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PURPOSE. We determined the distribution of cells containing
synthetic enzymes for the unconventional neurotransmitter,
nitric oxide, with respect to the known populations within the
oculomotor complex.

METHODS. The oculomotor complex was investigated in
monkeys and cats by use of histochemistry to demonstrate
nicotinamide adenine dinucleotide phosphate diaphorase
positive (NADPHdþ) cells and antibodies to localize neuronal
nitric oxide synthase positive (NOSþ) cells. In some cases,
wheat germ agglutinin conjugated horseradish peroxidase
(WGA-HRP) was injected into extraocular muscles to allow
comparison of retrogradely labeled and NADPHdþ cell distri-
butions.

RESULTS. The distribution of the NADPHdþ and NOSþ neurons
did not coincide with that of preganglionic and extraocular
motoneurons in the oculomotor complex. However, labeled
perioculomotor neurons were observed. Specifically, in mon-
keys, they lay in an arc that extended from between the
oculomotor nuclei into the supraoculomotor area (SOA).
Comparison of WGA-HRP–labeled medial and superior rectus
motoneurons with NADPHd staining confirmed that the
distributions overlapped, but showed that the C- and S-group
cells were not NADPHdþ. This suggested that NADPHdþ cells
are part of the centrally projecting Edinger-Westphal popula-
tion (EWcp). Examination of the NADPHdþ cell distribution in
the cat showed that these cells were indeed found primarily
within its well-defined EWcp.

CONCLUSIONS. Based on their similar distributions, it appears
that the peptidergic EWcp neurons, which project widely in
the brain, also may be nitridergic. While the preganglionic and
C- and S-group motoneuron populations do not use this
nonsynaptic neurotransmitter, nitric oxide produced by
surrounding NADPHdþ cells may modulate the activity of
these motoneurons. (Invest Ophthalmol Vis Sci. 2012;
53:5751–5761) DOI:10.1167/iovs.12-10287

In the pigeon, neurons that stain positively with antibodies to
neuronal nitric oxide synthase (NOS) or that are stained

histochemically for the NOS, nicotinamide adenine dinucleotide
phosphate diaphorase (NADPHd), are present in the pregangli-

onic Edinger-Westphal nucleus (EWpg).1 Furthermore, NOS and
NADPH diaphorase are found in the pigeon ciliary ganglion,
where they reside in the preganglionic terminals and postgan-
glionic motoneurons.1,2 In addition, NOS blockers modulate the
vasodilation induced by EW stimulation, suggesting that NOS
has a crucial role in the transient control of choroidal blood flow
in the bird.3 It is believed, however, that this effect is localized to
the postganglionic contacts with the vasculature, not at
synapses within the ciliary ganglion,4 leaving the role of
preganglionic NOS undefined. Additionally, the role of NOS in
preganglionic motoneurons in EWpg clearly is not confined to
just the control of choroidal vasculature, as these cells are found
in the medial and lateral EWpg of birds, and both bouton-like
and cap-shaped terminals in their ciliary ganglia are NADPHd-
positive (NADPHdþ), suggesting roles in pupil and/or lens
accommodation.1,2

While nitric oxide (NO) also has an important role in the
control of choroidal vasculature in mammals, this function
appears to be supported mainly by pathways through the
pterygopalatine ganglion, as opposed to those extending from
the EWpg through the ciliary ganglion.5–7 The innervation of
other structures within the orbit, such as the smooth muscle
controlling tension in the pulley system, is nitridergic,8 but
again is controlled mainly via the pterygopalatine ganglion.9,10

Consistent with this, the population of NADPHdþ neurons in
the cat and monkey ciliary ganglion is quite small, suggesting
only a limited role for NO in mammalian ciliary ganglion
function.2 Furthermore, distinct NADPHdþ terminals were not
observed in the ciliary ganglia of these species, although a few
have been described in the rat.2,7 Nevertheless, in light of the
results observed in the pigeon and the presence of a variety of
peptides in preganglionic terminals in the mammalian ciliary
ganglion,11–13 we examined the mammalian preganglionic
motoneuron population supplying the ciliary ganglion for
evidence of nitridergic activity.

We initially chose to investigate this question in the
macaque monkey because of the similarities between macaque
and human eyes, and because of the clear organization of the
EW in primates, as opposed to non-primate mammals.
Specifically, the preganglionic motoneurons supplying the
ciliary ganglion are confined largely to a well-defined nucleus
(EWpg) in monkeys14–20 and prosimians.21 In contrast, the
preganglionic motoneurons supplying the ciliary ganglion in
the non-primates investigated to date are not found in a single
nucleus that can be identified cytoarchitectonically (cat,22,23

rabbit,24 rat20). Subsequently, however, we also examined the
distribution of NADPHdþ cells in the cat, as this species has a
clearly defined EW nucleus containing centrally projecting
cells (EWcp), and this nucleus contains only a very small
portion of the preganglionic motoneuron population.18,20,22

Examination of sections from macaque brains treated to
reveal NADPHd showed the presence of numerous positive
cells in the region of the oculomotor nucleus (III). However,
only a few of these cells were located within the confines of
the EWpg. Instead their distribution was reminiscent of that
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shown for small motoneurons that supply multiply innervated
muscle fibers (MIF) in the extraocular muscles.25,26 Conse-
quently, we pursued this investigation further by comparing
directly the distributions of NADPHdþ cells and small, MIF
motoneurons. An earlier report of portions of this work
appeared in abstract form.27

METHODS

The procedures used in our study were approved by the Institutional

Animal Care and Use Committee at the University of Mississippi

Medical Center, and were in accordance with the IOVS Rules and

Regulations for the Care and Use of Animals and were in compliance

with the ARVO Statement for the Use of Animals in Ophthalmic and

Vision Research. A total of 9 monkeys (Maccaca mulatta and

fascicularis) and 4 cats (Felix domesticus) of both sexes were used.

Of the monkeys, 4 received tracer injections of the medial rectus and

superior rectus muscles or the medial rectus only. Other tissue from

these same animals was used in experiments that did not compromise

the findings in our study.

For the extraocular muscle injections, 4 monkeys were sedated with

intramuscular (IM) ketamine HCl (10 mg/kg) and anesthetized with

isoflurane (1%–3%). Atropine (0.05 mg/kg, IM) was given to preclude

overproduction of mucus, and intravenous (IV) dexamethasone (0.5

mg/kg) was given to reduce postoperative swelling. Body temperature,

heart rate, and blood gas levels were monitored and maintained within

normal values during the surgery. The brow area was prepared for

sterile surgery, and an incision made posterior to the supraorbital ridge.

The skin then was pulled forward and the orbicularis oculi muscle

disinserted from the supraorbital ridge to reveal the orbital contents.

The insertions of the medial (n¼ 4) and superior (n¼ 2 of the 4) recti

muscles were localized, dissected free, and stabilized with a loop of

suture. The muscles then were injected with a combination of (1%–2%)

wheat germ agglutinin conjugated horseradish peroxidase and 10%

horseradish peroxidase (WGA-HRP) by use of a 10 lL Hamilton syringe.

To label motoneurons supplying the entire muscle belly, 5 to 10 lL were

injected, but to label MIF motoneurons preferentially, only 3 lL were

injected into the distal tip of the muscle near the scleral insertion.25 The

region then was rinsed with sterile saline, the orbicularis oculi muscle

was reattached, and the wound closed with sutures. Following a 24 to

48-hour survival, the animals with muscle injections, along with 3 other

monkeys and 3 cats that had not received muscle injections, were

anesthetized deeply with intraperitoneal (IP) sodium pentobarbital (50

mg/kg). They then were perfused transcardially with buffered saline

followed by a fixative solution containing 1.0% paraformaldehyde and

1.25% glutaraldehyde in 0.1 M, pH 7.2 phosphate buffer (PB). An

additional set composed of 2 monkeys and 1 cat was perfused instead

with 4.0% buffered paraformaldehyde. The brains were blocked in the

frontal or sagittal plane, and postfixed for 1 to 12 hours in the same

fixative used for perfusion, before being stored in PB at 48C.

Tissue blocks from brainstems fixed with mixed aldehydes were cut

on the Vibratome into 100 lm thick serial sections. Selected series of

sections were reacted to reveal the presence of NADPHdþneurons. They

were treated first with Triton-X-100 (0.3% in PB) and rinsed. This was

followed by incubation in a solution containing 0.02% b-nicotinamide

adenine dinucleotide phosphate, 0.04% nitroblue tetrazolium, and 0.3%

Triton-X-100 in PB. This reaction was terminated by rinsing in 0.1 M, pH

7.2 PB. It should be noted that NADPHdþ cells in the vicinity of the

oculomotor nucleus were labeled clearly only in sections fixed with

mixed aldehydes, not 4.0% paraformaldehyde. In cases in which the

extraocular muscle had been injected with WGA-HRP, additional

procedures were performed following the NADPHd protocol to localize

the labeled motoneurons, as described by Perkins et al.28

Tissue from brainstems fixed in 4.0% paraformaldehyde was

equilibrated in a 30% sucrose 0.1 M, pH 7.2 PB solution as a

cryoprotectant. It then was frozen and sectioned on a sliding microtome

into 80 lm sections. Selected sections were treated with 0.3% Triton-X-

100 in PB, and then placed in a primary antibody solution consisting of

rabbit anti-human NOS (1:10,000; Immunostar, Hudson, WI) in 1.0%

bovine serum albumin (BSA) in 0.1 M, pH 7.2 PB for 24 hours at 48C.

They then were rinsed and placed sequentially in biotinylated secondary

and then in avidin-conjugated horseradish peroxidase, following

standard ABC kit (Vector Laboratories, Burlingame, CA) procedures.

Finally, the sections were reacted in a solution containing 1.0% DAB and

0.003% H2O2 in 0.1 M, pH 7.2 PB. This set of sections and an adjacent,

non-reacted set were mounted onto gelatinized slides. The non-reacted

set was counterstained with cresyl violet. All sets then were dehydrated,

cleared and coverslipped.

The distributions of labeled neurons were plotted using an

Olympus BH-2 microscope (Olympus, Tokyo, Japan) equipped with a

drawing tube. Examples of labeled neurons were photographed by use

of a Nikon E600 microscope (Nikon, Tokyo, Japan) equipped with a

Nikon DXM 1200F digital camera powered by Metamorph software

(Molecular Devices, LLC, Sunnyvale, CA). The images were adjusted in

Adobe Photoshop (Adobe Systems, Inc., San Jose, CA) to resemble the

view seen through the objectives. The terminology used here for the

EW nucleus is defined by Kozicz et al.20

RESULTS

Histochemical preparation of monkey midbrain sections for
NADPHd revealed a set of labeled neurons in the vicinity of III
(Fig. 1). No differences were seen between the two species of
macaque, so they will be described together. The low
magnification views revealed a set of labeled neurons that
form paired columns just off the midline in the area between,
but not within, the oculomotor nuclei (Figs. 1C, 1E). These
columns extend into the supraoculomotor area (SOA) that caps
III. Specifically, they wrap around the dorsomedial edge of III,
and are distributed widely within the SOA. Rostral to III (Fig.
1A), they are found primarily within the anteromedian nucleus
(AM). At higher magnification (Figs. 1B, 1D, 1F), they appear to
be relatively small neurons compared to the neighboring
motoneurons within III and within adjacent Nissl-stained
sections. These cells averaged three primary dendrites that
showed no consistent difference in orientation at the various
rostrocaudal levels pictured.

A more complete view of the distribution of the NADPHdþ

cell population is afforded by chartings of their locations (Fig.
2). At rostral levels (Figs. 2A, 2B), labeled cells are common
within AM, but also are located dorsal, lateral, and ventral to it.
At rostral and middle levels of III (Figs. 2C–F), the labeled
neurons form a pair of columns in the region between the
oculomotor nuclei. Each column bends laterally around the
dorsomedial pole of III and disperses into the SOA. A few
labeled cells spill out laterally into the reticular formation on
either side of III. Only a very few cells appear to be located
within the Edinger-Westphal nucleus where the preganglionic
motoneurons are located (EWpg, Figs. 2D–G). At caudal levels
of III, where the caudal central subdivision is present (Figs. 2G,
2H), labeled cells are not found between the two oculomotor
nuclei or within this subdivision. Instead, they occupy the SOA
and spread into the overlying periaqueductal gray. A separate
population hugs the ventral border of the medial longitudinal
fasciculus.

A portion of the NADPHdþ population appeared to lie in the
same region in monkeys that contains motoneurons contrib-
uting input to MIFs within the extraocular muscles: the C-
group, capping the nucleus, and the S-group, sandwiched
between the two oculomotor nuclei.25,26 To determine
whether these motoneurons might be NADPHdþ, we injected
the left medial rectus muscle to label the left C-group and left
superior rectus muscle to label the right S-group with the
retrograde tracer, WGA-HRP. Figure 3 reveals the appearance of
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the two labels (Figs. 3A–C, rostral section; Figs. 3D–F, more
caudal section). Retrogradely-labeled and NADPHdþ cells were
apparent in sections through the rostral (Fig. 3A) and middle
(Fig. 3E) portions of III. High magnification views of the C-
group (Figs. 3C, 3D) showed the NADPHdþ cells to be a deep
purple color, while the cells containing WGA-HRP were
stained reddish brown. No clearly double labeled cells were
evident. Although some NADPHd crystals were present over
the retrogradely-labeled cells, this artifact was present evenly
throughout the tissue. The two populations appeared to
overlap, although most of the MIF motoneurons tended to lie
closer to III than the NADPHdþ cells (Figs. 3B, 3F).

Further information on the relationship between the
distributions of NADPHdþ cells and MIF motoneurons can be
obtained from the chartings in Figure 4. In this case, the scleral
insertion of the left medial rectus was injected. Motoneurons
labeled retrogradely with WGA-HRP (red squares) hugged the
dorsal and dorsomedial edge of III. While their distribution
overlapped with that of the cells labeled with NADPHd (dots),
the latter cells had a much wider distribution, which spread
across the SOA. Only a few NADPHdþ cells were found within
the confines of the EWpg.

Cells labeled via NADPHd histochemistry do not all
necessarily use NO as a neurotransmitter. To verify our findings

FIGURE 1. NADPHdþ cells around the oculomotor nucleus of a macaque monkey. Lower magnification photomicrographs show levels located
rostral (A) to III, near its rostral end (C), and midway through the nucleus (E). The higher magnification views from the same sections (B, D, E)
reveal the labeled cells to be multipolar in shape with relatively small somata. The labeled cells lay between the oculomotor nuclei and spread
throughout the SOA, but were not present within III itself (C–F). Rostrally, they were packed densely in the AM, but extended into the region
around it. Scale in (E) ¼ (A) and (C), and in (F) ¼ (B) and (D). *In blood vessels, indicate the correspondence between the low and high
magnification views.
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further, we used immunohistochemistry to identify cells
containing neuronal NOS in paraformaldehyde-fixed tissue.
Examples of the cell labeling seen with this antibody are
shown in Figure 5. The perioculomotor NOS-positive (NOSþ)
cells were labeled more lightly than immunopositive cells in
other regions, such as the parabrachial nuclei. Nevertheless, at
rostral (Figs. 5A, 5C) and caudal (Figs. 5E, 5G) levels of III, the
NOSþ cells displayed the same distribution as the NADPHdþ

cells, that is they lay between the oculomotor nuclei and in
SOA. As can be seen by comparing the Nissl-stained (Figs. 5B,
5F) and immunohistochemically stained (Figs. 5D, 5H)
sections, the NOSþ cells lie between III and EWpg as do the
NADPHdþ cells. They appeared to be somewhat smaller than
the motoneurons found in these adjacent nuclei (NOSþ mean
long axis 12.2 lm, range 7.1–14.3 lm; EWpg mean long axis

22.6 lm, range 15–28.5 lm; III mean long axis 22.1 lm, range
17.9–28.5 lm), although this may be due to different staining
characteristics.

Based on the evidence that the NADPHdþ cell population
does not represent the motoneurons supplying MIF motoneu-
rons (Figs. 3, 4), we considered a second hypothesis, that this
population is equivalent to the centrally projecting Edinger-
Westphal (EWcp) population of peptidergic neurons. Compar-
ison of the present results with those from studies using
antibodies to the neuropeptide urocortin-1 in the monkey
reveals a very similar distribution of labeled cells.17,18,20

Urocortin-1 is the most widespread of the neuropeptides
found in this area, and is believed to have a role in controlling
consumption of food and fluids, as well as in responses to
stress.20 However, the EWcp population in the macaque

FIGURE 2. Distribution of perioculomotor NADPHdþ cells in the macaque monkey. A rostrocaudal (A–H) series of chartings reveals that the labeled
cells (dots) are concentrated in the AM, but are scattered dorsal, lateral, and ventral to it (A, B). More caudally, the labeled cells form paired columns
between III that arch dorsolaterally over III into the SOA, where they become more diffuse (C–F). A few labeled cells are present within the borders
of the EWpg (C–F). While labeled cells occasionally were found towards the edges of III (D), it generally was devoid of label, as was the caudal
central subdivision (CC). Other labeled cells were scattered in the periaqueductal gray (PAG) and lateral to III. CG, central gray; InC, interstitial
nucleus of Cajal; MLF, medial longitudinal fasciculus; 3n, third cranial nerve.
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monkey does not lie in a specific nucleus, making such
comparisons less precise. To test this hypothesis further, we
examined the distribution of perioculomotor NADPHdþ cells in
the cat, where the peptidergic neurons lie primarily in a
discrete EWcp nucleus. As shown in Figure 6, the vast majority
of NADPHdþ cells do, indeed, lie within the cat’s EWcp. Small
densely-labeled cells are clustered tightly within this nucleus,
which is heart-shaped and located on the midline, dorsal to III
(Fig. 6D). More scattered, slightly larger NADPHdþ cells extend
out from the nucleus into the SOA. The cells in EWcp continue
forward into the anteromedian nucleus, which is found rostral
to III (Figs. 6A, 6B). Once again, the cells within the nucleus

are small, and densely packed, with slightly larger-appearing
cells scattered laterally. There is a suggestion of separate
columns for the two sides of the brain running through AM and
EWcp, even though these are midline nuclei. Positive cells also
were observed in the periaqueductal gray (Figs. 6A, 6C), but
appeared to be a separate population.

The overall distribution of NADPHdþ cells in the cat is
charted in Figure 7. The labeled cells were packed closely
within the midline EWcp at all levels (Figs. 7D–H). This
population continues within the anteromedian nucleus rostral
to III (Figs. 7B, 7C), and rostrally, even extends as two columns
beyond the cytoarchitecturally defined borders of this nucleus

FIGURE 3. Motoneurons projecting to MIF are not NADPHdþ. In this monkey, the left medial and superior rectus muscles were injected with WGA-
HRP, resulting in labeled cells on the left and right sides of the oculomotor complex, respectively. Since the injections were made near the muscle
insertion, mainly the MIF motoneurons in the medial rectus C-group and superior rectus S-group show the reddish brown reaction product, which is
discerned easily from the purple NADPHd reaction product. (A) and (E) are low magnification views through the rostral and middle levels of III. At
intermediate magnifications of the same slides (B, F), the NADPHdþ cells can be seen immediately adjacent to WGA-HRP labeled motoneurons. The
former generally lie medial and dorsal to the latter. Higher magnification views from the regions indicated by boxes in (B) and (F) are shown in (C)
and (D), respectively. They reveal that the cells in the C-group with reddish brown reaction product do not contain purple reaction product,
indicating that the populations are separate. Scale in (E)¼ (A), (D)¼ (C), and (F)¼ (B). *In blood vessels, indicate the correspondence between the
low (A, E) and higher (B, F) magnification views.
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(Fig. 7A). This distribution pattern correlates tightly with that
of urocortin-1 in cats.18 In addition to the NADPHdþ cells found
within the borders of the nuclei, other labeled cells were
present between the oculomotor nuclei and in the SOA. While
NADPHdþ cells also were found in the periaqueductal gray and
midbrain reticular formation, these cells did not appear to be
part of the perioculomotor population. The use of an antibody

to NOS in the cat produced a nearly identical pattern of
labeling (not illustrated).

DISCUSSION

The data from these experiments in macaque monkeys and

cats indicated that a perioculomotor population of NADPHdþ

cells that use NOS is present in these animals. In view of the

considerable evolutionary separation between these two

species, it seems likely that such a population is a common

feature among mammals. The distribution of these NADPHdþ

cells closely matches that of peptidergic populations located in

FIGURE 4. Distributions of motoneurons projecting to MIF in the medial rectus muscle in comparison to NADPHdþ cells in the macaque monkey. A
rostrocaudal (A–G) series of chartings indicates that the retrogradely labeled cells (red squares) from a muscle insertion injection of WGA-HRP
almost all lie right along the dorsomedial aspect of III in C-group (C–E). The NADPHdþ cells (black dots) occupy a similar territory, but extend into
the SOA. A few are located at the border of the EWpg. Thus, the two labeled distributions overlap. nD, nucleus of Darkschewitsch.
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FIGURE 5. NOSþ cells in the macaque oculomotor complex. Photomicrographs show sets of sections taken through the rostral end (A–D) and
middle (E–H) of III as indicated by the lower magnification views (A, C, E, G). The labeled cells are dark brown in color in the sections exposed to
the antibody (C, D, G, H). Adjacent Nissl-stained sections are provided for comparison (A, B, E, F). The NOSþ cells can be seen arching from the
midline, between III, into the SOA. Comparison of the Nissl-stained sections (B, F) to immunostained sections (D, H) reveals that these NOSþ cells
were not found among the larger cells that are preganglionic motoneurons in the EWpg. Scale in (G) ¼ (A), (C), (E), and in (H) ¼ (B), (D), (F).
*Indicate the same blood vessel in (A–D) and (E–H).
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EWcp of both species.17,18,20 In contrast, the NADPHdþ cell
distribution clearly does not correspond to that of the
preganglionic motoneurons supplying the ciliary ganglion,
that is the EWpg, in either the monkey or cat.14–16,18–20,22,23

While these data do not exclude the possibility that occasional
preganglionic motoneurons are nitridergic, the pattern of
labeling indicates strongly that the vast majority are not. These
results indicated further that the distribution of the smaller
NADPHdþ cells does not correspond to that of the small
motoneurons supplying multiply innervated extraocular mus-
cle fibers (MIF motoneurons) in monkeys.

Discriminating between the interneuron population in EWcp
and the motoneuron population in EWpg is crucial. Earlier
studies in humans assumed that a cytoarchitectonic subdivision

capping III was the EW that contained preganglionic motoneu-
rons.29 Neurodegenerative changes observed in this nucleus in
Alzheimer’s sufferers30 led to attempts to find changes in
pupillary function in these patients. However, further investiga-
tion made it clear that the nucleus in question was, in fact, the
EWcp, which contains peptidergic interneurons.17,31 While it
remains to be demonstrated that this population is NADPHdþ in
humans, it seems highly likely in light of the present findings. The
few NADPHdþ cells that were seen within the monkey EWpg
were smaller in size and located near its borders, suggesting they
were not truly preganglionic motoneurons. In the immunohis-
tochemical experiments, where the borders of the EWpg were
easier to define, it was even clearer that nitridergic cells were not
part of the preganglionic population. This correlates well with

FIGURE 6. NADPHdþ cells in the cat oculomotor region. Sections rostral to (A, B) and in the middle (C, D) of III are shown. The AM is filled with
NADPHdþ cells in the low magnification view (A) of the rostral section, with other labeled cells distributed dorsal and ventral to it. The higher
magnification view of the same section (B) reveals that the labeled cells in the nucleus are slightly smaller and more fusiform than the labeled cells
outside the nucleus. Caudally, most of the NADPHdþ cells lie in the centrally projecting EWcp, which lies on the midline dorsal to III (C). A higher
magnification view of the same section (D) reveals that the cells in the nucleus appear slightly smaller, and much more densely packed, than the
labeled multipolar cells scattered in the SOA. Both scale bars¼250 lm. Scale in (C)¼ (A), and in (D)¼ (B). *Indicate the same blood vessel in (A, B)
and (C, D).

5758 Erichsen and May IOVS, August 2012, Vol. 53, No. 9



the lack of NADPHdþ terminals in the ciliary ganglia of monkeys2

and humans.9,10 Moreover, it suggests that, in primates,
nitridergic modulation of activity is not a characteristic of
preganglionic motoneurons or their terminals.

NADPHdþ and NOSþ cells also were absent from III itself in
the macaques and cat, which agrees with previous reports in
the cat.32 In this regard, III appears to differ from the abducens
nucleus.32 In the cat abducens nucleus, numerous cells were
NADPHdþ, with most appearing to be interneurons. This
normally would suggest that their medial rectus targets in III
should show nitridergic modification of activity. However, the
oculomotor nucleus neurons in cats appear to lack NO
receptors.32 Within III, we saw no evidence of NOS
immunolabeling above background levels. A small portion of
NADPHdþ cells in the cat abducens nucleus are motoneu-
rons,32 an interesting finding in light of the fact that NO
influences the contractility of extraocular muscles.33,34 How-
ever, these investigators attributed this effect to NO produced
by the muscle fibers feeding back upon the motor endplates. It

certainly is curious that the motoneuron population in one
extraocular nucleus should contain NADPHdþ cells and not the
others. In contrast, we observed no NADPHdþ cells within the
monkey abducens nucleus, and the few, small labeled cells
seen at its borders appeared to be part of adjacent populations.
This is not to say that nitridergic activity does not affect eye
movements. There is extensive evidence that NO in the
prepositus hypoglossi nucleus has an important role in the
production of horizontal eye movements,35–39 but an equiva-
lent locus of nitridergic activity for the vertical gaze system has
not been reported to our knowledge.

The presence of a perioculomotor population that is
NADPHdþ and NOSþ suggested strongly that these neurons use
NO in cell-to-cell communication. NO is an unconventional
neurotransmitter because it is not stored in vesicles or released
at synapses.40 Instead, this small molecule diffuses out of the cell
as it is manufactured and quickly influences neural activity in
surrounding cells that have NOS receptors. The receptor
captures the NO with a heme group and works through a

FIGURE 7. Distribution of perioculomotor NADPHdþ cells in the cat. A rostrocaudal (A–I) series of sections is illustrated. Labeled cells (dots) are
found in and around the anteromedian nucleus (B, C), and even extend rostral to this nucleus as paired columns (A). They are concentrated in the
centrally projecting EWcp, but also extend laterally within the SOA and ventral to this nucleus, between III (D–F). Other labeled cells are scattered
in the periaqueductal gray dorsal to SOA, and lateral to the MLF (D–F). They generally are absent from III and the CC (I).
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guanyl cyclase to modulate cyclic GMP levels in the target cell.
Since it uses a second messenger system, NO released at axonal
terminals can have either excitatory or inhibitory effects on the
targeted cell.41–43 In addition, NO has been shown to act as a
retrograde messenger when it is made in the postsynaptic
element of a synapse. NO then diffuses back into the presynaptic
element to influence future levels of synaptic release. It has been
reported to have an important role in long-term potentiation and
depression at synapses when used in this way.44,45

The degree of labeling seen in the monkey, and particularly
in the cat EWcp, suggested that the vast majority of the cells in
this population are producing NO. EWcp neurons already have
been characterized as peptidergic based on antibody studies,
with overlapping populations of cells positive for urocortin-1,
substance P, cocaine and amphetamine related transcript
(CART), and cholecystokinin (CCK).17,18,31,46–49 Indeed, cells
in the rat EWcp have been demonstrated to colocalize
urocortin-1 and NOS.50 Thus, it appears that, in addition to
the presence of neuropeptides, these cells also produce NO.
This may have important consequences if the NO is expressed
in the terminals of these cells because the neurons in EWcp
constitute one of the most diffusely projecting systems in the
brain.51 These projections would allow the EWcp axons to
modulate activity in widely disparate brain regions using
nitridergic mechanisms, up or down regulating targets based
on their receptors. Alternatively, the presence of NADPHd in
these cells may indicate that the EWcp cells themselves
modulate the activity of their inputs. Thus, the NO they
produce may allow long-term plasticity in the relationship
between the firing of their inputs and their responses to those
inputs. Whether NO affects the targets of the EWcp or activity
in the nucleus itself, it clearly is significant for the function of
this neuronal population.20 The EWcp appears to have an
important role in the control of food and fluid intake,52–54 and
also may help regulate stress responses20 due to the similarity
of urocortins to corticotropin releasing factor.

One of the striking things about the location of the
NADPHdþ cells is their perioculomotor location adjacent to III
and the EWpg. In fact, the results indicate that these cells are
intermingled with MIF motoneurons, and the dendrites of
preganglionic motoneurons in EWpg must comingle with those
of the nitridergic population. The SOA, which contains many of
these nitrideregic cells, is believed to contain neurons whose
firing is related to vergence.55–58 Furthermore, the SOA receives
axonal input from a number of gaze-related structures,
including the superior colliculus, the central mesencephalic
reticular formation, and portions of the deep cerebellar
nuclei.56,59–61 While it is possible that these merely are adjacent
populations and the spatial relationship is not significant, it
seems reasonable to suggest that the NADPHdþ cell population
interacts in some way with these oculomotor populations. Due
to the fact that NO is a nonsynaptic neurotransmitter, it is
possible that its production directly influences these surround-
ing cell populations. Results from an ultrastructural analysis of
MIF motoneurons in our lab may be relevant in this regard. We
found that these cells rarely display synapses on their somata
and proximal dendrites. Perhaps this is because this non-
synaptic mode of transmission is being used to influence them
(Erichsen JT, IOVS 1998;39:ARVO Abstract S1049). Arguing
against this concept is the fact that receptors for NO were not
found in the cat III.32 However, it remains to be shown that this
finding can be applied to MIF motoneurons in the monkey,
which show a variety of species-specific characteristics.25,26

Certainly, to the extent that the various behaviors tied to the
EWcp represent changes in vigilance or stress levels, it would
not be unreasonable for these cells to modulate the overall
activity present in oculomotor neuron populations, particularly
in preganglionic motoneurons controlling pupil size.
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45. Szabadits E, Cserép C, Ludányi A, et al. Hippocampal GABAergic
synapses possess the molecular machinery for retrograde nitric
oxide signaling. J Neurosci. 2007;27:8101–8111.

46. Kozicz T, Yanaihara H, Arimura A. Distribution of urocortin-
like immunoreactivity in the central nervous system of the rat.
J Comp Neurol. 1998;391:1–10.

47. Kozicz T. Neurons colocalizing urocortin and cocaine and
amphetamine-regulated transcript immunoreactivities are in-
duced by acute lipopolysaccharide stress in the Edinger-
Westphal nucleus in the rat. Neuroscience. 2003;116:315–320.

48. Maciewicz R, Phipps BS, Foote WE, Aronin N, DiFiglia M. The
distribution of substance P-containing neurons in the cat
Edinger-Westphal nucleus: relationship to efferent projection
systems. Brain Res. 1983;270:217–230.

49. Phipps BS, Maciewicz R, Sandrew BB, Poletti CE, Foote WE.
Edinger-Westphal neurons that project to spinal cord contain
substance P. Neurosci Lett. 1983;36:125–131.

50. Spina MG, Langnaese K, Orlando GF, et al. Colocalization of
urocortin and neuronal nitric oxide synthase in the hypothal-
amus and Edinger-Westphal nucleus of the rat. J Comp Neurol.
2004;479:271–286.

51. Vasconcelos LA, Donaldson C, Sita LV, et al. Urocortin in the
central nervous system of a primate (Cebus apella): sequenc-
ing, immunohistochemical, and hybridization histochemical
characterization. J Comp Neurol. 2003;463:157–175.

52. Ryabinin AE, Weitemier AZ. The urocortin 1 neurocircuit:
ethanol-sensitivity and potential involvement in alcohol
consumption. Brain Res Rev. 2006;52:368–380.

53. Weitemier AZ, Ryabinin AE. Lesions of the Edinger-Westphal
nucleus alter food and water consumption. Behav Neurosci.
2005;119:1235–1243.

54. Weitemier AZ, Ryabinin AE. Urocortin 1 in the dorsal raphe
regulates food and fluid consumption, but not ethanol prefer-
ence in C57BL/6J mice. Neuroscience. 2006;137:1439–1445.

55. Judge SJ, Cumming BG. Neurons in the monkey midbrain with
activity related to vergence eye movement and accommoda-
tion. J Neurophysiol. 1986;55:915–930.

56. May PJ, Porter JD, Gamlin PD. Interconnections between the
primate cerebellum and midbrain near-response regions. J

Comp Neurol. 1992;315:98–116.

57. Mays LE. Neural control of vergence eye movements:
convergence and divergence neurons in midbrain. J Neuro-

physiol. 1984;51:1091–1108.

58. Mays LE, Porter JD, Gamlin PD, Tello CA. Neural control of
vergence eye movements: neurons encoding vergence veloc-
ity. J Neurophysiol. 1986;56:1007–1021.

59. Grantyn A, Grantyn R. Axonal patterns and sites of termination
of cat superior colliculus neurons projecting in the tecto-
bulbo-spinal tract. Exp Brain Res. 1982;46:243–256.

60. Harting JK. Descending pathways from the superior colliculus:
an autoradiographic analysis in the rhesus monkey (Macaca
mulatta). J Comp Neurol. 1977;173:583–612.

61. May PJ, Horn AKE, Mustari MJ, Warren S. Central mesence-
phalic reticular formation projections onto oculomotor
motoneurons. Soc Neurosci Abst. 2011;37:669.04.

IOVS, August 2012, Vol. 53, No. 9 Perioculomotor NADPHd-Positive Cells 5761


	f01
	f02
	f03
	f04
	f05
	f06
	f07
	b01
	b02
	b03
	b04
	b05
	b06
	b07
	b08
	b09
	b10
	b11
	b12
	b13
	b14
	b15
	b16
	b17
	b18
	b19
	b20
	b21
	b22
	b23
	b24
	b25
	b26
	b27
	b28
	b29
	b30
	b31
	b32
	b33
	b34
	b35
	b36
	b37
	b38
	b39
	b40
	b41
	b42
	b43
	b44
	b45
	b46
	b47
	b48
	b49
	b50
	b51
	b52
	b53
	b54
	b55
	b56
	b57
	b58
	b59
	b60
	b61


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
  /PDFXOutputConditionIdentifier (CGATS TR 001)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /ENU ([Based on 'AP_Press'] Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        9
        9
        9
        9
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /UseName
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
  /SyntheticBoldness 1.000000
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


