
 

INVESTIGATIONS OF ZNO MICROVARISTOR                   

FOR STRESS CONTROL ON POLYMERIC                

OUTDOOR INSULATORS  

 

 

A thesis submitted to Cardiff University  

in candidature for the degree of  

Doctor of Philosophy 

 

 

 

 

By 

 

RAHISHAM ABD RAHMAN 

M.Eng (Hons) 

 
 

 

 

 

 

School of Engineering, Cardiff University  

August 2012 

 

 



 

 ii

SUMMARY 

This thesis is concerned with the investigation of the efficacy of Zinc Oxide 
microvaristor compound for stress control on polymeric outdoor insulators. The 
preliminary work has involved a comprehensive literature survey, followed by extensive 
computational modelling and simulation studies as well as laboratory works covering 
experimental investigations and fabrication of insulator prototypes.  
 
The literature survey reviewed stress-induced degradations as the cause of ageing and 
insulation failures, the determination of electric field distributions, considerations for 
outdoor insulator modelling, and field-optimisation techniques for achieving stress 
relief. 
 
An 11 kV polymeric insulator has been modelled and simulated under dry-clean and 
wet-polluted surface conditions in order to obtain electric field distribution along the 
insulator creepage path. The critical high field regions on polymeric surfaces were 
identified. In addition, clean fog solid layer tests were carried out to experimentally 
examine dry band formation and electric discharges. Experimental investigations 
confirmed the results previously achieved from theoretical simulations.  
 
A non-linear pollution model has been developed for simulating polluted outdoor 
insulators. The field-dependent conductivity was derived from layer conductance 
measurements in a non-standard low voltage test. The proposed model was used to 
simulate insulators under fog and light rain conditions which respectively represent a 
uniform and non-uniform wetting action in practice. It was demonstrated that the non-
linear pollution model yields a more detailed and realistic field distribution compared 
with results obtained with models using constant/linear conductivity. 
 
Short-length microvaristor coating, having a cone-shaped structure, was introduced at 
both insulator ends for controlling high field, particularly near the high voltage and 
ground terminals. The performance of field grading was evaluated through a number of 
simulation scenarios. The introduction of microvaristor material with an appropriate 
switching characteristic has led to a substantial improvement in the electric field and 
heat distributions along the insulator profile.  
 
The prototype of an 11kV insulator with microvaristor grading material was fabricated 
in-house for preliminary tests. Lightning impulse (1.2/50 µs) flashover tests were 
carried out using the ‘up and down’ method, and the flashover voltage was estimated by 
the 50% probability breakdown, U50. The results of the lightning impulse test have 
indicated a considerable increase in the flashover voltage up to 21% when using 
microvaristor-graded insulator. Favourable field distributions obtained in the simulation 
study have indicated a strong correlation with the experimental results. 
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CHAPTER 1:                                            

INTRODUCTION 

 

1.1. BACKGROUND 

Developments of the modern world depend significantly upon a continuous 

electric power supply. With growing demand, utilities must provide secure and reliable 

power delivery while maximising the performance of the power distribution system 

from both technical and economic standpoints. Interruptions or failures within the 

power systems may result not only in damage to valuable high-voltage equipment, but 

can also lead to considerable loss of revenue, particularly for industrial consumers.   

Outdoor insulators are among the key components in the electric power 

transmission network, essentially required for two primary purposes: i) to isolate the 

transmission tower from the high-voltage source, and ii) to provide a load-bearing 

platform capable of supporting heavy overhead conductors well above the ground [1]. 

While in use, line insulators must withstand a wide range of voltage magnitude under 

normal operating conditions, as well as surge transients imposed by lightning strikes 

and switching operations. 
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Ceramic insulation systems, such as glass and porcelain insulators, have been in 

use for more than 100 years [2]. They have undergone substantial modifications and 

refinement to guarantee the present satisfactory performance from the disc string design 

currently used worldwide. Ceramic insulators have demonstrated a proven track record 

in various aspects of the insulation performance, particularly ageing and lifespan. In 

addition to high mechanical strength, they provide excellent resistance to material 

degradation cause by electrical stress and discharge activities [3]. Nevertheless, their 

electrical performance is greatly affected by pollution and humidity [4]. The insulator 

surface exhibits hydrophilic properties, which means that water can easily form a 

continuous conductive film along the creepage path. Flow of high-magnitude leakage 

current under adverse weather conditions could lead to complete flashover and power 

outage.  

In recent decades, composite polymeric insulators have started to gain wide 

acceptance among power utilities worldwide as replacements for the traditional ceramic 

insulators [5], [6]. Composite polymeric insulators offer many advantages such as: light 

weight, ease of handling, low operation and maintenance costs, improved mechanical 

strength, anti-vandalism properties, and more importantly, excellent electrical 

performance under moderately to heavily polluted environments [7], [8]. Polymeric 

material, such as silicone rubber, demonstrates a strong hydrophobic (water-repellent) 

property by which water on the polymeric surface tends to form discrete droplets, which 

have small contact areas on the insulator surface. This unique property helps to 

minimise the leakage current and the probability of dry band formation. 
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1.2. EFFECTS OF POLLUTION AND FIELD STRESS  

In practice, outdoor insulators are constantly exposed to various environmental 

contaminants, including natural and agricultural substances and industrial emissions, 

during their period of service. Insulators near coastal regions, for example, encounter 

sea salts whereas those in urban areas are subjected to ash, dust, and chemical particles. 

These airborne particles tend to deposit and accumulate on the insulator surface, 

although the open profile of polymeric insulation housing normally allows for natural 

cleaning by rain and wind flow. The contaminants form a layer that may become 

conductive when exposed to wet atmospheric conditions such as fog, mist and drizzle. 

The presence of pollutants covering the insulator surface could also reduce the 

hydrophobicity of the polymeric material, thereby promoting the formation of a 

continuous conductive film. The resulting leakage current under system voltage 

generates resistive heating that evaporates water from the wet surfaces, risking the 

formation of dry bands [9]. In addition, the general shape of polymeric insulators causes 

non-uniform current density that promotes uneven surface drying, establishing dry 

patches on the insulator surface. Potential gradients across the electrode-like filament, 

coupled with the high electric field, trigger electrical discharges. In favourable 

conditions, the discharges may elongate over many dry bands and, consequently, may 

lead to complete flashover [10].  

One of the main factors contributing to the development of discharges on 

insulator surfaces is the electric field distribution on the insulator surface, which in turn 

controls the current density. The usually non-uniform field profile along the surface has 

peak regions in which dry bands are formed. Of great concern to many researchers is the 

electrical stress in the region near the high voltage and the ground terminals. High 

electric fields trigger corona and discharge activities that contribute considerably to 
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premature degradation through surface tracking and erosion. Under extreme conditions, 

intense electric arcs could puncture the polymeric housing and, more seriously, cause 

insulation failure from severe deterioration [11], [12]. 

In addition to the primary problems of pollution flashover and material 

degradation, corona and electric discharges can also result in secondary problems such 

as audible noise and electromagnetic interferences. Electric discharges produce constant 

buzzing sounds, and the established high-frequency wave could cause disturbances in 

radio and television, as well as in other communication signals [13].  

1.3. CONTROL OF ELECTRIC FIELD 

Considering the above-mentioned problems, electric field control is highly 

desirable to alleviate the effect of electrical discharges on polymeric outdoor insulators. 

Several grading techniques have been introduced to regulate the high field over the 

insulator surface. The grading ring is the most common device used for high-voltage 

insulators to control excessive stress near the high-voltage and ground terminals [14], 

[15]. The presence of the ring structure redistributes the concentrated field lines over 

wider regions, reducing high field strength at both insulator ends. Field optimisation can 

also be achieved through an appropriate end-fitting design and the shape of insulation 

housing. Smooth and rounded edges prevent field enhancement on critical regions along 

the creepage path.  

The use of field grading compound is another popular method for controlling 

high electric field on polymeric insulation systems. This can be realised by using a 

material that has a high dielectric constant for capacitive grading or a compound with 

conductive fillers for resistive grading. In recent years, the potential for non-linear 

grading compounds to achieve stress relief for polymeric insulators has been explored. 
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Preliminary research results from both simulation [16] and experimental [17] studies 

have offered promising results, creating interest in further investigations.  

1.4. DIRECTION OF RESEARCH AND OBJECTIVES 

The focus of the present research is to contribute an alternative approach to the 

existing technique for optimising field distribution on polymeric outdoor insulators. 

Non-linear compounds composed of semi-conductive microvaristor particles have been 

introduced as a field grading material to control high electric fields at both insulator 

ends. The non-linear electrical properties of the grading compound are expected to 

provide a better and more uniform field distribution along the polymeric surface, 

thereby minimising the probability of dry band formation and the risk of surface 

discharges.  

Determination of electric field over the insulator surface is important for 

predicting high stress regions on the insulator surface. Field distribution was computed 

through numerical simulation based on the finite element method. A polluted insulator 

with non-linear, field-dependent conductivity was modelled and simulated to provide 

better insight into realistic electric distributions. The specific objectives of this research 

are outlined below: 

i) To review current knowledge related to the study undertaken, which includes 

stress-ageing phenomena, determination of electric field, insulator modelling, 

and field optimisation techniques.  

ii) To evaluate field distribution along the leakage path and observe the 

consequent electric discharge on the surface of polymeric insulation housing.  
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iii) To propose a new pollution model with dynamic non-linear electrical properties 

for more realistic and accurate field modelling. 

iv) To investigate the potential use of non-linear grading compound for controlling 

high field at the end fitting regions.    

v) To examine the effectiveness of field grading material under impulse and 

transient overvoltage conditions in the high voltage laboratory. 

1.5. CONTRIBUTION OF THE PRESENT WORK 

The major achievements and contributions of this research investigation can be 

summarised as follows: 

i) Electric stress on polymeric insulators was investigated by means of computer 

simulations and experiments. Good correlation was achieved between simulated 

field distributions and practical observations on discharge activities. Small 

discrepancies due to test arrangement and conditions were addressed and 

explained.  

ii) The reduction in pollution conductivity due to surface heating and evaporation 

was quantified through experimental measurements. This led to the derivation of 

a new non-linear pollution model, which was used in the finite element 

simulations of polluted insulators. A more detailed and realistic field distribution 

obtained from the proposed model will result in a better dry band prediction. 

iii) The potential was explored for the use of non-linear grading materials as a 

stress control solution for polymeric outdoor insulators. Comparative field 
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studies have demonstrated that microvaristors, with an appropriate geometrical 

design and switching property, could effectively minimise field stress on the 

critical region near metal electrodes.  

iv) Results from preliminary tests with lightning impulse voltage on the prototype 

of an 11kV insulator equipped with microvaristor grading material were 

encouraging. The effectiveness of the non-linear grading scheme was confirmed 

with a considerable increase in the breakdown threshold. Field simulations 

provide better understanding of the response under impulse energisation that 

leads to such improvement. 

1.6. ORGANISATION OF THESIS 

This thesis is divided into seven chapters:  

CHAPTER 2 provides an extensive review of published literature pertaining to 

the study undertaken. General insights into polymeric insulators including key 

advantages, structural design, and factors contributing to the ageing process are 

presented. Practical measurements and a simulation approach for determining accurate 

field distribution around the insulator are discussed. The present techniques for 

controlling high electric field on insulator surfaces are reviewed, and the possibilities of 

different field grading material are considered.  

CHAPTER 3 presents the investigation of electric stress on polymeric insulators 

by means of computer simulations and laboratory test programmes. A commercial finite 

element package is employed for insulator modelling to determine electric potential and 

field distribution along the creepage path under dry-clean and wet-polluted surface 

conditions. The simulation results are discussed in this chapter. To examine visually the 



Chapter 1 – Introduction 

 

 1-8

effect of high electric field, an artificial pollution test based on the solid layer method is 

carried out on a practical insulator. Observations of discharge activities through video 

and thermal recording are analysed and correlated with the results from simulation 

studies.  

CHAPTER 4 proposes the use of a non-linear pollution model, characterised by 

field-dependent conductivity, to achieve a better and more realistic field simulation. The 

field-conductance relationship is developed from experimental measurements in a non-

standard low-voltage layer conductance test. Laboratory test procedures and the 

derivation of the non-linear electrical property are described. The proposed pollution 

model is simulated under two wet atmospheric conditions: fog and a light rain, which 

respectively represent uniform and non-uniform wetting action. The simulation results 

are evaluated and discussed in this chapter.  

CHAPTER 5 presents an approach to achieving stress relief in the high field 

region near terminals through the use of non-linear microvaristor coating. The principle 

of a field-controlled solution that leads to near-uniform field distributions is described 

in this chapter. A case study is carried out for a typical 11 kV polymeric insulator to 

highlight the merits and effectiveness of the non-linear grading scheme. Analysis of 

field distribution is quantified under dry-clean and wet-polluted conditions for both 

standard non-graded and microvaristor-graded insulators. In addition, dissipated power 

is computed to examine surface heating and losses in the grading regions and for the 

complete insulator.  

CHAPTER 6 evaluates the performance of polymeric insulators equipped with 

microvaristor grading material under impulse conditions through experimental work and 

computational modelling. A commercial microvaristor compound is tested to determine 
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its non-linear electrical properties. A graded insulator prototype is designed and 

moulded using in-house vacuum-casting facilities, which is then subjected to U50 

breakdown test procedures. The experimental results for both graded and non-graded 

insulators are compared and discussed in this chapter. For a better understanding, 

numerical simulations are performed to facilitate the interpretation of field response 

under impulse energisation.  

CHAPTER 7 presents general conclusions based on the findings in this study, 

and outlines some recommendations for future investigation. 
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CHAPTER 2:                                                    

DESIGN AND PERFORMANCE OF POLYMERIC 

OUTDOOR INSULATORS: A REVIEW 

 

2.1. INTRODUCTION 

Polymeric insulators for outdoor applications have been commercially produced 

for more than four decades, and the demand is increasing rapidly due to their 

encouraging performance under diverse conditions. Massive deployment of polymeric 

insulators throughout the power industries has resulted in large-scale research 

investigations aimed at enhancing in-service operation that could last for at least thirty 

to forty years, just as was the case of their ceramic counterparts.  

This chapter presents a comprehensive review of the studies related to the 

research programme concerning electric stress control on polymeric outdoor insulators. 

Factors contributing to polymeric ageing and associated problems are discussed to 

understand better the need for an improved stress grading scheme. Equally important is 

the determination of electric field, which needs to consider various modelling criteria 

for realistic computer simulations. This is particularly important in predicting high field 

regions that are susceptible to dry band formation and electric discharges. As an
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approach to field control, the possible use of field grading material, especially non-

linear composite, is emphasised in addition to the present field optimisation techniques 

which are also reviewed in this chapter.  

2.2. POLYMERIC OUTDOOR INSULATORS 

The chronology and development of composite insulators from the time when 

these were first introduced for indoor application in the 1940s is briefly presented in 

[18] and [19]. Polymeric insulators for commercial use on the transmission network 

were available only from the 1970s, after undergoing a process of evolution and 

refinement. In the early stages of their introduction, the practical performance of these 

insulators was far less than satisfactory, with a number of problems and failures. 

However, with continuous advancement in both material formulation and fabrication 

technology, the reliability of polymeric insulators has improved considerably [20], [21]. 

2.2.1. Benefits and Limitations of Polymeric Insulators    

Polymeric outdoor insulators made of polymeric material, especially silicone 

rubber, exhibit excellent electrical performances under moderate to heavily polluted 

environments [22], [23]. In a wet atmosphere, water tends to bead up on the polymeric 

surface, thus reducing the leakage current and the probability of dry band formation, 

which consequently results in reduced flashover voltages. The strong water-repellent 

property is attributed to the diffusion of low molecular weight (LMW) silicone chains 

from the bulk material to the surface, forming a lattice type thin layer consisting of 

methyl groups (CH3) [24]. Interestingly, this property can also be transferred to an 

overlying pollution layer [25] enabling improved pollution performance for insulation 

systems in highly contaminated regions such as coastal and industrial areas. Even 

though silicone housing can temporarily lose its hydrophobicity under severe 
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conditions, the materials have been reported [26], [27] to be able to regain 

hydrophobicity after a sufficient resting period with the absence of discharge activity.  

Polymeric insulators offer significant weight reduction compared to the 

corresponding ceramic insulation systems [28]. There is less need for strong heavy 

support and cranes for installation, which results in easier handling and substantial 

savings in overall installation, operation and maintenance costs. In addition, voltage up-

rating and compact transmission tower design for Ultra-High Voltage (UHV) 

distribution networks can be practically realised with polymeric insulators. Considering 

these benefits, it is not surprising that being ‘lightweight’ was among the main reasons 

for power utilities to switch to polymeric insulators, according to a survey conducted by 

Non-Ceramic Insulators Technical Committee, Japan [6].  

Polymeric insulators have a high mechanical strength to weight ratio that allows 

for longer spans and less expensive tower structures. They provide improved 

mechanical strength under bending, deflection and compression stress. It has been 

reported [29] that polymeric insulators passed mechanical tests under extreme 

conditions without any permanent damage. Insulation housing with elastic properties 

also helps to prevent the risk of breakage during transportation or vandalism from 

gunshots that could lead to cascading failure as was experienced with ceramic 

insulators.  In addition, complex weather shed designs are feasible and easily moulded 

using polymeric composite material. 

Despite the abovementioned advantages, polymeric outdoor insulators however 

suffer from a problem of material deterioration, known as ageing. This is primarily due 

to concurrent stresses; environmental, electrical and mechanical stresses encountered in 

diverse range of service conditions. Polymeric materials which are organic in nature 
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have weaker bonds, and hence susceptible to chemical change and compound 

degradations. Ageing of weathersheds housing will reduce insulation performance and 

cause other fatal consequences such as flashover and power outage.  

Other than the ageing problem, fabrication of polymeric insulation housing for 

outdoor applications often required complex material formulations and design 

optimisation to suit specific environmental conditions. Appropriate amount and type of 

additives and weathersheds profiles need to be considered to inhibit degradation and 

ageing process, hence assuring good insulation performance throughout years of 

service. As the polymeric insulators have shorter service experience compared with the 

traditional glass porcelain system, long term ageing and outdoor performance remain 

unclear. As for now, accelerated weathering test is the best alternative to predict and 

evaluate the insulation performance over a longer period of time. 

2.2.2. Design and Structural Shape 

General construction design of polymeric insulators comprises three essential 

components: i) end-fitting terminals made of forged steel to support heavy load 

conductors on transmission towers, ii) fibre-reinforced core to provide essential 

mechanical strength and insulation between the two terminals, and iii) polymeric 

weather shed housing to protect the fibre core from various environmental impacts 

while providing sufficient leakage distance under wet surface conditions. Figure 2.1 

shows the assembly of these three components where flanges are crimped to a fibre 

reinforced rod encapsulated within weather shed polymeric housing.  

The insulation housing in modern design is moulded as one piece to avoid failure 

from multiple interfaces gluing between the polymeric sheath and the sheds, as 

experienced by early generation models [18]. Typical weather shed design with an 
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aerodynamic and open profile encourages natural cleaning of deposited pollutants by 

wind or rain, which is particularly useful for resisting the accumulation of pollution on 

the insulator surface.  

 

Figure  2.1:  Typical polymeric insulator components [30] 

 

The selection of outdoor insulators is essentially governed by the minimum 

specific creepage distance, taking into account two important aspects: i) system 

requirements, and ii) environmental conditions, as recommended in IEC 60815 

Standard [31]. In addition, Young et al. [32] have suggested two other criteria: i) the 
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resistance index, and ii) the distribution of current density, particularly for polymeric 

insulators that are subjected to variations in shape and weather shed design. Realising 

the importance of selecting appropriate outdoor insulators, CIGRE, through task force 

33.04.01 [33], has outlined a structured approach, shown in Figure 2.2, which can be a 

guide in determining suitable insulator characteristics to be used in a given area.  

 

Figure  2.2:  An approach to the design and selection of insulator profiles [33] 
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2.2.3. Polymeric Insulation Housing  

Ethylene-propylene-diene-monomer (EPDM) and silicone rubber (SiR) are the 

two most common polymeric compounds used for outdoor high voltage insulation 

system. Both materials have their characteristic strengths with regard to in-service 

performance. Polymeric housing made of EPDM materials offers good mechanical 

properties and high resistance to arc-induced degradation. Experimental findings 

published in [34] evidently indicate that EPDM composite has suffered the least impact 

in surface erosion test when compared with other polymeric compounds, including 

silicone rubber. On the other hand, silicone compound is generally preferred because of 

its excellent electrical performance in various polluted environments. This is attributed 

to the strong hydrophobic surface properties, contrasted with EPDM which starts to 

show hydrophilic effects on exposure to prolonged wetting and electrical activity [35]. 

In an attempt to overcome the shortfall in both materials, EPDM and silicone rubber 

have been blended together to take advantage of their mechanical and electrical 

properties. Experimental evidence in [36] shows substantial improvement in the overall 

performance when using the mixed compounds, i.e. EPDM + SiR.  

Polymeric materials used for outdoor insulation housing are usually formulated 

with other elements called fillers, which help to minimise the stress effects and to 

establish protection schemes against damaging electrical activities. Fillers are 

categorised into two main classes based on their functionality: i) reinforcing fillers for 

mechanical strength, and ii) extending fillers for some desirable properties such as 

surface degradation [37]. Silica and carbon black are examples of reinforcing fillers that 

enhance physical, tensile and tear strength through molecular bonding with the silicone 

polymer. Extending fillers such as Alumina Trihydrate (ATH) and quartz impart 

tracking and erosion resistance, especially when the polymeric surface has poor 
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hydrophobic recovery [38]. The presence of both silica and ATH in compounds also 

improves thermal conductivity, which helps to remove heat from the intense dry band 

area. Barium Titanate, (BaTiO3), on account of its excellent piezoelectric property, is 

the most popular element for increasing relative permittivity of insulator compounds 

[39]. In addition, the use of antimony (Sb) with doped tin oxide (SnO) fillers will 

increase the electrical conductivity of composite polymers, which is beneficial in 

reducing field stresses, thereby minimizing the effects of arcing and erosion damage. 

Table 2.1 provides a summary of the most commonly used fillers and their roles in 

protecting the insulation housing.  

 

Table  2.1:  Summary of common fillers in high voltage insulation material [39] 

Filler Property change Contribution 

 Al2O3.3H2O 
 SiO2 

Thermal conductivity 
 Resistance to dry band 

arcing, partial discharge and 
Corona  

 BaTiO2 
 BaTiO3 + Al 
 SiC 

Relative permittivity  Electric field grading 

 Varistor (ZnO) 
 Sb2O3 + SnO 

Electrical conductivity 
 Pollution performance  
 Electric field grading 

 

It has been reported in [40], [41] and [42] that the effectiveness of fillers depends 

on the particle size and shape, as well as the volume concentration. For example, 

polymeric materials filled with fumed silica exhibit improved mechanical properties 

when compared to those with precipitated silica [40] . Thus, the selection of fillers with 

appropriate properties is a key component in formulating the weather shed insulation 

housing for optimum in-service performance.  
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2.3. STRESS INDUCED DEGRADATIONS  

Polymeric insulators used for outdoor applications encounter a range of 

concurrent stresses while in service. These stresses can be grouped into three main 

categories, namely, electrical, mechanical and environmental stress [43]. The polymeric 

materials, due to their weak organic bonds, are vulnerable to chemical change on 

exposure to these stresses, which consequently lead to degradation and ageing of the 

polymeric insulator [44].  

2.3.1. Electrical Stress 

Electrical performance of high voltage insulators is governed by the distribution 

of electric fields around the insulator profile. Non-uniform and high fields could lead to 

electric discharges in the form of corona, dry band arcing and flashover.  

2.3.1.1. Corona 

Electric field distribution on polymeric insulators is generally more  non-linear 

than the distribution on the equivalent disc string ceramic insulators. The magnitude of 

the electric field near the end fittings could be several times higher than the field in the 

middle. Traditional glass and porcelain systems have the advantage of a natural grading 

effect from their large capacitance [45] and also the intermediate metal parts along the 

string [46], which is not the case for polymeric insulators. The assembly and physical 

structure of polymeric insulators with low permittivity materials causes large potential 

gradients to occur at the high voltage and ground terminals. Such conditions develop a 

high field that places a constant stress on the polymeric surface in the nearby regions. 

The stress is considerably more for longer insulator strings with higher operating 

voltages.  
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It is now well known that the electric field is normally highest at regions near 

terminal fittings [47], [48]. Under dry surface conditions, when the electric field in these 

regions is sufficiently high to reach the air ionisation threshold, metallic induced corona 

is triggered. The corona normally exists as faint streamer discharges anchored at the 

metal electrodes. Two common by-products from corona activities are ozone and 

nitrogen oxide, which are converted into nitrous and nitric acid in the presence of 

moisture.[49] The acid attacks the insulation surface by destroying crosslinks in the 

polymeric compound, and the combined effect of chemical and thermal stress 

consequently results in the degradation of the insulation material and is believed to 

cause brittle damage to the core-conductor interface. However, Moreno et al. [50], 

through their experimental investigations, have rejected the possibility of thermal 

heating that leads to material degradation. The highest surface temperature recorded 

during the corona test was far less than the threshold level of 200-300˚C required to 

initiate degradation.  

2.3.1.2. Droplet Induced Discharge  

Water droplets on the insulator surface, due to their high permittivity, cause local 

field enhancement around their extremities at the triple-point interface – water-air-

dielectric [51], [52]. Figure 2.3 provides examples of equipotentials and field 

distribution profile indicating the high field region. If sufficiently high, field 

intensification could initiate random partial discharges over the insulator surface. It has 

been reported [53] that the corona onset level for water droplets ranges from 4 to 10 

kV/cm, depending on various parameters such as droplet shape and volume, 

hydrophobicity and atmospheric conditions.  
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Figure  2.3:  Field enhancement at the triple junction of water droplet [53] 

 

Intense and continuous discharge activities can destroy hydrophobicity and 

gradually consume the insulation surface through tracking and erosion, as shown in 

Figure 2.4. In small scale experiments reported in [50], early signs of material 

degradations due to electric discharges were manifested as surface crazing (< 5 µm 

depth), cracking (> 50 µm depth) and discoloration. In some cases, the insulator may 

show the appearance of chalky white traces, attributed to the ATH fillers that diffused to 

the surface. 

(a) Equipotential lines 

(b) Electric field profile 
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Figure  2.4:  Degradation trace on polymeric insulator surface [54] 

 

2.3.1.3. Dry Band Discharge  

Despite the advantages of hydrophobicity, continuous conductive film on the 

insulator surface can still occur in several ways:    

i) Corona and random surface discharges, as described in the previous section, 

could result in the loss of hydrophobicity, creating an increase in surface 

wettability, hence allowing the spread of water on hydrophilic regions.  

ii) When the polymeric insulator is coated with pollution, deposited soluble 

elements such as salt and chemical fertilizer may dissolve in water to form an 

electrolyte layer covering the insulator surface. In other cases, water may diffuse 

through the LMW lattice to establish a conductive path beneath the pollution 

surface [55].  

iii) Water droplets are subjected to deformation under voltage energisation [56]. 

Induced charges within the droplet experience a strong electromagnetic force 

that causes the hemispherical shaped droplet to flatten and extend in the 
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direction of the electric field, thus covering a wider surface area. Such 

deformation is more vigorous under A.C. energisation where droplets are 

subjected to vibration due to the change of voltage polarity, as observed in 

experimental investigation by Katada et al. [57] depicted in Figure 2.5.  

 

 

Figure  2.5:  Behaviour of water droplet under different A.C. energisation  [57]  

 

Dry band discharges normally occur when water has the opportunity to wet the 

polymeric surface, thus allowing the flow of leakage current along the conductive path. 

The resulting resistive heating leads to surface water evaporation and drying of the wet 

insulator surface. Dry bands are likely to appear on the smallest circumferential region 

where the current density and dissipated power are greatest [58]. Large potential 

difference sustained between the electrode-like filaments combined with the highly non-

uniform electric field can result in intense electric discharges to bridge the dry region.  

2.3.1.4. Insulator Flashover  

Active discharge activities from corona, water droplets and dry band arcing 

generate considerable thermal heating to cause further drying on the insulator surface. 

Electric discharges that are short at the beginning gradually elongate as the dry regions 

0 kV        5kV    15 kV      20 kV 
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widen. Under favourable conditions, successive discharges may extend over multiple 

dry bands and join with other electric discharges that can eventually lead to a complete 

flashover [55]. Figure 2.6 illustrates the development of flashover on the polymeric 

surface. 

 

 

Figure  2.6:  Illustration of flashover mechanism on polymeric insulator [55] 

 

In the event of prolonged wetting and heavy rain, polymeric weather sheds can 

be bridged by the water stream [59]. The role of the creepage path along the insulator 

surface in limiting leakage current in this case is not effective. Water cascading 
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promotes inter-shed arcing, and can easily lead to insulator flashover even at lower 

pollution severity. In addition, the flashover can occur at much lower voltage levels than 

the rated value. Polymeric insulators with an alternating shed design can be a good 

practice to minimise the probability of water bridging the weather sheds.  

2.3.2. Environmental Stress 

2.3.2.1.  Pollutions 

Environmental pollution is one of the major threats to polymeric outdoor 

insulation systems. Depending on the location and the surrounding area, insulators 

encounter different types of pollutants: sand and soil elements in desert and mining 

areas, metallic and chemical substances in industrial and agricultural lands, and salt 

particles in coastal regions. Deposits of these airborne particles gradually form a solid 

pollution layer on the insulator surface, which has a significant effect on both short and 

long-term performance of the insulation system. Electric field distribution is highly 

distorted by a non-uniform pollution layer on the insulator surface [60]. This contributes 

to localised field enhancement which could trigger corona and random partial 

discharges over the polymeric surface. In the presence of moisture, soluble 

contaminants dissolve in water establishing a conductive pollution film that allows the 

flow of leakage current along the creepage distance, increasing the risk of damaging dry 

band discharges.  

In some cases, the insulator may also be subject to conductive moisture sources 

such as salt water, industrial acid fog, chemical mist and fertilizers, crop spraying and 

acid rain. These electrolyte-type pollutants can cause instantaneous leakage current and 

trigger flashover voltage even without the accumulation of pollution on the insulator 

surface [61].  
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2.3.2.2. Ultra-violet Radiation 

Polymeric insulators installed for outdoor applications are open to ultra violet 

(UV) radiation from sunlight. The surfaces are attacked by UV photons that release 

substantial energy to break crosslink chains or individual molecules within the base 

matrix [62], [63]. Polymeric compounds for high voltage insulation housing contain 

impurities such as vulcanising agents, catalysts and fillers that are vulnerable to UV 

radiation due to their weak molecular bond. The presence of these additives weakens the 

strong carbon-based polymer i.e. C-C, C-H and Si-O bonds, thereby reducing the 

resistance of polymeric weather sheds housing to UV exposure. Thermal and photo-

oxidation cause chain scissions that destroy hydrophobicity and lead to surface cracking 

and degradation of the polymeric material [64], [65]. The condition is exacerbated in 

high temperature regions such as deserts. From service experience reported in [66] and 

[67], polymeric surfaces that faced the sun appeared to be less hydrophobic and showed 

chalking and discoloration compared to those on the shaded side.  

2.3.3. Mechanical Stress 

An important function of the line insulator is to transfer mechanical support from 

the transmission tower to hold the heavy overhead conductor well in the air. Line 

insulators experience vertical load (tensile and compression stress) or 

cantilever/transverse load (bending stress) depending on system configuration and tower 

structure. Suspension insulators, when first installed on transmission towers, for 

example, encounter constant axial stress by the loading of bundle cables in which the 

weight could reach up to several tonnes for UHV transmission systems [1]. Over time, 

continuous strain could gradually deteriorate and weaken the joint between the core and 



Chapter 2 – Design and Performance of Polymeric Outdoor Insulator: A Review 

 

 2-17

the terminal, which will eventually result in the mechanical failure of the polymeric 

insulators.  

Extra mechanical stress may also develop when strong winds move the line, 

causing oscillation. The consequent vibrations can cause the formation of fissures at the 

joint interface between the core and the metal flanges. In some cold-climate countries, 

ice accretion on both the conductor and weather sheds housing could generate additional 

loading stress on the polymeric insulator. In hot desert regions, the average temperature 

can easily reach 40˚C during the day, and drop below 10˚C at night. This considerable 

change in ambient temperature results in a cyclic process of thermal expansion and 

shrinkage that can loosen the connection at the core-end fitting interface, affecting the 

mechanical strength of the polymeric insulators. 

2.4. DETERMINATION OF ELECTRIC FIELD DISTRIBUTION 

Results from many accelerated ageing tests have indicated that electrical stress 

plays a significant role in material degradation and ageing of polymeric insulators. Non-

uniform and high electric field, combined with other stresses, triggers damaging 

discharge activities on the insulator surface. Determination of the electric field provides 

a better understanding of the phenomena associated with surface discharges, and is 

particularly important for insulator design and optimisation in order to avoid such 

undesirable consequences. The electric field around the polymeric insulator can be 

obtained through two approaches: i) experimental measurements, and ii) numerical 

computations. 



Chapter 2 – Design and Performance of Polymeric Outdoor Insulator: A Review 

 

 2-18

2.4.1. Experimental Measurements 

Typical experimental setups for measuring the electric field around full-scaled 

practical insulators include electrostatic probes, spherical dipoles and electro-optic 

sensors.  

2.4.1.1. Electrostatic Probe 

The electrostatic probe is one of the most popular techniques used in the 

laboratory to measure the electric field around the insulator. The experimental setup and 

procedures involved are simple and cost-effective. The system employs an indirect 

method in which the electric field is obtained from the measurement of potential 

distribution. Figure 2.7 provides an example of the electrostatic probe arrangement, 

using phosphor bronze wire as a detector [68].  

 

Figure  2.7:  Experimental setup for electrostatic probe [68]  
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The wire probe is connected to a voltage regulator and phase shifter, and placed 

within millimetres of the insulator surface. The wire detector will deflect or vibrate 

when the potential and phase angle of the probe are different from those at the desired 

reference point. The potential measurement is obtained when the wire detector is in a 

static condition, and it is measured point by point along the creepage distance to 

determine field distribution over the insulator surface. However, measurement using 

this technique is subject to a slight error. The presence of the metallic probe usually 

distorts the original equipotential and field distributions around the insulator, thus 

giving an inaccurate field measurement. Furthermore, this method may not be suitable 

for metallic surfaces. 

2.4.1.2. Spherical Dipole 

The use of spherical dipoles is a long-established approach for determining the 

electric field distribution around an insulator [69]. This method is normally used on 

ceramic insulators that have intermediate metal parts along the disc string. The 

arrangement of this measurement technique is shown in Figure 2.8 [70].  

 

Figure  2.8:  Arrangement of spherical dipole on ceramic disc insulator [70]  
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Two equal diameter sphere electrodes, spaced at a fixed distance, are connected 

across a ceramic disc. The applied voltage across the insulator string is gradually 

increased until the sphere gap produces an electric spark. The voltage drop across the 

sphere gap is used to compute the corresponding electric field. Similar to the 

electrostatic probe, this method does not provide accurate results as the spherical 

metallic electrodes cause distortion to the actual electric field distribution. Moreover, 

this measurement technique is not suitable for polymeric insulator designs.  

2.4.1.3. Optical Sensors 

With increasing demand for an accurate measurement tool, researchers have 

developed a more advanced and reliable probe using optical sensors to obtain voltage 

and field distribution at higher precision [71], [72]. Passive measurement based on 

Pockels effect offers many advantages which include i) direct electric field 

measurement, ii) wide range in frequency up to GHz, iii) less distortion, and iv) fully 

dielectric sensor [73]. Figure 2.9 shows a general block diagram for the principle of 

electric field measurement in Pockels optical system.  

 

Figure  2.9:  General principle of electro-optic effect using Pockels sensor [72] 
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A standard system consists of a Pockels crystal sensor, collimation and 

polarization optics, fibre optics, a monochromatic light source, and a photo-detection 

device. The system normally requires a proper laboratory setup, giving less flexibility 

for field measurements. However, in recent investigation, Zeng et. al. [74] have 

successfully developed an integrated electro-optic sensor featuring a small and compact 

portable design which makes on-site measurements more feasible.  

2.4.2. Numerical Computation  

Numerical approaches have always been a useful technique for solving many 

high voltage insulation problems. These approaches become more important when 

practical measurements are difficult or impossible to implement, highly risky and 

expensive with sophisticated laboratory setup and equipment [75], [76]. Numerical 

computations through analytical expression [77], [78], [79] or circuit representations 

[80]  can be a good alternative, but these methods are rather complex and not applicable 

for diverse practical problems. For these reasons, numerical techniques using computer 

modelling and simulation are preferred among researchers. Field simulation packages 

offer faster and cost effective methods to obtain desirable results with substantial 

accuracy. This method is particularly useful in the design optimisation and development 

of many high voltage and power systems.  

There are a number of packages that can be used to perform electric field 

analysis on outdoor insulation systems. Most of the available software is based on two 

numerical methods, namely, Finite Element Method (FEM) and Boundary Element 

Method (BEM). In this work, modelling and field simulations have been carried out 

using finite element analysis in COMSOL Multiphysics. The software offers non-linear 

electric field analysis in electroquasistatics module, which hardly found in any other 
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commercial packages. This feature gives an opportunity for a better and reliable field 

computation especially when dealing with ZnO microvaristors that has non-linear 

material properties.   

2.4.2.1. Finite Element Method 

Finite element method (FEM) is a numerical approach to solve the partial 

differential equation (PDE) that represents a physical system. In FEM, the entire 

domain problem is discretised into a number of smaller non-overlapping subdivisions 

called elements, which normally have a triangular shape for 2D models, and are 

tetrahedral for 3D geometry. Each individual element is assigned with a simpler 

mathematical approximation, which is then solved to obtain the global solution for the 

physical system. The finite element solution is suitable for small domain problems with 

limited and closed boundary conditions. However, it is less effective when solving a 

large problem with an open boundary condition. A large number of mesh elements are 

generated to occupy the extended space, which could significantly affect the processing 

time. In addition, the wide range in the geometrical sizes of the physical problem, from 

several millimetres (e.g. curvature radius) up to 50 m (e.g. tower structure), could 

increase computation time and lead to numerical errors. Nevertheless, the shortfalls can 

be overcome by using sub-modelling methods [75]. In this case, the large physical 

problem is initially solved with coarse meshes. The solutions near the region of interest 

are used as global reference for boundaries of the reduced sub-model, which is then 

solved independently using finer meshing. For a larger physical system, parallel FEM 

computations [81] can be useful to enhance further the efficiency of field computations.  
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2.4.2.2. Boundary Element Method  

Boundary element method (BEM) is a numerical approach based on boundary 

integral equations. Unlike the FEM, discretisation for BEM is applied only to the 

boundaries of system geometry, instead of the entire space domain [82]. The solution is 

obtained by solving the assigned integral equations for the discretised boundaries. For 

this reason, the computation and processing time in BEM is not greatly affected by the 

size of the physical system. The method can execute a large or unbounded problem for 

no extra effort, without serious numerical errors. However, the presence of populated 

matrices and integral equations for non-linear or inhomogeneous problems could reduce 

computation performance [83].  

2.5. MODELLING OF POLYMERIC OUTDOOR INSULATOR 

Distributions of electric field around outdoor insulators are greatly influenced by 

a range of parameters which include insulator design, tower configuration, conductors, 

and hardware attachments such as corona rings. These parameters need to be considered 

when modelling outdoor insulators in order to obtain a more realistic and accurate field 

distribution [84]. In addition, increased concerns among researchers with problems 

under hostile surface conditions have resulted in numerous studies investigating 

environmental aspects such as pollution and water droplets on the insulator surface. 

2.5.1. General Consideration 

2.5.1.1. 2D vs. 3D Insulator Model 

Modelling of outdoor insulators can be implemented either in 2D or 3D 

geometrical representations. Researchers tend to employ 3D modelling when dealing 

with non-symmetrical problems, where practical configurations such as adjacent tower 
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structures and hardware fittings need to be accounted for in the study [46], [85] . This 

presents the opportunity to obtain a more realistic and accurate field distribution around 

insulators. Developing a 3D model with complex structures, however, can be a great 

challenge, and often requires advanced drawing skills. In addition, 3D simulation 

encounters the common issue of intense and slow numerical computations, especially 

when dealing with large problems. To resolve this issue, some researchers have used 

modelling simplifications which help to improve the computation and processing time. 

For example, authors in [86] have considered only a 10˚ to 15˚ portion of the full 360˚ 

cylindrical shape, while in another investigation [87], only the first two sheds near the 

insulator terminals are considered in the simulation study. These simplifications, 

however, can be applied only within the individual case study, so as not to affect the 

accuracy of the desired simulation results. 

In the case of an ideal symmetrical condition, 2D representation is always the 

first option and preferred primarily due to its simplicity and fast processing time [88], 

[89]. Field distributions can be computed with minimal effort by both human and 

machine to give a comparable result with those obtained from 3D modelling. Moreover, 

the perfect cylindrical property allows the insulator to be represented by only half of its 

symmetrical structure, which makes the numerical computation even more efficient 

[90].  

Depending on the aspect of research investigations, the selection of drawing 

dimensions, using either a 3D or a 2D model, is essential for an effective and accurate 

field analysis. It is important to assess the given parameters and determine the most 

suitable geometrical representation for each situation.  



Chapter 2 – Design and Performance of Polymeric Outdoor Insulator: A Review 

 

 2-25

2.5.1.2. Regions of Interest  

Practical experience and laboratory observations have indicated that corona and 

electric discharges, due to the high electric field, can severely deteriorate the insulation 

material. A lot of research, therefore, has focused on the determination of the electric 

field distribution along the creepage path of the polymeric insulator [75]. These fields, 

especially the tangential component, drive the flow of leakage current on the insulator 

surface, which in turn promotes dry band formations and consequent damaging 

discharges. Particular attention has been given to the sheath region near terminal 

fittings, where the electric field is normally the highest [91]. Some researchers also 

studied the electric field on the insulator electrodes and the attached grading ring. This 

can be useful in developing a better end fitting design to minimise the effect of field 

stress in the vicinity area.  

2.5.2. Hardware Structure and Arrangement 

Electric field distribution along the creepage path of an ideal polymeric insulator 

without hardware fittings is symmetrical, with a general ‘U’ shaped profile [92]. It is 

high at both the high voltage and ground terminals, and gradually decreases towards the 

middle of the insulator. In practice, the presence of hardware structures such as the 

transmission tower, cable and other hardware attachments cause a redistribution of field 

profile. The electric field is generally higher at the high voltage terminal compared to 

that at the ground end. It has been reported [46] that the insulator with dead end 

configuration experiences greater field stress at the high voltage electrode (as high as 

30% for a 500 kV system) than the suspension insulator, as shown in Figure 2.10.  

The grading ring (also known as the corona ring) is a common protection device 

installed on insulation systems greater than 300 kV. At present, there is no proper 
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standard to be used as guidance for grading ring design and installation. Inappropriate 

dimensions or placement of the corona ring could result in corona and premature failure 

of the insulator. Therefore, many authors [87], [89], [93], [94] have investigated the 

effect of grading ring parameters such as diameter, cross-section radius and distance 

from metal electrodes to achieve the best possible field performance. It has been agreed 

that the optimal dimensions and location of the grading ring structure vary depending on 

specific insulator applications and arrangements.  

 

Figure  2.10:  Field distribution for different types of polymeric insulators [46] 

 

In a recent publication, Doshi et al. [46] have studied the effect of bundled 

conductors and multiple insulator units that are normally used for transmission systems 

with operating voltage greater than 500 kV. It was found that the increase in the number 

of conductors for each bundle can reduce peaks on the insulator surface. In addition, the 

use of multiple insulators for each suspension string provides an improved field 

distribution around the insulator compared with the arrangements using a single 

insulator unit.  
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2.5.3. Hostile Surface Conditions  

2.5.3.1. Pollution Layer 

Modelling of a polymeric insulator covered with a pollution layer is useful in 

representing realistic outdoor insulators which are subjected to various inland and sea 

contaminants with different severity. It is found that naturally aged insulators have 

shown a near-uniform deposition of pollutants over the insulator surface [95], [96]. 

Many researchers have, therefore, created a pollution layer with a uniform thickness 

when modelling polluted outdoor insulator [90], [97]. Electrical properties such as 

permittivity and conductivity of the pollution were normally assigned with constant 

values, obtained from simplified assumptions and sometimes from experimental 

measurements.  

In an attempt to provide a better and more realistic outdoor insulator model, 

some researchers have considered various practical conditions for representing/ 

characterising the pollution layer on the insulator surface. For example, El-Hag et al. 

[98] have modelled polluted insulators based on wetting action. The uniform pollution 

layer on the insulator surface was classified into three main regions, which were 

specified with different conductivity values obtained from equivalent salt deposit 

density (ESDD) measurement. In another investigation, Yong et al. [99] have modelled 

a non-uniform pollution distribution where the cylindrical insulator was divided axially 

into four equal regions, which were assigned with different resistivity to represent 

heavy, moderate and no pollution on the insulator surface. They also studied 

asymmetric top and bottom surface contamination. In recent publications, Zhou et al. 

[92] and Jianyuan et al. [97] have investigated field performance around polymeric 

insulators with the presence of pollution dry bands. Electric field computations obtained 
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from these pollution models have improved understanding of field behaviours under 

different insulator surface conditions that are commonly found in practice. 

2.5.3.2. Water Droplet  

Water on the polymeric surface tends to remain as droplets due to the strong 

hydrophobicity properties of the surface. In many publications [46], [100] and [101], 

water drops have been typically modelled with a hemispherical shape having a 90˚ 

contact angle and a diameter ranging between 6 and 10 mm. Field enhancement on the 

insulator surface due to water droplets could reach as high as 50%, as reported in [46].  

Other  authors [101] have used water droplets for modelling insulator under rain and fog 

conditions. For the rain model, the droplets were created only on the upper shed while 

the other regions were assumed dry. The same model was adopted for the fog condition 

with the bottom shed surface being covered by a thin continuous water film.  

A hemispherical shape with 90° contact angle can be too ideal to represent a 

water droplet on a practical insulator. Therefore, Weigue et al. [102] have introduced a 

more realistic droplet model, based on photographs captured during the wetting of a 

polymeric insulator in a fog chamber, shown in Figure 2.11. The droplets were 

categorised according to the hydrophobicity classification (HC) recommended by the 

Swedish Transmission Research Institute (STRI) [103]. From the simulation results, it 

was demonstrated that the field enhancement factor varies depending upon the shape 

and distribution of water droplets on the polymeric surface. 
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Figure  2.11:  (a) Photographs of water droplets on the insulator surface, and (b) 

the corresponding droplet models used in the numerical simulations [102] 

 

2.6. FIELD OPTIMISATION TECHNIQUES 

It is well understood that high electric fields lead to corona and surface discharge 

activity, which may contribute to premature degradation of the insulation material. 

Control of high electric fields on polymeric insulators, particularly near both insulator 

terminals, is extremely important to minimise such undesirable effects, ensuring 

satisfactory performance during the period of service.  

2.6.1. Grading Ring 

The grading ring is a common device used to control field stress at the high 

voltage and ground terminals. Installation on practical insulators can effectively reduce 

(a)  

(b)  

  Case 1: HC1                     Case 2: HC2                     Case 3: HC3 
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high fields at critical areas on the insulation surface and metal hardware. The ring 

structure, with smooth rounded edges, grades the concentrated field near the electrode, 

hence lowering the field magnitude below the corona inception threshold, and 

minimises the possibility of breakdown with the highest voltage drop. In addition, the 

presence of the grading ring could also relocate the high field at a short distance away 

from the vulnerable area around the triple junction, metal-dielectric-air. The plot in 

Figure 2.12 clearly indicates significant field reductions for a range of operating 

voltages when using the grading ring [46]. It has been suggested in [14] that one corona 

ring on the high voltage end is sufficient for a power system at 220 kV. However, 

additional rings at both insulator ends are required for systems that operate at 400 kV or 

higher [24].  

 

Figure  2.12:   Comparison of maximum electric field for system with and without 

corona ring at high voltage end [46] 
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Potential and electric field distributions on the insulator surface especially near 

the terminals can be regulated by varying ring design parameters such as the cross-

section diameter, ring radius, and the distance from the end fittings. Computational 

results in published works [14], [104], [105] showed that a large cross-sectional tube 

contributes to the reduction of electric field at the triple junction area. The increase in 

ring diameter and the distance from end fittings also result in field improvements to 

some extent in these high field regions. As the electric field is greatly influenced by 

hardware assemblies, optimisations of the grading ring have usually been performed 

based on specific system configurations, taking into account voltage rating and the 

orientation in actual applications [94].  

2.6.2. End-fitting Design 

An appropriate end-fitting design can provide an effective self-grading 

mechanism which is capable of minimising the high field around the metal electrodes. 

Smooth and rounded edges on the terminal help to grade the concentrated field, similar 

to the grading effect from the corona ring. Figure 2.13 shows examples of end-fitting 

design with the bulge shapes near the insulation housing that are commonly used in 

practice [93]. It has been demonstrated [90] that a larger electrode radius results in a 

reduction of the maximum electric field on the insulator surface.  

2.6.3. Weather Shed Insulation Profile  

Other than the end fitting design, the geometrical shape of polymeric weather 

shed housing is equally important in controlling field distribution on the insulation 

surface. The electric field along the axial length of the insulation housing is usually 

magnified at the intersecting point between the sheath and shed surfaces where there are 

sharp edges in the curvature. The regions that are close to the metal electrode encounter 
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Figure  2.13:  Typical end fitting designs for polymeric insulators [93] 

 

the greatest impact from this field intensification. Reduction of the impact at these 

critical junctions can be achieved through the use of polymeric housing with a large arc 

radius.  This results in the redistribution of equipotential lines over a wider surface area, 

thereby reducing peaks and field stress. If the radius is sufficiently large, the arcs 

between two sheds will merge to form a rounded surface on the shank regions. This 

design has been implemented on insulators with a stacked sheds profile at the high 

voltage and ground electrode, with the intention of protecting the shank region from 

damaging discharge activities. Results from simulation studies by Weigue et al. [87], 

shown in Figure 2.14, have clearly indicated a considerable improvement in field 

distribution when introducing the stacked sheds design. The number of peaks is reduced 

by half, and they appear smoother than those for a standard insulator profile.  

 

 Design 1- Rounded end fitting close to the last shed 
 Design 2 - Rounded end fitting at a short distance away from the last shed 
 Design 3 - Rounded end fitting completely covered by silicone rubber 
 Design 4 - Rounded end fitting partly covered by silicone rubber 

(1)   (2)   (3)      (4) 
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Figure  2.14:  Electric field distribution on polymeric surface near the high voltage 

terminal [87] 

 

Chakravorti et al. [90] have performed extensive parametric studies to 

investigate the effect of insulator design parameters such as shed slope angle and 

diameter, core radius, axial length and arc radius. The results from numerical 

computations showed the effect of stress relief when increasing the insulator axial 

length as well as the shed and arc radius. However, the increase in core radius causes a 

slight field enhancement on the insulator surface. El-Hag et al. [98] have reported a 

significant field reduction, from 1260 V/mm down to 390 V/mm when increasing the 
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distance of the first shed from the electrodes from 10 mm to 35 mm. This optimised 

distance will, however, vary depending on the insulator profile and configuration in 

practice. 

2.6.4. Combined Insulator Assembly 

In recent publications [106] and [107], a new optimisation technique has been 

proposed for controlling high fields around the insulator terminals. The method utilises 

ceramic discs which are connected to the live end terminal where electrical stress is the 

greatest, as illustrated in Figure 2.15. The ceramic discs have excellent self-capacitive 

grading which can regulate high fields in these hazardous regions. Moreover, ceramic 

insulators that are less susceptible to corona and discharge activities could avoid the 

problem of premature degradation near terminals as experienced by the polymeric 

material. It has been demonstrated that the maximum electric field improves by nearly 

40% when using the proposed combined assembly design [107].  

 

 

Figure  2.15:  Field control at live end using combined insulator assembly [106] 
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2.6.5. Insulation Jacket for Line Conductor 

Mei et al. [108] have introduced an attractive method to minimise field stress at 

the live end terminal. In this approach, insulation material made of silicone rubber was 

installed on the bare conductor close to the region where the polymeric insulator is 

attached. This implementation can be clearly seen from the pictures provided in Figure 

2.16. The results from simulation studies [108] have indicated field reductions on the 

polymeric surface, particularly near the high voltage terminal, when using appropriate 

length and thickness of the insulation coating. For optimum stress relief, it was 

suggested that 2 m of silicone coating at thickness of 6 mm should be used on 220 kV 

systems. An appropriate insulation jacket design with additional grading ring 

attachments could effectively minimise corona and surface discharge activities, hence 

improving ageing and in-service outdoor insulator performance. 

 

 

Figure  2.16:  High field control using insulation coating for live conductor [108] 
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2.7. FIELD GRADING MATERIAL 

Field grading materials have been successfully used for many years to control 

electrical stress on many high voltage applications such as cable terminations and 

machine windings. They can be grouped into two main categories; capacitive and 

resistive grading, which are classified based on the nature of current displacement 

within the material. In this technique, the grading action occurs within the materials, 

which results in the redistribution of equipotential on the surrounding regions such as on 

insulation surfaces.  

2.7.1. Capacitive Grading 

In capacitive grading, the electric field is regulated by a material that has a high 

dielectric constant and, hence, the displacement current is predominantly capacitive. 

Equipotentials are redistributed when passing through different dielectric materials 

having different permittivity values. The lines become farther apart and this reshapes 

field distributions along the insulation surface. In addition, high permittivity materials 

result in lower surface impedance, which could further reduce field stress [109]. Ying 

Shen et al. [68] have investigated the effects of high permittivity layers on composite 

insulation systems. BaTiO3 and aluminium particles were added to liquid silicone 

rubber to produce a high permittivity compound. The layer which was varied in 

thickness, length and permittivity was coated at the mounting end where the electric 

field is the highest. It has been observed that the use of silicone coating with optimised 

layer thickness and permittivity value reduces the high field by more than 50% 

compared with values obtained from standard uncoated systems, as shown in Figure 

2.17. 
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Figure  2.17:  Effect of permittivity coating on polymeric surface [68] 

 

Capacitive grading techniques can also be realised by using appropriate 

geometrical shapes of conducting or high permittivity material to alleviate field stress. 

Most of the field optimisation methods as described in Section 2.6 can be regarded as 

capacitive grading approaches For example, the use of rounded edges for end fitting 

design improves field distribution on the polymeric surface, and the integration of the 

corona ring structure made of conductive material helps to grade concentrated 

equipotentials at the high voltage and ground terminals. In cable applications, this 

capacitive controlled principle can be applied by introducing a cone-shaped dielectric 

material,  intended to provide a smooth and gentle interruption at the splice and high 

voltage screened cable, as illustrated in Figure 2.18 [109]. In this way, equipotential 

lines will be spread out over a larger region, thus minimising field concentration and 

stress in the high-risk areas. 
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Figure  2.18:  Cone-shaped stress grading in cable application [109]  

 

2.7.2. Resistive Grading 

Resistive grading material controls field distribution by means of the bulk 

conductivity of the material, and the current is predominantly resistive. Sufficient 

amounts of conductive elements such as carbon black filler are added into the polymer 

matrix to establish a path for current conduction within the material. Wei et al. [110] 

have studied the effectiveness of thin resistive layers in controlling peaks and high 

fields on the insulation surface. The grading layer was prepared by mixing semi-

conductive particles, mainly antimony-doped tin oxide with liquid silicone rubber. The 

slurry was then sprayed onto the polymeric insulation surface forming a thin resistive 

coating at thickness 0.2 to 0.5 mm. The laboratory measurements were encouraging. 

With a 100 MΩ layer, high electric fields at critical areas on the polymeric surface were 

successfully relieved. However, there was a slight reduction in the improvement when 

increasing the resistivity from 100 MΩ to 1000 MΩ.  This suggests that the selection of 

resistive coating with the appropriate amount of conductive fillers is important to obtain 
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a compound with the desired electrical properties for specific applications. Comparison 

of equipotential plots, provided in Figure 2.19, indicates field improvement due to the 

effect of resistive coating.  

 

 

Figure  2.19:  Equipotential lines around high field region: (a) with no stress 

grading, and (b) with a resistive silicone rubber coating [110] 

 

The material that exhibits non-linear electrical properties is another example of 

resistive grading. Electroceramic particles such as ZnO microvaristors [111] and Silica 

Carbide [112] can be used as functional fillers in polymeric compounds to impart non-

linear current-voltage dependency to the grading compound. Figure 2.20 shows 

examples of electrical characteristics of ZnO microvaristors with different field 

switching thresholds, Eth at approximately 200 V/mm and 700 V/mm. In the linear 

region where the current density is low, the grading material operates as an insulator. 

An increase in the electric field causes minimal change in current density. As soon as 

the electric field exceeds the threshold levels, the material enters a high conduction 

regime and hence its grading benefits can be exploited. In this work, such properties 

(a) (b)
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have been utilised to propose a new field distribution control on outdoor polymeric 

insulators.  

 

 

Figure  2.20:  Electrical characteristic of microvaristors with different switching 

filled composite as a function of electric field [113]  

 

2.8. ZINC OXIDE MICROVARISTORS  

The superior performance of zinc oxide surge arresters compared with that of 

previous overvoltage protection devices is mainly due to their highly non-linear voltage-

current characteristics and their energy absorption capability [114]. Recent 

developments in ZnO microvaristor manufacturing, coupled with subsequent 

compounding with silicone-based materials, offer a unique opportunity to control field 

distribution on polymeric insulation surfaces [115]. 
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2.8.1. Fabrication of Microvaristor Filled Elastomers 

Production of microvaristor compounds is rather complex, requiring advanced 

equipment and processing techniques [116]. A detailed manufacturing procedure for 

producing microvaristor compounds that have non-linear characteristics is revealed in a 

patent document [117]. In general, water-based slurry that contains zinc oxide and other 

dopants such as bismuth, antimony, manganese and cobalt, is first spray-dried to 

produce varistor granules. The agglomerates are then transformed into micro-scaled 

varistor particles, shown in Figure 2.21, through a sintering process at high temperatures 

around 900-1300ºC. After this, the microvaristors are sieved to particle size, ranging 

from 3 µm to 300 µm in diameter. Finally, appropriate amounts of microvaristor 

powder are blended in insulating elastomers using a high-speed disperse machine before 

being moulded into various shapes depending on the application. The electrical 

properties of microvaristors can always be tailored to suit specific requirements by 

adjusting the sintering conditions, i.e. temperature and doping elements [115]. 

 

 

Figure  2.21:  Microvaristor particle viewed using SEM [118] 

2µm 
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2.8.2. ZnO Microvaristors for Outdoor Polymeric Insulators 

Although there is very limited research work [119] in this area, encouraging 

results related to field control using non-linear grading material have already been 

reported, [118], [120], [121]. There are also patent documents [122], [123], [124] 

unveiling new inventions that adopt such control principle on high voltage equipments 

such as bushing and cable terminations. The application on polymeric outdoor 

insulators, however, receives little attentions and hence, will be explored in this study. 

In recent publications [125], [126] a composite insulator having a core fully 

coated with a thin microvaristor layer was modelled using the finite element method, 

and the results indicated suppression of discharge activities. The electric field 

distribution along the insulator surface was notably improved. In another investigation 

[17], full insulators were fabricated for laboratory testing using microvaristor-filled 

elastomers as an insulation housing, replacing conventional composite materials. In the 

artificial rain test, the insulator prototypes have shown an excellent performance 

compared with the conventional composite insulator. Electric discharges on the surface 

were rarely seen, and were not even observed on one prototype. However, the 

microvaristor-filled composite failed in the inclined plane test, which is used to inspect 

the tracking and erosion performance of high voltage insulating material. The failure 

raises a major concern on the suitability of the insulator for use in outdoor applications. 

Furthermore, under steady state operation, continuous power loss will result in such 

configurations, due to leakage current in the microvaristor compound, and this would 

not be acceptable to the power utilities. 
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2.9. CONCLUSION 

A broad review of polymeric outdoor insulator performance has been presented. 

Important aspects concerning in-service stresses and the determination and control of 

electric field distribution are particularly emphasised.  

Factors contributing to premature degradation and ageing of polymeric insulator have 

been reviewed. The mechanisms leading to insulation failure are now fairly well 

understood under these conditions. Determination of field distribution along the 

creepage path and experimental investigation discussed in Chapter 3 (Investigations Of 

Electric Field Distribution Over The Surface Of Polymeric Insulators) provide greater 

insight into surface discharges and dry band prediction on the insulator surface.  

A number of criteria have been taken into account for modelling polymeric outdoor 

insulators. Consideration of insulator designs, practical installations and weather 

conditions provide better and more accurate simulation results. The literature review has 

shown that polluted insulators have been modelled with constant pollution conductivity. 

This is, however, not usually the case in practice. Therefore, a more realistic pollution 

model having a non-linear field-dependent conductivity is developed, and it is detailed 

in Chapter 4 (A New Dynamic Simulation Model For Polluted Insulator). 

Various techniques for stress control on polymeric insulators, particularly near the 

terminals, have been demonstrated in a number of research publications. Most of the 

works focus on field optimisations, while very few explored an alternative grading 

technique. To address this shortfall, the potential use of non-linear grading material for 

controlling high fields is proposed in Chapter 5 (Proposal For Stress Control On 

Insulator Surface Using ZnO Microvaristor Compounds) and experimentally verified in 
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Chapter 6 (Development Of A Microvaristor-Graded Insulator Prototype And 

Laboratory Characterisation Under Impulse Conditions). 

 



 

 3-1

CHAPTER 3:                                                   

INVESTIGATIONS OF ELECTRIC FIELD 

DISTRIBUTION OVER THE SURFACE OF 

POLYMERIC INSULATORS 

 

3.1. INTRODUCTION 

Despite the advantages of polymeric insulators over ceramic insulation systems, 

concerns remain about their performance in contaminated environments. An in-depth 

understanding of problems such as dry bands and electric discharges can only be 

achieved through accurate determination of electric field distribution along the insulator 

surface, and this is a key factor in developing good insulator design for optimal 

performance under a range of atmospheric conditions.  

The measurement of electric fields around practical insulators is difficult, and 

becomes increasingly complicated under polluted surface conditions. Experimental 

setups such as the electrostatic probe [110] can be used but these are subject to periodic 

errors, although this could be improved by using a more advanced field detection 

system [74]. As an alternative, many researchers have employed numerical simulation 

techniques using commercially available electromagnetic software which appears to be 
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more practical and cost-effective, avoiding expensive and complex laboratory 

experiments that are often difficult to carry out. Moreover, rapid growth in computer 

technology has led to the development of advanced numerical packages that can handle 

complex models without compromising processing time and accuracy. 

In this chapter, computer simulation based on the Finite Element Method is used 

to compute potential and electric field distributions along the creepage path of weather 

sheds housing. The insulator model is developed and simulated under dry-clean and 

wet-polluted surface conditions with simplifying assumptions of a homogeneous and 

uniform pollution layer. It should be emphasised that, under normal conditions, 

polymeric insulators would rarely be subjected to a uniform wetted surface situation, 

due to their excellent hydrophobic surface properties when new or undegraded. 

Nevertheless, the following simulation results help to identify the high field region that 

is vulnerable to dry band formations.  

Thorough understanding of the mathematical approach was not the main 

objective of the present study, as this can be explored in great detail in many textbooks, 

for example [127] and [128]. Instead, this study focuses on the modelling procedures 

and simulation results which are more beneficial to the field of engineering. The 

computed electric field and voltage distribution over the insulator surface under both 

dry-clean and wet-polluted surface conditions are compared and discussed. As a 

complementary study, experimental investigations through artificial pollution clean fog 

tests were also carried out in an attempt to establish correlation with the simulation 

results concerning the high field regions. The complete test programme is described in 

this chapter. 
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3.2. INSULATOR UNDER INVESTIGATION 

The insulator that was considered in this investigation, and for the entire research 

programme, is a standard 11 kV polymeric outdoor insulator, shown in Figure 3.1 (a). 

Although in practice stress grading may not be required for 11 kV systems, the 

insulator, due to its small size allows easy prototype fabrication and testing in 

laboratory. For the actual applications, simulations and laboratory tests need to be 

applied on systems with higher voltage rating, normally greater than 200kV where 

stress control system is highly required.  

The insulator has four equal sheds with a diameter of 90 mm, spaced at a 

distance of 45 mm along the insulator unit. The sheath thickness is about 5 mm, and the 

total creepage distance along the insulator surface is approximately 366 mm. The 

insulation housing is made of silicone rubber having a relative permittivity r = 4.3. 

Forged alloy is used for the high voltage and ground terminals, which are attached to an 

18 mm diameter rod as a core, at a distance of 160 mm. The core, with relative 

permittivity r = 7.1 is a fibreglass material that is reinforced with epoxy resin for 

enhanced mechanical strength. Detailed dimensions and the geometrical structure of the 

insulator are given in Figure 3.1 (b).  

3.3. FINITE ELEMENT MODELLING 

The modelling and field computations in this study were carried out using a 

commercial finite element package, COMSOL Multiphysics version 3.5a. The 

simulation is performed in three consecutive stages namely, pre-processing, solving and 

post-processing stages. Components of the physical problem such as geometrical 

structure, material and boundary properties, and meshing criteria are presented as inputs 

in the pre-processing stage. The mathematical model, normally expressed as differential  
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Figure  3.1:  An 11kV polymeric insulator under consideration: (a) practical 

insulator, and (b) cross-sectional profile and dimensions 

(a) 

(b) 
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equations that describe the physical problem, is executed in the solving stage. Finally, in 

the post-processing stage, the package allows users to generate a plot of the desired 

postprocess variables or parameters. The flowchart diagram in Figure 3.2 shows the 

general FEM procedures for simulation works in this study. 

 

Figure  3.2:  General procedures for FEM simulations 

 

3.3.1. Simulated Insulator Model 

The model of the polymeric insulator described in Section 3.2 was created using 

CAD drawing tools available in the FEM package. Since the insulator structure is 

cylindrical in shape, the modelling can be simplified into a two-dimensional (2D) 
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problem instead of a full three-dimensional (3D) model. This simplification can save 

considerable memory and processing time without affecting the accuracy of the 

simulation results. To take advantage of the axis-symmetric property, only half of the 

insulator shape was created, as shown in Figure 3.3.  

 

Figure  3.3:  A 2D axis-symmetric insulator model on r-z plane in CAD platform 

 

The simulated model adopted in this work is an idealised configuration for the 

outdoor insulator, but is easily reproducible in the laboratory. It is expected that this 

configuration would produce the most non-uniform field distribution around the 

terminal electrodes and, hence, represents the worst case scenario. Application to the 

numerous practical outdoor insulator configurations with the presence of adjacent 

equipment and structures would introduce distortions to both potential and electric field 

distributions.  
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3.3.2. Material Properties 

Each region of the model was specified with appropriate material properties as 

described in Section 3.2. Both dielectric materials i.e. silicone housing and fibre 

reinforced (FRP) core were arbitrarily assigned with a low conductivity,  = 1.0×10-14 

S/m. The relative permittivity for the pollution layer was assumed to be 80, considering 

water as the dominant substance when the pollution layer is completely wet and 

saturated with moisture. The conductivity of the pollution layer was set to 0.6 µS/m, a 

value adopted from the laboratory measurements reported in [129]. The pollution layer 

was assumed homogenous and uniformly distributed along the creepage path of the 

insulator surface, at thickness 0.5 mm. The air region surrounding the insulator was 

specified with a very low conductivity,  = 1.0×10-15 S/m. The material properties used 

for insulator modelling in this study are summarised in Table 3.1.  

 

Table  3.1:  Material properties used for insulator modelling 

Materials Relative Permittivity, r Conductivity,  (S/m) 

Forged steel 1.0 5.9×107 

FRP core 7.1 1.0×10-14 

Silicone Rubber 4.3 1.0×10-14 

Pollution layer 80 6.0×10-7 

Air background 1.0 1.0×10-15 

 

3.3.3. Boundary Conditions 

The top high voltage terminal was energised with power frequency A.C. voltage 

at 18 kV, while the bottom electrode was connected to ground, 0 V. The energisation 

voltage corresponds to the maximum phase to earth potential when considering the 
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insulator subjected to very heavy pollution conditions, according to BS EN 60815 

standard [61]. The air space is made large enough to minimise the effect on the 

distribution of potential near the electrodes and along the insulator profile. The outer 

edges of the air background region are assigned with a boundary that assumes zero 

external current and electromagnetic sources, hence representing physical system that is 

in an isolated open space background. The symmetry line of the insulator was set to be 

the axial-symmetric axis on the r-z plane.   

3.3.4. Meshing  

After completing the initial stage with the model structure, as well as specifying 

material properties and boundary conditions, the entire domain problem was discretised 

into non-overlapping triangular elements during the meshing process. To enhance the 

accuracy of the computed simulation results, meshing refinement in the region of 

interest was performed by increasing the number of mesh elements along the insulator 

surface. The refinement which results in a reduced element size can evidently be seen 

from the concentrated meshing along the leakage path as illustrated in Figure 3.4. The 

choice of mesh number is important, and must be balanced, as fewer mesh elements 

may reduce the accuracy of simulation results, while excessive elements lead to high 

memory consumption and longer processing time. An optimised number facilitates a 

faster computation time without compromising the accuracy of the result. 

3.3.5. Solver Settings 

The insulator model was simulated in an AC/DC module using a quasi-static 

electric current solver, which allows user to specify the conductivity as well as 

permittivity of a material. In quasi-static, the currents and electromagnetic fields vary 

slowly [130], which is valid for many high voltage applications including outdoor  
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Figure  3.4:  Discretisation of domain problem with mesh refinement along the 

creepage path 

 

insulators that operate at power frequencies of 50-60 Hz. The induced current from 

magnetic fields, B and electric fields, E coupling is neglected in the computation. This 

approximation can be represented by mathematical expression: 
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where J and tD  /  represent conduction current density ( EJ  ) and displacement 

current density ( ED r 0 ), respectively. With Gauss’s law,  D  and equation of 

continuity, the software solves Equation 3.2 using time step domain to obtain electric 

potential and field distributions. 

    00 



 VV
t r     (3.3) 

In this expressions, V is the potential difference,   is the electric conductivity, 0  is the 

vacuum permittivity and r  is the relative permittivity of a material.  

3.4. SIMULATION RESULTS AND ANALYSIS 

3.4.1. Equipotentials and Voltage Distribution 

The equipotentials in the vicinity of the polymeric insulator model under dry-

clean and wet-polluted surface conditions are shown in Figure 3.5 (a) and 3.5 (b) 

respectively to allow direct comparison. The lines are plotted at 4% voltage interval, 

hence producing a total of 25 equipotential lines in the simulation results. As can be 

observed on both plots, the contour lines are generally concentrated around the metal 

electrodes, indicating high field regions on the polymeric insulator. The equipotentials 

under the polluted condition are more uniformly spread compared with those for the 

dry-clean surface, giving a better field distribution along the creepage profile. This 

behaviour can be explained by the presence of the resistive pollution layer which helps 

to redistribute concentrated contours over a wider surface region. 

 The computed voltage distributions along the leakage path under both surface 

conditions are compared in Figure 3.6. The leakage distances are measured along the 

polymeric surface, starting at the ground, and moving up to the high voltage terminal. 
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As expected, the curves demonstrate an increment trend when shifting toward the 

energisation terminal. The voltage profile under dry conditions shows a high potential 

gradient at both insulator ends, illustrating high field regions on the insulator surface. 

This correlates well with the equipotentials plot in Figure 3.5 (a) that indicates line 

concentration around the insulator terminals. As for the polluted surface, the voltage 

profile appears to be more uniform and smoother than the profile for the dry-clean 

surface. This favourable distribution reflects the equally spread equipotentials given in 

Figure 3.5 (b). 

 

 

Figure  3.5:  Equipotentials at 4% interval around polymeric insulator 
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Figure  3.6:  Voltage profile along the insulator surface  

 

The dry insulator also exhibits curve undulations particularly at the region near 

the insulator terminals. Such behaviour can be explained by the equipotential lines that 

intersect the insulator surface at more than one point, as illustrated in Figure 3.7 (a). The 

equipotential lines representing 14.8 kV and 14.0 kV, for example, cross the insulator 

surface at three different locations indicated by points 1, 2 and 3. The same voltage 

level, therefore, appears at three points along the leakage distance, hence creating a non-

smooth potential profile. Undulation was not seen on the voltage profile under the wet-

polluted condition because each equipotential line only passes through the surface at 

one single location, as shown in Figure 3.7 (b). 
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Figure  3.7:  Zoomed-in view of equipotentials on the shed near the high voltage 

terminal  

 

3.4.2. Electric Field Distribution  

Figure 3.8 shows the simulation results of electric field distributions along the 

leakage path under dry-clean and polluted surface conditions. The computed electric 

field represents the tangential component along the insulator surface. The flow of 

leakage current on the insulator surface is largely driven by this tangential electric field. 

The plot in general shows a similar trend of distributions with a symmetric field 

distribution between both ground and high voltage terminals, as expected. The 

tangential field magnitude is highest on the surface area near the metal electrodes, with 

relatively smaller peaks in the shank regions. This shows good correlation with the 

equipotential plot and voltage profile as discussed in previous sections. Field 

distribution for the polluted insulator is smoother than that of the dry-clean surface as 

expected. Again, the presence of a resistive wet pollution layer helps in reducing the 

high field stress and produces a better and more favourable field distribution over the 

insulator surface. 
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Figure  3.8:  Tangential field distribution along the leakage path 
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leakage path (see Figure 3.1 (b)). The peaks as seen on the dry-clean profile occur at the 

intersecting points between the vertical shank with the horizontal bottom and upper 

shed surfaces, where the edges are sharp with approximate angles in the range 80˚ to 

90˚, hence causing field intensification. Although these peaks do not generate critical 

stress conditions under dry conditions, they could, however, trigger intense electrical 
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mm and 327 mm (bottom shed surface near high voltage electrode) are less significant 

because the direction of the tangential field is changed in the opposite direction of the 

leakage current on the polymeric surface. Figure 3.9 provides an illustration of vector 

field components demonstrating such phenomena.  

 

 

Figure  3.9:  Tangential field vectors that are in the opposite direction of leakage 

current on the insulator surface 
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dry bands and electrical discharges are likely to occur on the polymeric sheath near the 

terminals and shank regions where the tangential fields are considerably high.  

3.5. EXPERIMENTAL INVESTIGATIONS  

As a complement to the modelling and simulation work presented in the earlier 

sections, experimental investigations were carried out on practical insulators to examine 

visually the electrical stress on the polymeric surface. An artificial pollution test in 

accordance with the BS EN 60507 standard was performed on the 11 kV polymeric 

insulator described in Section 3.2. The focus of this investigation was primarily on 

visual inspections aided by video recording and an infrared thermal camera. Dry band 

formation and discharge activities during the test period are evidence of high field 

regions, emphasising the electrical stress on the insulator surface.  

3.5.1. Fog Chamber Test Facilities 

The experiments were carried out using the existing fog chamber test facility 

available at Cardiff University. The schematic layout of the fog chamber is shown in 

Figure 3.10. The chamber is made of the non-corrosive material, polypropylene, and has 

dimensions of 2 m × 2 m × 3 m, giving a total space measuring approximately 12 m3. It 

is equipped with a tubular aluminium rod suspended vertically at the centre as the test 

voltage point, and an earthed grid covering the base of the chamber. Water is pumped 

into the chamber through a spray nozzle system mounted on the wall, to generate 

micron-sized fog particles during the experiment. The detailed construction of this test 

facility including design considerations and choice of components are provided in 

[131]. 
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Figure  3.10:  Schematic layout of fog chamber test facilities 

 

3.5.2. Circuit Arrangement 

The schematic diagram of the test circuit used in this experiment is shown in 

Figure 3.11. Test voltage is regulated using a PCL control unit (1), which is connected 

to a 75 kV high voltage transformer (2) through a Peschel variable transformer (output 0 

V to 960 V) (3). The variable transformer (PVT) has a built-in protection system, which 

provides isolation in the event of transient overvoltage. The PVT  features negligible 

distortion output which ensures improved signal quality presented at the test insulator 

and also on the visual probe. The voltage across the test insulator was measured through 

the low voltage arm of the North Star capacitive divider (6), rated at ratio 10,000:1. The 

leakage current was obtained from the voltage drop across a variable shunt resistor of 
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1.0 kΩ (7) that is connected in series with the test insulator (8). Both voltage and 

leakage current measurements are simultaneously displayed and stored using a LeCroy 

digital storage oscilloscope (DSO) (10). As a precaution, the leakage current was 

continuously monitored throughout the test period to ensure that the voltage drop 

presented at the input terminal of the oscilloscope was always in a safe range of ±10 V. 

In addition, a circuitry overvoltage protection box consisting of a gas discharge tube, a 

transient suppressor and a zinc oxide varistor is connected in parallel to the shunt 

resistor as a protection mechanism against surge.  

 

 

Figure  3.11:  Circuit diagram of the experimental setup  

 

3.5.3. Preparation of Artificial Contaminant  

The polluted test insulator was prepared using a solid layer method based on 
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water. A suitable amount of sodium chloride (NaCl) was added to achieve the required 

volume conductivity of 11.2 S/m at 20˚C, which corresponds to a heavy pollution level 

in accordance with the BS EN 60507 standard [132]. Iso-octylphenoxypoly 

ethoxyethanotl, a non-ionic wetting agent Trixton X-100, at a volume concentration of 

0.02%, was added to increase the wettability of the hydrophobic polymeric surface. This 

allows a better and more uniform pollution film without beads over the insulator 

surface. Prior to the contamination, the test insulator was thoroughly cleaned using 

water to remove any unwanted powdery stain or pollution traces. The kaolin suspension 

was applied to the test insulator using a ‘flow-on’ technique by flooding the pollution 

slurry over the entire polymeric surface. The insulator was then allowed to dry naturally 

at room temperature overnight before testing in the clean fog condition. 

3.5.4. Low Voltage Test 

Low voltage pollution tests based on the solid layer method were carried out to 

determine the time required for the test insulator to reach its most conductive state on 

exposure to fog generation. The insulator was hung vertically in the chamber with the 

top flange attached to the high voltage source, while the bottom end was connected to 

the ground. The spraying control system consisting of a water pump and air pressure 

valve was fixed at the preset settings of 3.0 litre/hour and 2.0 bar respectively to 

generate fog throughout the test period. A low voltage of 300 V rms was used as the 

source of energisation to trigger current conduction along the pollution layer. This is in 

accordance with the standard that suggests that the applied voltage should not be lower 

than 700 V rms per 100 cm of overall leakage distance. The test insulator was energised 

at 5 minute intervals over a period of 60 minutes from the start of fog generation. The 

voltage was applied only for a short instant, just sufficient to establish measurable 
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leakage currents. The possibility of resistive heating and drying effects on the polymeric 

surface can, therefore, be minimised. Voltage drop across the insulator and the resulting 

leakage current were simultaneously measured and recorded using a digital storage 

oscilloscope (DSO).  

The layer conductance of the pollution layer, GLC, along the insulator surface can 

be calculated using the following expression: 

E

LC
LC V

I
G         (3.1) 

where VE and ILC are the energisation voltage and the resulting leakage current flowing 

through the pollution respectively. Figure 3.12 shows examples of measured plots of 

layer conductance as a function of time under continuous fog generation.  

 

 

Figure  3.12:  Measurements of layer conductance of polluted insulator on exposure 

to fog generation (water flow: 3 litre/hour, air pressure: 2 bar) 
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As can be seen on this figure, the conductance level increases with time as the 

moisture from the fog particles deposits on the polluted surface. It can be estimated that 

the insulator becomes saturated with water and reaches the highest conductive level 

after applying fog for about 25 to 30 minutes. This period will be considered as a pre-

wetting stage in the high voltage test.  

3.5.5. High Voltage Test 

Prior to high voltage application, the test insulator was exposed to fog generation 

for about 25 to 30 minutes in the pre-wetting stage. According to the conductance plot 

in Figure 3.12, this should provide sufficient time for fog water droplets to deposit on 

the pollution surface, establishing maximum pollution conductivity. With continuous 

fog generation, a constant power frequency voltage at 18 kV rms was applied across the 

insulator immediately after the pre-wetting period. This energisation level is similar to 

that employed in the previous simulation work, and corresponds to the maximum line to 

ground voltage for an 11 kV system. The highest possible applied voltage together with 

the maximum pollution conductivity is expected to resemble the worst scenario in 

actual practice. A video camcorder (SONY CX190) was used to record visual 

manifestations of discharge activities during the test period. In addition, surface heating 

due to leakage current and electrical activities was monitored using an infrared thermal 

camera (FLIR A325) that was linked to a computer.  

3.6. OBSERVATIONS AND DISCUSSION 

Electric discharges were first observed on the shank region near the ground 

electrode (shank A). They appeared about 5 seconds after applying the high voltage 

source. The discharges with almost constant length were anchored at the intersecting 

point of the sheath and the bottom shed surface. They occurred and ceased 
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intermittently within less than a second at different locations around the cylindrical 

surface before gradually elongating longitudinally down the rod in varying lengths. 

Discharge activity was not seen on other surface areas until electric sparks began to 

emerge on the bottom polymeric sheath at the ground electrode. A similar trend of arc 

propagation was observed in this area.  

After some time, discharge activities were established at other regions; the 

middle (shank B) and the top shank region (shank C). Electric discharges were actively 

occurring on the middle shank but not on the top shank which was subjected to only 

minimal activity. During the whole of the test period, shank regions were sometimes 

completely devoid of electrical activity with only minor intermittent bursts. It was also 

identified that the upper surfaces of the top shed and sheath at the high voltage terminal 

were almost free of any discharge activity. Figure 3.13 provides snapshots of surface 

arcing and thermal images indicating the progression of electric discharge over the 

insulator surface.  

The observed electrical discharges are the evidence of dry band formation on the 

insulator surface. Dry bands are likely to form in areas with the smallest circumference, 

normally the shank of the insulator structure where current density, and thus power 

dissipation, is greatest. This corresponds well with the experimental observations in the 

high voltage tests where electric discharge was first observed and was found to be 

actively present on the shank regions. Furthermore, regions sheltered by the shed are 

less wetted by the fog. As the electrical activity was not instantaneous with the voltage 

application, it is inferred that the initial period, before discharge initiation, corresponds 

to the time required for surface heating and evaporation to cause dry bands.  
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Figure  3.13:  Propagation of surface discharge during artificial pollution test 

 

The polymeric sheath at the ground end was one of the regions being attacked 

early by electric discharges. Although the region has a slightly larger cylindrical 

diameter, hence lower current density if compared to the shank region, the high electric 

field in this region, shown in Figure 3.8, combined with lower wetting, greatly 

contributes to an increase in power dissipation (P=EJ) that leads to dry band formation. 

Surprisingly, that is not the case for the top sheath at the high voltage terminal. Electric 

discharge was not visually seen despite the area being subjected to a high electric field.  

(b) Snapshots from video recording 

Dryband 
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(a) Infrared thermal images 



Chapter 3 – Investigation of Electric Field Distribution Over The Surface of Polymeric Insulators 

 

 3-24

There are two possible reasons that could explain this unexpected behaviour: i) 

imbalance in wetting action, and ii) field grading by corona toroid attachment. Fog 

droplets, due to gravitational force, can easily reach the outward-facing surfaces 

compared to the hidden areas which are partly sheltered by the weather shed structure. 

Higher wetting rate with continuous moisture deposition on the upper surface prevents 

the drying of the wet pollution layer which, therefore, avoids dry band formation and 

the consequent electric discharges.  

In addition, the pre-installed corona ring at the high voltage end effectively 

minimises high electric fields and, therefore relieves field stress around the top metallic 

electrode. For verification, insulator was modelled with corona ring structure at the top 

high voltage terminal, which imitates the arrangement in the fog chamber. The 

simulation results of equipotentials and electric field distribution are given in Figure 

3.14. As can be seen, equipotential contours around the top high voltage terminal, where 

corona ring is attached to, are less concentrated compared to those at the ground 

electrode. The electric field strength in this region, as shown in Figure 3.14 (b), is about 

four times lower than the electric field at the other insulator end.   

Reduction in electric field combined with lower current density on this surface 

region leads to a small and insufficient power dissipation for dry band formation. This 

could also be the reasons and explanation for the top shank region being subjected to 

only minimal electrical activity.  

Throughout the test period, electric discharges show typical discharge 

propagation on each shank region. The short electric discharge elongates over the wider 

surface area and each discharge occurrence seems to trigger the subsequent chain of 

electric discharges around the circular shank surfaces. This progression behaviour can  
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Figure  3.14:  The effect of stress relief by corona ring structure  
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be explained by discharges that generate heat, causing further drying of the wet 

pollution layer on the surrounding area. The dry band is, therefore, widening to promote 

longer arcing distances and spreading of electric discharges. However, if the dry band is 

sufficiently large, the electric field across the dry regions could drop below the 

breakdown threshold, hence inhibiting discharge activity. This accounts for the period 

during which the shank regions were found free from any electrical activity.   

3.7. CONCLUSION 

An 11 kV polymeric outdoor insulator has been simulated using a commercial finite 

element package to determine potential and electric field distributions on the insulator 

surface. An idealised model has been adopted for an easily reproducible laboratory test. 

The simulation results under dry-clean and wet-polluted surface conditions reveal the 

highly stressed region on the insulator surface, particularly near the terminals and the 

shank regions. This provides useful information about surface heating that can be used 

to predict dry band formation along the leakage path.  

Experimental investigation through artificial pollution tests has been carried out to 

practically examine the phenomena associated with high field stress. Electric discharges 

were found to actively occur on the surface regions as predicted in the simulation 

results. This favourable finding indicates a good correlation between the two approaches 

of simulation and laboratory work.  

Unexpected negligible discharge activities near the high voltage terminals in the 

pollution test were considered to be due to two possible causes: i) imbalance in the 

wetting action, and ii) the field grading effect of the corona ring attachment 
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Finite element modelling can be a useful technique in predicting the high stress region 

over the insulator surface. The simulation in this study provides reliable field 

computations which are in accordance with the laboratory test programme.  
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CHAPTER 4:                                                    

A NEW DYNAMIC SIMULATION MODEL FOR 

POLLUTED INSULATOR 

 

4.1. INTRODUCTION 

It is well known that the performance of outdoor insulators is strongly affected 

by the severity and type of pollution on their surface. In Chapter 3, an insulator under 

wet-contaminated surface condition was modelled with a homogeneous pollution layer 

having a constant conductivity. Similarly in many published articles, authors usually 

assume a single and linear conductivity for the pollution layer when dealing with 

insulator modelling. This is, however, not always the case in practice. The surface 

conductivity will, in fact, vary with the electric field strength, particularly when 

subjected to electric field effects. The conductivity decreases with time as moisture 

from the wet pollution layer starts to evaporate and dry out, mainly due to the effect of 

surface heating arising from leakage current flowing through the pollution layer.  

There have been a large number of research works that focus on pollution 

modelling, but no effort has been made to consider a pollution layer with a non-linear 

conductivity. In an attempt to address this shortfall, this chapter proposes the use of a
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pollution model that has a non-linear field-dependent conductivity in computing electric 

field distribution over the insulator surface. This will account for the drying effect due 

to electric field strength. The non-linear pollution conductivity is derived from 

laboratory measurements of low voltage layer conductance tests. Finite element 

modelling and simulations are performed under fog and light rain conditions which are 

considered here on the basis of their natural wetting action in practice.  

4.2. FIELD-DEPENDENT CONDUCTIVITY OF POLLUTION LAYER 

Pollution layer deposited on an energised insulator surface under dry conditions 

is risk-free, with a negligible capacitive current due to high surface resistance. However, 

the resistance drops significantly when the pollution layer becomes wet on exposure to 

humid atmospheres such as fog, mist and drizzle, which may result in a flow of leakage 

current and, therefore, the current density along the creepage path from the high voltage 

to the ground terminal. The electric field, ES, and longitudinal current density, JS, on the 

insulator surface are always non-uniform due to the geometrical shape of polymeric 

weather sheds housing. For a pollution layer with surface resistivity, ρS, the surface 

electric field can be expressed by the following equation: 

SSS JE 
       (4.1) 

The current density which varies with the insulator shape is greatest in the region 

with the smallest cylindrical surface, i.e. the shank region. An enhanced electric field 

combined with the high current density leads to an increase in power dissipation, which 

then becomes the source of energy for surface heating to initiate dry band formation. 

The power dissipation, PE, for a conducting pollution layer with uniform volume 

conductivity, σv, can be represented as: 
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JEP
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       (4.2) 

Leakage current flowing through the polluted surface is essentially governed by 

the moisture level within the conducting layer. It becomes significant when the 

pollution layer is subjected to high humidity. The layer is considered in its most 

conductive state, hence its highest conductance level, when the surface is completely 

wet and saturated with water. The conductance level decreases as the wet pollution 

surface starts to dry out due to joule heating. Considering the power term in Equation 

(4.2), it can be predicted that the evaporation rate is minimum on exposure to low 

electric field, and it will increase as the electric field is increased. As such, the 

conductance level is not significantly changed in the low field region, and it is expected 

to decrease rapidly when subjected to a high electric field. This general hypothesis can 

be translated into a graphical representation of the electric field-conductance 

relationship, as shown in Figure 4.1. Nevertheless, the actual dependency will be 

determined experimentally and described in the next sections.  

 

 

Figure  4.1:  Expected general trend for layer conductance on insulator surface 
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4.3. LAYER CONDUCTANCE TEST 

Artificial pollution tests using a low voltage source were carried out to obtain 

measurements of surface conductance, which were then incorporated into a field-

dependent conductivity graph to be used in the pollution model in finite element 

simulations. The pollution test was performed in the fog chamber, using the same 

experimental setup as detailed in Section 3.5. The pollution suspension and test 

insulator were prepared using procedures identical to those described in Section 3.5.3.  

4.3.1. Non-Standard Wetting Action 

The standard artificial pollution experiment requires the test insulator to be 

wetted by fog generated using a spraying system. However, there is a significant 

concern regarding the possibility of washing effects when the clean-fog solid layer 

method is employed. Pollution on the insulator surface may gradually be washed-off on 

exposure to continuous fog generation, and this could contribute to a reduction in 

surface conductance. Instead, the pollution layer was uniformly wetted by submerging 

the test insulator in water, which is similar to the ‘flow-on’ technique when applying the 

pollution suspension. This is an alternative approach to rule out the possible washing 

effect of the pollution layer.  

Considerable care was taken to ensure the pollution coating remained on the 

polymeric surface as it could be washed off during the dipping process. The insulator is 

considered at its maximum layer conductance when the pollution is completely wet and 

saturated with water, representing the most severe operating condition in practice. The 

advantage of using this wetting procedure is that the amount of water deposited on the 

entire surface can be standardised and controlled more effectively without having to 
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consider the time to reach the maximum conductance level when using continuous fog 

generation as discussed in Section 3.5.4. 

4.3.2. Non-Standard Test Procedures 

After being uniformly wetted using the submerging technique, the test insulator 

was suspended vertically in the fog chamber for voltage application. Fog generation was 

not used in this experiment to avoid the possibility of the washing effect as explained in 

the previous section. To ensure an accurate examination of the effect of joule heating 

and surface evaporation to the layer conductance level, the low voltage test procedures 

as per BS EN 60507 Standard were modified. Instead of energising the test insulator at 

five minute time intervals as suggested in the standard, a constant and continuously low 

voltage source, starting at 300 V, was applied across the insulator unit. Both applied 

voltage, VE, and the resulting leakage current, ILC, were displayed and monitored using 

an oscilloscope.  

The measurements were recorded every minute, starting at the point of voltage 

energisation for the entire test duration. The test was terminated when leakage current 

became negligible and a series of spikes due to electric discharges started to dominate 

the current waveform. The insulator was then thoroughly washed before applying a new 

pollution suspension for the next test. This experimental procedure was repeated with 

different energisation levels at 600 V, 900 V, 1.2 kV and 1.5 kV, where a ‘fresh’ 

polluted insulator was used for each test cycle.  

To ensure good uniformity of the pollution layers, each insulator was subjected 

to a pre-test conductance measurement before commencing the actual test. The polluted 

insulator was energised with the lowest permissible voltage level (700 V rms per metre 

of overall creepage distance) at 250 V rms, applied just long enough to establish a 
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measureable leakage current. If the computed layer conductance deviated considerably 

from the average value, the insulator was to be cleaned off and re-polluted until the 

desired starting conductance level was achieved.  

4.4. DEVELOPMENT OF NON-LINEAR POLLUTION MODEL 

4.4.1. Experimental Results and Analysis 

Figure 4.2 shows examples of A.C. waveforms of the applied voltage and the 

resulting leakage current when energised with 900 V rms (1.27 kV peak). The 

waveforms under dry surface conditions were recorded only for comparison purposes. 

As can be seen on the figures, the leakage current is very small in magnitude and 

predominantly capacitive with 90˚ phase shift on a dry surface. However, there is a 

significant change in both magnitude and phase shift when the insulator surface is wet. 

The current magnitude increases from approximately 21 µA rms (30 µA peak) to 1.15 

mA rms (1.65 mA peak), and the phase difference with the applied voltage is reduced to 

zero indicating resistive current conduction.  

The layer conductance, GLC, of pollution covering insulator surfaces can be 

computed using the following expression: 

E

LC
LC V

I
FG          (4.3) 

where, VE and ILC are the applied voltage and the resulting leakage current flowing 

along the creepage of polymeric housing respectively. F is known as the geometrical 

form factor, a dimensionless numerical value that represents the overall surface area 

with regard to the shape of the polymeric insulator. It is unique for each insulator 

design, and can be determined using Equation (4.4): 
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L

ds
sr

l
F

0 2
       (4.4) 

where 2πr(s) is the circumference of the insulator surface at distance l along the 

creepage path. Form factor for the polymer insulator considered in this study is 2.94.  

 

 

Figure  4.2:  Example of voltage-current traces from oscilloscope for insulator with 

(a) dry-clean, and (b) wet-polluted surface 
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The leakage current and the corresponding surface conductance obtained in the 

test are tabulated in Table 4.1. Insulators A, B, C, D and E in this case represent 

polluted insulator used for energisation levels at voltage 300, 600, 900, 1200 and 1500 

V rms respectively. The small differences between the measured layer conductance 

values indicate marginal discrepancy in the pollution layers, which give clear evidence 

of excellent consistency for all test insulator surfaces. 

 

Table  4.1:  Measurement of initial conductance prior to the test investigating 

drying effect on conductance (test voltage 250 V rms) 

Test insulator Ins. A Ins. B Ins. C Ins. D Ins. E 

Leakage current (mA) 0.327 0.336 0.319 0.305 0.323 

Conductance (µS) 3.845 3.951 3.751 3.587 3.798 
 

Ins. = Insulator 
 

Figure 4.3 shows the plot of leakage current for different energisation levels 

obtained in the low voltage test, and the corresponding layer conductance obtained 

using Equation (4.3), is presented in Figure 4.4. The conductance curve is normalised to 

its initial conductance value. These two parameters i.e. leakage current and normalised 

conductance are plotted as a function of the duration of the test period. As can be seen, 

the curve for all voltage levels in both figures shows a general reduction trend 

throughout the test period. The leakage current and layer conductance are highest at the 

point of energisation (t = 0 s) and then gradually decrease with time before a sudden fall 

towards the end. At this point, it is thought that a dry band is formed, preventing flow of 

current in each test. The maximum leakage current and layer conductance indicate that 

the polluted insulator is in its most conductive state after being uniformly wetted prior 
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to the start of the test. The reduction in these parameters is the evidence of surface 

heating that evaporates water from the pollution layer during current conduction.  

The steep gradient in the early voltage applications suggests an accelerated 

evaporation process due to high power dissipation (P=EJ) that facilitates the drying of 

the wet pollution layer. As the water level on the insulator surface continues to decrease, 

the resulting leakage current, which is relatively low in magnitude, requires a longer 

time to generate adequate heating energy to cause further evaporation. Therefore, 

minimal change in both leakage current and layer conductance due to the low 

evaporation rate is observed after about 5 minutes of voltage energisation. The 

subsequent sudden drop at the end of each curve can be accounted for by the formation 

of dry bands that prevent the flow of leakage current over the insulator surface. The 

time taken for this to happen varies depending on the applied voltage. The higher the 

voltage level, the shorter the time required for dry band formation. Higher voltage, as 

expected, generates greater heating energy that would speed up the drying process. The 

series of steep falls, as can be seen on the plot at higher voltage levels of 1.2 kV rms and 

1.5 kV rms, suggests discontinuous current conduction in the early stage of dry band 

formations. 

4.4.2. Proposal for the Derivation of Field Dependent Conductivity of the Pollution 

Layer  

According to the hypothesis described in Section 4.2, surface conductance will 

decrease on exposure to high electric field. This is primarily due to the joule heating that 

causes drying of pollution layer. In this section, the intention is to establish a 

relationship of non-linear pollution conductivity as a function of applied electric field.  
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Figure  4.3:  Measurements of leakage current for different energisation voltages 

 

 

Figure  4.4:  Normalised layer conductance for the leakage current measurements 

given in Figure 4.3  
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For a very simplistic model, the average electric field, E, on the insulator 

surface, can be approximated by the following equation:  

C

E

d

V
E         (4.5) 

where VE is the energisation voltage and dC is the total creepage distance of polymeric 

housing. In this study, the change in surface conductance is termed as ‘conductance 

index’, ∆G, and is defined as the difference between the maximum (Gmax) and the 

minimum (Gmin) conductance levels measured during the low voltage test. It is 

calculated using Equation (4.6): 

minmax GGG        (4.6) 

Assuming the conductance is negligible (i.e. zero) when the dry band occurs, the 

conductance index, ∆G, for the complete drying process is, therefore, equal to the 

maximum conductance level, Gmax, when the pollution layer is saturated with water. If 

the flow of leakage current requires a certain period of time, t, to cause a complete dry 

band, the rate of reduction in surface conductance, R∆G (S/min), can be expressed as: 

 
t

G

t

G
R G

max


       (4.7) 

Figure 4.5 shows the plot of R∆G as a function of the average field, E, developed 

from the experimental result of layer conductance measurement. As can be seen, the 

rate of reduction in layer conductance, which corresponds to the evaporation/drying 

rate, increases as the specific creepage field increases. This dependency confirms the 

hypothesis described in the earlier section. A high electric field generates greater 
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heating energy that leads to an accelerated drying of the pollution surface layer on the 

insulator surface.  

 

 

Figure  4.5:  Rate of change in surface conductance as a function of specific 

creepage field  
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Figure 4.6.  It can be seen that the surface conductance decreases with an increase in the 

electric field. However, the relationship at higher fields, i.e. greater than 5 kV/cm, could 

not be plotted due to lack of experimental data at higher voltage levels. Measurement of 

leakage current for insulator with energisation level greater than 1.5 kV could not be 

carried out due to difficulties in obtaining accurate readings from the oscilloscope. 

Active electric discharges on the insulator surface greatly distorted the sinusoidal 

leakage current waveforms, with a series of peaks that could lead to significant errors.  

 

 

Figure  4.6:  Surface conductance as a function of average field on polluted 

insulator  
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wider range of electric fields approaching air breakdown threshold at about 10 kV/cm. 

The trend of the curve on the log-log scale plot shows an exponential decay, which was 

approximated by an empirical general mathematical expression as given by Equation 

(4.8):  

 EeG  0        (4.8)  

where  σ0 represents the initial conductivity value, while τ defines the rate of change in 

conductivity at the switching threshold level. From Figure 4.7, the following values 

were obtained; σ0 = 4.2 µS and, τ = 5107.6  . This extrapolation plot will be adopted 

to characterise the pollution model in the numerical simulations.  

 

 

Figure  4.7:  Proposed pollution layer conductance as function of electric field 
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4.5. CLASSIFICATION OF POLLUTION MODEL  

Dry band formation on polymeric outdoor insulators is governed by two 

important factors: i) the dissipated power that leads to surface heating and evaporation 

(drying rate), and ii) the rate of moisture being deposited on the polluted surface 

(wetting rate). Occasionally, dry bands will occur when the drying rate is equivalent to, 

or greater than, the wetting rate. Under heavy rain conditions where the insulator is 

subjected to a high wetting action, dry bands may not have a chance to establish on the 

insulator surface. The rain could re-wet the dry region, or wash away the deposited 

pollutants, to prevent a continuous conductive layer along the leakage path. However, 

outdoor insulator is at high risk of dry band formation if exposed to moderate humidity 

such as light rain and fog-atmosphere. For better understanding, a pollution model 

under fog and light rain conditions is developed for simulation of electric field 

distribution over the insulator surface. The pollution model represents uniform (fog) and 

non-uniform (light rain) wetting scenarios.  

4.5.1. Model Under Fog Condition (Uniform Wetting) 

Under the fog condition, tiny water droplets move slowly in random motion in 

the atmosphere. They could reach the insulator surface from almost any direction. 

Therefore, the wetting of the pollution layer under fog conditions is assumed to be 

constant and uniform along the leakage path. The proposed field-dependent 

conductivity for the pollution model under fog conditions is given by the extrapolation 

curve plotted in Figure 4.7, which was obtained from the low voltage experiment using 

uniform wetting procedures.  

From the figure, it can be seen that the conductivity is maximum and nearly 

constant in the low electric field region. The pollution layer in this case is saturated with 
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water, and the dissipated power which would cause water evaporation is negligible, due 

to the low electric field. The conductivity gradually decreases as the electric field 

increases, indicating the effect of surface heating that evaporates water from the 

pollution layer. With a continuous drying process, when the electric field exceeds a 

certain threshold level, the conductivity drops rapidly, as clearly shown in the field 

region above approximately 1.0 kV/cm. The surface conductivity is considered zero in 

the higher field region above 10 kV/cm, reflecting a complete drying process which 

turns the wet conductive region into a dry and high resistive area on the polymeric 

surface. 

4.5.2. Model under Light Rain Condition (Non-Uniform Wetting) 

In contrast to the fog condition, deposition of water under light rain conditions 

varies depending on the region of the polymeric insulator. Surface areas that face the 

rainfall are subjected to a higher wetting rate compared with those in the sheltered 

regions (under shed surfaces). For modelling purposes, the uniform pollution layer 

along the creepage path is subdivided into three main regions namely: H (high), M 

(medium), and L (low) as illustrated in Figure 4.8. Each region is categorised based on 

the wetting action in practice. Region H, assigned to the upper surface, represents a 

highly wetted area. Water from the rain can easily reach this area without any obstacles. 

Half of the under sheds close to the tip, indicated by region M, are classified as a region 

with medium wetting rate while the remaining regions down to the shank, marked by 

region L, are considered to be the least wetted areas on account of their sheltered 

location protected by the sheds.  
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Figure  4.8:  Subdivision of pollution layer under light rain conditions according to 

wetting level  

 

Figure 4.9 shows three independent surface conductivity curves proposed to 

characterise the pollution layer under light rain conditions. Each curve, marked by H, M 

and L, is assigned to the pollution model in regions H, M and L respectively. These 

curves replicate the general reduction trend of the plot considered under fog conditions. 

The small difference in the maximum conductivity and the field threshold at which the 

conductivity starts to decrease rapidly accounted for the variation of water deposition 

under the described light rain conditions. Curve H is assigned with the highest surface 

conductivity, initial 4.2 µS/m, considering region H as the most water-saturated area. 

The medium and least saturated areas M and L are characterised by a slightly lower 

initial conductivity of 3.0 µS/m and 2.0 µS/m respectively. The region with a low field 

threshold represents a less wetted area and, therefore, is subject to a higher probability 
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of dry band formation. Therefore, the pollution model in region L is associated with the 

lowest threshold level, followed by region M and H respectively with the moderate and 

the highest threshold levels, indicating surfaces that are exposed to a greater wetting 

level. 

 

 

Figure  4.9:  Field-dependent conductivity for the pollution model under light rain 

conditions (non-uniform wetting) 
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useful for dry band prediction, would be obtained using this approach when compared 

with commonly used single value conductivity of the pollution layer.  

4.6.1. FEM Modelling 

Similar modelling setup and procedures to those described in Section 3.3 were 

adopted in this simulation work. The non-linear property for the pollution layer was 

specified as an exponential function, as shown in Figure 4.7 (fog model) and Figure 4.9 

(light rain model). 

4.6.2. Simulation Results and Analysis 

For comparison purposes, simulation results of electric field under polluted 

surface conditions presented in Chapter 3 were considered as a reference. The pollution 

layer that has been modelled with linear conductivity is an example of the common 

modelling practice found in most of the available literature, where the effects of wetting 

and drying processes, and hence the variations of layer conductance with the electric 

field, are not taken into account.  

The computed field distribution from the proposed non-linear pollution model 

under fog conditions (uniform wetting) is compared with the linear model in Figure 

4.10. The pollution is characterised by a non-linear field-dependent conductivity shown 

in Figure 4.7. It is evident in the figure that there is a slight difference between the two 

field profiles. The non-linear model indicates a redistribution of the electric field, where 

the local stress near the terminals is raised from a normal value of 1.2 kV/cm to 

approximately 1.6 kV/cm, representing about 33% field enhancement. A moderate field 

increase, nearly 10%, is also observed on the bottom and top shank regions i.e. shank A 

and shank C respectively. The rise in electric field, when considering the non-linear 
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pollution model, can be explained by the reduction in surface conductivity as the 

computed field reaches the drying threshold. Such results could be interpreted as an 

acceleration process for dry banding, as higher fields appear due to redistribution 

resulting from heating effects. The profile on the middle shanks is almost unchanged 

because the computed electric field is not high enough and remains in the constant 

conductivity region similar to the standard model. 

 

 

Figure  4.10:  Comparison of field distributions from the proposed non-linear 

pollution model (fog condition) with the single value conductance model 

 

Figure 4.11 shows a comparison of field distribution when simulating the non-
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with a series of peaks at different locations along the creepage distance. The peaks show 

a significant field increase, more than double the magnitude of the linear model. Similar 

to the explanation for the increase under fog conditions, the peaks appear when the 

electric field is high in a region, resulting in  decreased conductivity due to the drying 

effect that was considered in the proposed model. It is clear that discharge will occur on 

the surfaces at the bottom terminal as well as the sheltered shank regions, represented 

by region L in Figure 4.8, where the wetting rate is minimum. These are the regions that 

are susceptible to dry band formation and discharge activities, as observed in the 

laboratory and as reported in most of the published literature.  

 

 

Figure  4.11:  Comparison of field distributions from the proposed non-linear 

pollution model (light rain) and standard linear model 
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On the contrary, the upper shed surfaces, indicated by region H, show a slight 

decrease in the electric field if compared to the standard model. Such behaviour is 

evidence of higher conductivity and higher drying thresholds which account for surface 

regions with high wetting action. Field enhancement is, therefore, not observed in the 

top shed region at the high voltage end. 

The field comparative study clearly shows that the use of non-linear pollution 

models leads to detailed and more realistic field profiles compared to conventional 

modelling with typical assumptions of linear and constant conductivity. The presence of 

peaks in the distribution provides better understanding of field response on insulator 

surfaces which are important for dry band prediction. In addition, the simulation results 

from the proposed non-linear models show a good correlation with the experimental 

observations in Section 3.5, where, as expected, dry band and electric discharges were 

actively present at the bottom ground terminal and on the sheltered shank surfaces. 

4.7. CONCLUSION 

Low voltage artificial pollution tests, based on the BS EN 60507 solid layer method, 

have been carried out on 11 kV polymeric insulators to measure leakage current at 

various energisation levels. Non-standard approaches were adopted in the experimental 

procedures to allow an investigation into the effect of surface drying on the layer 

conductance.   

A new field-dependent conductivity for characterising non-linear pollution models has 

been successfully developed from the experimental results. Pollution models under fog 

and light rain conditions have been proposed to simulate the electric field distribution 
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along the leakage path and its effect on the drying of the pollution layer. The models 

represent uniform as well as non-uniform wetting behaviour in practice.  

The simulation results from the proposed non-linear model have demonstrated a 

detailed and more realistic field distribution with the presence of peaks, which do not 

appear on the profile from the standard single conductivity model. The spike in the 

electric field profile suggests a drop in surface conductance at the high field region, and 

this is attributed to evaporation and heating effects that were examined in this study. 

This is particularly useful to locate dry band formation on the insulator surface where 

discharge may occur.   
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CHAPTER 5:                                                    

PROPOSAL FOR STRESS CONTROL ON INSULATOR 

SURFACE USING ZNO MICROVARISTOR 

COMPOUNDS 

 

5.1. INTRODUCTION 

One of the major threats to polymeric outdoor insulators is the localised high 

electric field on the insulator surface, in particular at the high voltage electrode and 

ground terminals. They could result in significant electric discharges when subjected to 

moisture. In favourable conditions, on exposure to severe polluted environments under 

prolonged wetting conditions, a high field that facilitates the propagation of electric 

discharges on the insulator surface could trigger complete insulator flashover. 

Moreover, continuous discharge activity leads to material degradation through surface 

tracking and erosion that will reduce the flashover voltage and insulation performance. 

Considering these undesirable consequences, effective stress control and field grading is 

extremely important to alleviate the effect of such detrimental discharges on polymeric 

outdoor insulators. 
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The use of non-linear field grading materials on many high voltage applications 

such as cable terminations and motor windings has been successful in minimising high 

electrical stress on the insulation surface [118], [120]. This encouraging realisation has 

triggered research investigations to examine the feasibility of this grading material on 

polymeric outdoor insulators.  

In this chapter, the effect of microvaristor utilisation as a means of controlling 

electric stress on polymeric outdoor insulators is investigated. This new approach is to 

provide an alternative for the existing grading techniques using hardware fittings, i.e. 

corona ring. In the proposed design, a short length of microvaristor-based compound is 

applied onto the core of the insulator near the high voltage and ground terminals, which 

is then encapsulated within the silicone rubber housing for protection against various 

environmental effects. The field grading and optimisation principles to allow better 

performance are investigated in an attempt to improve the insulator performance under 

steady state operation and surge conditions. The insulator equipped with microvaristor 

layers is modelled under dry-clean and uniformly polluted surface conditions and the 

simulation results are compared with those obtained from a standard insulator design 

without field grading material. In addition, the dissipated power and associated heat are 

derived to analyse surface heating and losses in the graded regions. 

5.2. PROPOSAL FOR MICROVARISTOR-GRADED INSULATOR  

One of the effective approaches for minimising local discharges on polymeric 

insulation for many high voltage applications is to suppress high field regions on the 

surface. This can be successfully achieved through the application of stress grading 

material using capacitive, resistive or non-linear materials. Among these options, the 
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non-linear material grading solution appears to be a promising method for use on 

outdoor polymeric insulators.  

5.2.1. Microvaristor Characteristics 

In recent years, ZnO microvaristor, micro-scaled electroceramic particles 

exhibiting highly non-linear electrical properties, similar to the varistor in high voltage 

arrester applications, have been developed [111]. The non-linear switching 

characteristics can always be tailored to any desired threshold level using sophisticated 

manufacturing processes, giving flexibility for the material to be used in a wide range of 

applications [115]. At present, microvaristor-filled composites are commercially 

produced for grading purposes mainly for indoor applications such as machines and 

cables. Figure 5.1 shows a measured electrical characteristic of microvaristor compound 

provided by a German manufacturer [133], which was also used for designing and 

building an insulator prototype as described in Chapter 6. As can be seen on the figure, 

this is reminiscent of the highly non-linear characteristic of ZnO material used for high 

voltage surge arresters. 

 

 

Figure  5.1:  Resistivity of microvaristor compound with field conduction switching 

threshold at 10 kV/cm [133] 
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5.2.2. Options for New Insulator Design  

Different promising design options for implementing the microvaristors on the 

polymeric insulator were considered: 

i) One option is to apply a thin grading layer on the insulator surface. With this 

arrangement, the electric field along the creepage path is expected to be 

uniform, even with the presence of a discontinuous wet pollution layer. As the 

field across the dry areas reaches the switching threshold, the grading material 

starts to conduct, hence bridging the dry regions. Consequently, damaging 

electric discharges on the surface may be avoided. The implementation, 

however, may not be suitable for outdoor applications. Constant conduction 

together with the impact from the environment can lead to other problems such 

as losses and thermal damage which, consequently, may result in 

tracking/erosion and possible premature failure. 

ii) Another option is to utilise a thin cylindrical microvaristor coating along the 

full length of the insulator core structure, which will then be covered by the 

silicone housing. With the ability to conduct when reaching a set electric field 

threshold, the material is expected to suppress high fields on the insulator, 

giving a better and improved field distribution. It should be stressed, however, 

that with this design, there is a concern on the long-term performance. 

Continuous leakage current will cause unacceptable power losses along the 

overhead lines or even at a particular substation application. More importantly, 

internal heating would certainly lead to internal damage and eventually to 

insulation failure. In the worst case scenario, the coating may even short-circuit 
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the insulation material, allowing current flow directly from the high voltage 

terminal to the ground terminal. 

iii) The design approach adopted in this investigation is to avoid the shortfalls 

described above. The grading material is, therefore, applied at the interface 

between the core and the silicone housing only near the insulator high voltage 

and earth terminals. The material is coated onto the fibre-reinforced core with a 

cone-like graded thickness towards the middle part of the insulator, as illustrated 

in Figure 5.2. The microvaristor grading coating, which is thicker at the 

electrode ends, is designed to handle the high field in these regions. With the 

proposed cone-shaped geometry, concentrated equipotentials near the insulator 

terminals can be gradually redistributed away from these overstressed areas. The 

microvaristor layer is also intentionally extended to the sheds region in the 

middle to provide a smooth transition of the displaced equipotentials, thus 

reducing electrical stress on the critical shank regions. 

 

 

Figure  5.2:  Proposed design of microvaristor-graded insulator 
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5.3. OPTIMISATION OF MICROVARISTOR CHARACTERISTICS  

For optimum stress grading performance, it is important to identify suitable 

conduction field characteristics of the microvaristor material for each specific 

application. In this way, tailor-made compounds can be requested from the 

manufacturer for specific applications.  

5.3.1. Consideration for Field Switching Threshold  

Electrical stress control on polymeric insulators can only be successfully realised 

by using microvaristors with switching properties within the limits of the electric field 

appearing along the insulator under the applied voltage conditions. The electric field 

along the axial line at the core-silicone interface, as shown in Figure 5.3, is utilised to 

specify an appropriate switching threshold for the 11 kV insulator under investigation. 

 

 

Figure  5.3:  Field distribution at the interface between core and polymeric housing 
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According to the field profile, the conduction switching threshold of the 

microvaristors should be lower than 4 kV/cm to allow the initiation of microvaristor 

conduction and, therefore, trigger its grading actions. On the other hand, a sufficiently 

high threshold value needs to be chosen so that the switching level is not too low, as this 

may result in constant current conduction and overstress the middle part of the insulator, 

where no grading material is used.  

The conductivity of a microvaristor-based compound that exhibits a highly non-

linear behaviour can be represented by a general exponential function, as given in 

Equation (5.1) [134].  

  EeE  0        (5.1) 

In this equation, σ0 represents the initial conductivity, while the constant α determines 

the field switching threshold at which the material changes its electrical properties from 

an insulator to conductor. 

Figure 5.4 shows three examples of the microvaristor material conductivity-

electric field characteristics, constructed in this work in order to optimise the grading 

effect on the electric field distribution along the insulator surface. Each curve is 

designated by its switching threshold field, E0, above which a significant conduction 

increase occurs for a small change in electric field magnitude. This is equivalent to the 

concept of ‘turn-on’ voltage used for the voltage-current characteristic of ZnO surge 

arrester materials. 
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Figure  5.4:  Proposed microvaristor characteristics with different switching 

thresholds. (1) E0= 0.5 kV/cm, (2) E0=1.0 kV/cm and (3) E0=5.0 kV/cm 

 

5.3.2. Effect of Microvaristor Characteristics on Field Distribution 

In this investigation, the same modelling procedures including insulator design 

and properties as described in Chapter 3 were adopted for simulation of the 

microvaristor-graded insulator. Tapered geometry sections to represent the proposed 

microvaristor coating were introduced in the region between the core and silicone 

housing at both insulator ends, as illustrated in Figure 5.2. The conductivity of the 

grading material, having relative permittivity r =12 [133], is specified as a function of 

electric field,  =f (E), provided in Figure 5.4.  
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Figure 5.5 reports the computed tangential field along the leakage path of 

polymeric insulators, equipped with microvaristor grading exhibiting the electrical 

properties given in Figure 5.4. The leakage distances are measured along the polymeric 

surface from the ground up to the high voltage terminal.  

  

Figure  5.5:  Computed tangential electric field profiles along the insulator surface 

for different microvaristor switching thresholds, E0  
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of equipotentials from the terminals towards the middle parts of the insulator. Once the 

microvaristor compound is turned-on, the voltage along its length is redistributed to 

near-uniform distribution which results in a reduced field near the terminals and 

increased magnitude away from the grading material. The results shown in Figure 5.5 

indicate that a material with a 1.0 kV/cm switching threshold results in a distribution 

that generates comparable field magnitudes at the terminals and around the middle of 

the insulator (see continuous curve). The favourable distribution can be clearly observed 

on the corresponding equipotential plots in Figure 5.6, where the equipotential lines 

along the surface are distributed more evenly. This demonstrates that the redistribution 

 

Figure  5.6:  Equipotentials at 4% interval around high voltage electrode for 

different microvaristor switching thresholds, E0  

No grading            E0=0.5 kV/cm        
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can be adjusted to the required application depending on the exact configuration of the 

installed insulator in the field by a suitable selection of the characteristics of the 

microvaristor grading material.  

Table 5.1 summarises the highest tangential field values at different regions on 

the dry-clean insulator surfaces. From careful analysis, the computed values clearly 

indicate that the grading material with E0 = 1.0 kV/cm has the smallest variation in peak 

values, and offers the best surface field distribution for the insulator. A grading material 

with this conduction threshold was, therefore, selected for further investigation of field-

control concept. 

 

Table  5.1:  Peak magnitude of tangential field on the surface of dry-clean insulator  

Region on 
insulator surface 
(leakage distance) 

With no 
grading 
(kV/cm) 

Grading 
E0=0.5 kV/cm 

(kV/cm) 

Grading 
E0=1 kV/cm 

(kV/cm) 

Grading 
E0=5 kV/cm 

(kV/cm) 
Ground end 
(0 – 42 mm) 

3.03 2.70 2.31 2.12 

Shank A 
(73 – 106 mm) 

1.38 1.30 2.03 2.72 

Shank B 
(167 – 203 mm) 

0.82 1.02 1.84 2.66 

Shank C 
(263 – 297 mm) 

1.41 1.35 1.95 2.43 

HV end 
(327 – 366 mm) 

3.62 3.01 2.38 2.13 

 

5.4. EVALUATION OF MICROVARISTOR PERFORMANCE  

To appreciate the benefit of field grading using microvaristors, simulation results 

from the proposed microvaristor-graded insulator are compared with those from the 

standard non-graded insulator. In this case, the optimum microvaristor characteristic, 

E0=1.0 kV/cm, determined in the previous section, was used to characterise the 

microvaristor grading material in polymeric insulator. The performance of microvaristor 
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application is assessed in two important aspects: i) field distribution and ii) power 

dissipation. The pollution layer in this simulation is considered uniform with constant 

single conductivity, as adopted in Chapter 3. 

5.4.1. Field Control Under Dry-Clean and Wet-Polluted Conditions  

Figures 5.7 provides the comparison of equipotential distributions under dry-

clean and uniformly wet-polluted conditions respectively. As can be observed on the 

figures, the introduction of microvaristor grading under both surface conditions 

improves the potential profile around the insulator terminal ends. The redistribution 

results in a wider spread of equipotentials compared with the insulator having no 

grading material. In particular, this action is more effective when the grading material 

switches into conduction state as the local applied field magnitudes reach or exceed the 

microvaristor’s switching threshold, thereby improving the electrical stress control. The 

equipotentials for a wet-polluted insulator, as expected, show a more favourable 

distribution due to the presence of resistive pollution layer, where the lines are farther 

apart compared to those under dry-clean surfaces.  

Figures 5.8 (a) and 5.8 (b) show the corresponding electric field profiles along 

the leakage path for the clean and polluted insulators. The field distributions on the 

insulator equipped with grading material under both surface conditions are improved, 

which correlate well with the computed equipotentials plot. The field distribution 

appears to be more uniformly distributed along the leakage path, thus avoiding 

excessive stress at specific vulnerable areas on the insulator surface. The maximum 

fields in the critical high field regions at both insulator terminals are successfully 

reduced. Under dry-clean surface conditions, peak magnitudes are lowered from 3.62 

kV/cm to 2.38 kV/cm at the high voltage electrode, and from 3.03 kV/cm to 2.31 kV/cm 
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near the ground, which respectively represent 34.3% and 23.8% of field reduction. The 

performance under wet-polluted conditions is even better, with the improvement around 

40% at both insulator terminals. This encouraging improvement, as summarised in 

Table 5.2, is expected to minimise the probability of surface discharges and also 

increase the flashover voltage level, which consequently enhances the long-term 

performance of the insulator. 

 

 

Figure  5.7:  Equipotential lines at 4% interval around polymeric insulator under 

(a) dry-clean, and (b) wet-polluted surface condition 
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Figure  5.8:  Comparison of tangential field along the leakage path for insulators 

under (a) dry-clean, and (b) wet polluted surface condition 
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Table  5.2:  Peak magnitude of tangential electric field on polymeric surface near 

both insulator terminals 

Surface condition Dry-Clean Wet-Polluted 

Terminal HV Ground HV Ground 

Non-graded 
insulator 

3.62 kV/cm 3.05 kV/cm 1.79 kV/cm 1.76 kV/cm 

Microvaristor-
graded insulator 

2.37 kV/cm 2.31 kV/cm 1.08 kV/cm 1.05 kV/cm 

Improvement due 
to grading effect 

34.3% 23.8% 39.7% 40.3% 

 

5.4.2. Power Dissipation and Heating Assessment  

The most onerous condition for outdoor insulators is the effect of surface 

leakage current on the covering wet pollution layer. Such a phenomenon will cause 

power dissipation leading to resistive heating in the pollution layer which, in turn, could 

dry out the water, and hence contribute to the formation of dry bands on the insulator 

surface. At any location of the insulator along its creepage path, the power dissipation in 

a thin pollution layer of thickness, tp, is proportional to the resistance of the pollution 

layer, Rp, and the magnitude of the leakage current, Ilc. The total power dissipation, P, is 

written as:  

2
lcp IRP         (5.2) 

The resistance of the pollution layer of length, , is expressed as:  
















S
Rp




1

       (5.3 



Chapter 5 –Proposal for Stress Control on Insulator Surface Using ZnO Microvaristor Compounds  

 

 5-16

with   the conductivity of the pollution layer (S/m), and assuming that the thickness is 

very small compared to the radius of the insulator, r, the pollution section area, S, at any 

point along the creepage path can be expressed as: 

S = 2  r t           (5.4) 

Noting that the tangential electric field, Et, drives the surface leakage current, the 

resulting pollution layer current density, J, in this case can be expressed as:  

t
lc E
S

I
J        (5.5) 

Combining Equations (5.2) to (5.5) yields the power dissipation expression as a 

function of the insulator geometrical parameters: 

P = 2 rσEt
2 tp     (5.6) 

Using A=2 r  to represent the total surface area of the insulator profile, power 

dissipation in the pollution layer per unit surface area along the creepage path is given 

by:  

pt tE
A

P
P 2      (5.7) 

The power dissipation per unit volume of the pollution layer can, therefore, be 

expressed as:  

2
tV E

t

P
P        (5.8)  
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Equations (5.7) and (5.8) are particularly useful to estimate the power dissipation on 

outdoor insulators, and facilitate the prediction of dry band formations on the surface. 

5.4.2.1. Power Dissipation in the Pollution Layer 

The surface power dissipation in the pollution layer along the creepage path, as 

shown in Figure 5.9, is calculated using Equation (5.7) with the tangential electric field 

results presented in Figure 5.8 (b). The power calculations were carried out through 

programming of the equation within the COMSOL user interface and also verified using 

simple spreadsheet calculations. Good agreement was obtained between the two 

computation approaches.  

 

 

Figure  5.9:  Surface power dissipation in the pollution layer along the insulator 

surface 
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As can be seen on the figure, there are two peaks near the insulator end terminals 

when no grading material was introduced. At these insulator surface zones, discharge 

activity is likely to occur since dry band formation is expected due to prolonged 

excessive heating. However, when the proposed grading with the microvaristor layer is 

introduced, the high power dissipation in these regions is effectively reduced by more 

than 60%, from approximately 9.6 W/m2 down to around 3.6 W/m2 at the high voltage 

electrode, and from 9.3 W/m2 to 3.2 W/m2 at the ground end. 

The power dissipation due to leakage current flow per unit volume of the 

pollution layer, referred to here as resistive heating, is obtained using Equation (5.8) and 

is illustrated in Figure 5.10. Only the pollution layer near the first shed close to the high 

voltage terminal is shown to improve clarity. Moreover, the heating on the other 

insulator end is expected to behave in a similar way due to the symmetrical distribution 

of power dissipation along the leakage path. The highest thermal stress is clearly seen 

near the high voltage terminal as can be observed in Figure 5.10 (a). This hot spot, 

however, is suppressed with the graded insulator design, shown in Figure 5.10 (b). The 

highest value of heating in this region is reduced from 19.2 kW/m3 to around 7.2 

kW/m3, representing about 62.5% of improvement. 

Table 5.3 summarises the computed electric field and thermal heating at high 

voltage end for both non-graded and graded insulators. The findings, with an 

improvement of over 60%, clearly demonstrate that the electric field grading of outdoor 

insulators using a ZnO microvaristor compound can provide a significant improvement 

in the pollution performance of polymeric insulators through the reduction of both the 

electric field and the thermal stresses on the surface.  
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Figure  5.10:  Power dissipation per unit volume in the pollution layer near the high 

voltage terminal  

 

Table  5.3:  Summary of thermal heating performance on polluted insulator  

Heating Surface heating  Volume heating  

Terminal HV Ground HV Ground 

Non-graded 
insulator 

9.6 W/m2 9.3 W/m2 19.2 kW/m3 18.6 kW/m3 

Microvaristor-
graded insulator 

3.6 W/m2 3.2 W/m2 7.2 kW/m3 6.4 kW/m3 

Improvement due 
to grading effect 

62.5% 65.6% 62.5% 65.6% 

 

(b) Microvaristor-graded insulator 

(a) Non-graded insulator  
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5.4.2.2. Heat Assessment in Microvaristor 

The volume resistive heating in the microvaristor compound for the cases of dry-

clean and polluted insulators is illustrated pictorially in Figure 5.11. As shown, the 

heating in both cases is highest around the middle of the insulator where the 

microvaristor coating is thin. This is due to concentration of stress towards the end of 

the microvaristor region. If required, this can be mitigated by modifying the end shape 

of the microvaristor compound to reduce high electric field occurrences. The 

microvaristor compound, as can be observed, absorbs more energy under polluted 

surface conditions compared with the dry-clean insulator case. 

 

Figure  5.11:  Resistive heat mapping on the cross section of the microvaristor-

graded insulator 

5.5. CONCLUSION 

An approach for electric field stress control along insulator surfaces has been proposed. 

The method consists of inserting a ZnO microvaristor compound layer near the high and 
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low voltage terminals of the insulator. The design principles for the proposed field-

grading techniques have been described and evaluated.  

It has been demonstrated that high field stress at both insulator ends near the insulator 

terminals can be successfully reduced by adequate design and characteristic 

optimisation of microvaristor compounds for effective field control. In such a way, 

appropriate grading concerning the optimum design to be considered in practice can be 

obtained.   

The theoretical analysis of the proposed model has been provided through a number of 

simulation scenarios. The integration of microvaristors as field grading material 

improves the electric field distribution along the insulator profile, which in turn, reduces 

hot spots and the probability of dry band formation. The graded insulators exhibited 

superior performance, reducing the highest tangential electric field and surface heating 

near the high voltage and ground terminals. 
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CHAPTER 6:                                                    

DEVELOPMENT OF A MICROVARISTOR-GRADED 

INSULATOR PROTOTYPE AND LABORATORY 

CHARACTERISATION UNDER IMPULSE CONDITIONS   

 

6.1. INTRODUCTION 

Electric discharges on the surface of high voltage insulators occur when the 

localised electric field is sufficiently high, exceeding the air breakdown threshold. This 

field enhancement is mainly due to the combined effect of wet environmental conditions 

and the highly non-uniform field distribution along the creepage path of the insulator. 

Although a polymeric insulator can take advantage of its superior water-repellent 

property in a humid atmosphere, the insulation material may temporarily or 

permanently lose its hydrophobicity when subjected to intense and prolonged surface 

discharge activities [135]. This is even more critical in the event of transient overvoltage 

such as lightning strikes in which the voltage varies widely in magnitude and rise time. 

The surge could result in a significant rise of electric field along the surface of the 

insulator, particularly near metal terminal areas. Efficient electrical stress control is, 

therefore, highly desirable to minimise the possibility of power disruptions, especially
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in modern power equipments which are designed to be smaller and more compact while 

the operating voltage is increased for maximum performance. 

The integration of a microvaristor composites layer, as reported in Chapter 5, 

provides a promising approach for achieving stress relief on polymeric outdoor 

insulators. In continuation of the previous theoretical studies, this chapter investigates 

the performance of practical insulators equipped with microvaristor material when 

subjected to fast transient energisation, i.e. lightning impulse voltage. A simple A.C. 

test is carried out on the microvaristor sample to determine the switching characteristic 

of the material. In-house vacuum casting facilities are used to fabricate a full insulator 

prototype for laboratory testing. A microvaristor grading layer is introduced at the 

interface between the core and the silicone housing near the high voltage and ground 

terminals, similar to that described in Section 5.3.  

U50 breakdown tests were carried out using lightning impulse voltages on two 

different surface conditions: dry-clean and uniformly wet-polluted insulators. The 

experimental setup and test procedures are presented in this chapter. As a 

complementary study, computations of electric field distribution through finite element 

modelling and simulations under lightning impulses are provided in an attempt to 

corroborate the results from the experiment and also to examine field response under 

such conditions. 

6.2. MICROVARISTOR GRADING MATERIAL 

In recent years, microvaristor-filled elastomers, which are relatively new to the 

market, have been commercially produced only for a selected range of applications with 

standard field grading properties. Grading compounds for specific requirements, such as 

in the case of this study, need to be specially fabricated. Due to time constraints and 
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some technical limitations, the allied manufacturer, a large German company, was 

unable to provide the tailor-made compound with the requested switching properties. 

Instead, they supplied a standard microvaristor compound with a higher field switching 

threshold than the required one for distribution voltage applications. Figure 6.1 shows 

the microvaristor grading compound, in the form of a rectangular silicone sheet that was 

used to fabricate the prototype of a graded polymeric insulator used for preliminary 

laboratory characterisation. 

 

  

Figure  6.1:  Microvaristor grading sheets supplied by manufacturer 

 

6.3. CHARACTERISATION OF MICROVARISTOR COMPOUND  

A.C. tests were carried out to obtain experimental data over a range of voltages 

and current magnitudes in order to determine V-I characteristics and electrical 

properties of the microvaristor grading material. The experiment allows better 

understanding of the non-linear behaviour under A.C. energisation through the V-I 

curve and voltage-current traces. 
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6.3.1. Test Electrodes Cell and Sample 

The test electrode system, which was specifically designed and constructed for 

the A.C. test, is shown in Figure 6.2. It comprises two aluminium plate electrodes and a 

nonconductive polypropylene structure as a support system to hold the electrodes and 

the sample in place during testing. The electrodes have a flat surface area of 10 mm in 

diameter and smooth rounded edges to avoid the possibility of field enhancement that 

can lead to electric discharge. The space between the two electrodes can be adjusted to a 

specific thickness using the associated screw-thread system. A specimen for the test was 

prepared by cutting the microvaristor sheet into the shape of a disc 10 mm in diameter, 

which creates a perfect contact with the flat electrode surfaces.  

 

  

Figure  6.2:  Test electrodes system and disc-shaped microvaristor specimen for 

A.C. test 

 

6.3.2. Experimental Setup and Test Procedures 

A circuit arrangement similar to that described in Chapter 3 was adopted to 

perform the A.C. test on the microvaristor sample. The simple representation of the test 

circuit is shown in Figure 6.3. The power frequency alternating source is supplied and 
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electrodes  
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controlled by a voltage regulator, connected through a step-up 7.5 kV high voltage 

transformer. The voltage across the sample is measured using a capacitive divider with a 

ratio of 2000:1, while the current is obtained by measuring voltage drop across a shunt 

resistor of 1.0 kΩ. Voltage and current waveforms are simultaneously displayed and 

recorded using an oscilloscope. The measurements of peak voltage, Vpk, and the 

corresponding instantaneous current, IVpk, for each energisation level are recorded to 

obtain the V-I characteristic. The applied voltage, starting at 500 V rms, is increased in 

steps of 500 V rms until high resistive current conduction is obtained, which indicates 

that the material has reached its conduction turn-on state.  

 

 

Figure  6.3:   Simple layout of the experimental setup for A.C. test 

 

6.3.3. Experimental Results and Analysis 

The waveform in Figure 6.4 (a) and 6.4 (b) is an example of voltage and current 

traces in the pre-breakdown region for the microvaristor grading sheet under 

investigation.  
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Figure  6.4:  Voltage and current traces under A.C. energisation obtained in the 

pre-breakdown region 
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current waveform is distorted, as shown in Figure 6.4 (b), when the voltage level is 

increased to a higher voltage level at 9.0 kV peak. Such behaviour indicates that the 

material has nearly reached its knee point of conduction, where the microvaristor is 

about to change its electrical properties from that of an insulator to that of a conductor. 

This means that the applied electric field has reached the switching threshold level. If 

the energisation voltage is further increased, the microvaristor is expected to conduct a 

high magnitude of resistive current. 

Figure 6.5 shows the V-I characteristics in the pre-breakdown region for the 

microvaristor composites used in this study. As can be observed, the V-I curve shows a 

near-linear dependency in the low voltage regime below 8 kV peak. The curve starts to 

exhibit a strong non-linear behaviour when the energisation voltage approaches 9 kV 

peak in the regime above 10 µA. Beyond this point, small changes in the applied 

voltage will result in a significant increase in the current magnitude. 

 

 

Figure  6.5:  Plot of V-I characteristic for microvaristor composite in the pre-

breakdown region  
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6.3.4. Determination of Field Switching Threshold  

In this A.C. test, a disc-shaped microvaristor sample is sandwiched between the 

parallel plate electrodes at separation distance, d, which corresponds to the thickness of 

the microvaristor sample.  If the electrode terminal is applied with a potential difference 

of V, the resulting electric field, E, can be expressed as:   

d

V
E           (6.1) 

The conductivity of the microvaristor sample can be computed using Equation (6.2): 

A

d

V

I
         (6.2) 

in which I is the magnitude of the flowing current and A represents the surface area that 

is in contact with the plate electrodes. With the computation of the above two variable 

parameters, the switching characteristic of the microvaristor compound can be obtained. 

Figure 6.6 shows a plot of electric conductivity as a function of the electric field, 

indicating the switching threshold level for the microvaristor compound to enable its 

grading action. In the linear region of the plot, the increase in the electric field causes a 

minimal change in conductivity. It can be predicted that microvaristors in this ‘low’ 

field region operate as perfect insulators to allow negligible capacitive current flowing 

through them. However, the conductivity increases rapidly when the electric field 

reaches the threshold level at around 14 kV/cm, indicating the transition of the 

microvaristor to become a conductor. This dramatic change in electrical behaviour is 

evidence of the strong non-linear characteristic imposed by the microvaristor 

composites.  
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Figure  6.6:  Measured switching characteristics of the microvaristor composite   

 

6.4. FABRICATION OF MICROVARISTOR-GRADED INSULATOR PROTOTYPE 

6.4.1. New Insulator Design  

A new polymeric insulator design has been proposed to control high electric fields near 

the high voltage and ground electrode by using a tapered microvaristor compound. The 

grading material is introduced at the interface between the core and the silicone housing 

near the terminals as illustrated in Figure 6.7. With the cone-shaped grading structure, 

the concentrated field around the terminals can be re-distributed accordingly on the 

insulator surface as it advances away from the high field regions of the insulator 
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grading coating was fabricated in-house using a vacuum casting facility. 
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Figure  6.7:  New insulator design with microvaristor grading coating 

 

6.4.2. Preparation of Microvaristor Grading Coating 

Ideally, the grading material should be coated onto the FRP core with a smooth 

graded thickness toward the middle. However, this cone-like shape could not be realised 

effectively due to limitations of the  in-house facilities, and technical difficulties. As an 

alternative, the cone-shaped structure was made using stacked layers of microvaristor 

composite compound as shown in Figure 6.8 (a). Grading sheets of 1 mm thickness of 

varying length were tightly wrapped layer by layer onto the core at different lengths of 2 

cm, 4 cm and 6 cm. Silicone adhesive was used to ensure good physical contact while 

preventing undesirable air traps between the grading layers. Particularly in this early 

development and prototyping stage with limited resources, this alternative approach 

provides an acceptable tapered effect for the grading coating on the insulator prototype 

suitable for the research investigation.  
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6.4.3. Moulding of Weather Shed Insulation Housing 

The weathershed insulation housing was fabricated using the in-house casting 

facility; MCP vacuum machine, oven, and aluminium mould. After preparing the 

‘tapered’ microvaristor coating at both insulator ends, the flange was carefully placed in 

an aluminium cast tooling block as a negative mould for the weather shed insulation 

housing, as shown in Figure 6.8 (b). The polymeric housing was made of liquid 

silicone-rubber HV 1540/10P supplied by Dow Corning Ltd. UK. The mechanical and 

electrical properties of the silicone material are given in Appendix 1. The flow chart in 

Figure 6.9 (a) illustrates the procedure for casting the polymeric weather shed housing 

of the insulator prototype.  

 

 

Figure  6.8:  Preparation for moulding graded insulator prototype in laboratory  
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Figure  6.9:  Fabrication procedure in developing insulator prototype
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Fabrication of the polymeric housing was achieved using an injection moulding 

technique in the vacuum casting machine. At the start of the process, trapped air was 

removed from the required amount of liquid silicone by  pre-degassing for about 5 

minutes in the vacuum chamber. A curing agent in a weight ratio of 1:9 was then added 

as a catalyst to harden the silicone rubber. Then, the mixture was continuously stirred 

and degassed for another 10 minutes before it was poured into the prepared aluminium 

mould through a funnel using a pre-assembled controlled mechanical system in the 

machine. In the final stage, the liquid silicone in the mould was cured in an oven at 

50°C for 24 hours, followed by 3 hours post-curing at 120°C.  

6.5. LIGHTNING FLASHOVER TESTS U50 ON PROTOTYPE GRADED AND NON-

GRADED INSULATORS 

The microvaristor compound used on the fabricated prototype has a switching 

threshold at approximately 14 kV/cm, as indicated in Figure 6.6. However, the results 

from theoretical studies given in Chapter 5 clearly showed that the electric field may not 

reach such high threshold levels under normal operating conditions. Therefore, a 

standard A.C. test with nominal system voltage is not sufficient for investigating the 

effect of the grading layer on practical insulators. A lightning impulse test is more 

appropriate, since it will stress the insulator to a level where the microvaristors are 

triggered into the conduction state, to enable field grading action. As a result, the U50 

breakdown test was carried out to evaluate the performance of breakdown voltage for an 

insulator equipped with microvaristor material compared with the normal non-graded 

insulator under both dry-clean and wet-polluted surfaces. This experimental 

arrangement also permits comparison with the predicted model from simulation studies.  



Chapter 6 – Laboratory Characterisation Under Impulse Conditions   

 6-14

6.5.1. Experimental Setup 

A general circuit arrangement for the lightning impulse breakdown test is shown 

in Figure 6.10. The test insulator was suspended vertically in a designated grounded 

cage where the top and the bottom flanges were connected to the impulse source and the 

ground respectively. A six-stage impulse generator with an output up to 300 kV peak 

was used to generate the required impulse voltage. The system consisted of a voltage 

regulator, automatic earth stick, DC charging unit with output voltage of 55 kV DC, 

high voltage stage capacitors 0.14 µF 65 kV, triggering unit and wave shaping resistors 

R1 and R2. The bank capacitors were charged in parallel after which they were 

discharged in series through the front and tail resistors into the test insulator by means 

of an external electric spark. The output voltage was measured on the low voltage arm 

of the capacitive voltage divider with a ratio of 27931:1. The impulse waveform was 

captured and stored using a digital oscilloscope.  

 

 

Figure  6.10:  Simple layout for lightning impulse test  
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6.5.2. Test Procedures 

In this experiment, a positive lightning impulse 1.2/50 µs was used as the 

energisation source. The impulse flashover voltage was determined by the 50% 

probability breakdown, U50,  which was carried out using the ‘up and down’ method in 

accordance with BS EN 60060 Standard  [136]. The test insulator was first stressed with 

an estimated impulse breakdown voltage, Vk. The magnitude for the subsequent impulse 

application depends on whether a breakdown occurs in the present application. If the 

insulator survives the impulse stress without breakdown, the following impulse is 

increased by ∆Vk, which is typically in the range of 3% to 5% of Uk. However, if a 

breakdown occurs, the next impulse magnitude is reduced by ∆Uk. This procedure was 

repeated for a total of 20 impulses, as this figure  is known to provide a substantial 

breakdown certainty [137]. The U50 breakdown voltage can be determined using the 

mathematical expression given by Equation (6.3), where ni represents the number of 

impulse applications for the same impulse magnitude of Uk: 




i

ii

n

Un
U 50         (6.3) 

The same procedures as detailed in Section 3.5 were used to prepare the wet-

polluted insulator for the impulse test. When a breakdown occurs, most of the wet 

regions on the insulator surface may dry out due to the effect of excessive thermal 

heating from the intense electric discharge and the high current magnitude.  Therefore, a 

portable spraying bottle was used to re-wet the insulator surface after each impulse 

application, prior to subsequent energisation. This procedure  ensured that a uniform 

wet-polluted surface could be re-established, which would provide good consistency of 

the surface condition for each consecutive impulse application.  
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6.6. EXPERIMENT RESULTS AND DISCUSSIONS 

The magnitude of voltage drop across the insulator for each impulse application 

during the U50 flashover test is plotted in Figure 6.11. As expected, the dry-clean 

insulator gives a higher flashover voltage compared with the insulator under wet-

polluted conditions. The presence of the conductive pollution layer on the insulator 

surface allows significant current conduction along the leakage path during impulse 

energisation. High leakage current leads to the drying of the wet surface, which in turn 

causes field distortion around the insulator. Field intensification across the established 

dry regions, together with the highly non-uniform field distribution, contributes to a 

breakdown at much lower voltage.  

 

 

Figure  6.11:  Voltage magnitude for 20 impulse applications in the U50 insulator 

flashover tests  
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The result of U50 flashover voltage with a sample size of 20 impulses, computed 

using Equation (6.3), is given in Table 6.1. In general, the presence of microvaristor 

grading material enhances the breakdown performance of polymeric outdoor insulator 

under both dry-clean and wet polluted surface conditions. The results from the impulse 

test conducted under dry-clean surface conditions indicates a considerable increase in 

the breakdown voltage, from 164 kV to 199 kV, representing an improvement of 

approximately 21%. This is illustrated in the typical records of withstand and 

breakdown waveforms obtained from the standard non-graded insulator and the 

microvaristor-graded prototype, shown in Figure 6.12. It is inferred that the 

microvaristor material in this case is switched on to allow the grading action which 

helps to regulate and minimise high electric field near insulator terminals. The field 

intensity at these terminals is responsible for the initiation of the flashover process. 

Under the wet-polluted condition, the insulator with the microvaristor coating, 

however, shows only marginal improvement in the breakdown voltage, from 115 kV to 

120 kV. The small improvement of just over 5% suggests that the grading material is 

less effective when the pollution layer has reduced the non-uniform field distribution at 

lower impulse voltages. In this case, the insulator may not be sufficiently stressed up to 

the required switching threshold level that could successfully trigger the grading effect. 

 

Table  6.1:  The computed 50% breakdown voltage, U50 

Surface conditions 
Non-graded 
prototype 

Microvaristor-
graded prototype 

Improvement due 
to grading effect 

Dry-clean 165 kV 199 kV 21% 

Wet-polluted 115 kV 122 kV 6% 
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Figure  6.12:  Example of voltage waveform under dry-clean surface conditions for 

(a) standard non-graded insulator, and (b) microvaristor-graded insulator 

 

6.7. COMPUTER MODELLING AND SIMULATION STUDIES  

As a complement to the earlier laboratory work on the U50 flashover test, 

computational simulation studies were carried out to examine field response under 

impulse energisation. This could provide a better understanding of the non-linear 

grading effect for the enhanced insulator flashover performance. The insulator design, 

material properties and modelling procedures are similar to those described in Chapter 
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5. To replicate laboratory conditions during the breakdown test, the high voltage 

terminal was energised with 160 kV and 115 kV of 1.2/50 µs lightning impulse source 

for dry-clean and wet-polluted surfaces respectively. Field switching threshold for the 

grading material was specified at 14 kV/cm, similar to the characteristic of the 

microvaristor compound which was used in constructing the graded insulator prototype. 

6.7.1. Equipotential and Electric Field Distribution 

Equipotential distributions around the standard non-graded insulator and the 

proposed microvaristor-graded insulator under dry-clean surface conditions are 

illustrated in Figure 6.13 (a) and 6.13 (b) respectively. Only half of the insulator profile 

at the high voltage terminal is shown in the figure to improve the clarity of the contours.  

 

 

Figure  6.13:  Equipotentials around the high voltage end at impulse instant 1.2 μs 

with peak voltage of 160 kV 

(b) Microvaristor-graded 
insulator 

Wider spread 
equipotentials due 
to microvaristor 
grading coating  

 

Concentrated 
potential lines 

indicating 
high field 

(a) Non-graded insulator 
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The distributions were plotted at the impulse instant of 1.2 μs, where the voltage 

magnitude is highest, at 160 kV. As can be observed, the insulator with microvaristor 

coating demonstrates a better equipotential profile with wider and more equally spread 

contours. The grading material, in this case, is in its conduction state when the electric 

field reaches the switching threshold, thereby causing a re-distribution of the 

concentrated lines over the insulator surface and away from the high field regions.  

The corresponding tangential field distributions along the creepage of the 

insulator for the equipotentials in Figure 6.13 are compared in Figure 6.14. As expected, 

the electric field on the microvaristor-graded insulator exhibits an improved field 

distribution compared to that without grading material.  Peaks near the insulator 

terminals are reduced and well distributed over the leakage path to give a more uniform 

distribution at comparable magnitude around 17.5 kV/cm. The improvement due to the 

microvaristor grading effect represents nearly 30% of stress reduction at both insulator 

terminals. This considerable improvement explains the 21% increase in flashover 

voltage during lightning impulse tests. 

Comparison of tangential field distributions for the wet-polluted insulator, 

energised with a 120 kV lightning impulse source, is shown in Figure 6.15. In contrast 

to the dry-clean surface situation, the presence of microvaristor grading material results 

in only a slight redistribution of electric field along the creepage path. High fields near 

the high voltage and ground terminals are reduced by 11.8% and 9.7% respectively. 

This small improvement indicates that the grading material is not effectively triggered 

to enable its grading action, which accounts for the 6% increase in the flashover voltage. 

The performance of microvaristor stress grading material, energised with lightning 

impulse sources, is summarised in Table 6.2. 
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Figure  6.14:  Tangential field distribution along the leakage path at impulse instant 

of 1.2 μs with peak voltage 160 kV (dry-clean insulator) 

 

   

Figure  6.15:  Tangential field distribution along the leakage path at impulse instant 

of 1.2 μs with peak voltage 115 kV (wet-polluted insulator) 
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Table  6.2:  Stress grading performance under impulse energisation at 160 kV 

Surface condition Dry-Clean (160 kV) Wet-Polluted (120 kV) 

Terminal HV Ground HV Ground 

Non-graded 
insulator 

25.5 kV/cm 24.3  kV/cm 16.1 kV/cm 15.4 kV/cm 

Microvaristor-
graded insulator 

18.2 kV/cm 17.7 kV/cm 14.2 kV/cm 13.9 kV/cm 

Improvement due 
to grading effect 

28.6% 27.2% 11.8% 9.7% 

 

6.7.2. Grading Effect during Impulse Rise Time  

To examine the field response and grading effects in more detail, the 

equipotential distribution under dry-clean conditions was plotted at three different 

instants of the impulse front: 100 ns, 600 ns and 1.2 μs, presented in Figure 6.16 for 

direct comparison. As can be observed, the contour lines around the metal terminal are 

most concentrated on the profile at the time instant of 100 ns, where the corresponding 

voltage magnitude is about 30 kV, estimated from the lightning impulse waveform. At a 

relatively low voltage level, the insulator is not sufficiently stressed to trigger the 

grading effect of the microvaristors. As the voltage magnitude continues to rise, the 

electric field becomes higher, and therefore drives the microvaristors into their 

conduction state. As a result, the denser potential lines in the high field regions are 

relaxed and spread further apart, as shown by the equipotentials plot at impulse instants 

of 600 ns and 1.2 μs. 
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Figure  6.16:  Equipotential around insulator at different instant rise times during 

transient voltage (dry-clean insulator) 

 

Figure 6.17 shows the corresponding field distribution along the leakage path for 

the equipotentials in Figure 6.16. At the instantaneous time of 100 ns, the electric field 

on the insulator surface is generally low, and hence the grading effect is not seen due to 

the local field that does not reach the conduction threshold. As the voltage rises with 

time, the electric field increases until the conduction threshold of the grading material is 

reached, gradually redistributing the equipotential contours at 600 ns and 1.2 μs. The 

electric field distribution is clearly more uniform at the instant of maximum impulse 

voltage, i.e. 160 kV. Furthermore, the electric field peaks seen at 100 ns and 600 ns 

were successfully suppressed at 1.2 µs when the microvaristor material was effectively 

turned on. It is noteworthy that the highest field magnitude at 600 ns (90 kV instant 

voltage), i.e. 16 kV/cm, is very close to the peak value for the energisation of 160 kV 

(1.2µs instant time), i.e. 17.5 kV/cm. The result demonstrates the redistribution effect 

on the high field regions which also confirms the computed equipotentials in Figure 

6.16.  

(a) 100 ns (~30 kV)            (b) 600 ns (~90 kV)              (c) 1.2 μs (~160 kV) 
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Figure  6.17:  Tangential field distribution along insulator surface at different 

impulse instants (dry-clean insulator) 
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Figure  6.18:  Field distribution in time domain plot during impulse rising time, 

from 0 μs to 1.2 μs  
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6.8. CONCLUSION 

Experimental investigations to determine the electrical characteristics of the 

microvaristor composite layer have been carried out. The grading compound showed a 

highly non-linear behaviour with the switching threshold field at approximately 14.0 

kV/cm. 

A prototype of 11 kV polymeric insulator equipped with the proposed microvaristor 

coating has been successfully fabricated in-house. Complete building procedures, 

starting from the application of grading material onto the core and up to the final curing 

stage, have been described.     

The lightning impulse flashover test, U50, has been conducted for both graded and non-

graded insulators to evaluate the effect of stress grading coating on the breakdown 

performance. The presence of microvaristors resulted in a considerable increase in the 

flashover voltage under the dry-clean surface, from 160 kV up to 199 kV, representing 

an improvement of approximately 21%. Wet-polluted insulator, however, indicates only 

a 6% improvement, due to ineffective grading action at lower energisation levels.  

Modelling and simulation of polymeric insulator has been presented to evaluate the 

field response of graded insulators under lightning transient conditions. Substantial field 

enhancements were demonstrated by the graded insulator. The excessive peaks at the 

terminals were successfully suppressed, and the distributions were made more uniform 

over the insulator surface. Excellent field control with the self-recovery approach 

contributed to the improvement in flashover performance.  
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CHAPTER 7:                                                    

GENERAL CONCLUSIONS AND FUTURE WORKS 

 

The main objectives of the work reported in this thesis were a better 

understanding of field phenomena on outdoor insulators, and the development of an 

effective approach for controlling electric field stress on polymeric outdoor insulators. 

The latter has been successfully achieved using a non-linear grading material, ZnO 

microvaristor compound, that features a highly field-dependent conductivity. The new 

proposed field control technique was demonstrated through extensive computational 

modelling alongside experimental investigations. An overview of the research work 

findings and major conclusions drawn from the studies undertaken, and 

recommendations for future research work are presented in this chapter.  

7.1.  GENERAL CONCLUSIONS 

An extensive review of polymeric outdoor insulator focusing on electrical stress and 

field performance has been presented. The review highlights the need for a good 

understanding of field distribution and optimisation techniques in minimising stress on 

the insulation surface. The topics covered include stress-induced degradation, field 

determination, modelling considerations and field optimisation techniques. 
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A symmetrical 2D model of an 11 kV polymeric insulator has been developed for 

computational modelling. Simulation under dry-clean and wet-polluted surfaces with 

idealised configurations revealed the high field regions along the creepage path. 

Artificial pollution tests in accordance with the BS EN 60507 standard were carried out 

on the practical insulator. Observation of discharge activity and elongation over the 

polymeric surface has good correlation with the results from simulation studies.  

Unpredicted negligible electric discharges near the high voltage terminal during 

laboratory experiments could be explained by wetting imbalances in the fog chamber, 

and the field grading effect due to the corona ring attachment. 

A new pollution model having a non-linear electrical property has been developed for 

improved and more realistic insulator modelling. Measurements of layer conductance in 

a non-standard low voltage test were used to derive field-dependent conductivity for the 

pollution layer to be used in the proposed model and implemented in the simulation 

studies. 

Two wet weather conditions, fog and light rain, have been considered for implementing 

the benefits of the proposed non-linear pollution model. These wet conditions represent 

uniform (fog) and non-uniform (light rain) wetting which were classified based on their 

natural wetting action in practice. It has been demonstrated that the non-linear pollution 

layer results in a more detailed and realistic field profile compared with that obtained 

from the linear pollution model. This is particularly useful for an improved dry band 

prediction.   

A novel approach for controlling field stress on polymeric insulators, using 

microvaristor compounds that exhibit non-linear electrical properties, has been 
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proposed. The proposed insulator design consists of a cone-shaped microvaristor 

grading layer at the interface between the core and silicone rubber near both insulator 

terminals. The new design was aimed at addressing the shortfall in other known grading 

arrangements.    

The effect of microvaristor characteristics has been investigated to determine the 

optimal switching threshold for the studied 11 kV insulator. It was demonstrated that 

use of grading material with an appropriate electrical property can lead to an improved 

field distribution on the insulator surface. High field intensity at the high voltage and 

ground terminals were reduced significantly, and peaks along the creepage path were 

made more uniform at comparable magnitudes. This improvement is predicted to reduce 

dry banding and surface discharges on outdoor polymeric insulators.  

Dissipated energy along the leakage profile of the polluted insulator has been computed 

to assess the heating performance. It was identified that the greatest dissipated power 

occurs around the high field regions near the insulator’s electrodes, increasing the risk 

of dry band formation. With the integration of microvaristor material, the thermal ‘hot’ 

spots as seen on the standard non-graded insulator were successfully eliminated, and 

this could be considered as a significant way forward for outdoor insulation. 

A simple A.C. test has been conducted to characterise the electrical properties of a 

commercial microvaristor grading material. The measured voltage and leakage current 

indicated a strong non-linear behaviour, with field switching threshold at around 14 

kV/cm. 

A prototype microvaristor-graded insulator has been designed and fabricated using in-

house vacuum casting facilities. The proposed cone-shaped grading structure was 
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created using stacked layers of microvaristor grading sheet, which were tightly wrapped 

onto the core at different lengths: 2 cm, 4 cm and 6 cm.  

Lightning impulse (1.2/50 µs) flashover tests have been carried out to examine the 

breakdown performance of the  prototype polymeric insulators thus constructed. The 

tests were accomplished using the ‘up and down’ method and the flashover voltage was 

estimated by the U50 approach. The performance of the microvaristor-graded insulator 

prototype was shown to be superior to non-graded standard insulators of similar shape. 

The flashover voltage for dry-clean insulator was increased from 164 kV up to 199 kV, 

which represents an improvement of 21%.  

The prototype insulator with the proposed grading with ZnO microvaristor compound 

has been simulated under high voltage impulse energisation to compute its response 

when subjected to transient conditions. The results from simulation enhance 

understanding of the grading mechanism that leads to the considerable increase in 

flashover voltage for graded-insulator prototype under dry-clean conditions.  The 

computed results correlate well with the laboratory measurements. 

7.2. FUTURE WORKS 

Based on the work carried out in this study, the following areas for future 

investigation have been identified: 

Development of 3D FEM modelling is necessary to take into account the effect of 

practical configurations and attachments for a better and more realistic electric field 

computation and analysis. 
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Investigation of field grading performance for insulators with different profiles and 

microvaristor designs could yield useful results for the development of improved 

electric field and insulation performance.   

Experimental investigation to evaluate microvaristor grading performance warrants 

further work. This could include the evaluation of dry band formation and discharge 

activity on the insulator surface in artificial pollution tests.  

Measurements of surface conductance of polluted insulator require repetitions and 

further experimental works to validate the results presented in this thesis. This is 

important in establishing a reliable non-linear pollution model for computational 

modelling and simulation.  

Study of degradation and ageing of microvaristor-filled silicone rubber is a potential 

research area which could help to assess short and long-term grading performance.  
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