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Vascular Medicine

Inhibition of p38 Mitogen-Activated Protein Kinase
Improves Nitric Oxide–Mediated Vasodilatation and

Reduces Inflammation in Hypercholesterolemia
Joseph Cheriyan, MRCP, MBChB;* Andrew J. Webb, MRCP, PhD, MBBS;*

Lea Sarov-Blat, PhD; Maysoon Elkhawad, MA, MRCS, MBBChir; Sharon M.L. Wallace, PhD;
Kaisa M. Mäki-Petäjä, PhD; David J. Collier, PhD, MBBS; John Morgan, MD; Zixing Fang, PhD;

Robert N. Willette, PhD; John J. Lepore, MD; John R. Cockcroft, FRCP, BSc, MB;
Dennis L. Sprecher, MD; Ian B. Wilkinson, FRCP, DM

Background—Oxidized low-density lipoprotein reduces endothelial nitric oxide production (an important mediator of
vasoregulation) and activates p38 mitogen-activated protein kinase (MAPK), a mediator of vascular inflammation.
Animal models of vascular stress have previously predicted improvements in vascular function after p38 MAPK
inhibition. We hypothesized that a selective p38�/� MAPK inhibitor (losmapimod; GW856553) would improve
compromised nitric oxide–mediated vasoregulation in patients with hypercholesterolemia.

Methods and Results—Untreated hypercholesterolemic patients (low-density lipoprotein cholesterol �4.1 mmol/L) were
randomized to receive losmapimod 7.5 mg (n�27) or placebo (n�29) twice daily for 28 days. Patients with known
vascular disorders (eg, diabetes mellitus, coronary heart disease) were excluded. Forearm blood flow was measured by
venous occlusion plethysmography in response to serial intra-arterial infusion of acetylcholine, sodium nitroprusside,
and NG-monomethyl-L-arginine (L-NMMA). Acetylcholine and L-NMMA responses were significantly impaired
(P�0.01 and P�0.03) compared with responses in control subjects (n�12). In hypercholesterolemic patients treated
with losmapimod, responses to acetylcholine were improved by 25% (95% confidence interval, 5 to 48; P�0.01), to
sodium nitroprusside by 20% (95% confidence interval, 3 to 40; P�0.02), and to L-NMMA by 10% (95% confidence
interval, �1 to 23; P�0.07) compared with placebo. C-reactive protein was reduced by 57% (95% confidence interval,
�81 to �6%; P�0.05) in patients treated with losmapimod compared with placebo.

Conclusions—Losmapimod improves nitric oxide–mediated vasodilatation in hypercholesterolemic patients, which is
consistent with findings in previous translational animal models. These data support the hypothesis that attenuating the
inflammatory milieu by inhibiting p38 MAPK activity improves NO activity. This suggests p38 MAPK as a novel target
for patients with cardiovascular disease.

Clinical Trial Registration—URL: http://clinicaltrials.gov. Unique identifier: NCT00474864. (Circulation. 2011;123:515-523.)

Key Words: endothelial function � hypercholesterolemia � nitric oxide � p38 MAPK � vasodilation

Atherosclerosis is regarded as a complex condition in
which inflammation plays a pivotal role, involving

low-density lipoprotein (LDL) deposition and oxidation,
recruitment of inflammatory cells, and release of cytokines
and endothelial dysfunction.1,2 Reduced nitric oxide (NO)
bioavailability accompanies all stages of atherosclerosis and
is associated with increased cardiovascular risk.3

Clinical Perspective on p 523
The release of NO is a complex process that can be affected

by a number of physiological and pathophysiological factors,4

including serum levels of LDL, which, when oxidized, have
increased atherogenic potential.5 Oxidized LDL reduces NO
bioavailability, destabilizes endothelial NO synthase mRNA,6
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and activates p38 mitogen-activated protein kinase (MAPK).
As a pivotal intracellular signaling kinase, p38 MAPK
activation (phosphorylation) plays a critical role in orches-
trating transcriptional and translational aspects of the inflam-
matory response in endothelial cells and macrophages. The
ensuing cascade of inflammatory events, involving the pro-
duction and release of proinflammatory cytokines such as
interleukin 6 (IL-6), results in profound dysfunction of the
arterial endothelium7 and raises systemic inflammatory mark-
ers such as high sensitivity C-reactive protein (hsCRP). A
prominent feature of this vascular inflammatory response is
the generation of reactive oxygen species (ROS) mediated by
the activation of NADPH oxidases.8 ROS not only scavenge
NO but also oxidize soluble guanylate cyclase and reduce the
production of cGMP in the vascular smooth muscle, further
limiting NO signaling. Thus, vascular inflammation is often
characterized by both reduced NO bioavailability and im-
paired smooth muscle reactivity. Evidence suggests that local
amplification of this inflammatory cascade occurs because
p38 MAPK functions in an amplification circuit both up-
stream and downstream of ROS generation. Specifically, the
predominant forms of NADPH oxidases (2 and 4) in the
endothelium cause ROS-apoptosis signal-regulating kinase
–dependent activation of p38 MAPK (downstream of ROS).
In turn, activated p38 MAPK produces ROS further by
upregulating NADPH oxidase subunits and cytokine produc-
tion (upstream of ROS).9 Consistent with this evidence, we
and others have previously shown that endothelial dysfunc-
tion in patients with inflammatory conditions such as vascu-
litis and rheumatoid arthritis can be reversed by antiinflam-
matory agents.10–12 Endothelial dysfunction is present in
patients with risk factors for atherosclerosis such as hyper-
cholesterolemia, hypertension, smoking, and diabetes melli-
tus.13–16 Importantly, endothelial dysfunction independently
predicts future cardiovascular events.17

Several p38 MAPK inhibitors are effective in a variety of in
vitro and in vivo animal models that mimic cardiovascular
disorders.18–21 We have recently shown in an animal model
(spontaneously hypertensive stroke-prone rats fed a salt-fat diet)
that long-term treatment with a selective p38�/� MAPK inhib-
itor (losmapimod; previously known as GW856553 or GSK-
AHAB) significantly and dose-dependently improved endothe-
lium-dependent and -independent vascular relaxation in isolated
aortas.22 To translate this into humans, we chose subjects with
hypercholesterolemia because they exhibit a proinflammatory
state thought to be driven by elevated oxidized LDL, and we
evaluated their vascular function using the technique of venous
occlusion plethysmography23 before and after p38 MAPK inhi-
bition. We hypothesized that treatment with the novel antiin-
flammatory drug losmapimod for 28 days would improve
endothelial function as evidenced by an increased vasodilatory
response to intra-arterial acetylcholine infusion (primary end
point). Our prespecified secondary end points included forearm
responses to intra-arterial sodium nitroprusside (SNP) as a
measure of endothelial-independent function, forearm responses
to NG-monomethyl-L-arginine (L-NMMA) as a measure of basal
NO synthesis, measurement of total and phosphorylated heat
shock protein 27 (HSP27) as a pharmacodynamic marker of p38
MAPK inhibition, and safety and tolerability parameters, includ-
ing 12-lead ECGs, hematology, biochemistry, urinalysis, and
hemodynamic observations. A number of exploratory end
points, including hsCRP and IL-6, were also measured to
explore postulated mechanisms.

Methods
This was a double-blind, placebo-controlled, parallel-group study in
which hypercholesterolemic patients were randomly assigned (1:1)
to receive oral losmapimod 7.5 mg or placebo twice daily for 28
days; a separate cohort of healthy volunteers were recruited as
control subjects (see Figure 1). The study was conducted at 3 sites

Figure 1. Flow diagram of participants
through the study. Normal control sub-
jects participated in baseline (day 1)
assessments only and did not receive
any intervention. The safety population
comprised all hypercholesterolemic
patients who received at least 1 dose of
study drug and normal control subjects.
The pharmacodynamic (PD) population
comprised all participants who provided
pharmacodynamic data on at least 1
occasion. *Reasons for exclusion from
final FBF analysis (before unblinding and
statistical analysis) included incomplete
data sets, nonevaluable data sets, and
FBF procedure variation.
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(University of Cambridge, University of Wales College of Medicine,
and Barts and The London School of Medicine and Dentistry) in the
United Kingdom. Study personnel and participants were blinded to
treatment assignment for the duration of the study. Healthy subjects
did not receive any intervention.

The protocol was approved by a multicenter ethics committee
across all 3 sites (Cambridgeshire 4 NHS Research Ethics Commit-
tee) and was registered at clinicaltrials.gov (NCT00474864). The
study complied with the Declaration of Helsinki, and full written
informed consent was obtained from all participants before the
performance of any study-specific procedures.

Study Population
Patients 18 to 75 years of age with untreated hypercholesterolemia
(or washed out from lipid-lowering therapies for 28 days), fasting
LDL cholesterol �4.1 mmol/L, fasting triglycerides �4.5 mmol/L,
and a body mass index of 19 to 32 kg/m2 were eligible for the study.
Patients with cardiovascular, hepatic, or renal disease; poorly con-
trolled diabetes mellitus; chronic inflammatory conditions; and
malignancy were excluded. Twelve age-matched healthy, nonsmok-
ing men 18 to 75 years of age with fasting LDL cholesterol
�2.6 mmol/L, fasting triglycerides �1.7 mmol/L, fasting high
density lipoprotein cholesterol �1.0 mmol/L, and blood pressure
�140/90 mm Hg were recruited to a control group.

Interventions
The structure and activity profile of losmapimod (previously known
as GW85655324 or GSK-AHAB22) are described in Figure I in the
online-only Data Supplement. Nonselective inhibitors have previ-
ously been shown to be toxic; therefore, the development of more
selective inhibitors of p38 MAPK (for the � and � isoforms) has
been ongoing over the last 20 years25; losmapimod is one such agent
that has been optimized to potently inhibit inflammatory cytokine
production while providing safety and efficacy in animal models.
The half-life of losmapimod approximates 12 hour; thus, this agent
is provided as twice-daily dosing. The drug has been evaluated in
�11 clinical studies in healthy volunteers and patients24 and has
been shown to be safe and well tolerated. It has been shown to
dose-dependently inhibit ex vivo production of lipopolysaccharide-
stimulated tumor necrosis factor-� and sorbitol-stimulated phosphor-
ylated HSP27. We have targeted an approximate average of 50%
enzyme inhibition for the current dosing level. Losmapimod tablets
and matching placebo tablets were manufactured by GlaxoSmithK-
line (Harlow, UK).

Forearm Blood Flow
Forearm blood flow (FBF) was measured by venous occlusion
plethysmography (Hokanson Inc, Bellevue, WA) as previously
described23 using the protocol illustrated in Figure 2. Wrist circula-
tion was excluded by inflating wrist cuffs above the systolic blood
pressure. Upper arm cuffs were intermittently inflated (to 40 mm Hg)
and deflated at short intervals over 3 minutes to measure FBF with

mercury-in-Silastic gauges. The dominant arm was established as a
control arm without cannulation or test infusions. In contrast,
acetylcholine (Novartis Pharmaceuticals, Basel, Switzerland), SNP
(Nitroprussiat FIDES, Madrid, Spain), and L-NMMA (Bachem
Distribution Services GmBH, Weil am Rhein, Germany) were
infused in a fixed order into the brachial artery of the nondominant
(test) arm via a 27-gauge needle inserted under local anesthesia. All
drugs were prepared aseptically and diluted in sterile saline (0.9%
Baxter Healthcare, Norfolk, VA). All infusions were performed at a
rate of 1 mL/min. Saline was infused to establish a baseline before
infusion of each challenge agent of acetylcholine, SNP, and
L-NMMA (Figure 2). Each challenge agent was infused at 2 doses,
and each dose was infused for 6 minutes. FBF was recorded in both
arms over the last 3 minutes of each infusion.

Hemodynamics (blood pressure and heart rate) were measured in
the brachial artery of the dominant, noninfused arm at baseline and
at the end of the infusion period for each challenge agent with a
validated oscillometric machine (Omron HEM-705CP, Omron Corp,
Kyoto, Japan).26 The measurements were taken after 24 minutes and
then at the end of each challenge period (Figure 2).

Measurements were taken on day 1 for normal control subjects,
before dose on day 1 (baseline), and after dose on day 28 for
hypercholesterolemic patients. All measurements were conducted in
the morning in a quiet, temperature-controlled (22°C to 24°C)
clinical laboratory. Participants fasted overnight and abstained from
alcohol and caffeine-containing drinks for 24 hours before mea-
surement. At the end of the whole study, all the FBF data sets
were sent to the University of Cambridge site for analysis and
quality assessment. Any nonevaluable and incomplete data sets
were removed from the database before subsequent unblinding
and statistical analysis.

Laboratory Assessments
p38 MAPK activity can be estimated by its effect on the 27-kDa
HSP27, which is a known downstream substrate of the p38 MAPK
signaling pathway.27,28 Activation of p38 MAPK by sorbitol results
in rapid phosphorylation of MK2, which then phosphorylates
HSP27. Therefore, we measured phosphorylation of HSP27 as an in
vivo biological assay of p38 MAPK inhibition. Whole-blood sam-
ples were collected on days 1 and 28 before dose and 3 and 6 hours
after dose. Samples were divided into 2 tubes and incubated for 1
hour at 37°C with sorbitol or with RPMI 1640 medium as a control.
Samples were then lysed on ice, and lysates were stored at �80°C.
Each sample was analyzed for total and phosphorylated HSP27 with
commercially available ELISA-based assays at a central laboratory.

Blood samples were collected before dose on days 1, 14, and 28
for the measurement of other inflammatory biomarkers, including
hsCRP and IL-6. All analyses were conducted centrally with stan-
dard laboratory methods.

Safety Assessments
A detailed collection of safety data, including adverse events and
serious adverse events, was monitored throughout the study as
required by regulatory authorities and in accordance with good
clinical practice. These data were reviewed during the study period
on a weekly basis during study visits. A complete set of safety
observations, including heart rate, blood pressure, and 12-lead ECGs,
was recorded on days 1, 14, and 28 and at follow-up. Biochemical
safety data, including blood and urine samples for hematology,
clinical chemistry, and urinalysis, were collected at weekly intervals.
Pharmacodynamic responses were measured with the ex vivo
method of HSP27 inhibition and by an in vivo method to assess
endothelial function using FBF.

Statistical Methods
Sample size calculation was based on the variability of change in
FBF after acetylcholine (our primary end point) from the preceding
baseline and relative to the noninfused arm. Using an SD of 0.234 on
the log scale of change from baseline FBF ratio,29 we estimated that
a sample size of 25 patients per treatment arm would provide 90%

Figure 2. Study schematic for timing of measurements for forearm
blood flow. ACh indicates acetylcholine; H, haemodynamic mea-
surements; SNP, sodium nitroprusside; L-NMMA, NG-monomethyl
arginine.
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power to detect a 20% difference in change from baseline FBF ratio
for the acetylcholine response with an � level of significance of 5%.
Statistical analyses were performed with SAS version 8.02 (SAS
Institute, Cary, NC).

The FBF ratio was calculated as FBF in the infused arm divided
by FBF in the control arm. Ln-transformed FBF ratio data in
hypercholesterolemic patients were analyzed by infusion agents
using a mixed-effects model with a term for treatment, visit day,
infusion dose within day, gender, and interaction of treatment and
dose within a day, in which saline was treated as infusion dose zero,
and subjects as random effects. To compare hypercholesterolemic
patients and normal control subjects at baseline, ln-transformed FBF
data on day 1 were analyzed using a mixed effects model with a term
for the cohort (hypercholesterolemic patients or normal control
subjects), infusion dose, and interaction of cohort and dose, and
subjects as random effects. Finally, to demonstrate any improvement
toward normality of our active treatment group, a similar mixed-
effects model was used to compare the FBF ratio for hypercholes-
terolemic patients in the losmapimod group on day 28 and the normal
control subjects (on day 1). Ln-transformed total and phosphorylated
HSP27 ratio data (concentration after sorbitol stimulation divided by
concentration in control medium) were analyzed with repeated
measures ANOVA with autoregressive1 covariance structure. Ln-
transformed concentrations of inflammatory biomarkers (including
hsCRP) were analyzed with ANCOVA with baseline biomarker at
day 1 as a covariate.

Results
Fifty-six hypercholesterolemic patients were randomized to the
study, and 12 normal control subjects were enrolled (Figure 1).
The demographics and baseline characteristics of the 2 groups of
hypercholesterolemic patients were well matched (Table 1).
There were no changes in levels of LDL cholesterol, high-
density lipoprotein cholesterol, or triglycerides over the 28-day
course of the study in these patients (Table 1).

Forearm Blood Flow
Hypercholesterolemic patients had impaired vascular func-
tion before dose on day 1 compared with normal control
subjects (Figure 3), as evidenced by a significantly attenuated
vasodilator response to acetylcholine (24% lower; 95% con-
fidence interval [CI], �40 to �5; P�0.01), significantly
attenuated vasoconstrictor response to L-NMMA (16%

lower; 95% CI, �29 to �1; P�0.03), and a difference in
vasodilator response to SNP that approached statistical sig-
nificance (20% lower; 95% CI, �37 to 1; P�0.06). Given the
difference in age between the hypercholesterolemic and
healthy groups (Table 1), a posthoc analysis was conducted to
explore the age effect on FBF, which revealed no significant
effects (P for the age effects�0.23 in acetylcholine, 0.13 in
SNP, and 0.55 in LNMMA). Moreover, restricting the anal-
ysis to male participants only did not alter the observation.

In hypercholesterolemic patients, after 28 days of treatment
with losmapimod, endothelium-dependent vasodilatation to
acetylcholine and endothelium-independent vasodilatation to
SNP improved from before dose on day 1; the vasoconstrictor
response to L-NMMA was not altered significantly, although
there was a trend toward more vasoconstriction in the
losmapimod group at day 28 (Figure 4 and Table 2). No
changes were observed in the placebo group over the 28-day
treatment period (Figure 4). When overall comparisons were
made between the 2 groups (Table 2), statistically significant
differences in acetylcholine-induced vasodilatation (25%
higher for losmapimod; 95% CI, 5 to 48; P�0.01) and
SNP-induced vasodilatation (20% higher for losmapimod;
95% CI, 3 to 40; P�0.02) were observed. We also saw an
enhanced vasoconstrictor effect with L-NMMA in the los-
mapimod group (10%; 95% CI, �1 to 23; P�0.07), although
it did not reach statistical significance.

During the FBF studies, no changes were observed in
systemic hemodynamics in either the losmapimod or
placebo groups during infusion of acetylcholine, SNP, or
L-NMMA.

In a posthoc analysis, FBF ratios for hypercholesterolemic
patients treated with losmapimod for 28 days were not signifi-
cantly different from those of normal control subjects, suggest-
ing normalization of vascular function. The acetylcholine re-
sponse on day 28 for hypercholesterolemics was 19% lower than
for normal control subjects (95% CI, �37.2 to 5.0; P�0.11),
SNP response was 11% lower (�29.0 to 11.6; P�0.30), and
L-NMMA response was 5% lower (�19.8 to 11.7; P�0.50).

Table 1. Characteristics of Hypercholesterolemic Patients and Normal Control Subjects

Hypercholesterolemic Patients

Healthy Control SubjectsPlacebo Losmapimod

Participants, n 29 27 12

Male:female 19:10 20:7 12:0

Age, mean (range), y 55 (35–72) 54 (23–71) 43 (33–64)

BMI, mean (range), kg/m2 26.6 (22.0–35.2) 26.5 (20.5–31.9) 25.9 (20.9–30.2)

LDL cholesterol, mean (SD), mmol/L

Day 1 before dose 4.7 (0.52) 4.7 (0.87) 2.1 (0.48)

Day 28 before dose 4.5 (0.58) 4.5 (0.93)

HDL cholesterol, mean (SD), mmol/L

Day 1 before dose 1.4 (0.29) 1.2 (0.19) 1.5 (0.36)

Day 28 before dose 1.4 (0.24) 1.3 (0.21)

Triglycerides, mean (SD), mmol/L

Day 1 before dose 1.9 (1.05) 1.8 (0.60) 0.9 (0.21)

Day 28 before dose 1.9 (0.89) 1.9 (1.57)

BMI indicates body mass index; HDL, high-density lipoprotein; LDL, low-density lipoprotein. Healthy control
subjects were evaluated on day 1 only.
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Laboratory Assessments
In hypercholesterolemic patients, HSP27 phosphorylation
was inhibited at 3 and 6 hours after dosing with losmapimod
on days 1 and 28 (Figure 5). From the repeated measures
ANOVA, the phosphorylated HSP27 ratio decreased by 36%
(95% CI, �53 to �13; P�0.004) at 3 hours after dose and
33% (95% CI, �47 to �16; P�0.005) at 6 hours after dose
on day 1 and by 45% (95% CI, �61 to �23; P�0.001) at 3
hours after dose and 35% (95% CI, �49 to �15; P�0.001)
at 6 hours after dose on day 28.

The concentration of hsCRP was reduced from 1.85 to 1.09
mg/L after treatment with losmapimod for 28 days (Figure 6).

Figure 3. FBF ratio in all hypercholesterolemic patients (orange
line; n�45) and normal control subjects (green line; n�12)
before dose on day 1 in response to (A) acetylcholine (ACh), (B)
SNP, and (C) L-NMMA infusion. Values represent geometric
mean and SE. *P�0.05, overall effects of hypercholesterolemic
patients vs normal control subjects.

Figure 4. FBF ratio in hypercholesterolemic patients in the losmapi-
mod group (n�22) before dose on day 1 (red dashed line) and after
dose on day 28 (red solid line) and in the placebo group (n�23)
before dose on day 1 (blue dashed line) and after dose on day 28
(blue solid line) in response to (A) acetylcholine (ACh), (B) SNP, and (C)
L-NMMA infusion. Values represent geometric mean and SE. P�0.01
for ACh, P�0.02 for SNP, and P�0.07 for L-NMMA for overall com-
parison of losmapimod vs placebo from repeated measures mixed-
effects model in which saline was treated as infusion dose 0.
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From the ANCOVA, there was a 57% decrease (95% CI, �81
to �6; P�0.036) in hsCRP in the losmapimod group com-
pared with placebo on day 28. There was no difference in the
concentrations of other protein biomarkers tested.

Safety Assessments
Losmapimod was safe and well-tolerated in hypercholester-
olemic patients. The adverse event profile was similar across

groups. There were no deaths or serious adverse events. One
patient in the placebo group was withdrawn from the study
because of a lung nodule that was diagnosed before treatment.
Frequently reported adverse events are shown in Table I in
the online-only Data Supplement; the most common adverse
event was headache. There were no clinically relevant differ-
ences between groups for clinical chemistry (including liver
function tests), hematology, heart rate, blood pressure, or
ECG monitoring. In the losmapimod group, no patient had an
alanine aminotransferase or aspartate aminotransferase value
above the normal clinical range, and no other liver function
test met predefined criteria for clinical concern (alkaline
phosphatase �2 times the upper limit of normal or total
bilirubin �1.5 times the upper limit of normal).

Discussion
We designed a proof-of-concept study using hypercholesterol-
emia as a well-accepted model of endothelial dysfunction to
determine the role of p38 MAPK on NO-mediated vasoregula-
tion. For the first time in humans, we demonstrate that p38
MAPK inhibition improves NO-mediated vasomotor function in
vivo in patients with hypercholesterolemia. Using losmapimod
as a specific tool, we demonstrated that after 28 days of therapy,
the drug inhibited p38 MAPK activity at the cellular level, as
shown by the reduced phosphorylation of HSP27, a well-
established downstream bioassay of p38 MAPK activity. This

Table 2. Geometric Mean (95% CI) FBF Ratio Values in Hypercholesterolemic Patients

Placebo Losmapimod

Day 1 Day 28 Day 1 Day 28

ACh

Baseline 0.97 (0.85–1.10) 0.91 (0.80–1.04) 1.02 (0.93–1.11) 1.10 (0.97–1.24)

ACh 7.5 �g 2.45 (1.97–3.04) 2.16 (1.64–2.84) 2.18 (1.79–2.65) 2.54 (2.13–3.03)

ACh 15 �g 2.59 (2.00–3.35) 2.42 (1.86–3.15) 2.62 (2.10–3.28) 3.14 (2.50–3.93)

Overall comparison of losmapimod vs placebo (for day 28 vs 1)*

Treatment difference (95% CI), % 25 (5–48)

P 0.01

SNP

Baseline 1.07 (0.93–1.23) 0.96 (0.83–1.11) 1.13 (1.04–1.23) 1.15 (1.02–1.29)

SNP 3 �g 3.22 (2.65–3.92) 2.98 (2.28–3.89) 3.62 (2.87–4.57) 3.88 (3.41–4.41)

SNP 10 �g 4.16 (3.39–5.12) 3.67 (2.85–4.74) 4.84 (3.84–6.10) 5.73 (4.93–6.66)

Overall comparison of losmapimod vs placebo (for day 28 vs 1)*

Treatment difference (95% CI), % 20 (3–40)

P 0.02

L-NMMA

Baseline 1.17 (1.03–1.33) 1.13 (0.95–1.34) 1.29 (1.16–1.44) 1.41 (1.25–1.60)

L-NMMA 2 �mol 0.90 (0.77–1.05) 0.84 (0.73–0.98) 0.94 (0.81–1.08) 1.01 (0.90–1.13)

L-NMMA 4 �mol 0.73 (0.65–0.81) 0.73 (0.63–0.84) 0.82 (0.74–0.92) 0.88 (0.77–1.00)

Overall comparison of losmapimod vs placebo (for day 28 vs 1)*

Treatment difference (95% CI), % 10 (�1–23)

P 0.07

*FBF ratio data for losmapimod and placebo groups were compared by use of a repeated measures mixed-effects
model using ln-transformed data, fitting fixed terms for regimen, day, infusion dose within day, gender, and the
interaction of regimen and dose within a day, and subject as a random effect. Saline was treated as infusion dose
zero in the analyses. Point estimates (expressed as percentage treatment difference) and corresponding 95% CIs for
comparison of losmapimod and placebo are shown for both doses of acetylcholine (ACh), SNP, or L-NMMA combined.
Percentage treatment difference was calculated as follows: (point estimate�1)�100.

-60

-50

-40

-30

-20

-10

0

10

C
ha

ng
e 

in
 H

S
P

27
 r

at
io

 f
ro

m
 p

re
-d

o
se

Day 1
3h 6h 3h 6h

Day 28

Figure 5. Percentage reduction from before dose in phosphory-
lated HSP27 ratio in whole blood (concentration after sorbitol
stimulation divided by concentration in control medium) and at 3
and 6 hours after dose on days 1 and 28 in the losmapimod
group (blue bars) and placebo group (open bars). Values repre-
sent geometric mean and SE. **P�0.01; ***P�0.001.
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effect was accompanied by a reduction in systemic inflammation
as evidenced by a significant reduction in hsCRP.

We chose hypercholesterolemia as a stable model of endo-
thelial dysfunction to test our hypothesis because hypercholes-
terolemia is one of many cardiovascular risk factors that have
consistently been associated with impairment of endothelial
function in the literature.14,15,30 As expected,30,31 vascular re-
sponses were impaired in untreated patients with hypercholes-
terolemia compared with normal control subjects: significantly
decreased endothelium-dependent vasodilatation (acetylcholine
induced) and a trend toward impairment of endothelium-
independent vasodilatation (SNP induced). There was also a
significantly reduced response to the NO synthase inhibitor
L-NMMA, indicating reduced basal NO release.

Treatment with losmapimod for 28 days improved both
endothelium-dependent vasodilatory responses to acetylcho-
line and endothelium-independent vasodilatory responses to
SNP compared with placebo. We also saw an enhanced
vasoconstrictor effect with L-NMMA in the losmapimod
group, although this just failed to reach statistical signifi-
cance, which may be explained by the smaller effect size for
L-NMMA compared with that for acetylcholine and SNP.

The improvements in vascular function occurred without a
corresponding change in the levels of LDL cholesterol over
the 28-day course of the study (see Table 1), suggesting that
this was not the cause for improvement in endothelial
function. We confirmed that losmapimod was inhibiting p38
MAPK by demonstrating a significant inhibition of HSP27
phosphorylation (a known downstream substrate of the p38
MAPK signaling pathway27,28) on both the first day (after
dose) and last day of dosing. These results concur with data
from an ex vivo animal model of endothelial dysfunction and

a selective p38 MAPK inhibitor,22 confirming that the model
is relevant to human pathophysiology.

The finding that losmapimod enhances both endothelium-
dependent and -independent vasodilatation contrasts with re-
sponses observed after 4 weeks of treatment with a statin
(simvastatin), which lowered LDL cholesterol and affected only
endothelium-dependent responses.29 Hypercholesterolemia is
known to cause a reduction in both endothelium-depen-
dent29,32–34 and endothelium-independent NO responses.14 Al-
though endothelium-independent effects are not as widely re-
ported, this may be due primarily to the maximum dose of SNP
used in previous studies, which is much lower than the highest
dose we used in our study, as well as the much smaller sample
size in those studies favoring a negative result.

NO-related vascular responses are determined by NO
bioavailability (rate of NO production and breakdown) and
smooth muscle NO sensitivity. Our observations suggest that
the improvement in vascular function after p38 MAPK
inhibition is likely to represent increased sensitivity to NO
and potentially NO bioavailability. The precise mechanisms
underlying these changes cannot be answered by our study.
Although losmapimod did not alter LDL levels, like a statin,
it may have altered oxidized LDL levels, but this was not
measured in this study. Alternatively, we postulate that p38
MAPK inhibition (as evidenced by HSP27 inhibition) may
result in reduced ROS generation in hypercholesterolemia,35

which would enhance the half-life of active NO, by limiting
its conversion to, for example, peroxynitrite (ONOO�) and
limiting or reversing oxidation of soluble guanylate cyclase
(the NO receptor), thus restoring NO sensitivity.36 We re-
ported similar results in our animal model of stroke-prone
spontaneously hypertensive rat.22 A direct antioxidant would
also have a similar effect. However, losmapimod has no
antioxidant activity at pharmacologically relevant doses in
vitro, as shown by a Cu2� antioxidant assay (see Figure II in
the online-only Data Supplement).

The novel finding in humans in this study suggests that p38
MAPK inhibition may reverse the effects of chronic inflamma-
tion on the sensitivity of vascular smooth muscle to NO as
previously described in baseline vascular function in subjects
with rheumatoid arthritis.37 Whether this global improvement in
vasomotor function is of benefit in terms of event rates and
mortality remains to be answered and should be the subject of
further investigation.

p38 MAPK has long been postulated as an attractive thera-
peutic target for atherosclerosis because of its critical role in the
generation and signal transduction of proinflammatory cyto-
kines,38–40 the latter relevant to chronic inflammatory dis-
ease,41–45 often in the context of oxidized LDL cholesterol.43

Selective inhibitors of p38 MAPK have been shown to inhibit
lipopolysaccharide-stimulated IL-1 and tumor necrosis factor-�
production in human monocytes and the production of several
other cytokines, including IL-6, IL-8, and granulocyte-macro-
phage colony-stimulating factor.46,47 hsCRP is a stable repre-
sentation of these activities, as well as an established predictive
inflammatory biomarker for cardiovascular risk assess-
ment.2,48,49 After 28 days of treatment with losmapimod, we
observed a significant reduction in the concentration of hsCRP
(from 1.85 to 1.09 mg/L) in hypercholesterolemic patients. We

Figure 6. hsCRP values on days 1, 14, and 28 in hypercholes-
terolemic patients in the losmapimod group (blue line) and pla-
cebo group (red line). Values represent geometric mean and SE.
*P�0.05 for comparison on day 28.
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did not observe differences in IL-6, which could be due to the
shorter half-life of IL-6 and its higher variability.2,50 Therefore,
we have demonstrated that p38 MAPK inhibition (as measured
by the specific bioassay HSP27) resulted in a significant reduc-
tion in inflammation, as measured by hsCRP. Posthoc analysis,
however, did not show any significant correlation between the
change in hsCRP and the change in acetylcholine response. This
finding likely reflects the small sample size in our study, which
means we were not powered to detect a modest correlation.

We have shown an improvement in vascular function despite
inhibiting only �40% of HSP27, suggesting that clinical bene-
fits may occur without maximal blockade. This may ultimately
help mitigate against the hepatotoxicity seen at higher doses of
p38 MAPK inhibition and other p38 MAPK inhibitors.51 Indeed,
we found no liver function adverse signals, and losmapimod was
well tolerated. There were no serious adverse events or signifi-
cant adverse events compared with placebo, nor were there any
clinical safety parameters (hemodynamic, biochemical, or he-
matologic) of concern throughout the study.

Several limitations of this study merit consideration. This
proof-of-concept study in patients with hypercholesterolemia
was designed using a surrogate end point (response in the
forearm vascular bed after pharmacological challenge) rather
than clinical outcomes. Consequently, it needs to be verified in
an appropriately designed and powered study to determine
whether the observed improvements in vascular function will
translate into a clinical benefit (eg, reduction in incidence of
cardiovascular events). Moreover, although patients were treated
for 28 days, this is still a relatively short period of time with
regard to affecting a response, and it is expected that in future
studies patients would be treated for longer periods. Only 1 dose
level of losmapimod (7.5 mg twice daily) was evaluated in this
study. Evaluation of a higher dose of losmapimod or a more
potent p38 MAPK inhibitor may result in a greater response.

Conclusions
Our observations indicate that losmapimod improved both en-
dothelium-dependent and -independent vasodilatation in hyper-
cholesterolemic patients, as anticipated on the basis of equiva-
lent results from preclinical models. Results support p38 MAPK
inhibition as an approach to improving vascular health and
thereby benefiting patients with cardiovascular disease.
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CLINICAL PERSPECTIVE
Hypercholesterolemia is associated with impaired vasomotor endothelial function, which is a recognized surrogate marker
of outcome. We tested the hypothesis that a novel p38 MAP kinase inhibitor, losmapimod, could improve nitric
oxide–mediated responses in such a cohort. We demonstrated for the first time that moderate blockade of this pathway
improved endothelial-dependent and -independent nitric oxide–mediated vasodilatation in addition to reducing systemic
inflammation, as evidenced by an almost 60% reduction in high-sensitivity C-reactive protein, without alteration in
cholesterol levels. Inhibition of p38 may be an attractive target in patients with underlying vascular inflammation.
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Supplemental Table 1. Adverse events reported by more than 1 patient in either group 

 Number (%) of patients with adverse event 

 Placebo 

N=29 

Losmapimod 

N=27 

Patients with any adverse event 18 (62) 22 (81) 

Headache 10 (34) 9 (33) 

Influenza like illness 0 3 (11) 

Cough 2 (7) 2 (7) 

Gamma-glutamyltransferase increased 2 (7) 2 (7) 

Bacteria urine identified 1 (3) 2 (7) 

Dizziness  1 (3) 2 (7) 

Protein urine present 1 (3) 2 (7) 

White blood cells urine 1 (3) 2 (7) 

Dyspepsia 1 (3) 2 (7) 

Nasopharyngitis 1 (3) 2 (7) 



3 

Fatigue 0 2 (7) 

Muscle spasms 0 2 (7) 

Pharyngolaryngeal pain 2 (7) 1 (4) 

Alanine aminotransferase increased 2 (7) 0 

Adverse events were coded using the Medical Dictionary for Regulatory Activities (MedDRA). Adverse events are sorted by 

decreasing order of frequency in the losmapimod group. 
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Supplemental Figure 1 

 

 

pKi, IC50 ( M), or inhibition at 
10 M (%)  

In Vitro
Assay 

p38 7.6

p38 8.1

p38 -20 + 25%

p38 17 + 5%

Rat PBMC LPS-TNF 0.60 + 0.11 M

Human PBMC LPS-TNF 0.13 + 5 M

COX2 enzyme >100 M

Chemical Name: 6-{5-[(Cyclopropyl-amino) 

carbonyl]-3-fluoro-2-methylphenyl}-N-(2,2-

dimethylpropyl)-3-pyridinecarboxamide

Nonproprietary Name: Losmapimod

assn.org/go/asan)

Previously known as: GW856553 or GSK-AHAB

Molecular Formula: C22H26FN3O2

Molecular Weight: 383.5

A. B.
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Supplemental Figure 2 
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Supplemental Figure Legends 

Supplemental Figure 1: Structural information (A) and compound activity profile (B) of 

losmapimod (previously known as GW856553 or GSK-AHAB
1
).  Inhibition of p38  and 

p38  was determined using a ligand displacement fluoresence polarization assay.  p38  

and p38  activity was determined by measuring phosphorylation of myelin basic protein 

using a scintillation proximity assay. LPS-Induced TNF  production was measured in 

cultured rat and human whole blood.  COX2 activity was measured in microsomal 

preparations from Sf9 cells stably transfected with human COX2 enzyme. Selectivity 

testing (activity and/or binding) across more than 150 members of the human kinome 

suggest that losmapimod is a highly selective inhibitor of p38  and p38 , i.e. >100-fold 

more potent (data not shown).   

Supplemental Figure 2: Anti-oxidant activities of negative control (Ctrl; dimethyl 

sulfoxide), uric acid (positive control), Trolox (positive control) and losmapimod using a 

commercially available antioxidant activity assay (Oxford Biomedical, antioxidant TA02 

kit). Samples and positive controls were diluted to proper concentrations, mixed with 

buffer and aliquoted to 96 well plates. 50 µL of Cu
2+

 reagent was added to each well for 3 

minutes, followed by optical density reading at 450 nM (OD450). Dimethyl sulfoxide had 

no antioxidant activity (0.5% and 1%). Uric acid and Trolox were potent antioxidants at 

the dose range tested (3 to 50 µM). Losmapimod had no antioxidant activity at 

pharmacologically relevant doses (0.0625 to 1 µM). 
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