress against slip for bond beam tests 



BOND AND CRACKING OF REINFORCED CONCRETE  Simon H.C. Chan 

Page xvii 

Figure 4.12b. Plot of bond stress against slip for pull-out tests 

Figure 4.12c. Plot of bond stress against fR having combined the results from 

both the pull-out and bond beam tests 

Figure 4.12d. Plot of bond stress against fR for bond beam tests 

Figure 4.12e. Plot of bond stress against fR for pull-out tests 

Figure 4.12f. Plot of bond stress against fR by Rehm (1969) 

Figure 4.12g. Variation of Bond Stress with fR from the current study and that reported 

by Rehm (1969) 

Figure 4.13a. Typical load-deflection curves for the mid-point of each batch of flexural 

beam specimen in the linear and early non-linear range 

Figure 4.13b. Typical load-deflection curves for the the mid-point of each batch of 

flexural beam specimens in the non-linear range 

Figure 4.14a. The evolution and development of cracks in Beam specimen A8 

Figure 4.14b. The evolution and development of cracks in Beam specimen C9 

Figure 4.14c. The evolution and development of cracks in Beam specimen M1 

Figure 4.15a. Variation of crack spacing with fR value close to the ultimate load of 11kN 

Figure 4.15b. Variation of crack width with fR value close to the ultimate load of 11kN 

Figure 4.16a. Variation of maximum crack width with fR by Alander (2002) 

Figure 4.16b. Variation of crack width with fR by Mayer (2002) 

Figure 4.17. Variation of crack width with fR by the Author, Alander (2002) and Mayer 

(2002) 

 

Figure 5.1. Algorithm of the program 

Figure 5.2a. Strain distribution after cracks are formed 



BOND AND CRACKING OF REINFORCED CONCRETE  Simon H.C. Chan 

Page xviii 

Figure 5.2b. Strain Stress at a cracked section 

Figure 5.3. Geometry of the specimens 

Figure 5.4a. Finite element mesh plot 

Figure 5.4b. Damage plot at 1.0mm for local model 

Figure 5.4c. Damage plot at 1.0mm for non-local model using a characteristic length 

equal to the coarse aggregate particle size 

Figure 5.5. Experimental and numerical response 

Figure 5.6. Geometry of the specimens 

Figure 5.7a. Finite element mesh plot 

Figure 5.7b. Damage plot at 4.0mm for non-local model 

Figure 5.7c. Damage plot at 4.0mm for local model 

Figure 5.8a. Load – Central deflection response 

Figure 5.8b. Strain profile at different applied load levels 

Figure 5.9a. Geometry of the specimens 

Figure 5.9b. Finite element mesh plot 

Figure 5.10. Cracked Celsa Beam 

Figure 5.11a. Damage plot of specimen A at 2.6mm for non-local model 

Figure 5.11b. Damage plot of specimen A at 2.6mm for local model 

Figure 5.11c. Damage plot of specimen B at 2.6mm for non-local model 

Figure 5.11d. Damage plot of specimen B at 2.6mm for local model 

Figure 5.11e. Damage plot of specimen C at 2.6mm for non-local model 

Figure 5.11f. Damage plot of specimen C at 2.6mm for local model 

Figure 5.11g. Damage plot of specimen Max at 2.6mm for local model 

Figure 5.11h. Damage plot of specimen Max at 2.6mm for local model 



BOND AND CRACKING OF REINFORCED CONCRETE  Simon H.C. Chan 

Page xix 

Figure 5.12a. Load – Central deflection Plot for Celsa beam A 

Figure 5.12b. Load – Central deflection Plot for Celsa beam B 

Figure 5.12c. Load – Central deflection Plot for Celsa beam C 

Figure 5.12d. Load – Central deflection Plot for Celsa beam Max 

Figure 5.12e. Strain profile of both local and non-local approach for Celsa beam A                    

at deflection level of 2.6mm 

Figure 5.12f. Strain profile of both local and non-local approach for Celsa beam B                     

at deflection level of 2.6mm 

Figure 5.12g. Strain profile of both local and non-local approach for Celsa beam C                    

at deflection level of 2.6mm 

Figure 5.12h. Strain profile of both local and non-local approach for Celsa beam Max                    

at deflection level of 2.6mm 

Figure 5.13a. Evolution of strain development of both local and non-local approach  

for Celsa beam A 

Figure 5.13b. Evolution of damage development of both local and non-local approach 

for Celsa beam A 

Figure 5.13c. Evolution of strain development of both local and non-local approach  

for Celsa beam B 

Figure 5.13d. Evolution of damage development of both local and non-local approach 

for Celsa beam B 

Figure 5.13e. Evolution of strain development of both local and non-local approach  

for Celsa beam C 

Figure 5.13f. Evolution of damage development of both local and non-local approach 

for Celsa beam C 



BOND AND CRACKING OF REINFORCED CONCRETE  Simon H.C. Chan 

Page xx 

Figure 5.13g. Evolution of strain development of both local and non-local approach  

for Celsa beam Max 

Figure 5.13h. Evolution of damage development of both local and non-local approach 

for Celsa beam Max  

Figure 5.14. Schematic diagram of bar–concrete interaction proposed by Beeby and 

Scott (2005) 

 

Figure 6.1. Comparisons of the curves of load versus deflection at the middle of the 

beam in linear and early non-linear range from the finite element analyses 

and the experimental data 

Figure 6.2. Comparisons of the curves of load versus deflection at the middle of the 

beam in non-linear range from the finite element analyses and the 

experimental data 

Figure 6.3a. Comparisons of the load-tensile strain plots of Beam Specimen A12 

between numerical analyses and the experimental result 

Figure 6.3b. Comparisons of the load-tensile strain plots of Beam Specimen C9 

between numerical analyses and the experimental result 

Figure 6.3c. Comparisons of the load-tensile strain plots of Beam Specimen M1 

between numerical analyses and the experimental result 

 

 

 

 

 



BOND AND CRACKING OF REINFORCED CONCRETE  Simon H.C. Chan 

Page xxi 

List of Tables 

Table 4.1a. Mix proportions of concrete 

Table 4.1b. Adjusted water content of concrete mix 

Table 4.2. Summary of concrete specimen and curing details 

Table 4.3. Concrete properties at an age of 28 days 

Table 4.4. Detailed summary of concrete cube strengths 

Table 4.5. Steel reinforcement properties 

Table 4.6. Summary of Rf  values for steel reinforcing bars 

Table 4.7. The flexural beam reinforcement schedule 

Table 4.8. Pull-out cube schedule 

Table 4.9. Bond beam schedule 

Table 4.10a. Summary of bond stress results at various slip levels for bond beam tests 

Table 4.10b. Summary of bond stress result at various slip levels for pull-out tests 

Table 4.11a. Initial cracking load capacity and ultimate load capacity of beam specimens 

Table 4.11b. Summary of initial cracking load capacity and ultimate load capacity of 

beam specimens 

Table 4.12. Variation of crack spacing and crack width with reinforcing bar orientation 

Table 4.13. Variation of crack spacing and crack widths with the presence or otherwise 

of stirrups in the centre zone 

Table 4.14. Summary of crack spacing and crack width measurements 

 

Table 5.1. Material properties of Noghabail’s test 

Table 5.2. Results in terms of crack widths and crack spacings for axial loaded test 

result 



BOND AND CRACKING OF REINFORCED CONCRETE  Simon H.C. Chan 

Page xxii 

Table 5.3. Steel and concrete properties of Clark’s test 

Table 5.4. Results in terms of crack widths and crack spacings for Clark’s test result 

Table 5.5. Steel properties in Cardiff Celsa test 

Table 5.6. Concrete properties in Cardiff Celsa test 

Table 5.7. Results in terms of crack widths and spacings for the Cardiff Celsa Test 

Table 5.8a. Experimental & Local analysis of crack width with mean spacing 

Table 5.8b. Experimental & Local analysis of crack width with max spacing 

Table 5.8c. Experimental & Local analysis of reinforcement strain 

Table 5.8d. Code (EC2) & Local analysis of crack width with mean spacing 

Table 5.8e. Code (EC2) & Local analysis of crack width with max spacing 

Table 5.8f. Code (EC2) & Local analysis of reinforcement strain 

Table 5.8g. Code (EC2) & Experiments with mean spacing 

Table 5.8h. Code (EC2) & Experiments with max spacing 

Table 5.9. Summary of crack spacing 

 

Table 6.1. Initial cracking load capacity and ultimate load capacity of beam specimens 

Table 6.2. Summary of initial cracking load capacity and ultimate load capacity of beam 

specimens 



BOND AND CRACKING OF REINFORCED CONCRETE – CHAPTER 1                        Simon H.C. Chan 

 

Page 1 

Chapter 1 – INTRODUCTION 

1.1 Background 

Concrete is now the most commonly used man-made material on our planet. There are 

many advantages of building with concrete, such as exceptional durability, flexibility in 

shape and form, provision of fire and wind resistance and its strength in compression.  

The compressive strength for traditional concrete varies from about 20MPa to 60MPa, 

although this can rise to a strength of 200MPa for high performance concrete (Neville 

and Aitcin, 1998). Nevertheless, concrete is quasi-brittle in nature and it is 

approximately 10 times weaker in tension than in compression. Due to the low tensile 

capacity of concrete, reinforcement is added to carry the tensile forces. The reinforcing 

steel bars usually have ribs on the surface to enhance the bond with the concrete and 

prevent slip or pullout out from concrete. 

 

1.2 General Introduction 

The amount of reinforcing bars necessary to carry the tensile forces at both 

serviceability and ultimate load levels is insufficient to prevent cracking in most 

reinforced flexural members and therefore cracking is inevitable. 

 

Concrete structures nowadays are required not only to be safe, but also to fulfil the 

aesthetic requirements of clients and of the public. Cracking might impair appearance, 

function, durability, serviceability, or even the total load resistance of a structure if crack 

widths grow beyond certain levels.  

 

In order for reinforced concrete to be durable, cracks at serviceability load levels must 
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remain below prescribed widths (e.g. below 0.3mm). It is therefore important for 

designers and analysts to be able to predict the size and disposition of cracks in 

reinforced concrete members and to be able to do this the bond mechanisms between 

the concrete and reinforcement need to be well understood. 

 

Some researchers (Rehm and Eligehausen, 1979; Tholen and Darwin, 1998) suggest 

that the rib pattern on the surface of steel reinforcing bars is an important factor in the 

bond mechanism. The relative rib area of the bar (fR), which in turn is a function of the 

geometry of the rib pattern, is commonly used as a measurement. In the present work, 

an experimental study, which compares the performance of beams with standard 

reinforcement with those of beams formed with a new high-ductility bar produced by 

CELSA UK, is described. This includes an investigation into the relationship between 

the bond strength and the rib pattern. Furthermore, the Serviceability Limit State (SLS) 

behaviour performance of reinforced concrete (RC) beams with reinforcement of 

different rib patterns in flexure is discussed.  

 

In addition, a numerical model is used to further explore cracking mechanisms in 

reinforced concrete beams. For this numerical study, an isotropic damage model, based 

on that used of Oliver et al. (2002), is used to model concrete cracking and a calculation 

procedure for computing the disposition and width of cracks in local and non-local finite 

element analyses from numerical strain fields is proposed. The model is validated using 

the experimental data from the literature as well as the experimental data gathered in 

the present work. 
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1.3 Motivation For The Research 

1.3.1 Experimental Investigation 

Bond strength is one of the paramount parameters which governs the nature of cracking 

in concrete structures. This bond not only depends on concrete strength but also upon 

the characteristic of the ribs on the reinforcement. A ‘good’ rib pattern, from the 

serviceability view point, would be expected to have the following characteristics: 

 Should provide a strong bond between steel and concrete. 

 Should limit width of the concrete cracks to specified limits. 

 Should allow ductile RC beam behaviour. 

 

1.3.2 Numerical Modelling 

The motivation for the development of finite element modelling work for crack 

development presented in this thesis is to provide an accurate crack width prediction. A 

good modelling approach should be able to: 

 Simulate the mechanical behaviour of steel and concrete, under loading and 

unloading conditions. 

 Predict a realistic crack pattern for given boundary conditions. 

 

1.4 Objectives And Scope Of The Research 

The objectives and scope of the research presented in this thesis are as follows: 

1. To undertake bond tests in order to investigate and improve understanding of the 

effects of having different reinforcement rib patterns and relative rib areas (fR) upon 

the bond stresses developed in RC members. 

2. To undertake flexural beam experiments for concrete beams reinforced with different 
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types of ribbed steel bar, in order to better understand the development of cracks 

and the effect on crack pattern of having these different rib patterns. 

3. To simulate crack development within reinforced concrete under tensile loading 

using a non-linear finite element model and a  smeared crack approach. 

4. To provide validation of the experimental results by comparing them with the 

numerical results for a model of the experimental set up and to assess the adequacy 

of this prediction. 

 

1.5 Layout of the Thesis 

This thesis is divided into seven chapters and two appendices. Chapter 2 describes the 

state of the art in the field of experimental investigation of crack development in 

reinforced concrete beams. Chapter 3 describes the state of the art in the field of 

numerical modelling of crack development in reinforced concrete beams. 

 

Chapter 4 illustrates the setup and methodology of the flexural beam test and the bond 

tests, as well as that of the corresponding material tests. The findings of these tests are 

also presented and discussed. 

 

Chapter 5 presents the theory of the numerical model developed for predicting crack 

widths and crack spacings in reinforced concrete beams under flexural loading. 

 

Chapter 6 presents and discusses detailed comparisons between the numerical and 

experimental results. 
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Finally, some general conclusions and recommendations for further research in this 

area are presented in Chapter 7. 

 

The two appendices contain the figures, videos and animations respectively showing 

the evolution and development of cracks throughout the beam tests for all the flexural 

beam specimens in Batches A, C and M without stirrups in the central 600mm zone. 
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Chapter 2 – EXPERIMENTAL LITERATURE REVIEW 

2.1 Introduction 

Failure as a result of tensile cracking is one of the most common modes of failure for 

reinforced concrete structures and, as a consequence, it is crucial to be able to predict 

both its presence and severity. Understanding the bond-slip behaviour at the interface 

between the steel reinforcement and the concrete helps this prediction. The width, 

spacing and direction of cracks greatly depend on the bond-slip characteristics of the 

system (American Society of Civil Engineers, 1982).  

 

The composite behaviour of steel and concrete in reinforced concrete structures is 

dependent on the bond between the two materials. Considering a reinforced concrete 

beam subject to flexural loading, the load applied is carried by the concrete in 

compression and the reinforcing steel in tension, which is transmitted to the concrete in 

which it is embedded by the bond between the two materials. The bond provides a 

resistance known as the bond stress which can be thought of a shear stress between 

the reinforcing bar and the concrete surrounding the bar. The bond stress is defined as 

a force per unit of nominal surface area of the interface between the reinforcing bar and 

the concrete in which it is embedded (Jain, 1982; Macginley and Choo, 1990; Pillai and 

Menon, 1999 and Karve and Shah ,1994). Understanding the bond behaviour can help 

in understanding the failure mechanism of reinforced concrete components during 

cracking and the nature of localized failures, such as concrete cracks. 
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2.2 Bond-Slip Mechanisms 

2.2.1 Components of Bond-Slip Mechanisms  

The bond-slip mechanism comprises three components, i.e. chemical adhesion, friction 

and mechanical interlock between the bar ribs and the concrete. Chemical adhesion 

depends on the chemical reaction between the concrete and the reinforcing steel bars, 

friction depends on the surface roughness and the magnitude of friction is related to the 

normal force to the movement direction, and mechanical interlock depends on the 

reinforcement geometry and surface deformation (Hanus et. al., 2000). The first two 

components play a more important and primary role in the bond of plain bars, even 

though some mechanical interlocking takes place due to the roughness of the bar 

surface. For deformed bars, mechanical interlock is thought to be the primarily 

mechanism with the others only being secondary effects (Cox and Herrmann, 1999). 

However, in spite of acknowledging the three bond components as individual 

mechanisms, they are not independent. They interact with each other and can not be 

analyzed as separated issues. The combined effect of these components leads to 

different behaviours. The four general types of bond failure are bar failure, bar pullout, 

concrete pullout and concrete splitting. Many researchers have contributed to the 

investigation of bond mechanisms. It is generally accepted that there are different 

stages of the interaction between steel and concrete when a tensile force is applied to a 

steel reinforced specimen.  

 

According to the fib “Bond of reinforcement in concrete” (2000), the bond stress is low at 

the beginning of the loading process while the concrete remains uncracked and no bar 

slip is taken place. Chemical adhesion dominates the resistance for very low levels of 
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bond (up to about 1.5MPa (Lutz and Gergely, 1967 and Gambarova and Karakoc, 1982)) 

and mainly localised at the tips of the ribs. The strength of the cohesion greatly depends 

on the concrete and its chemical reaction with the surface layers of the steel 

reinforcement. At the same time, the micromechanical interaction between the 

microscopic rough steel surface and concrete surface also contributes to the bond 

strength, nevertheless it is considered as a minor role comparing to the chemical 

adhesion. 

 

When the load further increases, slip occurs after the chemical adhesion is broken down 

and the mechanical interlock, provided by the wedging action of the ribs, is responsible 

for the resistance to the pulling apart of the two materials (Chinn et al. 1955, 

Eligehausen et al. 1983). Secondary internal transverse cracks (radial cracks) are firstly 

developed at the tips of the ribs to allow slip (as shown in Figure 2.1). 

 

 

Figure 2.1. Cracks formed in reinforced concrete beams 
(Tassios, 1979; CEB Bulletin No. 151, 1982) 

 

Longitudinal cracks (Goto, 1967 and Gerstle and Ingraffea, 1990) are developed and 

Longitudinal Splitting Crack 

Reinforcing Steel Bars With Ribs 

Transverse Primary Crack 

Secondary Transverse Cracks 

(Radial Cracks) 
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spread, and when further load is applied, the wedging action is enhanced by crushing of 

the concrete in front of the ribs. Therefore the component of the wedging action parallel 

to the reinforcing steel bar depends on the rib pattern of the reinforcement and the 

outward component depends on the hoop stress provided by the surrounding 

confinement. According to Tepfers (1979), as long as there is an undamaged outer 

concrete ring around the reinforcement, the concrete is capable of exerting a hoop 

stress around the bar, so that bond strength and stiffness are mostly determined by 

mechanical interlock.  

 

In the case of a low level amount of or even no transverse reinforcement (named as 

stirrups or links), the specimen would fail in splitting after the splitting cracks propagate 

through the concrete cover and reach the outer concrete surface. When there is a 

medium level amount of transverse reinforcement and therefore relatively long bond 

lengths, pullout failures and splitting failure could be both observed since various stages 

of bond damage along the bond length are taking place at the same moment. In the 

case of high level amount of transverse reinforcement or large concrete cover, the 

splitting cracks are confined around the bar and the splitting is limited to the cracked 

core around the reinforcement.  

 

In the cases with medium and high level amount of transverse reinforcement, the bar 

and the bar ribs are essential to ensure that the bond stress can reach what is 

considered to be an ultimate value of approximately fc/3 (Gambarova and Karakoc, 

1982). Splitting failure does not occur but pull-out failure and the bond stress is 

dominated, instead of rib bearing, by the friction at the interface. Once after most of the 
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concrete in front of the ribs is sheared off or crushed, the bond stress would be further 

reduced when the friction interface is smoothened by wearing and compaction. 

 

Due to the non-linear material properties of concrete, it is not surprising that the bond 

strength contributed by mechanical interlock which is provided by the wedging action of 

the ribs also increases ascending non-linearly. When enough concrete is crushed in 

front of the ribs, a wedge with a low incident angle, of about 30 to 40 degrees, exists and 

produces the inclined transverse cracks, and longitudinal cracks (Malvar, 1992).  

 

2.2.2 Factors Influencing the Bond-Slip Mechanisms 

Bond-slip mechanisms are complicated and the factors that influence the bond have 

already been listed and investigated by many researchers (American Concrete Institute, 

1996; Darwin, et. al., 1996; Orangun and Breen, 1975; Orangun and Breen, 1977; Zuo 

and Darwin, 2000; Abosrra et.al., 2011 and Guizani and Chaallal, 2011). Of these 

factors the most significant are: 

 

1. Reinforcement geometry and properties 

Reinforcement geometry largely contributes to the bond strength. Currently BS 

EN1992-1 (2004) describes ribbed reinforcement as “high bond bar” and the 

classification of high bond bar is related to the relative rib area of the bar, fR, which in 

turn is a function of the geometry of the rib pattern. Rehm (1961) defined the relative 

rib area fR as the ratio between the rib bearing area and the rib shearing area. The 

coefficient fR , also called the bond index or relative bond area, provides a specific 

description or measurement of the size and shape of the reinforcement ribs. It is 
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defined in BS EN 10080 by: 

 

fR = f (am, c, d, e) 

in which the bar diameter is (d), maximum height of the transverse ribs (am), the 

spacing between the transverse ribs (c) and the width of longitudinal ribs (e) 

influence the value. 

 

Rehm (1969) used pull-out tests and found a linear relationship between the bond 

strength and the fR in which the higher fR values resulted in higher bond strength. 

 

The influence of steel stress is considered to be negligible in the elastic range as 

long as the Poisson ratio effect is small and the steel bar ribs transfer the force to 

concrete. Nevertheless experimental results by Shima et al. (1987), Engstrom (1992) 

and Bigaj (1995) showed that once the reinforcing steel bars start yielding, a 

non-linear descending branch in the bond stress to bond slip relationship would 

result not only from the softening of the surrounding concrete but also from the 

softening of the yielded steel bar. The steel stress becomes more significant when 

the friction dominates the bond mechanism because the sudden increase of steel 

strain due to yielding and the consequent increase of bearing stress in front of the 

ribs at the yield section cannot be disregarded (Biagaj, 1995). Therefore, in typical 

tests, the embedded length of the reinforcing bar is relatively short. The reason for 

this is to make sure that the steel stress and strain are small enough to negate this 

effect in the test after yielding. 
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Other properties such as inclination of the ribs might also affect the bond 

mechanism. Malver (1992) also suggested that the bars with ribs at 90 degrees with 

the longitudinal axis exhibited a better bond than bars with inclined ribs. 

 

2. Concrete Properties 

The bond mechanism is actually based on the stress transfer from the steel to the 

concrete by compression and shear interfacial forces. Therefore the concrete 

uniaxial strength fc and concrete tensile strength fct play an important role in pull-out 

and splitting failures respectively. 

 

Concrete quality is definitely important for good bond, not only as defined by the 

concrete strength, modulus of elasticity and Poisson's ratio, but also as a 

consequence of the technical process of producing and casting the concrete. The 

compression and tensile strengths, dimensions and texture of the sand and 

aggregates used in the mix and the mix proportions also have a significant effect 

such as the variation in strength on the resulting concrete. 

 

The non-linear behaviour of concrete has already been mentioned in the discussion 

of bond-slip behaviour which depends on the concrete softening around the 

reinforcing bars. When mechanical interlock dominates the bond mechanism, a 

wedging action is taking place at the tips of the ribs of the reinforcing bars by the 

development of radial cracks and then crushing of the concrete in front of these ribs. 

(Nagatomo, Kaku, 1992) As such, therefore the concrete softening property plays an 

important role. 
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3. Confinement 

Confinement is important to bond efficiency and crack control. Confinement is 

generally classified as either active or passive. Active confinement (Tepfers, 1973; 

Eligehausen 1979; Nagatomo and Kaku 1992) is achieved by loads from a direct 

support or the continuity at a beam/column joint transverse to the bar, whereas 

passive confinement is provided by the clamping action of a certain level of concrete 

cover (Plizzari, Schumm and Giuriani, 1987 and Reinhardt and Van der Veen, 1990), 

transverse reinforcements or stirrups (Tepters, 1973; Eligehausen et al, 1983 and 

Giuriani and Plizzari, 1985). Active confinement is considered as more effective as it 

is independent of the actual bond strength compared to passive confinement. 

(Nagatomo, Kaku, 1992 and Giuriani, Plizzari and Schumm, 1991)  

 

4. Other factors 

Bond behaviour is a complicated mechanism which involves a lot of influencing 

factors, including static or cyclic loading (Rehm and Eligehausen 1979), loading time 

(Frankie, 1976), environmental effects such as bar rusting (Almusallam et al, 1996 

and Fang et al, 2004), high/low temperature effects (Schneider et al., 1985 and van 

der Veen, 1992), etc. However, these are beyond the scope of this investigation and 

their effect will be limited by adopting a standard loading method and a consistent 

environment throughout the experimental programme. 

 

In spite of the many factors considered to influence bond, it is believed that the surface 

condition of the ribs of the steel reinforcement is one of the main factors. Rehm (1969) 

used pull-out tests and found a linear relationship between the bond strength and fR 
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value in which higher fR values resulted in higher bond strengths. In BS EN1992-1 

(2004), it is recommended that the relative rib area fR should be larger than 0.04 for bars 

of 6.5mm-12mm diameter and larger than 0.056 for bars with a diameter greater than 

12mm. These values are used currently in both the UK and Europe which ensures good 

bond behaviour at the SLS, but a reduced plastic hinge rotation capacity at ULS. 

 

2.3 Crack Control 

In general, cracks are unavoidable in reinforced concrete, no matter whether it is 

subject to flexural or axial loading. Many researches were done on cracking mechanism 

(Clark, 1956; Chi and Kirstein 1958; Elfgren and Noghabai, 1998, 2001 and 2002; 

Mayer, 2002 and Alander, 2002). In design, such as recommended by BS EN1992-1 

(2004), such cracks are typically limited to relatively small values of between 0.2 mm 

and 0.4mm depending on the use and location of the element under consideration. The 

reasons for limiting these cracks are to:  

 

1. Reduce the risk of steel reinforcement corrosion. 

2. Avoid or limit leakage 

3. Ensure a smooth and good quality appearance 

 

One of the controlling issues in the economics of design and the provision of reinforced 

concrete structures at the SLS of durability is the service life. Cracking and both the size 

and spacing of the reinforcing bars, are significant parameters that are related to the 

mechanism of bond. 
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2.3.1 Crack Spacing 

Considering a centrally reinforced concrete prism loaded in pure tension, the first crack 

is developed after the tensile force reaches a certain level. This length is a function of 

bond strength measured from where the crack developed to where the concrete stress 

is undisturbed by the crack and is referred to as the “transfer length” So. Along the 

length So, the tensile force originally carried by the concrete is transferred to the 

reinforcement through the bond stress acting at the interface between the two materials, 

as shown in Figure 2.2.  

 

 

Figure 2.2 Distribution of bond stress between cracks 

 

Therefore,  
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At the point where the crack is developed, the bond slip is a maximum, decreasing with 

the distance from the crack until it drops to zero at a length of So from the crack. It can 

be anticipated that the ultimate bond strength max  exists at some point along So. 

Therefore, if β is defined as a coefficient of integration, then equation (1) becomes: 

 

)( max octc SfA                       (2a) 

 

Considering ρ as the reinforcement ratio = cs AA /  and 
4
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From equation (2b), it can be seen the transfer length So is affected by a number of 

parameters, including the concrete tensile strength fct, the bar diameter  , the 

reinforcement ratio ρ and the ultimate bond strength max . 

 

If a first crack has developed, any further loading on the structure could lead to the 

development of a second crack. It is possible that this is anywhere within the zone of 

maximum moment but the distance between two cracks can not be less than the 

transfer length So because the concrete stress has been reduced by the presence of the 

first crack. However, if the second crack is formed at a distance of more than 2So away 

from the first crack, there is certain length between the two cracks where the concrete 

stress remains at a level of fct. This means at least one crack will form between two 
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existing cracks if they are at more than a distance of 2So apart until a stable crack 

pattern with a crack spacing S is achieved: 

 

    oo SSS 2                       (3) 

 

2.3.2 Crack Width 

In the past 40 years, a lot of effort has gone into proving methods of predicting crack 

width and spacing using the structural concrete design codes. Many formulae have 

been proposed in different formats to define a satisfactory service performance in 

relation to the crack width and crack spacing under certain levels and methods of 

loading. Such formulae have the general form (Beeby, 2004): 

 





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
 k            (4) 

 

where w is the crack width. From this equation, it can be seen that the key elements 

which affect the crack width are the bond characteristic parameter k, the bar diameter , 

the reinforcement ratio ρ, and the strain ε. 

 

Basically, the maximum crack width max  is actually the result of the extension of the 

reinforcing steel bar in relation to the surrounding concrete. Therefore this can be 

written as : 
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The similarity of equations (4) and (5) is striking, where 
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 is the constant k, 

assuming that cm  is so small in comparison to sm  and that it can be deemed to be 

negligible. 

 

The general form of crack width equation is generally accepted and used in this form 

with modification in many modern design codes. In the general form, the concrete cover 

c is considered as part of the constant, whereas many experimental results (Plizzari, 

Schumm and Giuriani, 1987 and Reinhardt and Van der Veen, 1990) have shown that 

concrete cover plays an important role in crack width control. It is generally accepted 

that the crack width at the concrete surface is larger than the crack width appearing at 

the bar surface due to the shear deformation of the concrete between the bar surface 

and the concrete surface. 

 

 According to the BS EN1992-1 (2004), the maximum crack width max  is defined as : 
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(tensile or flexural) to which the member under consideration is subjected. In addition to 

the parameters mentioned above, the presence of secondary reinforcement will also 

change the crack width as well as the crack spacing. 

 

The other issue of relevance in relation to the experimental work undertaken is that the 

crack is measured at the surface of the concrete while the above theory relates to the 

interface of the reinforcement and the concrete.  It is anticipated that this will increase 

the variability of the results and the crack widths that are measured but should not 

influence crack spacing. 

 

2.3.3 Bond Tests 

Crack formation affects the distribution of internal forces, the effective stiffness of the 

structure, the mode of failure and the corresponding strength (American Society of Civil 

Engineers, 1982). Therefore understanding the relationship between bond-slip 

characteristics and the crack formation helps in the development of more accurate 

prediction models. 

 

In order to investigate the bond-slip mechanism, some simple ways or methods to 

measure bond stress are essential. Pull-out tests and bond beam tests are frequently 

used to determine the bond strength between the reinforcing bar and embedded 

concrete, in which the load in the test is recorded and used to determine the bond 

strength at various load levels. According to BS EN 10080, ribbed bars should be 

bonded only over a limited length and plastic sleeves are used elsewhere to avoid the 

adhesion between the concrete and the bar. These methods are intended for the 
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determination of the bond strength and provide a basis for the determination of bond 

performance characteristic of steel bars based on the surface configuration.  

 

The approaches measure the bond strength in a simple way, but do not provide the 

actual bond stress distribution. When there is no relative displacement at the interface 

between the concrete and the steel reinforcement, it is regarded as no slip at the 

interface and therefore the strain in the steel is equal to the strain in the surrounding 

concrete. 

 

Shima (1987) was aware that many bond-slip relationships have been formulated and 

published, but they all are different to each other because bond-slip relationships depend 

on various factors, as mentioned in Section 2.2.1, which vary in different bond 

experiments (Morita and Fujii 1985). The bond-slip relationship obtained from a short 

embedded length of steel and concrete, such as in pullout tests, are not the same as that 

from a long embedded length in another bond tests (Yamao, Chou and Niwa, 1984). The 

results vary with the locations even along the same specimen in cases of free end slip 

(Chou et. al., 1983). 

 

In view of the above, some non-destructive evaluation (NDE) methods, such as 

vibration analysis (Carden and Fanning, 2004 and Farrar, Doebling and Nix, 2001), 

radar (Concrete Society, 1997 and McCann and Forde, 2001) and acoustic emission 

(AE) technology (Malhotra, 1976 and Mirmiran and Philip, 2000), are used to investigate 

and measure the bond of the steel reinforcement. In the experiments reported in this 

work, specimens were monitored both visually and using a non-destructive Digital 
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Image Correlation (DIC) Technique, also named as Digital Speckle Correlation Method 

(DSCM) (Guo et al, 2008). Using a system VIC-2D/VIC-3D adopting the DIC technique, 

it was possible to produce a complete picture of displacements and strain 

measurements of the specimens in a 2D/3D contour map and also to trace the 

three-dimensional displacement and strain changes in three dimensions by monitoring 

the movement of a speckle pattern painted on the front face of the specimen. More 

details on this procedure will be given in Chapter 4. However, Cintron (2008) pointed out 

that the strains measured using VIC-2D are not always accurate because of errors due 

to the size of the specimens. He also noted that the paint used to create the speckle 

patterns on the specimens would have different material properties to the specimens 

themselves and this could again affect the accuracy of the displacement and strain 

measurements observed. 

 

2.4 SLS And ULS Behaviour 

Mayer (1998) highlights the significant dependence of the behaviour of reinforced 

concrete structures on bond and also emphasises the requirements for bond that must 

be fulfilled: 

 

 At the serviceability limit state (SLS), the damage and crack width of reinforced 

concrete structures should be smaller then a certain allowable value. Small crack 

spacing is therefore expected and stronger bond is required to ensure a small ratio 

between the mean steel strain and the steel stain at the cracks.  

 

 At the ultimate limit state (ULS), a large rotation capacity at plastic hinges is 
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required to ensure ductile behaviour of the reinforced concrete. In this case, only 

weak bond is required so that there is a large ratio between the mean steel strain 

and the steel strain at the cracks. 

 

 In the area of anchorages and lap splices of reinforcement, high levels of bond 

strength are required so that the splitting forces are small enough to ensure that 

short anchorage and lap lengths are sufficient.  

 

This shows that, on one hand, high levels of bond strength are required to ensure 

appropriate SLS and anchorage behaviour. However, on the other hand, only low levels 

of bond are required at the ULS to ensure ductile behaviour at plastic hinges. Because 

of the requirement for two different levels of bond, it is clear that just high bond strength 

may not be sufficient because of the contradiction between the two requirements. What 

needs to be identified is the optimal bond strength to satisfy both requirements. 

 

2.5 Conclusion 

Bond failure occurs internally within a member, and so understanding of the failure 

mechanisms is still not without question. A large number of pullout and splitting 

experiments have been done by previous researchers and many models have been 

drawn up for bond development. While the recommended models (see BS EN1992-1 

(2004)) are generally acceptable, there is still debate as to the significance of the 

relative rib area fR and its influence on crack spacing and width (Alander, 2002). 

 

To address this issue a series of tests were undertaken and are reported and discussed 
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in Chapter 4. Additionally, results obtained using a finite element model of the 

experimental set-up are presented in Chapter 5. A comparison between the numerical 

and experimental results is made in Chapter 6. 
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Chapter 3 – NUMERICAL LITERATURE REVIEW 

3.1  Introduction 

In most engineering problems, solutions can be obtained explicitly only if regular 

geometry and simple loads are involved. Numerical methods are therefore required to 

solve practical problems. Many different numerical techniques have been developed, 

including finite difference methods, boundary element methods, finite volume methods, 

spectral methods and meshless methods. Nevertheless, the FEM (Finite Element 

Method) remains dominant among numerical methods for solving problems in solid 

mechanics. For the past 40 years, much work has been undertaken on finite element 

concrete modelling (following either the continuum modelling approach or the discrete 

modelling approach), however there has been relatively little work undertaken on the 

prediction of crack widths using the FEM.  

 

This literature review provides an overview of work on finite element approaches for 

modelling the non-linear behaviour of concrete structures. This provides the background 

for the work undertaken for this thesis on the finite element modelling of reinforced 

concrete elements. It addresses both constitutive modelling and computational 

developments in the field. 

 

3.2  Constitutive Models for Concrete  

Plasticity theory is able to simulate many aspects of concrete behaviour and one of the 

earliest multi-axial plasticity based models for concrete was that developed by Willam 

and Warnke (1975). In their model, an evolution function was used to govern the growth 

of the yield surface, under both biaxial and triaxial loading. Frictional hardening 
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behaviour was included in later developments by Este and Willam (1994), Chen and 

Chen (1975) also developed a plasticity model for both tension and compression 

behaviour and then later developed the approach such that the yield surface was able to 

capture the nonlinearity in hydrostatic compression and simulate frictional hardening 

(Han and Chen, 1987). 

 

Kochonov introduced the concept of damage mechanics in 1958 to model creep rupture 

but the term “damage mechanics” was introduced by Hult in 1977. In this approach, 

concrete fracture is simulated using a damage function which can be expressed in 

terms of effective stress, strain or other thermodynamic variables. Damage mechanics 

actually simulates the development of micro-cracking by a degradation of stiffness using 

damage parameters which govern the degree of the degradation. These parameters 

may be scalars (Mazars, 1986), vectors (Krajcinovic and Fronseka, 1981) or 

fourth-order tensors (Chaboche, 1979). Many researchers have worked on models 

based on damage mechanics. In order to describe the different behaviours of concrete 

under tension and compression, Mazars (1986) and Mazars and Pijaudier-Cabot (1989) 

developed a widely used model in which both damage due to tension and compression 

are included in the formulation. In this model, tensile damage is governed by a tensile 

evolution function and compressive damage governed by a compression evolution 

function. Similar isotopic damage models, that also employ two damage functions for 

tension and compression, have been developed by Faria et. al. (1998), Comi and 

Perego (2001) and Marfia et. al. (2004). Other examples of effective damage models for 

concrete are those developed by Oliver et al. (2002) and Comi and Perego (1987). 
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Concrete is not isotropic once damage has occurred and thus many researchers have 

explored anisotropic damage formulations. Examples of such anisotropic models 

include those developed by Simo et al. (1987), Carol et al. (2002) and Desmorat et al. 

(2007). De Borst and Guitierrez (1999) developed a model which has a unified 

treatment for both isotropic and anisotropic damage. However, the greater complexity of 

these anisotropic models, which includes those which use second order tensors 

(Desmorat et.al, 2007) and even fourth order tensors (Chaboche,1979), leads to 

convergence problems (Contrafatto and Cuomo, 2006) when they are implemented in 

finite element codes. As a consequence of this drawback, the isotopic damage model is 

preferred by many researchers (Jirasek and Zimmermann, 1998; Salari et. at., 2004; 

Contrafatto and Cuomo, 2006). 

 

3.3  Computational Models for Fracture and Related Issues 

Research on non-linear finite element models for concrete began in the 1960s, with the 

work of Ngo and Scordelis (1967) and Rashid (1968). In both of these investigations, 

nonlinearity was restricted to tensile cracking. Cracks were modelled as discrete lines 

by changing the element topology in Ngo‟s work whereas the cracks were simulated by 

introducing an orthotropic material with zero strength normal to the cracks in Rashid‟s 

work. These two approaches were named „discrete‟ and „smeared‟ (or „continuum‟) 

respectively according to their characteristics. Not surprisingly, the much greater 

convenience of the smeared approach with its ease of implementation was more widely 

adopted. 
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The discrete approach is attractive in terms of the way it represents discrete cracks, 

however it suffers from two disadvantages (i) that it requires constant remeshing and (ii) 

that stress singularities develop at crack tips, which have to be treated with special 

elements and with fracture mechanics based crack growth criteria if spurious mesh 

dependency is to be avoided (Tong and Pian, 1973). To overcome these difficulties, 

Belytschko and coworkers (1999a, 1999b, 2000), developed the „Extended Finite 

Element Method‟ or X-FEM. X-FEM has the advantage that no remeshing is required 

during crack development. It also resolves the disadvantages of the discrete approach 

and is able to capture the displacement jumps across the crack and the singular strain 

and stress field at the tip of crack. X-FEM is classed as a strong discontinuity model and 

besides X-FEM, there are other, element based, approaches to modelling strong 

discontinues without remeshing (Simo, Oliver and Armero, 1993; Oliver, 1995; Oliver et. 

al., 1999; Belytschko and Black, 1999; Moes et al., 1999; Belytschko et al, 2001, Oliver 

et al., 2002; Oliver et. al., 2004; Oliver and Huespe, 2004a; Oliver and Huespe, 2004b). 

These element based approaches have proved to be powerful tools for crack 

simulations, although further research is required to resolve problems such as the 

simulation of multiple cracks in 3D (Oliver et al., 2004a; Oliver et al., 2004b). 

 

In the continuum approach, a crack is modelled as a zone or a band of degraded 

material which is locally deformed according the standard continuum mechanism. It 

means the structure remains a continuum and has no discontinuities, but the 

mechanical properties are modified to model the evolution of cracks. As a result, 

remeshing is not necessary in the model. After the first use of this approach by Rashid 
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(1968), it was gradually noticed that results could be mesh dependent when using this 

method.  

 

Concrete is a type of quasi-brittle material which has a softening property which means 

that the load capacity of concrete reduces after the peak load has been reached. 

According to this property, localization behaviour is observed. Considering a 

one-dimensional displacement control tensile test of a concrete prism; once the peak 

load has been exceeded, deformations grow in a few small and limited areas or sections 

of the specimen, and the rest of the material unloads. This continues until complete 

failure occurs. If a constant stress-strain softening model is used in a finite element 

simulation of such a test, a crack localises to a single element and the total dissipation 

energy is proportional to the area (or volume) of elements in that band. However, this 

result is obviously impossible from the viewpoint of physics since in the limit of zero 

element size it implies zero energy for crack propagation. This problem of mesh 

dependence with strain softening behaviour was recognised by Bazant and Oh (1983) 

who showed that existing models were mesh dependent. Bazant and Oh provided a 

solution to this localization problem by introducing the crack band model. The new 

model was based on the cohesive crack model of Hillerborg et. al. (1976) but was 

developed on a continuum mechanics basis. In this approach, the strain softening 

constitutive model is related to the fracture energy of the material and the characteristic 

length of the elements in which cracks develop. The crack band model has been widely 

adopted and is successful at reducing mesh dependency. It does not, however, solve 

the problem of Mesh Bias (Grassl and Jirásek, 2004) nor does it solve the stability 
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problems which arise with strain softening equations which may lead to bifurcations in 

the equilibrium path. 

 

3.4  Non-local Approaches 

To solve these problems, non-local constitutive models have been proposed. Models in 

this category include micropolar models (Aifantis, 1984), gradient-enhanced non-local 

models (de Borst and Mulhaus, 1992; Peerlings et. al., 1996; Peerlings et. al., 1998; de 

Borst, 2001) and integral non-local models (Pijaudier-Cabot and Bazant, 1987; Bažant 

and Pijaudier-Cabot, 1988; Bažant and Jirásek, 2002). Peerlings et. al. (2001) reported 

an interesting finding that the two different non-local approaches were effectively 

equivalent. Non-local models limit localization by averaging damage over a zone of 

finite size, the width of which is governed by a length parameter (characteristic length or 

internal length), which prevents sharp gradients from occurring in the displacement field. 

A comprehensive review of non-local approaches was presented by Bazant and Jirasek 

in 2002. Although non-local models successfully overcome the mesh bias and stability 

problems observed in local models, non-local models are still limited by their 

computational requirements and by the difficulties of implementing complex constitutive 

models in non-local computational frameworks (Jefferson, 2010). 

 

A particularly general form of non-local gradient model was presented by Ru and 

Aifantis (1993) which involves the introduction of higher order strain gradients in the 

governing constitutive equations. This method can be applied to a range of material 

models, as illustrated in the later work of Askes and Aifantis (2002). 
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In gradient and integral nonlocal methods, the element size needs to be smaller than 

the physical characteristic material length such that a few elements cover a localisation 

band. If the element size is taken as approximately equal to the coarse aggregate size 

in concrete, then this requirement would lead to a very fine mesh for a full scale 

structure and the overall cost of the numerical solution can become prohibitively 

expensive in terms of solution time. Patzak & Jirasek (2004) developed an adaptive 

approach to deal with this problem, in which the mesh is refined only where localization 

regions occur, as shown in Figure 3.1. To do so, the continuum is remeshed and the 

local solution is remapped onto the new mesh, however Sfantos and Aliabadi (2006) 

commented that this is rather complicated and interpolation errors will be inevitably 

introduced. 

 

 

Figure 3.1 Example of continuum remeshing 

 

Much research has been undertaken to justify the size and existence of the 

characteristic length (Bazant and Pijaudier-Cabot, 1998). Many researchers give the 

characteristic length as a multiple of the maximum aggregate size (Bažant and Jirásek, 

2002; Bazant and Pijaudier-Cabot, 1998; Maier, 2004; Marchner and Vermeer, 2000; 
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Małecki et.al., 2007), but the factors used in this multiple vary between different 

materials (Ožbolt 1993). 

 

Another issue, addressed by Pijaudier-Cabot et al. (2004), is that the size of the 

localisation band should develop along with the degree of localization. Pijaudier-Cabot 

et al. (2004) deals with this by proposing an evolving characteristic length. Other 

workers have also adopted this notion and relate an evolution equation for the 

characteristic length parameter to the initial undamaged material microstructure and to 

the deformation mechanism under the damage process (Ferrara and di Prisco, 2002; 

Geers et.al., 1999; Mosalam and Paulino 1997; Pamin, 1994; van Mier, 2004). There 

are two reasons to support their proposal. Firstly, the microstructure in a material 

governs the properties of material and the structural behaviour under deformation. The 

whole process is a complex situation which should not be described by one single 

constant parameter. Secondly, during the crack development, the nonlocal continuum 

model transforms from a continuum to a discontinuous body (Ferrara and di Prisco, 

2001; Simone et.al., 2003). Furthermore, it proves difficult to experimentally determine 

the characteristic length in relation to any measurable microscopic material property. 

Therefore, it is more common to estimate the characteristic length by matching the 

numerical response with the measured response from structural experiments (Geers 

et.al., 1999; Carmeliet, 1999; Le Bellego et.al., 2003; Mahnken and Kuhl 1999), even 

although the choice of experiment does affect the characteristic length calculated. 

Although the physical meaning of the characteristic length remains unclear it is 

nevertheless a very useful concept and the author does not agree with the view of some 



BOND AND CRACKING OF REINFORCED CONCRETE – CHAPTER 3    Simon H.C. Chan 

 

Page 32 

researchers that the characteristic length is just a „mathematical trick‟ (de Borst and 

Pamin, 1996; Pamin, 1994). 

 

One of the other important aspects of fracture behaviour is size effect (Carmeliet 1999; 

Le Bellego et.al., 2003). This is relevant to the present work because fracture 

parameters which control the predicted size effect can be strongly affected by the 

details of the experiments used to measure them. This is because the stress 

redistribution in the structures after macro or micro cracks are formed is dependent on 

the boundary and loading conditions applied in the experiment. Furthermore, different 

stiffnesses of specimens occur due to hydration, drying or other environmental factors, 

since larger specimens have smaller surface to volume ratio which might result in 

uneven properties in the specimens. It should be mentioned that size effect has both an 

energetic component (Bazant, 1984) and a statistical component. Models for the latter 

are generally based upon Weibull‟s weakest link theory (1939) and Carpinteri multi 

fractal scaling law (1994). 

 

3.5  Conclusion 

It is concluded that a relatively simple damage model based on smeared damage 

principles is appropriate for the present work. This will avoid some of the complex 

numerical issues discussed above whilst giving acceptable accuracy when modelling 

damage, or cracking. The model chosen is an isotropic damage model, based on that of 

Oliver et al. (2002). A smeared damage approach is adopted for cracking and both local 

and non-local implementations are considered. The theoretical details of the model are 

presented in Chapter 4. 
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CHAPTER 4 – EXPERIMENTAL STUDY 

Currently BS EN1992-1 (2004) gives serviceability limit state (SLS) design guidelines 

for crack control of various structures at different stress levels. Ribbed reinforcement is 

described as “high bond bar” and the classification of high bond bar is related to the 

relative rib area of the bar, fR , which in turn is a function of the geometry of the rib 

pattern. However the significance of these high bond bars at the SLS is not well 

understood. In this chapter, an experimental investigation of the relationship between 

the bond strength and the rib pattern of reinforcing steel is described. Furthermore, the 

flexural SLS behaviour of reinforced concrete (RC) beams with reinforcement of 

different rib patterns is explored. The cracking of the flexural beams was monitored both 

visually and using a non-destructive Digital Image Correlation (DIC) system. Using the 

DIC it was possible to trace the in-plane deformation and strain of the specimen over 

the full face by monitoring the movement of a speckle pattern painted on the front face 

of the specimen. For the steel bars used in these tests, the measured relative rib areas 

fR were 0.054, 0.057, 0.064 and 0.071 and from the results, it can be seen that the 

specimen manufactured with the bar with the highest value of fR exhibited the smallest 

size of crack and the smallest crack spacing. 

 

4.1 Introduction 

4.1.1 General 

One of the controlling issues in the design and provision of RC structures is the 

serviceability limit state (SLS) of durability and hence service life. Cracking, both size 

and spacing, is a significant parameter in this context, and is related to the mechanism 

of bond (Jain, 1982; Macginley and Choo, 1990; Pillai and Menon, 1999; Karve and 
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Shah ,1994 and American Society of Civil Engineers, 1982). 

 

Typically bond failure occurs internally within a member, and so the failure mechanisms 

remain obscure. Nevertheless, a large number of pullout and splitting experiments have 

been carried out by previous researchers and many models have been developed that 

describe the development of bond and its mechanisms. While the commonly used 

models (CEB-fib, 1993) are generally acceptable, there is still debate as to the 

significance of the relative rib area fR (defined as the ratio of the area of projection of all 

ribs on a plane perpendicular to the longitudinal axis of the bar to the rib spacing and the 

nominal circumference of the bar) (Alander, 2002) and in particular its influence on the 

SLS parameters of crack spacing and width. 

 

To investigate this issue further, a series of 42 medium scale beam tests were 

undertaken using bars with various rib patterns. The beams were tested in bending to 

failure and crack development was measured. In parallel, tests were carried out to BS 

EN 10080 to measure the bond strength of the different rib patterns. 

 

Results are reported highlighting where potential relationships between the parameters 

may be significant and a comparison is made to other work in this area. 

 

4.1.2 Background and Previous Research 

When a reinforced concrete structure is loaded in flexure or tension, a tensile force 

occurs in the reinforcing steel bar. The bond mechanism between the steel 

reinforcement and the concrete allows the longitudinal force to be transferred from the 
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steel to concrete, and so the forces in both the steel bar and the surrounding concrete 

vary along the length. In the case of perfect bond, the strain of the reinforcing bar and 

the strain of the surrounding concrete are the same at the same location due to 

compatibility. When the bond capacity of the bar is exceeded, the steel strain differs 

from that in the surrounding concrete and a relative displacement occurs between them. 

As a result, cracks are formed due to the localized strain of the concrete. 

 

The mechanisms of bond have been investigated and analysed by many previous 

researchers. Contributions by Lutz and Gergely (1967) and Ferguson (1966) are 

highlighted. 

 

There are three main mechanisms contributing to the bond, which are chemical 

adhesion, friction and mechanical interlock. The first two components play a primary 

role in the bond of plain bars, even though some mechanical interlocking takes place 

due to the roughness of the bar surface. However, for deformed bars, mechanical 

interlock is the dominant feature (Cox and Herrmann, 1999). As a consequence of the 

above mechanisms, reinforcing bar and concrete interact differently with various 

arrangements of reinforcement and lead to four general types of failure in bond tests: 

bar failure, concrete splitting, bar pull-out and concrete pull-out.  

 

 In bar failure (Figure 4.1a), the ultimate strength of the bar is comparatively low 

such that bar failure occurs before either pull-out or splitting failure. 

 In concrete splitting failure (Figure 4.1b), longitudinal cracks are formed around the 

reinforcing bar. The bond can no-longer function and the specimen splits when the 
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radial cracks reach the outer surface of the concrete surface. 

 In bar pull-out failure (Figure 4.1c), the bond fails because there is local failure of 

the concrete around the reinforcing bar due to the shear imposed by the steel ribs 

of the bar. 

 

In concrete pull-out failure (Figure 4.1c), the bond between the rebar and concrete is 

greater than the shear strength of the concrete itself. As such, failure is within the 

concrete itself and a layer of concrete remains around the rebar when it is pulled out. 

 

 

  

Figure 4.1. Four general types of failure in bond tests 

c) Bar Pull-out Failure 
(Tastani, 2002) 

a) Bar Failure (Molina, et. al., 2009) 

d) Concrete Pull-out Failure  
(Robert & Benmokrane, 2010) 

b) Concrete Splitting Failure 
(Fang, et. al., 2004) 
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There are many factors affecting the bond between steel and concrete, some of which 

are listed in the following, although this list is not exhaustive: 

 Geometry of the RC structure and the arrangement of the reinforcement, such as, 

size/diameter (Bazant and Sener, 1988), cover (Tepfers, 1979), bar spacing 

(Ferguson, 1955), confinement (Harajli, Hamad and Rteil, 2004), and transverse 

reinforcement (Morita and Kaku, 1979).  

 Properties of the concrete and reinforcing steel, such as strength, elastic modulus, 

yielding and surface rib pattern (Rehm, 1979; Tholen and Darwin, 1998 and 

McCabe and Pantazopoulou, 1998). 

 Environmental effects, such as temperature, bar corrosion (Diederichs, 1981; 

Cabrera and Godussi, 1992 and Al-Sulaimani et al 1990). 

 Load time history, such as short/long term, static/cyclic loading, loading rate and 

loading level (Edwards and Jannopoulos, 1978). 

 

Baranek (1980) noted that sometimes splitting and pull-out failure occur at the same time, 

a failure mode that has been called partial splitting. While in some cases the splitting is 

visible externally, this is not in always the case, depending on whether any of the factors 

above are significant enough to prevent a complete splitting. 

 

It is by virtue of the bond that exists between the steel bars and the concrete that the 

composite behaviour of the two materials enables reinforced concrete structures to 

develop sufficient strength at the ultimate limit state and to have adequate ductility in 

service. However, according to the findings of Mayer (1998), the requirement for a low 

level of bond to ensure the strength and safety of the structure is contrary to that required 
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for ductility, which is associated with the small, closely spaced flexural cracks that occur 

when the bond strength is high. 

 

4.2. Material Properties 

4.2.1 Mixing, Casting and Curing Procedure 

A concrete mix with a target strength of 45MPa at 28 days was used, the mix proportion 

of which are shown in Table 4.1a. The cement was ordinary Portland cement of class 

52.5N CEM I complying with the requirements of BS EN 197-1. The fine aggregate was 

0/4mm natural sea dredged sand and the coarse aggregate was 4/10mm crushed 

limestone which both conformed to requirements of BS EN 12620:2008. The water used 

in the mix complied with the requirements of BS EN 1008:2002 and the slump ranged 

from 60mm to 80mm.  

 

Table 4.1a. Mix proportions of concrete 

Material Detail Weight (kg/m3) 

Cement Ordinary Portland cement 133.3 

Fine Aggregate 0-4mm sea dredged sand 293.3 

Course Aggregate 4-10mm crushed limestone 506.7 

Water Tap water at about 20℃ 66.7 

 

A Belle 200 XT Premier Concrete Mixer with maximum capacity of 300kg mix was used 

for mixing the concrete. All dry materials were mixed in the drum for about 3 minutes 

before adding most of the water. Workability of the mix was measured using a concrete 

slump test (BS EN 12350-2:2009), which also helped determine the consistency 

between individual batches. More water was added into the mix to adjust the slump and 

the adjusted water content recorded as necessary and shown in Table 4.1b. 



BOND AND CRACKING OF REINFORCED CONCRETE – CHAPTER 4                        Simon H.C. Chan 

 

 

Page 39 

Table 4.1b. Adjusted water content of concrete mix 

Concrete Mix 

Adjusted 

Water 

Content 

(0.001m3) 

Concrete Mix 

Adjusted 

Water 

Content 

(0.001m3) 

Concrete Mix 

Adjusted 

Water 

Content 

(0.001m3) 

Bond Test A1 -0.2 Bond Test B1 +0.1 Bond Test C1 +0.2 

Beam A1/A2 -0.3 Beam B1/B2 0 Beam C1/C2 0 

Beam A3/A4 -0.3 Beam B3/B4 0 Beam C3/C4 +0.1 

Beam A5/A6 -0.3 Beam B5/B6 -0.1 Beam C5/C6 0 

Beam A7/A8 0 Beam B7/B8 +0.1 Beam C7/C8 +0.1 

Beam A9/A10 -0.1 Beam B9/B10 0 Beam C9/C10 -0.1 

Beam A11/A12 -0.1 Beam B11/B12 -0.1 Beam C11/C12 0 

Bond Test A2 -0.2 Bond Test B2 -0.3 Bond Test C2 0 

Bond Test M1 +0.1 Beam M3/M4 0 Bond Test M2 -0.1 

Beam M1/M2 0 Beam M5/M6 +0.2   

 

The pullout specimens were cast in two 200mm cube timber forms. The bond beams 

were cast in a 100 x 180 x 800mm steel form and the 2m long beams were cast in 150 x 

200 x 2000mm timber forms. Concrete samples were cast as controls to monitor the 

concrete properties of each mix. This included six standard 100mm concrete cubes with 

each flexural test specimen and four standard 100 x 100 x 500mm concrete prisms, four 

standard 100 x 200mm concrete cylinders and nine standard 100mm concrete cubes 

with each of the bond beam and pull-out specimen. A summary is shown in Table 4.2. 
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Table 4.2. Summary of concrete specimen and curing details 

 

All specimens, apart from the flexural beams were compacted on a vibrating steel table. 

The flexural beams were compacted using a vibrating poker due to their size. 

 

Specimens were kept in the moulds for 24 hours before de-moulding. They were then 

either put in a water tank or wrapped with wet hessian and cling film to cure for 28 days. 

Cling film was used to prevent the wet hessian from drying out too quickly. 3 cubes in 

each batch were also wrapped in wet hessian to test on the same day as the other 

cubes for comparison. See the detail in Table 4.2. On the day of testing, the specimens 

were taken out from the water tank or from the wet hessian and left to air dry for 2-3 

hours before testing. 

 

4.2.2 Concrete Properties 

Concrete cubes and cylinders were tested to determine the concrete compressive cube 

strength and splitting strength respectively. Three cubes from each mix were tested at 

an age of 3 days and 28 days. According the specification of BS EN 12390-3:2000, they 

are subject to a uni-axial force at a rate of 180kN/min until failure. Four cylinders from 

each mix were tested at the age of 28 days. According the specification of BS EN 

Curing Details 
Flexural Beam 

Specimen 

Bond Beam /  Pull-out Cube   

Specimen 

28 days in a water tank at 20°C 6 x 100mm cubes 2 pullout cubes 

4 x 500mm prisms 

4 x 200mm cylinders 

6 x 100mm cubes 

28 days wrapped with wet 

hessian and cling film 

1 flexural beam 1 bond beam 

3 x 100mm cubes 
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12390-6:2000, cylinders were loaded on their sides with a uni-axial force at a rate of 

60kN/min until failure. 

 

The prism specimens were tested in 4-point bending to determine the flexural strength. 

Three specimens from each mix were tested at an age of 28 days. According to the 

specification of BS EN 12390-5:2000, the specimens were loaded at a total rate of 

7kN/min over a span of 400mm. 

Test results are summarized and shown in Table 4.3. 

 

Table 4.3. Concrete properties at an age of 28 days 

 Mix A Mix B Mix C Mix M 

Sample Size 14 14 14 8 

Cube Strength  

(N/mm2) 

Average 49.06  47.06  49.71  47.41  

Standard Deviation 1.67  3.98  2.45  2.03  

Cylinder Splitting Strength 

(N/mm2) 

Average 5.1 5.2 4.9 5.1 

Standard Deviation 0.35 0.34 0.46 0.35 

Prism Flexural Strength 

(N/mm2) 

Average 4.4 5.5 4.9 5.2 

Standard Deviation 0.43 0.31 0.22 0.47 

Slump 

(mm) 

Average 80 70 70 65 

Standard Deviation 12.43 7.93 9.82 11.33 

 

Because of the size of the concrete mixer, there were 8 mixes (in Batch M) and 14 

mixes in Batches A, B and C in each batch. More were required for the latter because 

they were also used to investigate the effect on crack spacing of the presence of stirrups 

in the middle zone of the beam. The mixes in each batch were completed over a 

relatively short period of time (10 days) under generally consistent conditions 

(temperature and humidity) and therefore it was assumed that the properties of the 
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concrete in the different mixes of the same batch would be similar. The cube strengths 

of each batch are shown in Figure 4.2. In the figure, the x-direction represents four 

different concrete mixes: Mix A, Mix B and Mix C (14 specimens each) and Mix M (8 

specimens) and the y-direction gives the maximum, minimum and mean concrete 

strength of each mix, from which it can be seen that the concrete strengths of all 

batches were similar. It is also seen that the mean values are slightly lower than the 

median value, which highlights that most of the concrete strength results in each batch 

tend to be at the lower end of the range of the results. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2. Concrete cube strength of specimens 

 

A summary of the consistency of the concrete cube strengths is presented in Table 4.4. 
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Table 4.4. Detailed summary of concrete cube strengths 

 Batch A Batch B Batch C Batch M 

Number of Mixes 14 14 14 8 

Minimum Strength (N/mm2) 46.7  43.3  46.3  45.3  

Maximum Strength (N/mm2) 52.3  56.8  54.5  51.1  

Average Strength (N/mm2) 49.1  47.1  49.7  47.4  

Standard Deviation (N/mm2) 1.67  3.98  2.45  2.03  

 

4.2.3 Reinforcement Properties 

Four different grades of steel reinforcing bar were used to provide a range of relative rib 

areas. They all had different rib patterns as shown in Figure 4.3, and the detail 

descriptions are as follows: 

 

Bar A – Grade A with two longitudinal ribs and a row of parallel inclined transverse 

ribs between the longitudinal ribs on both sides of the ribs.  

Bar B – Grade B with two longitudinal ribs and two rows of parallel inclined 

transverse ribs between the longitudinal ribs on both sides of the ribs.  

Bar C – Grade C with two longitudinal ribs and a row of alternately inclined 

transverse ribs between the longitudinal ribs on both sides of the ribs.  

Bar M – Celsa Max Grade C with two longitudinal ribs and the transverse rib 

pattern of Bar A between the longitudinal ribs on one side and the 

transverse rib pattern of Bar C between the longitudinal ribs on the other 

side.  
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Figure 4.3. Rib pattern on reinforcing steel bars 

 

The tensile properties of three specimens of each bar type were tested and a summary 

of the results is presented in Table 4.5. 

 

Table 4.5. Steel reinforcement properties 

 
Steel 

grade 

Nominal 

Area* 

mm2 

0.2% Proof. Ultimate. Elongation. Elastic 

Load Stress Load Stress   Modulus 

kN N/mm2 kN N/mm2 Mm % kN/mm2 

Bar A A 47.78 27.83 554 29.49 587 5.23 10.5 185 

Bar B B 51.53 26.18 521 29.99 597 10.00 20.0 199 

Bar C C 50.27 27.00 537 33.60 668 12.87 25.7 200 

Bar M C 55.42 26.35 524 32.78 652 11.27 22.5 205 

* Area is determined by πd2 / 4. 

 

In order to determine the fR values of the four specimens of steel bar, the bar diameter 

(d), maximum height of the transverse ribs (am), the spacing between the transverse ribs 

(c) and the width of longitudinal ribs (e) were measured: 

 

 The diameter of the bars (d) was measured using vernier callipers and the result 

was taken to be the mean of 5 measurements taken on each bar.  
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 The maximum rib heights (am) of the bars was measured after enlargement by 

projecting a silhouette image onto a white board. These results were quite variable 

because of damage to the steel surface, the tolerances in the rolling process and 

observational errors. As this is a critical parameter in the calculation of the fR value, 

the value quoted was determined as the mean of 8-10 measurements taken 

consecutively on each bar. 

 The spacing of the two transverse ribs (c) was determined from the average 

spacing of 10 ribs, measured from the centre of one rib to the centre of another in a 

straight line parallel to the longitudinal ribs, so that the error in measuring this 

parameter was minimised. In general, 3 measurements were taken on each bar. 

 The width of the longitudinal ribs of the bar specimens (e) was measured using 

vernier callipers and the result was generally determined as the mean of 3 

measurements taken on each bar. 

 

The relative rib area fR was calculated using the parabola formula given in section 11.3.3 

of BS EN ISO 15630-1, as shown: 

 

 )(
3

2
i

m
R ed

dc

a
f 


       (4.1) 

 

The results are summarised in Table 4.6. 
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Table 4.6. Summary of Rf  values for steel reinforcing bars 

Steel bar Minimum Rf  Average Rf  Maximum Rf  Standard deviation 

A 0.054 0.057 0.063 0.003 

B 0.058 0.065 0.068 0.004 

C 0.051 0.054 0.061 0.004 

M 0.061 0.071 0.077 0.0055 

 

The standard deviation of the fR values for the four batches of steel bar ranged from 

5.3% to 7.7% of the mean fR which is consistent with that expected from normal 

manufacturing practices. 

 

4.3. Test Specimens 

Test specimens were designed and cast to investigate the relationship between bond 

strength and the distribution and size of the cracks formed in flexural specimen. For this, 

42 No., two-metre long flexural beam specimens were cast together with bond 

specimens comprising 16 pull-out cubes and 8 bond beams. The details of these 

specimens are described in the following sections. 

 

4.3.1 Flexural Beam Test 

The flexural beams tested were 150mm deep, 200mm wide and 2000mm long. Two 

reinforcing steel bars were cast in each beam as shown in Figure 4.4a and 4.4b. Four 

types of bar, all of which were 8mm in diameter, with different rib patterns were tested. 

Six or twelve beams were cast and tested for each batch of steel, the schedule for which 

is summarized in Table 4.7. The steel orientation is the angle between the longitudinal 

ribs and the horizontal plane. Where stirrups were used they were 6mm in diameter. 

Figures 4.4a and 4.4b illustrate the beams and the arrangement of the reinforcing bars 
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and stirrups. Six of the beams in each of the batches A, B and C had no stirrups in the 

central, 600mm zone, as shown in Figure 4.4b, and the other six beams had stirrups all 

along the length, as shown in Figure 4.4a. To ensure 25mm concrete cover, eight 25mm 

concrete spacers were used to support the rebar cages.  

 

 

Figure 4.4a. Geometry of the specimens with stirrups all along the length 

Figure 4.4b. Geometry of the specimens with no stirrups in the central zone of 600mm 

 

Table 4.7. The flexural beam reinforcement schedule 

Beam no. Steel Bar  Steel Orientation 
Middle zone 

of the beam 
Concrete Mix 

A1-A3 

Bar A 

0∘ 
With links 

Batch A 
A4-A6 90∘ 

A7-A9 0∘ 
Without links 

A10-A12 90∘ 

B1-B6 
Bar B 

 With links 
Batch B 

B7-B12  Without links 

C1-C3 

Bar C 

0∘ 
With links 

Batch C 
C4-C6 90∘ 

C7-C9 0∘ 
Without links 

C10-C12 90∘ 

M1-M6 Bar M  Without links Batch M 
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4.3.2 Bond Tests 

There are many different types of test that can be used to measure the bond between 

concrete and the reinforcing steel bars. Detailed descriptions of these tests and their 

advantages and disadvantages are presented and discussed in the works of Sutton, 

Orteu and Schreier (2009), Oliver et.al. (2002), Edwards and Jannopoulos (1978) and 

Ferguson et.al. (1955). The most common of these tests are the pullout test and the 

bond beam test. 

 

The bond beam test has the advantages that it most closely reflects the influence of 

flexure. As such, it has the potential to capture the real bonding mechanism and 

de-bonding behaviour of the RC specimens under loading due to its similarity to a RC 

beam subject to bending. The pull-out test is the most traditional bond test in which the 

bar is pulled out directly from the bonded concrete specimen. It has the advantages of 

simplicity and ease of implementation. 

 

The measurement of the bond properties of the reinforcement used in the flexural beam 

tests was investigated using both pullout and bond beam tests in accordance with BS 

EN 10080:2005. Details of the test methods and their set-up are described in the 

following sections. 

 

4.3.2.1 Pull-out Test 

The pull-out specimens were prepared in accordance with BS EN 10080:2005. Each 

concrete cube specimen contained a single, centrally placed ribbed bar with a standard 

bond length as shown in Figure 4.5. A bond length of five diameters, i.e. 40mm, was 
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adopted with the ribs of the bar being protected by a 1mm thick plastic sleeve over the 

rest of its length. The four different rib patterns were tested using 8mm diameter bars. 

The schedule of the tests is shown in Table 4.8. 

 

 

 

Table 4.8. Pull-out cube schedule     

 

 

 

 

 

 

 

Figure 4.5. Pull-out test specimen 

 

4.3.2.2 Bond Beam Test  

The bond beam specimens were prepared according to the specification given in BS EN 

10080. The ribbed bar had a bonded length of 10 diameters in each half of the beam. 

Again, 1mm thick plastic sleeves ensured that the bar was de-bonded elsewhere (see 

Figure 4.6). The four types of steel bar were again tested using 8mm diameter bars (see 

Table 4.9). 

 

 

Pullout 

specimen no. 
Steel Bar Concrete Mix 

P1-P4 Bar A Batch A 

P5-P8 Bar B Batch B 

P9-P12 Bar C Batch C 

P13-P16 Bar M Batch M 
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Table 4.9. Bond beam schedule 

Beam no. Steel Bar Concrete Mix 

BB1-BB2 Bar A Batch A 

BB3-BB4 Bar B Batch B 

BB5-BB6 Bar C Batch C 

BB7-BB8 Bar M Batch M 

 

 

Figure 4.6. Beam specimen for bond test 

 

4.4. Experimental Procedures 

4.4.1 Bond Tests 

4.4.1.1 Pull-out Test 

The pullout tests were carried out in accordance with the specification and test method 

in BS EN 10080. The setup of the test is shown in Figure 4.7. The specimens were 

tested using an “Avery-Dennison type 7152” servo-hydraulic universal testing machine 

with a maximum capacity of 60kN. The cube was placed on a 300mm square steel plate 

supported by the stationary head. A rubber sheet was placed between the cube and the 

plate to ensure that a uniform stress distribution was applied to the face of the cube. The 

tension force P was applied to the longer end of the reinforcing bar gripped by the 

moving head of the test machine through the 50mm diameter central hole in the plate. 

147.5mm 147.5mm 147.5mm 

 8 
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Transducers 

Fixed steel plate Grip of testing machines 

Two LVDT (Linear Variable Differential Transformer) transducers with a gauge length of 

10mm and an accuracy of 0.5%, (i.e. 50μm) were used for measuring the slip. They 

were mounted on a cross yoke attached to the reinforcing steel bar as shown in Figure 

4.7. The load, measured to an accuracy of +/- 10N was applied continuously under 

stroke control throughout the test, starting at a rate of 0.002mm/sec and increasing to 

0.01mm/sec until bond failure occurred. The slip of the bar was recorded from the 

beginning until the end at pre-defined increments of loading. The average reading of 

both the transducers was taken as the slip of bar in the test. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7. Set up of pull-out tests 

 

4.4.1.2 Bond Beam Test  

The bond beam tests were undertaken according to the specification and the test 
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150mm F/2 F/2 

650mm 

30mm Hinge 

Transducer 

Roller support 

method in BS EN 10080:2005. The setup of the test is shown in Figure 4.8. The 

specimens were tested in a four-column hydraulic universal testing machine with a 

maximum capacity of 250kN. The beam was placed on roller supports on top of the 

stationary head to avoid any arching effect. A hinge formed from two pieces of steel in a 

T shape of the same width as the beam itself was placed in the compression zone of the 

beam at mid span, as shown in Figures 4.8a and 4.8b. The load measured to an 

accuracy of +/- 10N was applied continuously under stroke control throughout the test, 

starting at a rate of 0.002mm/sec and increasing to 0.01mm/sec until bond failure 

occurred. Two LVDT transducers having an accuracy of 0.5% (50μm) were used for 

measuring the slip. They were mounted on a cross yoke attached to the reinforcing steel 

bar on each side as shown in Figures 4.8a-b. The test was paused when the bond on 

one side failed. A clamp was then introduced to stop the steel slipping any further on the 

side that had failed. The test then continued until bond failure occurred at the other side. 

As a result, two sets of results were obtained from each test and a total of 4 results for 

each type of bar tested were obtained. 

 

 

 

 

 

Figure 4.8a. Set up of bond beam experiment 
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Figure 4.8b. Photo of bond beam experiment 

 

4.4.2 Beam Test 

4.4.2.1 Flexural Beam Test 

The beams were tested in 4-point bending over a simply supported span of 1800mm 

loaded at the ⅓ points. This ensured that in the central zone of 600mm where the beam 

was inspected for cracks there was no shear and it was subject only to bending. One 

LVDT transducer having an accuracy of 0.1% (0.1mm) was used for measuring the 

central deflection. The specimens were tested in a rig with a maximum capacity of 60kN. 

The setup of the test is shown in Figures 4.9a-b. The load was applied continuously 

under stroke control throughout the test, starting at a rate of 0.002mm/sec and 

increasing to 0.01mm/sec after a stabilised crack pattern with no more newly developed 

cracks had been established. This gave enough time for the crack pattern to be 
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monitored by eye and for the Digital Image Correlation (DIC) System to capture the 

necessary images to track the change in displacements and strains on the surface of 

the test specimens. 

 

Figure 4.9a. Set up of flexural beam experiment 

 

 

Figure 4.9b. Photo of flexural beam experiment 

 

4.4.2.2 Digital Image Correlation  

A new non-destructive technology that has been introduced over the last two decades 

and which has become more popular with the advances in digital cameras and improved 

computer technologies is Digital Image Correlation (DIC). Tests undertaken to verify the 

accuracy and efficiency of this new technology were reported by Guo et al. (2008) and 

Carden (2004).  

 

Transducer 
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The DIC employs two cameras to monitor the 2D or 3D in-plane deformation of the 

specimen stereoscopically. To use this optical system, a speckle pattern painted on 

surface of specimen has to be first calibrated by taking 20 – 30 photos of a calibration grid 

board (Figure 4.10).  

 

  

  

Figure 4.10. Calibration of DIC system with Calibration Grid Board 

 

A series of images are then taken by the two cameras simultaneously at prescribed time 

intervals throughout the testing. The movement and deformation of the specimen are 

tracked by analysing the relative displacement of the speckle pattern painted on the 

surface of specimen. 

 

Calibration Photo 1 (Camera A) Calibration Photo 1 (Camera B) 

Calibration Photo 2 (Camera A) Calibration Photo 2 (Camera B) 
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The general advantages of using DIC include the portability and ease of implementation 

of the system which requires only a laptop and two cameras. To investigate different sizes 

of specimens it is simply a matter of changing the lenses of the cameras. It has the 

capability to monitor complex structures in both 2D and 3D, under long term or short term 

loading and also has no limitations on curved surfaces. The post-processing software 

enables strain to be calculated from the measured deformations and allows strain 

distributions as well as strain contours over the specimen surface to be plotted. It provides 

deformations in all three directions over the whole specimen area and can also be 

resolved into a single direction of interest, e.g. x-x direction, out of plane direction, etc. 

The distribution of any kind of deformations, e.g. displacement or strain, etc, over a long 

section specified by the user can be extracted, as shown in Figure 4.11a. Therefore, crack 

widths can be obtained by measuring the strain across the crack in x-x direction using the 

post-processing software and in this way cracks that are not even visible can easily be 

located, as shown in Figure 4.11b. 

 

 

Figure 4.11a. Distribution of deformation and crack width measurements as obtained from 
DIC post-processing software 

A long section specified by the user  
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Figure 4.11b. Crack location and spacing determined by DIC post-processing software 

 

 

Figure 4.11c. Specimen being monitored by DIC camera system 

 

A long section specified by the user  
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In this programme of work, the DIC system was employed in the flexural beam testing as 

shown in Figure 4.11c. Speckle patterns were painted on one side of each beam in 

advance. Two cameras were used to monitor the damage process of the specimen to 

produce 3-D displacement and strain plots, even though the plots of the out-of-plane 

displacements were not of any particular interest in this experiment. However, they did 

confirm that the specimens were loaded vertically with no out-of-plane deformations. The 

software VIC 3D® was employed to post-process the data collected from the experiment 

and to transform and present it as 3D displacements and a strain field across the 

specimen surface. Crack widths were then determined by comparing the change in 

distance between the speckle patterns on either side of the crack before and after the 

test. 

 

 

4.5. Experimental Results and Discussion 

4.5.1 Bond Tests 

In all 8 bond beam tests and 16 pull-out tests only pull-out failures and bar tensile 

failures were observed; none of them failed by splitting of the concrete. 

 

In the bond tests, the applied tensile force P (for the pullout test) or the total applied 

force on test beam Fa (for the bond beam test) were recorded and used to calculate the 

bond stress  . The following equations from EN 10080:2005 were applied to determine 

the corresponding bond stress: 
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For the pull-out tests : 
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c
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f
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          (2a) 

where fcm is the target value of the strength class (i.e. 45 MPa in this set of tests), L is 

the bond length of 5d and fc is the average concrete strength of the test specimens. 

 

For the bond beam tests :   
40

s
          (2b) 

where 
n

a
s

A

F25.1
  for a bar diameter d which is less than 16mm. 

 

A summary of the bond stress results at various slip levels for the bond beam tests is 

given in Table 4.10a. No slips were recorded in bond beam tests B1 and B2 because of 

a malfunction of the recording equipment. It can be seen that in many tests a slip of 

1mm was not achieved and therefore the corresponding bond stress could not be 

computed. 
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Table 4.10a. Summary of bond stress results at various slip levels for bond beam tests 

  
  Bond Stress 

Slip = 0.01mm Slip = 0.1mm Slip = 1.0mm 

Bond Beam A1 3.11 8.37  

Bond Beam A2 3.93 10.11  

Bond Beam A3 4.31 10.27 19.02 

Bond Beam A4 7.83 14.80  

Bond Beam B1    

Bond Beam B2    

Bond Beam B3 2.73 7.18 20.46 

Bond Beam B4 6.52 12.70  

Bond Beam C1 7.76 14.60  

Bond Beam C2 7.92 11.18  

Bond Beam C3 6.34 11.34  

Bond Beam C4 6.90 12.26  

Bond Beam M1 10.98 16.23  

Bond Beam M2 13.39   

Bond Beam M3 9.47 16.15  

Bond Beam M4 11.31 16.53  

 

A Summary of the bond stress results at various slip levels for the pull-out tests is given 

in Table 4.10b. No slip was recorded in pullout test B3 because of a malfunction of the 

recording equipment and therefore the corresponding bond stress could not be 

computed. 
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Table 4.10b. Summary of bond stress result at various slip levels for pull-out tests 

  
Bond Stress 

Slip=0.01mm Slip =0.1mm Slip=0.01mm 

Pullout A1 0.66 3.97 21.53 

Pullout A2 0.84 6.51 24.57 

Pullout A3 0.67 3.39 21.94 

Pullout A4 4.02 11.82 22.82 

Pullout B1 8.33 16.63 15.39 

Pullout B2 1.40 6.19 16.91 

Pullout B3    

Pullout B4 6.15 11.85 17.27 

Pullout C1 5.46 11.00 10.16 

Pullout C2 4.74 7.43 21.63 

Pullout C3 0.80 6.18 20.40 

Pullout C4 7.31 13.23 23.60 

Pullout M1 1.58 7.24 18.12 

Pullout M2 1.60 9.09 22.02 

Pullout M3 4.50 10.17 24.58 

Pullout M4 5.75 13.25 27.19 

 

In Figures 4.12a and 4.12b, the average relationship between the bond strength and 

corresponding slip value of each batch of specimen for the bond beam tests and pull-out 

tests are plotted respectively. The relationship is shown with respect to a slip up to a 

value of 0.1mm. 

 

It can be seen that the bars from Batch M generally have the highest bond strength, 

followed by the bars from Batches A, B and C, in both bond beam tests and pull-out 

tests as illustrated in Figure 4.12a and 4.12b. 

 

It can be seen that the bond stresses measured from the pullout tests are lower than 

those from the bond beam tests, even thought the ranking of the four batches are the 

same in both sets of results. 
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Furthermore, it is also noted that the rate of initial bond-slip development is more 

gradual in the bond beam tests compared to the rapid increase in bond at an early stage 

in the pullout tests. It is believed that this is due to the different testing methods and 

specimen arrangements such as the specimen sizes and the presence of transverse 

reinforcement providing confinement in the bond beam test. 
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Figure 4.12a. Plot of bond stress against slip for bond beam tests 
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Figure 4.12b. Plot of bond stress against slip for pull-out tests 

 

In Figures 4.12c to e, the relationships between the bond strengths and fR values are 

plotted. Figure 4.12c shows a plot of bond stress against fR having combined the results 

from both the bond beam tests and pull-out tests. The relationship is shown with respect 

to the three critical slip values of 0.01mm, 0.1mm and 1.0mm at which bond is usually 

considered to be a function of chemical adhesion, friction and mechanical interlock 

respectively.  
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Bond Stress vs Fr value
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Figure 4.12c. Plot of bond stress against fR having combined the results from 

both the pull-out and bond beam tests 

 

It can be seen that bars with higher fR values generally have a higher bond stress, i.e. 

stronger bond, at all slip levels. However, bond strength is affected by many other 

parameters, as discussed above. Therefore, while many variables, such as concrete 

cover, transverse reinforcement, testing methods and arrangement, were made as 

consistent as possible for all the specimens that were tested, it can be seen that there is 

still a significant variation in the results. It is believed that one reason for this scatter is 

the variability of the concrete strength which, although within an acceptable range 

(Figure 4.2) does have a significant impact on the results. 

 

Figures 4.12d and 4.12e give plots of bond stress against fR value for the bond beam 

test and pull-out test respectively. 

fR Value 
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Bond Stress vs Fr value (Beam)
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Figure 4.12d. Plot of bond stress against fR for bond beam tests 

 

Bond Stress vs Fr value (Pullout)
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Figure 4.12e. Plot of bond stress against fR for pull-out tests 
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As might be expected, the general trend of bars with higher fR values exhibiting a higher 

bond strength, i.e. stronger bond, at all slip levels can be seen. However, it is noted that 

the slope of the bond stress versus fR value plots for all slip levels is steeper for the bond 

beam tests than it is for the pull-out tests. In the bond beam tests, the beam was 

reinforced with steel cages which provide significant confinement of the concrete 

around the steel bar compared to that in the pull-out tests. It is possible that because of 

this high confinement in the bond beam tests, the increase in bond strength with steel 

bars of higher fR value is not as significant as in the pull-out tests, nevertheless the 

general trends in both tests are consistent as evident from the combined results shown 

in Figure 4.12c. 

 

It must also be noted that the reliability of the plotted trend line at the slip level of 1.0mm 

is suspect because, as shown in Table 4.10a, for the bond beam tests, a slip of this 

magnitude was only achieved only on two occasions. 

 

In Figure 4.12f, a plot of bond strength at a slip of 0.1mm against fR value obtained by 

Rehm (1969) is presented. It shows a similar trend to the current study, i.e. the higher 

the fR value, the higher the bond strength. 
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Figure 4.12f. Plot of bond strength against fR by Rehm (1969) 

 

If the results of this study are plotted together with Rehm’s results the curves given in 

Figure 4.12g are obtained. 
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Figure 4.12g. Variation of Bond Stress with fR from the current study and that reported 

by Rehm (1969) 

 

From this figure it can be seen that the trend of bond stress is the same in both studies, 

i.e. the higher the fR value, the higher the bond stress and although not identical, the 

slopes of the four curves are very similar. As such it can be concluded that the results of 

this study are consistent with those reported by Rehm (1969) which gives confidence in 

the results of the current study. 

 

4.5.2 Flexural Beam Test 

6 specimens were tested in Batch M and 12 specimens (in Batches A, B and C) using 

the flexural beam test. These tests were performed under stroke control and therefore, 

as a newly formed crack in the beam resulted in a reduction of stiffness of the specimen, 

a drop in load was an indication of the formation of a crack. The first significant drop in 

fR Value 
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load during the testing of each specimen was therefore taken as the initial cracking load. 

Results for the initial cracking load and ultimate load from the experimental data are 

shown in Table 4.11a and summarized in 4.11b. 

 

Table 4.11a. Initial cracking load capacity and ultimate load capacity of beam specimens 

Beam Specimen A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 

Initial Cracking Load (kN) 8.2  8.2  7.5  8.8  8.6  9.3  9.1  9.0  8.6  9.5  8.8  8.9  

Ultimate Load (kN) 24.3  22.7  23.1  22.4  23.5  24.3  23.4  24.1  23.4  24.4  23.6  23.8  

Beam Specimen B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 

Initial Cracking Load (kN) 6.8  7.0  7.7  7.3  7.1  6.9  7.9  8.2  9.5  8.3  8.6  8.4  

Ultimate Load (kN) 19.7  19.1  22.0  20.6  24.4  21.1  21.3  21.1  22.2  22.0  21.2  20.3  

Beam Specimen C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 

Initial Cracking Load (kN) 11.1  10.0  8.3  9.1  9.9  7.6  9.1  9.5  9.8  9.6  8.6  9.1  

Ultimate Load (kN) 29.4  28.2  27.8  27.5  23.4  23.0  23.0  22.9  22.6  23.5  22.7  23.0  

Beam Specimen - - - - - - M1 M2 M3 M4 M5 M6 

Initial Cracking Load (kN) - - - - - - 10.6  7.2  9.0  9.2  9.3  10.1  

Ultimate Load (kN) - - - - - - 27.0  26.7  26.0  26.5  27.6  26.7  

 

Table 4.11b. Summary of initial cracking load capacity and ultimate load capacity of 

beam specimens 

Beam Specimen Minimum Average Maximum 
Standard 

Derivation 

Batch A :  
Initial Cracking Load (kN) 7.5 8.7 9.5 0.5 

Ultimate Load (kN) 22.4 23.6 24.4 0.6 

Batch B :  
Initial Cracking Load (kN) 7.9 8.5 9.5 0.5 

Ultimate Load (kN) 20.3 21.4 22.2 0.7 

Batch C :  
Initial Cracking Load (kN) 8.6 9.3 9.8 0.4 

Ultimate Load (kN) 22.6 23.0 23.5 0.3 

Batch M :  
Initial Cracking Load (kN) 7.2 9.3 10.6 1.2 

Ultimate Load(kN) 26.0 26.8 27.6 0.5 
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In Figure 4.10a and Table 4.11b, it can also be observed that there is little difference 

between the elastic performances for Batch A, Batch B, Batch C and Batch M and the 

initial cracking loads are about at the same level. In the nonlinear range, their 

performances are still similar, but Batch M has a noticeably higher ultimate load. It is 

believed that both the initial cracking loads and ultimate loads tend to increase with 

bond strength, however the degree of increase for the initial cracking load capacity is 

small in comparison to that for the ultimate load capacity.  

 

In Figures 4.13a and 4.13b, typical load-deflection curves for the mid-point of each 

batch of flexural beam specimens in the linear and non-linear ranges are shown. 

 

 

Figure 4.13a. Typical load-deflection curves for the mid-point of each batch of flexural 

beam specimen in the linear and early non-linear range 
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Figure 4.13b. Typical load-deflection curves for the the mid-point of each batch of 

flexural beam specimens in the non-linear range 

 

Figures 4.14a to c give typical plots of the development of cracks for samples A8, C9 

and M1 obtained using the data files from DIC system. They show the evolution of the 

cracks during the flexural beam tests as monitored by DIC System. Crack spacings and 

crack widths were measured directly from these plots. Similar plots for all other beam 

specimens are given in Appendix I and animations and videos of the evolution and 

development of the cracks are given in Appendix II. A summary of the crack spacings 

and crack widths are presented and discussed in Section 4.5.2.3. 
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Figure 4.14a. The evolution and development of cracks in Beam specimen A8 

 

Figure 4.14b. The evolution and development of cracks in Beam specimen C9 
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Figure 4.14c. The evolution and development of cracks in Beam specimen M1 

 

4.5.2.1 Parameter Test – Effect of Orientation of Reinforcing Bars 

During the design of the flexural beam test, it was recognized that the orientation of the 

reinforcing bars may have an effect on the bond strength and cracking behaviour. As a 

result, six beams in each of two batches, Batch A and C, of the beam specimens had 

the reinforcing steel bars with their longitudinal ribs facing upward (Orientation 90o), and 

another six beams in each of the two batches had them aligned horizontally (Orientation 

0o). A summary of the comparison between the performance of two sets of specimens 

and that of the whole batch is shown in Table 4.12. 
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Table 4.12. Variation of crack spacing and crack width with reinforcing bar orientation 

Batch Orientation* 

Crack Spacing (mm) Crack Width (mm) 

Average crack 

spacing with 

central stirrups 

Average crack 

spacing without 

central stirrups 

Average crack 

width with  

central stirrups 

Average crack 

width without 

central stirrups 

A 

90˚ 103.34 119.74 0.328 0.388 

Overall 

(Whole Batch) 
108.98 128.40 0.337 0.402 

0˚ 114.02 133.48 0.343 0.415 

Max. Variation 
5.04 5.08 0.006 0.013 

4.9% 4.0% 1.8% 3.2% 

C 

90˚ 104.17 120.81 0.259 0.299 

Overall 

(Whole Batch) 
102.23 118.24 0.275 0.292 

0˚ 100.29 115.66 0.291 0.286 

Max. Variation 
1.94 2.58 0.016 0.006 

1.9% 2.2% 5.8% 2.1% 

* Steel orientation is the angle between the longitudinal ribs and the horizontal plane. 

 

As can be seen, the average crack spacings and crack widths of these RC beams seem 

to be independent of the orientation of the reinforcing bars, with the maximum variation 

only being small. This suggests that the orientation of the bars is not a key factor in this 

type of testing and note that the discussion regarding the cracks in the following 

sections will ignore the orientation of the bars. As this finding was during the testing of 

Batch A and Batch C, no attempt to make to pre-set the orientation of the bars in the 

remaining batches, i.e. Batch B and Batch M. 

 

4.5.2.2 Parameter Test – Effect of Existing Stirrups in the Central Zone 

The aim of the flexural beam test was to investigate the SLS performance of the beam 
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in a zone of constant moment and zero shear force. As such, shear reinforcement in the 

form of stirrups was not really necessary. However, in practice some form of shear link, 

even if only to complete the reinforcement cage, would be necessary. It was therefore 

decided to explore if the existence of stirrups throughout the central constant moment 

zone would affect the cracking behaviour observed. As a result, six beams in each of 

the first three batches of the flexural beam specimens had no stirrups in the constant 

moment zone, i.e. in the central 600mm of the beams, while stirrups were placed 

throughout the length of the beam specimens in another six beams in each of the first 

three batches. The comparison between the two sets of specimens is shown in Table 

4.13. 

 

Table 4.13. Variation of crack spacing and crack widths with the presence or otherwise 

of stirrups in the centre zone 

  Batch 

Stabilised Crack 

Spacing 

(mm) 

Cracks Spacing between  

first 3 cracks 

(mm) 

Crack Width 

(mm) 

Min. Avg. Max Min. Avg. Max Min. Avg. Max 

With 

stirrups in 

centre zone 

A 49.45  108.98  183.40  140.63  218.58  298.91  0.161  0.337  0.471  

B 60.00  99.00  124.00  90.00  232.83  312.00  0.200  0.307  0.500  

C 77.14  102.23  135.83  115.76  243.67  315.03  0.181  0.275  0.353  

Without 

stirrups in 

centre zone 

A 55.28  128.40  181.36  149.63  232.45  398.51  0.273  0.402  0.658  

B 45.00  114.64  160.00  103.00  252.00  339.00  0.100  0.318  0.500  

C 58.47  118.24  176.41  156.67  274.73  396.93  0.200  0.292  0.391  

 

From these results it can be seen that the average stabilised crack spacing of the RC 

beams that had stirrups throughout their length in all three batches was 103mm which is 

very similar to the stirrup spacing, i.e. 100mm. This confirms that the cracks tend to form 

at the location of the stirrups. For all three batches the range between the minimum and 
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maximum crack spacing in the RC beams that had stirrups throughout their length was 

smaller than that of the beams having no stirrups in central zone. As such, it is 

considered that the SLS behaviour, as characterised by crack spacings and crack 

widths is influenced by the existence of stirrups. This phenomenon can also be 

observed in the crack spacing of the first three cracks to be formed. 

 

For the beams that have no stirrups in the middle zone, the average crack spacing was 

generally more than 100mm. For comparison with the predictions obtained from the 

numerical modelling described in Chapter 5, it is this behaviour that is considered to be 

more appropriate. As such, any further analysis and discussion of the crack spacing and 

crack widths that are presented will focus solely on the beams having no stirrups in the 

middle zone. 

 

4.5.2.3 The Relationship between fR Value, Crack Width and Crack Spacing 

The crack spacing and crack width results for the four batches of flexural beam tests are 

summarised in Table 4.14. 
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Table 4.14. Summary of crack spacing and crack width measurements  

Beam 

Final crack spacing 

(mm) 
Crack spacings 

between 
first 3 Cracks 

(mm) 

Crack width(mm) 

Min. Avg. Max. Min. Avg. Max. 
At Steel Stress 

(N/mm2) 

A7 114.2  154.4  181.36  282.3 322.6 0.32 0.41  0.56  

550 

A8 60.7  113.7  146.13  164.4 398.5 0.30 0.39  0.45  

A9 107.5  132.0  154.63  153.5 152.2 0.34 0.39  0.47  

A10 87.6  109.1  149.86  210.6 149.4 0.29 0.39  0.66  

A11 57.1  117.9  175.76  230.3 153.0 0.36 0.45  0.55  

A12 55.3  143.3  176.3  230.2 342.8 0.27 0.39  0.50  

B7 67.0  115.0  152.0  103.0 219.0 0.30  0.35  0.40  

523 

B8 80.0 107.4  160.0  275.0 262.0 0.20  0.31  0.50  

B9 45.0  99.83  148.0  266.0 333.0 0.10  0.26  0.40  

B10 85.0  114.8  160.0  305.0 269.0 0.25  0.35  0.50  

B11 81.0  123.0  143.0  276.0 339.0 0.25  0.29  0.35  

B12 99.0  127.8  149.0  130.0 248.0 0.25  0.35  0.50  

C7 73.5  119.2  158.2  265.6  325.0  0.20  0.29  0.39  

537 

C8 93.9  124.5  145.4  376.5  247.8  0.27  0.32  0.35  

C9 58.5  122.4  176.4  214.5  396.9  0.21  0.31  0.38  

C10 80.4  106.8  156.7  156.7  214.9  0.20  0.26  0.30  

C11 95.9  122.2  151.8  259.1  217.4  0.24  0.30  0.36  

C12 86.0  113.9  146.5  206.4  250.3  0.20  0.28  0.34  

M1 70.9  116.5  152.7  179.4 152.7 0.19 0.28  0.36  

524 

M2 86.1  113.0  152.9  301.1 152.9 0.17 0.28  0.35  

M3 43.0  102.8  135.0  233.0 178.0 0.15 0.22  0.29  

M4 70.0  107.4  132.0  317.1 155.6 0.15 0.18  0.21  

M5 76.9  111.7  154.3  262.9 146.9 0.20 0.17  0.40  

M6 82.0  115.6  159.0  299.0 197.0 0.19 0.23  0.32  

 

A plot of crack spacing against fR value is shown in Figure 4.15a. 
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Figure 4.15a. Variation of crack spacing with fR value close to the ultimate load of 11kN 

 

From the above figure, although the results are scattered, the trend is that the higher the 

fR value, the smaller the crack spacing, irrespective of whether it is the minimum, 

average or maximum crack spacing that is being considered. By comparing the three 

trend lines, it can be seen that the slope of the maximum crack spacing curve is the 

steepest and the slope of the minimum crack spacing is the shallowest. This highlights 

that maximum crack spacing is more sensitive to the fR value of the bar while on the 

other hand, the minimum crack spacing is less sensitive to the fR value of the bar.  

 

A plot of crack width against fR values is shown in Figure 4.15b. 

 

fR Value 
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Figure 4.15b. Variation of crack width with fR value close to the ultimate load of 11kN 

 

From this figure, although the results are again scattered, the trend in this case is that 

the higher the fR value, the smaller the crack width, irrespective of whether it is the 

minimum, average or maximum crack width which is being considered. By comparing 

the three trend lines it can be seen that the slope of the maximum crack width curve is 

the steepest and the slope of the minimum crack width curve is the shallowest. This 

highlights that the maximum crack width is more sensitive to the fR value of the bar while 

on the other hand, the minimum crack width is less sensitive to the fR value of the bar. 

 

In Figures 4.16a and 4.16b, plots of crack width against fR value obtained by Alander 

(2002) and Mayer (2002) are presented. They both show a similar trend to the current 

study, i.e. the higher the fR value, the lower the crack width, but because of the variability 

of the experimental techniques that have been used there are significant differences 
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between the crack width results obtained by Alander and those of the current study.  

 

Of particular note is the fact that the trends observed in this study agree well with those 

obtained by Mayer, although the maximum crack widths recorded by Mayer are slightly 

lower than the maximum cracks width measured in the current study. This is attributed 

to the smaller span-to-depth ratio of 6.0 (1200mm/200mm) with Mayer’s specimens 

compared to that of 12.0 (1800mm/150mm) with specimens in this study.  

 

Compared with Alander’s result, the results in the current study appear to be much more 

sensitive to the fR value (i.e. a steeper slope when crack width is plotted against fR 

value). In addition, it is noticed that the magnitude of the crack widths measured in 

Alander’s experiment are slightly lower than those obtained by Mayer and in the current 

work. These differences are attributed to the differences in specimen configuration, 

experimental technique, the definition of crack width and the steel stress at which it was 

measured. Both sets of results support the crack width findings of the current study. 
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Figure 4.16a. Variation of maximum crack width with fR by Alander (2002) 
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Figure 4.16b. Variation of crack width with fR by Mayer (2002) 
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Further to Figure 4.12a, Figure 4.16a and 4.16b, a combined figure, Figure 4.17, 

containing best fit curves to all the data is presented. Although the experimental set up, 

the way and the loads at which the cracks were measured and the steel stress at which 

they were measured are all different, the agreement between the results of the current 

study and those of Mayer is reasonably good and in all cases the trend is one of the 

higher the fR value, the lower the crack width.  

 

As such it is concluded that the results of the current study do adequately describe the 

relationship between crack widths and the bond characteristics of the bar as defined by 

the fR value and can be used to extend the outputs of the numerical analysis to 

reinforcement with different bond characteristics. 
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Figure 4.17. Variation of crack width with fR by the Author, 

Alander (2002) and Mayer (2002) 
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4.6. Conclusions 

From the plots of bond stress against fR (Figures 4.12d, 4.12e and 4.12f), it can be seen 

that the higher the fR value the greater the bond stress. It is also noted that the 

maximum crack spacing and crack width decrease with an increasing fR value. However, 

care should be exercised when using this data because this variation of bond stress, 

crack spacing and crack width due to the fR value is smaller than the scatter of the 

experimental results. 

 

In Table 4.12, the crack spacings and crack widths of the different orientations of the 

reinforcing bar are summarized and the crack spacings and crack widths obtained from 

the overall results are added for comparison. The pattern of the results is somewhat 

random and therefore it is believed that the orientation of the steel bar does not affect 

the cracking performance. 

 

In Table 4.13, the behaviour of two sets of flexural beam specimens, with and without 

stirrups in the central zone, is summarized in terms of crack spacing and crack width. It 

is observed that the average crack spacing of beams with stirrups in the middle zone is 

about 100mm, which is the same as the spacing of the stirrups cast in the beam 

specimen. Also, the average crack spacing of beams with no stirrups in the middle zone 

is always greater than that when they are present. It is believed that the results for the 

beams with no stirrups in the middle zone are an appropriate representation of the 

theoretical cracking behaviour of a simple reinforced concrete beam. However, in 

practice, such a beam would always have stirrups throughout its length and therefore 

further work using different stirrup spacings is required to confirm how their presence 



BOND AND CRACKING OF REINFORCED CONCRETE – CHAPTER 4                        Simon H.C. Chan 

 

 

Page 84 

effects crack spacings in practical structural elements. 

 

The failure mode of the beams tested was a typical flexural failure and the appearance 

of regular, vertical cracks reflects what would be anticipated. It is noted from these tests 

that there were more but smaller cracks formed on the concrete beams which were 

reinforced with steel bars with a greater fR value. Crack widths for the beams cast using 

steel from Batch M were stable and were less than 0.2–0.3 mm at 70% of the ultimate 

load. However, these cracks develop rapidly when the steel bar starts yielding and then 

the deflection of the concrete beam increase rapidly. From the plots of crack spacing 

and crack width against fR value (Figures 4.15a and 4.15b), it is apparent that crack 

spacing and crack width are generally smaller the greater the fR value. It is also noted 

that maximum crack spacing and crack width are the most sensitive to the fR value.  

 

The latter concurs with the findings of tests carried out by Mayer (2002) and those 

carried out at Helsinki University of Technology and the University of Stuttgart as 

reported by Alander (2002). Plots of crack width against fR value for their tests are given 

in Figures 4.16c and 4.16d, in which the bond stress is found to be dependent on the 

relative rib area fR and that the crack widths are smaller the greater the fR value.  

 

On the one hand, bond strength is directly influenced by the fR value in that bond 

strengths are greater the larger the fR value, and on the other hand, crack width and 

crack spacing are likewise directly influenced by the fR value in that crack width and 

crack spacing are smaller the greater the fR value. As such the stronger the bond and 

the smaller the cracks when steel bar with a higher fR value is used, although it should 
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be recognized that the range of relative rib areas fR considered was small and therefore 

further work is still required to give confidence in these results.  

 

4.7. Modelling of Experiments 

To complement this experimental work, computational modelling using finite elements 

and a non-local gradient method is being developed to simulate the SLS behaviour of 

RC beams. A smeared damage approach based on the equations of the isotropic 

damage model used by Oliver (2002) is adopted for cracking and both local and 

non-local implementations were considered and this numerical work is described in 

Section 5.  
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Chapter 5 – NUMERICAL METHOD 

5.1  Introduction 

It is important for designers and analysts to be able to predict the size and disposition 

of cracks in reinforced concrete elements since satisfaction of code crack width limits is 

an important design criterion. However, there has been relatively little focus on, or 

success in, accurate crack width prediction in the vast amount of work undertaken in 

the finite element modelling of reinforced concrete structures over the past 40 years.  

 

The smeared crack approach, linked to either damage (Mazars and Pijaudier-Cabot 

1989) or plasticity (Feenstra and de Borst 1995) constitutive models, is frequently used 

for modelling cracking in finite element models of concrete structures. However, it is 

well known that when cracking is simulated with strain softening material models, 

spurious mesh sensitivity becomes an issue and this leads to non objective results and 

also can lead to convergence failure of the nonlinear solution process. The term 

‘regularisation’ has been applied to techniques which prevent this spurious mesh 

sensitivity and the traditional crack-band approach of Bazant and Oh (Bazant and Oh 

1983, Bažant and Planas 1998) has been widely used for such regularisation. However, 

this method does not solve numerical stability problems associated with softening 

materials. Stability and regularisation are both addressed by non-local approaches, 

which may be of gradient (de Borst and Miihlhaus 1992, Aifantis 1984 and Peerlings et 

al 1996) or integral form (Pijaudier-Cabot and Bažant 1987, Bazant and Pijaudier-

Cabot, 1988 and Bažant and Jirásek 2002). These non-local approaches are highly 

effective at both regularising and stabilising finite element solutions but they simulate 

cracking in a diffuse manner which means that crack widths cannot be obtained directly 
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from such solutions.  

 

One option for obtaining crack widths is to use a model in which crack openings are 

computed explicitly. Such models include approaches with embedded cohesive 

elements (Tijssens et.al. 2000), approaches which model strong discontinuities in 

meshes (Oliver et.al. 2003) and element free methods (Rabczuk and Belytschko 2007). 

However, to obtain accurate crack width predictions, meso-level information such as 

bar spacing, bar bond characteristics and cover (EC2 EN1992-1-1 2008) is required. 

Finite element models of full scale structures would currently be too expensive if such 

details were simulated explicitly with single-scale models. Thus, when the 

aforementioned approaches are applied to full scale structures, the extracted crack 

widths are likely to be approximate and hence unlikely to be consistent with code of 

practice predictions required by designers and analysts. Such models also have 

computational overheads associated with crack tracking procedures which can be 

particularly demanding when simulating full-scale 3D structures with multiple cracks.  

 

Non-local approaches remain attractive for analysts but there are certain issues over 

their validity and usefulness for the analysis of large scale RC structures. These issues 

include the appropriateness of using a non-local approach for naturally non-local 

reinforced elements, the fineness of mesh required to properly simulate fracture 

process zones, at scale, and the difficulty of extracting accurate crack widths from non-

local solutions. The former two issues are not addressed here but the work in this 

thesis concentrates on a method for calculating crack widths from non-local and, for 

comparison, local smeared solutions based on the assumption that it is valid to use a 
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non-local approach for reinforced concrete elements. 

 

Some work had been undertaken recently on this problem for unreinforced situations 

by Dufour et al. (2008), who have proposed a method for extracting crack widths from a 

nonlocal strain field, using an approach in which a non-local effective strain variable is 

equated to a regularised effective strain derived from an assumed discontinuity. 

 

Małecki et al, 2007, explored the effect of varying the characteristic length in a non-

local model on the spacing of localized zones when analyzing reinforced concrete 

prisms under tensile loading. They concluded that the spacing of these zones (taken as 

cracks) is 7 to 16 times the characteristic length (lch) and that lch values of between 5 

and 10 mm give a good match to crack width and spacing values calculated using 

CEB-FIP model code 90. 

 

At a cracked section of a RC beam, tension forces are carried by the reinforcement. 

However, the bond between steel and concrete still exists and this bond gradually 

transfers the force in the reinforcement at a crack position to the uncracked concrete in 

between two adjacent cracks (See Figure 5,2). This action stiffens the response of RC 

beams relative to that of a theoretically fully cracked beam (Kaklauskas et. al., 2009) 

and has therefore been termed ‘tension stiffening’. By contrast, tension softening is a 

property of plain concrete which describes the gradual loss of stiffness that occurs with 

increased micro-cracking. This behaviour can be modelled using fracture mechanics 

(Bazant and Oh, 1983). The issue of tension stiffening has also been recently explored 

with the aid of a 2D finite element model by Ng et.al. (2010). Other authors have used 
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detailed finite element models to aid the understanding of cracking behaviour in 

laboratory scale experiments (Wu and Gilbert, 2009 and Tammo et. al., 2009). 

 

The main purpose of the present contribution is to present a calculation procedure for 

computing the disposition and width of cracks in local and non-local finite element 

analyses from numerical strain fields. An isotropic damage model, based on that used 

of Oliver et al., 2002, is used to model concrete cracking.  

 

5.2 Numerical Model  

5.2.1 Nonlocal Implementation 

A non-local damage model has been employed for the present work. The non-local 

implementation uses the gradient formulation due to Ru and Aifantis (1993), see also 

Askes et al. (2008).  

 

A non-local strain tensor (  ) derived from the following differential equation is 

employed 

 

εεε
22

ch               (1) 

where ch  is a characteristic length, 2  is the Laplace operator,   and  are the local 

and non-local strain tensor respectively. 

 

The discretised form of these equations is as follows, 
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EuεDf                                   (2) 

where  

   


dNNNND T

ch

T

f

2
   and    



BdNE T
 

 

This may also be written  

 

Wuε               (2a) 

in which   EDW f

1
  

 

Natural boundary conditions are assumed to apply such that Equation (2) is solved 

without the application of any additional boundary conditions, other than those applied 

to nodes with prescribed and fixed displacements.  

 

5.2.2 Concrete Constitutive Model 

The essential constitutive equations of the isotropic damage model used for this study 

are based on those of Oliver et al., 2002. Here, only tensile damage is considered 

since tension cracking is the primary concern of this study. 

 

The total (secant) stress-strain relationship is written (in compact tensorial notation) as 

follows:  

 

εDσ :)1(              (3) 

where  and  are the stress and strain tensors respectively, D is the elasticity tensor 

which is assumed to be isotropic and ω is a scalar damage parameter, and εDσ :ee   

is the effective stress.  
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The response of undamaged material is linear elastic and the damage parameter   is 

set to zero initially. When the material is deformed under loading, micro cracks develop 

and these reduce the stiffness of the material. The damage parameter starts growing 

from zero and it represents the loss of integrity of the material. When the damage 

parameter 0.1 , the material is completely damaged and its corresponding stiffness 

vanishes. 

 

The effective stress parameter is defined as:  

 

 0

1

0 :: σDσ            (4) 

 

The evolution of damage in effective stress space is driven by the following damage 

loading function:  

 

rrf  

0

1

0 :: σDσ          (5) 

where 0


σ  denotes the positive part of stress tensor i.e. a tensor which contains only 

the components associated with the positive eigenvalues of the tensor. r is a damage 

evolution parameter which controls damage evolution. 

 

Damage increases only when the current value of r exceeds the previous limit, with the 

initial value being that associated with the elastic limit. Damage evolution can be 

expressed by the following loading / unloading condition: 

 

0f    0r    0fr  
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The damage parameter   depends upon the damage evolution parameter r as follows : 
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rrif

tm

t5

1

0

          (6) 

in which  1,0  and   ,trr  

where mr  is the damage evolution parameter r corresponding to a uniaxial tensile strain 

at the end of the tensile softening curve, which can be related to the fracture energy. 

The power constant 5 in equation 6 is a standard value which allows the equation to 

represent the response of a uniaxial tension test accurately. 

 

The initial value of damage evolution parameter tr  is directly related to the tensile 

strength, as follows :  

 

t
t

f
r

E
               (7) 

where E is Young’s modulus, tf  is the uniaxial tensile strength. 

 

The tangent D matrix for a local version of the model is as follows: 

 

0 0
tan (1 )




  
    

 

σ σ
D D

d

dr r
            (8) 

noting that d=Dtan:d  

 

For the non-local version of the model, Equation (3) is rewritten: 

 

(1 ( )) :  σ D ε              (9) 
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The consistent tangent stress-strain law is then as follows: 

 

 dDdDd t :: 2sec             (10) 

where the secant stiffness matrix is defined as eDD )1(sec  , 


































0

2 ):(
σ

r
D

dr

d
D et 


 and d  is the rate of equivalent strain. The second 

term 2tD  disappears if the strain is not on the damage surface. 

 

The fully consistent finite element tangent stiffness matrix for the non-local form of the 

model is as follows : 

 

WNdDBBdDBK t

TT




 2sec         (11) 

where N denotes the shape functions. B is the strain displacement matrix defined as : 

Bu  

 

5.2.3 Numerical Details 

The use of Newton solutions for non-local models was discussed by Jirásek and 

Patzák (2002). They presented the comparison of the efficiency of solution strategies 

using secant or tangent stiffness matrices. The secant stiffness matrix was shown to 

have a linear convergence rate and the tangent stiffness matrix had a quadratic 

convergence rate, once the state of damage stabilizes in an increment, thus the latter 

converges with fewer iterations. Here, a fully consistent tangent stiffness matrix is used. 

 

The finite element program described here was written in MATLAB by the author (from 

scratch). An overview of this program is given in Figure 5.1.  
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Figure 5.1. Algorithm of the program 
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5.3 Equations for Crack Width Calculations  

A large body of work has been undertaken to derive expressions to predict the spacing 

(Srm) and width (wk) of cracks for structural elements with a view to their use in codes of 

practice.  A summary of work undertaken to develop crack width formulae was 

presented in 2005 by Borosnyoi & Balazs.   

 

The main parameters which affect crack spacings and widths are the main bar size (), 

the effective reinforcement ratio (ef), the average steel strain between cracks ( sm ) 

and peak steel stress at the position of a crack (s0). The variation of steel and 

concrete strains between two adjacent cracks is illustrated in Figure 5.2 which shows 

that the steel strain reduces from a peak at the crack location to a minimum half way 

between the cracks whilst the concrete strain which follows a converse pattern. The 

crack opening is computed as the integral of the difference between the steel and 

concrete strains over two half crack spacings. 

 

The effective reinforcement ratio for a flexural member is the reinforcement area to 

effective concrete area ratio, where the effective concrete area is, nominally, that which 

is equivalent to a member in direct tension. The peak steel stress is generally 

calculated as the crack from a section in a ‘fully cracked state’, i.e. the theoretical 

stress that would exist in a section if concrete had zero tensile strength. Recent work 

has been undertaken on the effect on crack-widths of varying cover (Tammo, Lundgren 

and Thelandersson 2009) and of varying the parameter /ef  (Beeby, 2004). 
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Figure 5.2a. Strain distribution after cracks are formed 

 

 

 

 

` 

 

Figure 5.2b. Steel stress at a cracked section 

 

In the present work, the formulae from Eurocode 2 will be used for the main 

calculations. A full background to the Eurocode equations for cracking is provided in the 

text of Narayanan and Beeby (2005). Whilst EC2 formulae have been used here, the 

principles established could be applied to any code calculation formulae.  Although 

standard, the EC2 procedure will be summarised here for completeness. 

 

The mean strain, which is obtained from the fully cracked strain minus the strain 

component from tension stiffening, is as follows; noting that EC2 notation and 

constants have been adopted throughout.  

x 

Cracked Sections 

x 

Cracked Sections 
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 
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                 (12) 

 

the characteristic maximum crack spacing is given by, 

 

effp

r kkkckS
,

4213max,



                      (13) 

 

and the design crack width, 

 

 cmsmrcodemk Sw   max,,,                    (14) 

 

in which 1k  is a coefficient for bond properties of reinforcement (0.8 for high bond and 

1.6 for plain bars), 2k  denotes the nature of strain distribution (1.0 for pure tensile and 

0.5 for flexural), 3k = 3.4 and 4k = 0.425. tk  is a factor dependent on the duration of the 

load, which equals 0.6 for short-term loading. e is the ratio cms EE  and 
,

s
eff

c eff

A

A
  . 

effctf , is the mean value of the tensile strength of the concrete effective at the time when 

cracks are first expected to occur. Where the experimental cylinder splitting strength 

(fcyl) is available,  effctf ,  is taken to be 0.9 fcyl  , which follows the recommendation of 

CEB-FIP model code 90 (1990). However, it is acknowledged that van Mier (1997) has 

cast doubt on the existence of an exact relationship between uniaxial tensile strength 

and cylinder splitting strength. 
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For a flexural member, the effective area (Ac,eff) used in the reinforced beams/slabs is 

the lesser of 2.5(c+/2) or (h-x)/3; where c is the cover to main bars, h is the overall 

section depth and x is distance from compressive face to the neutral axis for a 

theoretically fully cracked section. 

 

Sr,max is the appropriate value to use in design since this gives the maximum calculated 

crack width and it is the parameter that designers need to limit to a prescribed value 

(typically 0.3mm, as given in EC 2 for moderate exposure conditions). However, as 

explained by Narayanan and Beeby (2005), the relationship between the mean crack 

spacing (Sr,m) and the characteristic maximum has been found to be Sr,max=1.7 x Sr,m 

and it is the mean crack spacing that is considered to be the most appropriate value to 

use when comparing calculated and experimental mean values.   

 

In 2005, Narayanan and Beeby point out that the aspect of crack calculation which 

varies most between codes of practices is the crack spacing.  To allow this to be 

assessed for the present examples, the mean crack spacing formula from CEB-FIP 

model code 1990 is also shown below. The chief difference between the CEB-FIP and 

EC2 formulae is that the latter includes a term which allows for variations in cover, 

which is reported to be a superior approach (Narayanan and Beeby 2005). 

 

eff,p
mCEB,r .S




1850               (15) 

 

5.4 Crack Calculations from Finite Element Results 

The basic premise of the proposed procedure is that the non-local strain (or smeared 
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strain in the local analysis), if considered over the calculated crack spacing, can be 

considered to be equivalent to the mean strain used in code calculations once tension 

stiffening has been taken into account. In making this assumption it is acknowledged 

that the simulation of distributed micro-cracking with strain softening is not the same as 

tension stiffening which accounts for intact concrete in-between discrete cracks. The 

truth is that, in reality, the concrete in-between discrete cracks will be micro-cracked 

and thus experimental derived expressions for tension-stiffening implicitly allow for 

micro-cracking. 

 

The resulting method developed for calculating crack widths comprises the following 

steps: 

1. Undertake a nonlinear analysis up to the relevant working load level at which 

crack widths are required. 

2. Identify the locations of maximum tensile strain in reinforcing elements. 

3. Read in the bar size of primary reinforcement, cover, secondary reinforcement 

size and k factors appropriate for the location. 

4. Compute the maximum crack spacing (Sr,max) from the code formula Equation 

(13) 

5. Compute the average strain in the reinforcing bar over a distance Sr,max, centred 

upon the maximum strain location. 

6. Account for the elastic strain in the concrete, assuming that the stress from the 

crack location varies from 0 to fteff to obtain cmc which is then assumed to be 

equivalent to (cm -sm) in Equation (14). 

7. Compute the mean crack width codemkw ,,  using Equation (14), with Sr,max from 
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step 4 above and cmc in place of (cm -sm) . 

 

It is emphasised that this is a post-processing procedure and no attempt is made to 

feed these results back into the analysis. 

 

5.5 Examples 

The analyses were undertaken with a MATLAB code written by the author, to which 

was added the post-processing algorithm described above. The characteristic length 

(lch) used in gradient solutions is a micro-scale (or meso-scale) parameter. It is linked to 

the fundamental particle size, which in the present case is the size of the coarse 

aggregate particles. In gradient-elasticity, lch has been taken as the particle size by 

Askes, Moratab and Aifantis (2008). In their 2002 review of non-local models, Bazant 

and Jirasek discuss the difficulty of exactly determining the characteristic length whilst 

recognising its connection to the size of the fracture process zone and the fundamental 

particle size. Here, the value of lch is taken as equal to the coarse aggregate particle 

size (dagg), and it is further noted that the use of lch = dagg, is generally consistent with 

the findings of Małecki et. al (2007). 

 

Two types of structural element are considered in this chapter (i) axially loaded prisms 

and (ii) beams loaded in flexure. The axially loaded reinforced prisms were tested by a 

group of researchers in a round robin testing programme led by Elfgren & Noghabai 

(1998, 2001 and 2002). This is followed by results from the analysis of the beams 

tested by Clark (1956) and then of a beam tested by the author. The main purpose of 

the experimental series tested in Cardiff was to compare the performance of beams 
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with standard reinforcement with those of beams formed with a new high-ductility bar 

produced by CELSA UK.  

 

The procedure described in Section 5.4 was used to calculate crack spacings for each 

example. As explained, Sr,max is the spacing appropriate to design whereas the mean 

value Sr,m is considered the best value to use when comparing the numerical and 

experimental results. Therefore, both the theoretical values for Sr,m and Sr,max are 

presented in the results tables. Where available, Sr,m,exp and Sr,max,exp are given and 

these are defined as the mean and maximum of the crack spacings measured in the 

experiment over a section of constant nominal axial load or moment as appropriate. 

Mean and maximum crack widths are calculated using the associated values of 

spacing. 

 

In each of the examples, a finite element mesh was designed for the analysis. Before 

the final finite element mesh was confirmed, the examples were simulated to test the 

sensitivity of mesh by considering a series of different sizes of trial mesh from coarse to 

fine. The final finite element mesh was selected when the mesh sensitivity dropped 

below 1%. In all cases, 8-noded quadratic elements were used to represent the 

concrete and 3-noded quadratic ‘bar’ elements to represent the reinforcement. In plots 

of the damage, the degree of damage varies from 0 (no damage) to 1 (complete 

damage). 

 

5.5.1 Axially Loaded Tests from Elfgren & Noghabai 

The example considers results from a round-robin experimental test series reported by 
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Elfgren & Noghabai (1998, 2001 and 

2002). The geometry of the specimens 

and testing arrangement are illustrated 

in Figure 5.3 and the material 

properties are summarized in Table 5.1. 

In the experiment, axial loading was 

applied to the bar and crack details monitored. The finite element mesh used for the 

analysis is shown in Figure 5.4a and plots showing the scalar damage variable at the 

same elongation of 1.0mm are shown in Figure 5.4b and 5.4c. The beams have been 

considered with the local model and with the non-local model using a characteristic 

length equal to the coarse aggregate particle size.  

 

 

 

F 

Figure 5.4b. Damage plot at 1.0mm for local model  

112mm 

 

or 5  

 960mm 

Figure 5.4c. Damage plot at 1.0mm for non-local model using a 

characteristic length equal to the coarse aggregate particle size 

112mm 

 

or 5  
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Figure 5.4a. Finite element mesh plot 
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Figure 5.3. Geometry of the specimens 
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Table 5.1. Material properties of Noghabail’s test 

 

The first observation from the results is that, with the local model, even with initial 

uniform properties, the damage shows a significant degree of localisation, even at the 

working displacement level of 1.0mm. This localisation did not occur to any significant 

degree when using the non-local model.   

 

The numerical and experimental load displacement responses are presented in Figure 

5.5. It may be seen that the local model captures the multiple oscillations (load drops) 

in the early post-cracking region, whilst the non-local model only captures the overall 

trend of the response. Nevertheless, the overall response achieved for both models is 

considered reasonable relative to the natural variations observed in such experiments.  

Axial load-Elongation response

0.0E+00

1.0E+04

2.0E+04

3.0E+04

4.0E+04

5.0E+04

6.0E+04

0 0.2 0.4 0.6 0.8 1
Elongation (mm)

A
xi

al
 L

oa
d 

P
 (

N
)

Local

Non-Local (char = 10)

Experiment response

 

Figure 5.5. Experimental and numerical response 

Specimen 
Concrete Steel 

cf   (N/mm2) ctf  (N/mm2) cE (kN/mm2) fG (N/mm) 
sE (kN/mm2) syf (N/mm2) 

Noghabail 60 3.75 37.2 0.170 180 563 

57kN 
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The results have been presented in Table 5.2 for the same end displacements. The 

displacement chosen is that from the experiment at the chosen working load level. In 

this case, the results, in terms of predicted crack widths, are considered to be 

adequately close.  

 

Table 5.2.  Results in terms of crack widths and crack spacings for axial loaded test result 

Model 

Experiment Numerical Numerical  Eurocode 

exp,,mrS  

exp,,mrS  

expmax,,rS

(mm) 

exp,kw  

exp,,mkw  

expmax,,kw

(mm) 

Steel 
Strain 

FE mean 

strain cmc 

over rs  

mrS ,  

max,rS
 

(mm)d 

mkw ,  

max,kw

(mm) 

m,kw  

with exp 
spacing 

exprmS  

(mm) 

codemkw ,,  

(mm) 

 sm cm 

 

Non-
Local 200a

 

207b 

248c 

0.15a 

0.135b 

0.15c 

0.00105b 

0.00103 
296 

503 

0.305 

0.518 

0.206 

0.213 

0.255 0.217 
0.000735 

Local 0.00104 
296 

503 

0.308 

0.523 

0.208 
0.215 

0.258 
a Noghabail (mean spacing but wk is a maximum), b Round-robin mean, c Round-robin 

max, d Spacings computed from Eurocode 

 

 

There is a significant discrepancy between the mean experimental and mean code 

crack spacing. Interestingly, crack spacing was also calculated according to the CEB-

FIP model code 90 and the code gives a mean crack spacing of 185mm, which is much 

closer to the mean experimental values from the round-robin tests in this case.  

 

The finite element prediction is very close to the code of practice prediction in this case, 

which would be an important factor for designers. 

 

It may be seen that if the experimental mean spacing is used the crack widths are 

closer to the experimental, for both local and non-local analyses, than if the mean code 
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of practice spacing is used; however the numerical values are still somewhat high.  

 

5.5.2 Beam Tests from Clark 

The example presented here uses results from an experimental test series undertaken 

by Clark in the 1950s, when crack patterns were first being properly investigated. The 

specimen details and testing arrangement are illustrated in the Figure 5.6 and the steel 

and concrete properties of Clark’s test are summarized in Table 5.3. The finite element 

mesh used for the analysis is shown in Figure 5.7a and plots showing the scalar 

damage variable at a deflection of 4mm are shown in Figures 5.7b and 5.7c.  

 

Table 5.3. Steel and concrete properties of Clark’s test 

Steel Concrete 

  
(mm) 

A  
(mm2) 

sE  

(kN/mm2) 

cf   

(N/mm2) 

cE  

(kN/mm2) 

ft 
(N/mm2) 

Gf 
(N/mm) 

22.2 50.27 195 29.3 33 2.9* 0.07* 

*Values based on fc values using CEB-FIP 1990 formulae 

 

 

Figure 5.6. Geometry of the specimens 
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# 

  

        Figure 5.7a. Finite element mesh plot 

 

 

 

Figure 5.7b. Damage plot at 4.0mm for non-local model 

 

 

 

 

 

Figure 5.7c. Damage plot at 4.0mm for local model 

 

A load-deflection plot is shown in Figure 5.8a, in which the loads and displacements of 

corresponding load stages are indicated. Note that the load-deflection curve from the 

experiment is not available. Strain profiles from the local and non-local gradient 

analyses with a characteristic length of 10mm are shown in Figure 5.8b. 

 

Load-Deflection Plot

0.0E+00

5.0E+03

1.0E+04

1.5E+04

2.0E+04

2.5E+04

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Displacement (mm)

F
or

ce
 P

/2
 (

N
)

Non-Local
(Char=10)
Local

 

457mm 914mm 457mm 305mm 305mm 

16.4kN 

20kN 

3.0mm 4.0mm 

Concrete Steel Reinforcement 



BOND AND CRACKING OF REINFORCED CONCRETE – CHAPTER 5                                  Simon H.C. Chan 

 

 

Page 107 

Figure 5.8a. Load – Central deflection response Steel strain porfile along the beam
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Figure 5.8b. Strain profile at different applied load levels 

 

It may be seen from Figure 5.8a that, in this case, the overall response from the local 

and non-local analyses are very close to each other. As with the previous example, 

localisation occurs in the analysis using the local model whereas no significant 

localisation is exhibited for the non-local model. 

 

The results in terms of crack widths and crack spacing for central deflections of 3.0mm 

and 4.0mm are presented in Table 5.4.  
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Table 5.4.  Results in terms of crack widths and crack spacings for Clark’s test result 

Model 
(working 

level) 

Experiment Numerical Numerical Eurocode 

exp,mrS

expmax,,rS

(mm) 

exp,,mkw

expmax,,kw

(mm) 

Mean 
steel   

strain* 
cmc 

mrS ,  

max,rS  

(mm) 

mkw ,  

max,kw  

(mm) 

m,kw  

with experiment 

spacing 
exprmS  

(mm) 

codemkw ,,  

(mm) 

 sm cm 

 

Non-
Local 

(3.0mm) 

104 

0.057 

0.084 
0.00053 

0.000540 
53.1 

90.2 

0.029 

0.049 
0.056 

0.039 
0.00073 

Local 
(3.0mm) 

0.000531 
53.1 

90.2 

0.028 

0.048 
0.055 

Non-
Local   

(4.0mm) 
0.090 

0.130 
0.00071 

0.000750 
53.1 

90.2 

0.040 

0.068 
0.078 

0.049 
0.00092 

Local 
(4.0mm) 

0.000734 
53.1 

90.2 

0.039 

0.066 
0.076 

*Based on quoted steel stress and assumed E value for steel 

 

For this configuration, the mean crack spacing from CEB-FIP model code 90 = 54mm, 

which is close to the 53mm predicted by EC2. 

 

The main results in Table 5.4 show an experimental crack width of 0.057mm at 3mm 

deflection and a corresponding local numerical result of 0.055mm when the 

experimental crack spacing is used. This suggests that for this example the effective 

mean strain in the concrete from both the local and non-local analyses are acceptably 

close to that in the experiment. 

 

5.5.3 Cardiff Celsa Test 

This example uses the results from one of the author’s experimental beams, which was 

described in Chapter 4 of this thesis (Section 4.5.2.3). The testing arrangement and 

specimen geometry are illustrated in Figure 5.9a. The properties of the steel 

reinforcement and concrete are given in Tables 5.5 and 5.6. The finite element mesh 
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used for the analysis is shown in Figure 5.9b. 

 

Table 5.5. Steel properties in Cardiff Celsa test 

Steel Grade A (mm2) 
0.2% Proof. Ultimate. Elongation. 

sE (kN/mm2) 
 (N/mm2)  (N/mm2)   (%) 

A A 47.78 554 587 10.5 185 

B B 51.53 521 597 20 199 

C C 50.27 537 668 25.7 200 

Max C 55.42 524 652 22.5 205 

 

Table 5.6. Concrete properties in Cardiff Celsa test  

Concrete cE (kN/mm2) cf   (N/mm2) cylf  (N/mm2) Gf (N/mm) 

A 39.5 49 5.1 0.105 

B 39.6 47 5.2  

C 39.2 49 4.9  

Max 39.0 47 5.1  

 

Figure 5.10 shows a photograph of cracked Celsa beam in which the cracks have been 

highlighted and damage plots at a deflection of 2.6mm are shown in Figures 11a-h. 

 

The cracks in the specimen were monitored in two ways during the tests (i) by visual 

observation and pencil tracing and (ii) using a Digital Image Correlation system (DIC). 

The same surface observations were made with both methods, with crack disposition 

and spacing measurements being in close agreement. Crack widths were monitored 

visually by using a magnifier but were also obtained, with greater accuracy, using the 

DIC images. It is data from the latter that are presented in the results tables. 
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Figure 5.9a. Geometry of the specimens 
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Figure 5.9b. Finite element mesh plot 

 

 

Figure 5.10. Cracked Celsa Beam 
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Figure 5.11a. Damage plot of specimen A at 2.6mm for non-local model 

 

 

 

 

Figure 5.11b. Damage plot of specimen A at 2.6mm for local model 

 

 

 

 

Figure 5.11c. Damage plot of specimen B at 2.6mm for non-local model 

 

 

 

 

Figure 5.11d. Damage plot of specimen B at 2.6mm for local model 

 

 

 

 

Figure 5.11e. Damage plot of specimen C at 2.6mm for non-local model 
 

 

 

Figure 5.11f. Damage plot of specimen C at 2.6mm for local model 

 

 

 

Figure 5.11g. Damage plot of specimen Max at 2.6mm for local model 

 

 

 

Figure 5.11h. Damage plot of specimen Max at 2.6mm for local model 
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Load-deflection plots for each Celsa beams are shown in Figure 5.12a-d and strain 

profiles from analyses with the local and non-local models are presented in Figure 

5.12e-h for the corresponding central displacements of 2.6mm. 
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Figure 5.12a. Load – Central deflection Plot for Celsa beam A 
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Figure 5.12b. Load – Central deflection Plot for Celsa beam B 
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Figure 5.12c. Load – Central deflection Plot for Celsa beam C 
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Figure 5.12d. Load – Central deflection Plot for Celsa beam Max 
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Figure 5.12e. Strain profile of both local and non-local approach for Celsa beam A                    

at deflection level of 2.6mm 
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Figure 5.12f. Strain profile of both local and non-local approach for Celsa beam B                     

at deflection level of 2.6mm 
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Figure 5.12g. Strain profile of both local and non-local approach for Celsa beam C                    

at deflection level of 2.6mm 
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Figure 5.12h. Strain profile of both local and non-local approach for Celsa beam Max                    

at deflection level of 2.6mm 
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The evolution of both strains development and damage with the local and non-local 

models are presented in Figure 5.13a-h below. 
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Figure 5.13a. Evolution of strain development of both local and non-local approach  

for Celsa beam A 

 

 

Figure 5.13b. Evolution of damage development of both local and non-local approach 

for Celsa beam A 
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Figure 5.13c. Evolution of strain development of both local and non-local approach  

for Celsa beam B 

 

 

Figure 5.13d. Evolution of damage development of both local and non-local approach 

for Celsa beam B 
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Figure 5.13e. Evolution of strain development of both local and non-local approach  

for Celsa beam C 

  

 

Figure 5.13f. Evolution of damage development of both local and non-local approach 

for Celsa beam C 
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Figure 5.13g. Evolution of strain development of both local and non-local approach  

for Celsa beam Max 

 

 

Figure 5.13h. Evolution of damage development of both local and non-local approach 

for Celsa beam Max  

 

The results in terms of crack width and spacing, at a deflection of 2.6mm, are 

presented in Table 5.7.  
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Table 5.7.  Results in terms of crack widths and spacings for the Cardiff Celsa Test 

Specimens 

Experiment Numerical Eurocode 

exp,mrS  

expmax,rS  

(mm) 

exp,,mkw

expmax,,kw  

(mm) 

Mean 
steel 

strain* 

cmc(Non-Local) 

cmc(Local) 

nummkw ,,  
(

exp,mrS ) 

numkw max,, (
expmax,,rS ) 

Effective 
Strain 

eff 

codemrS ,,  

coderS max,,

(mm) 

codemkw ,,  

codekw max,,

(mm) 

A 
128 
233 

0.40 
0.66 

0.0021 

0.00235  
0.00231 

0.296 
0.538 

0.00175 
118 
200 

0.206 
0.351 

B 
115 
252 

0.32 
0.50 

N.A. 

0.0018  
0.00198 

0.228 
0.499 

0.001735 
118 
200 

0.204 
0.347 

C 
119 
274 

0.29 
0.39 

0.00209 

0.001786 
0.00167 

0.199 
0.458 

0.001801 
118 
200 

0.212 
0.360 

Max 
111 
215 

0.23 
0.40 

0.0018 

0.0015 
0.00172 

0.191 
0.370 

0.00171 
118 
200 

0.201 
0.342 

*Value based on mean concrete surface strain at bar level from DIC readings  

 

For the Celsa beams, some localisation occurs at the selected working load level in 

both the local and non-local analyses although, as may be expected, the localisation is 

more pronounced in the local analysis. The overall response of the experimental beam 

is again well matched by the numerical responses.  

 

The mean and maximum code crack spacings are close to the experimental values, as 

are the experimental and numerical mean strains, even though the latter were based 

on surface strain measurements. 

 

The crack width calculated using the mean strain in the reinforcement and the mean 

experimental spacing is significantly below that measured in the experiments. This 
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suggests that in this case the finite element model underestimates the effective strain 

used for crack calculation.  

 

5.6 Discussion  

In order to aid discussion, three additional sets of comparisons are made in Tables 5.8a 

to 5.8h. These show differences between (Table 5.8a-5.8c) local analysis results and 

experimental, (Table 5.8d-5.8f) code (EC2) calculations and numerical results and 

(Table 5.8g-5.8h) code calculations and experimental results. In all cases, the 

differences between crack widths predicted with local and non-local analyses are 

inconsequential compared with the differences being discussed here; thus, only local 

results were used in the present comparison for clarity. Both the maximum and mean 

experimental crack spacings have been used in the calculations so that the differences 

due to the effective strains can be examined. The large natural variability of 

experimental crack spacings and major differences between values predicted by 

different codes of practice for this parameter have both been discussed earlier in the 

paper.  

 

The experimental mean steel strains agree reasonably well with the numerical results 

with a difference of less than 20%, whilst the maximum difference between the 

experimental results and the code calculation is 41%. There is generally close 

agreement between the code predictions,, experimental results and numerical results 

for crack widths, as illustrated in Tables 5.8a-b, 5.8d-e and 5.8g-h. A similar comparison 

of the crack spacing is presented in Table 5.9. 
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Beeby and Scott (2005) compared 244 experimental values with crack widths from the 

CEB-FIP formulae and found the mean experimental/calculated width to be 0.81 with a 

standard deviation of 0.49. This provides a good indication of the level of variability of 

crack width data and suggests that the 40% discrepancy referred to above is consistent 

with the degree of variation generally found in experimental data. 

 

Here no attempt has been made to evaluate the effects of creep, shrinkage or bond slip. 

Whilst crack width models use bond strength as a key parameter and (implicitly) 

assume that bond slip occurs, the fact that the mean reinforcement strains agree well 

with experimental values suggests that bond slip, at working load levels, may not be 

one of the dominating factors. The conclusion that cracking does not result from bond 

failure was reached by Beeby and Scott (2005), rather they suggest a model which 

represents the concrete in between inclined cracks which is illustrated in Figure 5.14. 

 

 

 

 

 

 

 

 

 

Figure 5.14. Schematic diagram of bar–concrete interaction  

proposed by Beeby and Scott (2005) 

 

A conclusion from the present work is that, if common mean crack spacings are used, 

the numerical crack width results generally agree with code of practice predictions with 

F Steel Reinforcement 

Concrete 
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differences ranging from -42% to +59% and with the experimental results with 

differences ranging from -17% to +72%. If common max crack spacings are used these 

differences become -28% to +42% and -27% to +70% respectively. With respect to the 

reinforcement strains, it is concluded that, the numerical and experimental results 

match well match with differences ranging f from -20% to +10%. The differences 

between the numerical results and code of practice predictions for this parameter 

ranged from -27% to +41%. 

 

Table 5.8a. Experimental & Local analysis of crack width with mean spacing 

Example exp,,mkw  

(mm) 

nummkw ,,  

(
exp,mrS ) 

(mm) 








 

Exp

ExpNum  

% 

1 0.135 0.215 +59% 

2 (3mm) 0.057 0.055 -4% 

3(a) 0.40 0.296 -26% 

3(b) 0.32 0.228 -29% 

3(c) 0.29 0.199 -31% 

3(max) 0.23 0.191 -17% 

 

Table 5.8b. Experimental & Local analysis of crack width with max spacing 

Example expmax,,kw  

(mm) 

numkw max,,  

(
expmax,,rS ) 

(mm) 








 

Exp

ExpNum  

% 

1 0.15 0.258 +72% 

2 (3mm) 0.084 0.094 +12% 

2 (4mm) 0.130 0.126 -3% 

3(a) 0.66 0.538 -18% 

3(b) 0.50 0.499 0% 

3(c) 0.39 0.458 +17% 

3(max) 0.40 0.370 -8% 
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Table 5.8c. Experimental & Local analysis of reinforcement strain 

Example 

Exp 

cmc 

Num 

cmc 






 

Exp

ExpNum  

% 

1 0.00105 0.00104 -1% 

2 (3mm) 0.00053 0.000531 0% 

3(a) 0.0021* 0.00231 +10% 

3(b)  

3(c) 0.00209* 0.00167 -20% 

3(max) 0.0018* 0.00172 -4% 

*Value at concrete surface, likely to be below value in centre of bar 

 

Table 5.8d. Code (EC2) & Local analysis of crack width with mean spacing 

Example codemkw ,,  

(mm) 

nummkw ,,  

( codemrS ,, ) 

(mm) 








 

code

CodeNum  

% 

1 0.217 0.308 +42% 

2 (3mm) 0.039 0.028 -28% 

3(a) 0.206 0.296 +44% 

3(b) 0.204 0.228 +12% 

3(c) 0.212 0.199 -6% 

3(max) 0.201 0.191 -5% 

 

Table 5.8e. Code (EC2) & Local analysis of crack width with max spacing 

Example codekw max,,  

(mm) 

numkw max,,  

( codemrS ,, ) 

(mm) 








 

code

CodeNum  

% 

1 0.369 0.523 +42% 

2 (3mm) 0.066 0.048 -27% 

2 (4mm) 0.084 0.066 -21% 

3(a) 0.351 0.538 +53% 

3(b) 0.347 0.499 +44% 

3(c) 0.360 0.458 +27% 

3(max) 0.342 0.370 +8% 
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Table 5.8f. Code (EC2) & Local analysis of reinforcement strain 

Example 

Code 

cmc 

Num 

cmc 







 

code

CodeNum  

% 

1 0.000735 0.00104 +41% 

2 (3mm) 0.00073 0.000531 -27% 

2 (4mm) 0.00092 0.000734 -20% 

3(a) 0.00175 0.00231 +32% 

3(c) 0.001801 0.00167 -7% 

3(max) 0.00171 0.00172 +1% 

 

Table 5.8g.  Code (EC2) & Experiments with mean spacing 

Example exp,,mkw  

(mm) 

codemkw ,,  

(
exp,mrS ) 

(mm) 








 

Exp

ExpCode  

% 

1 0.135 0.152 +13% 

2 (3mm) 0.057 0.076 +33% 

2 (4mm) 0.090 0.0957 +6% 

3(a) 0.40 0.224 -44% 

3(b) 0.32 0.200 -38% 

3(c) 0.29 0.214 -26% 

3(max) 0.23 0.190 -18% 

 

Table 5.8h.  Code (EC2) & Experiments with max spacing 

Example expmax,,kw  

(mm) 

codekw max,,  

(
expmax,,rS ) 

(mm) 








 

Exp

ExpCode  

% 

1 0.15 0.182 +21% 

2 (3mm) 0.084 0.114 +36% 

2 (4mm) 0.13 0.144 +10% 

3(a) 0.66 0.408 -38% 

3(b) 0.50 0.437 -13% 

3(c) 0.39 0.493 +27% 

3(max) 0.40 0.368 -8% 

 

The final issue to be explored is the degree of agreement between the spacing of the 

localised strain bands in the numerical analyses and the experimental crack spacings. 

Numerical localisation occurred in all local analyses and, to some degree, in example 1 

and some of example 3 in the non-local analyses. However, it may be seen from Table 
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5.9 that, generally, the spacings of the localised bands from local analyses are close to 

the corresponding experimental values as well as the code of practice values. 

 

Table 5.9. Summary of crack spacing 

Example 
exp,mrS  

(mm) 
mFErS ,  

(mm) 

code,m,rS  

(mm) 

CEBFIPmrS ,,  

(mm) 

1 207 178 296 185 

2 (3mm) 104 67 53 54 

3A (Local) 128 110 118 125 

3B (Local) 115 135 118 125 

3C (Local) 119 108 118 125 

3Max (Local) 111 116 118 125 

 

5.7 Conclusions 

 The overall responses of the beams in the numerical analyses agree well with 

those from the experiments.  

 The mean steel strain computed in both local and non-local analyses are in 

good agreement with experimental data and the code of practice values. 

 The predictions of mean crack widths show considerably variability: however, 

the differences between the predictions made with the method proposed here 

show slightly less overall discrepancy with the experimental values than with 

those from the EC2 formulae. 

  A conclusion is that, if common mean crack spacings are used, the proposed 

method gives mean crack widths within ±59% of the EC2 formula and ±72% of 

experimental values; if common max crack spacings are used, the proposed 

method gives mean crack widths within ±42% of the EC2 formula and ±70% of 

experimental values.  
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 A conclusion regarding the values of reinforcement strain is that the numerical 

results match the experiment results well with differences ranging from ±20%, 

whilst the differences between the numerical results and code of practice 

predictions range from ±41%. 

 Crack spacings calculated from the distance between the centres of localised 

bands in the finite element analyses showed good agreement with the 

experiments as well as with the EC2 code predictions and the CEB-FIP code 

predictions. 
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Chapter 6 – MODEL VALIDATION AND COMPARISON WITH EXPERIMENT 

6.1 Introduction 

In Chapter 4, experimental testing on bond and the surface cracking for concrete beams 

reinforced with different rib bars was described and presented. In Chapter 5, the 

smeared cracking approach is used to model the cracking behaviour of reinforced 

concrete beams under pure flexural bending.  

 

In this chapter the numerical model described in Chapter 5 is used to simulate all of the 

reinforced beams tested experimentally. Here, comparisons will be made between 

experimental and numerical first cracking loads, ultimate loads and mean reinforcement 

strains. 

 

The numerical procedures and meshes employed are the same as those described in 

Chapter 5 and thus this chapter concentrates solely on the results from the simulations 

and the comparisons.  

 

6.2 Initial Cracking Load And Ultimate Load 

In Chapter 4, the arrangement of the flexural beam tests was described and in these 

tests four different grades of steel reinforcing bar were used.  

 

Six specimens were tested in Batch M and 12 specimens in Batches A, B and C. 

Comparisons of the results for initial cracking load and ultimate load from the finite 

element analyses, the experimental data and the code prediction are shown in Table 6.1. 

It is noted that in the ‘code predictions’ are based on EC2 assumptions with all partial 

factors removed and were calculated using mean material strengths. It is observed that 

the initial cracking load of the beam specimens increases slightly as the rebar bond 
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strength increases, whereas the ultimate load capacity of beam specimens increases 

significantly with bond strength. 

 

Table 6.1 Initial cracking load capacity and ultimate load capacity of beam specimens 

Beam Specimen A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 FEM Code 

Initial Cracking Load(kN) 8.2  8.2  7.5  8.8  8.6  9.3  9.1  9.0  8.6  9.5  8.8  8.9  7.8 - 

Ultimate Load(kN) 24.3  22.7  23.1  22.4  23.5  24.3  23.4  24.1  23.4  24.4  23.6  23.8  23.2 21.0 

Beam Specimen B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 FEM Code 

Initial Cracking Load(kN) 6.8  7.0  7.7  7.3  7.1  6.9  7.9  8.2  9.5  8.3  8.6  8.4  7.9 - 

Ultimate Load(kN) 19.7  19.1  22.0  20.6  24.4  21.1  21.3  21.1  22.2  22.0  21.2  20.3  22.5 20.0 

Beam Specimen C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 FEM Code 

Initial Cracking Load(kN) 11.1  10.0  8.3  9.1  9.9  7.6  9.1  9.5  9.8  9.6  8.6  9.1  7.66 - 

Ultimate Load(kN) 29.4  28.2  27.8  27.5  23.4  23.0  23.0  22.9  22.6  23.5  22.7  23.0  22.6 20.5 

Beam Specimen - - - - - - M1 M2 M3 M4 M5 M6 FEM Code 

Initial Cracking Load(kN) - - - - - - 10.6  7.2  9.0  9.2  9.3  10.1  7.78 - 

Ultimate Load(kN) - - - - - - 27.0  26.7  26.0  26.5  27.6  26.7  26.8 20.0 

 

Table 6.2 Summary of initial cracking load capacity and ultimate load capacity of beam 

specimens 

Beam Specimen Minimum Average Maximum 
Standard 

Derivation 
FEM Code 

Batch A :  
Initial Cracking Load 8.6 9.0 9.5 0.3 7.8 - 

Ultimate Load 22.4 23.6 24.4 0.6 23.2 21 

Batch B :  
Initial Cracking Load 7.9 8.5 9.5 0.5 7.9 - 

Ultimate Load 20.3 21.4 22.2 0.7 22.5 20.0 

Batch C :  
Initial Cracking Load 8.6 9.3 9.8 0.4 7.66 - 

Ultimate Load 22.6 23.0 23.5 0.3 22.6 20.5 

Batch M :  
Initial Cracking Load 7.2 9.3 10.6 1.2 7.78 - 

Ultimate Load 26.0 26.8 27.6 0.5 26.8 20.0 
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The results shown in Table 6.1 are summarized in Table 6.2, in which it can also be 

observed that both initial cracking loads and ultimate loads tend to increase with bond 

strength however, the degree of increase for initial cracking load capacity is small in 

comparison to that for the ultimate load capacity. Furthermore, the increase in ultimate 

load capacity is not proportional to the increase in bond strength. Theoretically there is 

little increase in overall flexural strength with bond strength, if the bond strength is 

sufficient to transfer the maximum force in the reinforcement to the concrete, with the 

maximum reinforcement force being that consistent with the theoretical ultimate flexural 

moment. There is not much difference between the performances of Batch A, Batch B, 

Batch C and Batch M for initial cracking loads, but Batch M has a noticeably higher 

ultimate load than the others. 

 

There are some differences between the experimental and numerical results and this is 

believed to be mainly due to the fact that a non-slip model is used and de-bonding 

failure is not considered in numerical calculations, even although de-bonding failures 

did occur in the experimental beams. In the nonlinear range, the trends of the finite 

element and the experimental results are generally similar. 

 

Furthermore, since de-bonding failure was not considered in the numerical calculations, 

no slip between the bars and concrete was simulated and therefore the rate of increase 

of tensile stresses in the concrete adjacent to a crack may have been greater in the 

model than in the experimental beams. As a consequence, the level of damage induced 

at the crack sections would be higher in the numerical calculations under the same 

applied load. It was therefore expected that the ultimate loads from the numerical 

simulations would be slightly lower than those obtained from the experiments. This was 

true for Batches A, C and M, but not for Batch B, for which the numerical peak load was 

slightly higher than the mean of the experimental results. It is observed that both the 
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standard deviations of the reinforcement ultimate strengths and compression concrete 

strengths in Batch B were significantly higher than in the other batches, which might due 

to variations in the manufacture of the steel reinforcement and the mixing/casting of 

concrete. It is therefore believed that the high numerical peak load in Batch B may be 

due to the variation in the strengths of the steel and concrete used for Batch B. 

 

In addition, it is observed that the ultimate loads from the design code predictions are 

lower than experimental results and the numerical simulations. It is believed that this is 

due to the relatively conservative assumptions used in the design code predictions. 

 

6.3 P–δ Curves 

Comparisons of the curves of load versus deflection at the middle of the beam from the 

finite element analyses and the experimental data are made. The load-displacement 

curves in the linear range from beginning to initial concrete cracking can be seen in 

Figure 6.1. 

 

 

Figure 6.1. Comparisons of the curves of load versus deflection at the middle of the 

beam in linear and early non-linear range from the finite element analyses and the 

experimental data 
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In the elastic range, the numerical prediction is slightly higher than the experimental 

response, however the initial concrete cracking loads from the numerical simulation 

correlate well with those from the experiments. In general, the load-displacement plot 

above shows the results from numerical analysis agrees well with the results from the 

experimental data. 

 

The load-displacement curves from initial concrete cracking to steel yield can be seen in 

Figure 6.2 below. 

 

 

Figure 6.2. Comparisons of the curves of load versus deflection at the middle of the 

beam in non-linear range from the finite element analyses and the experimental data 

 

Comparing the load-displacement curves from the numerical simulations and 

experimental results, it can be said that the simulation predicts well the 

load-displacement response of the flexural beam in the linear elastic stage, and 

reasonably well in the nonlinear range after the first cracking. However, the simulations 
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do underestimate the overall stiffness a little when compared with the experimental 

responses. 

 

6.4 Average Tensile Strain in Main Steel Reinforcement 

Comparisons of the load-average tensile strain plots from the finite element analyses 

and the experimental data for the main steel reinforced at mid-span are shown in Figure 

6.3a-6.3c. 
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Figure 6.3a Comparisons of the load-tensile strain plots of Beam Specimen A12 

between numerical analyses and the experimental result 
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Figure 6.3b Comparisons of the load-tensile strain plots of Beam Specimen C9 between 

numerical analyses and the experimental result 
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Figure 6.3c Comparisons of the load-tensile strain plots of Beam Specimen M1 between 

numerical analyses and the experimental result 

 

For both the experimental and analytical responses in the linear elastic range, i.e. 

before concrete starts cracking, the strains from the finite element analysis correlate 
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well with those from the experimental data. In the nonlinear range, the trends of the 

finite element and the experimental results are also generally similar. 

 

6.5 Evolution of Crack Development 

In the flexural beam experiment, flexural cracks were found when the de-bonding failure 

happens at the middle of the beam. From experimental DIC measurements, it can be 

noted that the numbers of cracks were observed to increase with increasing load and 

the cracks then develop towards the top of the beam, as shown in Figure 4.11a-c. 

 

Damage patterns at each applied load step from the numerical model are presented, in 

Figures 5.13a-h. The numerical crack patterns are assumed to be given by the areas of 

localised damage in Figures 5.13a-h. It is noted that the range of crack spacings 

(positions of localised damage) predicted by the numerical model (108mm-135mm) was 

similar to that measured in the experiments (111mm-128mm), and thus it may be stated 

that the crack patterns in numerical model and experimental beams agree well. 

 

By comparing the crack evolution pattern from the numerical simulations and the 

experiment cracking evolution pattern, it can be observed that the cracks simulated by 

the numerical model (in general) have lower peak values and wider profiles, than in the 

experiments. The lower peak values and wider profiles may have resulted from the use 

of a large characteristic length in the non-local numerical model, however, the overall 

experimental crack evolution profiles agree reasonably well with those from the 

numerical model. 
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6.6 Discussion of Results 

In order to calibrate the numerical model, the load-deflection response, the load-steel 

strain response, average crack widths and average crack spacings for each batch of 

flexural beams are compared with those generated from the numerical model. 

  

Load-deflection responses of the beam specimens obtained from the experiments are 

compared to those from the numerical simulations, in Figure 6.1 and 6.2. These show 

good agreement in the elastic range and the predicted first cracking loads are promising. 

Once cracking occurs, the value of the peak loads tend to be slightly underestimated by 

the numerical model relative to those from the experiments. The yield loads from the 

experimental and numerical simulations are also in good agreement. 

 

Comparisons of crack widths and crack spacings at a mid-deflection level of 2.6mm are 

shown for Beam Specimens A, B, C and M in Table 5.7, in which it is shown that the 

numerical responses in the elastic range, and in the range after first cracking but before 

yielding, agree well with both the code of practice calculations and the experimental 

results. Furthermore, in Table 5.7, and in Figure 6.3 above, the mean steel strain 

computed in both local and non-local analyses are also compared to the steel strains 

extracted from experimental data. Strain measurements were only considered up to the 

point of initial yielding and thus a comparison could not be obtained in the plastic range. 

However, the numerical model shows good agreement with the measured experimental 

structural response for both the elastic and inelastic ranges. 

 

6.7 Comparison of Numerical Model and Experiment with Eurocode 2 

An approach for crack control is presented in Eurocode 2 (EC2) and therefore the EC2 

approach was applied to the present ‘Celsa’ beams. This allowed the comparison of this 
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code based method with the numerical predictions as well as with the experimental 

results to determine whether both the code formulae and proposed numerical model are 

applicable to crack prediction.  

 

Allowing for the fact that the design approach of Eurocode 2 is conservative, it can be 

said that the agreement between the code calculations and experimental results, given 

in Table 5.8h, is reasonable. 

 

The numerical predictions compare well with the code calculations, as illustrated in 

Table 5.8d-e, although it is noted that the numerical simulations slightly overestimated 

the crack widths when compared with the experimental results. 

 

The steel strains from the numerical simulations, experiments, and code calculations 

are compared in Tables 5.8c and 5.8f. This comparison shows good agreement and 

confirms that the numerical model is able to predict the steel strains with good accuracy. 

 

6.8 Conclusion 

The above comparisons between code based formulae, experimental results and 

numerical simulations have considered a wide range of measured parameters which 

include concrete crack widths and crack spacings, reinforcement strains, 

load-displacement response, load-strain response, first cracking loads and yield loads. 

The comparisons show generally good agreement between the approaches. This gives 

confidence in the experimental data and validates the numerical (and calculation) 

approaches developed. 
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Chapter 7 – CONCLUSIONS AND THE WAY FORWARD 

7.1 General 

This chapter summarises the general conclusions that may be drawn from the present 

investigation and comments on the future outlook of the research. For specific 

conclusions, readers are directed to the conclusion sections at the end of each of the 

individual work chapters. 

 

The research objectives, as outlined in the introduction to this thesis, were to: 

1. Undertake bond tests to investigate and improve the understanding of the effect on 

bond stress of different reinforcement rib patterns and their relative rib area, fR. 

2. Undertake flexural beam experiments for concrete beams reinforced with different 

types of ribbed steel bar, in order to better understand the development of cracks 

and the effect on crack pattern of different rib patterns. 

3. Simulate the crack development within reinforced concrete under tensile loading 

using a non-linear finite element model with a smeared crack approach. 

4. Compare the results of a numerical simulation of the experimental works to validate 

the experimental results and to provide a worked example of how the numerical 

model could be used to predict the behaviour of steel reinforced concrete 

specimens. 

 

In respect of each of these four objectives, the following research has been undertaken, 

which has led to the conclusions being made below. 
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7.2 Experimental Programme 

7.2.1 Bond Tests 

Bond experiments were designed and completed in which the bond performance of 

reinforcing steel bars with different rib patterns and so different fR values were examined 

by pullout tests and bond beam tests. The main conclusions of these tests were: 

 In both pullout tests and bond beam tests, a trend of higher bond stress, i.e. 

stronger bond, with steel bars with higher fR value was observed. 

 While the trend of higher fR value implying stronger the bond is valid for both 

pullout tests and bond beam tests, it is noticed that this trend is more pronounced 

in the bond beam test. The presence of high confinement in the bond beam test is 

the main reason for this. 

 

7.2.2 Flexural Beam Tests 

In addition to the bond tests above, experiments using flexural beams were designed 

and completed, in which the SLS behavior, including the crack development of concrete 

beams reinforced with steel bars having different rib patterns and so different fR values, 

was examined. The main conclusions were: 

 The pattern of crack spacings and crack widths for different orientations of the 

reinforcing bar was largely random and therefore it is believed that the orientation 

of the steel bar does not affect the cracking behaviour. 

 The average crack spacing of beams with stirrups in the middle zone was found to 

be about 100mm, which was the same as the spacing of the stirrups cast in the 

beam specimen, whereas the average crack spacing of beams with no stirrups in 

the middle zone was always greater than that. It is believed that the results for the 

beams with no stirrups in the middle zone are an appropriate representation of the 
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theoretical cracking behaviour of a simple reinforced concrete beam. However, in 

practice such a beam would always have stirrups throughout its length, the 

consequence of which is that the cracks will always tend to form at the location of 

the stirrups. 

 There were more but smaller cracks formed in the concrete beams which were 

reinforced with steel bars with a greater fR value, i.e. the maximum crack spacing 

and crack width decreased with an increasing fR value. 

 Bond strength is directly influenced by the fR value in that bond strengths are 

greater the larger the fR value, while on the other hand, crack width and crack 

spacing are likewise directly influenced by the fR value in that crack width and crack 

spacing are smaller the greater the fR value. As such the stronger the bond and the 

smaller the cracks when steel bar with a higher fR value is used, although it should 

be recognized that the range of relative rib areas fR considered was small. 

 Adopting a DIC system to monitor the strain and displacement of the beam and to 

trace the evolution of crack development throughout the testing is a relatively 

accurate and reliable method for this size of specimen. 

 

7.3 Numerical Simulation 

In the numerical analyses, the concrete cracking is indicated by the damage in concrete. 

To capture the response of the concrete material behaviour, a damage constitutive 

concrete model has been presented and was used to simulate the reinforced concrete 

beam specimens for different types of simple loadings and structural test cases. The 

main findings of this research were: 

 The overall response of the beams in the numerical analyses agrees well with 

that from the experiments.  
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 The mean steel strain computed in both local and non-local analyses are in good 

agreement with experimental data and the code of practice values. 

 The predictions of mean crack widths show considerably variability, however the 

differences between the predictions made with the method proposed here show 

slightly less overall discrepancy with the experimental values than with those 

from the EC2 formulae. 

 A conclusion is that, if common mean crack spacings are used, the proposed 

method gives mean crack widths within ±59% of the EC2 formula and ±72% of 

experimental values; if common maximum crack spacings are used, the 

proposed method gives mean crack widths within ±42% of the EC2 formula and 

±70% of experimental values.  

 A conclusion regarding the values of reinforcement strain is that, the numerical 

results match well with experiment results within ±20%, and the numerical 

results match with the code of practice predictions within ±41%. 

 Crack spacings calculated from the distance between the centres of localised 

bands in the finite element analyses showed a good agreement with the 

experiments as well as the BS EN1992-1 (2004) predictions and the CEB-fip 

model code (1990) predictions. 

 

7.4 Model Validation and Comparison with Experiments  

In order to calibrate the numerical model, the load-deflection response, the load-steel 

strain response, average crack widths and average crack spacings for each batch of 

flexural beams were compared with those generated from the numerical model. The 

main findings of this research were: 
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 Load-deflection responses of the beam specimens obtained from the experiments 

were compared to those from the numerical simulations. These showed good 

agreement in the elastic range and the first cracking loads were promising. Once 

cracking occurs, the value of the peak loads tended to be slightly underestimated 

by the numerical model relative to those from the experiments. The yield loads 

from the experimental and numerical simulations were in good agreement 

 Comparisons of crack widths and crack spacings at mid-span derived from the 

numerical responses in the elastic range, and in the range after first cracking but 

before yielding, agreed well with both the code of practice calculations and the 

experimental results.  

 Comparisons of the mean steel strain computed in both local and non-local 

analyses with the values extracted from experimental data exhibited good 

agreement in both the elastic and inelastic ranges. 

 When looking at crack widths, the numerical predictions compared well with the 

code calculations although the numerical simulations slightly overestimated the 

crack widths when compared with the experiment result. 

 When looking at steel strains, the numerical simulations, experiments, and code 

calculations demonstrated good agreement and confirmed that the numerical 

model was able to predict the steel strains with good accuracy. 

 

The above comparisons between code based formulae, experimental results and 

numerical simulations considering a wide range of measured parameters which 

included concrete crack widths and crack spacings, reinforcement strains, 

load-displacement response, load-strain response, first cracking loads and yield loads 

generally exhibited good agreement between the approaches considered. This gives 
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confidence in the experimental data and validates the numerical (and calculation) 

approaches developed. 

 

7.5 Further Work 

There are three main issues which need to be further investigated, before this numerical 

model can truly replicate the experimental work and move towards commercialisation. 

The first issue relates to the need to incorporate a bond model to appropriately predict 

the relationship between rib patterns and bond strength. The second issue relates to the 

need of further crack width and crack spacing flexural beam experiments with more rib 

patterns and a wider range of fR  values. The third issue relates to the need for further 

investigation of crack spacing in flexural beam experiments with various stirrup 

spacings.  

 

The first issue requires an appropriate bond model to predict and model the bond 

strength of a particular design or layout of rib pattern. From the work of this thesis, it has 

been identified that the higher the fR, the greater the bond strength, nevertheless the 

accuracy of the fR value as derived by the formula provided in BS EN 15630 remains 

uncertain and the weighting of the contribution of each of the parameters to the fR value 

might need further investigation.  

 

The second issue requires more experimental testing of beams with different rib 

patterns having a wider range of fR values to further investigate the corresponding effect 

on crack width and crack spacing formed under flexural bending. To provide a reliable 

set of experimental results for analysis, reinforcing bars with a wide range of fR values 

have to be tested with sufficient number of specimens for each type of steel bar. 



BOND AND CRACKING OF REINFORCED CONCRETE – CHAPTER 7                        Simon H.C. Chan 

 

Page 144 

 

The third issue requires more flexural beam tests with various stirrup spacings, such as 

double or half of the current 100mm spacing, to further investigate the effect on crack 

spacing. To provide a reliable set of experimental results for analysis, a sufficient 

number of test samples with each stirrup spacing to minimize the effects of experimental 

error need to be tested. 
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APPENDIX I – EVOLUTION AND DEVELOPMENT OF 

CRACKS IN FLEXURAL BEAM SPECIMENS 

This appendix contains the evolution and development of cracks for all flexural beam 

specimens in Batch A, C and Max without stirrups in the central 600mm zone, of which 

typical figures in each batch have been reported in Chapter 4. 
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APPENDIX II – EVOLUTION AND DEVELOPMENT OF 

CRACKS IN FLEXURAL BEAM SPECIMENS 

This appendix contains the videos and animations showing the evolution and 

development of cracks for all flexural beam specimens in Batch A, C and Max without 

stirrups in the central 600mm zone. The files are stored in the CD enclosed with this 

thesis. 


