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Summary

Multiple observations of distant type Ia supernovae show the deeleration parame-

ter of the universe is negative. The standard osmologial model states expansion

should be slowing down.

A new theory is presented whih explains osmi aeleration only through the

ation of well-supported phenomena in the ontext of Einstein's general theory of

relativity through the use of the Bianhi type IX homogeneous, losed osmology.

The evidene for aeleration is assessed and previously-unreported biases and

insu�ienies in the evidene are revealed and disussed.

The Einstein equations for the Bianhi type IX osmology are solved to quadrati

order in a matter-dominated universe. The �rst terms of a power-series solution

are given for arbitrarily strong growing mode of gravitational waves in a matter-

dominated Bianhi IX universe. The e�et of these waves on the energy density of

the universe is shown to be ompatible with available data.

The equations for redshift anisotropy in the Bianhi IX universe are solved to

quadrati order. Reported anomalous struture in the osmi mirowave bak-

ground is onsidered in the light of these solutions. The Bianhi IX universe is

shown to provide an explanation for these anomalies ompatible with the CMB.

In order to help typify a new lass of standard soures for determining osmologial

parameters, a formula relating the time-dependent de�etion of light by a massive,
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ompat binary suh as a super-massive blak hole binary is derived. This formula

is applied to the system 3C66B and �nds that in ideal irumstanes, the best

available observational tehniques ould detet a time-dependent omponent to

the bending of light by the ore of 3C66B.

A solution for the Einstein equations in the Bianhi IX universe is found whih

explains osmi aeleration while remaining ompatible with the CMB and other

osmologial parameters as reported by WMAP.
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Abstrat

Strong long-sale gravitational waves an explain osmi aeleration within the

ontext of general relativity without resorting to the assumption of exoti forms

of matter suh as quintessene. The existene of these gravitational waves in

su�ient strength to ause observed aeleration an be ompatible with the osmi

mirowave bakground under reasonable physial irumstanes. An instane of

the Bianhi IX osmology is demonstrated whih also explains the alignment of

low-order multipoles observed in the CMB. The model requires a losed osmology

but is otherwise not strongly onstrained. Reommendations are made for further

observations to verify and better onstrain the model.

Chapter 3 has been previously published as ([152℄). Equations desribing osmo-

logial gravitational waves at quadrati order and in quasi-isotropi approximation

in a matter-dominated Bianhi IX universe; equations desribing seond-order or-

retions to the osmi mirowave bakground resulting from quadrati-order-strong

gravitational waves; and analyti alulations of the dynamis of a Bianhi IX uni-

verse, inluding the expliit illustration that suh a universe an undergo osmi

aeleration are original to this work, as are onlusions following from that math-

ematial anaysis.



Chapter 1

Introdution

1.1 Bakground

The observational on�rmation that the universe has been expanding from a on-

dition of extreme density and minute size sine some point in the �nite past rep-

resents a major triumph of Einstein's theory of gravitation in providing an elegant

explanation for osmology, without the addition of exoti, heretofore-unobserved

substanes or fundamental fores. This notion has however faed a serious hallenge

sine Riess's 1998 disovery[1℄ of osmi aeleration. The purpose of this researh

is to evaluate the following question: an the bak-reation of long-wavelength

gravitational waves in a losed universe ontribute to osmi aeleration while

remaining ompatible with observational onstraints?

2
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1.1.1 Standard osmology predits an expanding universe

The full Einstein equations read

1

Rµν −
1

2
Rgµν = kTµν + Λgµν (1.1)

where gµν is the metri tensor, Rµν is the one-ontrated Riemann tensor, R is the

Rii urvature salar, Tµν is the energy-momentum tensor, Λ is the �osmologial

onstant� and the onstant k ≡ 8πG/c4 ≈ 2.08×10−43
kg

−1
m

−1
s

2
. We approximate

that all matter in the universe is, on large sales, an isotropi �uid (T11 = T22 = T33)

so, in a Gaussian (g00 = 1) and synhronous (g0i = 0) oordinate system, we have

[4℄:

R0
0 −

1

2
R =kT 0

0 + Λ (1.2)

−R =kT µ
µ − 2Λ. (1.3)

Cosmologial parameters

In disussions of osmology it is onventional to trak the expansion of an isotropi

metri by introduing a �sale fator�, whih is a positive funtion of time only. In

general the sale fator has no spei� geometri meaning other than to ompare

distanes in the metri at di�erent points in time. Furthermore, the sale fator

loses unique meaning when the universe beomes non-isotropi. Let the oordinate

1

Throughout this doument, indies written with Greek letters µ, ν et. run over 0,1,2,3 and

indies written in Roman letters i, j et. run over 1,2,3. The sign of the metri tensor reads

+,−,−,−.
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x0
, whih is privileged in the g11 = g22 = g33 = onstant Minkowski speial ase

of the metri, be designated as �time�. We will denote this sale fator funtion

as a (t) in analogy with its de�nition in the Robertson-Walker metri, where it

appears as [5℄

ds2 = dt2 − a2 (t)
(dx1)

2
+ (dx2)

2
+ (dx3)

2

1 + 1
4
K
[

(dx1)2 + (dx2)2 + (dx3)2
]2 (1.4)

and the symbol K has the value 0 in a �at universe, 1 in a losed universe, and -1

in an open universe. In this ase the Einstein equations read [5℄

2

3

a2
(

ȧ2 +K
)

=kǫ+ Λ (1.5)

−6
ä

a
=k (ǫ+ 3p)− 2Λ (1.6)

where ǫ denotes the energy density of matter desribed by the energy-momentum

tensor and p denotes the pressure of matter desribed in that tensor.

When disussing osmology it is ommon [4℄ to de�ne osmologial �dynami�, that

is time-dependent, quantities in relation to the sale fator through the means of a

Taylor expansion. Let the subsript 0 denote a funtion evaluated at a partiular

moment in time t0 (whih is how we will generally use the subsript 0 ):

a0
a

≈ a0

[

1

a0
+ (t− t0)

(

d

dt

1

a

)

t=t0

+
1

2
(t− t0)

2

(

d2

dt2
1

a

)

t=t0

]

= (1.7)

= 1− (t− t0)
ȧ0
a0

+
1

2
(t− t0)

2

(

2ȧ20 − a0ä0
a20

)

. (1.8)

2

A single dot denotes a derivative with respet to t; two dots denote a seond derivative with

respet to t.
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In isotropi osmology we de�ne the Hubble onstant H0 ≡ ȧ0/a0 and the deeler-

ation parameter

3 Q0 ≡ −ä0a0/ȧ
2
0 so

a0
a

≈ 1−H0 (t− t0) +H2
0

(

1 +
1

2
Q0

)

(t− t0)
2 . (1.9)

Beause the universe seems �at and dominated by ordinary matter over small

sales, it is ommon to move terms arising from K to the right-hand side of the

equation, where they at as elements of an �e�etive energy-momentum tensor�. It

is also ustomary to state ontributors to osmologial expansion as dimensionless

parameters Ωi in omparison to the �ritial density� ǫ
ritial

, that is, the energy-

density of ordinary matter required for the universe to be �at: kǫ
ritial

= 3H2
0

so

3H2
0 = kǫ0 + Λ− 3K

a2
0

ΩK + ΩM + ΩR + ΩΛ = 1
(1.10)

where

ΩM + ΩR ≡ kǫ0/3H
2
0 (1.11)

ΩΛ ≡ Λ/3H2
0 (1.12)

ΩK ≡ −K/ȧ20. (1.13)

Multiple observations, most reently by WMAP, have on�rmed that ΩR ≪ ΩM

[16℄ and so to the limit of the preision with whih these quantities an be evaluated

3

Q has been de�ned with a minus sign for historial reasons. Q > 0 denotes a deelerating

universe; Q < 0 denotes an aelerating universe. We have avoided the more ommon notation

q in favor of Q to avoid onfusion when interpreting the soure material.
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ΩK+ΩM+ΩΛ = 1.4 When we disuss some �eld of unknown harater ontributing

to the energy density, we will designate it with the subsript X (for example, suh

a �eld would be related to a density parameter ΩX).

1.1.2 Simple osmology predits a deelerating universe

If the sale fator a measures a distane, it is reasonable to say by analogy that ȧ

an be ompared to a veloity and ä an aeleration. Let the time-dependent Hub-

ble parameter be de�ned by H ≡ ȧ/a. We de�ne the time-dependent deeleration

parameter Q by:

Q ≡ − äa

ȧ2
=

d

dt

1

H
− 1. (1.14)

Dividing (1.6) by (1.10) we easily obtain

Q =
1

2

k (ǫ+ 3p)− 2Λ

kǫ+ Λ−K/a2
=

1

2
ΩM − ΩΛ (1.15)

in a matter-dominated universe: a �at universe with no osmologial onstant

must always deelerate. While the properties of so-alled �dark matter� remain

undetermined, the loalisibility of dark matter's distribution and its slow motion

implies it an be treated as w = 0 dust.

We an also immediately say that in a universe with no osmologial onstant,

4

Chernin, in [81℄, elegantly derives a desription of the sale fator in an open Friedmann

osmology whih an be used when there is a signi�ant amount of relativisti matter in a old

matter-dominated universe. Chernin's equation is easily generalized to the losed Friedmann

universe.
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aeleration is possible under the ondition

2

1 + 3w

(

1−K/a2kǫ
)

< 0 (1.16)

so, beause ǫ must be positive, aeleration is only possible when w < −1/3.

1.1.3 Observations say the universe is aelerating

Aeleration in and of itself is not a newomer to osmology. The de Sitter os-

mology [82℄, disovered in 1917, is driven solely by a osmologial onstant and

onsequently has a onstant deeleration parameter of Q = −1. Bondi, Gold &

Hoyle's �steady state� universe [83℄ similarly aelerates with Q = −1, this value

being assoiated with a universe whose expansion is driven solely by a �eld whose

energy density is not dependent on the sale fator (ΩX = onstant). With the

proposal of �big bang� nuleosynthesis [84℄ and the subsequent disovery of the os-

mi mirowave bakground (CMB) [85℄, onsensus ame to settle on the simplest

matter-�lled model, the Friedmann universe [86℄.

Throughout the 1990s, astronomial observations began to indiate that the matter

energy density of the universe was far below the ritial density, leading some (for

example [87℄) to propose the resurretion of the osmologial onstant in order to

preserve the observed near-�atness of spae.

In 1998, Riess et al. published an analysis [1℄ of the light from a small number
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of type Ia supernovae with 0.16 ≤ z ≤ 0.62 and onluded from this set that

the reent universe is aelerating with Q0 = −1.0 ± 0.4. Further observations

and analysis (see Chapter 2) have also provided evidene that the universe has

Q0 < 0.

While Riess et al. did not exlude the possibility of a universe with K 6= 0, the

assumption of a �at universe remains predominant throughout the �eld of osmol-

ogy as observations, both from supernova data (see setion 2) and WMAP (see

setion 6.1), have shown that the universe is, on observable sales, very lose to

�at � although it is impossible to distinguish between a universe that is genuinely

�at, with ΩK = 0 and one with ΩK very lose to but not equal to zero.

1.2 Dark energy

Sine the disovery of aeleration, numerous explanations for the phenomenon

have been proposed, all depending on an isotropi �eld reating additional, invisible

energy. Turner and Huterer[6℄ introdue the term �dark energy�, analogous to

dark matter in the sense that dark energy does not interat eletromagnetially

with ordinary matter and has the property of negative pressure, to desribe this

additional �uid, whih appears to make up over 70% of the total energy ontent

of the universe.[16℄

The assumption of a �at homogeneous osmology demands that osmi aeleration

omes from a osmologial onstant or a salar �eld. Most salar theories for

explaining osmi aeleration fall into two lasses: an exoti form of matter with
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negative energy density, or surrender of the osmologial priniple. Other salar

theories sari�e di�erent assumptions, suh as homogeneity, or invoke more exoti

explanations unsupported by laboratory physis.

1.2.1 Cosmologial onstant

The simplest, most familiar variation on the Robertson-Walker osmologial model

whih allows an aelerating universe is the �ΛCDM� model � a universe dominated

by �old� (non-relativisti, p = 0) matter with both baryoni and dark omponents,

and with the existene of a non-zero osmologial onstant. In suh a universe the

Einstein equations read [5℄

3H2 =kǫ+ Λ (1.17)

−6
ä

a
=kǫ− 2Λ (1.18)

so when kǫ/Λ is small suh that (kǫ/Λ)2 is negligible, that is, the universe is

dominated by a osmologial onstant,

Q =
1

2

kǫ− 2Λ

kǫ+ Λ
≈ −1 +

3kǫ

2Λ
(1.19)

whih at �rst glane appears to neatly explain Riesse et al.'s result. However,

as will be shown (see setion 2.3), the ase for a osmologial onstant is not

de�nite. Furthermore, the theoretial bakground explaining the strength of the

osmologial onstant is not well developed, relying on an understanding of quan-

tum gravity whih does not yet exist [72℄. While the osmologial onstant an

always be said to have a �right to exist� in the Einstein equations, urrent physis



10 CHAPTER 1. INTRODUCTION

does not explain why it should have any partiular strength and as suh the os-

mologial onstant should be treated as the simplest form of a salar �eld of exoti

matter.

1.2.2 Quintessene

More general than the osmologial onstant but similar in struture is the proposal

of �quintessene� [6℄, a novel form of matter with a time-dependent equation of state

that an take on negative values. Many forms of these have been proposed; one

form of these, for example, is the �Chaplygin gas� [88℄, whih has equation of state

p = −A/ǫ for A > 0. Quintessene theories are partiularly motivated by the idea

that aeleration is a osmologially reent phenomenon, noting limited data (see

Chapter 2) that the equation of state of dark energy may be evolving with time.

At the most fundamental level, all theories of quintessene propose the existene

of a kind of matter whih:

� has never been observed experimentally;

� does not interat with ordinary matter via the eletromagneti fore;

� has a negative equation of state, that is, a positive energy density produes

a negative pressure;

� plays a prominent role at urrent energy levels, as opposed to e�ets suh

as uni�ation of fores thought to have taken plae only in the very early

universe.
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In the absene of any ompelling experimental evidene whatsoever for any kind

of quintessene, quintessene and quintessene-like models should be regarded as

highly speulative explanations for dark energy.

1.2.3 Loal inhomogeneity

A more mundane explanation whih has been o�ered for aeleration is the �Hubble

bubble� [1, 61℄, regions of lower density in the intergalati medium. If the viinity

of the Milky Way had lower matter energy density, expansion in its viinity would

inrease [93℄, ausing the illusion of osmi aeleration.

Not only would the density de�it in suh a �bubble� have to be quite large in

order to ause aeleration, but the theory, whih has the advantage of requiring

no new physis, supposes either the existene of a rare or unique void that the

Milky Way happens to be in � a violation of the osmologial priniple in the sense

that it makes observers in the Milky Way privileged � or a preponderane of voids

whose presene makes the universe inhomogeneous not just in small pathes but

on average [91, 94℄.
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1.2.4 Exoti models

Modi�ed relativity

Some proposals to explain dark energy propose modi�ations to the Einstein equa-

tions. The best-known of these is the Cardassian Expansion model[95℄, whih

proposes time-dependent variation of the equation of state of matter. The Cardas-

sian model is of partiular interest in that it proposes an equation for the density

perturbation

κ′′ (x) + 2
s

x
κ′ − 3

2
s2κ = 0 (1.20)

for unknown onstant s, whih equation begins to resemble that for weak gravita-

tional waves in a losed universe (f. equation (4.133)). Like Chaplygin gas and

the �DGP� model[96℄, the Cardassian model justi�es itself based on theories about

higher-dimensional manifolds whih remain untested.

Topologial defets

The existene of osmi strings would hange the overall equation of state of the

matter in the universe by a onstant [67, 97℄, reating aeleration through simple

deviation from the Friedmann model. While theories of osmi in�ation predit

the formation of osmi strings and other topologial defets, suh defets remain

ompletely undeteted.
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1.3 Tensorial theories for aeleration in a �at uni-

verse

If we wish to preserve the theory of general relativity at the same time as retain-

ing osmi homogeneity, while at the same time relying only on e�ets with good

experimental basis, salar �elds appear to be exluded as an explanation for a-

eleration. Ergo within the ontext of general relativity the next plae to searh

for an answer is in tensor theories, whih inlude the possibility of gravitational

waves.

Lifshitz's theory of osmologial perturbations [79℄ appears to exlude tensorial

answers to the problem of aeleration: gravitational waves have the same equation

of state as radiation, and loal lumps of gravitational waves in the theory (where

�loal� means bounded within an region smaller than the radius of urvature of the

universe) both deay rapidly and ollapse spatially. Rodrigues [113℄ takes a �rst

step in disussing anisotropi dark energy, but limits his analysis to a �at universe

and thus reates the problem of an anisotropi �big rip�.

A high-frequeny gravitational wave bakground has been proposed [92℄ as the

soure of osmi aeleration. While the authors' analysis appears initially promis-

ing, similar to many salar dark energy andidates the theory relies on the existene

of an in�ation-indued gravitational wave bakground that remains only hypothet-

ial. Furthermore, the authors obtain their result by seletion of an averaging

sheme without mathematial rigor � surely hoosing a mathematial model based

on the desired results annot be onsidered sienti�. At any rate, the strength of
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the bakground that in�ationary theory predits is not su�iently great to explain

the observed large aeleration.



Chapter 2

Evidene for aeleration

2.1 Introdution

Numerous assumptions have been made in developing the predominant theories for

aeleration that must be examined in detail to be understood. If some of these

assumptions have been made on a weak basis, our range of ompelling models for

dark energy must hange and new paths for the exploration of possible models will

open.

The theory of tests to evaluate the deeleration parameter using supernovae as

standard andles began with Wagoner [45℄ in 1977. Starting from assumptions of

an isotropi Friedmannian osmology whih is not neessarily �at, Wagoner notes

15
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the approximate relation

dE = H−1
0

[

z − 1

2
(1 +Q0) z

2 +O
(

z3
)

]

(2.1)

whih, when H0 and z are known, relates the deeleration parameter to the dis-

tane dE as determined by the dimming of the supernova (where Wagoner was

originally disussing Type II supernova events)

1

. This relation is valid when z is

small suh that z3 is negligible, limiting its usefulness above z ∼ 1, and requires the

assumption of only small hanges in the Hubble onstant H0 (that is, in a Fried-

mann osmology ȧF/aF evaluated near the observer) on the interval from z ≈ 0 to

z ≈ 1.

Type Ia supernovae are thought to be a �standard andle� for the measurement

of distane and redshift; that is, supernovae of that type are thought to possess

spetral and luminosity urves whih are nearly idential. Therefore, observation of

extragalati type Ia supernovae is believed to produe reliable information on both

the distane of the event (noting that brightness diminishes as the inverse square

of distane) and the redshift of the distane assoiated with the event (through

the hange in the peak of the supernovae's spetra), with redshift z related to the

sale fator aF by

z + 1 =
aF
(

t
observation

)

aF
(

t
emission

) . (2.2)

Analysis of a statistially unbiased dataset of z (t) therefore gives empirial infor-

mation on H (t).

Colgate [44℄ proposed that Type I supernovae should be used to measure the

1

Equation (2.1) is of ourse a generalization of the famous distane-redshift approximation

H0dE ≈ z [4℄.
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deeleration parameter in preferene to Type II supernovae. Type I supernovae,

spei�ally the �Type Ia� whose mehanism is thought to be the aretion of matter

onto the surfae of a white dwarf star, are understood to have a well-de�ned typial

absolute magnitude and spetrum. Assuming this is true, the distane to and

redshift of a given Type Ia supernova event (SNe) an easily be determined by

�tting its light urve to standard templates. Therefore, with a su�ient sample

of extragalati supernovae of z & 0.2, the parameters H (t) and thus Q (t) an

be measured diretly. When an isotropi osmology with onstant deeleration

parameter Q = Q0 is assumed, knowledge of H0 and Q0 are su�ient to typify the

parameters of the universe [4℄.

With the advent of modern optial astronomy suh as adaptive optis [46℄ and

spae-based optial telesopy [47℄, suh surveys have beome possible, but have

produed results ontraditing the standard, old matter-�lled Friedmann model

of osmology.

2.2 Surveys of aeleration

Cosmologial studies measuring Q have been ongoing sine 1997 and onsist of

analyses of redshifts [1, 3, 9, 11, 12, 13, 15, 43, 48, 49, 51, 50, 52, 53, 55, 56,

54, 57, 58℄ of type Ia supernovae. Some attempt to measure not only the dark

energy equation of state at the present time wX0 but the �rst Taylor oe�ient of

a time-series expansion wXa.

The High-z Supernova Searh Team's initial study of the deeleration parameter
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[1℄ was the �rst large study to all attention to the problem of aeleration. Work-

ing from a sample of sixteen supernovae (four of whih were well-observed �high

on�dene� soures), the most distant with z = 0.97, Riess onluded that the

universe has Q0 < 0 to high on�dene, although the measurement of Q0 itself

possessed a high degree of unertainty. Riess also noted the high sensitivity of the

result to individual data points. The authors dismiss the losed osmology despite

the data indiating it as preferred [1, Fig. 7℄; however the size of their experimental

error preludes real evaluation of spatial urvature.

The Supernova Cosmology Projet (SCP) made an earlier attempt to evaluate Q0

with the use of supernovae [55℄. This small survey (n = 7) on relatively nearby

supernovae found a result inonsistent with those that followed it, giving results

onsistent with a universe with no dark energy and with too high a degree of error

to meaningfully evaluate the geometry of the universe.

In ontrast, the Supernova Cosmology Projet's 1998 evaluation [48, 49℄ of 42 Type

Ia SNe added further evidene that the universe was aelerating and also makes

note of the surprising oinidene of the energy density ΩX 's near-equivalene with

the total energy density in the urrent epoh. The SCP also did not onsider the

losed osmology despite supernova data favoring it [49, Fig. 7℄.

The ESSENCE [11℄ survey was expressly designed to examine osmi aeleration

and deteted 102 type-Ia supernovae from 0.10 ≤ z ≤ 0.78, of whih 60 were used

for osmologial analysis. The initial analysis of ESSENCE assumed �atness of

the universe. ESSENCE's observational �elds were deliberately hosen to overlap

the areas of previous surveys and to lie within ten degrees of the elestial equator;
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all were also between 23:25 and 02:33 Right Asension. Combining data from

ESSENCE, SNLS and other soures [52℄ led to a onlusion onsistent with other

analyses. Exploration of more exoti models [53℄ found that no model of those

tested was a good �t for ESSENCE's data.

The Supernova Legay Survey (SNLS) [12℄ reorded 472 type-Ia supernovae. While

analysis of the SNLS data set [13℄ provides results onsistent with a universe driven

by osmologial onstant, the unertainty on analysis of a time-dependent ompo-

nent to the equation of state of dark energy is very large; their analysis also does

not onsider a losed universe as a possible model [50℄. Furthermore, the SNLS

team also note the presene of two outliers and only 125 of 472 events were used to

evaluate osmology. SNLS observed SNe in four �elds, one of whih (�eld 3) is far

above the plane of the elestial equator at 52 degrees delination; this and [54℄'s

northern �eld are the only �elds with multiple observations in a small area more

than 20 degrees from the elestial equator surveyed to date. SNLS also notes [50,

setion 5.4℄ that the values of ΩM evaluated in the four �elds are ompatible only

at a 37% on�dene level � a surprising result given that eah SNLS �eld ontains

at least 60 SNe in quite small (one square degree) areas.

The Hubble Spae Telesope or HST survey of supernovae, published in 2004 and

reviewed by the Supernova Cosmology Projet [14℄ observed twenty type-Ia su-

pernovae with redshifts 0.63 < z < 1.42. While the number of SNe observed is

small, the HST survey has the advantage of overing a wider area of sky than other

SNe surveys. Analysis of the HST dataset suggests a rapidly-evolving dark energy

�eld, although with very high error on measurements greater than z = 1 due to

the small (n = 10) sample size it is impossible to take these results as anything

more than suggestive. HST slightly favored a losed model of the universe, when
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onsidering interpretations of data that allowed ΩK 6= 0.

The Supernova Cosmology Projet's 2008 analysis of supernova data [51℄ made a

analysis of ombined SNLS, ESSENCE and HST data, and attempted to analyze

the data in the ontext of a theory of a time-dependent equation of state for dark

energy but onluded �present SN data sets do not have the sensitivity to answer

the questions of whether dark energy persists to z > 1, or whether it had negative

pressure then.� The analysis rejeted 10% of all SNe from the ombined data sets

as outliers, many based on their failure to �t with a nearby H0; Kowalski et al.' s

rejetion of outliers also shifts their analysis from one favoring a losed universe to

one favoring a �at one [51, Fig. 11℄.

Further work by Riess et al. [54, 56℄ produed the so-alled �gold� dataset of SNe,

a group of supernova events with partiularly lear light urves with 33 at z > 1.

These supernovae were observed in two small (one square degree) �elds. [54℄ laims

a great redution in the unertainty of the Hubble parameter at z > 1 but the

Hubble parameter measured in the extended �gold� set gives a value for the Hubble

parameter not reonilable with that in the [56℄ dataset. Riess et al. onlude that

w is negative (with large experimental error) in the region 1 < z < 2, then attempt

to extrapolate the behavior of dark energy bak to z = 1089.

Sollerman et al' s analysis of the Sloan Digital Sky Survey-II supernova data [3, 9℄

is the most reent analysis indiating osmi aeleration. SDSS-II observed 103

type-Ia supernovae in a long, narrow strip along the elestial equator, inluding

many from lower redshifts than had been previously examined in detail. Sollerman

et al. also made use of data from the HST, ESSENCE and SNLS surveys, bringing
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the total number of SNe examined to 288. The primary onlusion to be drawn

from SDSS is the sensitivity of osmologial measurements to the spei� analysis

tehnique used [60℄; analysis of the data with two di�erent urve-�tting algorithms

produe two di�erent, albeit somewhat ompatible, results.

Further obsuring the neatness of measuring Q, Jha et al. noted [59℄ that the

uneven loal distribution of galaxies, spei�ally the existene of voids, an lead

to a mis-estimation of H0 on the order of 6.5% for a given galaxy.

Finally, of note is the WiggleZ dark energy survey [15, 43℄. WiggleZ is the most

extensive redshift survey thus far onduted, with some 280,000 galaxies with 0.2 <

z < 1.0 used as soures. WiggleZ also overs a wider area of sky than previous

surveys, examining some 1000 square degrees in multiple windows around the sky.

Two of WiggleZ's windows overlap with SDSS-II's survey area, so while WiggleZ

is ongoing, preliminary results [57, 58℄ an be used to improve the evaluation

of Q by improving preision on measurements of z of SNe host galaxies. The

authors of [58℄ note that �the redshift-spae lustering pattern is not isotropi in

the true osmologial model�, attributing the variation to �the oherent, bulk �ows

of galaxies toward lusters and superlusters�. Analysis by the WiggleZ team of

pre-existing SNe datasets, using the new, more preise data on galaxy redshifts

they obtained, reon�rms the fat of aeleration, and generates results onsistent

with other surveys, but the data lak su�ient preision to determine the history

of Q.

The table in the Appendix details the sky loations of SNe and galaxies used in

the determination of aeleration; Figure 2.2 presents these loations graphially.
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Table 2.1 summarizes the results of these surveys.

Figure 2.1: Sky positions of supernovae used as evidene for aeleration

Surveys of osmi aeleration over a limited portion of the sky, and data are

divided into two ontiguous, antipodal regions. Most data has been olleted in a

small area of the sky near the equator. Triangles: Riess 1998 supernovae. Five-

pointed stars: HST SNe. Six-pointed stars: Riess �gold� dataset. The long, thin

strip entered on 0,0 is the SDSS-II survey area. Other boxes are the SNLS and

ESSENCE survey areas.

2.3 Analysis

Analysis of supernova data is, in one sense, quite onsistent: all surveys apart from

[55℄ agree that for z < 1 the universe has a deeleration parameter Q0 = −0.6.
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Survey No of SNe z

Supernova Cosmology Projet 1997[55℄ 7 0.35 < z < 0.46
High-z Supernova Searh Team[1℄ 16 0.16 < z < 0.97

Supernova Cosmology Projet 1998[49℄ 42 0.18 < z < 0.86
HST[14℄ 20 0.63 < z < 1.42

ESSENCE[11℄ 102 0.10 ≤ z ≤ 0.78
Supernova Legay Survey[12, 50℄ 125 0.015 < z < 1

ESSENCE + SNLS[52℄ 162 0.015 < z < 1
Supernova Cosmology Projet ombined[51℄ 307 0.015 < z < 1

Riess �gold� sample[56, 54℄ 16 1.25 < z < 2
WiggleZ[58℄ 557 0.1 < z < 0.9

Survey

Supernova Cosmology Projet 1997 (dne)

High-z Supernova Searh Team (dne)

Supernova Cosmology Projet 1998 (dne)

HST

ESSENCE (dne)

Supernova Legay Survey (dne)

ESSENCE + SNLS (dne)

Supernova Cosmology Projet ombined

Riess �gold� sample (dne)

WiggleZ (dne)

Sloane Digital Sky Survey-II

Survey

�at

Supernova Cosmology Projet 1997 (dne) (dne)

High-z Supernova Searh Team (dne) (dne)

Supernova Cosmology Projet 1998 (dne) (dne)

HST

ESSENCE (dne)

Supernova Legay Survey (dne)

ESSENCE + SNLS (dne)

Supernova Cosmology Projet ombined (dne)

Riess �gold� sample *

WiggleZ (dne) (dne)

Sloane Digital Sky Survey-II (dne)

Table 2.1: Summary of results from surveys indiating aeleration

�dne� = �Does not evaluate�. *: [56℄ attempts to analyze wa with several di�erent

onstraints but provides no numerial �gure for its estimate of wa's value. †: Where

not expliitly stated in the soure, ΩX is evaluated from ΩM + ΩK + ΩX = 1. ‡:
Q
�at

0 = 1
2
ΩM − ΩX . (1): MLCS2K2 evaluation. (2): SALT-II evaluation. (3):

ΛCDM model evaluation.
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Deeper analysis su�ers from a lak of data at high redshifts and large numbers of

free parameters in osmologial models, espeially when more exoti models are

onsidered. Meanwhile, while most surveys indiate that the aeleration in reent

times ats as though driven by a osmologial onstant, with an equation of state

ompatible with wX = −1, the results from [60℄ show that this an be the result

of the prior assumptions made about the model of dark energy.

No de�nitive statement an be made about the evolution of H over time from the

information thus far available, partiularly not statements onneting the state of

osmi aeleration now with the state of aeleration at the epoh of last satter-

ing.

Nor an any de�nitive statement be made about osmologial models, other than

to say that the most onservative, ΛCDM model �ts the data at best inonsistently.

Few studies of supernova data on aeleration examine the question of urvature

in depth.

The majority of SNe data is olleted from a single path of sky: the �eld bounded

by RA 22:00, RA 04:00, De +1◦15′ and De −10◦00′ (the �highly-observed �eld�).

This area omprises 1350 square degrees, or only 2.1% of the sky. Surveys taken

in small �elds outside the highly-observed �eld, suh as the Riess �gold� dataset,

have high internal onsisteny, while surveys overing larger areas of sky have muh

lower onsisteny; the �gold� dataset ontains the same number of SNe as [1℄ but

has a standard error less than a tenth the size. It is also telling that the four SNLS

�elds produed results that orrelated poorly (37% on�dene) with one another

[50℄, where two of the SNLS survey regions are well outside the highly-observed
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�eld. Compounding osmographi bias, many of the remaining SNe observations

are loated in a region of sky antipodal from the highly-observed �eld; any ve-

tor or tensor ontribution to osmi dynamis will be dominated by dipole and

quadrupole terms, and as suh be seen with equal or opposite magnitude in the an-

tipodal diretion (that is, if we observe a hange in Q of ∆Q along the xi
diretion,

we should expet a hange of −∆Q in the event of a vetor ontribution, or ∆Q

in the event of a tensor ontribution, along the −xi
diretion).

There is, furthermore, no SNe data whatsoever from above De +62◦or below De

−37◦. The authors of [58℄ note a variation in the apparent Hubble parameter for

galaxies in this equatorial band (no WiggleZ region lies further north than De

+8◦ or De −19◦); variation to the Hubble �ow ould potentially be even greater

outside this region. There is also no evaluation of whether the Hubble �ow remains

isotropi beyond z = 0.3 [77℄.

Indeed, Zehavi et al. omment [89℄ on the lak of sky overage in their analysis of

loal Hubble �ows, noting that �sparse sampling and the inomplete sky overage

(espeially at low Galati latitudes) may introdue a bias in the peuliar monopole

due to its ovariane with higher multipoles�. While the fat of greater redshift

in the range where aeleration an be measured should overome the peuliar

veloities of galaxies, the data problem remains.
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2.4 Conlusions

Many reasonable onstraints prevent a full-sky survey of supernovae. In the optial

band, muh of the sky is obsured by the �zone of avoidane� reated by the plane

of our own galaxy [63℄. The so-alled �Great Attrator�, ertain to be a region of

partiularly high peuliar veloities and therefore great shifts in the apparent Hub-

ble parameter, lies in this zone [64℄. Furthermore, with only a single spae-based

optial observatory (the Hubble Spae Telesope) operating, detailed observation

of the sky is restrited to those latitudes aessible by ground-based observatories,

none of whih are loated in Arti latitudes. However, the diretional de�it of

SNe surveys, aggregated together, annot be ignored.

In the light of Tegmark et al.'s disovery [28℄ of a preferred axis to the CMB

quadrupole, and Land & Maguiejo's subsequent observation [32℄ of a preferred

axis in higher multipole moments aligned with the the quadrupole (the so-alled

�Axis of Evil�), the default assumption should be that anisotropi aeleration is

not ruled out. Indeed, the prominent CMB �Cold Spot� [34℄ falls within the highly-

observed �eld, although no surveys or SNe are loated exatly in its diretion.

As suh, Wagoner's assertion of the osmologial priniple as �statistially valid�

[45℄ has been misapplied by analysts of aeleration data. A tensorial theory of

osmi aeleration would preserve homogeneity, in the sense that every observer

sees �the same version of osmi history� [21℄, at the expense of isotropy in the

form of spherial symmetry.

More fundamentally, most studies of osmi aeleration to date operate on the
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assumption that aeleration is isotropi, that is, that the aeleration �eld is equal

in every diretion, and therefore must be explained either by a osmologial on-

stant or a salar �eld. As Mörtsell and Clarkson note, �[a℄t best this gives a small

error to all our onsiderations; at worst, many of our onlusions might be wrong�

[61℄. In partiular, the data as presented annot distinguish between a salar-�eld

theory of aeleration, a vetor-�eld theory of aeleration, a osmologial onstant

theory of aeleration, and a time-dependent tensor-�eld theory of aeleration.

Meanwhile, the simplest theory of aeleration, a osmologial onstant, is hal-

lenged on two fronts: not only is ΩX 's value far out of line with that predited for

ΩΛ by theory [72℄, but while its equation of state is lose to wX = −1measurements

have tended to favor a value slightly smaller than -1.

It is interesting to note that when ΩK is evaluated, supernova data favor a losed

universe (although always in a manner ompatible with a �at universe); this on-

lusion is onsistent with the urvature parameter evaluated by WMAP [62℄.

2.4.1 Reommendations

In light of these weaknesses of the urrent information on osmi aeleration, the

following program is reommended:

Analyses of SNe data should always onsider the possibility of a losed or open

universe as well as a �at one.
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Additional SNe surveys for redshifts .15 < z < 2 should be arried out in unexam-

ined areas of sky not obsured by the plane of the galaxy, suh as for example the

elestial north and south poles. The optimal region for these surveys is in rings

loated 90◦ from the enter of the highly-observed �eld, whih will maximize the

di�erene in the event of a tensor-�eld (that is, gravitational-wave) aeleration.

In light of this need and the lak of ground-based observatories, as well as the

infrared transpareny of the Zone of Avoidane, priority should be given to the

Wide Field Infrared Survey Telesope (�WFIRST�) projet [65℄, whih inorporates

the Super Nova/Aeleration Probe [66, 67℄ and Joint Dark Energy Mission [68, 69℄.

This telesope is urrently sheduled to be launhed in 2016.

As WiggleZ ontinues, its data on galati redshifts should be examined for angular

dependene as well. The ompletion of WiggleZ will provide invaluable information

on baryon aousti osillations whih will make possible the harting of the history

of H and Q at muh higher redshifts than is possible through the examination of

supernova data.

Zhao et al. have also noted the possibility of using the Einstein telesope as

an instrument for examining dark energy through the use of gravitational wave

emissions from olliding binary objets as a �standard siren� analogous to the

standard andle of type Ia SNe [111℄.

Cooray and Caldwell [102℄, impliitly identifying the same problem of lak of angu-

lar overage as we note herein, propose a program of near-redshift surveys overing

a large but pratial area of sky whih ould also provide the relevant information
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with existing failities. Some e�orts have been made ([147, 148, 149, 150℄) to re-

evaluate the data in hand to look for signs of angular dependene in the Hubble

parameter; these e�orts have not produed onlusive results. The rejetion of er-

tain SNe in [51℄ should be re-evaluated in light of possible inadvertent obsuring

of evidene for angular dependene in H.

Overall, the need is undersored for new theories of aeleration, partiularly ones

that attempt to explain aeleration through the ation of tensor perturbations in

a losed universe. Wagoner's formula (equation 2.1) and its generalizations must

be generalized further to take into aount the possibility of anisotropi �elds as

the ause of anisotropi osmi aeleration.



Chapter 3

Constraining the parameters of

binary systems through

time-dependent light de�etion

1

3.1 Introdution

Zhao et al.'s suggestion [111℄ that gravitational-wave emissions from merging neu-

tron star binaries may be used as a �standard siren� for determining osmologial

parameters, with gravitational waves traveling undisturbed by interstellar dust or

the galati foreground, opens up the possibility of gravitational astronomy provid-

ing a hugely important soure of whole-sky observational data when the �rst gen-

eration of pratial gravitational telesopes omes online. Of ritial importane

1

Portions of this hapter have been previously published as [152℄ as part of this researh.

30
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to establishing suh a �standard siren� is the typi�ation of gravitational wave

soures before the atastrophi events whih ause them to emit large amounts

of gravitational radiation. Given the extragalati nature of gamma-ray bursts

this is di�ult. However, very large extragalati binaries lose to merger may be

onstrainable with urrent tehnology.

The de�etion of light by gravity is the oldest experimentally-veri�ed test of the

theory of general relativity [116℄. With the ontinued improvement in observa-

tional resolution in astronomy, partiularly through very-long-baseline interferom-

etry (VLBI), the detetion of more subtle e�ets of this light de�etion beomes

pratial. Consequently, light de�etion an be used to measure the properties of

distant systems. This work supplies a theory for using time-variable light de�e-

tion to measure or onstrain the parameters of binary systems. Spei�ally, the

de�etion angle of a light ray from a distant soure is related to the on�guration

and motion of a binary system loated in a distant galaxy somewhere between the

point of emission of the light ray and its observation.

Super-massive blak hole binaries (SMBHBs) are thought to form the ores and

primary energy soures of the broad lass of galaxies termed �ative galaxies�,

�blazars�, or �quasars�. However, a ombination of distane, radio noise, and optial

thikness makes diret observation of presumed SMBHBs impratial. Observing

a time-dependent motion in the image of the galaxy an provide information on

the mass and orbital parameters of an SMBHB andidate.

Work by Damour and Esposito-Farese [120℄ and by Kopeikin et al. [119℄ estab-

lishes a theory of time-dependent light de�etion by desribing the time-dependent
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part of the de�etion through the quadrupole term, whih is the lowest-order term

resulting from the mass distribution whose e�ets are pratial to evaluate us-

ing urrent astronomial observational tehniques. The work of Mashhoon and

Kopeikin [139℄ in examining gravitomagneti e�ets furthermore provides a theory

for evaluating the ontribution of the spin dipole of suh systems and omplements

the work of Einstein [140℄ in providing a omplete theory for stating the loa-

tion of the de�eted image in the weak �eld limit. We generalise these theories

to a stronger-�eld regime and put onstraints on the theory's appliability in this

regime.

As a ase study of an ative galaxy, the theory is applied to the galaxy 3C66B,

a nearby ative galaxy with a andidate SMBHB ore [127℄, and theoretial on-

straints on 3C66B's parameters from a light de�etion experiment are ompared

to the onstraints laimed by Jenet et al. [117℄.

3.2 Theory

3.2.1 Notations, de�nitions & assumptions

We assume that Einstein's theory of general relativity is true to the limits of our

ability to observe and appliable to the systems under examination. We do not

address MOND or other post-Einsteinian models.

Throughout this hapter, �emitter� refers to the soure of light rays being observed;
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�de�etor� refers to the mass distribution ausing a hange in the metri of spae-

time from �atness; and �observer� refers to the point where the light rays produed

by the emitter are observed.

We also make use of a oordinate system derived from the Cartesian system, de�ned

thus: in a spae that is asymptotially Cartesian let a line be desribed by

xi (t) = ki (t− t0) + xi
0. (3.1)

Let t∗ be the time assoiated with the line's losest approah to the origin of

the Cartesian system. Let τ = t − t∗ denote a new time oordinate (that is, at

τ = 0 the line reahes the losest point to the origin of both the Cartesian and

projeted systems). Spae oordinates are projeted onto a plane passing through

the origin of the oordinate system and perpendiular to a line from the observer

to the origin of the oordinate system; these new spae oordinates are denoted

ξi = Πijxj (t∗) where the projetion operator is de�ned Πij ≡ δij − kikj
. In

the projeted oordinate system, the index 0 refers to τ and the indies i denote

oordinates ξi.

For a trajetory desribed by (3.1) let ξj ≡ Πij xi (τ)|τ=0 be the �vetor impat

parameter� of the trajetory and let d ≡ |ξi| be the �salar impat parameter� of

the trajetory. Sine the spae is asymptotially �at, d is also the ratio of the

magnitudes of the angular and linear momenta of the light ray. Note then that for

the trajetory desribed by xi (τ), r (τ) =
√
d2 + τ 22. Let the unit vetor ni ≡ ξi/d.

We assume that the wavelengths of all light rays observed are muh shorter than

2

In this hapter we use the onvention G = c = 1 to simplify our equations.
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the longest wavelength of gravitational radiation emitted by the de�eting system.

3.2.2 General theory

Bakground

Consider a photon emitted at some distant point xi
0 at some time in the distant past

t0. This beam of light in asymptotially �at spae follows a path ki
suh that the

oordinate xi
of the photon is given by the relation (3.1); therefore, ki = ∂xi

∂t

∣

∣

∣

t=−∞
.

Let ki
be normalized suh that kiki = 1; then the vetor kα = (1, ki) is parallel to

the four-momentum of the photon in �at spae.

Let an asymptotially-�at metri gαβ
3

be a funtion of some a�ne parameter λ.

Let Kα ≡ kα+κα (λ)+Ξα (λ) be the trajetory of a photon moving in this metri

spae, where κα
desribes the part of the trajetory arising from the spherially-

symmetri non-�at part of the metri and Ξα
desribes the trajetory arising from

a perturbation to the metri. Then, we have the geodesi equation [4, equation

87.3℄

d (κα + Ξα)

dλ
+ Γα

βγK
βKγ = 0. (3.2)

The quantity d (κα + Ξα) /dλ orresponds to the hange in momentum of the light

ray in spae, whih when projeted onto a plane of observation orresponds to the

3

All metris gµν in this hapter are stated using the harmoni gauge ondition, that is,

gµνΓλ
µν = 0. The Minkowski metri in Cartesian oordinates is hosen with signature (−,+,+,+)

and is denoted ηµν , and we make use of the Einstein summation onvention.
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angular de�etion of the light ray. We de�ne this de�etion vetor by [119, 120℄

αi
(

t, ξi
)

≡ Πi
j

[

κj + Ξj
]

observer

+∆αi
(3.3)

where the term ∆αi
orresponds to orretions arising from any ontribution to

de�etion other than our de�etor.

In the ase of Eddington's experiment [116℄ on solar de�etion, the �true� position of

the emitter � that is, the position of the emitter observed in the limit of intervening

de�etion going to zero � was known. In the ase of de�etors with small proper

motion, in this ase extragalati or otherwise distant objets, where the emitter

would be seen without the intervening de�etor may not be known; therefore,

the periastron of the light ray must be determined by other means. Let P be

the periastron of the light ray's trajetory about the de�etor; in suh ases, the

time delay between the de�etion and the motion of the de�etor is related to the

periastron by

P = t
peak de�etion

− t
alignment

(3.4)

where t
peak de�etion

is the time when the image of the soure is observed to be

de�eted most from the position of the de�etor and t
alignment

is the time when

the projeted omponents of the system and the de�eted image fall into a line,

assuming that P < p
2
and that the hange in the gravitational �eld propagates at

the speed of light.
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Desription of de�etor

Our de�etor of interest is as follows: two objets are denoted with the indies

1 and 2. The mass of objet 1 m1 ≥ m2. The objets have positions xi
1 (t) and

xi
2 (t) and veloities vi1 (t) and vi1 (t)[Figure 3.1℄. Then our soure has density

distribution

ρ
(

t, xi
)

= m1δ
(

xi − xi
1 (t)

)

+m2δ
(

xi − xi
2 (t)

)

(3.5)

and veloity distribution

vi
(

t, xj
)

= vi1δ
(

xj − xj
1

)

+ vi2δ
(

xj − xj
2

)

(3.6)

where δ (xi) is the three-dimensional Dira delta distribution.

Our metri has the form gµν = ηµν + sµν + hµν where sµν is the non-Minkowski

part of the Shwarzshild metri and hµν is a small perturbation. Let hQ
µν be the

perturbation resulting from the quadrupole moment of the mass distribution and

let hS
µν be the perturbation resulting from the spin dipole of the mass distribution.

Let the variable s = t− r. Then expliitly, the metri is given by [120, 139, 142, 4,
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p 181℄,

s00 =2m/r (3.7)

s0i =0 (3.8)

sij =

[

(

1− 2m

r

)−1

− 1

]

xi

r2
δij (3.9)

hQ
00 =

∂2

∂xi∂xj

Qij (s)

r
(3.10)

hQ
0i =− 2

∂2

∂xi∂t

Qij (s)

r
(3.11)

hQ
ij =

∂2

∂xi∂xj

Qij (s)

r
δij + 2

∂2

∂t2
Qij (s)

r
(3.12)

hS
0i =2

Sjxkǫ
jk
i

r3
(3.13)

hS
00 = hS

ij =0 (3.14)

where the vetor Si ≡ (J23, J31, J12) and J ij ≡
´

(xiT j0 − xjT i0) dV [4, hapter

2.9℄.

Let the objets orbit one another with a known period p. Let our oordinate

system origin be loated at the enter of mass of the binary and let m = m1 +m2.

Let ai ≡ xi
1−xi

2 be a vetor denoting the spatial separation of the two masses and

l ≡ |ai|. Let the mass ratio b ≡ m2

m1
≤ 1.

By our hoie of oordinates, the dipole term of the de�etor's mass distribution

is zero.

Using the Landau-Lifshitz de�nition of the transverse traeless quadrupole [2,
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equation 41.3℄, the quadrupole moment of the de�etor is:

Qij (t) =

ˆ

ρ (x, t)
[

3xixj − r2δij
]

dV =
mb

(1 + b)2
[

3aiaj − l2δij
]

. (3.15)

In the ase that the masses travel in almost irular orbits about their ommon

enter of mass, then in a primed oordinate system related to our hosen system

only by unitary rotations,

a′i (t) = l













sin
(

2πt
p

+ φ′
)

0

cos
(

2πt
p

+ φ′
)













+ δa′i (t) (3.16)

where φ′
represents a onstant phase term , and where δa′i is small. Rotating from

the primed system �rst about the y-axis, then the x -axis, then the z -axis, we have

ai (t) = l













cosΨ sin
(

2πt
p

+ φ
)

+ sinΨ sinΘ cos
(

2πt
p

+ φ
)

− sin Ψ sin
(

2πt
p

+ φ
)

+ cosΨ sinΘ cos
(

2πt
p

+ φ
)

cosΘ cos
(

2πt
p

+ φ
)













+ δai (t) (3.17)

where φ subsumes rotation about the y-axis with φ′
and where Θ and Ψ are the

angles of rotation of the plane of motion away from the xz -plane about the x - and

z -axes respetively.

Solution to the geodesi equation

The theory of the e�ets of small perturbations to the metri on light propagation

in the weak-�eld limit is already developed [119, 120℄. However, sine the e�ets
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Figure 3.1: Con�guration of a binary de�etor

Objet 1 has mass m1, veloity vi1 and is loated as position xi
1; objet 2 has

orresponding m2, v
i
2 and xi

2. xi
1 − xi

2 = ai and the spin vetor Si
where Si ≡

(J23, J31, J12) and J ij ≡
´

(xiT j0 − xjT i0) dV is perpendiular to ai, vi1 and vi2.

of a quadrupolar perturbation fall o� as d3, it is desirable to expand the theory

to be appliable to regions of stronger �elds. We note in partiular that for a

losely-orbiting ompat binary system, suh as an evolved SMBHB, then m and

l will be of similar magnitude; therefore, we extend the �rst-order theory of light

de�etion to order O (m/d)3.

First, note that all terms in (3.8) are O (m/r) or higher and that all terms in (3.11)

are of O (ml2/r3) ≤ O (m3/r3). Let O (m3/r3) be small suh that all higher orders

are negligible. Then, suppressing negligible terms,

Γα
βγ = −1

2

(

ηαδ + sαδ
)

(sβδ,γ + sγδ,β − sβγ,δ)−
1

2

(

ηαδ
)

(hβδ,γ + hγδ,β − hβγ,δ) .

(3.18)

Let the Christo�el symbol assoiated with the Shwarzshild metri Γ
α(S)
βγ ≡ −1

2

(

ηαδ + sαδ
)

(sβδ,γ +
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and the remaining part resulting from the perturbation Γ
α(h)
βγ ≡ −1

2

(

ηαδ
)

(hβδ,γ + hγδ,β − hβγ,δ).

Then (3.2) beomes

κ̇α + Ξ̇α +
(

Γ
α(S)
βγ + Γ

α(h)
βγ

)

(

kβ + κβ + Ξβ
)

(kγ + κγ + Ξγ) = 0. (3.19)

Sine all Γ
α(S)
βγ and all omponents of κα

must be at least of O (m/r) or zero, (3.19)

expands, again suppressing negligible terms, to

κ̇α + Ξ̇α + Γ
α(S)
βγ

(

kβ + κβ
)

(kγ + κγ) + Γ
α(h)
βγ kβkγ = 0. (3.20)

Sine

κ̇α + Γ
α(S)
βγ

(

kβ + κβ
)

(kγ + κγ) = 0, (3.21)

we onlude

Ξ̇α + Γ
α(h)
βγ kβkγ = 0 (3.22)

whih is exatly the result for the weak-�eld approximation [119, 120℄.

Plugging (3.21) and (3.22) into (3.3) and hoosing τ as our a�ne parameter, we

an de�ne the Shwarzshild and non-Shwarzshild parts of the de�etion angle

[Figure 3.2℄:

αi
M

(

ξi
)

≡Πi
jκ

j
(3.23)

αi
h

(

t, ξi
)

≡ Πi
jΞ

j =− 1

2
Πij

ˆ ∞

−∞

(hβδ,j + hjδ,β − hβj,δ) k
βkγdτ. (3.24)

The monopole term αi
M (ξi) of the de�etion produed by the ore is stati and

unique, regardless of hanges of on�guration within the ore [118, 116℄. We an

use the general, exat solution for κα
provided by Darwin [130℄:
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Choose spherial oordinates. By the symmetry of the monopole term, this part of

the trajetory of the light ray must lie in a plane, so we an hoose the oordinate

θ as an a�ne parameter and the oordinate φ as onstant. Then we obtain an

equation of motion

−r − 2m

r

(

dt

dθ

)2

+
r

r − 2m

(

dr

dθ

)2

+ r2 = 0. (3.25)

Identifying the impat parameter with a onserved quantity in the system

r3

r−2m
dt
dθ

=

d and substituting in yields three solutions; we disard the two where the light ray

never reahes a distant observer and take the remaining one,

1

r (θ)
= −V − U + 2m

4mU
+

V − U + 6m

4mU
sn

2ζ (θ) (3.26)

where the onstant V is de�ned by V 2 ≡ (U − 2m) (U + 6m), the periastron and

impat parameter are related by d2 ≡ U3/ (U − 2m) and ζ (θ) ≡
√

V
U
(θ + θ0), and

snζ is the Jaobi ellipti sn funtion [143, 16.1.5℄. In the limit of U ≫ m, inverting

this relationship and taking its asymptoti limits at large r leads to the well-known

relationship

αi
M,weak �eld

(

ξi
)

=
4m

d
ni. (3.27)

As U → 3m, however, the de�etion beomes [141℄

µ
(

ξi
)

=
(

ln
m

d
+ ln

[

648
(

7
√
3− 12

)]

− π
)

≈
(

ln
m

d
+ 1.248

)

(3.28)

where µ is the angle of de�etion about the apse of the trajetory, rather than the

de�etion seen by a distant observer; the angles involved are no longer neessarily

small so we annot approximate αM = µ. In the ase of an impat parameter

omparable to 3m, it is no longer observationally useful to onsider the monopolar

displaement in and of itself as small di�erenes in impat parameter ause great
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hanges in de�etion angle, and multiple images of a soure may be detetable,

some of whih may result from geodesis whih travel several times around the

de�etor. Our onsideration therefore must fous not on the stati de�etion but on

time-dependent de�etions arising from higher multipole moments of the de�etor.

Kopeikin and Mashhoon [139℄ develop the e�et of the rotation of a system on

that system's de�etion of light, in the weak �eld approximation. Investigation of

this e�et is useful for the system as desribed in that every pratial ase of an

astronomial binary will display orbital motion. However, the theory developed

by Kopeikin and Mashhoon is only sometimes ompatible with the strong-�eld

approximation presented herein.

The integration of (3.13) is trivial. Let αi
S (ξ

i) be that part of αi
h determined by hS

µν .

when the de�etor is stationary relative to the observer, the resulting ontribution

is given by

αi
S

(

ξi
)

= 2
d2

[

2Sjkknlδmj ǫklmn
i + kjSkǫijk

]

. (3.29)

Calulating Si
with (3.17) for the ase of a binary whose omponents are in almost-

irular orbits,

Si = −m
b

1 + b

2πl2

p

(

b

(1 + b)2 − b2 (2πl/p)2
+

1

(1 + b)2 − (2πl/p)2

)













sinΨ cosΘ

cosΨ cosΘ

− sinΘ













.

(3.30)

We must emphasize that (3.29) is ompatible with the O (m3/r3) generalization

above only when O (ml2/d2p) ≥ O (m3/d3); in partiular, when l ≈ p the sys-

tem's motion is no longer slow. We draw attention to this ontribution to empha-
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size the di�ulty in assoiating an image with a partiular soure and to under-

sore the utility of time-dependent de�etion versus time-independent de�etion

in parametrizing a system.

Let αi
Q (t, ξi) be that part of αi

h determined by hQ
µν . α

i
Q is determined by plugging

(3.11) into (3.24); while [120℄ uses the method of Fourier transforms, the form of

(3.11) allows diret integration of a Fourier series deomposition as well. Either

way, the result is the following de�etion [119, 120℄

4

:

αi
Q

(

t, ξi
)

=
12

d3
mb

(1 + b)2
[(

a22 (s)− a21 (s)
)

ni − a1 (s) a2 (s) ǫ
i
jkk

jnk
]

(3.31)

for whih we reiterate the following properties: �rstly, in ontrast to the monopolar

ase where αi
M always points along ξi, the quadrupolar de�etion has a ontribution

parallel toξi, αQ‖, and also a ontribution perpendiular to ξi, αQ⊥, whih vanishes

only in the ase that a omponent of the projeted quadrupole moment vanishes,

that is, only if the axis of rotation of the de�etor is perpendiular to our line of

sight; and seondly, the de�etion depends only on the on�guration of the de�etor

at the time of the light ray's losest approah to the enter of mass, t = t∗.

4

The symbol ǫijk represents the Levi-Civita permutation symbol de�ned suh that ǫ123 = 1.
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In the ase of almost-irular motion, inserting (3.17) into (3.31) leads to

αi
Q‖

(

t, ξi
)

=
12l2

d3
mb

(1 + b)2























1
2
cos 2Ψ







(

1 + sin2Θ
)

cos
(

4πs
p

+ 2φ
)

+ sin2Θ− 1







− sin 2Ψ sinΘ sin
(

4πs
p

+ 2φ
)























ni

(3.32)

αi
Q⊥

(

t, ξi
)

=− 6l2

d3
mb

(1 + b)2
× (3.33)

×























1
2
sin 2Ψ







(

−1 + sin2Θ
)

+
(

1 + sin2Θ
)

cos
(

4πs
p

+ 2φ
)







+cos 2Ψ sinΘ sin
(

4πs
p

+ 2φ
)























ǫijkk
jnk.

The relationship (3.33) is original to this work and has not previously appeared.

From this relationship it is easy to see that the time-dependent de�etion of the

emitter's image is periodi, with a period half that of the orbit of the ore's om-

ponents.

The greatest time-dependent de�etion is observed when the emitter lies on the

line of the semi-major axis of the apparent motion; when b = 1; and when the

plane of the system lies perpendiular to the plane of observation. In this ase,

(3.33) redues to

αQ (t, d) ≤ 3l2

2d3
m

[

cos

(

4πs

p
+ 2φ

)

− 1

]

(3.34)

so the total quadrupolar de�etion seen over one half-period of the de�etor's

motion is

∆αQ (d) ≤ −3l2

d3
m. (3.35)
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Compared to the monopole de�etion in the ase of a large impat parameter,

∣

∣

∣

∣

∆αQ

αM

∣

∣

∣

∣

≤ 3l2

d2
. (3.36)

Figure 3.2: Light de�etion by a binary system

A light ray produed by the emitter initially follows trajetory ki
, whih has its los-

est approah to the origin of the oordinate system at ξi. In a pure Shwarzshild

spae, the light ray follows trajetory ki +κi (λ) and is de�eted about the apse of

its trajetory by angle µ; in a perturbed Shwarzshild spae, it follows trajetory

ki + κi (λ) + Ξi (λ) and the observer on Earth (⊕) reords an additional de�etion

of αi
h.

Other ontributions to the de�etion angle

If the path of the light ray after its losest approah to the de�etor but far from the

de�etor is nearly oulted (for example the Sun or another star), then de�etion

from this intermediate de�etor, αi
intermediate

(

ξin,int
)

, must be taken into aount as
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well. Whereξin,int refer to the vetor impat parameters of light relative to these

intermediate de�etors, dn ≡
∣

∣ξin,int
∣

∣

, and mn are the masses of these de�etors,

and where mn/dn is small for all n,

αi
intermediate

(

ξin
)

= −4mn

dn

ξin,int
dn

. (3.37)

In linear approximation and in the harmoni gauge, the various de�etions an be

superposed linearly. The total de�etion of the light ray from our soure, therefore,

is given by

αi
(

t, ξi
)

= αi
Q

(

t, ξi
)

+ αi
M

(

ξi
)

+ αi
S

(

ξi
)

+ αi
intermediate

(

ξin,int
)

. (3.38)

3.2.3 Appliation to 3C66B

3C66B, also known as 0220+43, is a radio galaxy [123℄ with z = .0215 [124℄,

approximately 91 Mp distant from the Milky Way

5

. 3C66B exhibits jets emerging

from its ore, making it a good andidate for the loation of a SMBHB [126℄. Thus

far, no other andidate SMBHB has emerged with an orbital period as short as

3C66B's [144℄ and the system is estimated to have an inspiral time on the order of

enturies [145℄.

5

We use a value of 71 km/s/Mp for the Hubble onstant H0 for all distane alulations.[125℄
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Parameters of the system

Sudou et al. [127℄ give upper-bound estimates by diret radio observation for

3C66B's ore, inluding an upper limit on m, a period, and an orientation of

the ore's motion. Sudou also reports a limit on the minimum impat parameter

available for determining the parameters of the system using a �rst-order approxi-

mation theory, orresponding to the limit of optial transpareny at VLBI's higher

operating frequeny. The upper limits Sudou gives are:

m ≤4.4 (1 + b)2 × 1010solar mass = 6.5 (1 + b)2 × 1015m (3.39)

l ≤5.1 (1 + b)× 1016m (3.40)

U ≥23µas = 3.1× 1016m (3.41)

d ≥3.7× 1016m (3.42)

p =1.05± .03years (3.43)

Θ =15◦ ± 7◦ (3.44)

where P is onstrained by the limit of the ore's opaity in the radio spetrum and

Θ is derived from the apparent eentriities of the elliptial boundaries of radio

opaity. From l and P we an furthermore onlude that in the ase of maximized

l, under Sudou's estimates q ≤ .20.
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Iguhi et al. have reently published [145℄ new estimates onstraining 3C66B:

m ≈1.9× 109solar mass = 5.6× 1014m (3.45)

l ≈1.9× 1016m (3.46)

U ≈1.2× 1016m (3.47)

d ≥3.7× 1016m (3.48)

p =1.05± .03years (3.49)

Θ =15◦ ± 7◦ (3.50)

b ≈0.58. (3.51)

Estimates for distant emitters

Although highly eentri motion in 3C66B is not ruled out [128℄, the age of the

presumed binary is great enough to have irularized the orbit through gravita-

tional radiation under most onditions [129℄. We present the ase of irular motion

as an upper limit on the time-dependent de�etion angle, noting that if all other

parameters are onstant then in the ase of eentri motion any time-dependent

separation of the masses must have l as an upper bound.

Using the maximal �gure for mass and the minimal �gure for impat parameter in

(3.39-3.44) and applying (3.28), the ratio m/l = .30, plaing our proposed system

in the regime of strong de�etion. We �nd a monopolar de�etion of:

µ =

(

ln

(

6.5× 1015m

3.7× 1016m
(1.44)

)

+ 1.248

)

= .13radian = 7.2◦. (3.52)



3.2. THEORY 49

The omponents of the system as proposed by Sudou have

2πl
p

≤ .39. Therefore it

is not reasonable to apply (3.29) to 3C66B in the regime where de�etion from the

quadrupole moment will be detetable.

De�eted images lying along the major axis of the ore with the system as on-

strained in (3.39-3.44) will have time-dependent de�etions in the following amounts:

∆αQ‖ (d) ≤
12l2

d3
mb

(1 + b)2
(1.07)

≤12 (5.1× 1016m)
2
(1.2)2

(3.7× 1016m)3
(6.5× 1015m) (1.2)2 (.2)

(1.2)2
(1.07) (3.53)

≤5.8× 10−5
arseond

∆αQ⊥ (d) ≤24l2

d3
mb

(1 + b)2
(.26)

≤24 (5.1× 1016m)
2
(1.2)2

(3.7× 1016m)3
(6.5× 1015m) (1.2)2 (.2)

(1.2)2
(.26) (3.54)

≤1.4× 10−5
arseond

with a period of p/2 = .53± .02years for eah omponent of the de�etion.

Under Iguhi et al.'s new estimates, the de�etions take on the following values:

∆αi
Q‖

(

t, ξi
)

≈3.7× 10−7
arseond (3.55)

∆αi
Q⊥

(

t, ξi
)

≈8.8× 10−8
arseond. (3.56)
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3.3 Observational tehniques

3.3.1 Interferometry

Eletromagneti interferometry provides the best urrently-available tehniques

for high-resolution astronomy. The use of spae-based interferometry and im-

provements in equipment allowing for higher frequenies of observation ontinue

to steadily improve resolution apabilities. The urrent most powerful tehnique

available is VLBI, whih Sudou et al. used to determine the motion in the ore of

3C66B [127℄.

VLBA, the Very Long Baseline Array, is an array of ten radio telesopes [133℄

operating in wavelengths as short as 3mm operating as a single large interferom-

eter. The urrent best available resolution is 1.7 × 10−5
arseond [134℄, making

VLBA urrently apable of onstraining the parameters of 3C66B further through

diret observation as well as the Jenet pulsar timing experiment desribed below

aomplishes indiretly. The launh of the spae-based ASTRO-G satellite [135℄

will extend the resolution apabilities further.

The SIM PlanetQuest mission (formerly Spae Interferometry Mission), urrently

sheduled for launh in 2015 [136℄, is expeted to have a resolution apability of 4×

10−6
arseond [137℄. SIM will operate in the optial band and quasar observation

is part of the planned mission.

Farther into the future, the MAXIM (Miro-Arseond X-ray Interferometry Mis-
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sion) satellite array urrently in development [138℄ is expeted to give resolutions

on the order of 10−7
arseond in the x-ray band, and is expliitly designed with

the observation of blak holes in mind.

3.3.2 Pulsar timing

Jenet et al. [117℄ examined the period of the pulsar PSR B1855+09 for hanges

in its period over several years, motivated by the idea that as gravitational waves

generated by the ore of 3C66B pass near the pulsar, the pulsar's signal should be

modulated with a period related to the period of the proposed 3C66B SMBHB. The

distane between the Solar System and the pulsar furthermore give the advantage

that the signals observed modulating the pulsar are some 4000 years older than

the motion observed in the 3C66B ore. However, Jenet's experiment produed a

null result.

The experiment's analysis involved examining the frequeny spae of the pulsar's

signal for omponents in a range from 1/27.8yr−1
to 19.5yr−1

, then subtrating

out the one-year and six-month omponents resulting from geodeti e�ets. The

results are desribed as showing no signal distinguishable from noise other than the

already-known main osillation frequenies of the pulsar. Therefore the magnitude

of gravitational waves generated by 3C66B, and onsequently the parameters of its

ore, an be further onstrained.

Jenet et al. assert that a system with m
(

b
(1+b)2t

)3/.5

≥ .7 × 1010solar mass an be

ruled out by the observed null result in the hange in pulsar periods over seven
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years; this orresponds in the optimal ase of q = .2 to a system with m = 2.3 ×

1010solar mass = 3.4 × 1015m. For a system under these new onstraints, we

estimate optimal peak de�etions:

∆αQ‖ (d) ≤
12 (5.1× 1016m)

2
(1.2)2

(3.1× 1016m)3
(

3.4× 1015m
) (.2)

(1.2)2
(1.07) = 2.1× 10−5

arseond

(3.57)

∆αQ⊥ (d) ≤12 (5.1× 1016m)
2
(1.2)2

(3.1× 1016m)3
(

3.4× 1015m
) (.2)

(1.2)2
(.26) = 5.0× 10−6

arseond

(3.58)

whih remain within the detetion limit of VLBA as urrently on�gured.

3.4 Conlusions

A theory of light de�etion by time-dependent distributions of matter has been

presented for metris whih are perturbations of the Shwarzshild metri, a-

ounting for de�etion resulting from time-independent and time-dependent terms

in the metri. To order m3/r3, de�etions originating from the quadrupole mo-

ment of the mass distribution and, with some onstraints, the dipole moment of

the system's spin an be linearly superposed on the system as if in a weak-�eld

approximation. The theory an be pratially evaluated for and applied to a model

of the ore of an ative galaxy, but the theory of light de�etion from the spin of

the de�etor needs further development for appliability in the regime of strong

de�etion.

The examination of time-dependent light de�etion is a feasible tehnique for the
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evaluation of proposed SMBHB systems, under idealized irumstanes. In the

event that a suitable emitter exists, examination of light de�etion an be used

to onstrain the parameters of the proposed SMBHB in the ore of 3C66B. We

emphasize that while the existene of an identi�able suitable emitter in the ase

of 3C66B is unlikely, the theory an be applied equally well to any other SMBHB

andidate, any of whih may have a suitable soure; in partiular, ative galaxies

displaying Einstein rings or other artifats of strong gravitational lensing, espeially

multiple images, should be examined. The theory an be equally well applied to

intragalati objets, although nearer objets will require further orretions for

proper motion.

The quadrupolar motion in the ore of 3C66B an be examined and evaluated by

the observation of de�eted images in the region of the sky near the ore of the

galaxy, if found; the time-dependent part of the de�etion has a magnitude of up

to 58 miroarseonds parallel to the impat parameter of the emitter and up to

28 miroarseonds perpendiular to the impat parameter.

For the ase of 3C66B, for most emitters pulsar timing an onstrain the parameters

of the de�eting system better than time-dependent light de�etion an. VLBA

in its urrent on�guration is apable of onstraining the parameters of the ore

of 3C66B under ideal irumstanes, but newer estimates of the parameters of the

system show a hange in angular light de�etion onsiderably smaller than what

VLBA ould resolve. Antiipated interferometers will have resolutions up to two

orders of magnitude greater and will be apable of evaluating the parameters of

the system while examining it in a wide range of frequenies, and may make the

observation of time-dependent light de�etion resulting from motion in the ore of

3C66B more pratial.



Chapter 4

The Bianhi IX osmology

In pursuit of a theory within the ontext of unmodi�ed general relativity whih an

explain osmi aeleration while remaining ompatible with the osmi mirowave

bakground, we wish to relax as few onstraints on our osmologial model as

neessary. Therefore while having sari�ed the requirement of isotropy in the

sense of spherial symmetry in the dark energy �eld, we wish to retain a stronger

[2, ss. 116℄ ondition of the Copernian priniple on our spae, that of homogeneity

[4, Chap. 13 se. 1℄. It is also desirable to have a model whose limiting ase is

a Friedmann osmology, in order to explain the almost-isotropi (that is, almost-

Friedmannian) harater of the CMB. Furthermore, a model whih is spatially

losed, in order to math models favored by CMB and SNe data, is desirable; suh

a model would, if omplying with all other onditions, have a �at universe as a

limiting ase in the limit of an in�nitely large radius of urvature.

54
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Bianhi showed [70℄ that there exists exatly one homogeneous

1

spae with a losed

Friedmann universe as a limiting ase: the Bianhi type IX osmology, for short

�Bianhi IX�.

4.1 The Bianhi lassi�ation sheme

Bianhi observed that all three-dimensional homogeneous spaes ould be lassi�ed

into nine types, based on ategorization of the symmetries, that is the Killing �eld,

in eah spae. Behr noted [71℄ that this ategorization sheme ould be simpli�ed

to �lling a parameter spae of four parameters: one running over the real numbers

and three reduible to the sign funtion sgn (x).

Consider some spae with metri ds2 = dt2−gijdx
idxj

(that is, a spae in Gaussian

oordinates) where gij = gij (t, x
i). If the sub-spae with metri tensor gij is

homogeneous, then there exists a set of vetors that solve ξi;j + ξj;i = 0; these are

the Killing vetors of the spae[4℄. In an homogeneous spae, these vetors will

(where [ , ] is a ommutator) obey the ommutation relationship

[ξi, ξj] ≡ ξiξj − ξjξi = Ck
ijξk (4.1)

where in an homogeneous spae, the objet Ck
ij is a onstant pseudo-tensor, the

�struture onstants� of an homogeneous spae, with the antisymmetry property

Ck
[ij] = Ck

ij [2, ss. 116℄.

1

A homogeneous spae is a spae suh that for any two points in the spae, there exists a

geodesi, not neessarily of �nite length, onneting those two points.
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We always have the freedom to perform separation of variables the funtions gij;

let us do so by de�ning the matrix γab suh that

gij
(

t, xk
)

= −γab (t) e
(a)
i

(

xk
)

e
(b)
j

(

xk
)

(4.2)

.

2

The 3×3matrix e
(a)
i

(

xk
)

is a triad [2, 112, ss. 98℄

3

of vetors (�frame vetors�); in

the language of linear algebra, the quantity eai dx
i
is a one-form on a homogeneous

spae.

Furthermore, let us de�ne the matrix ei(a) suh that e
i
(a)e

(a)
j = δij ; from this it follows

that ei(a)e
(b)
i = δ

(b)
(a). From these relationships we an transform between any tensor

and its deomposition into triads by saying that for some tensor Ai1i2i3...im
j1j2j3...jn

,

Ai1i2i3...im
j1j2j3...jn

= A
(a)1(a)2(a)3...(a)m
(b)

1
(b)

2
(b)

3
...(b)n

(

ei1(a)
1

ei2(a)
2

ei3(a)
3

. . . eim(a)m

)(

e
(b)1
j1

e
(b)2
j2

e
(b)3
j3

. . . e
(b)n
jn

)

;

(4.3)

therefore in an homogeneous spae we an perform separation of variables on the

partial di�erential equations of general relativity and solve the time-dependent

parts as ordinary di�erential equations.

The frame vetors obey the properties

e
(a)
i,j − e

(a)
j,i = Ca

bce
(b)
i e

(c)
j (4.4)

2

Indies from the beginning of the Latin alphabet (a, b, ,...) denote triad indies; indies

from the middle of the alphabet (i, j, k,...) denote regular indies. Where the two are mixed or

the appliation is otherwise ambiguous, triad indies are enlosed in parentheses; in this work,

this notation never means the tensor symmetrization operation.

3

The widespread Fourth Revised English Edition of [2℄ ontains numerous serious typograph-

ial errors in the setion introduing the tetrad formalism. The Russian-language Seventh Cor-

reted Edition[112℄ ontains the orret formulas.
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[7℄.

Grishhuk disusses two riteria for an homogeneous spae, onstrasting two om-

peting de�nitions; one, originating from Bianhi [70℄, in whih a spae is termed

�homogeneous� if it admits a group of motions G3 operates ontinuously on a spae

omposed of a set of hypersurfaes V3; that is, if for every point x
i
in the spae, the

operation gxi = yi for g ∈ G3 and yi is another point in the spae; and the other,

from Zel'manov, whih generalizes Bianhi's de�nition to three-spaes whih are

submanifolds of a four-dimensional spae-time. Grishhuk �nds these two de�ni-

tion to be ompatible. The struture onstants Ca
bc typify a homogeneous spae

and are given by the following rule [71℄:

Ca
bc = εbcdn

ad + δdcab − δdbac (4.5)

where the objet nab
is a diagonal matrix diag

(

n(1), n(2), n(3)
)

and aa is the vetor

(a, 0, 0), the values of this matrix and vetor typifyied by the underlying osmology

(Table 4.1).

The osmologies of Bianhi types I, V, VII0, VIIa and IX are of partiular interest

as they have isotropi spaes as limiting ases [151℄; spei�ally, a universe with

metri

ds2 = dt2 − a2ηabe
(a)
i e

(b)
j dxidxj

(4.6)

is a �at K = 0 universe for Bianhi type I or VII0, an open K = −1 universe for
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Bianhi type a n(1) n(2) n(3)

I 0 0 0 0

II 0 1 0 0

III 1 0 1 -1

IV 1 0 0 1

V 1 0 0 0

VI0 0 0 1 -1

VIa a 0 1 -1

VII0 0 1 1 0

VIIa a 1 1 0

VIII 0 1 1 -1

IX 0 1 1 1

Table 4.1: The Bianhi lassi�ation sheme

Constants for the di�erent homogeneous spaes of the Bianhi lassi�ation

sheme[2, 21, 71, 104℄. The quantity a runs over the real numbers. This

parametrization is not unique (we ould, for example, have hosen (−1,−1,−1)
for

(

n(1), n(2), n(3)
)

in the type IX spae).

Bianhi types V or VIIa and some ases of Bianhi type III (type III is itself a

partiular ase of Bianhi type VIa [71℄), and a losed K = 1 universe for Bianhi

type IX [2, 10, 21℄. Bianhi IX is the only homogeneous losed osmologial model

in the ontext of general relativity [104, 151℄.

4.2 The Kasner universe

In order to illustrate the possible e�ets of an anisotropi but homogeneous os-

mology on osmi dynamis, we will onsider a Bianhi type I osmology that

generalizes the Friedmann osmology: the Kasner universe [76℄; [2, ss. 117℄.
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Let our metri read

ds2 = dt2 − t2p1
(

dx1
)2 − t2p2

(

dx2
)2 − t2p3

(

dx3
)2

(4.7)

where p1, p2, p3 are onstants. In a o-moving oordinate system we quikly arrive

at the following set of Einstein equations:

[

(p1 + p2 + p3)−
(

p21 + p22 + p23
)]

t−2 =
1

2
k (ǫ+ 3p) (4.8)

(p1 + p2 + p3 − 1) p1t
−2 =

1

2
k (p− ǫ) (4.9)

(p1 + p2 + p3 − 1) p2t
−2 =

1

2
k (p− ǫ) (4.10)

(p1 + p2 + p3 − 1) p3t
−2 =

1

2
k (p− ǫ) . (4.11)

These equations neessitate either an isotropi but unusual (p = ǫ) universe or a

vauum (ǫ = p = 0) universe, in whih we have either the trivial solution p1 =

p2 = p3 = 0 (Minkowski spae) or the more interesting solution

p1 + p2 + p3 = p21 + p22 + p23 = 1. (4.12)

This solution admits a parametrization of p1, p2, p3 suh that (if we hoose p1 ≤

p2 ≤ p3)

p1 =− u/
(

1 + u+ u2
)

p2 =(1 + u) /
(

1 + u+ u2
)

(4.13)

p3 =u (1 + u) /
(

1 + u+ u2
)

where u > 0; these relations have the nie symmetry property that pi (u) = pi (1/u).
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An impliation of (4.12) is that singularities in the Kasner universe fall into two

lasses: one-dimensional �spindle� singularities where expansion tends toward in-

�nity in one diretion while the universe ollapses in two diretions; and �panake�

singularities where expansion goes to in�nity in two diretions while the universe

ollapses in the third.

4.2.1 Sale fator

The sale fator a does not neessarily have an intrinsi meaning, but instead

ompares distanes as a funtion of time. In an isotropi osmology suh as the

Friedmann model a an be given a real geometri meaning; in an open or losed

Friedmann universe, the sale fator appears simply in the Rii urvature of spae

Ri
j = (2K/a2) δij . As suh, the sale fator an be regarded as the radius of

urvature of the universe. In partiular, in a losed isotropi universe a an be

onsidered to have the diret physial meaning of the radius of urvature of the

spherial spae, so in a losed isotropi universe one ould meaningfully say �the

radius of the universe is a�.

When spae is no longer isotropi, the de�nition of sale fator breaks down. It is,

of ourse, possible to de�ne any positive funtion as �the� sale fator. Grishhuk

et al. [10, setion 4℄, for example, use a metri

γ11 =
1

4
a2e2α

γ22 =
1

4
a2e2β (4.14)

γ33 =
1

4
a2e2γ
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and propose the de�nition

a2 ≡ 1

12
γabη

ab
(4.15)

in the ontext of a vauum osmology, motivated by the oinidene of this de�-

nition of the sale fator with one the authors introdue in separating the Bianhi

IX metri into bakground and gravitational-wave parts. The authors also disuss

a de�nition of sale fator suh that

a2 ≡ (det γab)
1/3 . (4.16)

This de�nition has the advantage that it relates the sale fator to a de�nite physi-

al quantity, a volume element, but it ontains a deeper �aw: with suh a de�nition

in plae the Einstein equations admit no solution other than the bakground solu-

tion at quadrati and higher orders. If we de�ne the quantity

δ ≡ α + β + γ (4.17)

then

a2 ≡ (det γab)
1/3 =⇒ eδ = 1 =⇒ δ = 0. (4.18)

In either ase, though, disussion of possible de�nitions of a attempt to solve a

problem that does not exist. The question of what de�nition of sale fator to selet

is analogous to the question of whih of the orthoenter, inenter or irumenter

of a triangle is the �true� enter. Consequently, attempting to extrat a single sale

fator � and thus a single Hubble parameter or a single deeleration parameter �

from anisotropi Einstein equations is a fool's errand.

We an, if we wish, split the metri (4.14) into isotropi and anisotropi parts by

noting that the quantity aFe
δ
is isotropi and that any two of the quantities α−β,
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α−γ and β−γ ombined with aF e
δ
ontain all the information needed to desribe

the metri [22℄; pursuing this route would be a distration from our main task,

however.

Alternately, we ould follow [2℄'s Kasner-like approah to the Bianhi IX osmology

and deal with only the metri oe�ients as γ11 = a2, γ22 = b2, γ33 = c2 for

funtions a, b, , ignoring the idea of a unique �sale fator� or Friedmann-like

behavior. This approah will obsure the nature of the osmology disussed below.

Instead, let the notion of sale fator a, Hubble parameter H and deeleration

parameter Q be generalized. In a homogeneous osmology with a diagonal metri,

de�ne the following matries: the generalized sale fator,

aab ≡













(γ11)
1/2 0 0

0 (γ22)
1/2 0

0 0 (γ33)
1/2













(4.19)

(realling that non-integer powers of a matrix are not de�ned, so we ould not

simply say aab ≡ (γab)
1/2

). In a Bianhi I osmology only, from this de�nition

we an then de�ne the redshift matrix (in homogeneous osmologies other than

Bianhi I the geodesi equations are non-linear; see Chapter 5):

zba ≡ aac (ηR) a
bc (ηE)− δba =













a11(tR)
a11(tE)

− 1 0 0

0 a22(tR)
a22(tE)

− 1 0

0 0 a33(tR)
a33(tE)

− 1













(4.20)

where the subsript R denotes the funtion evaluated at the time of observation

of light, and E denotes the funtion evaluated at the time of emission, and �nally
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the generalized, anisotropi Hubble parameter and deeleration parameter:

Hab ≡
1

2

d

dt
ln γab =













ȧ11/a11 0 0

0 ȧ22/a22 0

0 0 ȧ33/a33













(4.21)

Qb
a ≡

d

dt
Hacηbc − δab = −













ä11a11/ (ȧ11)
2 0 0

0 ä22a22/ (ȧ22)
2 0

0 0 ä33a33/ (ȧ33)
2













.

(4.22)

This approah is essentially a generalization of that developed by Barrow in [22℄;

the objet (4.21) is losely related to the shear tensor [21, 26℄ whih was adapted

from �uid dynamis. The pratial purpose of these de�nitions is to provide a

mathematial desription of observed quantities; let e
i
be a unit vetor pointing

in the diretion of observation. Then the redshift observed in the e
i
diretion is

given by

z
(

ei, t
)

= zab e
i
(b)e

(a)
j e

j
ei (4.23)

and similarly for other funtions of the sale fator. Eah of these funtions an be

averaged over the whole sky to extrat a monopole value, these averages denoted

by a bar:

ā ≡
´

aabe
(b)
i e

(a)
j e

i
e
jdS

´

ηijeiejdS
=

1

3
aabη

ab =
1

3
(a11 + a22 + a33) (4.24)

et.; by �average� we mean, simply, the arithmeti mean of the funtion summed

over the whole sky.



64 CHAPTER 4. THE BIANCHI IX COSMOLOGY

4.2.2 Dynamis in the Kasner universe

An observer in a Kasner universe will see the onsequenes of that universe's evo-

lution. Examination of the observational onsequenes of the Kasner universe

provides an illustrative example of potential onsequenes of anisotropy in other

osmologies.

Expansion

Misner, Thorne & Wheeler argue [76℄ that the Kasner universe is expanding, as

the volume element is always inreasing:

dV

dt
=

d

dt

√

‖gij‖dx1dx2dx3 =
d

dt

(

tp1+p2+p3
)

dx1dx2dx3 = dx1dx2dx3. (4.25)

However, as noted above there is no unique way to de�ne the sale fator. In terms

of the averaged quantity de�ned in (4.24) we have

ā =
1

3
(tp1 + tp2 + tp3) (4.26)

whih, when we expand around t = 1, is approximately

ā (t ≈ 1) =
1

3
(2 + t) +O

(

t3
)

. (4.27)

But in the limit of t small, we have

ā ≈ 1

3
tp1 , (4.28)
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whih is learly a dereasing funtion; so the Kasner universe is not unambiguously

expanding and even so fundamental a property as expansion or ontration is a

matter of the hoie of de�nition.

Redshift

Redshift in a Kasner universe is given by

zij =













(tR/tE)
p1 − 1 0 0

0 (tR/tE)
p2 − 1 0

0 0 (tR/tE)
p3 − 1













(4.29)

z̄ =
1

3

[(

tR
tE

− 1

)p1

+

(

tR
tE

− 1

)p2

+

(

tR
tE

− 1

)p3]

. (4.30)

In the irumstane when tR ≫ tE ,

z̄ ≈ 1

3

(

tR
tE

)p3

. (4.31)

Of partiular interest is the quantity ∆T/TR, the variation in CMB temperature

from the average (aepting for the moment that the vauum Kasner universe

approximates a matter-�lled one at a su�iently young age), whih is given ap-
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proximately by

∆T

TR
≈













3

(

tR
tE

)−p3













(tR/tE)
p1 0 0

0 (tR/tE)
p2 0

0 0 (tR/tE)
p3













− ηab













e
i
e
j =

=













3 (tR/tE)
p1−p3 − 1 0 0

0 3 (tR/tE)
p2−p3 − 1 0

0 0 2













e
i
e
j ≈ (4.32)

≈













−1 0 0

0 −1 0

0 0 2













e
i
e
j

(exept in the ase when p2 = p3 = 2/3, in whih event the (2,2) entry in (4.32)

will read 2). The CMB in a mature Kasner universe has a pronouned anisotropy,

with the observed temperature mathing the average temperature only in a irle

around the axis of anisotropy. Notably, the primary axis of the anisotropy is at a

right angle to the axis along whih the Kasner universe is ontrating � not on a

parallel axis!

Hubble �ow & deeleration parameter

The Kasner universe has Hubble �ow

Hab =
1

t













p1 0 0

0 p2 0

0 0 p3













(4.33)
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H̄ =
1

3
t−1

(4.34)

and deeleration parameter

Qb
a =













(1− p1) /p1 0 0

0 (1− p2) /p2 0

0 0 (1− p3) /p3













(4.35)

Q̄ = −1. (4.36)

whih are neessarily anisotropi; on average a Kasner universe will appear to be

aelerating, when the average taken is the parameter Q̄. The use of Q̄ ontrasts

with q in that q is de�ned with the assumption of isotropi deeleration already

made (q is de�ned as a funtion of a). In the limit that the parameter u → ∞

an observer in a Kasner universe would see a universe with a positive Hubble �ow

(redshift) over most of the sky, but see blueshift in a third diretion. An observer

looking only at averages, though, would not be able to distinguish between an

isotropi universe and a Kasner universe merely by examining the Hubble �ow;

only with a omplete piture of the sky is suh a test possible. The Hubble �ow

in the ase of minimal anisotropy has the form

Hab (u = 1) =
1

t













−1/3 0 0

0 2/3 0

0 0 2/3













(4.37)

� appearing like a Friedmannian matter-dominated universe in two diretions �
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and in the ase of maximal isotropy

lim
u→0

Hab =
1

t













0 0 0

0 0 0

0 0 1













. (4.38)

Similarly, an observer looking only at the averaged deeleration parameter sees a

universe aelerating as though driven by a osmologial onstant; only with good

enough information will the observer notie a strong angular dependene in the

aeleration �eld, whih in the ase of minimal anisotropy has the form

Qb
a (u = 1) =













−4 0 0

0 1/2 0

0 0 1/2













(4.39)

� deelerating like a Friedmann osmology in two diretions � and in the ase of

maximal anisotropy has the form

lim
u→∞

Qb
a =













−∞ 0 0

0 ∞ 0

0 0 1













. (4.40)

Moreover, even though aeleration along two axes is negative in the least-anisotropi

Kasner universe, the impat of the positive-aelerating diretion is suh that the

isepitah

4

of zero aeleration, the boundary an observer sees on the sky between

regions where objets aelerate and objets deelerate, is a irle 83◦ from the

axis of aeleration; only less than 8% of the sky appears lose to �normal� to an

4

A neologism denoting a path of onstant aeleration, similar to �isobar� or �isohor�, from

Greek �epitahounse�, aeleration.
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observer expeting to reord a Friedmann universe!

While the vauum Kasner universe is ruled out as a possible approximate os-

mology both for reasons of the CMB, whih appears isotropi to a high degree

[16℄, and due to the Hubble �ow, whih appears almost isotropi below z = 0.3

[77℄, the surprising di�ulties in distinguishing between its dynamis and that of

a Friedmann universe serve as a reminder that sampling of osmologial parame-

ters must be done in an unbiased fashion and that isotropy must be tested rather

than assumed. The Kasner universe also has an appliation as a limiting ase of

the BKL universe [74℄ disussed below, to whih it appears idential for observers

looking over a period of time that is small ompared to the radius of urvature of

the universe. Finally, the anisotropi Kasner universe serves as a limiting ase to

some types of osmology desribed by the more general Bianhi IX model.

4.3 Gravitational wave nature of Bianhi IX

The Bianhi IX has been onsidered by osmologists repeatedly sine the estab-

lishment of general relativity to provide possible explanations for osmologial

phenomena.

Belinsky, Khalatnikov and Lifshitz disussed [74℄ a Bianhi IX osmology (the

�BKL osmology�) whih undergoes several �bounes� as it evolves � rather than

expanding from or onverging to a point, it ontrats along one axis while expand-

ing along two others until the smallest metri omponent reahes a minimum value,

at whih point the axes swap roles. Misner [73℄ refers to a Bianhi IX universe as
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the �mixmaster universe�, pursuing an resolution to the horizon problem through

the non-linearity of the Bianhi IX osmology; through the mehanism of bounes,

all parts of the universe may be brought into ausal onnetion. Bouning vauum

osmologies are, like the vauum Kasner universe, intrinsially highly anisotropi;

while in the long run they tend to at isotropially due to the bak-reation of

matter [75, 76℄ they will still exhibit strong CMB anisotropy [19℄. Supernova data

([1, 48℄ et.) and CMB data on the value of ΩM ([31℄ et.) oupled with the

existene of high-redshift objets [72℄ rule out bouning osmologies, or at least

bouning osmologies with a period of at most a few billion years, to a high degree

of on�dene.

The BKL osmology undergoes anisotropi aeleration (see setion 4.2.2). Mean-

while, numerial modeling has suggested [98, 146℄ that a matter-�lled Bianhi IX

universe will also undergo periods of aeleration. Therefore, we have good reason

to suppose that a property of Bianhi IX may be to generate anisotropi aelera-

tion, and that onsequenes of the Bianhi IX osmology may reveal a dark energy

andidate with none of the failings of salar-�eld or exoti models.

Wheeler showed [78℄ that an almost-isotropi Bianhi IX universe admitted a weak

tensorial perturbation that took the form of a wave (that is, solving an equation

of the form f̈ +nf (t) = g (t)). Grishhuk et al. were able to generalize this result

[10℄:

The Bianhi IX spae has frame vetors
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e1i =
(

cosx3, sin x1 sin x3, 0)

e2i =
(

− sin x3, sin x1 cosx3, 0) (4.41)

e3i = (0, cosx1, 1) .

Consider the metri of a Bianhi IX osmology:

ds2 = dt2 − γabe
a
i e

b
jdx

idxj . (4.42)

When the matrix γab ∝ ηab we reover the losed Friedmann osmology. We an

split the more general metri up into an isotropi (Friedmannian) part and a non-

Friedmannian part:

ds2 =dt2 − a2Fηabe
a
i e

b
jdx

idxj −
(

γab − a2Fηab
)

eai e
b
jdx

idxj =

=ds20 −
(

γab − a2Fηab
)

eai e
b
jdx

idxj
(4.43)

where the bakground metri ds20 ≡ a2Fηabe
a
i e

b
jdx

idxj
. Grishhuk, Doroshkevih &

Iudin showed that the objet desribing the spae part of the anisotropi part of

the metri at some moment in time,

5

Gab
ij ≡ 2

(

eai e
b
j + ebie

a
j

)

− 4

3
ηabηcde

c
ie

d
j , (4.44)

obeys the property

(

Gab
ij

);k

;k
= −

(

n2 − 3K
)

Gab
ij (4.45)

for n = 3 and K = 1; that is, Gab
ij is a tensor eigenfuntion of the Laplae operator

in a Bianhi IX spae for waves with wavenumber n = 3. A similar property for

5aF has been saled here to equal 1
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open spaes is true of the Bianhi type VIIa models [19℄.

6

Lifshitz, in his development of the theory of osmologial perturbations [75, 79, 2,

ss. 115℄, laims that tensorial perturbations, inluding gravitational waves, an

only have a diminishing e�et over time. Lifshitz is, however, onsidering only the

lass of loal tensorial perturbations.

In ontrast, the gravitational waves in Bianhi IX will have wavelengths omparable

to the radius of urvature of the universe. Kristian and Sahs note [25℄ that the

wavelength of osmi shear (and thus, if anisotropy is present among all priniple

axes of the spae, of osmologial gravitational waves) must be at least 2 × 1010

years � longer than the Hubble radius [16℄ � and ould potentially be far longer

(see setion 6.1).

We will onsider �rst the regime of weak gravitational waves in an almost-isotropi

universe and then �quasi-isotropi� waves; that is, the regime in whih omponents

of the metri evolve at equal powers of t.

6

We ould also hoose to interpret Bianhi I as the degenerate ase of a �at universe ontaining

gravitational waves of in�nite wavelength with n = 0. The Kasner universe, however, is not suh a

universe: all the anisotropy is governed by a single parameter, u, so the system has an insu�ient

number of degrees of freedom. The Kasner universe is more like the Taub universe [108℄.
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4.3.1 Einstein equations in the tetrad formalism

For a metri gαβ, let the spae-spae part of the metri be deomposed as in (4.2).

Similarly, the tensors

Rij =Rabe
a
i e

b
j (4.46)

Tij =Tabe
a
i e

b
j (4.47)

with all spae dependene in the frame vetors. Assume the energy-momentum

tensor desribes a perfet �uid. Then the Einstein equations an be rewritten:

R00 =kT00 −
1

2
kTg00 (4.48)

R0i =kT0i −
1

2
kTg0i (4.49)

Rab =k

(

Tab −
1

2
Tγab

)

. (4.50)

If we have energy-momentum tensor

Tµν =(p+ ǫ) uµuν − pgµν (4.51)

T =ǫ− 3p (4.52)

then

T00 =(p+ ǫ) u0u0 − pg00 (4.53)

T0i =(p+ ǫ) u0ui − pg0i (4.54)

Tab =(p+ ǫ) uaub − pγab. (4.55)
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If we then hoose a synhronous Gaussian referene system, as we always have the

freedom to do,

g00 =1 (4.56)

g0i =0 (4.57)

so the Einstein equations read

R00 =k (p+ ǫ) u0uik (p+ ǫ) u0u0 − kpg00 −
1

2
k (ǫ− 3p) (4.58)

R0i =k (p+ ǫ) u0ui (4.59)

Rab =k (p+ ǫ) uaub − kpγab −
1

2
k (ǫ− 3p) γab. (4.60)

If we then demand that our oordinate system be o-moving with matter,

u0 =1 (4.61)

ui =0 (4.62)

then

R00 =
1

2
k (ǫ+ 3p) (4.63)

R0i =0 (4.64)

Rab =
1

2
k (p− ǫ) γab. (4.65)

Let

dab ≡
1

2

∂

∂t
gije

i
ae

j
b =

1

2

d

dt
γab (4.66)
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and

d ≡ dabγ
ab. (4.67)

The Christo�el symbols assoiated with our metri then beome [2, ss. 97℄

Γ0
00 = Γ0

0i = Γi
00 =0 (4.68)

Γ0
ij =dij (4.69)

Γi
0j =d i

j (4.70)

Γi
jk =Γ̃i

jk (4.71)

where Γ̃i
jk are the Christo�el symbols assoiated with the three-dimensional metri

tensor −gij . The Rii tensor an then be written as [2, ss. 97℄:

R00 =− ḋ− d b
ad

a
b (4.72)

R0i =0 (4.73)

Rab =ḋab + ddab − 2dacd
c
b − Pab (4.74)

or expliitly [10℄

ḋ+ d b
ad

a
b =− 1

2
k (ǫ+ 3p) (4.75)

ḋab + ddab − 2dacd
c
b − Pab =

1

2
k (ǫ− p) γab (4.76)

d b
aC

a
bc =0 (4.77)

where Pij is the three-dimensional Rii tensor onstruted from Γ̃i
jk.
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4.3.2 The urvature tensor for Bianhi IX

Grishhuk expliitly gives the urvature tensors for all Bianhi types, and a general

method for easily deriving them, in [7℄. These tensors an be stated in remov-

able and non-removable parts, with the removable parts orresponding to time-

dependent rotations of the spae. Let the symbol

γabc ≡ γadC
a
bc. (4.78)

Then where

Γc
ab ≡

1

2
γcd (γabd + γdab − γbda) (4.79)

(these are analogous to the Christo�el symbols of the full spae, but with di�erent

symmetry properties) the non-removable part of the urvature tensor is given by

Lab ≡ −2Γc
a[b,c] + 2Γc

d[bΓ
d
|a|c] + 2Γc

adΓ
d
[bc] (4.80)

where square brakets around the indies indiate the antisymmetri part of the

tensor; the removable part is given by

bab ≡
1

2
vcC

c
ba +

1

2
(favb − fbva) (4.81)

and �nally the urvature tensor

Pab = Lab − bbcd
c
a − bacd

c
b − bbad. (4.82)

In the o-moving ase that va = 0 we an simply state Pab = Hab. For the partiular

ase of Bianhi IX (the frame vetors (4.41)) and the urvature tensor when va = 0
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reads, for diagonal omponents:

P b
a =

[

(

γfgη
fg
)2

2 ‖γcd‖
− γfgηfg

]

δba − γbcηac −
γafγghη

fgηbh

‖γcd‖
(4.83)

and for non-diagonal omponents:

P b
a = −2γcbηac −

1

‖γdf‖
γacγdfη

bcηdf (4.84)

where ‖γab‖ is de�ned as the determinant of γab. The Einstein equations show that

when va = 0 the non-diagonal omponents of γab must be zero, so as a onsequene

of our Gaussian hoie of oordinate system we an without loss of generality, write

the metri for Bianhi IX

γ11 = a2F e
2α

γ22 = a2F e
2β

γ33 = a2F e
2γ

(4.85)

with all other spae-spae omponents zero, so expliitly the the urvature tensor

Pab for Bianhi IX reads

P11 =
1

2
e−2δ

(

−e4α +
(

e2β − e2γ
)2
)

e2α (4.86)

P22 =
1

2
e−2δ

(

−e4β +
(

e2γ − e2α
)2
)

e2β (4.87)

P33 =
1

2
e−2δ

(

−e4γ +
(

e2α − e2β
)2
)

e2γ (4.88)

Pab =0, a 6= b (4.89)

and the ontrated urvature salar

Pabγ
ab = 2a−2

F e−2δ
[

e4α + e4β + e4γ − 2
(

e2α+2β + e2β+2γ + e2α+2γ
)]

. (4.90)
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The bakground, Friedmannian universe is reovered in the ase that α = β = γ =

0.

4.4 Einstein equations for Bianhi IX

4.4.1 Exat equations

Let the symbol δ ≡ α+ β + γ for onveniene as in (4.17). For our hosen metri,

we have the auxiliary quantities

d11 =
(

aȧ + a2α̇
)

e2α (4.91)

ḋ11 =
(

ȧ2 + aä + 4aȧα̇ + a2α̈ + 2a2α̇2
)

e2α (4.92)

d11 =H + α̇ (4.93)

d =3H + δ̇ (4.94)
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and yli permutations in α, β, γ thereof for 22- and 33-quantities. The full Ein-

stein equations for Bianhi IX read

7























3
a2
F

(ȧ2F + 1) + α̇β̇ + α̇γ̇ + β̇γ̇ + 2 ȧF
aF
δ̇+

+a−2
F e−2δ







2
(

e2α+2β + e2α+2γ + e2β+2γ
)

−

−e4α − e4β − e4γ − 3e2δ





























= kǫ (4.95)











äF
aF

+ 2
ȧ2
F

a2
F

+ 2
a2
F

+ α̈ + ȧF
aF

(

3α̇ + δ̇
)

+ α̇δ̇+

+2a−2
F e−2δ

[

e4α −
(

e2β − e2γ
)2 − e2δ

]











=
1

2
k
(

ǫ− p(1)
)

(4.96)











äF
aF

+ 2
ȧ2F
a2
F

+ 2
a2
F

+ β̈ + ȧF
aF

(

3β̇ + δ̇
)

+ β̇δ̇+

+2a−2
F e−2δ

[

e4β − (e2γ − e2α)
2 − e2δ

]











=
1

2
k
(

ǫ− p(2)
)

(4.97)











äF
aF

+ 2
ȧ2
F

a2
F

+ 2
a2
F

+ γ̈ + ȧF
aF

(

3γ̇ + δ̇
)

+ γ̇δ̇+

+2a−2
F e−2δ

[

e4γ −
(

e2α − e2β
)2 − e2δ

]











=
1

2
k
(

ǫ− p(3)
)

. (4.98)

7

These equations are a trivial generalization of those found in the vauum osmology desribed

in [10℄.
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We an also de�ne quantities as omponents of a gravitational e�etive energy-

momentum tensor:

kǫg ≡−























α̇β̇ + α̇γ̇ + β̇γ̇ + 2 ȧF
aF
δ̇+

+a−2
F e−2δ







2
(

e2α+2β + e2α+2γ + e2β+2γ
)

−

−e4α − e4β − e4γ − 3e2δ





























(4.99)

1

2
k
(

ǫg − p(1)g

)

≡−











α̈+ ȧF
aF

(

3α̇+ δ̇
)

+ α̇δ̇+

+2a−2
F e−2δ

[

e4α −
(

e2β − e2γ
)2 − e2δ

]











(4.100)

1

2
k
(

ǫg − p(2)g

)

≡−











β̈ + ȧF
aF

(

3β̇ + δ̇
)

+ β̇δ̇+

+2a−2
F e−2δ

[

e4β − (e2γ − e2α)
2 − e2δ

]











(4.101)

1

2
k
(

ǫg − p(3)g

)

≡−











γ̈ + ȧF
aF

(

3γ̇ + δ̇
)

+ γ̇δ̇+

+2a−2
F e−2δ

[

e4γ −
(

e2α − e2β
)2 − e2δ

]











(4.102)

kp(1)g ≡













2α̈ + 6 ȧF
aF
α̇ + 2α̇2 + α̇β̇ + α̇γ̇ − β̇γ̇+

+a−2
F







5e2(α−β−γ) − 3e2(β−α−γ) − 3e2(γ−α−β)+

+6e−2α − 2e−2γ − 2e−2β − 1



















(4.103)

kp(2)g ≡













2β̈ + 6 ȧF
aF
β̇ + 2β̇2 + α̇β̇ − α̇γ̇ + β̇γ̇+

+a−2
F







5e2(β−α−γ) − 3e2(γ−β−α) − 3e2(α−β−γ)

+6e−2β − 2e−2α − 2e−2γ − 1



















(4.104)

kp(3)g ≡













2γ̈ + 6 ȧF
aF
γ̇ + 2γ̇2 − α̇β̇ + α̇γ̇ + β̇γ̇+

+a−2
F







5e2(γ−β−α) − 3e2(α−γ−β) − 3e2(β−γ−α)

+6e−2γ − 2e−2β − 2e−2α − 1



















(4.105)
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(all of whih are zero when α = β = γ = 0). The Bianhi identity T ν
µ,ν demands

p
(1)
g = p

(2)
g = p

(3)
g so de�ne the averaged gravitational pressure

kpg ≡
1

3
k
(

p(1)g + p(2)g + p(3)g

)

= (4.106)

≡





















2δ̈ + 6 ȧF
aF
δ̇ + 2

(

α̇2 + β̇2 + γ̇2
)

+

+2
(

α̇β̇ + α̇γ̇ + β̇γ̇
)

+

+a−2
F







−e2(α−β−γ) − e2(β−α−γ) − e2(γ−α−β)

+2e−2α + 2e−2γ + 2e−2β − 3



























.

Finally,

k (ǫg + 3pg) = 2δ̈ + 4
ȧF
aF

δ̇ + 2
(

α̇2 + β̇2 + γ̇2
)

(4.107)

8

. De�ne a pseudo-onformal time oordinate η by cdt ≡ aFdη; note that this �xes

the relationship between t and η up to the level of the harateristi length ai and

a onstant whih an be set to zero. Given the impossibility of seleting a unique

and objetive de�nition for the sale fator, we do not de�ne the onformal time

using suh a funtion. De�ne a orretion term q to the matter energy density

suh that

ǫ = ǫF (1 + q) . (4.108)

8

Equation (4.107) orrets an error of sign in [10, equation (27)℄.
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In η-time, the Einstein equations for Bianhi IX, subtrating bakground terms on

both sides, read:























α′β ′ + α′γ′ + β ′γ′ + 2
a′
F

aF
δ′+

+e−2δ







2
(

e2α+2β + e2α+2γ + e2β+2γ
)

−

−e4α − e4β − e4γ − 3e2δ





























= a2FkǫF q (4.109)











α′′ +
a′
F

aF
(2α′ + δ′) + α′δ′+

+2e−2δ
[

e4α −
(

e2β − e2γ
)2 − e2δ

]











=
1− w

2
a2FkǫF q (4.110)











β ′′ +
a′
F

aF
(2β ′ + δ′) + β ′δ′+

+2e−2δ
[

e4β − (e2γ − e2α)
2 − e2δ

]











=
1− w

2
a2FkǫF q (4.111)











γ′′ +
a′F
aF

(2γ′ + δ′) + γ′δ′+

+2e−2δ
[

e4γ −
(

e2α − e2β
)2 − e2δ

]











=
1− w

2
a2FkǫF q. (4.112)

We also note the Einstein equations have an exat formal solution

kǫ =
(

Sa−3
F e−δ

)1+w
(4.113)

where S is a onstant of proportionality suh that S1+w
has dimensionality of

length to the 1 + 3w power. Finally the Einstein equations an be read as

kp(1)g +wa2FkǫF q = kp(2)g +wa2FkǫF q = kp(3)g +wa2FkǫF q = a2FkǫF q+kǫg = 0. (4.114)

In other words, the e�etive energy-momentum tensor reated by osmologial

gravitational waves equals minus the bak-reation on matter energy density and

pressure. Note that the quantity kǫg/q is neessarily negative.
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4.4.2 Solutions to the Einstein equations at zero order

For onveniene, let us de�ne the variable x ≡ 1+3w
2

η. Then at zero order the

Einstein equations for a Bianhi IX universe have, for an arbitrary onstant equa-

tion of state, the following solution and auxiliary quantities, whih are idential

to the solutions to the Einstein equations in the unperturbed losed Friedmann

osmology:

aF =ai (sin x)
2

1+3w
(4.115)

a′F =ai (sin x)
1−3w
1+3w cos x (4.116)

a′′F =
1 + 3w

2
ai

[

1− 3w

1 + 3w
(sin x)

−6w
1+3w cos2 x− (sin x)

2

1+3w

]

(4.117)

a′F/aF =cot x (4.118)

HF =a−1
i cotx csc x (4.119)

QF =
1 + 3w

2
sec2 x. (4.120)

The quantity ai represents a harateristi sale for the universe and, in the bak-

ground ase, represents the radius of urvature of the universe at the extent of its

maximum expansion. We treat ai as an arbitrary onstant for the time being.

4.4.3 Solutions at linear order

We approah perturbative solutions to the Einstein equations by letting the fun-

tions α, β, γ be small (0 < |α| ≪ 1 et.). To �rst order, that is α, β, γ suh that
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α2 ≈ β2 ≈ γ2 ≈ 0, the Einstein equations take the form:

2
a′F
aF

δ′1 − 2δ1 =a2FkǫF q1 (4.121)

α′′
1 +

a′F
aF

(2α′
1 + δ′1) + 8α1 − 4δ1 =

1− w

2
a2FkǫF q1 (4.122)

β ′′
1 +

a′F
aF

(2β ′
1 + δ′1) + 8β1 − 4δ1 =

1− w

2
a2FkǫF q1 (4.123)

γ′′
1 +

a′F
aF

(2γ′
1 + δ′1) + 8γ1 − 4δ1 =

1− w

2
a2FkǫF q1 (4.124)

where the subsript 1 denotes a �rst-order small quantity, that is, a quantity small

suh that in the �rst approximation its square is negligible. The formal solution

(4.113) gives us, to �rst order,

a2FkǫF q1 = − (1 + w)S1+wa−1−3w
F δ1. (4.125)

Meanwhile, we an always hoose to let S take on its Friedmannian value [10℄, so

S1+w = 3a1+3w
i . Therefore:

2
a′F
aF

δ′1 +
[

3 (1 + w) csc2 x− 2
]

δ1 =0 (4.126)

α′′
1 + 2

a′F
aF

α′
1 + 8α1 +

a′F
aF

δ′1 +

(

3
1− w2

2
csc2 x− 4

)

δ1 =0 (4.127)

β ′′
1 + 2

a′F
aF

β ′
1 + 8β1 +

a′F
aF

δ′1 +

(

3
1− w2

2
csc2 x− 4

)

δ1 =0 (4.128)

γ′′
1 + 2

a′F
aF

γ′
1 + 8γ1 +

a′F
aF

δ′1 +

(

3
1− w2

2
csc2 x− 4

)

δ1 =0 (4.129)

whih gives us the solution:

δ1 = c1 cos x (csc x)
3+3w
1+3w . (4.130)
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The term governed by c1 is a �removable� perturbation, that is, one not arising

from a physial phenomenon but from small hanges in our seletion of the sale

fator. Grishhuk, Doroshkevih & Iudin argue [10℄, and Grishhuk later proves

in the ase of high-frequeny gravitational waves [103℄, that the the removable

perturbation arises from the remaining freedom in having seleted a synhronous

referene system and represents a small hange in the value of η. Therefore, the

removable term represents the gauge freedom remaining in the Einstein equations.

This oinides with the argument made by Bardeen [105℄ with regard to salar and

vetor perturbations with wavelengths longer than the Hubble radius; Bardeen

reommends a gauge hoie minimizing shear. We always have the freedom to set

c1 to zero but do not do so yet. In a radiation-dominated universe, we have

δradiation1 = cradiation1 cos η csc2 η (4.131)

and in a matter-dominated universe

δmatter

1 = cmatter

1 cos
η

2
csc3

η

2
. (4.132)

Therefore, the full �rst-order funtions an be written:

α′′
1 + 2 cotxα′

1 + 8α1 = 3c1







1 + 1+w
2

(csc x)1+3w −

−1−w2

2
csc2 x






(csc x)

3+3w
1+3w cosx (4.133)

et. Note that the right hand side ontains no physial variables � no harateristi

length or energy density. The Einstein equations at �rst order have the solutions
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(denoted with a tilde for the c1 = 0 ase)

α̃radiation1 = (Cα1,1 sin 3η + Cα2,1 cos 3η) csc η

β̃radiation1 = (Cβ1,1 sin 3η + Cβ2,1 cos 3η) csc η (4.134)

γ̃radiation1 = (Cγ1,1 sin 3η + Cγ2,1 cos 3η) csc η

and similarly for β̃, γ̃ in a radiation-dominated universe, and

α̃matter

1 =
Cα1,1

sin η/2

d

dη

sin 3η

sin η/2
+

Cα2,1

sin η/2

d

dη

cos 3η

sin η/2
(4.135)

et. in a matter-dominated universe, in both ases onstrained by the ondition

Cα1,1+Cβ1,1+Cγ1,1 = Cα2,1+Cβ2,1+Cγ2,1 = 0. A general solution for any onstant

equation of state, in terms of orthogonal polynomials in a, exists but is far too

umbersome to be of pratial use in this work. We introdue the notation Cα1,1

et. to be read in the following way: Cα2,1 is an arbitrary onstant assoiated with

the funtion α, the �rst index denoting the mode of the solution (1 for growing, 2

for deaying), the seond index denoting the order of the onstant in an expansion

assuming α, β, γ ≪ 1. For onveniene, we will sometimes write a generi solution

to the di�erential equation (4.133) as

α̃1 = Cα1,1y1 + Cα2,1y2. (4.136)

These solutions an be written in a less symmetri but easier-to-manipulate form:
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α̃radiation1 =Cα1,1 (2 cos 2η + 1) + Cα2,1 cos 3η csc η (4.137)

α̃matter

1 =−







Cα1,1 (16 cos 2η + 10 cos η + 9)+

+1
4
Cα2,1 csc

3 η
2

(

5 cos 7
2
η − 7 cos 5

2
η
)






(4.138)

et. When δ = 0 we reognize the homogeneous �rst-order Einstein equations as

desribing weak gravitational waves with wavenumber n = 3 and a wave equation

of the form

ν ′′ + 2 cot (x) ν ′ +
(

n2 − 1
)

ν = 0, (4.139)

in line with [10℄'s desription.

9

In a radiation-dominated universe we have expliitly

for the full �rst-order solution:

αradiation1 = Cα1,1
sin 3η

sin η
+ Cα2,1

cos 3η

sin η
+

c1
3
cos η csc2 η (4.140)

et. and in a matter-dominated universe we have

αmatter

1 =
Cα1,1

sin η/2

d

dη

sin 3η

sin η/2
+

Cα2,1

sin η/2

d

dη

cos 3η

sin η/2
+

c1
3
cos

η

2
csc3

η

2
. (4.141)

It is ommon to refer to the deaying �os� mode of these gravitational waves as

�singularity-destroying� [10℄, in that they diverge as η → 0, whih ould seem at

�rst to imply lim γab
η→0

→ ∞. It is worth remembering that as the funtions α, β, γ

appear in the metri as exponents, that is, γ11 = a2F e
2α

et; thus deaying funtions

9

Just as equation (4.45) generalizes the Helmholtz di�erential equation to elliptial and

hyperboli spaes, the solutions y1 and y2 generalize the spherial Bessel funtions jn (x) and

yn (x); the radiation-dominated universe is solved by analogues of the n = 0 ase and the matter-

dominated universe by the n = 1 ase. The wave funtions in a matter-dominated universe

always have longer trigonometri expansions than they do in the radiation-dominated universe

and thus the equations in a matter-dominated universe are usually more di�ult to solve.
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are not neessarily �singularity-destroying� for the following reasons:

� their divergene must overome the onvergene of the Friedmannian term,

whih in the ase of weak waves will our when w ≤ 2/3 but not generally;

� funtions of the form e−x−y

for x < 0, y < 0 are non-analyti near x = 0,

that is, they are not desribed by onvergent Taylor series in that region.

As Cα2,1 + Cβ2,1 + Cγ2,1 = 0, either one or two deaying terms preserve the t = 0

singularity when the removable perturbation is removed, in a manner analogous to

that found in the Kasner universe, in the ase of weak gravitational waves (although

the prie of this is a divergene later).

When disussing high-frequeny, loalized waves, it is easy to de�ne an amplitude

of the waves by (for example) normalizing the root-mean-square (RMS) value over

the wave's period. In the ase of osmologial gravitational waves however this

proedure is not possible in an absolute sense due to the diverging harater of the

deaying mode. Fortunately, mathematial onditions on the relation of linear-

order terms to quadrati-order terms revealed at quadrati order (see setion

4.4.4) ause the term �weak� to give itself an objetive meaning. If we wish to

normalize the growing modes, they have the following RMS values:

yRMS

1 ≡
[

2

(1 + 3w)π

ˆ (1+3w)π/2

0

y21dη

]1/2

(4.142)

y
radiation,RMS

1 =
√
3 (4.143)

y
matter,RMS

1 =
√
259 ≈ 16.1. (4.144)
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It is interesting to note that in matter, the deaying �os� mode of α1, β1, γ1 has

the same η-dependene as the removable perturbation; a osmologist attempting

to remove what they assume, based on an inomplete piture of the sky, to be

a removable perturbation may inadvertently be suppressing evidene of a non-

removable gravitational wave!

Finally, the gravitational energy-momentum tensor's (entirely removable) ompo-

nents read, to linear order:

kǫg(1) =3 (1 + w)
c1
a2i

cos x (csc x)
9+9w
1+3w

(4.145)

kp
(1)
g(1) = kp

(2)
g(1) = kp

(3)
g(1) =3w (1 + w)

c1
a2i

cosx (csc x)
9+9w
1+3w

(4.146)

while the bak-reation of the gravitational waves at linear order gives us matter

EMT omponents whih vary from bakground by:

q1 = −3 (1 + w) c1 cosx (csc x)
5+9w
1+3w ; (4.147)

when removable perturbations have been removed, �rst-order weak gravitational

waves have no e�et on the distribution of matter, as is well-reognised in osmo-

logial perturbation theory ([79, 4℄).
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4.4.4 Solutions at quadrati order

The Einstein equations to quadrati order read:

2 cotxδ′2 +
[

3 (1 + w) csc2 x− 2
]

δ2 =























[

3 csc2 x (1+w)2

2
− 2
]

δ21−

−1
2
[δ′21 − (α′2

1 + β ′2
1 + γ′2

1 )] +

+4 (α2
1 + β2

1 + γ2
1)























(4.148)

α′′
2 + cot x (2α′

2 + δ′2) + 8α2 − 4δ2 =













31−w
2

csc2 x
(

(1+w)2

2
δ21 − (1 + w) δ2

)

−

−α′
1δ

′
1 + 8 (β1 − γ1)

2−

−16α2
1 + 16α1δ1 − 4δ21













(4.149)

β ′′
2 + cot x (2α′

2 + δ′2) + 8β2 − 4δ2 =













31−w
2

csc2 x
(

(1+w)2

2
δ21 − (1 + w) δ2

)

−

−β ′
1δ

′
1 + 8 (γ1 − α1)

2−

−16β2
1 + 16β1δ1 − 4δ21













(4.150)

γ′′
2 + cot x (2γ′

2 + δ′2) + 8γ2 − 4δ2 =













31−w
2

csc2 x
(

(1+w)2

2
δ21 − (1 + w) δ2

)

−

−γ′
1δ

′
1 + 8 (α1 − β1)

2−

−16γ2
1 + 16γ1δ1 − 4δ21













.

(4.151)

Taking the

(2)T 0
0 equation (4.148) �rst,

2 cotxδ′2 +
[

3 (1 + w) csc2 x− 2
]

δ2 =























[

3 csc2 x (1+w)2

2
− 2

3

]

δ21 − 1
3
δ′21 +

+1
2

(

α̃′2
1 + β̃ ′2

1 + γ̃′2
1

)

+

+4
(

α̃2
1 + β̃2

1 + γ̃2
1

)























.

(4.152)
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The homogeneous part δ̃2 of ourse has the same form as at �rst order, representing

a removable perturbation, so

δ̃2 = c2 cosx (csc x)
3+3w
1+3w . (4.153)

The omplete solution in integral form is

δ2 =
1

2
cosx (csc x)

3+3w
1+3w × (4.154)

×



































ˆ



















[

3 csc2 x (1+w)2

2
− 2

3

]

δ21−

−1
3
δ′21 +

+1
2

(

α̃′2
1 + β̃ ′2

1 + γ̃′2
1

)

+

+4
(

α̃2
1 + β̃2

1 + γ̃2
1

)



















sec2 x (sin x)
4+6w
1+3w dη + c2



































.

We will ontinue to refer to the solutions α2, β2, γ2 as �gravitational waves� out of

onvention, as they solve the Laplaian equation (4.45), even though as will be seen

these metri perturbations will at seond order a�et the distribution of matter.

De�ne the following pseudo-vetors and their Eulidean dot produts:

(

Cα1(1), Cβ1(1), Cγ1(1)

)

≡ σ (4.155)

(

Cα2(1), Cβ2(1), Cγ2(1)

)

≡ τ (4.156)

(

C2
α1(1) + C2

β1(1) + C2
γ1(1)

)

= σ · σ ≡ σ2
(4.157)

(

C2
α2,1 + C2

β2,1 + C2
γ2,1

)

= τ · τ ≡ τ 2 (4.158)

(Cα1,1Cα2,1 + Cβ1,1Cβ2,1 + Cγ1,1Cγ2,1) = σ · τ (4.159)

so
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α̃2
1 + β̃2

1 + γ̃2
1 =σ2y21 + τ 2y22 + 2σ · τy1y2 (4.160)

α̃′2
1 + β̃ ′2

1 + γ̃′2
1 =σ2y′21 + τ 2y′22 + 2σ · τy′1y

′
2. (4.161)

Note that the solution δ2 = 0 is exluded exept in the ase of the bakground

universe. When all removable perturbations are set to zero,

δnon-removable

2 =cosx (csc x)
3+3w
1+3w ×

×























ˆ η













σ2
(

2y21 +
1
4
y′21
)

+

+τ 2
(

2y22 +
1
4
y′22
)

+

+σ · τ

(

4y1y2 +
1
2
y′1y

′
2

)













tan2 x (sin x)
2

1+3w dη̄























.

(4.162)

10

We will disuss solutions to this equation term-by-term, noting that these terms

an be solved entirely from information we obtained at �rst order.

11

Contributions from the removable perturbations

Contributions from the removable perturbations at seond order have the expliit

forms:

10

The Einstein equations for weak gravitational waves in a Bianhi IX universe have the elegant

feature of being integrable in losed form, always reduible to funtions form sin (nη) csck (η) and
cos (nη) csck (η). Theoretiians working in regimes of higher-frequeny gravitational waves on a

slowly-moving bakground may �nd it feliitous to approximate a Eulidean universe as a losed

one in order to avoid mathematial inonvenienes assoiated with the funtion sin (t)!
11

Li and Shwarz[107℄ obtain a similar result for a �at universe, but apply their results to a dif-

ferent domain. The averaging sheme they propose is not an appliable approah for osmologial

gravitational waves. The result is generally stated in [2, ss. 96℄.
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In a radiation-dominated universe:

δremovable

2 = − c21
12

(

4 sin2 η

2
+ tan2 η

2
+ cot2

η

2
− 2
)

csc2 η + c2 cot η csc η (4.163)

Note that the terms deriving from the �rst-order removable perturbation diverge

as O (η−4), while those from the seond-order removable perturbation diverge more

slowly, as O (η−2).

In a matter-dominated universe:

δremovable

2 = − c21
12

(

3 csc4
η

2
+ 8 csc2

η

2
− 10

)

csc2
η

2
+ c2 cot

η

2
csc2

η

2
. (4.164)

Similarly, terms deriving from the �rst-order perturbation diverge as O (η−6) and

so at small η will dominate terms deriving from the seond-order removable per-

turbation whih diverges as O (η−3).

Contributions from the growing mode

Contributions from the growing mode have the following form:

δ
growing

2 = σ2 cot x (csc x)
2

1+3w

ˆ η

tan2 x

(

1

4
y′21 + 2y21

)

(sin x)
2

1+3w dη̄. (4.165)

We an already disern that the sign on δ
growing

2 must be positive in a young

universe.
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In a radiation-dominated universe:

δ
growing,radiation

2 = σ2

radiation

cot η csc η

(

−1

3
cos 3η +

1

5
cos 5η + 2 sec η

)

;

(4.166)

note the diverging ontribution of O (η−2) from growing modes.

In a matter-dominated universe:

δ
growing,matter

2 = σ2
matter

cot
η

2
csc2

η

2













−6063
4
η + 13001

8
sin η − 3237

8
sin 2η+

+933
8
sin 3η − 33 sin 4η+

+32
5
sin 5η + 900 tan η

2













.

(4.167)

In ontrast to the radiation-dominated ase, the growing mode's ontribution does

not diverge in a matter-dominated universe (the term in brakets equals 0+O (η5)).

Approximating to lowest orders in η,

δ
growing,matter

2 ≈ σ2
matter

(

245η2 − 21641

84
η4
)

. (4.168)

Contributions from the deaying mode

In a radiation-dominated universe In a radiation-dominated universe, the

funtions y1 and y2 have the property

y21 + y22 = csc2 η (4.169)
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while the funtions y′1 and y′2 are similarly related by

y′21 + y′22 =
(

8 sin2 η + 1
)

csc4 η. (4.170)

This simpli�es alulations as we an readily say

δ
deaying

2 = τ 2 cot η csc η

(

17

4
sec η +

1

4
ln tan

η

2

)

− τ 2

σ2
δ
growing

2 ; (4.171)

in a universe old enough that the diverging terms are negligible, the deaying

mode intrinsially dereases the sale fator in the same way that the growing

mode intrinsially inreases it.

In a matter-dominated universe In a matter-dominated universe,

y21 + y22 = csc4
η

2

(

9 +
1

4
cot2

η

2

)

(4.172)

and

y′21 + y′22 =
1

16
csc8

η

2
(−608 cos η + 140 cos 2η + 477) (4.173)

so we an state

δ
deaying,matter

2 = τ 2 cos
η

2
csc3

η

2













18η + 2450 tan η
2
−

−10705
48

cot η
2
−

−577
96

cot η
2
csc2 η

2













− τ 2

σ2
δ
growing

2 .

(4.174)

It is interesting to note that, due to the growing mode ontribution's muh slower

ontribution to hange in the sale fator, the impat of the deaying mode on

the dynamis of a young universe an be many orders of magnitude greater than
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the impat of the growing mode even when the deaying mode is several orders of

magnitude weaker than the growing mode. The ratio

∣

∣

∣

∣

∣

δ
deaying,matter

2

δ
growing,matter

2

∣

∣

∣

∣

∣

≈
τ 2
matter

σ2
matter

η−8
(4.175)

whih means that in a matter-dominated universe with η ≈ 10−1
the deaying mode

will have a greater impat on osmi dynamis as long as τ 2
matter

> 10−8σ2
matter

.

Contributions from the σ · τ term

The ontributions are desribed by the equation

δmixed

2 = σ · τ cosx (csc x)
3+3w
1+3w

ˆ η (

4y1y2 +
1

2
y′1y

′
2

)

tan2 x (sin x)
2

1+3w dη̄ (4.176)

and have the following expliit forms:

Radiation-dominated universe In a radiation-dominated universe,

δ
mixed,radiation

2 =
16

15
σ · τ

radiation

sin η cos η (3 cos 2η + 2) . (4.177)

Matter-dominated universe In a matter-dominated universe,

δmixed

2 = σ · τ cot
η

2
csc2

η

2







−4 cos η − 24 cos2 η − cos 3η−

−15
2
cos 4η + 5 cos 5η






. (4.178)
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Gravitational waves at seond order

Turning now to the Rb
a equations (4.149, 4.150, 4.151), to seond order, the Einstein

equations for ǫ− p(a)-terms read:























α′′
2 + 2 cotxα′

2 + 8α2

+1
4
(α′2

1 + β ′2
1 + γ′2

1 )

−3
[

w
2
(1 + w) csc2 x+ 1

]

δ2























=



























































−3 + 1
16
(1 + 3w)2 tan2 x+

+ 3
16
(1 + w) (3w − 1)+

+ (1 + w)2
(

9
16

− 3
4
w
)

csc2 x













δ21−

−α′
1δ

′
1 + (6β2

1 − 16β1γ1 + 6γ2
1)−

−18α2
1 + 16α1δ1















































(4.179)

et. If we suppress all removable terms, as we must for any pratial observation

of seond-order terms, and taking into aount (4.162), this further simpli�es to

α′′
2 + 2 cotxα′

2 + 8α2 − 3
[w

2
(1 + w) csc2 x+ 1

]

δ2 =













−26α2
1+

+14β2
1 + 14γ2

1−

−1
4
(α′2

1 + β ′2
1 + γ′2

1 )













.

(4.180)

Realling the form of the gravitational waves inluding the removable perturbation

at �rst order, we make the simple transformation α2 → α̃2 +
1
3
δ2 to arrive at the

equations:

α̃′′
2 + 2 cotxα̃′

2 + 8α̃2 = 40

[

1

3

(

α2
1 + β2

1 + γ2
1

)

− α2
1

]

(4.181)

et.; we reognize that linear-order gravitational waves at as a driving fore on

the waves at quadrati order. The solution of this equation is straightforward but

tedious and we arrive at the following solutions:
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In a radiation-dominated universe

αradiation2 =



































Cα1,2
sin 3η
sin η

+ Cα2,2
cos 3η
sin η

+

+40
(

1
3
σ2 − C2

α1,1

)

(

1
36

sin 3η
sin η

− 1
6
η cos 3η

sin η

)

+

+40
(

1
3
τ 2 − C2

α2,1

)







1
6
η cos 3η

sin η
+ 1

36
sin 3η
sin η

+ 5
24
+

+ 1
16

sin 5η
sin η

− 1
6
(2η−π) cos 3η−2 sin 3η ln(2 sin η)

sin η






+

+40
(

2
3
σ · τ − 2Cα1,1Cα2,1

)







1
6
η sin 3η

sin η
+ 1

8
cot η+

+ 1
36

cos 3η
sin η

− 1
32

cos 5η
sin η









































+
1

3
δ2

(4.182)

et. with the seond-order onstants Cα1,2 et. onstrained suh that

Cα1,2 + Cβ1,2 + Cγ1,2 = Cα1,2 + Cβ1,2 + Cγ1,2 = 0. (4.183)

To lowest order in η the solution for α2 reads

αradiation2 ≈













Cα1,2 (3− 4η2) + 20
(

1
3
σ2 − C2

α1,1

) (

−1
6
+ 11

9
η2
)

+Cα2,2η
−1 + 20π

3

(

1
3
τ 2 − Cα2,1

)

η−1+

+175
36

(

2
3
σ · τ − 2Cα1,1Cα2,1

)

η−1 + 1
3
δnon-removable

2













(4.184)

et. For the pure deaying mode, the ontribution from δ2 dominates, while for the

pure growing mode and the mixed term the ontributions from the homogeneous

parts of α2 dominate.
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In a matter-dominated universe For a matter-dominated universe, the grav-

itational wave equation to seond order has the following solution

12

:

α2 =







Cα1,2 csc
η
2

d
dη

sin 3η
sin η/2

+ Cα2,2 csc
η
2

d
dη

cos 3η
sin η/2

+

+α
growing

2 + α
deaying

2 + αmixed

2 + 1
3
δnon-removable

2






(4.185)

α
growing

2 ≡ 5

(

1

3
σ2 − C2

α1,1

)



































1
70

∑10
n=0 gn cosnη+

+ 1
56
csc3 η

2













η







−1128960 cos 5η
2
+

+806400 cos 7η
2






+

+
∑11

n=0 hn sin
(

2n+1
2

η
)















































(4.186)

g0 = 32900, g1 = 443310, g2 = 90230, g3 = 354221, g4 = 20195, g5 = 248918,

g6 = −57025, g7 = 68911, g8 = −37880, g9 = 15440, g10 = −22400

h0 = 1166543, h1 = −1664285, h2 = 888216, h3 = 990580, h4 = −1262310, h5 = 677390,

h6 = −363895, h7 = 197841, h8 = −116900, h9 = 66864, h10 = −34304, h11 = 8960

α
growing

2 ≈
(

1

3
σ2 − C2

α1,1

)(

82630− 4513087

7
η2
)

(4.187)

12

There is no �royal road� to the expliit statement of this funtion, whih was derived by

substitution and variation of parameters with the assistane of a omputer algebra system. With

foreknowledge of the form of the solution, the equation (4.181) an be solved through the method

of undetermined oe�ients; this requires solving a 21-dimensional linear system. (4.181) may

also admit a solution through the method of Fourier transforms, but only under torture.
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α
deaying

2 ≡ 1

245

(

1

3
τ 2 − C2

α2,1

)

csc4
η

2













−η
2
tan η

2

∑4
n=0 jn cos

n η+

+
∑6

n=0 kn cos
n η+

+ ln
(

−2 sin2 η
2

)
∑4

n=0 ln cos
n η













(4.188)

j0 = −34020, j1 = −17010, j2 = 153090, j3 = 22680, j4 = −113400

k0 = 58329, k1 = −514422, k2 = 368937, k3 = 675396,

k4 = −678540, k5 = 31500, k6 = 61250

l0 = −5670, l1 = 102060, l2 = −73710, l3 = −136080, l4 = 113400

αmixed

2 ≡ 4

105

(

1

3
σ · τ − Cα1,1Cα2,1

)

csc2
η

2







η
2

∑3
n=0mn cos η−

− cot η
2

∑5
n=0 nn cos

n η







(4.189)

m0 = 2310, m1 = −39270, m2 = −9240, m3 = 46200

n0 = −936, n1 = 15693, n2 = 30204, n3 = −58700, n4 = −25200, n5 = 42000

αmixed

2 ≈ − 32

105

(

1

3
σ · τ − Cα1,1Cα2,1

)

η−3
5
∑

n=0

nn

et. The statement of the solutions to the gravitational wave equations to quadrati

order in the matter-dominated universe are original to this work; the radiation-

dominated quadrati order wave equations were presented in [10℄. Note that

∑

n ln =
∑

n mn = 0.
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Most interesting is the presene of ln-terms in (4.171) and (4.188), whih on the

one hand indiate the appearane of the power-law behavior of metri oe�ients

whih typify the Kasner universe and the BKL universe in its quasi-isotropi phase;

on the other hand, they show the breakdown of our approximation sheme and the

limit of regular perturbation theory in solving the problem to hand. The Taylor

expansion of the growing mode of α2 indiates further that waves must be very

weak (‖σ‖ = O (10−4)) for the approximation sheme to be rigorously valid as the

presene of csc4 η
2
ln (−2 sin η)-terms in (4.188) indiates a funtion whih is both

omplex and pathologial. In any ase, indiations are that the growing mode of

hypothetial osmologial gravitational waves should be very muh stronger than

the deaying mode (see setion 6.3); we will not need to make use of the seond-

order solutions for the deaying mode and from here on will treat the deaying

mode as being linear-order weak, that is, C2
α2,1 ≈ C2

β2,1 ≈ C2
γ2,1 ≈ Cα2,2 ≈ Cβ2,2 ≈

Cγ2,2 ≈ τ 2 ≈ 0.

4.4.5 Strong growing waves in the quasi-isotropi regime

[10, part 3℄ begins the development of equations for a radiation-dominated universe

desribing strong gravitational waves in Bianhi IX. Similar equations in a matter-

dominated universe are useful in onsidering observed aeleration, as ∆Q ≈ −1.
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Consider the equations (4.109-4.112). Assume a solution of the form

α =
∞
∑

n=0

cα2nη
2n

β =
∞
∑

n=0

cβ2nη
2n

(4.190)

γ =
∞
∑

n=0

cγ2nη
2n

with the terms cξn onstants. It is onvenient to de�ne e
2cα

0 ≡ A, e2c
β
0 ≡ B, e2c

γ
0 ≡ G.

In a matter-dominated universe, to lowest two orders the solutions read

α ≈cα0 +
1

20

[

1− 1

ABG

(

5A2 − 3B2 − 3G2 + 6BG− 2AB − 2AG
)

]

η2

β ≈cβ0 +
1

20

[

1− 1

ABG

(

5B2 − 3G2 − 3A2 + 6AG− 2BG− 2AB
)

]

η2 (4.191)

γ ≈cγ0 +
1

20

[

1− 1

ABG

(

5G2 − 3A2 − 3B2 + 6AB − 2AG− 2BG
)

]

η2

where cα0 , c
β
0 , c

γ
0 are arbitrary; if we want to preserve the Friedmannian value of S

then we need

cα0 + cβ0 + cγ0 = 0 (4.192)

[10℄. We always have the freedom to set one of these to zero by a simple saling of

the metri; this preserves the two degrees of freedom for the gravitational wave.

If we apply the ondition (4.192) and set the parameter cγ0 = 0 by saling, then
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the strong growing-mode waves are desribed by

cα0 ∈R (4.193)

cβ0 =− cα0 (4.194)

cγ0 =0 (4.195)

cα2 =
1

20

(

−5A2 + 2A+ 6− 6A−1 + 3A−2
)

(4.196)

cβ2 =
1

20

(

3A2 − 6A+ 6 + 2A−1 − 5A−2
)

(4.197)

cγ2 =
1

20

(

3A2 + 2A− 10 + 2A−1 + 3A−2
)

(4.198)

with the single parameter cα0 determining the whole system. Note that setting

cγ0 = 0 does not imply γ′ = 0. We an also qualitatively say that for any value of

A, two of funtions α, β, γ will be positive, as will δ, unless A = 1 (the bakground

ase), in the regime that Aη is su�iently small that A3η3 is negligible.

The funtions (4.190) are linearly independent with ymatter

2 to lowest order in η

and therefore an be used together to desribe a matter-dominated universe with

arbitrarily strong growing gravitational waves and weak deaying gravitational

waves up to order η2, as long as the series (4.190) onverge.

4.4.6 Dynamis

As in the Kasner universe (see setion 4.2.1), it is useful to generalize quantities

pertaining to the expansion of spae whih are spherially symmetri in Friedman-

nian osmology.
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In terms of our statement of the metri (4.85), the generalized dynamial quantities

for our spae are

aab = aF













eα 0 0

0 eβ 0

0 0 eγ













(4.199)

ā =
1

3
aF
(

eα + eβ + eγ
)

(4.200)

Hab =













ȧF/aF + α̇ 0 0

0 ȧF/aF + β̇ 0

0 0 ȧF/aF + γ̇













(4.201)

H̄ =
ȧF
aF

+
1

3
δ̇ (4.202)

Q1
1 ≡

d

dt
H1cη1c − δ11 = −







äF/aF + 2HF α̇+

+α̈ + α̇2







(HF + α̇)2
(4.203)

et.

Q̄ = −1

3













äF /aF+2HF α̇+α̈+α̇2

(HF+α̇)2
+

+ äF /aF+2HF β̇+β̈+β̇2

(HF+β̇)
2 +

+ äF /aF+2HF γ̇+γ̈+γ̇2

(HF+γ̇)2













. (4.204)

Our goal in undertaking the arduous task of solving the Einstein equations has been

to derive the impat of long-wavelength gravitational waves on osmi dynamis,

partiularly aeleration. We are now in a position to begin to disuss this impat.
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Let eah quantity in setion (4.4.6) be expanded out into a bakground term plus

orretions, suh that for example

aab ≈ a
(0)
ab + a

(1)
ab + a

(2)
ab . (4.205)

Then the zero-order, bakground terms are simply

a
(0)
ab =aFηab (4.206)

H
(0)
ab =HFηab (4.207)

(0)Qb
a =QF δ

b
a. (4.208)

While the gravitational energy-momentum tensor vanishes at �rst order with the

removal of removable perturbations, the presene of weak gravitational waves an

a�et observed dynami quantities. At �rst order:

a
(1)
ab =













α1 0 0

0 β1 0

0 0 γ1













(4.209)

ā(1) =
1

3
δ1 (4.210)

H
(1)
ab =













α̇1 0 0

0 β̇1 0

0 0 γ̇1













(4.211)
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H̄(1) =
1

3
δ̇1 (4.212)

(1)Q1
1 = −H−1

F

[

2 (QF + 1) α̇1 +H−1
F α̈1

]

(4.213)

et.,

Q̄(1) = −1

3
H−1

F

[

2 (QF + 1) δ̇1 +H−1
F δ̈1

]

. (4.214)

Thus we illustrate the need for truly representative sky overage in onsidering

the problem of aeleration: gravitational waves an ontribute to anisotropi a-

eleration even when they do not a�et the distribution of matter. In domains

when the �rst derivatives of a wave is small (that is, near peaks and troughs of

the wave), the aelerative e�et will not be aompanied by a large hange in the

Hubble �ow. As before, a failure to ompletely suppress the removable perturba-

tion may lead to inorret evaluation of the strength of deaying modes. To �rst

order, non-zero ontribution to the average over the whole sky of the perturbations

is removable; �rst-order weak gravitational waves in Bianhi IX do not produe

isotropi aeleration.

To quadrati order, the dynami quantities have the forms

a
(2)
ab = aF













α2 + α2
1/2 0 0

0 β2 + β2
1/2 0

0 0 γ2 + γ2
1/2













(4.215)

ā2 =
1

3
aF

[

δ2 +
1

2

(

α2
1 + β2

1 + γ2
1

)

]

(4.216)
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H
(2)
ab =













α̇2 0 0

0 β̇2 0

0 0 γ̇













(4.217)

H̄(2) =
1

3
δ̇2 (4.218)

(2)Q1
1 = −H−1

F







2 (QF + 1) α̇2 +H−1
F α̈2−

−3H−1
F (QF + 1) α̇2

1 − 2H−2
F α̇1α̈1






(4.219)

et.,

Q̄(2) = −1

3
H−1

F













2 (QF + 1) δ̇2 +H−1
F δ̈2−

−3H−1
F (QF + 1)

(

α̇2
1 + β̇2

1 + γ̇2
1

)

−

−2H−2
F

(

α̇1α̈1 + β̇1β̈1 + γ̇1γ̈1

)













(4.220)

. At seond order we begin to see a onsequene of the non-linearity of the Bianhi

IX Einstein equations whih is potentially very important in the study of osmi

dynamis: isotropi hanges to the Hubble parameter and to aeleration from

anisotropi metri terms. With our knowledge of the Einstein equations at �rst

and seond order (4.133,4.152,4.180) we an show this expliitly:
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(2)Q1
1 = − tanx



















































(3w + (1 + 3w) tan2 x)α′
2 − 8 tanxα2−

−40 tanxα2
1 +

3
2
(1− 3w − (1 + 3w) tan2 x) tanxα′2

1 +

+16 tan2 xα′
1α1+

+ tanx







3
[

w
2
(1 + w) csc2 x+ 1

]

δ2+

+14 (α2
1 + β2

1 + γ2
1)− 1

4
(α′2

1 + β ′2
1 + γ′2

1 )

























































(4.221)

et. and

Q̄(2) =
1

3
tan2 x



































1
2
(1 + 3w)2 sec2 xδ2−

−2 (1 + 3w) sec2 x (α2
1 + β2

1 + γ2
1)+

+1
4
[1 + 15w + 5 (1 + 3w) tan2 x] (α′2

1 + β ′2
1 + γ′2

1 )−

−16 tanx (α′
1α1 + β ′

1β1 + γ′
1γ1)



































.

(4.222)

Isotropi aeleration with quadrati-order strength arises from the non-linear in-

teration of linear-order gravitational waves, but in the regime of |α| , |β| , |γ| ≪ 1

the gravitational waves at linear order will dominate measurement of osmologial

parameters.

In a matter-dominated universe with η small, the deeleration terms beome, de�n-

ing

∆Qa
b ≡ Qa

b −QF δ
a
b (4.223)

∆Q̄ ≡ Q̄−QF (4.224)
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∆Q1
1,matter

≈ −η2

4























tan η
2
(α′

1 + α′
2)− 8 (α1 + α2)−

−40α2
1 +

3
2
α′2
1 + 16 tan η

2
α′
1α1+

+3δ2 + 14 (α2
1 + β2

1 + γ2
1)− 1

4
(α′2

1 + β ′2
1 + γ′2

1 )























(4.225)

∆Q̄matter ≈ 1

48
η2













2δ2 − 8 (α2
1 + β2

1 + γ2
1) +

+ (α′2
1 + β ′2

1 + γ′2
1 )−

−16 tan η
2
(α′

1α1 + β ′
1β1 + γ′

1γ1)













(4.226)

et. Expliitly, these will have the lowest-order forms:

∆Q1
1,matter

≈ −η2

4



















Cα1,1 (280− 259η2) +

+Cα2,1

(

16η−3 − 72η−1 + 2251
5
η
)

+

+C2
α1,1 (710040− 4687753η2) +

+σ2
(

−609590/3 + 4402405
3

η2
)



















(4.227)

∆Q̄matter ≈ σ2

24
η2
(

−4900 + 2983η2
)

(4.228)

. These results are enouraging as, if we hoose ‖σ‖ ∼ 10−4
(in order to make the

gravitational waves weak) and η ∼ 10−2
to math (6.1), we obtain ∆Q1

1,matter

∼

−10−6
, whih has the right sign as well as all the ontributions at both �rst and

seond orders going in the �right� diretion, toward aeleration. It is partiularly

enouraging that both growing and deaying modes ontribute to aeleration to

their lowest orders in η.
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4.4.7 Bak-reation

Of interest in disussing the problem of aeleration is the e�etive equation of state

of the gravitational waves' ontribution to the energy density. Empirially, the

equation of state of dark energy seems to be lose to wX = −1 (see setion 2.3),

where the quantity wx is related to the soure of the energy suh that the soure

evolves with regard to the sale fator at a rate of a−3(1+wX)
. As noted in (setion

4.2.1) there is no unique way to de�ne the sale fator, but a ondition of quasi-

isotropy is that expansion in every diretion in the urrent epoh is proportional,

that is to say, that they evolve as the same power of time. If the deaying mode of

the osmologial gravitational wave is weak, then this evolution will be proportional

to the Friedmannian sale fator.

To quadrati order, (4.99) reads

kǫ(2)g = 3 (1 + w) a−2
F csc2 xδ2 (4.229)

and so by (4.114)

q(2) = − (1 + w) a−2
F δ2. (4.230)

When the growing mode is dominant, δ2 is always positive in a matter-dominated

universe; therefore q(2) is negative. Thus the bak-reation appears to have negative

energy density. A signi�ant �mixed� σ · τ term, however, an easily introdue

intervals where q(2) > 0.

In a matter-dominated universe and when the growing mode is dominant, q(2) ∝
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η−2
whih, if the universe is evolving with a sale as aF ∝ η2, implies an equation

of state for the bak-reation of wX = −1/3 (as ompared to an equation of state

for a osmologial onstant of wX = −1). While no investigation of the equation

of state of dark energy inludes this value within its highest on�dene interval,

measurements of wX remain tentative, with large errors and high sensitivity both

to single data points and to the algorithm for urve-�tting models to the data (see

setion 2.3). In any ase, a �uid with an equation of state of wX ≈ −1/3 an be

responsible for aeleration only if it dominates the universe and if wX < −1/3, in

aordane with (1.16).

The dominant term in (4.99) is the a′F/aF -term. This stands in stark ontrast to

the ommonly-onsidered ase of gravitational waves in a bakground so slowly

moving ompared to the period of the waves that ȧF ≈ 0, in whih instane the

quadrati ombination of �rst-derivative terms dominates.

In regimes of stronger growing-mode gravitational waves, though, the sale fator

as de�ned in (4.19) will be more dominated by terms of higher, even order and so

aab ∝ η4 or higher. As the growing mode inreases in strength, the equation of

state dereases asymptotially toward a limit of wX = −1; if the sale fator grows

as η2s, the equation of state for the bak-reation is given by wX = (1/3s)− 1. As

aeleration is empiriallyQ0 = −0.6, this implies that in real life the gravitational

wave strength is of order unity and therefore the e�etive equation of state is lose

to −1. Thus, the quasi-isotropi Bianhi IX model with strong growing-mode

gravitational waves and weak or zero deaying-mode waves is ompatible with the

observed data on the equation of state of dark energy, without the invoation of a

osmologial onstant; the theory would be invalidated by de�nitive measurements

of wX < −1.
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In any ase, the fat of wX < 0 allows us to draw a onlusion regarding osmi

evolution. [76℄ notes Kasner-like osmologies go through two stages of evolution:

1. A �vauum� stage, where matter's in�uene is, due to its evolution as a−4
,

weak ompared to the in�uene of the anisotropi expansion and ontration,

in�uene whih, in light of (setion 4.3), we now understand to be the result

of gravitational waves in the BKL universe;

2. a �matter� stage, where expansion isotropizes [106℄ and is driven by, �rst

relativisti (w = 1/3), then old, non-relativisti (w = 0) matter. Formally,

the ontribution of urvature to osmi evolution beomes important in this

era (wK = −1/3), but as the in�uene of urvature will be isotropi in

Bianhi IX and the radius of urvature is very large ompared to the Hubble

radius (see setion 6.1), urvature will not have a pratial in�uene on

observations in and of itself.

13

To this seond stage we an add a third stage:

3. A �dark energy� stage, in whih growing modes of the osmologial gravita-

tional waves whih drove the initial isotropy return as the dominant in�uene

on osmi evolution.

13

Formally we an also say that, due to the ation of proton deay and positron annihilation,

after su�ient time the w = 0 phase will return to a w = 1/3 phase where the universe is �lled

with neutrinos and photons. Following this period there will be another return to w = 0 as

these free partiles are absorbed by blak holes. As these blak holes evaporate by the proess

of Hawking radiation, there will then be a �nal return to w = 1/3. [80℄ gives a popular-siene

presentation of the universe in these phases, but as it was written only shortly after the disovery

of aeleration its treatment of dark energy is highly speulative.
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4.4.8 Ampli�ation of gravitational waves

Grishhuk observed [8℄ that when the bakground of a osmology ontaining gravi-

tational waves varies rapidly, weak gravitational waves an be ampli�ed where they

would otherwise, in a slowly-moving bakground, deay rapidly [79℄. With regard

to the Bianhi IX osmology, this is signi�ant as when the growing mode of a

osmologial gravitational wave dominates, the leading term in the gravitational

energy density is of the form (a′F/aF ) δ
′
2 = O (onstant). Cosmologial observa-

tions (see setion 6.1) indiate the universe has η < O (10−1). In this regime, the

term a′F/aF = cot (η/2) ≈ 2/η, whih is dependent on the rate of hange of the

bakground, is arbitrarily large; therefore, weak waves may have an e�et orders

of magnitude greater than their amplitude. Similarly, the deaying mode of gravi-

tational waves an have prominent or even dominant power in a su�iently young

universe even when the amplitude of the deaying mode is smaller than that of the

growing mode.

4.5 Conlusions

Solutions have been presented for the gravitational wave equation for a Bianhi IX

universe perturbed to quadrati order from the losed Friedmann ase. Quadrati

order is the limit of perturbation theory's appliability to explore nearly-Friedmannian

Bianhi IX when deaying modes are su�iently strong that they are not negligible.

At quadrati order, the non-linear interation of the gravitational waves produes
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isotropi hanges to dynami quantities. While this isotropi hange is likely to

be dominated in any partiular diretion by linear-order ontributions from the

gravitational waves, in the regime of strong gravitational waves they will beome

more important and potentially even dominant. Where [98℄ disussed the possibil-

ity of aeleration in a non-vauum Bianhi IX universe only qualitatively, we have

shown it expliitly as well as illustrating a lear link between aeleration and the

gravitational waves whih are intrinsi to Bianhi IX in its full generality.

It is urious to note that the order-η2 approximation we have made in (setion

4.4.5), α and δ in the normalization we have hosen take the form of Alexander

polynomials [109, 110℄, although not Alexander polynomials for any knot of fewer

than 11 rossings. Whether this mathematial observation is signi�ant or oin-

idental is a subjet for further debate, but as gravitational waves in Bianhi IX

are moving equatorially around our bakground 3-sphere [10℄, and as a sub-lass of

knots (the �torus knots�) are onstruted by wrapping one 2-torus around another

it is oneivable there ould be a onnetion.

Bak-reation from growing modes of the gravitational waves appears to have nega-

tive energy density and an equation of state ompatible with that observed for dark

energy, espeially in the regime of strong gravitational waves and quasi-isotropi

expansion; when gravitational waves are strong, they beome the dominant on-

tributor to the evolution of the osmos in an era following the era of matter dom-

ination.

Therefore, from the perspetive of osmi dynamis, osmologial gravitational

waves in a quasi-isotropi Bianhi IX universe are a viable andidate for dark
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energy, without the invoation of a osmologial onstant and without requiring

any modi�ation of the theory of relativity. An analysis of the impat of these

gravitational waves on the osmi mirowave bakground is neessary in order to

determine whether onstraints from the CMB are ompatible with the observed

data on aeleration.



Chapter 5

The Cosmi Mirowave Bakground

of a Bianhi IX universe

While long-wavelength gravitational waves an ause both isotropi and anisotropi

hanges to the deeleration parameter in a Bianhi IX universe, the e�et of suh

waves must be ompatible with the observed osmi mirowave bakground in order

to represent a pratial model for explaining observed aeleration.

Sahs & Wolfe initiated [23℄ the systemati study of the e�et of perturbations

on the CMB, following a formalism developed by Kristian & Sahs [25℄. Sahs &

Wolfe's work developed the theory of salar, vetor and tensor perturbations on

the CMB in a �at almost-isotropi universe to �rst order.

Sahs & Wolfe's work was generalized by Anile & Motta [26℄ to the almost-isotropi

116
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losed and open Friedmann osmologies, again at �rst order. While Anile & Motta

begin to onsider the impat of long-wavelength gravitational waves on the CMB,

they hoose to explore the impat of waves with sales muh smaller than the

Hubble radius. Anile & Motta subsequently [27℄ ruled out the existene of these

waves at signi�ant strengths in the observable universe.

Doroshkevith, Lukash & Novikov onsidered the impat of an anisotropi universe

on the CMB in the ase of the Bianhi VII, VIII and IX models [19℄, and onluded

that a Bianhi IX model was potentially �ompatible with observations, only if

there was some seondary heating of the intergalati gas�. Doroshkevith et al 's

most important alulations are arried out on the assumption, then widespread, of

ΩM ≈ 1 and as suh are of limited appliability; interestingly, in their onlusions

they note that if ΩM < 1, �∆T/T will be lose to the maximum value only in a

small 'spot' with an angular size θ ≈ 4Ω� (where by �small� they give the example

of ΩM ≈ 0.1 =⇒ θ ≈ 23◦).

Sung & Coles analytially and omputationally explore the impat of various un-

perturbed Bianhi models, inluding Bianhi IX, on the CMB [21℄. They report

the useful theorem that �a gravitational �eld alone is not able to generate polar-

ization�, but do not onsider the general ase of Bianhi IX, only the isotropi ase

equivalent to the losed Friedmann universe.
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5.1 Geodesi equations

The e�et of the metri on the CMB is determined by examining the hange in

geodesis of light rays relative to an isotropi, bakground ase. Let the subsript

E denote a funtion evaluated at the time of the emission of a photon, and the

subsript R denote that funtion evaluated at the time of the photon's reeption.

Then the hange in the temperature of the bakground radiation T is given by

TR/TE =
1

z + 1
. (5.1)

Consider the path of a light ray; let this be a four-vetor denoted by kµ
suh

that kµkµ = 0, with the light ray reeived in the diretion ki
R = ei. The geodesi

equation for the time part of kµ
in a Bianhi osmology reads

dk0

dλ
+ Γ0

ijk
ikj = 0 (5.2)

and the equations for the spae part of the vetor read

dka

dλ
+ Γa

00 + Γa
0ik

i + Γa
i0k

i + Γa
bck

bkc = 0. (5.3)

Realling (4.62) and (4.85) the Christo�el symbols

Γ0
ij =

1

2
γab,0e

a
i e

b
j , (5.4)
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, Γa
00 = Γa

0i = Γa
i0 = 0 and the Rii rotation oe�ients read

1

:

Γa
bc =

1

2

(

δafǫbcd + γagγcdǫgbf − γagγdbǫcgf
)

ηdf

Γ1
23 =

1

2

(

γ11 (γ33 − γ22) + 1
)

=
1

2

(

e2γ−2α − e2β−2α + 1
)

Γ1
32 =

1

2

(

γ11 (γ33 − γ22)− 1
)

=
1

2

(

e2γ−2α − e2β−2α − 1
)

Γ2
31 =

1

2

(

γ22 (γ11 − γ33) + 1
)

=
1

2

(

e2α−2β − e2γ−2β + 1
)

(5.5)

Γ2
13 =

1

2

(

γ22 (γ11 − γ33)− 1
)

=
1

2

(

e2α−2β − e2γ−2β − 1
)

Γ3
12 =

1

2

(

γ33 (γ22 − γ11) + 1
)

=
1

2

(

e2β−2γ − e2α−2γ + 1
)

Γ3
21 =

1

2

(

γ33 (γ22 − γ11)− 1
)

=
1

2

(

e2β−2γ − e2α−2γ − 1
)

with all others zero; note that the form of the rotation oe�ients guarantees that

only anisotropi parts of the metri tensor will have an e�et on ki
(and there-

fore δ-terms, whether removable or non-removable always vanish in the geodesi

equations; reall setion 4.2.1). Using the same method of onformally-related

objets as desribed in [23, part IIe℄, de�ne the vetor k̄µ : a2F k̄
µ = kµ

and the

tensor γ̄ab : a2F γ̄ab = γab; reall that k0
R = −ki

Rk
R
i = 1. This gives us geodesi

equations:

dk̄0

dλ
+

1

2
γ̄ab,0k̄

ak̄b =0 (5.6)

dk̄1

dλ
+
(

e2γ−2α − e2β−2α
)

k̄2k̄3 =0 (5.7)

dk̄2

dλ
+
(

e2α−2β − e2γ−2β
)

k̄1k̄3 =0 (5.8)

dk̄3

dλ
+
(

e2β−2γ − e2α−2γ
)

k̄1k̄2 =0. (5.9)

Despite the symmetry of these equations, their nonlinearity has inhibited the dis-

overy of exat solutions and researh into their properties is ongoing; see for

1

The symbol εabc represents the Levi-Civita symbol de�ned suh that ε123 = 1
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example [24℄. However, with solutions up to quadrati order for the metri in hand

(4.140, 4.141, 4.184, 4.185), we an expliitly solve the equations in the ase of

weak waves. Let k̄a = k̄a
R + ∆k̄a (λ). Expanding out the geodesi equations to

seond order in the metri:

d∆k̄0
1

dλ
+

1

2

[

α′
1

(

k̄1
R

)2
+ β ′

1

(

k̄2
R

)2
+ γ′

1

(

k̄3
R

)2
]

=0 (5.10)

d∆k̄1
1

dλ
+ 2 (γ1 − β1) k̄

2
Rk̄

3
R =0 (5.11)

d∆k̄1
2

dλ
+ 2 (α1 − γ1) k̄

1
Rk̄

3
R =0 (5.12)

d∆k̄1
3

dλ
+ 2 (β1 − α1) k̄

1
Rk̄

2
R =0 (5.13)

d∆k̄0
2

dλ
+

1

2













(α′
2 + 2α′

1α1)
(

k̄1
R

)2
+ 2k̄1

Rα
′
1∆k̄1

1+

+ (β ′
2 + 2β ′

1β1)
(

k̄2
R

)2
+ 2k̄2

Rβ
′
1∆k̄2

1+

+ (γ′
2 + 2γ′

1γ1)
(

k̄3
R

)2
+ 2k̄3

Rγ
′
1∆k̄3

1













=0 (5.14)

d∆k̄1
2

dλ
+ 2







(γ1 − β1)
(

k̄2
R∆k̄3

1 + k̄3
R∆k̄2

1

)

+

+ (γ2 − β2 + 3γ2
1 − 3β2

1) k̄
2
Rk̄

3
R






=0 (5.15)

d∆k̄2
2

dλ
+ 2







(α1 − γ1)
(

k̄3
R∆k̄1

1 + k̄1
R∆k̄3

1

)

+

+ (α2 − γ2 + 3α2
1 − 3γ2

1) k̄
1
Rk̄

3
R






=0 (5.16)

d∆k̄3
2

dλ
+ 2







(β1 − α1)
(

k̄1
R∆k̄2

1 + k̄2
R∆k̄1

1

)

+

+ (β2 − α2 + 3β2
1 − 3α2

1) k̄
1
Rk̄

2
R






=0. (5.17)

To �rst order, the equations are trivially solved by hoosing λ = η as the a�ne

parameter; the problem of determining dλ/dη is overome by our hoie of referene



5.1. GEODESIC EQUATIONS 121

system, the lak of vetor perturbations and the homogeneity of spae:

∆k̄0
1 =− 1

2

[

α1

(

k̄1
R

)2
+ β1

(

k̄2
R

)2
+ γ1

(

k̄3
R

)2
]η=ηR

η=ηE
(5.18)

=− 1

2

[

α̃1

(

k̄1
R

)2
+ β̃1

(

k̄2
R

)2
+ γ̃1

(

k̄3
R

)2
+

1

3
δ1

]η=ηR

η=ηE

∆k̄1
1 =2k̄2

Rk̄
3
R

ˆ ηR

ηE

(β1 − γ1) dη (5.19)

∆k̄2
1 =2k̄3

Rk̄
1
R

ˆ ηR

ηE

(γ1 − α1) dη (5.20)

∆k̄3
1 =2k̄1

Rk̄
2
R

ˆ ηR

ηE

(α1 − β1) dη. (5.21)

The relationship (5.18) expliitly shows the quadrupolar nature of hanges to the

CMB alluded to in [19℄. An unremoved removable perturbation, that is, a gauge

term whih is not aounted for, hanges the temperature of the whole sky isotrop-

ially; this on�rms the e�et noted by Hwang & Noh [42℄.

The equations for quadrati-order orretions read

d∆k̄0
2

dλ
+

1

2













(α′
2 + 2α′

1α1)
(

k̄1
R

)2
+ 2k̄1

Rα
′
1∆k̄1

1+

+ (β ′
2 + 2β ′

1β1)
(

k̄2
R

)2
+ 2k̄2

Rβ
′
1∆k̄2

1+

+ (γ′
2 + 2γ′

1γ1)
(

k̄3
R

)2
+ 2k̄3

Rγ
′
1∆k̄3

1













= 0 (5.22)

whih due to the anellation of the terms in the right olumn integrates trivially

to

∆k̄0
2 = −1

2

[

(

α2 + α2
1

) (

k̄1
R

)2
+
(

β2 + β2
1

) (

k̄2
R

)2
+
(

γ2 + γ2
1

) (

k̄3
R

)2
]η=ηR

η=ηE
(5.23)

(reiterating the quadrupolar harater of the hange to the CMB, but generalizing
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it to anisotropi expansion); meanwhile for the spae part of the vetor

d∆k̄1
2

dλ
+ 2







(γ1 − β1)
(

k̄2
R∆k̄3

1 + k̄3
R∆k̄2

1

)

+

+ (γ2 − β2 + 3γ2
1 − 3β2

1 + 2δ1 (β1 − γ1)) k̄
2
Rk̄

3
R






=0 (5.24)

d∆k̄2
2

dλ
+ 2







(α1 − γ1)
(

k̄3
R∆k̄1

1 + k̄1
R∆k̄3

1

)

+

+ (α2 − γ2 + 3α2
1 − 3γ2

1 + 2δ1 (γ1 − α1)) k̄
3
Ek̄

1
E






=0 (5.25)

d∆k̄3
2

dλ
+ 2







(β1 − α1)
(

k̄1
R∆k̄2

1 + k̄2
R∆k̄1

1

)

+

+ (β2 − α2 + 3β2
1 − 3α2

1 + 2δ1 (α1 − β1)) k̄
1
Rk̄

2
R






=0 (5.26)

whih has solutions

∆k̄1
2 =− 2























2k̄1
R

´ ηR
ηE







(

γ̃1 − β̃1

)







(

k̄2
R

)2 ´ η
(

α̃1 − β̃1

)

dη̄+

+
(

k̄3
R

)2 ´ η
(γ̃1 − α̃1) dη̄






dη






+

+k̄2
Rk̄

3
R

´ ηR
ηE

(

γ2 − β2 + γ̃2
1 − β̃2

1 + 2α̃1

(

β̃1 − γ̃1

))

dη























(5.27)

∆k̄2
2 =− 2























2k̄2
R

´ ηR
ηE






(α̃1 − γ̃1)







(

k̄3
R

)2 ´ η
(

β̃1 − γ̃1

)

dη̄+

+
(

k̄1
R

)2 ´ η
(

α̃1 − β̃1

)

dη̄






dη






+

+k̄3
Rk̄

1
R

´ ηR
ηE

(

α2 − γ2 + α̃2
1 − γ̃2

1 + 2β̃1 (γ̃1 − α̃1)
)

dη























(5.28)

∆k̄3
2 =− 2























2k̄3
R

´ ηR
ηE







(

β̃1 − α̃1

)







(

k̄1
R

)2 ´ η
(γ̃1 − α̃1) dη̄+

+
(

k̄2
R

)2 ´ η
(

β̃1 − γ̃1

)

dη̄






dη






+

+k̄1
Rk̄

2
R

´ ηR
ηE

(

β2 − α2 + β̃2
1 − α̃2

1 + 2γ̃1

(

α̃1 − β̃1

))

dη























.

(5.29)

5.2 Redshift and CMB variations

The geodesi of a light ray is related to its observed redshift by
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z + 1 =
(kµuµ)R
(kµuµ)E

(5.30)

[23℄. Having determined u0 = 1 and ui = 0 this simpli�es to

z + 1 =
aF (ηR)

aF (ηE)
k̄0
R (5.31)

so, to quadrati order,

z + 1 ≈ aF (ηR)

aF (ηE)























1− 1

2













(α1 + α2 + α2
1)
(

k̄1
R

)2
+

+ (β1 + β2 + β2
1)
(

k̄2
R

)2
+

+ (γ1 + γ2 + γ2
1)
(

k̄3
R

)2













η=ηR

η=ηE























(5.32)

. Meanwhile, the temperature �eld

TR

TE
=

1

z + 1
≈ aF (ηE)

aF (ηR)



















































1 + 1
2

[

α1

(

k̄1
R

)2
+ β1

(

k̄2
R

)2
+ γ1

(

k̄3
R

)2
]

+

+1
4

[

α1

(

k̄1
R

)2
+ β1

(

k̄2
R

)2
+ γ1

(

k̄3
R

)2
]2

+

+1
2













(α2 + α2
1)
(

k̄1
R

)2
+

+ (β2 + β2
1)
(

k̄2
R

)2
+

+ (γ2 + γ2
1)
(

k̄3
R

)2































































η=ηR

η=ηE

(5.33)

so
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∆T

TR
≈ aF (ηE)

aF (ηR)



















































1
2

[

α1

(

k̄1
R

)2
+ β1

(

k̄2
R

)2
+ γ1

(

k̄3
R

)2
]

+

+1
4

[

α1

(

k̄1
R

)2
+ β1

(

k̄2
R

)2
+ γ1

(

k̄3
R

)2
]2

+

+1
2













(α2 + α2
1)
(

k̄1
R

)2
+

+ (β2 + β2
1)
(

k̄2
R

)2
+

+ (γ2 + γ2
1)
(

k̄3
R

)2































































η=ηR

η=ηE

. (5.34)

5.3 Comparison with the observed CMB

Five-year and seven-year results [16, 18℄ from WMAP [30℄ give the best piture

to date of the CMB. The WMAP observations reon�rm the onstraint of the

quantity ∆T/T < 10−4
[20℄; any hange to the CMB from aeleration must be

equal to or smaller than this value in order to be ompatible with observations,

plaing an additional onstraint on osmologial models. This implies that in the

urrent epoh, and in the absense of further speial alignment, |α| , |β| , |γ| . 10−5
.

In a matter dominated universe, under ordinary irumstanes, this implies (sine

η . 10−1
; see setion 6.1)

∣

∣

∣
Cα1,1y

matter

1

∣

∣

∣
. 10−5 =⇒ |Cα1,1| . 10−6

(5.35)

∣

∣

∣
Cα2,1y

matter

2

∣

∣

∣
. 10−5 =⇒ |Cα2,1| . 10−8; (5.36)

meanwhile in a radiation-dominated universe,

∣

∣

∣
Cα1,1y

radiation

1

∣

∣

∣
. 10−5 =⇒ |Cα1,1| . 10−5

(5.37)

∣

∣

∣
Cα2,1y

radiation

2

∣

∣

∣
. 10−5 =⇒ |Cα2,1| . 10−6. (5.38)
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The oe�ients assoiated with the deaying mode are onstrained to be smaller

than those assoiated with the growing mode without further theoretial onsid-

erations.

5.3.1 CMB anomalies

Sine the publiation of the latest generation of CMB maps [28℄, numerous laims

have been made (for example, [28, 32, 34, 39℄) of anomalous struture in the CMB.

While the WMAP team argue [17℄ that these phenomena are not of statistial

signi�ane, if a quasi-isotropi Bianhi IX universe ould produe any of the per-

eived patterns it would point the way toward further observational studies of

the CMB to determine osmologial parameters, and establish the quasi-isotropi

Bianhi IX universe as a viable model for osmology.

In all ases, we emphasize that the most likely explanation for any pereived pattern

in the CMB whih is not shown to be statistially signi�ant is the null hypothesis:

that is, the human pereptive phenomenon of pareidolia, the same phenomenon

responsible for observing familiar shapes in louds or the �Man in the Moon�.

Cold spots, ��ngers� and the �Axis of Evil�

Two ompat, supposedly anomalous areas of low temperature have been noted in

the CMB, the so alled �old spots�.
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The �rst of these (alled Cold Spot I in [17℄) is a region [31℄ overing approximately

15000 square degrees in the diretion of the galati enter, muh of whih is 194

mirokelvin [28℄ older than the CMB mean temperature (∆T/TR = −7.12×10−5
).

Partiularly noteworthy regarding Cold Spot I is its membership in one of four

��ngers� spaed at roughly 90-degree angles around the galati equator, interstied

by four areas of higher (∆T/TR = 7.12× 10−5
) temperature

2

. Qualitatively, suh

a pattern is roughly onsistent with the expeted pattern if two of the funtions

α, β, γ > 0 and if two of the the priniple axes of the metri tensor lie on the axes

of the old and hot zones (implying the third axis points along the �Axis of Evil�,

see below). The so-alled �Cold Spot II� reported by Vielva et al. [34, 37℄ also

forms part of these ��nger� strutures [17℄.

Cold Spot I also has the angular size [19℄ predits for the observed value of ΩM ≈ .3.

Due to the oinidene of the old spot with the diretion of the galati enter,

there are no optial observations in its diretion (see figure 2.2), and therefore

there is no data on osmi aeleration in the diretion of Cold Spot I.

(Equation 5.34) implies that any old spot resulting from anisotropy in the metri

should be aompanied by an idential old spot at a point antipodal to the original

spot. Tegmark's examination [28℄ of the one-year WMAP data on the CMB low-

order multipoles revealed an alignment between the CMB quadrupole and otupole

in the diretion of (l, b) ≈ (−110◦, 60◦) along whih the quadrupole is nearly zero,

an axis whih Land & Maguiejo found [32℄ extended to the 16-pole and 32-pole

2

The CMB dipole is de�ned as suh a way as to be traeless, so

´

∆T
quadrupole

/TRdS = 0.
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as well; the alignment has been dubbed the �Axis of Evil�. While examination of

the three-year WMAP data [33℄ found the Axis of Evil to be of lower signi�ane

than initially thought (94%-98%), it still persists; the WMAP team's disussion of

the alignment [17, pt. 7℄ admits the �remarkability� of this alignment and, while

assigning its existene to hane, does not attempt to explain the �Axis of Evil� in

full.

The Axis of Evil, whih in equatorial oordinates [35, p. 43℄ lies lose to RA 10:44

De +7.6◦, falls within the zone in whih redshift data has been olleted for mea-

surement of the osmi deeleration parameter. To simplest linear approximation

with a pure growing mode, (that is, that the funtions α and α′
are both small suh

that α2 ≈ 0) this alignment rules out a CMB arising from osmologial gravita-

tional waves as a soure of osmi aeleration. However, the fat of the alignment

of the quadrupole, otopole, 16-pole and 32-pole indiates that non-linear ontri-

butions of gravitational waves to aeleration are not ruled out.

The question of the overall magnitude of the quadrupole, whih is only 14% of

the expeted value [28, 38℄, has also been raised. The WMAP team [17, pt. 4℄

agree with Tegmark that the depressed quadrupole falls within the 95% on�dene

interval for simulations of the CMB, but do not attempt an explanation for the

unusually strong otopole term. Long-wavelength gravitational waves an easily

explain both through judiious hoie of the arbitrary onstants Cα1,1 et. in a

manner ompatible with the CMB. Efstathiou [29℄ supposes that the depressed

quadrupole ould be an indiation of a losed universe; however, the relationships

he proposes generate zero ontributions to the CMB power spetrum from the

genuinely osmologial, intrinsi n = 3 waves found in Bianhi IX, and any obser-

vational test using his framework must rely on orret evaluation of gauge terms
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whose e�etive wavelengths must be far longer than the osmi horizon. Further-

more, Efstathiou's onlusion that a losed universe would automatially require

a srapping of urrent in�ationary models is ontradited by others; for example,

Guth argues that a universe that is losed but with a very large radius of urvature

is not ruled out [40℄.

The quasi-isotropi Bianhi IX model annot provide an explanation for hemi-

spherial dipole asymmetry laimed by Eriksen et al. [39℄.

5.4 Conlusions

The long-wavelength gravitational waves intrinsi to a quasi-isotropi Bianhi IX

will ause a hange in the osmi mirowave bakground with a distintive quadrupo-

lar signature. A radially-symmetri pattern of light de�etions in the CMB result-

ing from shear may also be observed.

The almost-isotropi Bianhi IX model an be ompatible with the CMB as ob-

served, and an provide an explanation for pereived anomalies observed in the

CMB by COBE and WMAP. However, the existene of these anomalies beyond

the level of statistial noise is not ertain; a possible route of ross-disiplinary

researh is open in the form of examination of the phenomenon of pareidolia as

applied to the CMB.

Models of quasi-isotropi Bianhi IX relying on pure growing modes or pure de-
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aying modes of the gravitational waves annot simultaneously explain observed

osmi aeleration and the observed osmi mirowave bakground. Researh into

the non-linear regime of the Bianhi IX osmology will eluidate the existene of a

model of an aelerating Bianhi IX universe preserving an almost-isotropi CMB.



Chapter 6

An aelerating Bianhi IX universe

preserving an almost-isotropi CMB

In order for a Bianhi IX universe to both appear nearly isotropi in the osmi

mirowave bakground and to aelerate through the existene of long-wavelength

gravitational waves, it must ful�ll two onditions. The �rst is that the funtion

k0 (ηR) must have absolute value less than the limit imposed by observations of

the osmi mirowave bakground, ∆T/TR. The seond is that at least one of the

funtions Qb
a < 0. It is possible for both these onditions to be simultaneously �lled

while remaining ompatible with other observational onstraints on osmologial

parameters.

The idea of long-wavelength gravitational waves ausing anisotropy in the CMB

has been proposed, but not applied to the Bianhi IX universe. Grishhuk &

130
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Zel'dovih onsider the possibility of long-wavelength gravitational waves existing

in a Friedmann universe without violating the limits imposed by the CMB [41℄, but

do not apply their work to the gravitational waves of osmologial harater whih

appear in some homogeneous osmologies. Campanelli et al. suggest that suh a

universe ould exist and propose a Taub-type Bianhi I universe whih also inludes

anisotropi dark energy as an initial explanation for the observed CMB, omple-

menting Rodrigues [113℄. Critially, they do not onsider gravitational waves as

a generator of the anisotropy and treat the parameters of the Taub universe as if

dark energy were simply established by �at. Similarly, Kovisto and Mota [115℄ do

not look beyond the Bianhi I model and instead fall bak on exoti theories to

explain dark energy.

6.1 Cosmologial parameters

WMAP [18, 16℄ has produed an all-sky survey of the CMB whih, if the universe

is almost Friedmannian, an be used to onstrain osmologial parameters.

Let the radius of urvature a0 and onformal time η of the bakground Friedmann

osmology be treated as a free parameters; assume a losed universe. The WMAP

seven-year data gives

H0 =70.4+1.3
−1.4km/s/Mp (6.1)

ΩK =− .0025± 0.0109 (6.2)

(WMAP's analysis inludes the value of ΩK measured by baryon aousti osilla-
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tions reported in [101℄). The radius of urvature, Hubble parameter and urvature

energy density are related by

a0 = H−1
0

√

−Ω−1
K (6.3)

while the Hubble parameter, radius of urvature and η-time are related by

H0a0 = cot (η0/2) . (6.4)

Therefore we have limiting values (as de�ned by the 95% on�dene boundary of

the WMAP observations)

a0 ≥1.12× 1029m (6.5)

η0 ≤0.0266 (6.6)

and highest-on�dene values

a0 =2.68× 1029m (6.7)

η0 =0.00499. (6.8)

Meanwhile, the ratio of Hubble radius to radius of urvature is at least

H0a0 ≥ 8.67 (6.9)

with a best-�t value of

H0a0 = 20.0. (6.10)

In other words, if the universe is losed, then the osmologial gravitational waves of

the Bianhi IX osmology are of muh, muh longer wavelength than the observable
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universe.

Finally, from the value of the redshift of deoupling, z
last sattering

= 1090, we

an say by (2.2) that

ηR/ηE ≈ 33.0. (6.11)

As the available data, inluding that from supernovae (see table 2.1), do not

exlude a �at universe, we are always free, in developing the theory of Bianhi IX

and aeleration, to set the parameter η as lose to zero as neessary. Doing so

will not, in and of itself, violate observations, but will instead be onstrained by

the impat of the deaying mode of the gravitational waves on the CMB.

6.2 Compatibility with the redshift

Of all the observed osmologial parameters observed by WMAP and other probes

of the CMB, the ones that are diretly observed are ∆T/TR and z
last sattering

.

From these we an say that in the urrent epoh the universe appears isotropi and

that its expansion sine last sattering has, on average to the present time, been

isotropi. Neither of these fats neessarily imply that the overall expansion was

isotropi at any time before the present. Instead, the ondition of quasi-isotropy

simply implies that

dk0

dη
+

1

2
γab,0k

akb ≈ 0. (6.12)
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This implies that shear is small, so

ka ≈ka
0 (6.13)

z + 1 ≈aF (ηR) /aF (ηE) (6.14)

as in the bakground Friedmann ase.

We an obtain a near-zero value to the wave funtions in the present epoh by

admitting the presene of both growing and deaying modes in the gravitational

waves. We want the ondition (assuming ∆T/TR is positive; in the ase that it is

negative the inequalities must be reversed)

0 ≤ aF (ηE)

aF (ηR)
eα(ηR)−α(ηR) ≤ |∆T/TR| (6.15)

and similarly for β, γ. In its full form this equation is transendental even when

disussing weak waves, but expanding (4.135) to lowest surviving order in η, we

obtain

∣

∣37Cα1,1

(

η2R − η2E
)

+ 4Cα2,1

(

η−3
R − η−3

E

)∣

∣ ≤ |∆T/TR| . (6.16)

In a young universe, the times of emission and reeption of a light ray are related

by ηE ≈ ηR (z + 1)−1/2
so

∣

∣

∣
37Cα1,1

(

1− (z + 1)−1) η2R + 4Cα2,1

(

1− (z + 1)3/2
)

η−3
R

∣

∣

∣
≤ |∆T/TR| . (6.17)

Let:

� 10−g
be the amplitude of the growing mode Cα1,1, so Cα1,1 = sgn (Cα1,1) 10

−g
;

� 10−d
be the amplitude of the deaying mode Cα2,1, so Cα2,1 = sgn (Cα2,1) 10

−d
;
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� 10−b
be the value of ηR;

� 10−T
be the value of |∆T/TR|

so noting that z ∼ 1000 = 103, our ondition beomes approximately

∣

∣

sgn (Cα1,1) 10
−2b−g+3/2 − sgn (Cα2,1) 10

3b−d+5
∣

∣ .
∣

∣10−T
∣

∣ . (6.18)

When the amplitude of the growing mode term dominates, this approximate in-

equality is satis�ed by

−2b− g + 3/2 . −T ; (6.19)

when the deaying mode dominates, the inequality is satis�ed by

3b− d+ 5 . −T. (6.20)

WMAP onstrains T ≈ 4 (the di�erene between lowest and highest temperatures

is 2∆TR/T = 1.4 × 10−4
) and b & 1. This onstrains the growing and deaying

modes, when they at on their own, to:

g &7/2 (6.21)

d &12. (6.22)

There exists a third possibility, in whih the growing and deaying ontributions

are, in the urrent epoh, of equal size and opposite sign. For this to be the ase,

we need

−2b− g + 3/2 ≈ 3b− d+ 5; (6.23)
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this approah relies on the observation of ampli�ation of weak gravitational waves

in rapidly-hanging bakgrounds (see setion 4.4.8). Sine b is a free parameter,

this approximate equation an always be satis�ed, but we still need to satisfy the

onstraints of the CMB.

6.3 Aeleration in the Bianhi IX universe

6.3.1 Order of magnitude estimates for gravitational wave

amplitudes

We ould naively attempt to relate an assumed isotropi aeleration to the on-

straints of the CMB by using (5.34) to onstrain the amplitude of the gravitational

wave funtions and determining the value of (4.228) that results. This gives us, to

lowest orders in η, assuming a pure growing mode of the gravitational waves and

hoosing k̄a = (1, 0, 0) for simpliity,

−35

2

η2E
η2R

Cα1,1η
2
R ∼ ∆T/TR = 10−5 =⇒ Cα1,1 ∼ −2× 10−7η−2

R (6.24)

and therefore, if we assume that Cα1,1, Cβ1,1, Cγ1,1 are all of the same order of

magnitude,

∆Q̄2 ≈ −4900

24
σ2η2R ∼ −

(

1× 10−11
)

η−2
R (6.25)
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and thus we ould onlude that the observed di�erene between the deeleration

parameter and its Friedmann value

∆Q̄2 ≈ −1 =⇒ ηR ∼ 3× 10−6
(6.26)

whih is ertainly on its own allowable under the observed osmologial parame-

ters. To do this, however, would require Cα1,1 ∼ 2 × 105, well beyond the limit

of appliability of what ould be alled �weak� waves. Nonetheless, we an on�-

dently say we have shown that weak gravitational waves an ontribute to osmi

aeleration. This statement is the main result of this work.

Meanwhile, onsider the anisotropi deeleration parameter:

Q1
1 ≡ − ä11a11

(ȧ11)
2 =

[

Q0 − 2
aF
ȧF

α̇− a2F
ȧ2F

(

α̈ + α̇2
)

](

1 + 2
aF
ȧF

α̇ +
a2F
ȧ2F

α̇2

)−1

(6.27)

& similarly for Q2
2, Q

3
3; this relationship is exat. Evaluating (4.203) gives to lowest

surviving order in η

∆Q
(1)

11,growing
≈ −70Cα1,1η

2
(6.28)

∆Q
(1)

11,deaying
≈ 19

2
Cα2,1η

−1. (6.29)

With an observed ∆Q11 ≈ −1 we an write:

100 ≈ sgn (Cα1,1) 10
9/5−2b−g − sgn (Cα2,1) 10

1−d+b. (6.30)

In the ase of the growing mode dominating we need sgn (Cα1,1) = +1 and 9/5 +

2b− g ≈ 0. This forms a system of equations with (6.19) so we have, at the limit
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of the allowed CMB perturbation,















9/5− 2b− g ≈ 0

−2b− g + 11/2 ≈ 0

=⇒ no solution; (6.31)

the growing mode annot, on its own, ause the observed aeleration and be

ompatible with the CMB. For the deaying mode, we need sgn (Cα2,1) = −1 and

have















1− d+ b ≈ 0

3b− d+ 5 ≈ −4

=⇒















b ≈ −5

d ≈ −6

=⇒















η ∼ 1× 105

Cα2,1 ∼ 1× 106
(6.32)

whih is a nonsense result. Therefore neither the growing or deaying modes, on

their own, an both ause observed aeleration and preserve the CMB. In the

ases of the two modes having omparable e�et on the metri and opposite sign,

though, we an solve (6.30) with sgn (Cα1,1) = +1, sgn (Cα2,1) = −1 and

100 ≈ − (Cα1,1) 10
9/5−2b−g + (Cα2,1) 10

1−d+b
(6.33)















g − d ≈ −5b− 7/2

9/5− 2b− g ≈ 0

=⇒ d ≈ 17

10
+ 7b, g ≈ 2b− 52

10
(6.34)

when the growing mode dominates the hange in aeleration; this sets estimated

limits on the parameters (sine b & 2):

Cα1,1 &2× 101 (6.35)

Cα2,1 .2× 10−16. (6.36)
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When the deaying mode dominates the hange in aeleration,















g − d ≈ −5b− 7/2

1− d+ b ≈ 0

=⇒ g ≈ −4b− 5/2, d ≈ b+ 1 (6.37)

whih onstrains the parameters

Cα1,1 &3× 1010 (6.38)

Cα2,1 .1× 10−3. (6.39)

While the values for the growing mode are far greater than those for what ould

be alled �weak� waves (realling the onstraints of setion 4.4.4), our eduated

estimate for Cα1,1 in the growing-mode dominated regime aligns niely with the

neessary strong-wave growing-mode value for ∆Q1
1 disregarding the CMB; we

ould not have expeted a hange in aeleration at order unity in a universe

where η is small to be driven by anything less than a gravitational wave so strong

as to dominate the Friedmannian expansion. Therefore we an turn to an analysis

in the quasi-isotropi regime.

6.3.2 Quasi-isotropi, strong growing mode aeleration

We apply the same reasoning as in the previous setion, but we are aware of

onstraints (from [28℄) not just on the CMB in the diretion of the observed ael-

eration (whih we ontinue to assign as the �α� or e1i diretion) but on the CMB
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in the other two (the �beta� and �gamma� diretions):

∆Tα/TR +
1

2
(∆Tβ/TR +∆Tγ/TR) =7.1× 10−5

(6.40)

2∆Tβ/TR =1.4× 10−4
(6.41)

2∆Tγ/TR =1.4× 10−4
(6.42)

Q1
1 =− 0.6 (6.43)

ηR .3× 10−2. (6.44)

In this and all regimes to follow we an also approximate QF ≈ Q�atF = 1/2 to the

limit of preision given the onstraints on η; QF will be 1% stronger than Q�atF

only when η ≈ 0.51. Between the onstraints (6.40-6.43) and the average over

the sky of ∆T/TR = 0, we have four equations with seven unknowns (η, cα0 , c
β
0 , c

γ
0 ,

Cα2, Cβ2, Cγ2). These equations are, expliitly (see equations 4.141, 4.203, 5.34):

7.1× 10−5 & (ηE/ηR)
2 (eα(ηR)−α(ηE) − 1

)

(6.45)

1.4× 10−4 & (ηE/ηR)
2 (eβ(ηR)−β(ηE) − 1

)

(6.46)

1.4× 10−4 & (ηE/ηR)
2 (eγ(ηR)−γ(ηE) − 1

)

(6.47)

Q1
1 =

QF − tan (ηR/2)α
′
R − tan2 (ηR/2)α

′′
R − tan2 (ηR/2)α

′2
R

1 + 2 tan (ηR/2)α′
R + tan2 (ηR/2)α′2

R

. (6.48)

Trivially, we an see that in the limit of α, β, γ → ∞, we must have Q1
1 ≈ Q2

2 ≈

Q3
3 → −1; if aeleration is driven by growing modes of long-wavelength gravi-

tational waves then in the long run, the universe asymptotially approahes de

Sitter expansion as if driven by a osmologial onstant, indiating a solution in

the regime of quasi-isotropy.
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Consider the quasi-isotropi solution to the growing mode of the Einstein equations,

normalized as in equations (4.193-4.198). In the regime where cα0 is su�iently

large that A ≫ 1, we an approximate

cα2 ≈− 1

4
A2

(6.49)

cβ2 ≈ cγ2 ≈ 3

20
A2

(6.50)

(an idential argument, with the funtions α and β transposing their roles, applies

for the ase where cα0 < 0). From these terms we an also approximate the next

order terms in the series:

cα4 ≈ 521

5600
A4

(6.51)

cβ4 ≈ cγ4 ≈− 15

224
A4. (6.52)

Thus we see that the three funtions α, β, γ are related in a Taub-like but not

exatly-Taub fashion (this orresponds to ase C1 as desribed by [146℄). Approx-

imating equation (6.48) to order A4η4 we obtain the relationships

Q1
1 (ηR) =

QF + 3
8
A2η2R −

(

521
1120

+ 1
16

)

A4η4R
1− 1

2
A2η2R +

(

1
16

+ 521
1400

)

A4η4R
+O

(

(

1

2
AηR

)6
)

Q2
2 (ηR) ≈ Q3

3 (ηR) =
QF − 9

40
A2η2R +

(

75
224

− 9
400

)

A4η4R
1 + 3

10
A2η2R +

(

9
400

− 15
56

)

A4η4R
+O

(

(

1

2
AηR

)6
)

.

When Q1
1 (ηR) = −0.6 then AηR ≈ 1.5 ± 0.2 (cα0 & 1.9), within the limit of

appliability of the expansion and also in the regime where the in�nite series (4.190)

onverge. Thus, we have shown analytially that long-wavelength gravitational

waves an explain osmi aeleration if that aeleration is anisotropi.

We an also make the following qualitative assessments about aeleration. Firstly,
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its time-evolution is non-monotoni. In the α diretion, the universe will at �rst

exhibit slightly inreased deeleration before starting to aelerate. In the β and

γ diretions, deeleration will asymptotially inrease toward in�nity but then

aeleration will derease from in�nity, quikly onverging on the strong-�eld value

of Q2
2 = Q3

3 = −1. Aeleration in the α diretion begins at Aη ≈ 1.2 and the

universe aelerates in every diretion after Aη ≈ 1.6; thus the supposition that

aeleration is a reent phenomenon is supported.

A universe that is aelerating in every diretion is within the region allowed by

the model. Figure (6.1) illustrates the evolution of the deeleration parameters

as a funtion of time. The onstraints plaed on the deaying mode in (setion

6.1) and the upper limit on ηR show that the deaying mode of long-wavelength

gravitational waves has not played a signi�ant role in osmi aeleration; in the

epoh of last sattering, the deeleration parameter was almost isotropi and had

a lose to Friedmannian value.

We now turn our attention to the preservation of the CMB. We have three equations

in three unknowns, taking the lowest term in the deaying mode and the lowest
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Figure 6.1: Deeleration parameter versus time

Along a preferred axis, the universe at �rst deelerates, then quikly begins ael-

erating, with the deeleration parameter asymptotially approahing −1. Along

the other two axes, the deeleration parameter goes to in�nity before onverging

asymptotially from negative in�nity to the value −1. The vertial axis of eah

graph gives Qb
a; the horizontal axis is in units of Aη.
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two terms in the growing mode:
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As 30ηE ≈ ηR we an further approximate
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If we take the inequalities as approximate equivalenes and use AηR ≈ 1.5 then

this system has solutions

Cβ2,1 ≈Cγ2,1 ≈ 3× 10−7η3R

Cα2,1 ≈ 9× 10−6η3R

whih is ompatible with the estimates of (setion 6.3.1). That Cα2,1 + Cβ2,1 +

Cγ2,1 6= 0 is a onsequene of the impossibility of a priori hoosing an �unper-

turbed� temperature against whih to ompare anisotropi CMB �utuations; the

signi�ane of non-linear terms means we annot at the same time have the average

over the whole sky of ∆T/TR = 0 and have δ1 = 0, realling (equation 5.18).
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We exhaust almost all the freedom in the system (6.45-6.48) in hoosing to explain

the �Axis of Evil� at the same time as aeleration; if this requirement is dropped

and we treat CMB variations as insigni�ant then a broad range of solutions opens

up. In partiular, if the ratio of growing mode to deaying mode is approximately

equal for all three of α, β, γ we always have su�ient freedom to hoose a η that

redues CMB variation to below the level of detetability, at the expense of �tuning�

the universe to plae us as observers in the era when the CMB is nearly isotropi.

Compatibility with an almost-isotropi Hubble �ow

The objetion ould be raised that the neessity of the universe ontrating along

two axes demands that a large region of the sky be blue-shifted, whih would surely

have been observed. This problem an be made to vanish into statistial noise by

the hoie of a su�iently small η as (4.201) implies aFH11 = a′F/aF + α′ ≈

2 (η−1 + cα2η) et. It is notable that the very limited indiations [149, 150℄ of

anisotropi Hubble �ow roughly align with the Axis of Evil and show angular

sales on the order of 40◦.

6.4 Conlusions

It is possible for a Bianhi IX universe with initial onditions cα0 , c
β
0 , c

γ
0 ∼ 1 to dis-

play the aeleration observed in our universe while not only remaining ompatible

with the observed CMB but providing an explanation for potentially meaningful
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patterns in the CMB, spei�ally the so-alled �Axis of Evil� and its assoiated phe-

nomena suh as old spots. These onditions an be attained without additional

onstraints on the osmologial parameter of ΩK , a parameter whih is subjet to

further srutiny and potentially tightening toward the �at universe ase of ΩK = 0.

The method of ombining strong growing modes with linear-order weak deaying

modes of osmologial gravitational waves is borne out by observational data, whih

imply a di�erene of at least 17 orders of magnitude in amplitude between the

growing and deaying modes. In the urrent epoh, deaying modes of osmologial

gravitational waves an be negleted entirely. However, in the time lose to last

sattering, these modes may have partiipated at a strength omparable to the

growing modes. Furthermore, the ation of growing or deaying modes on their

own is ruled out as an explanation for aeleration as neither on its own an

preserve the CMB.

The question of how the ratio of growing mode to deaying mode is equal along

all three priniple axes of the metri tensor is answered easily if we postulate that

osmologial gravitational waves present at the earliest moment in time were all in

phase (the easiest way to do this is to postulate that they onsisted of pure growing

modes). As the funtions α, β and γ would have all rossed the boundary from

a w = 1/3 medium to a w = 0 medium at the same time, they would thus have

remained in phase after last sattering, implying equal growing-to-deaying ratios

for all three funtions. As this transition happened in the very young universe

(ηE . 2× 10−3
), the deaying mode that exists after last sattering would be very

small.
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The nonlinearity of Bianhi IX auses growing modes with initial values of order

unity to develop exponentially and ause very powerful e�ets. The struture of

the equations also indiates that multiple sets of initial onditions an lead to the

same set of osmologial parameters. In light of the requirement of this model

that both strong growing modes and weak but non-zero deaying modes of the

gravitational waves exist, the possibility that these long-wavelength gravitational

waves onstituted the �pump �eld� of in�ation [103℄ in the early universe should

be explored.

The model proposed an be tested and is falsi�able by observation of aeleration in

areas of the sky 90◦ from the highly-observed �eld; in areas of the sky away from

the urrently-observed aeleration, we will see either a very large deeleration

parameter or a negative one. From the analysis of aeleration data in (Chapter

2) it is easy to see that, in the urrent state of observations, there are several

possible areas of the sky where evidene of a gravitational-wave nature of osmi

aeleration ould be sitting undeteted.



Chapter 7

Conlusions

We have examined the urrent dominant hypotheses explaining osmi aelera-

tion and we have identi�ed shortfallings in them, notably the overappliation of

the assumption of isotropi aeleration in the absene of data overing large areas

of the sky. We have ompleted an analysis of the almost-Friedmannian Bianhi

IX osmology perturbed to quadrati order in small orretions to the bakground

metri and we have shown that both weak and strong osmologial gravitational

waves ould ontribute to osmi aeleration under some irumstanes. We have

ompleted an analysis of the e�ets quadrati-order weak gravitational waves would

produe on the osmi mirowave bakground and we have shown that not only

ould osmologial gravitational waves be ompatible with the CMB but their

presene ould aount for many suggested anisotropi anomalies in the CMB. We

have presented a set of osmologial parameters inluding strong growing osmolog-

ial gravitational waves and weak deaying osmologial gravitational waves whih

is ompatible with observations of osmi aeleration without the invoation of

148
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salar �elds of exoti equation of state, at the expense of strong anisotropy in the

Hubble �ow. We have proposed observational tests whih would provide evidene

for or against this model.

7.1 Diretions for future researh

The possibility of explaining osmi aeleration through a Bianhi IX osmologial

model opens up numerous possibilities for future researh, both theoretial and

observational.

While the di�ulties with arrying out a full-sky optial survey of supernovae are

understandable, experimental veri�ation or falsi�ation of a Bianhi IX model

for aeleration requires nearly full sky overage at high z to disover or rule out

regions of anisotropy in the aeleration �eld. Infrared astronomy with wide sky

overage, for example WFIRST [65℄, presents the best possibility for these new

observations through traditional astronomy. The Einstein telesope provides the

tantalizing possibility of independent veri�ation of the properties of dark energy

through the examination of gravitational radiation [111℄.

Meanwhile, the available supernova data an be re-examined for signs of ael-

eration, although given the omparatively small datasets in any partiular area

other than the highly-observed �eld and the equatorial bias in the distribution of

the data this re-examination is less likely to produe de�nitive results. Célérier is

justi�ed in her ritiisms [91℄ of the assumptions being made in proposed models

of osmologial aeleration; it is urious that the authors if [89℄ reasoned, with
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44 low-z soures, that �poor overage at low and moderate Galati latitudes [...℄

makes it pratially impossible to distinguish between a peuliar monopole and a

quadrupole� but that [1℄, whih shares two authors with [89℄, does not even mention

the possibility of osmographi bias in its smaller sample of high-z soures.

Consideration should be given to the question of why osmographi bias exists,

and whether it points to an unexpeted privileging of the observer: namely, the

fat that modern observatories are hosted only in regions of the Earth that an

a�ord to host them.

Perturbative methods for solving the Einstein equations for weak gravitational

waves in Bianhi IX an be onsidered exhausted, having reahed the limit of

pratial utility at quadrati order. Further analyti explorations should onen-

trate on the quasi-isotropi approah. The fat of Bianhi IX's easy redution

to a system of non-linear seond-order ordinary di�erential equations ombined

with the divergene of Taylor series desribing strong gravitational waves point

toward either a Fourier-series approah or numerial methods for further analysis;

the likelihood of haoti behavior [73℄ in Bianhi IX, though, merits aution in the

seletion of initial onditions for any simulation.

Numerial examination of the quasi-isotropi regime should also be pursued for

a fuller exploration of the spae allowing for anisotropi aeleration while pre-

serving an almost-isotropi osmi mirowave bakground. The next generation

of mirowave anisitropy probe should settle the question of whether the �Axis of

Evil� and similar phenomena are genuine artifats or statistial noise; in the mean-

time, the question of pareidolia in relation to the CMB has not been explored
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and deserves formal examination in order to raise awareness within the sienti�

ommunity of the issue.

Overall, any theory is only as good as its ability to predit future results. Cosmi

aeleration needs to be more losely examined, not only for time dependene, but

for spatial dependene, before any theory an emerge as preferred.

7.2 Impliations of the Bianhi IX osmologial model

Sine the disovery of osmi aeleration, a wide range of salar theories, ranging

from the mundane to the exoti, have been put forward to explain the phenomenon.

While the fat of aeleration, the disovery of whih was the logial ulmination

of the hunt for the �missing mass� of the universe above and beyond that provided

by dark matter, neessarily implies the slaughter of at least one sared ow, the

ommunity of physiists has no onsensus over whih should be sari�ed the most

readily.

Attempts to surrender homogeneity are physially the best-grounded but philo-

sophially the most rash. Certainly the idea of a purely homogeneous osmology

is an approximation, but a universe whih is not on average homogeneous, that

is, where the homogeneous regions are rare exeptions, is one in whih osmology

as a siene eases to be possible. The �Swiss heese� universe has the advantage

of making use of a known, exat solution to the Einstein equations and at least

avoids the exeptionalism of the �Hubble bubble� proposal, but defeats itself on

the grounds of testability.
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Meanwhile, postulation of exoti states of matter has been done too enthusiastially

for the evidene available. The simple fat of noting that the available data on

aeleration was anisotropi exposes as irrational exuberane the rush to explain

the phenomenon through the medium of a substane whih has never been seen or

even indiated in the laboratory, and whose theoretial justi�ation is far beyond

testability. The willingness of many to see aeleration as a falsi�ation of the

theory of general relativity looks all the more bizarre when ounterposed with the

unwillingness to explore gravitational-wave solutions to the problem.

The objetion ould be raised that asserting aeleration to potentially be anisotropi,

in the weak sense of the word �isotropy�, violates the osmologial priniple by

saying that our telesopes are privileged observers, in that our observational �eld

happens to align with an axis of aeleration. This is no more so true than the

�privilege� hypothesized by, for example, Riess et al. when they assert, from a few

dozen data points, that aeleration is a reent phenomenon, and that impliitly

we are privileged observers in time for taking up osmology just as the universe

has begun to exhibit this behavior. While a osmologial onstant is the simplest

explanation for wX = −1 on mathematial grounds, the lak of physial justi�a-

tion for a non-zero osmologial onstant puts it in the same lass as salar-�eld

theories. The simple fat is, wX = −1 is, in the long run, the natural equation

of state for any funtion whih grows faster than the matter-driven terms in the

bakground osmology. The idea of the �Big Rip� [99℄, while intelletually (and

emotionally) intriguing, makes the same mistake in the other diretion, privileging

observers to be alive just as the universe is beginning to tear itself apart. In this

sense, a wX = −1 �eld is the best preserver of the osmologial priniple, and

when the osmologial onstant has been exluded the simplest explanation for

aeleration omes from a tensorial �eld.
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Similarly, when osmi �atness is alled into question � and it has never been

and an never be de�nitively proven, it an only be disproven � the next-simplest

model is the losed model. Reall that the Bianhi models are distinguished by

their symmetries, and of all the Bianhi models with Friedmann universes as speial

ases, Bianhi IX has the most symmetri symmetries, obeying a �handedness� rule

students learn before their �rst year of university. The fat of this �handedness�

� parity � may even provide a neat explanation of the CP violation in partile

physis [100℄, as Grishhuk alluded to [10℄.

The least speulative fat revealed by the assessment of available aeleration data

is that more data is needed, from broader areas of the sky. The antiipated

launh of WFIRST is likely to prove more momentous for osmology than the

�ight of WMAP; WMAP largely reon�rmed what we already believed we knew,

but WFIRST and SNAP will learly illustrate how muh we do not know. We also

need tehniques to see deeper into the sky and measure the distane-redshift rela-

tionship further into the past; the standard ladder of baryon aousti osillations

[101℄ ombined with better redshift data from WiggleZ may provide the neessary

window.

That Bianhi IX ould in priniple ontain aelerating regimes was never really

in doubt. Numerial and qualitative analysis has indiated this ever sine [10℄

noted that the vauum equations ontained a regular minimum, implying a positive

�rst derivative for the Hubble parameter. The harater of the aeleration has

now been more properly investigated, bringing with it the possibility of a purely

gravitational explanation for in�ation, espeially in light of the divergene of δ

onstruted only from growing modes in the radiation-dominated universe. An

exploration of the di�erenes between Bianhi I and Bianhi IX in a universe �lled
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with ultra-relativisti matter ould make Bianhi IX into a panaea for all the

major problems of large-sale osmology.

The unwillingness of the perturbed Bianhi IX osmology to support deaying-

mode gravitational waves stronger than linear order is puzzling, espeially as the

BKL universe always has a divergent term. The BKL universe, though, never

reahes a singularity, and so the divergene of the a deaying mode never has time

to take e�et. Furthermore, the power law ontration along one axis ould always

be explained by a �growing� (non-diverging) funtion with negative oe�ients,

due to the exponential term in the metri.

The impat of strong waves on the CMB, meanwhile, also requires deeper expla-

nation. Preservation of the CMB's apparent anisotropy at �rst glane appears

to require some �tuning�, a partiular growing-deaying ratio whih merits deeper

questioning; there is also the outstanding matter of why we happen to live in one

of the few periods of time when the CMB appears nearly isotropi. Clever ex-

amination of the symmetries of Bianhi IX may reveal a more satisfying answer,

although the ability of Bianhi IX to explain CMB anomalies is one of its most

satisfying features.

Most fundamentally, the biggest impat of the Bianhi IX theory of osmi a-

eleration is the expansion of the osmologist's parameter spae. While in salar

models the only parameter truly open for disussion is the funtion desribing the

equation of state of dark energy, the gravitational waves of the Bianhi IX universe

have four degrees of freedom; while the strength a non-zero osmologial onstant

has some theoretial justi�ation in fundamental physis independent of large-sale
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osmology, there is no immediately apparent reason why the gravitational waves

in Bianhi IX should have any partiular amplitude. As always in osmology, we

need more information than we have.
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Table 7.1: Supernova observations used in analysis

of aeleration

Right asension, J2000 Delination, J2000

Riess 1998 supernovae:[90℄

SN1994U 13:04:56 =6:3:39

SN1997bp 12:46:54 =10:21:27

SN1996V 11:21:31 2:48:40

SN1994C 07:56:40 44° 52' 19�

SN1995M 09:38:42 =11:39:52

SN1995ae 23:16:56 =1:55:24

SN1994B 08:20:41 15:43:49
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SN1995ao 02:57:31 =0:18:40

SN1995ap 03:12:28 0:41:43

SN1996R 11:16:10 0:11:39

SN1996T 10:05:28 =6:32:36

SN1997I 04:59:37 =2:50:58

SN1997ap 13:47:10 2:23:57

SDSS-II SNIa observations:[3℄

(Corner 1) 20:00:00 1:15:00

(Corner 2) 20:00:00 =1:15:00

(Corner 3) 04:00:00 1:15:00

(Corner 4) 04:00:00 =1:15:00

ESSENCE windows:[11℄
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waa1 23:29:52.92 =08:38:59.7

waa2 23:27:27.02 =08:38:59.7

waa3 23:25:01.12 =08:38:59.7

waa5 23:27:27.02 =09:14:59.7

waa6 23:25:01.12 =09:14:59.7

waa7 23:30:01.20 =09:44:55.9

waa8 23:27:27.02 =09:50:59.7

waa9 23:25:01.12 =09:50:59.7

wbb1 01:14:24.46 00:51:42.9

wbb3 01:09:36.40 00:46:43.3

wbb4 01:14:24.46 00:15:42.9

wbb5 01:12:00.46 00:15:42.9
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wbb6 01:09:00.16 00:10:43.3

wbb7 01:14:24.46 =00:20:17.1

wbb8 01:12:00.46 =00:20:17.1

wbb9 01:09:36.40 =00:25:16.7

w1 02:10:00.90 =03:45:00.0

w2 02:07:40.60 =03:45:00.0

w3 02:05:20.30 =03:45:00.0

w4 02:10:01.20 =04:20:00.0

w5 02:07:40.80 =04:20:00.0

w7 02:10:01.55 =04:55:00.0

w8 02:07:41.03 =04:55:00.0

w9 02:05:20.52 =04:55:00.0



7.2. IMPLICATIONS OF THE BIANCHI IX COSMOLOGICAL MODEL 161

wdd2 02:31:00.25 =07:48:17.3

wdd3 02:28:36.25 =07:48:17.3

wdd4 02:34:30.35 =08:19:18.2

wdd5 02:31:00.25 =08:24:17.3

wdd6 02:28:36.25 =08:24:17.3

wdd7 02:33:24.25 =08:55:18.2

wdd8 02:31:00.25 =09:00:17.3

wdd9 02:28:36.25 =09:00:17.3

HST supernovae:[14℄

SCP05D0 02:21:42.066 =03:21:53.12

SCP06H5 14:34:30.140 34:26:57.30

SCP06K0 14:38:08.366 34:14:18.08
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SCP06K18 14:38:10.665 34:12:47.19

SCP06R12 02:23:00.083 =04:36:03.05

SCP06U4 23:45:29.430 =36:32:45.75

SCP06C1 12:29:33.013 01:51:36.67

SCP06F12 14:32:28.749 33:32:10.05

SCP05D6 02:21:46.484 =03:22:56.18

SCP06G4 14:29:18.744 34:38:37.39

SCP06A4 22:16:01.078 =17:37:22.10

SCP06C0 12:29:25.655 01:50:56.59

SCP06G3 14:29:28.430 34:37:23.15

SCP06H3 14:34:28.879 34:27:26.62

SCP06N33 02:20:57.699 =03:33:23.98
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SCP05P1 03:37:50.352 =28:43:02.67

SCP05P9 03:37:44.513 =28:43:54.58

SCP06X26 09:10:37.888 54:22:29.06

SCP06Z5 22:35:24.967 =25:57:09.61

Riess �gold� dataset:[56, 54℄

Window 1 03:32:30 =27:46:50:00

Window 2 12:37:00 62:10:00
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