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Abstract 

This thesis presents several new insights into the behaviour and properties of solid 

organic inclusion compounds and explores some of the potential applications of these 

properties. The thesis considers the structural properties, X-ray birefringence and crystal 

growth of urea and thiourea inclusion compounds.  

Chapter 1 provides an introduction to organic solid inclusion compounds, surveying 

the physico-chemical properties and applications of urea and thiourea inclusion compounds. 

In Chapter 2, the basic theory of the experimental techniques utilized in this thesis is 

introduced. These techniques include single-crystal and powder X-ray diffraction, Raman 

microspectrometry and differential scanning calorimetry. 

Chapter 3 presents a novel strategy for retrospectively mapping the growth history of a 

crystal. The new experimental strategy allows insights to be gained on the evolution of crystal 

growth processes by analysis of crystals recovered at the end of crystallization. The feasibility 

of the strategy is demonstrated by considering the crystal growth of a urea inclusion 

compound containing a binary mixture of guest molecules. After the crystal has finished 

growing, the composition of the crystal is determined using confocal Raman 

microspectrometry, and is interpreted to yield insights into the growth history of the crystal. 

In Chapter 4, new insights into the phase transition behaviour of thiourea inclusion 

compounds are established. The structural properties of the bromocyclohexane/thiourea 

inclusion compound are determined using both single-crystal and powder X-ray diffraction 

over a range of temperatures above and below a first-order phase transition. The results 

demonstrate marked contrasts to the phase transition behaviour in the prototypical 

cyclohexane/thiourea inclusion compound, demonstrating that relatively small changes in 

molecular geometry (in this case bromine substitution) can have a profound influence on the 

structural properties of the low-temperature phase in such materials. This observation reflects 

the fine energetic balances that pertain in such materials and the role of small and subtle 

changes in intermolecular interactions involving the host and guest components. 
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Chapter 5 reports the first definitive demonstration of the phenomenon of X-ray 

birefringence, reporting a material that exhibits essentially ideal birefringence behaviour at X-

ray energies near the Br K-edge. The designed material, the 1-bromoadamantane/thiourea 

inclusion compound gives experimental behaviour in excellent agreement with theoretical 

predictions for the dependence of transmitted X-ray intensity on both X-ray energy and 

crystal orientation. The results vindicate the potential to exploit this phenomenon to establish 

a detailed understanding of molecular polarization, particularly as an experimental strategy to 

determine the orientational distributions of specific bonds in solids, for example, in the case 

of partially ordered materials or materials that undergo order-disorder phase transitions. 

Building upon the fundamentally important observations of Chapter 5, Chapter 6 

demonstrates that measurements of X-ray birefringence can be used to characterise changes in 

molecular polarization and bond orientation in an anisotropic material. For the 

bromocyclohexane/thiourea inclusion compound, measurements of X-ray birefringence are 

used to determine the changes in the orientational distribution of the C–Br bonds of the guest 

molecules, associated with an order-disorder phase transition in this material. Best-fits to 

simulated data based on a structural model were performed, allowing quantitative structural 

information on the guest molecules to be established. The structural properties determined 

from X-ray birefringence correlate exquisitely with those obtained independently from 

diffraction data, demonstrating the validity of the structural model and the reliability of this 

novel experimental technique. These observations represent the basis of a new technique for 

determining information on the structural properties of materials, where diffraction methods 

may be unsuitable. The technique has huge potential to be utilised in the exploration and 

discovery of new materials and in principle could be applied to any anisotropic system. 

In Chapter 7, the first example of an incommensurate thiourea inclusion compound is 

reported. X-ray diffraction studies reveal that the tunnel inclusion compound formed between 

1-tert-butyl-4-iodobenzene and thiourea has an incommensurate relationship between the 

periodicities of the host and guest substructures along the tunnel axis, representing the first 

reported case of an incommensurate thiourea inclusion compound. 
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Finally in Chapter 8, some general conclusions and outlooks for the field are stated. 

This chapter conveys some of the overarching concepts and questions which motivated the 

diverse studies presented in this thesis and also expresses some thoughts on the future outlook 

for the field. 
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Chapter 1 – Introduction 

1.1 – Inclusion Compounds 

An inclusion compound is a type of chemical entity in which one chemical species (the 

guest) is enclosed within another chemical species (the host). The association between the 

host and guest components is dependent on non-covalent interactions and typically, the size 

and shape of the host and the guest species determines whether inclusion will occur. A great 

number of inclusion compounds are known, exhibiting considerable diversity in both their 

chemical nature and their structural characteristics. 

1.1.1 – A Historical Perspective 

The history of inclusion compounds dates back to the discovery of zeolites by early 

mineralogists
[1]

 and to the pioneering studies of Davy
[2]

 and Faraday
[3]

 on clathrate hydrates. 

Following the researches of Davy and Faraday, a significant number of important inclusion 

compounds were discovered, including the graphite intercalates
[4]

 in 1841, the cyclodextrin 

inclusion compounds
[5]

 in 1891 and the choleic acid inclusion compounds
[6]

 in 1916. 

However, Davies et al. point out
[7]

 that "at the time of their preparation, the nature of these 

compounds was unknown". Indeed, for many years, the structural features of these curious 

non-stoichiometric materials remained a mystery. 

However, this situation changed with the landmark X-ray diffraction work of Powell in 

the late 1940s, who was the first to elucidate the exact nature of the clathrate structure. In the 

preceding century, researchers like Wöhler,
[8]

 Clemm
[9]

 and Mylius
[10]

 had observed that when 

hydroquinone was crystallised from certain volatile liquids, unusual stable "complexes" were 

formed. Mylius proposed
[10]

 that these complexes consisted of two components in which one 

molecule was enclosed within the other.
[11]

 It was observed that the dry complexes had no 

smell of the volatile guest component; however, when the complexes were heated or 

dissolved in water, occluded gas molecules immediately evolved as the inclusion compound 

decomposed,
[12-14]

 indicating that the host and guest components were interacting without 

chemical bonding. Following these observations, between 1945 and 1950 Powell reported the 

structures of various hydroquinone compounds,
[15-22]

 beginning with the SO2 clathrate of 
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hydroquinone.
[15-17]

 He found that the inclusion compounds were based on a cage-like host 

structure formed from three hydrogen-bonded hydroquinone molecules, within which one 

molecule of the liquid or gas is included. 

Powell’s discoveries marked a pivotal moment in the development of inclusion 

chemistry and according to Weber
[23]

 "opened-up a whole new science of the study of 

inclusion phenomena". Following this breakthrough, interest in the field of inclusion 

chemistry gained significant momentum, as Powell’s discoveries provided a stimulus for 

others to begin exploring the intriguing physico-chemical properties of these materials in 

detail, a quest which was facilitated by simultaneous advances in new characterisation 

techniques such as X-ray diffraction. Researchers were not only attracted to the interesting 

fundamental properties of these materials, but also to their significant potential for 

exploitation in wider applications.
[23]

 Indeed, inclusion compounds have been utilised in a 

wide variety of technologies, including applications in molecular separation processes
[24-27]

 

and chromatography,
[28-34]

 as crystalline "reaction vessels" for performing unique 

regioselective and stereoselective reactions,
[35, 36]

 as media for storing unstable species
[7, 37]

 

and as sensors.
[37]

 Inclusion compounds have also shown significant potential for use as gas 

storage materials
[38-41]

 and as optoelectrical devices.
[42, 43]

 

1.1.2 – Classification 

Inclusion compounds can be broadly classified into two main types.
[44-46]

 The first type 

comprises molecular inclusion complexes, in which the host is a molecule containing some 

form of cavity within which guest molecules can be included. Examples of the host 

component in molecular inclusion complexes are crown ethers, cryptands, cyclodextrins and 

calixarenes. Typically, such molecular host-guest complexes exist as associated entities in 

both the solution and solid states. In the second type, the guest molecules reside within the 

"inclusion spaces" of a crystalline host solid, which is comprised of a network of discrete 

subunits (i.e., molecules, atoms or ions), which self-assemble through non-covalent 

interactions upon crystallization. These compounds are known as solid inclusion compounds 

and the association between the host and the guest is strictly a solid state phenomenon. The 
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cavities present within these crystalline host structures exhibit a wide range of topological 

forms, such as cages, tunnels and interlamellar regions within layered hosts. 

Solid inclusion compounds can be further subdivided into two categories by considering 

the response of the host solid to the removal of the guest species. In one type, the host solid 

remains stable upon removal of the guest species, as is the case with many inorganic inclusion 

compounds (e.g. aluminosilicates, aluminophosphates, metalloaluminophosphates, 

cyclophosphazenes, metal chalcogenides and metal phosphonates). In these cases, the host 

structure is commonly referred to as a "hard" host. In the other type, the host solid collapses 

upon removal of the guest species, as is the case with most organic host materials, which are 

commonly referred to as "soft" hosts [e.g. urea, thiourea, tri-ortho-thymotide (TOT), 

deoxycholic acid (DCA), cholic acid and perhydrotriphenylene (PHTP); Fig. 1.1]. This thesis 

is concerned with organic solid inclusion compounds and is particularly focussed on the urea 

and thiourea inclusion compounds. 
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Figure 1.1. Molecular Structures of some organic molecules that form host structures in solid 

inclusion compounds: urea, thiourea, tri-ortho-thymotide (TOT), perhydrotriphenylene 

(PHTP) and deoxycholic acid. 



 

 5 

1.2 – Urea Inclusion Compounds 

1.2.1 – Discovery and Motivation for Early Research 

Urea inclusion compounds were discovered accidentally by Bengen
[47]

 in 1940 while he 

was investigating the ability of urea to separate out the fats in milk. After adding a few drops 

of octanol to the mixture to achieve better separation, he observed that crystals were formed at 

the oil-water interface. These crystals turned out to be the inclusion compound of urea and 

octanol. Later studies by Bengen and Schlenk demonstrated
[48, 49]

 that urea forms inclusion 

compounds with many aliphatic straight-chain hydrocarbons provided they possess six or 

more carbon atoms. Due to the specificity of urea in complexing almost exclusively with 

straight-chain hydrocarbons and their derivatives, research was initially focussed on utilising 

these materials in separation technologies. Indeed, numerous patents were issued
[50-53]

 relating 

to the use of urea inclusion compounds for separating linear and branched hydrocarbons 

relevant to the petroleum industry. To date, there have been over a thousand papers and 

patents published on urea inclusion compounds exploring a wide range of fundamental 

properties and applied aspects. 

1.2.2 – Structural Overview 

X-ray diffraction studies have shown
[54, 55]

 that the host structure in urea inclusion 

compounds comprises an extensively hydrogen-bonded network of urea molecules that form 

an array of parallel, non-intersecting, one-dimensional hexagonal tunnels within which the 

guest molecules are densely packed (Fig. 1.2a). The vast majority of urea inclusion 

compounds (containing different types of guest molecules) possess the same host structure 

under ambient conditions, and are referred to as "conventional" urea inclusion compounds. 

Conventional urea inclusion compounds are characterised by a hexagonal tunnel structure 

made up of a helical hydrogen-bonded arrangement of urea molecules which is chiral
[55, 56] 

(Fig. 1.2b). The diameter of the urea tunnels varies from about 5.5 Å to 5. 8 Å along the 

tunnel axis and the space group is P6122 (right-handed helices) or P6522 (left-handed helices) 

with the following lattice parameters: a = b  8.2 Å, c  11.0 Å, α = β = 90° and γ = 120°. The 
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urea host structure is unstable if the guest molecules are removed, whereupon it collapses to 

the tetragonal form of pure urea, which does not contain tunnels.
[57, 58]

 

 

Figure 1.2. (a) Crystal structure of the hexadecane/urea inclusion compound (with van der 

Waals radii) at ambient temperature, viewed along the tunnel axis (c-axis), showing the dense 

packing of guest molecules. The guest molecules have been inserted into the tunnels 

illustrating orientational disorder (Figure taken from Ref. [56]). (b) Crystal structure of the 

1,10-dibromodecane/urea inclusion compound at ambient temperature, viewed perpendicular 

to the tunnel axis (c-axis) showing the helical hydrogen-bonded arrangement of urea 

molecules that make up the tunnel structure (crystallographic data taken from Ref. [80]). 

1.2.3 – Periodic Structural Properties 

Another characteristic feature of conventional urea inclusion compounds is that they are 

incommensurate structures. Conventional urea inclusion compounds exhibit an 

incommensurate relationship between the periodicities of the host and guest substructures 

(denoted ch and cg respectively) along the tunnel axis (Fig. 1.3)
[59-62]

 and therefore there is no 

"structural registry"
[63]

 between the host and guest periodicities in this direction. In classical 

terms, an inclusion compound is incommensurate if there are no small integers p and q for 

which pch  qcg, and is commensurate if this equality is satisfied by sufficiently small integers 

(a) (b) 
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p and q. In an incommensurate inclusion compound, the ratio ch:cg is not equal to a rational 

number.
[64]

 A more rigorous description of commensurate/incommensurate behaviour has 

been developed in Ref.[59], including a distinction based on energetic characteristics. One of 

the important conclusions that came out of this study was that, in an incommensurate 

inclusion compound, the energy of the inclusion compound is "essentially independent of the 

position of the guest substructure relative to the host substructure",
[64]

 which implies that 

activationless translation of the guest substructure along the tunnel is possible. This feature 

has been exploited in a number of studies investigating the transport of guest molecules along 

the tunnels of urea inclusion compounds.
[65-69]

 

A small number of inclusion compounds formed between urea and specific guest 

molecules display commensurate structures [e.g. 1,6-dibromohexane/urea,
[70]

 

sebaconitrile/urea
[71]

 and the (α + 1),( − 1)-alkanedione/urea
[72]

 family]. In these materials 

the host structure is often distorted from the hexagonal tunnel structure shown in Fig. 1.2 to a 

lower symmetry, and there is significant energetic lock-in between the host and the guest 

substructures. For the incommensurate systems at ambient temperature and pressure, the guest 

molecules typically have significant motional freedom within the tunnels and exhibit rapid 

reorientation about the tunnel axis and translation along the tunnel axis. 

 

Figure 1.3. Schematic representation of three adjacent tunnels in a urea inclusion compound 

viewed perpendicular to the tunnel axis (with the tunnel axis horizontal). The terms ch, cg and 

Δg are defined. The schematic shows an incommensurate relationship between the 

periodicities of the host (ch) and guest (cg) substructures along the tunnel axis. 
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1.2.4 – Guest Molecules 

Due to the restricted diameter of the host tunnel, urea inclusion compounds are only 

formed with guest molecules based on a sufficiently long unbranched alkane chain, with only 

a limited degree of substitution permitted. Examples of appropriate guest molecules are 

alkanes and derivatives such as α,-dihaloalkanes, α,-alkane dicarboxylic acids and 

terminally substituted carboxylic acids, acid anhydrides, diacyl peroxides, alcohols and 

alkanones. 

In many urea inclusion compounds, the guest molecules exhibit enough positional 

ordering to allow an average three-dimensional guest lattice to be defined.
[55, 73]

 Thus there are 

well-defined positional relationships between adjacent guest molecules both within the same 

tunnel and between neighbouring tunnels. These relationships are described by the terms cg 

and Δg, where cg is the periodicity of the guest substructure along the tunnel axis (which 

depends only on the length of the guest molecule in the linear conformation) and Δg refers to 

the offset, along the tunnel axis, between the centres of mass of guest molecules in adjacent 

tunnels (Fig. 1.3). The value of Δg is found to be strongly dependent on the nature of the 

functional groups on the guest molecule. For instance, Δg = 0 for alkane/urea inclusion 

compounds
[74]

 and is independent of the value of cg whereas in α,-dibromoalkane/urea 

compounds,
[75]

 Δg depends on the value of cg,  with Δg  and cg related by Δg = cg/3. The X-ray 

diffraction patterns of urea inclusion compounds often display both discrete and diffuse 

scattering from the guest component. The nature of the diffuse scattering indicates that in 

some regions of the crystal, the guest molecules are ordered only along the tunnel 

direction.
[54]

 

One consequence of the incommensurate nature of conventional urea inclusion 

compounds is that the symmetry of the whole structure (taking into account both the host and 

guest substructures) cannot be described by a three-dimensional space group in the usual 

manner. Instead an extra dimension along the tunnel axis is required to describe the symmetry 

of the composite structure
[63]

 in a four-dimensional superspace group. A more thorough 

consideration of the symmetry properties of urea inclusion compounds in superspace groups 

is provided in Refs.[61, 76, 77]. 
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1.2.5 – Phase Transitions 

Most conventional urea inclusion compounds undergo an order-disorder phase 

transition at low temperature. Both the structural
[78-82]

 and dynamic
[83-88]

 aspects of these 

phase transitions have been investigated in detail for alkane/urea and α,-dibromoalkane/urea 

inclusion compounds using a variety of techniques. These phase transitions are associated 

with a distortion of the hexagonal urea host structure to a structure of lower symmetry 

(usually orthorhombic) in the low temperature phase and a freezing out of the dynamics of the 

guest molecules. The structural relationship between the host and the guest substructures 

along the tunnel remains incommensurate across the phase transition. Although in qualitative 

terms, most conventional urea inclusion compounds display similar phase transition 

behaviour, the specific details of the structural changes associated with the phase transition 

depend on the nature of the guest molecule. 

Although several theories have been proposed to explain the phase transitions in urea 

inclusion compounds, to date no unequivocal empirically derived mechanism describing the 

transition exists. Using two different theoretical models Pemberton and Parsonage 

suggested
[89]

 that the phase transition in alkane/urea inclusion compounds was due to a 

correlation between the intratunnel and intertunnel guest-guest interactions. However, their 

theory was based on the assumption that there is no change in the host structure across the 

phase transition, which was later shown to be incorrect. In contrast, Fukao’s model
[90]

 

assumed that interactions between guest molecules in adjacent tunnels are insignificant. 

Instead, he suggested that the phase transition in alkane/urea inclusion compounds is caused 

by a change in the amount of conformational defects in the high and low temperature phases. 

In the low-temperature phase, the alkane guest molecules exist predominantly in the all-trans 

conformation, whereas in the high-temperature phase conformational defects are present. 

Lynden-Bell’s
 
model

[91]
 emphasises the importance of host-guest interactions to the phase 

transition behaviour. According to her model, orientational ordering of guest molecules in the 

low temperature phase is caused by coupling between transverse acoustic phonons of the host 

structure and the orientational order of the guest molecules. 
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1.3 – Thiourea Inclusion Compounds 

Thiourea also forms solid inclusion compounds with a tunnel host structure
[92, 93]

 (Fig. 

1.4). However, there are a number of key differences between the structural properties of 

thiourea and urea inclusion compounds. Unlike the urea tunnel, which has a fairly uniform 

cross-section on moving along the tunnel, the thiourea tunnel contains prominent bulges 

(diameter ca. 7.1 Å) and constrictions (diameter ca. 5.8 Å) at certain positions along the 

tunnel
[56, 94]

 and is therefore sometimes considered as a cage-type rather than a tunnel-type 

inclusion compound. Furthermore, the larger diameter of the thiourea tunnels means that it is 

possible to incorporate larger guest molecules encompassing a wider range of chemical types. 

For example, the thiourea tunnel can accommodate guest molecules such as cyclohexane and 

its derivatives, ferrocene and other organometallics, adamantane and various derivatives 

thereof and compounds containing benzene rings (Fig. 1.5). 

 

Figure 1.4. Crystal structure of the cyclohexane/thiourea inclusion compound (with van der 

Waals radii) at ambient temperature, viewed along the tunnel axis (c-axis), with the guest 

molecules removed for clarity (crystallographic data taken from Ref. [102]). 
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Figure 1.5. Typical guest molecules that form inclusion compounds with thiourea: (a) 

cyclohexane, (b) adamantane and (c) ferrocene. 

1.3.1 – Structural Overview 

For most guest molecules (particularly those with a fairly isotropic molecular shape), 

the structure of the thiourea inclusion compound is rhombohedral at ambient temperature and 

the guest molecules are disordered
[63]

 [typical space group R3̄c; a  15.5 – 16.2 Å, c  12.5 Å 

(hexagonal setting)]. Many thiourea inclusion compounds undergo a phase transition at low 

temperature in which the rhombohedral structure transforms to a monoclinic structure, and the 

phase transition is often associated with a change in the degree of ordering and the dynamic 

properties of the guest molecules. 

Another important difference between urea and thiourea inclusion compounds is that 

thiourea inclusion compounds typically have commensurate structures. In fact, only one 

incommensurate thiourea inclusion compound has been reported to date (see Chapter 7).
[95]

 

The guest molecules in most thiourea inclusion compounds occupy specific positions along 

the host tunnel, with one guest molecule per "cage" of the host structure. This situation 

corresponds to a commensurate relationship with ch = 2cg. With two guest molecules per unit 

repeat distance of the thiourea host structure along the tunnel, the guest/thiourea molar ratio is 

1:3. 

Thiourea inclusion compounds containing planar guest molecules tend to have 

monoclinic host structures (e.g. 2,3-dimethylbutadiene
[96]

 and 2,3-dichlorobutadiene
[97, 98]

) in 

which the tunnel is deformed considerably from the rhombohedral tunnel structure of 

conventional thiourea inclusion compounds and the guest molecules are usually ordered. 
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1.3.2 – Phase Transitions and Dynamic Properties of Guest Molecules 

Many of the characteristics of conventional thiourea inclusion compounds are 

exemplified by the cyclohexane/thiourea inclusion compound, which has been studied 

intensively.
[99, 100]

 It is important to state that, although this material illustrates the type of 

behaviour that can be observed in thiourea inclusion compounds, the specific details of the 

physico-chemical properties (including the dynamic properties of the guest molecules and the 

phase transition behaviour) depend on the specific guest molecule. 

Cyclohexane/thiourea is known to exist in three distinct phases.
[100-103]

 At ambient 

temperature, the host structure is the conventional rhombohedral thiourea tunnel structure
[99]

 

with space group R3̄c [a = 15.83 Å, c = 12.46 Å (hexagonal setting)]. The stable phase at 

ambient temperature (phase 1) undergoes a second-order phase transition at ca. 148 K to 

produce phase 2, which then undergoes a first-order phase transition to phase 3 at ca. 127 K. 

Both phase 2 and phase 3 have monoclinic metric symmetry with space group P21/a. 

The guest molecules in the cyclohexane/thiourea inclusion compound are highly 

disordered; solid-state 
1
H NMR,

[100, 103]
 

13
C NMR,

[104]
 

2
H NMR,

[102, 105, 106]
 incoherent 

quasielastic neutron scattering,
[107-110]

 and molecular dynamics simulations
[111]

 have 

demonstrated that the disorder of the guest molecules is dynamic in character. Detailed 

insights into the dynamic properties of the guest molecules established in Ref.[102]. found 

that, the disorder of the guest molecules in phase 1 can be described in terms of a model of 

jumps of the molecular C3 axis between six orientations of equal probability (in accordance 

with the D3 point group symmetry of the site occupied by the cyclohexane guest molecule 

within the thiourea host structure), together with rapid reorientation of the cyclohexane about 

its C3 axis. In phase 2, each cyclohexane molecule reorients among six inequivalent 

orientations (with unequal populations as a consequence of the lowering of the symmetry of 

the host structure), together with rapid reorientation about the molecular C3 axis. An abrupt 

ordering of the guest molecules takes place in phase 3, as the motion of the C3 axis relative to 

the host structure becomes frozen; however, rapid reorientation of each cyclohexane guest 

molecule about its C3 axis still occurs in phase 3. 
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1.3.3 – Conformational Properties of Guest Molecules 

Another interesting feature of thiourea inclusion compounds is that the guest molecules 

often adopt very uncharacteristic conformations when they are constrained within the thiourea 

tunnel structure and this fundamental aspect has attracted particular attention from 

researchers. For example, for monohalogen substituted cyclohexanes in their liquid and 

vapour phases,
[112-116]

 a dynamic equilibrium exists between the axial and equatorial 

conformers and invariably the equatorial isomer predominates due to the unfavourable 

repulsive 1,3-diaxial interactions that are present when the substituent is in the axial 

position.
[117]

 Furthermore, in the pure solid state at sufficiently low temperature or high 

pressure, these molecules exist exclusively in the equatorial conformation.
[118, 119]

 However, it 

has been shown that when chlorocyclohexane, bromocyclohexane and iodocyclohexane are 

included as guest molecules within the thiourea host tunnel structure, they exist 

predominantly in the axial conformation – these results have been established from IR,
[120-123]

 

Raman,
[124]

 high-resolution solid-state 
13

C NMR,
[117, 125-128]

 EXAFS spectroscopy
[129]

 and 

powder X-ray diffraction.
[130]

 

The conformational behaviour of monosubstituted cyclohexanes included within the 

thiourea host structure is known to depend strongly on the identity of the substituent.
[117, 120, 

123, 124, 126-128]
 For example, cyclohexanes containing Cl, Br, I, CN or NCO substituents exhibit 

a strong preference for the axial conformer whereas cyclohexanes containing F, OH, NH2 or 

CH3 exhibit a preference for the equatorial conformer. 

A rationalization for the change in conformational behaviour displayed by 

chlorocyclohexane when included inside the one-dimensional tunnels of an inclusion 

compound was provided by Harris and co-workers.
[131]

 This behaviour was rationalized on the 

basis of comparing the relative contributions of Eintra (the intramolecular potential for each 

guest molecule, i.e., the energetic preference for the guest molecule to be in the axial or 

equatorial conformation) and cg/ch (the optimum guest periodicity, i.e., the packing efficiency 

of the guest molecules). The axial conformation can pack more densely within the tunnel, 

which means that cg is smaller, giving a more favourable host-guest interaction energy per 

unit length of the tunnel in the case of the axial conformation. 
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1.4 – Applications of Urea and Thiourea Inclusion Compounds 

Both urea and thiourea inclusion compounds exhibit a diverse range of fundamentally 

important physico-chemical properties which have been utilised in a number of applications, 

some of which are briefly surveyed below. 

As stated in Section 1.2.1, much of the early work on urea inclusion compounds was 

motivated by the prospect of using these materials to separate linear and branched 

hydrocarbons relevant to the petrochemical industry. Several examples of the use of urea 

inclusion compounds in industrial separation processes were presented by Fetterly,
[25]

 who 

reported the use of these compounds in the separation and production of jet fuels, paraffins, 

lubricating oil bases and speciality waxes. However, urea inclusion compounds are no longer 

used in these industries and have long since been superseded by zeolitic materials, which offer 

numerous practical advantages in such applications. Nevertheless, the extractive 

crystallisation potential of urea inclusion compounds continues to be utilised on the laboratory 

scale by synthetic chemists to isolate linear molecules. 

Both urea and thiourea inclusion compounds have also been exploited as environments 

for carrying out chemical reactions involving the guest molecules. The reactivity of the guest 

molecules in these solid inclusion compounds can often differ substantially from the reactivity 

of the same molecules in dispersed phases, as described in a recent review.
[36]

 For example, 

the highly confined regions of space within the urea and thiourea tunnel structures provide a 

unique medium in which highly stereoselective polymerization reactions may be carried out 

(Fig. 1.6). Many studies have exploited the constrained spatial environment of these inclusion 

compounds to control the production of polymers with remarkable regularities (which could 

not be achieved by conventional dispersed phase syntheses). In their seminal studies, Brown 

and White
[132]

 found that highly stereoregular crystalline polymers of 2,3-dimethylbutadiene 

and 2,3-dichlorobutadiene could be produced upon irradiation of the thiourea inclusion 

compound containing the monomer molecule as the guest species. The 1,4-trans-polymer was 

produced exclusively in both cases, in contrast to the results obtained for the same reaction in 

other phases (Fig. 1.6).
[133]

 Similar highly stereospecific polymerisation reactions involving 

smaller monomers have also been observed in urea inclusion compounds.
[134]
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Figure 1.6. Schematic of a tunnel inclusion compound showing the packing arrangement of 

guest monomer molecules (e.g. 2,3-dimethylbutadiene, R = CH3; 2,3-dichlorobutadiene, R = 

Cl; butadiene, R = H) which are set up to undergo inclusion polymerization favouring the 

formation of the 1,4-trans-polymer. 

Thiourea inclusion compounds have been shown to display non-linear optical 

behaviour, indicating that they may have the potential to be used as optoelectronic devices. 

Tam and co-workers observed
[42, 43]

 that thiourea inclusion compounds containing certain 

organometallic guest molecules exhibit second harmonic generation (SHG), i.e., the 

frequency doubling of light as it passes through a material. For a crystal to exhibit SHG, the 

constituent molecules must have high second-order hyperpolarizabilty (β) and the crystal 

structure must be non-centrosymmetric. We note, that although conventional thiourea 

inclusion compounds have centrosymmetric structures (crystallizing in the R3̄c space group, 

containing an inversion centre), thiourea inclusion compounds containing certain 

organometallic guest molecules crystallise in unconventional non-centrosymmetric structures. 

The tunnel structure of these thiourea inclusion compounds provides an environment in which 

guest molecules (with high values of β) may be aligned in a non-centrosymmetric manner, 

thus satisfying both of the criteria for SHG. In a number of thiourea inclusion compounds the 
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dipole alignment of organometallic guest molecules was found to be favoured and these 

compounds exhibited significant SHG. 

Urea
[135]

 and thiourea
[136, 137]

 inclusion compounds containing certain guest molecules 

have been found to be strongly X-ray dichroic, i.e., X-rays with polarization parallel to a 

certain axis in the material are preferentially attenuated over X-rays with polarization 

perpendicular to this axis. These materials have been applied successfully as X-ray dichroic 

filter materials and have been shown to have considerable potential in applications such as 

magnetic X-ray scattering
[135]

 and X-ray polarimetry.
[137]

 Very recently,
[138]

 the related 

phenomenon of X-ray birefringence has been observed in the 1-bromoadamantane/thiourea 

inclusion compound (Chapter 5) and this physical property has been applied to characterise 

aspects of the phase transition in bromocyclohexane/thiourea (Chapter 6). 

Other applications include using the confined tunnel structures of urea and thiourea to 

increase the stability of readily oxidised substances for easier storage and handling
[11, 139, 140]

 

and to orient guest molecules in unusual conformational states to enable spectroscopic studies 

to be carried out.
[141]

 

1.5 – A Guide to this Thesis 

Building upon the foundation of these previous studies, this thesis explores new 

research directions in organic solid inclusion compounds, reporting important new insights 

into the behaviour of urea and thiourea inclusion compounds. In particular the thesis 

examines; the crystal growth characteristics of urea inclusion compounds (Chapter 3), the 

subtle structural features which effect phase transition behaviour in thiourea inclusion 

compounds (Chapter 4), the phenomenon of X-ray birefringence (Chapter 5) and its 

application in characterising changes in molecular polarization associated with phase 

transitions in thiourea inclusion compounds (Chapter 6) and aperiodicity in thiourea inclusion 

compounds (Chapter 7). In Chapter 8, some general conclusions are stated alongside a brief 

analysis of the outlook for the field.  
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Chapter 2 – Experimental Techniques 

This chapter describes the background theory of the techniques that have been used in 

this thesis, namely, single-crystal X-ray diffraction, powder X-ray diffraction, Raman 

microspectrometry and differential scanning calorimetry (DSC).  

2.1 – X-ray Diffraction  

X-ray diffraction is the most commonly used and most powerful physical 

characterization technique for determining the structure of crystalline solids. The technique is 

used to determine precisely the atomic positions, bond lengths and bond angles in a crystal. 

The main limitations of the technique are that there is a strict constraint on the type of 

materials that can be studied (i.e., only crystalline solids) and furthermore, it provides a time-

averaged and space-averaged representation of a structure and therefore cannot be used to 

identify defects or dopants within materials
[1]

 or used to follow fast dynamic processes.  

2.1.1 – Fundamentals of Diffraction 

Diffraction involves the elastic scattering of radiation by matter and arises from 

constructive or destructive interference between two or more waves that have passed through 

a diffraction grating. For diffraction to occur, the wavelength of the incident radiation must be 

of the same order of magnitude as the periodic repeat distances in the scattering object. Thus, 

X-rays (0.1 – 100 Å) are ideally suited for being diffracted by crystalline solids which consist 

of atoms, molecules and ions with periodic repeat distances of the order of a few Ångströms 

to several tens of Ångströms. The relative amplitudes and phases of scattered X-rays are 

characteristic of the scattering object, constituting a unique "fingerprint" of the object. 

Structural information of an object is thus "carried" in the relative intensities and phases of the 

radiation being scattered from it,
[2]

 which is the fundamental reason why the phenomenon of 

X-ray diffraction can be applied to determine the structure of materials.  

2.1.2 – Crystals and Symmetry  

A crystal comprises a very large number of atoms, molecules or ions arranged 

periodically in three-dimensions to give a highly ordered structure. The basic three-
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dimensional repeating unit of a crystal is the unit cell, and may comprise one or more atoms 

or ions, a molecule, or an assembly of molecules. The whole crystal structure can be 

constructed by replication of a single unit cell, by translation in three-dimensional space. The 

unit cell is defined by three axis lengths, denoted a, b and c and by the angles between them, 

α, β and γ (where α is the angle between b and c, β is between a and c and γ is between a and 

b). The lattice parameters thus define the size and shape of the unit cell (Fig. 2.1). 

 

Figure 2.1. A representation of the unit cell, defining the three lattice lengths, a, b and c and 

the angles between them, α, β and γ.  

All crystalline solids can be arranged into seven crystal systems (triclinic, monoclinic, 

orthorhombic, tetragonal, trigonal, hexagonal and cubic), which correspond to the seven 

possible ways of arranging three-dimensional unit cells in space. When these seven crystal 

systems are combined with the primitive or centred unit cell choices, 14 permissible Bravais 

lattices are produced.
[3]

 The various possible symmetry elements in the solid state can be 

arranged on these 14 Bravais lattices in only 230 ways. These are the 230 space groups, which 

are the 230 distinct combinations of symmetry elements that are possible given the 

geometrical requirements of a three-dimensional lattice.
[3]

 

2.1.3 Diffraction by Crystals 

X-rays are scattered by the electrons of atoms which make up a crystal and due to their 

internal periodic structure, crystals act as three-dimensional diffraction gratings to X-rays. 

Thus, when X-rays interact with a crystal, a diffraction pattern is produced consisting of a 

series of discrete maxima. Diffraction only occurs at specific orientations of the crystal when 

the conditions for constructive interference are satisfied (see Section 2.1.5).  



 

 24 

Information on the structure of an object is carried in the relative intensities and phases 

of radiation scattered from it and thus a diffraction pattern acts as a unique "fingerprint" of the 

scattering object. For instance, a macroscopic object is observed when visible light rays 

scattered from the object are instantaneously recombined on the retina to form an image of 

that object.
[2]

 However, in the case of X-ray diffraction, the scattered X-rays cannot be 

recombined with a lens. This means that the diffraction experiment must be divided into two 

main stages: (i) recording a scattering pattern using a detector; and (ii) mathematical 

recombination of the scattered X-rays by computational techniques to determine structural 

information.  

It is important to note the reciprocal relationship between the diffraction pattern and the 

crystal structure. The lattice of the diffraction pattern is called the reciprocal lattice because it 

is related to the direct lattice by reciprocal distances and perpendicular directions.  

2.1.4 – X-ray Crystallography 

X-ray crystallography involves the determination of the lattice parameters and the 

atomic content of the unit cell. The complete crystal structure can be defined by knowledge of 

the unit cell dimensions and its contents, since the unit cell is repeated in all dimensions of the 

crystal by translation. It is important to note that X-rays are scattered by electrons and 

therefore X-ray crystallography involves determination of the electron density in a crystal 

(rather than the positions of the nuclei), which is interpreted in terms of the positions of 

atoms. The atomic positions, bond distances and bond angles etc., can thus be inferred from 

the electron density distribution. 

An X-ray diffraction pattern is characterised by three key features; (i) geometry – a 

series of discrete sharp spots at particular positions in reciprocal space, corresponding to the 

restricted directions in which X-rays are diffracted by the three-dimensional lattice, (ii) 

symmetry – rotation, reflection and inversion symmetry in the positions of the spots, (iii) 

differing intensities of the Bragg maxima. Each of these features of the diffraction pattern is 

related to a feature of the crystal structure. The geometry of the pattern is a consequence of 

the crystal lattice and unit cell geometry. The symmetry of the diffraction pattern is related to 

the symmetry of the crystal structure and is expressed in its crystal system and space group. 
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The intensities of the diffracted beams are related to the positions of the atoms within the unit 

cell, i.e., by the geometry within the molecules themselves and by their arrangement within 

the unit cell.  

2.1.5 – The Geometry of X-ray Diffraction: Bragg’s Law 

In his experiments on a crystal of copper sulphate in 1912, von Laue demonstrated
[4]

 

that crystalline solids behave as three dimensional diffraction gratings to X-rays.  However, it 

was W.L. Bragg, along with his father, W.H. Bragg, who was the first to utilise the 

phenomenon of X-ray diffraction to determine the structure of a crystal,
[5-8]

 for which they 

were awarded the Nobel Prize in Physics in 1914. 

Bragg showed that the angular distribution of diffracted X-rays could be rationalised by 

assuming that the scattered X-rays behave as if they are reflected by sets of parallel planes 

passing through lattice points in the crystal.
[3]

 This model is analogous to the reflection of 

light by a mirror in that the angle of incidence must be equal to the angle of reflection. 

However, unlike the reflection of light from a mirror, X-ray diffraction only occurs at specific 

orientations of the crystal, when the conditions for constructive interference are satisfied. 

Figure 2.2 gives an illustration of Bragg’s law.  

 

Figure 2.2. Schematic illustration of Bragg’s law showing the reflection of two X-rays from a 

set of parallel lattice planes. 
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The diagram (Fig. 2.2) shows a set of parallel lattice planes which are assigned with 

Miller indices hkl (defining the orientation of the planes with respect to the unit cell edges) 

and an interplanar spacing dhkl, with a parallel beam of X-rays incident to the lattice planes at 

an angle θhkl. For the reflected X-ray beams A and D to be diffracted with non-zero intensity, 

constructive interference must take place and thus the two diffracted rays must be exactly in 

phase with each other. For the rays to stay in phase, the difference in path length between the 

two beams (EF + FG) must be equal to an integer number, n, of wavelengths, λ: 

 Path difference = EF + FG = nλ. (2.1) 

From Fig. 2.2 it is clear that 

 EF = FG = dhklsinθ, (2.2) 

and thus 

 Path difference = nλ = 2dsinθhkl. (2.3) 

This is the Bragg equation which describes the geometric conditions that must be fulfilled to 

observe a diffracted X-ray beam. For angles other than the Bragg angle, the scattered X-rays 

are out of phase with each other and destructive interference occurs. The Bragg equation is 

the basis from which the geometry of the unit cell can be determined from the diffraction 

pattern. 

2.1.6 –The Intensities of Diffracted X-rays: the Structure Factor  

The Bragg equation allows the geometry of the unit cell to be obtained from the 

geometry of the measured diffraction pattern; however this does not tell us anything about the 

arrangement of the atoms within the unit cell. The positions of the atoms (or more precisely 

the electron density distribution) within the unit cell are related, not to the geometry, but to 

the relative intensities of the peaks in the diffraction pattern. Each reflection in a diffraction 

pattern can be associated with an amplitude │F│ (which is proportional to the square root of 

the intensity) and a phase φ, both of which depend on the positions of the atoms within the 

unit cell. If the amplitudes and phases of each reflection in the diffraction pattern could be 

measured then the arrangement of atoms within the unit cell could be calculated automatically 

and, together with the unit cell geometry, provide the crystal structure. This relationship 
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between the amplitudes and phases of the reflections and the electron density distribution 

within the unit cell is described by the structure factor [Eq. (2.4)]. Before we define the 

equations which relate the X-ray diffraction pattern to the crystal structure we first need to 

consider some fundamentals. 

X-rays interact with the electrons in an atom and thus, as the number of electrons on an 

atom increases, it scatters X-rays more strongly. The scattering factor (f) provides a measure 

of the scattering effectiveness of an individual atom and depends on the atomic number (i.e., 

the number of electrons), the scattering angle (θ) and the wavelength of radiation. The 

scattering factor decreases as the Bragg angle is increased, due to an increase in destructive 

interference effects at higher angles. Each symmetry independent atom in the crystal structure 

is described by its atomic scattering factor (f), a displacement parameter (U) and three 

coordinates specifying its position (x, y, z).  

When an object scatters radiation, the scattering pattern is related to the scattering object 

by Fourier transformation. Thus, an X-ray diffraction pattern is the Fourier transform of the 

crystal structure (the forward Fourier transform) and the crystal structure is the Fourier 

transformation of the diffraction pattern (the reverse Fourier transform).  

Each reflection (hkl) in a diffraction pattern is the resultant of the waves scattered by all 

the individual atoms in the unit cell, in the particular direction specified by (hkl) and is 

described by the structure factor F(hkl). The structure factor depends on the position of the 

atom within the unit cell and its atomic scattering factor and is given by the forward Fourier 

transform: 
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where fj is the scattering factor for the j
th

 atom in the unit cell, (xj, yj, zj) are the fractional 

coordinates of atom j within the unit cell and Uj is the isotropic displacement parameter of the 

atom. This equation can be used to calculate the expected diffraction pattern from any known 

crystal structure.  
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The opposite process of determining the electron density ρ(xyz) of a crystal structure 

from the diffraction pattern is achieved using the reverse Fourier transform, given in the 

expression below: 

  
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1
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where the terms are the same as Eq. (2.4), except that V is the unit cell volume and ρ is the 

electron density. The equation shows that theoretically, information from the diffraction 

pattern can be used to obtain the electron density of the crystal structure. However, this cannot 

be achieved directly because only the amplitudes │F(hkl)│ of the reflections (derived from 

the measured intensities) and not their relative phases are obtained from the experimental 

diffraction pattern. This is known as the "phase problem". Since the phases cannot be 

measured, they must be calculated and two methods devised to overcome this problem are 

discussed very briefly in Section 2.1.7.3.  

2.1.7 – Single Crystal X-ray Diffraction 

We now consider very briefly how single crystal X-ray diffraction data can be used to 

determine the structure of a crystal. A single-crystal X-ray diffraction experiment results in 

the detection of series of diffraction spots surrounding the central point of the beam, 

corresponding to "reflections" from different lattice planes. Each reflection can be assigned a 

set of indices (h, k, l), a relative intensity I, and a value for the scattering angle 2θ. These data 

are recorded using a diffractometer, which produces a structure factor amplitude |F(hkl)| for 

each measured reflection. Four fundamental steps are involved in structure determination 

from single-crystal X-ray diffraction data: (i) obtaining the unit cell geometry, (ii) 

determining the symmetry of the structure (Laue group and space group symmetry), (iii) 

structure solution and (iv) structure refinement.  

2.1.7.1 – Obtaining the Unit Cell Geometry 

The six unit cell parameters (a, b, c, α, β, γ) are typically determined from a subset of 

high intensity reflections. Indexing of these reflections is performed using indexing programs 

based on the Bragg equation, which take into consideration the positions of the diffraction 
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maxima. The calculated lattice parameters are subsequently refined by least squares 

refinement.  

2.1.7.2 – Determining the Symmetry of the Structure  

The correct Laue group (which determines the crystal system) can be assigned by 

comparing the intensities of reflections to assess which sets of reflections are symmetry 

equivalent (i.e., with the same structure factor amplitudes). Once this has been accomplished, 

the correct space group (or a small set of possible space groups) can be assigned by 

considering systematic absences. Systematic absences are reflections that have zero intensity, 

caused by the presence of translational symmetry elements, like screw axes and glide planes 

and by unit cell centring.  

2.1.7.3 – Structure Solution 

This part of the process involves determining the positions of the atoms in the unit cell, 

using the reverse Fourier transform [Eq. (2.5)]. The reverse Fourier transform uses the 

amplitudes |F(hkl)| and phases φ of each reflection to determine the electron density 

distribution inside the unit cell, and hence the atomic positions. However, although the 

intensities (and thereby the amplitudes) can be measured, the relative phases are unknown. 

This means that calculation cannot be carried out directly. The two methods most commonly 

used for calculating the phases are the Patterson synthesis and Direct methods.  

The Patterson synthesis is useful for structures containing a small number of heavy 

atoms and involves performing the Fourier transform of the squared amplitudes |F(hkl)|
2
, with 

all the phases set to zero [Eqn. (2.6)]: 
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The Patterson map produced from this procedure resembles an electron density map, but, in 

this case the peaks correspond to vectors between pairs of atoms with the strongest peaks 

indicating the vectors between the heaviest atoms. Other Fourier methods are often adopted to 

locate the positions of the lighter atoms in order to complete the structure. The Patterson map 
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becomes very congested if most of the atoms in the structure have similar atomic numbers 

(i.e., in organic structures) and in this case, Direct methods is the preferred approach. 

Direct methods uses a statistical approach to try and predict the phases of reflections 

just from their measured intensities. The approach is based on the fact that the electron 

density within the unit cell represents a positive probability distribution and is concentrated 

into certain compact regions. This imposes strict constraints on the relationships of the phases 

of different reflections. In Direct methods, the most intense reflections are selected as these 

contribute the most to the Fourier transform. The probable relationships between the phases of 

these reflections are calculated and a range of different possible phases are trialled to assess 

how well they satisfy the probability relationships. Fourier transforms calculated for the most 

promising trials are then analysed to see if they correspond to known molecular features. 

2.1.7.4 – Structure Refinement  

The result of structure solution is to give the approximate positions of the atoms in the 

unit cell. Structure refinement involves optimising these positions by least squares refinement, 

to find the best agreement between the observed and the calculated diffraction patterns. To do 

this, the amplitudes of the observed │Fo│ and calculated │Fc│ diffraction patterns are 

compared, as the structural parameters affecting │Fc│ are varied. The parameters usually 

refined are the positions (x, y, z) and the vibrations (displacement parameters, U) of the atoms. 

Changes made to these parameters inevitably produce changes in │Fc│. The R-factor 

("reliability factor"), defined below, gives a measure of the "goodness of fit" between the 

calculated and observed data and would typically be less than 5% following structure 

refinement.  
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2.1.7.5 – Rotation and Oscillation Photographs 

Throughout this thesis, single-crystal X-ray diffraction oscillation photography has been 

employed as a method for determining the periodic structural properties of inclusion 
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compounds (see Chapter 7). In rotation and oscillation photography, the crystal is mounted on 

the goniometer head and is rotated continuously (rotation photograph) or oscillated through a 

defined angle (oscillation photograph) around a specific axis in direct space (usually one of 

the unit cell axes).
[3]

 The resultant diffraction pattern, traditionally recorded using a piece of 

cylindrical photographic film surrounding the crystal, is now recorded using a CCD detector.  

Typically, the crystal is rotated about a direct axis orientated perpendicular to the incident X-

ray beam, for instance the c-axis. In this case, the a*b* reciprocal lattice plane is 

perpendicular to the c-axis and hence perpendicular to the axis of rotation. As the crystal is 

rotated, successive points along the reciprocal lattice are orientated in a manner which 

satisfies the geometrical conditions for diffraction
[9]

 and Bragg maxima are detected. The 

observed diffraction spots lie along a series of diffraction cones which are co-axial with the c-

axis.
[10]

 If the traditional photographic method is used, the film is unrolled and the diffraction 

spots lie on a series of straight lines, which correspond to the points at which the cones of 

diffraction intersect the film. If an area detector is used, the lines on the rotation photograph 

are slightly curved at higher angles due to the flat face of the detector. The a*b* plane 

contains the l = 0 reflections (normal incidence) and the l = 1, 2 etc. reflections lie in 

equidistant planes parallel to it and perpendicular to the axis of rotation. These lines of 

reflections are known as "layer lines" and the spacing between these layer lines gives, in this 

case, the length of c-axis of the unit cell. An example of an oscillation photograph is given in 

Fig. 2.3. 



 

 32 

 

Figure 2.3. Single-crystal XRD oscillation photo for 1,10-diiododecane/urea at 290 K. The 

single crystal was oscillated about the tunnel axis (c-axis; parallel to ch and cg) with an 

oscillation range ± 30°. The photograph shows two distinguishable sets of diffraction "layer 

lines" with different periodicities along the tunnel axis (vertical), attributed to the guest 

(diffuse scattering) and host (discrete spots) substructures of the urea inclusion compound.  

2.1.7.6 – Instrument and Methodology Details 

The single-crystal X-ray diffraction data in this thesis was collected on a Nonius Kappa 

CCD diffractometer using a graphite monochromated MoKα radiation source (λ(Mo-Kα) = 

0.71073 Å). The instrument was equipped with an Oxford Cryosystems cooling apparatus. 

Crystals were mounted onto a glass fibre using an adhesive. Data collection and unit cell 

refinement were carried out using COLLECT
[11]

 and HKL SCALEPACK.
[12]

 Data collection 

was applied using HKL DENZO and SCALEPACK.
[12]

 The structures were solved using 

Direct methods (Sir92)
[13]

 and refined with SHELXS-97
[14]

 via the software interface 

WinGX.
[15]

 Absorption corrections were performed using SORTAV.
[16]

 All non-hydrogen 

atoms were refined with anisotropic displacement parameters, while the hydrogen atoms were 

inserted in idealised positions with Uiso set at 1.2 or 1.5 times the Ueq of the parent atom.  

2.1.8 – Powder X-ray diffraction 

Crystal structure determination from powder X-ray diffraction is a powerful tool that 

can be carried out when single crystals of suitable size and quality for single-crystal 

diffraction are unavailable. A powder contains a large number of small crystals randomly 
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oriented with respect to one another. When monochromatic X-rays are incident upon such a 

sample, diffraction occurs from lattice planes within individual crystallites which are oriented 

in a manner which satisfies the Bragg equation, and the diffracted beams are at angles 2θ from 

the incident beam. Since the individual crystallites are oriented in all directions whilst still 

maintaining the Bragg condition, cones (instead of spots) of individual reflections are 

produced with semi-apex angles of 2θ (Fig. 2.4a). The result of using a polycrystalline powder 

instead of a single crystal is to compress the three-dimensional diffraction pattern into one 

dimension. As a consequence there is often substantial overlap of peaks in powder X-ray 

diffraction patterns, as a result of which, structure determination from powder X-ray 

diffraction data is significantly more challenging than from single-crystal X-ray diffraction 

data.  Powder diffraction patterns are usually measured by an electronic detector and intensity 

is recorded as a function of diffraction angle. A typical powder diffraction pattern is shown in 

Fig. 2.4b.  As is the case in single crystal diffraction, the peak positions depend on the unit 

cell parameters and the intensity of the spots relates to the electron density distribution within 

the unit cell and the same four stages of structure determination apply.  
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Figure 2.4. (a) Cones of scattered X-rays produced by each individual reflection from a 

microcrystalline powder sample. (b) A typical  powder X-ray diffraction pattern.   

In this thesis, powder X-ray diffraction has been used for identification and 

"fingerprinting" of solid phases and for determination of their unit cell parameters, and thus a 

discussion of the structure solution and structure refinement stages of the process is beyond 

the scope of this chapter. We note that one of the advantages of powder diffraction that has 

been utilised in this thesis is that powder X-ray diffraction is not affected by the occurrence of 

crystal twinning, since individual twins simply behave as different crystallites within the 

polycrystalline powder. This means that powder X-ray diffraction is ideally suited to studying 

phase transitions at low temperature, which are often associated with twinning of the crystals.  

2.1.8.1 – Indexing the Powder Diffraction Pattern 

The fist step following collection of the powder diffraction data is indexing the powder 

pattern. The indexing stage involves determination of the unit cell parameters (a, b, c, , , ) 

(b) 

(a) 
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using one of a range of auto-indexing programs, such as ITO,
[17]

 TREOR,
[18]

 DICVOL
[19]

 and 

a Genetic algorithm program developed in the Harris group.
[20]

 These programs primarily 

consider the peaks at low diffraction angles as peak overlap at high angles is considerable. 

Once the correct unit cell parameters have been determined, the space group can be assigned 

by examining systematic absences.  

2.8.1.2 – Unit Cell Refinement 

The Le Bail method
[21]

 is used to refine the unit cell parameters obtained from indexing, 

if a high degree of accuracy is required. This method involves profile fitting of the diffraction 

peaks and is operated in the GSAS program package.
[22]

 In Le Bail fitting, an approximate set 

of lattice parameters together with the space group are input into the program. These values 

give a predicted (calculated) set of peak profiles which are compared to the experimental 

(observed) peak profiles using least squares refinement, from which a measure of the 

"goodness of fit" is assigned (the profile R-factor, Rp or the weighted profile R-factor, Rwp). 

The input lattice parameters, peak profiles, zero shift and background are then varied 

iteratively to obtain the best fit between the observed and calculated data. It is important to 

note that in the Le Bail fitting procedure, the intensities of the diffraction peaks are arbitrary 

and are treated as "fittable" parameters. This is the fundamental difference between Le Bail 

fitting and Rietveld refinement
[23, 24]

 which is used for structure refinement, for which the 

intensities of the peaks are dependent on the structural parameters.  
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2.2 – Raman Spectroscopy  

The fundamental physical basis of Raman spectroscopy is the inelastic scattering of 

light, hence it is sometimes referred to as Raman scattering. The Raman effect was 

discovered by Sir C. V. Raman in 1928 and has since been widely applied to study the 

vibrational and rotational properties of molecules. In this thesis, the technique of Raman 

microspectrometry has been employed to map the chemical composition of urea inclusion 

compounds containing binary mixtures of guest molecules (Chapter 3). Sections 2.2.1 to 2.2.3 

consider some of the fundamentals of Raman spectroscopy, which provide the theoretical 

background for the more specialised technique of Raman microspectrometry discussed in 

Section 2.2.4. 

 2.2.1 – Rayleigh, Stokes and Anti-Stokes Scattering 

When incident photons of radiation collide with molecules they can be scattered and if 

the collision is perfectly elastic, the energy of the scattered radiation is equal to the energy of 

the incident radiation (Rayleigh scattering). This is the overwhelmingly most probable 

outcome of any collision event.
[25, 26]

 However, photons can also collide with molecules 

inelastically, whereupon the photons impart some of their energy to the molecule and emerge 

with energy Eh  . These scattered photons constitute the lower-frequency Stokes 

radiation. Photons can also undergo collisions in which they receive energy from a molecule 

in a vibrationally excited state and emerge with energy Eh  . These scattered photons 

constitute the higher-frequency anti-Stokes radiation. This inelastically scattered radiation is 

known as Raman scattering, and the intensity measured as a function of scattering angle. The 

improbability of the inelastic scattering events explains the low intensity Raman signals 

typically observed in experiments. Typically, Stokes radiation is significantly more intense 

than anti-Stokes radiation, since the majority of molecules occupy the ground state rather than 

excited states at thermal equilibrium. 

In Stokes and anti-Stokes scattering, incident radiation induces excitation to a higher 

short-lived "virtual energy state" (actually a wide range of band-like energy states) before 

irradiation and relaxation to a different vibrational energy state takes place. Fig. 2.5 shows a 
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schematic of the Rayleigh, Stokes and anti-Stokes scattering processes in comparison to the 

IR absorbance process. Raman scattering is a second order process with a very low cross-

section and consequently the signal to noise ratios are typically very low. In contrast first 

order infra-red spectroscopy is based on absorbance phenomena, for which the probability of 

transitions is much higher. 

 

Figure 2.5. Schematic of the Rayleigh, Stokes and anti-Stokes scattering processes. 

2.2.2 – Theoretical Background 

The energy of the inelastic scattering events described above is dependent on the 

polarizability of the molecule. The gross selection rule for Raman spectroscopy states that 

"for a vibration to be Raman active there must be change in a component of the molecular 

polarizability".
[25]

 In contrast, the analogous selection rule for infra-red spectroscopy requires 

the molecular vibration to produce a change in the electric dipole of the molecule. 

The concept of polarizability can be most easily demonstrated by considering the 

classical theory of the Raman Effect. When a molecule is subjected to a static electric field, 

the nuclei move towards the negative pole of the field and the electrons towards the positive 

pole. This charge separation causes an induced electric dipole moment in the molecule, which 

is said to be polarized. The magnitude of the induced electric dipole μ depends on the ease 
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with which a molecule can be distorted α (the polarizability), and on the magnitude of the 

external field, E: 

 E  . (2.8) 

The degree with which a molecule becomes polarized will also depend on the orientation of 

the molecule with respect to the applied field. This is because the electrons involved in the 

bond will be more easily displaced when the field is applied along the bond axis than when it 

is applied across the bond axis, and thus the polarizability is said to be anisotropic. In a 

homonuclear diatomic molecule, the induced dipole moment for a given field applied along 

the axis is about twice as large as when the same field is applied across the axis.  

If a beam of radiation of frequency ν is incident upon a sample of such molecules, the 

electric field, E, experienced by each molecule varies according to 

 tEE 2sin0 , (2.9) 

where E0 is the magnitude of the applied field. This means that the induced dipole µ also 

undergoes oscillations with a frequency ν:  

 tEE  sin0 . (2.10) 

This equation constitutes the classical explanation of Rayleigh scattering, describing an 

oscillating dipole which emits radiation of its own oscillation frequency.  

However, if the molecule also undergoes a vibration or a rotation that causes a change 

in the polarizability, then the vibrational oscillation will be superimposed upon the oscillating 

dipole. For a vibration of frequency νvib in which the polarizability is changed, then 

 tvib 2sin0  , (2.11) 

where α0 represents the equilibrium polarizability and β is the rate of change of polarizability 

with the vibration, and since: 

 E  , (2.8) 

then tEtvib  2sin)2sin( 00  . (2.12) 

This expression can be expanded using the following trigonometric relation:  

 )}cos(){cos(sinsin 2
1 BABABA  , (2.13) 
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and thus Eq. (2.13) can be re-written 

 })(2cos)(2{cos2sin 02
1

00 ttEtE vibvib   . (2.14) 

Thus, the oscillating dipole has components from both the exciting frequency ν and from 

frequencies ν ± νvib. If there is no change in the polarizability of the molecule as a result of the 

vibration, then β = 0 and the dipole will oscillate at the same frequency as the incident 

radiation. This leads to the gross selection rule, which states that a rotation or vibration is only 

Raman active if it is accompanied by a change in the molecular polarizability.  

2.2.3 – Raman Spectra  

For every vibrational mode, the following general energy expression can be written 

(derived from the harmonic oscillator approximation): 

 2

2
1

2
1 )()(   eee  (ν = 0, 1, 2, …), (2.15) 

where e  is the vibrational frequency at equilibrium in wavenumbers and χe is the 

anharmonicity constant. The selection rule for Raman spectroscopy states that  

 Δν = 0, ±1, ±2,… (2.16) 

In Raman spectroscopy, the scattered light is of very low intensity and therefore only the 

fundamental vibrational transitions (ν = 0 → ν = 1) are observed with high intensity. We can 

obtain an expression for the fundamental transition energy by applying the selection rule Eq. 

(2.16) to the energy level equation [Eq. (2.15)]:  

 ν = 0 → ν = 1: )21( eelFundamenta   . (2.17) 

Therefore, one would expect Raman lines to be observed at distances from the exciting line 

which correspond to the active fundamental vibrations, such that: 

 lFundamentaexlFundamenta   . . (2.18) 

The minus sign in this equation represents the Stokes lines (for which a molecule has received 

energy from the incident radiation and has been excited to the higher ν = 1 vibrational energy 

state) and the plus sign represents the weaker intensity anti-Stokes lines (for which a molecule 

in a higher vibrational state ν = 1 decays to ν = 0 and imparts energy to the radiation).  
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A Raman spectrum therefore consists of a series of intense lines on the low frequency 

side of the Rayleigh line (the exciting line). The separation of these lines from the Rayleigh 

line gives the Raman active fundamental vibration frequencies of the molecule. 

2.2.4 – Confocal Raman Microspectrometry 

In Chapter 3 confocal Raman microspectrometry has been employed to map (i.e., as a 

function of position) the chemical composition of a crystal. Critical to this work is the ability 

to use the technique to acquire spatially resolved Raman spectroscopy data. This section 

outlines the basic theory of the confocal Raman microspectrometry technique and explains 

how spatially resolved spectroscopic information can be acquired. 

Confocal Raman microscopy combines confocal optical microscopy and Raman 

spectroscopy and allows the structural and chemical properties of a sample to be probed on a 

micrometric length scale.
[27]

 In confocal Raman microspectrometry the laser beam is passed 

through an illumination pinhole and is then focussed by a microscope lens onto a small spot 

(1 – 100 µm in diameter) on the sample. The scattered light from this spot (which is collected 

in the backscattering geometry, at an angle of 180° with respect to the direction of the 

incident laser beam) is collected and collimated by the same objective and then focused onto 

the CCD detector via a small pin hole. The pinhole ensures that only light originating from 

the focal spot will reach the detector, since light from other depths will not be collimated by 

the objective and thus will not be in focus at the pinhole. Scattered light from above or below 

the focal point does not contribute to the image.
[28]

 In this way, confocal Raman microscopy 

contrasts with conventional wide-field microscopies in which a large volume of the sample is 

typically illuminated at once. The spectral resolution of confocal microscopy can be improved 

markedly by varying the entrance slit and the grating selected for performing the analysis, 

whereas the spatial resolution depends on the confocal apertures of the objective used. A 

schematic of a confocal Raman microspectrometer is provided in Fig. 2.6. 

Confocal Raman microspectrometry is a powerful non-destructive analytical technique 

which allows spatially resolved Raman spectra to be acquired. The technique has been used in 

numerous applications, including depth profiling of layered polymer samples, investigations 

of subcellular features in biological systems, characterisation of gaseous, liquid or solid 
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inclusions in minerals
[27]

 and investigations of molecular transport processes in organic 

inclusion compounds.
[29-33]

 

 

Figure 2.6. Schematic representation of a confocal Raman microspectrometer. 

2.2.5 – Experimental Setup  

Figure 2.7 displays the general set-up for the Raman spectroscopy experiment in the 

back-scattering geometry. The four main elements that comprise a typical Raman 

spectrometer are: the laser, the transfer deck, the monochromator and the detector. Lasers are 

commonly used as the radiation source for Raman experiments, as they provide the very 

narrow, highly monochromatic and coherent beam of radiation required to observe the Raman 

scattering effect. Typically, He-Ne, Ar
+
 or Kr

+
 rare gas Lasers are used. The Laser beam is 

passed through a notch filter and is focused onto a spot on the sample by the microscope 

objective. Light scattered from the sample is in turn re-focused by the same objective and is 

passed through the confocal pinhole (which eliminates scattered light from outside the focal 

plane) into the grating monochromator. The function of the monochromator is to analyse the 

scattered radiation and provide a corresponding intensity for each wavelength resolution unit. 

The monochromator comprises two or three diffraction gratings, which are composed of a 
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series of closely and regularly spaced groves, each acting as an individual slit. The scattered 

light entering the monochromator impinges upon the reflecting surface of the diffraction 

grating and is diffracted at various angles towards the exit slit. Only the diffracted radiation 

leaving the grating at a specific ("correct") angle can then pass through the exit slit towards 

the detector. The size of the entrance and exit slits defines the spectral resolution of the 

experiment. The detector, which is usually a photomultiplier, is placed after the exit slit of the 

monochromator and it collects the incoming light generating an electric signal proportional to 

the number of photons striking its surface. This signal is then processed by a computer and 

used to generate a spectrum. 

 

Figure 2.7. Experimental set-up for the back-scattering Raman spectroscopy experiment. 
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2.3 – Differential Scanning Calorimetry  

Differential scanning calorimetry (DSC) is a thermo-analytical technique which 

involves the "measurement of the change of the difference in the heat flow rate to the sample 

and to a reference while they are subjected to a controlled temperature program".
[34]

 There are 

two types of DSC methodologies: heat flux DSC and power compensation DSC. In both 

types, the signal measured is proportional to the rate of heat flow, rather than simply to the 

heat (as is the case with most calorimeters). The instrument used in this thesis was a heat flux 

Q100 from TA Instruments. In heat flux DSCs, heat exchange is measured through a heat 

conduction path with a known thermal resistance. The signal measured is a temperature 

difference, the intensity of which is proportional to the resulting heat flow.
[34]

 

In most DSC experiments, the temperature is varied linearly with time (scanning mode) 

and the sample and reference pans are maintained at the same temperature throughout the 

experiment. The heat flow that has to be supplied or withdrawn from the sample to keep the 

sample and the reference at the same temperature is the parameter measured. Throughout the 

experiment, a computer monitors the sample and reference pan temperatures and adjusts them 

in order to maintain zero temperature difference between them. A schematic for the 

instrumental set-up used in the DSC experiments is shown in Fig. 2.8. 

 

Figure 2.8. Schematic of the DSC experimental set-up. 

Thermal events within the sample (i.e., melting, crystallization, glass transitions and 

order-disorder phase transitions) cause a change in the heat flow rate difference and are 

observed as a discontinuity in the heat flow signal. When such events occur, more (or less) 
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heat is required to maintain the sample pan at the programmed temperature. When the 

physical process is endothermic, more heat is required to flow into the sample to maintain the 

correct temperature (because heat is used up in the endothermic physical transformation), 

whereas if the process is exothermic, then less heat is required to flow into the sample to 

maintain it at the correct temperature (i.e., the heat flows out of the sample because heat is 

released by the exothermic transformation). In the DSC plots shown in this thesis, exothermic 

responses are represented as positive, i.e., above the baseline, and correspond to a decreased 

transfer of heat to the sample compared to the reference. Conversely, endothermic responses 

are represented as negative, corresponding to an increased transfer of heat to the sample 

compared to the reference.  

DSC is useful for determining the temperatures and enthalpies associated with phase 

transitions, melting points, glass transitions and crystallizations, etc. In this context, the work 

in this thesis is solely concerned with order-disorder solid-state phase transitions which 

typically appear as sharp peaks (indicative of a first-order phase transition) on the baseline in 

the DSC plots. An example of a typical DSC plot exhibiting a first order solid state phase 

transition is shown in Fig. 2.9a. In this plot, exothermic responses are shown as positive. The 

baseline corresponds to the part of the heat flow rate curve produced during steady state 

conditions (i.e., in the absence of reaction or transitions in the sample). The non-zero baseline 

is caused by the difference in the heat capacities of the sample and the empty reference pan. A 

close-up of the peak is shown in Fig. 2.9b and various features are indicated. The initial peak 

temperature (Ti ) is defined as the point at which the measured values begin to deviate from 

the baseline. The extrapolated peak onset temperature (Te) is denoted by the point at which the 

auxiliary line (inflectional tangent) through the ascending peak slope intersects the baseline. 

The peak maximum temperature (Tp) designates the maximum value of the difference 

between the curve of the measured values and the baseline, and the final peak temperature (Tf) 

is defined by the point at which the measured values reach the baseline again. 
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Figure 2.9. (a) An example of a typical DSC plot exhibiting a first-order phase transition. (b) 

A close-up of the peak in (a) denoting, Ti , Te, Tp and Tf which are defined in the text. 

Throughout this thesis, phase transition temperatures are determined from Te, which in 

the example given in Fig. 2.9b corresponds to a value of 232.8 K. The onset temperature 

represents the most reliable measure of the temperature of the thermal event, as this is the 

point which changes the least as a function of the heating rate. Enthalpies are determined from 

an integral of the peak (which in the example given in Fig. 2.9b corresponds to a value of 2.8 
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J/g) and from our experience those quoted in this thesis are of more qualitative than 

quantitative significance.  
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Chapter 3 – A Strategy for Retrospectively Mapping 

the Growth History of Crystals 

3.1 – Abstract 

In this chapter, a novel strategy for retrospectively mapping the growth history of a 

crystal is presented. The experimental strategy allows insights to be gained on the evolution 

of crystal growth processes by analysis of crystals recovered at the end of the crystallization 

process. The feasibility of the strategy is demonstrated by considering the crystal growth of a 

urea inclusion compound containing a binary mixture of guest molecules. In this case, the 

composition of the growing surfaces of the crystal varies in a well-defined manner as a 

function of time during the growth process, because the two types of guest compete for 

inclusion within the host structure during crystal growth. After collecting a crystal at the end 

of the growth process, the spatial distribution of composition within the crystal is measured 

(using confocal Raman microspectrometry) and is interpreted to reveal details of the evolution 

of crystal growth. Thus, a three-dimensional contour at a specific value of composition Ci 

within the crystal, defines the three-dimensional shape of the crystal at the specific time 

during the growth process at which the composition of the growing surfaces of the crystal was 

C(t) = Ci. Contours corresponding to different values of Ci thus provide a representation of the 

changes that occurred in the shape of the crystal as a function of time during growth. In some 

respects, the approach is analogous to establishing the growth characteristics of a tree 

retrospectively by observing the spatial variation of the rings of the tree (i.e., 

dendrochronology). 

3.2 – Introduction 

Crystal growth processes
[1-7]

 are ubiquitous in nature and play a crucial role in many 

chemical and industrial contexts. To be able to optimize and ultimately control crystal growth 

in such contexts, it is essential to establish an understanding of the sequence of events 

involved in the growth process, rather than simply studying the morphological and structural 

properties of the bulk crystals collected at the end of the crystallization. Knowledge of how 
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crystals actually evolve during growth can be established directly by applying experimental 

techniques that allow crystal growth processes to be monitored in situ,
[8-14]

 but for a variety of 

reasons, in situ studies may not be viable in many cases (e.g. due to limitations arising from 

the crystallization apparatus, the specific experimental conditions required, or the timescales 

involved). 

 For these reasons, we were motivated to devise a strategy that would allow insights to 

be gained on the evolution of crystal growth processes, based not on in situ measurements but 

based instead on the analysis of crystals recovered at the end of the process. This chapter 

demonstrates the feasibility of a strategy that allows the growth history of a crystal to be 

established retrospectively, after the crystal has been collected at the end of the crystallization 

process. 

The strategy is based on a crystallization system for which the composition C of the 

growing surfaces of the crystal varies as a function of time C(t) during the growth process, 

while the crystal structure remains constant with time. After collecting the crystal at the end 

of the growth process, the distribution of composition C(x,y,z) within the crystal is measured 

and is interpreted to reveal details of the evolution of crystal growth. Thus, a three-

dimensional contour at a specific value of composition C(x,y,z) = Ci within the crystal defines 

the three-dimensional shape of the crystal at the specific time during the growth process at 

which the composition of the growing surfaces of the crystal was C(t) = Ci. Three dimensional 

contours corresponding to different values of Ci thus provide a representation of the changes 

that occurred in the shape of the crystal as a function of time during growth. In some respects, 

the approach is analogous to establishing the growth characteristics of a tree retrospectively 

by observing the spatial variation of the rings of the tree (i.e., dendrochronology). 

Solid inclusion compounds containing binary mixtures of guest molecules within a host 

tunnel structure represent an ideal system for implementing the general strategy outlined 

above. Variation of composition in this case arises because the two types of guest compete for 

inclusion within the host structure during crystal growth, such that the relative proportions of 

the two types of guest incorporated into the crystal vary in a well–defined manner as a 

function of time. The host tunnel structure is independent of the relative proportions of the 
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two types of guest, and the material grows as a single crystal even though the guest 

composition changes with time. 

This chapter focuses on the crystal growth of urea inclusion compounds (Fig. 3.1),
[11, 15-

29]
 which are described in detail in Section 1.2. Urea inclusion compounds represent more 

than just an ideal system for demonstrating the general strategy outlined above. Indeed, there 

is a significant need to obtain a better understanding of the growth of urea inclusion 

compounds themselves. Knowledge of the growth habits and morphological properties of 

inclusion compound crystals is essential in order to understand and utilise some of their 

physico-chemical properties and to optimise their applications. In general, the crystal 

morphology "naturally" produced during the growth of urea inclusion compounds is long 

hexagonal needles, however this is often not the morphology required for specific 

applications. Thus, it is important to be able to use experimental strategies to control the 

morphological properties during crystallization. Clearly, understanding crystal growth 

processes is a necessary pre-requisite to controlling and manipulating crystal growth and 

hence crystal morphology. 

 

Figure 3.1. Crystal structure of the hexadecane/urea inclusion compound (with van der 

Waals radii) at ambient temperature, viewed along the tunnel axis (c-axis), showing the dense 

packing of guest molecules. The guest molecules have been inserted into the tunnels 

illustrating orientational disorder (Figure taken from Ref. [22]).  
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A study by Hollingsworth et al.
[11]

 proposed a template-directed mechanism of crystal 

growth in urea inclusion compounds containing n-alkanone and α+1, ω−1-alkanedione guests. 

In this study, it was found that urea inclusion compounds containing a favourable structural 

match between the host and guest periodicities form hexagonal flat plates, whereas those 

containing an unfavourable match form long hexagonal needles. Using AFM, a model for the 

crystal growth of these materials based on the nature of the crystal surfaces was developed. In 

cases with a favourable match between the host and guest periodicities, the crystals contain 

large terrace areas separated by steps equal to, or integer multiples of, the length of the guest 

molecule, whereas poorly matched substructures exhibit highly roughened surfaces.
[12]

 It was 

proposed that, in cases with a poor structural match between the substructures, needle-like 

growth along the tunnel axis is catalysed by protrusion of guest molecules from the tunnel-

end surfaces. The urea host molecules wrap around the exposed guest molecules and crystal 

growth is propagated along the tunnel axis. However, for urea inclusion compounds 

containing well defined substructures in which Δg = 0 Å (for a definition of Δg refer to Section 

1.2.4), the tunnels are capped off and growth is more readily propagated perpendicular to the 

tunnel axis. 

Some progress has already been made in manipulating the morphologies of urea 

inclusion compound crystals. Harris et al.
[30]

 developed a strategy for controlling the crystal 

morphology of alkane/urea inclusion compounds in order to induce the growth of flat plates 

rather than long needles (Fig. 3.2a). This strategy was based on using an additive molecule to 

inhibit crystal growth along the tunnel direction.  The molecule used as the inhibitor was 5-

octadecyloxyisophthalic acid, which comprises a long alkyl tail and a bulky head group. The 

long alkyl tail can be readily accommodated within the end of the tunnel and competes with 

the alkane guest molecules for inclusion. However the bulky head group is unable to fit within 

the tunnel and acts like a molecular stopper protruding from the end of the tunnel, disrupting 

growth on this face of the crystal (Fig. 3.2b). The consequence of adding small amounts of the 

crystal growth inhibitor to the crystallization solution is to inhibit the rate of longitudinal 

growth along the tunnel axis and hence to induce the formation of flat plate inclusion 

compound crystals. A second study demonstrated
[31]

 that, by carefully controlling the 

concentration of the inhibitor molecule in the crystallization solution, a broad spectrum of 
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crystal morphologies of alkane/urea inclusion compounds could be obtained (including long 

needles, crystals with similar dimensions in each direction and flat plates) with high levels of 

predictability and control. 

 

Figure 3.2. (a) Schematic illustration of crystal growth as long hexagonal needles or 

hexagonal flat plates, depending on the relative growth rates parallel and perpendicular to 

the hexagonal axis. (b) Schematic illustration of the strategy to inhibit crystal growth along 

the tunnel axis of one-dimensional tunnel structures. The crystal growth inhibitor molecule 

comprises a long alkyl tail and a bulky head-group [both (a) and (b) are taken from Ref. 30]. 

In summary, although some progress has been made in understanding and controlling 

the crystal growth of inclusion compounds, more needs to be understood about the details of 

the growth process if several potential applications of these compounds are to be fully 

realised. The strategy for studying crystal growth presented in this chapter thus represents a 

new experimental "tool" which will contribute towards achieving this goal. 

3.3 – Strategy 

To demonstrate the strategy proposed in this work, we first consider, in general terms, 

crystallization of a urea inclusion compound from a solution state containing two competing 

types of guest denoted A and B. The molar ratio of the two types of guest in solution at time t 

(a) (b) 

(a) (b) 
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is γA(t) = nA(t)/nB(t), where ni(t) is the number of moles of species i at time t. As discussed in 

previous publications,
[32-35]

 the molar ratio of guest molecules incorporated at the growing 

surfaces of the crystal at time t is 

 )()( ttm AA  , (3.1) 

where χ depends on the relative affinity of the host tunnel for inclusion of guests of types A 

and B. It is important to note that mA(t) is the instantaneous value of the guest molar ratio 

incorporated into the inclusion compound crystal at time t. The overall guest ratio within the 

crystal at time t is given by integration of mA(t) from the start of the growth of the crystal 

(t = 0) until time t. If inclusion of guests of type A is energetically favoured over inclusion of 

guests of type B, then χ > 1 and hence mA(t) > γA(t). Thus, the composition of the guest 

mixture incorporated within the growing surfaces of the crystal at time t [i.e. mA(t)] has a 

higher proportion of guests of type A than the guest composition in the solution state at time t 

[i.e. γA(t)]. As a consequence, depletion of molecules of type A from the solution state occurs 

more rapidly than depletion of molecules of type B, and thus γA(t) must decrease 

monotonically with time during crystal growth. From Eq. (3.1), mA(t) must also decrease 

monotonically with time, and thus the guest composition included at the growing crystal 

surfaces changes monotonically as a function of time. Clearly, γA(t) decreases (and hence  

mA(t) decreases) until all guest molecules of type A initially present in the solution state have 

been included within the crystal. At this stage, and during any subsequent crystal growth,  

γA(t) = 0 and hence mA(t) = 0. 

After collecting a crystal at the end of the crystallization, the spatial distribution 

mA(x,y,z) of the two types of guest in the crystal is measured. Three-dimensional contours at a 

specific value of mA within the crystal can be related to a specific value of time during the 

crystal growth process [i.e. the time at which the composition of the growing crystal surfaces 

had the same specific value of mA(t)]. As discussed above, mA(t) decreases monotonically 

with time, and thus lower values of mA(x,y,z) correspond to later stages of the crystal growth 

process, thus providing a basis for mapping the time-evolution of the growth of the crystal. 

In the experiments discussed in this chapter, we focus on crystals of urea inclusion 

compounds containing mixtures of 1,8-dibromooctane (1,8-DBrO) and pentadecane (PD) 
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guest molecules, with crystallization carried out using standard procedures (see Section 3.4). 

Confocal Raman microspectrometry was employed to measure the guest composition as a 

function of position within the crystal [i.e. mA(x,y,z)]. All results shown in this chapter were 

obtained from analysis of the same crystal (experiments on other crystals prepared under the 

same conditions confirm that the results are representative). PD and 1,8-DBrO were chosen as 

the guest mixture because they have different Raman signatures (see below) and because 

inclusion of PD within the urea tunnel structure is known to be energetically more favourable 

than inclusion of 1,8-DBrO. Previous studies of urea inclusion compounds by confocal 

Raman microspectrometry
[36-38]

 have shown that spatial distributions of alkane and α,ω-

dibromoalkane guests can be quantified by this technique. This previous work was focused on 

mechanistic and kinetic aspects of guest exchange processes, and did not investigate binary 

mixtures of guest molecules prepared by crystallization processes. For quantitative analysis, 

we focus on the C–Br stretching ν(CBr) band for 1,8-DBrO (650 cm
-1

; for the trans end-group 

conformation), the methyl rocking r(CH3) band for PD (890 cm
-1

) and the symmetric C–N 

stretching νs(CN) band for urea (1024 cm
-1

). Guest composition is assessed from the ratio 

R = I(CBr)/I(CN) of the integrated intensities of the ν(CBr) and νs(CN) bands, which is then 

normalized as RN = R/Ro, where Ro is the value of R for the urea inclusion compound 

containing only 1,8-DBrO guests. The value of RN establishes the relative amounts of 1,8-

DBrO and PD guests in the probed region of the crystal, with higher RN indicating a higher 

proportion of 1,8-DBrO. By definition, 0 ≤ RN ≤ 1, with the limiting values attained if only 

1,8-DBrO (RN = 1) or if only PD (RN = 0) is present. The ratio RM = I(CH3)/I(CN) of 

integrated intensities of the r(CH3) and νs(CN) bands is also considered. Clearly, higher RM 

corresponds to a higher proportion of PD guests in the probed region of the crystal. 

The characteristic crystal morphology of conventional urea inclusion compounds is long 

needles with hexagonal cross-section (Fig. 3.3). The host tunnels are parallel to the needle 

axis (Z-axis). Confocal Raman microspectrometry involved one-dimensional or two-

dimensional scans within the crystal as depicted (together with definition of the axis system) 

in Fig. 3.3. The incident laser was parallel to the Y-axis, and Y = 0 represents the upper 

surface of the crystal. Test experiments indicated that, for scans as a function of depth below 

the upper surface of the crystal (i.e., parallel to Y), reliable quantitative information is 
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obtained only to a maximum depth of ca. 200 µm. For the crystal used to record the data 

shown here, the thickness of the crystal along the Y-axis was 250 µm. Thus, scans to a depth 

of 200 µm do not cover the full depth of the crystal, but do extend significantly below the 

centre of the crystal. The length of the crystal along the Z-axis was 2170 mm. 

 

Figure 3.3. Schematic of a single crystal of a urea inclusion compound (needle morphology 

with hexagonal cross-section). The axis system is defined. The Z-axis is parallel to the tunnel 

direction of the urea host structure and the {100} faces are parallel to this axis. The incident 

laser in the confocal Raman microspectrometry experiments was parallel to the Y-axis. The 

different types of mapping carried out are indicated (red line, Figure 3.4; blue plane, Figure 

3.5a; green plane, Figure 3.5b). 

3.4 – Experimental 

Crystallization of urea inclusion compounds containing PD and 1,8-DBrO guests was 

carried out by dissolving urea, PD, and 1,8-DBrO in methanol at 55 °C and cooling the 

solution to 20 °C over ca. 29 h. This chapter focuses on the specific case with an initial 1,8-

DBrO:PD molar ratio in the solution state of 95:5. Inclusion of PD is significantly more 

favourable than inclusion of 1,8-DBrO, and thus χ >> 1. Under these conditions, it is 

necessary to start the crystallization experiment with a low relative proportion of PD guests in 

the solution state [i.e. a low value of γA(0), where A represents PD] in order for a significant 

range of mA values to be observed within the crystal during the growth process. Confocal 

Raman microspectrometry was carried out on a single crystal using a Labram II spectrometer 

(Jobin–Yvon) with an Ar/Kr 2018 Spectra–Physics laser (514.5 nm) and a grating of 1800 

lines mm
−1

 (spectral resolution ca. 6 cm
−1

). The laser was focused on the crystal through a 

microscope (50 x Olympus objective; 0.55 numerical aperture; confocal pinhole diameter, 500 
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µm). Radial and axial resolutions (at a depth of ca. 100 µm) were both 10 µm. The XY-scan 

(Fig. 3.5a) was measured in steps of 24.5 µm along X and 13.8 µm along Y. The ZY-scan (Fig. 

3.5b) was measured in steps of 44.3 µm along Z and 13.8 µm along Y. Values of Y (i.e., the 

depth of the focussing point below the upper surface of the crystal) were corrected to take 

account of the refractive index (n ≈ 1.5)
[39]

 of the material. 

3.5 – Results and Discussion 

Figure 3.4 shows results from a one-dimensional scan along the Y-axis (for fixed X and 

Z) through a point in the centre of the crystal. The area scanned is indicated in the inset of Fig. 

3.4 (marked by the red line). The intensities of the ν(CBr) and r(CH3) Raman bands (Fig. 

3.4a) change systematically as a function of depth (Y). Thus, ν(CBr) becomes stronger and 

r(CH3) becomes weaker on moving from the interior of the crystal to the surface, while the 

intensities of the bands due to urea are essentially constant. Changes in the intensities of the 

ν(CBr) and r(CH3) bands as a function of depth are quantified by RN and RM, respectively 

(Fig. 3.4b). Because inclusion of PD is favoured energetically over inclusion of 1,8-DBrO, the 

regions of the crystal formed at the earliest stages of growth have the highest proportion of 

PD (i.e. lowest RN and highest RM). Thus, the observed variations of RN and RM as a function 

of depth in the one-dimensional scan along the Y-axis (Fig. 3.4b) are entirely consistent with 

the expectation that the region around the centre of the crystal was formed at the earliest stage 

(i.e. lowest RN) and the regions near the surface (Y = 0) were formed at the latest stage (i.e., 

highest RN) of the crystal growth process. 
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Figure 3.4. (a) Raman spectra recorded at different depths (black; Y = 47 μm; red, Y = 87 

μm; blue, Y = 129 μm; green, Y = 170 μm) below the upper surface of the crystal, showing 

systematic changes in the intensities of the ν(CBr) and r(CH3) bands. (b) Values of RN (in 

black) and RM (in red) determined as a function of depth (Y). The region of the crystal 

scanned in Fig. 3.4 is indicated in the inset by the red line. 
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More detailed insights on the evolution of the crystal growth process are obtained from 

the two-dimensional scans shown below in Fig. 3.5. 

 

 

Figure 3.5. Results from (a) an XY-scan (with Z fixed at Z = 0 µm), and (b) a ZY-scan (with X 

fixed at X = 0 µm), showing the value of RN determined from the Raman spectra recorded as 

a function of position within the crystal. In (b), the tunnel direction is horizontal (Z-axis). The 

colour scheme for values of RN is defined in the inset. 

Figure 3.5a shows results from a two-dimensional XY-scan (in the plane perpendicular 

to the tunnel direction) and Fig. 3.5b shows results from a two-dimensional ZY-scan (in the 

plane parallel to the tunnel direction). The regions of the crystal scanned in Fig. 3.5a and Fig. 

3.5b are shown in Fig. 3.6 below, indicated by the blue plane and the green plane respectively. 



 

 60 

   

Figure 3.6. Schematic showing the regions of the crystal mapped in the two dimensional 

scans in Fig. 3.5a (blue plane) and Fig. 3.5b (green plane). 

 The XY-scan shows a region rich in PD (i.e., the region of lowest RN) close to the centre 

of the final crystal and a region rich in 1,8-DBrO towards the outer regions of the final crystal. 

This observation suggests that, at the specific value of Z probed in this scan, the earliest stage 

of the growth process (i.e., the region of lowest RN) occurred close to the centre of the final 

crystal (X ≈ 0 µm, Y ≈ 150 µm). The outer regions of the crystal (with RN > 0.5 in Fig. 3.5a) 

show clear evidence for the development of the hexagonal cross-section of the crystal shape 

(the characteristic growth morphology of urea inclusion compounds), with essentially equal 

rates of growth of the symmetry-related {100} faces. In contrast, the regions close to the 

centre of the crystal have a less well-defined hexagonal morphology, indicating that in the 

earliest stages of growth the crystal had a more irregular morphology. Clearly, the spacing 

between contours in maps of this type may be interpreted (at least qualitatively) in terms of 

the relative rates of growth of the crystal in different directions. 

In the ZY-scan (Fig. 3.5b), the region corresponding to the earliest stages of crystal 

growth (with RN ≈ 0.2) is identified as the bottom left part of the map. Significantly, this 

region is close to one end of the crystal along the Z-axis (horizontal), suggesting that the 

embryonic stages of growth were initiated close to one end of the final crystal and that 

subsequent growth along the tunnel occurred predominantly in one direction (from left to 

right in Fig. 3.5b). In principle, the relative rates of crystal growth perpendicular (Y-axis) and 

parallel (Z-axis) to the tunnel may vary as the composition of the crystal changes. Thus, 

during the early stages of crystal growth corresponding to RN ≈ 0.6, the spacing between RN 

contours is substantially greater along the Z-axis (to the right hand side of the region with RN 

≈ 0.2 in Fig. 3.5b) than along the Y-axis, indicating faster crystal growth along the tunnel 



 

 61 

direction (Z). In fact, at the stage of the growth process corresponding to RN ≈ 0.6, the crystal 

had already reached close to its final length along the tunnel direction but was still 

comparatively thin along Y. In the later stages of growth corresponding to RN > 0.6, the 

contours are nearly parallel to the Z-axis, suggesting that, in this stage of the process, the 

growth of the crystal occurred predominantly perpendicular to the tunnel direction, leading to 

an increase in the width of the crystal (along Y) with no significant change in the length of the 

crystal along the tunnel direction. 

3.6 – Conclusions and Further Work 

The results reported here demonstrate the feasibility of the proposed strategy for 

retrospective mapping of the evolution of crystal growth processes. Although the 

interpretations are restricted to a qualitative level in the present case, the results have 

nevertheless revealed new insights regarding the crystal growth of urea inclusion compounds, 

particularly from the analysis of the ZY-scan discussed above. Research to further advance 

this strategy, including the development of models to correlate the time-dependences of mA(t) 

and γA(t), is ongoing and will allow substantially greater quantitative insights to be 

established. 

Although the strategy outlined in this chapter has been demonstrated for crystal growth 

of urea inclusion compounds, it may also be applied to a much wider range of materials, 

including solid solutions that are isostructural across the complete range of composition and a 

wide variety of different types of solid inclusion compound (such as gas hydrates, zeolites and 

other microporous inorganic solids, and metal–organic framework materials). In all of these 

cases, the strategy reported here for retrospective mapping of crystal growth has the potential 

to yield valuable insights on mechanistic aspects of the crystal growth process, and for 

allowing different growth mechanisms to be distinguished, particularly when the results are 

considered in conjunction with those from in situ, time-resolved studies of the same crystal 

growth process. 

One experimental strategy that is currently being developed to determine quantitative 

kinetic information on the crystal growth process is outlined below and is illustrated in Fig. 

3.7. The strategy involves beginning the crystallization as normal, i.e., with only a single type 
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of guest molecule in solution, denoted guest B. At regular intervals during crystal growth, 

small amounts of the second, more thermodynamically favoured guest molecule (denoted 

guest A) are injected into the solution. As guest A has a higher affinity for inclusion within 

the host structure than guest B, then guest A will be preferentially incorporated within the 

growing surfaces of the crystal immediately after its injection at time t. Guest A will also be 

depleted from solution more rapidly than guest B, and after the injected guest A has been 

consumed completely, molecules of type B will once again begin to be incorporated 

predominantly within the crystal. In principle, this procedure should produce a crystal 

containing narrow bands rich in guest A (corresponding to regions of growth immediately 

after guest A was injected into the crystallization solution), separated by bands rich in guest 

B. As the time between the injections of guest A is known, then the bands rich in A act as 

"time-markers" for the crystal growth, potentially providing information on the kinetics of the 

growth process. 

 

Figure 3.7. Schematic illustration of the new experimental strategy for determining kinetic 

information on crystal growth processes as described in the text: (a) shows an idealised XY-

scan (of the type shown in Fig. 3.5a) and (b) an idealised ZY-scan (of the type shown in Fig. 

3.5b) that would be observed in a crystal produced by this method. 

Preliminary results from such experiments have demonstrated the feasibility of this 

strategy although more optimisation of the experimental conditions is required to obtain 

comprehensive kinetic information on crystal growth. For example, Fig. 3.8 shows the results 
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from a two-dimensional scan along the XY plane, perpendicular to the tunnel direction, with R 

measured as a function of position within the XY plane inside the crystal [in Figs. 3.8 and 3.9, 

R refers to the non-normalized ratio of the integrated intensities of the ν(CBr) and νs(CN) 

bands, and is defined as R = I(CBr)/I(CN)]. In this case, the energetically less favourable 

guest (i.e., guest type B) was 1,8-DBrO and the energetically favourable guest (i.e., guest type 

A) was hexadecane. The thickness of the crystal was measured as 136 μm and thus the centre 

of the crystal corresponds to a depth of 68 μm (denoted by the dashed line on the plot). 

Reliable quantitative data could only be acquired down to a depth of Y ≈ 80 μm. The surface 

of the crystal is marked with a solid line. 

 

Figure 3.8. Results from an XY-scan (with Z fixed at Z = 0 µm), showing the value of R 

determined from the Raman spectra recorded as a function of position within the crystal. The 

colour scheme for R is defined in the inset. 

The scan in Fig. 3.8 clearly shows the presence of two hexadecane-rich bands (lowest R 

values; denoted by blue/green colours) and two 1,8-DBrO-rich bands (highest R values; 

denoted by red/pink/yellow colours). The regions rich in hexadecane are assumed to have 

grown immediately after this guest was injected into the crystallization solution.  The 

hexadecane-rich bands are separated by 30 minutes (the time between injections), giving an 

indication of the rate of crystal growth. One of the hexadecane bands is close to the centre of 

the final crystal, which suggests that the crystal started growing in hexadecane after an 

injection of the hexadecane guest molecules into the solution. In agreement with the previous 

R 
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study (Fig. 3.5a) the outer regions of the map clearly show the development of the 

characteristic hexagonal cross-section of the crystal shape, whereas the morphology appears 

less well defined near the centre of the crystal. 

Figure 3.9 shows a two-dimensional scan in the ZY plane (parallel to the tunnel 

direction) obtained on a different crystal, from the same crystallization batch. The thickness of 

the crystal was measured as 146 μm (corrected for the refractive index of light in the crystal). 

The centre of the crystal therefore corresponds to a depth of ca. 73 μm. Reliable quantitative 

information is obtained to a depth of ca. 90 μm. Two hexadecane-rich bands (lowest R values; 

denoted by blue/dark green colours) are seen to extend throughout the length of the crystal. 

These bands are separated by 30 minutes (the time between injections of hexadecane). The 

results reveal a region of lowest R (R ≈ 0.1) in the bottom right of the map. In common with 

Fig. 3.5b from the previous type of experiment, this suggests that the crystal started growing 

near one end of the final crystal and that subsequent growth occurred predominantly in one 

direction along the tunnel. The crystal appears to have reached its final length along the tunnel 

direction at an early stage of the growth process. In the later stages, growth occurs 

predominantly perpendicular to the tunnel direction, leading to an increase in the width of the 

crystal but with no significant change in the length. 

 

Figure 3.9. Results from a ZY-scan (with X fixed at X = 0 µm), showing R as a function of 

position within the crystal. The colour scheme for values of R is defined in the inset. 

This preliminary study was successful in proving the feasibility of the proposed "time-

marker" strategy for investigating crystal growth. Using the new experimental method, 

crystals containing a band-type guest "structure" were produced, exhibiting clear variations in 

R which could be assigned unambiguously to the periodic injections of a second type of guest 

R 
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molecule into the crystallization solution. In practice, more "time-markers" are needed within 

a single crystal to obtain quantitative kinetic information on crystal growth. However, 

significant progress has been made towards this end. 
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Chapter 4 – Structural Rationalization of the Phase 

Transition Behaviour in a Solid Organic Inclusion 

Compound: Bromocyclohexane/Thiourea 

4.1 – Abstract 

This chapter presents the structural properties of the bromocyclohexane/thiourea 

inclusion compound that have been determined using both single-crystal and powder X-ray 

diffraction over a range of temperatures above and below a first-order phase transition at 233 

K in this material. Particular emphasis is placed on the effects of bromine substitution of the 

guest molecule on structural aspects of the phase transition behaviour, by comparing the 

structures of the low-temperature phases of the thiourea inclusion compounds containing 

bromocyclohexane and cyclohexane guest molecules. The results reveal marked contrasts to 

the phase transition behaviour in the prototypical cyclohexane/thiourea inclusion compound, 

demonstrating that relatively small changes in molecular geometry (in this case bromine 

substitution) can have a profound influence on structural properties of the low-temperature 

phase in such materials. 

4.2 – Introduction 

Although urea inclusion compounds
[1-10]

 have been explored extensively with regard to 

structural and dynamic properties, including detailed characterization of changes in these 

properties that occur at low-temperature phase transitions, the corresponding family of 

thiourea inclusion compounds
[11-14]

 have received much less attention even though thiourea 

inclusion compounds offer potentially greater scope than urea inclusion compounds with 

regard to materials applications,
[15-19]

 as the thiourea host tunnel can include a range of bulkier 

guest molecules possessing a much wider diversity of chemical functionality. 

A detailed description of the structural properties of thiourea inclusion compounds is 

provided in Section 1.3. We reiterate now that the thiourea inclusion compound containing 

cyclohexane (CH) guest molecules is, in many respects, the prototypical member of this 

family of materials, and has been studied widely.
[11, 20-24]

 CH/thiourea has three distinct 
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phases, with phase transition temperatures (on cooling) at 148 K and 127 K. The 

structural
[23, 24]

 and dynamic
[23]

 properties of each phase have been characterized in detail (see 

Section 1.3.1). 

In this chapter, the effects of bromine substitution of the guest molecules on the 

structural aspects of the phase transition behaviour are investigated, by comparing the 

structural properties of the low-temperature phases of the thiourea inclusion compounds 

containing bromocyclohexane (BrCH) and cyclohexane (CH) guest molecules. Previous 

studies have shown
[25]

 that BrCH/thiourea has the conventional thiourea tunnel structure 

[R3̄c; a  16.0 Å, c  12.5 Å (hexagonal setting)] at ambient temperature (Fig. 4.1), with 

orientational disorder of the BrCH guest molecules, and undergoes a first-order phase 

transition
[26]

 at ca. 237 K. However, the structural properties of the low-temperature phase 

have not been reported. This chapter focuses on analysis of the structural properties of the 

low-temperature phase of BrCH/thiourea. 

 

Figure 4.1. The "conventional" rhombohedral thiourea host structure, as observed in the 

high-temperature phase of BrCH/thiourea, viewed along the tunnel axis. 



 

 70 

Several other studies have reported various aspects of the properties of the BrCH guest 

molecules. For example, measurement of intermolecular Br∙∙∙Br distances in BrCH/thiourea 

from Br K-edge EXAFS spectra
[27]

 suggests that head to head ordering of the guest molecules 

exists in the inclusion compound. Furthermore, no abrupt changes were observed in the Br K-

edge EXAFS spectrum upon crossing the phase transition temperature, indicating that there is 

no change in this behaviour as a function of temperature. 

As discussed in Section 1.3.3, chlorocyclohexane, bromocyclohexane and 

iodocyclohexane molecules adopt very uncharacteristic conformations when constrained as 

guest molecules within the thiourea tunnel structure. In their liquid and vapour phases
[28-32]

 

and in the pure solid state,
[33, 34]

 the equatorial conformer of these molecules predominates. 

However, a variety of spectroscopic techniques, including IR,
[35-38]

 Raman,
[39]

 
13

C NMR
[26, 40-

43]
 and Br K-edge EXAFS

[27]
 have shown that these molecules exhibit a strong preference for 

adopting the axial conformation when included in the thiourea tunnel structure (e.g. from 
13

C 

NMR
[43]

 the proportion of BrCH guest molecules with the axial conformation at 208 K is 

estimated to be ca. 95%). Several of these studies demonstrated that there is a rapid chair-

chair inter-conversion of these guest molecules in the inclusion compound,
[36, 41, 43]

 the energy 

barriers for which have been determined.
[43]

 Davies and Nightingale also observed
[35]

 from 

variable temperature IR and Raman spectra that there is no detectable change in the relative 

proportions of the guest conformations for either chlorocyclohexane or bromocyclohexane 

guest molecules as a function of temperature (down to 74 K). 

The dynamic properties of the BrCH guest molecules have been investigated using 

solid-state 
13

C NMR and 
2
H NMR techniques

[26, 41, 42]
 between 100 and 350 K. The results 

suggest that rapid ring inversion occurs in the high-temperature phase, together with 

essentially unrestricted reorientation of the whole molecule relative to the host tunnel. In this 

phase, ring inversion of the guest species is the dominant relaxation mechanism. Upon 

cooling below the phase transition, the inversion dynamics of the BrCH guests is completely 

frozen out on the NMR timescale, and thus distinct NMR lines are observed for the axial and 

equatorial conformers. However, there is no significant change in the ratio of the axial and 

equatorial conformers above and below the phase transition in agreement with previously 
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mentioned spectroscopic investigations.
[35]

 In the higher temperature region of the low-

temperature phase, highly restricted but rapid overall motions of the BrCH guest molecules 

still occur.  However, at ca. 110 K and lower temperatures, rigid-limit spectra are observed, 

indicating that the reorientational motions of the guest molecules are frozen in this 

temperature regime. 

4.3 – Experimental  

The BrCH/thiourea inclusion compound was prepared by cooling a solution of thiourea 

and BrCH (ca. 3:1 molar ratio) in methanol from 55 °C to 20 °C over ca. 29 hours. Needle-

shaped crystals were obtained (width ca. 0.25 – 2 mm, length ca. 5 – 10 mm), with cross-

sectional shape corresponding to a distorted hexagon (i.e., with angles of 120° between 

adjacent sides, but with sides of unequal length). Powder X-ray diffraction confirmed that the 

product was a monophasic sample of a conventional thiourea inclusion compound. 

Differential scanning calorimetry (DSC) was carried out on a TA Instruments heat flux 

Q100 DSC. The ground sample of BrCH/thiourea was subjected to a cycle of cooling and 

heating between 298 and 203 K, at cooling/heating rates of 10 K min
–1

. After cooling, the 

sample was held at 203 K for 1 min before commencing the heating cycle. 

Single-crystal X-ray diffraction was carried out on a Nonius Kappa CCD diffractometer 

equipped with an Oxford Cryosystems cryostat. Data were recorded at several temperatures 

on cooling from ambient temperature to 110 K and on heating back to ambient temperature. 

The same crystal was used to record data over the entire temperature range. The transition 

from the high-temperature phase to the low-temperature phase is accompanied by crystal 

twinning, associated with the reduction in symmetry from rhombohedral to monoclinic, as 

evident from splitting of diffraction maxima. On heating the crystal from the low-temperature 

phase across the phase transition temperature, each set of split diffraction maxima coalesces 

into a single maximum, and thus the twinning/de-twinning process is reversible. Structure 

determination in the low-temperature phase involved analysis of the data from a single twin 

component. Structure solution was carried out by direct methods using SHELXS-97.
[44]

 The 

non-H atoms that were not located in the structure solution were found by difference Fourier 

methods. For the low-temperature phase, inspection of difference Fourier maps following 



 

 72 

initial refinement of the thiourea host structure revealed two relatively large peaks inside the 

host tunnel, interpreted as the locations of two Br atoms with fractional occupancies and 

suggesting that the BrCH guest molecule is disordered between two well-defined orientations. 

At the lower temperatures studied in the low-temperature phase (ca. 110 K), it was possible to 

locate the other non-H atoms of the BrCH molecule from difference Fourier maps. 

Geometrical restraints were applied to the two BrCH orientations in the final stages of 

refinement, and the fractional occupancies were refined. For non-H atoms, anisotropic 

displacement parameters were refined. H atoms were inserted at calculated positions and 

refined using a riding model. The isotropic displacement parameter of each H atom was 1.2 

times the equivalent isotropic displacement parameter of the atom to which it is bonded. 

Powder X-ray diffraction data were recorded at several temperatures between 295 K and 

30 K on a Bruker D8 diffractometer (reflection mode; Ge monochromated CuKα1 radiation; 

data range, 15° ≤ 2θ ≤ 41°; step size, 0.01607°; time per step, 6 s). Temperature was 

controlled using an Oxford Cryosystems Phenix cryostat (accuracy ca. 0.1 K). However, 

under the conditions of our powder X-ray diffraction measurement, the inclusion compound 

undergoes partial decomposition (as a result of subjecting the sample to reduced pressure in 

the cryostat), leading to the presence of some amount of pure thiourea
[45, 46]

 in the sample. 

Thus, peaks due to pure thiourea (marked with asterisks in Fig. 4.4) are observed in the 

powder X-ray diffraction patterns. Lattice parameters for BrCH/thiourea were determined by 

profile fitting using the Le Bail method
[47]

 in the GSAS program package.
[48, 49]

 A two-phase 

refinement was employed, involving simultaneous profile-fitting for both the BrCH/thiourea 

inclusion compound and pure thiourea. Good quality fits were obtained in all cases (Fig. 4.5). 

4.4 – Results and Discussion 

Figure 4.2 shows a differential scanning calorigram of BrCH/thiourea. The DSC plot 

indicates that BrCH/thiourea undergoes a first-order exothermic transition at 233 K on 

cooling and an endothermic transition at 233 K on heating, in close agreement with the phase 

transition temperature reported previously.
[26, 41]
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Figure 4.2. DSC of BrCH/thiourea showing the phase transition at 233 K on both the cooling 

and heating cycles (Exothermic responses are shown as positive). 

Our single-crystal X-ray diffraction study revealed that the rhombohedral structure of 

BrCH/thiourea in the high-temperature phase (Fig. 4.1) transforms to a monoclinic structure 

in the low-temperature phase (Fig. 4.3). 

The crystallographic data for BrCH/thiourea in the low-temperature phase are as 

follows: 3(CH4N2S)∙C6H11Br;  FW = 391.42 g mol
−1

; Monoclinic, P21/a; T = 110(2) K;  = 

0.71073 Å; a = 9.6637(6) Å,  b = 15.9623(7) Å, c = 12.4881(7) Å,  β = 114.047(2)°, V = 

1759.16(17) Å
3
; Z = 4, cal = 1.478 Mg/m3,  = 2.690 mm−1; Crystal size = 0.30 × 0.30 × 

0.30 mm3; total reflections collected = 6456, independent reflections = 3696; Rint = 0.0575; 

R1 = 0.0829 and wR2 = 0.2049 for I > 2(I); R1 = 0.1106 and wR2 = 0.2219 for all data. 

In the low-temperature phase, the thiourea molecules have the same topology of 

hydrogen-bond connectivity as in the high-temperature phase, and a tunnel host structure is 

retained. However, the host tunnels are distorted significantly from the higher (rhombohedral) 

symmetry of the high-temperature phase (Fig. 4.1). Thus, the host tunnel cross-section, when 

projected on to the plane perpendicular to the tunnel axis (cm-axis; subscript "m" denotes 

monoclinic) is a distorted hexagon (Fig. 4.3a). In the projection on the plane perpendicular to 

the cm-axis shown in Fig. 4.3a, the repeat vectors in this plane are the bm-axis and the 

projection of the a-axis [denoted proj(am)]. 
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Figure 4.3. (a) Crystal structure of BrCH/thiourea viewed parallel to the tunnel axis of the 

thiourea host structure at 110 K, showing only the major orientation of the BrCH guest 

molecule. (b) Crystal structure of BrCH/thiourea at 110 K, viewed perpendicular to the 

tunnel axis, showing only the major orientation of the BrCH guest molecule. (c) The two 

distinct orientations of the BrCH guest molecule at 110 K, viewed perpendicular to the tunnel, 

with the tunnel axis vertical. (d) Definition of the distances used to describe the distorted 

cross-sectional shape of the thiourea host tunnel, projected onto the plane perpendicular to 

the tunnel axis. In parts (a) – (c), hydrogen atoms are omitted for clarity. 

From the analysis of the single-crystal X-ray diffraction data, there is considerable 

orientational disorder of the BrCH guest molecules in the high-temperature phase, in 

agreement with a previous determination of the structure in this phase.
[25]

 Furthermore, the 

results suggest that, in the temperature region of the low-temperature phase just below the 

phase transition temperature, there is no significant increase in the ordering of the guest 

molecules and the extent of disorder remains similar to that in the high-temperature phase. 

This observation is consistent with conclusions from previous solid-state NMR studies
[26, 41, 42]

 

(a) (b) 

(c) (d) 
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discussed above. It is only at sufficiently low temperatures within the low-temperature phase 

that the orientational properties of the BrCH guest molecules become more localized, with 

evidence from the single-crystal X-ray diffraction analysis that the guest substructure in this 

temperature regime (below ca. 180 K) is characterized by two well-defined guest orientations 

at each guest site within the host tunnel. 

At the lowest temperature (110 K) studied, the guest substructure is described by a 

model comprising two distinct orientations of the BrCH guest molecule (with total occupancy 

of unity), centred at the same site in the host tunnel. For each guest orientation, the 

cyclohexane ring has the chair conformation with the Br substituent in the axial position (Fig. 

4.3b,c), in agreement with conclusions from spectroscopic studies (see Section 4.2) that the 

axial conformation predominates for BrCH guest molecules in the thiourea host structure and 

that there is no change in this preference at low temperatures. In accordance with the 

conclusions from Br K-edge EXAFS spectra (Section 4.2),
[27]

 the single crystal results show 

that head to head ordering of the guest molecules exists in the inclusion compound at these 

temperatures. 

At 110 K, the occupancies of the two guest orientations are ca. 80% (major component) 

and 20% (minor component), confirmed from independent studies of two different crystals. 

The shape of the structural "envelope" (van der Waals surface) occupied by the two guest 

molecules is roughly prolate spheroidal, with the principal axis oriented at ca. 86°, 54° and 

45° with respect to the am, bm and cm-axes respectively. The C–Br bonds in the major and 

minor components of the guest are tilted from the tunnel axis (+c-axis) by 52.5° and 126.3°, 

respectively, and the angle between the orientations of the C–Br bond in the two components 

is ca. 98°. For the major component, the projection of the C–Br bond on to the plane 

perpendicular to the tunnel (cm) axis forms an angle of 3.5° with the proj(am) axis and an 

angle of 86.5° with the bm-axis. The two guest orientations occupy essentially the same 

volume of space (see Fig. 4.3c), and it is reasonable to infer that the difference in host-guest 

interaction energy between the two orientations must be comparatively small, such that both 

orientations have significant populations at low temperature. 
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To further explore the extent of ordering of the BrCH guest molecules in the higher 

temperature region of the low-temperature phase, the structure determined at 110 K was used 

as the starting model for refinements at higher temperatures, in which the occupancies of the 

two guest orientations were allowed to refine. On increasing temperature from 110 K to 220 

K, the relative occupancies (ca. 4:1 at 110 K) of the two guest orientations converge to similar 

values. However, the precision of the refined guest substructure decreases significantly as 

temperature is increased, reflecting an increased degree of disorder such that the model 

comprising two well-defined orientations of the guest molecule becomes inadequate, even 

with refinement of large anisotropic displacement parameters to subsume the effects of 

molecular motion. From single-crystal X-ray diffraction data recorded with temperature 

cycling in the low-temperature phase, the relative occupancies of the two guest orientations 

are found to vary reversibly as a function of temperature, suggesting that a process of 

dynamic inter-conversion between the two guest orientations occurs inside the host tunnel. 

To explore the temperature dependence of the lattice parameters in more detail, a 

powder X-ray diffraction study was carried out to determine the unit cell parameters at a 

significantly greater number of temperatures and covering a wider temperature range (down 

to 30 K) than the single-crystal X-ray diffraction study. A selection of the experimental X-ray 

powder diffraction patterns is shown in Fig. 4.4. The results demonstrate clearly that a 

structural change occurs between 240 and 230 K. The X-ray diffraction pattern at 295 K can 

be indexed on the basis of a rhombohedral lattice [a = 16.03 Å, c = 12.51 Å (hexagonal 

setting)] and the systematic absences are consistent with space group R3̄c determined 

previously from single crystal X-ray diffraction data.
[25]

 We note that pure thiourea may be 

produced during grinding of the sample and when the sample is subjected to reduced pressure 

conditions inside the cryostat. Thus, several peaks assigned to pure thiourea (marked with 

asterisks in Fig. 4.4) can be indexed on the basis of the orthorhombic lattice of pure 

thiourea
[45, 46]

 with space group Pnma at 295, 240 and 230 K and space group P21ma at 100 

K. The unit cell parameters obtained from the powder X-ray diffraction data for 

BrCH/thiourea were determined by profile fitting using the Le Bail method (see Section 4.3). 

Figure 4.5 shows the results from the Le Bail fitting of the powder X-ray diffraction patterns 
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recorded at 295, 240, 230 and 100 K. Appendix A1 contains the Le Bail fits of the powder X-

ray diffraction patterns recorded at the other temperatures. 

 

Figure 4.4. Powder X-ray diffraction patterns for BrCH/thiourea recorded at selected 

temperatures above and below the phase transition at 230 K. The lowering of symmetry on 

entering the low-temperature phase is evident from the peak splittings observed. Additional 

peaks due to pure thiourea (see Section 4.3) are marked with asterisks (black: peaks due to 

pure thiourea only; red: peaks due to pure thiourea overlapping with peaks due to 

BrCH/thiourea). 
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Figure 4.5. Results from Le Bail fitting of powder X-ray diffraction patterns for 

BrCH/thiourea recorded in the high-temperature phase at 295 K and 240 K, and in the low-

temperature phase at 230 and 100 K. In each case, the plot shows the experimental (red + 

marks), calculated (green line) and difference (purple) powder diffraction profiles. The 

calculated reflection positions for the BrCH/thiourea inclusion compound (black tick marks) 

and pure thiourea (red tick marks) are shown. 

On passing below the phase transition temperature, splitting of the peaks assigned to the 

BrCH/thiourea inclusion compound is observed. For example, the peaks indexed as (200) (at 

19.1°), and (21̄11̄  ) (at 19.2°) in the high-temperature phase each split into two peaks in the low 

temperature phase (Fig. 4.4). At 230 K, the powder X-ray diffraction pattern is indexed by a 

lattice with monoclinic metric symmetry with the following lattice parameters: a = 9.9131(4) 

Å, b = 16.1130(7) Å, c = 12.4944(6) Å, and β = 113.9120(18)°. Peaks with no asterisks and 

those marked by red asterisks (due to peaks of BrCH/thiourea overlapping with peaks of pure 

thiourea) in Fig. 4.4 are indexed on the basis of this lattice. Furthermore, from the systematic 

absences of reflections in the powder X-ray diffraction pattern recorded at 230 K, the space 

group of the low temperature phase is assigned as P21/a. 
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To follow the lattice distortion at the phase transition, a common definition of lattice 

parameters for both the high-temperature and low-temperature phases is used, corresponding 

to the monoclinic unit cell {am, bm, cm, βm}.
[23]

 Let aH, bH and cH be the basic vectors for the 

high temperature rhombohedral phase, in the hexagonal setting. Then, the basic vectors am, bm 

and cm of the monoclinic lattice are given by 

 H3
1

H3
1

H3
2

m cbaa  , 

 ,Hm bb   (4.1) 

 ,Hm cc   

where cm is parallel to the channel axis and bm is perpendicular to this axis. 

The temperature-dependence of the lattice parameters on cooling from 295 K to 30 K, 

shown in Fig. 4.5, exhibits good quantitative agreement with our single-crystal X-ray 

diffraction results (assessed for the specific temperatures studied by both techniques – see 

Appendix A2). The periodic repeat distance along the tunnel (cm) decreases only slightly as 

temperature is decreased across the full temperature range studied, and does not change 

significantly at the phase transition. In contrast, the phase transition is associated with abrupt 

changes in am, bm and βm, (corresponding to a significant distortion of the tunnel cross-

section, as evident from the projection on the plane perpendicular to the cm-axis in Fig. 4.3a) 

and a small (but significant) discontinuity in unit cell volume (Vm). In the low-temperature 

phase, am, bm and βm have contrasting temperature dependences; in particular, bm and βm 

evolve in a non-monotonic (but continuous) manner as a function of temperature, passing 

through a maximum and a minimum respectively in the region ca. 210 - 220 K. These rather 

complicated changes in the nature of the distortion of the host tunnel as a function of 

temperature in the region just below the phase transition temperature may be associated with 

the fact that, in the same temperature regime, there are significant changes in the degree of 

ordering (and dynamics) of the guest molecules, as noted above. 
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Figure 4.6. Temperature-dependence of the lattice parameters and unit cell volume (referred 

to the monoclinic unit cell discussed in the text) for BrCH/thiourea, determined from powder 

X-ray diffraction data. The red dashed line indicates the phase transition temperature. 
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Figure 4.7. Temperature dependence of the "distortion parameter" D, defined in the text, for 

CH/thiourea (blue; data from ref
[23]

) and BrCH/thiourea (black). The temperature scale is 

plotted as T−Tc, where Tc denotes the phase transition temperature at which the structure 

changes from rhombohedral to monoclinic (Tc = 233 K for BrCH/thiourea; Tc = 148 K for 

CH/thiourea. Note that the second phase transition for CH/thiourea [at 127 K, corresponding 

to (T − Tc) = −21 K] is associated with a significant discontinuity in the value of D.  

The distortion of the thiourea tunnel structure in the low-temperature phase may be 

quantified using the function D [Eq. (4.2)], which indicates the extent to which the projection 

of the structure on the plane perpendicular to the tunnel (cm) axis deviates from the hexagonal 

metric symmetry of the high-temperature phase [the repeat unit in this two-dimensional 

projection is a rectangular unit cell with cell edges of lengths bm and proj(am)]: 

 
)90cos(3 mm

m




a

b
D . (4.2) 

When the projection of the monoclinic unit cell has hexagonal metric symmetry (as in the 

high-temperature phase), )90cos(3  mmm ab  , and hence D = 1. Thus, deviations from 

D = 1 are interpreted as a measure of the degree of distortion from hexagonal metric 

symmetry, with D > 1 and D < 1 corresponding to different modes of distortion, as discussed 

in more detail below. Importantly, the distortion of the thiourea tunnel in the low-temperature 

phase for BrCH/thiourea (Fig. 4.7) corresponds to D > 1, whereas, in marked contrast, the 

distortion in the low-temperature phase for CH/thiourea (Fig. 4.7) corresponds to D < 1. 
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Further details of the mode of distortion of the host tunnel in the low-temperature phase 

may be established by considering the shape of the distorted tunnel cross-section observed in 

the projection of the structure shown in Fig. 4.3a. To define the distorted hexagonal shape of 

the tunnel cross-section, the relative values of the three corner-to-corner distances (denoted 

d'1, d'2 and d'3; defined in Fig. 4.3d) and the three perpendicular face-to-face distances 

between opposite faces (denoted d1, d2 and d3; defined in Fig. 4.3d) of the distorted hexagon 

are considered. For BrCH/thiourea (Fig. 4.3d), the distortion is such that one face-to-face 

distance (d3) becomes longer than the other two face-to-face distances [values relative to the 

longest distance (d3): d1/d3 = 0.90, d2/d3 = 0.91, d3/d3 = 1], while one corner-to-corner distance 

(d'3) becomes shorter than the other two corner-to-corner distance [values relative to the 

longest distance (d'1): d'1/d'1 = 1, d'2/d'1 = 0.99, d'3/d'1 = 0.88]. This mode of distortion 

corresponds to compressing one corner-to-corner distance and stretching one face-to-face 

distance perpendicular to it (note from Fig. 4.3d that d3 and d'3 are essentially perpendicular to 

each other). 

Significantly, the mode of distortion of the host tunnel in the low-temperature phase of 

CH/thiourea (Fig. 4.8) is completely different. In this case, the distortion is such that one face-

to-face distance (d2) becomes shorter than the other two face-to-face distances [values relative 

to the longest distance (d3): d1/d3 = 0.99, d2/d3 = 0.92, d3/d3 = 1], while one corner-to-corner 

distance (d'1) becomes longer than the other two corner-to-corner distance [values relative to 

the longest distance (d'1): d'1/d'1 = 1, d'2/d'1 = 0.88, d'3/d'1 = 0.85]. This mode of distortion 

corresponds to stretching one corner-to-corner distance and compressing one face-to-face 

distance perpendicular to it (note from Fig. 4.3d that d2 and d'1 are essentially perpendicular to 

each other). 
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Figure 4.8. (a) Crystal structure of CH/thiourea viewed parallel to the tunnel axis of the 

thiourea host structure at 100 K (data from Ref.[24]). (b) Definition of the distances used to 

describe the distorted cross-sectional shape of the thiourea host tunnel, projected onto the 

plane perpendicular to the tunnel axis. 

Given these differing modes of distortion of the hexagonal tunnel cross-section in the 

low-temperature phases of CH/thiourea and BrCH/thiourea, the contrasting behaviour of the 

"distortion parameter" D within the low-temperature phases of these inclusion compounds can 

be readily understood. Thus, in the plane perpendicular to the tunnel axis in the low-

temperature phase (for both CH/thiourea and BrCH/thiourea), the bm-axis is nearly parallel to 

the corner-to-corner distance d'2, whereas the proj(am) axis is nearly parallel to the face-to-

face distance d1. For BrCH/thiourea, the distortion in the low-temperature phase involves a 

relative lengthening of d'2 and shortening of d1, whereas for CH/thiourea, the distortion 

involves a relative shortening of d'2 and lengthening of d1. As a consequence, D > 1 for 

BrCH/thiourea and D < 1 for CH/thiourea. Although the structural properties of the 

chlorocyclohexane/thiourea inclusion compound have not been studied at the same level of 

detail as BrCH/thiourea and CH/thiourea, the results from a previous low-temperature powder 

X-ray diffraction study
[50]

 suggest that the distortion in the low-temperature phase of this 

material corresponds to D > 1. 

(b) (a) 
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4.5 – Conclusions and Further Work 

The studies presented in this chapter reveal that BrCH/thiourea undergoes a reversible 

first-order phase transition at 233 K which involves a distortion of the host tunnel structure 

from rhombohedral to monoclinic symmetry and is associated with a large discontinuity in 

unit cell dimensions in the plane perpendicular to the tunnel axis. In agreement with previous 

spectroscopic studies,
[26, 41]

 single-crystal X-ray diffraction reveals that the BrCH guest 

molecules remain highly orientationally disordered in the temperature region just below the 

phase transition temperature. Indeed, the orientational properties of the BrCH guest molecules 

only become localised at sufficiently low temperatures within the low-temperature phase 

(below ca. 180 K). This gradual increase in the ordering of the BrCH guest molecules as 

temperature decreases reflects a reduction in the dynamics of the guest molecules which 

slowly re-orient into one preferred direction as they lose mobility and as the host structure 

contracts. 

Comparison of the structural properties of the low-temperature phase of the 

BrCH/thiourea inclusion compound presented in this chapter with those of the CH/thiourea 

inclusion compound reported previously
[23, 24]

 reveal the subtle yet important changes that can 

occur in phase transition behaviour simply by substitution of a single atom in the guest 

molecule (in this case bromine substitution). This observation reflects the fine energetic 

balances that pertain in such materials and the role of small and subtle changes in 

intermolecular interactions involving the host and guest components. 

To investigate this subtle phase transition behaviour in more detail and to determine the 

relative importance of steric and electronic factors to the "mode of distortion" in thiourea 

inclusion compounds, we propose repeating the measurements outlined in this chapter on a 

series of thiourea inclusion compounds containing monosubstituted cyclohexanes as the guest 

component. Initially, the experiment would investigate the structural properties of thiourea 

inclusion compounds containing fluorocyclohexane, chlorocyclohexane, idodocyclohexane 

and methylcyclohexane guest molecules as a function of temperature, above and below the 

phase transitions in these materials. Knowledge of the structural properties and phase 

transition behaviour of these materials may allow conclusions to be drawn on the physical 
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properties which control the phase transition behaviour. We note that chlorocyclohexane and 

methycyclohexane possess similar steric features but contrasting electronic features. Thus, 

comparing and contrasting the phase transition behaviour of the thiourea inclusion 

compounds containing these two guest molecules could be particularly instructive for 

deducing the factors which control the phase transition behaviour. It would also be 

informative to know whether the thiourea inclusion compounds containing monohalogen-

substituted cyclohexane guest molecules (which possess similar electronic features but 

diverse steric features) behave in a similar way to one another, and whether there are any 

observable trends in their behaviour (for instance, in their phase transition temperatures, 

lattice parameter changes and in the changes of the ordering of guest molecules). 

The plots of the unit cell parameters of BrCH/thiourea as a function of temperature (Fig. 

4.6), reveal rather complicated changes in the nature of the distortion of the host tunnel just 

below the phase transition temperature. We suggest that this is associated with the significant 

changes in the dynamics and degree of ordering of the guest molecules that take place in this 

temperature regime. Clearly, more knowledge of the dynamic properties of the BrCH guest 

molecules is required to be able to fully rationalise this behaviour. We propose performing 

variable-temperature solid-state 
2
H NMR studies on thiourea inclusion compounds containing 

deuterated BrCH guest molecules to investigate the dynamic properties of this material in 

more detail. 

The present study focussed on the changes in the structural properties of the 

BrCH/thiourea inclusion compound as a function of temperature. We predict that similar 

changes may also be observed as a result of varying the pressure applied to the inclusion 

compound. We propose to repeat the measurements presented in this chapter as a function of 

pressure instead of temperature, to determine whether the mode of distortion of the 

BrCH/thiourea tunnel structure and the changes in the ordering of BrCH guest molecules are 

the same in both cases. 
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Chapter 5 – X-ray Birefringence from a Model 

Anisotropic Crystal 

5.1 – Abstract 

This chapter reports the first definitive demonstration of X-ray birefringence, reporting 

a material that exhibits essentially ideal birefringence behaviour at X-ray energies near the Br 

K-edge. The designed material, the 1-bromoadamantane/thiourea inclusion compound gives 

experimental behaviour in excellent agreement with theoretical predictions for the 

dependence of transmitted X-ray intensity on both X-ray energy and crystal orientation. The 

results vindicate the potential to exploit this phenomenon to establish a detailed understanding 

of molecular polarization and, in particular, to determine the orientational distributions of 

specific bonds in solids. 

5.2 – Theory of Birefringence 

This section introduces the basic theory of the phenomenon of birefringence, providing 

a foundation upon which the work presented in this chapter is based. 

Birefringence is the phenomenon exhibited by anisotropic materials in which the 

refractive index of light depends on the direction of polarization of the incident light.
[1, 2]

 

Anisotropic materials have at least one unique crystallographic axis, which is termed the optic 

axis and polarized light beams with the plane of polarization parallel and perpendicular to this 

axis have different refractive indices. Birefringence Δn′ is defined as the difference between 

the refractive indices in the planes parallel (ne) and perpendicular (no) to the optic axis: 

 oe nnn  ' . (5.1) 

When an unpolarized light beam is incident upon a birefringent material at a non-normal 

incidence angle, the beam is decomposed into two linearly polarized light rays, known as the 

ordinary ray (with polarization perpendicular to the optic axis) and the extraordinary ray (with 

polarization parallel to the optic axis) as depicted in Fig. 5.1.
[3]

 This phenomenon is known as 

double refraction and is manifest in the observation that, when an object illuminated with 

unpolarized light is viewed through a transparent birefringent crystal, two images slightly 
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displaced from one another are seen. One of the most famous examples of an optically 

birefringent material is the mineral calcite (Fig. 5.2). The phenomenon of birefringence has 

been harnessed in a wide variety of applications including many optical devices, such as 

optical fibres, liquid crystal displays, and wave plates. 

 

Figure 5.1. (a) Schematic of the phenomenon of  birefringence, or double refraction, showing 

an unpolarized light beam being decoupled into two orthogonal linearly polarized rays when 

incident upon a uniaxial anisotropic material. The decoupled component rays are polarized 

parallel (extraordinary) and perpendicular (ordinary) to the optic axis. 

 

Figure 5.2. Double refraction exhibited by the mineral calcite. Two images are observed 

when an object, which is illuminated with unpolarized light, is viewed through the crystal. 

Both images have been taken from Ref.[4]. 

The behaviour of linearly polarized light interacting with both a birefringent and a non-

birefringent sample is now discussed in order to demonstrate the concept in more detail. The 

phenomenon of birefringence is illustrated in Figs. 5.3 and 5.4, which show hypothetical 

experiments in which linearly polarized light is transmitted through a birefringent material 
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(Fig. 5.3) and a non-birefringent material (Fig. 5.4) before interacting with a polarization 

analyzer oriented at 90° with respect to the plane of the incident polarized light. 

The case of the birefringent sample is shown in Fig. 5.3. We note firstly that the electric 

field vector of linearly polarized light can be resolved into two orthogonal components. When 

the magnitude of these two vectors is equal and remains constant (as a function of time and 

position along the wave), the electric field oscillates in a single plane and the light is said to 

be linearly or plane polarized. The direction of the optic axis of the material and the 

corresponding refractive indices, parallel n1 and perpendicular n2 to this axis, are denoted in 

part A of Fig. 5.3. The linearly polarized incident light (green arrow) is oriented at an angle θ1 

with respect to the optic axis of the sample. 

 

Figure 5.3. Schematic illustration of the phenomenon of birefringence, showing the behaviour 

of linearly polarized light interacting with a birefringent material. Parts A – E denote the 

changes in the polarization state of the light as it is passed through the sample and interacts 

with a polarization analyzer, oriented at 90° with respect to the plane of the incident 

polarized light. Parts A – E are described more fully in the text. 

If such linearly polarized light is incident upon a uniaxial birefringent sample (Fig. 3; 

part B) at an angle θ1 which is neither exactly parallel nor perpendicular to the optic axis, then 

the light will be decomposed into two perpendicular vectors (V1 and V2, denoted by the blue 
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dotted lines) based on the optic axis of the sample. These two components travel at different 

velocities through the material as V1 is retarded by refractive index n1 and V2 is retarded by 

refractive index n2. The two components consequently diverge, resulting in a change in their 

relative phases causing a rotation in the polarization state of the light as the two component 

rays recombine upon exiting the material (part C). A new set of vectors V′1 and V′2 and a new 

angle θ2 can now be assigned. Physically, this behaviour results in the light emerging from the 

birefringent material being elliptically polarized. 

If this light intersects a polarization analyzer (red arrow), oriented at 90° with respect to 

the polarization of the incident light, the light is once again decomposed into two orthogonal 

vectors Ax and Ay based on the orientation of the analyzer axes (part D). One component of 

the light Ax is now transmitted through the analyzer whereas the second component Ay is 

absorbed (part E). The amplitude of the transmitted component, Ax, depends on θ1 and takes 

its maximum value when θ1 = 45° and its minimum value when θ1 = 0 or 90°. 

It is important to note that when light (polarized or unpolarized) intersects a birefringent 

sample along the optic axis, the light only experiences a single atomic environment, i.e., the 

wave front of light only experiences one refractive index and the wavelets travel at the same 

velocity throughout the material and exit the material in phase. In this case, there is no change 

in the polarization state of the light. 

In contrast to the situation shown in Fig. 5.3, if the material is isotropic (Fig. 5.4), then 

the incident light experiences only one refractive index (independent of orientation) and both 

components of the electric field of light (V1 and V2) are refracted in exactly the same way 

through the sample. This means that the two components emerge from the material in phase 

and there is no change in the polarization state of the incident linearly polarized light (Fig. 

5.4; parts F – H). Thus, if this light intersects a polarization analyzer, oriented at 90° to the 

polarization of the incident light (red arrow, part I), the Ax polarization component is zero. In 

this case, all the light is polarized perpendicular to the analyzer (the Ay component) and is thus 

not transmitted (part J). 
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Figure 5.4. Schematic illustration showing the behaviour of linearly polarized light 

interacting with a non-birefringent material. Parts F – J denote the changes in the 

polarization state of light, as it is passed through the sample and interacts with a polarization 

analyzer, oriented at 90° with respect to the plane of the incident polarized light. Parts (F) – 

(J) are described more fully in the text. 

Until this point, we have considered some general features of birefringence and have 

referred to the specific case of birefringence in the visible regime of the electromagnetic 

spectrum. This chapter, however, is concerned with the birefringence of X-rays and although 

the physical process at this length scale is essentially identical, and the same structural and 

symmetry rules apply, some important differences need to be noted. 

The phenomenon of X-ray birefringence occurs at energies close to the absorption edge 

of specific atoms and depends predominantly on the interaction of X-rays with core electrons, 

rather than the entire crystal structure. For this reason, the X-ray optic axis is not necessarily a 

crystallographic axis. For maximum X-ray birefringence, the X-rays must match the energy 

required to promote a core electron to an empty orbital. This thesis is concerned with X-ray 

birefringence in materials containing bromine atoms, using incident plane-polarized X-rays 

with energy corresponding to the bromine K-edge (13.493 keV). Thus, X-ray birefringence 

depends strongly on the orientation of the C−Br bond with respect to the plane of incident 

polarization. 
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5.3 – Introduction 

The interaction of linearly polarized visible light with solids is well understood, 

including the phenomena of dichroism and birefringence,
[2]

 for which absorption (in the case 

of dichroism) and refractive index (in the case of birefringence) depend on the orientation of 

an anisotropic material with respect to the plane of polarization of the incident radiation. In 

the case of linearly polarized visible light, the phenomenon of birefringence underpins the use 

of the polarizing optical microscope. 

However, while these phenomena have been widely studied for visible light, they are far 

less established for linearly polarized X-rays. In fact, until recently the study of birefringence 

using linearly polarized X-rays remained an essentially unexplored field. This fact is perhaps 

surprising given that the interaction of polarized X-rays with solids could potentially provide 

important new insights into materials properties that are hitherto unobtainable using radiation 

with wavelengths on the scale of visible light. 

Nevertheless, in the last few years, significant developments have been made by the 

Harris group in the field of X-ray dichroism
[5-8] 

and a series of dichroic filter materials for 

applications in magnetic X-ray scattering
[6]

 and X-ray astronomy
[8]

 have been reported. 

Although the phenomena of dichroism and birefringence give rise to different effects on the 

propagation of linearly polarized radiation through a material (dichroism causes rotation of 

the plane of polarization and birefringence causes the polarization to become elliptical), these 

phenomena are intimately related to each other, and are related mathematically by a Kramers-

Kronig transform.
[9]

 Thus, materials that exhibit linear dichroism generally also exhibit 

birefringence, and these phenomena depend on the same structural (and symmetry) properties 

of the material. 

Given the previous development of materials that exhibit significant X-ray dichroism,
[6-

8] 
we were motivated to explore the possibility that such materials may also exhibit X-ray 

birefringence. Surprisingly, very few experimental studies of X-ray birefringence have been 

reported,
[10-12]

 and significantly, all previous studies involved complex experimental set-ups to 

detect extremely weak signals. In contrast, the model material studied here is shown to exhibit 

a huge birefringence signal, which permits a very simple experimental arrangement to be 
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used, directly analogous to the set-up in the conventional polarizing microscope for studies of 

optical birefringence. The observations reported in this chapter open up the realistic prospect 

of exploiting the phenomenon of X-ray birefringence to probe small changes in molecular 

polarization, as well as to probe the dynamic properties and spatial distribution of molecular 

polarization in solids. 

The successful development
[6-8] 

of X-ray dichroic filter materials suitable for operating 

at X-ray energies near the Br K-edge was based on urea and thiourea inclusion compounds.
[13-

19] 
The key advantage of exploiting such solid inclusion compounds in the development of 

materials for applications based on X-ray dichroism (and here X-ray birefringence) devolves 

upon the fact that the host structure exerts a very strong orienting influence on the guest 

molecules, and thus with appropriate choice of both the host structure and the guest 

molecules, materials can be designed in which the orientations of specific bonds of the guest 

molecules (in the present case, C–Br bonds) can be exquisitely controlled. 

The initial studies of X-ray dichroism in the urea inclusion compound containing 1,10-

dibromodecane guest molecules led to the theoretical prediction
[6]

 that optimal X-ray 

dichroism at X-ray energies near the Br K-edge may be achieved for a material in which all 

C–Br bonds are aligned parallel to each other (a situation not realized for 1,10-

dibromodecane/urea). On the basis of this prediction, a new material was designed – 

specifically, a solid inclusion compound comprising 1-bromoadamantane (denoted 1-BA; Fig. 

5.5a) guest molecules within the thiourea (Fig. 5.5a) host tunnel structure, designed on the 

basis that the thiourea host structure would constrain the orientations of the 1-BA guest 

molecules such that all C–Br bonds in the material would be parallel to each other. This 

material was prepared, and determination of the crystal structure
[7]

 (Fig. 5.5b,c) vindicated the 

success of the design strategy. The material was shown to exhibit optimal performance as an 

X-ray dichroic filter near the Br K-edge, exhibiting the theoretically predicted maximum 

difference in the absorption of linearly polarized incident X-rays between two crystal 

orientations differing by 90° (specifically, the two orientations with the empty C–Br 

antibonding orbital parallel and perpendicular to the plane of incident polarization). The 

strong dependence on the orientation of the C–Br bond arises because the incident X-ray 
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beam, with energy in the vicinity of the Br K-edge, can promote a core (1s) electron on the Br 

atom to the σ* antibonding orbital associated with the C–Br bond. Given the directional 

characteristics of the vacant σ* antibonding orbital, the probability of the occurrence of this 

process depends strongly on the orientational relationship between the C–Br bond and the 

plane of polarization of the incident X-ray beam. Since the 1-BA/thiourea inclusion 

compound represents a model material for X-ray dichroism, our initial studies of X-ray 

birefringence focussed on the same material. 

  

 

Figure 5.5. (a) Molecules present in the 1-BA/thiourea inclusion compound. (b) Crystal 

structure of the 1-BA/thiourea inclusion compound viewed along the tunnel axis (c-axis) of 

the thiourea host structure, and (c) viewed perpendicular to the tunnel axis (horizontal), 

showing that the C–Br bonds of all 1-BA guests are parallel to the tunnel. 

The crystal structure
[7]

 of the 1-BA/thiourea inclusion compound (Fig. 5.5b,c) has space 

group P321, and the thiourea host tunnels (which exhibit subtle structural differences from 

"conventional" thiourea inclusion compounds
[20-24]

) are parallel to the unique crystallographic 

axis (c-axis). Within the periodic repeat (24.75 Å) along the tunnel, the 1-BA guest molecules 

occupy three independent sites, but importantly, the C–Br bonds of all guest molecules are 
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aligned parallel to the tunnel and hence parallel to the c-axis. From the crystal symmetry, the 

material is uniaxial, with the optic axis parallel to the c-axis, and is highly anisotropic with 

respect to the orientations of the C–Br bonds. A single crystal of 1-BA/thiourea (as used in 

the experiment discussed below) has a long-needle morphology, with the needle axis parallel 

to the tunnel axis of the host structure (c-axis) and parallel to the direction of the C–Br bonds 

of the 1-BA guest molecules. In general, the cross-section (ab plane) of the long-needle 

morphology is hexagonal (with angles of 120° between adjacent faces in the hexagonal cross-

section), although the six sides of the hexagon are not necessarily of equal length. 

5.4 – Experimental 

The 1-BA/thiourea inclusion compound was prepared by slow cooling of a solution of 

thiourea and 1-BA in methanol from 55 °C to 20 °C. Needle-shaped crystals were obtained, 

with cross-sectional shape corresponding to a distorted hexagon (i.e., with angles of 120° 

between adjacent sides, but with sides of unequal length). Powder X-ray diffraction confirmed 

that the product was a monophasic sample of the 1-BA/thiourea inclusion compound. 

To study X-ray birefringence, the transmission of linearly polarized X-rays through the 

crystal was studied in the "crossed-polarizer" geometry shown in Fig. 5.6 for X-ray energies 

near the Br K-edge. Measurements of X-ray dichroism employed the same experimental 

arrangement but with no polarization analyzer (and with the detector placed along the 

direction of propagation of the incident beam). The dimensions of the crystal were ca. 4 mm 

along the c-axis and ca. 1 mm perpendicular to the c-axis, and the dimensions (fwhm) of the 

focussed X-ray beam were 0.2 mm (horizontal) and 0.05 mm (vertical). The crystal c-axis was 

maintained perpendicular to the direction of propagation (z-axis; Fig. 5.6) of the incident X-

ray beam, with an angle χ between the crystal c-axis and the direction of linear polarization of 

the incident beam (horizontal). Thus, χ = 0° when the crystal c-axis is in the horizontal plane 

(xz plane). The orientation of the crystal with respect to rotation around the c-axis is defined 

by angle φ (Fig. 5.6), with φ = 0° corresponding to the orientation with the incident X-ray 

beam (z-axis) parallel to the crystallographic a-axis (or a symmetry equivalent direction). The 

experimental measurements of X-ray birefringence, using the setup in Fig. 5.6, were carried 

out on beamline I16 at the Diamond Light Source. The X-ray polarization analyzer was highly 
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oriented pyrolytic graphite (HOPG), which operates by means of Bragg diffraction close to 2θ 

= 90°. The polarization analyzer was oriented with its scattering plane horizontal and detects 

predominantly photons of the rotated polarization state. The detector also detects some 

polarization contamination, with a small contamination from the non-rotated radiation that 

vanishes as 2θ approaches 90°. The synchrotron radiation provides a linearly polarized 

incident X-ray beam (>99% polarized on beamline I16). 

 

Figure 5.6. Schematic of the experimental set-up for measurements of X-ray birefringence. 

The incident X-ray beam is propagated along the z-axis and is polarized in the xz-plane. The 

crystal orientation angles χ and φ are defined. 

For the measurements of transmitted X-ray intensity reported in this chapter, it is 

convenient to adopt the terminology of linear absorption coefficients. Assuming a uniform 

material of thickness t and linear absorption coefficient γ, the ratio of transmitted X-ray 

intensity (I1) to incident X-ray intensity (I0) is given by I1/I0 = e
−γt

. The value of γ varies 

significantly as a function of X-ray energy near an absorption edge and also depends (for an 

anisotropic material) on the orientation of the crystal with respect to the direction of incident 

polarization. Although it is convenient to deal directly with intensities, this approach is 

inadequate when the phase of the photon plays an important role, and an analogous approach 

dealing with the electric field (or wave amplitude ε) of the photon must be adopted instead. 

Thus, I1/I0 = |ε1|
2
/|ε0|

2
 = e

−γt
, where I  |ε|

2
 and γ is a complex quantity. The real part of γ is the 

conventional absorption coefficient and describes the change in amplitude of the wave, 

whereas the imaginary part of γ gives the change in phase. 



 

 98 

Dichroism and birefringence are the real (primed) and imaginary (double-primed) parts, 

respectively, of a continuous complex function γ(E), where E is photon energy, and are 

related by the Kramers–Kronig transform.
[9]

 In the present case, the linear dichroism (Δγ′t) is 

the difference between absorption spectra recorded (Fig. 5.7a) with the crystal c-axis parallel 

(γx′t) and perpendicular (γy′t) to the direction of polarization of the incident X-ray beam. 

Knowing the linear dichroism spectrum Δγ′(E), obtained from experimental measurements of 

γx′t and γy′t (Fig. 5.7a), the birefringence spectrum Δγ′′(E) is calculated using the Kramers–

Kronig transform
[9]

 as 
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where P is the "principal part" of the integral (which involves a singularity) and E and E′ 

represent photon energy. For a symmetric dichroism spectrum, the birefringence is 

antisymmetric and vice versa. 

5.5 – Results and Discussion 

This chapter compares experimental measurements and theoretical simulations of X-ray 

birefringence for a single crystal of 1-BA/thiourea using the setup in Fig. 5.6. To calculate 

theoretically the properties of the polarized X-rays transmitted through the crystal, we first 

require to measure the total X-ray intensity transmitted through the crystal (i.e., with the 

polarization analyzer removed from the experimental assembly and with the detector placed 

along the direction of propagation of the incident beam) as a function of X-ray energy for two 

fixed crystal orientations, specifically with the optic axis (c-axis) of the crystal fixed either 

parallel (χ = 0°) or perpendicular (χ = 90°) to the plane of polarization of the incident beam. 

The measurements (Fig. 5.7a) demonstrate strong X-ray dichroism in the vicinity of the Br K-

edge, as also reported previously.
[7]

 The dichroism spectrum Δγ′(E)t (Fig. 5.7b) determined 

from these experimental data is then used to calculate the birefringence spectrum Δγ′′(E)t 

(Fig. 5.7b) using Eq. (5.2). We note from Fig. 5.7b that the dichroism spectrum Δγ′(E)t is 

indeed (as discussed above) close to symmetric and the birefringence spectrum Δγ′′(E)t is 

almost antisymmetric. 
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On the basis of the knowledge of these two spectra, the properties of the X-rays 

transmitted through the crystal and the polarization analyzer can be calculated using the 

theoretical framework developed in Appendix B (which is based partially on previous 

publications
[25-28]

) for comparison to the corresponding data measured in the detailed 

experimental studies discussed below. The theory outlined in Appendix B describes the 

changes in both amplitude and phase of a wave of specific polarization passing through a 

material and allows us to calculate the intensity of radiation transmitted through any material 

for which the absorption is dominated by electric dipole transitions, for any polarization of the 

incident beam, and for any orientation of the material. Furthermore, the analysis allows for a 

non-ideal polarization analyzer. Therefore, the theoretical framework allows us to simulate 

the type of X-ray intensity data recorded using the experimental setup in Fig. 5.6. 

 

Figure 5.7. (a) X-ray absorption spectra measured with the c-axis of a single crystal of 1-

BA/thiourea parallel (x; red line) and perpendicular (y; green line) to the plane of 

polarization of the incident X-ray beam. (b) The measured X-ray dichroism spectrum [red 

line; Δγ'(E)t, the difference between the two curves in (a)] and the calculated X-ray 

birefringence spectrum [green line; Δγ''(E)t]. 

The experimental measurements of X-ray birefringence recorded using the setup in Fig. 

5.6 are now considered. The data comprise measurements of transmitted intensity as a 

function of X-ray energy and crystal orientation angle χ for a single crystal of 1-BA/thiourea 

(experimental data in Fig. 5.8a; corresponding simulated results in Fig. 5.8b). The transmitted 

X-ray intensity varies significantly as a function of both crystal orientation and X-ray energy 

because of the anisotropic X-ray optical properties of the crystal, directly analogous to the 

effects observed in optical microscopy with linearly polarized visible light. In the present 
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case, the effects arise from X-ray dichroism and X-ray birefringence, which depend directly 

on local anisotropy at the atomic level. Therefore, the measured X-ray intensity depends on 

the molecular anisotropy within the material, and, in particular, the orientational properties of 

the C–Br bonds. The agreement between experimental and simulated results (Fig. 5.8) is very 

satisfactory, indicating that the properties of the crystal and the physics underlying the 

technique are well understood. At a given X-ray energy, the maximum transmitted intensity 

arises when the optic axis of the crystal is at χ = 45° with respect to the plane of polarization 

of the incident radiation, in agreement with the familiar result for birefringence between 

crossed polarizers for visible light (e.g., in a polarizing optical microscope). 

 

Figure 5.8. (a) Transmitted X-ray intensity recorded (for the set-up in Fig. 5.6) for a single 

crystal of 1-BA/thiourea as a function of angle χ and X-ray energy, and (b) the corresponding 

data simulated using the theoretical framework in Appendix B. The intensities are normalized 

to a maximum of unity in each case. The transmitted signal is very strongly enhanced close to 

the energy of the Br K-edge and passes through a maximum at χ = 45°. 

This behaviour is examined more closely in Fig. 5.9a, which shows X-ray intensity as a 

function of χ, with X-ray energy fixed at 13.4855 keV and with φ fixed at 0°. Clearly, the 

results demonstrate the classical sinusoidal variation of transmitted intensity as a function of 

χ, as familiar in the analogous case of birefringence of visible light. 



 

 101 

 

Figure 5.9. (a) Transmitted X-ray intensity (normalized to a maximum of unity) as a function 

of χ for the set-up in Fig. 5.6, with X-ray energy fixed at 13.4855 keV (near the maximum of 

the Br K-edge) and φ fixed at 0°. (b) Same as (a) but with transmitted X-ray intensity 

measured as a function of φ, with χ fixed at 45°. 

Figure 5.9b shows the transmitted intensity as a function of angle φ (i.e., for rotation of 

the crystal about the c-axis), with χ fixed at 45° (corresponding to maximum transmitted 

intensity in Fig. 5.9a). Given the uniaxial nature of the crystal, the absorption coefficient 

should be independent of the direction of propagation of radiation within the ab plane of the 

crystal and hence independent of φ. In fact, a small variation of transmitted intensity is 

actually observed (Fig. 5.9b) and is attributed to a slight variation in the effective crystal 

thickness as a function of φ. The specific variation of intensity observed in Fig. 5.9b accords 

with this explanation for the typical cross-section of the crystal morphology perpendicular to 

the c-axis for 1-BA/thiourea crystals, which comprises a distorted hexagon with one longer 

dimension within the ab plane (as depicted in Fig. 5.10). Therefore, two minima in 

transmitted intensity (maximum crystal thickness) separated by Δφ ≈ 180° are expected, as 

observed in Fig. 5.9b. 
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Figure 5.10. Schematic of the typical cross-section of the crystal morphology perpendicular 

to the c-axis for 1-BA/thiourea crystals, comprising a distorted hexagon with one longer 

dimension within the ab plane. This type of crystal morphology is expected to produce a small 

variation in transmitted intensity as a function of φ, as observed in Fig. 5.9b. 

5.6 – Conclusions and Further Work 

The results reported in this chapter demonstrate that the 1-BA/thiourea inclusion 

compound exhibits ideal X-ray birefringence, giving experimental behaviour in excellent 

agreement with theoretical predictions for the dependence of transmitted X-ray intensity on 

both X-ray energy (near the Br K-edge) and crystal orientation. These results represent the 

first definitive demonstration of the phenomenon of X-ray birefringence and confirm that the 

underlying theory (as incorporated into the simulations) is adequately understood. Ultimately, 

the ideal X-ray birefringence behaviour exhibited by this material emanates from the fact that 

the C–Br bonds of all 1-BA molecules are aligned parallel to each other. Clearly, the strong 

dependence between transmitted X-ray intensity and the orientational properties of specific 

bonds in a material (C–Br bonds in this case) was central to the design of the 1-BA/thiourea 

inclusion compound as a model system for exhibiting X-ray birefringence (and, in the 

previous work, X-ray dichroism). 

In more general terms, the strong dependence between X-ray birefringence and the 

orientational properties of specific bonds in solids suggests that there is considerable potential 

to exploit measurements of X-ray birefringence as an experimental strategy for assessing and 
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quantifying the orientational distributions of bonds in solids, for example, in the case of 

partially ordered materials or materials that undergo order–disorder phase transitions. 

This potential is harnessed in Chapter 6, in which measurements of X-ray birefringence 

are used to determine the changes in the orientational properties of bromocyclohexane guest 

molecules, associated with an order-disorder phase transition in the 

bromocyclohexane/thiourea inclusion compound. The results demonstrate that measurements 

of X-ray birefringence can be used as a powerful experimental technique for determining the 

changes in bond orientation in materials. 

Other potential applications include materials for use as non-diffractive fixed-

wavelength X-ray phase retarders, which may be applied, for example, to convert linearly 

polarized X-rays to circularly polarized X-rays. Devices based on this approach are 

potentially quite efficient and far less sensitive to beam angle than diffractive devices (i.e., a 

few degrees of divergence should have little effect, compared with divergence of the order of 

millidegrees in the case of diffractive devices). 
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Chapter 6 – Using X-ray Birefringence to Determine 

Changes in Bond Orientation in an Anisotropic 

Material  

6.1 – Abstract 

Many important properties of materials and molecules depend on a particular type of 

chemical bond being oriented in a specific direction. Therefore, determining the orientational 

distribution of bonds is an essential prerequisite to understanding and developing the 

properties of such materials. However, because many materials are either disordered or 

partially ordered, conventional diffraction methods often cannot be used to determine this 

information. In this chapter, we demonstrate that measurements of X-ray birefringence can be 

used to determine changes in the orientational distributions of specific types of bonds in 

anisotropic materials. For a crystalline anisotropic organic solid (specifically the 

bromocyclohexane/thiourea inclusion compound), measurements of X-ray birefringence are 

used to determine the changes in the orientational distribution of the C–Br bonds, associated 

with an order-disorder phase transition in this material. 

A least-squares fit of simulated birefringence data, based on a structural model, was 

performed to allow quantitative structural information on the bromocyclohexane guest 

molecules to be established, leading to excellent agreement between experimental and 

simulated data. Furthermore, the structural properties determined from X-ray birefringence 

correlate exquisitely with those obtained independently from X-ray diffraction data, 

demonstrating the validity of the structural model and the reliability of this novel 

experimental technique.  

These observations represent the basis of a new technique for determining information 

on the structural properties of materials, particularly in cases for which diffraction methods 

may be unsuitable. The technique has huge potential to be utilised in the exploration and 

discovery of new materials with important properties and in principle could be applied to any 

anisotropic system. 
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6.2 – Introduction 

Chapter 5 discussed the first definitive demonstration of X-ray birefringence, reporting 

a material that exhibits essentially ideal birefringence behaviour at X-ray energies near the Br 

K-edge. The designed material, the 1-bromoadamantane/thiourea inclusion compound gave 

experimental behaviour in excellent agreement with theoretical predictions for the 

dependence of transmitted X-ray intensity on both X-ray energy and crystal orientation. The 

strong dependence between X-ray birefringence and the orientation of the C–Br bonds in this 

material demonstrated the potential for using measurements of X-ray birefringence to 

establish a detailed understanding of molecular polarization and in particular to determine the 

orientational distributions of specific bonds in solids.
[1]

  

In this chapter, measurements of X-ray birefringence are used to characterise changes in 

the orientational distribution of molecules associated with an order-disorder phase transition 

in the bromocyclohexane/thiourea (BrCH/thiourea) inclusion compound. In particular, 

measurements of X-ray birefringence are used to determine changes in the orientation of the 

C–Br bond of the BrCH guest molecules as a function of temperature, above and below the 

phase transition. 

Comparison of the structural properties of BrCH/thiourea determined from the X-ray 

birefringence measurements with those determined from single-crystal X-ray diffraction data 

demonstrates the validity of the X-ray birefringence results and shows that comparable 

structural information can be obtained from the two approaches. These observations constitute 

the basis of a new technique for determining the orientational distribution of bonds within 

solids which may be of importance to the development of new materials. 

In this study, we focus on the BrCH/thiourea inclusion compound. The structural 

properties of this material have already been determined over a wide range of temperatures 

using X-ray diffraction,
[2, 3]

 solid-state NMR
[4-8]

 and other techniques
[9-11]

 and are discussed in 

detail in Chapter 4. At room temperature, the inclusion compound exhibits the conventional 

rhombohedral thiourea host structure
[2]

 (Fig. 6.1) and the BrCH guest molecules (and thus the 

C–Br bonds) are essentially isotropically disordered due to their dynamic properties, which 

involve almost unrestricted reorientations within the tunnel.
[2, 5, 7, 8]

 However, the material is 
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known to undergo a first-order phase transition at 233 K as evidenced from DSC (see Section 

4.4). The phase transition involves a distortion in the symmetry of the host structure, whilst 

retaining the same hydrogen-bond connectivity as in the high-temperature phase
[3]

 (Fig. 6.2a). 

Although the phase transition is associated with a discontinuity in the lattice parameters, it is 

not associated with an abrupt change in the dynamics or degree of ordering of the guest 

molecules. Instead, there is a gradual increase in the ordering of the guest molecules (and 

hence the C–Br bonds) as the temperature is decreased below the phase transition. At 110 K 

the guest molecules are localised in two distinct orientations; a major (ca. 80 %) and a minor 

(ca. 20 %) component. The C–Br bonds of the major component make an angle of 52.5º with 

the c-axis (Fig. 6.2b) and the projection of the C-Br bond on to the plane perpendicular to the 

tunnel (cm) axis forms an angle of 3.5° with the proj(am) axis and an angle of 84.9° with the 

bm-axis (Fig. 6.2a).  

 

Figure 6.1. The "conventional" rhombohedral thiourea host structure, as observed in the 

high-temperature phase of BrCH/thiourea, viewed along the tunnel axis. In this phase, the 

guest molecules are isotropically disordered.  
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Figure 6.2. (a) Crystal structure of BrCH/thiourea at 110 K viewed parallel to the tunnel axis 

of the thiourea host structure, showing only the major orientation of the BrCH guest 

molecule. (c) Crystal structure of BrCH/thiourea at 110 K, viewed perpendicular to the tunnel 

axis, showing only the major orientation of the BrCH guest molecule. Hydrogen atoms are 

omitted for clarity. 

The aim of the current study is to use measurements of X-ray birefringence to determine 

the orientation of the C–Br bonds of the BrCH guest molecules in the BrCH/thiourea 

inclusion compound over a range of temperatures below the phase transition. To achieve this, 

quantitative information on the orientation of the C–Br bonds will be extracted from the best-

fit simulations based on a theoretical structural model. The absolute values of the structural 

parameters extracted from the model are compared to the same parameters determined from 

single-crystal X-ray diffraction data to ascertain whether the X-ray birefringence technique 

can be used to obtain reliable structural information on bond orientation and to assess the 

suitability of the structural model. The temperature dependences of the orientation the C–Br 

bonds is also assessed in order to determine the changes in the orientational ordering of the 

BrCH guest molecules as a function of temperature.  

6.3 – Experimental 

The BrCH/thiourea inclusion compound was prepared by cooling a solution of thiourea 

and BrCH (ca. 3:1 molar ratio) in methanol from 55 °C to 20 °C over ca. 29 hours. Needle-

shaped crystals were obtained (width ca. 0.25 – 2 mm, length ca. 5 – 10 mm), with a cross-

(a) (b) 
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sectional shape corresponding to a distorted hexagon (i.e., with angles of 120º between 

adjacent sides, but with sides of unequal length). Powder X-ray diffraction confirmed that the 

product was a monophasic sample of a conventional thiourea inclusion compound. 

To study X-ray birefringence, the transmission of linearly polarized X-rays through a 

single crystal of BrCH/thiourea was studied in the "crossed polarizer" geometry shown in Fig. 

6.3 for X-ray energies near the Br K-edge. The dimensions of the crystal were ca. 2 mm along 

the c-axis (the tunnel axis of the thiourea host structure) and ca. 0.5 mm perpendicular to the 

c-axis, and the dimensions (fwhm) of the focused X-ray beam were 0.3 mm (horizontal) and 

0.3 mm (vertical).  

 

Figure 6.3. Schematic of the experimental set-up for measurements of X-ray birefringence. 

The incident X-ray beam is propagated along the z-axis and is polarized in the xz-plane. The 

crystal orientation angles χ and φ are defined. 

In the experiments, the orientation of the crystal was varied by rotation about the two 

angles χ and φ defined in Fig. 6.3. The incident X-ray beam was linearly polarized in the xz 

plane (horizontal), and χ = 0° was defined as the orientation with the c-axis of the crystal in 

the horizontal plane (xz plane). The orientation of the crystal with respect to rotation around 

the c-axis is defined by angle φ (Fig. 6.3), with φ = 0° corresponding to the orientation with 

the incident X-ray beam (z-axis) perpendicular to the crystallographic plane 100. Thus, with χ 

= φ = 0 º, the c-axis of the crystal is horizontal (parallel to the electric vector of the incident 

radiation) and the b-axis is parallel to the propagation direction of the incident radiation. This 

definition of χ and φ relates the orientation of the hexagonal crystallographic axes of 

BrCH/thiourea in the high-temperature phase to the experimental reference frame 
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(specifically the direction of the propagation of the incident radiation and plane of 

polarization of the incident radiation). The corresponding definitions for the low-temperature 

monoclinic phase (referred to in the discussion) are that, with χ = φ = 0º, the cm-axis of the 

crystal is horizontal (parallel to electric vector of the incident radiation), the bm-axis is parallel 

to and the proj(am) is perpendicular to the propagation direction of the incident radiation. 

Our experimental measurements of X-ray birefringence, using the setup in Fig. 6.3, 

were carried out on beamline B16 at the Diamond Light Source. We recall that synchrotron 

radiation provides a linearly polarized incident X-ray beam (>95% polarized on beamline 

B16, with the electric component in the horizontal plane). A four-circle, vertical scattering, 

Huber eulerian diffractometer was used to record the data. 

In order to extract quantitative information from measurements of the X-ray intensity as 

a function of sample orientation at each temperature studies, we have carried out a least-

squares fit to the model described in Section 6.4.  In this model, we assume that the sample 

exhibits uniaxial anisotropy with the optic axis along the C–Br bond, oriented at "bond-tilt 

angle", ψ, with the c–axis, and at a "bond-azimuthal angle", ω, from the ac plane (see Fig. 

6.4). These definitions are based on the monoclinic form of BrCH/thiourea (exhibited in the 

low-temperature phase) and can therefore be related to Fig. 6.2. A full description of the 

model is provided in Section 6.4. 

 

Figure 6.4. Schematic of the BrCH/thiourea crystal defining the bond-tilt angle, ψ, and bond-

azimuthal angle, ω, of the C-Br bond of the BrCH guest molecule relative to the 

crystallographic axes of BrCH/thiourea in the low-temperature phase (monoclinic form).  
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All data reported in this chapter were recorded on the same single crystal of 

BrCH/thiourea. Apart from the results shown in Fig. 6.8, all data were recorded on the first 

cooling cycle of the crystal. The data presented in Fig. 6.8 were recorded as the crystal was 

warmed for the first time from 100 K to 270 K. The same measurement obtained on the first 

cooling cycle indicated that there are no significant differences in the X-ray birefringence 

behaviour of the crystal upon cooling and warming. We note that the entire experiment (Fig. 

6.5 to 6.11) was repeated for a second cooling and warming cycle on the same crystal of 

BrCH/thiourea and the results revealed no significant change in the X-ray birefringence 

behaviour of the crystal as a function of temperature cycling.  

For the experimental measurements in Fig. 6.7 and 6.11, χ was sampled at 10° intervals 

from χ = −25° to 95°. At each of these values of χ, the transmitted X-ray intensity was 

measured as a function of φ with φ varied between −135 and 135° in steps of 5°. The total 

measurement time at each value of φ and χ was 2 s.  

6.4 – Structural Model 

The model assumes that the net direction of the C–Br bonds is the same throughout the 

sampled region of the crystal, i.e., that the measurement probes a single orientational domain. 

The generated model used to describe the data employs 13 parameters. However, the values 

of several of these parameters are known and are fixed in the fitting procedure. Other 

parameters are known only approximately, but are found to have very little effect on the 

resulting fit other than a contribution to the overall scale factor. Given these considerations, 

the parameters that are expected to vary with temperature are the parameters ψ and ω that 

define the orientation of the C–Br bond with respect to the crystallographic axes, and an 

overall "polarization factor", p, which acts as a prefactor for the complex anisotropic 

absorption coefficient. The absolute value of this parameter cannot be extracted easily, but its 

dependence on temperature can be obtained very precisely. The polarization factor, p, 

quantifies the degree of polarization of the ensemble of BrCH guest molecules and can be 

considered as the resultant of the direction of all the C–Br bonds. Thus, the polarization factor 

will take its maximum value when there is a single orientation of the C–Br bonds (i.e., a 

completely ordered situation where all the bonds are aligned in parallel) and will take its 
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minimum value when the C–Br bonds are isotropically disordered (in this case, there is no 

resultant C–Br bond direction and the polarization factor will be 0). In this work, the 

polarization factor is in the range from 1 (for a completely ordered situation with all guest 

molecules having the same C–Br bond orientation) to 0 (for an isotropically disordered 

situation with no preferred C–Br bond orientation and with every bond direction having an 

equal population).  

Interestingly, the fit to the data is significantly poorer when a small degree of circular 

polarization in the incident beam is not incorporated into the model. The value P2 = −0.075 

was extracted from each individual data set, suggesting that this type of measurement is so 

sensitive to the circular polarization that is would make an extremely simple and effective 

polarimeter. A modest circular component to the beam polarization is not surprising, and may 

be caused by a small vertical misalignment of the slits that define the emission from the 

bending magnet radiation source.  

In the fitting procedure, three parameters were varied, with all other parameters fixed, as 

shown in Table 6.1. For all data sets (shown in Figs. 6.7 and 6.11 and Table 6.2) considered 

(comprising intensity versus χ and φ), good fits are obtained at all temperatures studied. The 

results of this analysis vindicate our model and show very clearly that: (a) the degree of 

polarization, p, increases as temperature decreases, but there is no significant change in the 

net orientation of the C–Br bonds, and (b) the assumption of a single domain is valid. 
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Description Value(s) Comment 

Molecular polarization factor, 

p 

Fitted for each data 

set (Table 6.2) 

The resultant of all the C–Br 

bond directions 

Bond-tilt angle, ψ Fitted for each data 

set (Table 6.2) 

Angle between C–Br bond and 

c-axis 

Bond-azimuthal angle, ω Fitted for each data 

set (Table 6.2) 

Angle between C–Br bond and 

ac plane 

Eccentricity in sample cross-

section, assumed elliptical 

1.0 No eccentricity required 

Ratio of birefringence to 

dichroism (   / ) 

1.0 Estimated from Ref. [1] 

Ratio of dichroism to isotropic 

absorption (   / ) 

0.58 Estimated from Ref. [1] 

Isotropic absorption, γt 1.2 Measured 

Polarization analyser 2θ 86.3° Graphite (0,0,10) 

Polarization analyser rotation η  89° Nominally 90° 

P1 (Stokes parameter for linear 

polarization at 45° from 

horizontal) 

0.0 Expected to be zero 

P2 (Stokes parameter for 

circular polarization) 

−0.075 Nominally zero but a small 

value expected due to 

misalignment 

P3 (Stokes parameter for 

horizontal linear polarization) 

0.99 Nominally 1.0 but slightly 

reduced due to electron beam 

size and X-ray beam 

divergence 

Overall scale factor 823854.8 Accounts for beam intensity 

etc. 

Table 6.1. The parameters considered in the structural model. 

6.5 – Results and Discussion 

We focus initially on the experimental X-ray birefringence data recorded at 100 K and 

270 K using the set-up in Fig. 6.3. Fig. 6.5 comprises data of transmitted intensity as a 

function of the crystal orientation angle χ, with φ fixed at 0° and with the incident X-ray 

energy fixed at 13.493 keV (close to the Br K-edge), for a single crystal of BrCH/thiourea at 

270 K and 100 K. As expected, at 270 K (i.e., above the phase transition temperature) there is 

no significant variation in the transmitted intensity as a function of χ. Given the isotropically 

disordered nature of the BrCH guest molecules
[2, 3]

 (see Chapter 4) in the high-temperature 

phase, the absorption coefficient is expected to be independent of the direction of propagation 

of radiation within the crystal, and thus the crystal is not expected to be dichroic or 

birefringent in this phase.  



 

 114 

0

0.2

0.4

0.6

0.8

1

-30 -20 -10 0 10 20 30 40 50 60 70 80 90 100



In
te

n
s

it
y

 

Figure 6.5. Transmitted X-ray intensity (for the setup shown in Fig. 6.3) for a single crystal of 

BrCH/thiourea as a function of χ, at 270 K (black) and 100 K (red). In each case, the X-ray 

energy was fixed at 13.493 keV (near the maximum of the Br K-edge) and φ is fixed at 0°. The 

intensities are normalized to a maximum of unity. 

However, the results indicate a dramatic difference in behaviour at 100 K. Indeed, at 

100 K, the transmitted X-ray intensity varies significantly as a function of χ, indicating that 

there is a significant increase in the degree of ordering of the C–Br bonds of the guest 

molecules at this temperature. At 100 K, two maxima and one minimum are observed within 

the range of χ probed, with maxima at χ ≈ −10° (the highest maximum) and χ ≈ 80° and the 

minimum at χ ≈ 40°. The maxima are thus separated from each other by ca. 90º and separated 

from the minimum by ca. 45º. This observation accords with the theoretical prediction that 

maximum birefringence (and therefore maximum intensity transmitted through the analyser) 

arises when the optic axis of the crystal is oriented at 45° to the plane of polarization of 

incident radiation, with maxima and minima predicted every 45º. A preliminary survey of 

these data indicates that, in contrast to the situation found in Chapter 5, in this case, the C─Br 

bonds of the guest are not aligned parallel to the c-axis of the host (which would give rise to a 

maximum at ca. χ = 45 º), but are instead oriented at an angle ψ (refer to Fig. 6.4 for ψ 

definition) with respect to the c-axis (where ψ is approximately half way between the planes 

parallel and perpendicular to the c-axis, i.e., giving maxima in the transmitted intensity at ca. 

χ = 80 º and ca. χ = − 10 º). 
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Figure 6.6 comprises data of transmitted intensity as a function of crystal orientation 

angle φ (i.e., for rotation of the crystal about the c-axis) at 270 K and 100 K with χ fixed at 

−10° and with the energy fixed at 13.493 keV (close to the Br K-edge). The figure shows a 

total rotation in φ of 270°, which was the maximum range in φ that could be explored given 

the "hard limits" of the diffractometer. At 270 K (i.e., above the phase transition temperature), 

there is no significant variation in transmitted intensity as a function of φ, since the guest 

molecules are isotropically disordered. However, at 100 K, there is a large variation in 

intensity as a function of φ. Two minima and one maximum are observed within the range of 

φ probed. The maximum is at φ ≈ −6°, the first minimum is at φ ≈ −100° and the second 

minimum is at χ ≈ 80°. This behaviour is entirely consistent with a material containing a 

single orientational domain of the guest molecules, for which maxima and minima are 

expected to be separated from one another by Δφ = 180°. Once again, this result indicates 

that, for BrCH/thiourea in the low-temperature phase, the C─Br bonds of the guest are not 

oriented along the c-axis, in which case the absorption coefficient would be expected to be 

independent of the direction of propagation of radiation in the plane perpendicular to the c-

axis and hence independent of φ. 
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Figure 6.6. Transmitted X-ray intensity (normalized to a maximum of unity) as a function of φ 

for the setup in Fig. 6.3 at 270 K (black) and 100 K (red). In both cases, the X-ray energy was 

fixed at 13.493 keV (near the maximum of the Br K-edge) and χ was fixed at χ ≈ −10°. 
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Both Figs. 6.5 and 6.6 show a striking difference between the X-ray birefringence 

behaviour of BrCH/thiourea at 270 K and 100 K. At 270 K the transmitted intensity is 

independent of both χ and φ, whereas at 100 K, the transmitted intensity is strongly dependent 

on rotation of the crystal about both of these axes. The variation in the transmitted intensity at 

100 K arises because of the anisotropic optical properties of the crystal. The effects arise from 

X-ray dichroism and X-ray birefringence, which depend directly on local anisotropy at the 

atomic level and, in particular, the orientational properties of the C–Br bonds. We attribute the 

increase in X-ray birefringence to an increase in the degree of anisotropic ordering of the 

guest molecules at 100 K (and hence ordering of the C–Br bonds). 

These observations agree with the X-ray diffraction investigation in Chapter 4, which 

concluded that, at sufficiently low temperature within the low-temperature phase, the 

orientational properties of the BrCH guest molecules become localized and the C–Br bonds 

are aligned in a specific preferred direction. For the present purpose, we make the reasonable 

assumption that the X-ray birefringence is dominated by the major guest orientation 

established from the X-ray diffraction study reported in Chapter 4. 

We suggest, that the increase in the degree of molecular polarization of the BrCH guest 

molecules at 100 K reflects a decrease in the dynamic properties of the guest molecules at 

these temperatures
[3]

 (see Section 4.4 and 4.5). The well-behaved variation in χ and φ 

indicates a single "set" of minima and maxima, which suggests that throughout the probed 

region of the crystal, there is one dominant orientational domain of the guest molecules. 

To investigate this behaviour in more detail and to extract quantitative information from 

measurements of the X-ray intensity as a function of crystal orientation, a series of two-

dimensional scans of transmitted intensity versus χ and φ were recorded. A least-squares fit of 

calculated data for the structural model described in Section 6.4 was then performed, allowing 

the orientation of the C–Br bond of the BrCH guest molecules relative to the crystallographic 

unit cell axes (as described by the bond-tilt angle, ψ, and the bond-azimuthal angle, ω, defined 

in Fig. 6.4), to be established quantitively at each temperature studied.   

The experimental and simulated data of transmitted X-ray intensity as a function of φ 

and χ at 100 K are shown in Fig. 6.7. The results reveal an extremely close agreement 
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between experimental and simulated data. Furthermore, the behaviour accords with the 

theoretically predicted result for a single orientational domain of the guest molecules, which 

was an assumption built into the model. 

 

 

Figure 6.7. (a) Experimental data of transmitted X-ray intensity as a function of χ and φ for 

the set-up in Fig. 6.3 at 100 K, with X-ray energy fixed at 13.493 keV (near the maximum of 

the Br K-edge). (b) Best-fit calculated data for the structural model described in Section 6.4, 

which specifies the orientation of the C–Br bond of the BrCH guest molecules relative to the 

crystallographic unit cell. 

The structural parameters determined from the fitting procedure are shown in Table 6.2. 

At 100 K, the values for the molecular polarization factor p, bond-tilt angle, ψ, and bond-

azimuthal angle, ω, determined from the fitting procedure are 0.78, 53.7º and 5.0º 

respectively. We note, that these best-fit values defining the orientation of the C–Br bonds 

relative to the unit cell axes are in extremely close agreement with the same parameters 

determined independently from X-ray diffraction data
[3]

 (see Section 4.4). The values 

determined from our X-ray diffraction study for ψ and ω for the major component of BrCH at 

110 K were 52.5° and 3.5° respectively.  

 

T (K) Molecular 

polarization 

factor, p 

Bond-tilt angle, 

ψ° 

Bond-

azimuthal, ω° 

200 0.33 60.2 5.0 

160 0.54 55.1 4.8 

130 0.67 54.0 5.0 

100 0.78 53.7 5.0 

(a) (b) 
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Table 6.2. Parameters fitted independently for data sets collected at each temperature, using 

the structural model described in Section 6.4.  

To explore the temperature dependence of the X-ray birefringence of BrCH/thiourea 

(and thus to gain insights on the process of ordering of the BrCH guest molecules), a series of 

X-ray birefringence measurements were recorded between 100 and 270 K.  

Figure 6.8 shows a plot of the transmitted X-ray intensity measured continuously as a 

function of temperature between 100 K and 270 K (with φ and χ fixed at φ = 0° and χ = −10°). 

The plot reveals that within the high-temperature phase, the birefringence is essentially 

independent of the temperature. At the phase transition temperature a small step in the 

intensity is observed. As temperature decreases below the phase transition temperature 

towards 100 K, a progressive increase in the transmitted intensity is seen. 
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Figure 6.8. Transmitted X-ray intensity as a function of temperature (with φ and χ fixed at, φ 

= 0 ° and χ = −10 °).  

 These observations suggest that there is a gradual and progressive increase in the 

degree of ordering of the BrCH guest molecules as the temperature is decreased below the 

phase transition temperature and that the transition is not associated with an abrupt change in 

the degree of ordering of the guest molecules. A transformation from a completely isotropic 

state above the transition to a completely ordered state below the transition would cause an 

abrupt step in the X-ray birefringence signal (as depicted in Fig. 6.9), which is not observed. 
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Figure 6.9. Schematic showing the expected (in blue) variation in the transmitted intensity as 

a function of temperature for a system which becomes fully ordered at the phase transition 

temperature Tt, and the observed (in red) variation in the transmitted intensity for the 

BrCH/thiourea inclusion compound, for which there is only a small increase in the degree of 

ordering of the BrCH guest molecules at Tt, and a progressive increase in the degree of 

ordering as temperature is decreased below Tt. 

Similar observations can be made from Figs. 6.10 and 6.11, which comprise data of 

transmitted intensity as a function of the crystal orientation angles χ (Fig. 6.10) and φ (Figure 

6.11) for different temperatures, specifically at 270, 200, 160, 130 and 100 K.  These plots 

also show a gradual increase in the transmitted intensity upon cooling below the phase 

transition to 100 K. Furthermore, the results indicate that, although there is an increase in the 

overall intensity of the signal as temperature is decreased below the phase transition, there is 

no change in the χ and φ angular dependencies. From these observations, we conclude, that 

upon cooling below the phase transition, the degree of ordering of the BrCH guest molecules 

increases (i.e., the molecular polarization factor, p, increases), however there is no change in 

the "preferred orientation" (net orientation) of the C–Br bonds of the BrCH guest molecules. 
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Figure 6.10. Transmitted X-ray intensity (normalized to a maximum of unity) as a function of 

χ for the set-up in Fig. 6.3, with X-ray energy fixed at 13.493 keV (near the maximum of the 

Br K-edge) and φ fixed at 0°. The data were recorded for the following temperatures: 270 K 

(black), 200 K (pink), 160 K (green), 130 K (blue) and 100 K (red). 
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Figure 6.11. Transmitted X-ray intensity (normalized to a maximum of unity) as a function of 

φ for the set-up in Fig. 6.3, with X-ray energy fixed at 13.493 keV (near the maximum of the 

Br K-edge) and χ fixed at χ ≈ −10°. The data were recorded for the following temperatures: 

270 K (black), 200 K (pink), 160 K (green), 130 K (blue) and 100 K (red). 

To further explore the temperature dependence of the X-ray birefringence (and thus the 

ordering of the BrCH guest molecules) in the low-temperature phase, two-dimensional scans 

of transmitted intensity versus χ and φ were recorded at 200, 160 and 130 K (Fig. 6.12). 
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Least-squares fits of calculated data for the structural model were also performed for each of 

these data sets, and the structural parameters p, ψ and ω were extracted, following the same 

procedure discussed above for 100 K. The results are shown in Table 6.2. As observed in the 

case of the data recorded at 100 K, there is excellent agreement between the experimental and 

simulated data. The results from the fitting procedure show only small variations in the bond-

tilt angle ψ and bond-azimuthal angle ω, as a function of temperature, but there is a 

significant linear increase in the molecular polarization parameter p as the temperature is 

decreased. The results of this analysis vindicate our model and show very clearly that (a) the 

degree of polarization, p, increases as temperature is decreased, but with no significant change 

in the net orientation of the C–Br bonds, and (b) the assumption of a single orientational 

domain is valid. 

We note, that at 100 K, the value extracted for the molecular polarization factor is p = 

0.78, which indicates that the resultant of all the C–Br bond orientations is close to a single 

orientation. The fact the p is not equal to 1 means that there is still a range (albeit a narrow 

range) of populated C–Br bond orientations at this temperature. This observation indicates 

that either: (a) the BrCH guest molecules still exhibit a certain amount of orientational 

disorder at this temperature and that by cooling the material further, the distribution of 

orientations of the C–Br bonds becomes narrower such that p would approach a value of 1, or 

(b) the value for the polarization factor reflects the fact that, at 100 K, there are two 

components of the BrCH guest molecules (a major and a minor component, see Section 6.2) 

for which the C–Br bonds are oriented in slightly different directions. We speculate that, in 

the latter case, the value p = 0.78 could be obtained if the BrCH guest molecules are 

completely localised but are disordered between two distinct orientations. In support of the 

latter argument, we note that single-crystal diffraction data (Chapter 4) reveals that the 

populations of the major and minor components of the BrCH guest molecules at 110 K are 0.8 

and 0.2 respectively.  
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Figure 6.12. Experimental data (left side) of transmitted X-ray intensity as a function of χ and 

φ for the set-up in Fig. 6.3 at (a) 200 K, (b) 160 K, (c) 130 K and (d) 100 K and the best-fit 

simulations (right side) for the structural model described in Section 6.4. The X-ray energy 

was fixed at 13.493 keV (near the maximum of the Br K-edge).  

 

(a) 

(b) 

(c) 

(d) 
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Our results from the X-ray birefringence study are in excellent agreement with both 

independent single crystal diffraction and NMR studies,
[3-8]

 which revealed that in the low-

temperature phase just below the phase transition temperature, there is no significant increase 

in the ordering of the guest molecules and the extent of disorder remains similar to that in the 

high-temperature phase. It is only at sufficiently low temperatures within the low-temperature 

phase that the orientational properties of the BrCH guest molecules become more localized. 

The results show that there is a gradual and progressive increase in the ordering (and 

molecular polarization) of the guest molecules as the temperature is decreased. We speculate 

that this continuous ordering of the guest molecules is caused by a gradual reduction in the 

dynamics of the guests below the phase transition temperature in which the guest molecules 

gradually organise into one preferred direction as they lose mobility and as the host structure 

contracts.  

6.6 – Conclusions and Further Work 

For the first time, measurements of X-ray birefringence have been employed to 

determine changes in bond orientation in an anisotropic material. Specifically, X-ray 

birefringence measurements have been used to determine the changes in the orientation of the 

C–Br bonds in the BrCH/thiourea inclusion compound associated with an order-disorder 

phase transition in this material. 

 Simulations based on a structural model have been used to determine the structural 

properties of the BrCH guest molecule as a function of temperature. The results reveal an 

extremely close agreement between the experimental and simulated data, thus demonstrating 

the validity of the structural model. Furthermore, the extracted structural parameters obtained 

from the X-ray birefringence data are in exquisite agreement with the same parameters 

obtained independently from diffraction data. In particular, there is extremely close agreement 

between the calculated values of the bond-tilt angle (ψ) and bond-azimuthal angle (ω) of the 

C–Br bonds, determined from the X-ray birefringence data and those obtained from X-ray 

diffraction measurements. This important result demonstrates that X-ray birefringence 

measurements can be used to determine changes the orientational properties of specific bonds 

in solids and is capable of providing reliable structural information on materials. This result 
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forms the basis of a new technique for determining bond orientation using X-ray 

birefringence. 

Temperature dependence studies revealed that, upon cooling below the phase transition 

temperature there is a gradual increase in the polarization and degree of ordering of the BrCH 

guest molecules which reflects a gradual reduction in the dynamics of the guest molecules as 

a function of decreasing temperature. These results are in excellent agreement with previous 

X-ray diffraction and NMR studies. 

We propose performing measurements of transmitted X-ray intensity as a function of 

temperature down to temperatures of ca. 20 K on the BrCH/thiourea material (i.e., a scan of 

the type shown in Fig. 6.8). This will allow the full temperature dependence of this material to 

be determined and will enable us to deduce whether there is a continued increase in the 

ordering of the BrCH guest molecules at temperatures lower than 100 K. We anticipate the X-

ray birefringence signal will eventually "level off" as the BrCH guest molecules become 

completely ordered at which stage the transmitted intensity will remain constant as a function 

of temperature.  

In principle the X-ray birefringence technique described in this chapter could be applied 

to analyse bond orientations in any anisotropic material. In order to extend the scope of the X-

ray birefringence technique, we propose applying it to study a much wider range of materials 

involving several different X-ray absorption edges. We suggest performing experiments on 

solid inclusion compounds containing a range of guest molecules, using the same X-ray 

birefringence set-up used in the present work (Fig. 6.3). We anticipate that these experiments 

will demonstrate the sensitivity and utility of X-ray birefringence as a technique for exploring 

molecular orientational distributions in solids, and will also further extend our structural 

understanding of the specific materials selected for study. 

In particular, we propose studying thiourea inclusion compounds containing several 

organometallic guest molecules (such as ferrocene, benzene chromium tricarbonyl and   

cyclohexadiene iron tricarbonyl) encompassing a range of transition metals with K-edge X-

ray energies. The benzene chromium tricarbonyl/thiourea inclusion compound (Cr K-edge) 

serves as a model system, as there is orientational ordering of the guest molecules even at 
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ambient temperature. On the other hand, the ferrocene/thiourea inclusion compound (Fe K-

edge) is known to exhibit phase transitions at low-temperature involving orientational 

ordering of the ferrocene guest molecules, and clearly a major aim of the proposed X-ray 

birefringence studies would be to establish new insights on the nature of the orientational 

ordering processes in this material. The cyclohexadiene iron tricarbonyl/thiourea inclusion 

compound (Fe K-edge) has orientational ordering of the guest molecules, but with contrasting 

orientational characteristics to benzene chromium tricarbonyl. 

 The experiments described in this chapter were carried out using a narrowly focused 

incident X-ray beam, however in principle these studies could be carried out in "imaging 

mode", specifically using a large (ca. 4 × 4 mm) unfocussed beam and imaging the whole 

crystal simultaneously using an area detector. This set-up represents an X-ray analogue of the 

polarizing optical microscope. This experimental set-up will allow the whole crystal to be 

imaged at the same time, which in principle means that individual orientational domains 

within the crystal could detected. Preliminary X-ray imaging experiments on the 1-

bromoadamantane/thiourea inclusion compound indicate that this is indeed a powerful 

technique for determining information on bond-orientation in materials. 
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Chapter 7 – An Incommensurate Thiourea Inclusion 

Compound 

7.1 – Abstract 

X-ray diffraction studies reveal that the tunnel inclusion compound formed between 1-

tert-butyl-4-iodobenzene and thiourea has an incommensurate relationship between the 

periodicities of the host and guest substructures along the tunnel axis, representing the first 

reported case of an incommensurate thiourea inclusion compound. 

7.2 – Introduction 

Aperiodic crystals are defined, in general terms, as materials that do not have three-

dimensional translational periodicity (and are thus distinct from conventional crystals), but yet 

have aspects of long-range order that give rise to sharp Bragg reflections in their X-ray 

diffraction patterns. Among the different classes of aperiodic structures,
[1-5]

 incommensurate 

materials and quasicrystals have been widely studied, with examples from each of these 

classes encompassing a wide range of chemical types. Interpretation of X-ray diffraction 

patterns from aperiodic materials and elucidation of their structural properties often present 

significant challenges that far exceed the challenges encountered in the study of conventional 

crystals (i.e., those based on three-dimensional translational periodicity). From the viewpoint 

of both diffraction physics and structural science, there is therefore considerable interest in 

understanding the properties of aperiodic materials. In this regard, we note, that the 2011 

Nobel Prize in Chemistry was awarded to Professor Dan Shechtman for the discovery of 

quasicrystals.
[6]

 The discovery of the first member of a potentially wide family of 

incommensurate materials, reported in this chapter, clearly has the potential to open new 

avenues of investigation within this field. 

A classic example of a family of incommensurate materials within organic solid-state 

chemistry are the conventional urea inclusion compounds,
[7-13]

 which are discussed in detail in 

Section 1.2. As outlined in Section 1.2.3, these materials are based on a urea tunnel host 

structure and have an incommensurate relationship
[14-18]

 between the periodicities of the host 
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and guest substructures along the tunnel direction (Fig. 7.1). The analogous thiourea inclusion 

compounds
[19-22]

 are also based on a similar tunnel structure (Section 1.3), but in contrast, 

only commensurate structures of thiourea inclusion compounds have been reported to date 

(see Section 1.3.1). In this chapter, the first example of an incommensurate thiourea inclusion 

compound, specifically containing 1-tert-butyl-4-iodobenzene (BIB; Fig. 7.2) as the guest 

component is reported. 

cg cg cg
cgcgcg cg

ch ch ch ch ch ch ch ch ch ch

cg cg cg
cgcgcg cg

ch ch ch ch ch ch ch ch ch ch

 

Figure 7.1. Schematic representation of a tunnel inclusion compound viewed perpendicular 

to the tunnel axis. The definitions of cg and ch are shown. 

H2N NH2

S

thiourea 1-tert-butyl-4-iodobenzene (BIB)

I

 

Figure 7.2. Host and guest molecules in the BIB/thiourea inclusion compound 

As described in Chapter 1, the host structures in both urea and thiourea inclusion 

compounds are constructed from extensively hydrogen-bonded arrangements of urea or 

thiourea molecules, and contain one-dimensional, non-intersecting tunnels within which the 

guest molecules are densely packed. While the tunnels in urea inclusion compounds are 

suitable for including guest molecules based on a long n-alkane chain, with only a very 

limited degree of substitution permitted, the tunnels in the thiourea host structure have a larger 

cross-section
[23]

 and are able to incorporate a range of bulkier guest molecules with much 

more diverse chemical functionality.  

The host structure in thiourea inclusion compounds is either rhombohedral or 

monoclinic depending on the nature of the guest. When the shape of the guest molecule is 
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essentially isotropic (e.g. cyclohexane, adamantane or ferrocene), the thiourea host structure 

at ambient temperature is usually rhombohedral and the guest molecules generally exhibit 

orientational disorder (static and/or dynamic). This rhombohedral structure is termed the 

"conventional" thiourea host structure. In some cases, thiourea inclusion compounds undergo 

a phase transition to a monoclinic structure at low temperature (an example of this type of 

phase transitions is described in Chapter 4). 

For those crystalline solids that comprise an intergrowth of two chemically 

distinguishable components, such as urea and thiourea inclusion compounds, the terms 

incommensurate and commensurate refer to the relationship between the periodicities of the 

two components within the structure, and define the level of structural registry between them 

(Section 1.2.3). In the case of a tunnel inclusion compound, the periodicities of the guest and 

host substructures along the tunnel axis are denoted cg and ch respectively (see Fig. 7.1). The 

material is assigned as incommensurate if the ratio cg/ch is an irrational number, although it is 

generally of more practical utility (given the experimental errors in the measurement of cg and 

ch) to assign a material as incommensurate if the ratio cg/ch is not equal to a rational number 

of low denominator – i.e., if there are no sufficiently small integers p and q for which 

pch = qcg. Otherwise, if small integers p and q can be found that satisfy the relationship 

pch = qcg, then the material is assigned as commensurate. In this case, the host and guest 

substructures are locked in structural registry, and they share a common periodicity 

c = pch = qcg along the tunnel direction. As four lattice vectors {a, b, ch, cg} are required to 

describe the periodicity of an incommensurate tunnel inclusion compound, the symmetry of 

the composite inclusion compound can be described only using a four-dimensional 

superspace group.
[13, 16]

 

While urea inclusion compounds generally have an incommensurate relationship 

between the periodicities of the host and guest substructures along the tunnel axis (although 

we note that urea inclusion compounds containing certain specific guest molecules are 

actually commensurate – see Section 1.2.3), all thiourea inclusion compounds reported to date 

have been commensurate structures. We note that, although an incommensurate model was 

invoked to explain results of NQR spectroscopy for hexachloroethane/thiourea,
[24, 25]
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subsequent structure determination by single-crystal X-ray diffraction
[26]

 provided conclusive 

evidence that this material is actually a conventional commensurate thiourea inclusion 

compound (with significant disorder of the guest molecules). In this chapter, we report that 

the thiourea inclusion compound containing BIB guest molecules is the first example of an 

incommensurate thiourea inclusion compound. 

7.3 – Experimental 

Crystals of the BIB/thiourea inclusion compound were prepared by cooling a solution of 

urea and BIB (ca. 3:1 molar ratio) in methanol from 55 °C to 20 °C over ca. 29 hrs. 

Translucent needle-shaped crystals were obtained. Powder X-ray diffraction confirmed that a 

sample of the inclusion compound was obtained, containing a small amount of the "pure" 

crystalline phase of thiourea, which forms upon grinding the sample for the powder X-ray 

diffraction measurement. 

Differential scanning calorimetry (DSC) was carried out on a TA Instruments heat flux 

Q100 DSC. The ground sample of BIB/thiourea was subjected to a cycle of cooling and 

heating between 298 and 103 K at cooling/heating rates of 10 K min
–1

. After cooling, the 

sample was held at 103 K for 1 min before commencing the heating cycle. 

Single-crystal X-ray diffraction oscillation photographs were recorded using a Bruker-

Nonius Kappa CCD diffractometer, with the tunnel axis (i.e., c-axis) of the single crystal 

aligned parallel to the oscillation axis. 

Single-crystal X-ray diffraction data were recorded at 100 K using graphite 

monochromated MoKα radiation (λ = 0.71073 Å) on a Bruker-Nonius Kappa CCD 

diffractometer with an Oxford Cryosystems cooling apparatus. Crystal size = 0.40 × 0.25 × 

0.25 mm
3
; no. of measured reflections = 3600; no. of independent reflections = 668; Rint = 

0.0356, R1 = 0.0490, wR2 = 0.1303; λ = 0.71073. The data collection was based on a three-

dimensional reciprocal space corresponding to the "h" (defined in Ref.[13]) diffraction data 

[denoted (hkl)h in Fig. 7.3] for the incommensurate structure. From these data, the thiourea 

host structure was solved by direct methods and refined using SHELX-97.
[27]

 Non-hydrogen 

atoms of thiourea were refined with anisotropic displacement parameters and hydrogen atoms 
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were inserted in idealized positions and a riding model was used with Uiso equal to 1.2 or 1.5 

times the value of Ueq for the parent atom. In structure refinement from the "h" diffraction 

data, the method of introducing guest electron density requires attention, recalling that the 

(hk0) reflections are common to both the "h" and "g" diffraction patterns and thus contain 

information about the guest substructure projected on to the ab-plane (i.e., perpendicular to 

the tunnel axis). Initially, the positional parameters and anisotropic atomic displacement 

parameters for the non-hydrogen atoms of thiourea were refined. The difference Fourier map 

for this host-only model contains significant maxima located in the tunnel, representing guest 

electron density. A carbon atom was added in the position of the highest maximum in the 

difference Fourier map, and its positional parameters and isotropic atomic displacement 

parameter were refined together with the parameters for the non-hydrogen atoms of the host 

structure. This procedure was repeated, adding one carbon atom at a time, until the highest 

peak in the difference Fourier map represented a thiourea hydrogen atom. Finally, hydrogen 

atoms were added to thiourea according to standard geometric features and refined as 

described above. 

Powder X-ray diffraction data were recorded at room temperature on a Bruker D8 

diffractometer (transmission mode; Ge monochromated CuKα1 radiation; data range, 4.000° ≤ 

2θ ≤ 50.832°; step size, 0.017°; time per step, 10 s). Lattice parameters for BIB/thiourea were 

determined by profile fitting using the Le Bail method
[28]

 in the GSAS program package.
[29, 30]

 

Upon grinding the BIB/thiourea sample, a small amount of "pure" thiourea was produced. 

Thus, a two-phase refinement was employed, involving simultaneous profile-fitting for both 

the BrCH/thiourea inclusion compound and pure thiourea. A good quality of fit was obtained 

(Fig. 7.7). 

Two solid-state 
13

C NMR experiments were carried out to assess the mobility of the 

molecules in the BIB/thiourea inclusion compound. Spectra were recorded on a Chemagnetics 

Infinity Plus spectrometer operating at 75.48 MHz. The first experiment was a standard 

ramped cross-polarization
[31]

 experiment performed at 20 °C with 8 kHz magic-angle 

spinning, 83 kHz TPPM decoupling,
[32]

 a 3 s delay between scans and a total of 16384 scans. 

The second experiment was a standard dipolar dephasing measurement, involving of a delay 
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of 100 μs between the cross-polarization pulses and the beginning of signal acquisition, 

during which no decoupling was applied to the 
1
H nuclei. The dipolar dephasing experiment 

is designed to suppress the signal from 
13

C nuclei that are directly bonded to 
1
H nuclei,

[33]
 

except when the motion of the atoms is sufficient to average out the effects of the 
1
H–

13
C 

dipolar coupling  

7.4 – Results and Discussion 

The tunnel-axis X-ray diffraction oscillation photograph (see Section 2.1.7.5 for an 

explanation of oscillation and rotation photography) recorded for BIB/thiourea at 110 K is 

shown in Fig. 7.3. Differential scanning calorimetry showed no evidence for any phase 

transition in BIB/thiourea within the temperature range from 290 K to 103 K (Fig. 7.4), and 

furthermore, no significant changes were observed in the X-ray diffraction oscillation 

photograph as a function of temperature within the range from 280 K to 110 K (Fig. 7.5). 

 

Figure 7.3. Single-crystal X-ray diffraction oscillation photograph recorded for BIB/thiourea 

at 110 K. The single crystal was oscillated about the tunnel axis (c-axis; parallel to ch and cg) 

with oscillation range ±30°. Indexing of the layer lines is shown. 
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Figure 7.4. DSC data for BIB/thiourea showing no evidence of a phase transition 

(Exothermic responsive are shown as positive). 

 

Figure 7.5. Single-crystal X-ray diffraction oscillation photograph recorded for BIB/thiourea 

at (left) 280 K, (middle) 260 K and (right) 190 K. In each case, the single crystal was 

oscillated about the tunnel axis (c-axis; parallel to ch and cg) with oscillation range ±30°. 

 

The oscillation photograph (Fig. 7.3) clearly exhibits two distinguishable sets of 

diffraction layer lines (horizontal in Fig. 7.3), characterized by different periodicities along 

the tunnel axis (vertical in Fig. 7.3). The zero layer line (hk0) is common to the diffraction 

patterns of both the host and guest substructures, but there is no coincidence of any other 

higher-order layer lines from the host and guest substructures. To a first approximation, one 

set of layer lines [denoted (hkl)h in Fig. 7.3] can be attributed to diffraction from the host 

substructure (i.e., the "h" diffraction pattern) and the other set of layer lines [denoted (hkl)g in 

Fig. 7.3] can be attributed to diffraction from the guest substructure (i.e., the "g" diffraction 
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pattern). As the oscillation axis in Fig. 7.3 is the tunnel axis, each layer line is characterized 

by a given value of the l index. Although the guest substructure and the host substructure are 

each periodic along the tunnel direction, they do not share a common periodicity, and the 

structure is assigned as incommensurate. In principle, every BIB guest molecule within a 

given tunnel has a slightly different environment with respect to the host substructure (see 

Fig. 7.1), and the guest molecules do not occupy any preferred position with respect to the 

unit cell of the host substructure. 

The X-ray diffraction oscillation photographs (Figs. 7.3 and 7.5) clearly show the 

presence of diffuse bands of scattering (sheets perpendicular to the channel axis) arising from 

the guest component, which indicates one-dimensional ordering of the guest molecules along 

the tunnel axis. The absence of Bragg diffraction maxima within the "g" diffraction pattern 

suggests that the guest substructure is not ordered in three-dimensions. Thus, there is no inter-

tunnel ordering of the guest molecules. In contrast, other incommensurate tunnel structures, 

including certain families of urea inclusion compounds
[34-37]

 (see Section 1.2.4), exhibit three-

dimensional ordering of the guest (evident from some localization of X-ray intensity in the 

form of Bragg diffraction maxima within the diffuse sheets in the "g" diffraction pattern). 

The periodic repeat distance (cg) of the guest molecules along the tunnel axis in 

BIB/thiourea, determined from the spacing of the "g" layer lines in Fig. 7.3, is ca. 11.05 Å (at 

110 K). This value of cg is close to the length of the BIB molecule (estimated, including van 

der Waals radii, to be 11.17 Å), suggesting that the guest molecules are densely packed along 

the tunnels, with the molecular axis (parallel to the C–I bond) aligned, on average, close to the 

tunnel axis. At the same temperature, the periodic repeat distance of the host structure along 

the tunnel is ch = 12.47 Å, and hence ch/cg = 1.129. 

The thiourea host structure in BIB/thiourea was determined from single-crystal X-ray 

diffraction data, comprising measurement of the "h" diffraction data only (see Section 7.3). 

As discussed in Ref. [13], structure determination using the "h" diffraction data clearly allows 

the host structure to be determined, although it is important to note that the "h" diffraction 

data also contains subtle information concerning the guest substructure. First, the (hk0) 

reflections (which are common to both the "h" and "g" diffraction patterns) provide two-
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dimensional information on the guest substructure projected on to the plane perpendicular to 

the tunnel axis. Second, the "h" reflections (hkl)h with l ≠ 0 convey information about 

incommensurate perturbations within the guest substructure [these perturbations arise from 

host-guest interaction and have the same periodicity (ch) as the basic host structure along the 

tunnel]. Although this "perturbation electron density" conveys important structural 

information, it is more satisfactory to establish a comprehensive understanding of the inter-

modulation of the host and guest substructures in incommensurate inclusion compounds by 

determining the structure of the composite inclusion compound in a four-dimensional 

superspace group by combined analysis of the "h" and "g" diffraction data together. 

Unfortunately, such analysis is not feasible in the present case as there are no Bragg 

diffraction maxima (hkl)g of significant intensity in the "g" diffraction pattern. Thus, the 

structure determination calculations have been restricted to analysis of the "h" diffraction data 

only, which yield: (i) the thiourea host structure, and (ii) an average guest electron 

distribution, which has a straightforward physical interpretation only when projected on to the 

plane perpendicular to the tunnel axis. 

The thiourea host structure (Fig. 7.6) determined from the "h" diffraction data is 

rhombohedral (R3̄c). The crystallographic data for BIB/thiourea are as follows: trigonal, R3̄c; 

T = 110(2) K; a = 15.6697(6) Å, c = 12.4688(4) Å, V = 2651.41(17) Å
3
; Z = 18. This result is 

in agreement with analysis of powder X-ray diffraction data obtained at ambient temperature 

on BIB/thiourea. The powder X-ray diffraction pattern at room temperature can be indexed on 

the basis of a rhombohedral lattice [a = 15.82 Å, c = 12.51 Å (hexagonal setting)] and the 

systematic absences are consistent with space group R3̄c. The unit cell parameters obtained 

from the powder X-ray diffraction data for BIB/thiourea were determined by profile fitting 

using the Le Bail method (see Section 7.3). Figure 7.7 shows the results from the Le Bail 

fitting. We note that a small amount of pure thiourea may be produced during grinding of the 

sample. Thus, a two-phase refinement was employed, involving simultaneous profile-fitting 

for both the BrCH/thiourea inclusion compound and pure thiourea. A good quality fit was 

obtained (Fig. 7.7). 
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Figure 7.6. The crystal structure of BIB/thiourea viewed (left) along the c-axis and (right) 

perpendicular to the c-axis, showing the guest electron density as "smeared out" along the c-

axis, as a consequence of the fact that only the "h" diffraction data were used for structure 

determination of the incommensurate structure. 

 

Figure 7.7. Results from Le Bail fitting of the powder X-ray diffraction pattern for 

BIB/thiourea recorded at room temperature. The plot shows the experimental (red + marks), 

calculated (green line) and difference (purple) powder diffraction profiles. The calculated 

reflection positions for the BIB/thiourea inclusion compound (black tick marks) and pure 

thiourea (red tick marks) are shown. 
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The thiourea host structure determined from single X-ray diffraction data does not 

exhibit any significant differences from the conventional rhombohedral thiourea tunnel 

structures reported previously. However, as discussed above, all cases of conventional 

thiourea inclusion compounds reported previously have a commensurate relationship between 

the host and guest substructures. Although the guest molecules have a well-defined 

periodicity (cg) along the tunnel direction in BIB/thiourea, as evident from Fig. 7.3, there is no 

ordering with regard to the positional relationships between the guest molecules in different 

tunnels, and thus the guest substructure is periodic only in one dimension. Furthermore, the 

projection of the guest electron density onto the plane perpendicular to the tunnel axis (Fig. 

7.3) suggests that there is substantial orientational disorder of the guest molecules around the 

tunnel. 

In order to gain qualitative insights on whether the guest molecules in BIB/thiourea are 

dynamic, high-resolution solid-state 
13

C NMR spectra were recorded at 20 °C using both 

standard CPMAS conditions and using dipolar dephasing.
[33]

 The dipolar dephasing 

experiment is designed to suppress the signals from 
13

C nuclei that are directly bonded to 
1
H 

nuclei. However, when the 
13

C–
1
H bond is sufficiently mobile to average out the effects of 

13
C...1H dipolar coupling, such signal suppression does not occur. For BIB/thiourea, no signal 

suppression was observed, indicating that both the aryl ring and the tert-butyl group of the 

BIB molecules are dynamic (as often observed for tert-butyl groups in solids
[38]

). The 

dynamics most likely constitute rotation about the tunnel axis, as no other reorientational 

motion appears feasible given the geometric constraints imposed by the host tunnel  

7.5 Conclusions and Further Work 

This chapter has demonstrated that BIB/thiourea is the first example of an 

incommensurate thiourea inclusion compound. Given the fact that a large number of thiourea 

inclusion compounds, containing a diverse range of different types of guest molecules within 

the thiourea tunnel structure, have been prepared and studied previously, it is perhaps 

surprising that incommensurate structural properties have not been reported previously for 

this class of inclusion compound. Research is currently focussed on exploring whether 

BIB/thiourea represents a unique case, or whether other guest molecules (perhaps sharing 
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similar structural and geometric attributes to BIB) are also capable of forming 

incommensurate inclusion compounds with thiourea. In particular, ongoing experiments are 

investigating whether the thiourea inclusion compounds containing 1-tert-

butylbromobenzene, 1,4-di-tert-butylbenzene, adamantane-carboxylic acid and 4-tert-butyl-

benzylbromide exhibit incommensurate structures, to determine empircally whether there are 

any trends in the geometric features of guest molecules that form incommensurate thiourea 

inclusion compounds. 

 Conceptually, the diffraction properties and structural descriptions of incommensurate 

materials extend beyond the normal crystallographic principles that are applicable to 

conventional crystals, and clearly an important aspect is to obtain a deeper understanding of 

the ways in which the physical properties of such materials are influenced by their 

incommensurateness. In this regard, a theoretically proven
[14]

 feature of incommensurate 

tunnel inclusion compounds is that diffusion of guest molecules along the tunnels is, in 

principle, associated with no energy barrier, and it has been suggested that this feature is an 

important component of uni-directional guest exchange processes that have been 

demonstrated for incommensurate urea inclusion compounds.
[39, 40]

 We may envisage that 

such guest transport processes may also occur in the case of incommensurate thiourea 

inclusion compounds, such as BIB/thiourea. 
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Chapter 8 – General Conclusions and Outlook 

This thesis has explored several new directions in the field of solid organic inclusion 

compounds. In particular, new insights have been gained into the crystal growth processes, 

structural properties and X-ray birefringence phenomenon of urea and thiourea inclusion 

compounds. The diverse studies presented in this thesis are unified by two overarching 

questions, namely: Does the unique spatial environment imposed on the guest molecules by 

the host framework in channel-type inclusion compounds impart important fundamental 

physico-chemical properties to these materials and can these properties be exploited in the 

discovery of new applications? It is the desire to explore these questions which has stimulated 

research along a number of different pathways in this thesis. 

For example, in chapter 3, the unique one-dimensional tunnel environment of the urea 

host structure allows two different types of guest molecules to be incorporated into the crystal 

simultaneously (without any change in crystal structure), thus enabling a new experimental 

strategy to be developed for monitoring crystal growth processes retrospectively.
[1]

  

In chapter 4, the importance of the spatial environment of the host and guest 

components on the physical properties of these materials was highlighted, focussing on the 

dependence of the phase transition behaviour of thiourea inclusion compounds on small 

geometric changes in the guest molecules. The study revealed the subtle yet important 

changes that can occur in phase transition behaviour simply by substitution of a single atom in 

the guest molecule. This observation reflects the fine energetic balances that pertain in these 

materials and the role of small changes in intermolecular interactions involving the host and 

guest components.
[2] 

Furthermore, in chapters 5 and 6 we noted that the phenomena of X-ray dichroism and 

X-ray birefringence (and related applications) are observed in these materials because of the 

directing influence of the host structure on the orientation of the guest molecules. Indeed, the 

ability of particular chemical bonds of the guests to align in these materials (a fundamental 

pre-requisite for both X-ray dichroism and X-ray birefringence) is due to the strong orienting 

influence of the host structure on the guest molecules. Thus, with appropriate choice of both 
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the host structure and the guest molecules, materials can be designed in which the orientations 

of specific bonds of the guest molecules can be exquisitely controlled.
[3]

  

Historically, these same questions motivated early endeavours in the field. Indeed, it 

was the prospect of utilising the constrained spatial environment of one-dimensional channel 

inclusion compounds that inspired early researchers to focus on applying these materials in 

molecular separation technologies, particularly in the separation of linear and branched 

hydrocarbons relevant to the petroleum industry.
[4-7]

 And we predict that these same questions 

will also shape future advances in the field: In this regard, we highlight three potential 

applications of inclusion compounds with significant potential for future development, each 

of which depends critically on the one-dimensional tunnel structure of these materials. 

Since the early days of inclusion compound research, both urea and thiourea inclusion 

compounds have been exploited as environments for carrying out chemical reactions 

involving the guest molecules.
[8,9]

 In most cases, the guest molecules are included into the 

host structure upon crystallization and the reaction is initiated by irradiation of the material. 

The reactivity of the guest molecules inside inclusion compounds often differs substantially 

from the reactivity of the same molecules in dispersed phases, or in other solid phases (such 

as their “pure” crystalline phase or as guest molecules in other host solids) as described in a 

recent review.
[10]

 These differences devolve, to a large extent, on the structural and geometric 

constraints imposed on the guest molecules by the host environment, and specific factors 

include: (i) the guest molecules may be constrained to adopt an uncharacteristic conformation 

within the inclusion compound, which may in turn lead to different chemical reactivity; (ii) 

the guest molecules are generally less mobile than in the liquid phase, but generally more 

mobile than in their “pure” crystalline phase; (iii) the specific intermolecular guest–guest 

contacts in the inclusion compound may differ from those in the “pure” crystalline phase of 

the same molecule, and may represent low-probability trajectories of approach of two free 

molecules in dispersed phases; (iv) the relative energies of transition states with different 

geometries (representing competing reaction pathways) within a solid host structure may be 

very different from the relative energies of the transition states for the corresponding reactions 

in other phases, leading to changes in the relative probabilities of different reaction pathways. 
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Utilising solid inclusion compounds as crystalline "reaction vessels" for performing 

organic syntheses offers numerous advantages over traditional dispersed-phase techniques, 

not least because of the increased regioselective and stereoselective control often afforded by 

this methodology and because, in many cases, the same reaction products are difficult or 

impossible to access via conventional solution based synthesis. In spite of this fact, however, 

reactions in solid organic inclusion compounds remain totally unexploited within the domain 

of synthetic organic chemistry. The quest to develop new and more imaginative ways of 

exploiting reactivity within solid organic inclusion compounds is likely to remain a 

scientifically stimulating and rewarding area of research activity for many years to come. 

Secondly, thiourea inclusion compounds have been shown to display non-linear optical 

behaviour, indicating that they may have the potential to be used in optoelectronic 

devices.
[11,12]

 Thiourea inclusion compounds containing certain organometallic guest 

molecules exhibit second harmonic generation (SHG), i.e., the frequency doubling of light as 

it passes through a material. For a crystal to exhibit SHG, the constituent molecules must have 

high second-order hyperpolarizabilty (β) and the crystal structure must be non-

centrosymmetric. The tunnel structure of certain thiourea inclusion compounds provides an 

environment in which guest molecules (with high values of β) may be aligned in a non-

centrosymmetric manner, thus satisfying both of the criteria for SHG. In a number of thiourea 

inclusion compounds, the dipole alignment of organometallic guest molecules was found to 

be favoured and these compounds exhibit significant SHG. For these materials to become 

fully integrated into optoelectrical devices, more work needs be done on increasing the variety 

of host structures available, improving their stability and finding new guest molecules which 

exhibit stronger SHG behaviour. 

Finally, urea
 
and thiourea inclusion compounds containing certain guest molecules have 

been found to be strongly X-ray dichroic.
[13-15]

 These materials have been applied successfully 

as X-ray dichroic filters and have been shown to have considerable potential in applications 

such as magnetic X-ray scattering and X-ray polarimetry. As described in chapters 5 and 6, 

the related phenomenon of X-ray birefringence has also been observed in several thiourea 

inclusion compounds containing brominated guest molecules.
[3]

 The strong dependence 
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between X-ray birefringence and the orientational properties of the C–Br bonds in these solids 

suggests that there is considerable potential to exploit measurements of X-ray birefringence as 

an experimental technique for assessing and quantifying the orientational distributions of 

bonds in solids, for example, in the case of partially ordered materials or materials that 

undergo order–disorder phase transitions. To demonstrate the wider scope and relevance of 

this technique, more materials containing different types of chemical bonds need to be 

characterised. Other potential applications which depend on birefringence include materials 

for use as non-diffractive fixed-wavelength X-ray phase retarders, which may be applied, for 

example, to convert linearly polarized X-rays to circularly polarized X-rays. Devices based on 

this approach are potentially quite efficient and far less sensitive to beam angle than 

diffractive devices (i.e., a few degrees of divergence should have little effect, compared with 

divergence of the order of millidegrees in the case of diffractive devices). 
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Appendix A1 – Le Bail Fitting of Powder X-ray 

Diffraction Patterns for BrCH/thiourea 

This appendix shows the results from Le Bail fitting of powder X-ray diffraction 

patterns for BrCH/thiourea recorded from 295 – 30 K, referred to in Section 4.4. In each case, 

the plots show the experimental (red + marks), calculated (green line) and difference (purple) 

powder diffraction profiles. The calculated reflection positions for the inclusion compound 

(black tick marks) and pure thiourea (red tick marks) are shown. For the Le Bail fit at 236 K 

(i.e., very close to the phase transition temperature) a three-phase refinement was employed, 

involving simultaneous profile-fitting for both the high-temperature (blue tick marks) and 

low-temperature (black tick marks) phases of BrCH/thiourea and for pure thiourea (red tick 

marks). The coalescence of the high-temperature and low-temperature phases of 

BrCH/thiourea at this temperature suggests, that some of the BrCH/thiourea failed to 

transform to the low temperature phase, either as a result of a super-cooling of the high 

temperature phase, or by a small temperature gradient within the sample plinth.  
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Appendix A2 – Temperature Dependence of the 

Lattice Parameters for BrCH/thiourea 

This appendix shows a comparison of the temperature dependence of the lattice 

parameters (am, bm, cm, βm) and unit cell volume (Vm) for BrCH/thiourea, determined from 

powder and single-crystal X-ray diffraction data, referred to in Section 4.4. The results 

obtained from the powder X-ray diffraction data are shown in black and the results obtained 

from the single-crystal X-ray diffraction data are shown in green (for the cooling cycle) and 

blue (for the heating cycle). The red dashed line indicates the phase transition temperature. 

The lattice parameters are referred to the monoclinic unit cell as discussed in the text.  
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Appendix B – Theoretical Framework for X-ray 

Birefringence Simulations 

In Appendix B the theoretical framework used to simulate the type of data measured 

using the experimental set-up shown in Fig. 5.6 of Chapter 5 is described. We assume the 

general case in which neither the X-ray source nor the X-ray polarization analyzer is ideal. 

Thus, the source is allowed to have arbitrary polarization and the scattering angle of the 

analyzer is allowed to differ from 90°. Our method to compute the X-ray intensity emerging 

from the assembly of crystal and polarization analyzer is based on a set of matrices and is 

described in detail in the literature,
[1-3]

 from which the ratio of transmitted intensity (I1) to 

incident intensity (I0) is given by:  

   pp AAAA
I

I
Tr

0

1 , (A.1) 

where μ is the polarization density matrix (which describes the state of polarization of the 

incident beam), A is the sample transmittance matrix (which gives a complete description of 

the polarization dependence of the transmitted wave amplitude through the sample) and Ap is 

the transmittance matrix of the polarization analyzer. The trace (sum of diagonal elements) 

and Hermitian conjugate (complex conjugate of the transpose of a matrix) are represented by 

Tr and + respectively. The above expression provides a framework for describing a very 

general experimental scenario. We now consider each of the individual matrices required for 

the calculation.  

The matrix A describes the effect on the amplitude and polarization of the X-ray beam 

due to passing through the sample, by considering the response to two orthogonal polarization 

basis vectors corresponding to linear polarization along x and y (see Section 5.4; Fig. 5.6). 

These axes can be chosen arbitrarily with the constraint that z is parallel to the direction of 

propagation of the beam. In the present case, the x-axis is taken as the horizontal plane of 

linear polarization. In the simplest case of isotropic absorption, the transmittance matrix takes 

the form: 
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where γ = γ' + iγ'' is the complex linear absorption coefficient, and the emerging amplitude for 

an incident wave of pure polarization is given by ε1 = Aε0. For example, if the polarization is 

taken along x, then ε0 = ε0x̂   and hence ε1 = Aε0 = ε0 x̂ e
−γt/2

. As expected for an isotropic 

material, there is no change in the polarization, although both the phase and amplitude of the 

emerging beam may be different from those of the incident beam. However, as overall phase 

is not important in the present context, the resulting intensity ratio reduces to the conventional 

form:  

 
te

I

I 



 
2

0

2

1

0

1 . (A.3) 

If the material is anisotropic, with optic axes along x and y, then two different values of γ't are 

required in the matrix, and linear dichroism gives a different emerging beam intensity for 

polarization along these axes. In the most general case of an anisotropic material with 

arbitrary optic axes, the transmitted intensities along x and y are different, and the beam can 

emerge with an altered polarization state. Thus, for each incident polarization state, the 

emerging beam has amplitudes along both the x-axis and the y-axis, and as two amplitudes are 

present, their relative phase plays a significant role. The complex absorption coefficients are 

given in matrix form as: 

 
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. (A.4) 

For this general case, the relationship between the transmittance matrix and the absorption 

coefficients is rather complicated, as we must now consider the exponential of a matrix rather 

than just a number. The required relationship is given
[3]

 as: 
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where 
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 yxxyyyxx

t
 4)(

4

2  . (A.6) 

So far, we have considered the two-dimensional situation, as the X-ray photon (a transverse 

wave) probes only two dimensions of the sample. However, it is often useful to consider the 

properties of the crystal in three dimensions, in order to carry out transformations (such as 

rotations) to allow for an arbitrary crystal orientation and to apply known crystal/molecular 

symmetry properties. This matrix transforms as a second-rank Cartesian tensor and, in the 

absence of magnetism, is a symmetric second-rank tensor. In this case, the maximum number 

of independent (complex) parameters is six, and the absorption properties of the crystal can be 

visualized as an ellipsoid. Clearly, depending on the symmetry properties of the crystal, the 

number of independent parameters may be less than six. In the present case of uniaxial 

anisotropy (dictated by the trigonal symmetry of the crystal) with the c-axis of the crystal (the 

unique crystallographic axis) aligned along the x-axis, we have: 
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where γx and γy are defined below. We now require only to transform this matrix into the 

coordinate system of the photon and to remove the redundant (z) projection. The rotation is 

carried out by a set of rotation matrices, and here we consider only rotations through an angle 

χ about the z-axis. Hence: 

 z
x

z RR
~

  , (A.8) 

where the tilde indicates a transpose, 

 














 



100

0cossin

0sincos






zR , (A.9) 

and the two-dimensional form of the absorption coefficient matrix is simply the 2 × 2 

elements at the top left of the 3 × 3 matrix. 

Next, we consider the much simpler case of the transmittance matrix (Ap) of the 

polarization analyzer. The sensitivity of this device relies on the well-documented 
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polarization dependence in X-ray scattering. When the scattering angle 2θ is exactly 90°, the 

device is a perfect polarizer, which transmits (albeit with some intensity loss) only the linear 

polarization component perpendicular to the scattering plane. Details can be found in the 

literature.
[2, 4]

 The corresponding matrix is: 

 






 






cos2cossin2cos

sincos
pA , (A.10) 

where η is the angle between the plane of polarization of the transmitted X-rays and the x-

axis. In the present case, η = 90° and so 

 






 


02cos

10


pA , (A.11) 

which selects mainly (and exclusively for η = 2θ = 90°) the y-polarized component. With 

incident polarization along the x-axis, this situation corresponds to the "crossed-polarizer" 

configuration. 

The matrix μ describes the polarization state of an arbitrary, partially polarized incident 

X-ray beam, and can be expressed in terms of Stokes parameters
[1] 

as: 

 













321

213

1

1

2

1

PiPP

iPPP
 , (A.12) 

where P3, P1 and P2 are, respectively, the Stokes parameters for linear polarization along x, 

linear polarization at 45° from x in the xy-plane, and circular polarization. The total 

polarization P is given by: 

 12
3

2
2

2
1

2  PPPP , (A.13) 

with P = 1 for a completely polarized beam. For the present case, with almost perfect linear 

polarization along the x-axis, we have P1 = P2 = 0 and P3 = 1, and hence: 

 









00

01
 . (A.14) 

By inserting these matrices [given by equations (A.5), (A.11) and (A.14)] into equation (A.1), 

we can simulate the X-ray intensity spectra recorded in the type of experimental set-up shown 

in Fig. 5.6 for the general case of: (i) any sample for which the absorption is dominated by 
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electric dipole transitions, (ii) a non-ideal polarization analyzer, (iii) any polarization of the 

incident beam, and (iv) any orientation of the crystal. 

For illustration, we consider the case of a material with γxx = γ + Δγ/2 and γyy = γ – Δγ/2, 

where Δγt << 1, which is rotated by 45° about the z-axis to give the maximum birefringence 

signal. We consider the case of perfect linear polarization along x and a perfect polarization 

analyzer that transmits only the (rotated) y component. This scenario produces a complex 

absorption coefficient matrix: 

 

















2/

2/
, (A.15) 

leading to a transmitted intensity ratio given by: 

    222

4
0

1 '''    tte
I

I
. (A.16) 
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