A Periocularmotor Nitridergic Population in the Macaque and Cat

Jonathan T. Erichsen1 and Paul J. May2-4

Purpose. We determined the distribution of cells containing synthetic enzymes for the unconventional neurotransmitter, nitric oxide, with respect to the known populations within the oculomotor complex.

Methods. The oculomotor complex was investigated in monkeys and cats by use of histochemistry to demonstrate nicotinamide adenine dinucleotide phosphate diaphorase positive (NADPHd1) cells and antibodies to localize neuronal nitric oxide synthase positive (NOS2) cells. In some cases, wheat germ agglutinin conjugated horseradish peroxidase (WGA-HRP) was injected into extraocular muscles to allow comparison of retrogradely labeled and NADPHd1 cell distributions.

Results. The distribution of the NADPHd1 and NOS2 neurons did not coincide with that of preganglionic and extraocular motoneurons in the oculomotor complex. However, labeled periocularmotor neurons were observed. Specifically, in monkeys, they lay in an arc that extended from between the oculomotor nuclei into the supraoculomotor area (SOA). Comparison of WGA-HRP labeled medial and superior rectus motoneurons with NADPHd1 staining confirmed that the distributions overlapped, but showed that the C- and S-group cells were not NADPHd1. This suggested that NADPHd1 cells are part of the centrally projecting Edinger-Westphal population (EWcp). Examination of the NADPHd1 cell distribution in the cat showed that these cells were indeed found primarily within its well-defined EWcp.

Conclusions. Based on their similar distributions, it appears that the peptidergic EWcp neurons, which project widely in the brain, also may be nitridergic. While the preganglionic and C- and S-group motoneuron populations do not use this nonsynaptic neurotransmitter, nitric oxide produced by surrounding NADPHd1 cells may modulate the activity of these motoneurons. (Invest Ophthalmol Vis Sci. 2012; 53:5751-5761) DOI:10.1167/iovs.12-10287

In the pigeon, neurons that stain positively with antibodies to neuronal nitric oxide synthase (NOS) or that are stained histochemically for the NOS, nicotinamide adenine dinucleotide phosphate diaphorase (NADPHd1), are present in the preganglionic Edinger-Westphal nucleus (EWpg).1 Furthermore, NOS and NADPH diaphorase are found in the pigeon ciliary ganglion, where they reside in the preganglionic terminals and postganglionic motoneurons.1,2 In addition, NOS blockers modulate the vasodilation induced by EW stimulation, suggesting that NOS has a crucial role in the transient control of choroidal blood flow in the bird.3 It is believed, however, that this effect is localized to the postganglionic contacts with the vasculature, not at synapses within the ciliary ganglion,4 leaving the role of preganglionic NOS undefined. Additionally, the role of NOS in preganglionic motoneurons in EWpg clearly is not confined to just the control of choroidal vasculature, as these cells are found in the medial and lateral EWpg of birds, and both bouton-like and cap-shaped terminals in their ciliary ganglia are NADPHd1-positive (NADPHd1), suggesting roles in pupil and/or lens accommodation.1,2

While nitric oxide (NO) also has an important role in the control of choroidal vasculature in mammals, this function appears to be supported mainly by pathways through the pterygopalatine ganglion, as opposed to those extending from the EWpg through the ciliary ganglion.5-7 The innervation of other structures within the orbit, such as the smooth muscle controlling tension in the pulley system, is nitridergic,8 but again is controlled mainly via the pterygopalatine ganglion.9,10

Consistent with this, the population of NADPHd1 neurons in the cat and monkey ciliary ganglion is quite small, suggesting only a limited role for NO in mammalian ciliary ganglion function.2 Furthermore, distinct NADPHd1 terminals were not observed in the ciliary ganglia of these species, although a few have been described in the rat.5,7 Nevertheless, in light of the results observed in the pigeon and the presence of a variety of peptides in preganglionic terminals in the mammalian ciliary ganglion,11-15 we examined the mammalian preganglionic motoneuron population supplying the ciliary ganglion for evidence of nitridergic activity.

We initially chose to investigate this question in the macaque monkey because of the similarities between macaque and human eyes, and because of the clear organization of the EW in primates, as opposed to non-primate mammals. Specifically, the preganglionic motoneurons supplying the ciliary ganglion are confined largely to a well-defined nucleus (EWpg) in monkeys,14-20 and prosimians.11 In contrast, the preganglionic motoneurons supplying the ciliary ganglion in the non-primates investigated to date are not found in a single nucleus that can be identified cytoarchitectonically (cat,22-23 rabbit,24 rat25). Subsequently, however, we also examined the distribution of NADPHd1 cells in the cat, as this species has a clearly defined EW nucleus containing centrally projecting cells (EWcp), and this nucleus contains only a very small portion of the preganglionic motoneuron population.16,20,22

Examination of sections from macaque brains treated to reveal NADPHd showed the presence of numerous positive cells in the region of the oculomotor nucleus (III). However, only a few of these cells were located within the confines of the EWpg. Instead their distribution was reminiscent of that...
shown for small motoneurons that supply multiply innervated muscle fibers (MIF) in the extraocular muscles. Consequently, we pursued this investigation further by comparing directly the distributions of NADPHd+ cells and small, MIF motoneurons. An earlier report of portions of this work appeared in abstract form.

METHODS

The procedures used in our study were approved by the Institutional Animal Care and Use Committee at the University of Mississippi Medical Center, and were in accordance with the IOVS Rules and Regulations for the Care and Use of Animals and were in compliance with the ARVO Statement for the Use of Animals in Ophthalmic and Vision Research. A total of 9 monkeys (Macaca mulatta and fascicularis) and 4 cats (Felis domesticus) of both sexes were used. Of the monkeys, 4 received tracer injections of the medial rectus and superior rectus muscles or the medial rectus only. Other tissue from these same animals was used in experiments that did not compromise the findings in our study.

For the extraocular muscle injections, 4 monkeys were sedated with intramuscular (IM) ketamine HCl (10 mg/kg) and anesthetized with isoflurane (1%–3%). Atropine (0.05 mg/kg, IM) was given to preclude overproduction of mucus, and intravenous (IV) dexamethasone (0.5 mg/kg) was given to reduce postoperative swelling. Body temperature, heart rate, and blood gas levels were monitored and maintained within normal values during the surgery. The brow area was prepared for sterile surgery, and an incision made posterior to the supraorbital ridge. The skin then was pulled forward and the orbicularis oculi muscle was dissected from the supraorbital ridge to reveal the orbital contents. The insertions of the medial (m) and superior (s) recti muscles were localized, dissected free, and stabilized with a loop of suture. The muscles then were injected with a combination of (1%–2%) wheat germ agglutinin conjugated horseradish peroxidase and 1% horseradish peroxidase (WGA-HRP) by use of a 10 μL Hamilton syringe. To label motoneurons supplying the entire muscle belly, 5 to 10 μL were injected, but to label MIF motoneurons preferentially, only 3 μL were injected into the distal tip of the muscle near the scleral insertion. The region then was rinsed with sterile saline, the orbicularis oculi muscle was reattached, and the wound closed with sutures. Following a 24 to 48-hour survival, the animals with muscle injections, along with 3 other monkeys and 3 cats that had not received muscle injections, were anesthetized deeply with intraperitoneal (IP) sodium pentobarbital (50 mg/kg). They then were perfused transcardially with buffered saline followed by a fixative solution containing 1.0% paraformaldehyde and 1.25% glutaraldehyde in 0.1 M, pH 7.2 phosphate buffer (PB). An additional set composed of 2 monkeys and 1 cat was perfused instead of III, where the caudal central subdivision is present (Figs. 2G, 2H). The brains were blocked in the region between the oculomotor nuclei. Each column bends laterally around the dorsomedial pole of III and disperses into the SOA. A few labeled cells spillover laterally into the reticular formation on either side of III. Only a very few cells appear to be located within the Edinger-Westphal nucleus where the preganglionic motoneurons are located (EW, Figs. 2D–G). At caudal levels of III, where the caudal central subdivision is present (Figs. 2G, 2H), labeled cells are not found between the two oculomotor nuclei or within this subdivision. Instead, they occupy the SOA and spread into the overlying periaqueductal gray. A separate population hugs the ventral border of the medial longitudinal fasciculus.

A portion of the NADPHd+ population appeared to lie in the same region in monkeys that contains motoneurons contributing input to MIFs within the extraocular muscles: the C-group, capping the nucleus, and the S-group, sandwiched between the two oculomotor nuclei. To determine whether these motoneurons might be NADPHd+, we injected the left medial rectus muscle to label the left C-group and left superior rectus muscle to label the right S-group with the retrograde tracer, WGA-HRP. Figure 3 reveals the appearance of
the two labels (Figs. 3A–C, rostral section; Figs. 3D–F, more caudal section). Retrogradely-labeled and NADPHd⁺ cells were apparent in sections through the rostral (Fig. 3A) and middle (Fig. 3E) portions of III. High magnification views of the C-group (Figs. 3C, 3D) showed the NADPHd⁺ cells to be a deep purple color, while the cells containing WGA-HRP were stained reddish brown. No clearly double labeled cells were evident. Although some NADPHd crystals were present over the retrogradely-labeled cells, this artifact was present evenly throughout the tissue. The two populations appeared to overlap, although most of the MIF motoneurons tended to lie closer to III than the NADPHd⁺ cells (Figs. 3B, 3F).

Further information on the relationship between the distributions of NADPHd⁺ cells and MIF motoneurons can be obtained from the chartings in Figure 4. In this case, the scleral insertion of the left medial rectus was injected. Motoneurons labeled retrogradely with WGA-HRP (red squares) hugged the dorsal and dorsomedial edge of III. While their distribution overlapped with that of the cells labeled with NADPHd (dots), the latter cells had a much wider distribution, which spread across the SOA. Only a few NADPHd⁺ cells were found within the confines of the EWpg.

Cells labeled via NADPHd histochemistry do not all necessarily use NO as a neurotransmitter. To verify our findings

Figure 1. NADPHd⁺ cells around the oculomotor nucleus of a macaque monkey. Lower magnification photomicrographs show levels located rostral (A) to III, near its rostral end (C), and midway through the nucleus (E). The higher magnification views from the same sections (B, D, E) reveal the labeled cells to be multipolar in shape with relatively small somata. The labeled cells lay between the oculomotor nuclei and spread throughout the SOA, but were not present within III itself (C–F). Rostrally, they were packed densely in the AM, but extended into the region around it. Scale in (E) = (A) and (C), and in (F) = (B) and (D). *In blood vessels, indicate the correspondence between the low and high magnification views.
Further, we used immunohistochemistry to identify cells containing neuronal NOS in paraformaldehyde-fixed tissue. Examples of the cell labeling seen with this antibody are shown in Figure 5. The perioculomotor NOS-positive (NOS\(^+\)) cells were labeled more lightly than immunopositive cells in other regions, such as the parabrachial nuclei. Nevertheless, at rostral (Figs. 5A, 5C) and caudal (Figs. 5E, 5G) levels of III, the NOS\(^+\) cells displayed the same distribution as the NADPH\(_d\)\(^+\) cells, that is they lay between the oculomotor nuclei and in SOA. As can be seen by comparing the Nissl-stained (Figs. 5B, 5F) and immunohistochemically stained (Figs. 5D, 5H) sections, the NOS\(^+\) cells lie between III and EWpg as do the NADPH\(_d\)\(^+\) cells. They appeared to be somewhat smaller than the motoneurons found in these adjacent nuclei (NOS\(^+\) mean long axis 12.2 \(\mu m\), range 7.1–14.3 \(\mu m\); EWpg mean long axis 22.6 \(\mu m\), range 15–28.5 \(\mu m\); III mean long axis 22.1 \(\mu m\), range 17.9–28.5 \(\mu m\)), although this may be due to different staining characteristics.

Based on the evidence that the NADPH\(_d\)\(^+\) cell population does not represent the motoneurons supplying MIF motoneurons (Figs. 3, 4), we considered a second hypothesis, that this population is equivalent to the centrally projecting Edinger-Westphal (EWcp) population of peptidergic neurons. Comparison of the present results with those from studies using antibodies to the neuropeptide urocortin-1 in the monkey reveals a very similar distribution of labeled cells.\(^{17,18,20}\) Urocortin-1 is the most widespread of the neuropeptides found in this area, and is believed to have a role in controlling consumption of food and fluids, as well as in responses to stress.\(^{20}\) However, the EWcp population in the macaque

Figure 2. Distribution of perioculomotor NADPH\(_d\)\(^+\) cells in the macaque monkey. A rostrocaudal (A–H) series of chartings reveals that the labeled cells (dots) are concentrated in the AM, but are scattered dorsal, lateral, and ventral to it (A, B). More caudally, the labeled cells form paired columns between III that arch dorsolaterally over III into the SOA, where they become more diffuse (C–F). A few labeled cells are present within the borders of the EWpg (C–F). While labeled cells occasionally were found towards the edges of III (D), it generally was devoid of label, as was the caudal central subdivision (CC). Other labeled cells were scattered in the periaqueductal gray (PAG) and lateral to III. CG, central gray; InC, interstitial nucleus of Cajal; MLF, medial longitudinal fasciculus; 3n, third cranial nerve.
monkey does not lie in a specific nucleus, making such comparisons less precise. To test this hypothesis further, we examined the distribution of perioculomotor NADPHd$^+$ cells in the cat, where the peptidergic neurons lie primarily in a discrete EWcp nucleus. As shown in Figure 6, the vast majority of NADPHd$^+$ cells do, indeed, lie within the cat’s EWcp. Small densely-labeled cells are clustered tightly within this nucleus, which is heart-shaped and located on the midline, dorsal to III (Fig. 6D). More scattered, slightly larger NADPHd$^+$ cells extend out from the nucleus into the SOA. The cells in EWcp continue forward into the anteromedian nucleus, which is found rostral to III (Figs. 6A, 6B). Once again, the cells within the nucleus are small, and densely packed, with slightly larger-appearing cells scattered laterally. There is a suggestion of separate columns for the two sides of the brain running through AM and EWcp, even though these are midline nuclei. Positive cells also were observed in the periaqueductal gray (Figs. 6A, 6C), but appeared to be a separate population.

The overall distribution of NADPHd$^+$ cells in the cat is charted in Figure 7. The labeled cells were packed closely within the midline EWcp at all levels (Figs. 7D–H). This population continues within the anteromedian nucleus rostral to III (Figs. 7B, 7C), and rostrally, even extends as two columns beyond the cytoarchitecturally defined borders of this nucleus.

Figure 3. Motoneurons projecting to MIF are not NADPHd$^+$. In this monkey, the left medial and superior rectus muscles were injected with WGA-HRP, resulting in labeled cells on the left and right sides of the oculomotor complex, respectively. Since the injections were made near the muscle insertion, mainly the MIF motoneurons in the medial rectus C-group and superior rectus S-group show the reddish brown reaction product, which is discerned easily from the purple NADPHd reaction product. (A) and (E) are low magnification views through the rostral and middle levels of III. At intermediate magnifications of the same slides (B, F), the NADPHd$^+$ cells can be seen immediately adjacent to WGA-HRP labeled motoneurons. The former generally lie medial and dorsal to the latter. Higher magnification views from the regions indicated by boxes in (B) and (F) are shown in (C) and (D), respectively. They reveal that the cells in the C-group with reddish brown reaction product do not contain purple reaction product, indicating that the populations are separate. Scale in (E) = (A), (D) = (C), and (F) = (B). *In blood vessels, indicate the correspondence between the low (A, E) and higher (B, F) magnification views.
This distribution pattern correlates tightly with that of urocortin-1 in cats. In addition to the NADPHd⁺ cells found within the borders of the nuclei, other labeled cells were present between the oculomotor nuclei and in the SOA. While NADPHd⁺ cells also were found in the periaqueductal gray and midbrain reticular formation, these cells did not appear to be part of the perioculomotor population. The use of an antibody to NOS in the cat produced a nearly identical pattern of labeling (not illustrated).

DISCUSSION

The data from these experiments in macaque monkeys and cats indicated that a perioculomotor population of NADPHd⁺ cells that use NOS is present in these animals. In view of the considerable evolutionary separation between these two species, it seems likely that such a population is a common feature among mammals. The distribution of these NADPHd⁺ cells closely matches that of peptidergic populations located in...
Figure 5. NOS\(^+\) cells in the macaque oculomotor complex. Photomicrographs show sets of sections taken through the rostral end (A–D) and middle (E–H) of III as indicated by the lower magnification views (A, C, E, G). The labeled cells are dark brown in color in the sections exposed to the antibody (C, D, G, H). Adjacent Nissl-stained sections are provided for comparison (A, B, E, F). The NOS\(^+\) cells can be seen arching from the midline, between III, into the SOA. Comparison of the Nissl-stained sections (B, F) to immunostained sections (D, H) reveals that these NOS\(^+\) cells were not found among the larger cells that are preganglionic motoneurons in the EWpg. Scale in (G) = (A), (C), (E), and in (H) = (B), (D), (F). *Indicate the same blood vessel in (A–D) and (E–H).
EWcp of both species.17,18,20 In contrast, the NADPH+ cell distribution clearly does not correspond to that of the preganglionic motoneurons supplying the ciliary ganglion, that is the EWpg, in either the monkey or cat.14–16,18–20,22,23 While these data do not exclude the possibility that occasional preganglionic motoneurons are nitridergic, the pattern of labeling indicates strongly that the vast majority are not. These results indicated further that the distribution of the smaller NADPH+ cells does not correspond to that of the small motoneurons supplying multiply innervated extraocular muscle fibers (MIF motoneurons) in monkeys.

Discriminating between the interneuron population in EWcp and the motoneuron population in EWpg is crucial. Earlier studies in humans assumed that a cytoarchitectonic subdivision capping III was the EW that contained preganglionic motoneurons.29 Neurodegenerative changes observed in this nucleus in Alzheimer’s sufferers30 led to attempts to find changes in pupillary function in these patients. However, further investigation made it clear that the nucleus in question was, in fact, the EWcp, which contains peptidergic interneurons.17,31 While it remains to be demonstrated that this population is NADPH+ in humans, it seems highly likely in light of the present findings. The few NADPH+ cells that were seen within the monkey EWpg were smaller in size and located near its borders, suggesting they were not truly preganglionic motoneurons. In the immunohistochemical experiments, where the borders of the EWpg were easier to define, it was even clearer that nitridergic cells were not part of the preganglionic population. This correlates well with

\textbf{Figure 6.} NADPH+ cells in the cat oculomotor region. Sections rostral to (A, B) and in the middle (C, D) of III are shown. The AM is filled with NADPH+ cells in the low magnification view (A) of the rostral section, with other labeled cells distributed dorsal and ventral to it. The higher magnification view of the same section (B) reveals that the labeled cells in the nucleus are slightly smaller and more fusiform than the labeled cells outside the nucleus. Caudally, most of the NADPH+ cells lie in the centrally projecting EWcp, which lies on the midline dorsal to III (C). A higher magnification view of the same section (D) reveals that the cells in the nucleus appear slightly smaller, and much more densely packed, than the labeled multipolar cells scattered in the SOA. Both scale bars = 250 μm. Scale in (C) = (A), and in (D) = (B). *Indicate the same blood vessel in (A, B) and (C, D).
the lack of NADPHd⁺ terminals in the ciliary ganglia of monkeys² and humans.⁹,¹⁰ Moreover, it suggests that, in primates, nitridergic modulation of activity is not a characteristic of preganglionic motoneurons or their terminals.

NADPHd⁺ and NOS⁺ cells also were absent from III itself in the macaques and cat, which agrees with previous reports in the cat.³² In this regard, III appears to differ from the abducens nucleus.³² In the cat abducens nucleus, numerous cells were NADPHd⁺, with most appearing to be interneurons. This normally would suggest that their medial rectus targets in III should show nitridergic modification of activity. However, the oculomotor nucleus neurons in cats appear to lack NO receptors.³² Within III, we saw no evidence of NOS immunolabeling above background levels. A small portion of NADPHd⁺ cells in the cat abducens nucleus are motoneurons,³² an interesting finding in light of the fact that NO influences the contractility of extraocular muscles.³³,³⁴ However, these investigators attributed this effect to NO produced by the muscle fibers feeding back upon the motor endplates. It certainly is curious that the motoneuron population in one extraocular nucleus should contain NADPHd⁺ cells and not the others. In contrast, we observed no NADPHd⁺ cells within the monkey abducens nucleus, and the few, small labeled cells seen at its borders appeared to be part of adjacent populations. This is not to say that nitridergic activity does not affect eye movements. There is extensive evidence that NO in the prepositus hypoglossi nucleus has an important role in the production of horizontal eye movements,³⁵–³⁹ but an equivalent locus of nitridergic activity for the vertical gaze system has not been reported to our knowledge.

The presence of a perioculomotor population that is NADPHd⁺ and NOS⁺ suggested strongly that these neurons use NO in cell-to-cell communication. NO is an unconventional neurotransmitter because it is not stored in vesicles or released at synapses.⁴⁰ Instead, this small molecule diffuses out of the cell as it is manufactured and quickly influences neural activity in surrounding cells that have NOS receptors. The receptor captures the NO with a heme group and works through a
guanyl cyclase to modulate cyclic GMP levels in the target cell. Since it uses a second messenger system, NO released at axonal terminals can have either excitatory or inhibitory effects on the targeted cell.

In addition, NO has been shown to act as a retrograde messenger when it is made in the postsynaptic elements of a synapse. NO then diffuses back into the presynaptic element to influence future levels of synaptic release. It has been reported to have an important role in long-term potentiation and depression at synapses when used in this way.

The degree of labeling seen in the monkey, and particularly in the cat EWc, suggested that the vast majority of the cells in this population are producing NO. EWc neurons already have been characterized as peptidergic based on antibody studies, with overlapping populations of cells positive for urocortin-1, substance P, cocaine and amphetamine related transcript (CART), and cholecystokinin (CCK). Indeed, cells in the rat EWc have been demonstrated to colocalize urocortin-1 and NOS. Thus, it appears that, in addition to the presence of neuropeptides, these cells also produce NO. This may have important consequences if the NO is expressed in the terminals of these cells because the neurons in EWc constitute one of the most diffusely projecting systems in the brain. These projections would allow the EWc axons to modulate activity in widely disparate brain regions using nitridergic mechanisms, up or down regulating targets based on their receptors. Alternatively, the presence of NADPHd in these cells may indicate that the EWc cells themselves modulate the activity of their inputs. Thus, the NO they produce may allow long-term plasticity in the relationship between the firing of their inputs and their responses to those inputs. Whether NO affects the targets of the EWc or activity in the nucleus itself, it clearly is significant for the function of this neuronal population. The EWc appears to have an important role in the control of food and fluid intake, and intermingled with MIF motoneurons, and the dendrites of these nitrideregic cells, is believed to contain neurons whose firing is related to vergence.

One of the striking things about the location of the NADPHd cells is their periculomotor location adjacent to III and the WPg. In fact, the results indicate that these cells are intermingled with MIF motoneurons, and the dendrites of preganglionic motoneurons in EWpg must comingle with those of the nitridergic population. The SOA, which contains many of these nitridergic cells, is believed to contain neurons whose firing is related to vergence. Furthermore, the SOA receives axonal input from a number of gaze-related structures, including the superior colliculus, the central mesencephalic reticular formation, and portions of the deep cerebellar nuclei. While it is possible that these merely are adjacent populations and the spatial relationship is not significant, it seems reasonable to suggest that the NADPHd cell population interacts in some way with these oculomotor populations. Due to the fact that NO is a nonsynaptic neurotransmitter, it is possible that its production directly influences these surrounding cell populations. Results from an ultrastructural analysis of MIF motoneurons in our lab may be relevant in this regard. We found that these cells rarely display synapses on their somata and proximal dendrites. Perhaps this is because this nonsynaptic mode of transmission is being used to influence them (Erichsen JT, IOVS 1998;39:ARVO Abstract S1049). Arguing against this concept is the fact that receptors for NO were not found in the cat III. However, it remains to be shown that this finding can be applied to MIF motoneurons in the monkey, which show a variety of species-specific characteristics.

Certainly, to the extent that the various behaviors tied to the EWc represent changes in vigilance or stress levels, it would not be unreasonable for these cells to modulate the overall activity present in oculomotor neuron populations, particularly in preganglionic motoneurons controlling pupil size.

References

42. Weitemier AZ, Ryabinin AE. Urocortin 1 in the dorsal raphe regulates food and fluid consumption, but not ethanol prefer- ence in C57BL/6j mice. Neuroscience. 2006;137:1439–1445.

