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Expression of CD200 on AML blasts directly suppresses memory
T-cell function

Leukemia (2012) 26, 2148–2151; doi:10.1038/leu.2012.77

Previous studies have shown that immunosuppression in acute
myeloid leukemia (AML) is associated with changes in the
adaptive immune compartment. Such changes include the
suppression of memory T-cell function1 and the suppression of
Th1 cytokine (TNFa, IL-2 and IFNg)-producing cells.2 A suppressed
immune response in AML is associated with a worse patient
outcome and increased risk of relapse,3 as well as increased risk of
infection impairing patient recovery.4 The over-expression of the
immunosuppressive ligand CD200 is also associated with an
increased risk of relapse in AML (hazard ratio 1.7); an observation
consistent with a hypothesis in which CD200 inhibits clearance of
residual disease.5,6 As memory T-cell responses are central for
tumor immunosurveillance and contribute to prolonged
molecular remission,7 we carried out this study to establish how
these responses were affected in AML patients over-expressing
CD200 (Supplemental Table S1). We initially investigated whether
CD200 expression on AML blasts influenced CD8þ T-cell cytotoxic
potential and the frequency of TNFa-, IL-2- and IFNg-producing
CD4þ /CD8þ memory T-cells (Supplementary Materials and
Methods and Supplemental Figure S1 for gating strategy). Using
CD107a as a marker of cytotoxic function, AML cells were
activated with PMA/ionomycin. We show that the frequency of
CD107aþCD8þ memory T-cells was significantly reduced by
B50% for CD200hi patients when compared with CD200lo AML,
demonstrating that cytotoxic memory T-cell activity was

compromised in CD200hi patients (Figure 1a). Furthermore, the
frequencies of TNFa-, IL-2- and IFNg-producing CD4þ memory
cells were also reduced by B50% for CD200hi patients when
compared with CD200lo AML (Figure 1b), significantly so in the
case of IL-2 and IFNg. Interestingly, CD200lo patients displayed a
higher IFNg response, not only with respect to CD200hi patients
but also in comparison to healthy donors, suggesting a role for
this cytokine in AML, which is attenuated by CD200. No difference
was observed for TNFa-, IL-2- and IFNg-producing CD8þ memory
cells between CD200hi, CD200lo and healthy donors (data not
shown). CD200 has also been reported to mediate suppression of
the Th1 response in chronic lymphocytic leukemia as well as solid
tumors,8,9 suggesting that CD200-mediated Th1 suppression is a
central mechanism in cancer immunomodulation.

The ability to simultaneously produce TNFa, IL-2 and IFNg is
an important indicator of ‘T-cell quality’ in anti-tumor/viral
responses.10 We therefore simultaneously measured the
production of all these cytokines in CD200hi and CD200lo

patients after PMA/ionomycin stimulation (Supplemental Figure S1).
A significant reduction (30%) in CD4þ memory T-cells capable of
simultaneously producing TNFa, IL-2 and IFNg was observed in
CD200hi compared with CD200lo AML patients (Figure 1c).
Although a similar reduction was observed within the CD8þ

memory cells, the changes in this subpopulation were less
consistent and were not statistically significant (Supplemental
Figure S2). To assess if CD200 expression on AML blasts influences
the memory Th1 response through an antigen-specific mechan-
ism, we compared T-cell responses with common microbial recall
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antigens (PPP) by ELISPOT (Supplementary Materials and
Methods).11 We observed a significant 75% reduction in the
frequency of IFNg-secreting T-cells towards PPP in CD200hi

vs CD200lo AML (Figures 1d and e). CD200 expression level
did not influence the overall frequency of CD3þ lymphocytes
(Supplemental Figure S3), demonstrating that the difference
observed in these cohorts was due to T-cell inhibition in CD200hi

patients and not due to a decrease in overall T-cell frequency or
increase in AML blasts. Thus, we show for the first time (in any
context) that CD200 expression in AML is associated with the
suppression of Th1 memory T-cell quality and function. Not only
does this finding demonstrate that the memory T-cell response in
CD200hi patients is suppressed through an antigen-specific
mechanism, but suggests that CD200 expression may exacerbate
the susceptibility of leukemia patients to common microbial
infections, which may impair patient recovery.4 This notion is
supported by a study from Snelgrove et al., who demonstrated in
a murine model that CD200 expression suppresses T-cell
responses towards influenza.12

To demonstrate that this immunosuppression was functionally driven
by CD200, we asked whether blocking CD200 could also recover the
AML Th1 memory T-cell response. Figures 2a and b show a significant
recovery of memory T-cells secreting IFNg for CD200hi patients in an
ELISPOT assay, raising the possibility that AML blast CD200 was directly
interacting with memory T-cells via CD200R. Flow cytometric data
confirmed CD200R expression on memory T-cells from AML patients
(Figure 2c), supporting previous literature using healthy subjects.13

To rule out the possibility of indirect suppression through antigen-
presenting cells, we next carried out a refined assay in which a
CD4þ T-cell clone (Belx2)14 was co-cultured with K562 cells, which
differed solely in their expression of CD200 (Supplemental Figure
S4).15 We showed a significantly impaired TNFa response in
CD200hi K562 cells compared with control co-cultures (Figure 2d).
We also observed a significant suppression in IL-2 and IFNg
production with a loss of multi-functionality in terms of TNFa and
IFNg production in the presence of CD200þ cells (Supplemental
Figure S4), though the frequency of Belx2 cells producing IFNg
and IL-2 was minimal compared with TNFa under these assay
conditions. Adding anti-CD200 to the CD3/CD28-stimulated assay
could significantly recover TNFa production in CD200þ co-
cultures to the same level as CD200� co-cultures (Figure 2d),
thus demonstrating that blockade of CD200 alone is sufficient to
recover memory T-cell activity. The data also show that the
intensity of TNFa was decreased (though not significantly) in
CD200þ cultures, which was fully recovered by the addition of

anti-CD200 (Figure 2e). This finding indicates that CD200 can
suppress both the magnitude and intensity of the memory Th1
response in AML and that blocking CD200 in this disease may be
therapeutically advantageous.

Previously, we have shown that CD200 on AML cells directly
impairs NK cell function.15 However, CD200 expression may not
always promote immunosuppression in every context. One study
using a CD200þ mouse plasmacytomal model showed that
CD200 had the capacity to decrease production of the suppressive

Figure 1. Cytotoxic T-cell response and Th1 memory/recall response
in CD200hi and CD200lo AML patients. AML patient cytotoxic and
intracellular Th1 cytokine memory T-cell responses were measured
by flow cytometry following PMA/ionomycin stimulation (for full
methods and flow cytometric gating strategies see Supplementary
Materials and Methods and Supplemental Figure S1). (a) Summary
data illustrating a significant difference in CD107aþCD8þ memory
T-cells between CD200hi and CD200lo AML patients. (b) The
production of TNFa, IL-2 or IFNg for CD200hi, CD200lo and healthy
donors for CD4þ memory T-cells. (c) Pie charts summarizing the
proportion of CD4þ and CD8þ memory cells capable of producing
one (1¼ TNFa, IL-2 or IFNg), two (2¼ TNFa/Il-2, TNFa/IFNg or IFNg/IL-2)
or three (3¼ TNFa/IL-2/IFNg) cytokines simultaneously for CD200hi

or CD200lo (refer to Supplemental Figure S1 for Boolean analysis).
The ability of T-cells from CD200hi and CD200lo AML patients
to mount recall responses to common microbial antigens
(PPP, Supplementary Materials and Methods) was assessed by IFNg
ELISPOT. (d) Representative ELISPOT wells for CD200hi and CD200lo

patients. (e) Average spots per well for CD200hi and CD200lo

patients. AML patient data represents mean±1 s.d., n¼ 9 for
CD200hi and n¼ 12 for CD200lo. wPo0.05, analyzed by one-tailed
unpaired t-test; *Po0.05, analyzed by one-way ANOVA with Tukey’s
multiple comparison test.
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cytokine IL-10 from tumor-associated myeloid cells resulting in an
improved anti-tumor response.16 Whether this mechanism exists
in human AML remains to be elucidated. Taken together, the data
presented here this suggests that at diagnosis, when the disease
burden is high, the main mechanism of CD200 is to drive
immunosuppression through direct interaction of CD200 on
leukemia cells with CD200R on cells of the adaptive immune
system. The situation may be different following reduction of
tumor burden post-chemotherapy, where the influence of Treg
cells may become a dominant factor in immunosuppression.17

In conclusion, we show for the first time that CD4þ Th1
memory and memory cytotoxic responses are significantly
compromised in CD200hi AML patients, which may contribute to
the increased risk of relapse and worse overall survival observed in
these patients. Most importantly we demonstrate that CD200 on
leukemia cells directly suppresses T-cell responses, supporting the
use of CD200-blocking therapy for the treatment of AML.
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Elucidation of a novel pathogenomic mechanism using
genome-wide long mate-pair sequencing of a congenital t(16;21)
in a series of three RUNX1-mutated FPD/AML pedigrees

Leukemia (2012) 26, 2151–2154; doi:10.1038/leu.2012.79

Familial platelet disorder with propensity to develop myeloid
malignancy (FPD/AML OMIM 601399) is an autosomal disorder
characterized by quantitative and qualitative platelet anomalies
and predisposition to MDS/AML, caused by germ line point
mutations, deletions and duplications in RUNX1.1–4 RUNX1
encodes a transcription factor essential for definitive hemato-
poiesis, containing an amino-terminal DNA binding domain
(RUNT) and a carboxyl-terminal transactivation domain (TA).
RUNX1 mutations act by either a dominant negatively interfering
mechanism or by haploinsufficiency. Constitutional deletions
spanning RUNX1 have been reported in isolated congenital or
syndromic thrombocytopenia, stipulating copy number analysis
(CNA) of RUNX1 next to sequencing.5–8 Given clinical heterogeneity,
vigilance in diagnosing FPD/AML is required, reducing the risk of
stem cell transplantation (SCT) with carrier siblings.2,3 Furthermore,
the identification of a RUNX1 abnormality and the elucidation of the
underlying pathogenomic mechanism may have implications for
genetic counseling for recurrence risk of FPD/AML.

This study included two families with classical FPD/AML and
one seemingly isolated case with storage pool deficiency (SPD),
thrombocytopenia and AML. All patients were of Caucasian origin.
For detailed clinical and hematological characteristics of the
pedigrees, we refer to Supplemental Table S1. RUNX1 was
analyzed by Sanger sequencing of coding exons 2–9 of gDNA
using intronic primers.

In pedigree 1, gDNA was extracted from peripheral blood (PB)
of III-2, III-3 and IV-1. A c.508 G4A was detected in RUNX1c exon 4
in affected family members III-2 and IV-1 causing an amino-acid
substitution p.Gly170Arg (Figure 1), which is located in the RUNT

domain. Somatic mutations within this codon have been reported
in sporadic AML/MDS.9 RUNT domain mutations have been
related to a negatively interfering mechanism in FPD/AML.10 The
unaffected mother (III-3) as well as DNA from 100 controls lacked
the mutation. No DNA was available of the affected daughter V-2
and of IV-3 diagnosed with AML at age of 3 years.

In pedigree 2, sequencing of PB gDNA of III-1, III-5, IV-5 and IV-6
revealed a c.784C4T substitution in RUNX1c exon 6 in all four
affected family members causing a premature stop (p.Gln262X)
that would result in a truncated RUNX1 protein lacking the TA
domain. DNA from 138 controls lacked the mutation. Similar
mutations in FPD/AML and sporadic MDS/AML have been
reported previously.3,10 Interestingly, III-5 developed refractory
anemia with excess blast with acquired trisomy 21, recurrently
reported in FPD/AML.2,4

In the index case of pedigree 3 (III-5), sequencing of RUNX1 on
DNA of leukemic bone marrow (BM) did not reveal mutations.
gDNA was analyzed using a 105K oligonucleotide array (Agilent,
Santa Clara, CA, USA), Oxford design, Amadid 0190015) and the
Infinium HumanHap370 Genotyping BeadChip array (Illumina Inc.,
San Diego, CA, USA) containing 370 000 SNPs with a median probe
spacing of 8 kb for copy number changes of RUNX1. These
analyses did not disclose unbalance of RUNX1. Uniparental disomy
of any chromosome was excluded.

Considering a possible RUNX1 structural abnormality, FISH analysis
on leukemic BM was performed, revealing a cryptic t(16;21)(p13;q22)
with RUNX1 locus rearrangement in 15 metaphases and 200
interphases (Figure 2a). This seminal observation with the patient’s
hematological history prompted us to investigate RUNX1 status in
non-hematopoietic tissues. Interphase FISH analyses on cells from
urinary tract epithelium (endoderm) and buccal mucosa (ectoderm),
showed RUNX1 locus rearrangement in 86% and 41% of interphases,
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