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Blind separation of the electroencephalogram signals (EEGs) using topographic independent component analysis (TICA) is an
effective tool to group the geometrically nearby source signals. The TICA algorithm further improves the results if the desired sig-
nal sources have particular properties which can be exploited in the separation process as constraints. Here, the spatial-frequency
information of the seizure signals is used to design a constrained TICA for the separation of epileptic seizure signal sources from
the multichannel EEGs. The performance is compared with those from the TICA and other conventional ICA algorithms. The
superiority of the new constrained TICA has been validated in terms of signal-to-interference ratio and correlation measurement.
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1. INTRODUCTION

Epilepsy is the most common brain disorder only second to
stroke, which affects nearly 60 million people in the world
[1]. Many studies have been carried out from different as-
pects in order to explore the mechanisms of epileptogen-
esis and the possible solutions for anticipation and thera-
pia [1-5]. Seizure detection has been under research for ap-
proximately three decades [6]. The most popular methods
are based on time-frequency analysis [7] and artificial neural
networks [8]. These methods do not exploit the multichan-
nel electroencephalogram (EEG) information effectively.
Independent component analysis (ICA) has been in-
creasingly applied to brain signal analysis for decomposi-
tion of multivariate EEGs to extract the desired sources. It
has found a fruitful application in the analysis of multichan-
nel EEGs [9] including epileptic seizure signals. The applica-
tions include the implementation of joint approximate diag-
onalization of eigenmatrices (JADE) and fastICA for seizure
detection [10, 11], artifact rejection from epileptic intracra-
nial EEGs by minimization of mutual information [12] and
spatial filtering [13], and tracking of the epileptiform ac-
tivity by incorporating the spatial constraint within the fas-
tICA [14]. A novel approach proposed in [15, 16] applied an
ICA approach to separate the seizure signals for prediction

purpose and verified the predictability of epileptic seizure
from the scalp EEGs. The main concept of this approach is
to consider the seizures as independent components which
are linearly and instantaneously combined together and with
the noise and artifacts over the scalp. Subject to the mutual
independency of the sources, the independent components
can be separated by ICA algorithms and the seizure sources
can be selected by postprocessing. The traditional nonlin-
ear analysis methods can be applied to these seizure compo-
nents for investigation of predictability. This approach can be
further improved if a better performance of separation can
be achieved. The objective of this work is to develop such
method which can provide more plausible estimation of the
seizure sources and eventually pave the way for the prediction
of epileptic seizures from the scalp EEGs.

The conventional ICA model is built based on the statis-
tical assumptions such that (1) the source signals are statis-
tically independent; (2) the independent components must
have nonGaussian distributions; (3) the number of inde-
pendent components are less or equal to the number of in-
put channels [17]. The ICA model has its own limitations.
Apart from the scale ambiguity and the permutation prob-
lem, sometime the classic ICA cannot take all the prior phys-
iological information into account and the results of sep-
aration cannot be interpreted physiologically. That is why
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in real applications the ICA algorithms have been modified
to incorporate the relevant additional information into the
separation processing as constraints to enhance both effi-
ciency and efficacy of the process.

Topographic ICA (TICA) proposed by Hyvirinen et
al. [18] is a modified ICA model, which relaxes the
assumption of statistical independency of the components,
considering the components topographically closed to each
other are not completely independent but have certain de-
pendencies. The dependencies are used to define a topo-
graphic order between these components. This provides a
very efficient method for separation of the multichannel EEG
source signals. Generally, the EEG recordings reveal the sum
of the action potentials of the neural cells, which are very
complicated to be understood physiologically and mathe-
matically. The dependencies between such sources cannot
be simply cancelled out by some statistical assumptions. In
this paper, we show how TICA works for the separation of
the epileptic seizure EEGs, and how the performance can be
improved by introducing novel spacial and frequency con-
straints in TICA. (In this paper, the constrained TICA is de-
noted as CTICA).

The paper is organized as follows. Section 2 describes
the algorithm development. First, the basic TICA model and
principles are explained. Then, the CTICA model is devel-
oped. Section 3 gives the experimental results obtained by
applying the proposed methods to the epileptic seizure EEGs.
The performance of CTICA and TICA is compared, and the
superiority of CTICA is demonstrated by comparing with
other commonly used ICA algorithms. The final section con-
cludes the paper.

2. ALGORITHM DEVELOPMENT

2.1. TopographicICA

The conventional noise-free ICA model can be expressed as
x(t) = As(t), (1)

where x(t) = [x1(t), %2(t),...,x,(t)]T, x € R" is the vector
of observed signals at time ¢, (-)T denotes transpose opera-
tion, s(t) = [s1(£),52(t),...,5m(£)]T is the unknown indepen-
dent source, s € R™, m < n for over-determined mixtures,
and A € R™" is the mixing matrix. The estimated sources
y(t) = [1(£), y2(t),..., ym(£)]T can be obtained by a sepa-
ration matrix W through the inversion of the above mixing
model,

y(t) = Wx(1), (2)

where W = AT is the pseudoinverse of the mixing matrix and
WA = L In the conventional ICA, the sources are assumed
to be completely statistically independent, and the estimated
signals have no particular order. But in most real applica-
tions, some sources may be more or less dependent on each
other, such as the EEG sources which are fired from close
locations within the cortex. In order to estimate the depen-
dency of the independent components, Hyvirinen et al. pro-

posed the TICA [18]. In TICA, the independency of the com-
ponents has been relaxed, which means that the sources geo-
metrically far from each other in topography are considered
approximately independent and those close to each other
are assumed to have certain dependencies. The dependency
is defined as the higher-order correlation between the esti-
mated sources, such as the correlation of the energies:

cov(sf,s7) = Esis;} — E{s}}E{s}} # 0, (3)
where cov(-) is the covariance of the two sources s; and s;,
and E{-} is the expectation operator. Therefore, the esti-
mated sources from the TICA are still uncorrelated, but their
energies are not.

In the TICA model, the variances of estimated com-
ponents are not constant, instead, they are generated by
some high-order independent variables. These variables are
mixed linearly in the topographic neighborhood, which are
defined by a neighborhood function k(i j). Based on this
model, the estimated components in the same neighborhood
are energy-correlated. The approximation of the density of
source s is given as [18]

ps)=]]exp (G(Zh(i, k)sf)), (4)
k i

where k is the index of the components within the same
neighborhood. G(-) is the scalar function defined by incor-
porating certain nonlinearity. In this work, G(-) has been de-
fined in [18]:

G(y) = —aJe +y, (5)
where « and € are scalar constants.

The approximation of the log likelihood of this model is
given in the following equation; more details of the deriva-
tion can be found in [18]:

N n n

log L(W) =Z ZG(Zh(z 7)(wix(t)) >+Nlog(|detW|),
t= =1 =1

(6)

where w; is the column vector of the unmixing matrix, N
is the length of the data, and h(i, j) is the neighborhood
function, which can be defined as a monotonically decreas-
ing function of some distance. The second term of the above
equation can be ignored, since the unmixing matrix is con-
strained to be orthogonal and the determinant of an orthog-
onal matrix is one. Therefore, the estimation of the TICA
model changes to choosing the optimal matrix Wy, that
maximizes the above log-likelihood function. The estimation
of maximization of the log likelihood of (6) can be found by

0
aw 10gL(W)|w Wopt =0. (7)
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The gradient is obtained as [18]

N n n

Vw =2 S x(Ox(0) 3 hik, j)g(zhu, j)(wiTX(t))2>,
t=1 j=1 i=1

®)

where g(-) is the derivative of the scalar function G(-).

2.2. Constrained topographic ICA

The estimated components from the TICA may be depen-
dent if they fall into the same neighborhood, that is, the
sources coming from the nearby location will be grouped
together. However, the performance of TICA algorithm has
certain limits. It may not be easy to get the sources grouped
together unless the nearby sources are active at the same time.
In [18], in order to obtain better visualization results, the ex-
periment was designed to generate some typical high energy
sources, such as biting teeth for 20 seconds. However, in most
cases of real applications, the source signals may not be so
significant, or there may be only one or two of active sources.
Another factor is the number of input channels. It is obvious
that the more input channels, the more information one can
have and the better results can be achieved. This can be an-
other limitation for the practical applications. However, the
performance can be improved by introducing certain con-
straints into the algorithm.

Adding prior information, as a constraint, to classic ICA
has been previously applied to EEG signal separation and
analysis [15, 19-23]. The conventional ICA does not exploit
the dependency of the sources, therefore, does not always
provide the desired outputs. For EEGs, there is valuable prior
knowledge which can help to separate the desired sources. In
this study, we consider two constraints which are based on
spatial and frequency information. Firstly, in the focal epilep-
tic seizures, the location of the seizure sources, “epileptogenic
zone,” is often known as the prior information. Secondly,
the seizure signals manifest themselves within certain fre-
quency band. Based on the research findings from the clini-
cians and the neurologists, although the dominant frequency
may vary for different types of seizures, the frequency band
of the epileptic seizure onset is normally from 2.5 to 15.5 Hz.
(Frequencies below 2.5 Hz are considered to be mainly due to
eye-blinking artifacts) [24-26]. Therefore, the constraint can
be determined based on both spatial and frequency domain
information. The model of the constrained TICA problem
can be expressed as

maxJ,,(W), s.t. minJ.(W), 9)

where J,,(W) is the main cost function, which is based on
TICA as shown in (6). J.(W) is the constraint which can be
defined as minimizing the distance between the output and a
reference signal:

N
J.(W) = argmvinz [[wlx(t) — yr(t)||§, (10)

t=1

where y, is the reference signal defined based on the spatial
and frequency constraints and || - ||, measures the Euclidean

distance. The CTICA is then changed to an unconstrained
function by using a Lagrange multiplier. Therefore, the over-
all cost function is written as

JW,A) = Ju(W) = AJ.(W), (11)
where A = diag{A;},i = 1,...,m, is a diagonal weight ma-
trix formed by

A = p - diag(cor(y,, y1)), (12)

where p is an adjust constant, cor(-) is the correlation mea-
surement, and y; is the ith estimated source. Then, the update
equation is obtained as

(W)

W(k+1) = W(k) +‘u(k){W + A (X(WX - Y,)T)},
(13)

where y is the learning rate which is updated iteratively. Y, is
the matrix with the reference signal y, in each row.

3. EXPERIMENT

The experiments consist of the application of the proposed
CTICA algorithm to two patients with focal epileptic seizure.
Generalized seizure was not considered in this work because
the main purpose of this study was to investigate the pre-
dictability of epileptic seizure which is possible for only focal
seizures. The epileptogenic zone was confirmed by the clini-
cal experts as the prior information. Both patients’ data con-
tained epileptic seizure onset were truncated from the orig-
inal long recording EEGs and were used in the experiments
to validate the algorithm. The first experiment compared the
performance of CTICA and TICA in terms of the signal-to-
interference ratio (SIR). The second experiment provided the
comparison of CTICA and three algorithms in terms of cor-
relation measurement. Both experiments used topography to
assist the visualization of the results.

In order to evaluate the performance, SIR was defined to
be the averaged signal energy for the estimated source y(t)
from the direct source divided by the energy stemming from
the other sources; higher value of SIR indicates a better per-
formance:

m —112 2
SIR = (1/m) 37" W' | <|Yi|2> (14
(V/m(m — 1)) 3 35 W5t [y 1)

where W;;! includes the diagonal elements in the inverse of
unmixing matrix, that is, the weights from source y; to sensor
x;. The oft-diagonal elements W{jl provide the weights from
the source y; to the sensor x;. It shows how the source y;
interferes the source y;, since each column of the inverse of
unmixing matrix indicates the distribution of each source in
the mixtures.

The parameters used in the experiments were set up as
follows. In (5), the scalar function G(-) parameters « and €
are chosen, respectively, as 1 and 0.005 refering to [18]. The
adjust constant p in (12) was chosen between 6 to 10 based
on the experiments performance. The initial value of learn-
ing rate g in (13) was set to 0.1.
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FiGure 1: Multichannel EEG signals from an epilepsy patient in-
cluding the seizure onset.
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FiGure 2: The EEG source signals estimated by TICA.

3.1. Experiment|

3.1.1.  Data acquisition and the experiment setup

The multichannel EEGs with the frontal focal epileptic
seizure were recorded using the standard silver cup electrodes
applied according to the “Maudsley” electrode placement
system, which is a modification of the extended 10-20 system
[27]. This system provides a more extensive coverage of the
lower part of the cerebral convexity, increasing the sensitivity
for the recording from basal subtemporal structures. The 16
channels EEGs were sampled at 200 Hz and bandpass filtered
in the frequency range of 0.3-70 Hz. The system input range
was 2 mV and the data were digitized with a 12-bit analog-to-
digital converter [15]. The signals were preprocessed by first
removing the baseline to alleviate the effect of low frequency
artifacts. Then, the EEGs were filtered by a 10th order But-
terworth digital filter with a cut frequency of 45 Hz in order
to eliminate the 50 Hz frequency component. The EEGs used
in the following experiment were truncated from the original
recordings to include the duration of 10 seconds with seizure
onset as shown in Figure 1.

F1GURE 3: The EEG source signals estimated by TICA.

3.1.2. Reference

The reference signal was obtained by first averaging the spe-
cial channels closed to the epileptogenic zone. In these ex-
periments, F3, F4, F7, E8, C3, and C4 were selected. Then,
3-15Hz bandpass filtering was undertaken to extract the in-
formation within the seizure frequency band. The final ref-
erence is a vector bounded within the designed spatial and
frequency information of the seizure.

3.1.3.  Neighborhood function

The neighborhood function indicates how the estimated
sources are energy correlated with each other, which can be
defined as a function of the width of the neighborhood. In
this study, because of the limited number of input channels,
the function was chosen as the simple one-dimensional form,
suchash(i, j) = 1,if [i— j| < m, otherwise, h(i, j) = 0, where
m is the width of the neighborhood. It can be noticed that the
neighborhood function is symmetric as h(i, j) = h(j,1).

3.1.4. Results

The separation results of TICA and CTICA are given in Fig-
ures 2 and 3. Figure 7 gives the convergence curve of CTICA.
Both algorithms used the width of neighborhood m = 1. A
simple detection rule based on the dominant frequency and
respective estimated spectrum is applied to select the sources
which have the significant ictal activities. The source with a
maximum spectrum amplitude higher than a threshold and
also with the dominant frequency in the seizure band, is
taken as a seizure source. These sources are IC7, IC8, IC9, and
IC10 in Figure 2, IC5, IC6, IC7, and IC8 in Figure 3. One can
see that the high amplitude spike signals are separated from
the other sources. Another distinct source related to the eye
blink can be seen from two of the outputs, which is IC12 in
Figure 2 and IC4 in Figure 3.

It may not be easy to decern the differences between
the source candidates only by visual inspection of the time
course of the sources, hence the topography was used to
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Topography reveals how the source signal contributes to each
recordings, for example, one can notice that, in both sets
of results, the distribution of eye blink (IC12 in Figure 4
and IC4 in Figure 5) appears on the area near the electrodes
Fpl and Fp2. It can be found that the four selected ICs are
grouped together. The difference is, in Figure 5, the selected
ICs (IC5, 1C6, IC7, and IC8) from the CTICA are localized in
the frontal region, but in Figure 4, the distribution of the cor-
responding sources (IC7, IC8, IC9, and IC10) by the TICA
are rather dispersed. For instance, for IC10, the spatial distri-
bution is highlighted in both frontal and temporal areas. A
similar result can be noticed for IC11.

The performance of the algorithm was evaluated by the
average of five trials for both TICA and CTICA. The SIR was
calculated based on the definition given in (14). Figure 6 il-
lustrates the separation performance (SIR) via the changes
of the width of the neighborhood. It can be noticed that
the SIR of TICA decreases with the increase of the neigh-
borhood width. This is because the wider the neighborhood
is, the more the source will be separated based on energy
correlation. However, for the CTICA, due to the spatial and
frequency constraints, the SIR slightly decreases at the be-

Number of iterations

F1GURE 7: Algorithm convergence of CTICA.

ginning, then stays approximately at certain level. It shows
that, generally, the CTICA has a better performance than the
TICA. It also works better than the TICA when the width of
the neighborhood increases.

3.2. Experimentli

3.2.1. Data acquisition and the experiment setup

In order to validate the performance of CTICA, in the sec-
ond experiment, CTICA and other three popular ICA algo-
rithms (JADE, SOBI, and Infomax) were applied to a patient
with the right temporal seizure. The multichannel EEGs were
obtained from a simultaneous EEG-fMRI recording system,
in which the data were recorded during the fMRI scanning
process. The fMRI scan period was 3 seconds and the scan-
ner artifacts within EEGs were removed by the data provider.
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FIGURE 8: The separated sources from four ICA algorithms. The
source which had the maximum correlation with the reference was
selected from each algorithm.

The 64 channels EEGs were sampled at 250 Hz and filtered
by a 10th order Butterworth low-pass digital filter with a cut
frequency of 45 Hz. The data were then truncated with du-
ration of 10 seconds for the separation. The reference signal
was formed by averaging the signals from two electrodes T8
and P8. The width of the neighborhood function was m = 1.
The rest of the parameters was set as in the first experiment.

3.2.2. Results

The performance of the four algorithms were compared
in terms of correlation coefficient. For each algorithm, the
source which had the maximum correlation with the refer-
ence was selected, are the correlation coefficient is shown in
Table 1. It can be seen that the source obtained from CTICA
has the maximum correlation with the reference and the
source from Infomax has the minimum correlation.

The time course of the selected source is shown in
Figure 8. It can be noticed that the source from Infomax has
clear spikes with a period of 3 seconds, which is the same as
the fMRI scan period. The spikes were most likely the fMRI
scanner artifacts remained in the EEGs, and Infomax seemed
not to separate these artifacts from the desired sources.

JADE

FiGure 9: Topography of the selected sources from four algorithms.

TasLE 1: Correlation between reference and selected source.

JADE
0.5510

CTICA
0.6832

SOBI
0.5142

Infomax
0.3292

Figure 9 compares the topography of the sources selected
from the four algorithms. It can be seen that although the
topography does not highlight them at the area of interest
(which can be due to the depth of the sources), the sources
from JADE and CTICA have shown the distribution around
the these regions (the right temporal area), and CTICA per-
forms better than JADE. SOBI does not provide the promis-
ing result in the area of interest. Topography of the source
from Infomax highlights a quite large area in the brain, which
is typically caused by the scanning process. This also matches
its source time course, in which the spikes were due to the
scanner artifacts (as in Figure 8).

4. CONCLUSION

A novel constrained topographic ICA algorithm has been de-
veloped for separation of the epileptic seizure signals, which
not only relaxes the independence assumption of nearby
sources, but also further constrains the mixing model in
spatial and frequency domains by using application-specific
knowledges of epileptic seizures in the form of an averaged
and band-limited reference signal. The CTICA algorithm
achieves better performance than other ICA algorithms in
terms of the SIR and correlation with the reference signal.
This provides very promising results for further application
of epileptic seizure analysis.
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