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Summary

Multiple observations of distant type Ia supernovae show the de
eleration parame-

ter of the universe is negative. The standard 
osmologi
al model states expansion

should be slowing down.

A new theory is presented whi
h explains 
osmi
 a

eleration only through the

a
tion of well-supported phenomena in the 
ontext of Einstein's general theory of

relativity through the use of the Bian
hi type IX homogeneous, 
losed 
osmology.

The eviden
e for a

eleration is assessed and previously-unreported biases and

insu�
ien
ies in the eviden
e are revealed and dis
ussed.

The Einstein equations for the Bian
hi type IX 
osmology are solved to quadrati


order in a matter-dominated universe. The �rst terms of a power-series solution

are given for arbitrarily strong growing mode of gravitational waves in a matter-

dominated Bian
hi IX universe. The e�e
t of these waves on the energy density of

the universe is shown to be 
ompatible with available data.

The equations for redshift anisotropy in the Bian
hi IX universe are solved to

quadrati
 order. Reported anomalous stru
ture in the 
osmi
 mi
rowave ba
k-

ground is 
onsidered in the light of these solutions. The Bian
hi IX universe is

shown to provide an explanation for these anomalies 
ompatible with the CMB.

In order to help typify a new 
lass of standard sour
es for determining 
osmologi
al

parameters, a formula relating the time-dependent de�e
tion of light by a massive,



iii


ompa
t binary su
h as a super-massive bla
k hole binary is derived. This formula

is applied to the system 3C66B and �nds that in ideal 
ir
umstan
es, the best

available observational te
hniques 
ould dete
t a time-dependent 
omponent to

the bending of light by the 
ore of 3C66B.

A solution for the Einstein equations in the Bian
hi IX universe is found whi
h

explains 
osmi
 a

eleration while remaining 
ompatible with the CMB and other


osmologi
al parameters as reported by WMAP.
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Abstra
t

Strong long-s
ale gravitational waves 
an explain 
osmi
 a

eleration within the


ontext of general relativity without resorting to the assumption of exoti
 forms

of matter su
h as quintessen
e. The existen
e of these gravitational waves in

su�
ient strength to 
ause observed a

eleration 
an be 
ompatible with the 
osmi


mi
rowave ba
kground under reasonable physi
al 
ir
umstan
es. An instan
e of

the Bian
hi IX 
osmology is demonstrated whi
h also explains the alignment of

low-order multipoles observed in the CMB. The model requires a 
losed 
osmology

but is otherwise not strongly 
onstrained. Re
ommendations are made for further

observations to verify and better 
onstrain the model.

Chapter 3 has been previously published as ([152℄). Equations des
ribing 
osmo-

logi
al gravitational waves at quadrati
 order and in quasi-isotropi
 approximation

in a matter-dominated Bian
hi IX universe; equations des
ribing se
ond-order 
or-

re
tions to the 
osmi
 mi
rowave ba
kground resulting from quadrati
-order-strong

gravitational waves; and analyti
 
al
ulations of the dynami
s of a Bian
hi IX uni-

verse, in
luding the expli
it illustration that su
h a universe 
an undergo 
osmi


a

eleration are original to this work, as are 
on
lusions following from that math-

emati
al anaysis.



Chapter 1

Introdu
tion

1.1 Ba
kground

The observational 
on�rmation that the universe has been expanding from a 
on-

dition of extreme density and minute size sin
e some point in the �nite past rep-

resents a major triumph of Einstein's theory of gravitation in providing an elegant

explanation for 
osmology, without the addition of exoti
, heretofore-unobserved

substan
es or fundamental for
es. This notion has however fa
ed a serious 
hallenge

sin
e Riess's 1998 dis
overy[1℄ of 
osmi
 a

eleration. The purpose of this resear
h

is to evaluate the following question: 
an the ba
k-rea
tion of long-wavelength

gravitational waves in a 
losed universe 
ontribute to 
osmi
 a

eleration while

remaining 
ompatible with observational 
onstraints?

2
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1.1.1 Standard 
osmology predi
ts an expanding universe

The full Einstein equations read

1

Rµν −
1

2
Rgµν = kTµν + Λgµν (1.1)

where gµν is the metri
 tensor, Rµν is the on
e-
ontra
ted Riemann tensor, R is the

Ri

i 
urvature s
alar, Tµν is the energy-momentum tensor, Λ is the �
osmologi
al


onstant� and the 
onstant k ≡ 8πG/c4 ≈ 2.08×10−43
kg

−1
m

−1
s

2
. We approximate

that all matter in the universe is, on large s
ales, an isotropi
 �uid (T11 = T22 = T33)

so, in a Gaussian (g00 = 1) and syn
hronous (g0i = 0) 
oordinate system, we have

[4℄:

R0
0 −

1

2
R =kT 0

0 + Λ (1.2)

−R =kT µ
µ − 2Λ. (1.3)

Cosmologi
al parameters

In dis
ussions of 
osmology it is 
onventional to tra
k the expansion of an isotropi


metri
 by introdu
ing a �s
ale fa
tor�, whi
h is a positive fun
tion of time only. In

general the s
ale fa
tor has no spe
i�
 geometri
 meaning other than to 
ompare

distan
es in the metri
 at di�erent points in time. Furthermore, the s
ale fa
tor

loses unique meaning when the universe be
omes non-isotropi
. Let the 
oordinate

1

Throughout this do
ument, indi
es written with Greek letters µ, ν et
. run over 0,1,2,3 and

indi
es written in Roman letters i, j et
. run over 1,2,3. The sign of the metri
 tensor reads

+,−,−,−.
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x0
, whi
h is privileged in the g11 = g22 = g33 = 
onstant Minkowski spe
ial 
ase

of the metri
, be designated as �time�. We will denote this s
ale fa
tor fun
tion

as a (t) in analogy with its de�nition in the Robertson-Walker metri
, where it

appears as [5℄

ds2 = dt2 − a2 (t)
(dx1)

2
+ (dx2)

2
+ (dx3)

2

1 + 1
4
K
[

(dx1)2 + (dx2)2 + (dx3)2
]2 (1.4)

and the symbol K has the value 0 in a �at universe, 1 in a 
losed universe, and -1

in an open universe. In this 
ase the Einstein equations read [5℄

2

3

a2
(

ȧ2 +K
)

=kǫ+ Λ (1.5)

−6
ä

a
=k (ǫ+ 3p)− 2Λ (1.6)

where ǫ denotes the energy density of matter des
ribed by the energy-momentum

tensor and p denotes the pressure of matter des
ribed in that tensor.

When dis
ussing 
osmology it is 
ommon [4℄ to de�ne 
osmologi
al �dynami
�, that

is time-dependent, quantities in relation to the s
ale fa
tor through the means of a

Taylor expansion. Let the subs
ript 0 denote a fun
tion evaluated at a parti
ular

moment in time t0 (whi
h is how we will generally use the subs
ript 0 ):

a0
a

≈ a0

[

1

a0
+ (t− t0)

(

d

dt

1

a

)

t=t0

+
1

2
(t− t0)

2

(

d2

dt2
1

a

)

t=t0

]

= (1.7)

= 1− (t− t0)
ȧ0
a0

+
1

2
(t− t0)

2

(

2ȧ20 − a0ä0
a20

)

. (1.8)

2

A single dot denotes a derivative with respe
t to t; two dots denote a se
ond derivative with

respe
t to t.
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In isotropi
 
osmology we de�ne the Hubble 
onstant H0 ≡ ȧ0/a0 and the de
eler-

ation parameter

3 Q0 ≡ −ä0a0/ȧ
2
0 so

a0
a

≈ 1−H0 (t− t0) +H2
0

(

1 +
1

2
Q0

)

(t− t0)
2 . (1.9)

Be
ause the universe seems �at and dominated by ordinary matter over small

s
ales, it is 
ommon to move terms arising from K to the right-hand side of the

equation, where they a
t as elements of an �e�e
tive energy-momentum tensor�. It

is also 
ustomary to state 
ontributors to 
osmologi
al expansion as dimensionless

parameters Ωi in 
omparison to the �
riti
al density� ǫ

riti
al

, that is, the energy-

density of ordinary matter required for the universe to be �at: kǫ

riti
al

= 3H2
0

so

3H2
0 = kǫ0 + Λ− 3K

a2
0

ΩK + ΩM + ΩR + ΩΛ = 1
(1.10)

where

ΩM + ΩR ≡ kǫ0/3H
2
0 (1.11)

ΩΛ ≡ Λ/3H2
0 (1.12)

ΩK ≡ −K/ȧ20. (1.13)

Multiple observations, most re
ently by WMAP, have 
on�rmed that ΩR ≪ ΩM

[16℄ and so to the limit of the pre
ision with whi
h these quantities 
an be evaluated

3

Q has been de�ned with a minus sign for histori
al reasons. Q > 0 denotes a de
elerating

universe; Q < 0 denotes an a

elerating universe. We have avoided the more 
ommon notation

q in favor of Q to avoid 
onfusion when interpreting the sour
e material.
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ΩK+ΩM+ΩΛ = 1.4 When we dis
uss some �eld of unknown 
hara
ter 
ontributing

to the energy density, we will designate it with the subs
ript X (for example, su
h

a �eld would be related to a density parameter ΩX).

1.1.2 Simple 
osmology predi
ts a de
elerating universe

If the s
ale fa
tor a measures a distan
e, it is reasonable to say by analogy that ȧ


an be 
ompared to a velo
ity and ä an a

eleration. Let the time-dependent Hub-

ble parameter be de�ned by H ≡ ȧ/a. We de�ne the time-dependent de
eleration

parameter Q by:

Q ≡ − äa

ȧ2
=

d

dt

1

H
− 1. (1.14)

Dividing (1.6) by (1.10) we easily obtain

Q =
1

2

k (ǫ+ 3p)− 2Λ

kǫ+ Λ−K/a2
=

1

2
ΩM − ΩΛ (1.15)

in a matter-dominated universe: a �at universe with no 
osmologi
al 
onstant

must always de
elerate. While the properties of so-
alled �dark matter� remain

undetermined, the lo
alisibility of dark matter's distribution and its slow motion

implies it 
an be treated as w = 0 dust.

We 
an also immediately say that in a universe with no 
osmologi
al 
onstant,

4

Chernin, in [81℄, elegantly derives a des
ription of the s
ale fa
tor in an open Friedmann


osmology whi
h 
an be used when there is a signi�
ant amount of relativisti
 matter in a 
old

matter-dominated universe. Chernin's equation is easily generalized to the 
losed Friedmann

universe.
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a

eleration is possible under the 
ondition

2

1 + 3w

(

1−K/a2kǫ
)

< 0 (1.16)

so, be
ause ǫ must be positive, a

eleration is only possible when w < −1/3.

1.1.3 Observations say the universe is a

elerating

A

eleration in and of itself is not a new
omer to 
osmology. The de Sitter 
os-

mology [82℄, dis
overed in 1917, is driven solely by a 
osmologi
al 
onstant and


onsequently has a 
onstant de
eleration parameter of Q = −1. Bondi, Gold &

Hoyle's �steady state� universe [83℄ similarly a

elerates with Q = −1, this value

being asso
iated with a universe whose expansion is driven solely by a �eld whose

energy density is not dependent on the s
ale fa
tor (ΩX = 
onstant). With the

proposal of �big bang� nu
leosynthesis [84℄ and the subsequent dis
overy of the 
os-

mi
 mi
rowave ba
kground (CMB) [85℄, 
onsensus 
ame to settle on the simplest

matter-�lled model, the Friedmann universe [86℄.

Throughout the 1990s, astronomi
al observations began to indi
ate that the matter

energy density of the universe was far below the 
riti
al density, leading some (for

example [87℄) to propose the resurre
tion of the 
osmologi
al 
onstant in order to

preserve the observed near-�atness of spa
e.

In 1998, Riess et al. published an analysis [1℄ of the light from a small number
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of type Ia supernovae with 0.16 ≤ z ≤ 0.62 and 
on
luded from this set that

the re
ent universe is a

elerating with Q0 = −1.0 ± 0.4. Further observations

and analysis (see Chapter 2) have also provided eviden
e that the universe has

Q0 < 0.

While Riess et al. did not ex
lude the possibility of a universe with K 6= 0, the

assumption of a �at universe remains predominant throughout the �eld of 
osmol-

ogy as observations, both from supernova data (see se
tion 2) and WMAP (see

se
tion 6.1), have shown that the universe is, on observable s
ales, very 
lose to

�at � although it is impossible to distinguish between a universe that is genuinely

�at, with ΩK = 0 and one with ΩK very 
lose to but not equal to zero.

1.2 Dark energy

Sin
e the dis
overy of a

eleration, numerous explanations for the phenomenon

have been proposed, all depending on an isotropi
 �eld 
reating additional, invisible

energy. Turner and Huterer[6℄ introdu
e the term �dark energy�, analogous to

dark matter in the sense that dark energy does not intera
t ele
tromagneti
ally

with ordinary matter and has the property of negative pressure, to des
ribe this

additional �uid, whi
h appears to make up over 70% of the total energy 
ontent

of the universe.[16℄

The assumption of a �at homogeneous 
osmology demands that 
osmi
 a

eleration


omes from a 
osmologi
al 
onstant or a s
alar �eld. Most s
alar theories for

explaining 
osmi
 a

eleration fall into two 
lasses: an exoti
 form of matter with
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negative energy density, or surrender of the 
osmologi
al prin
iple. Other s
alar

theories sa
ri�
e di�erent assumptions, su
h as homogeneity, or invoke more exoti


explanations unsupported by laboratory physi
s.

1.2.1 Cosmologi
al 
onstant

The simplest, most familiar variation on the Robertson-Walker 
osmologi
al model

whi
h allows an a

elerating universe is the �ΛCDM� model � a universe dominated

by �
old� (non-relativisti
, p = 0) matter with both baryoni
 and dark 
omponents,

and with the existen
e of a non-zero 
osmologi
al 
onstant. In su
h a universe the

Einstein equations read [5℄

3H2 =kǫ+ Λ (1.17)

−6
ä

a
=kǫ− 2Λ (1.18)

so when kǫ/Λ is small su
h that (kǫ/Λ)2 is negligible, that is, the universe is

dominated by a 
osmologi
al 
onstant,

Q =
1

2

kǫ− 2Λ

kǫ+ Λ
≈ −1 +

3kǫ

2Λ
(1.19)

whi
h at �rst glan
e appears to neatly explain Riesse et al.'s result. However,

as will be shown (see se
tion 2.3), the 
ase for a 
osmologi
al 
onstant is not

de�nite. Furthermore, the theoreti
al ba
kground explaining the strength of the


osmologi
al 
onstant is not well developed, relying on an understanding of quan-

tum gravity whi
h does not yet exist [72℄. While the 
osmologi
al 
onstant 
an

always be said to have a �right to exist� in the Einstein equations, 
urrent physi
s



10 CHAPTER 1. INTRODUCTION

does not explain why it should have any parti
ular strength and as su
h the 
os-

mologi
al 
onstant should be treated as the simplest form of a s
alar �eld of exoti


matter.

1.2.2 Quintessen
e

More general than the 
osmologi
al 
onstant but similar in stru
ture is the proposal

of �quintessen
e� [6℄, a novel form of matter with a time-dependent equation of state

that 
an take on negative values. Many forms of these have been proposed; one

form of these, for example, is the �Chaplygin gas� [88℄, whi
h has equation of state

p = −A/ǫ for A > 0. Quintessen
e theories are parti
ularly motivated by the idea

that a

eleration is a 
osmologi
ally re
ent phenomenon, noting limited data (see

Chapter 2) that the equation of state of dark energy may be evolving with time.

At the most fundamental level, all theories of quintessen
e propose the existen
e

of a kind of matter whi
h:

� has never been observed experimentally;

� does not intera
t with ordinary matter via the ele
tromagneti
 for
e;

� has a negative equation of state, that is, a positive energy density produ
es

a negative pressure;

� plays a prominent role at 
urrent energy levels, as opposed to e�e
ts su
h

as uni�
ation of for
es thought to have taken pla
e only in the very early

universe.
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In the absen
e of any 
ompelling experimental eviden
e whatsoever for any kind

of quintessen
e, quintessen
e and quintessen
e-like models should be regarded as

highly spe
ulative explanations for dark energy.

1.2.3 Lo
al inhomogeneity

A more mundane explanation whi
h has been o�ered for a

eleration is the �Hubble

bubble� [1, 61℄, regions of lower density in the intergala
ti
 medium. If the vi
inity

of the Milky Way had lower matter energy density, expansion in its vi
inity would

in
rease [93℄, 
ausing the illusion of 
osmi
 a

eleration.

Not only would the density de�
it in su
h a �bubble� have to be quite large in

order to 
ause a

eleration, but the theory, whi
h has the advantage of requiring

no new physi
s, supposes either the existen
e of a rare or unique void that the

Milky Way happens to be in � a violation of the 
osmologi
al prin
iple in the sense

that it makes observers in the Milky Way privileged � or a preponderan
e of voids

whose presen
e makes the universe inhomogeneous not just in small pat
hes but

on average [91, 94℄.
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1.2.4 Exoti
 models

Modi�ed relativity

Some proposals to explain dark energy propose modi�
ations to the Einstein equa-

tions. The best-known of these is the Cardassian Expansion model[95℄, whi
h

proposes time-dependent variation of the equation of state of matter. The Cardas-

sian model is of parti
ular interest in that it proposes an equation for the density

perturbation

κ′′ (x) + 2
s

x
κ′ − 3

2
s2κ = 0 (1.20)

for unknown 
onstant s, whi
h equation begins to resemble that for weak gravita-

tional waves in a 
losed universe (
f. equation (4.133)). Like Chaplygin gas and

the �DGP� model[96℄, the Cardassian model justi�es itself based on theories about

higher-dimensional manifolds whi
h remain untested.

Topologi
al defe
ts

The existen
e of 
osmi
 strings would 
hange the overall equation of state of the

matter in the universe by a 
onstant [67, 97℄, 
reating a

eleration through simple

deviation from the Friedmann model. While theories of 
osmi
 in�ation predi
t

the formation of 
osmi
 strings and other topologi
al defe
ts, su
h defe
ts remain


ompletely undete
ted.
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1.3 Tensorial theories for a

eleration in a �at uni-

verse

If we wish to preserve the theory of general relativity at the same time as retain-

ing 
osmi
 homogeneity, while at the same time relying only on e�e
ts with good

experimental basis, s
alar �elds appear to be ex
luded as an explanation for a
-


eleration. Ergo within the 
ontext of general relativity the next pla
e to sear
h

for an answer is in tensor theories, whi
h in
lude the possibility of gravitational

waves.

Lifshitz's theory of 
osmologi
al perturbations [79℄ appears to ex
lude tensorial

answers to the problem of a

eleration: gravitational waves have the same equation

of state as radiation, and lo
al 
lumps of gravitational waves in the theory (where

�lo
al� means bounded within an region smaller than the radius of 
urvature of the

universe) both de
ay rapidly and 
ollapse spatially. Rodrigues [113℄ takes a �rst

step in dis
ussing anisotropi
 dark energy, but limits his analysis to a �at universe

and thus 
reates the problem of an anisotropi
 �big rip�.

A high-frequen
y gravitational wave ba
kground has been proposed [92℄ as the

sour
e of 
osmi
 a

eleration. While the authors' analysis appears initially promis-

ing, similar to many s
alar dark energy 
andidates the theory relies on the existen
e

of an in�ation-indu
ed gravitational wave ba
kground that remains only hypothet-

i
al. Furthermore, the authors obtain their result by sele
tion of an averaging

s
heme without mathemati
al rigor � surely 
hoosing a mathemati
al model based

on the desired results 
annot be 
onsidered s
ienti�
. At any rate, the strength of
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the ba
kground that in�ationary theory predi
ts is not su�
iently great to explain

the observed large a

eleration.



Chapter 2

Eviden
e for a

eleration

2.1 Introdu
tion

Numerous assumptions have been made in developing the predominant theories for

a

eleration that must be examined in detail to be understood. If some of these

assumptions have been made on a weak basis, our range of 
ompelling models for

dark energy must 
hange and new paths for the exploration of possible models will

open.

The theory of tests to evaluate the de
eleration parameter using supernovae as

standard 
andles began with Wagoner [45℄ in 1977. Starting from assumptions of

an isotropi
 Friedmannian 
osmology whi
h is not ne
essarily �at, Wagoner notes

15
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the approximate relation

dE = H−1
0

[

z − 1

2
(1 +Q0) z

2 +O
(

z3
)

]

(2.1)

whi
h, when H0 and z are known, relates the de
eleration parameter to the dis-

tan
e dE as determined by the dimming of the supernova (where Wagoner was

originally dis
ussing Type II supernova events)

1

. This relation is valid when z is

small su
h that z3 is negligible, limiting its usefulness above z ∼ 1, and requires the

assumption of only small 
hanges in the Hubble 
onstant H0 (that is, in a Fried-

mann 
osmology ȧF/aF evaluated near the observer) on the interval from z ≈ 0 to

z ≈ 1.

Type Ia supernovae are thought to be a �standard 
andle� for the measurement

of distan
e and redshift; that is, supernovae of that type are thought to possess

spe
tral and luminosity 
urves whi
h are nearly identi
al. Therefore, observation of

extragala
ti
 type Ia supernovae is believed to produ
e reliable information on both

the distan
e of the event (noting that brightness diminishes as the inverse square

of distan
e) and the redshift of the distan
e asso
iated with the event (through

the 
hange in the peak of the supernovae's spe
tra), with redshift z related to the

s
ale fa
tor aF by

z + 1 =
aF
(

t
observation

)

aF
(

t
emission

) . (2.2)

Analysis of a statisti
ally unbiased dataset of z (t) therefore gives empiri
al infor-

mation on H (t).

Colgate [44℄ proposed that Type I supernovae should be used to measure the

1

Equation (2.1) is of 
ourse a generalization of the famous distan
e-redshift approximation

H0dE ≈ z [4℄.
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de
eleration parameter in preferen
e to Type II supernovae. Type I supernovae,

spe
i�
ally the �Type Ia� whose me
hanism is thought to be the a

retion of matter

onto the surfa
e of a white dwarf star, are understood to have a well-de�ned typi
al

absolute magnitude and spe
trum. Assuming this is true, the distan
e to and

redshift of a given Type Ia supernova event (SNe) 
an easily be determined by

�tting its light 
urve to standard templates. Therefore, with a su�
ient sample

of extragala
ti
 supernovae of z & 0.2, the parameters H (t) and thus Q (t) 
an

be measured dire
tly. When an isotropi
 
osmology with 
onstant de
eleration

parameter Q = Q0 is assumed, knowledge of H0 and Q0 are su�
ient to typify the

parameters of the universe [4℄.

With the advent of modern opti
al astronomy su
h as adaptive opti
s [46℄ and

spa
e-based opti
al teles
opy [47℄, su
h surveys have be
ome possible, but have

produ
ed results 
ontradi
ting the standard, 
old matter-�lled Friedmann model

of 
osmology.

2.2 Surveys of a

eleration

Cosmologi
al studies measuring Q have been ongoing sin
e 1997 and 
onsist of

analyses of redshifts [1, 3, 9, 11, 12, 13, 15, 43, 48, 49, 51, 50, 52, 53, 55, 56,

54, 57, 58℄ of type Ia supernovae. Some attempt to measure not only the dark

energy equation of state at the present time wX0 but the �rst Taylor 
oe�
ient of

a time-series expansion wXa.

The High-z Supernova Sear
h Team's initial study of the de
eleration parameter
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[1℄ was the �rst large study to 
all attention to the problem of a

eleration. Work-

ing from a sample of sixteen supernovae (four of whi
h were well-observed �high


on�den
e� sour
es), the most distant with z = 0.97, Riess 
on
luded that the

universe has Q0 < 0 to high 
on�den
e, although the measurement of Q0 itself

possessed a high degree of un
ertainty. Riess also noted the high sensitivity of the

result to individual data points. The authors dismiss the 
losed 
osmology despite

the data indi
ating it as preferred [1, Fig. 7℄; however the size of their experimental

error pre
ludes real evaluation of spatial 
urvature.

The Supernova Cosmology Proje
t (SCP) made an earlier attempt to evaluate Q0

with the use of supernovae [55℄. This small survey (n = 7) on relatively nearby

supernovae found a result in
onsistent with those that followed it, giving results


onsistent with a universe with no dark energy and with too high a degree of error

to meaningfully evaluate the geometry of the universe.

In 
ontrast, the Supernova Cosmology Proje
t's 1998 evaluation [48, 49℄ of 42 Type

Ia SNe added further eviden
e that the universe was a

elerating and also makes

note of the surprising 
oin
iden
e of the energy density ΩX 's near-equivalen
e with

the total energy density in the 
urrent epo
h. The SCP also did not 
onsider the


losed 
osmology despite supernova data favoring it [49, Fig. 7℄.

The ESSENCE [11℄ survey was expressly designed to examine 
osmi
 a

eleration

and dete
ted 102 type-Ia supernovae from 0.10 ≤ z ≤ 0.78, of whi
h 60 were used

for 
osmologi
al analysis. The initial analysis of ESSENCE assumed �atness of

the universe. ESSENCE's observational �elds were deliberately 
hosen to overlap

the areas of previous surveys and to lie within ten degrees of the 
elestial equator;
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all were also between 23:25 and 02:33 Right As
ension. Combining data from

ESSENCE, SNLS and other sour
es [52℄ led to a 
on
lusion 
onsistent with other

analyses. Exploration of more exoti
 models [53℄ found that no model of those

tested was a good �t for ESSENCE's data.

The Supernova Lega
y Survey (SNLS) [12℄ re
orded 472 type-Ia supernovae. While

analysis of the SNLS data set [13℄ provides results 
onsistent with a universe driven

by 
osmologi
al 
onstant, the un
ertainty on analysis of a time-dependent 
ompo-

nent to the equation of state of dark energy is very large; their analysis also does

not 
onsider a 
losed universe as a possible model [50℄. Furthermore, the SNLS

team also note the presen
e of two outliers and only 125 of 472 events were used to

evaluate 
osmology. SNLS observed SNe in four �elds, one of whi
h (�eld 3) is far

above the plane of the 
elestial equator at 52 degrees de
lination; this and [54℄'s

northern �eld are the only �elds with multiple observations in a small area more

than 20 degrees from the 
elestial equator surveyed to date. SNLS also notes [50,

se
tion 5.4℄ that the values of ΩM evaluated in the four �elds are 
ompatible only

at a 37% 
on�den
e level � a surprising result given that ea
h SNLS �eld 
ontains

at least 60 SNe in quite small (one square degree) areas.

The Hubble Spa
e Teles
ope or HST survey of supernovae, published in 2004 and

reviewed by the Supernova Cosmology Proje
t [14℄ observed twenty type-Ia su-

pernovae with redshifts 0.63 < z < 1.42. While the number of SNe observed is

small, the HST survey has the advantage of 
overing a wider area of sky than other

SNe surveys. Analysis of the HST dataset suggests a rapidly-evolving dark energy

�eld, although with very high error on measurements greater than z = 1 due to

the small (n = 10) sample size it is impossible to take these results as anything

more than suggestive. HST slightly favored a 
losed model of the universe, when



20 CHAPTER 2. EVIDENCE FOR ACCELERATION


onsidering interpretations of data that allowed ΩK 6= 0.

The Supernova Cosmology Proje
t's 2008 analysis of supernova data [51℄ made a

analysis of 
ombined SNLS, ESSENCE and HST data, and attempted to analyze

the data in the 
ontext of a theory of a time-dependent equation of state for dark

energy but 
on
luded �present SN data sets do not have the sensitivity to answer

the questions of whether dark energy persists to z > 1, or whether it had negative

pressure then.� The analysis reje
ted 10% of all SNe from the 
ombined data sets

as outliers, many based on their failure to �t with a nearby H0; Kowalski et al.' s

reje
tion of outliers also shifts their analysis from one favoring a 
losed universe to

one favoring a �at one [51, Fig. 11℄.

Further work by Riess et al. [54, 56℄ produ
ed the so-
alled �gold� dataset of SNe,

a group of supernova events with parti
ularly 
lear light 
urves with 33 at z > 1.

These supernovae were observed in two small (one square degree) �elds. [54℄ 
laims

a great redu
tion in the un
ertainty of the Hubble parameter at z > 1 but the

Hubble parameter measured in the extended �gold� set gives a value for the Hubble

parameter not re
on
ilable with that in the [56℄ dataset. Riess et al. 
on
lude that

w is negative (with large experimental error) in the region 1 < z < 2, then attempt

to extrapolate the behavior of dark energy ba
k to z = 1089.

Sollerman et al' s analysis of the Sloan Digital Sky Survey-II supernova data [3, 9℄

is the most re
ent analysis indi
ating 
osmi
 a

eleration. SDSS-II observed 103

type-Ia supernovae in a long, narrow strip along the 
elestial equator, in
luding

many from lower redshifts than had been previously examined in detail. Sollerman

et al. also made use of data from the HST, ESSENCE and SNLS surveys, bringing
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the total number of SNe examined to 288. The primary 
on
lusion to be drawn

from SDSS is the sensitivity of 
osmologi
al measurements to the spe
i�
 analysis

te
hnique used [60℄; analysis of the data with two di�erent 
urve-�tting algorithms

produ
e two di�erent, albeit somewhat 
ompatible, results.

Further obs
uring the neatness of measuring Q, Jha et al. noted [59℄ that the

uneven lo
al distribution of galaxies, spe
i�
ally the existen
e of voids, 
an lead

to a mis-estimation of H0 on the order of 6.5% for a given galaxy.

Finally, of note is the WiggleZ dark energy survey [15, 43℄. WiggleZ is the most

extensive redshift survey thus far 
ondu
ted, with some 280,000 galaxies with 0.2 <

z < 1.0 used as sour
es. WiggleZ also 
overs a wider area of sky than previous

surveys, examining some 1000 square degrees in multiple windows around the sky.

Two of WiggleZ's windows overlap with SDSS-II's survey area, so while WiggleZ

is ongoing, preliminary results [57, 58℄ 
an be used to improve the evaluation

of Q by improving pre
ision on measurements of z of SNe host galaxies. The

authors of [58℄ note that �the redshift-spa
e 
lustering pattern is not isotropi
 in

the true 
osmologi
al model�, attributing the variation to �the 
oherent, bulk �ows

of galaxies toward 
lusters and super
lusters�. Analysis by the WiggleZ team of

pre-existing SNe datasets, using the new, more pre
ise data on galaxy redshifts

they obtained, re
on�rms the fa
t of a

eleration, and generates results 
onsistent

with other surveys, but the data la
k su�
ient pre
ision to determine the history

of Q.

The table in the Appendix details the sky lo
ations of SNe and galaxies used in

the determination of a

eleration; Figure 2.2 presents these lo
ations graphi
ally.
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Table 2.1 summarizes the results of these surveys.

Figure 2.1: Sky positions of supernovae used as eviden
e for a

eleration

Surveys of 
osmi
 a

eleration 
over a limited portion of the sky, and data are

divided into two 
ontiguous, antipodal regions. Most data has been 
olle
ted in a

small area of the sky near the equator. Triangles: Riess 1998 supernovae. Five-

pointed stars: HST SNe. Six-pointed stars: Riess �gold� dataset. The long, thin

strip 
entered on 0,0 is the SDSS-II survey area. Other boxes are the SNLS and

ESSENCE survey areas.

2.3 Analysis

Analysis of supernova data is, in one sense, quite 
onsistent: all surveys apart from

[55℄ agree that for z < 1 the universe has a de
eleration parameter Q0 = −0.6.
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Survey No of SNe z

Supernova Cosmology Proje
t 1997[55℄ 7 0.35 < z < 0.46
High-z Supernova Sear
h Team[1℄ 16 0.16 < z < 0.97

Supernova Cosmology Proje
t 1998[49℄ 42 0.18 < z < 0.86
HST[14℄ 20 0.63 < z < 1.42

ESSENCE[11℄ 102 0.10 ≤ z ≤ 0.78
Supernova Lega
y Survey[12, 50℄ 125 0.015 < z < 1

ESSENCE + SNLS[52℄ 162 0.015 < z < 1
Supernova Cosmology Proje
t 
ombined[51℄ 307 0.015 < z < 1

Riess �gold� sample[56, 54℄ 16 1.25 < z < 2
WiggleZ[58℄ 557 0.1 < z < 0.9

Survey

Supernova Cosmology Proje
t 1997 (dne)

High-z Supernova Sear
h Team (dne)

Supernova Cosmology Proje
t 1998 (dne)

HST

ESSENCE (dne)

Supernova Lega
y Survey (dne)

ESSENCE + SNLS (dne)

Supernova Cosmology Proje
t 
ombined

Riess �gold� sample (dne)

WiggleZ (dne)

Sloane Digital Sky Survey-II

Survey

�at

Supernova Cosmology Proje
t 1997 (dne) (dne)

High-z Supernova Sear
h Team (dne) (dne)

Supernova Cosmology Proje
t 1998 (dne) (dne)

HST

ESSENCE (dne)

Supernova Lega
y Survey (dne)

ESSENCE + SNLS (dne)

Supernova Cosmology Proje
t 
ombined (dne)

Riess �gold� sample *

WiggleZ (dne) (dne)

Sloane Digital Sky Survey-II (dne)

Table 2.1: Summary of results from surveys indi
ating a

eleration

�dne� = �Does not evaluate�. *: [56℄ attempts to analyze wa with several di�erent


onstraints but provides no numeri
al �gure for its estimate of wa's value. †: Where

not expli
itly stated in the sour
e, ΩX is evaluated from ΩM + ΩK + ΩX = 1. ‡:
Q
�at

0 = 1
2
ΩM − ΩX . (1): MLCS2K2 evaluation. (2): SALT-II evaluation. (3):

ΛCDM model evaluation.
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Deeper analysis su�ers from a la
k of data at high redshifts and large numbers of

free parameters in 
osmologi
al models, espe
ially when more exoti
 models are


onsidered. Meanwhile, while most surveys indi
ate that the a

eleration in re
ent

times a
ts as though driven by a 
osmologi
al 
onstant, with an equation of state


ompatible with wX = −1, the results from [60℄ show that this 
an be the result

of the prior assumptions made about the model of dark energy.

No de�nitive statement 
an be made about the evolution of H over time from the

information thus far available, parti
ularly not statements 
onne
ting the state of


osmi
 a

eleration now with the state of a

eleration at the epo
h of last s
atter-

ing.

Nor 
an any de�nitive statement be made about 
osmologi
al models, other than

to say that the most 
onservative, ΛCDM model �ts the data at best in
onsistently.

Few studies of supernova data on a

eleration examine the question of 
urvature

in depth.

The majority of SNe data is 
olle
ted from a single pat
h of sky: the �eld bounded

by RA 22:00, RA 04:00, De
 +1◦15′ and De
 −10◦00′ (the �highly-observed �eld�).

This area 
omprises 1350 square degrees, or only 2.1% of the sky. Surveys taken

in small �elds outside the highly-observed �eld, su
h as the Riess �gold� dataset,

have high internal 
onsisten
y, while surveys 
overing larger areas of sky have mu
h

lower 
onsisten
y; the �gold� dataset 
ontains the same number of SNe as [1℄ but

has a standard error less than a tenth the size. It is also telling that the four SNLS

�elds produ
ed results that 
orrelated poorly (37% 
on�den
e) with one another

[50℄, where two of the SNLS survey regions are well outside the highly-observed
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�eld. Compounding 
osmographi
 bias, many of the remaining SNe observations

are lo
ated in a region of sky antipodal from the highly-observed �eld; any ve
-

tor or tensor 
ontribution to 
osmi
 dynami
s will be dominated by dipole and

quadrupole terms, and as su
h be seen with equal or opposite magnitude in the an-

tipodal dire
tion (that is, if we observe a 
hange in Q of ∆Q along the xi
dire
tion,

we should expe
t a 
hange of −∆Q in the event of a ve
tor 
ontribution, or ∆Q

in the event of a tensor 
ontribution, along the −xi
dire
tion).

There is, furthermore, no SNe data whatsoever from above De
 +62◦or below De


−37◦. The authors of [58℄ note a variation in the apparent Hubble parameter for

galaxies in this equatorial band (no WiggleZ region lies further north than De


+8◦ or De
 −19◦); variation to the Hubble �ow 
ould potentially be even greater

outside this region. There is also no evaluation of whether the Hubble �ow remains

isotropi
 beyond z = 0.3 [77℄.

Indeed, Zehavi et al. 
omment [89℄ on the la
k of sky 
overage in their analysis of

lo
al Hubble �ows, noting that �sparse sampling and the in
omplete sky 
overage

(espe
ially at low Gala
ti
 latitudes) may introdu
e a bias in the pe
uliar monopole

due to its 
ovarian
e with higher multipoles�. While the fa
t of greater redshift

in the range where a

eleration 
an be measured should over
ome the pe
uliar

velo
ities of galaxies, the data problem remains.
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2.4 Con
lusions

Many reasonable 
onstraints prevent a full-sky survey of supernovae. In the opti
al

band, mu
h of the sky is obs
ured by the �zone of avoidan
e� 
reated by the plane

of our own galaxy [63℄. The so-
alled �Great Attra
tor�, 
ertain to be a region of

parti
ularly high pe
uliar velo
ities and therefore great shifts in the apparent Hub-

ble parameter, lies in this zone [64℄. Furthermore, with only a single spa
e-based

opti
al observatory (the Hubble Spa
e Teles
ope) operating, detailed observation

of the sky is restri
ted to those latitudes a

essible by ground-based observatories,

none of whi
h are lo
ated in Ar
ti
 latitudes. However, the dire
tional de�
it of

SNe surveys, aggregated together, 
annot be ignored.

In the light of Tegmark et al.'s dis
overy [28℄ of a preferred axis to the CMB

quadrupole, and Land & Maguiejo's subsequent observation [32℄ of a preferred

axis in higher multipole moments aligned with the the quadrupole (the so-
alled

�Axis of Evil�), the default assumption should be that anisotropi
 a

eleration is

not ruled out. Indeed, the prominent CMB �Cold Spot� [34℄ falls within the highly-

observed �eld, although no surveys or SNe are lo
ated exa
tly in its dire
tion.

As su
h, Wagoner's assertion of the 
osmologi
al prin
iple as �statisti
ally valid�

[45℄ has been misapplied by analysts of a

eleration data. A tensorial theory of


osmi
 a

eleration would preserve homogeneity, in the sense that every observer

sees �the same version of 
osmi
 history� [21℄, at the expense of isotropy in the

form of spheri
al symmetry.

More fundamentally, most studies of 
osmi
 a

eleration to date operate on the
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assumption that a

eleration is isotropi
, that is, that the a

eleration �eld is equal

in every dire
tion, and therefore must be explained either by a 
osmologi
al 
on-

stant or a s
alar �eld. As Mörtsell and Clarkson note, �[a℄t best this gives a small

error to all our 
onsiderations; at worst, many of our 
on
lusions might be wrong�

[61℄. In parti
ular, the data as presented 
annot distinguish between a s
alar-�eld

theory of a

eleration, a ve
tor-�eld theory of a

eleration, a 
osmologi
al 
onstant

theory of a

eleration, and a time-dependent tensor-�eld theory of a

eleration.

Meanwhile, the simplest theory of a

eleration, a 
osmologi
al 
onstant, is 
hal-

lenged on two fronts: not only is ΩX 's value far out of line with that predi
ted for

ΩΛ by theory [72℄, but while its equation of state is 
lose to wX = −1measurements

have tended to favor a value slightly smaller than -1.

It is interesting to note that when ΩK is evaluated, supernova data favor a 
losed

universe (although always in a manner 
ompatible with a �at universe); this 
on-


lusion is 
onsistent with the 
urvature parameter evaluated by WMAP [62℄.

2.4.1 Re
ommendations

In light of these weaknesses of the 
urrent information on 
osmi
 a

eleration, the

following program is re
ommended:

Analyses of SNe data should always 
onsider the possibility of a 
losed or open

universe as well as a �at one.
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Additional SNe surveys for redshifts .15 < z < 2 should be 
arried out in unexam-

ined areas of sky not obs
ured by the plane of the galaxy, su
h as for example the


elestial north and south poles. The optimal region for these surveys is in rings

lo
ated 90◦ from the 
enter of the highly-observed �eld, whi
h will maximize the

di�eren
e in the event of a tensor-�eld (that is, gravitational-wave) a

eleration.

In light of this need and the la
k of ground-based observatories, as well as the

infrared transparen
y of the Zone of Avoidan
e, priority should be given to the

Wide Field Infrared Survey Teles
ope (�WFIRST�) proje
t [65℄, whi
h in
orporates

the Super Nova/A

eleration Probe [66, 67℄ and Joint Dark Energy Mission [68, 69℄.

This teles
ope is 
urrently s
heduled to be laun
hed in 2016.

As WiggleZ 
ontinues, its data on gala
ti
 redshifts should be examined for angular

dependen
e as well. The 
ompletion of WiggleZ will provide invaluable information

on baryon a
ousti
 os
illations whi
h will make possible the 
harting of the history

of H and Q at mu
h higher redshifts than is possible through the examination of

supernova data.

Zhao et al. have also noted the possibility of using the Einstein teles
ope as

an instrument for examining dark energy through the use of gravitational wave

emissions from 
olliding binary obje
ts as a �standard siren� analogous to the

standard 
andle of type Ia SNe [111℄.

Cooray and Caldwell [102℄, impli
itly identifying the same problem of la
k of angu-

lar 
overage as we note herein, propose a program of near-redshift surveys 
overing

a large but pra
ti
al area of sky whi
h 
ould also provide the relevant information
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with existing fa
ilities. Some e�orts have been made ([147, 148, 149, 150℄) to re-

evaluate the data in hand to look for signs of angular dependen
e in the Hubble

parameter; these e�orts have not produ
ed 
on
lusive results. The reje
tion of 
er-

tain SNe in [51℄ should be re-evaluated in light of possible inadvertent obs
uring

of eviden
e for angular dependen
e in H.

Overall, the need is unders
ored for new theories of a

eleration, parti
ularly ones

that attempt to explain a

eleration through the a
tion of tensor perturbations in

a 
losed universe. Wagoner's formula (equation 2.1) and its generalizations must

be generalized further to take into a

ount the possibility of anisotropi
 �elds as

the 
ause of anisotropi
 
osmi
 a

eleration.



Chapter 3

Constraining the parameters of

binary systems through

time-dependent light de�e
tion

1

3.1 Introdu
tion

Zhao et al.'s suggestion [111℄ that gravitational-wave emissions from merging neu-

tron star binaries may be used as a �standard siren� for determining 
osmologi
al

parameters, with gravitational waves traveling undisturbed by interstellar dust or

the gala
ti
 foreground, opens up the possibility of gravitational astronomy provid-

ing a hugely important sour
e of whole-sky observational data when the �rst gen-

eration of pra
ti
al gravitational teles
opes 
omes online. Of 
riti
al importan
e

1

Portions of this 
hapter have been previously published as [152℄ as part of this resear
h.

30
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to establishing su
h a �standard siren� is the typi�
ation of gravitational wave

sour
es before the 
atastrophi
 events whi
h 
ause them to emit large amounts

of gravitational radiation. Given the extragala
ti
 nature of gamma-ray bursts

this is di�
ult. However, very large extragala
ti
 binaries 
lose to merger may be


onstrainable with 
urrent te
hnology.

The de�e
tion of light by gravity is the oldest experimentally-veri�ed test of the

theory of general relativity [116℄. With the 
ontinued improvement in observa-

tional resolution in astronomy, parti
ularly through very-long-baseline interferom-

etry (VLBI), the dete
tion of more subtle e�e
ts of this light de�e
tion be
omes

pra
ti
al. Consequently, light de�e
tion 
an be used to measure the properties of

distant systems. This work supplies a theory for using time-variable light de�e
-

tion to measure or 
onstrain the parameters of binary systems. Spe
i�
ally, the

de�e
tion angle of a light ray from a distant sour
e is related to the 
on�guration

and motion of a binary system lo
ated in a distant galaxy somewhere between the

point of emission of the light ray and its observation.

Super-massive bla
k hole binaries (SMBHBs) are thought to form the 
ores and

primary energy sour
es of the broad 
lass of galaxies termed �a
tive galaxies�,

�blazars�, or �quasars�. However, a 
ombination of distan
e, radio noise, and opti
al

thi
kness makes dire
t observation of presumed SMBHBs impra
ti
al. Observing

a time-dependent motion in the image of the galaxy 
an provide information on

the mass and orbital parameters of an SMBHB 
andidate.

Work by Damour and Esposito-Farese [120℄ and by Kopeikin et al. [119℄ estab-

lishes a theory of time-dependent light de�e
tion by des
ribing the time-dependent
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part of the de�e
tion through the quadrupole term, whi
h is the lowest-order term

resulting from the mass distribution whose e�e
ts are pra
ti
al to evaluate us-

ing 
urrent astronomi
al observational te
hniques. The work of Mashhoon and

Kopeikin [139℄ in examining gravitomagneti
 e�e
ts furthermore provides a theory

for evaluating the 
ontribution of the spin dipole of su
h systems and 
omplements

the work of Einstein [140℄ in providing a 
omplete theory for stating the lo
a-

tion of the de�e
ted image in the weak �eld limit. We generalise these theories

to a stronger-�eld regime and put 
onstraints on the theory's appli
ability in this

regime.

As a 
ase study of an a
tive galaxy, the theory is applied to the galaxy 3C66B,

a nearby a
tive galaxy with a 
andidate SMBHB 
ore [127℄, and theoreti
al 
on-

straints on 3C66B's parameters from a light de�e
tion experiment are 
ompared

to the 
onstraints 
laimed by Jenet et al. [117℄.

3.2 Theory

3.2.1 Notations, de�nitions & assumptions

We assume that Einstein's theory of general relativity is true to the limits of our

ability to observe and appli
able to the systems under examination. We do not

address MOND or other post-Einsteinian models.

Throughout this 
hapter, �emitter� refers to the sour
e of light rays being observed;
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�de�e
tor� refers to the mass distribution 
ausing a 
hange in the metri
 of spa
e-

time from �atness; and �observer� refers to the point where the light rays produ
ed

by the emitter are observed.

We also make use of a 
oordinate system derived from the Cartesian system, de�ned

thus: in a spa
e that is asymptoti
ally Cartesian let a line be des
ribed by

xi (t) = ki (t− t0) + xi
0. (3.1)

Let t∗ be the time asso
iated with the line's 
losest approa
h to the origin of

the Cartesian system. Let τ = t − t∗ denote a new time 
oordinate (that is, at

τ = 0 the line rea
hes the 
losest point to the origin of both the Cartesian and

proje
ted systems). Spa
e 
oordinates are proje
ted onto a plane passing through

the origin of the 
oordinate system and perpendi
ular to a line from the observer

to the origin of the 
oordinate system; these new spa
e 
oordinates are denoted

ξi = Πijxj (t∗) where the proje
tion operator is de�ned Πij ≡ δij − kikj
. In

the proje
ted 
oordinate system, the index 0 refers to τ and the indi
es i denote


oordinates ξi.

For a traje
tory des
ribed by (3.1) let ξj ≡ Πij xi (τ)|τ=0 be the �ve
tor impa
t

parameter� of the traje
tory and let d ≡ |ξi| be the �s
alar impa
t parameter� of

the traje
tory. Sin
e the spa
e is asymptoti
ally �at, d is also the ratio of the

magnitudes of the angular and linear momenta of the light ray. Note then that for

the traje
tory des
ribed by xi (τ), r (τ) =
√
d2 + τ 22. Let the unit ve
tor ni ≡ ξi/d.

We assume that the wavelengths of all light rays observed are mu
h shorter than

2

In this 
hapter we use the 
onvention G = c = 1 to simplify our equations.
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the longest wavelength of gravitational radiation emitted by the de�e
ting system.

3.2.2 General theory

Ba
kground

Consider a photon emitted at some distant point xi
0 at some time in the distant past

t0. This beam of light in asymptoti
ally �at spa
e follows a path ki
su
h that the


oordinate xi
of the photon is given by the relation (3.1); therefore, ki = ∂xi

∂t

∣

∣

∣

t=−∞
.

Let ki
be normalized su
h that kiki = 1; then the ve
tor kα = (1, ki) is parallel to

the four-momentum of the photon in �at spa
e.

Let an asymptoti
ally-�at metri
 gαβ
3

be a fun
tion of some a�ne parameter λ.

Let Kα ≡ kα+κα (λ)+Ξα (λ) be the traje
tory of a photon moving in this metri


spa
e, where κα
des
ribes the part of the traje
tory arising from the spheri
ally-

symmetri
 non-�at part of the metri
 and Ξα
des
ribes the traje
tory arising from

a perturbation to the metri
. Then, we have the geodesi
 equation [4, equation

87.3℄

d (κα + Ξα)

dλ
+ Γα

βγK
βKγ = 0. (3.2)

The quantity d (κα + Ξα) /dλ 
orresponds to the 
hange in momentum of the light

ray in spa
e, whi
h when proje
ted onto a plane of observation 
orresponds to the

3

All metri
s gµν in this 
hapter are stated using the harmoni
 gauge 
ondition, that is,

gµνΓλ
µν = 0. The Minkowski metri
 in Cartesian 
oordinates is 
hosen with signature (−,+,+,+)

and is denoted ηµν , and we make use of the Einstein summation 
onvention.
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angular de�e
tion of the light ray. We de�ne this de�e
tion ve
tor by [119, 120℄

αi
(

t, ξi
)

≡ Πi
j

[

κj + Ξj
]

observer

+∆αi
(3.3)

where the term ∆αi

orresponds to 
orre
tions arising from any 
ontribution to

de�e
tion other than our de�e
tor.

In the 
ase of Eddington's experiment [116℄ on solar de�e
tion, the �true� position of

the emitter � that is, the position of the emitter observed in the limit of intervening

de�e
tion going to zero � was known. In the 
ase of de�e
tors with small proper

motion, in this 
ase extragala
ti
 or otherwise distant obje
ts, where the emitter

would be seen without the intervening de�e
tor may not be known; therefore,

the periastron of the light ray must be determined by other means. Let P be

the periastron of the light ray's traje
tory about the de�e
tor; in su
h 
ases, the

time delay between the de�e
tion and the motion of the de�e
tor is related to the

periastron by

P = t
peak de�e
tion

− t
alignment

(3.4)

where t
peak de�e
tion

is the time when the image of the sour
e is observed to be

de�e
ted most from the position of the de�e
tor and t
alignment

is the time when

the proje
ted 
omponents of the system and the de�e
ted image fall into a line,

assuming that P < p
2
and that the 
hange in the gravitational �eld propagates at

the speed of light.
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Des
ription of de�e
tor

Our de�e
tor of interest is as follows: two obje
ts are denoted with the indi
es

1 and 2. The mass of obje
t 1 m1 ≥ m2. The obje
ts have positions xi
1 (t) and

xi
2 (t) and velo
ities vi1 (t) and vi1 (t)[Figure 3.1℄. Then our sour
e has density

distribution

ρ
(

t, xi
)

= m1δ
(

xi − xi
1 (t)

)

+m2δ
(

xi − xi
2 (t)

)

(3.5)

and velo
ity distribution

vi
(

t, xj
)

= vi1δ
(

xj − xj
1

)

+ vi2δ
(

xj − xj
2

)

(3.6)

where δ (xi) is the three-dimensional Dira
 delta distribution.

Our metri
 has the form gµν = ηµν + sµν + hµν where sµν is the non-Minkowski

part of the S
hwarzs
hild metri
 and hµν is a small perturbation. Let hQ
µν be the

perturbation resulting from the quadrupole moment of the mass distribution and

let hS
µν be the perturbation resulting from the spin dipole of the mass distribution.

Let the variable s = t− r. Then expli
itly, the metri
 is given by [120, 139, 142, 4,
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p 181℄,

s00 =2m/r (3.7)

s0i =0 (3.8)

sij =

[

(

1− 2m

r

)−1

− 1

]

xi

r2
δij (3.9)

hQ
00 =

∂2

∂xi∂xj

Qij (s)

r
(3.10)

hQ
0i =− 2

∂2

∂xi∂t

Qij (s)

r
(3.11)

hQ
ij =

∂2

∂xi∂xj

Qij (s)

r
δij + 2

∂2

∂t2
Qij (s)

r
(3.12)

hS
0i =2

Sjxkǫ
jk
i

r3
(3.13)

hS
00 = hS

ij =0 (3.14)

where the ve
tor Si ≡ (J23, J31, J12) and J ij ≡
´

(xiT j0 − xjT i0) dV [4, 
hapter

2.9℄.

Let the obje
ts orbit one another with a known period p. Let our 
oordinate

system origin be lo
ated at the 
enter of mass of the binary and let m = m1 +m2.

Let ai ≡ xi
1−xi

2 be a ve
tor denoting the spatial separation of the two masses and

l ≡ |ai|. Let the mass ratio b ≡ m2

m1
≤ 1.

By our 
hoi
e of 
oordinates, the dipole term of the de�e
tor's mass distribution

is zero.

Using the Landau-Lifs
hitz de�nition of the transverse tra
eless quadrupole [2,
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equation 41.3℄, the quadrupole moment of the de�e
tor is:

Qij (t) =

ˆ

ρ (x, t)
[

3xixj − r2δij
]

dV =
mb

(1 + b)2
[

3aiaj − l2δij
]

. (3.15)

In the 
ase that the masses travel in almost 
ir
ular orbits about their 
ommon


enter of mass, then in a primed 
oordinate system related to our 
hosen system

only by unitary rotations,

a′i (t) = l













sin
(

2πt
p

+ φ′
)

0

cos
(

2πt
p

+ φ′
)













+ δa′i (t) (3.16)

where φ′
represents a 
onstant phase term , and where δa′i is small. Rotating from

the primed system �rst about the y-axis, then the x -axis, then the z -axis, we have

ai (t) = l













cosΨ sin
(

2πt
p

+ φ
)

+ sinΨ sinΘ cos
(

2πt
p

+ φ
)

− sin Ψ sin
(

2πt
p

+ φ
)

+ cosΨ sinΘ cos
(

2πt
p

+ φ
)

cosΘ cos
(

2πt
p

+ φ
)













+ δai (t) (3.17)

where φ subsumes rotation about the y-axis with φ′
and where Θ and Ψ are the

angles of rotation of the plane of motion away from the xz -plane about the x - and

z -axes respe
tively.

Solution to the geodesi
 equation

The theory of the e�e
ts of small perturbations to the metri
 on light propagation

in the weak-�eld limit is already developed [119, 120℄. However, sin
e the e�e
ts
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Figure 3.1: Con�guration of a binary de�e
tor

Obje
t 1 has mass m1, velo
ity vi1 and is lo
ated as position xi
1; obje
t 2 has


orresponding m2, v
i
2 and xi

2. xi
1 − xi

2 = ai and the spin ve
tor Si
where Si ≡

(J23, J31, J12) and J ij ≡
´

(xiT j0 − xjT i0) dV is perpendi
ular to ai, vi1 and vi2.

of a quadrupolar perturbation fall o� as d3, it is desirable to expand the theory

to be appli
able to regions of stronger �elds. We note in parti
ular that for a


losely-orbiting 
ompa
t binary system, su
h as an evolved SMBHB, then m and

l will be of similar magnitude; therefore, we extend the �rst-order theory of light

de�e
tion to order O (m/d)3.

First, note that all terms in (3.8) are O (m/r) or higher and that all terms in (3.11)

are of O (ml2/r3) ≤ O (m3/r3). Let O (m3/r3) be small su
h that all higher orders

are negligible. Then, suppressing negligible terms,

Γα
βγ = −1

2

(

ηαδ + sαδ
)

(sβδ,γ + sγδ,β − sβγ,δ)−
1

2

(

ηαδ
)

(hβδ,γ + hγδ,β − hβγ,δ) .

(3.18)

Let the Christo�el symbol asso
iated with the S
hwarzs
hild metri
 Γ
α(S)
βγ ≡ −1

2

(

ηαδ + sαδ
)

(sβδ,γ +



40

CHAPTER 3. CONSTRAINING THE PARAMETERS OF BINARY

SYSTEMS THROUGH TIME-DEPENDENT LIGHT DEFLECTION

and the remaining part resulting from the perturbation Γ
α(h)
βγ ≡ −1

2

(

ηαδ
)

(hβδ,γ + hγδ,β − hβγ,δ).

Then (3.2) be
omes

κ̇α + Ξ̇α +
(

Γ
α(S)
βγ + Γ

α(h)
βγ

)

(

kβ + κβ + Ξβ
)

(kγ + κγ + Ξγ) = 0. (3.19)

Sin
e all Γ
α(S)
βγ and all 
omponents of κα

must be at least of O (m/r) or zero, (3.19)

expands, again suppressing negligible terms, to

κ̇α + Ξ̇α + Γ
α(S)
βγ

(

kβ + κβ
)

(kγ + κγ) + Γ
α(h)
βγ kβkγ = 0. (3.20)

Sin
e

κ̇α + Γ
α(S)
βγ

(

kβ + κβ
)

(kγ + κγ) = 0, (3.21)

we 
on
lude

Ξ̇α + Γ
α(h)
βγ kβkγ = 0 (3.22)

whi
h is exa
tly the result for the weak-�eld approximation [119, 120℄.

Plugging (3.21) and (3.22) into (3.3) and 
hoosing τ as our a�ne parameter, we


an de�ne the S
hwarzs
hild and non-S
hwarzs
hild parts of the de�e
tion angle

[Figure 3.2℄:

αi
M

(

ξi
)

≡Πi
jκ

j
(3.23)

αi
h

(

t, ξi
)

≡ Πi
jΞ

j =− 1

2
Πij

ˆ ∞

−∞

(hβδ,j + hjδ,β − hβj,δ) k
βkγdτ. (3.24)

The monopole term αi
M (ξi) of the de�e
tion produ
ed by the 
ore is stati
 and

unique, regardless of 
hanges of 
on�guration within the 
ore [118, 116℄. We 
an

use the general, exa
t solution for κα
provided by Darwin [130℄:
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Choose spheri
al 
oordinates. By the symmetry of the monopole term, this part of

the traje
tory of the light ray must lie in a plane, so we 
an 
hoose the 
oordinate

θ as an a�ne parameter and the 
oordinate φ as 
onstant. Then we obtain an

equation of motion

−r − 2m

r

(

dt

dθ

)2

+
r

r − 2m

(

dr

dθ

)2

+ r2 = 0. (3.25)

Identifying the impa
t parameter with a 
onserved quantity in the system

r3

r−2m
dt
dθ

=

d and substituting in yields three solutions; we dis
ard the two where the light ray

never rea
hes a distant observer and take the remaining one,

1

r (θ)
= −V − U + 2m

4mU
+

V − U + 6m

4mU
sn

2ζ (θ) (3.26)

where the 
onstant V is de�ned by V 2 ≡ (U − 2m) (U + 6m), the periastron and

impa
t parameter are related by d2 ≡ U3/ (U − 2m) and ζ (θ) ≡
√

V
U
(θ + θ0), and

snζ is the Ja
obi ellipti
 sn fun
tion [143, 16.1.5℄. In the limit of U ≫ m, inverting

this relationship and taking its asymptoti
 limits at large r leads to the well-known

relationship

αi
M,weak �eld

(

ξi
)

=
4m

d
ni. (3.27)

As U → 3m, however, the de�e
tion be
omes [141℄

µ
(

ξi
)

=
(

ln
m

d
+ ln

[

648
(

7
√
3− 12

)]

− π
)

≈
(

ln
m

d
+ 1.248

)

(3.28)

where µ is the angle of de�e
tion about the apse of the traje
tory, rather than the

de�e
tion seen by a distant observer; the angles involved are no longer ne
essarily

small so we 
annot approximate αM = µ. In the 
ase of an impa
t parameter


omparable to 3m, it is no longer observationally useful to 
onsider the monopolar

displa
ement in and of itself as small di�eren
es in impa
t parameter 
ause great
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hanges in de�e
tion angle, and multiple images of a sour
e may be dete
table,

some of whi
h may result from geodesi
s whi
h travel several times around the

de�e
tor. Our 
onsideration therefore must fo
us not on the stati
 de�e
tion but on

time-dependent de�e
tions arising from higher multipole moments of the de�e
tor.

Kopeikin and Mashhoon [139℄ develop the e�e
t of the rotation of a system on

that system's de�e
tion of light, in the weak �eld approximation. Investigation of

this e�e
t is useful for the system as des
ribed in that every pra
ti
al 
ase of an

astronomi
al binary will display orbital motion. However, the theory developed

by Kopeikin and Mashhoon is only sometimes 
ompatible with the strong-�eld

approximation presented herein.

The integration of (3.13) is trivial. Let αi
S (ξ

i) be that part of αi
h determined by hS

µν .

when the de�e
tor is stationary relative to the observer, the resulting 
ontribution

is given by

αi
S

(

ξi
)

= 2
d2

[

2Sjkknlδmj ǫklmn
i + kjSkǫijk

]

. (3.29)

Cal
ulating Si
with (3.17) for the 
ase of a binary whose 
omponents are in almost-


ir
ular orbits,

Si = −m
b

1 + b

2πl2

p

(

b

(1 + b)2 − b2 (2πl/p)2
+

1

(1 + b)2 − (2πl/p)2

)













sinΨ cosΘ

cosΨ cosΘ

− sinΘ













.

(3.30)

We must emphasize that (3.29) is 
ompatible with the O (m3/r3) generalization

above only when O (ml2/d2p) ≥ O (m3/d3); in parti
ular, when l ≈ p the sys-

tem's motion is no longer slow. We draw attention to this 
ontribution to empha-
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size the di�
ulty in asso
iating an image with a parti
ular sour
e and to under-

s
ore the utility of time-dependent de�e
tion versus time-independent de�e
tion

in parametrizing a system.

Let αi
Q (t, ξi) be that part of αi

h determined by hQ
µν . α

i
Q is determined by plugging

(3.11) into (3.24); while [120℄ uses the method of Fourier transforms, the form of

(3.11) allows dire
t integration of a Fourier series de
omposition as well. Either

way, the result is the following de�e
tion [119, 120℄

4

:

αi
Q

(

t, ξi
)

=
12

d3
mb

(1 + b)2
[(

a22 (s)− a21 (s)
)

ni − a1 (s) a2 (s) ǫ
i
jkk

jnk
]

(3.31)

for whi
h we reiterate the following properties: �rstly, in 
ontrast to the monopolar


ase where αi
M always points along ξi, the quadrupolar de�e
tion has a 
ontribution

parallel toξi, αQ‖, and also a 
ontribution perpendi
ular to ξi, αQ⊥, whi
h vanishes

only in the 
ase that a 
omponent of the proje
ted quadrupole moment vanishes,

that is, only if the axis of rotation of the de�e
tor is perpendi
ular to our line of

sight; and se
ondly, the de�e
tion depends only on the 
on�guration of the de�e
tor

at the time of the light ray's 
losest approa
h to the 
enter of mass, t = t∗.

4

The symbol ǫijk represents the Levi-Civita permutation symbol de�ned su
h that ǫ123 = 1.
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In the 
ase of almost-
ir
ular motion, inserting (3.17) into (3.31) leads to

αi
Q‖

(

t, ξi
)

=
12l2

d3
mb

(1 + b)2























1
2
cos 2Ψ







(

1 + sin2Θ
)

cos
(

4πs
p

+ 2φ
)

+ sin2Θ− 1







− sin 2Ψ sinΘ sin
(

4πs
p

+ 2φ
)























ni

(3.32)

αi
Q⊥

(

t, ξi
)

=− 6l2

d3
mb

(1 + b)2
× (3.33)

×























1
2
sin 2Ψ







(

−1 + sin2Θ
)

+
(

1 + sin2Θ
)

cos
(

4πs
p

+ 2φ
)







+cos 2Ψ sinΘ sin
(

4πs
p

+ 2φ
)























ǫijkk
jnk.

The relationship (3.33) is original to this work and has not previously appeared.

From this relationship it is easy to see that the time-dependent de�e
tion of the

emitter's image is periodi
, with a period half that of the orbit of the 
ore's 
om-

ponents.

The greatest time-dependent de�e
tion is observed when the emitter lies on the

line of the semi-major axis of the apparent motion; when b = 1; and when the

plane of the system lies perpendi
ular to the plane of observation. In this 
ase,

(3.33) redu
es to

αQ (t, d) ≤ 3l2

2d3
m

[

cos

(

4πs

p
+ 2φ

)

− 1

]

(3.34)

so the total quadrupolar de�e
tion seen over one half-period of the de�e
tor's

motion is

∆αQ (d) ≤ −3l2

d3
m. (3.35)
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Compared to the monopole de�e
tion in the 
ase of a large impa
t parameter,

∣

∣

∣

∣

∆αQ

αM

∣

∣

∣

∣

≤ 3l2

d2
. (3.36)

Figure 3.2: Light de�e
tion by a binary system

A light ray produ
ed by the emitter initially follows traje
tory ki
, whi
h has its 
los-

est approa
h to the origin of the 
oordinate system at ξi. In a pure S
hwarzs
hild

spa
e, the light ray follows traje
tory ki +κi (λ) and is de�e
ted about the apse of

its traje
tory by angle µ; in a perturbed S
hwarzs
hild spa
e, it follows traje
tory

ki + κi (λ) + Ξi (λ) and the observer on Earth (⊕) re
ords an additional de�e
tion

of αi
h.

Other 
ontributions to the de�e
tion angle

If the path of the light ray after its 
losest approa
h to the de�e
tor but far from the

de�e
tor is nearly o

ulted (for example the Sun or another star), then de�e
tion

from this intermediate de�e
tor, αi
intermediate

(

ξin,int
)

, must be taken into a

ount as
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well. Whereξin,int refer to the ve
tor impa
t parameters of light relative to these

intermediate de�e
tors, dn ≡
∣

∣ξin,int
∣

∣

, and mn are the masses of these de�e
tors,

and where mn/dn is small for all n,

αi
intermediate

(

ξin
)

= −4mn

dn

ξin,int
dn

. (3.37)

In linear approximation and in the harmoni
 gauge, the various de�e
tions 
an be

superposed linearly. The total de�e
tion of the light ray from our sour
e, therefore,

is given by

αi
(

t, ξi
)

= αi
Q

(

t, ξi
)

+ αi
M

(

ξi
)

+ αi
S

(

ξi
)

+ αi
intermediate

(

ξin,int
)

. (3.38)

3.2.3 Appli
ation to 3C66B

3C66B, also known as 0220+43, is a radio galaxy [123℄ with z = .0215 [124℄,

approximately 91 Mp
 distant from the Milky Way

5

. 3C66B exhibits jets emerging

from its 
ore, making it a good 
andidate for the lo
ation of a SMBHB [126℄. Thus

far, no other 
andidate SMBHB has emerged with an orbital period as short as

3C66B's [144℄ and the system is estimated to have an inspiral time on the order of


enturies [145℄.

5

We use a value of 71 km/s/Mp
 for the Hubble 
onstant H0 for all distan
e 
al
ulations.[125℄
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Parameters of the system

Sudou et al. [127℄ give upper-bound estimates by dire
t radio observation for

3C66B's 
ore, in
luding an upper limit on m, a period, and an orientation of

the 
ore's motion. Sudou also reports a limit on the minimum impa
t parameter

available for determining the parameters of the system using a �rst-order approxi-

mation theory, 
orresponding to the limit of opti
al transparen
y at VLBI's higher

operating frequen
y. The upper limits Sudou gives are:

m ≤4.4 (1 + b)2 × 1010solar mass = 6.5 (1 + b)2 × 1015
m (3.39)

l ≤5.1 (1 + b)× 1016
m (3.40)

U ≥23µas = 3.1× 1016
m (3.41)

d ≥3.7× 1016
m (3.42)

p =1.05± .03years (3.43)

Θ =15◦ ± 7◦ (3.44)

where P is 
onstrained by the limit of the 
ore's opa
ity in the radio spe
trum and

Θ is derived from the apparent e

entri
ities of the ellipti
al boundaries of radio

opa
ity. From l and P we 
an furthermore 
on
lude that in the 
ase of maximized

l, under Sudou's estimates q ≤ .20.
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Igu
hi et al. have re
ently published [145℄ new estimates 
onstraining 3C66B:

m ≈1.9× 109solar mass = 5.6× 1014
m (3.45)

l ≈1.9× 1016
m (3.46)

U ≈1.2× 1016
m (3.47)

d ≥3.7× 1016
m (3.48)

p =1.05± .03years (3.49)

Θ =15◦ ± 7◦ (3.50)

b ≈0.58. (3.51)

Estimates for distant emitters

Although highly e

entri
 motion in 3C66B is not ruled out [128℄, the age of the

presumed binary is great enough to have 
ir
ularized the orbit through gravita-

tional radiation under most 
onditions [129℄. We present the 
ase of 
ir
ular motion

as an upper limit on the time-dependent de�e
tion angle, noting that if all other

parameters are 
onstant then in the 
ase of e

entri
 motion any time-dependent

separation of the masses must have l as an upper bound.

Using the maximal �gure for mass and the minimal �gure for impa
t parameter in

(3.39-3.44) and applying (3.28), the ratio m/l = .30, pla
ing our proposed system

in the regime of strong de�e
tion. We �nd a monopolar de�e
tion of:

µ =

(

ln

(

6.5× 1015
m

3.7× 1016
m
(1.44)

)

+ 1.248

)

= .13radian = 7.2◦. (3.52)
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The 
omponents of the system as proposed by Sudou have

2πl
p

≤ .39. Therefore it

is not reasonable to apply (3.29) to 3C66B in the regime where de�e
tion from the

quadrupole moment will be dete
table.

De�e
ted images lying along the major axis of the 
ore with the system as 
on-

strained in (3.39-3.44) will have time-dependent de�e
tions in the following amounts:

∆αQ‖ (d) ≤
12l2

d3
mb

(1 + b)2
(1.07)

≤12 (5.1× 1016
m)
2
(1.2)2

(3.7× 1016
m)3
(6.5× 1015
m) (1.2)2 (.2)

(1.2)2
(1.07) (3.53)

≤5.8× 10−5
ar
se
ond

∆αQ⊥ (d) ≤24l2

d3
mb

(1 + b)2
(.26)

≤24 (5.1× 1016
m)
2
(1.2)2

(3.7× 1016
m)3
(6.5× 1015
m) (1.2)2 (.2)

(1.2)2
(.26) (3.54)

≤1.4× 10−5
ar
se
ond

with a period of p/2 = .53± .02years for ea
h 
omponent of the de�e
tion.

Under Igu
hi et al.'s new estimates, the de�e
tions take on the following values:

∆αi
Q‖

(

t, ξi
)

≈3.7× 10−7
ar
se
ond (3.55)

∆αi
Q⊥

(

t, ξi
)

≈8.8× 10−8
ar
se
ond. (3.56)
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3.3 Observational te
hniques

3.3.1 Interferometry

Ele
tromagneti
 interferometry provides the best 
urrently-available te
hniques

for high-resolution astronomy. The use of spa
e-based interferometry and im-

provements in equipment allowing for higher frequen
ies of observation 
ontinue

to steadily improve resolution 
apabilities. The 
urrent most powerful te
hnique

available is VLBI, whi
h Sudou et al. used to determine the motion in the 
ore of

3C66B [127℄.

VLBA, the Very Long Baseline Array, is an array of ten radio teles
opes [133℄

operating in wavelengths as short as 3mm operating as a single large interferom-

eter. The 
urrent best available resolution is 1.7 × 10−5
ar
se
ond [134℄, making

VLBA 
urrently 
apable of 
onstraining the parameters of 3C66B further through

dire
t observation as well as the Jenet pulsar timing experiment des
ribed below

a

omplishes indire
tly. The laun
h of the spa
e-based ASTRO-G satellite [135℄

will extend the resolution 
apabilities further.

The SIM PlanetQuest mission (formerly Spa
e Interferometry Mission), 
urrently

s
heduled for laun
h in 2015 [136℄, is expe
ted to have a resolution 
apability of 4×

10−6
ar
se
ond [137℄. SIM will operate in the opti
al band and quasar observation

is part of the planned mission.

Farther into the future, the MAXIM (Mi
ro-Ar
se
ond X-ray Interferometry Mis-
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sion) satellite array 
urrently in development [138℄ is expe
ted to give resolutions

on the order of 10−7
ar
se
ond in the x-ray band, and is expli
itly designed with

the observation of bla
k holes in mind.

3.3.2 Pulsar timing

Jenet et al. [117℄ examined the period of the pulsar PSR B1855+09 for 
hanges

in its period over several years, motivated by the idea that as gravitational waves

generated by the 
ore of 3C66B pass near the pulsar, the pulsar's signal should be

modulated with a period related to the period of the proposed 3C66B SMBHB. The

distan
e between the Solar System and the pulsar furthermore give the advantage

that the signals observed modulating the pulsar are some 4000 years older than

the motion observed in the 3C66B 
ore. However, Jenet's experiment produ
ed a

null result.

The experiment's analysis involved examining the frequen
y spa
e of the pulsar's

signal for 
omponents in a range from 1/27.8yr−1
to 19.5yr−1

, then subtra
ting

out the one-year and six-month 
omponents resulting from geodeti
 e�e
ts. The

results are des
ribed as showing no signal distinguishable from noise other than the

already-known main os
illation frequen
ies of the pulsar. Therefore the magnitude

of gravitational waves generated by 3C66B, and 
onsequently the parameters of its


ore, 
an be further 
onstrained.

Jenet et al. assert that a system with m
(

b
(1+b)2t

)3/.5

≥ .7 × 1010solar mass 
an be

ruled out by the observed null result in the 
hange in pulsar periods over seven
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years; this 
orresponds in the optimal 
ase of q = .2 to a system with m = 2.3 ×

1010solar mass = 3.4 × 1015
m. For a system under these new 
onstraints, we

estimate optimal peak de�e
tions:

∆αQ‖ (d) ≤
12 (5.1× 1016
m)

2
(1.2)2

(3.1× 1016
m)3
(

3.4× 1015
m
) (.2)

(1.2)2
(1.07) = 2.1× 10−5

ar
se
ond

(3.57)

∆αQ⊥ (d) ≤12 (5.1× 1016
m)
2
(1.2)2

(3.1× 1016
m)3
(

3.4× 1015
m
) (.2)

(1.2)2
(.26) = 5.0× 10−6

ar
se
ond

(3.58)

whi
h remain within the dete
tion limit of VLBA as 
urrently 
on�gured.

3.4 Con
lusions

A theory of light de�e
tion by time-dependent distributions of matter has been

presented for metri
s whi
h are perturbations of the S
hwarzs
hild metri
, a
-


ounting for de�e
tion resulting from time-independent and time-dependent terms

in the metri
. To order m3/r3, de�e
tions originating from the quadrupole mo-

ment of the mass distribution and, with some 
onstraints, the dipole moment of

the system's spin 
an be linearly superposed on the system as if in a weak-�eld

approximation. The theory 
an be pra
ti
ally evaluated for and applied to a model

of the 
ore of an a
tive galaxy, but the theory of light de�e
tion from the spin of

the de�e
tor needs further development for appli
ability in the regime of strong

de�e
tion.

The examination of time-dependent light de�e
tion is a feasible te
hnique for the
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evaluation of proposed SMBHB systems, under idealized 
ir
umstan
es. In the

event that a suitable emitter exists, examination of light de�e
tion 
an be used

to 
onstrain the parameters of the proposed SMBHB in the 
ore of 3C66B. We

emphasize that while the existen
e of an identi�able suitable emitter in the 
ase

of 3C66B is unlikely, the theory 
an be applied equally well to any other SMBHB


andidate, any of whi
h may have a suitable sour
e; in parti
ular, a
tive galaxies

displaying Einstein rings or other artifa
ts of strong gravitational lensing, espe
ially

multiple images, should be examined. The theory 
an be equally well applied to

intragala
ti
 obje
ts, although nearer obje
ts will require further 
orre
tions for

proper motion.

The quadrupolar motion in the 
ore of 3C66B 
an be examined and evaluated by

the observation of de�e
ted images in the region of the sky near the 
ore of the

galaxy, if found; the time-dependent part of the de�e
tion has a magnitude of up

to 58 mi
roar
se
onds parallel to the impa
t parameter of the emitter and up to

28 mi
roar
se
onds perpendi
ular to the impa
t parameter.

For the 
ase of 3C66B, for most emitters pulsar timing 
an 
onstrain the parameters

of the de�e
ting system better than time-dependent light de�e
tion 
an. VLBA

in its 
urrent 
on�guration is 
apable of 
onstraining the parameters of the 
ore

of 3C66B under ideal 
ir
umstan
es, but newer estimates of the parameters of the

system show a 
hange in angular light de�e
tion 
onsiderably smaller than what

VLBA 
ould resolve. Anti
ipated interferometers will have resolutions up to two

orders of magnitude greater and will be 
apable of evaluating the parameters of

the system while examining it in a wide range of frequen
ies, and may make the

observation of time-dependent light de�e
tion resulting from motion in the 
ore of

3C66B more pra
ti
al.



Chapter 4

The Bian
hi IX 
osmology

In pursuit of a theory within the 
ontext of unmodi�ed general relativity whi
h 
an

explain 
osmi
 a

eleration while remaining 
ompatible with the 
osmi
 mi
rowave

ba
kground, we wish to relax as few 
onstraints on our 
osmologi
al model as

ne
essary. Therefore while having sa
ri�
ed the requirement of isotropy in the

sense of spheri
al symmetry in the dark energy �eld, we wish to retain a stronger

[2, ss. 116℄ 
ondition of the Coperni
an prin
iple on our spa
e, that of homogeneity

[4, Chap. 13 se
. 1℄. It is also desirable to have a model whose limiting 
ase is

a Friedmann 
osmology, in order to explain the almost-isotropi
 (that is, almost-

Friedmannian) 
hara
ter of the CMB. Furthermore, a model whi
h is spatially


losed, in order to mat
h models favored by CMB and SNe data, is desirable; su
h

a model would, if 
omplying with all other 
onditions, have a �at universe as a

limiting 
ase in the limit of an in�nitely large radius of 
urvature.

54
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Bian
hi showed [70℄ that there exists exa
tly one homogeneous

1

spa
e with a 
losed

Friedmann universe as a limiting 
ase: the Bian
hi type IX 
osmology, for short

�Bian
hi IX�.

4.1 The Bian
hi 
lassi�
ation s
heme

Bian
hi observed that all three-dimensional homogeneous spa
es 
ould be 
lassi�ed

into nine types, based on 
ategorization of the symmetries, that is the Killing �eld,

in ea
h spa
e. Behr noted [71℄ that this 
ategorization s
heme 
ould be simpli�ed

to �lling a parameter spa
e of four parameters: one running over the real numbers

and three redu
ible to the sign fun
tion sgn (x).

Consider some spa
e with metri
 ds2 = dt2−gijdx
idxj

(that is, a spa
e in Gaussian


oordinates) where gij = gij (t, x
i). If the sub-spa
e with metri
 tensor gij is

homogeneous, then there exists a set of ve
tors that solve ξi;j + ξj;i = 0; these are

the Killing ve
tors of the spa
e[4℄. In an homogeneous spa
e, these ve
tors will

(where [ , ] is a 
ommutator) obey the 
ommutation relationship

[ξi, ξj] ≡ ξiξj − ξjξi = Ck
ijξk (4.1)

where in an homogeneous spa
e, the obje
t Ck
ij is a 
onstant pseudo-tensor, the

�stru
ture 
onstants� of an homogeneous spa
e, with the antisymmetry property

Ck
[ij] = Ck

ij [2, ss. 116℄.

1

A homogeneous spa
e is a spa
e su
h that for any two points in the spa
e, there exists a

geodesi
, not ne
essarily of �nite length, 
onne
ting those two points.



56 CHAPTER 4. THE BIANCHI IX COSMOLOGY

We always have the freedom to perform separation of variables the fun
tions gij;

let us do so by de�ning the matrix γab su
h that

gij
(

t, xk
)

= −γab (t) e
(a)
i

(

xk
)

e
(b)
j

(

xk
)

(4.2)

.

2

The 3×3matrix e
(a)
i

(

xk
)

is a triad [2, 112, ss. 98℄

3

of ve
tors (�frame ve
tors�); in

the language of linear algebra, the quantity eai dx
i
is a one-form on a homogeneous

spa
e.

Furthermore, let us de�ne the matrix ei(a) su
h that e
i
(a)e

(a)
j = δij ; from this it follows

that ei(a)e
(b)
i = δ

(b)
(a). From these relationships we 
an transform between any tensor

and its de
omposition into triads by saying that for some tensor Ai1i2i3...im
j1j2j3...jn

,

Ai1i2i3...im
j1j2j3...jn

= A
(a)1(a)2(a)3...(a)m
(b)

1
(b)

2
(b)

3
...(b)n

(

ei1(a)
1

ei2(a)
2

ei3(a)
3

. . . eim(a)m

)(

e
(b)1
j1

e
(b)2
j2

e
(b)3
j3

. . . e
(b)n
jn

)

;

(4.3)

therefore in an homogeneous spa
e we 
an perform separation of variables on the

partial di�erential equations of general relativity and solve the time-dependent

parts as ordinary di�erential equations.

The frame ve
tors obey the properties

e
(a)
i,j − e

(a)
j,i = Ca

bce
(b)
i e

(c)
j (4.4)

2

Indi
es from the beginning of the Latin alphabet (a, b, 
,...) denote triad indi
es; indi
es

from the middle of the alphabet (i, j, k,...) denote regular indi
es. Where the two are mixed or

the appli
ation is otherwise ambiguous, triad indi
es are en
losed in parentheses; in this work,

this notation never means the tensor symmetrization operation.

3

The widespread Fourth Revised English Edition of [2℄ 
ontains numerous serious typograph-

i
al errors in the se
tion introdu
ing the tetrad formalism. The Russian-language Seventh Cor-

re
ted Edition[112℄ 
ontains the 
orre
t formulas.
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[7℄.

Grish
huk dis
usses two 
riteria for an homogeneous spa
e, 
onstrasting two 
om-

peting de�nitions; one, originating from Bian
hi [70℄, in whi
h a spa
e is termed

�homogeneous� if it admits a group of motions G3 operates 
ontinuously on a spa
e


omposed of a set of hypersurfa
es V3; that is, if for every point x
i
in the spa
e, the

operation gxi = yi for g ∈ G3 and yi is another point in the spa
e; and the other,

from Zel'manov, whi
h generalizes Bian
hi's de�nition to three-spa
es whi
h are

submanifolds of a four-dimensional spa
e-time. Grish
huk �nds these two de�ni-

tion to be 
ompatible. The stru
ture 
onstants Ca
bc typify a homogeneous spa
e

and are given by the following rule [71℄:

Ca
bc = εbcdn

ad + δdcab − δdbac (4.5)

where the obje
t nab
is a diagonal matrix diag

(

n(1), n(2), n(3)
)

and aa is the ve
tor

(a, 0, 0), the values of this matrix and ve
tor typifyied by the underlying 
osmology

(Table 4.1).

The 
osmologies of Bian
hi types I, V, VII0, VIIa and IX are of parti
ular interest

as they have isotropi
 spa
es as limiting 
ases [151℄; spe
i�
ally, a universe with

metri


ds2 = dt2 − a2ηabe
(a)
i e

(b)
j dxidxj

(4.6)

is a �at K = 0 universe for Bian
hi type I or VII0, an open K = −1 universe for
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Bian
hi type a n(1) n(2) n(3)

I 0 0 0 0

II 0 1 0 0

III 1 0 1 -1

IV 1 0 0 1

V 1 0 0 0

VI0 0 0 1 -1

VIa a 0 1 -1

VII0 0 1 1 0

VIIa a 1 1 0

VIII 0 1 1 -1

IX 0 1 1 1

Table 4.1: The Bian
hi 
lassi�
ation s
heme

Constants for the di�erent homogeneous spa
es of the Bian
hi 
lassi�
ation

s
heme[2, 21, 71, 104℄. The quantity a runs over the real numbers. This

parametrization is not unique (we 
ould, for example, have 
hosen (−1,−1,−1)
for

(

n(1), n(2), n(3)
)

in the type IX spa
e).

Bian
hi types V or VIIa and some 
ases of Bian
hi type III (type III is itself a

parti
ular 
ase of Bian
hi type VIa [71℄), and a 
losed K = 1 universe for Bian
hi

type IX [2, 10, 21℄. Bian
hi IX is the only homogeneous 
losed 
osmologi
al model

in the 
ontext of general relativity [104, 151℄.

4.2 The Kasner universe

In order to illustrate the possible e�e
ts of an anisotropi
 but homogeneous 
os-

mology on 
osmi
 dynami
s, we will 
onsider a Bian
hi type I 
osmology that

generalizes the Friedmann 
osmology: the Kasner universe [76℄; [2, ss. 117℄.
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Let our metri
 read

ds2 = dt2 − t2p1
(

dx1
)2 − t2p2

(

dx2
)2 − t2p3

(

dx3
)2

(4.7)

where p1, p2, p3 are 
onstants. In a 
o-moving 
oordinate system we qui
kly arrive

at the following set of Einstein equations:

[

(p1 + p2 + p3)−
(

p21 + p22 + p23
)]

t−2 =
1

2
k (ǫ+ 3p) (4.8)

(p1 + p2 + p3 − 1) p1t
−2 =

1

2
k (p− ǫ) (4.9)

(p1 + p2 + p3 − 1) p2t
−2 =

1

2
k (p− ǫ) (4.10)

(p1 + p2 + p3 − 1) p3t
−2 =

1

2
k (p− ǫ) . (4.11)

These equations ne
essitate either an isotropi
 but unusual (p = ǫ) universe or a

va
uum (ǫ = p = 0) universe, in whi
h we have either the trivial solution p1 =

p2 = p3 = 0 (Minkowski spa
e) or the more interesting solution

p1 + p2 + p3 = p21 + p22 + p23 = 1. (4.12)

This solution admits a parametrization of p1, p2, p3 su
h that (if we 
hoose p1 ≤

p2 ≤ p3)

p1 =− u/
(

1 + u+ u2
)

p2 =(1 + u) /
(

1 + u+ u2
)

(4.13)

p3 =u (1 + u) /
(

1 + u+ u2
)

where u > 0; these relations have the ni
e symmetry property that pi (u) = pi (1/u).
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An impli
ation of (4.12) is that singularities in the Kasner universe fall into two


lasses: one-dimensional �spindle� singularities where expansion tends toward in-

�nity in one dire
tion while the universe 
ollapses in two dire
tions; and �pan
ake�

singularities where expansion goes to in�nity in two dire
tions while the universe


ollapses in the third.

4.2.1 S
ale fa
tor

The s
ale fa
tor a does not ne
essarily have an intrinsi
 meaning, but instead


ompares distan
es as a fun
tion of time. In an isotropi
 
osmology su
h as the

Friedmann model a 
an be given a real geometri
 meaning; in an open or 
losed

Friedmann universe, the s
ale fa
tor appears simply in the Ri

i 
urvature of spa
e

Ri
j = (2K/a2) δij . As su
h, the s
ale fa
tor 
an be regarded as the radius of


urvature of the universe. In parti
ular, in a 
losed isotropi
 universe a 
an be


onsidered to have the dire
t physi
al meaning of the radius of 
urvature of the

spheri
al spa
e, so in a 
losed isotropi
 universe one 
ould meaningfully say �the

radius of the universe is a�.

When spa
e is no longer isotropi
, the de�nition of s
ale fa
tor breaks down. It is,

of 
ourse, possible to de�ne any positive fun
tion as �the� s
ale fa
tor. Grish
huk

et al. [10, se
tion 4℄, for example, use a metri


γ11 =
1

4
a2e2α

γ22 =
1

4
a2e2β (4.14)

γ33 =
1

4
a2e2γ
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and propose the de�nition

a2 ≡ 1

12
γabη

ab
(4.15)

in the 
ontext of a va
uum 
osmology, motivated by the 
oin
iden
e of this de�-

nition of the s
ale fa
tor with one the authors introdu
e in separating the Bian
hi

IX metri
 into ba
kground and gravitational-wave parts. The authors also dis
uss

a de�nition of s
ale fa
tor su
h that

a2 ≡ (det γab)
1/3 . (4.16)

This de�nition has the advantage that it relates the s
ale fa
tor to a de�nite physi-


al quantity, a volume element, but it 
ontains a deeper �aw: with su
h a de�nition

in pla
e the Einstein equations admit no solution other than the ba
kground solu-

tion at quadrati
 and higher orders. If we de�ne the quantity

δ ≡ α + β + γ (4.17)

then

a2 ≡ (det γab)
1/3 =⇒ eδ = 1 =⇒ δ = 0. (4.18)

In either 
ase, though, dis
ussion of possible de�nitions of a attempt to solve a

problem that does not exist. The question of what de�nition of s
ale fa
tor to sele
t

is analogous to the question of whi
h of the ortho
enter, in
enter or 
ir
um
enter

of a triangle is the �true� 
enter. Consequently, attempting to extra
t a single s
ale

fa
tor � and thus a single Hubble parameter or a single de
eleration parameter �

from anisotropi
 Einstein equations is a fool's errand.

We 
an, if we wish, split the metri
 (4.14) into isotropi
 and anisotropi
 parts by

noting that the quantity aFe
δ
is isotropi
 and that any two of the quantities α−β,
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α−γ and β−γ 
ombined with aF e
δ

ontain all the information needed to des
ribe

the metri
 [22℄; pursuing this route would be a distra
tion from our main task,

however.

Alternately, we 
ould follow [2℄'s Kasner-like approa
h to the Bian
hi IX 
osmology

and deal with only the metri
 
oe�
ients as γ11 = a2, γ22 = b2, γ33 = c2 for

fun
tions a, b, 
, ignoring the idea of a unique �s
ale fa
tor� or Friedmann-like

behavior. This approa
h will obs
ure the nature of the 
osmology dis
ussed below.

Instead, let the notion of s
ale fa
tor a, Hubble parameter H and de
eleration

parameter Q be generalized. In a homogeneous 
osmology with a diagonal metri
,

de�ne the following matri
es: the generalized s
ale fa
tor,

aab ≡













(γ11)
1/2 0 0

0 (γ22)
1/2 0

0 0 (γ33)
1/2













(4.19)

(re
alling that non-integer powers of a matrix are not de�ned, so we 
ould not

simply say aab ≡ (γab)
1/2

). In a Bian
hi I 
osmology only, from this de�nition

we 
an then de�ne the redshift matrix (in homogeneous 
osmologies other than

Bian
hi I the geodesi
 equations are non-linear; see Chapter 5):

zba ≡ aac (ηR) a
bc (ηE)− δba =













a11(tR)
a11(tE)

− 1 0 0

0 a22(tR)
a22(tE)

− 1 0

0 0 a33(tR)
a33(tE)

− 1













(4.20)

where the subs
ript R denotes the fun
tion evaluated at the time of observation

of light, and E denotes the fun
tion evaluated at the time of emission, and �nally
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the generalized, anisotropi
 Hubble parameter and de
eleration parameter:

Hab ≡
1

2

d

dt
ln γab =













ȧ11/a11 0 0

0 ȧ22/a22 0

0 0 ȧ33/a33













(4.21)

Qb
a ≡

d

dt
Hacηbc − δab = −













ä11a11/ (ȧ11)
2 0 0

0 ä22a22/ (ȧ22)
2 0

0 0 ä33a33/ (ȧ33)
2













.

(4.22)

This approa
h is essentially a generalization of that developed by Barrow in [22℄;

the obje
t (4.21) is 
losely related to the shear tensor [21, 26℄ whi
h was adapted

from �uid dynami
s. The pra
ti
al purpose of these de�nitions is to provide a

mathemati
al des
ription of observed quantities; let e
i
be a unit ve
tor pointing

in the dire
tion of observation. Then the redshift observed in the e
i
dire
tion is

given by

z
(

ei, t
)

= zab e
i
(b)e

(a)
j e

j
ei (4.23)

and similarly for other fun
tions of the s
ale fa
tor. Ea
h of these fun
tions 
an be

averaged over the whole sky to extra
t a monopole value, these averages denoted

by a bar:

ā ≡
´

aabe
(b)
i e

(a)
j e

i
e
jdS

´

ηijeiejdS
=

1

3
aabη

ab =
1

3
(a11 + a22 + a33) (4.24)

et
.; by �average� we mean, simply, the arithmeti
 mean of the fun
tion summed

over the whole sky.
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4.2.2 Dynami
s in the Kasner universe

An observer in a Kasner universe will see the 
onsequen
es of that universe's evo-

lution. Examination of the observational 
onsequen
es of the Kasner universe

provides an illustrative example of potential 
onsequen
es of anisotropy in other


osmologies.

Expansion

Misner, Thorne & Wheeler argue [76℄ that the Kasner universe is expanding, as

the volume element is always in
reasing:

dV

dt
=

d

dt

√

‖gij‖dx1dx2dx3 =
d

dt

(

tp1+p2+p3
)

dx1dx2dx3 = dx1dx2dx3. (4.25)

However, as noted above there is no unique way to de�ne the s
ale fa
tor. In terms

of the averaged quantity de�ned in (4.24) we have

ā =
1

3
(tp1 + tp2 + tp3) (4.26)

whi
h, when we expand around t = 1, is approximately

ā (t ≈ 1) =
1

3
(2 + t) +O

(

t3
)

. (4.27)

But in the limit of t small, we have

ā ≈ 1

3
tp1 , (4.28)
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whi
h is 
learly a de
reasing fun
tion; so the Kasner universe is not unambiguously

expanding and even so fundamental a property as expansion or 
ontra
tion is a

matter of the 
hoi
e of de�nition.

Redshift

Redshift in a Kasner universe is given by

zij =













(tR/tE)
p1 − 1 0 0

0 (tR/tE)
p2 − 1 0

0 0 (tR/tE)
p3 − 1













(4.29)

z̄ =
1

3

[(

tR
tE

− 1

)p1

+

(

tR
tE

− 1

)p2

+

(

tR
tE

− 1

)p3]

. (4.30)

In the 
ir
umstan
e when tR ≫ tE ,

z̄ ≈ 1

3

(

tR
tE

)p3

. (4.31)

Of parti
ular interest is the quantity ∆T/TR, the variation in CMB temperature

from the average (a

epting for the moment that the va
uum Kasner universe

approximates a matter-�lled one at a su�
iently young age), whi
h is given ap-
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proximately by

∆T

TR
≈













3

(

tR
tE

)−p3













(tR/tE)
p1 0 0

0 (tR/tE)
p2 0

0 0 (tR/tE)
p3













− ηab













e
i
e
j =

=













3 (tR/tE)
p1−p3 − 1 0 0

0 3 (tR/tE)
p2−p3 − 1 0

0 0 2













e
i
e
j ≈ (4.32)

≈













−1 0 0

0 −1 0

0 0 2













e
i
e
j

(ex
ept in the 
ase when p2 = p3 = 2/3, in whi
h event the (2,2) entry in (4.32)

will read 2). The CMB in a mature Kasner universe has a pronoun
ed anisotropy,

with the observed temperature mat
hing the average temperature only in a 
ir
le

around the axis of anisotropy. Notably, the primary axis of the anisotropy is at a

right angle to the axis along whi
h the Kasner universe is 
ontra
ting � not on a

parallel axis!

Hubble �ow & de
eleration parameter

The Kasner universe has Hubble �ow

Hab =
1

t













p1 0 0

0 p2 0

0 0 p3













(4.33)
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H̄ =
1

3
t−1

(4.34)

and de
eleration parameter

Qb
a =













(1− p1) /p1 0 0

0 (1− p2) /p2 0

0 0 (1− p3) /p3













(4.35)

Q̄ = −1. (4.36)

whi
h are ne
essarily anisotropi
; on average a Kasner universe will appear to be

a

elerating, when the average taken is the parameter Q̄. The use of Q̄ 
ontrasts

with q in that q is de�ned with the assumption of isotropi
 de
eleration already

made (q is de�ned as a fun
tion of a). In the limit that the parameter u → ∞

an observer in a Kasner universe would see a universe with a positive Hubble �ow

(redshift) over most of the sky, but see blueshift in a third dire
tion. An observer

looking only at averages, though, would not be able to distinguish between an

isotropi
 universe and a Kasner universe merely by examining the Hubble �ow;

only with a 
omplete pi
ture of the sky is su
h a test possible. The Hubble �ow

in the 
ase of minimal anisotropy has the form

Hab (u = 1) =
1

t













−1/3 0 0

0 2/3 0

0 0 2/3













(4.37)

� appearing like a Friedmannian matter-dominated universe in two dire
tions �
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and in the 
ase of maximal isotropy

lim
u→0

Hab =
1

t













0 0 0

0 0 0

0 0 1













. (4.38)

Similarly, an observer looking only at the averaged de
eleration parameter sees a

universe a

elerating as though driven by a 
osmologi
al 
onstant; only with good

enough information will the observer noti
e a strong angular dependen
e in the

a

eleration �eld, whi
h in the 
ase of minimal anisotropy has the form

Qb
a (u = 1) =













−4 0 0

0 1/2 0

0 0 1/2













(4.39)

� de
elerating like a Friedmann 
osmology in two dire
tions � and in the 
ase of

maximal anisotropy has the form

lim
u→∞

Qb
a =













−∞ 0 0

0 ∞ 0

0 0 1













. (4.40)

Moreover, even though a

eleration along two axes is negative in the least-anisotropi


Kasner universe, the impa
t of the positive-a

elerating dire
tion is su
h that the

isepita
h

4

of zero a

eleration, the boundary an observer sees on the sky between

regions where obje
ts a

elerate and obje
ts de
elerate, is a 
ir
le 83◦ from the

axis of a

eleration; only less than 8% of the sky appears 
lose to �normal� to an

4

A neologism denoting a path of 
onstant a

eleration, similar to �isobar� or �iso
hor�, from

Greek �epita
hounse�, a

eleration.
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observer expe
ting to re
ord a Friedmann universe!

While the va
uum Kasner universe is ruled out as a possible approximate 
os-

mology both for reasons of the CMB, whi
h appears isotropi
 to a high degree

[16℄, and due to the Hubble �ow, whi
h appears almost isotropi
 below z = 0.3

[77℄, the surprising di�
ulties in distinguishing between its dynami
s and that of

a Friedmann universe serve as a reminder that sampling of 
osmologi
al parame-

ters must be done in an unbiased fashion and that isotropy must be tested rather

than assumed. The Kasner universe also has an appli
ation as a limiting 
ase of

the BKL universe [74℄ dis
ussed below, to whi
h it appears identi
al for observers

looking over a period of time that is small 
ompared to the radius of 
urvature of

the universe. Finally, the anisotropi
 Kasner universe serves as a limiting 
ase to

some types of 
osmology des
ribed by the more general Bian
hi IX model.

4.3 Gravitational wave nature of Bian
hi IX

The Bian
hi IX has been 
onsidered by 
osmologists repeatedly sin
e the estab-

lishment of general relativity to provide possible explanations for 
osmologi
al

phenomena.

Belinsky, Khalatnikov and Lifshitz dis
ussed [74℄ a Bian
hi IX 
osmology (the

�BKL 
osmology�) whi
h undergoes several �boun
es� as it evolves � rather than

expanding from or 
onverging to a point, it 
ontra
ts along one axis while expand-

ing along two others until the smallest metri
 
omponent rea
hes a minimum value,

at whi
h point the axes swap roles. Misner [73℄ refers to a Bian
hi IX universe as
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the �mixmaster universe�, pursuing an resolution to the horizon problem through

the non-linearity of the Bian
hi IX 
osmology; through the me
hanism of boun
es,

all parts of the universe may be brought into 
ausal 
onne
tion. Boun
ing va
uum


osmologies are, like the va
uum Kasner universe, intrinsi
ally highly anisotropi
;

while in the long run they tend to a
t isotropi
ally due to the ba
k-rea
tion of

matter [75, 76℄ they will still exhibit strong CMB anisotropy [19℄. Supernova data

([1, 48℄ et
.) and CMB data on the value of ΩM ([31℄ et
.) 
oupled with the

existen
e of high-redshift obje
ts [72℄ rule out boun
ing 
osmologies, or at least

boun
ing 
osmologies with a period of at most a few billion years, to a high degree

of 
on�den
e.

The BKL 
osmology undergoes anisotropi
 a

eleration (see se
tion 4.2.2). Mean-

while, numeri
al modeling has suggested [98, 146℄ that a matter-�lled Bian
hi IX

universe will also undergo periods of a

eleration. Therefore, we have good reason

to suppose that a property of Bian
hi IX may be to generate anisotropi
 a

elera-

tion, and that 
onsequen
es of the Bian
hi IX 
osmology may reveal a dark energy


andidate with none of the failings of s
alar-�eld or exoti
 models.

Wheeler showed [78℄ that an almost-isotropi
 Bian
hi IX universe admitted a weak

tensorial perturbation that took the form of a wave (that is, solving an equation

of the form f̈ +nf (t) = g (t)). Grish
huk et al. were able to generalize this result

[10℄:

The Bian
hi IX spa
e has frame ve
tors



4.3. GRAVITATIONAL WAVE NATURE OF BIANCHI IX 71

e1i =
(

cosx3, sin x1 sin x3, 0)

e2i =
(

− sin x3, sin x1 cosx3, 0) (4.41)

e3i = (0, cosx1, 1) .

Consider the metri
 of a Bian
hi IX 
osmology:

ds2 = dt2 − γabe
a
i e

b
jdx

idxj . (4.42)

When the matrix γab ∝ ηab we re
over the 
losed Friedmann 
osmology. We 
an

split the more general metri
 up into an isotropi
 (Friedmannian) part and a non-

Friedmannian part:

ds2 =dt2 − a2Fηabe
a
i e

b
jdx

idxj −
(

γab − a2Fηab
)

eai e
b
jdx

idxj =

=ds20 −
(

γab − a2Fηab
)

eai e
b
jdx

idxj
(4.43)

where the ba
kground metri
 ds20 ≡ a2Fηabe
a
i e

b
jdx

idxj
. Grish
huk, Doroshkevi
h &

Iudin showed that the obje
t des
ribing the spa
e part of the anisotropi
 part of

the metri
 at some moment in time,

5

Gab
ij ≡ 2

(

eai e
b
j + ebie

a
j

)

− 4

3
ηabηcde

c
ie

d
j , (4.44)

obeys the property

(

Gab
ij

);k

;k
= −

(

n2 − 3K
)

Gab
ij (4.45)

for n = 3 and K = 1; that is, Gab
ij is a tensor eigenfun
tion of the Lapla
e operator

in a Bian
hi IX spa
e for waves with wavenumber n = 3. A similar property for

5aF has been s
aled here to equal 1
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open spa
es is true of the Bian
hi type VIIa models [19℄.

6

Lifshitz, in his development of the theory of 
osmologi
al perturbations [75, 79, 2,

ss. 115℄, 
laims that tensorial perturbations, in
luding gravitational waves, 
an

only have a diminishing e�e
t over time. Lifshitz is, however, 
onsidering only the


lass of lo
al tensorial perturbations.

In 
ontrast, the gravitational waves in Bian
hi IX will have wavelengths 
omparable

to the radius of 
urvature of the universe. Kristian and Sa
hs note [25℄ that the

wavelength of 
osmi
 shear (and thus, if anisotropy is present among all prin
iple

axes of the spa
e, of 
osmologi
al gravitational waves) must be at least 2 × 1010

years � longer than the Hubble radius [16℄ � and 
ould potentially be far longer

(see se
tion 6.1).

We will 
onsider �rst the regime of weak gravitational waves in an almost-isotropi


universe and then �quasi-isotropi
� waves; that is, the regime in whi
h 
omponents

of the metri
 evolve at equal powers of t.

6

We 
ould also 
hoose to interpret Bian
hi I as the degenerate 
ase of a �at universe 
ontaining

gravitational waves of in�nite wavelength with n = 0. The Kasner universe, however, is not su
h a

universe: all the anisotropy is governed by a single parameter, u, so the system has an insu�
ient

number of degrees of freedom. The Kasner universe is more like the Taub universe [108℄.
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4.3.1 Einstein equations in the tetrad formalism

For a metri
 gαβ, let the spa
e-spa
e part of the metri
 be de
omposed as in (4.2).

Similarly, the tensors

Rij =Rabe
a
i e

b
j (4.46)

Tij =Tabe
a
i e

b
j (4.47)

with all spa
e dependen
e in the frame ve
tors. Assume the energy-momentum

tensor des
ribes a perfe
t �uid. Then the Einstein equations 
an be rewritten:

R00 =kT00 −
1

2
kTg00 (4.48)

R0i =kT0i −
1

2
kTg0i (4.49)

Rab =k

(

Tab −
1

2
Tγab

)

. (4.50)

If we have energy-momentum tensor

Tµν =(p+ ǫ) uµuν − pgµν (4.51)

T =ǫ− 3p (4.52)

then

T00 =(p+ ǫ) u0u0 − pg00 (4.53)

T0i =(p+ ǫ) u0ui − pg0i (4.54)

Tab =(p+ ǫ) uaub − pγab. (4.55)
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If we then 
hoose a syn
hronous Gaussian referen
e system, as we always have the

freedom to do,

g00 =1 (4.56)

g0i =0 (4.57)

so the Einstein equations read

R00 =k (p+ ǫ) u0uik (p+ ǫ) u0u0 − kpg00 −
1

2
k (ǫ− 3p) (4.58)

R0i =k (p+ ǫ) u0ui (4.59)

Rab =k (p+ ǫ) uaub − kpγab −
1

2
k (ǫ− 3p) γab. (4.60)

If we then demand that our 
oordinate system be 
o-moving with matter,

u0 =1 (4.61)

ui =0 (4.62)

then

R00 =
1

2
k (ǫ+ 3p) (4.63)

R0i =0 (4.64)

Rab =
1

2
k (p− ǫ) γab. (4.65)

Let

dab ≡
1

2

∂

∂t
gije

i
ae

j
b =

1

2

d

dt
γab (4.66)
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and

d ≡ dabγ
ab. (4.67)

The Christo�el symbols asso
iated with our metri
 then be
ome [2, ss. 97℄

Γ0
00 = Γ0

0i = Γi
00 =0 (4.68)

Γ0
ij =dij (4.69)

Γi
0j =d i

j (4.70)

Γi
jk =Γ̃i

jk (4.71)

where Γ̃i
jk are the Christo�el symbols asso
iated with the three-dimensional metri


tensor −gij . The Ri

i tensor 
an then be written as [2, ss. 97℄:

R00 =− ḋ− d b
ad

a
b (4.72)

R0i =0 (4.73)

Rab =ḋab + ddab − 2dacd
c
b − Pab (4.74)

or expli
itly [10℄

ḋ+ d b
ad

a
b =− 1

2
k (ǫ+ 3p) (4.75)

ḋab + ddab − 2dacd
c
b − Pab =

1

2
k (ǫ− p) γab (4.76)

d b
aC

a
bc =0 (4.77)

where Pij is the three-dimensional Ri

i tensor 
onstru
ted from Γ̃i
jk.
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4.3.2 The 
urvature tensor for Bian
hi IX

Grish
huk expli
itly gives the 
urvature tensors for all Bian
hi types, and a general

method for easily deriving them, in [7℄. These tensors 
an be stated in remov-

able and non-removable parts, with the removable parts 
orresponding to time-

dependent rotations of the spa
e. Let the symbol

γabc ≡ γadC
a
bc. (4.78)

Then where

Γc
ab ≡

1

2
γcd (γabd + γdab − γbda) (4.79)

(these are analogous to the Christo�el symbols of the full spa
e, but with di�erent

symmetry properties) the non-removable part of the 
urvature tensor is given by

Lab ≡ −2Γc
a[b,c] + 2Γc

d[bΓ
d
|a|c] + 2Γc

adΓ
d
[bc] (4.80)

where square bra
kets around the indi
es indi
ate the antisymmetri
 part of the

tensor; the removable part is given by

bab ≡
1

2
vcC

c
ba +

1

2
(favb − fbva) (4.81)

and �nally the 
urvature tensor

Pab = Lab − bbcd
c
a − bacd

c
b − bbad. (4.82)

In the 
o-moving 
ase that va = 0 we 
an simply state Pab = Hab. For the parti
ular


ase of Bian
hi IX (the frame ve
tors (4.41)) and the 
urvature tensor when va = 0
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reads, for diagonal 
omponents:

P b
a =

[

(

γfgη
fg
)2

2 ‖γcd‖
− γfgηfg

]

δba − γbcηac −
γafγghη

fgηbh

‖γcd‖
(4.83)

and for non-diagonal 
omponents:

P b
a = −2γcbηac −

1

‖γdf‖
γacγdfη

bcηdf (4.84)

where ‖γab‖ is de�ned as the determinant of γab. The Einstein equations show that

when va = 0 the non-diagonal 
omponents of γab must be zero, so as a 
onsequen
e

of our Gaussian 
hoi
e of 
oordinate system we 
an without loss of generality, write

the metri
 for Bian
hi IX

γ11 = a2F e
2α

γ22 = a2F e
2β

γ33 = a2F e
2γ

(4.85)

with all other spa
e-spa
e 
omponents zero, so expli
itly the the 
urvature tensor

Pab for Bian
hi IX reads

P11 =
1

2
e−2δ

(

−e4α +
(

e2β − e2γ
)2
)

e2α (4.86)

P22 =
1

2
e−2δ

(

−e4β +
(

e2γ − e2α
)2
)

e2β (4.87)

P33 =
1

2
e−2δ

(

−e4γ +
(

e2α − e2β
)2
)

e2γ (4.88)

Pab =0, a 6= b (4.89)

and the 
ontra
ted 
urvature s
alar

Pabγ
ab = 2a−2

F e−2δ
[

e4α + e4β + e4γ − 2
(

e2α+2β + e2β+2γ + e2α+2γ
)]

. (4.90)
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The ba
kground, Friedmannian universe is re
overed in the 
ase that α = β = γ =

0.

4.4 Einstein equations for Bian
hi IX

4.4.1 Exa
t equations

Let the symbol δ ≡ α+ β + γ for 
onvenien
e as in (4.17). For our 
hosen metri
,

we have the auxiliary quantities

d11 =
(

aȧ + a2α̇
)

e2α (4.91)

ḋ11 =
(

ȧ2 + aä + 4aȧα̇ + a2α̈ + 2a2α̇2
)

e2α (4.92)

d11 =H + α̇ (4.93)

d =3H + δ̇ (4.94)
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and 
y
li
 permutations in α, β, γ thereof for 22- and 33-quantities. The full Ein-

stein equations for Bian
hi IX read

7























3
a2
F

(ȧ2F + 1) + α̇β̇ + α̇γ̇ + β̇γ̇ + 2 ȧF
aF
δ̇+

+a−2
F e−2δ







2
(

e2α+2β + e2α+2γ + e2β+2γ
)

−

−e4α − e4β − e4γ − 3e2δ





























= kǫ (4.95)











äF
aF

+ 2
ȧ2
F

a2
F

+ 2
a2
F

+ α̈ + ȧF
aF

(

3α̇ + δ̇
)

+ α̇δ̇+

+2a−2
F e−2δ

[

e4α −
(

e2β − e2γ
)2 − e2δ

]











=
1

2
k
(

ǫ− p(1)
)

(4.96)











äF
aF

+ 2
ȧ2F
a2
F

+ 2
a2
F

+ β̈ + ȧF
aF

(

3β̇ + δ̇
)

+ β̇δ̇+

+2a−2
F e−2δ

[

e4β − (e2γ − e2α)
2 − e2δ

]











=
1

2
k
(

ǫ− p(2)
)

(4.97)











äF
aF

+ 2
ȧ2
F

a2
F

+ 2
a2
F

+ γ̈ + ȧF
aF

(

3γ̇ + δ̇
)

+ γ̇δ̇+

+2a−2
F e−2δ

[

e4γ −
(

e2α − e2β
)2 − e2δ

]











=
1

2
k
(

ǫ− p(3)
)

. (4.98)

7

These equations are a trivial generalization of those found in the va
uum 
osmology des
ribed

in [10℄.
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We 
an also de�ne quantities as 
omponents of a gravitational e�e
tive energy-

momentum tensor:

kǫg ≡−























α̇β̇ + α̇γ̇ + β̇γ̇ + 2 ȧF
aF
δ̇+

+a−2
F e−2δ







2
(

e2α+2β + e2α+2γ + e2β+2γ
)

−

−e4α − e4β − e4γ − 3e2δ





























(4.99)

1

2
k
(

ǫg − p(1)g

)

≡−











α̈+ ȧF
aF

(

3α̇+ δ̇
)

+ α̇δ̇+

+2a−2
F e−2δ

[

e4α −
(

e2β − e2γ
)2 − e2δ

]











(4.100)

1

2
k
(

ǫg − p(2)g

)

≡−











β̈ + ȧF
aF

(

3β̇ + δ̇
)

+ β̇δ̇+

+2a−2
F e−2δ

[

e4β − (e2γ − e2α)
2 − e2δ

]











(4.101)

1

2
k
(

ǫg − p(3)g

)

≡−











γ̈ + ȧF
aF

(

3γ̇ + δ̇
)

+ γ̇δ̇+

+2a−2
F e−2δ

[

e4γ −
(

e2α − e2β
)2 − e2δ

]











(4.102)

kp(1)g ≡













2α̈ + 6 ȧF
aF
α̇ + 2α̇2 + α̇β̇ + α̇γ̇ − β̇γ̇+

+a−2
F







5e2(α−β−γ) − 3e2(β−α−γ) − 3e2(γ−α−β)+

+6e−2α − 2e−2γ − 2e−2β − 1



















(4.103)

kp(2)g ≡













2β̈ + 6 ȧF
aF
β̇ + 2β̇2 + α̇β̇ − α̇γ̇ + β̇γ̇+

+a−2
F







5e2(β−α−γ) − 3e2(γ−β−α) − 3e2(α−β−γ)

+6e−2β − 2e−2α − 2e−2γ − 1



















(4.104)

kp(3)g ≡













2γ̈ + 6 ȧF
aF
γ̇ + 2γ̇2 − α̇β̇ + α̇γ̇ + β̇γ̇+

+a−2
F







5e2(γ−β−α) − 3e2(α−γ−β) − 3e2(β−γ−α)

+6e−2γ − 2e−2β − 2e−2α − 1



















(4.105)
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(all of whi
h are zero when α = β = γ = 0). The Bian
hi identity T ν
µ,ν demands

p
(1)
g = p

(2)
g = p

(3)
g so de�ne the averaged gravitational pressure

kpg ≡
1

3
k
(

p(1)g + p(2)g + p(3)g

)

= (4.106)

≡





















2δ̈ + 6 ȧF
aF
δ̇ + 2

(

α̇2 + β̇2 + γ̇2
)

+

+2
(

α̇β̇ + α̇γ̇ + β̇γ̇
)

+

+a−2
F







−e2(α−β−γ) − e2(β−α−γ) − e2(γ−α−β)

+2e−2α + 2e−2γ + 2e−2β − 3



























.

Finally,

k (ǫg + 3pg) = 2δ̈ + 4
ȧF
aF

δ̇ + 2
(

α̇2 + β̇2 + γ̇2
)

(4.107)

8

. De�ne a pseudo-
onformal time 
oordinate η by cdt ≡ aFdη; note that this �xes

the relationship between t and η up to the level of the 
hara
teristi
 length ai and

a 
onstant whi
h 
an be set to zero. Given the impossibility of sele
ting a unique

and obje
tive de�nition for the s
ale fa
tor, we do not de�ne the 
onformal time

using su
h a fun
tion. De�ne a 
orre
tion term q to the matter energy density

su
h that

ǫ = ǫF (1 + q) . (4.108)

8

Equation (4.107) 
orre
ts an error of sign in [10, equation (27)℄.
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In η-time, the Einstein equations for Bian
hi IX, subtra
ting ba
kground terms on

both sides, read:























α′β ′ + α′γ′ + β ′γ′ + 2
a′
F

aF
δ′+

+e−2δ







2
(

e2α+2β + e2α+2γ + e2β+2γ
)

−

−e4α − e4β − e4γ − 3e2δ





























= a2FkǫF q (4.109)











α′′ +
a′
F

aF
(2α′ + δ′) + α′δ′+

+2e−2δ
[

e4α −
(

e2β − e2γ
)2 − e2δ

]











=
1− w

2
a2FkǫF q (4.110)











β ′′ +
a′
F

aF
(2β ′ + δ′) + β ′δ′+

+2e−2δ
[

e4β − (e2γ − e2α)
2 − e2δ

]











=
1− w

2
a2FkǫF q (4.111)











γ′′ +
a′F
aF

(2γ′ + δ′) + γ′δ′+

+2e−2δ
[

e4γ −
(

e2α − e2β
)2 − e2δ

]











=
1− w

2
a2FkǫF q. (4.112)

We also note the Einstein equations have an exa
t formal solution

kǫ =
(

Sa−3
F e−δ

)1+w
(4.113)

where S is a 
onstant of proportionality su
h that S1+w
has dimensionality of

length to the 1 + 3w power. Finally the Einstein equations 
an be read as

kp(1)g +wa2FkǫF q = kp(2)g +wa2FkǫF q = kp(3)g +wa2FkǫF q = a2FkǫF q+kǫg = 0. (4.114)

In other words, the e�e
tive energy-momentum tensor 
reated by 
osmologi
al

gravitational waves equals minus the ba
k-rea
tion on matter energy density and

pressure. Note that the quantity kǫg/q is ne
essarily negative.
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4.4.2 Solutions to the Einstein equations at zero order

For 
onvenien
e, let us de�ne the variable x ≡ 1+3w
2

η. Then at zero order the

Einstein equations for a Bian
hi IX universe have, for an arbitrary 
onstant equa-

tion of state, the following solution and auxiliary quantities, whi
h are identi
al

to the solutions to the Einstein equations in the unperturbed 
losed Friedmann


osmology:

aF =ai (sin x)
2

1+3w
(4.115)

a′F =ai (sin x)
1−3w
1+3w cos x (4.116)

a′′F =
1 + 3w

2
ai

[

1− 3w

1 + 3w
(sin x)

−6w
1+3w cos2 x− (sin x)

2

1+3w

]

(4.117)

a′F/aF =cot x (4.118)

HF =a−1
i cotx csc x (4.119)

QF =
1 + 3w

2
sec2 x. (4.120)

The quantity ai represents a 
hara
teristi
 s
ale for the universe and, in the ba
k-

ground 
ase, represents the radius of 
urvature of the universe at the extent of its

maximum expansion. We treat ai as an arbitrary 
onstant for the time being.

4.4.3 Solutions at linear order

We approa
h perturbative solutions to the Einstein equations by letting the fun
-

tions α, β, γ be small (0 < |α| ≪ 1 et
.). To �rst order, that is α, β, γ su
h that
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α2 ≈ β2 ≈ γ2 ≈ 0, the Einstein equations take the form:

2
a′F
aF

δ′1 − 2δ1 =a2FkǫF q1 (4.121)

α′′
1 +

a′F
aF

(2α′
1 + δ′1) + 8α1 − 4δ1 =

1− w

2
a2FkǫF q1 (4.122)

β ′′
1 +

a′F
aF

(2β ′
1 + δ′1) + 8β1 − 4δ1 =

1− w

2
a2FkǫF q1 (4.123)

γ′′
1 +

a′F
aF

(2γ′
1 + δ′1) + 8γ1 − 4δ1 =

1− w

2
a2FkǫF q1 (4.124)

where the subs
ript 1 denotes a �rst-order small quantity, that is, a quantity small

su
h that in the �rst approximation its square is negligible. The formal solution

(4.113) gives us, to �rst order,

a2FkǫF q1 = − (1 + w)S1+wa−1−3w
F δ1. (4.125)

Meanwhile, we 
an always 
hoose to let S take on its Friedmannian value [10℄, so

S1+w = 3a1+3w
i . Therefore:

2
a′F
aF

δ′1 +
[

3 (1 + w) csc2 x− 2
]

δ1 =0 (4.126)

α′′
1 + 2

a′F
aF

α′
1 + 8α1 +

a′F
aF

δ′1 +

(

3
1− w2

2
csc2 x− 4

)

δ1 =0 (4.127)

β ′′
1 + 2

a′F
aF

β ′
1 + 8β1 +

a′F
aF

δ′1 +

(

3
1− w2

2
csc2 x− 4

)

δ1 =0 (4.128)

γ′′
1 + 2

a′F
aF

γ′
1 + 8γ1 +

a′F
aF

δ′1 +

(

3
1− w2

2
csc2 x− 4

)

δ1 =0 (4.129)

whi
h gives us the solution:

δ1 = c1 cos x (csc x)
3+3w
1+3w . (4.130)
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The term governed by c1 is a �removable� perturbation, that is, one not arising

from a physi
al phenomenon but from small 
hanges in our sele
tion of the s
ale

fa
tor. Grish
huk, Doroshkevi
h & Iudin argue [10℄, and Grish
huk later proves

in the 
ase of high-frequen
y gravitational waves [103℄, that the the removable

perturbation arises from the remaining freedom in having sele
ted a syn
hronous

referen
e system and represents a small 
hange in the value of η. Therefore, the

removable term represents the gauge freedom remaining in the Einstein equations.

This 
oin
ides with the argument made by Bardeen [105℄ with regard to s
alar and

ve
tor perturbations with wavelengths longer than the Hubble radius; Bardeen

re
ommends a gauge 
hoi
e minimizing shear. We always have the freedom to set

c1 to zero but do not do so yet. In a radiation-dominated universe, we have

δradiation1 = cradiation1 cos η csc2 η (4.131)

and in a matter-dominated universe

δmatter

1 = cmatter

1 cos
η

2
csc3

η

2
. (4.132)

Therefore, the full �rst-order fun
tions 
an be written:

α′′
1 + 2 cotxα′

1 + 8α1 = 3c1







1 + 1+w
2

(csc x)1+3w −

−1−w2

2
csc2 x






(csc x)

3+3w
1+3w cosx (4.133)

et
. Note that the right hand side 
ontains no physi
al variables � no 
hara
teristi


length or energy density. The Einstein equations at �rst order have the solutions
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(denoted with a tilde for the c1 = 0 
ase)

α̃radiation1 = (Cα1,1 sin 3η + Cα2,1 cos 3η) csc η

β̃radiation1 = (Cβ1,1 sin 3η + Cβ2,1 cos 3η) csc η (4.134)

γ̃radiation1 = (Cγ1,1 sin 3η + Cγ2,1 cos 3η) csc η

and similarly for β̃, γ̃ in a radiation-dominated universe, and

α̃matter

1 =
Cα1,1

sin η/2

d

dη

sin 3η

sin η/2
+

Cα2,1

sin η/2

d

dη

cos 3η

sin η/2
(4.135)

et
. in a matter-dominated universe, in both 
ases 
onstrained by the 
ondition

Cα1,1+Cβ1,1+Cγ1,1 = Cα2,1+Cβ2,1+Cγ2,1 = 0. A general solution for any 
onstant

equation of state, in terms of orthogonal polynomials in a, exists but is far too


umbersome to be of pra
ti
al use in this work. We introdu
e the notation Cα1,1

et
. to be read in the following way: Cα2,1 is an arbitrary 
onstant asso
iated with

the fun
tion α, the �rst index denoting the mode of the solution (1 for growing, 2

for de
aying), the se
ond index denoting the order of the 
onstant in an expansion

assuming α, β, γ ≪ 1. For 
onvenien
e, we will sometimes write a generi
 solution

to the di�erential equation (4.133) as

α̃1 = Cα1,1y1 + Cα2,1y2. (4.136)

These solutions 
an be written in a less symmetri
 but easier-to-manipulate form:
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α̃radiation1 =Cα1,1 (2 cos 2η + 1) + Cα2,1 cos 3η csc η (4.137)

α̃matter

1 =−







Cα1,1 (16 cos 2η + 10 cos η + 9)+

+1
4
Cα2,1 csc

3 η
2

(

5 cos 7
2
η − 7 cos 5

2
η
)






(4.138)

et
. When δ = 0 we re
ognize the homogeneous �rst-order Einstein equations as

des
ribing weak gravitational waves with wavenumber n = 3 and a wave equation

of the form

ν ′′ + 2 cot (x) ν ′ +
(

n2 − 1
)

ν = 0, (4.139)

in line with [10℄'s des
ription.

9

In a radiation-dominated universe we have expli
itly

for the full �rst-order solution:

αradiation1 = Cα1,1
sin 3η

sin η
+ Cα2,1

cos 3η

sin η
+

c1
3
cos η csc2 η (4.140)

et
. and in a matter-dominated universe we have

αmatter

1 =
Cα1,1

sin η/2

d

dη

sin 3η

sin η/2
+

Cα2,1

sin η/2

d

dη

cos 3η

sin η/2
+

c1
3
cos

η

2
csc3

η

2
. (4.141)

It is 
ommon to refer to the de
aying �
os� mode of these gravitational waves as

�singularity-destroying� [10℄, in that they diverge as η → 0, whi
h 
ould seem at

�rst to imply lim γab
η→0

→ ∞. It is worth remembering that as the fun
tions α, β, γ

appear in the metri
 as exponents, that is, γ11 = a2F e
2α

et
; thus de
aying fun
tions

9

Just as equation (4.45) generalizes the Helmholtz di�erential equation to ellipti
al and

hyperboli
 spa
es, the solutions y1 and y2 generalize the spheri
al Bessel fun
tions jn (x) and

yn (x); the radiation-dominated universe is solved by analogues of the n = 0 
ase and the matter-

dominated universe by the n = 1 
ase. The wave fun
tions in a matter-dominated universe

always have longer trigonometri
 expansions than they do in the radiation-dominated universe

and thus the equations in a matter-dominated universe are usually more di�
ult to solve.
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are not ne
essarily �singularity-destroying� for the following reasons:

� their divergen
e must over
ome the 
onvergen
e of the Friedmannian term,

whi
h in the 
ase of weak waves will o

ur when w ≤ 2/3 but not generally;

� fun
tions of the form e−x−y

for x < 0, y < 0 are non-analyti
 near x = 0,

that is, they are not des
ribed by 
onvergent Taylor series in that region.

As Cα2,1 + Cβ2,1 + Cγ2,1 = 0, either one or two de
aying terms preserve the t = 0

singularity when the removable perturbation is removed, in a manner analogous to

that found in the Kasner universe, in the 
ase of weak gravitational waves (although

the pri
e of this is a divergen
e later).

When dis
ussing high-frequen
y, lo
alized waves, it is easy to de�ne an amplitude

of the waves by (for example) normalizing the root-mean-square (RMS) value over

the wave's period. In the 
ase of 
osmologi
al gravitational waves however this

pro
edure is not possible in an absolute sense due to the diverging 
hara
ter of the

de
aying mode. Fortunately, mathemati
al 
onditions on the relation of linear-

order terms to quadrati
-order terms revealed at quadrati
 order (see se
tion

4.4.4) 
ause the term �weak� to give itself an obje
tive meaning. If we wish to

normalize the growing modes, they have the following RMS values:

yRMS

1 ≡
[

2

(1 + 3w)π

ˆ (1+3w)π/2

0

y21dη

]1/2

(4.142)

y
radiation,RMS

1 =
√
3 (4.143)

y
matter,RMS

1 =
√
259 ≈ 16.1. (4.144)
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It is interesting to note that in matter, the de
aying �
os� mode of α1, β1, γ1 has

the same η-dependen
e as the removable perturbation; a 
osmologist attempting

to remove what they assume, based on an in
omplete pi
ture of the sky, to be

a removable perturbation may inadvertently be suppressing eviden
e of a non-

removable gravitational wave!

Finally, the gravitational energy-momentum tensor's (entirely removable) 
ompo-

nents read, to linear order:

kǫg(1) =3 (1 + w)
c1
a2i

cos x (csc x)
9+9w
1+3w

(4.145)

kp
(1)
g(1) = kp

(2)
g(1) = kp

(3)
g(1) =3w (1 + w)

c1
a2i

cosx (csc x)
9+9w
1+3w

(4.146)

while the ba
k-rea
tion of the gravitational waves at linear order gives us matter

EMT 
omponents whi
h vary from ba
kground by:

q1 = −3 (1 + w) c1 cosx (csc x)
5+9w
1+3w ; (4.147)

when removable perturbations have been removed, �rst-order weak gravitational

waves have no e�e
t on the distribution of matter, as is well-re
ognised in 
osmo-

logi
al perturbation theory ([79, 4℄).
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4.4.4 Solutions at quadrati
 order

The Einstein equations to quadrati
 order read:

2 cotxδ′2 +
[

3 (1 + w) csc2 x− 2
]

δ2 =























[

3 csc2 x (1+w)2

2
− 2
]

δ21−

−1
2
[δ′21 − (α′2

1 + β ′2
1 + γ′2

1 )] +

+4 (α2
1 + β2

1 + γ2
1)























(4.148)

α′′
2 + cot x (2α′

2 + δ′2) + 8α2 − 4δ2 =













31−w
2

csc2 x
(

(1+w)2

2
δ21 − (1 + w) δ2

)

−

−α′
1δ

′
1 + 8 (β1 − γ1)

2−

−16α2
1 + 16α1δ1 − 4δ21













(4.149)

β ′′
2 + cot x (2α′

2 + δ′2) + 8β2 − 4δ2 =













31−w
2

csc2 x
(

(1+w)2

2
δ21 − (1 + w) δ2

)

−

−β ′
1δ

′
1 + 8 (γ1 − α1)

2−

−16β2
1 + 16β1δ1 − 4δ21













(4.150)

γ′′
2 + cot x (2γ′

2 + δ′2) + 8γ2 − 4δ2 =













31−w
2

csc2 x
(

(1+w)2

2
δ21 − (1 + w) δ2

)

−

−γ′
1δ

′
1 + 8 (α1 − β1)

2−

−16γ2
1 + 16γ1δ1 − 4δ21













.

(4.151)

Taking the

(2)T 0
0 equation (4.148) �rst,

2 cotxδ′2 +
[

3 (1 + w) csc2 x− 2
]

δ2 =























[

3 csc2 x (1+w)2

2
− 2

3

]

δ21 − 1
3
δ′21 +

+1
2

(

α̃′2
1 + β̃ ′2

1 + γ̃′2
1

)

+

+4
(

α̃2
1 + β̃2

1 + γ̃2
1

)























.

(4.152)
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The homogeneous part δ̃2 of 
ourse has the same form as at �rst order, representing

a removable perturbation, so

δ̃2 = c2 cosx (csc x)
3+3w
1+3w . (4.153)

The 
omplete solution in integral form is

δ2 =
1

2
cosx (csc x)

3+3w
1+3w × (4.154)

×



































ˆ



















[

3 csc2 x (1+w)2

2
− 2

3

]

δ21−

−1
3
δ′21 +

+1
2

(

α̃′2
1 + β̃ ′2

1 + γ̃′2
1

)

+

+4
(

α̃2
1 + β̃2

1 + γ̃2
1

)



















sec2 x (sin x)
4+6w
1+3w dη + c2



































.

We will 
ontinue to refer to the solutions α2, β2, γ2 as �gravitational waves� out of


onvention, as they solve the Lapla
ian equation (4.45), even though as will be seen

these metri
 perturbations will at se
ond order a�e
t the distribution of matter.

De�ne the following pseudo-ve
tors and their Eu
lidean dot produ
ts:

(

Cα1(1), Cβ1(1), Cγ1(1)

)

≡ σ (4.155)

(

Cα2(1), Cβ2(1), Cγ2(1)

)

≡ τ (4.156)

(

C2
α1(1) + C2

β1(1) + C2
γ1(1)

)

= σ · σ ≡ σ2
(4.157)

(

C2
α2,1 + C2

β2,1 + C2
γ2,1

)

= τ · τ ≡ τ 2 (4.158)

(Cα1,1Cα2,1 + Cβ1,1Cβ2,1 + Cγ1,1Cγ2,1) = σ · τ (4.159)

so
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α̃2
1 + β̃2

1 + γ̃2
1 =σ2y21 + τ 2y22 + 2σ · τy1y2 (4.160)

α̃′2
1 + β̃ ′2

1 + γ̃′2
1 =σ2y′21 + τ 2y′22 + 2σ · τy′1y

′
2. (4.161)

Note that the solution δ2 = 0 is ex
luded ex
ept in the 
ase of the ba
kground

universe. When all removable perturbations are set to zero,

δnon-removable

2 =cosx (csc x)
3+3w
1+3w ×

×























ˆ η













σ2
(

2y21 +
1
4
y′21
)

+

+τ 2
(

2y22 +
1
4
y′22
)

+

+σ · τ

(

4y1y2 +
1
2
y′1y

′
2

)













tan2 x (sin x)
2

1+3w dη̄























.

(4.162)

10

We will dis
uss solutions to this equation term-by-term, noting that these terms


an be solved entirely from information we obtained at �rst order.

11

Contributions from the removable perturbations

Contributions from the removable perturbations at se
ond order have the expli
it

forms:

10

The Einstein equations for weak gravitational waves in a Bian
hi IX universe have the elegant

feature of being integrable in 
losed form, always redu
ible to fun
tions form sin (nη) csck (η) and
cos (nη) csck (η). Theoreti
ians working in regimes of higher-frequen
y gravitational waves on a

slowly-moving ba
kground may �nd it feli
itous to approximate a Eu
lidean universe as a 
losed

one in order to avoid mathemati
al in
onvenien
es asso
iated with the fun
tion sin
 (t)!
11

Li and S
hwarz[107℄ obtain a similar result for a �at universe, but apply their results to a dif-

ferent domain. The averaging s
heme they propose is not an appli
able approa
h for 
osmologi
al

gravitational waves. The result is generally stated in [2, ss. 96℄.
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In a radiation-dominated universe:

δremovable

2 = − c21
12

(

4 sin2 η

2
+ tan2 η

2
+ cot2

η

2
− 2
)

csc2 η + c2 cot η csc η (4.163)

Note that the terms deriving from the �rst-order removable perturbation diverge

as O (η−4), while those from the se
ond-order removable perturbation diverge more

slowly, as O (η−2).

In a matter-dominated universe:

δremovable

2 = − c21
12

(

3 csc4
η

2
+ 8 csc2

η

2
− 10

)

csc2
η

2
+ c2 cot

η

2
csc2

η

2
. (4.164)

Similarly, terms deriving from the �rst-order perturbation diverge as O (η−6) and

so at small η will dominate terms deriving from the se
ond-order removable per-

turbation whi
h diverges as O (η−3).

Contributions from the growing mode

Contributions from the growing mode have the following form:

δ
growing

2 = σ2 cot x (csc x)
2

1+3w

ˆ η

tan2 x

(

1

4
y′21 + 2y21

)

(sin x)
2

1+3w dη̄. (4.165)

We 
an already dis
ern that the sign on δ
growing

2 must be positive in a young

universe.
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In a radiation-dominated universe:

δ
growing,radiation

2 = σ2

radiation

cot η csc η

(

−1

3
cos 3η +

1

5
cos 5η + 2 sec η

)

;

(4.166)

note the diverging 
ontribution of O (η−2) from growing modes.

In a matter-dominated universe:

δ
growing,matter

2 = σ2
matter

cot
η

2
csc2

η

2













−6063
4
η + 13001

8
sin η − 3237

8
sin 2η+

+933
8
sin 3η − 33 sin 4η+

+32
5
sin 5η + 900 tan η

2













.

(4.167)

In 
ontrast to the radiation-dominated 
ase, the growing mode's 
ontribution does

not diverge in a matter-dominated universe (the term in bra
kets equals 0+O (η5)).

Approximating to lowest orders in η,

δ
growing,matter

2 ≈ σ2
matter

(

245η2 − 21641

84
η4
)

. (4.168)

Contributions from the de
aying mode

In a radiation-dominated universe In a radiation-dominated universe, the

fun
tions y1 and y2 have the property

y21 + y22 = csc2 η (4.169)
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while the fun
tions y′1 and y′2 are similarly related by

y′21 + y′22 =
(

8 sin2 η + 1
)

csc4 η. (4.170)

This simpli�es 
al
ulations as we 
an readily say

δ
de
aying

2 = τ 2 cot η csc η

(

17

4
sec η +

1

4
ln tan

η

2

)

− τ 2

σ2
δ
growing

2 ; (4.171)

in a universe old enough that the diverging terms are negligible, the de
aying

mode intrinsi
ally de
reases the s
ale fa
tor in the same way that the growing

mode intrinsi
ally in
reases it.

In a matter-dominated universe In a matter-dominated universe,

y21 + y22 = csc4
η

2

(

9 +
1

4
cot2

η

2

)

(4.172)

and

y′21 + y′22 =
1

16
csc8

η

2
(−608 cos η + 140 cos 2η + 477) (4.173)

so we 
an state

δ
de
aying,matter

2 = τ 2 cos
η

2
csc3

η

2













18η + 2450 tan η
2
−

−10705
48

cot η
2
−

−577
96

cot η
2
csc2 η

2













− τ 2

σ2
δ
growing

2 .

(4.174)

It is interesting to note that, due to the growing mode 
ontribution's mu
h slower


ontribution to 
hange in the s
ale fa
tor, the impa
t of the de
aying mode on

the dynami
s of a young universe 
an be many orders of magnitude greater than
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the impa
t of the growing mode even when the de
aying mode is several orders of

magnitude weaker than the growing mode. The ratio

∣

∣

∣

∣

∣

δ
de
aying,matter

2

δ
growing,matter

2

∣

∣

∣

∣

∣

≈
τ 2
matter

σ2
matter

η−8
(4.175)

whi
h means that in a matter-dominated universe with η ≈ 10−1
the de
aying mode

will have a greater impa
t on 
osmi
 dynami
s as long as τ 2
matter

> 10−8σ2
matter

.

Contributions from the σ · τ term

The 
ontributions are des
ribed by the equation

δmixed

2 = σ · τ cosx (csc x)
3+3w
1+3w

ˆ η (

4y1y2 +
1

2
y′1y

′
2

)

tan2 x (sin x)
2

1+3w dη̄ (4.176)

and have the following expli
it forms:

Radiation-dominated universe In a radiation-dominated universe,

δ
mixed,radiation

2 =
16

15
σ · τ

radiation

sin η cos η (3 cos 2η + 2) . (4.177)

Matter-dominated universe In a matter-dominated universe,

δmixed

2 = σ · τ cot
η

2
csc2

η

2







−4 cos η − 24 cos2 η − cos 3η−

−15
2
cos 4η + 5 cos 5η






. (4.178)
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Gravitational waves at se
ond order

Turning now to the Rb
a equations (4.149, 4.150, 4.151), to se
ond order, the Einstein

equations for ǫ− p(a)-terms read:























α′′
2 + 2 cotxα′

2 + 8α2

+1
4
(α′2

1 + β ′2
1 + γ′2

1 )

−3
[

w
2
(1 + w) csc2 x+ 1

]

δ2























=



























































−3 + 1
16
(1 + 3w)2 tan2 x+

+ 3
16
(1 + w) (3w − 1)+

+ (1 + w)2
(

9
16

− 3
4
w
)

csc2 x













δ21−

−α′
1δ

′
1 + (6β2

1 − 16β1γ1 + 6γ2
1)−

−18α2
1 + 16α1δ1















































(4.179)

et
. If we suppress all removable terms, as we must for any pra
ti
al observation

of se
ond-order terms, and taking into a

ount (4.162), this further simpli�es to

α′′
2 + 2 cotxα′

2 + 8α2 − 3
[w

2
(1 + w) csc2 x+ 1

]

δ2 =













−26α2
1+

+14β2
1 + 14γ2

1−

−1
4
(α′2

1 + β ′2
1 + γ′2

1 )













.

(4.180)

Re
alling the form of the gravitational waves in
luding the removable perturbation

at �rst order, we make the simple transformation α2 → α̃2 +
1
3
δ2 to arrive at the

equations:

α̃′′
2 + 2 cotxα̃′

2 + 8α̃2 = 40

[

1

3

(

α2
1 + β2

1 + γ2
1

)

− α2
1

]

(4.181)

et
.; we re
ognize that linear-order gravitational waves a
t as a driving for
e on

the waves at quadrati
 order. The solution of this equation is straightforward but

tedious and we arrive at the following solutions:
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In a radiation-dominated universe

αradiation2 =



































Cα1,2
sin 3η
sin η

+ Cα2,2
cos 3η
sin η

+

+40
(

1
3
σ2 − C2

α1,1

)

(

1
36

sin 3η
sin η

− 1
6
η cos 3η

sin η

)

+

+40
(

1
3
τ 2 − C2

α2,1

)







1
6
η cos 3η

sin η
+ 1

36
sin 3η
sin η

+ 5
24
+

+ 1
16

sin 5η
sin η

− 1
6
(2η−π) cos 3η−2 sin 3η ln(2 sin η)

sin η






+

+40
(

2
3
σ · τ − 2Cα1,1Cα2,1

)







1
6
η sin 3η

sin η
+ 1

8
cot η+

+ 1
36

cos 3η
sin η

− 1
32

cos 5η
sin η









































+
1

3
δ2

(4.182)

et
. with the se
ond-order 
onstants Cα1,2 et
. 
onstrained su
h that

Cα1,2 + Cβ1,2 + Cγ1,2 = Cα1,2 + Cβ1,2 + Cγ1,2 = 0. (4.183)

To lowest order in η the solution for α2 reads

αradiation2 ≈













Cα1,2 (3− 4η2) + 20
(

1
3
σ2 − C2

α1,1

) (

−1
6
+ 11

9
η2
)

+Cα2,2η
−1 + 20π

3

(

1
3
τ 2 − Cα2,1

)

η−1+

+175
36

(

2
3
σ · τ − 2Cα1,1Cα2,1

)

η−1 + 1
3
δnon-removable

2













(4.184)

et
. For the pure de
aying mode, the 
ontribution from δ2 dominates, while for the

pure growing mode and the mixed term the 
ontributions from the homogeneous

parts of α2 dominate.
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In a matter-dominated universe For a matter-dominated universe, the grav-

itational wave equation to se
ond order has the following solution

12

:

α2 =







Cα1,2 csc
η
2

d
dη

sin 3η
sin η/2

+ Cα2,2 csc
η
2

d
dη

cos 3η
sin η/2

+

+α
growing

2 + α
de
aying

2 + αmixed

2 + 1
3
δnon-removable

2






(4.185)

α
growing

2 ≡ 5

(

1

3
σ2 − C2

α1,1

)



































1
70

∑10
n=0 gn cosnη+

+ 1
56
csc3 η

2













η







−1128960 cos 5η
2
+

+806400 cos 7η
2






+

+
∑11

n=0 hn sin
(

2n+1
2

η
)















































(4.186)

g0 = 32900, g1 = 443310, g2 = 90230, g3 = 354221, g4 = 20195, g5 = 248918,

g6 = −57025, g7 = 68911, g8 = −37880, g9 = 15440, g10 = −22400

h0 = 1166543, h1 = −1664285, h2 = 888216, h3 = 990580, h4 = −1262310, h5 = 677390,

h6 = −363895, h7 = 197841, h8 = −116900, h9 = 66864, h10 = −34304, h11 = 8960

α
growing

2 ≈
(

1

3
σ2 − C2

α1,1

)(

82630− 4513087

7
η2
)

(4.187)

12

There is no �royal road� to the expli
it statement of this fun
tion, whi
h was derived by

substitution and variation of parameters with the assistan
e of a 
omputer algebra system. With

foreknowledge of the form of the solution, the equation (4.181) 
an be solved through the method

of undetermined 
oe�
ients; this requires solving a 21-dimensional linear system. (4.181) may

also admit a solution through the method of Fourier transforms, but only under torture.
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α
de
aying

2 ≡ 1

245

(

1

3
τ 2 − C2

α2,1

)

csc4
η

2













−η
2
tan η

2

∑4
n=0 jn cos

n η+

+
∑6

n=0 kn cos
n η+

+ ln
(

−2 sin2 η
2

)
∑4

n=0 ln cos
n η













(4.188)

j0 = −34020, j1 = −17010, j2 = 153090, j3 = 22680, j4 = −113400

k0 = 58329, k1 = −514422, k2 = 368937, k3 = 675396,

k4 = −678540, k5 = 31500, k6 = 61250

l0 = −5670, l1 = 102060, l2 = −73710, l3 = −136080, l4 = 113400

αmixed

2 ≡ 4

105

(

1

3
σ · τ − Cα1,1Cα2,1

)

csc2
η

2







η
2

∑3
n=0mn cos η−

− cot η
2

∑5
n=0 nn cos

n η







(4.189)

m0 = 2310, m1 = −39270, m2 = −9240, m3 = 46200

n0 = −936, n1 = 15693, n2 = 30204, n3 = −58700, n4 = −25200, n5 = 42000

αmixed

2 ≈ − 32

105

(

1

3
σ · τ − Cα1,1Cα2,1

)

η−3
5
∑

n=0

nn

et
. The statement of the solutions to the gravitational wave equations to quadrati


order in the matter-dominated universe are original to this work; the radiation-

dominated quadrati
 order wave equations were presented in [10℄. Note that

∑

n ln =
∑

n mn = 0.
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Most interesting is the presen
e of ln-terms in (4.171) and (4.188), whi
h on the

one hand indi
ate the appearan
e of the power-law behavior of metri
 
oe�
ients

whi
h typify the Kasner universe and the BKL universe in its quasi-isotropi
 phase;

on the other hand, they show the breakdown of our approximation s
heme and the

limit of regular perturbation theory in solving the problem to hand. The Taylor

expansion of the growing mode of α2 indi
ates further that waves must be very

weak (‖σ‖ = O (10−4)) for the approximation s
heme to be rigorously valid as the

presen
e of csc4 η
2
ln (−2 sin η)-terms in (4.188) indi
ates a fun
tion whi
h is both


omplex and pathologi
al. In any 
ase, indi
ations are that the growing mode of

hypotheti
al 
osmologi
al gravitational waves should be very mu
h stronger than

the de
aying mode (see se
tion 6.3); we will not need to make use of the se
ond-

order solutions for the de
aying mode and from here on will treat the de
aying

mode as being linear-order weak, that is, C2
α2,1 ≈ C2

β2,1 ≈ C2
γ2,1 ≈ Cα2,2 ≈ Cβ2,2 ≈

Cγ2,2 ≈ τ 2 ≈ 0.

4.4.5 Strong growing waves in the quasi-isotropi
 regime

[10, part 3℄ begins the development of equations for a radiation-dominated universe

des
ribing strong gravitational waves in Bian
hi IX. Similar equations in a matter-

dominated universe are useful in 
onsidering observed a

eleration, as ∆Q ≈ −1.
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Consider the equations (4.109-4.112). Assume a solution of the form

α =
∞
∑

n=0

cα2nη
2n

β =
∞
∑

n=0

cβ2nη
2n

(4.190)

γ =
∞
∑

n=0

cγ2nη
2n

with the terms cξn 
onstants. It is 
onvenient to de�ne e
2cα

0 ≡ A, e2c
β
0 ≡ B, e2c

γ
0 ≡ G.

In a matter-dominated universe, to lowest two orders the solutions read

α ≈cα0 +
1

20

[

1− 1

ABG

(

5A2 − 3B2 − 3G2 + 6BG− 2AB − 2AG
)

]

η2

β ≈cβ0 +
1

20

[

1− 1

ABG

(

5B2 − 3G2 − 3A2 + 6AG− 2BG− 2AB
)

]

η2 (4.191)

γ ≈cγ0 +
1

20

[

1− 1

ABG

(

5G2 − 3A2 − 3B2 + 6AB − 2AG− 2BG
)

]

η2

where cα0 , c
β
0 , c

γ
0 are arbitrary; if we want to preserve the Friedmannian value of S

then we need

cα0 + cβ0 + cγ0 = 0 (4.192)

[10℄. We always have the freedom to set one of these to zero by a simple s
aling of

the metri
; this preserves the two degrees of freedom for the gravitational wave.

If we apply the 
ondition (4.192) and set the parameter cγ0 = 0 by s
aling, then
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the strong growing-mode waves are des
ribed by

cα0 ∈R (4.193)

cβ0 =− cα0 (4.194)

cγ0 =0 (4.195)

cα2 =
1

20

(

−5A2 + 2A+ 6− 6A−1 + 3A−2
)

(4.196)

cβ2 =
1

20

(

3A2 − 6A+ 6 + 2A−1 − 5A−2
)

(4.197)

cγ2 =
1

20

(

3A2 + 2A− 10 + 2A−1 + 3A−2
)

(4.198)

with the single parameter cα0 determining the whole system. Note that setting

cγ0 = 0 does not imply γ′ = 0. We 
an also qualitatively say that for any value of

A, two of fun
tions α, β, γ will be positive, as will δ, unless A = 1 (the ba
kground


ase), in the regime that Aη is su�
iently small that A3η3 is negligible.

The fun
tions (4.190) are linearly independent with ymatter

2 to lowest order in η

and therefore 
an be used together to des
ribe a matter-dominated universe with

arbitrarily strong growing gravitational waves and weak de
aying gravitational

waves up to order η2, as long as the series (4.190) 
onverge.

4.4.6 Dynami
s

As in the Kasner universe (see se
tion 4.2.1), it is useful to generalize quantities

pertaining to the expansion of spa
e whi
h are spheri
ally symmetri
 in Friedman-

nian 
osmology.
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In terms of our statement of the metri
 (4.85), the generalized dynami
al quantities

for our spa
e are

aab = aF













eα 0 0

0 eβ 0

0 0 eγ













(4.199)

ā =
1

3
aF
(

eα + eβ + eγ
)

(4.200)

Hab =













ȧF/aF + α̇ 0 0

0 ȧF/aF + β̇ 0

0 0 ȧF/aF + γ̇













(4.201)

H̄ =
ȧF
aF

+
1

3
δ̇ (4.202)

Q1
1 ≡

d

dt
H1cη1c − δ11 = −







äF/aF + 2HF α̇+

+α̈ + α̇2







(HF + α̇)2
(4.203)

et
.

Q̄ = −1

3













äF /aF+2HF α̇+α̈+α̇2

(HF+α̇)2
+

+ äF /aF+2HF β̇+β̈+β̇2

(HF+β̇)
2 +

+ äF /aF+2HF γ̇+γ̈+γ̇2

(HF+γ̇)2













. (4.204)

Our goal in undertaking the arduous task of solving the Einstein equations has been

to derive the impa
t of long-wavelength gravitational waves on 
osmi
 dynami
s,

parti
ularly a

eleration. We are now in a position to begin to dis
uss this impa
t.
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Let ea
h quantity in se
tion (4.4.6) be expanded out into a ba
kground term plus


orre
tions, su
h that for example

aab ≈ a
(0)
ab + a

(1)
ab + a

(2)
ab . (4.205)

Then the zero-order, ba
kground terms are simply

a
(0)
ab =aFηab (4.206)

H
(0)
ab =HFηab (4.207)

(0)Qb
a =QF δ

b
a. (4.208)

While the gravitational energy-momentum tensor vanishes at �rst order with the

removal of removable perturbations, the presen
e of weak gravitational waves 
an

a�e
t observed dynami
 quantities. At �rst order:

a
(1)
ab =













α1 0 0

0 β1 0

0 0 γ1













(4.209)

ā(1) =
1

3
δ1 (4.210)

H
(1)
ab =













α̇1 0 0

0 β̇1 0

0 0 γ̇1













(4.211)
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H̄(1) =
1

3
δ̇1 (4.212)

(1)Q1
1 = −H−1

F

[

2 (QF + 1) α̇1 +H−1
F α̈1

]

(4.213)

et
.,

Q̄(1) = −1

3
H−1

F

[

2 (QF + 1) δ̇1 +H−1
F δ̈1

]

. (4.214)

Thus we illustrate the need for truly representative sky 
overage in 
onsidering

the problem of a

eleration: gravitational waves 
an 
ontribute to anisotropi
 a
-


eleration even when they do not a�e
t the distribution of matter. In domains

when the �rst derivatives of a wave is small (that is, near peaks and troughs of

the wave), the a

elerative e�e
t will not be a

ompanied by a large 
hange in the

Hubble �ow. As before, a failure to 
ompletely suppress the removable perturba-

tion may lead to in
orre
t evaluation of the strength of de
aying modes. To �rst

order, non-zero 
ontribution to the average over the whole sky of the perturbations

is removable; �rst-order weak gravitational waves in Bian
hi IX do not produ
e

isotropi
 a

eleration.

To quadrati
 order, the dynami
 quantities have the forms

a
(2)
ab = aF













α2 + α2
1/2 0 0

0 β2 + β2
1/2 0

0 0 γ2 + γ2
1/2













(4.215)

ā2 =
1

3
aF

[

δ2 +
1

2

(

α2
1 + β2

1 + γ2
1

)

]

(4.216)
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H
(2)
ab =













α̇2 0 0

0 β̇2 0

0 0 γ̇













(4.217)

H̄(2) =
1

3
δ̇2 (4.218)

(2)Q1
1 = −H−1

F







2 (QF + 1) α̇2 +H−1
F α̈2−

−3H−1
F (QF + 1) α̇2

1 − 2H−2
F α̇1α̈1






(4.219)

et
.,

Q̄(2) = −1

3
H−1

F













2 (QF + 1) δ̇2 +H−1
F δ̈2−

−3H−1
F (QF + 1)

(

α̇2
1 + β̇2

1 + γ̇2
1

)

−

−2H−2
F

(

α̇1α̈1 + β̇1β̈1 + γ̇1γ̈1

)













(4.220)

. At se
ond order we begin to see a 
onsequen
e of the non-linearity of the Bian
hi

IX Einstein equations whi
h is potentially very important in the study of 
osmi


dynami
s: isotropi
 
hanges to the Hubble parameter and to a

eleration from

anisotropi
 metri
 terms. With our knowledge of the Einstein equations at �rst

and se
ond order (4.133,4.152,4.180) we 
an show this expli
itly:
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(2)Q1
1 = − tanx



















































(3w + (1 + 3w) tan2 x)α′
2 − 8 tanxα2−

−40 tanxα2
1 +

3
2
(1− 3w − (1 + 3w) tan2 x) tanxα′2

1 +

+16 tan2 xα′
1α1+

+ tanx







3
[

w
2
(1 + w) csc2 x+ 1

]

δ2+

+14 (α2
1 + β2

1 + γ2
1)− 1

4
(α′2

1 + β ′2
1 + γ′2

1 )

























































(4.221)

et
. and

Q̄(2) =
1

3
tan2 x



































1
2
(1 + 3w)2 sec2 xδ2−

−2 (1 + 3w) sec2 x (α2
1 + β2

1 + γ2
1)+

+1
4
[1 + 15w + 5 (1 + 3w) tan2 x] (α′2

1 + β ′2
1 + γ′2

1 )−

−16 tanx (α′
1α1 + β ′

1β1 + γ′
1γ1)



































.

(4.222)

Isotropi
 a

eleration with quadrati
-order strength arises from the non-linear in-

tera
tion of linear-order gravitational waves, but in the regime of |α| , |β| , |γ| ≪ 1

the gravitational waves at linear order will dominate measurement of 
osmologi
al

parameters.

In a matter-dominated universe with η small, the de
eleration terms be
ome, de�n-

ing

∆Qa
b ≡ Qa

b −QF δ
a
b (4.223)

∆Q̄ ≡ Q̄−QF (4.224)
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∆Q1
1,matter

≈ −η2

4























tan η
2
(α′

1 + α′
2)− 8 (α1 + α2)−

−40α2
1 +

3
2
α′2
1 + 16 tan η

2
α′
1α1+

+3δ2 + 14 (α2
1 + β2

1 + γ2
1)− 1

4
(α′2

1 + β ′2
1 + γ′2

1 )























(4.225)

∆Q̄matter ≈ 1

48
η2













2δ2 − 8 (α2
1 + β2

1 + γ2
1) +

+ (α′2
1 + β ′2

1 + γ′2
1 )−

−16 tan η
2
(α′

1α1 + β ′
1β1 + γ′

1γ1)













(4.226)

et
. Expli
itly, these will have the lowest-order forms:

∆Q1
1,matter

≈ −η2

4



















Cα1,1 (280− 259η2) +

+Cα2,1

(

16η−3 − 72η−1 + 2251
5
η
)

+

+C2
α1,1 (710040− 4687753η2) +

+σ2
(

−609590/3 + 4402405
3

η2
)



















(4.227)

∆Q̄matter ≈ σ2

24
η2
(

−4900 + 2983η2
)

(4.228)

. These results are en
ouraging as, if we 
hoose ‖σ‖ ∼ 10−4
(in order to make the

gravitational waves weak) and η ∼ 10−2
to mat
h (6.1), we obtain ∆Q1

1,matter

∼

−10−6
, whi
h has the right sign as well as all the 
ontributions at both �rst and

se
ond orders going in the �right� dire
tion, toward a

eleration. It is parti
ularly

en
ouraging that both growing and de
aying modes 
ontribute to a

eleration to

their lowest orders in η.
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4.4.7 Ba
k-rea
tion

Of interest in dis
ussing the problem of a

eleration is the e�e
tive equation of state

of the gravitational waves' 
ontribution to the energy density. Empiri
ally, the

equation of state of dark energy seems to be 
lose to wX = −1 (see se
tion 2.3),

where the quantity wx is related to the sour
e of the energy su
h that the sour
e

evolves with regard to the s
ale fa
tor at a rate of a−3(1+wX)
. As noted in (se
tion

4.2.1) there is no unique way to de�ne the s
ale fa
tor, but a 
ondition of quasi-

isotropy is that expansion in every dire
tion in the 
urrent epo
h is proportional,

that is to say, that they evolve as the same power of time. If the de
aying mode of

the 
osmologi
al gravitational wave is weak, then this evolution will be proportional

to the Friedmannian s
ale fa
tor.

To quadrati
 order, (4.99) reads

kǫ(2)g = 3 (1 + w) a−2
F csc2 xδ2 (4.229)

and so by (4.114)

q(2) = − (1 + w) a−2
F δ2. (4.230)

When the growing mode is dominant, δ2 is always positive in a matter-dominated

universe; therefore q(2) is negative. Thus the ba
k-rea
tion appears to have negative

energy density. A signi�
ant �mixed� σ · τ term, however, 
an easily introdu
e

intervals where q(2) > 0.

In a matter-dominated universe and when the growing mode is dominant, q(2) ∝
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η−2
whi
h, if the universe is evolving with a s
ale as aF ∝ η2, implies an equation

of state for the ba
k-rea
tion of wX = −1/3 (as 
ompared to an equation of state

for a 
osmologi
al 
onstant of wX = −1). While no investigation of the equation

of state of dark energy in
ludes this value within its highest 
on�den
e interval,

measurements of wX remain tentative, with large errors and high sensitivity both

to single data points and to the algorithm for 
urve-�tting models to the data (see

se
tion 2.3). In any 
ase, a �uid with an equation of state of wX ≈ −1/3 
an be

responsible for a

eleration only if it dominates the universe and if wX < −1/3, in

a

ordan
e with (1.16).

The dominant term in (4.99) is the a′F/aF -term. This stands in stark 
ontrast to

the 
ommonly-
onsidered 
ase of gravitational waves in a ba
kground so slowly

moving 
ompared to the period of the waves that ȧF ≈ 0, in whi
h instan
e the

quadrati
 
ombination of �rst-derivative terms dominates.

In regimes of stronger growing-mode gravitational waves, though, the s
ale fa
tor

as de�ned in (4.19) will be more dominated by terms of higher, even order and so

aab ∝ η4 or higher. As the growing mode in
reases in strength, the equation of

state de
reases asymptoti
ally toward a limit of wX = −1; if the s
ale fa
tor grows

as η2s, the equation of state for the ba
k-rea
tion is given by wX = (1/3s)− 1. As

a

eleration is empiri
allyQ0 = −0.6, this implies that in real life the gravitational

wave strength is of order unity and therefore the e�e
tive equation of state is 
lose

to −1. Thus, the quasi-isotropi
 Bian
hi IX model with strong growing-mode

gravitational waves and weak or zero de
aying-mode waves is 
ompatible with the

observed data on the equation of state of dark energy, without the invo
ation of a


osmologi
al 
onstant; the theory would be invalidated by de�nitive measurements

of wX < −1.
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In any 
ase, the fa
t of wX < 0 allows us to draw a 
on
lusion regarding 
osmi


evolution. [76℄ notes Kasner-like 
osmologies go through two stages of evolution:

1. A �va
uum� stage, where matter's in�uen
e is, due to its evolution as a−4
,

weak 
ompared to the in�uen
e of the anisotropi
 expansion and 
ontra
tion,

in�uen
e whi
h, in light of (se
tion 4.3), we now understand to be the result

of gravitational waves in the BKL universe;

2. a �matter� stage, where expansion isotropizes [106℄ and is driven by, �rst

relativisti
 (w = 1/3), then 
old, non-relativisti
 (w = 0) matter. Formally,

the 
ontribution of 
urvature to 
osmi
 evolution be
omes important in this

era (wK = −1/3), but as the in�uen
e of 
urvature will be isotropi
 in

Bian
hi IX and the radius of 
urvature is very large 
ompared to the Hubble

radius (see se
tion 6.1), 
urvature will not have a pra
ti
al in�uen
e on

observations in and of itself.

13

To this se
ond stage we 
an add a third stage:

3. A �dark energy� stage, in whi
h growing modes of the 
osmologi
al gravita-

tional waves whi
h drove the initial isotropy return as the dominant in�uen
e

on 
osmi
 evolution.

13

Formally we 
an also say that, due to the a
tion of proton de
ay and positron annihilation,

after su�
ient time the w = 0 phase will return to a w = 1/3 phase where the universe is �lled

with neutrinos and photons. Following this period there will be another return to w = 0 as

these free parti
les are absorbed by bla
k holes. As these bla
k holes evaporate by the pro
ess

of Hawking radiation, there will then be a �nal return to w = 1/3. [80℄ gives a popular-s
ien
e

presentation of the universe in these phases, but as it was written only shortly after the dis
overy

of a

eleration its treatment of dark energy is highly spe
ulative.
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4.4.8 Ampli�
ation of gravitational waves

Grish
huk observed [8℄ that when the ba
kground of a 
osmology 
ontaining gravi-

tational waves varies rapidly, weak gravitational waves 
an be ampli�ed where they

would otherwise, in a slowly-moving ba
kground, de
ay rapidly [79℄. With regard

to the Bian
hi IX 
osmology, this is signi�
ant as when the growing mode of a


osmologi
al gravitational wave dominates, the leading term in the gravitational

energy density is of the form (a′F/aF ) δ
′
2 = O (
onstant). Cosmologi
al observa-

tions (see se
tion 6.1) indi
ate the universe has η < O (10−1). In this regime, the

term a′F/aF = cot (η/2) ≈ 2/η, whi
h is dependent on the rate of 
hange of the

ba
kground, is arbitrarily large; therefore, weak waves may have an e�e
t orders

of magnitude greater than their amplitude. Similarly, the de
aying mode of gravi-

tational waves 
an have prominent or even dominant power in a su�
iently young

universe even when the amplitude of the de
aying mode is smaller than that of the

growing mode.

4.5 Con
lusions

Solutions have been presented for the gravitational wave equation for a Bian
hi IX

universe perturbed to quadrati
 order from the 
losed Friedmann 
ase. Quadrati


order is the limit of perturbation theory's appli
ability to explore nearly-Friedmannian

Bian
hi IX when de
aying modes are su�
iently strong that they are not negligible.

At quadrati
 order, the non-linear intera
tion of the gravitational waves produ
es
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isotropi
 
hanges to dynami
 quantities. While this isotropi
 
hange is likely to

be dominated in any parti
ular dire
tion by linear-order 
ontributions from the

gravitational waves, in the regime of strong gravitational waves they will be
ome

more important and potentially even dominant. Where [98℄ dis
ussed the possibil-

ity of a

eleration in a non-va
uum Bian
hi IX universe only qualitatively, we have

shown it expli
itly as well as illustrating a 
lear link between a

eleration and the

gravitational waves whi
h are intrinsi
 to Bian
hi IX in its full generality.

It is 
urious to note that the order-η2 approximation we have made in (se
tion

4.4.5), α and δ in the normalization we have 
hosen take the form of Alexander

polynomials [109, 110℄, although not Alexander polynomials for any knot of fewer

than 11 
rossings. Whether this mathemati
al observation is signi�
ant or 
oin-


idental is a subje
t for further debate, but as gravitational waves in Bian
hi IX

are moving equatorially around our ba
kground 3-sphere [10℄, and as a sub-
lass of

knots (the �torus knots�) are 
onstru
ted by wrapping one 2-torus around another

it is 
on
eivable there 
ould be a 
onne
tion.

Ba
k-rea
tion from growing modes of the gravitational waves appears to have nega-

tive energy density and an equation of state 
ompatible with that observed for dark

energy, espe
ially in the regime of strong gravitational waves and quasi-isotropi


expansion; when gravitational waves are strong, they be
ome the dominant 
on-

tributor to the evolution of the 
osmos in an era following the era of matter dom-

ination.

Therefore, from the perspe
tive of 
osmi
 dynami
s, 
osmologi
al gravitational

waves in a quasi-isotropi
 Bian
hi IX universe are a viable 
andidate for dark
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energy, without the invo
ation of a 
osmologi
al 
onstant and without requiring

any modi�
ation of the theory of relativity. An analysis of the impa
t of these

gravitational waves on the 
osmi
 mi
rowave ba
kground is ne
essary in order to

determine whether 
onstraints from the CMB are 
ompatible with the observed

data on a

eleration.



Chapter 5

The Cosmi
 Mi
rowave Ba
kground

of a Bian
hi IX universe

While long-wavelength gravitational waves 
an 
ause both isotropi
 and anisotropi



hanges to the de
eleration parameter in a Bian
hi IX universe, the e�e
t of su
h

waves must be 
ompatible with the observed 
osmi
 mi
rowave ba
kground in order

to represent a pra
ti
al model for explaining observed a

eleration.

Sa
hs & Wolfe initiated [23℄ the systemati
 study of the e�e
t of perturbations

on the CMB, following a formalism developed by Kristian & Sa
hs [25℄. Sa
hs &

Wolfe's work developed the theory of s
alar, ve
tor and tensor perturbations on

the CMB in a �at almost-isotropi
 universe to �rst order.

Sa
hs & Wolfe's work was generalized by Anile & Motta [26℄ to the almost-isotropi
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losed and open Friedmann 
osmologies, again at �rst order. While Anile & Motta

begin to 
onsider the impa
t of long-wavelength gravitational waves on the CMB,

they 
hoose to explore the impa
t of waves with s
ales mu
h smaller than the

Hubble radius. Anile & Motta subsequently [27℄ ruled out the existen
e of these

waves at signi�
ant strengths in the observable universe.

Doroshkevit
h, Lukash & Novikov 
onsidered the impa
t of an anisotropi
 universe

on the CMB in the 
ase of the Bian
hi VII, VIII and IX models [19℄, and 
on
luded

that a Bian
hi IX model was potentially �
ompatible with observations, only if

there was some se
ondary heating of the intergala
ti
 gas�. Doroshkevit
h et al 's

most important 
al
ulations are 
arried out on the assumption, then widespread, of

ΩM ≈ 1 and as su
h are of limited appli
ability; interestingly, in their 
on
lusions

they note that if ΩM < 1, �∆T/T will be 
lose to the maximum value only in a

small 'spot' with an angular size θ ≈ 4Ω� (where by �small� they give the example

of ΩM ≈ 0.1 =⇒ θ ≈ 23◦).

Sung & Coles analyti
ally and 
omputationally explore the impa
t of various un-

perturbed Bian
hi models, in
luding Bian
hi IX, on the CMB [21℄. They report

the useful theorem that �a gravitational �eld alone is not able to generate polar-

ization�, but do not 
onsider the general 
ase of Bian
hi IX, only the isotropi
 
ase

equivalent to the 
losed Friedmann universe.
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IX UNIVERSE

5.1 Geodesi
 equations

The e�e
t of the metri
 on the CMB is determined by examining the 
hange in

geodesi
s of light rays relative to an isotropi
, ba
kground 
ase. Let the subs
ript

E denote a fun
tion evaluated at the time of the emission of a photon, and the

subs
ript R denote that fun
tion evaluated at the time of the photon's re
eption.

Then the 
hange in the temperature of the ba
kground radiation T is given by

TR/TE =
1

z + 1
. (5.1)

Consider the path of a light ray; let this be a four-ve
tor denoted by kµ
su
h

that kµkµ = 0, with the light ray re
eived in the dire
tion ki
R = ei. The geodesi


equation for the time part of kµ
in a Bian
hi 
osmology reads

dk0

dλ
+ Γ0

ijk
ikj = 0 (5.2)

and the equations for the spa
e part of the ve
tor read

dka

dλ
+ Γa

00 + Γa
0ik

i + Γa
i0k

i + Γa
bck

bkc = 0. (5.3)

Re
alling (4.62) and (4.85) the Christo�el symbols

Γ0
ij =

1

2
γab,0e

a
i e

b
j , (5.4)
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, Γa
00 = Γa

0i = Γa
i0 = 0 and the Ri

i rotation 
oe�
ients read

1

:

Γa
bc =

1

2

(

δafǫbcd + γagγcdǫgbf − γagγdbǫcgf
)

ηdf

Γ1
23 =

1

2

(

γ11 (γ33 − γ22) + 1
)

=
1

2

(

e2γ−2α − e2β−2α + 1
)

Γ1
32 =

1

2

(

γ11 (γ33 − γ22)− 1
)

=
1

2

(

e2γ−2α − e2β−2α − 1
)

Γ2
31 =

1

2

(

γ22 (γ11 − γ33) + 1
)

=
1

2

(

e2α−2β − e2γ−2β + 1
)

(5.5)

Γ2
13 =

1

2

(

γ22 (γ11 − γ33)− 1
)

=
1

2

(

e2α−2β − e2γ−2β − 1
)

Γ3
12 =

1

2

(

γ33 (γ22 − γ11) + 1
)

=
1

2

(

e2β−2γ − e2α−2γ + 1
)

Γ3
21 =

1

2

(

γ33 (γ22 − γ11)− 1
)

=
1

2

(

e2β−2γ − e2α−2γ − 1
)

with all others zero; note that the form of the rotation 
oe�
ients guarantees that

only anisotropi
 parts of the metri
 tensor will have an e�e
t on ki
(and there-

fore δ-terms, whether removable or non-removable always vanish in the geodesi


equations; re
all se
tion 4.2.1). Using the same method of 
onformally-related

obje
ts as des
ribed in [23, part IIe℄, de�ne the ve
tor k̄µ : a2F k̄
µ = kµ

and the

tensor γ̄ab : a2F γ̄ab = γab; re
all that k0
R = −ki

Rk
R
i = 1. This gives us geodesi


equations:

dk̄0

dλ
+

1

2
γ̄ab,0k̄

ak̄b =0 (5.6)

dk̄1

dλ
+
(

e2γ−2α − e2β−2α
)

k̄2k̄3 =0 (5.7)

dk̄2

dλ
+
(

e2α−2β − e2γ−2β
)

k̄1k̄3 =0 (5.8)

dk̄3

dλ
+
(

e2β−2γ − e2α−2γ
)

k̄1k̄2 =0. (5.9)

Despite the symmetry of these equations, their nonlinearity has inhibited the dis-


overy of exa
t solutions and resear
h into their properties is ongoing; see for

1

The symbol εabc represents the Levi-Civita symbol de�ned su
h that ε123 = 1
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example [24℄. However, with solutions up to quadrati
 order for the metri
 in hand

(4.140, 4.141, 4.184, 4.185), we 
an expli
itly solve the equations in the 
ase of

weak waves. Let k̄a = k̄a
R + ∆k̄a (λ). Expanding out the geodesi
 equations to

se
ond order in the metri
:

d∆k̄0
1

dλ
+

1

2

[

α′
1

(

k̄1
R

)2
+ β ′

1

(

k̄2
R

)2
+ γ′

1

(

k̄3
R

)2
]

=0 (5.10)

d∆k̄1
1

dλ
+ 2 (γ1 − β1) k̄

2
Rk̄

3
R =0 (5.11)

d∆k̄1
2

dλ
+ 2 (α1 − γ1) k̄

1
Rk̄

3
R =0 (5.12)

d∆k̄1
3

dλ
+ 2 (β1 − α1) k̄

1
Rk̄

2
R =0 (5.13)

d∆k̄0
2

dλ
+

1

2













(α′
2 + 2α′

1α1)
(

k̄1
R

)2
+ 2k̄1

Rα
′
1∆k̄1

1+

+ (β ′
2 + 2β ′

1β1)
(

k̄2
R

)2
+ 2k̄2

Rβ
′
1∆k̄2

1+

+ (γ′
2 + 2γ′

1γ1)
(

k̄3
R

)2
+ 2k̄3

Rγ
′
1∆k̄3

1













=0 (5.14)

d∆k̄1
2

dλ
+ 2







(γ1 − β1)
(

k̄2
R∆k̄3

1 + k̄3
R∆k̄2

1

)

+

+ (γ2 − β2 + 3γ2
1 − 3β2

1) k̄
2
Rk̄

3
R






=0 (5.15)

d∆k̄2
2

dλ
+ 2







(α1 − γ1)
(

k̄3
R∆k̄1

1 + k̄1
R∆k̄3

1

)

+

+ (α2 − γ2 + 3α2
1 − 3γ2

1) k̄
1
Rk̄

3
R






=0 (5.16)

d∆k̄3
2

dλ
+ 2







(β1 − α1)
(

k̄1
R∆k̄2

1 + k̄2
R∆k̄1

1

)

+

+ (β2 − α2 + 3β2
1 − 3α2

1) k̄
1
Rk̄

2
R






=0. (5.17)

To �rst order, the equations are trivially solved by 
hoosing λ = η as the a�ne

parameter; the problem of determining dλ/dη is over
ome by our 
hoi
e of referen
e
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system, the la
k of ve
tor perturbations and the homogeneity of spa
e:

∆k̄0
1 =− 1

2

[

α1

(

k̄1
R

)2
+ β1

(

k̄2
R

)2
+ γ1

(

k̄3
R

)2
]η=ηR

η=ηE
(5.18)

=− 1

2

[

α̃1

(

k̄1
R

)2
+ β̃1

(

k̄2
R

)2
+ γ̃1

(

k̄3
R

)2
+

1

3
δ1

]η=ηR

η=ηE

∆k̄1
1 =2k̄2

Rk̄
3
R

ˆ ηR

ηE

(β1 − γ1) dη (5.19)

∆k̄2
1 =2k̄3

Rk̄
1
R

ˆ ηR

ηE

(γ1 − α1) dη (5.20)

∆k̄3
1 =2k̄1

Rk̄
2
R

ˆ ηR

ηE

(α1 − β1) dη. (5.21)

The relationship (5.18) expli
itly shows the quadrupolar nature of 
hanges to the

CMB alluded to in [19℄. An unremoved removable perturbation, that is, a gauge

term whi
h is not a

ounted for, 
hanges the temperature of the whole sky isotrop-

i
ally; this 
on�rms the e�e
t noted by Hwang & Noh [42℄.

The equations for quadrati
-order 
orre
tions read

d∆k̄0
2

dλ
+

1

2













(α′
2 + 2α′

1α1)
(

k̄1
R

)2
+ 2k̄1

Rα
′
1∆k̄1

1+

+ (β ′
2 + 2β ′

1β1)
(

k̄2
R

)2
+ 2k̄2

Rβ
′
1∆k̄2

1+

+ (γ′
2 + 2γ′

1γ1)
(

k̄3
R

)2
+ 2k̄3

Rγ
′
1∆k̄3

1













= 0 (5.22)

whi
h due to the 
an
ellation of the terms in the right 
olumn integrates trivially

to

∆k̄0
2 = −1

2

[

(

α2 + α2
1

) (

k̄1
R

)2
+
(

β2 + β2
1

) (

k̄2
R

)2
+
(

γ2 + γ2
1

) (

k̄3
R

)2
]η=ηR

η=ηE
(5.23)

(reiterating the quadrupolar 
hara
ter of the 
hange to the CMB, but generalizing
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it to anisotropi
 expansion); meanwhile for the spa
e part of the ve
tor

d∆k̄1
2

dλ
+ 2







(γ1 − β1)
(

k̄2
R∆k̄3

1 + k̄3
R∆k̄2

1

)

+

+ (γ2 − β2 + 3γ2
1 − 3β2

1 + 2δ1 (β1 − γ1)) k̄
2
Rk̄

3
R






=0 (5.24)

d∆k̄2
2

dλ
+ 2







(α1 − γ1)
(

k̄3
R∆k̄1

1 + k̄1
R∆k̄3

1

)

+

+ (α2 − γ2 + 3α2
1 − 3γ2

1 + 2δ1 (γ1 − α1)) k̄
3
Ek̄

1
E






=0 (5.25)

d∆k̄3
2

dλ
+ 2







(β1 − α1)
(

k̄1
R∆k̄2

1 + k̄2
R∆k̄1

1

)

+

+ (β2 − α2 + 3β2
1 − 3α2

1 + 2δ1 (α1 − β1)) k̄
1
Rk̄

2
R






=0 (5.26)

whi
h has solutions

∆k̄1
2 =− 2























2k̄1
R

´ ηR
ηE







(

γ̃1 − β̃1

)







(

k̄2
R

)2 ´ η
(

α̃1 − β̃1

)

dη̄+

+
(

k̄3
R

)2 ´ η
(γ̃1 − α̃1) dη̄






dη






+

+k̄2
Rk̄

3
R

´ ηR
ηE

(

γ2 − β2 + γ̃2
1 − β̃2

1 + 2α̃1

(

β̃1 − γ̃1

))

dη























(5.27)

∆k̄2
2 =− 2























2k̄2
R

´ ηR
ηE






(α̃1 − γ̃1)







(

k̄3
R

)2 ´ η
(

β̃1 − γ̃1

)

dη̄+

+
(

k̄1
R

)2 ´ η
(

α̃1 − β̃1

)

dη̄






dη






+

+k̄3
Rk̄

1
R

´ ηR
ηE

(

α2 − γ2 + α̃2
1 − γ̃2

1 + 2β̃1 (γ̃1 − α̃1)
)

dη























(5.28)

∆k̄3
2 =− 2























2k̄3
R

´ ηR
ηE







(

β̃1 − α̃1

)







(

k̄1
R

)2 ´ η
(γ̃1 − α̃1) dη̄+

+
(

k̄2
R

)2 ´ η
(

β̃1 − γ̃1

)

dη̄






dη






+

+k̄1
Rk̄

2
R

´ ηR
ηE

(

β2 − α2 + β̃2
1 − α̃2

1 + 2γ̃1

(

α̃1 − β̃1

))

dη























.

(5.29)

5.2 Redshift and CMB variations

The geodesi
 of a light ray is related to its observed redshift by



5.2. REDSHIFT AND CMB VARIATIONS 123

z + 1 =
(kµuµ)R
(kµuµ)E

(5.30)

[23℄. Having determined u0 = 1 and ui = 0 this simpli�es to

z + 1 =
aF (ηR)

aF (ηE)
k̄0
R (5.31)

so, to quadrati
 order,

z + 1 ≈ aF (ηR)

aF (ηE)























1− 1

2













(α1 + α2 + α2
1)
(

k̄1
R

)2
+

+ (β1 + β2 + β2
1)
(

k̄2
R

)2
+

+ (γ1 + γ2 + γ2
1)
(

k̄3
R

)2













η=ηR

η=ηE























(5.32)

. Meanwhile, the temperature �eld

TR

TE
=

1

z + 1
≈ aF (ηE)

aF (ηR)



















































1 + 1
2

[

α1

(

k̄1
R

)2
+ β1

(

k̄2
R

)2
+ γ1

(

k̄3
R

)2
]

+

+1
4

[

α1

(

k̄1
R

)2
+ β1

(

k̄2
R

)2
+ γ1

(

k̄3
R

)2
]2

+

+1
2













(α2 + α2
1)
(

k̄1
R

)2
+

+ (β2 + β2
1)
(

k̄2
R

)2
+

+ (γ2 + γ2
1)
(

k̄3
R

)2































































η=ηR

η=ηE

(5.33)

so
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∆T

TR
≈ aF (ηE)

aF (ηR)



















































1
2

[

α1

(

k̄1
R

)2
+ β1

(

k̄2
R

)2
+ γ1

(

k̄3
R

)2
]

+

+1
4

[

α1

(

k̄1
R

)2
+ β1

(

k̄2
R

)2
+ γ1

(

k̄3
R

)2
]2

+

+1
2













(α2 + α2
1)
(

k̄1
R

)2
+

+ (β2 + β2
1)
(

k̄2
R

)2
+

+ (γ2 + γ2
1)
(

k̄3
R

)2































































η=ηR

η=ηE

. (5.34)

5.3 Comparison with the observed CMB

Five-year and seven-year results [16, 18℄ from WMAP [30℄ give the best pi
ture

to date of the CMB. The WMAP observations re
on�rm the 
onstraint of the

quantity ∆T/T < 10−4
[20℄; any 
hange to the CMB from a

eleration must be

equal to or smaller than this value in order to be 
ompatible with observations,

pla
ing an additional 
onstraint on 
osmologi
al models. This implies that in the


urrent epo
h, and in the absens
e of further spe
ial alignment, |α| , |β| , |γ| . 10−5
.

In a matter dominated universe, under ordinary 
ir
umstan
es, this implies (sin
e

η . 10−1
; see se
tion 6.1)

∣

∣

∣
Cα1,1y

matter

1

∣

∣

∣
. 10−5 =⇒ |Cα1,1| . 10−6

(5.35)

∣

∣

∣
Cα2,1y

matter

2

∣

∣

∣
. 10−5 =⇒ |Cα2,1| . 10−8; (5.36)

meanwhile in a radiation-dominated universe,

∣

∣

∣
Cα1,1y

radiation

1

∣

∣

∣
. 10−5 =⇒ |Cα1,1| . 10−5

(5.37)

∣

∣

∣
Cα2,1y

radiation

2

∣

∣

∣
. 10−5 =⇒ |Cα2,1| . 10−6. (5.38)
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The 
oe�
ients asso
iated with the de
aying mode are 
onstrained to be smaller

than those asso
iated with the growing mode without further theoreti
al 
onsid-

erations.

5.3.1 CMB anomalies

Sin
e the publi
ation of the latest generation of CMB maps [28℄, numerous 
laims

have been made (for example, [28, 32, 34, 39℄) of anomalous stru
ture in the CMB.

While the WMAP team argue [17℄ that these phenomena are not of statisti
al

signi�
an
e, if a quasi-isotropi
 Bian
hi IX universe 
ould produ
e any of the per-


eived patterns it would point the way toward further observational studies of

the CMB to determine 
osmologi
al parameters, and establish the quasi-isotropi


Bian
hi IX universe as a viable model for 
osmology.

In all 
ases, we emphasize that the most likely explanation for any per
eived pattern

in the CMB whi
h is not shown to be statisti
ally signi�
ant is the null hypothesis:

that is, the human per
eptive phenomenon of pareidolia, the same phenomenon

responsible for observing familiar shapes in 
louds or the �Man in the Moon�.

Cold spots, ��ngers� and the �Axis of Evil�

Two 
ompa
t, supposedly anomalous areas of low temperature have been noted in

the CMB, the so 
alled �
old spots�.
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The �rst of these (
alled Cold Spot I in [17℄) is a region [31℄ 
overing approximately

15000 square degrees in the dire
tion of the gala
ti
 
enter, mu
h of whi
h is 194

mi
rokelvin [28℄ 
older than the CMB mean temperature (∆T/TR = −7.12×10−5
).

Parti
ularly noteworthy regarding Cold Spot I is its membership in one of four

��ngers� spa
ed at roughly 90-degree angles around the gala
ti
 equator, intersti
ed

by four areas of higher (∆T/TR = 7.12× 10−5
) temperature

2

. Qualitatively, su
h

a pattern is roughly 
onsistent with the expe
ted pattern if two of the fun
tions

α, β, γ > 0 and if two of the the prin
iple axes of the metri
 tensor lie on the axes

of the 
old and hot zones (implying the third axis points along the �Axis of Evil�,

see below). The so-
alled �Cold Spot II� reported by Vielva et al. [34, 37℄ also

forms part of these ��nger� stru
tures [17℄.

Cold Spot I also has the angular size [19℄ predi
ts for the observed value of ΩM ≈ .3.

Due to the 
oin
iden
e of the 
old spot with the dire
tion of the gala
ti
 
enter,

there are no opti
al observations in its dire
tion (see figure 2.2), and therefore

there is no data on 
osmi
 a

eleration in the dire
tion of Cold Spot I.

(Equation 5.34) implies that any 
old spot resulting from anisotropy in the metri


should be a

ompanied by an identi
al 
old spot at a point antipodal to the original

spot. Tegmark's examination [28℄ of the one-year WMAP data on the CMB low-

order multipoles revealed an alignment between the CMB quadrupole and o
tupole

in the dire
tion of (l, b) ≈ (−110◦, 60◦) along whi
h the quadrupole is nearly zero,

an axis whi
h Land & Maguiejo found [32℄ extended to the 16-pole and 32-pole

2

The CMB dipole is de�ned as su
h a way as to be tra
eless, so

´

∆T
quadrupole

/TRdS = 0.
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as well; the alignment has been dubbed the �Axis of Evil�. While examination of

the three-year WMAP data [33℄ found the Axis of Evil to be of lower signi�
an
e

than initially thought (94%-98%), it still persists; the WMAP team's dis
ussion of

the alignment [17, pt. 7℄ admits the �remarkability� of this alignment and, while

assigning its existen
e to 
han
e, does not attempt to explain the �Axis of Evil� in

full.

The Axis of Evil, whi
h in equatorial 
oordinates [35, p. 43℄ lies 
lose to RA 10:44

De
 +7.6◦, falls within the zone in whi
h redshift data has been 
olle
ted for mea-

surement of the 
osmi
 de
eleration parameter. To simplest linear approximation

with a pure growing mode, (that is, that the fun
tions α and α′
are both small su
h

that α2 ≈ 0) this alignment rules out a CMB arising from 
osmologi
al gravita-

tional waves as a sour
e of 
osmi
 a

eleration. However, the fa
t of the alignment

of the quadrupole, o
topole, 16-pole and 32-pole indi
ates that non-linear 
ontri-

butions of gravitational waves to a

eleration are not ruled out.

The question of the overall magnitude of the quadrupole, whi
h is only 14% of

the expe
ted value [28, 38℄, has also been raised. The WMAP team [17, pt. 4℄

agree with Tegmark that the depressed quadrupole falls within the 95% 
on�den
e

interval for simulations of the CMB, but do not attempt an explanation for the

unusually strong o
topole term. Long-wavelength gravitational waves 
an easily

explain both through judi
ious 
hoi
e of the arbitrary 
onstants Cα1,1 et
. in a

manner 
ompatible with the CMB. Efstathiou [29℄ supposes that the depressed

quadrupole 
ould be an indi
ation of a 
losed universe; however, the relationships

he proposes generate zero 
ontributions to the CMB power spe
trum from the

genuinely 
osmologi
al, intrinsi
 n = 3 waves found in Bian
hi IX, and any obser-

vational test using his framework must rely on 
orre
t evaluation of gauge terms
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whose e�e
tive wavelengths must be far longer than the 
osmi
 horizon. Further-

more, Efstathiou's 
on
lusion that a 
losed universe would automati
ally require

a s
rapping of 
urrent in�ationary models is 
ontradi
ted by others; for example,

Guth argues that a universe that is 
losed but with a very large radius of 
urvature

is not ruled out [40℄.

The quasi-isotropi
 Bian
hi IX model 
annot provide an explanation for hemi-

spheri
al dipole asymmetry 
laimed by Eri
ksen et al. [39℄.

5.4 Con
lusions

The long-wavelength gravitational waves intrinsi
 to a quasi-isotropi
 Bian
hi IX

will 
ause a 
hange in the 
osmi
 mi
rowave ba
kground with a distin
tive quadrupo-

lar signature. A radially-symmetri
 pattern of light de�e
tions in the CMB result-

ing from shear may also be observed.

The almost-isotropi
 Bian
hi IX model 
an be 
ompatible with the CMB as ob-

served, and 
an provide an explanation for per
eived anomalies observed in the

CMB by COBE and WMAP. However, the existen
e of these anomalies beyond

the level of statisti
al noise is not 
ertain; a possible route of 
ross-dis
iplinary

resear
h is open in the form of examination of the phenomenon of pareidolia as

applied to the CMB.

Models of quasi-isotropi
 Bian
hi IX relying on pure growing modes or pure de-
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aying modes of the gravitational waves 
annot simultaneously explain observed


osmi
 a

eleration and the observed 
osmi
 mi
rowave ba
kground. Resear
h into

the non-linear regime of the Bian
hi IX 
osmology will elu
idate the existen
e of a

model of an a

elerating Bian
hi IX universe preserving an almost-isotropi
 CMB.



Chapter 6

An a

elerating Bian
hi IX universe

preserving an almost-isotropi
 CMB

In order for a Bian
hi IX universe to both appear nearly isotropi
 in the 
osmi


mi
rowave ba
kground and to a

elerate through the existen
e of long-wavelength

gravitational waves, it must ful�ll two 
onditions. The �rst is that the fun
tion

k0 (ηR) must have absolute value less than the limit imposed by observations of

the 
osmi
 mi
rowave ba
kground, ∆T/TR. The se
ond is that at least one of the

fun
tions Qb
a < 0. It is possible for both these 
onditions to be simultaneously �lled

while remaining 
ompatible with other observational 
onstraints on 
osmologi
al

parameters.

The idea of long-wavelength gravitational waves 
ausing anisotropy in the CMB

has been proposed, but not applied to the Bian
hi IX universe. Grish
huk &

130



6.1. COSMOLOGICAL PARAMETERS 131

Zel'dovi
h 
onsider the possibility of long-wavelength gravitational waves existing

in a Friedmann universe without violating the limits imposed by the CMB [41℄, but

do not apply their work to the gravitational waves of 
osmologi
al 
hara
ter whi
h

appear in some homogeneous 
osmologies. Campanelli et al. suggest that su
h a

universe 
ould exist and propose a Taub-type Bian
hi I universe whi
h also in
ludes

anisotropi
 dark energy as an initial explanation for the observed CMB, 
omple-

menting Rodrigues [113℄. Criti
ally, they do not 
onsider gravitational waves as

a generator of the anisotropy and treat the parameters of the Taub universe as if

dark energy were simply established by �at. Similarly, Kovisto and Mota [115℄ do

not look beyond the Bian
hi I model and instead fall ba
k on exoti
 theories to

explain dark energy.

6.1 Cosmologi
al parameters

WMAP [18, 16℄ has produ
ed an all-sky survey of the CMB whi
h, if the universe

is almost Friedmannian, 
an be used to 
onstrain 
osmologi
al parameters.

Let the radius of 
urvature a0 and 
onformal time η of the ba
kground Friedmann


osmology be treated as a free parameters; assume a 
losed universe. The WMAP

seven-year data gives

H0 =70.4+1.3
−1.4km/s/Mp
 (6.1)

ΩK =− .0025± 0.0109 (6.2)

(WMAP's analysis in
ludes the value of ΩK measured by baryon a
ousti
 os
illa-
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tions reported in [101℄). The radius of 
urvature, Hubble parameter and 
urvature

energy density are related by

a0 = H−1
0

√

−Ω−1
K (6.3)

while the Hubble parameter, radius of 
urvature and η-time are related by

H0a0 = cot (η0/2) . (6.4)

Therefore we have limiting values (as de�ned by the 95% 
on�den
e boundary of

the WMAP observations)

a0 ≥1.12× 1029
m (6.5)

η0 ≤0.0266 (6.6)

and highest-
on�den
e values

a0 =2.68× 1029
m (6.7)

η0 =0.00499. (6.8)

Meanwhile, the ratio of Hubble radius to radius of 
urvature is at least

H0a0 ≥ 8.67 (6.9)

with a best-�t value of

H0a0 = 20.0. (6.10)

In other words, if the universe is 
losed, then the 
osmologi
al gravitational waves of

the Bian
hi IX 
osmology are of mu
h, mu
h longer wavelength than the observable
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universe.

Finally, from the value of the redshift of de
oupling, z
last s
attering

= 1090, we


an say by (2.2) that

ηR/ηE ≈ 33.0. (6.11)

As the available data, in
luding that from supernovae (see table 2.1), do not

ex
lude a �at universe, we are always free, in developing the theory of Bian
hi IX

and a

eleration, to set the parameter η as 
lose to zero as ne
essary. Doing so

will not, in and of itself, violate observations, but will instead be 
onstrained by

the impa
t of the de
aying mode of the gravitational waves on the CMB.

6.2 Compatibility with the redshift

Of all the observed 
osmologi
al parameters observed by WMAP and other probes

of the CMB, the ones that are dire
tly observed are ∆T/TR and z
last s
attering

.

From these we 
an say that in the 
urrent epo
h the universe appears isotropi
 and

that its expansion sin
e last s
attering has, on average to the present time, been

isotropi
. Neither of these fa
ts ne
essarily imply that the overall expansion was

isotropi
 at any time before the present. Instead, the 
ondition of quasi-isotropy

simply implies that

dk0

dη
+

1

2
γab,0k

akb ≈ 0. (6.12)
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This implies that shear is small, so

ka ≈ka
0 (6.13)

z + 1 ≈aF (ηR) /aF (ηE) (6.14)

as in the ba
kground Friedmann 
ase.

We 
an obtain a near-zero value to the wave fun
tions in the present epo
h by

admitting the presen
e of both growing and de
aying modes in the gravitational

waves. We want the 
ondition (assuming ∆T/TR is positive; in the 
ase that it is

negative the inequalities must be reversed)

0 ≤ aF (ηE)

aF (ηR)
eα(ηR)−α(ηR) ≤ |∆T/TR| (6.15)

and similarly for β, γ. In its full form this equation is trans
endental even when

dis
ussing weak waves, but expanding (4.135) to lowest surviving order in η, we

obtain

∣

∣37Cα1,1

(

η2R − η2E
)

+ 4Cα2,1

(

η−3
R − η−3

E

)∣

∣ ≤ |∆T/TR| . (6.16)

In a young universe, the times of emission and re
eption of a light ray are related

by ηE ≈ ηR (z + 1)−1/2
so

∣

∣

∣
37Cα1,1

(

1− (z + 1)−1) η2R + 4Cα2,1

(

1− (z + 1)3/2
)

η−3
R

∣

∣

∣
≤ |∆T/TR| . (6.17)

Let:

� 10−g
be the amplitude of the growing mode Cα1,1, so Cα1,1 = sgn (Cα1,1) 10

−g
;

� 10−d
be the amplitude of the de
aying mode Cα2,1, so Cα2,1 = sgn (Cα2,1) 10

−d
;
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� 10−b
be the value of ηR;

� 10−T
be the value of |∆T/TR|

so noting that z ∼ 1000 = 103, our 
ondition be
omes approximately

∣

∣

sgn (Cα1,1) 10
−2b−g+3/2 − sgn (Cα2,1) 10

3b−d+5
∣

∣ .
∣

∣10−T
∣

∣ . (6.18)

When the amplitude of the growing mode term dominates, this approximate in-

equality is satis�ed by

−2b− g + 3/2 . −T ; (6.19)

when the de
aying mode dominates, the inequality is satis�ed by

3b− d+ 5 . −T. (6.20)

WMAP 
onstrains T ≈ 4 (the di�eren
e between lowest and highest temperatures

is 2∆TR/T = 1.4 × 10−4
) and b & 1. This 
onstrains the growing and de
aying

modes, when they a
t on their own, to:

g &7/2 (6.21)

d &12. (6.22)

There exists a third possibility, in whi
h the growing and de
aying 
ontributions

are, in the 
urrent epo
h, of equal size and opposite sign. For this to be the 
ase,

we need

−2b− g + 3/2 ≈ 3b− d+ 5; (6.23)
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this approa
h relies on the observation of ampli�
ation of weak gravitational waves

in rapidly-
hanging ba
kgrounds (see se
tion 4.4.8). Sin
e b is a free parameter,

this approximate equation 
an always be satis�ed, but we still need to satisfy the


onstraints of the CMB.

6.3 A

eleration in the Bian
hi IX universe

6.3.1 Order of magnitude estimates for gravitational wave

amplitudes

We 
ould naively attempt to relate an assumed isotropi
 a

eleration to the 
on-

straints of the CMB by using (5.34) to 
onstrain the amplitude of the gravitational

wave fun
tions and determining the value of (4.228) that results. This gives us, to

lowest orders in η, assuming a pure growing mode of the gravitational waves and


hoosing k̄a = (1, 0, 0) for simpli
ity,

−35

2

η2E
η2R

Cα1,1η
2
R ∼ ∆T/TR = 10−5 =⇒ Cα1,1 ∼ −2× 10−7η−2

R (6.24)

and therefore, if we assume that Cα1,1, Cβ1,1, Cγ1,1 are all of the same order of

magnitude,

∆Q̄2 ≈ −4900

24
σ2η2R ∼ −

(

1× 10−11
)

η−2
R (6.25)
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and thus we 
ould 
on
lude that the observed di�eren
e between the de
eleration

parameter and its Friedmann value

∆Q̄2 ≈ −1 =⇒ ηR ∼ 3× 10−6
(6.26)

whi
h is 
ertainly on its own allowable under the observed 
osmologi
al parame-

ters. To do this, however, would require Cα1,1 ∼ 2 × 105, well beyond the limit

of appli
ability of what 
ould be 
alled �weak� waves. Nonetheless, we 
an 
on�-

dently say we have shown that weak gravitational waves 
an 
ontribute to 
osmi


a

eleration. This statement is the main result of this work.

Meanwhile, 
onsider the anisotropi
 de
eleration parameter:

Q1
1 ≡ − ä11a11

(ȧ11)
2 =

[

Q0 − 2
aF
ȧF

α̇− a2F
ȧ2F

(

α̈ + α̇2
)

](

1 + 2
aF
ȧF

α̇ +
a2F
ȧ2F

α̇2

)−1

(6.27)

& similarly for Q2
2, Q

3
3; this relationship is exa
t. Evaluating (4.203) gives to lowest

surviving order in η

∆Q
(1)

11,growing
≈ −70Cα1,1η

2
(6.28)

∆Q
(1)

11,de
aying
≈ 19

2
Cα2,1η

−1. (6.29)

With an observed ∆Q11 ≈ −1 we 
an write:

100 ≈ sgn (Cα1,1) 10
9/5−2b−g − sgn (Cα2,1) 10

1−d+b. (6.30)

In the 
ase of the growing mode dominating we need sgn (Cα1,1) = +1 and 9/5 +

2b− g ≈ 0. This forms a system of equations with (6.19) so we have, at the limit
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of the allowed CMB perturbation,















9/5− 2b− g ≈ 0

−2b− g + 11/2 ≈ 0

=⇒ no solution; (6.31)

the growing mode 
annot, on its own, 
ause the observed a

eleration and be


ompatible with the CMB. For the de
aying mode, we need sgn (Cα2,1) = −1 and

have















1− d+ b ≈ 0

3b− d+ 5 ≈ −4

=⇒















b ≈ −5

d ≈ −6

=⇒















η ∼ 1× 105

Cα2,1 ∼ 1× 106
(6.32)

whi
h is a nonsense result. Therefore neither the growing or de
aying modes, on

their own, 
an both 
ause observed a

eleration and preserve the CMB. In the


ases of the two modes having 
omparable e�e
t on the metri
 and opposite sign,

though, we 
an solve (6.30) with sgn (Cα1,1) = +1, sgn (Cα2,1) = −1 and

100 ≈ − (Cα1,1) 10
9/5−2b−g + (Cα2,1) 10

1−d+b
(6.33)















g − d ≈ −5b− 7/2

9/5− 2b− g ≈ 0

=⇒ d ≈ 17

10
+ 7b, g ≈ 2b− 52

10
(6.34)

when the growing mode dominates the 
hange in a

eleration; this sets estimated

limits on the parameters (sin
e b & 2):

Cα1,1 &2× 101 (6.35)

Cα2,1 .2× 10−16. (6.36)
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When the de
aying mode dominates the 
hange in a

eleration,















g − d ≈ −5b− 7/2

1− d+ b ≈ 0

=⇒ g ≈ −4b− 5/2, d ≈ b+ 1 (6.37)

whi
h 
onstrains the parameters

Cα1,1 &3× 1010 (6.38)

Cα2,1 .1× 10−3. (6.39)

While the values for the growing mode are far greater than those for what 
ould

be 
alled �weak� waves (re
alling the 
onstraints of se
tion 4.4.4), our edu
ated

estimate for Cα1,1 in the growing-mode dominated regime aligns ni
ely with the

ne
essary strong-wave growing-mode value for ∆Q1
1 disregarding the CMB; we


ould not have expe
ted a 
hange in a

eleration at order unity in a universe

where η is small to be driven by anything less than a gravitational wave so strong

as to dominate the Friedmannian expansion. Therefore we 
an turn to an analysis

in the quasi-isotropi
 regime.

6.3.2 Quasi-isotropi
, strong growing mode a

eleration

We apply the same reasoning as in the previous se
tion, but we are aware of


onstraints (from [28℄) not just on the CMB in the dire
tion of the observed a

el-

eration (whi
h we 
ontinue to assign as the �α� or e1i dire
tion) but on the CMB
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in the other two (the �beta� and �gamma� dire
tions):

∆Tα/TR +
1

2
(∆Tβ/TR +∆Tγ/TR) =7.1× 10−5

(6.40)

2∆Tβ/TR =1.4× 10−4
(6.41)

2∆Tγ/TR =1.4× 10−4
(6.42)

Q1
1 =− 0.6 (6.43)

ηR .3× 10−2. (6.44)

In this and all regimes to follow we 
an also approximate QF ≈ Q�atF = 1/2 to the

limit of pre
ision given the 
onstraints on η; QF will be 1% stronger than Q�atF

only when η ≈ 0.51. Between the 
onstraints (6.40-6.43) and the average over

the sky of ∆T/TR = 0, we have four equations with seven unknowns (η, cα0 , c
β
0 , c

γ
0 ,

Cα2, Cβ2, Cγ2). These equations are, expli
itly (see equations 4.141, 4.203, 5.34):

7.1× 10−5 & (ηE/ηR)
2 (eα(ηR)−α(ηE) − 1

)

(6.45)

1.4× 10−4 & (ηE/ηR)
2 (eβ(ηR)−β(ηE) − 1

)

(6.46)

1.4× 10−4 & (ηE/ηR)
2 (eγ(ηR)−γ(ηE) − 1

)

(6.47)

Q1
1 =

QF − tan (ηR/2)α
′
R − tan2 (ηR/2)α

′′
R − tan2 (ηR/2)α

′2
R

1 + 2 tan (ηR/2)α′
R + tan2 (ηR/2)α′2

R

. (6.48)

Trivially, we 
an see that in the limit of α, β, γ → ∞, we must have Q1
1 ≈ Q2

2 ≈

Q3
3 → −1; if a

eleration is driven by growing modes of long-wavelength gravi-

tational waves then in the long run, the universe asymptoti
ally approa
hes de

Sitter expansion as if driven by a 
osmologi
al 
onstant, indi
ating a solution in

the regime of quasi-isotropy.
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Consider the quasi-isotropi
 solution to the growing mode of the Einstein equations,

normalized as in equations (4.193-4.198). In the regime where cα0 is su�
iently

large that A ≫ 1, we 
an approximate

cα2 ≈− 1

4
A2

(6.49)

cβ2 ≈ cγ2 ≈ 3

20
A2

(6.50)

(an identi
al argument, with the fun
tions α and β transposing their roles, applies

for the 
ase where cα0 < 0). From these terms we 
an also approximate the next

order terms in the series:

cα4 ≈ 521

5600
A4

(6.51)

cβ4 ≈ cγ4 ≈− 15

224
A4. (6.52)

Thus we see that the three fun
tions α, β, γ are related in a Taub-like but not

exa
tly-Taub fashion (this 
orresponds to 
ase C1 as des
ribed by [146℄). Approx-

imating equation (6.48) to order A4η4 we obtain the relationships

Q1
1 (ηR) =

QF + 3
8
A2η2R −

(

521
1120

+ 1
16

)

A4η4R
1− 1

2
A2η2R +

(

1
16

+ 521
1400

)

A4η4R
+O

(

(

1

2
AηR

)6
)

Q2
2 (ηR) ≈ Q3

3 (ηR) =
QF − 9

40
A2η2R +

(

75
224

− 9
400

)

A4η4R
1 + 3

10
A2η2R +

(

9
400

− 15
56

)

A4η4R
+O

(

(

1

2
AηR

)6
)

.

When Q1
1 (ηR) = −0.6 then AηR ≈ 1.5 ± 0.2 (cα0 & 1.9), within the limit of

appli
ability of the expansion and also in the regime where the in�nite series (4.190)


onverge. Thus, we have shown analyti
ally that long-wavelength gravitational

waves 
an explain 
osmi
 a

eleration if that a

eleration is anisotropi
.

We 
an also make the following qualitative assessments about a

eleration. Firstly,



142

CHAPTER 6. AN ACCELERATING BIANCHI IX UNIVERSE PRESERVING

AN ALMOST-ISOTROPIC CMB

its time-evolution is non-monotoni
. In the α dire
tion, the universe will at �rst

exhibit slightly in
reased de
eleration before starting to a

elerate. In the β and

γ dire
tions, de
eleration will asymptoti
ally in
rease toward in�nity but then

a

eleration will de
rease from in�nity, qui
kly 
onverging on the strong-�eld value

of Q2
2 = Q3

3 = −1. A

eleration in the α dire
tion begins at Aη ≈ 1.2 and the

universe a

elerates in every dire
tion after Aη ≈ 1.6; thus the supposition that

a

eleration is a re
ent phenomenon is supported.

A universe that is a

elerating in every dire
tion is within the region allowed by

the model. Figure (6.1) illustrates the evolution of the de
eleration parameters

as a fun
tion of time. The 
onstraints pla
ed on the de
aying mode in (se
tion

6.1) and the upper limit on ηR show that the de
aying mode of long-wavelength

gravitational waves has not played a signi�
ant role in 
osmi
 a

eleration; in the

epo
h of last s
attering, the de
eleration parameter was almost isotropi
 and had

a 
lose to Friedmannian value.

We now turn our attention to the preservation of the CMB. We have three equations

in three unknowns, taking the lowest term in the de
aying mode and the lowest
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Figure 6.1: De
eleration parameter versus time

Along a preferred axis, the universe at �rst de
elerates, then qui
kly begins a

el-

erating, with the de
eleration parameter asymptoti
ally approa
hing −1. Along

the other two axes, the de
eleration parameter goes to in�nity before 
onverging

asymptoti
ally from negative in�nity to the value −1. The verti
al axis of ea
h

graph gives Qb
a; the horizontal axis is in units of Aη.
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two terms in the growing mode:

7.1× 10−5 &4 (ηE/ηR)
2







cα2 (η
2
R − η2E) +

1
2
(cα2 )

2 (η2R − η2E)
2
+

+cα4 (η
4
R − η4E) + Cα2,1

(

η−3
R − η−3

E

)






(6.53)

1.4× 10−4 &4 (ηE/ηR)
2







cβ2 (η
2
R − η2E) +

1
2

(

cβ2

)2

(η2R − η2E)
2
+

+cβ4 (η
4
R − η4E) + Cβ2,1

(

η−3
R − η−3

E

)






(6.54)

1.4× 10−4 &4 (ηE/ηR)
2







cγ2 (η
2
R − η2E) +

1
2
(cγ2)

2
(η2R − η2E)

2
+

+cγ4 (η
4
R − η4E) + Cγ2,1

(

η−3
R − η−3

E

)






. (6.55)

As 30ηE ≈ ηR we 
an further approximate

7.1× 10−5 &
1

225

[

1

4
A2η2R +

(

1

32
− 521

5600

)

A4η4R + 27000Cα2,1η
−3
R

]

(6.56)

1.4× 10−4 &
1

225

[

− 3

20
A2η2R +

(

9

800
+

15

224

)

A4η4R + 27000Cβ2,1η
−3
R

]

(6.57)

1.4× 10−4 &
1

225

[

− 3

20
A2η2R +

(

9

800
+

15

224

)

A4η4R + 27000Cγ2,1η
−3
R

]

. (6.58)

If we take the inequalities as approximate equivalen
es and use AηR ≈ 1.5 then

this system has solutions

Cβ2,1 ≈Cγ2,1 ≈ 3× 10−7η3R

Cα2,1 ≈ 9× 10−6η3R

whi
h is 
ompatible with the estimates of (se
tion 6.3.1). That Cα2,1 + Cβ2,1 +

Cγ2,1 6= 0 is a 
onsequen
e of the impossibility of a priori 
hoosing an �unper-

turbed� temperature against whi
h to 
ompare anisotropi
 CMB �u
tuations; the

signi�
an
e of non-linear terms means we 
annot at the same time have the average

over the whole sky of ∆T/TR = 0 and have δ1 = 0, re
alling (equation 5.18).
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We exhaust almost all the freedom in the system (6.45-6.48) in 
hoosing to explain

the �Axis of Evil� at the same time as a

eleration; if this requirement is dropped

and we treat CMB variations as insigni�
ant then a broad range of solutions opens

up. In parti
ular, if the ratio of growing mode to de
aying mode is approximately

equal for all three of α, β, γ we always have su�
ient freedom to 
hoose a η that

redu
es CMB variation to below the level of dete
tability, at the expense of �tuning�

the universe to pla
e us as observers in the era when the CMB is nearly isotropi
.

Compatibility with an almost-isotropi
 Hubble �ow

The obje
tion 
ould be raised that the ne
essity of the universe 
ontra
ting along

two axes demands that a large region of the sky be blue-shifted, whi
h would surely

have been observed. This problem 
an be made to vanish into statisti
al noise by

the 
hoi
e of a su�
iently small η as (4.201) implies aFH11 = a′F/aF + α′ ≈

2 (η−1 + cα2η) et
. It is notable that the very limited indi
ations [149, 150℄ of

anisotropi
 Hubble �ow roughly align with the Axis of Evil and show angular

s
ales on the order of 40◦.

6.4 Con
lusions

It is possible for a Bian
hi IX universe with initial 
onditions cα0 , c
β
0 , c

γ
0 ∼ 1 to dis-

play the a

eleration observed in our universe while not only remaining 
ompatible

with the observed CMB but providing an explanation for potentially meaningful
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patterns in the CMB, spe
i�
ally the so-
alled �Axis of Evil� and its asso
iated phe-

nomena su
h as 
old spots. These 
onditions 
an be attained without additional


onstraints on the 
osmologi
al parameter of ΩK , a parameter whi
h is subje
t to

further s
rutiny and potentially tightening toward the �at universe 
ase of ΩK = 0.

The method of 
ombining strong growing modes with linear-order weak de
aying

modes of 
osmologi
al gravitational waves is borne out by observational data, whi
h

imply a di�eren
e of at least 17 orders of magnitude in amplitude between the

growing and de
aying modes. In the 
urrent epo
h, de
aying modes of 
osmologi
al

gravitational waves 
an be negle
ted entirely. However, in the time 
lose to last

s
attering, these modes may have parti
ipated at a strength 
omparable to the

growing modes. Furthermore, the a
tion of growing or de
aying modes on their

own is ruled out as an explanation for a

eleration as neither on its own 
an

preserve the CMB.

The question of how the ratio of growing mode to de
aying mode is equal along

all three prin
iple axes of the metri
 tensor is answered easily if we postulate that


osmologi
al gravitational waves present at the earliest moment in time were all in

phase (the easiest way to do this is to postulate that they 
onsisted of pure growing

modes). As the fun
tions α, β and γ would have all 
rossed the boundary from

a w = 1/3 medium to a w = 0 medium at the same time, they would thus have

remained in phase after last s
attering, implying equal growing-to-de
aying ratios

for all three fun
tions. As this transition happened in the very young universe

(ηE . 2× 10−3
), the de
aying mode that exists after last s
attering would be very

small.
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The nonlinearity of Bian
hi IX 
auses growing modes with initial values of order

unity to develop exponentially and 
ause very powerful e�e
ts. The stru
ture of

the equations also indi
ates that multiple sets of initial 
onditions 
an lead to the

same set of 
osmologi
al parameters. In light of the requirement of this model

that both strong growing modes and weak but non-zero de
aying modes of the

gravitational waves exist, the possibility that these long-wavelength gravitational

waves 
onstituted the �pump �eld� of in�ation [103℄ in the early universe should

be explored.

The model proposed 
an be tested and is falsi�able by observation of a

eleration in

areas of the sky 90◦ from the highly-observed �eld; in areas of the sky away from

the 
urrently-observed a

eleration, we will see either a very large de
eleration

parameter or a negative one. From the analysis of a

eleration data in (Chapter

2) it is easy to see that, in the 
urrent state of observations, there are several

possible areas of the sky where eviden
e of a gravitational-wave nature of 
osmi


a

eleration 
ould be sitting undete
ted.



Chapter 7

Con
lusions

We have examined the 
urrent dominant hypotheses explaining 
osmi
 a

elera-

tion and we have identi�ed shortfallings in them, notably the overappli
ation of

the assumption of isotropi
 a

eleration in the absen
e of data 
overing large areas

of the sky. We have 
ompleted an analysis of the almost-Friedmannian Bian
hi

IX 
osmology perturbed to quadrati
 order in small 
orre
tions to the ba
kground

metri
 and we have shown that both weak and strong 
osmologi
al gravitational

waves 
ould 
ontribute to 
osmi
 a

eleration under some 
ir
umstan
es. We have


ompleted an analysis of the e�e
ts quadrati
-order weak gravitational waves would

produ
e on the 
osmi
 mi
rowave ba
kground and we have shown that not only


ould 
osmologi
al gravitational waves be 
ompatible with the CMB but their

presen
e 
ould a

ount for many suggested anisotropi
 anomalies in the CMB. We

have presented a set of 
osmologi
al parameters in
luding strong growing 
osmolog-

i
al gravitational waves and weak de
aying 
osmologi
al gravitational waves whi
h

is 
ompatible with observations of 
osmi
 a

eleration without the invo
ation of

148
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s
alar �elds of exoti
 equation of state, at the expense of strong anisotropy in the

Hubble �ow. We have proposed observational tests whi
h would provide eviden
e

for or against this model.

7.1 Dire
tions for future resear
h

The possibility of explaining 
osmi
 a

eleration through a Bian
hi IX 
osmologi
al

model opens up numerous possibilities for future resear
h, both theoreti
al and

observational.

While the di�
ulties with 
arrying out a full-sky opti
al survey of supernovae are

understandable, experimental veri�
ation or falsi�
ation of a Bian
hi IX model

for a

eleration requires nearly full sky 
overage at high z to dis
over or rule out

regions of anisotropy in the a

eleration �eld. Infrared astronomy with wide sky


overage, for example WFIRST [65℄, presents the best possibility for these new

observations through traditional astronomy. The Einstein teles
ope provides the

tantalizing possibility of independent veri�
ation of the properties of dark energy

through the examination of gravitational radiation [111℄.

Meanwhile, the available supernova data 
an be re-examined for signs of a

el-

eration, although given the 
omparatively small datasets in any parti
ular area

other than the highly-observed �eld and the equatorial bias in the distribution of

the data this re-examination is less likely to produ
e de�nitive results. Célérier is

justi�ed in her 
riti
isms [91℄ of the assumptions being made in proposed models

of 
osmologi
al a

eleration; it is 
urious that the authors if [89℄ reasoned, with
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44 low-z sour
es, that �poor 
overage at low and moderate Gala
ti
 latitudes [...℄

makes it pra
ti
ally impossible to distinguish between a pe
uliar monopole and a

quadrupole� but that [1℄, whi
h shares two authors with [89℄, does not even mention

the possibility of 
osmographi
 bias in its smaller sample of high-z sour
es.

Consideration should be given to the question of why 
osmographi
 bias exists,

and whether it points to an unexpe
ted privileging of the observer: namely, the

fa
t that modern observatories are hosted only in regions of the Earth that 
an

a�ord to host them.

Perturbative methods for solving the Einstein equations for weak gravitational

waves in Bian
hi IX 
an be 
onsidered exhausted, having rea
hed the limit of

pra
ti
al utility at quadrati
 order. Further analyti
 explorations should 
on
en-

trate on the quasi-isotropi
 approa
h. The fa
t of Bian
hi IX's easy redu
tion

to a system of non-linear se
ond-order ordinary di�erential equations 
ombined

with the divergen
e of Taylor series des
ribing strong gravitational waves point

toward either a Fourier-series approa
h or numeri
al methods for further analysis;

the likelihood of 
haoti
 behavior [73℄ in Bian
hi IX, though, merits 
aution in the

sele
tion of initial 
onditions for any simulation.

Numeri
al examination of the quasi-isotropi
 regime should also be pursued for

a fuller exploration of the spa
e allowing for anisotropi
 a

eleration while pre-

serving an almost-isotropi
 
osmi
 mi
rowave ba
kground. The next generation

of mi
rowave anisitropy probe should settle the question of whether the �Axis of

Evil� and similar phenomena are genuine artifa
ts or statisti
al noise; in the mean-

time, the question of pareidolia in relation to the CMB has not been explored
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and deserves formal examination in order to raise awareness within the s
ienti�



ommunity of the issue.

Overall, any theory is only as good as its ability to predi
t future results. Cosmi


a

eleration needs to be more 
losely examined, not only for time dependen
e, but

for spatial dependen
e, before any theory 
an emerge as preferred.

7.2 Impli
ations of the Bian
hi IX 
osmologi
al model

Sin
e the dis
overy of 
osmi
 a

eleration, a wide range of s
alar theories, ranging

from the mundane to the exoti
, have been put forward to explain the phenomenon.

While the fa
t of a

eleration, the dis
overy of whi
h was the logi
al 
ulmination

of the hunt for the �missing mass� of the universe above and beyond that provided

by dark matter, ne
essarily implies the slaughter of at least one sa
red 
ow, the


ommunity of physi
ists has no 
onsensus over whi
h should be sa
ri�
ed the most

readily.

Attempts to surrender homogeneity are physi
ally the best-grounded but philo-

sophi
ally the most rash. Certainly the idea of a purely homogeneous 
osmology

is an approximation, but a universe whi
h is not on average homogeneous, that

is, where the homogeneous regions are rare ex
eptions, is one in whi
h 
osmology

as a s
ien
e 
eases to be possible. The �Swiss 
heese� universe has the advantage

of making use of a known, exa
t solution to the Einstein equations and at least

avoids the ex
eptionalism of the �Hubble bubble� proposal, but defeats itself on

the grounds of testability.
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Meanwhile, postulation of exoti
 states of matter has been done too enthusiasti
ally

for the eviden
e available. The simple fa
t of noting that the available data on

a

eleration was anisotropi
 exposes as irrational exuberan
e the rush to explain

the phenomenon through the medium of a substan
e whi
h has never been seen or

even indi
ated in the laboratory, and whose theoreti
al justi�
ation is far beyond

testability. The willingness of many to see a

eleration as a falsi�
ation of the

theory of general relativity looks all the more bizarre when 
ounterposed with the

unwillingness to explore gravitational-wave solutions to the problem.

The obje
tion 
ould be raised that asserting a

eleration to potentially be anisotropi
,

in the weak sense of the word �isotropy�, violates the 
osmologi
al prin
iple by

saying that our teles
opes are privileged observers, in that our observational �eld

happens to align with an axis of a

eleration. This is no more so true than the

�privilege� hypothesized by, for example, Riess et al. when they assert, from a few

dozen data points, that a

eleration is a re
ent phenomenon, and that impli
itly

we are privileged observers in time for taking up 
osmology just as the universe

has begun to exhibit this behavior. While a 
osmologi
al 
onstant is the simplest

explanation for wX = −1 on mathemati
al grounds, the la
k of physi
al justi�
a-

tion for a non-zero 
osmologi
al 
onstant puts it in the same 
lass as s
alar-�eld

theories. The simple fa
t is, wX = −1 is, in the long run, the natural equation

of state for any fun
tion whi
h grows faster than the matter-driven terms in the

ba
kground 
osmology. The idea of the �Big Rip� [99℄, while intelle
tually (and

emotionally) intriguing, makes the same mistake in the other dire
tion, privileging

observers to be alive just as the universe is beginning to tear itself apart. In this

sense, a wX = −1 �eld is the best preserver of the 
osmologi
al prin
iple, and

when the 
osmologi
al 
onstant has been ex
luded the simplest explanation for

a

eleration 
omes from a tensorial �eld.
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Similarly, when 
osmi
 �atness is 
alled into question � and it has never been

and 
an never be de�nitively proven, it 
an only be disproven � the next-simplest

model is the 
losed model. Re
all that the Bian
hi models are distinguished by

their symmetries, and of all the Bian
hi models with Friedmann universes as spe
ial


ases, Bian
hi IX has the most symmetri
 symmetries, obeying a �handedness� rule

students learn before their �rst year of university. The fa
t of this �handedness�

� parity � may even provide a neat explanation of the CP violation in parti
le

physi
s [100℄, as Grish
huk alluded to [10℄.

The least spe
ulative fa
t revealed by the assessment of available a

eleration data

is that more data is needed, from broader areas of the sky. The anti
ipated

laun
h of WFIRST is likely to prove more momentous for 
osmology than the

�ight of WMAP; WMAP largely re
on�rmed what we already believed we knew,

but WFIRST and SNAP will 
learly illustrate how mu
h we do not know. We also

need te
hniques to see deeper into the sky and measure the distan
e-redshift rela-

tionship further into the past; the standard ladder of baryon a
ousti
 os
illations

[101℄ 
ombined with better redshift data from WiggleZ may provide the ne
essary

window.

That Bian
hi IX 
ould in prin
iple 
ontain a

elerating regimes was never really

in doubt. Numeri
al and qualitative analysis has indi
ated this ever sin
e [10℄

noted that the va
uum equations 
ontained a regular minimum, implying a positive

�rst derivative for the Hubble parameter. The 
hara
ter of the a

eleration has

now been more properly investigated, bringing with it the possibility of a purely

gravitational explanation for in�ation, espe
ially in light of the divergen
e of δ


onstru
ted only from growing modes in the radiation-dominated universe. An

exploration of the di�eren
es between Bian
hi I and Bian
hi IX in a universe �lled
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with ultra-relativisti
 matter 
ould make Bian
hi IX into a pana
ea for all the

major problems of large-s
ale 
osmology.

The unwillingness of the perturbed Bian
hi IX 
osmology to support de
aying-

mode gravitational waves stronger than linear order is puzzling, espe
ially as the

BKL universe always has a divergent term. The BKL universe, though, never

rea
hes a singularity, and so the divergen
e of the a de
aying mode never has time

to take e�e
t. Furthermore, the power law 
ontra
tion along one axis 
ould always

be explained by a �growing� (non-diverging) fun
tion with negative 
oe�
ients,

due to the exponential term in the metri
.

The impa
t of strong waves on the CMB, meanwhile, also requires deeper expla-

nation. Preservation of the CMB's apparent anisotropy at �rst glan
e appears

to require some �tuning�, a parti
ular growing-de
aying ratio whi
h merits deeper

questioning; there is also the outstanding matter of why we happen to live in one

of the few periods of time when the CMB appears nearly isotropi
. Clever ex-

amination of the symmetries of Bian
hi IX may reveal a more satisfying answer,

although the ability of Bian
hi IX to explain CMB anomalies is one of its most

satisfying features.

Most fundamentally, the biggest impa
t of the Bian
hi IX theory of 
osmi
 a
-


eleration is the expansion of the 
osmologist's parameter spa
e. While in s
alar

models the only parameter truly open for dis
ussion is the fun
tion des
ribing the

equation of state of dark energy, the gravitational waves of the Bian
hi IX universe

have four degrees of freedom; while the strength a non-zero 
osmologi
al 
onstant

has some theoreti
al justi�
ation in fundamental physi
s independent of large-s
ale
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osmology, there is no immediately apparent reason why the gravitational waves

in Bian
hi IX should have any parti
ular amplitude. As always in 
osmology, we

need more information than we have.
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Table 7.1: Supernova observations used in analysis

of a

eleration

Right as
ension, J2000 De
lination, J2000

Riess 1998 supernovae:[90℄

SN1994U 13:04:56 =6:3:39

SN1997bp 12:46:54 =10:21:27

SN1996V 11:21:31 2:48:40

SN1994C 07:56:40 44° 52' 19�

SN1995M 09:38:42 =11:39:52

SN1995ae 23:16:56 =1:55:24

SN1994B 08:20:41 15:43:49

157
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SN1995ao 02:57:31 =0:18:40

SN1995ap 03:12:28 0:41:43

SN1996R 11:16:10 0:11:39

SN1996T 10:05:28 =6:32:36

SN1997I 04:59:37 =2:50:58

SN1997ap 13:47:10 2:23:57

SDSS-II SNIa observations:[3℄

(Corner 1) 20:00:00 1:15:00

(Corner 2) 20:00:00 =1:15:00

(Corner 3) 04:00:00 1:15:00

(Corner 4) 04:00:00 =1:15:00

ESSENCE windows:[11℄
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waa1 23:29:52.92 =08:38:59.7

waa2 23:27:27.02 =08:38:59.7

waa3 23:25:01.12 =08:38:59.7

waa5 23:27:27.02 =09:14:59.7

waa6 23:25:01.12 =09:14:59.7

waa7 23:30:01.20 =09:44:55.9

waa8 23:27:27.02 =09:50:59.7

waa9 23:25:01.12 =09:50:59.7

wbb1 01:14:24.46 00:51:42.9

wbb3 01:09:36.40 00:46:43.3

wbb4 01:14:24.46 00:15:42.9

wbb5 01:12:00.46 00:15:42.9
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wbb6 01:09:00.16 00:10:43.3

wbb7 01:14:24.46 =00:20:17.1

wbb8 01:12:00.46 =00:20:17.1

wbb9 01:09:36.40 =00:25:16.7

w

1 02:10:00.90 =03:45:00.0

w

2 02:07:40.60 =03:45:00.0

w

3 02:05:20.30 =03:45:00.0

w

4 02:10:01.20 =04:20:00.0

w

5 02:07:40.80 =04:20:00.0

w

7 02:10:01.55 =04:55:00.0

w

8 02:07:41.03 =04:55:00.0

w

9 02:05:20.52 =04:55:00.0
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wdd2 02:31:00.25 =07:48:17.3

wdd3 02:28:36.25 =07:48:17.3

wdd4 02:34:30.35 =08:19:18.2

wdd5 02:31:00.25 =08:24:17.3

wdd6 02:28:36.25 =08:24:17.3

wdd7 02:33:24.25 =08:55:18.2

wdd8 02:31:00.25 =09:00:17.3

wdd9 02:28:36.25 =09:00:17.3

HST supernovae:[14℄

SCP05D0 02:21:42.066 =03:21:53.12

SCP06H5 14:34:30.140 34:26:57.30

SCP06K0 14:38:08.366 34:14:18.08
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SCP06K18 14:38:10.665 34:12:47.19

SCP06R12 02:23:00.083 =04:36:03.05

SCP06U4 23:45:29.430 =36:32:45.75

SCP06C1 12:29:33.013 01:51:36.67

SCP06F12 14:32:28.749 33:32:10.05

SCP05D6 02:21:46.484 =03:22:56.18

SCP06G4 14:29:18.744 34:38:37.39

SCP06A4 22:16:01.078 =17:37:22.10

SCP06C0 12:29:25.655 01:50:56.59

SCP06G3 14:29:28.430 34:37:23.15

SCP06H3 14:34:28.879 34:27:26.62

SCP06N33 02:20:57.699 =03:33:23.98
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SCP05P1 03:37:50.352 =28:43:02.67

SCP05P9 03:37:44.513 =28:43:54.58

SCP06X26 09:10:37.888 54:22:29.06

SCP06Z5 22:35:24.967 =25:57:09.61

Riess �gold� dataset:[56, 54℄

Window 1 03:32:30 =27:46:50:00

Window 2 12:37:00 62:10:00
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