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Property Prediction of Continuous Annealed Steels

ABSTRACT

To compete in the current economic climate steel companies are striving to reduce costs and
tighten process windows. It was with this in mind that a property prediction model for
continuous annealed steels produced at Tata Steel’s plants in South Wales was developed. As
continuous annealing is one of the final processes that strip steel undergoes before being
dispatched to the customer the final properties of the strip are dependent on many factors.
These include the annealing conditions, previous thermo-mechanical processing and the steel
chemistry. Currently these properties, proof stress, ultimate tensile strength, elongation, strain
ratio and strain hardening exponent, are found using a tensile test at the tail end of the coil.
This thesis describes the development of a model to predict the final properties of continuous
annealed steel. Actual process data along with mechanical properties derived using tensile
testing were used to create the model. A generalised regression network was used as the main
predictive mechanism. The non-linear generalised regression approach was shown to exceed
the predictive accuracy of multiple regression techniques. The use of a genetic algorithm to
reduce the number of inputs was shown to increase the accuracy of the model when
compared to those trained with all available inputs and those trained using correlation derived
inputs.

Further work is shown where the fully trained models were used to predict the relationships
that exist between the processing conditions and mechanical properties. This was extended to
predict the interaction between two process conditions varying at the same time. Using this
approach produced predictions that mirrored known relationships within continuous annealed

steels and gives predictions specific to the plant that could be used to optimise the process.

Keywords: property prediction, continuous annealing, generalised regression network, genetic

algorithm, sensitivity analysis.
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Chapter 1 - Introduction

CHAPTER 1 - INTRODUCTION

1.1.

Novelty Statement

This thesis describes an investigation into the property prediction of continuous annealed

steels based on their processing conditions. The work focused on the use of a generalised

regression network, chosen following initial investigations into the use of regression and

neural network approaches, as the main predictive method. Later this combined with a genetic

algorithm to assist with input selection. The models’ ability to identify the relationships

between the input process conditions and output properties is also highlighted. The novelty in

this work is as follows:

A property prediction model relying only on actual processing conditions was
developed for use with continuous annealed steels.

A generalised regression network was used to facilitate these predictions, trained
using data taken from online measurements and tensile tests.

A bespoke training routine was developed to train these networks, relying on a
genetic algorithm to optimise input selection.

The relationships that exist between processing conditions and mechanical properties
of continuous annealed steels were identified using fully developed prediction models.
Coding based on the mean and standard deviation of the processing conditions
facilitated this.

The model was able to predict to a level of accuracy equal to that of other approaches
which required addition measuring equipment or used laboratory based annealing
data.

Although initially developed to predict the properties of steels produced at Port Talbot

the model’s capabilities were extended to another line. This suggests that the
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approach maybe suitably adapted for use within other areas of the steel industry, or

indeed in different industrial applications.

1.2. Background

Tata steel is one of the world’s leading suppliers of steel. Its customers cover a broad range of
markets, such as construction, automotive, engineering and packaging. In 2007 Corus (now
part of Tata Steel) produced approximately 4.3Mt of steel slab at its plant at Port Talbot. Of
this, around 1.9Mt was processed in the cold mill [1]. Cold rolled products offer a solution to a
wide range of problems. Typically, they find use in the following areas [2]:

* Automotive components and body panels

* Domestic appliances (white goods)

* Electrical goods

* Furniture

* Drums and radiators

* Tubes
Of these drums and radiators make up the largest share; accounting for approximately
280ktpa. Steel used in the automotive sector make up the second largest share, accounting for
only 70ktpa [3]. A further breakdown of the main uses of Port Talbot produced continuous

annealed steels is shown in Figure 1.1.
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Figure 1.1: Sectors and customers supplied by CAPL (2005 to 2010)[4]

Many of these products require a high amount of formability. For this reason it is essential to
anneal the cold worked material to give the required forming properties. Steel grades are
chosen by the customer to meet their specific needs. Mechanical test data is needed from
each coil to confirm that the coil is within the specifications of the customer and that it meets
relevant standards.

Following the recent economic crisis, and thus fluctuation in demand for such products, as well
as ever increasing customer demands the steel companies must strive for continual
improvement in order to be competitive. Strong completion from other areas (particularly
China) also means that European steelmakers need to be technologically advanced in order to
offset cheaper labour costs. This means that new products need to be developed, quality
improved and the production processes optimised. As annealing is one of the final processes
that rolled steel undergoes it is an important area for continuous improvement. Optimisation
of this part of the processing of steel could offer significant financial savings.

The final mechanical properties of continuous annealed steel are of great importance to
customers and in some cases are required to meet release standards. Of particular interest are
the proof stress (Re), ultimate tensile strength (Rm), elongation (A), strain ratio (r) and strain

hardening exponent (n). These properties are affected by the variation in process conditions
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throughout the entire steel making process. In order to ensure that steels meet both the
customers’ requirements and any appropriate standards samples of each coil produced are
taken for destructive mechanical testing. For the steels produced at Tata’s plant in Llanwern
this means a lengthy wait for results as there is no longer a test facility on the annealing line.
This leads to problems releasing stock immediately, and thus has an associated cost. In order
to overcome this problem an online method of finding the properties of the steel is needed.
This methodology should work in real-time, negate the need for a destructive test and should
produce results with sufficient confidence such that the need for physical testing is greatly

reduced, with the ultimate aim of reducing the need for tensile testing entirely.

1.3. Project Objectives

The main aims of the project are listed below, along with a short description of each one.

. Produce a model which can be used to predict the release properties of certain grades
of steel produced on the continuous annealing line at Port Talbot and Llanwern.

o Currently release properties are calculated using a simple mechanical test. This
project aims to replace this method with a predictive model that will use the
processing conditions as inputs. Clearly the most important factors to consider are
the accuracy of these predictions and the associated confidence levels. It is also
important that customers should have confidence in the model and its workings.

. Produce a sensitivity tool to help identify the appropriate process window for the
continuous annealing line at Port Talbot and Llanwern

o The current process routes for continuous annealed steels are based on
experimentation and the experience of those running the mill. Using the fully
developed predictive model it is hoped that a method can be found to analyse the

relationships between the process conditions and mechanical properties. These
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relationships can then be used to identify the optimal process windows for the
grades of steel under investigation. Such an approach may also be used to assess the
implication of, and if necessary react to, varying slab compositions and upstream

process variation.

1.4. Thesis Organisation

This chapter outlines the requirement for a property prediction model of continuous annealed
steels to be developed based on economic factors and the product development needs. The
research objectives for this project are also identified.

Chapter Two presents the background theory and a review of the available literature
concerning this area of work. The details of how steel is produced at an integrated steel plant
are followed by a more detailed review of the continuous annealing process and its
alternatives. The properties under investigation in this work and the factors affecting them are
then discussed. The need for data cleaning and an appropriate methodology are highlighted.
Modelling philosophies and computational methods currently used in the steel industry are
also covered. Finally, the details and theory behind generalised regression networks and
genetic algorithms are discussed.

Chapter Three gives details of the initial data used in the modelling process and presents the
work carried out to analyse the annealing process using a linear regression approach. Selection
of inputs based on their correlation with the output properties is also considered.

Chapter Four covers the implementation of a generalised regression approach to predict the
properties of continuous annealed steels. A comparison between these results and the
previous linear regression models is included. The capability of the modelling approach is
extended to other grades and annealing lines.

Chapter Five details improvements on the generalised regression network approach by

combining it with a genetic algorithm for input selection. Two different approaches to this
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combination are proposed and the results from each are compared. The final modelling
approach is then used to analyse all grades under investigation.

Chapter Six describes how fully trained models can be used to identify the relationships
between input process conditions and the output properties. This technique can be applied to
assess both the variation in a single factor and the effect of two variables changing
simultaneously. The findings of this work are compared with known relationships to support
the workings of the prediction models.

Chapter Seven summaries the findings of this study and discusses areas of potential further

work and the direction it may take.
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CHAPTER 2 — THEORETICAL BACKGROUND

2.1. Prior Thermo-Mechanical Processing

Continuous annealing is one of several processes that may take place during the production of
steel. The main principle of it is to relieve the stresses which have built up in the steel during
prior cold working. Continuous annealing is one of the final processes applied to steel
produced at Port Talbot. This means that in order to gain a full understanding of the mechanics
of the process and why it is necessary, the prior processes need to be considered.

At an integrated steel plant, such as Port Talbot, steel is produced by reacting iron ore with
coke, which is carried out in blast furnaces. The iron ore is reduced by the carbon contained in
the coke producing liquid iron with a high carbon concentration. The liquid iron is tapped from
the furnace and delivered to the basic oxygen steelmaking (BOS) vessel. Here the excess
carbon is removed in the form of carbon monoxide and carbon dioxide by blowing oxygen
through the molten metal. The liquid steel is then sent to the secondary steelmaking stage,
where the necessary alloying additions are made so that the required composition is produced
and the steel grade meets the customer’s demands. An illustration of the processing of low
carbon steel strip, starting with the basic oxygen steelmaking vessel, is shown in Figure 2.1.
Following secondary steelmaking, the steel is then cast. Originally this would have been in the
form of ingots, which were then rolled into slabs during a later process. Nowadays most steel
plants have a continuous casting plant. Here slabs are formed directly. The liquid steel is
poured into continuously oscillated water cooled copper moulds. The steel in contact with the
mould solidifies, forming a skin. This is then drawn down through a gradually curved set of
rollers until it is running horizontally. By this point the entirety of the steel will have solidified.
Gas torches are then used to cut slabs to the required length. Slabs are then either sent to the

marshalling yard or sent directly to the hot strip mill via a process termed ‘hot connecting’.
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Figure 2.1: Process routes for low carbon strip steel [5]

At the hot strip mill slabs are first reheated to above the recrystallization temperature to
around 1250°C. The actual temperature is dependent upon the slab’s dimensions, the steel
grade and later heat treatments [6]. Clearly slabs sent via hot connecting will require less
energy to reheat them. The reheating of the slabs allows further working on them as the steel
has been changed into the face centred cubic austenite phase. Due to the higher temperatures
the strip can continuously recrystallise meaning they don’t work harden. The slabs exit the

furnace on to a conveyer system. During reheating a thick scale, caused by oxidation, will have
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built up on the surface of the steel. This is removed by scale breakers and high pressure water
jets to prevent it being rolled into the coil leading to a reduced surface quality [7]. The slab
then passes to the reverse roughing mill where the thickness is reduced to one closer to that
required in the finished product. Slabs are approximately 234mm thick initially; the roughing
process reduces the thickness to around 35mm [8]. Rolling takes place at about 60% of the
absolute melting temperature, meaning work hardening does not occur as the steel
recrystallizes at the same time [9]. At this point the slab is converted to what is termed a
‘transfer bar’.

The transfer bar is then coiled in the coil box and the head and tail ends reversed. The coil box
reduces the overall length of the hot strip mill as well as promoting homogenous strip
properties by reducing temperature variation along the length of the strip [10]. The transfer
bar is then uncoiled and passed through the finishing mill, entering at a temperature about
1050°C [6]. At Port Talbot, this consists of seven four high roll stands which gradually reduce
the thickness of the coil until it reaches the required size, from 2.5mm up to a maximum of
17.50mm [11]. The coil leaves the last stand at a temperature between 850°C and 950°C [6]
and passes on to the run out table, where it is cooled under controlled conditions by a series of
water jets.

At the end of the hot strip mill the strip is then coiled. It is important to point out that the
temperature at the end of the finishing mill, the rate of cooling on the run out table and the
final coiling temperature all have implications for the final structure and mechanical properties
of the steel and so need to be considered for later property prediction.

Due to the elevated temperatures of the hot rolling process the surface of the steel will have
once again accumulated scale. This scale must be removed prior to further processing so not
to diminish the surface finish. This is done by a process called pickling. The coil is based
through a bath of liquor containing either aqueous hydrochloric or sulphuric acid. The acid
penetrates through cracks and defects in the surface of the scale and the associated reactions

cause hydrogen gas to be evolved. The evolution of gas helps to further remove the scale by

9
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dislodging it from the coil’s surface. The strip may then be washed to prevent further reactions

from occurring.

The coil can then be cold rolled. During this process the thickness of the coil is further reduced
by a series of five, four high, roll stands. The term ‘cold’ implies that the process takes place at
temperature below the recrystallization temperature of the steel. Though no heat is input into
the process, the strip temperature will rise due to the work exerted on it. The reduction in the
coil’s thickness occurs by means of dislocation movement. As the reduction continues, the
dislocations within the material begin to pile up making it progressively harder to further
deform the coil. For this reason the work exerted by each successive set of rollers needs to
increase in order to produce the required deformation. As mentioned previously, the work
exerted on the coil will lead to heating, however some of the energy is stored within the coil at
the dislocations [6].

Coils that have undergone cold rolling will be very strong, due to the build up of dislocations.
However their ductility will be greatly reduced, rendering them useless for forming operations.
In order to rejuvenate the coil’s ductility it must undergo an annealing process to relieve the
stresses that have built up within the microstructure [6].

Annealing is primarily used to relieve stresses and increase the ductility of a coil that has
undergone cold forming. The final mechanical properties and microstructure of the coil are
heavily dependent upon it. Of these the formability, in particular drawability, is heavily
dependent upon the annealing process as it is significantly influenced by the crystallographic
texture [5]. Following cold rolling, a coil may then be processed by one of two major annealing

techniques, batch annealing or continuous annealing.

10
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2.2. Methods of Annealing

2.2.1. Batch Annealing

Batch annealing is an older technique used less and less in modern industry due to the time
taken for the process to occur. It mainly finds a use as extra capacity or in cases when large
ferrite grains are needed, as is the case with electrical steels. The process increases the
formability of a coil that has undergone cold reduction whilst at the same time retaining some
of its strength. A schematic of a typical batch annealing furnace is shown in Figure 2.2.

Coils are stacked three or four high on top of each other, separated by convector plates, in a
bell shaped furnace. The interior cover is placed over the coils and its volume filled with inert
gas to prevent the coils oxidising under the high temperatures. The outer furnace cover is put
in position. Burners are fired tangentially at the inner cover causing it to heat up. Heat from
this cover is radiated to the coils causing them to heat up too. The coils are then held, or
soaked, at a temperature of around 650°C, just below Ac;. The coils are then left to cool to
room temperature. In order that the required temperature is achieved through the entirety of
the coil, long heating, soaking and cooling times are employed. A typical batch annealing cycle

is shown in Figure 2.3.

11
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Recrystallization of the deformed structure begins to take place at temperatures around
550°C. This is by means of nucleation and growth of the nuclei. This process uses the stored
energy within the grains and reduces the dislocation density. Prior to the coils reaching this
temperature, aluminium nitride precipitates on the deformation sub-grain boundaries. The
precipitates lead to a retardation of the recrystallization process by inhibiting nucleation of
new grains leading to the final grains being large. The presence of the aluminium nitride also
helps to produce the required texture for forming [5].

The coiling temperature of the coil during the hot rolling process is an important factor when
considering the formation of the aluminium nitride precipitates. In the order that the
aluminium is present in solid solution prior to the annealing process the coil temperature
needs to be low. Typically a coiling temperature of about 560°C is utilised when a coil is to

undergo batch annealing [5].

Grain growth continues during the soaking period leading to a relatively coarse grain size in the
final product. A larger grain size could be achieved using a higher soak temperature but this is
limited to around 730°C for two particular reasons. The first is that temperatures above this
will result in the formation of coarse carbides which are detrimental to the formability of the
coil. In addition, at elevated temperatures there is a greater chance of adjacent laps of the coil
sticking to each other. At temperatures of around 700°C the ferrite microstructure contains
the maximum amount of carbon in solution, approximately 0.02%. The slow rate of cooling
employed will allow most of the carbon to have precipitated once the coil is at room
temperature meaning that aging is not a problem [5].

The cooling rate can be adjusted so that some carbon will remain in solid solution. Upon
further heating a strengthening of the steel occurs as the carbon in solid solution precipitates
on any deformations. This process has found use within the automotive sector and steels with
this property are said to be ‘bake hardening’. This relates to the fact that the temperature

required for the solid solution carbon to precipitate is close to the temperature needed to cure
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paint during an automotive painting process. Whilst the carbon is still in solid solution,
pressings may easily be formed. The later painting and curing process allows this carbon to

precipitate, resulting in the finished product showing an increased resistance to denting [12].

2.2.2. Continuous Annealing

Continuous annealing of steel strip was first introduced by the Armco Steel Corporation in
1936. The process was used as a step in the production of hot dip galvanized steel. Following
its initial development, several developments have been made to the process that allow
various steels, such as aluminized steel, tinplate and stainless steels, all to be processed via
continuous annealing. Though there were several advantages offered by continuous annealing
over the traditional batch annealing, including uniform properties, cleaner surfaces and a
shorter processing time, it was not used for all applications due to its poor cold forming
characteristics and poor resistance to aging. This problem was overcome in the 1970s when
Japanese steelmakers introduced an overage stage into their annealing process that improved
the problematic properties [5]. An illustration of the Continuous Annealing Process Line at the
Port Talbot works is shown in Figure 2.4. This is a NSC (Nippon Steel Corporation) type line and
was commissioned in 1999. The nominal output is 18800tonnes/week and a nominal speed of
130.34tonnes/hour [13].

Coils from the hot strip mill are loaded onto the de-coiler. As the process is continuous, the
head of the new coil needs to be joined to the tail of the previous coil using a welder. In order
to weld the two coils together, they both must be stationary. Stopping the line for this to occur
would be impractical and would result in some sections of coil spending longer than others in
the heat treatment section of the process. In order to overcome this problem a device called
an accumulator is used, with one at the beginning and one at the end of the process. This
consists of two parallel sets of rolls that can move apart from each other. As the entry
accumulator moves apart it is able to hold more of the coil. When a weld is needed, the speed

of the coil by the welder can slow down whilst the accumulator lowers, feeding the extra coil
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into the rest of the process and maintaining line speed. From the entry accumulator the coil
passes into the furnace section. The coil passes through an entry seal roll into a non-reducing
atmosphere. The first section of the furnace heats the strip to the required annealing
temperature. Due to the high temperatures used, only steels with low carbon contents can be
processed via continuous annealing. This is so the steel remains in the alpha range. Typically
the carbon content will be below 0.015%. The reason for this is illustrated on the iron carbon
phase diagram, shown in Figure 2.5. The range over which iron exists in the alpha form is very

small but extends to the highest temperatures at the lowest levels of carbon.
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Figure 2.4: Major components of a continuous annealing process line [11]
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Figure 2.5: Iron carbon phase diagram [14]

The actual temperature that the steel is heated to and the rate of heating are determined by
the steel’s chemistry, prior processing and required properties. Details of the processing
conditions of the steels chosen for this work are given later. The heating is provided by gas
fired radiant tube heaters. Once the strip has been heated it then passes into the soaking
section of the furnace. Here the steel is held at a constant temperature by electrical heaters.
Once the steel has been held at temperature for a long enough time it is then cooled to a
lower temperature so that the overage stage may begin. Initially, cooling is slow followed by a
rapid cooling phase. Once cooled to a low enough temperature the overage process may
begin.

In some cases a reheat overage stage may be needed. In these cases the steel is cooled to
below the overage temperature in order to precipitate a greater amount of carbides within the
microstructure of the steel. The steel is then reheated to the overage temperature. This allows

the carbides to coarsen at a greater rate. Once the steel has gone through the overage stage it
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is slowly cooled back to room temperature. A typical continuous annealing cycle including a

reheat overage is shown in Figure 2.6.
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Figure 2.6: Typical continuous annealing cycle

The initial heating of the coil ensures it is at the correct temperature for the required
annealing cycle. The rate at which the steel is heated may be varied, though the effects of
heating rate upon the mechanical properties and microstructure of the steel are still relatively
unknown.

During the initial heating of the coil, recovery begins to take place. Recovery refers to how a
material changes prior to recrystallization, with some properties being partially restored to
their value before deformation. Recovery is not one single change but rather a series of
events. These include: dislocation tangles, cell formation, annihilation of dislocations within
cells, sub-grain formation and sub-grain growth. It is not necessarily the case that all of these
events will occur. This will depend on several parameters, including the deformation

temperature and the annealing temperature. Some of these events may have occurred during
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the deformation process as dynamic recovery. The events normally occur in the order given

but there can be a significant overlap between them [15].

The soaking period is where recrystallization takes place. One of the earliest attempts to

rationalise recrystallization lead to the formulation of the laws of recrystallization by Mehl and

Burke & Turnbill (cited in [15]). These are a series of statements based on a large body of

experimental work. They are as follows:

A minimum deformation is needed to initiate recrystallization. The deformation must
be sufficient to provide a nucleus for the recrystallization and to provide the necessary
driving force to sustain its growth.
The temperature at which recrystallization occurs decreases as the time of anneal
increases. This follows from the fact that the microscopic mechanisms controlling
recrystallization are thermally activated and the relationship between the
recrystallization rate and the temperature is given by the Arrhenius equation.
The temperature at which recrystallization occurs decreases as strain increases. The
stored energy, which provides the driving force for recrystallization, increases with
strain. Both nucleation and growth are therefore more rapid or occur at a lower
temperature in more highly deformed material.
The recrystallized grain size depends primarily on the amount of deformation, being
smaller for large amounts of deformation. The number of nuclei or the nucleation rate
is affected by strain more than the growth rate. Therefore a higher strain will provide
more nuclei per unit volume and hence a smaller final grain size.
For a given amount of deformation the recrystallization temperature will be increased
by:

o A larger starting grain size. Grain boundaries are favoured sites for nucleation,

therefore a large initial grain size provides fewer nucleation sites, the
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nucleation rate is lowered and recrystallization is slower or occurs at higher
temperatures.

o A higher deformation temperature. At higher temperatures of deformation,
more recovery occurs during the deformation (dynamic recovery) and the
stored energy is thus lower than for a similar strain at a lower deformation

temperature.

Recrystallization is best described by breaking it down into two separate regimes, nucleation
and grain growth. The laws of recrystallization are easily rationalised with this assumption.
These terms are similar to those used to describe phase transformation and there is a
superficial similarity between the two processes. The term nucleation when applied to
annealing may not be strictly accurate but has become the accepted terminology [15].
Nucleation occurs within the sub-grains through a process called strain induced boundary
migration. Within a deformed structure, the dislocation content is unlikely to be the same
along both sides of a grain boundary. The result of this difference will be a bulging of part of
the original grain boundary. This will leave a region behind the migrating boundary with a
lower dislocation content. Eventually the bulging boundary becomes separated from its parent
grain leaving a strain free grain. The dislocation storage rate depends on grain orientation and
may be different at the boundary regions allowing strain induced boundary migration to occur.
The new grains produced have a similar orientation to their parent grains [15, 16].

In order to produce homogenous properties within a coil, grain growth and final size need to
be uniform. This means that the grain growth phase is an important stage in producing the
final required properties. During this stage the nuclei formed by strain induced boundary
migration grow with the driving force being the reduction in grain boundary energy. There are
two variations of grain growth, normal and abnormal [15].

As the title suggests, normal grain growth implies that grains grow in a uniform manner. There

will be a narrow range of grain sizes and shapes, leading to uniform properties throughout the
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coil. Growth continues steadily until neighbouring grains impinge each other. This results in a
structure of equiaxed grains. Growth of this manner may be represented using the Avrami
equation which is discussed later [15, 16].

With abnormal grain growth, some grains will grow in preference to other grains. This will
result in a variety of grain sizes and shapes, leading to non-uniform properties in the coil.
Abnormal grain growth will eventually lead to the larger grains impinging each other and
normal grain growth returning. Abnormal grain growth is likely to occur when there is at least
one strong texture component [15, 16].

The coil then passes into the cooling section of the furnace. The coil is cooled to the overage
temperature. The overage stage involves holding the strip at a temperature significantly below
the recrystallization temperature to achieve equilibrium between the ferrite and cementite.
This allows carbon in solution to precipitate at preferential sites, due to the lower solubility of
carbon at the overage temperature than the annealing temperature. This leads to a reduction
in the aging effect on the steel. If this stage was not included there would be fine carbide
precipitates throughout the coil which would be detrimental to its formability. The formation
of larger carbides has less of an effect, as there are fewer of them, on the formability [17]. In
some cases the coil will be cooled below the desired overage temperature. Doing so allows for
more carbon to precipitate. The coil is then reheated to the overage temperature to allow the
newly formed carbides to coarsen.

During batch annealing, aluminium nitride precipitates whilst the coil is being slowly heated.
The fast heating rates of the continuous annealing process do not allow this to happen,
meaning that nitrogen would remain in solid solution. The result of this would be a coil with
increased strength with reduced formability and increased susceptibility to aging. In order to
alleviate this problem, coils that are scheduled to undergo continuous annealing are coiled at a
higher temperature, around 710°C, at the end of the hot rolling process. This allows the
material to cool slowly through the range of temperatures that are preferential for aluminium
nitride precipitation [5].
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Upon exiting the heat treatment section of the continuous annealing process line the coil then
passes through the temper mill. This is another rolling process. A single roll stand applies a
small reduction, approximately 0.8% to 1.5%, to the coil [18]. This is done for two principle
reasons. The first is to remove the phenomenon of discontinuous yielding.

In cold worked steel, dislocations lead to a distortion on the lattice structure. The energy
related to this distortion can be reduced by the presence of solute atoms, such as carbon or
nitrogen. The presence of these solute atoms means that moving these dislocations, through
further processing of the material, will be impeded and requires a greater strain. Once the
dislocations have been separated from their associated solute atoms the strain required to

move them is reduced [19]. Discontinuous yielding is illustrated in Figure 2.7.

Stress

Strain

Figure 2.7: Illustration of discontinuous yielding

The yield point, A, represents the stress required to move the dislocations from the solute

atoms. Point B represents the stress required to continue moving the dislocations. The end
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result of this is that products undergoing a forming process may suffer from non-uniform
localised deformation, leaving stretch marks, or Lider’s bands, on the surface as illustrated in
Figure 2.8. The temper rolling negates this problem by applying a compressive deformation to
the steel, meaning that the marks will not be present. This would stress the material to point C
in Figure 2.7 meaning that no further yielding would occur during subsequent forming. Leaving
the material as stock for a long period of time or applying a heat treatment would allow the
solute atoms to return to the dislocations meaning the vyield point returns [19]. This

phenomenon is known as aging.

(a) Luder’s bands on a tensile (b) Stretch-Strain marks on under

specimen tempered strip

Figure 2.8: Illustration of Liider’s Bands [18]

The second reason for the temper mill is to control the surface finish of the strip. It ensures
that the strip is flat and allows for any required surface texture, for example to allow for the
application of a coating, to be imparted on the coil [18]. It is important to note that the
tempering process occurs after annealing. Should any property prediction model be produced
with the intention of utilising it online as a corrective tool, investigation into the effects on

properties due to temper rolling will need to be undertaken.
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After temper rolling, the coil enters the exit accumulator. This allows the strip speed to be
controlled as it passes through the side trimmers, inspection, oiling and shears. The coil is then
rewound in the exit coiler. Samples of the tail end of the coil will be taken to allow for testing
to be carried out. The coil is then wrapped to allow it to be stored. From here it may be sold to
a customer as an uncoated product or sent for further processing so that a metallic or paint
coat can be applied. The continuous annealing process line offer coils with a minimum

thickness of 0.38mm and a maximum thickness of 2.00mm [20].

2.2.3. Comparison of Batch and Continuous Annealing
The introduction of continuous annealing within the steelmaking process has allowed for the
development of many novel grades of steel. The speed of the process and scope for
improvement has meant that continuous annealing has risen to the treatment of choice within
industry even though there is a significant cost associated with its installation, upwards of
$150million compared to $25million for a batch annealing system [21]. There are several
reasons for the increased use of continuous annealing systems, for example [21, 22]:
* The integration of several processes into one continuous line, e.g. degreasing and
temper rolling
* The development of new products such as advanced high strength steels which have
limited scope to be produced via batch annealing
* Processing time is much quicker; coils produced via continuous annealing can be
processed in around ten minutes where as batch annealing steels may take three days
* Product quality is much better with homogeneous properties along the length and

width of the coil, along with better edges and reduced waviness
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2.3. Properties Under Investigation

2.3.1. Measurement Methods

The final mechanical properties of the steel produced must meet the specifications of the
customer and those set by any relevant international standards. Preparation of samples and
the testing methods are currently governed by the criteria specified in BS EN ISO 6892-1:2009
[23]. At Port Talbot samples are tested offline, though the test house facility is housed in the
same area.

Samples are taken from the tail end of the coil, just before the weld. The shears make a cut
that becomes the end of the first coil. A second cut is made to produce a small sheet of steel,
with the rest then forming the next coil. The test sample is then delivered to the test house; as
this is an automated process, the details of the current coil are already available to the
workers there. Three test pieces are produced at 45° to each other by means of a press. Unless
stated otherwise, only the test piece taken in the transverse direction is used. The size of the
test piece is set out in BS EN ISO 6892-1:2009. Details of the test piece are shown in Figure 2.9

and described in Table 2.1.
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Figure 2.9: Details of standard tensile test piece
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Table 2.1: Details of standard tensile test piece (from Table 1 of BS EN ISO 6892-1:2009)

Reference  Symbol  Unit Designation Nominal Size
Number
original thickness of a flat test
1 ao mm
piece or wall thickness of a tube
original width of the parallel of a 1. 125+1
flat test piece or average width of 2. 201
2 bo mm
the longitudinal strip taken from a 3. 251
tube or width of flat wire
1. 50
5 Lo mm  original gauge length 2. 80
3. 50
1. 57(min) 75(recommended)
6 L. mm  parallel length 2. 90(min) 120(recommended)
3. 60
7 L mm  total length of test piece
8 L, mm  final gauge length after fracture
original cross-sectional area of the
9 So mm?
parallel length
12 - - gripped ends

This is fed into an automated process that produces a standard stress/strain curve on a
computer, as shown in Figure 2.10. From this the necessary properties of the coil can be
extrapolated. These details, described below, are recorded and logged with the other data

associated with that coil. Should the first test fail (suggesting the material is out of
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specification) a second sample may be tested. Should this fail the coil may be offered to the
customer at a reduced price along with the associated test results. Alternatively the coil may
be downgraded to one where the mechanical properties are within a tolerable range and sold
to another customer. Samples may be taken to the main test house should further testing be

required.
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Figure 2.10: Typical stress/strain curve formed by tensile testing

2.3.2. Proof Stress

Proof stress, Re, is defined as the minimum stress required to produce a permanent plastic
deformation. In order to gain comparable results this is normally defined with a specific
amount of plastic strain, dependent upon material or specifications. Typically an offset of 0.2%

is used, known as the proof stress.

2.3.3. Ultimate Tensile Strength

The ultimate tensile strength, Rm, may be found by taking the maximum load experienced by
the steel and dividing it by the initial cross sectional area of the sample. This may be seen as
the minimum stress that will result in the sample failing, as well as giving a good indication of

the material’s toughness.
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2.3.4. Elongation (A)

The elongation is a measure of the ductility of the material. It represents the change in length
of the material during the tensile test and is found by dividing the change in axial length after
fracture by the original length. Plastic deformation will be concentrated around the necked
region of the specimen. This means that the elongation value is dependent upon the gauge
over which the measurement was taken. Using a smaller gauge will result in larger strains in

the necked region. It is therefore important to quote the gauge used for measurement.

2.3.5. Strain Ratio (r)
The steels chosen for this investigation are used specifically in applications where their
formability is of key importance, particularly deep drawing and stretch forming. Deep drawing

is where material flows into a die under pressure, as shown in Figure 2.11.

4
///

Figure 2.11: Illustration of deep drawing

Steels chosen for this application need to flow easily in all directions and show resistance to

local thinning in the side walls during elongation. This was quantified by Lankford et al [5]

29



Chapter 2 — Theoretical Background

when the concept of the strain ratio (r value) was developed. This concept expresses the
plastic anisotropy of a material as the ratio of the true strain in the width to the true strain in

the thickness of a specimen in a tensile test.

€
= (2.1)
E‘t

The strain ratio is related to the crystallographic texture of the material, thus there will be
variation in the result depending upon the direction that test sample was cut in relation to the
rolling direction. In order to show the average properties of the sheet, several samples are cut
from it. They are taken parallel, transverse and at 45° to the rolling direction. Using the
equation below, the average plastic anisotropy, r can be found.

Mo+ 2f, +1,
4

r= (2.2)

Hot rolled strip has an average plastic anisotropy of about 1, showing that it is isotropic [5]. For
the material to be used in complex forming operations it needs to resist thinning. These
properties are present in a material with a well developed crystallographic texture such as that

found in annealed steel, which is shown by a higher r value.

2.3.6. Strain Hardening
Stretch forming requires that the material is held to prevent it flowing into the die. A punch is
used to deform the metal by means of elongation so that it forms the desired shape, this can

be seen in Figure 2.12.
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Figure 2.12: Illustration of stretch forming

Clearly steels formed in this way need to withstand large amounts of uniform elongation
before they start to thin, or necking or fractures occur. In order to gain an indication of the
behaviour of steel under these conditions, one may use the strain hardening exponent (n
value), sometimes called the work hardening coefficient. This represents the gradient of the
true stress versus true strain curve in a tensile test when plotted on a logarithmic scale [5].
This relationship conforms to a reasonably straight line allowing the following equation to be

produced:

o =ke" (2.3)

Where o is the true stress, € is the true strain and k and n are constants. It can be shown that n
is numerically equal to the uniform elongation [5].

Steels with good formability have higher n values, for example cold-rolled materials will have n
values in the range of 0.22 to 0.25. Hot rolled materials may have n values of about 0.1.
Pressings of these materials will result in excessive thinning and the possibility of fracture in
heavily strained areas. The work hardening of materials with high n values is sufficient enough
to transfer strain from critical areas to adjacent ones in order to avoid high concentrations of

strain [5].
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2.4. Property Relationships

In order to model the mechanical properties mentioned in the previous section, one must first
understand what factors affect them. These will include, for example, the microstructure of
the steel, processing conditions and the steel chemistry. This section describes these factors.
Possible methods of relating these factors to the mechanical properties they affect have been

highlighted.

2.4.1. Early Developments

Steel making, including deformation and heating, has been practised for many thousands of
years. Only recently have the structural changes associated with these processes begun to be
understood. This sudden change in pace is linked to the development of material
characterisation techniques, indeed this is still the case today [15].

This first recorded evidence for structural changes occurring during the annealing of cold
worked material was in 1829. Felix Savart, a French physicist, noted that the acoustic
anisotropy of cast ingots changed upon deformation and subsequent annealing but not upon
heating alone [15]. The inability of early metallurgists to observe grain structure gave rise to
the belief that plastic deformation rendered metals amorphous. Upon reheating, the grain
structure could sometimes be seen, leading to the idea that this was crystallization of the steel
from the amorphous state.

Sorby’s introduction of metallographic techniques allowed the observation of elongated
deformed grains in iron and the subsequent production of an equiaxed grain structure upon
heating. This he termed recrystallization. He also made the link that distorted grains were

unstable and that they returned to a stable state through recrystallization.
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2.4.2. Factors Affecting the Strength of Steel

There is a vast quantity of work that aims to quantify the relationships that exist between the
mechanical properties of steel and the processing conditions and physical appearance. This
section reviews those thought to be most relevant to continuous annealing. Although the
relationships themselves may not be relevant to this work, some of the factors chosen may

highlight areas that are important to this research.

Refining the grain size is one of the most important heat treatments of steels. The relationship
between grain size (d) and yield strength (o,) was first modelled by Hall and Petch, producing

the classic Hall-Petch relationship [24, 25]:

1

o, =0, +k,d? (2.4)

Where o, and k, are constants representing the frictional stress and slope respectively. The
frictional stress is seen to be the stress required to move free dislocations along slip planesin a
body centred cubic structure. It is sensitive to temperature and composition. The slope, or
resistance of grain boundaries to dislocation movement, is found not to be sensitive to
temperature, composition or strain rate [26].

From this equation it can be seen that finer grain sizes result in a higher yield stress, explaining
why there is a strong focus to reduce the size of grains within modern steel plants. In order to
quantify the grain size and rate of growth, an understanding of the kinetics of recrystallization
is needed.

A common approach to modelling recrystallization is through use of the Johnson-Mehl-Avrami-
Kolmogorov (JMAK or Avrami) model [27]. This approach is based on work by Kolmogorov [28],
Johnson and Mehl [29] and Avrami [30]. This model focuses on a general form of

recrystallization, as shown in Figure 2.13 (based on [31]).
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Impingment
of grains

Growth

Fraction recrystallized

Nucleation

Time
Figure 2.13: Illustration of recrystallization
In this case it is assumed that nuclei are formed at a rate of N and that grains grow into the
deformed material at a linear rate G. If the grains are assumed to be spherical, their volume
varies with the cube of their diameter. The fraction of recrystallized material (Xy) rises rapidly
until new grains impinge each other. As Xy approaches 1, the rate of growth will tend to zero.

This gives rise to the general equation:

X, =1-exp(-Bt") (2.5)

where:

3
B=fNG /4 (2.6)
In equation 2.6 f is the shape factor (for a sphere this is 411/3). The n in equation 2.5 is the
JMAK exponent. In the case above, where growth is considered in three directions, n has a
value of 4. This assumes that the nucleation and growth rates remain constant. The other
extreme considers the situation when the nucleation rate decreases so rapidly that all
nucleation events occur at the start of recrystallization, termed site saturation nucleation. In
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this case the exponent value will be 3. Further details of this derivation can be found in
Humphreys and Hatherly [15].

The JMAK model alone is not detailed enough to fully define the kinetics of grain growth.
Other factors must also be considered. Higgins [19] suggests that some of the main factors that
grain growth is dependent upon are:

* The annealing temperature used, with larger grains growing at increased temperature.

* The duration of the annealing process, with initial rapid growth being followed by
slower growth.

* The amount of previous cold work. Larger amounts of deformation will result in
several areas with high levels of stored energy. Following the nucleation process
described earlier, this will lead to many nuclei being formed and hence the final grain
size will be small.

* The use of alloying elements within the metal. Certain additives will limit grain growth,
nickel being one example. Insoluble particles may also act as a barrier to grain growth.

Evans et al [32] attempted to model continuous annealed aluminium killed steels, similar in
nature to the boron killed steels under investigation in the current project. In their study of the
recrystallization kinetics they found that increased amounts of free nitrogen prior to annealing
led to its retardation. This they linked to the solute nitrogen particles impeding dislocation
movement during the recovery process. The same retardation effect was also seen in batch
annealing steel investigated by Takahashi & Okamoto [33].

Though nitrogen has been seen to retard recrystallization, the authors report that the free
nitrogen content is not a factor affecting the grain size at the end of recrystallization. Instead
the carbon content of the steel was found to influence the recrystallized grain size. Evans et al
also observed the relationship between grain size and annealing soak temperature. Their

results can be seen in Figure 2.14.
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Figure 2.14: Grain size as a function of the annealing temperature [32]

The decrease in grain size at higher temperatures was related to the formation of austenite

which transformed back to ferrite upon cooling, thus refining the grain size.

2.4.3. Factors Affecting the Formability of Steel

The steels under investigation in this report are required to be formable. In order to obtain

good drawing properties the correct texture needs to be produced. This has been found to be

the {111} texture, also known as the y-fibre. This texture ensures that the slip systems are

orientated in such a way that strength in the thickness direction is greater than that in the

plane of the sheet [34]. Figure 2.15 shows this and other textures in a standard unit cell.

Higher r-values correspond to a high proportion of grains aligned with the (111) plane which

run parallel to the surface of the strip.
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Figure 2.15: Textures within a unit cell [18]

The development of the final texture is a continuous process with the outcome being
influenced by the development of the texture during the different processing phases, i.e. hot
rolling, cold rolling and annealing. As one would assume, the processing parameters required
to obtain the desired texture depend upon the type of steel being produced. It should also be
noted that the annealing method used has a significant influence on prior processing
conditions. An example of this may be the coiling temperature used. As described earlier in
this report, batch annealing requires coiling to occur at lower temperatures than equivalent
steels produced using continuous annealing so that aluminium is present in solid solution [35].
Held (cited in[32]) suggests an empirical relationship between the {111} texture component

and the average plastic isotropy. This is given by:
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F = 0.8 + 0.6Log(I{ 111}/1{ 100}) (2.7)

The quotient 1{111}/1{100} represents the ratio intensity of the two textures. This ratio changes
with grain size. Evans et al [32] considered the relationship between this and grain size. Their
final relationship related the ratio to the difference between final grain size, D, and the grain
size at the end of recrystallization, D,.. Their results fell into two categories: those with extra
low carbon contents and those with ultra low carbon contents. These could be described using

two separate equations.

Extra low carbon steels: 1{111}/1{100} =1.6 + 0.2(D — Dye() (2.8)

Ultra low carbon steels: 1{111}/1{100} = 6.3 + 2(D — Dye() (2.9)

The lower values that would be obtained from the extra low carbon equation relate to the
higher carbon content of this type of steel. The carbon is in solution and is likely to inhibit the
development of a strong {111} texture. The ratio 1{111}/1{100} was observed to increase during
recrystallization and then continue during grain growth. This results in a more favourable

texture being produced which is independent of grain size [32].

The texture of the steel can also be related to the amount of cold reduction. Work carried out
by Pero-Sanz et al [35] investigated what influence the amount of cold reduction had on the
drawability of steel. In the investigation low carbon steel and interstitial free steel were
studied. The steels under investigation underwent varying degrees of cold reduction, ranging
from 0 to 90%. The intensity of certain texture components were compared with the level of

reduction. These results are shown in Figures 2.16 and 2.17.
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Figure 2.16: Interstitial free steel rolled texture [35]
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Figure 2.17: Low carbon steel rolled texture [35]

The results show that increasing the amount of cold reduction leads to a better texture for
drawability. These results match those found by other researchers [32, 36]. These results can
be attributed to the stored energy within the steel’s microstructure. When a steel undergoes
cold deformation, the majority of the work expended is given out as heat, with only a small
amount (about 1%) remaining within the material. This stored energy comes about from the
point defects and dislocations formed by the deformation. Annealing allows these high energy
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areas to recover to a low energy state through the mechanisms of recrystallization and grain
growth [15].

The orientation changes due to deformation are not random. Deformation occurs on the most
favourable slip or twinning systems meaning the deformed metal acquires a preferred
orientation or texture. During subsequent annealed nucleation occurs preferentially in
association with specific features of the microstructure, such as regions of particular
orientation. Further growth following nucleation may also be influenced by the orientation of
adjacent regions. This results in a particular texture being developed in the recrystallized steel
[15].

This concludes the review of the thermo-mechanical principles that govern the properties of
continuous annealed steels. The remainder of this section goes on to look at modelling
principles and their use in related fields. Initially this covers the methods used to vet the data

in its received form.

2.5. Data Cleaning

Although many authors made reference to their attempts to ‘clean’ their data it was difficult to
find relevant work on the subject. Often the impact of unclean data on results would be
highlighted but rarely would details of the methods taken to remedy the problem be detailed.
It proved difficult to find papers on the subject that were based on industrial processes similar
to the ones under investigation in this project.

Following the removal of obvious faults; such as missing values, values of significantly greater
magnitude than others and incorrect entries (e.g. text rather than numbers); it can then
difficult to assess the validity of the remaining data. Work by Tenner [37] on the modelling of
heat treated steels included a substantial section on data cleaning, as well a robust method for
identifying data that needed investigation. This work proposed a structured procedure for
detecting outlying data points and was also relevant due to its use of neural networks within

the steel industry.
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Finding other specific references to data cleaning was quite difficult. For example Jones[38]
makes little reference to any data cleaning methods used in his work. Other work made
reference to data cleaning taking place but gave no details of the methodology used. This

same difficulty was found by Tenner.

2.5.1. Are Outlying Data Points All Faulty?

A first approach that one may take when dealing with problems similar to this is to assume
that all outlying data points are faulty and therefore remove them. This was observed by both
this author and by Tenner. Outlying data points are defined as those that are ‘statistically
different to the rest’ [37] or those that carry ‘a high statistical leverage’ [39]. It is also
important to define what is meant by a ‘faulty’ data point. In the work by Tenner this term
referred to a measurement that had a deviation from the expected value which was greater
than the measurement tolerance established for that point. As the data cleaning techniques
used for this work followed on from Tenner’s suggestions it was decided to utilise the same
definition.

By investigating why these outliers occur one can then state whether they are indeed faulty,
and so can be discarded, or if they are in fact valid and by removing them the integrity of the

model is reduced.

2.5.2. Reasons for Outlying Data Points

Tenner points out several reasons for outlying data points to exist with relation to the heat
treatment processes under investigation in his work. As pointed out in his work, many of these
reasons hold true for the annealing process and for industrial processes in general. The main

reasons are described below.

* Data handling errors: These often relate to the way that data is stored, sorted or retrieved.
It is often the case that information for processes can be stored in more than one

database, so errors may occur when all the data is compiled. There is also the possibility

41



Chapter 2 — Theoretical Background

that the same data may be recorded several times. Though the data would not necessarily
be faulty it may induce problems in later models as it does not fully reflect the true
underlying processes. Another problem that may occur relates to the sorting of data by an
index in order to merge variables. If this index becomes corrupt in some way then whole
sets of data may become faulty.

Measurement faults: The data used for this project is the result of several measurements
taken throughout the process. Though many of the methods used are robust it is still
possible that errors will occur. For example, measuring the composition of the steel
requires specialist equipment that is regularly calibrated. Slight variations, or malfunctions
in this equipment, will result in errors. Several temperature measurements are included
within the modelling data. These are based on average readings taken within the furnaces
and at the other processing stages. Large peaks and dips in the temperature for short
amounts of time will not be recorded, but are likely to have a profound effect upon the
steels properties.

Process faults: The most important feature in this category is factors which vary from
treatment to treatment but are not logged in the data set. The temperature example
above may be considered an example of this. Even if these are monitored during the
processing, and deemed to be acceptable at the time, a combination of these variations
not being logged may generate faulty data points that do not relate to the recorded
processing conditions.

Typographical Errors: Human generated errors may be introduced if results are recorded
manually or when data is transferred to a database via keyboard. In both cases faulty data
would be generated. The magnitude of these errors is hard to quantify. Simple typing
mistakes, i.e. recording temperature as 785 rather than 758, would not be so significant. In
the cases of values less than one, or around this magnitude, missing out the decimal place

would result in an error of several orders of magnitude.
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* Incorrect treatment: Specific heat treatment cycles are applied to the different grades of
steel while they are being annealed. This control allows for precipitates to form at the right
times and stops phase changes from occurring. The treatment cycle needs to be matched
to specific steel chemistries in order to obtain the desired properties. In some
circumstances the chemistry and heat treatment may not match up, leading to outlying
data points. These will still be of use when modelling provided the actual treatment and
chemistry are logged. Another cause of faults in this category may be related to incorrect
use of the plant. Temperatures may be lower than required in order to cut costs and
speeds set might be slightly higher to meet quotas. Both these examples would again lead

to faulty data points, but they would again be valid if the actual treatments are recorded.

2.5.3. Basic Outlier Detection Techniques

As a first approach to data cleaning a basic detection method should be employed. This
involves looking at the range in which the input variables should lie and investigate points that
fall outside of these limits. For example, the cold rolled reduction value must be positive, any
negative values found can be removed. Another likely problem would be coils having
excessively large values for some inputs; these too can be removed.

Similar outlier detection uses the available data to check its own integrity. The idea here is that
in an industrial process like continuous annealing, the same type of steel may have been
processed before under similar conditions. By finding coils within the data set with similar

input conditions the resulting properties of these inputs can be compared.

2.5.4. Model Based Outlier Detection

There are also opportunities to look for faulty data points during model training and testing.
These techniques have not yet been used for this work but they will be once sufficient
progress has been made with modelling. Tenner points out that outlying data points generally
lead to higher errors being recorded. Larger modelling errors may be due to two reasons.

First, the modelling technique used is not capable of fitting the data. A common example of
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this would be using a technique that has fewer dimensions than the actual process. A residual
will then be present, not necessarily because the data is wrong but because the modelling
technique is not flexible enough. Even in a flexible modelling approach there will always be a
level of residual error present due to noise in the data. This requires the model training
method to take this into account so over fitting is prevented. The second reason is that data
may not fit even if the model provides a good representation of the process. This would be due
to either data being correct but statistically different from previous examples or that the data
is faulty in some way.

Once a model has been completed the residual error can be used as a bias for data cleaning,
providing that the model covers a diverse range of examples. If a faulty data point lies within a
sparse area of the data set, there is a danger that the modelling technique will try to fit to this
point. In order to avoid this, models need to be constructed several times with different
groups of test and training data.

Model outputs found to have high residual errors can be investigated. Those that are found
not to be faulty can be left within the data set. Points that are found to be faulty can be
corrected if possible or removed. By recording which data points have been checked it is then
possible to find areas of the data set which could be improved by further data acquisition. If a
checked data point constantly produced a high residual error this would be an indication of the

model not being able to fit this data point.

2.6. Modelling Philosophies

Mathematical models of thermo-mechanical processes and microstructure evolution have
been in developed since the early nineteen eighties, starting with the work by Sellars and co-
workers at Sheffield University (cited in Hodgson [40]). This type of work was generally
overlooked until the nineties, when the use of such modelling techniques started to grow. The
advent of modern computers and the increase in their processing power lead to more of this

work using more complex non-linear methods to quantify these relationships [40]. The
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increase in such work has meant that the acceptance of such models has increased. This is turn
has accelerated their use within the industry [41]. While the confidence in the techniques used
has risen it is still important that people can see that a model is representative of the actual
process. White box techniques, such as simple linear regression relationships, can easily be
understood as they contain representations of the physical mechanisms involved. This allows
the origins of their working to be traced back to the initial principles. Black box methods, like
neural networks, are not so clear and so need to be made more transparent.

Many of the techniques used to model steel grades rely on fitting constants in equations to
suit the specific type. The resulting models are therefore only applicable to that grade, or ones
very similar. For some properties, fitting these coefficients can be time consuming; so much so
that doing so may be beyond the time period of this project. However, there are clear patterns
that can be observed in the behaviour of some of these properties, though they might not be
quantifiable. For example, the toughness of steel may be increased by creating a more chaotic
microstructure so that propagating cracks are deflected more often. Though this is a clear
relationship, the extent that the toughness increases cannot be predicted [42].

What is needed is a method that can be used to recognise these patterns or work with
qualitative information. Ideally, this solution would utilise data provided by the annealing
process, as well as the steel chemistry and details of previous processing. These would then be
used as the inputs to a model that would calculate the desired outputs. One difficulty that may
arise using this solution is how adaptable the model would be, should it be used on different
hardware or if the current processing route was upgraded.

Another important aspect that needs to be considered is the complexity of the situation. Some
methods may include certain assumptions or use approximations to obtain the final results.
Using such a method would reduce the integrity of the model and possibly simplify it to such
an extent that it became unacceptable. Though the final method chosen may reduce the pure
mathematical accuracy of the model it should still produce results that are comparable with

those of the actual process.
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Computational models may be classified as black, white or grey boxes. The colour refers to the
transparency of the model’s working. A black box model may be considered closed, that is,
that no information about the structure of the model or the relevance of each parameter can
be perceived from it. A white box model will be the opposite of this, allowing for information
about the process to be obtained from it. As is often the case with many practical problems, a
grey box model falls somewhere in between these two extremes.
A solution put forward by Thompson & Kramer [43] to try and make grey box models more
translucent was adopted by Jones et al [44] when considering property prediction from the
Port Talbot hot strip mill. Here a black box model using artificial neural networks was
combined with physical equations that would be considered white box models. Utilising such a
method had the following benefits:

* Acceptance of the model is increased, with the white box section allowing observers to

understand how the final solution is produced.
* The black box section of the model allowed for fine tuning of the physical equations.

* The use of the physical equations meant that prior work did not become obsolete

2.7. Computational Approaches within the Steel Industry

A review was carried out to assess the different computational approaches used within the
steel industry. A paper by Bhadeshia [42] detailed the use of neural networks in material
sciences. This detailed the basic principles of these approaches and complications that may
arise from their use. Overfitting was identified as a potential problem associated with neural
networks, where the model fits the training data but not further data. It suggested that to
overcome this data should be divided into training and test data, with the training data used to
make the model and the test data used to validate this model. An overview of where neural
networks are used within the discipline to predict properties is included. This includes: welding
and the measurement of weld toughness, strength, cooling rates and cracking issues;

supperalloys and the effect on overall strength; fatigue problems including the onset of fatigue
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and creep; and finally transformation such as the martensite start temperature, continuous
cooling curves and austenite formation. A brief section covers the modelling of steel
processing, with the main focus being on hot rolling. Here two examples of property prediction
are given, one using chemical composition and rolling parameters as inputs and the other
using microstructural parameters. Two other models are included; one focusing on the
prediction of finishing temperatures and the other concerns the control of strip temperature
on the run out table. Further examples of the use of neural networks by other researches
were also found [45-48]; some of these are highlighted below.

Jones [38] investigated the final properties of hot rolled coil produced at Port Talbot using
models based on artificial neural networks. This work detailed the evolution the model
through three stages. This started with a black box model based on a feedforward multi-layer
perceptron network. Further the developments were made, moving through to a grey box
model, by applying metallurgical knowledge to the choice of model inputs. The final approach
combined a white box physical equation with a black box neural network approximating the
error of this equation. The final model was found to provide the best predictive accuracy. The
modelling approach was described by the author as ‘a predictive model without non-value
adding processes’, meaning that the model was produced using only the mill operating
conditions with no further metallurgical testing being required.

Capdevila et al [49] applied a neural network approach to the prediction of the final
mechanical properties of low carbon continuous annealed steel. This work focused on the yield
strength, ultimate strength and elongation values. The model utilised twenty inputs covering
the entirety of the strips production. The breakdown of these inputs was as follows: hot
rolling, five inputs (finishing temperature, reduction ferrite region and austenite region),
cooling rate and coiling temperature); chemistry, ten inputs (carbon, manganese, silicon,
phosphorus, sulphur, aluminium, nitrogen, titanium, vanadium and niobium); annealing
conditions, five inputs (cold reduction, heating rate, annealing temperature, isothermal hold

time and cooling rate). The model was trained using the properties and process conditions
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found from a literature review rather than the researchers own laboratory testing or
measurements from an actual mill. The models produced by this work were then used to
identify which factors had the largest effect on the final properties. The amount of carbon in
the strip was found to significantly affect all three properties under investigation. The amount
of manganese and phosphorus was found to have an influence on the ultimate tensile strength
and elongation but not the yield stress. The opposite was found to be true with micro alloying
elements such as titanium and niobium. A predicted strengthening of the steel was observed
for higher cooling rates after annealing. The model was also successful at analysing the
combined effect of factors, such as the coiling temperature and carbon content, allowing
improvements in the process to be identified.
Whilst neural network type approaches seemed to make up the majority of the computational
methods used within the steel industry examples of other methods were found. A paper by
Thomas et al [50] detailed a method of predicting the hardenability of heat treated steels using
a data mining approach. This technique stores previous process history, along with the
associated mechanical properties, in a database. When a new set of processing conditions is
queried, the database is searched for previous cases that are as close as possible to the query
case. A normal approach may take ten values, five which are slightly higher than the query
case and five that are lower. The final properties for the query case are then estimated using
the values associated with the matching cases from the database. Their approach was later
developed into a computer program called SteCal. They listed the benefits as being:

* The approach can be used for a wide range of compositions. For the present work this

may allow for several grades to be combined into one model.

* Only a small amount of data is required in the range of interest.

* The method is ready for use once the minimum amount of data has been obtained.

* The method can be easily updated and maintained.

* Confidence intervals can be calculated for each prediction.
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The above section highlights that there are several possible approaches that could be taken to
model the mechanical properties of continuous annealed steels based on the processing
conditions. Of these the use of artificial neural networks appears to be the most prevalent. For
the purpose of this work it was decided that the focus should be on the use of a generalised
regression network, as this approach appeared promising and had not been attempted
previously. The use of artificial neural networks or similar techniques to study this problem

would, however, produce an interesting comparison.

2.8. Generalised Regression Networks

Generalised regression networks are classified as a form of artificial neural network and
operate in a similar manner to the data mining method outlined above. The model is set up
using the known input data along with the associated known outputs. These are stored within
the network as evidence. When a new case is presented to the network it calculates the
output value based on weighted averages of the values stored in the network. These weights
are calculated based on the distance the newly entered values are from those already held

within the network. Further details of the workings of the network are described below.

2.8.1. Conception

The concept of generalised regression networks was first envisaged by Specht in 1990 [51]. His
initial work focused on Probabilistic Neural Networks and relied on weighted-neighbour
techniques. These networks perform classification tasks. A later paper [52] written in 1991
took this initial approach further and outlined the generalised regression network.

These networks produced models based almost directly from training data, giving them that
advantage over more traditional networks of having no true learning phase during their
development, other than changing the way that data is stored within the network. Specht’s
approach was to implement a statistical approach into the form of a neural network. All

networks consist of four layers. The main regression layer is often very large, but can be

49



Chapter 2 — Theoretical Background

reduced in size, through a training regime, without sacrificing the network’s performance.

However, the simplest approach is to utilise the full set of training data to make up this layer.

2.8.2. Architecture of networks

An example of a typical generalised regression network can be seen in Figure 2.18.
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Figure 2.18: A typical generalised regression network with six predictors and twenty training

cases

50



Chapter 2 — Theoretical Background

The first layer, called the input layer, has as many neurons as there are inputs (predictors) to
the model. In order to gain optimum results from the network the range of the inputs should
be standardized before being passed to the next layer.

The second, or hidden, layer has as many neurons as there are cases in the training data. Each
neuron stores the values of the predictors for that case as well as the target values. Storing
each training case can lead to the network becoming large and sometimes slow to compute.
Values from the input layer pass to each of the neurons in the hidden layer which then go on
to produce all outputs, though many of these will be zero. More details on the workings of the
hidden layer are given later.

The next layer is called the summation layer and consists of two neurons. The one neuron is
referred to as the denominator summation unit and the other the numerator summation unit.
The denominator unit sums the weight values coming from the hidden layer, while the
numerator unit finds the sum of these weights multiplied by the associated target values. The

final decision layer divides the two values from the previous layer to give the predicted output.

2.8.3. Workings of the Hidden Layer

The first task of the hidden layer is to compute the distance between the newly entered data
and values already stored in each of the network’s neurons. A radial basis function is then
applied to these distances to calculate the weight for each neuron. The radial basis function
takes its name from the radial distance argument used. A larger distance value will mean that
the weighted output is smaller, showing the current neuron has less influence than others.

Figure 2.19 highlights this concept.
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Figure 2.19: Illustration of a radial basis function

There are several types of radial basis functions that may be used, though typically a Gaussian
function is used. If there is more than one predictor value, the radial basis function will have
the same number of dimensions as there are variables, for example a two dimensional radial

basis function is shown below in Figure 2.20.

(0.0)

Figure 2.20: Multi-dimensional radial basis function
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The peak value of the radial basis function is always at the centre, where the distance value is
zero. This would result in the weighted output having matched the recorded value of the
training data at that neuron. In order to tune the network there needs to be a way to alter the
range of distances that the radial basis function at each neuron covers. This is governed by o,
which determines the spread of the function. How quickly the function declines as the distance
increases is related to this, with larger values resulting in neurons at a greater distance having

a greater influence. This is shown in Figure 2.21.

Small Spread, very selective

Figure 2.21: Radial basis functions with different spread (o;) values

The main aim when training a generalised regression network is to select an optimal spread
value so that the spread of the radial basis function is controlled and only relevant neurons

affect the model’s output.

2.8.4. The Use of Generalised Regression Networks in Other Research

Generalised regression networks have been used in a wide variety of modelling situations,
ranging from pharmaceutical work [53] and botany [54] to financial forecasting [55]. Much of
the work found makes reference to more traditional neural networks and indicate that
generalised regression networks are being used to obtain improved results. One benefit often

cited is the lack of a true training stage.
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In relation to material and metallurgical property prediction, two papers of interest were
found. The first [56] of these concerned the ultimate tensile strength values of steel wires. The
work relied on a network with only four inputs, including carbon content and the wire’s
dimensions. The results indicated that the model could accurately predict the ultimate tensile
strength of the wires. The second [46] looked at the fracture toughness of micro-alloyed steels
based on its processing conditions. This work paid particular attention to processes and
additions used to control slag formation during secondary steel making that may have an
impact on the steel’s properties. Again a good correlation between predicted and actual

results was reported.

2.9. Genetic Algorithms

Genetic algorithms offer an effective method of selecting the optimal input sets from the large
list of possible combinations. They were first used by Holland in 1975 (cited in [57]). Though
they are often thought of as an optimisation technique this is not strictly true. Though they
may find a good solution to a problem it is very rarely the optimal one. However, in most
engineering problems getting near to the optimal solution is normally sufficient [57].

Genetic algorithms mirror the process of natural selection by assessing the suitability of
members of a population against a fitness function. A population member, or chromosome, is
represented as a string of ones or zeroes. In this manner the algorithm can look at either
integer values or a series of variables which are either on or off. Each member of the
population represents a possible solution to the problem. Those members that meet the
fitness function are kept and used to generate new populations, those that fail are rejected. A

genetic algorithm may be represented using the schematic shown in Figure 2.22.
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Figure 2.22 Schematic representation of a genetic algorithm [57]

The genetic operators, shown in Figure 2.22, are the essential parts of the algorithm. Once all
the members of a population have been assessed against the fitness function they are then
ranked in accordance with it. A certain proportion of these are then carried over, the selection
phase, to undergo crossover. There are several methods that can be used to select the
members which will be carried forward. The simplest of these is to take those members which
best match the fitness function. Other methods include a tournament approach or roulette
wheel system. In a tournament approach members are randomly paired up against each other.
Those which best match the fitness function win and are carried over to the next round. With a
roulette wheel system each member is designated a proportion of the wheel based on how
well they match the fitness function. Numbers are then randomly rolled to select members
from the wheel.

During the crossover phase the selected members of the population are merged with each
other to form a new population. The selected members are paired together and then mated by

means of choosing a random length at which to split them. This is shown in Figure 2.23.
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A [10001:00100001] B [01111:00011001]
splitbetween
5% and 6 bits
Al [10001] A? [oo100001] B! [01111] B? [00011001]

apposing halves
are joined
together
A'+B2=C [1000100011001] B!+A2=D [0111100100001]

Figure 2.23: Mating process of a genetic algorithm

The mutation phase is present to stop the algorithm becoming trapped in a local minimum. In
nature, mutations allow species to develop characteristics that are not present in the original
population. Within a genetic algorithm, only a certain amount of information is available in a
population. Crossover will try and find desirable solutions using this information alone.
Mutations are beneficial as they introduce new data. This is particularly helpful if the original
population is narrowly focused on one point in the solution set. Mutations can manifest
themselves in a genetic algorithm by either inverting a random bit in a member, changing a

zero to a one for example, or by modifying a series of bits.

2.10. Conclusions

Following a review of the available literature, a summary of the main conclusions are as

follows:

* Strip steel is annealed to relieve stresses that have built up during previous processing,
increasing its formability. Annealing requires the strip to be heated in a controlled manner
to the required temperature, allowing this strip to soak at this temperature and finally

cooling the strip.
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Continuous annealing allows this process to be carried out in about ten minutes, rather
than the several days required to batch anneal coils. This increase in speed is due to strip
being heated rapidly and higher temperatures than batch annealing being used.
Continuous annealing is one of the final processes that strip steel undergoes before it is
released to the customer. The annealing conditions and final properties are determined
by the processing history, such as hot rolling conditions, casting chemistry and degree of
cold reduction.

Modelling the properties of continuous annealed steels requires an understanding of a
variety of metallurgical principles. When considering the strength of these steels the grain
size as well as the affect of chemical additions needs to be known. The formability of
steels relates to the grain size and crystallographic texture of the steel. These
complications in assessing the properties are currently overcome by means of a simple
tensile test from which the appropriate mechanical properties can be determined.

Other research has shown that the grain size can be related related to many of the
processing conditions that the strip undergoes. Such factors include the annealing
temperatures, soak times, amount of cold reduction and the influence of alloying
additions

Reliably predicting the mechanical properties of steel is an area that has been the focus of
research for several years. Much of the early work in this area was overlooked until the
advent of modern computing and the ability to implement more complex non-linear
methods.

Modelling techniques fall between two categorise; white box, where everything is known
about the structure of the model (such as multiple-linear regression approach), and black
box, where nothing is known about how the inputs create the outputs (such as a neural

network). A grey-box approach describes anything in between these. Making a model
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more transparent, moving it from black box to white box, is likely to increase confidence
in the model and assist with its uptake.

Artificial intelligence approaches have previously been used to model the properties of
steel. The majority of these approaches rely on the use of artificial neural networks,
though other approaches have also been considered. Generalised regression networks are
a branch of artificial neural networks that has seen limited use within the steel industry;
however other research areas suggest there are benefits to such an approach.

A research opportunity exists to develop a method of predicting the mechanical
properties of continuous annealed steels based on their processing conditions using an
artificial intelligence type approach. Whilst the relationships governing these properties
are based on metallurgical principles it may not be necessary to thoroughly understand
them. Basing the model on actual process conditions means that the extra measurements

required to quantify such relationships, such as grain size, are not required.

58



Chapter 3 — Multiple Linear Regression Analysis of the Continuous Annealing Process

CHAPTER 3 — MULTIPLE LINEAR REGRESSION ANALYSIS

OF THE CONTINUOUS ANNEALING

PROCESS

3.1. Introduction

Regression analysis is a useful tool for the initial analysis of data. Unlike more advanced
techniques, such as neural networks, training is not as time or data intensive. For this reason a
model will be produced using regression analysis as comparative to the more advanced
methods chosen. Regression analysis is the study of correlation through plotting correlated
data [58]. In its simplest form a line of best fit can be used to describe a relationship. Typical
this would be a straight line in the form y = mx + c. Correlation refers to when two quantities
relate to each other, such that variation in one affects the variation in the other. Positive
correlation describes when the variation is in the same direction; for example a perfect gas has
a direct relationship between pressure and temperature, increasing the temperature causes
the pressure to rise. The inverse of this is termed negative correlation. In this case variables
move in the opposite direction, for example the unit price of an item will decrease if the
volume ordered increases. Regression can take either a linear or non-linear form; the method
of calculating the ‘m” and ‘¢’ values is dependent on the form of regression used and is given
by specific formulae. These values are calculated by minimising the error between the line of

best fit and the data points.

3.2. Linear Multiple Regression Analysis

The details of regression analysis given above apply to only single factors, i.e. one variable has
an effect on one output. In the case of large scale industrial processes, such as continuous

annealing, there will be more than one variable affecting each of the final properties. In order
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to model the annealing process a multiple regression approach must be employed. Linear

multiple regression analysis takes the following form:

Yy = bixqy + byxy, + ... + byx, + € (3.1)

where y is the dependent variable (e.g. Re, R, A etc...)
x; is the independent variable (model inputs, e.g. percentage cold reduction,
temperatures, etc...)
b; is the regression coefficient (or slope) of the independent variable x;

c is the intercept or constant

Each variable’s regression coefficient (b;) can be calculated by manipulation of the matrix form
of the inputs. The following solution can be used:

b = (X'X) X'y (3.2)

where X is the matrix of data for all the independent variables
X’ is the transpose matrix of the independent variables X
Y is the vector of data for all dependent variables (Y is just one of the properties at any

time)

This calculation can be carried out using the Matlab programming environment. A simple
model can be created, with the majority of a data set used as the model training data and a
smaller set used to validate the model. Because no actual training is needed, i.e. the model is

created in a one hit approach with no optimisation required, a third data set is not required.

3.3 Non-linear Multiple Regression Analysis

In a linear regression system the increase in an independent variable is associated with a
constant increase in the dependent variable. This represents an ideal scenario as these
relationships are very easy to explain and quantify. In real world application more complex

relationships are likely to exist. In these cases the change in the independent variable is no
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longer associated with a constant increase in the dependent variable; this is termed non-linear
regression. A simple example of this is given by Miles & Shelvin [58], the effect of studying
textbooks on a student’s exam result. Whilst the first few textbooks will have a significant
effect on the mark obtained the later books will produce a diminishing return. This relationship

is shown in Figure 3.1.

A

Rewards

Effort

Figure 3.1: Curvilinear relationship between effort and rewards

When using non-linear multiple regression analysis several functions can be used to
manipulate the input variables to achieve a suitable fit between the predicted output and the
target value. These may include quadratic, cubic, log and inverse relationships. As an example

a quadratic non-linear multiple regression equation is shown below.

y = blxl + bzx% + b3X2 + b4x22 + ..+c (33)
The regression coefficient (b;) for each variable can be calculated in a similar way to those in a

multiple linear regression relationship through manipulation of the equation in its matrix form.
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3.4 Initial Data for Regression Modelling

The continuous annealing process line at Port Talbot is capable of producing several types of
steel. As previously stated, the initial aim of this project is to investigate only a few of these
grades. It is envisaged that specific models for each of the grades will be produced rather than
one generalised model of them all. The result of this should be an increase in the accuracy of
the results at the expense of simplicity.

For the initial analysis only process data for the interstitial free steel grades, DCO5 and DCO06,
produced at Port Talbot was used. A data set containing coils produced from the start of 2008
until week 12 of 2009 was used. The data set contained a total of 3706 entries. The data set
was subjected to a cleaning regime similar to that detailed by Tenner [37]. Following cleaning
the data set contained 3166 entries. Of these, 710 were split coils. A split coil refers to a coil
which has been divided up after processing into two smaller coils to meet the needs of a
customer. In these cases there is effectively a duplicate entry in the data set, as the processing
conditions for each of these split coils are the same. For this reason it was decided to remove
them from the data set as it was felt they may introduce bias and did not contain any
additional information. With these entries removed a data set containing 2456 ‘clean’ entries
was produced. The data set contains coils regardless as to whether or not they met the
required specification. Code was produced that allowed this to be taken into account. This
allowed the following selections to be made: all coils, just those that met specification or those
that failed to meet specification.

Initially each coil had 160 data entries. This was found to break down as 114 inputs and 46
outputs. The inputs included details that would be important to the model, i.e. chemistry,
gauge, weight, annealing conditions etc, as well as data that would not be important, i.e.
processing dates, customers, coil identification numbers etc. Following the removal of
unnecessary data the number of inputs was reduced to 39, with the continuous annealing (CA)

identification number being retained should later identification be needed.

62



Chapter 3 — Multiple Linear Regression Analysis of the Continuous Annealing Process

Based on details in the literature it was decided that some additional variables needed to be
calculated. The first of these was the percentage cold reduction. As there was no recorded
value for this it was found using the hot rolled gauge and the final annealed gauge. This then
replaced the hot rolled gauge in the list of possible inputs. Secondly, the titanium excess value

was also calculated. This was found using the following equation:

Ti* =Ti—4C — 3.42N — 1.58 (3.4)

Of the 46 outputs columns only five of them pertained to the properties that were under
investigation in this project, the proof stress, ultimate tensile strength, elongation, strain ratio
and strain hardening exponent. Table 3.1 shows the maximum, minimum, mean, standard

deviation and units of the input values and output properties from the cleaned data set.

3.5 Data Normalisation and Comparison

If the inputs to a regression model are of a similar scale then their effect on the output
properties can easily be compared to each other. In order to do this the data needs to be
normalised. Normalising can be carried out in a number of different ways, however for the
purpose of this work it meant standardising the inputs so that they had a mean of zero and
standard deviation of one. This was done applying the following equation to each set of input

conditions:

X: =

x;—X
r : (3.5)

ox
where X is one complete set of variables
X; is the current variable in the data set
x{* is the normalised value of the current variable
X is the mean of the set of variables X

oy is the standard deviation of the set of variable X
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Table 3.1: DC05/06 cleaned data set input conditions and output properties

Quantity Max Min Mean Std Unit

CA Gauge 1.63 0.50 0.93 0.33 (mm)
CA Width 1653 851 1192 212 (mm)
CA Weight 26.78 6.09 15.46 4.51 (tonnes)
Radiant Tube Furnace (RTF) (average) 806.44 | 668.45 | 739.74 21.62 | (°C)
Soak (average) 785.71 | 667.43 | 742.17 15.59 | (°C)
Controlled Gas Jet Cooling (CGIJC) (average) | 681.10 | 606.74 | 660.09 7.11 (°C)
High Gas Jet Cooling (HGJC) (average) 465.21 | 284.21 | 382.86 45.79 | (°C)
Reheat Overage (ROA) (average) 476.11 | 307.52 | 402.86 30.85 | (°C)
Overage (average) 354.84 | 200.00 | 249.87 41.28 | (°C)

2" Cooling (average) 249.28 | 175.26 | 210.38 8.39 (°C)
HGJC Rate 101.0 16.1 54.7 11.2 (°c/s)
Soak Time 254.0 40.0 63.7 20.9 (s)
Furnace Tension 10.20 2.70 4.76 2.05 (kN)
Temper Mill Tension In (TMTI) 90.90 20.60 41.67 12.53 | (kN)
Temper Mill Tension Exit (TMTE) 90.20 13.90 41.42 12.44 | (kN)
Temper Mill Load (TML) 989.00 4.70 310.64 | 207.41 | (tonnes)
Temper Mill Speed (TMS) 440.20 96.10 299.80 74.73 | (m/min)
Temper Mill Extension (TME) 1.372 0.068 0.728 0.182 | (%)
Cold Reduction 0.961 0.111 0.728 0.101 (%)

Hot Rolled Drop Temperature 1273 1106 1208 23 (°c)

Hot Rolled Coil Temperature 760 457 703 39 (°C)

Hot Rolled Finishing Temperature 938 825 905 16 (°c)

Hot Rolled Stand 5 Temperature (HRS5) 1148 959 1089 22 (°C)
Carbon (C) 0.1750 | 0.0012 | 0.0042 | 0.0130 | (%wt)
Silicon (Si) 0.2990 | 0.0010 | 0.0045 | 0.0126 | (%wt)
Sulphur (S) 0.0290 | 0.0035 | 0.0113 | 0.0022 | (%wt)
Phosphorus (P) 0.0630 | 0.0040 | 0.0101 | 0.0034 | (%wt)
Manganese (Mn) 1.4810 | 0.0660 | 0.1351 | 0.1083 | (%wt)
Nickel (Ni) 0.0410 | 0.0100 | 0.0158 | 0.0032 | (%wt)
Copper (Cu) 0.0560 | 0.0090 | 0.0223 | 0.0069 | (%wt)
Tin (Sn) 0.0200 | 0.0020 | 0.0080 | 0.0032 | (%wt)
Vanadium (V) 0.0050 | 0.0010 | 0.0025 | 0.0008 | (%wt)
Nitrogen (N) 0.0128 | 0.0014 | 0.0031 | 0.0006 | (%wt)
Aluminium (Al) (total) 0.2420 | 0.0210 | 0.0504 | 0.0087 | (%wt)
Aluminium (Al) (soluble) 0.2250 | 0.0200 | 0.0468 | 0.0080 | (%wt)
Niobium (Nb) 0.0400 | 0.0010 | 0.0012 | 0.0026 | (%wt)
Boron (B) 0.0031 | 0.0001 | 0.0001 | 0.0002 | (%wt)
Titanium (Ti) 0.0770 | 0.0010 | 0.0539 | 0.0111 | (%wt)
Chromium (Cr) 0.0480 | 0.0110 | 0.0192 | 0.0046 | (%wt)
Titanium Excess (Ti*) 0.0387 | -0.7469 | 0.0095 0.0607

Ultimate Tensile Strength (Rm) 389.2 281.2 313.2 12.9 (N/mm?)
Proof Stress (Re) 300.2 134.4 180.1 26.9 (N/mm?)
Elongation (A) 51.73 3238 | 42.44 226 | (%)
Strain Ratio (r) 3.010 1.196 2.120 0.188

Strain Hardening Exponent (n) 0.274 0.186 0.224 0.010
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A simple routine was written to carry out this process in Matlab. The means and standard
deviation were recorded so that any results could be easily converted back to their standard
form when required. Normalised values for the output properties were not calculated.

With all the possible inputs to the model scaled so that they were comparable a basic
regression model of the annealing process could be produced. The importance of each of the
inputs to this model could then be assessed by comparing the size of the coefficients of the
regression model. Larger coefficients would indicate inputs that had the greatest effect on the
property under investigation. One possible problem with such a method is that this depends
on the range of data within the data set. If there is a wide range of values for one variable it
will be scaled smaller and the regression coefficient will be larger. Whilst producing a large
regression model is one way of carrying out this assessment it may not be the most suitable
method. For one it is likely to produce an overly large model, with many of the inputs likely to
be superfluous. An alternative form of input analysis would be to calculate the correlation
coefficients between the inputs and the output properties.

The correlation coefficient, or Pearson product-moment correlation coefficient, is found by
dividing the covariance of two data sets by the product of the two data sets’ standard
deviations. The correlation between the two data sets X (possible input) and Y (mechanical
property) is denoted by the term ryy [58]. The correlation coefficient for two data sets may be

found using the following equation:

T
XY:Cov(X,Y)
O0x0y

r S (X)) (29

XY= > >
S22 (5, (- 7)

where 1yy is the correlation coefficient of the sets of variables X and Y

X and is a complete set of variables
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X; is the current variables in the data sets
X is the mean of the set of variables X

oy is the standard deviation of the set of variable X

The Matlab programming environment used during this work already had a function that ran
this calculation. This was run using the command corrcoef. Using this function the correlation
coefficients between the process conditions and the mechanical properties of the interstitial

free steels detailed above were found. These results are shown in Figures 3.2 to 3.6.
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Figure 3.2: Correlations between ultimate tensile strength and process conditions of DC05/06

steel

67



Chapter 3 — Multiple Linear Regression Analysis of the Continuous Annealing Process

Ti Excess
Cr

Ti

B

Nb

Al (Sol)
Al (Total)
N

\Y

Sn

Cu

Ni

Mn

Si

C

Rougher Temp
Finish Temp
Coil Temp

HR Drop

Cold Reduction
Temper Ext
Temper Speed
Temper Load
Temper Out
Temper In
Furnace Tension
Soak Time
HGJC Rate

2C

OA

ROA

HGJC

CGJC

Soak

RTF

Weight

Width

Gauge

-0.15

T T T T T T 1

-0.1 -0.05 0 0.05 0.1 0.15 0.2

Correlation Coefficient

Figure 3.3: Correlations between proof stress and process conditions of DC05/06 steel
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Figure 3.4: Correlations between elongation and process conditions of DC05/06 steel
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Figure 3.5: Correlations between r-value and process conditions of DC05/06 steel
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Figure 3.6: Correlations between n-value and process conditions of DC05/06 steel
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From the correlation coefficient plots shown it is clear to see that there is a discrepancy
between the relationships between the final properties and processing conditions (i.e.
temperatures, loads applied, amount of reduction, etc...) and the steel chemistry. The results
show that there are several weak linear relationships involving the process conditions but very
few significant relationships attributed to the chemistry. This indicates that relationships
involving the alloying additions added to the steel are complex and require more powerful
methods to illustrate them. An alternative view may be that the steel chemistry is tightly
controlled and so there is little chance of variation.

The physical dimensions, in particular the gauge, of the steel were found to have some of the
strongest relationships with the properties. It seems strange that the gauge itself would have
such a profound effect on the final properties of the steel; further interpretation reveals this
may not be the case. Firstly one may consider the way that a strip heats up. The amount of
heat that can propagate through the thickness of the steel is determined by several factors, in
particular the gauge, heating time and temperature. This is governed by the heat transfer
equation [59]:

dT _ k 0°T

dt pCp 0x2 3.7

where T is the temperature
tis the time
k is the thermal conductivity
p is the density
C, is the specific heat

x is the depth

In order that the required temperature propagates through the depth of a thicker coil a longer
heating time is required, similarly thinner coils may be heated too much if the heating time is

longer or the temperature higher. There are several stages during the annealing process alone
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where the temperature of the strip is critical. For example in order for recrystallization to
occur a minimum temperature is required. Failing to reach this temperature would result in
recrystallization not occurring and therefore the required formability would not be met.
Heating a strip to too high a temperature may cause an issue during the soak stage. Due to the
short time that a strip is held at temperature during this stage it can be heated above Ac;,
however if the temperature is too high, or carbon content is high, a phase change (from ferrite
to austenite) may occur. This would alter the steel’s microstructure and the desired properties
would not be achieved [5].

The gauge also has an effect on the amount of cold reduction that can be applied to a coil. Due
to the limits of the Port Talbot mills coils with a thicker finishing gauge cannot be subjected to
as high a level of cold reduction as may be desirable. The cold reduction drives recrystallization
by introducing stored energy into the steel by deforming structure. This is of particular
importance when considering the strain ratio. Increased amounts of cold reduction have been
shown to have positive influence on this property [32]. This relationship appears to be shown
in Figure 3.5, where the correlation coefficient between the strain ratio and the gauge is
approximately -0.21. This suggests that the r-value decreases as the gauge increases, or more
likely that the level of cold reduction decreases as the gauge increases and so the strain ratio is

lower.

3.6 Modelling Annealing Using a Regression Approach

A basic predictive model was created in the Matlab programming environment using the
simple linear regression approach detailed above. In order to produce and train the model the
available data set was split into two. The data set was sorted randomly when it was first
imported into Matlab; this allowed the first 100 coils to be selected as validation data without
there being any bias based on date processed, gauge or any other property that the data may
have previously been sorted by. The validation data set was only shown to the regression

model in order to produce predicted outputs, meaning it had no influence on the model’s
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training. The remainder of the data set was used to train the model. All inputs were
normalised before the model was trained. The output properties were left in their original
form.

As a first approach individual models were made to predict the five properties under
consideration using all forty available inputs. Plots of the predicted values obtained from these
models against the actual recorded properties for the validation data set are shown in Figures
3.7 to 3.11. Lines representing where the predicted value equals the actual value as well as
5% error lines have been superimposed on to these results. Statistical data about all the

models is shown in Table 3.2. The regression coefficients for the models are listed in Table 3.3.
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Table 3.2: Statistical data produced of validation data set from regression model of DC05/06

steels

Property MSE RMSE MPE R

Ultimate tensile strength 95.0 9.8 2.46% 0.39
Proof stress 584.0 24.2 10.62% 0.38
Elongation 3.987 2.00 3.85% 0.40
Strain ratio 0.024 0.15 5.84% 0.50
Strain hardening exponent 0.00010 0.010 3.47% 0.46

MSE: Mean square error; RMSE: Root mean square error; MPE: Mean percentage error; R: Correlation
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Table 3.3: Regression model coefficients for DC05/06 steels

Input Rm Re A r n

Intercept 313.2547 | 180.1261 | 42.4490 | 2.1214 | 0.2241
Gauge 3.1307 | 15.1021 | 0.9303 | -0.0671 | -0.0053
Width 0.2653 0.5247 | -0.0108 | 0.0252 | 0.0002
Weight 0.4695 0.8216 | -0.0390 | -0.0093 | 0.0002
RTF temperature 0.3857 47193 | 0.2089 | 0.0099 | 0.0000
Soak temperature -0.4850 -3.6533 0.1393 0.0220 0.0027
CGJC temperature -0.4967 0.0501 | 0.0470 | -0.0010 | -0.0004
HGJC temperature 0.3593 -0.8486 | -0.0784 | -0.0058 | 0.0014
ROA temperature 1.0488 3.9389 | 0.0081 | -0.0140 | -0.0017
OA temperature -0.5128 -0.7252 | -0.0545 ( 0.0181 | 0.0004
2C temperature -0.2931 -1.7121( 0.1372( 0.0053 | 0.0011
HGJC rate 1.1668 3.6479 | 0.0392 | -0.0092 | 0.0004
Soak time -0.9330 -1.6630 [ 0.2486 ( 0.0408 [ 0.0026
Furnace tension -2.4100 -4.9217 | -0.5447 0.0106 | -0.0003
Temper mill tension in 14.8872 -3.7071 | -3.6358 | 0.0082 | -0.0165
Temper mill tension out -15.4357 2.9984 3.7091 | -0.0555 0.0161
Temper mill load 1.9917 4.8574 | -0.0324 | -0.0101 | -0.0025
Temper mill speed -0.1954 -2.0099 [ 0.1899 ( 0.0238 | 0.0016
Temper mill extension -1.2077 1.1624 | -0.2674 | -0.0151 | -0.0015
Cold reduction -0.3472 -0.2286 ( 0.0876 | 0.0032 | -0.0001
Hot mill drop temperature -0.1666 0.5373 | 0.0359 | 0.0077 | 0.0003
Hot mill coiling temperature -0.4989 -1.3054 | -0.0450 [ 0.0034 | 0.0004
Hot mill finish temperature -0.5731 -1.4205 | 0.1099 | -0.0044 | -0.0001
Hot mill rougher temperature 1.0694 2.0877 | -0.1778 | -0.0037 | -0.0004
Carbon -1.0778 -2.2084 | 0.0878 | 0.0303 [ 0.0005
Silicon -0.6908 -1.2257  0.1455 0.0043 [ 0.0006
Sulphur 0.1857 -0.1116 | 0.0583 | -0.0103 | -0.0004
Phosphorus 1.7919 0.2996 | -0.3288 | 0.0087 | -0.0010
Manganese 2.9619 5.0019 | -0.1473 | -0.0294 | -0.0007
Nickel 1.0149 0.8946 | -0.0482 | -0.0076 | 0.0000
Copper -0.6760 -1.7546 | -0.1217 | 0.0064 | 0.0002
Tin -1.0353 -2.6432 ( 0.0392 ( 0.0110 | 0.0007
Vanadium 0.7310 1.7404 | -0.1037 | -0.0136 | -0.0013
Nitrogen -0.1643 -0.9609 | -0.0497 | -0.0114 | 0.0004
Aluminium (total) 4.7211 7.3979 | -0.5732 | 0.0731 | -0.0047
Aluminium (soluble) -4.7930 -7.6751 0.5981 ( -0.0647 | 0.0049
Niobium -1.2337 -2.6470 [ 0.0336 ( 0.0108 | 0.0004
Boron -0.7306 -1.7005 [ 0.0669 | 0.0155 | 0.0008
Titanium -0.4841 -1.9624 | 0.1324 ( 0.0472 | 0.0010
Chromium -0.3860 0.7370 | 0.0896 | 0.0125| 0.0001
Titanium excess 0.8327 1.5783 | -0.0526 | -0.0164 | -0.0002
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As shown by Figures 3.7 to 3.11 the simple regression approach using all the available model
inputs was unable to produce reliable predictions of the properties of the mechanical
properties of continuous annealed steels. Upon initial reviews Table 3.2 gives misleading
results about the accuracy of these models. The small mean percentage errors may make the
models appear to have a higher accuracy. These are in fact a product of the small range that
the properties cover; for this reason the correlation value was used to show how the
predictions related to the actual values.

One important observation is the disparity between the regression coefficients and the
correlation coefficients, in particular the sign of some of the coefficients. It is important to
note that there is a difference in what these values represent. The correlation coefficients
represent the degree of fit between two variables, with their sign representing the slope of
this agreement. In comparison the regression coefficients show the effect on the output value
relating to a unit change in the associated function’s inputs. These variances mean a direct
comparison between the two values cannot be made and they should be used in conjunction
with each other.

DCO5 and DCO6 steels are produced in a similar way, but the specification for DCO6 is tighter
than for DCO5. A second set of regression models were made, this time only using coils whose
properties had met the specification of the DCO5 grade. This approach was taken to assess the
influence that coils with outlying properties that had not met specification had on the overall
data set. Upon removing the coils which had failed to meet specification the data set now
contained 1277 coils. Models were made using the same approach as detailed above. These
results are shown in Figures 3.12 to 3.16. Again, lines representing where the predicted value
equals the actual value as well as 5% error lines have been superimposed on to these results.
Statistical data about all the models is shown in table 3.4. The regression coefficients for the

models are listed in Table 3.5.
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Table 3.4: Statistical data produced of validation data set from regression model of steels

meeting DCO5 specification

Property MSE RMSE MPE R

Ultimate tensile strength 57.9 7.6 1.96% 0.59
Proof stress 73.2 8.6 4.17% 0.53
Elongation 3.025 1.74 3.37% 0.30
Strain ratio 0.018 0.13 4.89% 0.49
Strain hardening exponent 0.00005 0.007 2.49% 0.48

MSE: Mean square error; RMSE: Root mean square error; MPE: Mean percentage error; R: Correlation
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Table 3.5: Regression model coefficients for steels meeting DCO5 specification

Input Rm Re A r n

Intercept 307.2695 | 163.5093 | 43.0982  2.1765 | 0.2276
Gauge -1.5716 3.0616 | 0.8279 | -0.0485 | -0.0033
Width -0.6614 -3.1355( 0.0170 [ 0.0286 | 0.0009
Weight 0.3911 0.2567 | -0.0389 | -0.0154 | 0.0002
RTF temperature -1.5231 -0.8911 ( 0.1740( 0.0371 | 0.0009
Soak temperature 1.0375 0.1963 | -0.1288 | -0.0220 0.0011
CGJC temperature -0.5844 -0.3497 ( 0.0190 [ 0.0013 | -0.0004
HGJC temperature 0.0342 0.3699 | -0.2285 | -0.0125| 0.0010
ROA temperature 0.9199 0.5749 | 0.1623 | -0.0101 | -0.0011
OA temperature 0.4197 0.3783 | -0.0210 | 0.0163 | 0.0003
2C temperature 0.4729 0.7504 | 0.0146 | -0.0007 | 0.0003
HGJC rate 0.7007 0.6694 | 0.1115| -0.0108 | 0.0006
Soak time -0.3547 -0.7254  0.0392 ( 0.0268 | 0.0017
Furnace tension 0.8121 1.0991 | -0.4775 | -0.0079 | -0.0011
Temper mill tension in 10.5201 5.3707 | -1.9743 0.0679 | -0.0119
Temper mill tension out -10.5892 -2.8902 2.0617 | -0.1063 0.0114
Temper mill load 1.7490 3.6561 | -0.0916 | -0.0076 | -0.0017
Temper mill speed 0.6074 -1.9665 | -0.0369 | 0.0227 | 0.0014
Temper mill extension -1.6996 1.9383 0.1252 0.0026 | -0.0002
Cold reduction 0.0149 -0.0767 | 0.0090 | -0.0032 | -0.0001
Hot mill drop temperature -0.4030 -0.5716 | 0.0909 ( 0.0111 | 0.0002
Hot mill coiling temperature -0.2028 -0.4097 | 0.0388 | 0.0069 | 0.0004
Hot mill finish temperature -0.2217 -0.4918 | 0.1078 | -0.0003 | 0.0003
Hot mill rougher temperature 0.7454 0.7203 | -0.1452 | -0.0067 | -0.0008
Carbon 0.0096 0.3034 | 0.1012 | 0.0293 | 0.0005
Silicon -0.4945 -0.0261 | 0.0936 | 0.0004 [ 0.0003
Sulphur 0.1929 -0.3717 | 0.1425 | -0.0085 | -0.0004
Phosphorus 1.7239 1.2006 | -0.2049 | 0.0136 | -0.0002
Manganese 1.7972 0.6219 | -0.3659 | -0.0327 | -0.0011
Nickel 0.4996 0.3089 | -0.0554 | -0.0056 | 0.0005
Copper -0.1413 0.4336 | -0.0951 | 0.0051 | -0.0002
Tin -0.5028 -0.3001 | -0.0239 ( 0.0056 | 0.0003
Vanadium 0.6936 1.2773 | -0.0343 | -0.0120 | -0.0014
Nitrogen -0.1649 -0.0750 | -0.0408 | -0.0084 [ 0.0002
Aluminium (total) 2.5112 2.5738 | 0.9371| 0.1177 | 0.0006
Aluminium (soluble) -2.2475 -2.4740 | -0.9483 | -0.1114 | -0.0007
Niobium -0.7691 -0.9754 ( 0.1852 ( 0.0068 | 0.0004
Boron 0.0952 -0.0929 ( 0.0928 | 0.0133 | 0.0002
Titanium 0.8776 0.2652 | 0.1387 | 0.0398 | 0.0008
Chromium -0.4372 0.2181 | 0.0345| 0.0045| 0.0001
Titanium excess 0.1417 -0.1925 | -0.0686 | -0.0174 | -0.0003
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Removing coils that failed to meet the DCO5 specification significantly reduced the range over
which predictions of the proof stress had to be made. A slight change in the range of ultimate
tensile strength values was also observed. The range of values covered by the elongation,
strain ratio and strain hardening exponent did not significantly alter. A difference in the results
from each the models was observed as coils were removed from the data set if one or more of
the properties fell out of specification, changing the available data for each model. Assuming
that the models produce predictions similar to those using the previous model, an almost
central value across the range, reducing this range alone will produce a lower mean error as
the extreme values will be closer to this central one.

A final set of regression models was produced. The same data set was used to produce these
models as was used to make the previous model. In order to analyse the effects of reducing
the complexity of the model this set of models used a reduced number of inputs. The
correlation coefficients between the output properties and the inputs were calculated. Based
on these results it was decided that any input that had an absolute correlation coefficient
value of 0.1 or above was used to make the model for that specific property. These results are
shown in Figures 3.17 to 3.21. Again, lines representing where the predicted value equals the
actual value as well as 5% error lines have been superimposed on to these results. Statistical
data about all the models is shown in Table 3.6. The regression coefficients for the models are

listed in Table 3.7.
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Table 3.6: Statistical data produced of validation data set from regression model of steels

meeting DCO5 specification using inputs chosen based on their correlation coefficients

Property MSE RMSE MPE R

Ultimate tensile strength 186.6 13.7 3.44% 0.51
Proof stress 151.6 12.3 6.38% -0.14
Elongation 3.552 1.88 3.49% 0.19
Strain ratio 0.030 0.17 6.22% 0.29
Strain hardening exponent 0.00008 0.009 3.23% -0.23

MSE: Mean square error; RMSE: Root mean square error; MPE: Mean percentage error; R: Correlation
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Table 3.7: Regression model coefficients for steels meeting DCO5 specification using inputs

chosen based on their correlation coefficients

Input Rm Re A r n
Intercept 307.2664 | 163.4807 | 43.0965 2.1765 | 0.2276
Gauge -2.5031 -0.3524 | 0.9981 | -0.0664 | -0.0027
Width -2.5200 0.0036 | 0.0000
Weight -1.2358

RTF temperature 0.6217 0.1140

Soak temperature -0.9466 -0.0410

CGJC temperature

HGJC temperature 0.6792 0.7816 0.0619

ROA temperature -0.6077 0.4384 | -0.0219

OA temperature -0.0189

2C temperature 0.4301

HGIC rate 0.2566 -1.7247 | 0.0387 ( 0.0318 | -0.0002
Soak time 0.8293 -0.1257 | -0.2254 | -0.0242 | 0.0008
Furnace tension 0.7595 -1.1364 0.1326 0.0055 0.0011
Temper mill tension in 0.5640 1.0122 | -0.0393 0.0099 | -0.0001
Temper mill tension out -0.0293 0.0359 | -0.0279 | -0.0227 0.0015
Temper mill load 0.7768 1.0772 | 0.0595

Temper mill speed 9.2420 -0.7149 | -0.0243 | 0.0142 | -0.0015
Temper mill extension -8.6658 -0.4651 | -0.3603 0.0002
Cold reduction 1.7785 3.1386 | -0.1656 | -0.0008 | 0.0002

Hot mill drop temperature
Hot mill coiling temperature
Hot mill finish temperature 0.7061
Hot mill rougher temperature
Carbon

Silicon

Sulphur

Phosphorus 0.8176
Manganese
Nickel
Copper

Tin -1.7250
Vanadium -0.0512 1.9109 0.0008
Nitrogen
Aluminium (total) -0.0168 0.0066
Aluminium (soluble) -0.4283
Niobium
Boron
Titanium 0.0236
Chromium
Titanium excess
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As can be seen by the plots of the results, Figures 3.17 to 3.21, and the results in Table 3.6 a
reduction in the number of inputs had a significant negative impact on the accuracy of the

models.

3.7 Conclusions

Model to predict the properties of continuous annealed steels were developed using a
multiple linear regression approach. The initial approach, using all the available data regardless
as to whether it met specification or not, produced predictions with a small error value but
failed to produce predictions that were of the required accuracy. The range over which the
predictions were made was the main cause of this discrepancy. Whilst maintaining a small
error value is a goal that should be aimed for with future models the correlation between the
predicted results and actual results also needs to be considered as well. Selecting only data
that had met the DCO5 specifications resulted in a reduction in the reported error of the model
as well as an increase in the reported correlation. However it is likely that this increase in the
predictive accuracy was most likely due to the reduction in the range that properties were to
be predicted over. Attempting to reduce the complexity of the model by using fewer inputs
resulted in the accuracy of the models decreasing.

Using multiple linear regression analysis has proven to be an ineffective way of modelling the
properties of continuous annealed steels. The linear approximations are not powerful enough
to fully describe the annealing process. A more complex non-linear method of analysing the

process is needed to fully describe the continuous annealing process.
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CHAPTER 4 — PREDICTION OF PROPERTIES USING A

GENERALISED REGRESSION NETWORK

4.1. Introduction

Predicting the properties of rolled products continues to be an important research area within
the steel industry. While there are examples that rely on additional equipment on the line to
produce a prediction [60] many of the proposed methods focus on the use of neural networks
or other similar artificial intelligence approaches. It was with this in mind that a similar
approach to that taken by Jones [38] was initially investigated as the predictive method for this
project. It quickly became clear that this approach would not be suitable for this project as the
results being achieved were poor (this initial work is shown in Appendix 1). A different
approach was required that would produce better predictions, whilst still being compatible
with the ground work that had been laid down already.

This chapter describes how a basic modelling approach was developed and implemented. This
includes details of the main philosophy behind this approach, how data was pre-processed and

the input selection method used.

4.2. Background

The initial concept for this approach would be some form of data mining. This technique stores
previous process history, along with the associated mechanical properties, in a database.
When a new set of processing conditions is queried the database is searched for previous
cases that are as close as possible to the query case. A normal approach may take ten values,
five which are slightly higher than the query case and five that are lower. The final properties
for the query case are then estimated using the values associated with the matching cases

from the database. This type of approach was utilised by Thomas et al [50] to predict the
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hardenability of heat treated steels. They listed the benefits of their ‘database method’ as

being:

* The approach can be used for a wide range of compositions. For the present work this
may allow for several grades to be combined into one model.

* Only a small amount of data is required in the range of interest.

* The method is ready for immediate use once the minimum amount of data has been
obtained.

* The method can be easily updated and maintained.

* Confidence intervals can be calculated for each prediction.

Though there were clearly some benefits to this approach it was decided that implementing it
may not have been a worthwhile task. Setting up a database and programming the necessary
search functions for this task would likely have proved very time consuming. Whilst
investigating this approach a similar method was found that performed similar tasks whilst
using a network structure. It was also found that this Generalised Regression approach could

be used within the Matlab environment, allowing for it to be integrated with previous work.

4.3. Predictive Method Philosophy

In any large industrial process products are produced by repeating the same steps over and
over again. If you require a product to have the same properties as the last one then the
processing steps need to be the same as those previously carried out. Likewise, if a product
has been produced in a similar manner to one produced previously then one may assume that
it will have similar properties to that one. It is this assumption that the modelling approach
used in this project is based upon; the previous processing history of continuous annealed coils

can be used to predict the properties of a newly produced coil.

Clearly this approach needs to be carefully set up, with particular attention being paid to the

data sets used to train and populate any models produced. The data set should cover the
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whole range of possible processing conditions and should be capable of accounting for process
drift. This may be through careful selection of its populating data or through the use of a
suitable data updating method.

Generalised regression networks are often categorised as a type of artificial neural network,
though less data is required to train them than say a back-propagation network [51, 52]. For a
given set of inputs the only training that is required is to calculate the appropriate spread
value. Though the workings of such networks can be represented using diagrams, in a manner
similar to other artificial neural network approaches, they can easily be characterised using
some simple equations. The network response (in this case property), Y, to a set of variables

(in this case processing conditions), X, can be represented using the following equation [52]:

=)
n . \202
Y(X) = M+D; (4.1)
?=1e<20—2>
And:
D} =X -X)T.(X — X;) (4.2)

Where;Y; is the stored response for set j,

X is stored variables that produced the response Y;

D; is the distance between the new variables and the stored variables X;

o is the spread value
The distance value determines how closely a new set of data matches those stored within the
network. Applying limits to this value illustrates the results of there being an exact match or a
massive difference between the data sets. Assuming a distance value of zero (X = Xj) results in
the exponential equating to one. This means that for this case the value carried into the

numerator sum with be that of the stored response (Yi) and the denominator will be one.
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When the distance value is very large (xoo) both the numerator and the denominator become
zero; the response to this case has no effect on the final response from the whole network.

A simple method to optimise this model is to minimise the error by altering the spread value. A
simple routine was set up using Matlab, in particular the neural network toolbox and the
fminsearch function. fminsearch is an unconstrained nonlinear optimisation which uses the
simplex search method [61]. In order to train the model the data set used was divided into
three subsets; modelling, training and validation. The initial data set was sorted randomly
before the subsets were assigned, with the first 100 coils making the validation subset and the
next 100 forming the training subset. All remaining coils formed the modelling subset. As with
the regression approach, the validation subset was only shown to the model when training
was complete. The training data set was used to alter the model’s parameters.

The modelling subset, being the largest subset, was used to populate the generalised
regression network’s hidden layer. All further training and later predictions would be based on
the relationships between this data and the remaining training data or new coil entries. The
training data is run through the complete network and the mean square error of the
predictions found. The optimisation routine then alters the spread value of the network
according to this error and repeats the process, trying to find the minimum error value. The
validation data set is not used to alter the workings of the model and is presented to the

model as unseen data in order to assess the effectiveness of the training process.

4.4. Results

The first models to be produced using this method was developed to assess what advantages
this approach offered compared to the multiple linear regression approach which was tried
previously. For this reason the first grade of steel to be modelled was the DC05/06 steels
analysed in the previous chapter. As the best regression results were found using only those
grades that had met the required specification it was decided to use this criteria too. Models

were produced using the training method detailed previously, with all available inputs being
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used. These results are shown in Figures 4.1 to 4.5. As in the previous chapter lines
representing where the predicted value equals the actual value as well as £5% error lines have
been superimposed on to these results. Statistical data about all the models is shown in table

4.1. Training was carried out on a PC running Windows Seven with a 2.2GHz dual core Intel

processor.
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Table 4.1: Statistical data produced from validation data set from generalised regression model

of steels meeting DCO5 specification

Property MSE RMSE MPE R

Ultimate tensile strength 53.2 7.3 1.89% 0.63
Proof stress 60.3 7.8 3.70% 0.63
Elongation 3.06 1.75 3.39% 0.29
Strain ratio 0.018 0.13 4.78% 0.49
Strain hardening exponent 0.00004 0.007 2.37% 0.57

MSE: Mean square error; RMSE: Root mean square error; MPE: Mean percentage error; R: Correlation

The spread values for the above models were found to be:

Ultimate tensile strength: 1.9958

Proof stress: 1.7493
Elongation: 2.4263
Strain ratio: 1.9962

Strain hardening exponent: 1.9464

The use of a generalised regression network as the predictive method resulted in an increase
in the accuracy of three of the five properties being considered. The elongation and strain ratio
predictions saw a slight decrease in the predictive accuracy compared to that of the best
regression models. The changes were as follows: ultimate tensile strength 4.1%, proof stress
9.2%, elongation 0.6% (increase), strain ratio 0.05% (increase) and strain hardening exponent
5.6%. As well as a decrease in the mean errors produced by most of the models there was also
an increase observed in the correlation values calculated. It is clear that the relationships that
exist between some of the input process conditions and output properties are of a higher
order than a simple linear regression approach and the generalised regression network was
able to pick up on these.

The reasons behind the increase in the error for the elongation and strain ratio models are
difficult to pinpoint. Although not directly capable of computing the simple regression
approach the generalised regression should be able to replicate the results from it. The small

increases in the error suggest that this may well be the case, with the added complications of
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the network being the main cause of this increase. The elongations predictions appeared to
plateau between the values of 42% and 44%. The large spread value that the optimisation
routine found for this model is likely to be the main cause of this.

The difficulties predicting the elongation value were reported to the technical experts from
Port Talbot. It was their opinion that this may be the result of the failure occurring outside the
measured gauge length. The elongation is measured using a device that is attached to the test
specimen to mark the gauge length. As the sample extends the device records the extension. If
the sample were to break outside the area to which the device is attached, the true extension
would not be measured. If the specified value of extension were not obtained, a second
sample would need to be tested. However, if the specified value was met, then a retest might
not always be carried out, meaning that a lower value of elongation would be recorded than
the actual property of the steel. This means that two tests of similar material may result in
significant differences in the elongation value. A further complication arises from the fact that

elongation values are inherently variable. This is because they result from the plastic instability
of the specimen as it is deforms; the onset of necking and hence the elongation vary even for
identical specimens of the same material and therefore it will never be possible to predict it a
high degree of accuracy.

Whilst using all the available inputs to predict the properties of continuously annealed steels
using a generalised regression network the resulting models were considered to be overly
large and complicated. In the examples given previously less than 2000 coils were used to
populate the models; it is envisaged that as this work progresses more coils will be added to
later models. Continuing to use models of this size may lead to longer runtimes. For this reason
the effect of reducing the number of inputs to the model was assessed.

Initially the correlation coefficients used previously would form the basis of the input selection
method. Although these consider the linear relationship between the properties and the
inputs their values where only small, possibly indicating that a non linear relationship may be

present. If the correlation coefficient between an input and a property had an absolute value
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greater than 0.1 the input was selected to model that property. The correlation coefficients
were found using a combination of the modelling and training data sub sets so that the
validation data did not influence the workings of the model. In addition to inputs selected in
this manner other inputs were also included based on the advice of technical staff at Tata
Steel. For example, for the interstitial free steels (DCO5 and DC06 produced on CAPL) the
following inputs were also selected; the soak temperature, soak time, amount of cold
reduction, amount of carbon and titanium excess.

These results are shown in Figures 4.6 to 4.10. As in the previous chapter lines representing
where the predicted value equals the actual value as well as 5% error lines have been

superimposed on to these results. Statistical data about all the models is shown in table 4.2.
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regression model for steels meeting DCO5 specification using inputs chosen based on their
correlation coefficients (Dashed lines represent where the predicted value equals the actual
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Table 4.2: Statistical data produced from validation data set from a generalised regression
model of steels meeting DCO5 specification using inputs chosen based on their correlation

coefficients

Property MSE RMSE MPE R

Ultimate tensile strength 53.2 7.3 1.92% 0.63
Proof stress 70.7 8.4 3.96% 0.57
Elongation 3.11 1.76 3.38% 0.23
Strain ratio 0.019 0.14 4.92% 0.47
Strain hardening exponent 0.00005 0.007 2.50% 0.45

MSE: Mean square error; RMSE: Root mean square error; MPE: Mean percentage error; R: Correlation

The spread values for the above models were found to be:

Ultimate tensile strength: 1.5007

Proof stress: 0.6329
Elongation: 3.5112
Strain ratio: 1.3629

Strain hardening exponent:  1.2435

Reducing the number of inputs to the generalised regression models lead to an increase in the
mean percentage error for all properties when compared to the models made using all
available inputs. Interestingly the mean square error (the value which model training is based
on), and hence the root mean square error, for the ultimate tensile strength model decreased
slightly for the new models. Again, all but the elongation value predictions showed an
improvement over the best results achieved using the multiple linear regression approach. In
most cases the increase in the error was relatively small (with errors still lower than the basic
regression approach) however the proof stress is an exception to this observation.

The significant increase in the proof stress error when compared to the error to previous
model was accompanied by a decrease in the spread value. A smaller spread value indicates
that the model is only using historical data that closely matches the new coil’s data. Normally
this would imply that one could have a greater confidence in the prediction, due to it being

based on more significant (i.e. similar) data. However, the increase in predictive error when
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compared to the previous model shows that this assumption cannot be made in this case.
Rather, the limited input selection has meant that the optimisation routine had to choose a
different spread value to minimise the error. Allowing the model to focus more on the nearer
historical data instead of the wider approach used previously achieved this. This dramatic
change in spread value indicates that selecting the right combination of inputs is a key step in
producing a suitable model. While in this case the more selective spread value increased the
predictive error it is hoped that different input sets will yield better results. The reduction in

the training error for the ultimate tensile strength model indicates that this is possible.

4.5. Use with Other Grades of Steel

The use of a generalised regression network as the main predictive method led to significant
increases in the accuracy of models predicting the properties of continuously annealed
interstitial free steels. The predictive error increased slightly with a reduction in the number of
inputs used. With this in mind it was decided to use the same methodology on a larger data set
and to try predicting the properties of a different grade of steel. A sample data set containing
the processing information and recorded properties for DCO1, DCO3 and DC04 steels produced
on the continuous annealing line at Port Talbot was used.

The rigor of the specifications for these steels increase with the grade number. If a higher
grade fails to meet specification it is downgraded. For this reason the whole data set may be
considered as one, with the processing conditions for the entire range being similar. In order
to produce a large data set the steels were compared to the DCO3 specification. This meant
that the final data set represented a large range of DCO4 coils, with those failing to meet
perhaps just one property specification sill being included. The data set was run through the
same cleaning process as detailed before, resulting in there being 19797 coils left with which
to develop the model. Table 4.3 shows the maximum, minimum, mean, standard deviation and

units of the inputs values and output properties from the cleaned data set.
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Table 4.3: DC01/03/04 cleaned data set input conditions and output properties

Quantity Max Min Mean Std Unit
CA Gauge 2.04 0.38 1.02 0.37 mm
CA Width 1830 821 1163 198 mm
CA Weight 51.33 2.48 14.52 4.50 tonnes
Radiant Tube Furnace (RTF) (average) 842.63 | 652.48 | 729.29 21.78 °C
Soak (average) 797.63 | 639.47 | 727.68 19.77 °C
Controlled Gas Jet Cooling (CGJC) (average) 878.18 | 600.00 | 658.10 12.07 °C
High Gas Jet Cooling (HGJC) (average) 47294 | 257.88 | 398.50 36.62 °C
Reheat Overage (ROA) (average) 480.37 | 299.92 | 415.73 23.94 °C
Overage (average) 366.39 | 127.13 | 251.36 47.80 °C
Second Cooling (average) 250.00 | 105.52 | 209.44 9.25 °C
HGJC Rate 160.4 13.0 55.2 13.0 °C/s
Soak Time 763 38 61 21 s
Furnace Tension 13.9 1.4 5.3 2.5 kN
Temper Mill Tension In (TMTI) 125.4 28.7 57.4 17.0 kN
Temper Mill Tension Exit (TMTE) 122.0 28.5 57.0 16.9 kN
Temper Mill Load (TML) 988.4 2.1 328.0 158.9 tonnes
Temper Mill Speed (TMS) 474.6 35.4 317.3 76.4 m/min
Temper Mill Extension (TME) 2.058 0.072 0.838 0.083 %
Cold Reduction 0.974 0.033 0.674 0.101 %
Hot Rolled Drop Temperature 1318 127 1212 33 °C
Hot Rolled Coil Temperature 767 465 659 31 °C
Hot Rolled Finishing Temperature 953 821 899 13 °C
Hot Rolled Stand 5 Temperature (HRS5) 1156 923 1091 23 °C
Carbon (C) 0.192 0.002 0.025 0.013 %wt
Silicon (Si) 0.391 0.001 0.003 0.015 %wt
Sulphur (S) 0.032 0.003 0.015 0.003 %wt
Phosphorus (P) 0.082 0.004 0.011 0.004 %wt
Manganese (Mn) 1.448 0.062 0.193 0.101 %wt
Nickel (Ni) 0.040 0.009 0.015 0.003 %wt
Copper (Cu) 0.088 0.007 0.022 0.007 %wt
Tin (Sn) 0.040 0.001 0.006 0.003 %wt
Vanadium (V) 0.003 0.001 0.001 0.000 %wt
Nitrogen (N) 0.014 0.001 0.003 0.001 %wt
Aluminium (Al) (total) 0.074 0.009 0.035 0.005 %wt
Aluminium (Al) (soluble) 0.068 0.009 0.032 0.005 %wt
Niobium (Nb) 0.059 0.001 0.001 0.003 %wt
Boron (B) 0.004 0.000 0.003 0.001 %wt
Titanium (Ti) 0.062 0.001 0.001 0.002 %wt
Chromium (Cr) 0.060 0.004 0.018 0.005 %wt
Titanium Excess (Ti*) 0.025 -0.817 -0.132 0.054

Ultimate Tensile Strength (Rm) 361.0 278.1 324.2 9.3 N/mm?
Proof Stress (Re) 239.9 150.3 219.6 14.7 N/mm?
Elongation (A) 51.58 34.01 40.83 2.30 %
Strain Ratio (r) 2.625 1.301 1.620 0.203

Strain Hardening Exponent (n) 0.256 0.169 0.216 0.010
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Models of the DC01/03/04 steels were produced using the same method detailed above. The
data set was then divided into the same subsets as before (100 coils in the validation and
training subsets); leaving considerably more coils in the modelling subset then had been used
previously. Due to the large size of the data set only inputs that had a correlation coefficient
of greater than 0.1. The outputs of these models are shown in Figures 4.11 to 4.15. Error lines
showing £5% have been superimposed on to these results and statistical data about all the

models is collated in table 4.4.
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Figure 4.11: Actual ultimate tensile strength values against ultimate tensile strength values
predicted by a generalised regression model for DC01/03/04 steels meeting specification using
inputs chosen based on their correlation coefficients (Dashed lines represent where the

predicted value equals the actual value as well as £5% error)

The optimised spread value for the ultimate tensile strength model was found to be 0.5821.
The following inputs were chosen:

Physical: gauge, width and cold reduction

CAPL: radiant tube furnace temperature, soak temperature, controlled gas jet cooling
temperature, high gas jet cooling temperature, reheat overage temperature,
overage temperature, HGJC rate, soak time, furnace tension, temper mill tension
in, temper mill tension out, temper mill speed and temper mill extension

Hot Rolling: finishing temperature and coiling temperature

Chemistry: carbon, phosphorus, manganese, nitrogen and titanium excess
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Figure 4.12: Actual proof stress values against proof stress values predicted by a generalised

regression model for DC01/03/04 steels meeting specification using inputs chosen based on

their correlation coefficients (Dashed lines represent where the predicted value equals the

actual value as well as +5% error)

The optimised spread value for the proof stress model was found to be 0.2840. The following

inputs were chosen:

Physical:
CAPL:

Hot Rolling:
Chemistry:

cold reduction

radiant tube furnace temperature, high gas jet cooling rate temperature, reheat
overage temperature, overage temperature, soak time and temper mill speed
rougher temperature and coiling temperature

carbon, manganese and titanium excess
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Figure 4.13: Actual elongation values against elongation values predicted by a generalised
regression model for DC01/03/04 steels meeting specification using inputs chosen based on
their correlation coefficients (Dashed lines represent where the predicted value equals the

actual value as well as +5% error)

The optimised spread value for the elongation model was found to be 0.4104. The following

inputs were chosen:

Physical: cold reduction
CAPL: radiant tube furnace temperature, soak temperature, controlled gas jet cooling

temperature, high gas jet cooling temperature and soak time
Hot Rolling:

Chemistry: carbon manganese and titanium excess
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Figure 4.14: Actual strain ratio values against strain ratio values predicted by a generalised
regression model for DC01/03/04 steels meeting specification using inputs chosen based on
their correlation coefficients (Dashed lines represent where the predicted value equals the

actual value as well as +5% error)

The optimised spread value for the strain ratio model was found to be 1.3148. The following
inputs were chosen:

Physical: gauge and cold reduction

CAPL: radiant tube furnace temperature, soak temperature, high gas jet cooling
temperature, reheat over age temperature, soak time and furnace tension

Hot Rolling:

Chemistry: carbon, manganese and titanium excess
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Figure 4.15: Actual strain hardening exponent values against strain hardening exponent values
predicted by a generalised regression model for DC01/03/04 steels meeting specification using
inputs chosen based on their correlation coefficients (Dashed lines represent where the

predicted value equals the actual value as well as £5% error)

The optimised spread value for the strain hardening exponent model was found to be 1.1483.
The following inputs were chosen:

Physical: gauge, width and cold reduction

CAPL: radiant tube furnace temperature, soak temperature, high gas jet cooling
temperature, reheat overage temperature, second cooling temperature, HGJC
rate, soak time, furnace tension, temper mill tension in, temper mill tension out,
temper mill load and temper mill speed

Hot Rolling:

Chemistry: carbon, manganese and titanium excess
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Table 4.4: Statistical data produced from validation data set from a generalised regression
model of DC01/03/04 steels meeting specification using inputs chosen based on their

correlation coefficients

Property MSE RMSE MPE R

Ultimate tensile strength 63.5 8.0 1.78% 0.66
Proof stress 137.5 11.7 3.96% 0.63
Elongation 5.50 2.35 4.63% 0.15
Strain ratio 0.036 0.19 8.04% 0.17
Strain hardening exponent 0.00005 0.007 2.46% 0.67

MSE: Mean square error; RMSE: Root mean square error; MPE: Mean percentage error; R: Correlation

The increased data available to model the DC01/03/04 steels did not lead to any significant
increase in the predictive accuracy of the models developed from it. As with the previous
grade, models predicting the ultimate tensile strength, proof stress and strain hardening
exponent produced better results than the elongation and strain ratio models. Interestingly,
the predictions from the strain ratio model exhibited a distinct plateau, similar to that seen
with the elongation models produced previously. This was not observed for the other grade.
One point of interest was the decreased spread values that were found for some of the new
models. The ultimate tensile strength and elongation models in particular were found to have
a considerably smaller spread values than models of the same properties focusing on other
grades. The increase in the number of coils used for the DC01/03/04 models is likely to be the
main reason for this change. The greater number of coils for the new model to use may mean
that the model does not need to look as far from a new entry as it previously might have to
find similar coils with which to make a prediction.

The model failed to accurately predict the strain ratio for this grade of steel. Whilst the
predictive accuracy for other grades is not as high for this property as others there was still
some agreement between the actual and predicted values. The same plateau effect was
observed in the predictions of the elongation using previous models and was attributed to the
large spread value selected by the training process. This represents one possibility, though the

spread value was no larger than previous strain ratio models (indeed in one case smaller). The
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strain hardening exponent model for the DC01/03/04 steels had a similar spread value and
was able to produce more accurate results, further discrediting the possibility.

The increase in the number of coils used to produce a generalised regression models failed to
deliver the increase in predictive accuracy. When used with the DC01/03/04 grades this
approach lead a decrease in the strain ratio model’s accuracy as compared to other grades.
Given these issues thought it was felt that continued development of these models was
worthwhile. Models predicting the ultimate tensile strength, proof stress and strain hardening
exponent produced results which suggest the model is capable of predicting some of the
properties of these grades. As with previous the previous grades it was believed that further

refinement of the model inputs would help produce results of the required accuracy.

4.6. Use with Other Process Lines

Tata steel operates a metallic coating line, Zodiac, at their plant in Llanwern. This line is
comprised of an annealing furnace and a hot dip bath for applying the metallic coating
(normally zinc) to the steel. It was hoped that the techniques developed to predict the
properties of steels produced at Port Talbot could be transferred to the Llanwern plant as well.
A simplified diagram of the Zodiac line is shown in Figure 4.16.

Due to financial difficulties during the 1990s blast furnace, steel making and casting facilities at
Llanwern were shut down leaving the hot mill and cold mill. Coils that are processed on Zodiac
therefore are formed from slabs that originate from Port Talbot. The slabs can either be hot
rolled at Port Talbot or Llanwern. There are some differences between the hot rolling lines at
the two facilities, in particular the rougher configuration and coil box at Port Talbot; however
the key process conditions are the same for each line. The differences between the continuous
annealing line at Port Talbot and Zodiac at Llanwern mean that the possible inputs to the
model vary.

These differences meant that some parts of the model training routine would have to be

rewritten in if the Zodiac data was to be used. The Port Talbot model is given forty process
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conditions that it can use as possible inputs, these are initially selected using an importing tool
that is separate to the main training routine. This presented two possible ways of making
models of the Llanwern data. The first of these would involve written an entirely new training
model and importing tool, using the methods learned developing the work for Port Talbot. The
second option involved writing a new importing tool for the Llanwern data that produced an
output the same size as the one designed for the Port Talbot data, i.e. one that selected forty
initial inputs for the training routine to use. Whilst the first method would produce optimal
results and cover every possible process condition it would also require a considerable amount
of time and effort to compile. The second method would be straight forward to compile but

relied on careful decisions to be made in regards to which inputs it would choose.
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Figure 4.16: Simplified diagram of the ZODIAC line at Tata Steel’s Llanwern plant [11]
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As the chemistry details and heat treatments prior to annealing remained the same as the Port
Talbot data only inputs from the annealing line would need to be considered. Upon reviewing
the possible inputs from Zodiac it was found that the process could be covered using the same
number of inputs as Port Talbot. This meant that a new importing tool was the only thing that
needed to be developed. The main changes related to areas where temperatures were
measured. Of these three were of particular interest, these being: the pot, snout and roll 30
temperatures. The pot and snout temperatures relate to the hot dip section of the line. The
roll 30 temperature measures the strip temperature at the top of the drying phase that follows
the strip leaving the hot dip bath.

To produce models based on the Zodiac line a data set was obtained containing information on
3004/3005 grades. These grades have similar properties to the DCO5/DC06 steels produced at
the Port Talbot but with an additional metallic coating. A data set containing the process
conditions for the Zodiac line was obtained. Using the ‘coil ID’ value this data was linked to the
associated processing conditions from the Port Talbot plant, producing a complete set of data
for the grades. The data set was run through the same cleaning process as detailed before,
resulting in there being 6816 coils left with which to develop the model. Table 4.5 shows the
maximum, minimum, mean, standard deviation and units of the inputs values and output

properties from the cleaned data set.
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Table 4.5: 3004/05 cleaned data set input conditions and output properties

Quantity Max Min Means Std Unit
Gauge 2.02 0.53 0.91 0.29 mm
Width 1766 851 1291 206 mm
Weight 30.00 2.73 14.60 4.44 tonnes
Direct Fire (DF) (average) 765.34 | 641.55 | 715.18 14.83 °C
Radiant Tube Furnace Start (RTFS) (average) | 886.50 | 401.25 | 833.06 17.82 °C
Snout (average) 501.09 | 447.72 | 467.17 6.15 °C
Water Quench (WQ) (average) 159.93 50.07 85.01 22.47 °C
Coating Weight 147.70 37.89 68.88 11.34 g/m2
Length 4889 240 1732 678 m
Line Speed 129.48 39.00 93.32 17.12 m/min
Temper Mill Load (TML) 168.97 -51.46 80.40 22.73 kN
Temper Mill Tension In (TMTI) 7971.00 | 1676.78 | 4103.29 | 1092.34 KN
Hot Rolled Drop Temperature 1288 94 1217 32 °C
Hot Rolled Coiling Temperature 758 621 682 4 °C
Hot Rolled Finishing Temperature 949 890 914 4 °C
Hot Rolled Stand 5 Temperature (HRS5) 1163 1008 1100 21 °C
Cold Reduction 0.868 0.592 0.766 0.046 %
Hot Dip Pot Temperature (average) 476.82 | 452.11 | 461.29 3.27 °C
Roll 30 Temperature (average) 203.85 | 120.00 | 148.26 20.23 °C
Radiant Tube Furnace End (RTFE) (average) 900.00 | 400.46 | 835.31 15.57 °C
Temper Mill Tension Out (TMTO) 7313.64 | 2022.79 | 3846.80 | 887.42 kN
Molybdenum (Mo) 0.0080 0.0010 0.0012 0.0006 %wt
Arsenic (As) 0.0020 0.0010 0.0011 0.0002 %wt
Carbon (C) 0.1410 0.0012 0.0025 0.0041 %wt
Silicon (Si) 0.1580 0.0010 0.0032 0.0048 %wt
Sulphur (S) 0.0170 0.0049 0.0096 0.0022 %wt
Phosphorus (P) 0.0210 0.0050 0.0110 0.0026 %wt
Manganese (Mn) 0.7840 | 0.0590 | 0.1084 | 0.0254 %wt
Nickel (Ni) 0.0280 0.0050 0.0098 0.0033 %wt
Copper (Cu) 0.0490 0.0080 0.0144 0.0048 %wt
Tin (Sn) 0.0160 0.0010 0.0045 0.0022 %wt
Vanadium (V) 0.0050 0.0010 0.0020 0.0006 %wt
Nitrogen (N) 0.0055 0.0012 0.0029 0.0006 %wt
Aluminium (Al) (Total) 0.0690 | 0.0130 | 0.0486 | 0.0066 %wt
Aluminium (Al) (Soluble) 0.0640 | 0.0120 | 0.0451 | 0.0061 %wt
Niobium (Nb) 0.0040 0.0010 0.0010 0.0001 %wt
Boron (B) 0.0005 0.0001 0.0001 0.0000 %wt
Titanium (Ti) 0.0710 0.0020 0.0498 0.0057 %wt
Chromium (Cr) 0.0320 0.0080 0.0170 0.0033 %wt
Titanium Excess (Ti*) 0.0329 | -0.5881 | 0.0154 0.0185

Ultimate Tensile Stregth (Rm) 344 268 303 9 N/mm?
Proof Stress (Re) 236 109 173 13 N/mm?
Elongation (A) 52 30 42 3 %
Strain Ratio (r) 3.51 1.09 2.36 0.27

Strain Hardening Exponent (n) 0.256 0.193 0.231 0.008

Inputs in italic are ones that differ to the Port Talbot data set.
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It is important to note the differences between the data used to make the models. Whilst the
process conditions themselves are of great importance, with the Zodiac process condition
being considerably different to those of CAPL, the statistical values relating to the values is also
significant. For example the properties recorded for the two data sets show some important
differences. The ultimate tensile strength and proof stress values of the 3004/05 steels
produced on Zodiac both have lower standard deviation values than their CAPL counterparts.
The accuracy that the properties are recorded to also differs depending on which line they are
produced on.

Models of the 3004/05 steels were produced using the same method detailed above, this time
trained with data from the Zodiac line. In order to accurately compare the results of the new
models with those of the DC05/06 steels only coils that had met specification were selected.
This meant that there were 4267 coils with which to produce the model. This was divided into
the same subsets as before (100 coils in the validation and training subsets); leaving
considerably more coils in the modelling subset then had been used previously. In an attempt
to reduce the complexity of the model the inputs were chosen using the selection criteria
utilised before; only inputs that had a correlation coefficient of greater than 0.1 and those
suggested by line specialists were selected. The outputs of these models are shown in Figures
4.17 to 4.21. Error lines showing 5% have again been superimposed on to these results and

statistical data about all the models is collated in table 4.6.
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Figure 4.17: Actual ultimate tensile strength values against ultimate tensile strength values
predicted by a generalised regression model for 3004/05 steels meeting specification using
inputs chosen based on their correlation coefficients (Dashed lines represent where the

predicted value equals the actual value as well as £5% error)

The optimised spread value for the ultimate tensile strength model was found to be 0.6560.
The following inputs were chosen:

Physical: gauge, width, length and cold reduction

Zodiac: direct fire temperature, snout temperature, radiant tube furnace exit
temperature, temper mill tension in and line speed

Hot Rolling: drop temperature, rougher temperature, and coiling temperature

Chemistry: Carbon, Silicon, Phosphorus, Manganese, Nickel, Vanadium, Titanium and
Titanium excess
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Figure 4.18: Actual proof stress values against proof stress values predicted by a generalised

regression model for 3004/05 steels meeting specification using inputs chosen based on their

correlation coefficients (Dashed lines represent where the predicted value equals the actual

value as well as +5% error)

The optimised spread value for the proof stress model was found to be 0.9749. The following

inputs were chosen:

Physical:

Zodiac:

gauge, width and cold reduction

direct fire temperature, radiant tube furnace exit temperature, snout

temperature, line speed, temper mill load, temper mill tension in and temper mill

tension out

Hot Rolling: finishing temperature and coiling temperature

Chemistry:

carbon, manganese and titanium excess
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Figure 4.19: Actual elongation values against elongation values predicted by a generalised
regression model for 3004/05 steels meeting specification using inputs chosen based on their
correlation coefficients (Dashed lines represent where the predicted value equals the actual

value as well as +5% error)

The optimised spread value for the elongation model was found to be 1.0484. The following

inputs were chosen:

Physical: gauge and cold reduction
Zodiac: radiant tube furnace exit temperature and line speed
Hot Rolling:

Chemistry: Carbon, Manganese and Titanium excess
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Figure 4.20: Actual strain ratio values against strain ratio values predicted by a generalised
regression model for 3004/05 steels meeting specification using inputs chosen based on their
correlation coefficients (Dashed lines represent where the predicted value equals the actual

value as well as +5% error)

The optimised spread value for the strain ratio model was found to be 0.9383. The following
inputs were chosen:

Physical: gauge, width, length and cold reduction

Zodiac: direct fire temperature, radiant tube furnace exit temperature, roll 30
temperature, water quench temperature, temper mil tension in, temper mill
tension out and line speed

Hot Rolling: drop temperature and finishing temperature

Chemistry: carbon, phosphorus, manganese, vanadium, titanium, chromium, molybdenum
and titanium excess
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Figure 4.21: Actual strain hardening exponent values against strain hardening exponent values
predicted by a generalised regression model for 3004/05 steels meeting specification using
inputs chosen based on their correlation coefficients (Dashed lines represent where the

predicted value equals the actual value as well as £5% error)

The optimised spread value for the strain hardening exponent model was found to be 0.4217.

The following inputs were chosen:

Physical: cold reduction

Zodiac: radiant tube furnace start temperature, radiant tube furnace exit temperature,
line speed, temper mill load and temper mill tension in

Hot Rolling:

Chemistry: carbon, manganese, nickel and titanium excess
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Table 4.6: Statistical data produced from validation data set from a generalised regression
model of 3004/05 steels meeting specification using inputs chosen based on their correlation

coefficients

Property MSE RMSE MPE R

Ultimate tensile strength 19.0 4.4 1.08% 0.77
Proof stress 25.6 5.1 2.38% 0.71
Elongation 3.10 1.76 3.38% 0.20
Strain ratio 0.036 0.19 6.08% 0.69
Strain hardening exponent 0.00002 0.004 1.33% 0.75

MSE: Mean square error; RMSE: Root mean square error; MPE: Mean percentage error; R: Correlation

The modelling technique produces two methods of assessing the success of its models. Firstly,
and most obviously, the accuracy of any predicted results will ultimately determine how a
model is judged. Three of the models were able to produce reasonably accurate predictions.
The predictive errors are comparable to other predictive methods [60]. Predictions for these
grades of steel were in general of a greater accuracy than the predictions of steels produced at
Port Talbot. The models predicting the ultimate tensile strength and strain hardening exponent
produced results that mainly fell within the 5% boundaries and a mean percentage error of
almost 1%. The proof stress prediction, whilst not quite as accurate, again fell mainly within
the superimposed limits. Whilst there were some outliers, the strain ratio predictions also
showed a reasonable fit with the forty-five degree line. The reason for the increase in the
predictive accuracy compared to other models is not easily explained. A simple explanation
might look at the number of coils used to produce the models. One would assume that a
greater amount of data would produce a model that was more accurate. While this was the
case comparing the interstitial free steel models of steels produced on Zodiac and CAPL the
models of DC01/03/04 steels had considerably more coils than either and did not produce
models with a greater accuracy. This may be attributed to the relationships between the
properties and process conditions of the interstitial free steels not being as complex as the

other grades.
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The discrepancy between these results and those relating to the Port Talbot steels needs some
consideration. The inputs used to produce these models are different to the previous models;
so this may be one explanation. The microstructure of the steel is altered by the heating
regime that coil undergoes. The new models have more references to these heating regimes,
particularly the cooling phases, and may therefore produce a better estimation of them. An
inspection of the inputs selected for the two sets of models suggests that this may be some
truth to this assumption as some models (proof stress, strain ratio and strain hardening
exponent) have more temperatures as inputs for the Zodiac steels than the Port Talbot
alternatives. Looking further at the strain hardening exponent inputs suggests a flaw in this
though, as the temperature inputs to the Zodiac model are those at the start and finish of the
radiant tube section. The radiant tube furnace temperature is one of the conditions that can
be chosen as an input to any of the CAPL models. However, it was not chosen as one of the
inputs to the CAPL strain hardening exponent. This suggests that something in the Zodiac data
set made the relationship between temperature and strain hardening exponent stronger and
easier for the model to pick up. A final, and more controversial, option might be that the
measurements for the Zodiac coils (both process conditions and properties) are of a higher
standard than those from CAPL, resulting in a better data set to base models on. This is a
common problem with models of this type leading to the expression ‘garbage in, garbage out’
(Fuechsel, cited in [62]).

The elongation model produced interesting results. The thin spread of results at a value of
around 43% suggests that this approach is not suitable to model this property. By investigating
the data used to create the model it soon became apparent as to the main reason behind
these poor predictions. The elongation value is recorded as an integer value. The actual
measured property varies between 41% and 48%. The sort range and limited resolution meant
that there was little scope for the modelling process to distinguish between the different
values. This assumption is upheld by the optimised value being quite high. Generalised

regression networks with a higher spread value make greater use of old entries that don’t
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match the new entry closely. In this example the variation in the associated outputs is likely to
be large due to the way the elongation is recorded. Process conditions relating to an actual
elongation of 41% will have no values below it to call upon (due to the range of the data) and
the large spread will mean that many of the large elongation values are used in the prediction.
Likewise at the top end of the range the small values will be used in the prediction. The overall

effect of this is that all predicted values move towards a central point.

4.7. Conclusions

In this chapter generalised regression models were developed to predict the properties of
continuous annealed steels based on processing conditions and the steel’s chemistry. Models
were produced to predict the ultimate tensile strength, proof stress, elongation, strain ratio
and strain hardening exponent. Using all available inputs, models of DC05/06 steels were able
to outperform the basic linear regression models of the same grades. Later models using only
inputs selected based on their correlation to the output properties and expert knowledge were
not able to match these results but proved again to be more accurate than the basic regression
approach.

The modelling approach was also shown to have limited success predicting the properties of
different grades of steel produced on the same line, DC01/03/04. A much larger data set failed
to deliver increases in the predictive accuracy yet still provided reasonable predictions for
some of the properties. The modelling work was extended further to cover steels produced on
a different annealing line. The accuracy of these models was greater than any previously
produced model, with all models producing a mean percentage error of 6% or less. Predictions
of the elongation value produced a similar plateau as seen with other grade which may relate
to the recording of the value and the narrow range of data.

These findings suggest that generalised regression network based models are a suitable non-
linear method for predicting many of the properties of annealed steels for the grades under

consideration. Reducing the number of inputs to such models has an adverse effect on the
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predictive accuracy, but training errors suggest that this can be improved upon. While the
predictive method used was non-linear the input selection is still based on a linear approach.
In order to unlock the full potential of the generalised regression network a more suitable
input selection method needs to be found which takes into account the non-linear

relationships that exist.
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CHAPTER 5 — IMPROVING THE PREDICTIVE ACCURACY

USING A GENETIC ALGORITHM

5.1. Introduction

The previous chapter gave details on how generalised regression networks were chosen to
fulfil the task of predicting the properties of continuous annealed steels and how this method
was implemented. Models were produced using the full set of inputs available or a selection of
inputs based on their correlation with the output properties. This reduction in the number of
inputs reduced the computing power required to run the models (models of grades using
several thousand coils to populate them took longer to run). The reduction in the number of
inputs to the models may also help increase the transparency of any model produced; the
important inputs are easier to identify as they are the ones that are selected.

The models produced in the previous chapter relied on the linear correlation between the
input processes and output properties as the main input selection criteria. In addition to this
expert knowledge was employed in an attempt to pick up on some of the subtleties of the
continuous annealing process. Whilst this method was able to produce satisfactory results for
some of the grades and properties under investigation it was not felt that it was optimal. The
main concern was that the linear relationship between inputs and properties was used when
in fact many of the relationships that exist in the process are likely to be of a higher order.
With this in mind, a method of optimising the selection method was sought. Of particular
importance was the need for this method to be efficient. Trying every combination of the forty
available input conditions would require two to the power of forty iterations to be carried out
to produce just one model. With the time and computing power available this would not be

practicable, nor would a method requiring a significantly large number of iterations.
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5.2. Genetic Algorithm Implementation

The continuous annealing process involves several processes that require careful control in
order to achieve the desired mechanical properties. Each of these properties represents a
possible input to any model of the process. Strip steel undergoing continuous annealing will
also have been subject to several other thermo-mechanical processes, these processes too
require control and may also be considered as model inputs. One thing to consider, which is
seen to have an effect on the final properties of the strip, is its physical dimensions. Though,
for example, the thickness of the strip will not necessarily have an impact on the properties
itself, it will determine the line speed and hence the soak time. The amount of cold reduction
will also be important. Clearly, this leads to a choice of several possible inputs. Choosing the
right combination of these inputs is a critical factor to the success of any prediction model; too
few will lead to poor accuracy, while too many will overcomplicate the model, possibly leading
to long run times.

It was with this in mind that a method of optimising the inputs used by each model was
investigated. In the previous chapter only the spread value was optimised. As this was a single
factor the optimisation was simple. The basic approach relied on creating a model with an
initial spread estimate, analysing the error and changing the spread value accordingly. If a
similar approach could be employed to optimise the model inputs, changing the trial input set
based on the associated error, then this would negate the need to try all possible input
combinations. Using a genetic algorithm would produce a similar method, whereby the best
sets of inputs from several trial sets are combined to produce new sets to trial.

In order to be used with the generalised regression network function, coil information had to
be stored in columns. This meant that each row of the data set related to a process condition
or property. The correlation based input selection method called on process conditions by
means of a string of numbers relating to the rows containing those conditions. For example the

string {3,6,18,27,31} would call the inputs width, radiant tube furnace temperature,
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percentage cold reduction, sulphur and copper as these were stored in the corresponding
rows. In order to use a genetic algorithm to optimise the inputs, a method of representing
these as a binary string was needed. However, so that much of the original programming could
still be used, the inputs would still need to be represented in the form detailed above.

For the purpose of the genetic algorithm, an input set was represented by a binary string of 40
bits. Each bit represented a single process condition and its position in the string detailed
which process this was, using the same form as above. Bits that had a value of one
represented processes that were being used and bits with a value of zero represented those
not being used. In order to convert from this form into one compatible with the previous work,
a simple routine was devised. Each bit was multiplied by its position in the string. This resulted
in processes not in use having a value of zero and those in use having a value representing
their row. By removing all the zero values from this string, the input set could then be used
with previous programming. A similar function was programmed that converted a set of input
rows into a 40 bit binary string.

With the necessary conversion methods developed, the genetic algorithm could be now be
implemented. An initial population of twenty five input sets was created. Of these initial input
sets, one represented all inputs being used, one with all even inputs used and one with all
uneven inputs used. The ability to include an input set from previous testing was also included.
If this was not present, a set was created using the linear correlation criteria detailed in the
previous chapter. The remaining twenty one sets were created randomly. Each input set was
then used to create a network, which was then used to simulate the properties of the test
data. The mean square error from each network was then calculated. The networks were then
ranked according to their associated errors. The input sets used to create the networks
producing the four lowest errors were carried forward to create a new population for the next
iteration.

Using these input sets, the new population was constructed in the following ways:
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* The input set associated with the lowest mean square error was carried forward in its
original state.

* Six new inputs sets were created by randomly splitting and then combining the four
selected inputs sets, i.e. first with second, first with third, first with fourth, second with
third, second with fourth and third with fourth.

* An additional two input sets were mutations of the input set associated with the
lowest error.

The combination and mutation of input sets centres on splitting the input sets from the
previous iteration at a random point along their length. For combinations the split is made and
then the two halves of different input sets are joined to form two new sets. For example; two
input sets (A and B) are to be combined. The split has been determined to occur after the 26"
bit. The split occurs leaving four partial inputs sets (A;, A,, B; and B,), with those designated ‘1’
being of length 26 and those designated ‘2’ being of length 14. A; is combined with B, and B;
combined with A, to give two new inputs sets (C and D) each of length 40. The mutation occurs
in a similar way. This time only one input set is split. The beginning and end bits of the new
input sets are made up of a partial input set of randomly determined bits the length of the
missing half.

So that a population of twenty-five inputs sets was available for the next iteration, the
remaining sixteen sets were created randomly. In order to improve the efficiency of the
algorithm, and to make sure that the widest range of possible inputs sets was considered, a
routine was included that checked none of the newly created input sets had been analysed
previously. If a duplicated input set was found, it was simply replaced by a new randomly
created one. The routine was then repeated using the new population of twenty five inputs

sets.
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5.3. Combining Spread Optimisation and a Genetic Algorithm

The use of a genetic algorithm to optimise the inputs of a generalised regression network
introduces difficulties in optimising the spread value of the network. With the basic modelling
approach described in chapter four, the spread is optimised for a single set of inputs. The few
minutes it took to train networks in this manner was suitable for this training method. When
the genetic algorithm is introduced, the number of times this optimisation is required
increases dramatically for each input set and number of iterations it needs to be run. An
alternative approach may be to optimise the spread value at the end of the input optimisation
process only. This approach would require a spread value to be present at the beginning of the
input optimisation process; how this is found will impact on the remainder of the process.

The different approaches to integrating the spread optimisation into the new training regime
were both investigated. Choosing when to optimise this value was likely to be a choice
between a higher accuracy of the final network and the speed of the training routine. The first
approach looked into creating a training routine which periodically altered the spread value in
an attempt to decrease training time. This would then be compared to the second approach,
where the spread was optimised for each input set, to see what the effect was on the accuracy
of the complete training routine. Investigating the properties of one grade of steel carried out
the comparison, this being the 3004/05 steels produced on Zodiac; chosen due to the accuracy

of the previous models of these properties.

5.3.1. Input Optimisation Using a Constant Spread Value

In order to produce models for each input set and iteration, the first approach required that an
estimate of the best input set was provided to find an initial spread value. If a previous input
set was provided then this would be used with the optimisation routine detailed previously.
With no input set provided, the training routine found an input set using the correlation
method outlined previously and used these. With the spread value found, the genetic

algorithm could be implemented. In the same way as had been done with previous models,
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modelling, training and validation data sets were formed to develop the model. A network was
created for each input set using the initial spread value. Predictions based on the training data
were produced for each network and the mean square error found.

At the end of the first iteration the lowest error using the training data set was recorded. Using
the input set associated with this value, the error for the validation data set was also found.
These errors along with the associated input set were stored. The new input sets developed by
the genetic algorithm were then used for the next iteration. The lowest error for the training
data was again found. This was compared to the error achieved in the previous iteration, if it
was no lower than the previous step a count was started. A lower error resulted in the error
for the validation set being calculated and the value of the count being reset. If the validation
error was found to be lower than the previously recorded value then the new value and
associated input set replaced the stored value. The routine would then continue in a similar
manner with the count increasing if the error from training data did not change.

When the count reached ten the routine stopped and the last recorded input set (the one
associated with the lowest validation data error) was used to calculate a new spread value.
The training routine was then repeated using networks with the new spread value until the
count once again reached ten. At this point a final spread value was calculated and a final
network created using this and the appropriate input set. A simplified diagram of this training

routine is shown in Figure 5.1.
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Figure 5.1: Simplified flow diagram of the model training routine using a constant spread value

in the genetic algorithm

Using the training method outlined above, models were developed to predict the properties of
3004/05 steels produced on Zodiac. The predictions from these models are shown in Figures
5.2 to 5.6. Statistical data about these results is given in Table 5.1. As before, lines representing
where the predicted value equals the actual value, as well as 5% error lines have been

superimposed onto these results.
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Figure 5.2: Actual ultimate tensile strength values against ultimate tensile strength values
predicted by a generalised regression model for 3004/05 steels meeting specification trained
using a genetic algorithm and constant spread value (Dashed lines represent where the

predicted value equals the actual value as well as £5% error)

The optimised spread value for the ultimate tensile strength model was found to be 0.6560.
The following inputs were chosen:

Physical: weight and cold reduction

Zodiac: direct fire temperature, radiant tube furnace exit temperature, pot temperature
and roll 30 temperature

Hot Rolling: drop temperature and rougher temperature

Chemistry: manganese, nickel, nitrogen, aluminium (total), niobium, boron, titanium,
molybdenum and titanium excess

145



Chapter 5 — Improving the Predictive Accuracy Using a Genetic Algorithm

190
180
o
oooo
o 00./80
& 23 e} E;C) 1076
o
= 170 o 8 SRS @
00 088° o °
= O
vl O O@Oo 0 o
5] 0 ©) )
S 90 o
S go g 08
R} O O
% o o o) © O
'g 160 e) o) o
a e}
OOOO o
o}
o
o
150
140

140 145 150 155 160 165 170 175 180 185 190
Actual Proof Stress/ MPa

Figure 5.3: Actual proof stress values against proof stress values predicted by a generalised
regression model for 3004/05 steels meeting specification trained using a genetic algorithm
and constant spread value (Dashed lines represent where the predicted value equals the actual
value as well as +5% error)

The optimised spread value for the proof stress model was found to be 0.9770. The following
inputs were chosen:

Physical: gauge and width

Zodiac: direct fire temperature, radiant tube furnace start temperature, radiant tube
furnace exit, roll 30 temperature, temper mill load, temper mill tension in and line
speed

Hot Rolling: rougher temperature

Chemistry: carbon, silicon, sulphur, nickel, tin, vanadium, aluminium (soluble), niobium,
molybdenum, arsenic and titanium excess
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Figure 5.4: Actual elongation values against elongation values predicted by a generalised
regression model for 3004/05 steels meeting specification trained using a genetic algorithm
and constant spread value (Dashed lines represent where the predicted value equals the actual

value as well as +5% error)

The optimised spread value for the elongation model was found to be 0.9992. The following

inputs were chosen:

Physical: width, length and weight
Zodiac: snout temperature, temper mill tension in, temper mill tension out and line speed
Hot Rolling: finishing temperature

Chemistry: carbon, tin, aluminium (total), aluminium (soluble), niobium, boron, titanium and
titanium excess
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Figure 5.5: Actual strain ratio values against strain ratio values predicted by a generalised
regression model for 3004/05 steels meeting specification trained using a genetic algorithm
and constant spread value (Dashed lines represent where the predicted value equals the actual
value as well as +5% error)

The optimised spread value for the strain ratio model was found to be 0.9784. The following
inputs were chosen:

Physical: gauge and cold reduction

Zodiac: direct fire temperature, radiant tube furnace start temperature, radiant tube
furnace exit temperature, pot temperature, roll 30 temperature water quench
temperature, line speed, temper mill tension in and coating weight

Hot Rolling: drop temperature, rougher temperature and finishing temperature

Chemistry: carbon, silicon, phosphorus, manganese, tin, aluminium (total) niobium,
chromium and titanium excess
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Figure 5.6: Actual strain hardening exponent values against strain hardening exponent values
predicted by a generalised regression model for 3004/05 steels meeting specification trained
using a genetic algorithm and constant spread value (Dashed lines represent where the

predicted value equals the actual value as well as £5% error)

The optimised spread value for the strain hardening exponent model was found to be 0.4217.
The following inputs were chosen:

Physical: cold reduction

Zodiac: radiant tube furnace start temperature, radiant tube furnace exit temperature,
temper mill load, temper mill tension in and line speed

Hot Rolling:

Chemistry: carbon, manganese, nickel and titanium excess
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Table 5.1: Statistical data produced from validation data set from a generalised regression
model of 3004/05 steels meeting specification trained using a genetic algorithm and constant

spread value

Property MSE RMSE MPE R

Ultimate tensile strength 15.5 3.9 0.99% 0.81
Proof stress 22.8 4.8 2.12% 0.75
Elongation 2.95 1.72 3.23% 0.29
Strain ratio 0.035 0.19 5.75% 0.71
Strain hardening exponent 0.00002 0.004 1.33% 0.75

MSE: Mean square error; RMSE: Root mean square error; MPE: Mean percentage error; R: Correlation

Using a genetic algorithm to select which process conditions should be inputs to the
generalised regression networks it was possible to reduce the predictive error for all but one of
properties under investigation. When compared to the best previous results, found using the
generalised regression network with all possible inputs, the reductions in the root mean
square error were as follows: ultimate tensile strength 9.5%, proof stress 5.7%, elongation
2.4%, strain ratio 2.7% and strain hardening exponent 0.0% As well as the reduction in error
models exhibited an increase in the correlation value, showing a better agreement between
the predicted and actual results.

Several key observations can be made with regards to difference between this approach and
the previous one, as well as the training method in general. The first of these is the lack of
change in the predictive error from the strain hardening model. This lack of improvement may
be related to correlation between the process conditions and the properties. A stronger linear
relationship was observed between certain process conditions and the strain hardening
exponent than the other properties. One may therefore assume that the original linear
correlation based inputs model was closer to being optimal for this property than for the other
two, meaning that there was less scope for improvement.

The ultimate tensile strength model was found to have the same spread value as the

correlation based input selection model, even though the inputs chosen were different. This
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relates to mechanisms within the training program to prevent the model overfitting to the
training data. For the initial training period the test input sets are used in conjunction with a
spread value optimised using linear correlation based inputs. Models producing a lower error
but using a different input set during this part of the training all have the same spread value.
The inputs and spread producing the lowest training and validation error at all stages of the
process are recorded. When a new spread value is calculated (after the training error has
remained constant for ten iterations) the best input set from the first stage of the training
process is used. The training error is used to optimise this value; so while the new spread value
may reduce this error its effect on the validation error may not be the same. If the validation
error fails to better the previously recorded values during the next stage of the training
process the new spread value will not be retained, the training will output the spread value
and input set matching the lowest concurrent training and validation errors.

As well as assessing the models based on the error values they produce, the inputs used to
produce these predictions can also be analysed. If the inputs selected match some of these
known relationships, then one may assume that the model is picking up on the complex
relationships that exist in the annealing process. Ferrite grain size refinement is a simple
method of increasing the strength of steel. Results from other researchers suggest that this is
influenced by the amount of cold reduction employed, the annealing temperature and the
annealing time [19]. These process conditions have been chosen as inputs to the two strength
models. The steel’s chemistry can also play a major part in its final properties. There are two
common strengthening methods that can be employed, these being solid solution
strengthening (normally related to the levels of carbon, phosphorus, manganese etc) and
precipitation strengthening (normally related to the levels of vanadium, titanium, niobium
etc)[5, 26, 32]. Though these methods may not be associated with the type of steel under
investigation in this work it is important to note that some of the factors relating to them have

been selected as inputs to the models relating to the steel’s strength.
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The relationships that exist between processing conditions and the formability of steel is
another area that has seen a lot of research and so can be used to identify if the modelling
process reflects the actual mechanisms for these properties. The strain ratio relates to the
texture of the steel’s microstructure. This is developed during recrystallization. The rate of
recrystallization can be controlled by several factors, but the key ones are the soak
temperature, amount of cold reduction and soak time [5, 32]. The amount of cold reduction
and several temperatures from the annealing furnace are present as inputs to the strain ratio
model. Though the soak time is not an input available for the model to select it can be
deduced using the line speed, another one of the inputs selected.

The strain ratio can be related to some of the hot rolling process conditions. The coiling
temperature is normally quoted as one of these factors as it is required to be high for
continuous annealed steels to aid precipitate coarsening [5]. While this measurement has not
been selected other similar ones have. A lower drop temperature is required continuous
annealed steels as this prevents some of the precipitates from dissolving during the reheat
phase and thus helps coarsen them [32]. Again, this is one of the inputs chosen.

Finally, there are certain alloying additions that are chosen due to their influence on the strain
ratio. Excessive levels of carbon are avoided in coils that are continuously annealed due to
their adverse effects at the higher annealing temperatures and its effect on texture
development as an interstitial atom. Similarly, free nitrogen in the coil retards recrystallization
and reduces the final properties. In order to overcome these difficulties titanium and niobium
are added to combine with the carbon and nitrogen, leaving interstitial free steel in which the
required textures can develop [32]. Levels of carbon and niobium were selected as model
inputs. The titanium level is represented by the titanium excess value.

The training process has been shown to select inputs which relate to known relationships that
affect the final mechanical properties of continuous annealed steels. Though not all of these

relationships are associated with the steels under investigation it is important to consider
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them as known metallurgical principles. This has shown that the modelling process is capable

of detecting some of the relationships that are involved in the annealing process.

5.3.2. Spread Optimisation for Each Input Set

The second approach to combine the spread calculation and genetic algorithm was based on
calculating a spread value for every input set. The previous approach required that the spread
optimisation only be carried out at three stages; the new approach would require it to be
carried out twenty-five times for each iteration. To account for the extra time that this would
take, the number of loops the training routine had to complete was altered and an early
stopping method was introduced. These changes also reflected observations made whilst using
the alternative approach.

As this new approach did not require a spread value to be found at the start of the routine,
there was no longer a requirement to find an initial input set using the correlation method if a
previous set was not provided. Networks were created for each input set with the spread value
being found using the fminsearch function as described previously. The mean square error
between the training data and the network predictions was then calculated. The network
associated with the lowest error was then used to predict the properties of the validation data
set. The error from this prediction and the associated input set was recorded. New inputs were
then created using the genetic algorithm methodology detailed above. These were used in the
next iteration.

The lowest error from the training data was found again. This was compared to the previously
recorded training data error. If it was no lower than the previous iteration then two counts
were started. The first of these counted the number of times the training data error remained
the same, the second counted the lack of change in the validation data error. This second
count related to the early stopping mechanism. A lower training data error resulted in
predictions from the validation set being calculated and the training data count being reset. If

the validation error was found to be lower than the previously recorded value, then the new
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value and associated input set replaced the stored value and the validation count was also
reset. The routine would then continue in a similar manner with both counts increasing if the
error from training data did not change. If there is a change in the validation error but the
training error remains constant, then only the validation count increases.

As it was hoped that calculating the spread value for each input set would result in predictions
of a greater accuracy, the routine continued until the count reached a value of only five. At this
point the training was completed and a final network was created using the last recorded input
set (the one associated with the lowest validation data error) and the associated optimised
spread value. When using the alternative method it was observed that the validation error
would remain constant for several iterations while the training error continued to decrease.
The final validation error would be the same even though the extra iterations had taken place.
For this reason an early stopping mechanism was introduced. If the validation data count
reached twenty then the training finished, regardless of the training count value. A diagram of
the training routine is shown in Figure 5.7.

Using the training method outlined above, models were developed to predict the properties of
3004/05 steels produced on Zodiac. The predictions from these models are shown in Figures
5.8 to 5.12. Statistical data about these results is given in Table 5.2. As before, lines
representing where the predicted value equals the actual value as well as £5% error lines have

been superimposed on to these results.
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Figure 5.7: Simplified flow diagram of the model training routine using different spread values

in the genetic algorithm
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Figure 5.8: Actual ultimate tensile strength values against ultimate tensile strength values
predicted by a generalised regression model for 3004/05 steels meeting specification trained
using a genetic algorithm and varying spread value (Dashed lines represent where the

predicted value equals the actual value as well as £5% error)

The optimised spread value for the ultimate tensile strength model was found to be 0.7764.
The following inputs were chosen:

Physical: gauge

Zodiac: snout temperature, pot temperature, roll 30 temperature, water quench
temperature and temper mill tension out

Hot Rolling: drop temperature and finishing temperature

Chemistry: carbon, phosphorus, manganese, tin, nitrogen, aluminium (soluble) niobium,
titanium, molybdenum, arsenic and titanium excess
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Figure 5.9: Actual proof stress values against proof stress values predicted by a generalised
regression model for 3004/05 steels meeting specification trained using a genetic algorithm
and varying spread value (Dashed lines represent where the predicted value equals the actual

value as well as +5% error)

The optimised spread value for the proof stress model was found to be 0.6213. The following
inputs were chosen:

Physical: gauge

Zodiac: snout temperature, roll 30 temperature, temper mill load and line speed

Hot Rolling:

Chemistry: carbon, silicon, phosphorus, nickel, copper, tin, nitrogen, aluminium (total),
boron, titanium, molybdenum and chromium
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Figure 5.10: Actual elongation values against elongation values predicted by a generalised
regression model for 3004/05 steels meeting specification trained using a genetic algorithm
and varying spread value (Dashed lines represent where the predicted value equals the actual

value as well as +5% error)

The optimised spread value for the elongation model was found to be 1.3571. The following

inputs were chosen:

Physical: gauge, length and weight

Zodiac: direct fire temperature, snout temperature, water quench temperature, coating
weight and line speed

Hot Rolling: finishing temperature

Chemistry: silicon, sulphur, tin, nitrogen, aluminium (total), molybdenum and titanium excess
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Figure 5.11: Actual strain ratio values against strain ratio values predicted by a generalised

regression model for 3004/05 steels meeting specification trained using a genetic algorithm

and varying spread value (Dashed lines represent where the predicted value equals the actual

value as well as +5% error)

The optimised spread value for the strain ratio model was found to be 0.9187. The following

inputs were chosen:

Physical:
Zodiac:

Hot Rolling:
Chemistry:

width and cold reduction

direct fire temperature, snout temperature, coating weight and temper mill load

drop temperature and rougher temperature

carbon, phosphorus, nickel, copper, tin, nitrogen, aluminium (soluble), boron,

titanium, molybdenum and chromium
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Figure 5.12: Actual strain hardening exponent values against strain hardening exponent values
predicted by a generalised regression model for 3004/05 steels meeting specification trained
using a genetic algorithm and varying spread value (Dashed lines represent where the

predicted value equals the actual value as well as £5% error)

The optimised spread value for the strain hardening exponent model was found to be 0.8268.
The following inputs were chosen:

Physical:

Zodiac: radiant tube furnace start temperature, pot temperature, snout temperature,
coating weight, temper mill load and line speed

Hot Rolling: drop temperature

Chemistry: carbon, phosphorus, manganese, nickel, copper, vanadium, aluminium (soluble),
niobium, boron and titanium excess
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Table 5.2: Statistical data produced from validation data set from a generalised regression
model of 3004/05 steels meeting specification trained using a genetic algorithm and varying

spread value

Property MSE RMSE MPE R

Ultimate tensile strength 16.7 4.1 1.02% 0.80
Proof stress 22.2 4.7 2.07% 0.77
Elongation 3.00 1.73 3.29% 0.27
Strain ratio 0.038 0.19 5.93% 0.68
Strain hardening exponent 0.00002 0.004 1.26% 0.78

MSE: Mean square error; RMSE: Root mean square error; MPE: Mean percentage error; R: Correlation
Using this modified training routine failed to produce increases in the predictive accuracy of all
the models produced by it. When there were increases in this value they were not significant
enough, when compared to the previous approach, to warrant the extra training time the new
approach required. The changes in root mean square error from the previous models were as
follows: ultimate tensile strength 6.2%, proof stress 6.9%, elongation 1.6%, strain ratio -2.0%
(increase) and strain hardening exponent 4.9%. The results from these models were in general
better than those produced by the correlation based input model.

Training models using this approach required considerably more time than the previous
approach, even though measures had been taken to try and minimise this increase. Models
developed using this approach took between four and eight hours to train. The spread
optimisation routine was called upon many more times in this model and was the main cause
of this long training time, with each iteration requiring it to be run twenty five times. Most
models took less than thirty iterations to complete the training routine. Only the ultimate
tensile strength model terminated training due to the early stopping mechanisms employed.
The proof stress and strain hardening exponent models took more steps to train; an
interesting observation as these were the models whose predictive error had decreased.

One would assume that this modelling approach should be just as capable as the method used
previously. Indeed, with the spread value optimised for every input set an improvement in the

accuracy of these models would be expected. Models produced using this approach were
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found to show an improved accuracy when they required more iterations to complete. This
suggests that changing the training routine to allow for more iterations would yield greater
results. The simplest way of doing this would be to increase the number of loops that the
training routine and early stopping mechanism required.

This approach was considered but there were limiting factors that prevented this line of
investigation from being fully realised. The first of these was the time required to train the
models. One may assume that doubling the number of loops would likely result in the training
time also being doubled, meaning training times of nearly half a day for some of the models.
Whilst these times may be acceptable for final models produced by a method similar to this
that would be used on plant they are not practical for a research project. The second, and
most limiting factor, was the amount of computing power that this increase would require.
Training using the original configuration ran into the occasional problem, with Matlab exiting
abruptly. The problem was always encountered during training runs that had taken a lot of
iterations already, though the exact cause for this was unknown and due to the random nature

of some of the training routine they were not repeatable.

5.3.3. Conclusions on the Different Approaches

Both methods of combining the spread optimisation routine with a genetic algorithm for input
optimisation were able to produce models of a greater accuracy than the correlation input
based models that had been developed previously for the majority of properties under
investigation. This increase in accuracy came at the expense of training time, with times now
measured in hours rather than minutes. Using a constant spread value for all iterations in a
loop before optimising it to the best input set was found to provide the best compromise
between training time and model accuracy. Optimising the spread value for each input set did
not yield the expected increase in model accuracy.

Based on these results it was decided to continue this research using the constant spread

option, as the benefits of using the other method were far outweighed by the time
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implications. For future work the early stopping mechanisms developed for the varying spread
approach would also be employed as part of the constant spread training model. The impact
due to an increase in the number of loops used by the varying spread approach should also be
investigated, however due to time and computing restraints it would not be as part of this
project.

The results suggest that the models predicting the ultimate tensile strength, proof stress and
strain hardening exponent could be used to predict these properties with a good degree of
accuracy for coils of the same grade. While the strain ratio predictions are not up to this
standard the results from this model suggest that the model could be used to help analyse the
steel making process, negating the need for as many test coils to be rolled. As with the
previous models predicted values of the elongation values were poor when compared to the
other properties. Further investigation into the cause of this problem and methods of

rectifying is required.

5.4. Predictions from Additional Grades Using the Genetic Algorithm

Approach

5.4.1. Previously Investigated Grades

With a suitable method of integrating a genetic algorithm into the model training routine
found new model were developed to predict the properties of the other grades investigated
during this project. The first of these focused on the DC05/06 steels that were used during the
initial research. The results from these models are shown in Figures 5.13 to 5.17. Statistical
data about these results is given in Table 5.3. As before, lines representing where the
predicted value equals the actual value as well as £5% error lines have been superimposed on

to these results.
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Figure 5.13: Actual ultimate tensile strength values against ultimate tensile strength values
predicted by a generalised regression model for DCO5/06 steels meeting specification trained
using a genetic algorithm and constant spread value (Dashed lines represent where the

predicted value equals the actual value as well as £5% error)

The optimised spread value for the ultimate tensile strength model was found to be 0.8800.
The following inputs were chosen:

Physical: gauge, width and cold reduction

CAPL: second cooling temperature, furnace tension, temper mill tension in and temper
mill tension out

Hot Rolling: rougher temperature

Chemistry: carbon, sulphur, phosphorus, nickel, tin, vanadium, nitrogen, aluminium (total),
aluminium (soluble) and boron
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Figure 5.14: Actual proof stress values against proof stress values predicted by a generalised

regression model for DCO5/06 steels meeting specification trained using a genetic algorithm

and constant spread value (Dashed lines represent where the predicted value equals the actual

value as well as +5% error)

The optimised spread value for the proof stress model was found to be 1.4499. The following

inputs were chosen:

Physical:
CAPL:

Hot Rolling:
Chemistry:

width and cold reduction

radiant tube furnace temperature, soak temperature, controlled gas jet cooling
temperature, reheat overage temperature, overage temperature, second cooling
temperature, HGJC rate, temper mill tension out, temper mill speed and temper
mill extension

drop temperature, finishing temperature and coiling temperature

silicon, sulphur, phosphorus, manganese, tin, vanadium, nitrogen, aluminium
(total), aluminium (soluble), niobium, boron and chromium
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Figure 5.15: Actual elongation values against elongation values predicted by a generalised
regression model for DCO5/06 steels meeting specification trained using a genetic algorithm
and constant spread value (Dashed lines represent where the predicted value equals the actual

value as well as +5% error)

The optimised spread value for the elongation model was found to be 1.0096. The following

inputs were chosen:

Physical:

CAPL: overage temperature, temper mill tension in and temper mill load
Hot Rolling: rougher temperature, finishing temperature and coiling temperature
Chemistry: silicon, manganese, nitrogen, niobium and titanium
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Figure 5.16: Actual strain ratio values against strain ratio values predicted by a generalised
regression model for DCO5/06 steels meeting specification trained using a genetic algorithm
and constant spread value (Dashed lines represent where the predicted value equals the actual

value as well as +5% error)

The optimised spread value for the strain ratio model was found to be 1.3692. The following
inputs were chosen:

Physical: gauge, width and cold reduction

CAPL: soak temperature, controlled gas jet cooling temperature, reheat overage
temperature, overage temperature, second cooling temperature, HGJC rate, soak
time, temper mill tension out, and temper mill extension

Hot Rolling: drop temperature

Chemistry: carbon, phosphorus, manganese, nickel, vanadium, aluminium (total), boron,
titanium and chromium
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Figure 5.17: Actual strain hardening exponent values against strain hardening exponent values
predicted by a generalised regression model for DC05/06 steels meeting specification trained
using a genetic algorithm and constant spread value (Dashed lines represent where the

predicted value equals the actual value as well as £5% error)

The optimised spread value for the strain ratio model was found to be 1.1706. The following
inputs were chosen:

Physical: width and cold reduction

CAPL: reheat overage temperature, over temperature, second cooling temperature,
furnace tension, temper mill tension out and temper mill extension

Hot Rolling: drop temperature, finishing temperature and coiling temperature

Chemistry: silicon, phosphorus, nickel, vanadium, nitrogen, aluminium (soluble) and
chromium
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Table 5.3: Statistical data produced from validation data set from a generalised regression
model of DCO5/06 steels meeting specification trained using a genetic algorithm and constant

spread value

Property MSE RMSE MPE R

Ultimate tensile strength 49.2 7.0 1.79% 0.68
Proof stress 58.2 7.6 3.66% 0.65
Elongation 3.01 1.74 3.37% 0.30
Strain ratio 0.017 0.13 4.64% 0.51
Strain hardening exponent 0.00004 0.007 2.31% 0.56

MSE: Mean square error; RMSE: Root mean square error; MPE: Mean percentage error; R: Correlation

Using a generalised regression network with inputs selected using a genetic algorithm resulted
in the predictive errors of all but one of the models predicting the properties of DC05/06 steels
being lower than all other modelling approaches tried previously. The only model to see an
increase in the predictive error was the strain hardening exponent model; the increase was
very small. The reductions in the root mean square errors from the best previous models
(generalised regression using all available inputs) were as follows: ultimate tensile strength
3.9%, proof stress 1.8%, elongation 0.8%, strain ratio 2.1% and strain hardening exponent -
0.5% (increase).

Next models of the DC01/03/04 steels were produced. The results from these models are
shown in Figures 5.18 to 5.22. Statistical data about these results is given in Table 5.4. As
before, lines representing where the predicted value equals the actual value as well as £5%

error lines have been superimposed on to these results.
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Figure 5.18: Actual ultimate tensile strength values against ultimate tensile strength values
predicted by a generalised regression model for DC01/03/04 steels meeting specification
trained using a genetic algorithm and constant spread value (Dashed lines represent where the

predicted value equals the actual value as well as £5% error)

The optimised spread value for the ultimate tensile strength model was found to be 0.5821.
The following inputs were chosen:

Physical: gauge, width and cold reduction

CAPL: radiant tube furnace temperature, soak temperature, controlled gas jet cooling
temperature, high gas jet cooling temperature, reheat overage temperature,
overage temperature, second cooling temperature, temper mill tension in,
temper mill load, temper mill speed and temper mill extension

Hot Rolling: drop temperature

Chemistry: manganese, nickel, boron, chromium and titanium excess
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Figure 5.19: Actual proof stress values against proof stress values predicted by a generalised
regression model for DC01/03/04 steels meeting specification trained using a genetic
algorithm and constant spread value (Dashed lines represent where the predicted value equals

the actual value as well as +5% error)

The optimised spread value for the proof stress model was found to be 0.4162. The following
inputs were chosen:

Physical: width and weight

CAPL: soak temperature, controlled gas jet cooling temperature, high gas jet cooling
temperature, reheat overage temperature, overage temperature, HGJC rate, soak
time, temper mil tension out and temper mill speed

Hot Rolling:

Chemistry: carbon, silicon, phosphorus, vanadium, nitrogen, niobium, boron, titanium,
chromium and titanium excess
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Figure 5.20: Actual elongation values against elongation values predicted by a generalised
regression model for DC01/03/04 steels meeting specification trained using a genetic
algorithm and constant spread value (Dashed lines represent where the predicted value equals

the actual value as well as +5% error)

The optimised spread value for the elongation model was found to be 0.4104. The following

inputs were chosen:

Physical: cold reduction

CAPL: radiant tube furnace temperature, soak temperature, controlled gas jet cooling
temperature, high gas jet cooling temperature and soak time

Hot Rolling:

Chemistry: carbon manganese and titanium excess
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Figure 5.21: Actual strain ratio values against strain ratio values predicted by a generalised
regression model for DC01/03/04 steels meeting specification trained using a genetic
algorithm and constant spread value (Dashed lines represent where the predicted value equals
the actual value as well as +5% error)

The optimised spread value for the strain ratio model was found to be 1.1334. The following
inputs were chosen:

Physical: width

CAPL: radiant tube furnace temperature, soak temperature, high gas jet cooling
temperature, overage temperature, second cooling temperature, HGJC rate, soak
time, furnace tension, temper mill tension in, temper mill tension out, temper mill
load and temper mill speed

Hot Rolling: drop temperature and coiling temperature

Chemistry: carbon, sulphur, phosphorus, manganese, tin, vanadium, nitrogen, aluminium
(total), aluminium (soluble), niobium, boron, titanium, chromium and titanium
excess
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Figure 5.22: Actual strain hardening exponent values against strain hardening exponent values

predicted by a generalised regression model for DC01/03/04 steels meeting specification

trained using a genetic algorithm and constant spread value(Dashed lines represent where the

predicted value equals the actual value as well as £5% error)

The optimised spread value for the strain ratio model was found to be 1.1438. The following

inputs were chosen:

Physical: gauge, weight and cold reduction

CAPL: soak temperature, high gas jet cooling temperature, overage temperature, HGJC

rate, furnace tension, temper mill tension out and temper mill speed

Hot Rolling: rougher temperature and coiling temperature

Chemistry: silicon, phosphorus, nickel, tin, nitrogen, aluminium (soluble), boron and

chromium
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Table 5.4: Statistical data produced from validation data set from a generalised regression
model of DC01/03/04 steels meeting specification trained using a genetic algorithm and

constant spread value

Property MSE RMSE MPE R

Ultimate tensile strength 55.2 7.4 1.74% 0.72
Proof stress 132.1 115 4.16% 0.64
Elongation 5.50 2.35 4.63% 0.15
Strain ratio 0.031 0.18 7.21% 0.41
Strain hardening exponent 0.00004 0.006 2.16% 0.74

MSE: Mean square error; RMSE: Root mean square error; MPE: Mean percentage error; R: Correlation

The results suggest that the models predicting the ultimate tensile strength, proof stress and
strain hardening exponent could be used to predict these properties with a good degree of
accuracy for coils of the same grade. Elongation and strain ratio prediction were found to be
poor for this grade of steel. Further development of these models would be required for them
to have any additional use. The reductions in the root mean square errors from the best
previous models (generalised regression using correlation derived inputs) were as follows:
ultimate tensile strength 6.7%, proof stress 2.0%, elongation 0.0% strain ratio 7.5% and strain
hardening exponent 9.28%. Models of this grade of steel developed using the genetic
algorithm approach took a considerable amount of time to train, all taking at least 24 hours to
complete. The increase in training time was due to the considerably larger data sets used to

produce these models.

5.4.2. Additional Zodiac Grades

Late into the development of this project data sets containing the processing information and
mechanical properties for two additional grades of steel produced on Zodiac became available.
The first of these, DX51, is a similar grade to the DC01/03/04 steels produced on CAPL. This
data sets covered steels processed during the period January 2010 to July 2010. The second

set, containing SD350/450 coils, represented a different family of steel grades to any of those
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studied previously, so would be a good test of the adaptability of the modelling process. This
set covered steels produced during the period January 2010 to April 2011.

Slight differences between the current data sets and those used to produce the original Zodiac
models meant that the current data was not compatible with the importing tool. Due to time
restraints it was decided to sort the new data by hand so that it would be compatible, rather
than to rewrite the importing tool. This allowed the investigation to be carried out within the
remaining time frame of the project. Due to this the data importing and cleaning mechanisms
that had been written previously could not be used in their entirety. Coils could not be
checked against the required specifications, meaning that all available coils were selected
regardless of their final properties. After data cleaning, the DX51 data set contained 1613
complete coils. The SD350/450 data set contained only 157 complete coils. Closer inspection
of this data set revealed that some mechanical properties were not available for every coil. In
order to try and model these steels, they would be selected based on individual mechanical
properties and not the complete set.

To investigate the SD350/450 steels, data needed to be selected one property at a time, rather
than inputting the whole data set into Matlab simultaneously. In the case of the ultimate
tensile strength value, this meant that only 763 coils were selected. Past work has shown that
poor results are achieved using a small amount of coil information. However, it was decided to
try and model these steels anyway as this was the only data available at the time. For the
proof stress 763 coils were again selected. Initial checks suggested that these were the same
763 coils selected for the ultimate tensile strength model. The maximum, minimum, mean,
standard deviation and units of the inputs values and output properties from the cleaned data
sets of DX51 and SD350/450 are shown in Tables 5.5 and 5.6 respectively. A slight change in
the processing of these coils meant that the temper mill elongation value was selected as a

possible input rather that the temper mill load.
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The results from the DX51 models are shown in Figures 5.23 to 5.27. Statistical data about
these results is given in Table 5.7. As before, lines representing where the predicted value

equals the actual value as well as £5% error lines have been superimposed on to these results.
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Table 5.5: DX51 cleaned data set input conditions and output properties

Quantity Max Min Means Std Unit
Gauge 2.01 0.44 1.13 0.44 mm
Width 1527 950 1285 132 mm
Weight 28.10 4.58 16.54 5.36 tonnes
Direct Fire (DF) (average) 746.15 | 460.00 606.72 28.76 °C
Radiant Tube Furnace Start (RTFS) (average) 840.21 557.42 707.94 27.05 °C
Snout (average) 902.69 | 400.53 471.20 15.95 °C
Water Quench (WQ) (average) 488.10 50.07 94.69 20.93 °C
Coating Weight 177 49 119 30 g/m?
Length 6057 305 1711 965 m
Line Speed 151.20 30.00 111.89 29.53 m/min
Temper Mill Extension (TME) 1.47 0.04 0.16 0.27 %
Temper Mill Tension In (TMTI) 1210.13 | 2029.26 | 5751.10 1445.52 KN
Hot Rolled Drop Temperature 1294 1155 1213 19 °C
Hot Rolled Coiling Temperature 615 570 601 3 °C
Hot Rolled Finishing Temperature 925 850 894 8 °C
Hot Rolled Stand 5 Temperature (HRS5) 1144 1022 1096 17 °C
Cold Reduction 0.810 0.534 0.659 0.067 %
Hot Dip Pot Temperature (average) 668.07 | 452.77 463.50 7.50 °C
Roll 30 Temperature (average) 200.81 50.00 137.67 22.02 °C
Radiant Tube Furnace End (RTFE) (average) 853.04 | 643.59 727.28 24.98 °C
Temper Mill Tension Out (TMTO) 9178.00 | 2073.16 | 6048.82 1545.69 kN
Molybdenum (Mo) 0.0050 0.0010 0.0011 0.0003 %wt
Calcium (Ca) 0.0000 0.0000 0.0000 0.0000 %wt
Carbon (C) 0.1030 0.0190 0.0455 0.0095 %wt
Silicon (Si) 0.0240 0.0010 0.0036 0.0030 %wt
Sulphur (S) 0.0300 0.0042 0.0199 0.0055 %wt
Phosphorus (P) 0.0270 0.0040 0.0122 0.0043 %wt
Manganese (Mn) 0.4460 | 0.1140 0.2036 0.0484 %wt
Nickel (Ni) 0.0260 0.0070 0.0124 0.0027 %wt
Copper (Cu) 0.0400 0.0070 0.0179 0.0063 %wt
Tin (Sn) 0.0240 0.0010 0.0037 0.0021 %wt
Vanadium (V) 0.0020 0.0010 0.0010 0.0000 %wt
Nitrogen (N) 0.0089 0.0018 0.0035 0.0010 %wt
Aluminium (Al) (Total) 0.0930 | 0.0180 | 0.0384 | 0.0089 %wt
Aluminium (Al) (Soluble) 0.0860 | 0.0170 | 0.0357 | 0.0083 %wt
Niobium (Nb) 0.0020 0.0010 0.0010 0.0001 %wt
Boron (B) 0.0033 0.0001 0.0001 0.0003 %wt
Titanium (Ti) 0.0040 0.0010 0.0013 0.0005 %wt
Chromium (Cr) 0.0520 0.0060 0.0159 0.0046 %wt
Titanium Excess (Ti*) -0.1172 | -0.4520 | -0.2224 0.0383

Ultimate Tensile Stregth (Rm) 430 329 366 14 N/mm?
Proof Stress (Re) 374 207 299 22 N/mm?
Elongation (A) 45 20 36 3 %
Strain Ratio (r) 2.45 1.01 1.58 0.19

Strain Hardening Exponent (n) 0.280 0.133 0.204 0.026
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Table5.6: SD350/450 cleaned data set input conditions and output properties

Quantity Max Min Means Std Unit
Gauge 1.99 0.78 1.21 0.27 mm
Width 1425 953 1154 120 mm
Weight 25.15 5.94 14.95 5.06 tonnes
Direct Fire (DF) (average) 729.66 | 564.50 619.09 29.54 °C
Radiant Tube Furnace Start (RTFS) (average) 849.32 | 413.05 726.17 25.75 °C
Snout (average) 498.82 | 446.12 471.00 8.98 °C
Water Quench (WQ) (average) 310.23 50.07 98.21 16.08 °C
Coating Weight 180 50 137 12 g/m’
Length 2715 477 1401 508 m
Line Speed 150.00 42.00 104.70 21.42 m/min
Temper Mill Extension (TME) 2.04 0.06 1.48 0.17 %
Temper Mill Tension In (TMTI) 9425.17 | 2522.00 | 6163.51 | 1487.97 KN
Hot Rolled Drop Temperature 1274 1151 1230 16 °C
Hot Rolled Coiling Temperature 676 569 620 18 °C
Hot Rolled Finishing Temperature 915 855 893 6 °C
Hot Rolled Stand 5 Temperature (HRS5) 1148 1046 1103 16 °C
Cold Reduction 0.757 0.287 0.564 0.040 %
Hot Dip Pot Temperature (average) 550.17 | 453.55 462.00 4.32 °C
Roll 30 Temperature (average) 181.59 50.00 141.89 19.82 °C
Radiant Tube Furnace End (RTFE) (average) 846.34 | 669.36 738.51 25.37 °C
Temper Mill Tension Out (TMTO) 8701.65 | 2730.00 | 5656.52 | 1161.81 kN
Molybdenum (Mo) 0.0040 0.0010 0.0011 0.0004 %wt
Calcium (Ca) 0.0007 0.0001 0.0002 0.0001 %wt
Carbon (C) 0.0790 0.0015 0.0620 0.0057 %wt
Silicon (Si) 0.0250 0.0020 0.0079 0.0043 %wt
Sulphur (S) 0.0220 0.0050 0.0147 0.0029 %wt
Phosphorus (P) 0.0870 0.0150 0.0721 0.0062 %wt
Manganese (Mn) 1.2130 | 0.0990 0.3598 0.1782 %wt
Nickel (Ni) 0.0310 0.0080 0.0148 0.0038 %wt
Copper (Cu) 0.0420 0.0100 0.0222 0.0082 %wt
Tin (Sn) 0.0170 0.0010 0.0040 0.0024 %wt
Vanadium (V) 0.0030 0.0010 0.0011 0.0003 %wt
Nitrogen (N) 0.0080 0.0022 0.0045 0.0010 %wt
Aluminium (Al) (Total) 0.0780 | 0.0210 | 0.0407 | 0.0063 | %wt
Aluminium (Al) (Soluble) 0.0720 | 0.0200 | 0.0377 | 0.0059 | %wt
Niobium (Nb) 0.0380 0.0010 0.0203 0.0040 %wt
Boron (B) 0.0007 0.0001 0.0001 0.0001 %wt
Titanium (Ti) 0.0480 0.0010 0.0027 0.0018 %wt
Chromium (Cr) 0.0300 0.0100 0.0174 0.0041 %wt
Titanium Excess (Ti*) 0.0226 | -0.3602 -0.2827 0.0245

Ultimate Tensile Stregth (Rm) 756 338 491 36 N/mm?
Proof Stress (Re) 726 163 389 37 N/mm?
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Figure 5.23: Actual ultimate tensile strength values against ultimate tensile strength values
predicted by a generalised regression model for DX51 steels meeting specification trained
using a genetic algorithm and constant spread value (Dashed lines represent where the
predicted value equals the actual value as well as £5% error)

The optimised spread value for the ultimate tensile strength model was found to be 1.4260.
The following inputs were chosen:

Physical: gauge, length and cold reduction

Zodiac: direct fire temperature, radiant tube furnace exit temperature, roll 30
temperature, coating weight, temper mill tension in, temper mil tension out,
temper mill extension and line speed

Hot Rolling: rougher temperature, finishing temperature and coiling temperature

Chemistry: carbon, silicon, sulphur, phosphorus, manganese, copper, vanadium, nitrogen,
aluminium (total), boron, titanium, chromium and titanium excess
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Figure 5.24:

Actual Proof Stress/ MPa

Actual proof stress values against proof stress values predicted by a generalised

regression model for DX51 steels meeting specification trained using a genetic algorithm and

constant spread value (Dashed lines represent where the predicted value equals the actual

value as well as +5% error)

The optimised spread value for the proof stress model was found to be 1.6985. The following

inputs were chosen:

Physical:
Zodiac:

Hot Rolling:
Chemistry:

gauge, weight and cold reduction

radiant tube furnace start temperature, pot temperature, water quench
temperature, coating weight, temper mill tension in, temper mill tension out,
temper mil extension and line speed

rougher temperature and finishing temperature

carbon, silicon, sulphur, phosphorus, manganese, nickel, copper, tin, vanadium,
aluminium (total), aluminium (soluble), niobium, boron, molybdenum and
chromium
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Figure 5.25: Actual elongation values against elongation values predicted by a generalised
regression model for DX51 steels meeting specification trained using a genetic algorithm and
constant spread value (Dashed lines represent where the predicted value equals the actual
value as well as +5% error)

The optimised spread value for the elongation model was found to be 1.3877. The following
inputs were chosen:

Physical: gauge, width and length

Zodiac: direct fire temperature, radiant tube furnace start temperature, radiant tube
furnace exit temperature, pot temperature, roll 30 temperature, coating weight,
temper mill tension in, temper mill tension out and line speed

Hot Rolling: finishing temperature

Chemistry: carbon, silicon, sulphur, phosphorus, nickel, tin, niobium, boron, calcium and
chromium
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Figure 5.26: Actual strain ratio values against strain ratio values predicted by a generalised
regression model for DX51 steels meeting specification trained using a genetic algorithm and
constant spread value (Dashed lines represent where the predicted value equals the actual
value as well as +5% error)

The optimised spread value for the strain ratio model was found to be 1.2033. The following
inputs were chosen:

Physical: length and cold reduction

Zodiac: direct fire temperature, radiant tube furnace start temperature, radiant tube
furnace exit temperature, pot temperature, roll 30 temperature, water quench
temperature, temper mill tension in, temper mill tension out, temper mill
extension and coating weight

Hot Rolling: drop temperature, rougher temperature and finishing temperature

Chemistry: phosphorus, manganese, tin, nitrogen, aluminium (total), aluminium (soluble) and
chromium
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Figure 5.27: Actual strain hardening exponent values against strain hardening exponent values
predicted by a generalised regression model for DX51 steels meeting specification trained
using a genetic algorithm and constant spread value (Dashed lines represent where the
predicted value equals the actual value as well as £5% error)

The optimised spread value for the strain hardening exponent model was found to be 0.7271.
The following inputs were chosen:

Physical: gauge, length and cold reduction

Zodiac: radiant tube furnace start temperature, snout temperature, roll 30 temperature,
water quench temperature, temper mill tension in, temper mill tension out,
temper mill extension, coating weight and line speed

Hot Rolling:

Chemistry: carbon manganese, tin, nitrogen and titanium excess
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Table 5.7: Statistical data produced from validation data set from a generalised regression
model of DX51 steels meeting specification trained using a genetic algorithm and constant

spread value

Property MSE RMSE MPE R

Ultimate tensile strength 25.7 5.1 1.04% 0.88
Proof stress 118.3 10.9 2.86% 0.80
Elongation 8.671 294 6.34% 0.54
Strain ratio 0.026 0.16 7.49% 0.64
Strain hardening exponent 0.00017 0.013 4.41% 0.61

MSE: Mean square error; RMSE: Root mean square error; MPE: Mean percentage error; R: Correlation
The results achieved for the DX51 steels show that there is a strong case for furthering the
modelling of these steels using the generalised regression method. The ultimate tensile
strength and proof stress predictions are similar to those obtained predicting the properties of
steels produced via the CAPL at Port Talbot, however they fail to match those for other steels
produced at Llanwern. It is likely that this discrepancy is due to the size of the data set used to
make the models, with the available DX51 data set being a similar size to the ones used for the
CAPL models. The modelling technique failed to produce accurate predictions for the strain
hardening exponent, r-value and elongation. Elongation continues to be an issue across the
range of steels studied for this project, so the failure to predict it for DX51 steels was not
surprising. The models of DX51 steels produced on Zodiac compared favourably to the models
of the similar DC01/03/04 steels produced on CAPL. This result further highlighted the
assumed discrepancy between the quality of data from the two lines.

The results from the SD350/450 models are shown in Figures 5.28 and 5.29. Due to the
incompatibilities of the data set with the importing tool mentioned above only the ultimate
tensile strength and proof stress were modelled. Statistical data about these results is given in
Table 5.8. As before, lines representing where the predicted value equals the actual value as

well as £5% error lines have been superimposed on to these results.
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Figure 5.28: Actual ultimate tensile strength values against ultimate tensile strength values
predicted by a generalised regression model for SD350/450 steels meeting specification
trained using a genetic algorithm and constant spread value (Dashed lines represent where the
predicted value equals the actual value as well as £5% error)

The optimised spread value for the ultimate tensile strength model was found to be 1.4780.
The following inputs were chosen:

Physical: weight, width and length

Zodiac: direct fire temperature, radiant tube furnace start temperature, radiant tube
furnace exit temperature, snout temperature, pot temperature, temper mill
tension in, temper mill tension out and temper mill elongation

Hot Rolling: drop temperature, rougher temperature and coiling temperature

Chemistry: carbon, sulphur, phosphorus, manganese, copper tin, nitrogen, aluminium (total),
niobium, boron, titanium, calcium and molybdenum

186



Chapter 5 — Improving the Predictive Accuracy Using a Genetic Algorithm

480
470 o)
460
450
440
430
420

410

400 %
o 8 690@)0 ©
8

Predicted Proof Stress/ MPa

390

380 é§ d@C)

(@] ()]
370 OW
360

350
350 360 370 380 390 400 410 420 430 440 450 460 470 480

Actual Proof Stress/ MPa

Figure 5.29: Actual proof stress values against proof stress values predicted by a generalised
regression model for SD350/450 steels meeting specification trained using a genetic algorithm
and constant spread value (Dashed lines represent where the predicted value equals the actual
value as well as +5% error)

The optimised spread value for the strain hardening exponent model was found to be 0.9220.
The following inputs were chosen:

Physical: width and length

Zodiac: direct fire temperature, snout temperature, pot temperature, temper mill tension
in, temper mill elongation and line speed

Hot Rolling: rougher temperature

Chemistry: silicon, nickel, vanadium, aluminium (soluble), molybdenum, calcium and boron
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Table 5.8: Statistical data produced from validation data set from a generalised regression
model of SD350/450 steels meeting specification trained using a genetic algorithm and

constant spread value

Property MSE RMSE MPE R
Ultimate tensile strength 2809.2 53.0 3.26% 0.28
Proof stress 862.4 294 4.09% 0.60

MSE: Mean square error; RMSE: Root mean square error; MPE: Mean percentage error; R: Correlation

Closer inspection of the results concerning the ultimate tensile strength predictions indicated
that there were two anomalous results. The one prediction related to the actual value being
considerably higher than would be expected. The second occurred when the model had failed
to produce a prediction. Referring back to Table 5.6 it is clear to see that these excessive
values exist in the proof stress data as well. Issue relating them have failed to materialise as
they were part of the modelling data rather than training of validation data. The offending

results were removed and the calculations repeated. These results are shown in Table 5.9.

Table 5.9: Revised statistical data produced from validation data set from a generalised
regression model of SD350/450 steels meeting specification trained using a genetic algorithm

and constant spread value

Property MSE RMSE MPE R
Ultimate tensile strength 254.5 16.0 2.03% 0.72
Proof stress 862.4 294 4.09% 0.60

MSE: Mean square error; RMSE: Root mean square error; MPE: Mean percentage error; R: Correlation

Using the current modelling technique the first impression one gets of the accuracy of a model
is through its mean square error, as the change is constantly reported. Models that predict
well (i.e. have a low error) can easily be spotted as the value can be seen. Normally a high
error value indicates that model is struggling to simulate the process. It was with this in mind
that it was initially felt that models for the SD350/450 grades were producing poor predictions
as their error values were large. Upon plotting the predictions from the model it was clear to
see that this was not necessarily the case. The ultimate tensile strength prediction mainly fell
within the target band. There were two anomalous results that had a large effect the error.
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The first of these was a null prediction; the model was unable to produce a prediction for that
coil as its processing was so different to any coils it had seen before. If this case were to be
encountered in a real life situation it would not cause any problems other than that coil
requiring a physical test to ascertain its properties. The second of these occurred when the
actual ultimate tensile strength value recorded for that coil was significantly higher than any
other coil in the data set (around 700MPa). The model predicted this coil to have a value closer
to the other coils in its history, causing a large error. This example could not be easily identified
if the model were in actual use, as the predicted value was valid. Hopefully the other
properties would highlight an issue with this coil. It may also be that the actual value recorded
Wwas erroneous.

For the proof stress predictions the large error was not as easy to explain. Looking at the
results in Figure 5.29 it can be seen that for many of the lower values of proof stress the
predictions were quite accurate. Also there appears to be more coils with values in this area.
For larger values of proof stress the predictions are less accurate. It is again likely that the size
of the data set used to create the model has led to this error. Whilst there are enough
examples of coils with lower proof stress values for the model to make predictions, there are
not enough at the higher end of the scale, thus the model struggles. A large data set would
most likely decrease the error for these higher proof stress coils, whilst the accuracy of the
predictions for lower proof stress values would also increase, meaning that the observed

discrepancy would remain.

5.5. Conclusions

In this chapter a genetic algorithm was combined with the previously developed generalised
regression approach in an attempt to increase the predictive accuracy of models of continuous
annealed steels. Two different approaches were put forward; one using a constant spread
value for all iterations and the other varying the spread for each iteration. Both approaches

were shown to have a positive influence on some of the properties, but training times were
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increased dramatically. Upon comparison of the results from the two different approaches it
was determined that the constant spread approach was the most suitable as it offered a
higher accuracy with less impact on the training time.

The comparison was carried out using the 3004/05 steels produced on Zodiac. For these
grades the training routine was able to develop models of the ultimate tensile strength, proof
stress and strain hardening ratio that could be used to produce accurate predictions. The strain
ratio results were not as good; however it was felt that this model could still find use as a
method of analysing the relationships that relate to this property. As with previous attempts
the elongation value proved difficult to predict and little improvement was gained using this
approach. The inputs chosen by the genetic algorithm were comparable with the factors
known to affect the properties under investigation.

With a fully developed model training routine the properties of other grades were also
predicted. Again the strength values proved easier to predict than the other properties and
elongation remained a problem. The results obtained from these newly developed models
were able to better those from all previous attempts. As well as models of grades already
under consideration in this report two additional sets of grades produced on Zodiac were also
modelled. One of these grades belonged to a different subset than any of those previously
studied. Given the small number of coils available to model this grade the results suggest that
the modelling approach can be extended to cover it.

These findings suggest that generalised regression network based models combined with a
genetic algorithm are a suitable non-linear method for predicting many of the properties of
annealed steels for all the grades under consideration. Inputs chose by the training routine
mirror those factors that have been shown by other researchers to affect the properties of
steel. This suggests that the developed models may be a suitable method to assess these

relationships and possibly quantify them.
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CHAPTER 6 — ANALYSIS OF PROCESSES USING THE

DEVELOPED MODELS

6.1. Introduction

An important part of this work is to try and quantify the relationships that exist between the
mechanical properties and process conditions so that the optimal process windows and
scheduling tools can be developed. Quantifying these relationships is also a useful way of
improving the transparency of any model. Whilst the principles behind the model may seem
sensible and based on a reasonable assumption, currently all one sees are inputs going in and
properties coming out. If the complex relationships that the model hides can be found and
shown to equate to known relationships then the model has a much better chance of being
accepted. Some level of transparency can be derived by the current state of the modelling
process by comparing the inputs selected by the training routine with the inputs known to
relate to that particular property. Whilst this approach is a good start to the process, it is not
detailed enough to meet the needs of this project and further quantification is needed.

It was with this in mind that a method of analysing the relationships that exist between the
predicted mechanical properties and different process conditions was developed. It was
believed that if it could be shown that the model was replicating mechanisms that had been
identified by other research then another method of proving the reliability would exist, rather
than just relying on the accuracy of its predictions. As an additional benefit the model may find
use optimising the steel making process. Changes in mechanical properties can be related back
to any changes in process conditions and any areas of potential optimisation identified.
Another important aspect that needed to be considered was the effects of the variation of

more than one process condition at a time.
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6.2. Analysis of Single Inputs

A simple method of quantifying the relationships between properties and process conditions is
to use a specifically constructed set of inputs which reflect the changes in the processes of
interest. This process will vary by the required amount while all other processing conditions
are held at a set value. This set of inputs can then be run through the model which predicts the
required property. The model will evaluate this data in the same manner as if it was an actual
coil, producing a predicted property. The predicted properties, or their variation from a mean
value, can then be plotted against the change in the processing condition to illustrate any
relationships that exist.

The operation of the models used in this project requires that data is normalised before it is
introduced to the generalised regression network. The normalisation process uses the mean
and standard deviation of the data set used to create the model. The result of this is that a
value of zero entered into the actual network represents a process condition equal to the
mean value of the training data. Non zero values indicate an actual process condition of that
number of standard deviations above or below the mean. This allowed a simple method of
coding to be developed so that the sensitivity analysis could be run quickly. This method relies
on several iterations with all but one process condition held at a set value; either the mean
(zero) or a number value representing that number of standard deviations above or below the
mean. The target process condition is then varied from three increments below the set value
to three increments above. The value of these increments can be altered and represents a
number of standard deviations. The target value is then to be the next process condition and
this repeats until all the inputs to the model have been targeted. An example of one of these

data sets is shown in table 6.1.
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Table 6.1: Example data set for single input analysis model

Iteration

1 2 3 4 5 6 7 8 9 10 11 12 13

Gauge o 3 -2 1 1 2 3 0 0 0 0 0 O
Width o o o o o0 O O -3 -2 -1 1 2 3

@ _RTFstart 0 0 o 0 0O 0O 0O 0O O O 0O 0 O
£ Soak Temp 0O 0 o 0 0O 0O 0O 0O O O 0O 0 O
§_ Cold Reduction o o o o0 O O O O O O o0 o0 o
= Carbon 0 0o o 0 0O 0O 0O 0O 0O O 0O 0 O
Silicon 0 0 o 0O 0O 0O 0O 0O 0O O 0o o0 O
Titanium 0o o o O O O O O O O O 0 O

The creation of these data sets and their use with the required model was carried out using
Matlab. This produced an output data set containing the seven predicted properties for each
input along with that inputs mean and standard deviation. This data was then exported into a
specific macro enabled Microsoft Excel worksheet. The base value, number of increments and
property under investigation could then all be entered in to the work sheet and the macro

used to quickly produce plots of the relationships.

6.2.1. Strain Ratio Investigation

The initial work focused on analysing the relationships that existed between the processing
parameters and the strain ratio; with the Zodiac 3004/05 steels being evaluated first. This
property was chosen as it is a key specification that customers require and according to plant
operators is one of the properties that coils will routinely fail on. For the initial analysis all
variables were held at the mean value, zero in the data set, with one variable changing by one
standard deviation, between minus three and plus three. The results were then plotted as the
range of the changing variable against the change in the property from the value produced
using mean values only. In some cases the variation in a value would result in a negative value,
which is not possible in real life. In these cases values from zero and above were plotted.

Figure 6.1 shows the predicted effect of increasing the amount of cold reduction.
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Figure 6.1: Predicted change in strain ratio based on the variation in cold reduction for

3004/3005 steels (holding other values at their mean)

In general, this result agrees with published data [32, 35] relating the cold reduction to the
strain ratio, showing an increase in the amount of cold reduction leading to an increase in the
strain ratio. The magnitude of the increase does not match that observed in actual steels [32],
however this greater increase was also attributed to the soak temperature, which is not
considered in this model. The increase observed in the actual tests appeared to have a more
linear relationship and did not plateau at higher cold reduction values.

The same relationship was examined with the other model inputs being held at one standard
deviation above and below the mean. These results are shown in Figures 6.2 and 6.3

respectively.
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Figure 6.3: Predicted change in strain ratio based on the variation in cold reduction for

3004/3005 steels (holding other values at one standard deviation below their mean)
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These results again show the increase in strain ratio relating to an increase in the cold
reduction. With the other model inputs held at higher values (Figure 6.2), the same increase in
cold reduction, from 70% to 80%, is seen to have almost twice the impact compared with the
results shown in Figure 6.1. Again, a plateau is reached once the amount of cold reduction
reaches 80%. Using lower inputs (Figure 6.3) creates an interesting pattern of results. Whilst
the strain ratio increases for cold reduction values between 61% and 66% it then remains
constant until about 76%, at which point it rises again at a similar rate as before. This rise
continues for the remainder of the plot. The sudden stop in the increase is unlikely to be truly
representative of the annealing process. It may be related to the fundamental principles of the
model; one entry in the training data set matches these conditions very closely and therefore
has a larger leverage.

The plateau effect observed in Figures 6.1 and 6.2 can be explained by examining the physical
constraints of the actual process. The other inputs to these models are either set to the mean
values or one standard deviation above. As the gauge is one of the inputs to this model, it
means that this will be set to a reasonably high value for both these figures. The actual process
may not be able to produce these grades using the high levels of cold reduction. This theory
can be extended to the results in Figure 6.3. The continued increase in strain ratio for cold
reduction values greater than 80% indicates that the cold mill is able to achieve these levels of
cold reduction on gauges one standard deviation below the mean value.

The amount of cold reduction employed was also one of the inputs chosen to predict the strain
ratio for the final model of DC0O5/06 coils. As a comparison the same method was applied to
this model, with other values held at their mean and a variation of one standard deviation. The

results of this simulation are shown in Figure 6.4.
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Figure 6.4: Predicted change in strain ratio based on the variation in cold reduction for

DCO05/06 steels (holding other values at their mean)

As with the 3004/05 steels an increase in the strain ratio was observed as the amount of cold
reduction increased. The increase continues to a reduction value of around 90% after which a
drop in strain ratio is observed. The increase in the strain ratio was considerably smaller than
that observed for the other steel grades and results reported by other researchers. The shape
of the curve was also different. The difference between the models of the different steels
perhaps offers an insight into the different predictive capabilities of them both. While not
perfect the 3004/05 model produced better predictions than its DC05/06 counterpart. This
investigation has shown that the later model does not represent the actual process as
accurately as the other model.

Another important factor which contributes to the formability of these grades is the carbon
value. Ono et al (cited in [5]) investigated the effects of carbon contents on the properties of
continuous annealed strip. Their work found that the decreasing the carbon content increased

the strain ratio, with the increase reaching at plateau at 0.02% and below. The effect of carbon
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content on the strain ratio for 3004/05 steels was simulated, with the results shown in Figure
6.5 The simulation varied the carbon content between minus six and plus six standard
deviations from the mean carbon value, other values were held at their mean. This larger
range was used so that the focus was on the target value, 0.02%.
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Figure 6.5: Predicted change in strain ratio based on the variation in carbon content for
3004/3005 steels (holding other values at their mean)

Again the predicted results were found to be in agreement with the literature. Increasing the
carbon content up to a value of 0.02% appeared to have little influence on the predicted strain
ratio. Once the carbon content rose above this value the strain ratio was seen to fall. The rate
that the strain ratio falls is considerably greater than that observed in the literature and again
may be a feature of the data set used to create the model. Attempts were also made to predict
the effect of carbon content on the strain ratio when the other model inputs were held at
values above and below their mean values. When the inputs were held at one standard
deviation below their mean values the carbon content was seen to have no effect on the strain
ratio. With the inputs one standard deviation above their mean values a trend similar to that in

Figure 6.5 was produced. This time the strain ratio began to decrease when the carbon content
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was 0.025%. The decrease was much quicker, with the strain ratio value predicted to have
fallen by three units in the range investigated, an unlikely result.

The same relationship was simulated using the DC05/06 model. Due to differences in the
range of data used to make this model the carbon value was varied between minus three and
plus three standard deviations. Other values were again held at their mean. The results of this

simulation are shown in Figure 6.6.
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Figure 6.6: Predicted change in strain ratio based on the variation in carbon content for

DCO05/06 steels (holding other values at their mean)

The DC05/06 simulation of the effect of carbon content on strain ratio did not reflect a similar
pattern to the results observed from the 3004/05 simulation or the available literature. A
linear relationship was produced, with the strain ratio falling as the carbon content increase.
The reduction in strain ratio was very small. These results highlight once again that the
DCO05/06 model does not represent the annealing process as well as the 3004/05 model. The
range over which the simulation is carried out gives an indication as to some of the reasons for

this difficulty. The range of standard deviations used to produce the DCO05/06 strain ratio
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simulation covered carbon contents from 0% through to 0.045%. This was greater than the
3004/05 simulation range of 0% to 0.035% even though the simulation used only half the
number of standard deviations. Similarly the range of cold reduction values was larger for the
DCO05/06 simulation. This may indicate that there are more outlying data points in this data set,
another reason why models of this grade of steel failed to meet the accuracy of the 3004/05

steels.

6.2.2. Strength Relationship Analysis

The inputs affecting the strength of the steels under investigation were also analysed. Solid
solution strengthening has already been identified as one of the factors that may have an
influence on the final strength of steel. The sensitivity analysis method was used to assess the
influence of the levels of phosphorus, silicon and manganese as well as carbon on the tensile
strength as predicted by the ultimate tensile strength model of the DX51 steel. The results of
this study are shown in Figure 6.7.

The predicted results show some agreement with research carried out by Evans et al [32],
whose research into similar grades of steel found that all four alloying additions had a positive
influence on this property. The previous study found that phosphorus had the largest effect on
the strength, a result that the predictions appear to agree with. Silicon was predicted to have a
greater effect than manganese, based on extrapolating the data in Figure 6.7. This result again
agreed with the previous study, thought the shapes of the relationships differed. The results
from Evans et al proposed a linear relationship between the phosphorus and silicon contents
and the ultimate tensile strength. Their work suggests that the effect of the manganese
content dismissed with increasing percentages. As with the strain ratio predictions the
predicted change in property (the ultimate tensile strength) was found to be much less than

the changes found in the literature.
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Figure 6.7: Predicted variation in the ultimate tensile strength of DX51 steels from a base value

of 363MPa due to changes in carbon, phosphorus, manganese and silicon content

A direct comparison between the DX51 models of steels produced on Zodiac and the
DC01/03/04 models of steels produced on CAPL could not be carried out as the later models
did not use the amount of phosphorus, silicon or carbon as inputs. However the manganese
content was used and the predicted effects of this on the ultimate tensile strength of

DC01/03/04 steels is shown in Figure 6.8.
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Figure 6.8: Predicted variation in the ultimate tensile strength of DC01/03/04 steels from a

base value of 323MPa due to changes in manganese content

Unlike the DX51 predictions the predicted relationship between manganese content and the
ultimate tensile strength of DC01/03/04 steels was found not to agree with the expected
results as found in the available literature. An increase in the amount of manganese was seen
to lower the strength. The rate of decrease was observed to change at manganese contents of
0.4% and above. It should be noted that the predicted range of this change in the ultimate
tensile strength of the steel was very small, around 1MPa. The differences between this
predicted relationship, the relationship predicted for the DX51 steels and results found in the
literature may give an insight into the lower predictive accuracy of the CAPL model when
compared to the Zodiac ones.

The effects of temper rolling were also analysed. During the modelling phase of this project it
was observed that the temper rolling related processes were often selected as model inputs,
normally with more than one process being selected. As stated in Chapter 2, temper rolling is
employed to remove yield point elongation and control the surface quality of the strip. It is
one of the final processes that a coil will undergo before exiting the mill. The yield point

elongation phenomenon is caused by the load required to deform the material dropping at the
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onset of yielding, relate to an increase in the number of mobile dislocations. This results in a
horizontal section on a stress-strain plot. Once the entire material has yielded the stress-strain
curve rises in the normal way due to work hardening [26]. By applying a small amount of
extension the temper roll removes this point, meaning that subsequent yielding will result in a
smooth curve. The study by Evans et al considered the effects of temper rolling [32]; it found
that increased temper rolling was found to have little effect on the ultimate tensile strength
and a reduction in the proof stress. The predicted effects of temper rolling on the proof stress
and ultimate tensile strength on the properties of DX51 and ultimate tensile strength of
DC01/03/04 steels was investigated to see if it agreed with these findings. The predicted
results are shown in Figures 6.9 and 6.10. Temper mill extension was not selected as input to

the DC01/03/04 proof stress model so this analysis could not be carried out on that property.

1
0.3
© © 0
& 02 =
= =
> 01 31
m . o
& @ 2
g o 2
]
g 01 H
- T -4
2 02 o
£ E g
§ 03 § )
E @
£ 04 o
= c
- (7]
0 ® -8
2 .06 2
o™ O 9
0.7 10
Temper mill extension/ % Temper mill extension/ %

Figure 6.9: Predicted variation in the ultimate tensile strength and proof stress of DX51 steels

due to changes in temper mill extension
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Figure 6.10: Predicted variation in the ultimate tensile strength of DC01/03/04 steels due to

changes in temper mill extension

The findings in Figure 6.9 agree with the observations made in other research. An increased
amount of temper mill elongation was seen to predict a decrease in the proof stress of DX51
steels. A predicted decrease was also observed in the ultimate tensile strength model; this
decrease was much smaller than that predicted decrease in proof stress. Interestingly the
predicted relationships between these strength values and the temper rolling exhibited very
similar shapes, which is likely to be a result of the modelling process.

The predicted relationship between the ultimate tensile strength and temper mill extension of
DC01/03/04 steels is completely different. The overall trend was an increase in ultimate tensile
strength over the range of extension values. A rapid increase in strength was observed up to
0.3% extension with a reduction occurring between around 0.3% and 0.7% extension. After
this the strength gradually rose again. An extension of 1.5% was predicted to increase the
ultimate tensile strength by 30MPa, nearly 10% the middle value. This pattern is difficult to
explain in terms of the physical process occurring within the steel and so must be attributed to
the modelling process. For this grade of steel a mean value of 0.838% temper mill extension

was applied with a standard deviation of 0.083%. Assuming that the amount of reduction was
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normally distributed this would mean that the majority of coils would have extension values
between about 0.65% and 0.95%. At the extremes of the plot there would be very few coils,
meaning that if the ultimate tensile strength recorded for these was significantly higher or
lower than those centred on the mean they would have a much larger effect on the predicted
relationship. With only a handful of data points at the extremes increases or decrease in
strength due to other processing conditions do not get averaged out. As the sensitivity analysis
is only focused on the one input it would consider a coil with a significantly different value of
the property under investigation to have this value because of the input being focused on,
rather than a variation in other process conditions. This example has shown why the results of
the sensitivity analysis need to be considered carefully and that this approach cannot be used

to extrapolate beyond the data used in the original model.

6.3. Multivariate Input Analysis

The original sensitivity analysis tool was developed to look at the effect of varying one process
at a time on the predicted properties of steel. The ability to modify the central value around
which process conditions were varied also added scope to see if any interaction effects were
present. An interaction effect is when the change in one condition influences the relationship
between another condition and the target property. This method was somewhat crude as all
variables were modified, meaning that the presence of an interaction effect could be identified
but the cause could not. An example of this is the relationship between the strain ratio and
amount of cold reduction investigated previously in this chapter. Figure 6.2 shows the
relationship with the central value held at one standard deviation above the mean, Figure 6.3
shows this with the central value one standard deviation above the mean. While a difference
can clearly be seen between the two relationships there is no way of telling what has caused
this. It might be an interaction effect, in which case one has no idea what property is causing

this, or it might an anomaly in the data set.
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For this reason an alternative method of analysing any interaction effects was developed. This
method used similar principles to those used to produce the initial sensitivity model. The main
property under investigation was varied by one step above and below the central value, again
by a multiple of the standard deviation. Possible interaction effects were observed by also
varying another input value between two states; high, one standard deviation above the
central value, and low, one standard deviation below. Those values not under investigation

were again held at the central value. An example of a simple input set up is shown in Table 6.2.

Table 6.2: Example data set for multivariate input analysis model, gauge is the main value
under investigation (Key: H — high, L — low, 0 — central)

Iteration

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Gauge O HL O0OH L OHIL O H L O H L

Temperature 0 0 0O HHH L L L O O O O o0 O

Input State

Cold Reduction 0O 0 0 OO OOO OH H H L L L

Predicted relationships were produced using the methods details above for 3004/5 steels
produced on the Zodiac Line at Tata’s Llanwern plant. The model predicting the strain ratio
was analysed, as it had previously been shown that for lower values an unusual relationship
was present (see Figure 6.3). The new sensitivity analysis method produced results in a slightly
different way to the previous method. For comparison purposes the predicted relationship
between just the amount of cold reduction and strain ratio using the new methodology is

shown in Figure 6.11.
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Figure 6.11: Predicted variation in strain ratio based on change in cold reduction for 3004/05

steels

The first test of the new sensitivity analysis method investigated the interaction between the
amount of cold reduction employed and the carbon content on the strain ratio predictions.
This relationship was chosen as the both inputs had been looked at individually using the
previous method and were found to closely match the actual relationships reported by other
researchers. Based on those results it was assumed that predict strain ratio would increase
with the amount of cold reduction employed, with the carbon content having little effect on
this relationship providing that it was below 0.02%. The results of this investigation are shown

in Figure 6.12.
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Figure 6.12: Predicted variation in strain ratio based on change in cold reduction for 3004/05

steels with differing carbon contents

An increase in the amount of cold reduction was seen to an increase the strain ratio, matching
the relationship shown in Figure 6.11. Whilst this result adhered to the expected outcome the
effect of the carbon content did not. An increase in the carbon content gave rise to a slight
decrease in the strain ratio. This decrease is uniform along the range of cold reduction studied.
This reduction in strain ratio for higher carbon values can be explained by the slight gradient of
the relationship at the appropriate values shown in Figure 6.5. The traces for the different
carbon values in Figure 6.12 run parallel to each other, showing that there is no interaction
effect between this and the amount of cold reduction.

Next the effect of the line speed on the relationship between cold reduction and strain ratio
was predicted. Again the same 3004/05 grades steels were analysed. These results are shown

in Figure 6.13.
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Figure 6.13: Predicted variation in strain ratio based on change in cold reduction for 3004/05

steels annealed at different line speeds

The line speed can be directly related to the soak and annealing times. Running the line at a
slower speed means that these times will be longer. Longer soak times aid recrystallization and
promote grain growth after it is complete. This leads to an increase in the {111} texture and a
better r-value [32]. This relationship was discussed in Chapter 2 and an illustration of it is
shown in Figure 2.13. During cold rolling the microstructure is heavily deformed, with the
grains present after hot rolling being stretched and distorted. The material is work hardened,
more deformation leads to more stored energy within the material. It is this stored energy that
provides the driving force for recrystallization to occur. The recrystallization temperature is
affected by the size of grains, as grain boundaries are a preferential site for nucleation to
occur. Smaller grains prior to annealing means that there are more grain boundaries and hence
the recrystallization temperature is lower [15].

The predicted relationship shown in Figure 6.13 assumes that all other inputs are held at a

constant level. This means that prior to annealing both strips with either level of line speed
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have the potential to reach the same strain ratio for any given amount of cold reduction. It is
also important to note that this means the annealing temperature is assumed to be the same
in both circumstances. Once annealing has started the differences in line speed leads to the
discrepancies between the two levels stacking up.

The first of these will relate to the heating of the strip. Running the line at a quicker speed
would normally require the temperature to be higher or a thinner gauge in order for the
correct temperature to have penetrated the entire strip. As these inputs are in fact kept
constant for the purposes of the model the theoretical temperature of the strip run at a higher
line speed will be lower than that of the strip run at a slower speed. The lower temperature
may not be much higher than the required recrystallization temperature, reducing the rate at
which this takes place. This is compounded by a longer annealing time decreases the
recrystallization temperature [15].

The second issue is that the theoretical soak time for the strip annealed at a higher speed will
be shorter than that of the slowly annealed strip. For strips at the same temperature this
would mean that the final grain size would be smaller. As recrystallization will already take a
longer time to occur the final grain size is likely to be even smaller. Conversely, the strip
annealed at a slower line speed will have recrystallized at a higher rate and will have longer for
grain growth to occur, resulting in a much greater discrepancy between the final strain ratios.
The overall effect of these two facts is that stored energy within the steel, caused by the cold
rolling, cannot take full effect if the line speed is higher. Under normal conditions this energy
will be able to drive the recrystallization as the strip will be hot enough and soak for a long
enough time to allow this. The lower effectively increases the required temperature and
reduces the soak time, meaning that the extra stored energy for greater amounts of cold
reduction is not put to use. This is seen in the levelling off of the lower line in Figure 6.13. One
important thing to note about these results is that combinations required to produce actual
results like these are not likely to be employed. A strip run at a quicker line speed is likely to be

annealed at a higher temperature. This highlights a potential problem with the modelling
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approach; possible interaction effects may in fact be due to other inputs not currently being
analysed. For this reason care should be taken to correctly analyse any results.
An interesting relationship was found to exist between the hot rolling drop temperature and

amount of cold reduction on the strain ratio. The predicted plots of this relationship are shown

in Figure 6.14.
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Figure 6.14: Predicted variation in strain ratio based on change in cold reduction for 3004/05

steels hot rolled with a different drop temperature

The relationships shown in Figure 6.14 show the expected result of strain ratio increasing with
the amount of cold reduction. The strain ratio is predicted to be lower at all levels of cold
reduction for steels produced with a lower hot rolling drop temperature. The discrepancy
between the two temperatures reduces as the amount of cold reduction increases. The
relationship between strain ratio and drop temperature can easily be explained by examining
the differences between batch annealing and continuous annealing.

During the initial heating of batch annealed steels aluminium nitride precipitates on to the sub-

grain boundaries. This inhibits the nucleation of new grains and leads to the production of
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larger grains [5]. In order for this to occur the aluminium and nitrogen must remain un-
combined during the hot rolling process. One method of preventing them combining is to use a
low coiling temperature (about 550°C). Control of the drop (or reheat) temperature is also
important; with higher temperatures required for batch annealed steels so that all aluminium
nitride is dissolved [32].

Continuous annealing employs much quicker heating rates. Because of this there is not enough
time for aluminium nitride to precipitate out. This results in the aluminium and nitrogen
remaining in solution. The free nitrogen is detrimental to texture development within the steel
and also leads to increased strengthening. In order to reduce the amount of free nitrogen in
solid solution higher coiling temperatures are used for continuous annealed steels; giving time
for aluminium nitride to precipitate while the coil is cooling. A lower reheat temperature can
also be employed to prevent aluminium nitride being dissolved at this stage of the coils
production [5, 32].

The interaction between the two varying processes is slightly harder to explain. Although the
free nitrogen retards the rate of recrystallization it has been reported that it is not detrimental
to the final grain size. Recrystallization is also a function of the annealing time and annealing
temperature. Increased amounts of cold reduction leads to more stored energy within the
steel, which leads to a reduction in the recrystallization temperature [32]. Referring back to
Figure 6.14, at lower cold reduction rates the recrystallization temperature will be higher. If
the drop temperature is higher (hence more free nitrogen) then the annealing furnace
temperature and annealing time may be such that the effect of nitrogen is strong. With a
lower drop temperature the annealing time and temperature may be sufficient to negate the
effect of the free nitrogen. At higher amounts of cold reduction the recrystallization
temperature will be lower, meaning that the retarding effect of free nitrogen has less impact,
possibly explaining the reduced discrepancy between the two drop temperatures.

Further reading into the effect of the hot rolling drop temperature on the rate of aluminium

nitride dissolution shows why care must be taken before basing any decisions on the predicted
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relationships. Based on the predictions shown in Figure 6.14 one would assume that to achieve
higher strain ratio values a high amount of cold reduction should be employed along with a
lower drop temperature. Based on these results alone it may be tempting to continue to
reduce the drop temperature in order to control the strain ratio; particularly as this reduces
costs by not having to use as much energy and by allowing a lower amount of cold reduction to
be employed (less energy again) to achieve similar strain ratio values as before. There are
however limits to the amount that dissolution can be controlled by the drop temperature. The
principle one of these is hot rolling considerations further along the mill. In order to correctly
roll the steel the finishing mill temperature must be above the Ar; temperature (the
refroidissement temperature, when the phase changes from austenite to ferrite, 910°C for
pure iron) so that it is still the correct phase [26, 32]. Using the model on its own may not

indicate this.

6.4. Conclusions

In this chapter details of further uses of the property prediction models were discussed. The
initial approach used the models to predict the effect of one process condition at a time on the
final properties of continuous annealed steels. Further modifications to this work allowed the
approach to consider the effect of one variable on the properties with another process
condition set at different levels. The predicted relationships were compared to known
relationships between process conditions and output properties to assess how well the
modelling process reflected actual continuous annealing.

Through use of the single input approach it was shown that models predicting the strain ratio
and strength related properties were capable of simulating some of the relationships identified
by other researchers. While the general trends of the relationships were captured some of the
finer details were not, with many predicted relationships exhibiting the correct shape but their
scales being wrong. This discrepancy between the actual relationships and the predicted ones

appeared to be greater for steels produced on CAPL; one explanation for the lower accuracy of
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the predictions from these models. Some of the variations between the actual relationships
and predicted ones could also be attributed to the modelling approach, with historical data
stored in the model possibly introducing a bias into the sensitivity analysis.

The multivariate analysis method was used to further quantify some of the relationships
affecting the strain ratio of steel. Again, the predicted relationships exhibited similarities to
known ones. It was shown that the predictions should be considered carefully before acting
upon them as some of the predictions may represent the effects of other parameters not
currently being considered. Finally, an example was highlighted showing the need to have a
full grasp of the limits of the steel mill before making alterations based on any of the

predictions.
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CHAPTER 7 — PROJECT CONCLUSIONS

7.1. Introduction and Conclusions

The aims of the project (identified in Chapter 1) were as follows:

L Produce a model which can be used to predict the release properties of certain
grades of steel produced on the continuous annealing line at Port Talbot and
Llanwern.

. Produce a sensitivity tool to help identify the appropriate process window for the

continuous annealing line at Port Talbot and Llanwern

The work detailed in the previous chapters has shown how a generalised regression network
based model was developed based on the other modelling approaches found from the
literature survey. The initial model was based on inputs selected through a combination of
metallurgical understanding and correlation with the output properties. This was later
adapted to include a genetic algorithm to optimise input selection. The model’s predictions are
based on actual process conditions negating the need for any additional data gathering
exercises such as determining grain size. In addition, a sensitivity analysis method was
developed based on the fully trained models. This approach can be used to determine the
effect of single inputs or to analyse the compound effect of two varying inputs. This approach
was used to help validate the models and find areas of weakness by comparing the predicted

relationships with known metallurgical principles.

This work has provided several conclusions regarding the prediction of mechanical properties
based on processing conditions of continuous annealed steels. A summary of these findings is

detailed below.
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Using multiple linear regression analysis proved to be an ineffective way of modelling the
properties of continuous annealed steels. The linear approximations were not powerful
enough to fully describe the annealing process. The accuracy of such models was highest
using data which had met specification. Attempting to reduce the complexity of the
model by using fewer inputs resulted in the accuracy of the models decreasing.

Using a generalised regression network in place of the multiple linear regression approach
yielded a significant improvement in the predictive accuracy for the majority of the
properties under investigation. Although the mean square error was low the accuracy of
the elongation model was found to still be poor. Reducing the number of inputs based on
their correlation with the output property resulted in a slightly higher error than using all
available inputs, however this approach was still better than basic regression.

The use of a genetic algorithm to optimise input selection along with a constant spread
value was found to further increase the predictive accuracy of the models. Such an
approach yielded higher accuracies than had previously been obtained.

Optimising the spread value for each new set of input conditions was found to have a
limited effect on the predictive accuracy of models trained in this way. The time taken to
train models using this method was significantly greater than any previous training
routine. For this reason the constant spread method was carried forward.

Inputs chose by this training routine mirror those factors that have been shown by other
researchers to affect the properties of steel. This suggests that the developed models may
be a suitable method to assess these relationships and possibly quantify them.

These findings suggest that generalised regression network based models combined with
a genetic algorithm are a suitable non-linear method for predicting many of the
properties of annealed steels for all the grades under consideration.

By introducing specially designed input sets to the fully trained model predictions could

be made about the relationships that exist between process conditions and final
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mechanical properties. Through the use of this it was shown that models predicting the
strain ratio and strength related properties were capable of simulating some of the
relationships identified by other researchers. While the general trends of the relationships
were captured some of the finer details were not, with many predicted relationships
exhibiting the correct shape but their scales being wrong.

This discrepancy between the actual relationships and the predicted ones appeared to be
greater for models of steels produced on CAPL. This offered some insight into the lower
accuracy of the predictions from these models.

Some of the variations between the actual relationships and predicted ones could also be
attributed to the modelling approach, with historical data stored in the model possibly
introducing a bias into the sensitivity analysis.

The same technique was used for multivariate analysis. This was shown using further
analysis of some of the relationships affecting the strain ratio of steel. Again, the
predicted relationships exhibited similarities to known ones.

It was shown that the predictions should be considered carefully before acting upon them
as some of the predictions may represent the effects of other parameters not currently
being considered. An example was highlighted showing the need to have a full grasp of

the limits of the steel mill before making alterations based on any of the predictions.

Recommendations and Further Work

The generalised regressions based models put forward in this work require constant

monitoring and modification if they are to meet their full potential. One of the benefits of such

a model is that it can help reduce the amount of tensile testing that needs to be carried out. In

order for this to happen the model will need to be compared to the relevant standards (when

available). It is suggested that a trial period should be initiated, where the model is run in

conjunction with tensile tests so that any problems in fully implementing the model can be

assessed. The model would predict the properties of the steel and a judgement of the
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suitability of the prediction can be made, based on the recorded predictive error, standard
deviation etc.

One key area that still needs to be considered is how the models will be maintained. This
means that complete elimination of tensile testing would not be possible, as data will be
needed to retrain the model. Choosing when to retrain the model and what data to use should
be investigated. The simple approach of slowly gathering data and then retraining a new
model may provide an accurate prediction model which takes into account any process drift
(caused by plant overhauls, improvements, new equipment, different operators, etc) however
it may not be suitable for use with the sensitivity analysis methodology. The sensitivity model
requires a broad spread of data for it to work correctly. There may be historic cases with
specific process conditions, such as extremely high or low values, which may be useful for
making predictions. Using new data to make a model would discard these. The best approach
may be to develop two distinct models; one to be used as an online prediction tool and the
other used as the basis of the sensitivity analysis model. For example, physical testing could be
cut down to one in three coils with the predictive tool being retrained on a regular basis using
new data. The sensitivity tool could be retrained less frequently, with data selected using some
form of ranking system. Coils processed with specific processing conditions would be given a
higher ranking than common ones. This adoption of this kind of approach would allow both
models to function well and mitigate any negative effects that the different data sets would
have on each model.

As with many engineering problems the methodology presented is not likely to be the only
way of predicting the properties of annealed steels. Whilst an artificial neural network
approach was initially tried, and then rejected, as a possible route that this project would take;
only a limited topography and training routine were used. Many different forms of neural
networks exist and likewise many different training regimes. Further investigation into any
number of these approaches may yield similar results to those put forward here. There is also

the possibility of looking at entirely different research fields to obtain a solution.
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Examples of finite element and head transfer methods being used to model batch annealing of
coils were found [63]. Though likely to be more complicated it is not difficult to envisage such
an approach being applied to the continuous annealing process. A basic approach may see
these methodologies being used to determine the temperature profiles of different segments
of the strip as it passes through the various processes. These results could then be used in
conjunction with the model developed in this work, or one similar, to give predictions of the
through coil properties. A more complex approach could bring together the research into
recrystallization mechanisms and produce a computation model of that process. The
relationships between grain size and texture on mechanical properties could then be used to
produce predictions.

The model developed in this thesis was developed as a ‘non-adding’ process, in that no
additional measurement devices or sensors were to be added to the process to aid the
prediction. The use of additional measurement equipment, such as cameras, x-ray or
magnetism, could be used to produce the predictions alone or as additional information for
other models. Some examples of these approaches already exist [60].

Future technology will also allow the model to be further developed and its efficiency
increased. Though it is not possible to second guess all these developments some trends can
easily be extrapolated, for example the development of computing. With increased computing
power constantly becoming more affordable it may not be long before the genetic algorithm
section of this work may become superfluous, as the time taken to test the whole solution set
will have diminished.

The robustness of the generalised regression approach was shown many times throughout this
work. The initial model was developed to predict the properties of one grade of steel produced
by a specific processing route. The final modelling approach was capable of being used for
several grades of steel made on different processing lines. Very little modification was required
to achieve this. This suggests that this modelling approach could be used to predict the

properties of further grades of continuous annealed steel and applied to different processing
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lines. As continuous annealing is one of the final process applied to strip steel and the model
relies on inputs from the whole steel making process it may well be possible to use a modified
version to predict the properties of steel as different processing stages (it would be interesting
to compare the results of such a model with others available in the literature predicting the
properties of hot rolled steels). It may also be possible to utilise the same modelling approach
to model other large scale industrial applications with several processing steps. The modelling
approach may be used as a predictive tool for a variety of fields; ranging from predicting the
likelihood of a failure in a part based on its specifications and use to areas such as medical

engineering, where the properties of tissues may be investigated.
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APPENDIX | = INITIAL NEURAL NETWORK APPROACH

i.d Introduction

Neural network approaches have been shown to have significant potential during the
development of prediction models [A-C]. In order to make full use of this potential the design,
or architecture, of the network needs to be suitably optimised prior to its implementation.
With a multiple regression type approach understanding the architecture of the model and
optimising it prior to use is relatively simple, with neural networks this is not the case. For
these reasons the following factors need to be carefully considered; the type of network used,
the number of neurons in the hidden layer, what transfer functions should be used and what
training algorithms will be employed.

Findings during the initial literature review for this project suggest that feedforward multilayer
preceptron networks are most suitable for pattern recognition and prediction situations. For
this reason a network was designed with one hidden layer. As a starting point, the number of
neurons in this layer was based on the Hecht-Kolomogorov theorem (cited in[D]). This states
that the number of neurons in the hidden layer is equal to twice the number of inputs plus
one. This value would be altered should it be deemed necessary.

The neurons in the hidden layer utilised the tansigmoid function, which gives rise to their

outputs varying between -1 and 1, as shown in Figure i.1.

a = tansig(n)

Figure i.1: lllustration of tansigmoid function
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The output neurons utilised a linear function. This allowed for the final output to be scaled to
any value based on the output from the tansigmoid layer. The complete network can be seen

in Figure i.2, as shown by Matlab.

Figure i.2: Initial network design

The final choice in the design of the network was how to train the network. This decision was
twofold; firstly whether to use a supervised or unsupervised training regime and secondly how
the data should be presented to the network.

Supervised learning adjusts the weights of neurons based on the difference between the
network outputs and the desired actual outputs. This method requires that a supervisor, or
teacher, is needed to provide the desired outputs. Unsupervised learning does not require the
desired outputs to be known. A network trained in this way only requires input parameters to
be presented to it. Weights are then adjusted to cluster the input patterns into groups which
have similar features. A supervised training regime was employed, due to the vast quantity of
data available and therefore the known outputs.

The initial model was programmed using raw data, with the only pre-processing being the
removal of incomplete coil data and the removal of unnecessary columns. The network was
trained using the Lavenberg-Marquardt algorithm, as other research had highlighted this to be
the most suitable to this type of situation [E]. Matlab randomly sorted the data into three
training sets; training data, validation data and test data. In simple terms the different sets act

in the following ways:
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Training Data: This data is used to shape the network. The data is passed through the

network and the output error calculated. The network weights are then altered

accordingly.

Validation Data: This data is used to measure the networks generalisation. When the

generalisation stops improving, for a given number of training interval (epochs), the

training of the network in halted.

Test Data: This data has no effect on training and so provides an independent measure

of the network’s performance during and after training.
The data was divided so that the training data set contained 70% of the overall data, with the
rest being split evenly between the other two sets.
The modelling progress could be followed using a value which Matlab calls ‘Performance’.
Closer inspection revealed this to be the mean square error (MSE) of the predicted values, in
particular that of the validation data set. Once this value reached a minimum Matlab would
then continue train the network for a set amount of epochs (the default value was six) to see if
any further reduction occurred. When no reduction occurred in the allotted time training
stopped. Once training was completed Matlab could then produce regression plots for all
three data sets as well as one for all the available data. This plot could also be produced in real
time, though was found to slow down the training process. Further plots could be produced
showing the how the performance value for each data set varied with training intervals and

the training state of the network.

i.di Initial Results and Problems

This section contains details of work that was carried out before the investigation into data
cleaning. Although the results of this work are therefore going to be somewhat insignificant it
was felt that details of the methods used and some of the findings were worth documenting.

The first approach to modelling using neural networks was to try and model all the properties

using one neural network, with an output representing each one. This was carried out on the
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DCO05/06 data set. The network made use of the 40 inputs listed in Chapter 3, and so had a

hidden layer with 81 neurons. The first attempt to do this used data that had not been

normalised. The results obtained from this model are shown in Figure i.3.
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Figure i.3: Results from neural network modelling all properties of DC05/06 steels, no

normalisation

The training set reflects the actual result very closely, as is common in most of the test carried

out. There is a large spread however when looking at the validation and test data sets. This is

particularly apparent for the ultimate tensile strength and proof stress values (the two groups

with greater magnitude). It is difficult to tell the accuracy of the prediction for strain

hardening, elongation and anisotropy due to the scale of the charts.
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These results were initially seen as encouraging, based purely on the statistical data that could
be obtained from them, such as correlation. It was only upon closer inspection that it was
realised that high values for such data was obtained due to the differing magnitudes of the
properties. This highlighted the need for the properties to be normalised. All data, both inputs
and outputs, was normalised and a new network setup. The results obtained from this

network are shown in Figure i.4.
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As can be seen from the above figure the results obtained from this model were poor. Again
the model was able to make good predictions on the training data, as would be expected. The
results for the validation and test data sets did not match this accuracy. With this approach,
the predictive accuracy for individual properties could not be obtained from the chart alone.
The failures of this model are likely to be due to the complexity of the data. For this reason it
was decided to produce individual models for each of the properties, as well as reducing the

number of model inputs, in an attempt to try and simplify the problem.

i.iii  Improved Neural Network Results

In order to reduce the number of inputs to the network an m-file was written to only select
those that had a statistical significance on the output properties. This selection was based on
correlation coefficients between the input variables and the output properties: only those with
an absolute value greater than 0.1 were included.

The first model made use of all available data for the DCO5 and DCO6 grade steels. For the
purpose of this work only the results for ultimate tensile strength are shown. For this model
this value is not normalised. After removing the split coils from the data 2456 coils remained.
The input selection m-file was used, with ten inputs being chosen. These were: gauge, radiant
tube furnace temperature, soak temperature, high gas jet cooling temperature, reheat
overage temperature, soak time, furnace tension, temper mill exit tension, temper mill load

and temper mill speed. The results of training this model are shown in Figure i.5.

231



Appendix | — Initial Neural Network Approach
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Figure i.5: Results from neural network modelling ultimate tensile strength of DC05/06 steels,

input data normalised

The model failed to accurately predict the training data. Closer inspection of the results
indicates that the higher ultimate tensile strength values, above the specified maximum value,
were particularly difficult to model. A likely cause for this problem maybe that there are so few
data points around this area for the model to learn from. In order to assess the capabilities of
this approach a new model was trained that excluded the failed data points.

Sixty-nine coils were removed for failing to meet the ultimate tensile strength specification,

leaving 2387 coils. The same m-file was used to select the inputs, with it fifteen inputs being
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chosen. These were: gauge, weight, radiant tube furnace temperature, soak temperature, high
gas jet cooling temperature, reheat overage temperature, high gas jet cooling rate, soak time,
furnace tension, temper mill tension in, temper mill exit tension, temper mill load, temper mill

speed, cold reduction, and phosphorus. The results for this model are shown in Figure i.6.
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Figure i.6: Results from neural network modelling ultimate tensile strength of DC05/06 steels,

input data normalised with no failed coils

An initial view of these results, based on the training data, may lead to the conclusion that

these results are no better than results obtained from other models. Inspection of the test
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data results, the unseen data not used to train the model, shows some improvements of this
model over the previous one. The results are still not as accurate as one would hope for, with
large discrepancies between many of the predicted and actual ultimate tensile strength values.
The poor results achieved, based on training data, are another indication of the failings of this

modelling attempt.

The approach detailed in this section failed to produce accurate results. This outcome was
disappointing when compared to results obtained by other researchers using the same
methods. The results shown here represent the best achieved from several models produced
using different inputs and network configurations. Most importantly, a considerable amount of
time was spent on this approach with seemingly very little achieved. For this reason it was

decided to try and find a different predictive method that could be used.
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So long and thanks for all the fish...
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