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Abstract

Host cells impose a broad range of obstacles to the replication of retroviruses. Tetherin (also known as CD317, BST-2 or
HM1.24) impedes viral release by retaining newly budded HIV-1 virions on the surface of cells. HIV-1 Vpu efficiently
counteracts this restriction. Here, we show that HIV-1 Vpu induces the depletion of tetherin from cells. We demonstrate that
this phenomenon correlates with the ability of Vpu to counteract the antiviral activity of both overexpressed and interferon-
induced endogenous tetherin. In addition, we show that Vpu co-immunoprecipitates with tetherin and b-TrCP in a tri-
molecular complex. This interaction leads to Vpu-mediated proteasomal degradation of tetherin in a b-TrCP2-dependent
manner. Accordingly, in conditions where Vpu-b-TrCP2-tetherin interplay was not operative, including cells stably knocked
down for b-TrCP2 expression or cells expressing a dominant negative form of b-TrCP, the ability of Vpu to antagonize the
antiviral activity of tetherin was severely impaired. Nevertheless, tetherin degradation did not account for the totality of
Vpu-mediated counteraction against the antiviral factor, as binding of Vpu to tetherin was sufficient for a partial relief of the
restriction. Finally, we show that the mechanism used by Vpu to induce tetherin depletion implicates the cellular ER-
associated degradation (ERAD) pathway, which mediates the dislocation of ER membrane proteins into the cytosol for
subsequent proteasomal degradation. In conclusion, we show that Vpu interacts with tetherin to direct its b-TrCP2-
dependent proteasomal degradation, thereby alleviating the blockade to the release of infectious virions. Identification of
tetherin binding to Vpu provides a potential novel target for the development of drugs aimed at inhibiting HIV-1
replication.
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Introduction

In order to successfully infect human cells, HIV-1 has to neutralize

cellular restriction factors that impede its replication at multiple steps.

HIV-1 Vpu serves this goal by counteracting a blockade imposed by

the newly identified protein tetherin [1–4]. Under basal conditions,

tetherin is expressed in B and T cells, plasmacytoid dendritic cells and

myeloid cells [5–7]. In addition, tetherin expression is strongly

upregulated in many cell types by type-I interferon (IFN), a situation

typically encountered in viral infections [5]. Tetherin is a heavily

glycosylated type-II transmembrane protein with an unusual

topology, which is otherwise only found in mammals in a minor

but pathologically important topological variant of the prion protein

[8,9]. Tetherin is indeed linked to membranes both by its one-pass

transmembrane domain and by a C-ter GPI anchor. This anti-viral

factor is mostly intracellular, but it is also localized at the cell surface

in lipid rafts, from where it is continually recycled to the trans-Golgi

network [8,10]. In cells expressing tetherin, HIV-1 viruses deleted for

the Vpu gene can bud normally but remain tethered to the cell

surface through a protein bond [1,9]. The mechanistic details of this

phenomenon remain to be clarified. A hypothesis, that still awaits

confirmation, is that tetherin itself forms the protein tether between

the cell surface and the virion owing to its ability to form stable dimers

[11]. The affected virions are then endocytosed and probably

degraded in lysosomes [1]. In addition to inhibiting HIV-1, tetherin

also blocks the replication of numerous retroviruses, as well as other

non-related enveloped viruses [12–14]. The importance of this

restriction in the cellular antiviral arsenal is underscored by the

apparent positive selection that tetherin undergoes, which is the

hallmark of an ongoing molecular fight with pathogens [15].

Vpu is a transmembrane protein which removes the HIV-1 CD4

receptor from the ER biosynthetic pathway [9]. This is thought to

liberate the HIV-1 env glycoprotein from unwanted premature

interactions with its receptor. For that task, Vpu bridges CD4 to b-

TrCP [16]. b-TrCP (actually representing the two homologues b-

TrCP1 and b-TrCP2) is a substrate recognition unit of the SCF

(Skp1/Cullin/F-box protein) E3 ubiquitin ligase that provides

specificity to this machinery by binding to target proteins harboring

a distinct motif (DSGXXS, where both serines are phosphorylated),

thereby inducing their ubiquitination and subsequent proteasomal
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degradation [17,18]. Vpu possesses a b-TrCP target motif, where

the cytosolic serines S52 and S56 are constitutively phosphorylated,

which allows efficient recruitment of b-TrCP [19]. Vpu itself

escapes degradation by unclear means [16], but instead induces the

degradation of the CD4 molecules to which it associates. Of note,

the mechanistic details of this action of Vpu are only partly

understood, since a direct ubiquitination of CD4 in presence of Vpu

is not yet demonstrated [16,20]. Besides that, Vpu-induced CD4

degradation requires a functional ER-associated degradation

pathway (ERAD), which mediates the dislocation of proteins

targeted for degradation from ER membranes [21].

Although it had been previously shown that Vpu downmodulates

tetherin level from the cell surface [3,22], the mechanistic details have

just begun to be unraveled. It was recently shown that Vpu targets

tetherin for proteasomal and/or lysosomal degradation, through a b-

TrCP-dependent mechanism [23,24]. Here we confirm that Vpu

leads to a depletion of tetherin from cells. We further show that Vpu

performs this action by interacting with tetherin in a ternary complex

that also comprises b-TrCP. Importantly, we found this depletion to

be functionally relevant since it is required for the efficient

counteraction of tetherin-mediated restriction, both in overexpression

settings and upon IFN-a-induced endogenous tetherin expression. By

generating several cell lines stably knocked-down for b-TrCP1 or b-

TrCP2 expression, we further show that b-TrCP2, but not b-TrCP1,

is required for this depletion. Furthermore, we confirm that this

reduction of tetherin level occurs at least for a large part through the

proteasome. The depletion is indeed blocked by a proteasome

inhibitor, as well as the K48R mutant of ubiquitin, which allows

monoubiquitination of targeted proteins but not the subsequent

elongation of the polyubiquitin chains required for proteasomal

degradation. In addition, our data are also compatible with a model

where some fraction of the Vpu-induced tetherin depletion is due to a

b-TrCP2-dependent lysosomal degradation. However, Vpu-induced

tetherin degradation explained only a part of its activity against the

antiviral factor. Binding of Vpu to tetherin was indeed sufficient for a

partial rescue of viral release, even in absence of tetherin degradation.

Finally, we show that the mechanism underlying the degradation of

tetherin uses a cellular machinery at least partly overlapping with the

cellular ERAD pathway.

Results

Vpu diminishes cellular levels of human tetherin
In order to investigate the mechanistic details of Vpu action

against tetherin, we generated constructs of human and mouse

Author Summary

To efficiently replicate in cells, HIV-1 needs to inactivate a
number of intracellular host defenses. One such antiviral
mechanism is provided by the newly identified tetherin
protein. This factor blocks viral production by impeding
the release of newly generated HIV-1 particles from the
surface of cells. HIV-1 possesses the Vpu protein, which
efficiently counteracts this blockade. Here we reveal that
HIV-1 Vpu interacts with tetherin and leads to its depletion
from cells, possibly through multiple mechanisms, includ-
ing proteasomal degradation. In order to eliminate
tetherin, Vpu hijacks a cellular component, named b-
TrCP2, which is normally used by human cells to induce
degradation of certain proteins. Identification of tetherin
binding to Vpu provides a potential novel target for the
development of drugs aimed at inhibiting HIV-1 replica-
tion.

Figure 1. Vpu depletes human tetherin but not murine
tetherin, which parallels its ability to rescue virion release. (A)
Vpu counteracts human but not murine tetherin antiviral activity. 293T
cells were transfected with an HIV-1 provirus either proficient or
deficient for the Vpu gene, together with the indicated tetherin
constructs. Viral output was then scored by titration of the resulting
supernatant on HeLa indicator cells. (B) Vpu depletes human, but not
murine, tetherin. Duplicate cell extracts from the above experiment
were monitored for tetherin level (as detected with an anti-HA
antibody). The viral p55 Gag protein was monitored to exclude
variations of transfection efficiency. The depicted tetherin bands
correspond to the heterogeneously glycosylated monomer of tetherin
of around 30 kDa, but equivalent depletion could be observed for the
60 kDa dimeric form (data not shown). PCNA was used as a loading
control. Note that all parts come from the same blot, but the detection
of murine tetherin required longer exposure due to its lower
expression. (C) Vpu depletes human tetherin in a dose dependent
manner, in the absence of other viral components. Increasing doses of a
Vpu-expressing plasmid was co-transfected with a Flag-tagged human
tetherin in 293T cells (molar ratios of 1:1 and 2:1, indicated by + and ++
respectively). Steady state levels of tetherin were monitored by western
blot analysis of duplicate cell extracts using an anti-Flag antibody.
Transfection levels were assessed with a GFP plasmid, and actin was
used as a loading control. All three sections of this figure are
representative of five independent experiments performed in duplicate.
Sizes of molecular weight markers are shown in kilodaltons.
doi:10.1371/journal.ppat.1000574.g001

Mechanism of Vpu Counterstrike against Tetherin
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tetherin tagged with HA at their cytosolic N-terminus. We

expressed these in 293T cells, which do not express endogenous

tetherin [2]. In the absence of Vpu, both constructs potently

blocked the release of HIV-1 virions as scored by titrating the viral

output (Fig. 1A) or by measuring released physical particles by RT

assay (data not shown). The lower antiviral activity of murine

tetherin is explained by its lower expression level, as indicated by a

dose-response assay (data not shown). HIV-1 Vpu expression

relieved the blockade imposed by human tetherin, but was only

marginally active against murine tetherin, as previously reported

(Fig. 1A) [13]. We obtained similar results when the HA tag of

tetherin was replaced by a Flag tag (data not shown). This

indicates that our system recapitulates the reported restriction

imposed by tetherin, at least in its measurable functional

consequences. Interestingly, the cellular content of tetherin was

markedly reduced in the presence of HIV-1, but not in the

presence of the Vpu-deleted version of this virus (Fig. 1B).

Paralleling the viral output data, murine tetherin expression levels

were not decreased in cells expressing HIV-1 as compared to cells

expressing Vpu-deleted HIV-1. Of note, the fact that murine

tetherin is not affected by Vpu, although its expression is driven by

the same promoter as human tetherin argues against a non-specific

transcriptional effect from the viral protein. Additionally, human

tetherin depletion was observed when expressed from different

unrelated promoters, again arguing against a transcriptional

mechanism for Vpu-induced tetherin depletion (data not shown).

Finally, we confirmed a very potent and dose-dependent Vpu-

mediated human tetherin depletion in cells where HIV-1 Vpu and

the antiviral factor are co-expressed (in absence of other viral

proteins) (Fig. 1C).

In order to strengthen these observations, we asked whether the

Vpu-induced tetherin depletion quantitatively correlated with its

ability to rescue viral release. Increasing the dose of Vpu, as

expected, proportionally decreased the level of tetherin, which

paralleled the decrease in the antiviral activity of the cellular factor

(Fig. 2A). The correlation was statistically significant, as indicated

by calculating the Pearson coefficient of correlation. Of note, at

any given Vpu dose, the decrease of the antiviral activity seemed

more efficient than the observed decrease of tetherin level. This

most likely reflects depletion-independent activity of Vpu against

tetherin. Finally, we determined that the depletion was observed at

all tested time points after Vpu and tetherin co-expression (ranging

from 17 h to 44 h), and in all these cases, the decrease of tetherin

level paralleled the decrease of antiviral activity in a statistically

significant manner (Fig. 2B). Overall, these data indicate that Vpu

depletes human tetherin from cells in a dose dependent manner,

and that this phenomenon is functionally connected to the rescue

of viral release exerted by the viral protein.

Vpu requires its b-TrCP interaction motif to deplete IFN-
induced tetherin, and to counteract its antiviral action

We wondered whether Vpu depletes tetherin via a mechanism

related to its downregulation of CD4. We therefore first asked

whether Vpu required an intact b-TrCP interaction motif. For

Figure 2. The depletion of tetherin by Vpu correlates with its ability to block tetherin antiviral activity. (A) The depletion of tetherin by
Vpu correlates in a dose-dependent manner with its ability to block tetherin antiviral activity. 293T cells were transfected with an HIV-1 provirus
deleted for Vpu, together with a fixed dose of human HA-tagged tetherin, and either without or with increasing doses of Vpu added in trans (molar
ratios are indicated). Viral output was scored by titration of the supernatant on HeLa indicator cells. In parallel, the level of tetherin was monitored by
western blotting and subsequently quantified by densitometry. Both the cellular content of tetherin and its antiviral activity were then plotted. The
values obtained in the absence of Vpu were given the arbitrary score of 100%. The plot was generated from two independent experiments
performed in duplicate. The extracts of duplicate samples were pooled for gel loading. Equal loading was controlled by monitoring PCNA, and the
viral p24 protein was examined to exclude variations of transfection efficiency. (B) The depletion of tetherin by Vpu correlates across different time
points with its ability to block tetherin antiviral activity. 293T cells were transfected with an HIV-1 provirus deleted for the Vpu gene, with or without a
given dose of HA-tagged human tetherin, in the presence or the absence of Vpu added in trans. At indicated time points, the titer of the viral output
was scored on HeLa indicator cells. In parallel, the level of tetherin was monitored by western blotting and subsequently quantified by densitometry.
For each condition, both the cellular content of tetherin and its antiviral activity were plotted as a percent of the values obtained in parallel in the
absence of Vpu, which were given the arbitrary score of 100%. The plot was generated from two independent experiments performed in duplicate.
The extracts of duplicate samples were pooled for gel loading. Equal loading was controlled by monitoring actin, and the viral p55 Gag protein was
examined to exclude variations of transfection efficiency. For both figures, Pearson coefficients of correlation and Student p values were computed
for tetherin expression versus antiviral activity. Sizes of molecular weight markers are shown in kilodaltons.
doi:10.1371/journal.ppat.1000574.g002

Mechanism of Vpu Counterstrike against Tetherin
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that purpose, we generated a Vpu mutated for one (S52A) or both

(S52A and S56A, thereafter coined Vpu 2S/A) of the serines

crucial for b-TrCP recruitment [16,19], and monitored the ability

of these constructs to deplete tetherin from transfected 293T cells.

Strikingly, both mutants were unable to downregulate tetherin

expression (Fig. 3A). Consistent with a crucial role of Vpu-

mediated tetherin depletion for HIV-1 replication, we showed that

Vpu serine mutants were severely impaired for their ability to

counteract tetherin antiviral action (Fig. 3B).

We next assessed the importance of b-TrCP recruitment motif

of Vpu for tetherin counteraction in cells expressing endogenously

the antiviral restriction factor, as opposed to an overexpressed

form of the protein. For that purpose, we treated 293T with IFN-a

for 8 hours, which potently induced expression of endogenous

tetherin both at mRNA and protein levels, as previously reported

[2] (Fig. 4A and 4B). In parallel, we transfected these cells with a

Vpu-deleted HIV-1 in the absence or presence of wild type Vpu or

a Vpu 2S/A mutant. The expression of either Vpu constructs had

no significant effects on IFN-receptor signaling as monitored by

the induction of RIG-I, a well known IFN-responsive gene

(Fig. 4A). Additionally, Vpu or a Vpu 2S/A mutant had no impact

on IFN-mediated upregulation of tetherin mRNA (Fig. 4B).

Consistent with what we observed in overexpression settings, the

cellular content of endogenous tetherin protein was reduced by

wild type Vpu expression, but not by its serine mutated

counterpart, indicating that Vpu-mediated downregulation of

tetherin occurs post-transcriptionally (Fig. 4A). The reduction of

endogenous tetherin expression by Vpu in 293T cells treated with

IFN-a is more modest than in co-transfection settings, which is

expected since here all cells express endogenous IFN-induced

tetherin, while only a fraction of these is successfully transfected

with Vpu (data not shown). Furthermore, the reduction of

endogenous IFN-induced tetherin by Vpu indicates that the

depletion observed with tagged versions of the protein does not

simply stem from a cleavage of the tag off the tetherin protein.

Importantly, the IFN-induced tetherin upregulation led to a defect

in viral release for DVpu HIV-1, which was rescued when wild

type Vpu was added in trans (Fig. 4C). Of note, the Vpu-mediated

enhancement of viral release was less potent in these settings than

upon tetherin overexpression, most probably because IFN

treatment induces, apart from tetherin, additional anti-HIV-1

factors that are insensitive to Vpu activity [25]. Correlating with

tetherin protein levels, when the double serine mutant of Vpu was

used, HIV-1 viral release was only marginally increased. This data

with endogenous IFN-induced tetherin confirms the importance of

the b-TrCP-recruitment motif of Vpu to counteract tetherin-

mediated restriction.

Vpu requires b-TrCP2 to deplete tetherin from cells and
antagonize its antiviral action

To confirm the involvement of b-TrCP in the anti-tetherin

action of Vpu, we tested the effect on Vpu action of a b-TrCP-DF

deletion mutant, which was shown to abrogate the degradation of

CD4 by Vpu [16]. This construct is a well characterized dominant

negative of b-TrCP that cannot be anchored on the SCF E3 ligase

since it lacks the so-called F-box domain, which mediates b-TrCP

binding to the skp1 adaptor of this machinery [17]. This mutant,

derived from a b-TrCP1 clone, has dominant negative activity on

both b-TrCP1 and b-TrCP2. Strikingly the concomitant expres-

sion of this dominant negative form of b-TrCP (b-TrCP-DF)

completely abolished Vpu-mediated tetherin degradation (Fig. 5).

b-TrCP-DF expression did not alter significantly Vpu protein

levels, as expected. Expression of wild type b-TrCP1 (Fig. 5) and

wild type b-TrCP2 did not prevent and even slightly increased

Vpu-mediated tetherin downregulation (especially for b-TrCP2)

(data not shown). Altogether, these data strongly suggest a role for

b-TrCP in the Vpu-mediated counteraction of tetherin.

In order to further analyze the requirement for b-TrCP in Vpu

anti-tetherin action, we generated 293T cell lines stably trans-

duced with lentiviral vectors expressing microRNA-adapted

shRNA (shRNAmir) specifically targeting b-TrCP1 or b-TrCP2.

We obtained one cell line harboring potent b-TrCP1 downreg-

ulation (shRNAmir #325), and three cell lines harboring potent b-

TrCP2 downregulation (shRNAmir # 187, 190 & 192), as

measured by real-time RT-PCR (Fig. 6A). In cells that expressed a

control or b-TrCP1-targeting shRNAmir, Vpu depleted tetherin

very efficiently (Fig. 6B, lower panel). In contrast, in all three cell

Figure 3. b-TrCP interaction motif is required for Vpu-induced
tetherin level reduction and for its ability to rescue virion
release. (A) b-TrCP interaction motif is required for Vpu-induced
tetherin depletion. HIV-1 deleted for the Vpu gene was produced from
293T cells in the presence or absence of Flag-tagged tetherin. Where
indicated, Vpu wild type, or mutated in one (Vpu S52A) or both serines
(Vpu 2S/A) known to be required for b-TrCP interaction, was added in
trans. The effect of these different Vpu constructs on tetherin protein
level was monitored by western blotting. The extracts of duplicate
samples were pooled for gel loading. Equal loading was controlled by
monitoring PCNA, and the viral p55 Gag protein was examined to
exclude variations of transfection efficiency. The depicted gel is
representative of three independent experiments. Sizes of molecular
weight markers are shown in kilodaltons. (B) b-TrCP interaction motif is
required for Vpu-induced rescue of virion release. Titer of the viral
output obtained during the above experiment was measured on HeLa
indicator cells. The titer of the virus produced in the absence of either
tetherin or Vpu was given the arbitrary score of 100%. The plot was
generated from two independent experiments performed in duplicate.
doi:10.1371/journal.ppat.1000574.g003

Mechanism of Vpu Counterstrike against Tetherin
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lines that harbored diminished levels of b-TrCP2, Vpu-induced

tetherin depletion was abolished. Importantly, measuring the

effect of Vpu on release of HIV-1 in these different cell lines

showed a complete correlation between the ability of Vpu to

trigger tetherin depletion and its ability to functionally antagonize

the antiviral factor (Fig. 6B, upper panel). Of note, Vpu still

exhibited a residual activity to rescue viral release in cells depleted

for b-TrCP2. Overall, our data demonstrated that Vpu induced

tetherin depletion in a b-TrCP2-dependent manner. Finally, in

situations where Vpu did not lead to tetherin degradation (Vpu

mutants or b-TrCP2 downregulation), we consistently observed

that tetherin levels were increased to varying extents above basal

levels (Fig. 3A, 4A, 6B). This suggests that Vpu might stabilize

tetherin when it is unable to target it to the degradative machinery,

possibly via a direct interaction with the protein.

Vpu and b-TrCP co-immunoprecipitate with tetherin
In order to analyze whether Vpu could interact in eukaryotic

cells with the antiviral factor, we transfected 293T cells with Vpu

in the presence or absence of HA-tagged tetherin. Monitoring the

lysates from these co-transfections confirmed Vpu-induced

depletion of tetherin (Fig. 7, upper part, lanes 1 and 3). By

subsequently immunoprecipitating HA-tetherin with an anti-HA

resin, we could show that Vpu was efficiently pulled down in the

presence but not in the absence of tetherin (Fig. 7, lanes 1, 2 and

3). In addition, the dominant negative form of b-TrCP (which

binds to Vpu, but is unable to recruit the E3 ligase machinery) also

co-immunoprecipitated with tetherin. This demonstrates that a

ternary complex exists between tetherin, Vpu and b-TrCP.

Nevertheless, this experiment does not rule out the possibility

that b-TrCP interacts with tetherin also in the absence of Vpu,

although this seems unlikely as tetherin itself does not harbor a

bone fide b-TrCP recruitment motif. Notably, the tetherin-Vpu

interaction was easier to detect in the presence of the b-TrCP

dominant negative (DF-box) (lanes 4 and 5) or when a Vpu

defective for b-TrCP recruitment (Vpu 2S/A) was used instead of

wild type Vpu (lanes 6 and 7). This apparent increase in co-

immunoprecipitation of tetherin-Vpu complexes might reflect a

more stable association between Vpu and tetherin in conditions

where the complex cannot be targeted to degradation, or

alternatively simply results from higher levels of HA-tetherin

present in these extracts, since in these conditions Vpu is not able

to reduce tetherin cellular levels (upper part, lanes 4 to 7). These

results demonstrate that the inability of Vpu 2S/A mutant to

induce tetherin depletion does not stem from an inability to

interact with tetherin, but rather originates from its inability to

Figure 4. b-TrCP-mediated tetherin degradation is required for Vpu to counteract IFN-a-induced tetherin. (A) b-TrCP interaction motif
is required for Vpu-induced depletion of endogenous tetherin. 293T cells were co-transfected with HIV-1 DVpu in addition to the indicated Vpu
constructs (with a Vpu:provirus molar ratio of 3:1). Eighteen hours after transfection, cells were either left untreated or treated for 8 hours with 3000
units per ml of IFN-a to induce tetherin expression and, 20 hours after the end of this treatment, triplicate cell extracts were pooled and analyzed by
western blotting to detect endogenous tetherin (left panel). In parallel, RIG-I upregulation was scored to exclude any alteration of IFN receptor
signalling by Vpu. Monitoring the viral p55 Gag protein as well as GFP, which was also co-transfected, excluded transfection variations. PCNA served
as a loading control. The effect of Vpu constructs on tetherin protein level was quantified by densitometry, with the level of tetherin in the absence of
Vpu being given the arbitrary value of 100% (right panel). Sizes of molecular weight markers are shown in kilodaltons. (B) Vpu expression does not
affect IFN-a-mediated tetherin mRNA upregulation. Total RNA was extracted and used to monitor tetherin mRNA level by real-time RT-PCR.
Expression of the TBP cellular gene was scored in parallel and used as a normalizer. (C) b-TrCP interaction motif is required for Vpu counteraction of
the antiviral activity of endogenous tetherin. The viral output obtained at the end of the above experiment was scored by titration on HeLa indicator
cells. Titer of the virus produced in the absence of IFN, tetherin or Vpu was given the arbitrary value of 100%. Results from all three panels were
generated from two independent experiments performed in duplicate and triplicate, respectively.
doi:10.1371/journal.ppat.1000574.g004

Mechanism of Vpu Counterstrike against Tetherin
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recruit b-TrCP. Finally, this data indicates that binding of Vpu to

tetherin is not sufficient to induce its degradation or to fully

counteract its antiviral activity, since the Vpu 2S/A mutant

strongly binds to tetherin but is significantly impaired for both

these activities.

Vpu requires a functional polyubiquitin/proteasome
system for efficient tetherin depletion

Our results point out towards a model where Vpu bridges

tetherin to b-TrCP2, which leads to the depletion of tetherin from

cells and, as a consequence, alleviates the restriction imposed by

the antiviral factor. In order to define if Vpu-tetherin-b-TrCP2

complexes were targeted to proteasomal degradation, we trans-

fected 293T cells with an HA-tetherin construct in the presence or

absence of Vpu. Forty hours later, the cells were either left

untreated or treated with the proteasome inhibitor MG132 for

12 hours and then lysed. This revealed that proteasomal inhibition

significantly rescued tetherin expression in presence of Vpu

(Fig. 8A). A modest increase of tetherin expression was also noted

in the absence of Vpu. As a control, MG132 stabilized the Vpu-

resistant murine tetherin to an equal extent in the absence or

presence of Vpu (data not shown). Overall, this indicated that

Vpu, at least in part, targets tetherin for proteasomal degradation.

To confirm this finding, we performed a Vpu and Flag-tetherin co-

transfection, with the additional inclusion of wild type ubiquitin or

its mutated K48R form, which blocks the formation of the

polyubiquitin chains implicated in proteasomal targeting. This

construct indeed can be attached to target proteins as a monomer,

but due to the absence of the proper acceptor lysine 48, impedes

further covalent attachment of additional ubiquitin to the nascent

chain [26]. Notably, while wild type ubiquitin had no impact on

tetherin depletion, the K48R ubiquitin mutant partially blocked

Vpu-mediated tetherin downregulation (Fig. 8B). Finally, we were

unable to directly detect ubiquitinated forms of tetherin in

presence or absence of Vpu even after treatment with MG132,

either because tetherin is not directly ubiquitinated, or because of

technical limitations (data not shown). Altogether, these data

indicate that Vpu binds to tetherin and concomitantly recruits b-

TrCP2 to trigger the proteasomal degradation of the antiviral

factor.

A functional ERAD pathway is required for Vpu-induced
tetherin degradation

The proteasomal degradation of trans-membrane proteins such

as tetherin requires that the cell employs a specific machinery.

Indeed, such proteins must be dislocated from membranes prior to

their entry into the cytosolic proteasome complex [27]. In the ER,

this dislocation is mediated by a series of distinct mechanisms,

collectively known as the ERAD (ER-associated degradation)

pathways. Briefly, the targeted protein is marked for degradation

by a mostly unclear mechanism, which can include ubiquitination.

The subsequent dislocation from the membrane is performed by a

series of protein complexes which all require at some point the

mechanical pulling force generated by the p97 ATPase (also

known as VCP). The dislocated protein is then targeted to

proteasomal degradation by ubiquitination [27]. To address

whether the ERAD pathway is required for Vpu-induced tetherin

proteasomal degradation, we transfected 293T with a control

siRNA or a siRNA pool specific for p97, which led to a 50%

downregulation of its mRNA level (data not shown). This relatively

low level of downregulation might be due to the constitutively very

high expression of p97 [28]. Nevertheless, co-transfection of these

cells with a Flag-tetherin plasmid in the absence or presence of

Vpu revealed that p97 downregulation partially impaired Vpu-

mediated tetherin degradation (Fig. 9A). Interestingly, the

involvement of a dislocation out of the ER membrane in Vpu-

mediated tetherin degradation potentially exposes to the cytosolic

milieu lumenal lysines that therefore also can serve as ubiquitin

acceptors. This might explain our observation that a tetherin

mutant with its two cytosolic lysines replaced by arginines

(KcytoR) was still efficiently targeted for degradation by Vpu

(Fig. 9B).

Discussion

It has been known for a long time that HIV-1 deleted for the

Vpu gene cannot be released efficiently from specific cell types

such as macrophages or T cells [29,30]. The recent identification

of the IFN-a induced restriction factor tetherin provides an

explanation for this phenomenon [2,3]. Tetherin impedes release

of newly budded virions and mediates their internalization,

probably thereby targeting them for lysosomal degradation. Vpu

efficiently counteracts this antiviral activity by a mechanism whose

details only begin to be revealed [2,3]. Indeed, while it had been

known from some time that Vpu downmodulates tetherin from the

cell surface [3,22], it was only recently shown that Vpu targets

tetherin for proteasomal and/or lysosomal degradation [23,24].

We confirm here that Vpu expression indeed induces a sharp

reduction of tetherin protein levels in cells (Fig. 1). This depletion

strongly correlated with the extent of inhibition of tetherin

antiviral action (Fig. 2). In addition, both the effects of Vpu on

tetherin level and antiviral activity were dependent on the

recruitment by Vpu of b-TrCP, a substrate recognition subunit

of the SCF E3 ubiquitin ligase. Indeed, a Vpu mutant defective for

b-TrCP recruitment was impaired for both these activities (Fig. 3).

Importantly we also showed, by co-immunoprecipitation studies in

eukaryotic cells, that Vpu interacts with tetherin, thereby forming

a ternary complex with b-TrCP (Fig. 7). As a confirmation of the

importance of the Vpu-b-TrCP interplay, Vpu anti-tetherin action

Figure 5. A b-TrCP dominant negative prevents Vpu-mediated
tetherin degradation. 293T were transfected with HA-tagged
tetherin with or without Vpu, in the presence of either a Flag-tagged
dominant negative b-TrCP-DF or a Flag-tagged wild type b-TrCP1. The
molar ratio of b-TrCP to Vpu to tetherin constructs was 2.5:2:1. A GFP
plasmid was included to exclude variations in transfection efficiency.
The resulting duplicate lysates were pooled for gel loading, and
proteins levels were determined by western blotting. Actin served as a
loading control. The depicted figure is representative of four
independent experiments performed in duplicate. Sizes of molecular
weight markers are shown in kilodaltons.
doi:10.1371/journal.ppat.1000574.g005
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was dependent on the presence of a functional b-TrCP2, as

determined by RNA interference studies and by using a b-TrCP

dominant negative (Fig. 5 & 6). Of note, while preparing this work

for publication, the specific involvement of b-TrCP2 in Vpu-

mediated tetherin degradation was reported, as well as the

interaction between Vpu and tetherin by co-immunoprecipitation

[31,32]. Remarkably, we did not detect any role for the related

protein b-TrCP1. While this might appear surprising in regard to

the high similarity between b-TrCP1 and b-TrCP2, these proteins

display a significant difference, as the first is nuclear, while the

second is cytosolic [33–35]. Moreover, a differential functional

activity of the two proteins has already been reported, for instance

in their ability to induce the degradation of IkB [33]. An

alternative explanation to our data could be that b-TrCP1 is not

functional in 293T cells, where the experiments were performed.

While unlikely, this may have gone unnoticed, as the majority of

previous RNA interference experiments against b-TrCP were

done with siRNAs targeting simultaneously both b-TrCP1 and b-

TrCP2. Importantly, we also demonstrated that Vpu requires b-

TrCP-dependent tetherin degradation to antagonize the antiviral

activity of endogenous IFN-induced tetherin (Fig. 4), in addition to

overexpressed forms of the cellular restriction factor. IFN-induced

tetherin is particularly relevant since it mimics conditions likely

found during HIV-1 infection. For instance the recent article by Li

et al. [36] demonstrates that during the early events of HIV-1

infection, plasmacytoid dendritic cells are attracted to the sites of

initial infection in mucosal tissues where they secrete high amounts

of IFN-a.

We also showed that efficient Vpu-induced tetherin depletion

required a functional proteasomal pathway (Fig. 8). Nevertheless,

in addition to Vpu-induced tetherin proteasomal degradation, our

results do not exclude additional mechanisms of depletion. Indeed,

the proteasomal inhibitor MG132, as well as a dominant negative

ubiquitin K48R mutant, only showed a partial inhibition of

tetherin degradation (Fig. 8). Of note, a role for lysosomal

targeting in Vpu-mediated tetherin counteraction was recently

proposed [24,31]. Our preliminary data indicated that, when

using the lysosomal inhibitor bafilomycin and the ubiquitin K63R

mutant, which dominantly inhibits the formation of K63-

dependent polyubiquitin chains, we observed a partial rescue of

tetherin degradation (data not shown). Nevertheless, these results

were complex to interpret since lysosomal inhibition also markedly

altered the basal level of tetherin in the absence of Vpu, suggesting

an important role of lysosomes in the normal trafficking of

tetherin. Therefore it is possible that b-TrCP might not only

trigger proteasomal degradation of tetherin, but also its lysosomal

targeting through monoubiquitination or through the formation of

non-conventional chains of ubiquitin linked together on their

lysine 63 instead of lysine 48, which is known to target proteins

towards lysosomes [37]. In summary, b-TrCP recruitment to the

Figure 6. Vpu requires b-TrCP2 to deplete tetherin from cells and antagonize its antiviral action. (A) Creation of 293T cell lines harboring
stably downregulated b-TrCP1 and b-TrCP2 levels. Total RNA from 293T cell lines stably expressing the indicated shRNAmir constructs was extracted,
and used to monitor b-TrCP1 and b-TrCP2 mRNA levels by real-time RT-PCR. The expression of the TBP cellular gene was used for normalization. The
values of b-TrCP1 and b-TrCP2 measured in the presence of the control shRNAmir were given the arbitrary value of 100%. (B) Vpu requires b-TrCP2 to
deplete tetherin from cells and antagonize its antiviral action. A Vpu-deleted HIV-1, or its Vpu-proficient counterpart, was transfected in duplicate in
the indicated stable cell lines, in the presence of an HA-tagged tetherin plasmid (molar ratio of 2:1 in favor of tetherin). The extracts of the duplicate
samples were pooled for gel loading, and tetherin protein levels were monitored by western blotting (lower panel). Equal loading was controlled by
monitoring PCNA, and the viral p55 Gag protein was examined to exclude variations of transfection efficiency. In parallel, titer of the viral output
present in the supernatant was monitored on HeLa indicator cells (upper panel). Similar results were obtained by scoring the physical viral particle
output by reverse transcription assay (data not shown). The western blot figure is assembled from the data of two gels performed in parallel, on both
of which all relevant controls were present and gave identical results. The figure is representative of two independent experiments performed in
duplicate. Sizes of molecular weight markers are shown in kilodaltons.
doi:10.1371/journal.ppat.1000574.g006
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Vpu-tetherin complex could lead to different fates (lysosomal or

proteasomal degradation) depending on the cellular compartment

where it occurs (as discussed in [38] for other proteins). A

dislocation step followed by proteasomal degradation might occur

predominantly during the tetherin biosynthesis pathway, while a

rerouting of tetherin towards lysosomes might be relatively more

important during constitutive tetherin endocytosis and recycling

from the plasma membrane [10]. Alternatively, ubiquitination of

tetherin could first target it to the lysosome and, subsequently, the

remaining cytosolic tail of tetherin could be degraded by the

proteasome, as described for the erythropoietin receptor [39].

Finally, it is likely that the relative contribution of proteasomal

versus lysosomal degradation varies depending on the cell type

used. Indeed, while Vpu-induced lysosomal degradation of

tetherin was clearly demonstrated in HeLa cells [24,31], two

other publications showed mostly proteasomal degradation in

293T cells [23,40]. In any case, these distinct trafficking pathways

ultimately result in the absence of tetherin from the cell surface,

thereby allowing for the unimpeded release of new viral particles.

The mechanism underlying tetherin degradation had common

characteristics with the cellular ER-associated degradation path-

way (ERAD), where ER-associated proteins are dislocated and

subsequently degraded by the proteasome in the cytosol (Fig. 9A).

Indeed Vpu-mediated tetherin degradation required the action of

the cellular p97 ATPase, which is a key component of the ERAD

[27]. The involvement of an ERAD-like pathway in Vpu anti-

tetherin functioning provides an explanation for our observation

that a tetherin mutant devoid of cytosolic lysines is still degraded

by Vpu as efficiently as wild type tetherin (Fig. 9B). It is indeed

extensively documented that ERAD substrates do not require

cytosolic lysines for their proteasomal degradation [41–44].

Notably, this is also true for Vpu-induced ERAD-mediated CD4

degradation [21]. Two possibilities can explain this apparent

paradox. Firstly, lumenal lysines are exposed to the cytosolic

milieu during the dislocation step, therefore alleviating the

requirement for cytosolic lysines for ubiquitination of the target

protein. Secondly, ubiquitination of ERAD substrates can occur

on non-lysine residues [45,46]. The precise timing of ubiquitina-

tion and dislocation during ERAD, as well as their functional

relationship is not yet fully understood [27]. Nevertheless, we show

that a putative b-TrCP-mediated tetherin ubiquitination on

cytosolic lysines cannot be the trigger for its dislocation, since in

that case the lysine mutant would be resistant to Vpu action. Our

results are compatible with a model where Vpu induces the

dislocation (be it partial) of tetherin from the membrane, thereby

exposing additional lysines for ubiquitination by b-TrCP. Finally,

we were unable to detect direct tetherin ubiquitination in the

presence of Vpu (data not shown). This is not surprising as several

groups have been unable to detect Vpu-induced CD4 ubiquitina-

tion although it is generally accepted that Vpu also degrades CD4

through a proteasomal pathway [16,20]. This failure to detect a

membrane protein ubiquitination is not limited to Vpu targets,

since the same holds true for the ERAD-mediated MHC-1

degradation induced by the CMV protein US11 [47], where the

proteasomal degradation of MHC-I does not seem to be coupled

to direct MHC-I ubiquitination, but possibly to the ubiquitination

of another associated protein. Finally, overall, the mechanism of

action employed by Vpu to counter tetherin restriction shares

some similarities with the mechanisms used by Vpu to induce CD4

degradation [21,48]. This is maybe not surprising, since both these

cellular proteins are membrane-associated proteins that impede

efficient release of viral particles.

Importantly, our data also suggest that the Vpu anti-tetherin

activity is not fully explained by Vpu-mediated tetherin depletion.

Indeed, this phenomenon accounted for a large part but not the

integrality of the Vpu anti-tetherin functional effect. In particular,

in conditions where degradation was completely abrogated, Vpu

still had a residual ability to counteract tetherin antiviral action

(Fig. 3B, 4C and 6B). In addition, the extent of inhibition of

tetherin antiviral activity by Vpu was higher than the decrease of

tetherin levels it induced (Fig. 2A & 2B). All these observations are

fully consistent with reports indicating that a Vpu mutated in its

cytosolic serine motif still possesses a residual ability to rescue viral

release [3,49,50]. This b-TrCP-independent effect is probably

mediated by the Vpu transmembrane domain, since this region by

itself harbors some potential for the rescue of viral release

[2,49,51]. In agreement, we showed that a Vpu mutant impaired

for b-TrCP binding was still fully able to interact with tetherin

(Fig. 7). It is therefore likely that the residual b-TrCP-independent

anti-tetherin activity of Vpu is mediated by the interaction

between Vpu and tetherin, which likely happens through their

respective transmembrane domains. Accordingly, it was recently

shown that modifying tetherin transmembrane region can render

it resistant to Vpu counterstrike [15,40]. This binding might

partially impair tetherin antiviral activity, possibly by steric

hindrance, or by inducing its downregulation from the cell

surface. Vpu would subsequently target tetherin for proteasomal

and likely also lysosomal degradation, thereby deploying the

integrality of its activity [23,24,31,40]. Of note, during the

preparation of this manuscript, it was reported that Vpu could

relieve the blockade of viral release even in certain cells lines where

it failed to induce tetherin depletion [52]. It can be envisioned

that, in these cell types, Vpu would counteract tetherin through its

b-TrCP-independent activity. In agreement with this model, Vpu

mediated its virion release enhancement, which appeared to be

only modest, independently of its b-TrCP-interacting motif in

these cells [52].

Figure 7. Vpu and b-TrCP co-immunoprecipitate with tetherin.
293T cells were transfected with the indicated Vpu and b-TrCP-DF
constructs, in the presence or absence of HA-tetherin (with a molar ratio
of 2:1 in the favor of Vpu). Equal amounts of lysates were subjected to
immunoprecipitation with an anti-HA resin and analyzed by western
blotting. PCNA served as a loading control. The first left lane was cut
and pasted from another position from the same scan of the same blot.
The figure is representative of two independent experiments. Sizes of
molecular weight markers are shown in kilodaltons.
doi:10.1371/journal.ppat.1000574.g007
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Hijacking of ubiquitin E3 ligases appears to be a common

theme for HIV-1 accessory proteins to counteract host cell

restriction factors. In addition to Vpu that serves as a bridge

between the E3 b-TrCP substrate recognition module and the

targeted restriction factor, HIV-1 Vif developed a similar but

slightly different strategy, where it directly replaces the substrate

recognition module to induce the degradation of the APOBEC3G

antiviral protein [53]. More generally, it will be worth investigat-

ing the strategies used by other classes of viruses to counteract the

broad antiviral action of tetherin. To conclude, we propose that

the molecular interplays revealed here pave the way for the

development of new therapeutic strategies targeting the Vpu-

tetherin interaction in order to thwart HIV-1 replication.

Materials and Methods

Plasmids, reagents
Expression plasmids for untagged tetherin of human and

murine origin were obtained from Origene (Rockville, MD).

Tetherin was subsequently sub-cloned using standard molecular

biology procedures into pCDNA3.1(+) or pEF1 backbones (both

from Invitrogen), with either a Flag or HA tag added in frame at

their N-terminus. The tetherin mutant harboring lysines to

arginines changes in its two cytosolic lysines (K18R and K21R,

which we named KcytoR), was engineered with the help of the

QuickChange mutagenesis system (Stratagene). Of note, the N-

terminal HA-tag appended to this construct does not itself encode

for any lysine. The expression plasmid for Vpu, pCDNA-Vphu,

encodes a well characterized codon-optimized version of Vpu

(made by K. Strebel and S. Bour, obtained through the NIH AIDS

Research and Reference Reagent Program, Division of AIDS,

NIAID, NIH) [54]. Versions of this plasmid harboring the S52A

or S52A/S56A (which we named 2S/A in the core of the text)

were made with the help of the QuickChange mutagenesis system

(Stratagene). The Vpu-deficient or proficient HIV-1 expression

vectors are kind gifts of Didier Trono and are based on the pR9

proviral construct [55]. Wild type b-TrCP1 was expressed from

the pCR3-Flag-b-TrCP1 plasmid (a kind gift of Sylvia Rothen-

berger) [56]. b-TrCP1-DF-box was expressed from the pCMV2-

FLAG-b-TrCP1-DF plasmid (a kind gift or Yinon Ben Neriah)

[33]. Wild type b-TrCP1 was expressed from the pCDNA3-b-

TrCP2-HA plasmid [57]. HA-tagged wild type and K48R mutant

of ubiquitin were expressed from the pRK5 backbone and were

obtained from Ted Dawson’s lab through Addgene [58]. The

Figure 8. Vpu induces proteasomal degradation of tetherin. (A) The MG132 proteasomal inhibitor impedes Vpu-mediated depletion of
tetherin. 293T cells were transfected in duplicate with an HA-tetherin construct in the presence or absence of Vpu (with a molar ratio of 2:1 in favor of
Vpu), and were either left untreated or treated for 12 hours with the proteasome inhibitor MG132. Duplicate lysates were then pooled for western
blot analysis (left panel). Actin served as a loading control. The effect of MG132 on Vpu-mediated tetherin depletion was quantified by densitometry
and a plot was generated from the results of three independent experiments performed in duplicate (right panel). The values obtained in the
absence of Vpu were given the arbitrary value of 100%. (B) An ubiquitin mutant that blocks the formation of the polyubiquitin chains involved in
proteasomal targeting impedes Vpu-mediated depletion of tetherin. 293T cells were transfected in duplicate with a Flag-tetherin construct in the
presence or absence of Vpu. In addition, cells were co-transfected with a wild type or K48R mutant version of HA-tagged ubiquitin. The molar ratio of
ubiquitin to Vpu to tetherin constructs was 2.5:1.75:1. Duplicate extracts from these cells were pooled and analyzed by western blotting (left panel).
Ezrin was used as a loading control. The effect of the different ubiquitin constructs on Vpu-mediated tetherin depletion was quantified by
densitometry, and a plot was generated from the results of three independent experiments performed in duplicate (right panel). The values obtained
in the absence of Vpu were given the arbitrary value of 100%. Results were statistically significant as the p value, determined by the Student test, was
lower than 0.05 for indicated pairs (*). Sizes of molecular weight markers are shown in kilodaltons.
doi:10.1371/journal.ppat.1000574.g008
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K63R version of this ubiquitin construct was engineered with the

help of the QuickChange mutagenesis system (Stratagene). The

GFP expression plasmid was pEGFP.N1 (Clontech). Bafilomycin

A1 (Sigma) was used at a concentration of 50 nM, and MG132

(Sigma) at a concentration of 10 uM. Recombinant human IFN-a
was obtained from Sigma.

Cells and transfections
293T cells were cultured following usual procedures. The

transfection of these cells was performed either following a

standard calcium-phosphate-based technique or with the help of

the Fugene 6 reagent (Roche), according to manufacturer

instructions. For experiments done in the absence of proviral

constructs, the molar ratio of transfected Vpu and tetherin

plasmids was 2:1, unless otherwise indicated.

Viral production and infectivity assay
HIV-1 particles were produced by transient transfection of

293T cells with CaCl2 or Fugene (Roche). Unless otherwise

indicated, the supernatant of producer cells was collected 36 hours

post-transfection. Virion release was scored by monitoring the

reverse transcriptase enzymatic activity in the producer cells

supernatant. In single-round infectivity assays, viral titer was

determined by applying filtered supernatant from producer cells

on HeLa-CD4-LTR-LacZ indicator cells [59]. When Vpu and

tetherin were co-transfected with a proviral construct, the plasmid

molar ratio was 2:2:1, respectively, unless otherwise indicated.

When required, statistical analysis of the results were performed

with the InStat software (GraphPad).

Protein analysis
Unless otherwise indicated, cells were lysed with RIPA buffer

36 hours post-transfection. Lysates were pre-cleared (13’000 rpm

tabletop spin for 10 minutes), and subjected to standard SDS-

PAGE, after protein quantification with the BCA kit (Thermo).

Overexpressed tetherin was detected with antibodies against the

relevant tag added on its N-terminus. Namely, the HA and Flag

tags were detected with the mouse monoclonal antibodies 3F10

(Roche) and M2 (Sigma), respectively. The endogenous tetherin

and the Vpu protein were detected with rabbit anti-tetherin and

anti-Vpu antibodies, respectively, both made by K. Strebel [52,60]

(obtained through the AIDS Research and Reference Reagent

Program, Division of AIDS, NIAID, NIH). All western blots of

endogenous or tagged tetherin depict its glycosylated forms in the

28 to 37 kDa range, but not its immature 20 kDa form.

Depending on the experiments, the relative intensity of individual

Figure 9. Vpu-induced proteasomal degradation of tetherin involves ERAD. (A) The ERAD pathway is involved in Vpu-mediated tetherin
depletion. 293T cells were transfected in duplicate with 100 nM of either a non-silencing control siRNA, or of a siRNA pool targeting p97. Twenty-four
hours later, these cells were transfected with Flag-tagged tetherin in the presence or absence of Vpu (with a molar ratio of 2:1 in favor of Vpu).
Duplicate cell lysates were pooled for western blot analysis (left panel). Actin served as a loading control. Note that both parts of the figure come
from the same scan of the same blot. The effect of the different siRNAs on Vpu-mediated tetherin depletion was quantified by densitometry and a
plot was generated from the results of two independent experiments performed in duplicate (right panel). The values obtained in the absence of Vpu
were given the arbitrary value of 100%. (B) Vpu-mediated tetherin depletion does not require ubiquitination of tetherin cytosolic lysines. 293T cells
were co-transfected in duplicate with or without Vpu in the presence of either HA-tagged wild type tetherin or its counterpart having both its
cytosolic lysines K18 and K21 replaced with arginines (KcytoR tetherin). Duplicate extracts were pooled and analyzed by western blotting. PCNA
served as a loading control. Vpu-mediated tetherin depletion was quantified by densitometry, and a plot was generated from the results of two
independent experiments performed in duplicate (right panel). The values obtained in the absence of Vpu were given the arbitrary value of 100%.
Sizes of molecular weight markers are shown in kilodaltons.
doi:10.1371/journal.ppat.1000574.g009
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tetherin bands in the 28–37 Kd range varies and we always depict

the predominant species. PCNA (Oncogene Research Products)

and GFP (Miltenyi) antibodies were of mouse origin, while anti-

ezrin (Cell Signaling Technology) was raised in rabbits. RIG-I and

ubiquitin were detected with the mouse monoclonal antibodies

Alme-1 (Alexis Biochemicals) and FK-2 (BioMol International),

respectively. Gag p55 and p24 were detected with the mouse

monoclonal antibody made by Bruce Chesebro and Kathy Wehrly

[61] (obtained through the AIDS Research and Reference

Reagent Program, Division of AIDS, NIAID, NIH). Quantifica-

tions of tetherin protein levels were performed by densitometry

using Photoshop (Adobe), with normalization for loading input by

the parallel quantification of a control cellular protein. When

required, statistical analysis of the results were performed with the

InStat software (GraphPad).

Immunoprecipitation
Lysates were prepared as described for the western blotting

protein analysis. HA-tetherin was immunoprecipitated overnight

in PBS, using anti-HA affinity matrix (clone 3F10, Roche Applied

Science). The resulting immunoprecipitates were washed three

times with RIPA buffer. They were then resuspended in Laemmli

sample buffer, followed by western blot analysis.

RNA interference
To achieve downregulation of the VCP (p97) mRNA, 293T

cells were transfected using HiPerFect (Qiagen) with 100 nM of

either a siRNA pool specific for this RNA (‘‘siRNA ON-Target

plus smart pool’’, # L-008727-00, from Dharmacon), or a non-

targeting siRNA (‘‘Dharmacon siGenome Non-Targeting

siRNA’’). Twenty-four hours later, the cells were split into the

adequate number of wells, and transfected with the plasmids

indicated in the relevant figure.

The pGIPZ lentiviral vectors expressing, under the control of a

CMV promoter, the shRNAmirs specific for b-TrCP1 or b-TrCP2

were obtained from Open Biosystems. The targeted sequences

were: b-TrCP1 shRNAmir #325 (GGCACATAAACTCG-

TATCTTAA), b-TrCP2 shRNAmir #187 (TGCCAAT-

TATCTGTTTGAAATA), b-TrCP2 shRNAmir #190 (GACA-

TATTAACTCTTACCTGAA) b-TrCP2 shRNAmir #192

(GGCCTACGAGATAATTCTATTA). The production of the

lentiviral vector particles serving for the delivery of these

shRNAmirs were done according to the manufacturer instruction

(which is a standard procedure). The transduced cells were

selected with puromycin to generate stable cell lines.

Real-time RT-PCR
Total RNA was extracted from cells with the help of the RNeasy

mini kit (Qiagen), including an on-column DNase treatment step.

The integrity of the resulting RNAs was checked with a

spectrophotometer. Then, they served as templates for the synthesis

of cDNA by the Superscript II reverse transcriptase kit (Invitrogen),

using random primers. The cDNAs were quantified by SYBR-

green-based real-time PCR using JumpStart SYBR green Taq

ReadyMix (Sigma), on a CFX96 cycler (Bio-Rad), with the following

primers: b-TrCP1 (sense CCAACATGGGCACATAAACTCG,

antisense GCAGCACATAGTGATTTGGCATCC), b-TrCP2

(sense ACGAATGGTACGCACTGATCC, antisense ACTT-

CACCCGTGTTCACATCC), tetherin (sense CTGCAACCA-

CACTGTGATG, antisense ACGCGTCCTGAAGCTTATG),

TBP (sense GCCCGAAACGCCGAATATA, antisense: CGT-

GGCTCTCTTATCCTCATGA), p97 (sense: TTGCTCCAGA-

CACAGTGATCC, antisense: GCCACCAATGTCATCATA-

CCC). The TBP quantification allowed normalization for the

starting amount of RNA.

Accession numbers
The human and murine tetherin clones used in this study

correspond to Swiss-Prot entries Q10589 and Q8R2Q8, respec-

tively.
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