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Abstract. Hardy–Sobolev–type inequalities associated with the operator L :=
x · ∇ are established, using an improvement to the Sobolev embedding theo-
rem obtained by M. Ledoux. The analysis involves the determination of the
operator semigroup {e−tL∗L}t>0.

1. Introduction

The following inequalities of Hardy and Sobolev are well-known to play a fun-
damental role in Analysis:

Hardy’s inequality∫
Rn

|∇f |pdx ≥ CH(n, p)

∫
Rn

|f(x)|p

|x|p
dx, f ∈ C∞

0 (Rn \ {0}), (1.1)

with best possible constant CH(n, p) = {(n− p)/p}p;

Sobolev’s inequality for 1 ≤ p < n and p∗ := np/(n− p),

‖f‖Lp∗ (Rn) ≤ CS(n, p)‖∇f‖Lp(Rn), f ∈ C∞
0 (Rn), (1.2)
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with best possible constant

CS(n, p) = π−1/2n−1/p

(
p− 1

n− p

)(p−1)/p {
Γ(1 + n/2)Γ(n)

Γ(n/p)Γ(1 + n− n/p)

}1/n

,

for 1 < p < n, and

CS(n, 1) = π−1/2n−1 (Γ(1 + n/2))1/n .

From (1.1) and (1.2) it follows that for 0 < δ < CH(n, p), 1 ≤ p < n,

‖∇f‖p
Lp(Rn) − δ‖f/| · |‖p

Lp(Rn)

≥ {1− δ/CH(n, p)}‖∇f‖p
Lp(Rn)

≥ [{1− δ/CH(n, p)}/Cp
S(n, p)] ‖f‖p

Lp∗ (Rn)
,

and so

‖f‖p
Lp∗(Rn) ≤ C

{
‖∇f‖p

Lp(Rn) − δ‖f/| · |‖p
Lp(Rn)

}
, (1.3)

where C ≥ Cp
S(n, p){1− δ/CH(n, p)}−1. In the case p = 2, Stubbe [8] shows that

the optimal value of the constant C is

C2
S(n, 2)[1− δ/CH(n, 2)]−(n−1)/n.

In Theorem 1 below we prove the inequality∫
Rn

|(x · ∇)f(x)|pdx ≥ (n/p)p

∫
Rn

|f(x)|pdx, f ∈ C∞
0 (Rn), (1.4)

which is satisfied (and non-trivial) for all values of n, including n = p, and show
that this implies Hardy’s inequality for 1 ≤ p ≤ n. The above argument leading to
(1.3) does not work with the right-hand side ‖∇f‖p

Lp(Rn)−δ‖f/| · |‖
p
Lp(Rn) replaced

by ‖(x · ∇)f‖p
Lp(Rn)− δ‖f‖

p
Lp(Rn) since, by scaling considerations, we don’t have a

Sobolev–type inequality

‖f‖Lq(Rn) ≤ C‖(x · ∇)f‖Lp(Rn)

for q 6= p. It is natural to ask if there is some analogue of Stubbe’s inequality,
and indeed of the Lp version (1.3), when ‖∇f‖ is replaced by ‖(x · ∇)f‖. This
was the question which initiated this research. Our investigation makes use of
the following result of Ledoux in [7] which, inter alia, improves on the standard
Sobolev inequality: for every 1 ≤ p < q <∞ and every function f in the Sobolev
space W 1,p(Rn),

‖f‖Lq(Rn) ≤ C‖∇f‖θ
Lp(Rn)‖f‖1−θ

B
θ/(θ−1)
∞,∞

, (1.5)

where θ = p/q, C is a positive constant which depends only on p, q and n, and
Bα
∞,∞ is the homogenous Besov space of indices (α,∞,∞); see [9]. The latter is

the space of tempered distributions for which the norm

‖f‖Bα
∞,∞ := sup

t>0
{t−α/2‖Ptf‖L∞(Rn)}
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is finite, where Pt = et∆, t ≥ 0, is the heat semigroup on Rn : recall that {Pt}t≥0

is defined by P0f = f and

Ptf(x) =
1

(4πt)n/2

∫
Rn

f(y)e−|x−y|2/4tdy

for t > 0,x ∈ Rn. Cases of (1.5) were earlier established in [2], [3] and [4].
The inequality (1.5) is easily seen to include the classical Sobolev inequality
(1.2). Ledoux’s technique requires specific information on the heat semi-group
et∆ in L2(Rn). Our first task therefore was to determine the operator semi-group
associated with the inequality (1.4), namely e−tL∗L, where L = x · ∇. This is
done in section 3. We show that the analogue of (1.5) is in fact a consequence
of Ledoux’s result. Corollaries of this analogue in the case p = 2, contain the
following inequalities:

‖rf(rω)‖2
L2∗ (Rn) ≤ C

{
‖Lf‖2

L2(Rn) −
n2

4
‖f‖2

L2(Rn)

}1/n

× sup
ω∈Sn−1

‖f‖2(1−1/n)

L2(R+;dµ)),

‖rF (r)‖2
L2∗ (R+;dµ)) ≤ C

{
‖Lf‖2

L2(Rn) −
n2

4
‖f‖2

L2(Rn)

}1/n

× ‖f‖2(1−1/n)

L2(Rn) , (1.6)

where 2∗ = 2n/(n − 2), dµ(r) = rn−1dr, C is a positive constant depending only
on n and, in polar co-ordinates x = rω, F (r) is the integral mean of f over the
unit sphere Sn−1, that is,

F (r) :=
1

|Sn−1|

∫
Sn−1

f(rω)dω.

These have a number of consequences. One is a Hardy–Sobolev type inequality
(Corollary 4) which is an analogue of the type we set out to establish of Stubbe’s
inequality: that if f, Lf ∈ L2(Rn), n ≥ 3, then, for δ ∈ [0, n2/4),

‖rF‖2
L2∗ (R+;dµ) ≤ C[

n2

4
− δ]−

(n−1)
n

{
‖Lf‖2

L2(Rn) − δ‖f‖2
L2(Rn)

}
.

It also follows from (1.6) that, for δ ∈ [0, (n− 2)2/4),

‖F‖2
L2∗ (R+;dµ) ≤ C[

(n− 2)2

4
− δ]−

(n−1)
n

{
‖∇f‖2

L2(Rn) − δ‖f/| · |‖2
L2(Rn)

}
. (1.7)

Since ‖F‖L2∗ (R+;dµ) ≤ |Sn−1|−1/2∗‖f‖L2∗ (Rn), by Hölder’s inequality, (1.7) is im-
plied by the case p = 2 of (1.3).

We also establish the following local Hardy–Sobolev type inequalities (see
Corollaries 6 and 7): if f is supported in the annulus AR := {x ∈ Rn : 1/R ≤
|x| ≤ R}, then

‖rF (r)‖2
L2∗ (R+;dµ) ≤ C(lnR)2(n−1)/n

{
‖Lf‖2

L2(Rn) − (n2/4)‖f‖2
L2(Rn)

}
;
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‖F‖2
L2∗ (R+;dµ) ≤ C(lnR)2(n−1)/n

{
‖∇f‖2

L2(Rn) −
[n− 2

2

]2∥∥∥ f

| · |

∥∥∥2

L2(Rn)

}
. (1.8)

The inequality (1.8) is reminiscent of the case s = 1 of (2.6) in [6] (proved in
section 6.4); this is also proved in [1]. To be specific, it is that if f ∈ C∞

0 (Ω) and
2 ≤ q < 2∗,

‖f‖2
Lq(Rn) ≤ C|Ω|2(1/q−1/2∗)

{
‖∇f‖2

L2(Rn) −
[n− 2

2

]2∥∥∥ f

| · |

∥∥∥2

L2(Rn)

}
, (1.9)

where |Ω| denotes the volume of Ω. It is noted in [6], Remark 2.4, that, in contrast
to (1.8), the q in (1.9) must be strictly less than the critical Sobolev exponent
2∗ = 2n/(n− 2) if Ω includes the origin.

The authors are grateful to Rupert Frank, Elliot Lieb and Robert Seiringer for
some valuable comments.

2. The Hardy-type inequality (1.4)

Theorem 2.1. Let n ≥ 1 and 1 ≤ p <∞. Then for all f ∈ C∞
0 (Rn)∫

Rn

|(x · ∇)f |pdx ≥
(
n

p

)p ∫
Rn

|f |pdx. (2.1)

Proof. On integration by parts and the application of Hölder’s inequality we have

n

∫
Rn

|f(x)|pdx =

∫
Rn

div(x)|f(x)|pdx

= −p Re

∫
Rn

(x · ∇)f(x)|f(x)|p−2f(x)dx

≤ p

(∫
Rn

|(x · ∇)f(x)|pdx
)1/p (∫

Rn

|f(x)|pdx
)(p−1)/p

which yields (2.1). �

Remark 2.2. The inequality (2.1) implies (1.1) for 1 ≤ p ≤ n. For we have from

∇(|x|f) =
x

|x|
f + |x|∇f

that

‖∇(|x|f)‖Lp(Rn) ≥ ‖|x||∇f |‖Lp(Rn) − ‖f‖Lp(Rn)

≥ ‖(x · ∇)f‖Lp(Rn) − ‖f‖Lp(Rn)

≥
(
n− p

p

)
‖f‖Lp(Rn)

whence (1.1) on replacing f(x) by f(x)/|x|.
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3. Calculation of the semigroup e−tL∗L

Theorem 3.1. Let L = x · ∇,x = rω, r = |x|. Then the semigroup e−tL∗L is
given by

(e−tL∗Lψ)(x) =
e−tn2/4

√
4πt

r−n/2

∫ ∞

0

e−
(ln r−ln s)2

4t s−n/2ψ(sω) sn−1ds . (3.1)

Proof. Before embarking on the proof, some preliminary remarks and results
might be helpful. The gist of the proof is that after a change of co-ordinates,
L∗L is seen to be related to the Laplacian in R, and this then yields the result.
The co-ordinate change is determined by the map Φ : L2(Rn) → L2(R × Sn−1)
defined by

(Φψ)(s, ω) := esn/2ψ(esω) (3.2)

for ω ∈ Sn−1 and s ∈ R. Note that we equip R × Sn−1 with the usual one
dimensional Lebesgue measure on R and the usual surface measure on Sn−1. Thus
Φ preserves the L2 norm. The inverse of Φ satisfies Φ−1 : L2(R×Sn−1) → L2(Rn)
and is given by

(Φ−1ϕ)(x) = r−n/2ϕ
(
ln r, ω

)
. (3.3)

The dilations U(t) : L2(Rn) → L2(Rn) given by

U(t)ψ(x) := etn/2ψ(etx)

form a group of unitary operators with generator U(t) = eiAt, where A is given
by

iAψ =
∂

∂t
U(t)ψ |t=0 = (x · ∇+

n

2
)ψ =

1

2
(x · ∇+∇ · x)ψ.

Thus

A =
1

i
(x · ∇+

n

2
) = −iL− i

n

2
.

and so

L = iA− n

2
,

where A is the self-adjoint generator of dilations in L2(Rn). In particular,

L∗L = (−iA− n

2
)(iA− n

2
) = A2 +

n2

4
.

Since

(Φψ)(s, ω) = (U(s)ψ)(ω)

for ω ∈ Sn−1 and s ∈ R, it follows from the group property of the dilations U(·)

that

(Φ(U(t)ψ))(s, ω) = (U(s)(U(t)ψ))(ω) = (U(s+ t)ψ)(ω) = (Φψ)(s+ t, ω).

In particular, in the new co-ordinates given by Φ, the dilations U(t) act simply
as shifts by t and should be diagonalizable with the help of a Fourier transform!
We now proceed to confirm this prediction.
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Define M : L2(Rn) → L2(R× Sn−1) by

(Mψ)(τ, ω) :=
1√
2π

∫
R
e−isτ (Φψ)(s, ω) ds, (3.4)

so that M = F ◦ Φ, where F is the Fourier transform on R. Then

(MU(t)ψ)(τ, ω) =
1√
2π

∫
e−isτ (Φψ)(s+ t, ω) ds

=
eitτ

√
2π

∫
e−isτ (Φψ)(s, ω) ds = eitτ (Mψ)(τ, ω). (3.5)

The map M = F ◦ Φ is the Mellin transformation and has an explicit represen-
tation using the group structure of R+ under multiplication: it is the Fourier
transform on this group.

The next step is to show that

(MAψ)(τ, ω) = τ(Mψ)(τ, ω) (3.6)

for ψ in the domain D(A): it follows that ψ ∈ D(A) if and only if (τ, ω) 7→
τ(Mψ)(τ, ω) ∈ L2(R × Sn−1). To see (3.6) we note that iAeitA = ∂tU(t) and so,
from (3.5)

(MiAeiAtψ)(τ, ω) = (M∂tU(t)ψ)(τ, ω) = ∂t(MU(t)ψ)(τ, ω)

= ∂te
itτ (Mψ)(τ, ω) = iτeitτ (Mψ)(τ, ω).

Setting t = 0 yields (3.6).

We are now in a position to complete the proof of the theorem. We have
e−tL∗L = e−tn2/4e−tA2

and by (3.4)

(Me−tA2

ψ)(τ, ω) = e−tτ2

(Mψ)(τ, ω).

So

e−tA2

= M−1e−tτ2

M.

Since M = F ◦ Φ, we see that

e−tA2

= Φ−1 ◦ F−1
(
e−tτ2F ◦ Φ

)
.

Of course,

F−1
(
e−tτ2

Mψ
)
(λ, ω) = F−1

(
e−tτ2F ◦ Φ

)
(λ, ω)

=
1

2π

∫
R

∫
R
eiλτe−tτ2

e−isτ (Φψ)(s, ω)dsdτ

=
1

2π

∫
R

( ∫
R
e−tτ2+i(λ−s)τdτ

)
(Φψ)(s, ω) ds

The integral in big parentheses is a Gaussian integral which gives∫
R
e−tτ2+i(λ−s)τdτ =

√
π

t
e−

(λ−s)2

4t .
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Thus

F−1
(
e−tτ2

Mψ
)
(λ, ω) =

1√
4πt

∫
e−

(λ−s)2

4t (Φψ)(s, ω) ds =: ϕt(λ, ω)

and, with x = rω,

(e−tA2

ψ)(rω) = (Φ−1ϕt)(rω)

= r−n/2ϕt(ln r, ω)

=
1√
4πt

r−n/2

∫
R
e−

(ln r−s)2

4t (Φψ)(s, ω) ds.

Since (Φψ)(s, ω) = esn/2ψ(esω), we get from the change of variables z = es,

(e−tA2

ψ)(rω) =
1√
4πt

r−n/2

∫
R
e−

(ln r−s)2

4t (Φψ)(s, ω) ds

=
1√
4πt

r−n/2

∫ ∞

0

e−
(ln r−ln z)2

4t z
n
2
−1ψ(zω)dz.

So

(e−tL∗Lψ)(rω) = e−tn2/4(e−tA2

ψ)(rω)

=
1√
4πt

r−n/2e−tn2/4

∫ ∞

0

e−
(ln r−ln z)2

4t z
n
2
−1ψ(zω) dz

=
1√
4πt

r−n/2e−tn2/4

∫ ∞

0

e−
(ln r−ln z)2

4t z−
n
2ψ(zω) zn−1dz

which is (3.1).

Once it is realised that A is simply multiplication by τ in the sense of (3.6), it
is clear that A is the momentum operator on R, that is, ΦAΦ−1 is given by

ΦAΦ−1 = −i∂s ⊗ 1Sn−1

On using this and the functional calculus we get

ΦL∗LΦ−1 = (ΦAΦ−1)2 +
n2

4
= −∂2

s ⊗ 1Sn−1 +
n2

4
.

Thus, L∗L = −Φ−1∂2
s ⊗ 1Sn−1Φ + n2

4
and

e−tL∗L = e−tn2/4e−tΦ−1∂2
s⊗1Sn−1Φ = e−tn2/4Φ−1e−t∂2

s⊗1Sn−1Φ (3.7)

which is a convenient way of expressing (3.1). �

On substituting (3.2) and (3.3) and making an obvious change of variables, we

obtain from (3.1) the following representation for e−tA2
; see also (3.7).

Corollary 3.2. Let Pt denote e−tA2
. Then

ΦPtΦ
−1ϕ(r, ω) =

1√
4πt

∫
R

exp{− 1

4t
(r − s)2}ϕ(sω)ds. (3.8)
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4. The main inequalities

The fact that Φe−tA2
Φ−1 in (3.8) is essentially radial means that the analogue

of (1.5) derived by Ledoux’s technique is a consequence of the one-dimensional
case of (1.5). Defining Bα to be the space of all tempered distributions g on
R× Sn−1 for which the norm

‖g‖Bα := sup
t>0
{t−α/2‖Φe−tA2

Φ−1g|‖L∞(R×Sn−1)} <∞, (4.1)

one obtains from the n = 1 case of (1.5), that for any ω ∈ Sn−1,∫
R
|g(r, ω)|qdr ≤ Cq

∫
R

∣∣∣∣∂g(r, ω)

∂r

∣∣∣∣p dr
×

(
sup

t>0,r∈R
tθ/2(1−θ)

∣∣∣∣ 1√
4πt

∫
R
e−(r−s)2/4tg(s, ω)ds

∣∣∣∣)q(1−θ)

= Cq

∫
R

∣∣∣∣∂g(r, ω)

∂r

∣∣∣∣p dr(
sup

t>0,r∈R
tθ/2(1−θ)

∣∣∣Φe−tA2

Φ−1g(r, ω)
∣∣∣)q(1−θ)

≤ Cq

∫
R

∣∣∣∣∂g(r, ω)

∂r

∣∣∣∣p dr(
sup
t>0

tθ/2(1−θ)
∥∥∥Φe−tA2

Φ−1g
∥∥∥

L∞(R×Sn−1)

)q(1−θ)

≤ Cq

∫
R

∣∣∣∣∂g(r, ω)

∂r

∣∣∣∣p dr‖g‖q(1−θ)

Bθ/(θ−1) .

On integrating with respect to ω over Sn−1 we obtain

Theorem 4.1. Let 1 ≤ p < q < ∞ and suppose that g is such that ΦAΦ−1g ≡
−i(∂/∂r)g ∈ Lp(R×Sn−1) and g ∈ Bθ/(θ−1), θ = p/q. Then there exists a positive
constant C, depending on p and q, such that

‖g‖Lq(R×Sn−1) ≤ C‖(∂/∂r)g‖θ
Lp(R×Sn−1)‖g‖1−θ

Bθ/(θ−1) . (4.2)

The theorem has two natural corollaries featuring the Hardy-type inequal-
ity (2.1), the first an inequality of Sobolev type , and the second of Gagliardo-
Nirenberg type.

Corollary 4.2. (i) Let p∗ := np/(n− p), 1 ≤ p ≤ n− 1, and suppose (∂/∂r)g ∈
Lp(R× Sn−1) and supω∈Sn−1 ‖g(·, ω)‖Lp(R) <∞. Then

‖g‖Lp∗ (R×Sn−1) ≤ C‖(∂/∂r)g‖1/n

Lp(R×Sn−1) sup
ω∈Sn−1

‖g(·, ω)‖(n−1)/n
Lp(R) . (4.3)

(ii) If G = M(g) denotes the integral mean of g, namely,

G(r) = M(g)(r) :=
1

|Sn−1|

∫
Sn−1

g(r, ω)dω,

then if g, (∂/∂r)g ∈ Lp(R× Sn−1),

‖G‖Lp∗ (R) ≤ C‖(∂/∂r)g‖1/n

Lp(R×Sn−1)‖g‖
(n−1)/n

Lp(R×Sn−1). (4.4)
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If g is supported in [−Λ,Λ]× Sn−1, then

‖g‖Lp∗ (R×Sn−1) ≤ CΛ(n−1)/n2‖(∂/∂r)g‖1/n

Lp(R×Sn−1) sup
ω∈Sn−1

‖g(·, ω)‖(n−1)/n

Lp∗ (R)
; (4.5)

also

‖G‖Lp∗ (R) ≤ CΛ(n−1)/n‖(∂/∂r)g‖Lp(R×Sn−1). (4.6)

Proof. From (3.8), it follows that, for any s ∈ [1,∞),

t−θ/2(θ−1)‖ΦPtΦ
−1g‖L∞(R×Sn−1) ≤ Ct−θ/2(θ−1)−1/2s sup

ω∈Sn−1

‖g‖Ls(R).

If 1 ≤ p < n− 1 set θ = p/q, q = p(p+ 1) and s = p. Then, from Theorem 4.1

‖g‖Lp(p+1)(R×Sn−1) ≤ C‖(∂/∂r)g‖1/(p+1)

Lp(R×Sn−1) sup
ω∈Sn−1

‖g‖p/(p+1)
Lp(R) . (4.7)

Thus g ∈ Lp(p+1)(R× Sn−1) ∩ Lp(R× Sn−1), and since

np

(n− p)
=
p(p+ 1)

(n− p)
+
p(n− p− 1)

(n− p)

we have by Hölder’s inequality,∫
R×Sn−1

|g|p∗dλ ≤
(∫

R×Sn−1

|g|p(p+1)dλ

)1/(n−p) (∫
R×Sn−1

|g|pdλ
)(n−p−1)/(n−p)

.

Hence, from (4.7),

‖g‖Lp∗ (R×Sn−1) ≤ ‖g‖(p+1)/n

Lp(p+1)(R×Sn−1)
‖g‖(n−p−1)/n

Lp(R×Sn−1)

≤ C‖(∂/∂r)g‖1/n

Lp(R×Sn−1) sup
ω∈Sn−1

‖g(·, ω)‖(n−1)/n
Lp(R) .

If p = n − 1, we choose s = n − 1, q = p∗ = n(n − 1) and θ = 1/n. Then
Theorem 3 gives (4.3) immediately. The inequality (4.5) follows on applying
Hölder’s inequality to ‖g(·, ω)‖Lp(R). The inequalities (4.4) and (4.6) follow from
(4.3) and (4.5) respectively, on substituting G for g and noting that

‖G′‖Lp(R×Sn−1) ≤ ‖(∂/∂r)g‖Lp(R×Sn−1)

‖G‖Lp(R) ≤ |Sn−1|−1/p‖g‖Lp(R×Sn−1).

�

Corollary 4.3. (i) Let 1 ≤ p < q < ∞,m = (q/p) − 1, and suppose that
(∂/∂r)g ∈ Lp(R× Sn−1) and supω∈Sn−1 ‖g(·ω)‖Lm(R) <∞. Then

‖g‖Lq(R×Sn−1) ≤ C‖(∂/∂r)g‖p/q

Lp(R×Sn−1) sup
ω∈Sn−1

‖g(·, ω)‖1−p/q
Lm(R). (4.8)

(ii) If (∂/∂r)g ∈ Lp(R× Sn−1) and g ∈ Lm(R× Sn−1), then, with G = M(g),

‖G‖Lq(R) ≤ C‖(∂/∂r)g‖p/q

Lp(R×Sn−1)‖g‖
1−p/q

Lm(R×Sn−1). (4.9)
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Proof. From (3.8), with θ = p/q and m = q/p− 1, we deduce that

t−θ/2(θ−1)‖ΦPtΦ
−1g‖L∞(R×Sn−1) ≤ Ct−θ/2(θ−1)−1/2m sup

ω∈Sn−1

‖g(·, ω)‖Lm(R)

≤ C sup
ω∈Sn−1

‖g(·, ω)‖Lm(R)

and this yields (4.8). The inequality (4.9) follows from (4.8) on substituting G
for g. �

The case p = 2 of Corollary 4.2 is of special interest.

Corollary 4.4. (i) Let f be such that Lf ∈ L2(Rn), L = x · ∇, and

sup
ω∈Sn−1

‖f(·, ω)‖L2(R+;dµ) <∞.

Then, for n ≥ 3,

‖rf(rω)‖2
L2∗ (Rn) ≤ C

{
‖Lf‖2

L2(Rn) −
n2

4
‖f‖2

L2(Rn)

}1/n

× sup
ω∈Sn−1

‖f(·, ω)‖2(1−1/n)

L2(R+;dµ)), (4.10)

where 2∗ = 2n/(n− 2) and dµ = rn−1dr.
(ii) If f, Lf ∈ L2(Rn), then, with F := M(f),

‖rF (r)‖2
L2∗ (R+;dµ) ≤ C

{
‖Lf‖2

L2(Rn) −
n2

4
‖f‖2

L2(Rn)

}1/n

× ‖f‖2(1−1/n)

L2(Rn) . (4.11)

For 0 ≤ δ < n2/4, we have

‖rF (r)‖2
L2∗ (R+;dµ) ≤ C

(
n2/4− δ

)−(n−1)/n
{
‖Lf‖2

L2(Rn) − δ‖f‖2
L2(Rn)

}
. (4.12)

Proof. On using the facts that Φ : L2(Rn) → L2(R × Sn−1) is an isometry and,
with g := Φf,

‖(∂/∂r)g‖2
L2(R×Sn−1) = ‖ΦAΦ−1g‖2

L2(R×Sn−1)

= ‖Af‖2
L2(Rn)

= ‖Lf‖2
L2(Rn) −

n2

4
‖f‖2

L2(Rn)

since A2 = L∗L− (n2/4) from (3.6), it follows from (4.3) that

‖Φf‖2
L2∗ (R×Sn−1) ≤ C

{
‖Lf‖2

L2(Rn) −
n2

4
‖f‖2

L2(Rn)

}1/n

× sup
ω∈Sn−1

‖f(·, ω)‖2(1−1/n)

L2(R+;dµ).

Then (4.10) follows since

‖Φf‖L2∗ (R×Sn−1) = ‖rf(r, ω)‖L2∗ (Rn).
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The inequality (4.11) follows in a similar way from (4.4) since

‖M(Φf)‖L2∗ (R) = ‖rF (r)‖L2∗ (R+;dµ).

From Young’s inequality we have for any ε > 0 that

n[ε/(n− 1)]1−1/nab ≤ an + εbn/(n−1).

On applying this to (4.11) we get

ε1−1/n‖rF (r)‖2
L2∗ (R+;dµ) ≤ C{‖Lf‖2

L2(Rn) − [
(n
2

)2 − ε]‖f‖2
L2(Rn)}.

This yields (4.12) on setting ε = n2/4− δ. �

Corollary 4.5. (i) Let ∇h ∈ L2(Rn), n ≥ 3, and

sup
ω∈Sn−1

‖h(·, ω)/| · |‖2
L2(R+;dµ) <∞.

Then

‖h‖2
L2∗ (Rn) ≤ C

{
‖∇h‖2

L2(Rn) −
(n− 2

2

)2‖h/| · |‖2
L2(Rn)

}1/n

× sup
ω∈Sn−1

{
‖h(·, ω)/| · |‖2

L2(R+;dµ)

}1−1/n
. (4.13)

(ii) If h,∇h ∈ L2(Rn) then, with H := M(h),

‖H‖2
L2∗ (R+;dµ) ≤ C

{
‖∇h‖2

L2(Rn) −
(n− 2

2

)2‖h/| · |‖2
L2(Rn)

}1/n

×
{
‖h/| · |‖2

L2(Rn)

}1−1/n
. (4.14)

For 0 ≤ δ < (n− 2)2/4, we have

‖H‖2
L2∗ (R+;dµ) ≤ C

(
(n− 2)2/4− δ

)−(n−1)/n
{
‖∇h‖2

L2(Rn)

− δ‖h/| · |‖2
L2(Rn)

}
. (4.15)

Proof. Since n ≥ 3, we have that f := h/| · | ∈ L2(Rn). We claim that Lf ∈
L2(Rn). For

|∇(|x|f)|2 =

∣∣∣∣ x

|x|
f + |x|∇f

∣∣∣∣2
= |f |2 + (|x||∇f |)2 + 2Re[f(x · ∇)f]

and, on integration by parts, initially for f ∈ C∞
0 (Rn) and then by the usual

continuity argument,∫
Rn

f(x · ∇)fdx =
n∑

j=1

∫
Rn

xjf
∂f

∂xj

dx

= −
n∑

j=1

∫
Rn

f

{
f + xj

∂f

∂xj

}
dx

= −
∫

Rn

{
n|f |2 + f(x · ∇)f

}
dx.
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This gives

2Re

∫
Rn

[f(x · ∇)f]dx = −n

∫
Rn

|f|2dx

and hence ∫
Rn

|∇(|x|f)|2dx =

∫
Rn

(|x||∇f |)2 dx− (n− 1)

∫
Rn

|f |2dx

≥
∫

Rn

|Lf |2dx− (n− 1)

∫
Rn

|f |2dx (4.16)

which confirms our claim. On substituting (4.16) and f = h/| · | in (4.10), we get

‖h‖2
L2∗ (Rn) ≤ C

{
‖∇h‖2

L2(Rn) + (n− 1)‖h/| · |‖2
L2(Rn)

− (n2/4)‖h/| · |‖2
L2(Rn)

}1/n

sup
ω∈Sn−1

‖h/| · |‖2(1−1/n)

L2(R+;dµ)

which yields (4.13); (4.14) follows similarly from (4.11) and (4.14) yields (4.15).
�

If in (4.6) g = Φf, where f is supported in the annulus AR := {x ∈ Rn : 1/R ≤
|x| ≤ R}, then G is supported in the interval [− lnR, lnR] and we have as in the
proof of Corollary 4

Corollary 4.6. Let f ∈ C∞
0 (AR). Then, with F := M(f),

‖rF (r)‖2
L2∗ (R+;dµ) ≤ C(lnR)

2(n−1)
n

{
‖Lf‖2

L2(Rn) −
n2

4
‖f‖2

L2(Rn)

}
. (4.17)

On putting f = h/| · | in (4.17) and using (4.16), we have

Corollary 4.7. Let h ∈ C∞
0 (AR). Then, with H := M(h),

‖H‖2
L2∗ (R+;dµ) ≤ C(lnR)

2(n−1)
n

{
‖∇h‖2

L2(Rn) −
(n− 2)2

4
‖ h
| · |
‖2

L2(Rn)

}
.

Finally we have the following p = 2 case of Corollary 3(ii).

Corollary 4.8. Let 2 < q <∞ and m = q/2− 1. Then, if f is such that f, Lf ∈
L2(Rn) and

∫
R+

∫
Sn−1 |f(s, ω)|ms(nm

2
−1)dsdω <∞, we have that

∫
R+ |F (s)|qs(nq

2
−1)ds <

∞ and ∫
R+

|F (s)|qs(nq
2
−1)ds ≤ C

{
‖Lf‖2

L2(Rn) −
n2

4
‖f‖2

L2(Rn)

}2

×
{∫

R+

∫
Sn−1

|f(s, ω)|ms(nm
2
−1)dsdω

}2
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Proof. Corollary 4.3(ii) with p = 2 yields

‖M(Φf)‖Lq(R) ≤ C

{
‖Lf‖2

L2(Rn) −
n2

4
‖f‖2

L2(Rn)

}2/q

× ‖Φf‖1−2/q

Lm(R×Sn−1).

Since

‖M(Φf)‖q
Lq(R) =

∫
R+

|F (s)|qs(nq
2
−1)ds

and

‖Φf‖m
Lm(R×Sn−1) =

∫
R+

∫
Sn−1

|f(s, ω)|ms(nm
2
−1)dsdω

the corollary follows. �
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