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Summary

Multiple observations of distant type Ia supernovae show the deceleration parame-
ter of the universe is negative. The standard cosmological model states expansion

should be slowing down.

A new theory is presented which explains cosmic acceleration only through the
action of well-supported phenomena in the context of Einstein’s general theory of

relativity through the use of the Bianchi type IX homogeneous, closed cosmology.

The evidence for acceleration is assessed and previously-unreported biases and

insufficiencies in the evidence are revealed and discussed.

The Einstein equations for the Bianchi type IX cosmology are solved to quadratic
order in a matter-dominated universe. The first terms of a power-series solution
are given for arbitrarily strong growing mode of gravitational waves in a matter-
dominated Bianchi IX universe. The effect of these waves on the energy density of

the universe is shown to be compatible with available data.

The equations for redshift anisotropy in the Bianchi IX universe are solved to
quadratic order. Reported anomalous structure in the cosmic microwave back-
ground is considered in the light of these solutions. The Bianchi IX universe is

shown to provide an explanation for these anomalies compatible with the CMB.

In order to help typify a new class of standard sources for determining cosmological

parameters, a formula relating the time-dependent deflection of light by a massive,



111

compact binary such as a super-massive black hole binary is derived. This formula
is applied to the system 3C66B and finds that in ideal circumstances, the best
available observational techniques could detect a time-dependent component to

the bending of light by the core of 3C66B.

A solution for the Einstein equations in the Bianchi IX universe is found which
explains cosmic acceleration while remaining compatible with the CMB and other

cosmological parameters as reported by WMAP.



v

DECLARATION

This work has not previously been accepted in substance for any degree and is not

concurrently submitted in candidature for any degree.

STATEMENT 1

This thesis is being submitted in partial fulfillment of the requirements for the

degree of PhD.

STATEMENT 2

This thesis is the result of my own independent work /investigation, except where

otherwise stated. Other sources are acknowledged by explicit references.



STATEMENT 3

I hereby give consent for my thesis, if accepted, to be available for photocopying
and for inter-library loan, and for the title and summary to be made available to

outside organisations.

STATEMENT 4: PREVIOUSLY APPROVED BAR ON ACCESS

I hereby give consent for my thesis, if accepted, to be available for photocopying
and for inter-library loans after expiry of a bar on access previously approved by

the Graduate Development Committee.



vi

Acknowledgments

I thank Prof Leonid Grishchuk and Prof Peter Coles of Cardiff University for
continuing advice, support and supervision throughout this research. Prof Sergei
Kopeikin of University of Missouri-Columbia, Dr Simon Dye of Cardiff University,
Dr Naomi Ridge formerly of Harvard University and Dr Rockhee Sung of University
of Cape Town provided helpful conversations. I thank my parents for their ongoing

encouragement and aid. This work is dedicated to the memory of Dr Didier Biron.

Material from CHAPTER 3, prepared in the course of this research, has been pub-
lished as “Constraining the parameters of binary systems through time-dependent
light deflection” in General Relativity and Gravitation, Volume 40, Issue 5, pp.1013-
1027.



Contents

1 Introduction 2
1.1 Background . . . . . .. ... 2
1.1.1  Standard cosmology predicts an expanding universe . . . . . 3

1.1.2  Simple cosmology predicts a decelerating universe . . . . . . 6

1.1.3  Observations say the universe is accelerating . . . . . . . .. 7

1.2 Darkenergy . . . . . . . . 8
1.2.1  Cosmological constant . . . . . . ... ... ... ... ... 9

1.2.2  Quintessence . . . . . ... 10

vii



viii CONTENTS

1.2.3 Local inhomogeneity . . . . . . .. .. .. ... ... .... 11

1.24 Exoticmodels . . . . . .. .. 0o 12

1.3 Tensorial theories for acceleration in a flat universe . . . . . . . .. 13

2 Evidence for acceleration 15
2.1 Introduction . . . . . . ... 15
2.2 Surveys of acceleration . . . . . .. ... oL 17
2.3 Analysis . . . .. 22
24 Conclusions . . . . . . .. L 26
2.4.1 Recommendations. . . . . . .. .. ... ... L. 27

3 Constraining the parameters of binary systems through time-

dependent light deflection 30

3.1 Introduction . . . . . . . . . L 30

3.2 Theory . . . . .. 32



CONTENTS

ix

3.2.1 Notations, definitions & assumptions . . . . . . .. ... ..
3.2.2 General theory . . . .. ... Lo
3.2.3 Application to 3C66B . . . .. ... ... L.

3.3 Observational techniques

3.3.1 Interferometry . .
3.3.2 Pulsar timing . .
3.4 Conclusions . . ... ..

4 The Bianchi IX cosmology

4.1 The Bianchi classification scheme . . . . . . . . . . . ... ... ..
4.2 The Kasner universe . . . . . . . . . . o
4.2.1 Scale factor . . . . . . . .

4.2.2  Dynamics in the Kasner universe . . . . . . ... ... ...

54



CONTENTS

4.3

4.4

4.5

Gravitational wave nature of Bianchi IX . . . . .. ... ... ... 69
4.3.1 Einstein equations in the tetrad formalism . . .. ... ... 73
4.3.2  The curvature tensor for Bianchi IX . . . . .. ... ... .. 76
Einstein equations for Bianchi IX . . . . ... ... ... ... ... 78
4.4.1 Exact equations . . . . . . ... ... Lo Lo 78
4.4.2 Solutions to the Einstein equations at zero order . . . . . . . 83
4.4.3 Solutions at linear order . . . . . .. ... 83
4.4.4 Solutions at quadraticorder . . . . . . ... ... ... ... 90
4.4.5 Strong growing waves in the quasi-isotropic regime . . . . . 101
4.4.6 Dynamics . . . . . . . . 103
4.4.7 Back-reaction . . . . .. ... 110
4.4.8 Amplification of gravitational waves . . . . . . . .. ... .. 113
Conclusions . . . . . . . . . L 113



CONTENTS xi

5 The Cosmic Microwave Background of a Bianchi IX universe 116

5.1

5.2

5.3

5.4

Geodesic equations . . . . . . ... 118
Redshift and CMB variations . . . . . ... .. ... ... ..... 122
Comparison with the observed CMB . . . . .. ... ... ..... 124
5.3.1 CMB anomalies . . . . . .. ... ... oL 125
Conclusions . . . . . . . .. L 128

6 An accelerating Bianchi IX universe preserving an almost-isotropic

CMB 130
6.1 Cosmological parameters . . . . . . . . ... .. ... .. 131
6.2 Compatibility with the redshift . . . . .. .. ... ... ... ... 133
6.3 Acceleration in the Bianchi IX universe . . . . . . . .. .. ... .. 136

6.3.1  Order of magnitude estimates for gravitational wave ampli-



xii CONTENTS

6.4 Conclusions . . . . . . . . s, 145
7 Conclusions 148
7.1 Directions for future research . . . . . . . . ... .. .. ... ... 149

7.2 Implications of the Bianchi IX cosmological model . . . . . . . . .. 151



List of Tables

2.1 Summary of results from surveys indicating acceleration

4.1 The Bianchi classification scheme . . . . . . . .. . ..

7.1 Supernova observations used in analysis of acceleration

xiil



List of Figures

2.1

3.1

3.2

6.1

Sky positions of supernovae used as evidence for acceleration . . . . 22
Configuration of a binary deflector . . . . . . ... ... ... ... 39
Light deflection by a binary system . . . . .. . ... ... ..... 45
Deceleration parameter versus time . . . . .. . ... .. ... ... 143

xiv



Abstract

Strong long-scale gravitational waves can explain cosmic acceleration within the
context of general relativity without resorting to the assumption of exotic forms
of matter such as quintessence. The existence of these gravitational waves in
sufficient strength to cause observed acceleration can be compatible with the cosmic
microwave background under reasonable physical circumstances. An instance of
the Bianchi IX cosmology is demonstrated which also explains the alignment of
low-order multipoles observed in the CMB. The model requires a closed cosmology
but is otherwise not strongly constrained. Recommendations are made for further

observations to verify and better constrain the model.

CHAPTER 3 has been previously published as ([152]). Equations describing cosmo-
logical gravitational waves at quadratic order and in quasi-isotropic approximation
in a matter-dominated Bianchi IX universe; equations describing second-order cor-
rections to the cosmic microwave background resulting from quadratic-order-strong
gravitational waves; and analytic calculations of the dynamics of a Bianchi IX uni-
verse, including the explicit illustration that such a universe can undergo cosmic
acceleration are original to this work, as are conclusions following from that math-

ematical anaysis.



Chapter 1

Introduction

1.1 Background

The observational confirmation that the universe has been expanding from a con-
dition of extreme density and minute size since some point in the finite past rep-
resents a major triumph of Einstein’s theory of gravitation in providing an elegant
explanation for cosmology, without the addition of exotic, heretofore-unobserved
substances or fundamental forces. This notion has however faced a serious challenge
since Riess’s 1998 discovery[1] of cosmic acceleration. The purpose of this research
is to evaluate the following question: can the back-reaction of long-wavelength
gravitational waves in a closed universe contribute to cosmic acceleration while

remaining compatible with observational constraints?
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1.1.1 Standard cosmology predicts an expanding universe

The full Einstein equations read’
1
R,uu - §Rg;w = kT,uu + Ag;w (11)

where g, is the metric tensor, R, is the once-contracted Riemann tensor, R is the
Ricci curvature scalar, T}, is the energy-momentum tensor, A is the “cosmological
constant” and the constant k = 87G/c* ~ 2.08 x 10~**kg 'm~'s?. We approximate
that all matter in the universe is, on large scales, an isotropic fluid (T}; = Ty = T33)

so, in a Gaussian (gop = 1) and synchronous (go; = 0) coordinate system, we have

[4]:

1
Ry — i =kTg + A (1.2)

~R =kT! — 2A. (1.3)

Cosmological parameters

In discussions of cosmology it is conventional to track the expansion of an isotropic
metric by introducing a “scale factor”, which is a positive function of time only. In
general the scale factor has no specific geometric meaning other than to compare
distances in the metric at different points in time. Furthermore, the scale factor

loses unique meaning when the universe becomes non-isotropic. Let the coordinate

! Throughout this document, indices written with Greek letters p, v etc. run over 0,1,2,3 and
indices written in Roman letters 4, j etc. run over 1,2,3. The sign of the metric tensor reads
+a T Ty T



4 CHAPTER 1. INTRODUCTION

2%, which is privileged in the g;; = gao = g33 = constant Minkowski special case
of the metric, be designated as “time”. We will denote this scale factor function
as a(t) in analogy with its definition in the Robertson-Walker metric, where it

appears as [5]

(dz")? + (d2?)” + (dz?)?

ds* = dt* — a® (t) 2
1+ iK [(ala:l)2 + (d:c2)2 + (daz3)2}

(1.4)

and the symbol K has the value 0 in a flat universe, 1 in a closed universe, and -1
in an open universe. In this case the Einstein equations read [5]>

% (@ + K) =ke + A (1.5)

a

—6% —k (e + 3p) — 2A (1.6)

where € denotes the energy density of matter described by the energy-momentum

tensor and p denotes the pressure of matter described in that tensor.

When discussing cosmology it is common [4] to define cosmological “dynamic”; that
is time-dependent, quantities in relation to the scale factor through the means of a
Taylor expansion. Let the subscript 0 denote a function evaluated at a particular

moment in time ¢ (which is how we will generally use the subscript 0):

g 1 d1 1 (21
Domag | =+ (t—to) [ == S(t—t)? === = 1.
a ™ ao {t-to) (dta)tt0 * 2 (t = o) (dt2 a/, (1.7)
do 1 2 2&3-(10&0
=1—-0—ty) —+z(t—t — . 1.
(1=t 2 g - (P2, (18)

2 A single dot denotes a derivative with respect to t; two dots denote a second derivative with
respect to t.
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In isotropic cosmology we define the Hubble constant Hy = ay/ag and the deceler-

ation parameter® Qy = —dgag/ag so
QAo 9 1 2
; =~ l—Ho (t—t0)+H0 (1+§Q0) (t—to) . (19)

Because the universe seems flat and dominated by ordinary matter over small
scales, it is common to move terms arising from K to the right-hand side of the
equation, where they act as elements of an “effective energy-momentum tensor”. It

is also customary to state contributors to cosmological expansion as dimensionless

parameters €2; in comparison to the “critical density” €. itica]> that is, the energy-
density of ordinary matter required for the universe to be flat: ke, itical = 3H?
SO
3H02 =keg + A — 35
o (1.10)
Qr +Qu +Qr+ Q0 =1
where
Qu +Qp = keo/3H] (1.11)
NS A/3H? (1.12)
Qi = ~K/ad. (1.13)

Multiple observations, most recently by WMAP, have confirmed that Qp < Q)

[16] and so to the limit of the precision with which these quantities can be evaluated

3 has been defined with a minus sign for historical reasons. @ > 0 denotes a decelerating
universe; () < 0 denotes an accelerating universe. We have avoided the more common notation
q in favor of @) to avoid confusion when interpreting the source material.
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Qi+ +Q4 = 1.4 When we discuss some field of unknown character contributing
to the energy density, we will designate it with the subscript X (for example, such

a field would be related to a density parameter 2x).

1.1.2 Simple cosmology predicts a decelerating universe

If the scale factor a measures a distance, it is reasonable to say by analogy that a
can be compared to a velocity and a an acceleration. Let the time-dependent Hub-
ble parameter be defined by H = a/a. We define the time-dependent deceleration

parameter () by:

aa d 1
= 0_2- 4 1.14
a> dtH ( )
Dividing (1.6) by (1.10) we easily obtain
1k —2A 1
Q= LRt 3p) = 2Oy — O (1.15)

T 2ke+A—K/a2 2

in a matter-dominated universe: a flat universe with no cosmological constant
must always decelerate. While the properties of so-called “dark matter” remain
undetermined, the localisibility of dark matter’s distribution and its slow motion

implies it can be treated as w = 0 dust.

We can also immediately say that in a universe with no cosmological constant,

4Chernin, in [81], elegantly derives a description of the scale factor in an open Friedmann
cosmology which can be used when there is a significant amount of relativistic matter in a cold
matter-dominated universe. Chernin’s equation is easily generalized to the closed Friedmann
universe.
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acceleration is possible under the condition

2
14+ 3w

(1 - K/a’ke) <0 (1.16)

so, because € must be positive, acceleration is only possible when w < —1/3.

1.1.3 Observations say the universe is accelerating

Acceleration in and of itself is not a newcomer to cosmology. The de Sitter cos-
mology [82], discovered in 1917, is driven solely by a cosmological constant and
consequently has a constant deceleration parameter of ) = —1. Bondi, Gold &
Hoyle’s “steady state” universe [83] similarly accelerates with @ = —1, this value
being associated with a universe whose expansion is driven solely by a field whose
energy density is not dependent on the scale factor (2x = constant). With the
proposal of “big bang” nucleosynthesis [84] and the subsequent discovery of the cos-
mic microwave background (CMB) [85], consensus came to settle on the simplest

matter-filled model, the Friedmann universe [86].

Throughout the 1990s, astronomical observations began to indicate that the matter
energy density of the universe was far below the critical density, leading some (for
example [87]) to propose the resurrection of the cosmological constant in order to

preserve the observed near-flatness of space.

In 1998, Riess et al. published an analysis [1] of the light from a small number
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of type Ia supernovae with 0.16 < 2z < 0.62 and concluded from this set that
the recent universe is accelerating with ()9 = —1.0 & 0.4. Further observations

and analysis (see CHAPTER 2) have also provided evidence that the universe has

Qo < 0.

While Riess et al. did not exclude the possibility of a universe with K # 0, the
assumption of a flat universe remains predominant throughout the field of cosmol-
ogy as observations, both from supernova data (see SECTION 2) and WMAP (see
SECTION 6.1), have shown that the universe is, on observable scales, very close to
flat — although it is impossible to distinguish between a universe that is genuinely

flat, with Qx = 0 and one with Qg very close to but not equal to zero.

1.2 Dark energy

Since the discovery of acceleration, numerous explanations for the phenomenon
have been proposed, all depending on an isotropic field creating additional, invisible
energy. Turner and Huterer|6] introduce the term “dark energy”, analogous to
dark matter in the sense that dark energy does not interact electromagnetically
with ordinary matter and has the property of negative pressure, to describe this
additional fluid, which appears to make up over 70% of the total energy content

of the universe.[16]

The assumption of a flat homogeneous cosmology demands that cosmic acceleration
comes from a cosmological constant or a scalar field. Most scalar theories for

explaining cosmic acceleration fall into two classes: an exotic form of matter with
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negative energy density, or surrender of the cosmological principle. Other scalar
theories sacrifice different assumptions, such as homogeneity, or invoke more exotic

explanations unsupported by laboratory physics.

1.2.1 Cosmological constant

The simplest, most familiar variation on the Robertson-Walker cosmological model
which allows an accelerating universe is the “ACDM” model — a universe dominated
by “cold” (non-relativistic, p = 0) matter with both baryonic and dark components,
and with the existence of a non-zero cosmological constant. In such a universe the

Einstein equations read [5]

3H? =ke + A (1.17)

—6% —ke — 2 (1.18)

so when ke/A is small such that (ke/A)* is negligible, that is, the universe is

dominated by a cosmological constant,

 lhe—2A _ 3ke

=5 mer A~ Lt an (1.19)

which at first glance appears to neatly explain Riesse et al.’s result. However,
as will be shown (see SECTION 2.3), the case for a cosmological constant is not
definite. Furthermore, the theoretical background explaining the strength of the
cosmological constant is not well developed, relying on an understanding of quan-
tum gravity which does not yet exist [72]. While the cosmological constant can

always be said to have a “right to exist” in the Einstein equations, current physics
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does not explain why it should have any particular strength and as such the cos-
mological constant should be treated as the simplest form of a scalar field of exotic

matter.

1.2.2 Quintessence

More general than the cosmological constant but similar in structure is the proposal
of “quintessence” [6], a novel form of matter with a time-dependent equation of state
that can take on negative values. Many forms of these have been proposed; one
form of these, for example, is the “Chaplygin gas” [88|, which has equation of state
p=—A/e for A > 0. Quintessence theories are particularly motivated by the idea
that acceleration is a cosmologically recent phenomenon, noting limited data (see

CHAPTER 2) that the equation of state of dark energy may be evolving with time.

At the most fundamental level, all theories of quintessence propose the existence

of a kind of matter which:

has never been observed experimentally;

does not interact with ordinary matter via the electromagnetic force;

e has a negative equation of state, that is, a positive energy density produces

a negative pressure;

plays a prominent role at current energy levels, as opposed to effects such
as unification of forces thought to have taken place only in the very early

universe.
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In the absence of any compelling experimental evidence whatsoever for any kind
of quintessence, quintessence and quintessence-like models should be regarded as

highly speculative explanations for dark energy.

1.2.3 Local inhomogeneity

A more mundane explanation which has been offered for acceleration is the “Hubble
bubble” [1, 61|, regions of lower density in the intergalactic medium. If the vicinity
of the Milky Way had lower matter energy density, expansion in its vicinity would

increase [93], causing the illusion of cosmic acceleration.

Not only would the density deficit in such a “bubble” have to be quite large in
order to cause acceleration, but the theory, which has the advantage of requiring
no new physics, supposes either the existence of a rare or unique void that the
Milky Way happens to be in — a violation of the cosmological principle in the sense
that it makes observers in the Milky Way privileged — or a preponderance of voids
whose presence makes the universe inhomogeneous not just in small patches but

on average [91, 94].
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1.2.4 Exotic models
Modified relativity

Some proposals to explain dark energy propose modifications to the Einstein equa-
tions. The best-known of these is the Cardassian Expansion model[95]|, which
proposes time-dependent variation of the equation of state of matter. The Cardas-
sian model is of particular interest in that it proposes an equation for the density
perturbation

K" (x) + 22/4 — 252/{ =0 (1.20)

for unknown constant s, which equation begins to resemble that for weak gravita-
tional waves in a closed universe (cf. EQUATION (4.133)). Like Chaplygin gas and
the “DGP” model|96], the Cardassian model justifies itself based on theories about

higher-dimensional manifolds which remain untested.

Topological defects

The existence of cosmic strings would change the overall equation of state of the
matter in the universe by a constant [67, 97|, creating acceleration through simple
deviation from the Friedmann model. While theories of cosmic inflation predict
the formation of cosmic strings and other topological defects, such defects remain

completely undetected.
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1.3 Tensorial theories for acceleration in a flat uni-

verse

If we wish to preserve the theory of general relativity at the same time as retain-
ing cosmic homogeneity, while at the same time relying only on effects with good
experimental basis, scalar fields appear to be excluded as an explanation for ac-
celeration. Ergo within the context of general relativity the next place to search
for an answer is in tensor theories, which include the possibility of gravitational

waves.

Lifshitz’s theory of cosmological perturbations [79] appears to exclude tensorial
answers to the problem of acceleration: gravitational waves have the same equation
of state as radiation, and local clumps of gravitational waves in the theory (where
“local” means bounded within an region smaller than the radius of curvature of the
universe) both decay rapidly and collapse spatially. Rodrigues [113] takes a first
step in discussing anisotropic dark energy, but limits his analysis to a flat universe

and thus creates the problem of an anisotropic “big rip”.

A high-frequency gravitational wave background has been proposed [92]| as the
source of cosmic acceleration. While the authors’ analysis appears initially promis-
ing, similar to many scalar dark energy candidates the theory relies on the existence
of an inflation-induced gravitational wave background that remains only hypothet-
ical. Furthermore, the authors obtain their result by selection of an averaging
scheme without mathematical rigor — surely choosing a mathematical model based

on the desired results cannot be considered scientific. At any rate, the strength of
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the background that inflationary theory predicts is not sufficiently great to explain

the observed large acceleration.



Chapter 2

Evidence for acceleration

2.1 Introduction

Numerous assumptions have been made in developing the predominant theories for
acceleration that must be examined in detail to be understood. If some of these
assumptions have been made on a weak basis, our range of compelling models for
dark energy must change and new paths for the exploration of possible models will

open.

The theory of tests to evaluate the deceleration parameter using supernovae as
standard candles began with Wagoner [45] in 1977. Starting from assumptions of

an isotropic Friedmannian cosmology which is not necessarily flat, Wagoner notes

15
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the approximate relation
1
dE:Hal 2—5(14—@0)22—'—0(23) (21)

which, when H, and z are known, relates the deceleration parameter to the dis-
tance dg as determined by the dimming of the supernova (where Wagoner was
originally discussing Type IT supernova events)'. This relation is valid when z is
small such that 22 is negligible, limiting its usefulness above z ~ 1, and requires the
assumption of only small changes in the Hubble constant H, (that is, in a Fried-
mann cosmology ar/ar evaluated near the observer) on the interval from z ~ 0 to

2z~ 1.

Type Ia supernovae are thought to be a “standard candle” for the measurement
of distance and redshift; that is, supernovae of that type are thought to possess
spectral and luminosity curves which are nearly identical. Therefore, observation of
extragalactic type Ia supernovae is believed to produce reliable information on both
the distance of the event (noting that brightness diminishes as the inverse square
of distance) and the redshift of the distance associated with the event (through
the change in the peak of the supernovae’s spectra), with redshift z related to the

scale factor ap by

L= (tobservation)' (2.2)

ar (temission)
Analysis of a statistically unbiased dataset of z () therefore gives empirical infor-

mation on H (t).

Colgate [44| proposed that Type I supernovae should be used to measure the

'EQUATION (2.1) is of course a generalization of the famous distance-redshift approximation
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deceleration parameter in preference to Type IT supernovae. Type I supernovae,
specifically the “Type Ia” whose mechanism is thought to be the accretion of matter
onto the surface of a white dwarf star, are understood to have a well-defined typical
absolute magnitude and spectrum. Assuming this is true, the distance to and
redshift of a given Type Ia supernova event (SNe) can easily be determined by
fitting its light curve to standard templates. Therefore, with a sufficient sample
of extragalactic supernovae of z 2 0.2, the parameters H (¢) and thus @ (¢) can
be measured directly. When an isotropic cosmology with constant deceleration
parameter () = (g is assumed, knowledge of Hy and (), are sufficient to typify the

parameters of the universe [4].

With the advent of modern optical astronomy such as adaptive optics [46] and
space-based optical telescopy [47|, such surveys have become possible, but have
produced results contradicting the standard, cold matter-filled Friedmann model

of cosmology.

2.2 Surveys of acceleration

Cosmological studies measuring () have been ongoing since 1997 and consist of
analyses of redshifts [1, 3, 9, 11, 12, 13, 15, 43, 48, 49, 51, 50, 52, 53, 55, 56,
54, 57, 58| of type Ia supernovae. Some attempt to measure not only the dark
energy equation of state at the present time wxo but the first Taylor coefficient of

a time-series expansion wx,.

The High-z Supernova Search Team’s initial study of the deceleration parameter
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[1] was the first large study to call attention to the problem of acceleration. Work-
ing from a sample of sixteen supernovae (four of which were well-observed “high
confidence” sources), the most distant with z = 0.97, Riess concluded that the
universe has )y < 0 to high confidence, although the measurement of @), itself
possessed a high degree of uncertainty. Riess also noted the high sensitivity of the
result to individual data points. The authors dismiss the closed cosmology despite
the data indicating it as preferred [1, Fig. 7|; however the size of their experimental

error precludes real evaluation of spatial curvature.

The Supernova Cosmology Project (SCP) made an earlier attempt to evaluate Qo
with the use of supernovae [55]. This small survey (n = 7) on relatively nearby
supernovae found a result inconsistent with those that followed it, giving results
consistent with a universe with no dark energy and with too high a degree of error

to meaningfully evaluate the geometry of the universe.

In contrast, the Supernova Cosmology Project’s 1998 evaluation [48, 49] of 42 Type
[a SNe added further evidence that the universe was accelerating and also makes
note of the surprising coincidence of the energy density {2x’s near-equivalence with
the total energy density in the current epoch. The SCP also did not consider the

closed cosmology despite supernova data favoring it [49, Fig. 7|.

The ESSENCE [11] survey was expressly designed to examine cosmic acceleration
and detected 102 type-ITa supernovae from 0.10 < z < 0.78, of which 60 were used
for cosmological analysis. The initial analysis of ESSENCE assumed flatness of
the universe. ESSENCE’s observational fields were deliberately chosen to overlap

the areas of previous surveys and to lie within ten degrees of the celestial equator;
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all were also between 23:25 and 02:33 Right Ascension. Combining data from
ESSENCE, SNLS and other sources [52] led to a conclusion consistent with other
analyses. Exploration of more exotic models [53] found that no model of those

tested was a good fit for ESSENCE’s data.

The Supernova Legacy Survey (SNLS) [12] recorded 472 type-Ia supernovae. While
analysis of the SNLS data set [13| provides results consistent with a universe driven
by cosmological constant, the uncertainty on analysis of a time-dependent compo-
nent to the equation of state of dark energy is very large; their analysis also does
not consider a closed universe as a possible model [50]. Furthermore, the SNLS
team also note the presence of two outliers and only 125 of 472 events were used to
evaluate cosmology. SNLS observed SNe in four fields, one of which (field 3) is far
above the plane of the celestial equator at 52 degrees declination; this and [54]’s
northern field are the only fields with multiple observations in a small area more
than 20 degrees from the celestial equator surveyed to date. SNLS also notes [50,
section 5.4] that the values of Q) evaluated in the four fields are compatible only
at a 37% confidence level — a surprising result given that each SNLS field contains

at least 60 SNe in quite small (one square degree) areas.

The Hubble Space Telescope or HST survey of supernovae, published in 2004 and
reviewed by the Supernova Cosmology Project [14] observed twenty type-Ia su-
pernovae with redshifts 0.63 < z < 1.42. While the number of SNe observed is
small, the HST survey has the advantage of covering a wider area of sky than other
SNe surveys. Analysis of the HST dataset suggests a rapidly-evolving dark energy
field, although with very high error on measurements greater than z = 1 due to
the small (n = 10) sample size it is impossible to take these results as anything

more than suggestive. HST slightly favored a closed model of the universe, when
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considering interpretations of data that allowed Qg # 0.

The Supernova Cosmology Project’s 2008 analysis of supernova data [51] made a
analysis of combined SNLS, ESSENCE and HST data, and attempted to analyze
the data in the context of a theory of a time-dependent equation of state for dark
energy but concluded “present SN data sets do not have the sensitivity to answer
the questions of whether dark energy persists to z > 1, or whether it had negative
pressure then.” The analysis rejected 10% of all SNe from the combined data sets
as outliers, many based on their failure to fit with a nearby H,; Kowalski et al.’s
rejection of outliers also shifts their analysis from one favoring a closed universe to

one favoring a flat one [51, Fig. 11].

Further work by Riess et al. [54, 56] produced the so-called “gold” dataset of SNe,
a group of supernova events with particularly clear light curves with 33 at z > 1.
These supernovae were observed in two small (one square degree) fields. [54] claims
a great reduction in the uncertainty of the Hubble parameter at z > 1 but the
Hubble parameter measured in the extended “gold” set gives a value for the Hubble
parameter not reconcilable with that in the [56] dataset. Riess et al. conclude that
w is negative (with large experimental error) in the region 1 < z < 2, then attempt

to extrapolate the behavior of dark energy back to z = 1089.

Sollerman et al’s analysis of the Sloan Digital Sky Survey-II supernova data [3, 9|
is the most recent analysis indicating cosmic acceleration. SDSS-IT observed 103
type-la supernovae in a long, narrow strip along the celestial equator, including

many from lower redshifts than had been previously examined in detail. Sollerman

et al. also made use of data from the HST, ESSENCE and SNLS surveys, bringing
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the total number of SNe examined to 288. The primary conclusion to be drawn
from SDSS is the sensitivity of cosmological measurements to the specific analysis
technique used [60]; analysis of the data with two different curve-fitting algorithms

produce two different, albeit somewhat compatible, results.

Further obscuring the neatness of measuring @, Jha et al. noted [59] that the
uneven local distribution of galaxies, specifically the existence of voids, can lead

to a mis-estimation of Hy on the order of 6.5% for a given galaxy.

Finally, of note is the WiggleZ dark energy survey [15, 43]. WiggleZ is the most
extensive redshift survey thus far conducted, with some 280,000 galaxies with 0.2 <
z < 1.0 used as sources. WiggleZ also covers a wider area of sky than previous
surveys, examining some 1000 square degrees in multiple windows around the sky.
Two of WiggleZ’s windows overlap with SDSS-IT’s survey area, so while WiggleZ
is ongoing, preliminary results [57, 58| can be used to improve the evaluation
of () by improving precision on measurements of z of SNe host galaxies. The
authors of [58] note that “the redshift-space clustering pattern is not isotropic in
the true cosmological model”, attributing the variation to “the coherent, bulk flows
of galaxies toward clusters and superclusters”. Analysis by the WiggleZ team of
pre-existing SNe datasets, using the new, more precise data on galaxy redshifts
they obtained, reconfirms the fact of acceleration, and generates results consistent

with other surveys, but the data lack sufficient precision to determine the history

of Q.

The table in the APPENDIX details the sky locations of SNe and galaxies used in

the determination of acceleration; FIGURE 2.2 presents these locations graphically.
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TABLE 2.1 summarizes the results of these surveys.
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Figure 2.1: Sky positions of supernovae used as evidence for acceleration
Surveys of cosmic acceleration cover a limited portion of the sky, and data are
divided into two contiguous, antipodal regions. Most data has been collected in a
small area of the sky near the equator. Triangles: Riess 1998 supernovae. Five-
pointed stars: HST SNe. Sixz-pointed stars: Riess “gold” dataset. The long, thin
strip centered on 0,0 is the SDSS-II survey area. Other bozes are the SNLS and
ESSENCE survey areas.

2.3 Analysis

Analysis of supernova data is, in one sense, quite consistent: all surveys apart from

[55] agree that for z < 1 the universe has a deceleration parameter @)y = —0.6.
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‘ Survey ‘ No of SNe ‘ z
Supernova Cosmology Project 1997[55] 7 0.35 < z < 0.46
High-z Supernova Search Team|1] 16 0.16 < 2 < 0.97
Supernova Cosmology Project 1998[49] 42 0.18 < 2 < 0.86
HST[14] 20 0.63 < z < 1.42
ESSENCE|[L1] 102 | 010<2<0.78
Supernova Legacy Survey|[12, 50] 125 0.0l <z<1
ESSENCE | SNLS[52] 162 0.015 < z < 1
Supernova Cosmology Project combined|51] 307 0015 <z<1
Riess “gold” sample[56, 54] 16 125 <2<2
WiggleZ[58] 557 0.1<2<0.9
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Table 2.1: Summary of results from surveys indicating acceleration
“dne” = “Does not evaluate”. *: [56] attempts to analyze w, with several different
constraints but provides no numerical figure for its estimate of w,’s value. t: Where
not explicitly stated in the source, Qx is evaluated from Qpr 4+ Qg + Qx = 1. 1

Q{lat = 10y — Qx. (1): MLCS2K2 evaluation. (2): SALT-II evaluation. (83):

2

ACDM model evaluation.
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Deeper analysis suffers from a lack of data at high redshifts and large numbers of
free parameters in cosmological models, especially when more exotic models are
considered. Meanwhile, while most surveys indicate that the acceleration in recent
times acts as though driven by a cosmological constant, with an equation of state
compatible with wy = —1, the results from [60] show that this can be the result

of the prior assumptions made about the model of dark energy.

No definitive statement can be made about the evolution of H over time from the
information thus far available, particularly not statements connecting the state of

cosmic acceleration now with the state of acceleration at the epoch of last scatter-

ing.

Nor can any definitive statement be made about cosmological models, other than
to say that the most conservative, ACDM model fits the data at best inconsistently.
Few studies of supernova data on acceleration examine the question of curvature

in depth.

The majority of SNe data is collected from a single patch of sky: the field bounded
by RA 22:00, RA 04:00, Dec +1°15" and Dec —10°00" (the “highly-observed field”).
This area comprises 1350 square degrees, or only 2.1% of the sky. Surveys taken
in small fields outside the highly-observed field, such as the Riess “gold” dataset,
have high internal consistency, while surveys covering larger areas of sky have much
lower consistency; the “gold” dataset contains the same number of SNe as [1] but
has a standard error less than a tenth the size. It is also telling that the four SNLS
fields produced results that correlated poorly (37% confidence) with one another

[50], where two of the SNLS survey regions are well outside the highly-observed
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field. Compounding cosmographic bias, many of the remaining SNe observations
are located in a region of sky antipodal from the highly-observed field; any vec-
tor or tensor contribution to cosmic dynamics will be dominated by dipole and
quadrupole terms, and as such be seen with equal or opposite magnitude in the an-
tipodal direction (that is, if we observe a change in @ of AQ along the zdirection,
we should expect a change of —AQ in the event of a vector contribution, or AQ

in the event of a tensor contribution, along the —x! direction).

There is, furthermore, no SNe data whatsoever from above Dec 4+62°r below Dec
—37°. The authors of [58] note a variation in the apparent Hubble parameter for
galaxies in this equatorial band (no WiggleZ region lies further north than Dec
+8° or Dec —19°); variation to the Hubble flow could potentially be even greater
outside this region. There is also no evaluation of whether the Hubble flow remains

isotropic beyond z = 0.3 [77].

Indeed, Zehavi et al. comment [89] on the lack of sky coverage in their analysis of
local Hubble flows, noting that “sparse sampling and the incomplete sky coverage
(especially at low Galactic latitudes) may introduce a bias in the peculiar monopole
due to its covariance with higher multipoles”. While the fact of greater redshift
in the range where acceleration can be measured should overcome the peculiar

velocities of galaxies, the data problem remains.
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2.4 Conclusions

Many reasonable constraints prevent a full-sky survey of supernovae. In the optical
band, much of the sky is obscured by the “zone of avoidance” created by the plane
of our own galaxy [63]. The so-called “Great Attractor”, certain to be a region of
particularly high peculiar velocities and therefore great shifts in the apparent Hub-
ble parameter, lies in this zone [64]. Furthermore, with only a single space-based
optical observatory (the Hubble Space Telescope) operating, detailed observation
of the sky is restricted to those latitudes accessible by ground-based observatories,
none of which are located in Arctic latitudes. However, the directional deficit of

SNe surveys, aggregated together, cannot be ignored.

In the light of Tegmark et al.’s discovery [28| of a preferred axis to the CMB
quadrupole, and Land & Maguiejo’s subsequent observation [32] of a preferred
axis in higher multipole moments aligned with the the quadrupole (the so-called
“Axis of Evil”), the default assumption should be that anisotropic acceleration is
not ruled out. Indeed, the prominent CMB “Cold Spot” [34] falls within the highly-

observed field, although no surveys or SNe are located exactly in its direction.

As such, Wagoner’s assertion of the cosmological principle as “statistically valid”
[45] has been misapplied by analysts of acceleration data. A tensorial theory of
cosmic acceleration would preserve homogeneity, in the sense that every observer
sees “the same version of cosmic history” [21], at the expense of isotropy in the

form of spherical symmetry.

More fundamentally, most studies of cosmic acceleration to date operate on the
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assumption that acceleration is isotropic, that is, that the acceleration field is equal
in every direction, and therefore must be explained either by a cosmological con-
stant or a scalar field. As Mortsell and Clarkson note, “[a|t best this gives a small
error to all our considerations; at worst, many of our conclusions might be wrong”
[61]. In particular, the data as presented cannot distinguish between a scalar-field
theory of acceleration, a vector-field theory of acceleration, a cosmological constant

theory of acceleration, and a time-dependent tensor-field theory of acceleration.

Meanwhile, the simplest theory of acceleration, a cosmological constant, is chal-
lenged on two fronts: not only is 2x’s value far out of line with that predicted for
Q, by theory [72], but while its equation of state is close to wxy = —1 measurements

have tended to favor a value slightly smaller than -1.

It is interesting to note that when Qx is evaluated, supernova data favor a closed
universe (although always in a manner compatible with a flat universe); this con-

clusion is consistent with the curvature parameter evaluated by WMAP [62].

2.4.1 Recommendations

In light of these weaknesses of the current information on cosmic acceleration, the

following program is recommended:

Analyses of SNe data should always consider the possibility of a closed or open

universe as well as a flat one.
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Additional SNe surveys for redshifts .15 < z < 2 should be carried out in unexam-
ined areas of sky not obscured by the plane of the galaxy, such as for example the
celestial north and south poles. The optimal region for these surveys is in rings
located 90° from the center of the highly-observed field, which will maximize the

difference in the event of a tensor-field (that is, gravitational-wave) acceleration.

In light of this need and the lack of ground-based observatories, as well as the
infrared transparency of the Zone of Avoidance, priority should be given to the
Wide Field Infrared Survey Telescope (“WFIRST”) project [65], which incorporates
the Super Nova/Acceleration Probe [66, 67| and Joint Dark Energy Mission [68, 69].

This telescope is currently scheduled to be launched in 2016.

As WiggleZ continues, its data on galactic redshifts should be examined for angular
dependence as well. The completion of WiggleZ will provide invaluable information
on baryon acoustic oscillations which will make possible the charting of the history
of H and @ at much higher redshifts than is possible through the examination of

supernova data.

Zhao et al. have also noted the possibility of using the Einstein telescope as
an instrument for examining dark energy through the use of gravitational wave
emissions from colliding binary objects as a “standard siren” analogous to the

standard candle of type Ta SNe [111].

Cooray and Caldwell [102], implicitly identifying the same problem of lack of angu-
lar coverage as we note herein, propose a program of near-redshift surveys covering

a large but practical area of sky which could also provide the relevant information
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with existing facilities. Some efforts have been made ([147, 148, 149, 150]) to re-
evaluate the data in hand to look for signs of angular dependence in the Hubble
parameter; these efforts have not produced conclusive results. The rejection of cer-
tain SNe in [51] should be re-evaluated in light of possible inadvertent obscuring

of evidence for angular dependence in H.

Overall, the need is underscored for new theories of acceleration, particularly ones
that attempt to explain acceleration through the action of tensor perturbations in
a closed universe. Wagoner’s formula (EQUATION 2.1) and its generalizations must
be generalized further to take into account the possibility of anisotropic fields as

the cause of anisotropic cosmic acceleration.



Chapter 3

Constraining the parameters of
binary systems through

time-dependent light deflection!

3.1 Introduction

Zhao et al.’s suggestion [111] that gravitational-wave emissions from merging neu-
tron star binaries may be used as a “standard siren” for determining cosmological
parameters, with gravitational waves traveling undisturbed by interstellar dust or
the galactic foreground, opens up the possibility of gravitational astronomy provid-
ing a hugely important source of whole-sky observational data when the first gen-

eration of practical gravitational telescopes comes online. Of critical importance

"Portions of this chapter have been previously published as [152] as part of this research.

30
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to establishing such a “standard siren” is the typification of gravitational wave
sources before the catastrophic events which cause them to emit large amounts
of gravitational radiation. Given the extragalactic nature of gamma-ray bursts
this is difficult. However, very large extragalactic binaries close to merger may be

constrainable with current technology.

The deflection of light by gravity is the oldest experimentally-verified test of the
theory of general relativity [116]. With the continued improvement in observa-
tional resolution in astronomy, particularly through very-long-baseline interferom-
etry (VLBI), the detection of more subtle effects of this light deflection becomes
practical. Consequently, light deflection can be used to measure the properties of
distant systems. This work supplies a theory for using time-variable light deflec-
tion to measure or constrain the parameters of binary systems. Specifically, the
deflection angle of a light ray from a distant source is related to the configuration
and motion of a binary system located in a distant galaxy somewhere between the

point of emission of the light ray and its observation.

Super-massive black hole binaries (SMBHBs) are thought to form the cores and
primary energy sources of the broad class of galaxies termed “active galaxies”,
“blazars”, or “quasars”. However, a combination of distance, radio noise, and optical
thickness makes direct observation of presumed SMBHBs impractical. Observing
a time-dependent motion in the image of the galaxy can provide information on

the mass and orbital parameters of an SMBHB candidate.

Work by Damour and Esposito-Farese [120] and by Kopeikin et al. [119] estab-

lishes a theory of time-dependent light deflection by describing the time-dependent
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part of the deflection through the quadrupole term, which is the lowest-order term
resulting from the mass distribution whose effects are practical to evaluate us-
ing current astronomical observational techniques. The work of Mashhoon and
Kopeikin [139] in examining gravitomagnetic effects furthermore provides a theory
for evaluating the contribution of the spin dipole of such systems and complements
the work of Einstein [140] in providing a complete theory for stating the loca-
tion of the deflected image in the weak field limit. We generalise these theories
to a stronger-field regime and put constraints on the theory’s applicability in this

regime.

As a case study of an active galaxy, the theory is applied to the galaxy 3C66B,
a nearby active galaxy with a candidate SMBHB core [127], and theoretical con-
straints on 3C66B’s parameters from a light deflection experiment are compared

to the constraints claimed by Jenet et al. [117].

3.2 Theory

3.2.1 Notations, definitions & assumptions

We assume that Einstein’s theory of general relativity is true to the limits of our
ability to observe and applicable to the systems under examination. We do not

address MOND or other post-Einsteinian models.

Throughout this chapter, “emitter” refers to the source of light rays being observed;
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“deflector” refers to the mass distribution causing a change in the metric of space-
time from flatness; and “observer” refers to the point where the light rays produced

by the emitter are observed.

We also make use of a coordinate system derived from the Cartesian system, defined

thus: in a space that is asymptotically Cartesian let a line be described by

T (t) = K (t —ty) + 7). (3.1)

Let t* be the time associated with the line’s closest approach to the origin of
the Cartesian system. Let 7 = ¢ — t* denote a new time coordinate (that is, at
7 = 0 the line reaches the closest point to the origin of both the Cartesian and
projected systems). Space coordinates are projected onto a plane passing through
the origin of the coordinate system and perpendicular to a line from the observer
to the origin of the coordinate system; these new space coordinates are denoted
¢ = TIYz7 (t*) where the projection operator is defined 1Y = § — kikJ. In
the projected coordinate system, the index 0 refers to 7 and the indices ¢ denote

coordinates £°.

For a trajectory described by (3.1) let & = IV 2% (1)|._, be the “vector impact
parameter” of the trajectory and let d = [¢'| be the “scalar impact parameter” of
the trajectory. Since the space is asymptotically flat, d is also the ratio of the
magnitudes of the angular and linear momenta of the light ray. Note then that for

the trajectory described by z* (7), r (1) = V/d? + 722. Let the unit vector n* = £'/d.

We assume that the wavelengths of all light rays observed are much shorter than

2In this chapter we use the convention G = ¢ = 1 to simplify our equations.
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the longest wavelength of gravitational radiation emitted by the deflecting system.

3.2.2 General theory

Background

Consider a photon emitted at some distant point z, at some time in the distant past

to. This beam of light in asymptotically flat space follows a path k? such that the

oz’

ot

coordinate z* of the photon is given by the relation (3.1); therefore, k' =
t=—o0

Let k' be normalized such that kk; = 1; then the vector k% = (1, k) is parallel to

the four-momentum of the photon in flat space.

Let an asymptotically-flat metric g.g* be a function of some affine parameter .
Let K = k* 4+ k™ (A\) +Z% () be the trajectory of a photon moving in this metric
space, where k“ describes the part of the trajectory arising from the spherically-
symmetric non-flat part of the metric and =* describes the trajectory arising from
a perturbation to the metric. Then, we have the geodesic equation [4, equation

87.3]
d(kK*+Z%)

o+ Iy KK =0. (3.2)

The quantity d (k* + Z*) /d\ corresponds to the change in momentum of the light

ray in space, which when projected onto a plane of observation corresponds to the

3All metrics g,, in this chapter are stated using the harmonic gauge condition, that is,
g“”l";\w = 0. The Minkowski metric in Cartesian coordinates is chosen with signature (—, 4+, +, +)
and is denoted 7,,,,, and we make use of the Einstein summation convention.



3.2. THEORY 39

angular deflection of the light ray. We define this deflection vector by [119, 120]

O/ (t’ §Z) = H; [Hj + Ej]observer + AO/ (33)

where the term Aa‘ corresponds to corrections arising from any contribution to

deflection other than our deflector.

In the case of Eddington’s experiment [116] on solar deflection, the “true” position of
the emitter — that is, the position of the emitter observed in the limit of intervening
deflection going to zero — was known. In the case of deflectors with small proper
motion, in this case extragalactic or otherwise distant objects, where the emitter
would be seen without the intervening deflector may not be known; therefore,
the periastron of the light ray must be determined by other means. Let P be
the periastron of the light ray’s trajectory about the deflector; in such cases, the
time delay between the deflection and the motion of the deflector is related to the
periastron by

P = tpeak deflection — talignment (34)

where ?peak deflection 1S the time when the image of the source is observed to be
deflected most from the position of the deflector and Z,jignment is the time when
the projected components of the system and the deflected image fall into a line,
assuming that P < £ and that the change in the gravitational field propagates at

the speed of light.
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Description of deflector

Our deflector of interest is as follows: two objects are denoted with the indices
1 and 2. The mass of object 1 m; > my. The objects have positions z¢ (t) and
zh (t) and velocities v} () and v} (¢)[FIGURE 3.1]. Then our source has density

distribution

p(t,a") =mid (' — 2f (t)) + mad (' — 2 (t)) (3.5)

and velocity distribution
v (t2?) = v (af — x{) + 046 (27 — a:%) (3.6)

where ¢ (2%) is the three-dimensional Dirac delta distribution.

Our metric has the form g¢,, = 7, + s + hy where s, is the non-Minkowski
part of the Schwarzschild metric and h,, is a small perturbation. Let hffl, be the
perturbation resulting from the quadrupole moment of the mass distribution and
let hiy be the perturbation resulting from the spin dipole of the mass distribution.

Let the variable s = t —r. Then explicitly, the metric is given by [120, 139, 142, 4,
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b 181],
So0 =2m/T (3.7)
S0; = (38)
om\ ! '
Sij = [(1 — 7) - 1] r25” (3.9)
% Q. (s)
Q _ ij
g0 0xidxd  r (3.10)
Q o J
8 Ql (8) 62 Ql (S)
@ — LA G 4 2= 12
hij Ox'dxl " ot r (3.12)
s _oSiane
hf =2 (3.13)
ho = hyj; =0 (3.14)

where the vector S* = (J, 31, J1?) and JY = [ (2'T7° — 27T)dV [4, chapter

2.9].

Let the objects orbit one another with a known period p. Let our coordinate

system origin be located at the center of mass of the binary and let m = my + ms.

Let a' = 2} — 2% be a vector denoting the spatial separation of the two masses and

I = |a’|. Let the mass ratio b= 72 < 1.

By our choice of coordinates, the dipole term of the deflector’s mass distribution

1S zero.

Using the Landau-Lifschitz definition of the transverse traceless quadrupole |2,
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equation 41.3], the quadrupole moment of the deflector is:

Qz‘j (t) = /p (X, t) [3.§L’ZI'J - 7’25”‘} dV = ﬁ [3aiaj - l25ij} . (315)

In the case that the masses travel in almost circular orbits about their common
center of mass, then in a primed coordinate system related to our chosen system

only by unitary rotations,

sin (% + gb')
a(t) =1 0 + da’ (t) (3.16)

27t !
cos (7 +¢ )

where ¢’ represents a constant phase term , and where da”® is small. Rotating from

the primed system first about the y-axis, then the z-axis, then the z-axis, we have

cos U sin (% + gb) + sin ¥ sin © cos <% + qﬁ)
a'(t)=1| —sinUsin (% + gb) + cos W sin O cos (% + gb) +da’ (1) (3.17)

cos O cos (% + gb)

where ¢ subsumes rotation about the y-axis with ¢’ and where © and ¥ are the
angles of rotation of the plane of motion away from the zz-plane about the z- and

z-axes respectively.

Solution to the geodesic equation

The theory of the effects of small perturbations to the metric on light propagation

in the weak-field limit is already developed [119, 120]. However, since the effects
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Figure 3.1: Configuration of a binary deflector
Object 1 has mass my, velocity v and is located as position z!; object 2 has
corresponding my, v4 and z%. 2 — x% = @' and the spin vector S* where S' =
(J23, % J) and JY = [ (2'T9° — 29T"°) dV is perpendicular to a’, v} and vj.
of a quadrupolar perturbation fall off as d3, it is desirable to expand the theory
to be applicable to regions of stronger fields. We note in particular that for a
closely-orbiting compact binary system, such as an evolved SMBHB, then m and

[ will be of similar magnitude; therefore, we extend the first-order theory of light

deflection to order O (m/d)’.

First, note that all terms in (3.8) are O (m/r) or higher and that all terms in (3.11)
are of O (ml?/r®) < O (m3/r®). Let O (m?®/r®) be small such that all higher orders

are negligible. Then, suppressing negligible terms,

Tey=—3 (7™ + 5°°) (spoy + Svs,8 — Spy0) — 3 (n°°) (hpsry + hysp — hys) -
(3.18)

Let the Christoffel symbol associated with the Schwarzschild metric Fggs» = —1 (1" + ) (S5
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and the remaining part resulting from the perturbation Fg,(yh) = —12 (1) (hgsy + hasg — hays)-

Then (3.2) becomes

RO 4O 4 (Fg(s) + Pg(h>) (k% + kP +ZP) (K + 1Y +27) = 0. (3.19)

v v

(S)

Since all T';.> and all components of x* must be at least of O (m/r) or zero, (3.19)

expands, again suppressing negligible terms, to

.o ~—a oS a(h
R+ E TS (B2 + k%) (07 + 1) + TERPK = 0. (3.20)
Since
A+ T8 (K7 + K7) (K + 17) = 0, (3.21)
we conclude
=2+ IR = 0 (3.22)

which is exactly the result for the weak-field approximation [119, 120].

Plugging (3.21) and (3.22) into (3.3) and choosing 7 as our affine parameter, we
can define the Schwarzschild and non-Schwarzschild parts of the deflection angle

[FIGURE 3.2

oy (&) =ITw (3.23)
. ‘ . 1 .. [
ozﬁl (t, fz) = H;-.:] = — §H J / (hﬁ&j + hj(sﬁ - hﬁjﬁ) k‘ﬁk"ydT. (324)

—00

The monopole term o}, (£°) of the deflection produced by the core is static and
unique, regardless of changes of configuration within the core [118, 116]. We can

use the general, exact solution for k* provided by Darwin [130]:
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Choose spherical coordinates. By the symmetry of the monopole term, this part of
the trajectory of the light ray must lie in a plane, so we can choose the coordinate
0 as an affine parameter and the coordinate ¢ as constant. Then we obtain an

equation of motion

r—2m [dt\> r dr\> 9
— — — = 0. 3.25
r (d@) +7’—2m (d@) T (3:25)
Identifying the impact parameter with a conserved quantity in the system Tf;m % =

d and substituting in yields three solutions; we discard the two where the light ray

never reaches a distant observer and take the remaining one,

1 V-U+2m V-U+6m ,
- 0 2
" (0) e s S 0 (3:26)

where the constant V is defined by V? = (U — 2m) (U + 6m), the periastron and
impact parameter are related by d*> = U3/ (U — 2m) and ( () = \/g (0 +6y), and
sn( is the Jacobi elliptic sn function [143, 16.1.5]. In the limit of U > m, inverting
this relationship and taking its asymptotic limits at large r leads to the well-known

relationship

Q) weak field (52) = 7”2- (3.27)

As U — 3m, however, the deflection becomes [141]
p(€) = (02 +mfoas (V3 -12)] = 7) ~ (WD +1248)  (3.29)

where 1 is the angle of deflection about the apse of the trajectory, rather than the
deflection seen by a distant observer; the angles involved are no longer necessarily
small so we cannot approximate ay; = p. In the case of an impact parameter
comparable to 3m, it is no longer observationally useful to consider the monopolar

displacement in and of itself as small differences in impact parameter cause great
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changes in deflection angle, and multiple images of a source may be detectable,
some of which may result from geodesics which travel several times around the
deflector. Our consideration therefore must focus not on the static deflection but on

time-dependent deflections arising from higher multipole moments of the deflector.

Kopeikin and Mashhoon [139] develop the effect of the rotation of a system on
that system’s deflection of light, in the weak field approximation. Investigation of
this effect is useful for the system as described in that every practical case of an
astronomical binary will display orbital motion. However, the theory developed
by Kopeikin and Mashhoon is only sometimes compatible with the strong-field

approximation presented herein.

The integration of (3.13) is trivial. Let o’ (¢) be that part of aj, determined by A7,
when the deflector is stationary relative to the observer, the resulting contribution
is given by

as (&) =2 [29Kn' 6T epmn’ + K S*e,] . (3.29)

Calculating S* with (3.17) for the case of a binary whose components are in almost-

circular orbits,

sin ¥ cos ©
St=—m b 2l ( b + ! ) cos W cos ©
14+b p \(1+0b)>—02nl/p)° (1+b)*—(2nl/p)°
—sin©®
(3.30)

We must emphasize that (3.29) is compatible with the O (m?/r®) generalization
above only when O (mi*/d*p) > O (m®/d*); in particular, when [ ~ p the sys-

tem’s motion is no longer slow. We draw attention to this contribution to empha-
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size the difficulty in associating an image with a particular source and to under-
score the utility of time-dependent deflection versus time-independent deflection

in parametrizing a system.

Let ag, (t,£°) be that part of oj, determined by h%,. af, is determined by plugging
(3.11) into (3.24); while [120] uses the method of Fourier transforms, the form of
(3.11) allows direct integration of a Fourier series decomposition as well. Either

way, the result is the following deflection [119, 120]*:

12 mb

ozz? (t, 5’) =3 5 [(a% (5) — a? (s)) n' — ay (s) ay (s) eijkkjnk] (3.31)

(1+0b)

for which we reiterate the following properties: firstly, in contrast to the monopolar
case where o, always points along £, the quadrupolar deflection has a contribution
parallel to&’, |, and also a contribution perpendicular to £, ag, which vanishes
only in the case that a component of the projected quadrupole moment vanishes,
that is, only if the axis of rotation of the deflector is perpendicular to our line of
sight; and secondly, the deflection depends only on the configuration of the deflector

at the time of the light ray’s closest approach to the center of mass, t = t*.

4The symbol €;1 represents the Levi-Civita permutation symbol defined such that €03 = 1.
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In the case of almost-circular motion, inserting (3.17) into (3.31) leads to

(1 + sin? @) coS (% + 2¢)

| o122 mb | gcos2¥ |
OZZ t, W= 2 o nl

Q| ( f) pE (1+ b)z +sin“© — 1

— sin 2 sin O sin (% + 2¢>
(3.32)

‘ . 602 mb

ay, (t,E) =— ——5X% 3.33
—1+sin%0O
%sin 2V ( ) o
X + (1 + sin? @) CoS (% + 2¢> e’jkk]nk.

+ cos 2V sin © sin (% + 2¢)

The relationship (3.33) is original to this work and has not previously appeared.
From this relationship it is easy to see that the time-dependent deflection of the
emitter’s image is periodic, with a period half that of the orbit of the core’s com-

ponents.

The greatest time-dependent deflection is observed when the emitter lies on the
line of the semi-major axis of the apparent motion; when b = 1; and when the
plane of the system lies perpendicular to the plane of observation. In this case,

(3.33) reduces to

ag (t,d) < ;—f;m lcos (% + 2¢>) — 1] (3.34)

so the total quadrupolar deflection seen over one half-period of the deflector’s
motion is

Aag (d) < ——m. (3.35)
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Compared to the monopole deflection in the case of a large impact parameter,

AaQ 3l2
— < —.
[0V - d2

(3.36)

Figure 3.2: Light deflection by a binary system
A light ray produced by the emitter initially follows trajectory k?, which has its clos-
est approach to the origin of the coordinate system at ¢'. In a pure Schwarzschild
space, the light ray follows trajectory k% + k% (\) and is deflected about the apse of
its trajectory by angle pu; in a perturbed Schwarzschild space, it follows trajectory
k' + k¥ (A) + =7 (\) and the observer on Earth (&) records an additional deflection
of aj,.

Other contributions to the deflection angle

If the path of the light ray after its closest approach to the deflector but far from the
deflector is nearly occulted (for example the Sun or another star), then deflection

. . . Z Z .
from this intermediate deflector, ai ;. mediate (fn,int)ﬂ must be taken into account as
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well. Whereg!, ;, refer to the vector impact parameters of light relative to these
intermediate deflectors, d,, = ‘éfhim}, and m,, are the masses of these deflectors,
and where m,,/d, is small for all n,

7
3 AN 4mn én,int
Qintermediate (gn) - d d .
n n

(3.37)

In linear approximation and in the harmonic gauge, the various deflections can be
superposed linearly. The total deflection of the light ray from our source, therefore,

is given by

o (£,€") = ag (:€') +aiy (€) +a’s (&) + Anermediate (Snint) - (3.38)

3.2.3 Application to 3C66B

3C66B, also known as 0220443, is a radio galaxy [123] with z = .0215 [124],
approximately 91 Mpc distant from the Milky Way®. 3C66B exhibits jets emerging
from its core, making it a good candidate for the location of a SMBHB [126]. Thus
far, no other candidate SMBHB has emerged with an orbital period as short as
3C66B’s [144] and the system is estimated to have an inspiral time on the order of

centuries [145].

>We use a value of 71 km/s/Mpc for the Hubble constant Hy for all distance calculations.[125]
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Parameters of the system

Sudou et al. [127] give upper-bound estimates by direct radio observation for
3C66B’s core, including an upper limit on m, a period, and an orientation of
the core’s motion. Sudou also reports a limit on the minimum impact parameter
available for determining the parameters of the system using a first-order approxi-
mation theory, corresponding to the limit of optical transparency at VLBI’s higher

operating frequency. The upper limits Sudou gives are:

m <4.4 (1 +b)* x 10%olar mass = 6.5 (1 4+ b)* x 10*cm (3.39)
1 <5.1(1+b) x 10"%m (3.40)
U >23puas = 3.1 x 10'%cm (3.41)
d >3.7 x 10"%cm (3.42)
p =1.05 £ .03years (3.43)
O =15° £ 7° (3.44)

where P is constrained by the limit of the core’s opacity in the radio spectrum and
© is derived from the apparent eccentricities of the elliptical boundaries of radio
opacity. From [ and P we can furthermore conclude that in the case of maximized

[, under Sudou’s estimates ¢ < .20.
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Iguchi et al. have recently published [145] new estimates constraining 3C66B:

m ~1.9 x 10%solar mass = 5.6 x 10"*cm (3.45)
1 ~1.9 x 10'%cm (3.46)
U ~1.2 x 10'cm (3.47)
d >3.7 x 10*%cm (3.48)
p =1.05 £ .03years (3.49)
© =15°+7° (3.50)
b ~0.58. (3.51)

Estimates for distant emitters

Although highly eccentric motion in 3C66B is not ruled out [128], the age of the
presumed binary is great enough to have circularized the orbit through gravita-
tional radiation under most conditions [129]. We present the case of circular motion
as an upper limit on the time-dependent deflection angle, noting that if all other
parameters are constant then in the case of eccentric motion any time-dependent

separation of the masses must have [ as an upper bound.

Using the maximal figure for mass and the minimal figure for impact parameter in
(3.39-3.44) and applying (3.28), the ratio m/l = .30, placing our proposed system

in the regime of strong deflection. We find a monopolar deflection of:

6.5 X 1015cm
= (In 222" (1.44) ) +1.248 ] = .13radian = 7.2°. -
( n (3.7 % 106¢em ( )) + 8) Jradian = 7 (3.52)
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The components of the system as proposed by Sudou have %l < .39. Therefore it
is not reasonable to apply (3.29) to 3C66B in the regime where deflection from the

quadrupole moment will be detectable.

Deflected images lying along the major axis of the core with the system as con-

strained in (3.39-3.44) will have time-dependent deflections in the following amounts:

122 mb

A d) <— ——(1.07
OéQ”()_dg (1+b)2< )
12(5.1 x 10%em)? (1.2)2 (6.5 x 1015 1.2)% (.2
_12(5.1 x 10'%cm) (3 )2 (6.5 x 10 Cm)2( ) ( )(1_07> (3.53)
(3.7 x 10'6¢m) (1.2)
<5.8 x 10 %arcsecond
2412 mb
A d) <——— (.26
16, \2 2 15 2
<24(5.1 x 10'°cm) (31.2) (6.5 x 10 Cm)2(1.2) (.2) (.26 (3.54)
(3.7 x 106¢m) (1.2)

<1.4 x 10 %arcsecond

with a period of p/2 = .53 4 .02years for each component of the deflection.

Under Iguchi et al.’s new estimates, the deflections take on the following values:

Aag (t,€") ~=3.7 x 10" "arcsecond (3.55)

Aagy, (t,€') ~8.8 x 10 *arcsecond. (3.56)
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3.3 Observational techniques

3.3.1 Interferometry

Electromagnetic interferometry provides the best currently-available techniques
for high-resolution astronomy. The use of space-based interferometry and im-
provements in equipment allowing for higher frequencies of observation continue
to steadily improve resolution capabilities. The current most powerful technique
available is VLBI, which Sudou et al. used to determine the motion in the core of

3C66B [127].

VLBA, the Very Long Baseline Array, is an array of ten radio telescopes [133]
operating in wavelengths as short as 3mm operating as a single large interferom-
eter. The current best available resolution is 1.7 x 10~°arcsecond [134], making
VLBA currently capable of constraining the parameters of 3C66B further through
direct observation as well as the Jenet pulsar timing experiment described below
accomplishes indirectly. The launch of the space-based ASTRO-G satellite [135]

will extend the resolution capabilities further.

The SIM PlanetQuest mission (formerly Space Interferometry Mission), currently
scheduled for launch in 2015 [136], is expected to have a resolution capability of 4 x
10~ 8arcsecond [137]. SIM will operate in the optical band and quasar observation

is part of the planned mission.

Farther into the future, the MAXIM (Micro-Arcsecond X-ray Interferometry Mis-
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sion) satellite array currently in development [138] is expected to give resolutions
on the order of 10~ arcsecond in the x-ray band, and is explicitly designed with

the observation of black holes in mind.

3.3.2 Pulsar timing

Jenet et al. [117] examined the period of the pulsar PSR B1855+09 for changes
in its period over several years, motivated by the idea that as gravitational waves
generated by the core of 3C66B pass near the pulsar, the pulsar’s signal should be
modulated with a period related to the period of the proposed 3C66B SMBHB. The
distance between the Solar System and the pulsar furthermore give the advantage
that the signals observed modulating the pulsar are some 4000 years older than
the motion observed in the 3C66B core. However, Jenet’s experiment produced a

null result.

The experiment’s analysis involved examining the frequency space of the pulsar’s
signal for components in a range from 1/27.8yr™! to 19.5yr~!, then subtracting
out the one-year and six-month components resulting from geodetic effects. The
results are described as showing no signal distinguishable from noise other than the
already-known main oscillation frequencies of the pulsar. Therefore the magnitude
of gravitational waves generated by 3C66B, and consequently the parameters of its

core, can be further constrained.

3/.5
Jenet et al. assert that a system with m <ﬁ> > .7 x 10'%olar mass can be
t

ruled out by the observed null result in the change in pulsar periods over seven
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years; this corresponds in the optimal case of ¢ = .2 to a system with m = 2.3 x
10'%olar mass = 3.4 x 10%cm. For a system under these new constraints, we

estimate optimal peak deflections:

12 (5.1 x 10%cm)? (1.2)? (:2)

Aag) (d) < 3.4 x 10%cm 1.07) = 2.1 x 10 %arcsecond
a1(d) < (3.1 x 101¢m)? ( ) (1.2)° (1.07)
(3.57)
12 (5.1 x 10'%cm)? (1.2)* 5 (.2) s
Aag, (d) < (3.4 x 10"cm) 5 (.26) = 5.0 x 10~ arcsecond

(3.1 x 10%cm)? (1.2)

(3.58)

which remain within the detection limit of VLBA as currently configured.

3.4 Conclusions

A theory of light deflection by time-dependent distributions of matter has been
presented for metrics which are perturbations of the Schwarzschild metric, ac-
counting for deflection resulting from time-independent and time-dependent terms
in the metric. To order m?/r3, deflections originating from the quadrupole mo-
ment of the mass distribution and, with some constraints, the dipole moment of
the system’s spin can be linearly superposed on the system as if in a weak-field
approximation. The theory can be practically evaluated for and applied to a model
of the core of an active galaxy, but the theory of light deflection from the spin of
the deflector needs further development for applicability in the regime of strong

deflection.

The examination of time-dependent light deflection is a feasible technique for the
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evaluation of proposed SMBHB systems, under idealized circumstances. In the
event that a suitable emitter exists, examination of light deflection can be used
to constrain the parameters of the proposed SMBHB in the core of 3C66B. We
emphasize that while the existence of an identifiable suitable emitter in the case
of 3C66B is unlikely, the theory can be applied equally well to any other SMBHB
candidate, any of which may have a suitable source; in particular, active galaxies
displaying Einstein rings or other artifacts of strong gravitational lensing, especially
multiple images, should be examined. The theory can be equally well applied to
intragalactic objects, although nearer objects will require further corrections for

proper motion.

The quadrupolar motion in the core of 3C66B can be examined and evaluated by
the observation of deflected images in the region of the sky near the core of the
galaxy, if found; the time-dependent part of the deflection has a magnitude of up
to 58 microarcseconds parallel to the impact parameter of the emitter and up to

28 microarcseconds perpendicular to the impact parameter.

For the case of 3C66B, for most emitters pulsar timing can constrain the parameters
of the deflecting system better than time-dependent light deflection can. VLBA
in its current configuration is capable of constraining the parameters of the core
of 3C66B under ideal circumstances, but newer estimates of the parameters of the
system show a change in angular light deflection considerably smaller than what
VLBA could resolve. Anticipated interferometers will have resolutions up to two
orders of magnitude greater and will be capable of evaluating the parameters of
the system while examining it in a wide range of frequencies, and may make the
observation of time-dependent light deflection resulting from motion in the core of

3C66B more practical.



Chapter 4

The Bianchi IX cosmology

In pursuit of a theory within the context of unmodified general relativity which can
explain cosmic acceleration while remaining compatible with the cosmic microwave
background, we wish to relax as few constraints on our cosmological model as
necessary. Therefore while having sacrificed the requirement of isotropy in the
sense of spherical symmetry in the dark energy field, we wish to retain a stronger
[2, ss. 116] condition of the Copernican principle on our space, that of homogeneity
[4, Chap. 13 sec. 1]. It is also desirable to have a model whose limiting case is
a Friedmann cosmology, in order to explain the almost-isotropic (that is, almost-
Friedmannian) character of the CMB. Furthermore, a model which is spatially
closed, in order to match models favored by CMB and SNe data, is desirable; such
a model would, if complying with all other conditions, have a flat universe as a

limiting case in the limit of an infinitely large radius of curvature.

04
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Bianchi showed |70] that there exists exactly one homogeneous' space with a closed
Friedmann universe as a limiting case: the Bianchi type IX cosmology, for short

“Bianchi IX”.

4.1 The Bianchi classification scheme

Bianchi observed that all three-dimensional homogeneous spaces could be classified
into nine types, based on categorization of the symmetries, that is the Killing field,
in each space. Behr noted [71] that this categorization scheme could be simplified
to filling a parameter space of four parameters: one running over the real numbers

and three reducible to the sign function sgn ().

Consider some space with metric ds® = dt* — g;;dz'dz? (that is, a space in Gaussian
coordinates) where g;; = g¢;; (t,2"). If the sub-space with metric tensor g;; is
homogeneous, then there exists a set of vectors that solve ;.; + &;,; = 0; these are

the Killing vectors of the space[4]. In an homogeneous space, these vectors will

(where [, ] is a commutator) obey the commutation relationship
&, &) = &&5 — ;6 = Ol (4.1)

where in an homogeneous space, the object C’fj is a constant pseudo-tensor, the

“structure constants” of an homogeneous space, with the antisymmetry property

Chj = C (2, ss. 116].

LA homogeneous space is a space such that for any two points in the space, there exists a
geodesic, not necessarily of finite length, connecting those two points.
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We always have the freedom to perform separation of variables the functions g;;;

let us do so by defining the matrix ~,, such that

2 The 3x3 matrix ¢\* (z*) is a triad [2, 112, ss. 98]* of vectors (“frame vectors”); in
the language of linear algebra, the quantity e?dz’ is a one-form on a homogeneous

space.

Furthermore, let us define the matrix e’@ such that el@ ega) = 0%; from this it follows

©

that eéa)ei ) = 5((2)) From these relationships we can transform between any tensor

A?l 2 23’Lm

and its decomposition into triads by saying that for some tensor A}2""",

ivigig..im _ A(@)1(a)g(@)g @)y, [ iy ig i im (0)1 (b)2 (b) ®) .
A = A i (e, e,y -l ) (el i)

(4.3)
therefore in an homogeneous space we can perform separation of variables on the
partial differential equations of general relativity and solve the time-dependent

parts as ordinary differential equations.

The frame vectors obey the properties

(a) (@) _ a (b) (c) (44)

€ij — % = “ucti €

2Indices from the beginning of the Latin alphabet (a, b, c,...) denote triad indices; indices
from the middle of the alphabet (i, j, k,...) denote regular indices. Where the two are mixed or
the application is otherwise ambiguous, triad indices are enclosed in parentheses; in this work,
this notation never means the tensor symmetrization operation.

3The widespread Fourth Revised English Edition of [2] contains numerous serious typograph-
ical errors in the section introducing the tetrad formalism. The Russian-language Seventh Cor-
rected Edition[112] contains the correct formulas.
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7.

Grishchuk discusses two criteria for an homogeneous space, constrasting two com-
peting definitions; one, originating from Bianchi [70], in which a space is termed
“homogeneous” if it admits a group of motions GG3 operates continuously on a space
composed of a set of hypersurfaces Vs; that is, if for every point 2/ in the space, the
operation gz‘ = ¢ for ¢ € G5 and ¥’ is another point in the space; and the other,
from Zel'manov, which generalizes Bianchi’s definition to three-spaces which are
submanifolds of a four-dimensional space-time. Grishchuk finds these two defini-
tion to be compatible. The structure constants C, typify a homogeneous space

and are given by the following rule [71]:

C(gc = Ebcdnad + 5?&(, — 53(16 (45)

where the object n is a diagonal matrix diag (n'",n®,n®) and q, is the vector
(a,0,0), the values of this matrix and vector typifyied by the underlying cosmology
(TABLE 4.1).

The cosmologies of Bianchi types I, V, VIIy, VII, and IX are of particular interest
as they have isotropic spaces as limiting cases [151]; specifically, a universe with
metric

ds* = dt* — aQnabega)eEb)d:pidﬂ (4.6)

is a flat K = 0 universe for Bianchi type I or VIIj, an open K = —1 universe for
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| Bianchi type [ a | n®W [ n® | n®) |

I 0] 0 0 0
11 0 1 0 0
IT1 1 0 1 -1
v 1 0 0 1
A% 1 0 0 0
VI, 0l 0 | 1 | -1
VI, a0 [ 1 ] 1
VT, ol 1 [ 1] 0
VII, a| 1 1 0
VIII 0 1 1 -1
IX 0 1 1 1

Table 4.1: The Bianchi classification scheme
Constants for the different homogeneous spaces of the Bianchi classification
scheme[2, 21, 71, 104]. The quantity @ runs over the real numbers. This
parametrization is not unique (we could, for example, have chosen (—1,—1,—1)
for (n®,n® n®) in the type IX space).
Bianchi types V or VII, and some cases of Bianchi type IIT (type III is itself a
particular case of Bianchi type VI, [71]), and a closed K = 1 universe for Bianchi

type IX [2, 10, 21|. Bianchi IX is the only homogeneous closed cosmological model

in the context of general relativity [104, 151].

4.2 The Kasner universe

In order to illustrate the possible effects of an anisotropic but homogeneous cos-
mology on cosmic dynamics, we will consider a Bianchi type I cosmology that

generalizes the Friedmann cosmology: the Kasner universe [76]; [2, ss. 117].
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Let our metric read
ds® = di* — 12 (da')® — 22 (dz?)? — 12 (da®)? (4.7)

where pq, po, p3 are constants. In a co-moving coordinate system we quickly arrive

at the following set of Einstein equations:

[(p1 +p2+ps) — (T +p3+p3)] t7° Z%k (e +3p) (4.8)
(p1+p2+ps—1)pit™? Z%k‘ (p—e) (4.9)
(p1+ps+ ps — 1) pat 2 :%/{:(p— ) (4.10)
(pr+p2+ps — 1) pst? Z%k‘ (p—e). (4.11)

These equations necessitate either an isotropic but unusual (p = €) universe or a
vacuum (¢ = p = 0) universe, in which we have either the trivial solution p; =

pa = p3 = 0 (Minkowski space) or the more interesting solution

P11+ P2 +p3:p%+p§+p§=1. (4.12)

This solution admits a parametrization of pi, pe, ps such that (if we choose p; <

P2 < ps3)

plz—u/(1+u+u2)
pr=(1+u)/(14+u+u?) (4.13)

ps=u(l+u)/(1+u+u?

where u > 0; these relations have the nice symmetry property that p; (u) = p; (1/u).



60 CHAPTER 4. THE BIANCHI IX COSMOLOGY

An implication of (4.12) is that singularities in the Kasner universe fall into two
classes: one-dimensional “spindle” singularities where expansion tends toward in-
finity in one direction while the universe collapses in two directions; and “pancake”
singularities where expansion goes to infinity in two directions while the universe

collapses in the third.

4.2.1 Scale factor

The scale factor a does not necessarily have an intrinsic meaning, but instead
compares distances as a function of time. In an isotropic cosmology such as the
Friedmann model a can be given a real geometric meaning; in an open or closed
Friedmann universe, the scale factor appears simply in the Ricci curvature of space
R: = (2K/a®)d;. As such, the scale factor can be regarded as the radius of
curvature of the universe. In particular, in a closed isotropic universe a can be
considered to have the direct physical meaning of the radius of curvature of the

spherical space, so in a closed isotropic universe one could meaningfully say “the

radius of the universe is a”.

When space is no longer isotropic, the definition of scale factor breaks down. It is,
of course, possible to define any positive function as “the” scale factor. Grishchuk

et al. |10, section 4], for example, use a metric

Y11 = 4Cl €
1

V22 = il (4.14)
1
4

Y33 =
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and propose the definition

1
a? = —yun® (4.15)

in the context of a vacuum cosmology, motivated by the coincidence of this defi-
nition of the scale factor with one the authors introduce in separating the Bianchi
IX metric into background and gravitational-wave parts. The authors also discuss

a definition of scale factor such that
a® = (det ya)"*. (4.16)

This definition has the advantage that it relates the scale factor to a definite physi-
cal quantity, a volume element, but it contains a deeper flaw: with such a definition
in place the Einstein equations admit no solution other than the background solu-

tion at quadratic and higher orders. If we define the quantity
d=a+B+7y (4.17)

then

a? = (detyp)? = =1 = 6=0. (4.18)

In either case, though, discussion of possible definitions of a attempt to solve a
problem that does not exist. The question of what definition of scale factor to select
is analogous to the question of which of the orthocenter, incenter or circumcenter
of a triangle is the “true” center. Consequently, attempting to extract a single scale
factor — and thus a single Hubble parameter or a single deceleration parameter —

from anisotropic Einstein equations is a fool’s errand.

We can, if we wish, split the metric (4.14) into isotropic and anisotropic parts by

6

noting that the quantity are’ is isotropic and that any two of the quantities o — 3,
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a— and B —~ combined with ape® contain all the information needed to describe
the metric [22|; pursuing this route would be a distraction from our main task,

however.

Alternately, we could follow [2]’s Kasner-like approach to the Bianchi IX cosmology
and deal with only the metric coefficients as 71, = a?,v2 = b% v33 = ¢ for
functions a, b, ¢, ignoring the idea of a unique “scale factor” or Friedmann-like

behavior. This approach will obscure the nature of the cosmology discussed below.

Instead, let the notion of scale factor a, Hubble parameter H and deceleration
parameter ) be generalized. In a homogeneous cosmology with a diagonal metric,

define the following matrices: the generalized scale factor,

()0 0
Ay = 0 (y22)"? 0 (4.19)
0 0 (y3)"?

(recalling that non-integer powers of a matrix are not defined, so we could not
simply say aq, = (%b)l/Q). In a Bianchi I cosmology only, from this definition
we can then define the redshift matrix (in homogeneous cosmologies other than

Bianchi I the geodesic equations are non-linear; see CHAPTER 5):

a11(tr)
ey 10 0
2 = Gac (1) @™ () = b, = 0 emim_1 (4.20)
a33(tr) o
O O aii(tg) 1

where the subscript R denotes the function evaluated at the time of observation

of light, and E denotes the function evaluated at the time of emission, and finally
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the generalized, anisotropic Hubble parameter and deceleration parameter:

du/au 0 0
1d
Hy = S d Invye = 0 29/ ag2 0 (4.21)
0 0 as3/ass
dnan/ (6'111)2 0 0
d ac a
QZ = EH Mpe — Op = — 0 doooa/ (@2)2 0
0 0 ligzazs/ (as3)’

(4.22)
This approach is essentially a generalization of that developed by Barrow in [22];
the object (4.21) is closely related to the shear tensor |21, 26] which was adapted
from fluid dynamics. The practical purpose of these definitions is to provide a
mathematical description of observed quantities; let e’ be a unit vector pointing
in the direction of observation. Then the redshift observed in the e direction is
given by

z(e't) = zfjeéb)e e'e; (4.23)

and similarly for other functions of the scale factor. Each of these functions can be
averaged over the whole sky to extract a monopole value, these averages denoted
by a bar:

i aabegb)«aga)eieJdSY 1

1
ab
— = sagn” = + agy + 4.24
[ nijete’dS g tat'l 3 (an + az + dzs) (4.24)

a=

etc.; by “average” we mean, simply, the arithmetic mean of the function summed

over the whole sky.
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4.2.2 Dynamics in the Kasner universe

An observer in a Kasner universe will see the consequences of that universe’s evo-
lution. Examination of the observational consequences of the Kasner universe
provides an illustrative example of potential consequences of anisotropy in other

cosmologies.

Expansion

Misner, Thorne & Wheeler argue [76] that the Kasner universe is expanding, as

the volume element is always increasing:

v d

d
PR 1 gij||da' da?da® = g (t4P24s) dptda?da® = da'da?da®. (4.25)

However, as noted above there is no unique way to define the scale factor. In terms

of the averaged quantity defined in (4.24) we have

1
Q= (" 4174 1) (4.26)

which, when we expand around ¢ = 1, is approximately

a(m1):%(2+t>+0(t3). (4.27)

But in the limit of ¢ small, we have

(4.28)
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which is clearly a decreasing function; so the Kasner universe is not unambiguously
expanding and even so fundamental a property as expansion or contraction is a

matter of the choice of definition.

Redshift

Redshift in a Kasner universe is given by

(tr/tp)" —1 0 0
2= 0 (tr/te)™ —1 0 (4.29)
0 0 (tr/ts) — 1

() () ()] s

In the circumstance when tg > tg,

1 t p3
ix g (i) . (4.31)

Of particular interest is the quantity AT /Tg, the variation in CMB temperature
from the average (accepting for the moment that the vacuum Kasner universe

approximates a matter-filled one at a sufficiently young age), which is given ap-
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proximately by

(tr/te)" 0

AT tr\ P* .
. = 1%\, 0 (tr/tp)
0 0
3(tp/te) ™ —1 0
= 0 3 (tR/tE)m—pa _
0 0
-1 0 0
~| o -1 0 |€¢e
0 0 2

0

ey
0 — TNab e'el =

(tr/te)”

1

0
0 |ee =~ (4.32)

2

(except in the case when py = p3 = 2/3, in which event the (2,2) entry in (4.32)

will read 2). The CMB in a mature Kasner universe has a pronounced anisotropy,

with the observed temperature matching the average temperature only in a circle

around the axis of anisotropy. Notably, the primary axis of the anisotropy is at a

right angle to the axis along which the Kasner universe is contracting — not on a

parallel axis!

Hubble flow & deceleration parameter

The Kasner universe has Hubble flow

(4.33)
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=1 (4.34)
3
and deceleration parameter
(1=p1)/m 0 0
Q= 0 (I-p)/p O (4.35)
0 0 (1 —ps) /ps
Q= —1. (4.36)

which are necessarily anisotropic; on average a Kasner universe will appear to be
accelerating, when the average taken is the parameter Q. The use of Q contrasts
with ¢ in that ¢ is defined with the assumption of isotropic deceleration already
made (¢ is defined as a function of a). In the limit that the parameter u — oo
an observer in a Kasner universe would see a universe with a positive Hubble flow
(redshift) over most of the sky, but see blueshift in a third direction. An observer
looking only at averages, though, would not be able to distinguish between an
isotropic universe and a Kasner universe merely by examining the Hubble flow;
only with a complete picture of the sky is such a test possible. The Hubble flow

in the case of minimal anisotropy has the form

~1/3 0 0
1
Hop (u=1) =~ 0 2/3 0 (4.37)
0 0 2/3

— appearing like a Friedmannian matter-dominated universe in two directions —
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and in the case of maximal isotropy

000
1
limHy,=-10 0 0 |- (4.38)
u—0 t
0 01

Similarly, an observer looking only at the averaged deceleration parameter sees a
universe accelerating as though driven by a cosmological constant; only with good
enough information will the observer notice a strong angular dependence in the

acceleration field, which in the case of minimal anisotropy has the form

4 0 0
clu=1)=1 0 1/2 0 (4.39)
0 0 1/2

— decelerating like a Friedmann cosmology in two directions — and in the case of

maximal anisotropy has the form

-0 0 O
lim Q% = 0 oo 0 |- (4.40)
U—00
0 0 1

Moreover, even though acceleration along two axes is negative in the least-anisotropic
Kasner universe, the impact of the positive-accelerating direction is such that the
isepitach® of zero acceleration, the boundary an observer sees on the sky between
regions where objects accelerate and objects decelerate, is a circle 83° from the

axis of acceleration; only less than 8% of the sky appears close to “normal” to an

4A neologism denoting a path of constant acceleration, similar to “isobar” or “isochor”, from
Greek “epitachounse”, acceleration.
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observer expecting to record a Friedmann universe!

While the vacuum Kasner universe is ruled out as a possible approximate cos-
mology both for reasons of the CMB, which appears isotropic to a high degree
[16], and due to the Hubble flow, which appears almost isotropic below z = 0.3
[77], the surprising difficulties in distinguishing between its dynamics and that of
a Friedmann universe serve as a reminder that sampling of cosmological parame-
ters must be done in an unbiased fashion and that isotropy must be tested rather
than assumed. The Kasner universe also has an application as a limiting case of
the BKL universe [74] discussed below, to which it appears identical for observers
looking over a period of time that is small compared to the radius of curvature of
the universe. Finally, the anisotropic Kasner universe serves as a limiting case to

some types of cosmology described by the more general Bianchi IX model.

4.3 Gravitational wave nature of Bianchi IX

The Bianchi IX has been considered by cosmologists repeatedly since the estab-
lishment of general relativity to provide possible explanations for cosmological

phenomena.

Belinsky, Khalatnikov and Lifshitz discussed [74] a Bianchi IX cosmology (the
“BKL cosmology”) which undergoes several “bounces” as it evolves — rather than
expanding from or converging to a point, it contracts along one axis while expand-
ing along two others until the smallest metric component reaches a minimum value,

at which point the axes swap roles. Misner 73] refers to a Bianchi IX universe as
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the “mixmaster universe”, pursuing an resolution to the horizon problem through
the non-linearity of the Bianchi IX cosmology; through the mechanism of bounces,
all parts of the universe may be brought into causal connection. Bouncing vacuum
cosmologies are, like the vacuum Kasner universe, intrinsically highly anisotropic;
while in the long run they tend to act isotropically due to the back-reaction of
matter |75, 76| they will still exhibit strong CMB anisotropy [19]. Supernova data
(|1, 48] etc.) and CMB data on the value of €, ([31] efc.) coupled with the
existence of high-redshift objects [72| rule out bouncing cosmologies, or at least
bouncing cosmologies with a period of at most a few billion years, to a high degree

of confidence.

The BKL cosmology undergoes anisotropic acceleration (see SECTION 4.2.2). Mean-
while, numerical modeling has suggested [98, 146] that a matter-filled Bianchi IX
universe will also undergo periods of acceleration. Therefore, we have good reason
to suppose that a property of Bianchi IX may be to generate anisotropic accelera-
tion, and that consequences of the Bianchi IX cosmology may reveal a dark energy

candidate with none of the failings of scalar-field or exotic models.

Wheeler showed [78] that an almost-isotropic Bianchi IX universe admitted a weak
tensorial perturbation that took the form of a wave (that is, solving an equation
of the form f+nf (t) = g (t)). Grishchuk et al. were able to generalize this result
[10]:

The Bianchi IX space has frame vectors
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e; = (cosz®, sinz'sina®, 0)

el = (— sinaz?, sinz! cosx?, 0) (4.41)

el = (0, cosz', 1).
Consider the metric of a Bianchi IX cosmology:
ds? = dt* — 'yabe‘;ez’-d:pid:pj. (4.42)

When the matrix ~,, o 1, we recover the closed Friedmann cosmology. We can
split the more general metric up into an isotropic (Friedmannian) part and a non-

Friedmannian part:

a

ds® =dt* — aF-Nae; e?dazida:j — (Yab — aFNap) e?e?d:cida:j =

=dsy — (Yab — aFNap) e?eg’-dxid:pj (4.43)

where the background metric ds§ = afnaefelda’de’. Grishchuk, Doroshkevich &
Tudin showed that the object describing the space part of the anisotropic part of

the metric at some moment in time,’

4
G?Jb =2 (6?6? + 6?6?) - gﬂabncdefef, (4.44)
obeys the property
(GopYe = = (n* = 3K) Gy (4.45)

for n = 3 and K = 1; that is, G;l;’ is a tensor eigenfunction of the Laplace operator

in a Bianchi IX space for waves with wavenumber n = 3. A similar property for

Sar has been scaled here to equal 1
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open spaces is true of the Bianchi type VII, models [19].5

Lifshitz, in his development of the theory of cosmological perturbations [75, 79, 2,
ss. 115|, claims that tensorial perturbations, including gravitational waves, can
only have a diminishing effect over time. Lifshitz is, however, considering only the

class of local tensorial perturbations.

In contrast, the gravitational waves in Bianchi [X will have wavelengths comparable
to the radius of curvature of the universe. Kristian and Sachs note [25] that the
wavelength of cosmic shear (and thus, if anisotropy is present among all principle
axes of the space, of cosmological gravitational waves) must be at least 2 x 101°
years — longer than the Hubble radius [16] — and could potentially be far longer

(see SECTION 6.1).

We will consider first the regime of weak gravitational waves in an almost-isotropic
universe and then “quasi-isotropic” waves; that is, the regime in which components

of the metric evolve at equal powers of ¢.

6We could also choose to interpret Bianchi I as the degenerate case of a flat universe containing
gravitational waves of infinite wavelength with n = 0. The Kasner universe, however, is not such a
universe: all the anisotropy is governed by a single parameter, «, so the system has an insufficient
number of degrees of freedom. The Kasner universe is more like the Taub universe [108].
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4.3.1 Einstein equations in the tetrad formalism

For a metric g,s, let the space-space part of the metric be decomposed as in (4.2).

Similarly, the tensors

R;; =Rapey e (4.46)

Ti; =Twele) (4.47)

]

with all space dependence in the frame vectors. Assume the energy-momentum

tensor describes a perfect fluid. Then the Einstein equations can be rewritten:

1
ROO :kT(]o — ikTgoo (448)
1
1
Rab =k (Tab - éT’Yab) . (450)

If we have energy-momentum tensor

T;w - (p + 6) UpUy — PGuv (451)
T =e—3p (4.52)
then
Tho = (p + €) uouo — Pgoo (4.53)
Toi = (p + €) uou; — pYo; (4.54)

T = (p + €) ugtp — PYap- (4.55)
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If we then choose a synchronous Gaussian reference system, as we always have the

freedom to do,

goo =1

9oi =0

so the Einstein equations read

1
Roo =k (p + €) uouik (p + €) uouo — kpgoo — §k (e — 3p)

Ry =k (p + €) ugu;

1
Ray, =k (p + €) uquy, — kpyap — 5k (€ — 3p) Vap-

2

If we then demand that our coordinate system be co-moving with matter,

u =

u =

then
1
ROO :ik (6 + 3p)
Ry; =0
1
Rap :§k (P — €) Yab-
Let

ab = 7759566 — 3 77 Va
b= o ap e T g g

(4.56)

(4.57)

(4.58)

(4.59)

(4.60)

(4.61)

(4.62)

(4.63)

(4.64)

(4.65)

(4.66)
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and

d= dab"}/ab. (467)

The Christoffel symbols associated with our metric then become |2, ss. 97|

o, =19 =Tk, =0 (4.68)
Iy, =d; (4.70)
i, =T (4.71)

where f; i are the Christoffel symbols associated with the three-dimensional metric

tensor —g;;. The Ricci tensor can then be written as [2, ss. 97]:

Ryy = —d — d’dg (4.72)
Ry; =0 (4.73)
Rap =day + ddgy — 2dgedf — Py, (4.74)
or explicitly [10]

7 b ja 1

d+djdi = — Sk (e + 3p) (4.75)
: 1

dab + ddab - Qdacdlf - Pab :ak (6 - p) “Yab (476)
dbcye =0 (4.77)

where Pj; is the three-dimensional Ricci tensor constructed from f;'. k-
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4.3.2 The curvature tensor for Bianchi IX

Grishchuk explicitly gives the curvature tensors for all Bianchi types, and a general
method for easily deriving them, in [7]. These tensors can be stated in remov-
able and non-removable parts, with the removable parts corresponding to time-

dependent rotations of the space. Let the symbol

Yabe = /Yadcgc . (4 78)

Then where

[y = ’YCd (Yabd + Ydab — Vbda) (4.79)

N —

(these are analogous to the Christoffel symbols of the full space, but with different

symmetry properties) the non-removable part of the curvature tensor is given by

Lay = =20 g + 205, D00 + 205,00 (4.80)

|al

where square brackets around the indices indicate the antisymmetric part of the

tensor; the removable part is given by

1 1
bap = 5”0 ia + 5 (fa'Ub - fbva) (481)

and finally the curvature tensor

Pay = Lap — bped’ — bacedy — bpad. (4.82)

In the co-moving case that v, = 0 we can simply state P,;, = H,,. For the particular

case of Bianchi IX (the frame vectors (4.41)) and the curvature tensor when v, = 0
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reads, for diagonal components:
% Fapbh
Vig"l ) c YafYgn"' N
P, = Qs nsg | 00 =1 Nae — — (4.83)
2 [l . el
and for non-diagonal components:
C 1 C
Pci) = —2v bnac - ||/7ac’7df77b 77df (484)

|1 var

where ||74|| is defined as the determinant of v,,. The Einstein equations show that

when v, = 0 the non-diagonal components of 7., must be zero, so as a consequence

of our Gaussian choice of coordinate system we can without loss of generality, write

the metric for Bianchi IX

_ 2.9
M1 = ape™
_ 2.9
Yoo = aZ.e?
_ 2.9
/733—(11:67

(4.85)

with all other space-space components zero, so explicitly the the curvature tensor

P, for Bianchi IX reads

and the contracted curvature scalar

Pawab _ 2a;2e*25 [€4a LM et 9 (€2a+26 4 e2B+27 4 €2a+27)] .

(4.86)
(4.87)
(4.88)

(4.89)

(4.90)
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The background, Friedmannian universe is recovered in the case that a = f = v =

0.

4.4 Einstein equations for Bianchi IX

4.4.1 Exact equations

Let the symbol 6 = a + 8 +  for convenience as in (4.17). For our chosen metric,

we have the auxiliary quantities

dyy = (ai + a?d) €2 (4.91)
dy = ( + ai + 4aai + a2d + 2a%0%) e** (4.92)
d=H+a (4.93)

d=3H + ¢ (4.94)
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and cyclic permutations in «, 3,y thereof for 22- and 33-quantities. The full Ein-

stein equations for Bianchi IX read’

o (a3 +1) + &b + 6 + 7 + 2550+

2 (20428 4 20427y 2427) _ = ke (4.95)
+a;26725

_6404 _ €4ﬁ _ e4'y _ 3626

-

;

>

fe 2%+ 2 it 22 (30 +0) +adt
ap az, az, ap

_ L (e —pM) (4.96)
12072 [e4a _ (625 _ 627)2 _ 625} 2

. -2 . . . . ..
2l 24 fa e (3546) + 5o+
a aF a’F ap

9 _ 2
12a72e2 [e18 (27— ¢20)? 625]

= %k‘ (e —p@) (4.97)

a a2 .. a . - . ¢
420 4 3 i+ 8 (39 +6) +40+
a aF aF arp

_ %/{; (e—p®).  (4.98)

_9 _ 2
12az2e D [t — (62a _ 625) _ 625}
L J

"These equations are a trivial generalization of those found in the vacuum cosmology described
in [10].
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We can also define quantities as components of a gravitational effective energy-

momentum tensor:

keg

1
Sk (eg =)
k (69 - pé(f))

1
§k (e — pég))

kpgl)

kpy)

kpg?’)

QB + & + By + 2885+

> o 2 (62a+26 + e2at2y + 625+2’Y) _
+ape”
_6404 _ 64ﬁ _ 64'y _ 3626

N\ 7

d+g—;(3a+5)+a5+

120726 [e4a _ (625 _ 627)2 _ 625}

\ 7

Btz (3p48) +hor |

o 2
12a72e 2 [ 4 — (e21 — ¢2)? — 625}

J
i+ 22 (374 8) + 49+

_647 _ (e2a _ 625)2 _ 625}

+2a;e™®
26 + 6226 + 247 + 6B + 6y — B+
5e2(a=B=7) _ 3e2(8—a=7) _ 3p2(v—a=h8) 1

+a;2
462 — e —2¢728 _ 1

28+ 6228 + 267 + 4 — &y + B+
562(ﬁ_04_'\/) _ 362('\/_6_04) _ 362(04_6_7)
+a}2
466728 —2e720 _ 2027 _ |
29 + 6224 + 242 — 4B + & + B+
562('\/7670‘) J— 362(0‘7776) J— 362(67770‘)

—i—a;Q
462 —2¢728 _ Q22 _ |

(4.99)

(4.100)

(4.101)

(4.102)

(4.103)

(4.104)

(4.105)
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(all of which are zero when o = 8 = v = 0). The Bianchi identity 7, demands

p_t(,l) = pf) = pf’) so define the averaged gravitational pressure

1
ko =g 57+ 2+ 2f7) = (4106)

— 25+6Z—§5+2<a2+62+ﬁ2>+
+2 <aﬁ'+af‘y+/5’~‘y)+

_62(0’_6_'7) — 62(6_0’_’)/) _ eZ('\/—a—B)

—2
+ap

4272 4 9727 4 928 3

Finally,

(g +3p,) = 25+ 4755 42 (a2 + 42 +4?) (4.107)
F

8. Define a pseudo-conformal time coordinate 1 by cdt = ardn; note that this fixes
the relationship between ¢ and n up to the level of the characteristic length a; and
a constant which can be set to zero. Given the impossibility of selecting a unique
and objective definition for the scale factor, we do not define the conformal time
using such a function. Define a correction term ¢ to the matter energy density

such that

e=er(l+q). (4.108)

8Equation (4.107) corrects an error of sign in [10, equation (27)].
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In n-time, the Einstein equations for Bianchi IX, subtracting background terms on

both sides, read:

&I61+&17/+617/+2%51+

s 2 (e2a+26 + 62a+2’y + 625+2’Y) — = CL%‘]{?EFQ
+e
_6404 _ €4ﬁ _ e4’y _ 3626

7

&//+ﬁ<2a/+5/>+a/5/+ 1_w
o = a%kepq
+2¢ % [640‘ — (626 — 627)2 — 625:| 2
)
) 3
B/I+Z_F(261+5I)+6I51+ ]_—U}
F i = a%-kepq
1920 [645 — (e — eza)Z _ o2 2
1)
) \
VA (2 )+ 0+ 1—w
o o= askepq.
19p-26 [647 _ (eza _ 625)2 _ % 2
1)

We also note the Einstein equations have an exact formal solution

ke = (Sa;ﬁ?’e*‘;) e

(4.109)

(4.110)

(4.111)

(4.112)

(4.113)

where S is a constant of proportionality such that S'** has dimensionality of

length to the 1 + 3w power. Finally the Einstein equations can be read as

kplV+watkerq = kpP+wajkepq = kp+watkepq = apkepqtke, = 0. (4.114)

In other words, the effective energy-momentum tensor created by cosmological

gravitational waves equals minus the back-reaction on matter energy density and

pressure. Note that the quantity ke,/q is necessarily negative.
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4.4.2 Solutions to the Einstein equations at zero order

For convenience, let us define the variable z = 3%y, Then at zero order the

Einstein equations for a Bianchi IX universe have, for an arbitrary constant equa-

tion of state, the following solution and auxiliary quantities, which are identical

to the solutions to the Einstein equations in the unperturbed closed Friedmann

cosmology:
ap =a; (sin x)ﬁ (4.115)
a’p =a; (sinx) v oS 2 (4.116)
1+3 1-3 6w -
ayp = +2 wai T 33 (sinx) v cos?ar — (sin a:)1+23w (4.117)
ap/ap =cotx (4.118)
Hp =a; ! cotzcscx (4.119)
1+3
Qr = +2 Y sec? z. (4.120)

The quantity a; represents a characteristic scale for the universe and, in the back-
ground case, represents the radius of curvature of the universe at the extent of its

maximum expansion. We treat a; as an arbitrary constant for the time being.

4.4.3 Solutions at linear order

We approach perturbative solutions to the Einstein equations by letting the func-

tions «a, 3,7 be small (0 < |a| < 1 ete.). To first order, that is «, 3, such that
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a? ~ 32 ~ 4% ~ 0, the Einstein equations take the form:

/
22F 5 — 25, =aZkepq (4.121)
af
" }7 / / 1l —w 2
ay + = (20) + 07) + 8ay — 46y :TaerFql (4.122)
F
/
—w
! + £ (2/31 +00) 4+ 83 — 46, = askepq (4.123)
/
—w
F

where the subscript 1 denotes a first-order small quantity, that is, a quantity small
such that in the first approximation its square is negligible. The formal solution

(4.113) gives us, to first order,

apkepq = — (14+w) Sa 126, (4.125)

Meanwhile, we can always choose to let S take on its Friedmannian value [10], so

S+ = 3a; T3 Therefore:

2 Fa’ + [B(1+w)esc®z — 2] 6 =0 (4.126)
a’ — w?
|- 2—(11 + 8y —|— — (3 csc? x — 4) 01 =0 (4.127)
2 F / ]‘ w
1+ 2—51 + 801 + (3 csc? x — 4) 0 =0 (4.128)
" F / 1 - w
v+ 2 71 + 8v + 5 (3 csc? o — ) 9, =0 (4.129)

which gives us the solution:

343w
01 = ¢y cos x (csc ) 143

(4.130)
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The term governed by c¢; is a “removable” perturbation, that is, one not arising
from a physical phenomenon but from small changes in our selection of the scale
factor. Grishchuk, Doroshkevich & Tudin argue [10], and Grishchuk later proves
in the case of high-frequency gravitational waves [103], that the the removable
perturbation arises from the remaining freedom in having selected a synchronous
reference system and represents a small change in the value of 7. Therefore, the
removable term represents the gauge freedom remaining in the Einstein equations.
This coincides with the argument made by Bardeen [105] with regard to scalar and
vector perturbations with wavelengths longer than the Hubble radius; Bardeen
recommends a gauge choice minimizing shear. We always have the freedom to set
c1 to zero but do not do so yet. In a radiation-dominated universe, we have

5{adiation _ C¥adiation cos 7 csc? 7 (4.131)

and in a matter-dominated universe

gatter _ matter o g escd g (4.132)

Therefore, the full first-order functions can be written:

/ 14 2 (esc z) 343w

af + 2 cotza) 4+ 8ay = 3¢y (csc) 3w cosz  (4.133)
1—w? 2

- 5 CsC™ T

etc. Note that the right hand side contains no physical variables — no characteristic

length or energy density. The Einstein equations at first order have the solutions
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(denoted with a tilde for the ¢; = 0 case)

&{adiation — (Cal,l sin 37] + Ca2,1 cos 37]> csc)
Bfadiation — (Cﬁl,l sin 377 + 06271 CcoS 37]) csen (4134)
gradiation — (¢ sin 31 + C,z,1 cos 3n) csc 1y

and similarly for 3, in a radiation-dominated universe, and

gmatter _ Carq d sindny Ca21 d cos3n
1

= — — 4.135
sinn/2dnsinn/2  sinn/2dnsinn/2 ( )

etc. in a matter-dominated universe, in both cases constrained by the condition
Ca1n+Cs11+C11 = Ca1+Cpo1 +Ci01 = 0. A general solution for any constant
equation of state, in terms of orthogonal polynomials in a, exists but is far too
cumbersome to be of practical use in this work. We introduce the notation Cy;
etc. to be read in the following way: C,2; is an arbitrary constant associated with
the function «, the first index denoting the mode of the solution (1 for growing, 2
for decaying), the second index denoting the order of the constant in an expansion
assuming «, 3,7 < 1. For convenience, we will sometimes write a generic solution

to the differential equation (4.133) as
a1 = Ca1191 + Ca2,1%2- (4.136)

These solutions can be written in a less symmetric but easier-to-manipulate form:
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&i"adiation =Cu11 (2c082n + 1) + Cao 1 cos3ncscn (4.137)

Cu11(16cos2n+ 10cosn +9) +
gmatter _ _ e K 1+9) (4.138)

+3Ca2,1 csc 1 (5 cos 2 — 7 cos %'r])

etc. When 9 = 0 we recognize the homogeneous first-order Einstein equations as
describing weak gravitational waves with wavenumber n = 3 and a wave equation

of the form

V' +2cot (z) V' + (n* = 1) v =0, (4.139)

in line with [10]’s description.? In a radiation-dominated universe we have explicitly
for the full first-order solution:

radiation _ ~ sin 37) cos3n

! =

al,l 02,1 + —cosnesc?n (4.140)
sinn sinn 3

«

etc. and in a matter-dominated universe we have

matter  Ca1q1 d sin3dny Co21 d cos3n ¢ n 41
= — = Deostest L (4141
“ sinn/2dnsinn/2  sinn/2dnsinn/2 * 3 Py ( )

It is common to refer to the decaying “cos” mode of these gravitational waves as
“singularity-destroying” [10], in that they diverge as n — 0, which could seem at
first to imply lim v,, — oo. It is worth remembering that as the functions «, 3, ~

n—0
appear in the metric as exponents, that is, 711 = a%e** etc; thus decaying functions

9Just as EQUATION (4.45) generalizes the Helmholtz differential equation to elliptical and
hyperbolic spaces, the solutions y; and ys generalize the spherical Bessel functions j, (z) and
Yn (2); the radiation-dominated universe is solved by analogues of the n = 0 case and the matter-
dominated universe by the n = 1 case. The wave functions in a matter-dominated universe
always have longer trigonometric expansions than they do in the radiation-dominated universe
and thus the equations in a matter-dominated universe are usually more difficult to solve.
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are not necessarily “singularity-destroying” for the following reasons:

e their divergence must overcome the convergence of the Friedmannian term,

which in the case of weak waves will occur when w < 2/3 but not generally;

e functions of the form e™* " for z < 0,y < 0 are non-analytic near x = 0,

that is, they are not described by convergent Taylor series in that region.

As Cu1 + Cpo1 + Cho1 = 0, either one or two decaying terms preserve the ¢t = 0
singularity when the removable perturbation is removed, in a manner analogous to
that found in the Kasner universe, in the case of weak gravitational waves (although

the price of this is a divergence later).

When discussing high-frequency, localized waves, it is easy to define an amplitude
of the waves by (for example) normalizing the root-mean-square (RMS) value over
the wave’s period. In the case of cosmological gravitational waves however this
procedure is not possible in an absolute sense due to the diverging character of the
decaying mode. Fortunately, mathematical conditions on the relation of linear-
order terms to quadratic-order terms revealed at quadratic order (see SECTION
4.4.4) cause the term “weak” to give itself an objective meaning. If we wish to

normalize the growing modes, they have the following RMS values:

(1+3w)r /2 1/2
MS 2
SRS _ e / yfdn] (4.142)
0
yfadlatlon,RMS /3 (4.143)
matter, RMS

i —=/259 ~ 16.1. (4.144)
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It is interesting to note that in matter, the decaying “cos” mode of aq, 51,7 has
the same 7n-dependence as the removable perturbation; a cosmologist attempting
to remove what they assume, based on an incomplete picture of the sky, to be
a removable perturbation may inadvertently be suppressing evidence of a non-

removable gravitational wave!

Finally, the gravitational energy-momentum tensor’s (entirely removable) compo-

nents read, to linear order:

kegy =3 (1 +w) % cos z (cscx) T (4.145)
& 9+9%w
kpél()l) = k'pf(i) = k‘p;?z)l) =3w (1 + w) a—; cos x (csc x) 1+3w (4.146)

i

while the back-reaction of the gravitational waves at linear order gives us matter

EMT components which vary from background by:

549w

¢ =—3(1+w)ccosz (csca)+w ; (4.147)

when removable perturbations have been removed, first-order weak gravitational
waves have no effect on the distribution of matter, as is well-recognised in cosmo-

logical perturbation theory (|79, 4]).
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4.4.4 Solutions at quadratic order

The Einstein equations to quadratic order read:

2 cot xdy +

ay + cot x (2ay + 05) + 8a

5+ cot x (20 + 04) + 802

Yy + cot x (2795 + 04) + 879

Taking the @ T equation (4.148) first,

2 cot xdy +

[3(1+w)esc®z —2] 6, =

—4(52:

— 40y =

—4(52:

[3(1+w)esc’z — 2]y =

[3 cse IL‘(1+w — 2] 62—
~5 [0 — (P + AR+ D)+ (4148)

1—
S 2

1—w
3 2

1—w
3 2

[3 csc x(Hw

+4(af + 87 +17)

L csc? <(1+w 62 — (1 +w) 52) —
i3+ 8 (B — )’ -
—1602 + 16016, — 462

(4.149)

csc? (%5% —(1+w) 52> —
—B101 +8(m — )’ —
162 + 16,6, —

(4.150)
csc? <(1+2w)2 6 — (1 4+ w) 52) —
—6] +8 (a1 = f1)” =
—16’)/% + 16’7151 — 45%
(4.151)

} 07 — $02+
+1 (a2 + B2 +42) +

4 (@% - ’yf)
(4.152)
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The homogeneous part b5 of course has the same form as at first order, representing

a removable perturbation, so

3+3w

0y = ¢y cos T (csc x) 1+ (4.153)
The complete solution in integral form is
1 343w
92 =5 C08T (cscx) 13w X (4.154)

(

/.

(1+w)
2

_15/2+

[3 csc? ptl

_ 2] 52—

3

+1 (a7 + B2 +47) +

446w

sec” x (sin ) 7w dn + ¢

+4 (&3 + 3+ 7)

We will continue to refer to the solutions aw, (2,72 as “gravitational waves” out of
convention, as they solve the Laplacian equation (4.45), even though as will be seen
these metric perturbations will at second order affect the distribution of matter.

Define the following pseudo-vectors and their Euclidean dot products:

(Car(1); Corry, Coury) = @ (4.155)

(Caz1), Cp2(1), Cyory) =T (4.156)
(Cohy+Chny+C2y) =00 =o? (4.157)
(C2h1+Ch  +C2) =T+ = (4.158)

(CarrCiazy + C11Cs21 + ConyCont) = o - (4.159)

SO
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&+ B+ 37 =0y} + T°y3 + 20 - Ty (4.160)
QR + PP+ A2 =0y + Y5 + 20 - Ty Yh. (4.161)

Note that the solution d; = 0 is excluded except in the case of the background

universe. When all removable perturbations are set to zero,

3+3w
=cos z (csc )+ X

5n0n—rem0vable
2
o (2 + 107) +
n
X / +72 (203 + LyB) + tan® z (sin x)ﬁ dn
+o -7 (4y1ys + Lyivh)

(4.162)

10 We will discuss solutions to this equation term-by-term, noting that these terms

can be solved entirely from information we obtained at first order.!!

Contributions from the removable perturbations

Contributions from the removable perturbations at second order have the explicit

forms:

10The Einstein equations for weak gravitational waves in a Bianchi IX universe have the elegant
feature of being integrable in closed form, always reducible to functions form sin (nn) csc® () and
cos (nn) esc® (). Theoreticians working in regimes of higher-frequency gravitational waves on a
slowly-moving background may find it felicitous to approximate a Euclidean universe as a closed
one in order to avoid mathematical inconveniences associated with the function sinc (¢)!

T4 and Schwarz[107] obtain a similar result for a flat universe, but apply their results to a dif-
ferent domain. The averaging scheme they propose is not an applicable approach for cosmological
gravitational waves. The result is generally stated in [2, ss. 96].
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In a radiation-dominated universe:

2
(gemovable = —f—; (4 sin? g + tan? g + cot? g — ) csc® )+ cycotnesen (4.163)

Note that the terms deriving from the first-order removable perturbation diverge
as O (p~), while those from the second-order removable perturbation diverge more

slowly, as O (n72).

In a matter-dominated universe:

2
5§em°"able = —f—; (3 csct g + 8 csc? g — 10) csc? g + ¢y cot g csc? g (4.164)

Similarly, terms deriving from the first-order perturbation diverge as O (%) and
so at small 7 will dominate terms deriving from the second-order removable per-

turbation which diverges as O (p73).

Contributions from the growing mode

Contributions from the growing mode have the following form:
growing 9 2 [T 9 1, 9 . 2
)5 = o°cotx (cscx) 5w [ tan®w it 2y | (sinz)™3w dp.  (4.165)

We can already discern that the sign on 52grovv1ng must be positive in a young

universe.
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In a radiation-dominated universe:

rowing,radiation 1 1
52g & = U?adiation cotnecsen (_§ cos 3n + 50035n+2secn) ;

(4.166)

note the diverging contribution of O (n72) from growing modes.

In a matter-dominated universe:

888 4 S8 iy~ S 2y
rowing,matter Ui n . .
52g g = U?natter cot 3 csc? 2 +% sin 3n — 33 sin 41+

—l—%—z sin 57 4 900 tan 7
(4.167)

In contrast to the radiation-dominated case, the growing mode’s contribution does
not diverge in a matter-dominated universe (the term in brackets equals 0+O (n°)).

Approximating to lowest orders in 7,

growing,matter _ o o 21641 ,

Contributions from the decaying mode

In a radiation-dominated universe In a radiation-dominated universe, the

functions y; and gy, have the property

yP +ys = csc’n (4.169)
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while the functions y; and y)} are similarly related by
yi +yy = (8sin’n + 1) esc’n. (4.170)
This simplifies calculations as we can readily say

17 1 ’ '
5decay1ng 72 cotrcscn (Z sec 1 + 4 o tan g) - %%growmg; (4.171)

in a universe old enough that the diverging terms are negligible, the decaying
mode intrinsically decreases the scale factor in the same way that the growing

mode intrinsically increases it.

In a matter-dominated universe In a matter-dominated universe,

1
y? + y3 = csct g (9 + 1 cot? g) (4.172)
and
1
Y+ yy = T csc® 5 ( 608 cosn + 140 cos 2n + 477) (4.173)
so we can state
18n + 2450 tan § —
5glecaying,matter — 2 cos n s n 10255 cot 1 - 58 5grow1ng
_ 577
85 cot 2 esc? 2
(4.174)

It is interesting to note that, due to the growing mode contribution’s much slower
contribution to change in the scale factor, the impact of the decaying mode on

the dynamics of a young universe can be many orders of magnitude greater than
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the impact of the growing mode even when the decaying mode is several orders of

magnitude weaker than the growing mode. The ratio

7_2
~ —matter - (4.175)
matter

5decaying,matter
2

5growing,matter
2

which means that in a matter-dominated universe with  ~ 10~! the decaying mode

> 107842

. . . . 2
will have a greater impact on cosmic dynamics as long as 7, matter:

atter

Contributions from the o - 7 term

The contributions are described by the equation

mixed ztow 7 L, 2 i N\ TET A
9y = o0 - T cosx (cscx)+w dy1ys + S tan® x (sin ) 3@ di (4.176)

and have the following explicit forms:

Radiation-dominated universe In a radiation-dominated universe,

. . . 16
5;n1xed,rad1at10n = 157 " Tradiation sinncosn (3cos2n + 2) . (4.177)

Matter-dominated universe In a matter-dominated universe,

: —4 cosn — 24 cos®n — cos 3n—
5gmxed =0 - Tcot g csc? ! : (4.178)

2 —% cos4n + 5 cos Hn
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Gravitational waves at second order

Turning now to the R? equations (4.149, 4.150, 4.151), to second order, the Einstein

equations for € — p(“)—terms read:

oy + 2 cot xagy + 8ag
+1 (of + B2 +17)
-3 [2(1+w)csc?x + 1] 6

—3+ L (1 + 3w)” tan? 2+ )
+2(1+w) (Bw—1)+ |-
+ (14 w)? (35 — 3w) esc?x
—ay 01 + (667 — 168171 + 67%) —
—18a2 + 16016, )
(4.179)

etc. If we suppress all removable terms, as we must for any practical observation

of second-order terms, and taking into account (4.162), this further simplifies to

Ay + 2 cot zag 4+ 8ay — 3 %(1+w)cse2x+1 dy =

—26a3+

+145% + 1497 —

—1 (o + B2 +97) |
(4.180)

Recalling the form of the gravitational waves including the removable perturbation

at first order, we make the simple transformation ay, — a9 + %52 to arrive at the

equations:

1
a4 + 2 cot xdy + 8y = 40 3 (a4 67 +77) —of

(4.181)

etc.; we recognize that linear-order gravitational waves act as a driving force on

the waves at quadratic order. The solution of this equation is straightforward but

tedious and we arrive at the following solutions:
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In a radiation-dominated universe

sin 3n 003377
Cal, sinn + C 2,275iny +
1. 2 12 1 sindp 1, cos3n
+40 (30 004171) <36 sinn 6?7 sinn +

6ncos3n+ 1 51n3n+ _'_

lati sin 36 sin
O[gadlamon — | 440 (%7_2 — 2, 1) n n
’ +L sinbn 1 (2n—m) cos 3n—2sin 3nIn(2sinn)
16 sinn 6 sinn
1, sin3n 41

cot n+

2 6 sinn

+40 (50' T — 2004171004271)

1 cos3n 1 cos5n
+L 3n 1 5
36 sinn 32 sinn

etc. with the second-order constants C, 2 efc. constrained such that

Car2+Cpra+Chio

=Cai2+ Cpr2+Cy2=0.

To lowest order in 7 the solution for as reads

Qy

radiation

Cor2 (3 —47%) +20 (%0'2 - Cczyl,l) (__ + 191772)

+Cagon™t + QOTF (%7'2 - CaQ,l) n '+

—i—% (%0' o 20{){1710&271) n! 4 %5gon—removable

(4.182)

(4.183)

(4.184)

etc. For the pure decaying mode, the contribution from d, dominates, while for the

pure growing mode and the mixed term the contributions from the homogeneous

parts of as dominate.
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In a matter-dominated universe For a matter-dominated universe, the grav-

itational wave equation to second order has the following solution'?:

Cl1.0 CSC nd sndn Clag.a CSC nd cos3n |

2 g do (1155
+a2g g +as ying + agmxed + % cglon—removable
( \
7% 21110:0 Jn COS N+
51
rowin 1 —1128960 cos 5+
t356 CSC” 5 4806400 cos 3
11 . n
\ + 2o hasin (255 ) )
(4.186)

go = 32900, g1 = 443310, g, = 90230, g3 = 354221, g4 = 20195, g5 = 248918,
g = —57025, g7 = 68911, gs = —37880, g9 = 15440, g19 = —22400
ho = 1166543, h; = —1664285, hy = 888216, hg = 990580, hy = —1262310, hs = 677390,

he = —363895, hy = 197841, hg = —116900, hg = 66864, hyy = —34304, hy; = 8960

i 1 4513087
oS OV o (502 - 031,1) (82630 - ﬁﬁ) (4.187)

12There is no “royal road” to the explicit statement of this function, which was derived by
substitution and variation of parameters with the assistance of a computer algebra system. With
foreknowledge of the form of the solution, the equation (4.181) can be solved through the method
of undetermined coefficients; this requires solving a 21-dimensional linear system. (4.181) may
also admit a solution through the method of Fourier transforms, but only under torture.
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—3 tan 7 Zizo Jn cos™ N+
decaymg L /1, 2 47 6 n
-7 — Chay | csC 3 + > o kncos™ n+

~ 245\ 3
+1In (—2sin® ) S lacos™n
(4.188)

jo = —34020, j; = —17010, j» = 153090, j; = 22680, j4 = —113400
ko = 58329, ky = —514422, ky = 368937, ks = 675396,
ks = —678540, ks = 31500, kg = 61250

lo = —5670, 1, = 102060, [, = —73710, l3 = —136080, [; = 113400

3
4 /1 2 o My COSN—
agmxed = 105 <30' T Cal,lc'az,l) CSng 2 e
—cot 7 S T COS™ )

(4.189)

mo = 2310, m1 = —39270,my = —9240, my = 46200

ng = —936,n; = 15693, ny = 30204, ng = —58700, ny = —25200, ns = 42000

mixed 32 (1

Qg ~ 105 (50 T — Ca11C02 1) Znn
etc. The statement of the solutions to the gravitational wave equations to quadratic
order in the matter-dominated universe are original to this work; the radiation-

dominated quadratic order wave equations were presented in [10]. Note that

Youln=2,m, =0
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Most interesting is the presence of In-terms in (4.171) and (4.188), which on the
one hand indicate the appearance of the power-law behavior of metric coefficients
which typify the Kasner universe and the BKL universe in its quasi-isotropic phase;
on the other hand, they show the breakdown of our approximation scheme and the
limit of regular perturbation theory in solving the problem to hand. The Taylor
expansion of the growing mode of oy indicates further that waves must be very
weak (||o|| = O (107%)) for the approximation scheme to be rigorously valid as the
presence of csc! ZIn (—2sin7)-terms in (4.188) indicates a function which is both
complex and pathological. In any case, indications are that the growing mode of
hypothetical cosmological gravitational waves should be very much stronger than
the decaying mode (see SECTION 6.3); we will not need to make use of the second-
order solutions for the decaying mode and from here on will treat the decaying
mode as being linear-order weak, that is, C3,, ~ C3, | = C%, | = Caza = Cppo =

07272 ~7l 0.

4.4.5 Strong growing waves in the quasi-isotropic regime

[10, part 3] begins the development of equations for a radiation-dominated universe
describing strong gravitational waves in Bianchi IX. Similar equations in a matter-

dominated universe are useful in considering observed acceleration, as AQ) ~ —1.
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Consider the equations (4.109-4.112). Assume a solution of the form

=y &0
n=0

B=> " (4.190)
n=0

0o
_ E Y 42N
Y= C2nn
n=0

with the terms ¢ constants. It is convenient to define e*6 = A, €2 = B, 24 = Q.

In a matter-dominated universe, to lowest two orders the solutions read

W 1T 1
amef + o5 |1 = o5 (54° =3B° = 3G + 6BG = 2AB - 24G) |’

1 1
B - _ 2 2 2 _ _ 2
B e + 55 _1 1BC (5B* —3G* —3A* + 6AG — 2BG — 2AB) | n*  (4.191)
1 1 7
Y &G+ 55 _1 1BC (5G* — 3A* — 3B 4+ 6AB — 2AG 2BG)_ n

where cf, cg , ¢y are arbitrary; if we want to preserve the Friedmannian value of S

then we need

S+ =0 (4.192)

[10]. We always have the freedom to set one of these to zero by a simple scaling of

the metric; this preserves the two degrees of freedom for the gravitational wave.

If we apply the condition (4.192) and set the parameter ¢j = 0 by scaling, then
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the strong growing-mode waves are described by

& eR (4.193)

f=—c (4.194)

¢ =0 (4.195)

S =55 (—5A% +2A+6 — 647" 4 3472) (4.196)
1

A =55 (347 —64+6+247" —547%) (4.197)
1

¢} =55 (347 +24 - 10+ 247" 4 3477) (4.198)

with the single parameter ¢f determining the whole system. Note that setting
¢y = 0 does not imply 7/ = 0. We can also qualitatively say that for any value of
A, two of functions «, 3,7 will be positive, as will §, unless A =1 (the background

case), in the regime that An is sufficiently small that A3n® is negligible.

The functions (4.190) are linearly independent with yat€r {6 Jowest order in 7
and therefore can be used together to describe a matter-dominated universe with
arbitrarily strong growing gravitational waves and weak decaying gravitational

waves up to order n?, as long as the series (4.190) converge.

4.4.6 Dynamics

As in the Kasner universe (see SECTION 4.2.1), it is useful to generalize quantities
pertaining to the expansion of space which are spherically symmetric in Friedman-

nian cosmology.
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In terms of our statement of the metric (4.85), the generalized dynamical quantities

for our Space are

e* 0 0
4oy = ap 0 & 0 (4.199)
0 0 €
5= laF (ea +ef + ev) (4.200)
3
H, — 0 arar + 5 0 (4.201)
0 0 ap/ap + 7%

_ ar 1.
H=2 25 4.202
ap + 3 ( )

1 d o 1 ot
Q' = LHtey, — 5t = — ‘ 4.203
1 dt 1 (HF —+ ()4)2 ( )
etc.
ip/ap+2Hpd+a+a?
X (Hp+a)? +
5~_ L ip/ap+2HpB+B+5° _ 4.204
@=-3| * (Hr+6) " 20
| dr Jar+2Hpy+5++>
(Hp+7)?

Our goal in undertaking the arduous task of solving the Einstein equations has been
to derive the impact of long-wavelength gravitational waves on cosmic dynamics,

particularly acceleration. We are now in a position to begin to discuss this impact.
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Let each quantity in section (4.4.6) be expanded out into a background term plus

corrections, such that for example
gy ~ 0% + ') + al). (4.205)

Then the zero-order, background terms are simply

at(z(z];) =aFab (4.206)
HY) =Hpna (4.207)
O =Qpdl. (4.208)

While the gravitational energy-momentum tensor vanishes at first order with the
removal of removable perturbations, the presence of weak gravitational waves can

affect observed dynamic quantities. At first order:

aq 0 0
) _ 4.209
aab 0 Bl 0 ( . )
0 0 m
3 1
a; 0 0
oY =1 0 4 o0 (4.211)

0 0 %
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_ 1.
Huy = 301 (4.212)
DQl = —Hp' [2(Qr + 1) éu + Hy'dy] (4.213)
ete.,
_ 1 . ;
Qu) = —§HE1 [2 (Qr+1)01+ Hg'0y| . (4.214)

Thus we illustrate the need for truly representative sky coverage in considering
the problem of acceleration: gravitational waves can contribute to anisotropic ac-
celeration even when they do not affect the distribution of matter. In domains
when the first derivatives of a wave is small (that is, near peaks and troughs of
the wave), the accelerative effect will not be accompanied by a large change in the
Hubble flow. As before, a failure to completely suppress the removable perturba-
tion may lead to incorrect evaluation of the strength of decaying modes. To first
order, non-zero contribution to the average over the whole sky of the perturbations
is removable; first-order weak gravitational waves in Bianchi IX do not produce

isotropic acceleration.

To quadratic order, the dynamic quantities have the forms

oy + a3 /2 0 0
aly) = ar 0 B+ B7/2 0 (4.215)
0 0 Y2+ 7 /2

1 1
(z = Z0r 02 + 3 (af + BT +71) (4.216)
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da; 0 0
H? = : (4.217)
ab 0 52 O .
0 0 v
_ 1.
Hey = 50 (4.218)

2(Qp +1)dy + Hptdg—
Gl — _p! (@r +1) 62+ Hpds (4.219)

—3H' (Qp +1)&2 — 2H 0y

ete.,

2 (QF -+ 1) 52 + HE1(§2_
1 .
Q= —3Hy' | =3H;' (Qr+1) (a3 + B +42) - (4.220)

3
—2H,? <d1541 + BBy + ’71’71)

. At second order we begin to see a consequence of the non-linearity of the Bianchi
IX Einstein equations which is potentially very important in the study of cosmic
dynamics: isotropic changes to the Hubble parameter and to acceleration from
anisotropic metric terms. With our knowledge of the Einstein equations at first

and second order (4.133,4.152,4.180) we can show this explicitly:
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(3w + (1 + 3w) tan? z) oy, — 8 tan zap—
—40tanzaf 4+ 3 (1 — 3w — (1 + 3w) tan® z) tan za?+
@l = —tanz +16 tan® zaj a1+

3[4 (14 w)esc?z + 1] 6o+
+ tanx

Hld(af+ Pt +1) — g (af + 87 +01) |
(4.221)

etc. and

1 (1 + 3w)? sec® w8, —

_ 1 —2(1 +3w)sec?x (af + B2 + ) +
Q) = 3 tan® z

+1[14 15w+ 5 (1 + 3w) tan® z| (o + B2 +2) —

—16tanx (ajo + 151 + 71m)

\ V

(4.222)

[sotropic acceleration with quadratic-order strength arises from the non-linear in-
teraction of linear-order gravitational waves, but in the regime of |af, 3], |y] < 1
the gravitational waves at linear order will dominate measurement of cosmological

parameters.

In a matter-dominated universe with 77 small, the deceleration terms become, defin-

ing

AQy =@y — Qroy (4.223)

AQ=0Q - Qp (4.224)
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tan § (o) + o) — 8 (o + o) —

[

AC’gi,rnautter ~ _% —4004 + 30/ + 16 tan 2o oy + (4.225)
+30, + 14 (a2 + B2 +143) — L (a2 + B2 + )
26, =8 (af + B7 +17) +
. 1
AQMAMT xSt | (o + B +AP) - (4.226)

48
—16tan ¥ (ajon + 5161 +vim)

ete. Explicitly, these will have the lowest-order forms:

Cal,l (280 — 2597]2) +

[

+Ca21 (16073 — 72n~1 + 25Lp) 4
AQ} matter =~ 21 (167 ) (4.227)
+C2; 1 (T10040 — 46877531%) +

+0? (—609590/3 + 4402405,,2)

2
AQMatter ;—4712 (—4900 + 29837°) (4.228)

. These results are encouraging as, if we choose ||| ~ 107* (in order to make the

1

gravitational waves weak) and 7 ~ 10~*to match (6.1), we obtain AQ] o iio. ~

—107°, which has the right sign as well as all the contributions at both first and
second orders going in the “right” direction, toward acceleration. It is particularly
encouraging that both growing and decaying modes contribute to acceleration to

their lowest orders in 7.
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4.4.7 Back-reaction

Of interest in discussing the problem of acceleration is the effective equation of state
of the gravitational waves’ contribution to the energy density. Empirically, the
equation of state of dark energy seems to be close to wy = —1 (see SECTION 2.3),
where the quantity w, is related to the source of the energy such that the source
evolves with regard to the scale factor at a rate of a=30+“x), As noted in (SECTION
4.2.1) there is no unique way to define the scale factor, but a condition of quasi-
isotropy is that expansion in every direction in the current epoch is proportional,
that is to say, that they evolve as the same power of time. If the decaying mode of
the cosmological gravitational wave is weak, then this evolution will be proportional

to the Friedmannian scale factor.

To quadratic order, (4.99) reads

k;eéz) =3 (14 w)az’ csc 6, (4.229)

and so by (4.114)
g2 = — (1 +w) az’ds. (4.230)

When the growing mode is dominant, d5 is always positive in a matter-dominated
universe; therefore q(y) is negative. Thus the back-reaction appears to have negative
energy density. A significant “mixed” o - T term, however, can easily introduce

intervals where gy > 0.

In a matter-dominated universe and when the growing mode is dominant, g oc
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n~2 which, if the universe is evolving with a scale as ap o< n?, implies an equation
of state for the back-reaction of wy = —1/3 (as compared to an equation of state
for a cosmological constant of wy = —1). While no investigation of the equation
of state of dark energy includes this value within its highest confidence interval,
measurements of wy remain tentative, with large errors and high sensitivity both
to single data points and to the algorithm for curve-fitting models to the data (see
SECTION 2.3). In any case, a fluid with an equation of state of wx ~ —1/3 can be
responsible for acceleration only if it dominates the universe and if wxy < —1/3, in

accordance with (1.16).

The dominant term in (4.99) is the a}z/ap-term. This stands in stark contrast to
the commonly-considered case of gravitational waves in a background so slowly
moving compared to the period of the waves that ar = 0, in which instance the

quadratic combination of first-derivative terms dominates.

In regimes of stronger growing-mode gravitational waves, though, the scale factor
as defined in (4.19) will be more dominated by terms of higher, even order and so
agy o< n* or higher. As the growing mode increases in strength, the equation of
state decreases asymptotically toward a limit of wy = —1; if the scale factor grows
as 0%, the equation of state for the back-reaction is given by wy = (1/3s) — 1. As
acceleration is empirically )9 = —0.6, this implies that in real life the gravitational
wave strength is of order unity and therefore the effective equation of state is close
to —1. Thus, the quasi-isotropic Bianchi IX model with strong growing-mode
gravitational waves and weak or zero decaying-mode waves is compatible with the
observed data on the equation of state of dark energy, without the invocation of a
cosmological constant; the theory would be invalidated by definitive measurements

of wx < —1.



112 CHAPTER 4. THE BIANCHI IX COSMOLOGY

In any case, the fact of wx < 0 allows us to draw a conclusion regarding cosmic

evolution. [76] notes Kasner-like cosmologies go through two stages of evolution:

1. A “vacuum” stage, where matter’s influence is, due to its evolution as a4,

weak compared to the influence of the anisotropic expansion and contraction,
influence which, in light of (SECTION 4.3), we now understand to be the result

of gravitational waves in the BKL universe;

2. a “matter” stage, where expansion isotropizes [106| and is driven by, first
relativistic (w = 1/3), then cold, non-relativistic (w = 0) matter. Formally,
the contribution of curvature to cosmic evolution becomes important in this
era (wxg = —1/3), but as the influence of curvature will be isotropic in
Bianchi IX and the radius of curvature is very large compared to the Hubble
radius (see SECTION 6.1), curvature will not have a practical influence on

observations in and of itself."> To this second stage we can add a third stage:

3. A “dark energy” stage, in which growing modes of the cosmological gravita-
tional waves which drove the initial isotropy return as the dominant influence

on cosmic evolution.

13Formally we can also say that, due to the action of proton decay and positron annihilation,
after sufficient time the w = 0 phase will return to a w = 1/3 phase where the universe is filled
with neutrinos and photons. Following this period there will be another return to w = 0 as
these free particles are absorbed by black holes. As these black holes evaporate by the process
of Hawking radiation, there will then be a final return to w = 1/3. [80] gives a popular-science
presentation of the universe in these phases, but as it was written only shortly after the discovery
of acceleration its treatment of dark energy is highly speculative.
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4.4.8 Amplification of gravitational waves

Grishchuk observed [8] that when the background of a cosmology containing gravi-
tational waves varies rapidly, weak gravitational waves can be amplified where they
would otherwise, in a slowly-moving background, decay rapidly [79]. With regard
to the Bianchi IX cosmology, this is significant as when the growing mode of a
cosmological gravitational wave dominates, the leading term in the gravitational
energy density is of the form (af/ar)ds = O (constant). Cosmological observa-
tions (see SECTION 6.1) indicate the universe has n < O (107!). In this regime, the
term af/arp = cot (n/2) ~ 2/n, which is dependent on the rate of change of the
background, is arbitrarily large; therefore, weak waves may have an effect orders
of magnitude greater than their amplitude. Similarly, the decaying mode of gravi-
tational waves can have prominent or even dominant power in a sufficiently young
universe even when the amplitude of the decaying mode is smaller than that of the

growing mode.

4.5 Conclusions

Solutions have been presented for the gravitational wave equation for a Bianchi IX
universe perturbed to quadratic order from the closed Friedmann case. Quadratic
order is the limit of perturbation theory’s applicability to explore nearly-Friedmannian

Bianchi [X when decaying modes are sufficiently strong that they are not negligible.

At quadratic order, the non-linear interaction of the gravitational waves produces
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isotropic changes to dynamic quantities. While this isotropic change is likely to
be dominated in any particular direction by linear-order contributions from the
gravitational waves, in the regime of strong gravitational waves they will become
more important and potentially even dominant. Where [98] discussed the possibil-
ity of acceleration in a non-vacuum Bianchi [X universe only qualitatively, we have
shown it explicitly as well as illustrating a clear link between acceleration and the

gravitational waves which are intrinsic to Bianchi IX in its full generality.

It is curious to note that the order-n? approximation we have made in (SECTION
4.4.5), a and 0 in the normalization we have chosen take the form of Alexander
polynomials [109, 110], although not Alexander polynomials for any knot of fewer
than 11 crossings. Whether this mathematical observation is significant or coin-
cidental is a subject for further debate, but as gravitational waves in Bianchi IX
are moving equatorially around our background 3-sphere [10], and as a sub-class of
knots (the “torus knots”) are constructed by wrapping one 2-torus around another

it is conceivable there could be a connection.

Back-reaction from growing modes of the gravitational waves appears to have nega-
tive energy density and an equation of state compatible with that observed for dark
energy, especially in the regime of strong gravitational waves and quasi-isotropic
expansion; when gravitational waves are strong, they become the dominant con-
tributor to the evolution of the cosmos in an era following the era of matter dom-

ination.

Therefore, from the perspective of cosmic dynamics, cosmological gravitational

waves in a quasi-isotropic Bianchi IX universe are a viable candidate for dark
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energy, without the invocation of a cosmological constant and without requiring
any modification of the theory of relativity. An analysis of the impact of these
gravitational waves on the cosmic microwave background is necessary in order to
determine whether constraints from the CMB are compatible with the observed

data on acceleration.



Chapter 5

The Cosmic Microwave Background

of a Bianchi IX universe

While long-wavelength gravitational waves can cause both isotropic and anisotropic
changes to the deceleration parameter in a Bianchi IX universe, the effect of such
waves must be compatible with the observed cosmic microwave background in order

to represent a practical model for explaining observed acceleration.

Sachs & Wolfe initiated [23| the systematic study of the effect of perturbations
on the CMB, following a formalism developed by Kristian & Sachs [25]. Sachs &
Wolfe’s work developed the theory of scalar, vector and tensor perturbations on

the CMB in a flat almost-isotropic universe to first order.

Sachs & Wolfe’s work was generalized by Anile & Motta [26] to the almost-isotropic

116
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closed and open Friedmann cosmologies, again at first order. While Anile & Motta
begin to consider the impact of long-wavelength gravitational waves on the CMB,
they choose to explore the impact of waves with scales much smaller than the
Hubble radius. Anile & Motta subsequently [27] ruled out the existence of these

waves at significant strengths in the observable universe.

Doroshkevitch, Lukash & Novikov considered the impact of an anisotropic universe
on the CMB in the case of the Bianchi VII, VIIT and IX models [19], and concluded
that a Bianchi IX model was potentially “compatible with observations, only if
there was some secondary heating of the intergalactic gas”. Doroshkevitch et al’s
most important calculations are carried out on the assumption, then widespread, of
Qur = 1 and as such are of limited applicability; interestingly, in their conclusions
they note that if Q,, < 1, “AT/T will be close to the maximum value only in a
small ’spot’ with an angular size 0 ~ 4Q” (where by “small” they give the example

of Qy ~ 0.1 = 0~ 23°).

Sung & Coles analytically and computationally explore the impact of various un-
perturbed Bianchi models, including Bianchi IX, on the CMB [21]. They report
the useful theorem that “a gravitational field alone is not able to generate polar-
ization”, but do not consider the general case of Bianchi IX, only the isotropic case

equivalent to the closed Friedmann universe.
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5.1 Geodesic equations

The effect of the metric on the CMB is determined by examining the change in
geodesics of light rays relative to an isotropic, background case. Let the subscript
E denote a function evaluated at the time of the emission of a photon, and the
subscript R denote that function evaluated at the time of the photon’s reception.

Then the change in the temperature of the background radiation T is given by

1

Consider the path of a light ray; let this be a four-vector denoted by k* such
that k#k, = 0, with the light ray received in the direction k% = e’. The geodesic

equation for the time part of £* in a Bianchi cosmology reads

dk® o
ot ILEE =0 (5.2)

and the equations for the space part of the vector read

dk® . .
v T Do + Tk + Tk + 4 k°k¢ = 0. (5.3)

Recalling (4.62) and (4.85) the Christoffel symbols

1
F%j = 5’)/(15,706?62, (5.4)
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, 'Y =T9%, =T% =0 and the Ricci rotation coefficients read':

LA :% (0% €bed + Y9 Yedeqny — 7V Vavecqs) NV

T :% (7! (33 = 722) +1) = % (e2172 — X2 41)

Ty :% (Y (133 — 722) — 1) = % (e2172 — 272 1)

I :% (v (1 —ys8) +1) = % (7 — e+ 1) (5.5)
I3, :% (v (11 —733) — 1) = % (€272 — 21720 1)

[y :% (7 (22 =) +1) = % (€272 — 27 4 1)

I3, :% (v (ro2 — 1) — 1) = % (625*27 e — 1)

with all others zero; note that the form of the rotation coefficients guarantees that
only anisotropic parts of the metric tensor will have an effect on &* (and there-
fore o-terms, whether removable or non-removable always vanish in the geodesic
equations; recall SECTION 4.2.1). Using the same method of conformally-related

objects as described in [23, part Ile], define the vector k* : a2k* = k* and the

tensor Yap : a3Yap = Yap; recall that k% = —kiLkE = 1. This gives us geodesic
equations:
d® 1 - -
__a kakb = 56
ix g aok =0 (5.6)
dk? -
ot (e¥772 — X2 kP =0 (5.7)
dk? 2028 _2v—28\ 7.17.3
K‘F(ea — e )k‘k‘zo (58)
dk? 262 20-27\ 7.17.2
ﬁ + (6 T e PY) k’ k/' :0 (59)

Despite the symmetry of these equations, their nonlinearity has inhibited the dis-

covery of exact solutions and research into their properties is ongoing; see for

I The symbol €45 represents the Levi-Civita symbol defined such that e123 = 1
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example [24]. However, with solutions up to quadratic order for the metric in hand
(4.140, 4.141, 4.184, 4.185), we can explicitly solve the equations in the case of
weak waves. Let k% = k% + Ak®()\). Expanding out the geodesic equations to

second order in the metric:

dARY 1 o o o
D o (R 81 () 40 (RR)°] =0 (5.10)
dAEk! o
o T 2(n = B Rk =0 (5.11)
dAk} o
dA2 +2(a1 — m) kpky =0 (5.12)
dAE} o
2 (B — ) bk =0 (5.13)
_ (o + 20% ) (kL)® + 2k Lol Akl 4+
AARY 1 T
o to | + (B +2818) (k) + 238 AR | =0 (5.14)
+ (% +291m) (k)" + 2k AR
dAky (71— B1) (FRAR + E3AR?) + . .
o R (5.15)
+ (v2 — Bo+ 373 — 3B2) kA k3,
dAK?2 (a1 —m) (KRAK] + kRAKY) +
o 2 = (5.16)
+ (a2 — 72 + 3a} — 373) kLK,
dAKS (B1 — an) (KRAR? + kAR +
o =0, (5.17)
+ (B2 — s + 367 — 3a3) kK%,

To first order, the equations are trivially solved by choosing A = 7 as the affine

parameter; the problem of determining d\/dn is overcome by our choice of reference
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system, the lack of vector perturbations and the homogeneity of space:

_ 1 _ _ - N="R
AR == [an (k)" + By (K)" +m (K3)’] (5.18)
n=ne
1 ~ _ o ~ _ 1 ="R
:_§P4@f+@@@%w4@f+?q
n=ne
_ o R
AR, =2k [ (51 =) dn (5.19)
ne
_ o R
Akj ZQk%kll%/ (71— 1) dn (5.20)
nE
_ o R
AK? :21@}%/@/ (o — 1) dn. (5.21)
nE

The relationship (5.18) explicitly shows the quadrupolar nature of changes to the
CMB alluded to in [19]. An unremoved removable perturbation, that is, a gauge
term which is not accounted for, changes the temperature of the whole sky isotrop-

ically; this confirms the effect noted by Hwang & Noh [42].

The equations for quadratic-order corrections read

) (ay + 20k ay) (/;;}%)2 + 2k kol Ak +
dAk:g 1 / ! 7.2)2 1.2 Q1 A 1.2 — 29

+ (7 4 29im) (B3)® + 2k37, AR

which due to the cancellation of the terms in the right column integrates trivially

to

A@:_%k@+ﬁﬂ@f+wﬁﬁaw@%(%+ﬁﬂ@ﬂFW (5.23)

n=nNEe

(reiterating the quadrupolar character of the change to the CMB, but generalizing
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it to anisotropic expansion); meanwhile for the space part of the vector

dAk] (11 = B) (kRAK] + KEART) + > (5.24)
dA + (72 = B2 + 3% — 367 +261 (B — m)) ki,
72 — E3AkY + kRAKS) +
d?)l\@ i (a1 —m) ( RANR] R 1) o —0 (5.25)
+ (a2 — 92+ 3af = 39% + 201 (11 — o)) kihp
73 — kLAK? + K2AED) +
dﬁ)]\€2+2 (B = ) (RRARE + R Ak) =0 (5.26)
+ (B2 — ag + 387 — 3ai + 201 (an — B1)) kpkR
which has solutions
' _ () " (a
B ~ k2 ) — ﬁl d?]"‘
- 2k}, [ <71 - 51) f +
ARy = - + (B3) [ (1 — @) diy (5.27)
| R (e = B3 — B2 (B — ) )
_ o (k ) 76— 71 Cll??Jr
, 2k% [0 [ (@1 =) (
Aki =—2 + (k) f" a1 51 dn (5.28)
L kg, fnn; (‘)‘2 — Y+ @ — A+ 26 (1 — 1)
[ i (k) [ (1 — én) it
_ 283, [ | (B — ) 2 o dn
Aky =—2 + (k%)" " (51—%> di
R 10 (B — s + B2 — 8+ 200 (60— Bu) ) dy

(5.29)

5.2 Redshift and CMB variations

The geodesic of a light ray is related to its observed redshift by
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i 1= % (5.30)

[23|. Having determined ug = 1 and w; = 0 this simplifies to

1= ZZ Ezg/%% (5.31)

so, to quadratic order,

o n=nr
(Ozl “+ g + OJ%) (kll%) +

_ ar (1r) 1 o
dhla S g | BB D) (RR) 4 (5.32)
T 2
tmt+r+?) () |
n=ne
. Meanwhile, the temperature field
( 2 —\ 2 N=NRrR
143 fon (B) + 1 (B)° + o (7] +
— _ 2
(15) ti | (kR)2 + 61 (k%) +m (kﬁ’%)Q] +
E 1 _ ar\NE o
Ty z+1" arp(ng) (a2 +af) (ki) +
+1 | 4B+ 82) (B2) +
+ (4 92) ()’
) /. n=ng
(5.33)

SO
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( ~ \ =N

AT  ap(ng) - .,
T~ ar i) (s + 03) (R + 3

+5 | + B+ B2) (R2)* +

+ (72 +72) (K3)

N - - 7 n=ng

5.3 Comparison with the observed CMB

Five-year and seven-year results [16, 18] from WMAP [30] give the best picture
to date of the CMB. The WMAP observations reconfirm the constraint of the
quantity AT /T < 10~* [20]; any change to the CMB from acceleration must be
equal to or smaller than this value in order to be compatible with observations,
placing an additional constraint on cosmological models. This implies that in the
current epoch, and in the absensce of further special alignment, ||, |3], |y| < 1075.
In a matter dominated universe, under ordinary circumstances, this implies (since

n < 1071 see SECTION 6.1)

CorayMMOT) <1075 = [Caga| S 107° (5.35)
Ca271y£natter S107° = |Caga| S 1075 (5.36)

meanwhile in a radiation-dominated universe,

Ca1,1y¥adiation‘ <107° = |Cpra S107° (5.37)

Caz,1y§adiati°n‘ S107° = |Caza| S107° (5.38)
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The coefficients associated with the decaying mode are constrained to be smaller
than those associated with the growing mode without further theoretical consid-

erations.

5.3.1 CMB anomalies

Since the publication of the latest generation of CMB maps [28|, numerous claims
have been made (for example, |28, 32, 34, 39]) of anomalous structure in the CMB.
While the WMAP team argue [17]| that these phenomena are not of statistical
significance, if a quasi-isotropic Bianchi IX universe could produce any of the per-
ceived patterns it would point the way toward further observational studies of
the CMB to determine cosmological parameters, and establish the quasi-isotropic

Bianchi IX universe as a viable model for cosmology.

In all cases, we emphasize that the most likely explanation for any perceived pattern
in the CMB which is not shown to be statistically significant is the null hypothesis:
that is, the human perceptive phenomenon of pareidolia, the same phenomenon

responsible for observing familiar shapes in clouds or the “Man in the Moon”.

Cold spots, “fingers” and the “Axis of Evil”

Two compact, supposedly anomalous areas of low temperature have been noted in

the CMB, the so called “cold spots”.
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The first of these (called Cold Spot I in [17]) is a region [31] covering approximately
15000 square degrees in the direction of the galactic center, much of which is 194

microkelvin [28] colder than the CMB mean temperature (AT /T = —7.12x107°).

Particularly noteworthy regarding Cold Spot I is its membership in one of four
“fingers” spaced at roughly 90-degree angles around the galactic equator, intersticed
by four areas of higher (AT/Tr = 7.12 x 107°) temperature?. Qualitatively, such
a pattern is roughly consistent with the expected pattern if two of the functions
a, 3,7 > 0 and if two of the the principle axes of the metric tensor lie on the axes
of the cold and hot zones (implying the third axis points along the “Axis of Evil”,
see below). The so-called “Cold Spot II” reported by Vielva et al. [34, 37| also

forms part of these “finger” structures [17].

Cold Spot I also has the angular size [19] predicts for the observed value of 2, & .3.

Due to the coincidence of the cold spot with the direction of the galactic center,
there are no optical observations in its direction (see FIGURE 2.2), and therefore

there is no data on cosmic acceleration in the direction of Cold Spot I.

(EQUATION 5.34) implies that any cold spot resulting from anisotropy in the metric
should be accompanied by an identical cold spot at a point antipodal to the original
spot. Tegmark’s examination 28] of the one-year WMAP data on the CMB low-
order multipoles revealed an alignment between the CMB quadrupole and octupole
in the direction of (I,b) ~ (—110°,60°) along which the quadrupole is nearly zero,

an axis which Land & Maguiejo found [32] extended to the 16-pole and 32-pole

?The CMB dipole is defined as such a way as to be traceless, so [ ATquadrupole/TRdS =0.



5.3. COMPARISON WITH THE OBSERVED CMB 127

as well; the alignment has been dubbed the “Axis of Evil”. While examination of
the three-year WMAP data [33]| found the Axis of Evil to be of lower significance
than initially thought (94%-98%), it still persists; the WMAP team’s discussion of
the alignment [17, pt. 7] admits the “remarkability” of this alignment and, while
assigning its existence to chance, does not attempt to explain the “Axis of Evil” in

full.

The Axis of Evil, which in equatorial coordinates [35, p. 43] lies close to RA 10:44
Dec +7.6°, falls within the zone in which redshift data has been collected for mea-
surement of the cosmic deceleration parameter. To simplest linear approximation
with a pure growing mode, (that is, that the functions @ and o’ are both small such
that o =~ 0) this alignment rules out a CMB arising from cosmological gravita-
tional waves as a source of cosmic acceleration. However, the fact of the alignment
of the quadrupole, octopole, 16-pole and 32-pole indicates that non-linear contri-

butions of gravitational waves to acceleration are not ruled out.

The question of the overall magnitude of the quadrupole, which is only 14% of
the expected value [28, 38|, has also been raised. The WMAP team [17, pt. 4]
agree with Tegmark that the depressed quadrupole falls within the 95% confidence
interval for simulations of the CMB, but do not attempt an explanation for the
unusually strong octopole term. Long-wavelength gravitational waves can easily
explain both through judicious choice of the arbitrary constants C,1; etc. in a
manner compatible with the CMB. Efstathiou [29] supposes that the depressed
quadrupole could be an indication of a closed universe; however, the relationships
he proposes generate zero contributions to the CMB power spectrum from the
genuinely cosmological, intrinsic n = 3 waves found in Bianchi IX, and any obser-

vational test using his framework must rely on correct evaluation of gauge terms
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whose effective wavelengths must be far longer than the cosmic horizon. Further-
more, Efstathiou’s conclusion that a closed universe would automatically require
a scrapping of current inflationary models is contradicted by others; for example,
Guth argues that a universe that is closed but with a very large radius of curvature

is not ruled out [40].

The quasi-isotropic Bianchi IX model cannot provide an explanation for hemi-

spherical dipole asymmetry claimed by Ericksen et al. [39].

5.4 Conclusions

The long-wavelength gravitational waves intrinsic to a quasi-isotropic Bianchi IX
will cause a change in the cosmic microwave background with a distinctive quadrupo-
lar signature. A radially-symmetric pattern of light deflections in the CMB result-

ing from shear may also be observed.

The almost-isotropic Bianchi IX model can be compatible with the CMB as ob-
served, and can provide an explanation for perceived anomalies observed in the
CMB by COBE and WMAP. However, the existence of these anomalies beyond
the level of statistical noise is not certain; a possible route of cross-disciplinary
research is open in the form of examination of the phenomenon of pareidolia as

applied to the CMB.

Models of quasi-isotropic Bianchi IX relying on pure growing modes or pure de-
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caying modes of the gravitational waves cannot simultaneously explain observed
cosmic acceleration and the observed cosmic microwave background. Research into
the non-linear regime of the Bianchi IX cosmology will elucidate the existence of a

model of an accelerating Bianchi IX universe preserving an almost-isotropic CMB.



Chapter 6

An accelerating Bianchi IX universe

preserving an almost-isotropic CMB

In order for a Bianchi IX universe to both appear nearly isotropic in the cosmic
microwave background and to accelerate through the existence of long-wavelength
gravitational waves, it must fulfill two conditions. The first is that the function
k° (ng) must have absolute value less than the limit imposed by observations of
the cosmic microwave background, AT /Tx. The second is that at least one of the
functions Q° < 0. It is possible for both these conditions to be simultaneously filled
while remaining compatible with other observational constraints on cosmological

parameters.

The idea of long-wavelength gravitational waves causing anisotropy in the CMB

has been proposed, but not applied to the Bianchi IX universe. Grishchuk &

130
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Zel’dovich consider the possibility of long-wavelength gravitational waves existing
in a Friedmann universe without violating the limits imposed by the CMB [41], but
do not apply their work to the gravitational waves of cosmological character which
appear in some homogeneous cosmologies. Campanelli et al. suggest that such a
universe could exist and propose a Taub-type Bianchi I universe which also includes
anisotropic dark energy as an initial explanation for the observed CMB, comple-
menting Rodrigues [113]. Critically, they do not consider gravitational waves as
a generator of the anisotropy and treat the parameters of the Taub universe as if
dark energy were simply established by fiat. Similarly, Kovisto and Mota [115] do
not look beyond the Bianchi I model and instead fall back on exotic theories to

explain dark energy.

6.1 Cosmological parameters

WMAP [18, 16| has produced an all-sky survey of the CMB which, if the universe

is almost Friedmannian, can be used to constrain cosmological parameters.

Let the radius of curvature ag and conformal time 7 of the background Friedmann
cosmology be treated as a free parameters; assume a closed universe. The WMAP

seven-year data gives

Hy =70.4%13km /s/Mpc (6.1)

Qf = — .0025 + 0.0109 (6.2)

(WMAP’s analysis includes the value of Q; measured by baryon acoustic oscilla-



CHAPTER 6. AN ACCELERATING BIANCHI IX UNIVERSE PRESERVING
132 AN ALMOST-ISOTROPIC CMB

tions reported in [101]). The radius of curvature, Hubble parameter and curvature

energy density are related by

ap = Hgl\/F;g (6.3)
while the Hubble parameter, radius of curvature and 7-time are related by

Hoag = cot (n/2) . (6.4)

Therefore we have limiting values (as defined by the 95% confidence boundary of

the WMAP observations)

ap >1.12 x 10*%cm (6.5)

no <0.0266 (6.6)
and highest-confidence values

ap =2.68 x 10*cm (6.7)

1o =0.00499. (6.8)

Meanwhile, the ratio of Hubble radius to radius of curvature is at least

Hyag > 8.67 (6.9)

with a best-fit value of

In other words, if the universe is closed, then the cosmological gravitational waves of

the Bianchi IX cosmology are of much, much longer wavelength than the observable
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universe.

Finally, from the value of the redshift of decoupling, 2, = 1090, we

scattering
can say by (2.2) that

nr/nE ~ 33.0. (6.11)

As the available data, including that from supernovae (see TABLE 2.1), do not
exclude a flat universe, we are always free, in developing the theory of Bianchi IX
and acceleration, to set the parameter 7 as close to zero as necessary. Doing so
will not, in and of itself, violate observations, but will instead be constrained by

the impact of the decaying mode of the gravitational waves on the CMB.

6.2 Compatibility with the redshift

Of all the observed cosmological parameters observed by WMAP and other probes
of the CMB, the ones that are directly observed are AT/Tg and 2, scattering-
From these we can say that in the current epoch the universe appears isotropic and
that its expansion since last scattering has, on average to the present time, been
isotropic. Neither of these facts necessarily imply that the overall expansion was
isotropic at any time before the present. Instead, the condition of quasi-isotropy
simply implies that
dk® 1

— } Zywokk’ =~ 0. 6.12
an + 5 Yab,0 ( )
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This implies that shear is small, so

ke Akl (6.13)

241 =ar (nr) /ar (NE) (6.14)

as in the background Friedmann case.

We can obtain a near-zero value to the wave functions in the present epoch by
admitting the presence of both growing and decaying modes in the gravitational
waves. We want the condition (assuming AT /Ty is positive; in the case that it is

negative the inequalities must be reversed)

ar (NE)

0<
ap (TIR)

e(nr)=a(r) < |AT /T (6.15)

and similarly for ,~. In its full form this equation is transcendental even when
discussing weak waves, but expanding (4.135) to lowest surviving order in 7, we

obtain

137Cor1 (0% — 13) +4Ca21 (07 — 15°)| < |AT/Tr. (6.16)

In a young universe, the times of emission and reception of a light ray are related

by neg =~ ng (z + 1)71/2 SO
’37Ca1,1 (1= (24 1)) 13 + 4Cuny (1 (24 1)3/2> n;f" < |AT/Tg|.  (6.17)
Let:

e 1079 be the amplitude of the growing mode Cy1 .1, 50 Cp11 = sgn (Cuy1) 1079;

e 10~ be the amplitude of the decaying mode Ca2.1,50 Cho1 =580 (Cha1) 10~
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e 10? be the value of NR;

e 1077 be the value of |AT /T

so noting that z ~ 1000 = 103, our condition becomes approximately
|sgn (Car1) 1072079732 — sgn (Cgy) 10%741°] < 1077 (6.18)

When the amplitude of the growing mode term dominates, this approximate in-

equality is satisfied by

2 —g+3/2< T, (6.19)

when the decaying mode dominates, the inequality is satisfied by
3b—d+5<-T. (6.20)

WMAP constrains T ~ 4 (the difference between lowest and highest temperatures
is 2ATR/T = 1.4 x 107*) and b > 1. This constrains the growing and decaying

modes, when they act on their own, to:

927/2 (6.21)

d >12. (6.22)

There exists a third possibility, in which the growing and decaying contributions
are, in the current epoch, of equal size and opposite sign. For this to be the case,
we need

—2b—g+3/2~3b—d+5; (6.23)
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this approach relies on the observation of amplification of weak gravitational waves
in rapidly-changing backgrounds (see SECTION 4.4.8). Since b is a free parameter,
this approximate equation can always be satisfied, but we still need to satisfy the

constraints of the CMB.

6.3 Acceleration in the Bianchi IX universe

6.3.1 Order of magnitude estimates for gravitational wave

amplitudes

We could naively attempt to relate an assumed isotropic acceleration to the con-
straints of the CMB by using (5.34) to constrain the amplitude of the gravitational
wave functions and determining the value of (4.228) that results. This gives us, to
lowest orders in 7, assuming a pure growing mode of the gravitational waves and
choosing k% = (1,0, 0) for simplicity,

35 1y

> m%C“l’mé ~AT/Tpr=10"° = Cu1 ~ —2 x 107 3> (6.24)

and therefore, if we assume that Cy11,Cg11,C41,1 are all of the same order of

magnitude,

- 4900 _ _
AQQ ~ —WOzT]?% ~ — (1 x 10 11) TIR2 (625)
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and thus we could conclude that the observed difference between the deceleration

parameter and its Friedmann value

AQy~—1 = np~3x107° (6.26)

which is certainly on its own allowable under the observed cosmological parame-
ters. To do this, however, would require C,;; ~ 2 x 10°, well beyond the limit
of applicability of what could be called “weak” waves. Nonetheless, we can confi-
dently say we have shown that weak gravitational waves can contribute to cosmic

acceleration. This statement is the main result of this work.

Meanwhile, consider the anisotropic deceleration parameter:

11011

Q)

2 2 —1
uil g, — 2% - (d+d2)} <1+2‘,1—Fa+‘,1—§a2) (6.27)
(a11) ar ar ar ar

& similarly for Q3, Q3; this relationship is exact. Evaluating (4.203) gives to lowest
surviving order in n

1 — 9
AQn,growing ~ =T70Ca117 (6.28)

(1) —_ B —1
11,decaying ~ 9 Cazan ™ (6.29)

AQ

With an observed AQ1; =~ —1 we can write:
10° & sgn (Co1.1) 109757279 — sgn (Cpy) 101740, (6.30)

In the case of the growing mode dominating we need sgn (C,11) = +1 and 9/5 +

2b — g &~ 0. This forms a system of equations with (6.19) so we have, at the limit
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of the allowed CMB perturbation,

9/5—-2b—g=~0
= 1o solution; (6.31)

—2b—g+11/2=0

the growing mode cannot, on its own, cause the observed acceleration and be
compatible with the CMB. For the decaying mode, we need sgn (Cy21) = —1 and

have

1—d+b~0 b~ -5 n~1x10°
= — (6.32)

3b—d+5%—4 d~ —6 Ca271N1X106

which is a nonsense result. Therefore neither the growing or decaying modes, on
their own, can both cause observed acceleration and preserve the CMB. In the
cases of the two modes having comparable effect on the metric and opposite sign,

though, we can solve (6.30) with sgn (Ca11) = +1, sgn (Caz1) = —1 and

100 & — (Cy1) 107572579 4 (Clgq) 1017440 (6.33)
g—d~—5b—T/2 17 52

— d~ — +Tbhg~2b— = 6.34

g T 0 (6.34)

9/5-2b—g~0

when the growing mode dominates the change in acceleration; this sets estimated

limits on the parameters (since b 2 2):

Cora 22 x 10 (6.35)

Ca271 §2 X 10716. (636)
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When the decaying mode dominates the change in acceleration,

g—d~ —5b—17/2

— g~ —4b—5/2,d~b+1 (6.37)
1—d+b=0
which constrains the parameters
Cor1 23 x 101 (6.38)
Caz1 S1x 1072 (6.39)

While the values for the growing mode are far greater than those for what could
be called “weak” waves (recalling the constraints of SECTION 4.4.4), our educated
estimate for C,q 1 in the growing-mode dominated regime aligns nicely with the
necessary strong-wave growing-mode value for AQ1 disregarding the CMB; we
could not have expected a change in acceleration at order unity in a universe
where 7 is small to be driven by anything less than a gravitational wave so strong
as to dominate the Friedmannian expansion. Therefore we can turn to an analysis

in the quasi-isotropic regime.

6.3.2 Quasi-isotropic, strong growing mode acceleration

We apply the same reasoning as in the previous section, but we are aware of
constraints (from [28]) not just on the CMB in the direction of the observed accel-

eration (which we continue to assign as the “a” or e} direction) but on the CMB
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in the other two (the “beta” and “gamma” directions):

AT, /Tr + = (ATﬁ /Tr + AT, /Tg) =7.1 x 107° (6.40)
2ATs /TR =1.4 x 107* (6.41)

2AT, )Tk =1.4 x 10~ (6.42)

Qi =-0.6 (6.43)

nr <3 x 1072 (6.44)

In this and all regimes to follow we can also approximate QQr ~ Qﬂat 1/2 to the

limit of precision given the constraints on 7; Qr will be 1% stronger than ant

only when 1 =~ 0.51. Between the constraints (6.40-6.43) and the average over
B

the sky of AT /Ty = 0, we have four equations with seven unknowns (7, c§, ¢y, ¢g,

Ca2,Cps2,C2). These equations are, explicitly (see equations 4.141, 4.203, 5.34):

7.1 x 107 2 (nw/nr)? (extm)=ene) 1) (6.45)

1.4 x 107 > (ng/nr)? (e/f(’m ~1) (6.46)

1.4 x 107 2 (ng/ng)* (7" —1) (6.47)
Qr — tan (1r/2) o — tan® (nr/2) o — tan® (nr/2) off

Q) =

6.48
1+ 2tan (nr/2) oy + tan® (nr/2) of (6.48)

Trivially, we can see that in the limit of o, 3,7 — oo, we must have Q} ~ Q3 ~
Q3 — —1; if acceleration is driven by growing modes of long-wavelength gravi-
tational waves then in the long run, the universe asymptotically approaches de
Sitter expansion as if driven by a cosmological constant, indicating a solution in

the regime of quasi-isotropy.
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Consider the quasi-isotropic solution to the growing mode of the Einstein equations,
normalized as in EQUATIONS (4.193-4.198). In the regime where ¢ is sufficiently

large that A > 1, we can approximate

A? (6.49)

A (6.50)

(an identical argument, with the functions « and § transposing their roles, applies
for the case where ¢§ < 0). From these terms we can also approximate the next

order terms in the series:

521
O At 6.51
“ 5600 (6.51)
15
A~ - mA‘l. (6.52)

Thus we see that the three functions «, 3,7 are related in a Taub-like but not
exactly-Taub fashion (this corresponds to case C; as described by [146]). Approx-

imating equation (6.48) to order A*n* we obtain the relationships

3A2p2 — (B2L 4 1Y g4p4 6
Qi(nR):QF+8 T~ (i + 30) nR+O<(%AnR>>

1 2 1 521 4
= 3 A% + (55 + 1ios) Ak

Qr — LA + (& — 2 At 1 6
Q3 (nr) ~ Q3 (ng) =420k (2924 ) A% g Sk ) |-

1+ 354205 + (555 — 55) Ak

When Q] (ng) = —0.6 then Ang =~ 1.5+ 0.2 (¢ = 1.9), within the limit of
applicability of the expansion and also in the regime where the infinite series (4.190)
converge. Thus, we have shown analytically that long-wavelength gravitational

waves can explain cosmic acceleration if that acceleration is anisotropic.

We can also make the following qualitative assessments about acceleration. Firstly,
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its time-evolution is non-monotonic. In the « direction, the universe will at first
exhibit slightly increased deceleration before starting to accelerate. In the S and
~ directions, deceleration will asymptotically increase toward infinity but then
acceleration will decrease from infinity, quickly converging on the strong-field value
of Q3 = Q3 = —1. Acceleration in the « direction begins at An &~ 1.2 and the
universe accelerates in every direction after An = 1.6; thus the supposition that

acceleration is a recent phenomenon is supported.

A universe that is accelerating in every direction is within the region allowed by
the model. FIGURE (6.1) illustrates the evolution of the deceleration parameters
as a function of time. The constraints placed on the decaying mode in (SECTION
6.1) and the upper limit on ng show that the decaying mode of long-wavelength
gravitational waves has not played a significant role in cosmic acceleration; in the
epoch of last scattering, the deceleration parameter was almost isotropic and had

a close to Friedmannian value.

We now turn our attention to the preservation of the CMB. We have three equations

in three unknowns, taking the lowest term in the decaying mode and the lowest
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Figure 6.1: Deceleration parameter versus time
Along a preferred axis, the universe at first decelerates, then quickly begins accel-
erating, with the deceleration parameter asymptotically approaching —1. Along
the other two axes, the deceleration parameter goes to infinity before converging
asymptotically from negative infinity to the value —1. The vertical axis of each
graph gives Q°; the horizontal axis is in units of A7.



CHAPTER 6. AN ACCELERATING BIANCHI IX UNIVERSE PRESERVING
144 AN ALMOST-ISOTROPIC CMB

two terms in the growing mode:

[ a (02 2 1(.a\2 (2 212
& (mp—ng) +5(c5)" (e —np)” +
71 % 1075 4 (0 /)’ 5 (np — %) + 3 (5)” (g — nE) (6.53)
+c§ (nk — 1) + Caza (1° —ni°)
i 2
B (2 2 1(.B 2 212
& (Mg —n )+—<C) (g —nE)" +
14x 1074 >4 (ge/mp)® | 20 2R TR (6.54)
+c{ (h — n) + Caaa (ng° — ng”)
) 2_2+1672 2_22+
1.4 % 1074 >4 (TIE/TIR)Z > (Mg —mE) + 3 (e2)” (N — n) (6.55)
+ci (g = 1k) + Can (17° —ng°)
As 30ng ~ ng we can further approximate
1 [1 1 521
71x 1075 >— |- A%9? — — | A*% +27000C 01072 6.56
Ry |3t R T (32 5600) e 21R (6.56)
1451074 > _—EAQnZ + D + el A'ng 4 27000C 32,11 7° (6.57)
' ~225 | 207 BT\ 800 " 224 R LR '
1451074 > _—EAQnZ + 9 + ) Atnf 42700005 115" (6.58)
' ~225 | 200 "R T\ 800 ' 224 R S R

If we take the inequalities as approximate equivalences and use Anr ~ 1.5 then

this system has solutions

05271 %C’}Q,l =~ 3 X 10777]13%

Cag,l ~ 9 x 10_67];’%

which is compatible with the estimates of (SECTION 6.3.1). That Cyho1 + Choq +
Cy21 # 0 is a consequence of the impossibility of a priori choosing an “unper-
turbed” temperature against which to compare anisotropic CMB fluctuations; the
significance of non-linear terms means we cannot at the same time have the average

over the whole sky of AT /Tr = 0 and have d; = 0, recalling (EQUATION 5.18).
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We exhaust almost all the freedom in the system (6.45-6.48) in choosing to explain
the “Axis of Evil” at the same time as acceleration; if this requirement is dropped
and we treat CMB variations as insignificant then a broad range of solutions opens
up. In particular, if the ratio of growing mode to decaying mode is approximately
equal for all three of «, 3,7 we always have sufficient freedom to choose a n that
reduces CMB variation to below the level of detectability, at the expense of “tuning”

the universe to place us as observers in the era when the CMB is nearly isotropic.

Compatibility with an almost-isotropic Hubble flow

The objection could be raised that the necessity of the universe contracting along
two axes demands that a large region of the sky be blue-shifted, which would surely
have been observed. This problem can be made to vanish into statistical noise by
the choice of a sufficiently small n as (4.201) implies apHy; = dp/ar + o =
2(n~t+cyn) ete. Tt is notable that the very limited indications [149, 150] of
anisotropic Hubble flow roughly align with the Axis of Evil and show angular

scales on the order of 40°.

6.4 Conclusions

It is possible for a Bianchi IX universe with initial conditions cf, cg , o ~ 1 to dis-

play the acceleration observed in our universe while not only remaining compatible

with the observed CMB but providing an explanation for potentially meaningful
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patterns in the CMB, specifically the so-called “Axis of Evil” and its associated phe-
nomena such as cold spots. These conditions can be attained without additional
constraints on the cosmological parameter of (g, a parameter which is subject to

further scrutiny and potentially tightening toward the flat universe case of 25 = 0.

The method of combining strong growing modes with linear-order weak decaying
modes of cosmological gravitational waves is borne out by observational data, which
imply a difference of at least 17 orders of magnitude in amplitude between the
growing and decaying modes. In the current epoch, decaying modes of cosmological
gravitational waves can be neglected entirely. However, in the time close to last
scattering, these modes may have participated at a strength comparable to the
growing modes. Furthermore, the action of growing or decaying modes on their
own is ruled out as an explanation for acceleration as neither on its own can

preserve the CMB.

The question of how the ratio of growing mode to decaying mode is equal along
all three principle axes of the metric tensor is answered easily if we postulate that
cosmological gravitational waves present at the earliest moment in time were all in
phase (the easiest way to do this is to postulate that they consisted of pure growing
modes). As the functions «, 5 and v would have all crossed the boundary from
aw = 1/3 medium to a w = 0 medium at the same time, they would thus have
remained in phase after last scattering, implying equal growing-to-decaying ratios
for all three functions. As this transition happened in the very young universe
(ne <2 x1073), the decaying mode that exists after last scattering would be very

small.
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The nonlinearity of Bianchi IX causes growing modes with initial values of order
unity to develop exponentially and cause very powerful effects. The structure of
the equations also indicates that multiple sets of initial conditions can lead to the
same set of cosmological parameters. In light of the requirement of this model
that both strong growing modes and weak but non-zero decaying modes of the
gravitational waves exist, the possibility that these long-wavelength gravitational
waves constituted the “pump field” of inflation [103] in the early universe should

be explored.

The model proposed can be tested and is falsifiable by observation of acceleration in
areas of the sky 90° from the highly-observed field; in areas of the sky away from
the currently-observed acceleration, we will see either a very large deceleration
parameter or a negative one. From the analysis of acceleration data in (CHAPTER
2) it is easy to see that, in the current state of observations, there are several
possible areas of the sky where evidence of a gravitational-wave nature of cosmic

acceleration could be sitting undetected.



Chapter 7

Conclusions

We have examined the current dominant hypotheses explaining cosmic accelera-
tion and we have identified shortfallings in them, notably the overapplication of
the assumption of isotropic acceleration in the absence of data covering large areas
of the sky. We have completed an analysis of the almost-Friedmannian Bianchi
IX cosmology perturbed to quadratic order in small corrections to the background
metric and we have shown that both weak and strong cosmological gravitational
waves could contribute to cosmic acceleration under some circumstances. We have
completed an analysis of the effects quadratic-order weak gravitational waves would
produce on the cosmic microwave background and we have shown that not only
could cosmological gravitational waves be compatible with the CMB but their
presence could account for many suggested anisotropic anomalies in the CMB. We
have presented a set of cosmological parameters including strong growing cosmolog-
ical gravitational waves and weak decaying cosmological gravitational waves which

is compatible with observations of cosmic acceleration without the invocation of

148
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scalar fields of exotic equation of state, at the expense of strong anisotropy in the
Hubble flow. We have proposed observational tests which would provide evidence

for or against this model.

7.1 Directions for future research

The possibility of explaining cosmic acceleration through a Bianchi IX cosmological
model opens up numerous possibilities for future research, both theoretical and

observational.

While the difficulties with carrying out a full-sky optical survey of supernovae are
understandable, experimental verification or falsification of a Bianchi IX model
for acceleration requires nearly full sky coverage at high 2z to discover or rule out
regions of anisotropy in the acceleration field. Infrared astronomy with wide sky
coverage, for example WFIRST [65], presents the best possibility for these new
observations through traditional astronomy. The Einstein telescope provides the
tantalizing possibility of independent verification of the properties of dark energy

through the examination of gravitational radiation [111].

Meanwhile, the available supernova data can be re-examined for signs of accel-
eration, although given the comparatively small datasets in any particular area
other than the highly-observed field and the equatorial bias in the distribution of
the data this re-examination is less likely to produce definitive results. Célérier is
justified in her criticisms [91] of the assumptions being made in proposed models

of cosmological acceleration; it is curious that the authors if [89] reasoned, with
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44 low-z sources, that “poor coverage at low and moderate Galactic latitudes |...]
makes it practically impossible to distinguish between a peculiar monopole and a
quadrupole” but that [1], which shares two authors with [89], does not even mention

the possibility of cosmographic bias in its smaller sample of high-z sources.

Consideration should be given to the question of why cosmographic bias exists,
and whether it points to an unexpected privileging of the observer: namely, the
fact that modern observatories are hosted only in regions of the Earth that can

afford to host them.

Perturbative methods for solving the Einstein equations for weak gravitational
waves in Bianchi IX can be considered exhausted, having reached the limit of
practical utility at quadratic order. Further analytic explorations should concen-
trate on the quasi-isotropic approach. The fact of Bianchi IX’s easy reduction
to a system of non-linear second-order ordinary differential equations combined
with the divergence of Taylor series describing strong gravitational waves point
toward either a Fourier-series approach or numerical methods for further analysis;
the likelihood of chaotic behavior [73] in Bianchi IX, though, merits caution in the

selection of initial conditions for any simulation.

Numerical examination of the quasi-isotropic regime should also be pursued for
a fuller exploration of the space allowing for anisotropic acceleration while pre-
serving an almost-isotropic cosmic microwave background. The next generation
of microwave anisitropy probe should settle the question of whether the “Axis of
Evil” and similar phenomena are genuine artifacts or statistical noise; in the mean-

time, the question of pareidolia in relation to the CMB has not been explored
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and deserves formal examination in order to raise awareness within the scientific

community of the issue.

Overall, any theory is only as good as its ability to predict future results. Cosmic
acceleration needs to be more closely examined, not only for time dependence, but

for spatial dependence, before any theory can emerge as preferred.

7.2 Implications of the Bianchi IX cosmological model

Since the discovery of cosmic acceleration, a wide range of scalar theories, ranging
from the mundane to the exotic, have been put forward to explain the phenomenon.
While the fact of acceleration, the discovery of which was the logical culmination
of the hunt for the “missing mass” of the universe above and beyond that provided
by dark matter, necessarily implies the slaughter of at least one sacred cow, the
community of physicists has no consensus over which should be sacrificed the most

readily.

Attempts to surrender homogeneity are physically the best-grounded but philo-
sophically the most rash. Certainly the idea of a purely homogeneous cosmology
is an approximation, but a universe which is not on average homogeneous, that
is, where the homogeneous regions are rare exceptions, is one in which cosmology
as a science ceases to be possible. The “Swiss cheese” universe has the advantage
of making use of a known, exact solution to the Einstein equations and at least
avoids the exceptionalism of the “Hubble bubble” proposal, but defeats itself on

the grounds of testability.
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Meanwhile, postulation of exotic states of matter has been done too enthusiastically
for the evidence available. The simple fact of noting that the available data on
acceleration was anisotropic exposes as irrational exuberance the rush to explain
the phenomenon through the medium of a substance which has never been seen or
even indicated in the laboratory, and whose theoretical justification is far beyond
testability. The willingness of many to see acceleration as a falsification of the
theory of general relativity looks all the more bizarre when counterposed with the

unwillingness to explore gravitational-wave solutions to the problem.

The objection could be raised that asserting acceleration to potentially be anisotropic,
in the weak sense of the word “isotropy”, violates the cosmological principle by
saying that our telescopes are privileged observers, in that our observational field
happens to align with an axis of acceleration. This is no more so true than the
“privilege” hypothesized by, for example, Riess et al. when they assert, from a few
dozen data points, that acceleration is a recent phenomenon, and that implicitly
we are privileged observers in time for taking up cosmology just as the universe
has begun to exhibit this behavior. While a cosmological constant is the simplest
explanation for wy = —1 on mathematical grounds, the lack of physical justifica-
tion for a non-zero cosmological constant puts it in the same class as scalar-field
theories. The simple fact is, wx = —1 is, in the long run, the natural equation
of state for any function which grows faster than the matter-driven terms in the
background cosmology. The idea of the “Big Rip” [99], while intellectually (and
emotionally) intriguing, makes the same mistake in the other direction, privileging
observers to be alive just as the universe is beginning to tear itself apart. In this
sense, a wy = —1 field is the best preserver of the cosmological principle, and
when the cosmological constant has been excluded the simplest explanation for

acceleration comes from a tensorial field.
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Similarly, when cosmic flatness is called into question — and it has never been
and can never be definitively proven, it can only be disproven — the next-simplest
model is the closed model. Recall that the Bianchi models are distinguished by
their symmetries, and of all the Bianchi models with Friedmann universes as special
cases, Bianchi IX has the most symmetric symmetries, obeying a “handedness” rule
students learn before their first year of university. The fact of this “handedness”
— parity — may even provide a neat explanation of the CP violation in particle

physics [100], as Grishchuk alluded to [10].

The least speculative fact revealed by the assessment of available acceleration data
is that more data is needed, from broader areas of the sky. The anticipated
launch of WFIRST is likely to prove more momentous for cosmology than the
flight of WMAP; WMAP largely reconfirmed what we already believed we knew,
but WFIRST and SNAP will clearly illustrate how much we do not know. We also
need techniques to see deeper into the sky and measure the distance-redshift rela-
tionship further into the past; the standard ladder of baryon acoustic oscillations
[101] combined with better redshift data from WiggleZ may provide the necessary

window.

That Bianchi IX could in principle contain accelerating regimes was never really
in doubt. Numerical and qualitative analysis has indicated this ever since [10]
noted that the vacuum equations contained a regular minimum, implying a positive
first derivative for the Hubble parameter. The character of the acceleration has
now been more properly investigated, bringing with it the possibility of a purely
gravitational explanation for inflation, especially in light of the divergence of §
constructed only from growing modes in the radiation-dominated universe. An

exploration of the differences between Bianchi I and Bianchi IX in a universe filled
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with ultra-relativistic matter could make Bianchi IX into a panacea for all the

major problems of large-scale cosmology.

The unwillingness of the perturbed Bianchi IX cosmology to support decaying-
mode gravitational waves stronger than linear order is puzzling, especially as the
BKL universe always has a divergent term. The BKL universe, though, never
reaches a singularity, and so the divergence of the a decaying mode never has time
to take effect. Furthermore, the power law contraction along one axis could always
be explained by a “growing” (non-diverging) function with negative coefficients,

due to the exponential term in the metric.

The impact of strong waves on the CMB, meanwhile, also requires deeper expla-
nation. Preservation of the CMB’s apparent anisotropy at first glance appears
to require some “tuning”, a particular growing-decaying ratio which merits deeper
questioning; there is also the outstanding matter of why we happen to live in one
of the few periods of time when the CMB appears nearly isotropic. Clever ex-
amination of the symmetries of Bianchi IX may reveal a more satisfying answer,
although the ability of Bianchi IX to explain CMB anomalies is one of its most

satisfying features.

Most fundamentally, the biggest impact of the Bianchi IX theory of cosmic ac-
celeration is the expansion of the cosmologist’s parameter space. While in scalar
models the only parameter truly open for discussion is the function describing the
equation of state of dark energy, the gravitational waves of the Bianchi IX universe
have four degrees of freedom; while the strength a non-zero cosmological constant

has some theoretical justification in fundamental physics independent of large-scale
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cosmology, there is no immediately apparent reason why the gravitational waves
in Bianchi IX should have any particular amplitude. As always in cosmology, we

need more information than we have.
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Table 7.1: Supernova observations used 1

of acceleration

Right ascension, J2000 | Declin
Riess 1998 supernovae:[90]
SN1994U |13:04:56 —6:3:3
SN1997bp |12:46:54 —10:2:
SN1996V | 11:21:31 2:48:4(
SN1994C |07:56:40 44° 52
SN1995M | 09:38:42 —11:3¢
SN1995ae |23:16:56 —1:55:
SN1994B |08:20:41 15:43:-
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SN1995a0 |02:57:31 —0:18:40
SN1995ap |03:12:28 0:41:43
SN1996R | 11:16:10 0:11:39
SN1996T |10:05:28 —6:32:36
SN19971 | 04:59:37 —2:50:58
SN1997ap |13:47:10 2:23:57
SDSS-II SNIa observations:[3]

(Corner 1) | 20:00:00 1:15:00
(Corner 2) |20:00:00 —1:15:00
(Corner 3) | 04:00:00 1:15:00
(Corner 4) | 04:00:00 —1:15:00

ESSENCE windows:[11]
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waal 23:29:52.92 —08:3¢
waa2 23:27:27.02 —08:3¢
waaJd 23:25:01.12 —08:3¢
waao 23:27:27.02 —09:1+
waab 23:25:01.12 —09:1-
waa’ 23:30:01.20 —09:4:
waas8 23:27:27.02 —09:5(
waa9 23:25:01.12 —09:5(
wbbl 01:14:24.46 00:51:-
wbb3 01:09:36.40 00:46:-
wbb4 01:14:24.46 00:15:-
wbbbd 01:12:00.46 00:15:
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wbb6 01:09:00.16 00:10:43.5
wbb7 01:14:24.46 —00:20:17
wbb8 01:12:00.46 —00:20:17
wbb9 01:09:36.40 —00:25:1¢
wccel 02:10:00.90 —03:45:0(
wce2 02:07:40.60 —03:45:0(
wced 02:05:20.30 —03:45:0(
wced 02:10:01.20 —04:20:0(
wWCCH 02:07:40.80 —04:20:0(
wce7 02:10:01.55 —04:55:0(
wces8 02:07:41.03 —04:55:0(
wce9 02:05:20.52 —04:55:0(
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wdd?2 02:31:00.25 —07:4¢
wdd3 02:28:36.25 —07:4¢
wdd4 02:34:30.35 —08:1¢
wddd 02:31:00.25 —08:2:
wdd6 02:28:36.25 —08:2:
wdd7 02:33:24.25 —08:5¢
wdd8 02:31:00.25 —09:0(
wdd9 02:28:36.25 —09:0(
HST supernovae:[1}]

SCP05D0 |02:21:42.066 —03:2°
SCPO6H5 | 14:34:30.140 34:26::
SCPO6KO0 |14:38:08.366 34:14:"
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SCPO6K18|14:38:10.665 34:12:47.1
SCP0O6R12|02:23:00.083 —04:36:0¢
SCP06U4 |23:45:29.430 —36:32:4¢
SCP06C1 |12:29:33.013 01:51:36.¢
SCPO6F12 | 14:32:28.749 33:32:10.(
SCP05D6 |02:21:46.484 —03:22:5¢
SCP06G4 | 14:29:18.744 34:38:37.<
SCP06A4 |22:16:01.078 —17:37:2%
SCP06CO0 |12:29:25.655 01:50:56.1
SCP06G3 | 14:29:28.430 34:37:23.1
SCPO6H3 |14:34:28.879 34:27:26.C
SCPO6N33|02:20:57.699 —03:33:2¢
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SCP05P1 | 03:37:50.352 —28:4:
SCP05P9 |03:37:44.513 —28:4.
SCP06X26|09:10:37.888 54:22::
SCPO06Z5 |22:35:24.967 —25:5
Riess “gold” dataset:[56, 54]

Window 1 |03:32:30 —27:4¢
Window 2 |12:37:00 62:10:(
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