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A Lagrangian particle-based method, the smooth particle hydrodynamics, is used to model the flow of ultra-high-

performance, self-compacting concretes containing short steel fibres which behave like a non-Newtonian fluid

described by a Bingham-type constitutive model. An incompressible smooth particle hydrodynamics method is used

to simulate the flow after the kink in the shear stress against the shear strain rate constitutive equation is first

appropriately smoothed out. One of the key factors that ensures the strength and durability of an ultra-high-

performance concrete is the orientation of the fibres within the concrete structures cast from the ultra-high

performance, self-compacting concretes. Therefore, this paper mainly focuses on developing a numerical method-

ology to determine how the fibres distribute and orient themselves during the ultra-high performance, self-

compacting concrete flow. For this, a novel approach which can be easily combined with the continuum flow model

developed in a previous study by the authors is proposed here. A number of numerical simulations are presented to

demonstrate the effectiveness of the proposed methodology.

Notation
d rate of deformation

g gravitational acceleration

P pressure

t time

v particle velocity

x particle position

_ª shear strain rate

� plastic viscosity

� effective plastic viscosity

r fluid density

� shear stress

�0 yield stress

1. Introduction
In recent years, self-compacting concrete (SCC) is increasingly

replacing the conventional vibrated concrete in the construction

industry. Moreover, the need for very high durability structures

with a lower life cycle cost is promoting the use of ultra-high-

performance, self-compacting concretes (UHPSCC) containing

distributed short steel fibres. UHPSCC must exhibit excellent

flow-ability in the formwork to ensure long-term durability. The

filling behaviour of UHPSCC with short steel fibres is even more

difficult to predict in formworks of complex shape in the

presence of reinforcing steel. Therefore, in order to produce high-

quality UHPSCC structures it is vital to understand fully the flow

characteristics of UHPSCC. The most cost-effective way to gain

such an understanding is by performing numerical simulations.

These will not only enable us to understand the filling behaviour,

but will also provide an insight into how the fibres will distribute

and orient themselves during the flow.

In practice, it is not easy to model the flow of UHPSCCs or any

such heterogeneous materials due to their complex constitutive

behaviour. Any computational model for the flow should be able

to describe the rheological behaviour of the material accurately

and to follow the large deformation and Lagrangian nature of the

flow. A number of computational strategies have been attempted

in the past to simulate the SCC flow by assuming the concrete to

be a homogeneous viscous fluid and using either the discrete

element method (Gram and Silfwerbrand, 2011; Noor and

Uomoto, 1999; Petersson, 2003) or the Lagrangian finite-element

method (Dufour and Pijaudier-Cabot, 2005). An overview of the

various computational techniques used in the past to model
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concrete flow and their advantages and disadvantages is given in

(Roussel et al., 2007). Due to the Lagrangian nature of the SCC

flow and due to the fact that an SCC mix is essentially an

aggregate of particles of different sizes and shapes, the use of

particle-based Lagrangian numerical techniques to simulate such

flows is both more appropriate and simpler than the traditional

mesh-based methods (Dufour and Pijaudier-Cabot, 2005; Noor

and Uomoto, 1999; Petersson, 2003; Roussel et al., 2007).

Therefore, a Lagrangian particle-based technique, the so-called

smooth particle hydrodynamics (SPH) method (Bonet and Kula-

segaram, 2000; Monaghan, 1992, 1994) was chosen by authors

(Kulasegaram et al., 2011) for simulating the SCC flow. As fibre

orientations during the flow of an UHPSCC containing randomly

distributed short steel fibres play an important role in determining

the durability and strength of the hardened structures, this paper

focuses on developing a methodology to predict the fibre orienta-

tions during the flow. A simple and robust numerical approach

that can be easily combined with the SPH technique developed

by the authors previously (Kulasegaram et al., 2011) is proposed

here to determine the fibre orientations during the simulation of

UHPSCC flow.

The simplicity and Lagrangian nature of SPH have been exploited

in the past to model many free-surface fluid flows and related

engineering problems (Bonet and Kulasegaram, 2000; Cummins

and Rudman, 1999; Kulasegaram et al., 2004; Monaghan, 1992,

1994). To simulate the flow of a UHPSCC with short steel fibres,

an incompressible SPH methodology was adopted in the present

study. In Section 2, for the sake of completeness, the governing

equations and basic formulation relating to incompressible SPH

and the procedure for coupling the SPH with a suitable Bingham

model to represent the rheological behaviour of UHPSCC are

briefly reviewed (for full details, see Kulasegaram et al. (2011)).

A novel methodology to determine fibre orientations during the

flow is also detailed in this section. Section 3 presents numerical

results for UHPSCC flow to demonstrate the effectiveness of the

proposed methodology in determining the fibre orientations

during the flow. Section 4 concludes the paper by highlighting the

advantages of the presented numerical approach.

2. Numerical modelling
This section introduces the basic governing equations and

numerical procedures associated with the modelling of UHPSCC

flow.

2.1 Governing equations

The ultra-high-performance, self-compacting, fibre-reinforced

concrete is assumed to have the characteristics of a viscous non-

Newtonian fluid, described by a bi-linear Bingham-type rheologi-

cal model in which the fluid flow only initiates once the shear

stress has reached a critical value called the yield stress �0

(Ghanbari and Karihaloo, 2009; Papanastasiou, 1987). Thereafter,

the shear stress varies linearly with the shear strain rate _ª, the

slope being equal to the plastic viscosity � of the UHPSCC mix.

Ghanbari and Karihaloo (2009) have shown how to predict the

plastic viscosity � of self-compacting concretes with and without

short steel fibres from the measured viscosity of the paste alone

using micromechanical models in which the second phase

aggregates are treated as rigid spheres and the short steel fibres as

slender rigid bodies. They have also argued that the yield stress

�0 of SCC mixes is practically unchanged over a very large range

of plastic viscosities. From a computational point of view, it is

expedient to approximate the bi-linear Bingham constitutive

relation which has a kink at _ª ¼ 0 by a smooth function with a

continuous first derivative; for example, by a scalar function of

the type (Papanastasiou, 1987):

� ¼ � _ªþ �0 1� e�m _ªð Þ1:

in which m is a very large number. Experience shows (Ghanbari

and Karihaloo, 2009) that when m . 105 is chosen the smooth

function (1) is practically indistinguishable from the original bi-

linear constitutive relation.

The isothermal Lagrangian form of mass and momentum con-

servation equations are

1

r
Dr
Dt
þ = � v ¼0

2:

Dv

Dt
¼ � 1

r
=Pþ g þ 1

r
= � �

3:

In Equations 2 and 3, r, t, v, P, g and � represent the fluid

particle density, time, particle velocity, pressure, gravitational

acceleration and shear stress, respectively. These equations govern

both Newtonian and non-Newtonian fluid flows. However, the

non-Newtonian fluids differ from Newtonian ones due to their

shear rate-dependent viscosity. The shear stress in a non-New-

tonian fluid is generally given by

� ¼ 2� _ªð Þd � �þ �0

_ª
1� e�m _ªð Þ

� �
d _ª . 0ð Þ

4:

where d is the rate of deformation and � is the effective plastic

viscosity which is a function of shear rate. For the modelling of

non-Newtonian SCC flow, the shear stress can be directly

computed from Equation 1.

2.2 Numerical solution procedure

To track the Lagrangian non-Newtonian flow, a projection method

based on a predictor–corrector time stepping scheme (Chorin,

1968; Cummins and Rudman, 1999; Koshizuka et al., 1998) is

adopted here to solve the governing equations.
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The prediction step is an explicit integration in time without

enforcing incompressibility. Only the viscous stress and gravity

terms in Equation 3 are considered and an intermediate particle

velocity v�nþ1 is obtained as

v�nþ1 ¼ vn þ g þ 1

r
= � �

� �
˜t

5:

Then the correction step is executed by considering the pressure

term in Equation 3

vnþ1 � v�nþ1

˜t
¼ � 1

r
=Pnþ1

� �
6:

where vnþ1 is the corrected particle velocity at the time level

n+1.

The intermediate velocity vnþ1 is usually not divergence-free but

this is imposed on the corrected velocity vnþ1 by enforcing the

incompressibility condition from Equation 2

= � vnþ1 ¼ 07:

Hence the intermediate velocity can be projected on the diver-

gence-free space by writing the divergence of Equation 6 as

= � 1

r
=Pnþ1

� �
¼ = � v�nþ1

˜t8:

Since the density of a particle remains constant in the present

simulation, Equation 8 can be rewritten as

=2 Pnþ1 ¼
r
˜t

= � v�nþ19:

where =2 is the Laplacian operator.

Once the pressure is obtained from Equation 9, the particle

velocity is updated by the computed pressure gradient (see

Equation 6)

vnþ1 ¼ v�nþ1 �
1

r
=Pnþ1

� �
˜t

10:

Finally, the instantaneous particle position is updated using the

corrected velocity

xnþ1 ¼ xn þ vnþ1˜t11:

The time step ˜t is chosen based on the relevant Courant stability

conditions for the given problem. In the case of a Bingham-type

SCC fluid flow, the time step is primarily controlled by the plastic

viscosity �. This is due to the fact that the maximum velocity of

the flow is mainly affected by the viscosity of the flow. Therefore,

the time step size is generally decided by

˜t ¼ min
Æ1 r0

Vmax

,
Æ2 r2

0r
�

 !
12:

where r0 is the initial particle spacing, Vmax is the maximum

particle velocity, and Æ1 and Æ2 are coefficients usually in the

order of 0.1. These coefficients depend on the choice of SPH

kernel functions and the nature of the engineering application.

2.3 Procedure for modelling fibre orientation

It is possible to develop a complicated and computationally very

expensive technique to model the fibre distribution and orienta-

tions during the flow. For example, numerical techniques such as

the discrete element method (Gram and Silfwerbrand, 2011) or

the lattice Boltzmann technique (Svec et al., 2011) can be used

to model the SCC fluid flow with fibre suspensions. However, the

aim of this paper was to produce a simple and reliable method-

ology that does not deviate significantly from the original

formulation and techniques developed in Kulasegaram et al.

(2011).

In a previous preliminary investigation (Kulasegaram et al.,

2010), the mass of each fibre was concentrated at its centre of

mass, and the rigid body translation of this ‘fibre’ particle was

monitored during the flow by way of its velocity vector. This

gave an indication of how the randomly distributed fibres trans-

late as rigid particles during the flow but cannot capture their

rotations as rigid slender rods (Figure 1).

In order to be able to monitor both the rigid body translation and

the rigid body rotation of the steel fibres during the flow, let us

consider the flow of UHPSCC with short steel fibres at a given

time in space. Figure 2 schematically shows the positions of SPH

particles representing the fluid (the SCC mix) and fibres at a

given time in space.

As fibre orientation is mainly dictated by the flow of SCC mix

rather than the mass of the fibres, it is feasible to assume that the

positions of the ends of a fibre are largely controlled by the fluid

particles surrounding them. Accordingly, the entire domain is

discretised into two types of particles: one for representing the

fluid and the other for fibres. The initial positions of the pair of

particles representing a fibre are generated randomly but with a

constant distance (equal to the fibre length) between them. In

addition, the particles representing the fibre ends are not allowed

to overlap with the fluid particles. Each pair of particles

representing a fibre is tagged throughout the simulation.
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Both the fluid and fibre particles have the same continuum

properties except that the masses of particles: representing the

fibres are different from those of the fluid particles. In contrast to

Figure 1 in which the fibre is treated as a particle with its mass

concentrated at its centre, the mass of each fibre is equally

divided between the particles at the ends of this fibre. Further, as

the fibres are assumed to behave like rigid slender rods which

undergo only rigid body translation and rotation during the flow,

the fibre end particles are assumed to be rigidly connected. This

condition is enforced by constraining the distance between the

fibre end particles to remain unchanged (and equal to the physical

length of the fibre) throughout the flow simulation.

This is done by implementing an additional step in the numerical

procedure described in the previous section, as follows. It is

noted first that following the computation of the pressure from

Equation 9, the velocity and hence the particle positions are

calculated from Equations 10 and 11, respectively. Now consider

a single fibre between time steps tn and tnþ1 during which it has

translated and rotated as a rigid body in the flow. Figure 3

illustrates the configuration of a fibre at time steps tn and tnþ1:

The distance between particle positions 1Xnþ1 and 2Xnþ1 at tnþ1

has to be equal to the fibre length. Therefore an iterative

procedure has been introduced in computing the new positions of

fibre end particles to ensure that they are separated by the fibre

length. This iterative procedure has been combined with the steps

given by Equations 10 and 11 to estimate the new positions of

the particles. The key steps involved in enforcing the constant

distance between the pair of particles representing a fibre can be

summarised as follows, once the particle positions are updated

using Equation 11 from time step tn to tnþ1.

(a) Step 1: check whether the distance (Lnþ1) between the pair of

particles representing each and every fibre is approximately

equal to the fibre length (L0).

(b) Step 2: if Lnþ1 � L0j j . 10�5 for a certain fibre then equal

and opposite penalty forces Fp proportional to Lnþ1 � L0j j
are applied (in Equation 5) on the pair of particles

representing that fibre along the vector connecting this pair of

particles.

(c) Step 3: the Equations 5, 6, 9, 10 and 11 are now solved again

sequentially to determine the positions of all the particles.

(d ) Step 4: steps 1 to 3 are repeated until the pairs of particles

representing all the fibres satisfy the condition

Lnþ1 � L0j j , 10�5:

0·15 s 0·25 s 0·30 s 0·59 s
Figure 1. Filling of a mould with a square cross-section by

UHPSCC. The outlet opening of the feed hopper is 100 mm

above the rim of the mould. Dark dots represent randomly

distributed rigid fibre ‘particles’

SCC mix
Fibre

y

x

Figure 2. Schematic diagram of the flow of UHPSCC with rigid

steel fibres

tn tn�1

1Xn

2Xn

1Xn�1

2Xn�1

Figure 3. Schematic sketch of fibre orientations at tn and tnþ1
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As discussed above, the rigid link between the pair of particles

representing a fibre is enforced during the computations. Hence,

any collisions between the fibres are simulated by way of

interactions between the particles representing the individual

fibres. As the fibre particles have the same continuum properties

as the fluid particles, their interactions are modelled in the same

manner as the interactions between the fluid particles.

The SPH formulation of the governing equations described in the

previous section and the modelling of the boundary conditions

follow the procedures described in Kulasegaram et al. (2011) and

the references cited therein.

Based on the formulations detailed above, a numerical scheme

which integrates the Lagrangian SPH formulations with the

rheological Bingham model for UHPSCC has been developed.

This scheme has been used to simulate how the UHPSCC fills a

mould and how the randomly distributed fibres change their

positions and orientations during this filling process. In the

following section, a number of numerical examples are presented

to validate the proposed numerical procedures.

3. Numerical simulations
In this section, two-dimensional numerical simulations of the

UHPSCC flow in two different moulds were carried out. First, a

rectangular mould with a square cross-section (200 mm 3

200 mm) was filled by UHPSCC containing 2.5% by volume of

randomly distributed 30 mm long rigid steel fibres. The UHPSCC

mix was in a hopper whose outlet end was at a height of 50 mm

above the top edge of the mould. To compare the effect of the

plastic viscosity of the mix on the filling behaviour and fibre

orientations, two different mix compositions were used in the

simulation. The key difference in the model parameters between

the two compositions was the plastic viscosity which changed

with the amount of super-plasticiser used in the mix. The second

mould also had a square cross-section but contained a circular

cylindrical cut out along its length. In both the examples, realistic

boundary conditions were assumed as in Kulasegaram et al.

(2011), involving slip and friction between the UHPSCC and the

contacting surfaces (e.g. the mould walls and the cut out surface).

3.1 Filling of a rectangular mould with a square cross-

section

Figure 4 shows the hopper and the mould at time t ¼ 0. The

hopper holds the UHPSCC mix containing 2.5% by volume of

randomly distributed 30 mm long rigid steel fibres sufficient to

fill the mould with a square cross-section, as shown in the figure.

To investigate the effect of the plastic viscosity of the mix on the

fibre distribution and orientations, two mix compositions

UHPSCC1 and UHPSCC2, differing only by the plastic viscosity,

were considered. The rheological properties of these two mixes

are given in Table 1.

Figures 5 and 6 show the filling of the mould by the two mixes at

various times during the filling process. To view the fibre

orientations clearly, only the flow when the mix was discharged

from the hopper is illustrated in both Figures 5 and 6. It can be

observed that in both mixes the flow pushed the fibres more

towards the walls of the mould than to its centre. This was more

noticeable in the mix with the lower plastic viscosity, namely

UHPSCC2.

To investigate the influence of the gap between the hopper outlet

and the top edge of the mould on the filling behaviour, the

numerical simulations described above were repeated with a gap

of 100 mm. Figures 7 and 8 show the mould filling simulation by

the two mixes at various stages of the filling process. It can be

observed from these results that the vertical gap between the

0·2 m

0·3 m

0·1 m 0·05 m

0·2 m

0·2 m

Figure 4. The hopper filled with UHPSCC and the empty mould at

t ¼ 0

Mix properties UHPSCC1 UHPSCC2

Density: kg/m3 2411 2411

Plastic viscosity: Pas 70 54.4

Yield stress: Pa 200 200

Table 1. Density and rheological properties of UHPSCC1 and

UHPSCC2
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0·15 s 0·23 s 0·28 s 0·56 s

Figure 5. The hopper empties its contents of UHPSCC1 into the

mould until the latter is filled. The outlet opening of the hopper

is 50 mm above the rim of the mould

0·15 s 0·23 s 0·28 s 0·54 s

Figure 6. The hopper empties its contents of UHPSCC2 into the

mould until the latter is filled. The outlet opening of the hopper

is 50 mm above the rim of the mould

0·15 s 0·25 s 0·30 s 0·58 s

Figure 7. The hopper empties its contents of UHPSCC1 into the

mould until the latter is filled. The outlet opening of the hopper

is 100 mm above the rim of the mould
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hopper outlet and the top edge of the mould did not significantly

affect the flow behaviour of both mixes.

Furthermore, to study the effect of the hopper outlet opening on

the flow behaviour the above example was repeated for both

mixes with the outlet opening reduced by 50%. Figures 9 and 10

illustrate the mould filling simulation by the two mixes at various

stages of the filling process. It can be observed from a compari-

son of Figures 9 and 10 with Figures 7 and 8, respectively that a

smaller outlet opening not only increased the filling time, as

expected, but also tended to push the fibres more towards the

walls of the mould.

3.2 Filling of a rectangular mould with a square cross-

section and a circular cylindrical obstruction

Consider now a second mould which also has a square cross-

section but which contains a circular cylindrical cut out (obstruc-

tion) along its length. Such cut outs are built into the concrete

beam elements during their casting and provide access for service

ducting, and so on. Figure 11 shows the hopper and the mould

cross-section with a circular obstruction. It was 90 mm in

diameter and was located at the centre of the square section

(200 mm 3 200 mm). Figures 12 (UHPSCC1) and 13

(UHPSCC2) show the mould with the obstruction being filled at

various stages in the filling process and how the fibres were

0·15 s 0·25 s 0·30 s 0·56 s

Figure 8. The hopper empties its contents of UHPSCC2 into the

mould until the latter is filled. The outlet opening of the hopper

is 100 mm above the rim of the mould

0·16 s 0·26 s 0·42 s 0·82 s

Figure 9. The hopper with a narrower outlet opening empties its

contents of UHPSCC1 into the mould until the latter is filled. The

outlet opening of the hopper is 100 mm above the rim of the

mould
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oriented. It appears that the fibres were concentrated along the

surface of the circular obstruction.

In all the examples above, the volume of UHPSCC in the initial

configuration was constant as shown in Figures 4 and 11. In the

previous study (Kulasegaram et al., 2011) it was found that for

the convergence of the solution it was sufficient to discretise the

volume of the material (within the hopper) approximately by

4000 particles. Therefore, in all the above numerical simulations

the initial volume was represented by 4000 particles. This number

of particles was also sufficient to ensure that the smoothing

length used in the SPH computations was much smaller than the

fibre length, so that the pair of particles representing a fibre could

not be direct neighbours of each other. In all the numerical

simulations the time step was determined by Equation 12 and it

was found to be in the order of 1.0 3 10�6 s.

In the SPH method, the implementation of the boundary condi-

tions is not as straightforward as in the traditional mesh-based

methods. In the present study, a technique based on rigid

boundary particles with arrays of dummy particles was used to

implement the wall boundary conditions, as described in Kulase-

garam et al. (2011). As a result of the treatment of the boundary

walls in this manner it can be noted from the results of the

simulations that the fibres appeared not to touch the walls.

In all the above simulations the number of fibres was deliberately

exaggerated to demonstrate the capability of the numerical

procedure. For the considered volume, the number of fibre

particles in the section in proportion to the total number of

particles (i.e. 4000) can be estimated using the geometric

probability theory. This number is much smaller than that used in

the simulations.

4. Conclusion
A numerical methodology has been developed to predict how the

fibres distribute and orient themselves during the filling of

moulds with UHPSCC mixes that contain 2.5% of 30 mm long

steel fibres which are initially randomly distributed. This method-

0·16 s 0·26 s 0·40 s 0·80 s

Figure 10. The hopper with a narrower outlet opening empties

its contents of UHPSCC2 into the mould until the latter is filled.

The outlet opening of the hopper is 100 mm above the rim of

the mould

0·2 m

0·3 m

0·1 m
0·1 m

0·09 m

0·2 m

0·2 m

Figure 11. The hopper filled with UHPSCC and the empty mould

with a circular obstruction at t ¼ 0
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ology combines the corrected Lagrangian SPH method detailed

in Kulasegaram et al. (2011) to simulate the flow of UHPSCC

mixes with a procedure to exhibit the fibre orientations during the

flow. Two examples confirmed that the developed SPH method-

ology was capable of predicting the behaviour of UHPSCC mixes

during their flow in moulds. They showed clearly how the fibre

distribution and orientation were influenced by the plastic

viscosity of the mix. In particular, they revealed that the fibres

tended to concentrate near the mould walls and the surfaces of

any internal obstructions within the mould. The methodology

developed in the present study can be used to investigate how this

fibre concentration near the slipping and frictional walls and

surfaces can be minimised by adjusting the mix rheological

parameters and/or reducing the friction by greasing the surfaces

with which the mix comes into contact during the flow. These

and other aspects of mould filling are currently being investi-

gated. Finally, it should be mentioned that a two-dimensional

representation is somewhat misleading because it shows all the

fibres (2.5% by volume) in a single plane. To obtain an accurate

picture of the fibre distribution and orientation during the flow, a

0·15 s 0·25 s 0·31 s 0·50 s

Figure 12. The hopper empties its contents of UHPSCC1 into the

mould with a circular obstruction until the mould is filled. The

outlet opening of the hopper is 100 mm above the rim of the

mould

0·15 s 0·25 s 0·31 s 0·47 s

Figure 13. The hopper empties its contents of UHPSCC2 into the

mould with a circular obstruction until the mould is filled. The

outlet opening of the hopper is 100 mm above the rim of the

mould
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three-dimensional flow simulation is necessary. The present

methodology can easily be extended to three dimensions. That

work is also in progress.
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