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Abstract 

 

Growth factors are extracellular molecules that have several regulatory roles 

during inflammation and bone regeneration.  Bio-Oss® granules and Bio-Oss® 

Collagen are xenografts used in the management of periodontal and peri-

implant defects, in addition to a variety of other clinical indications.  The aims of 

this thesis were to investigate if Bio-Oss® contains residual growth factors that 

can be released by chemical pre-treatment.  It also aimed to investigate if 

commercial Bio-Oss® granules or its extracted components alter cellular 

behaviour. 

 

Bio-Oss® collagen and Bio-Oss® granules underwent extraction with either 

ethylenediaminetetraacetic acid, calcium hydroxide or hydrochloric acid,followed 

by guanidinium chloride and tris(hydroxymethyl)aminomethane.  Extracted 

proteins were separated using sodium dodecyl sulphate - polyacrylamide gel 

electrophoresis and stained with silver stain.  Stained protein bands were 

consistently demonstrated in Bio-Oss® extracts.  Immunoreactivity was 

demonstrated using antibodies to TGF-β1 and the Western blot technique.  In 

order to investigate cellular behaviour, bone marrow stromal cells were 

harvested form Wistar rats prior to being cultured using mineralising media in 

the presence of Bio-Oss® granules and Bio-Oss® Collagen.  Commercial Bio-

Oss® in both forms was unable to support cell growth when seeded directly on 

their surfaces.  In contrast, when cells were cultured with media supplemented 

with the extracted components of Bio-Oss® granules, cell behaviour was 

positively affected.   Cell expansion was increased following exposure to DBBM 

extracts as measured with the MTS assay.  Importantly, polymerase chain 

reactions revealed enhanced temporal expression of bone sialoprotein in cells 

cultured in the presence of DBBM extracted components. 
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The detection of residual protein within Bio-Oss® granules in particular may be 

of clinical significance.  The protein may be in the form of a complex of TGF-β1, 

a key growth factor, which may be osteoinductive.  Alteration of gene 

expression profiles may suggest that faster bone regeneration is possible 

clinically if Bio-Oss® is chemically pre-treated to solubilise growth factors.
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1.0 Introduction to study 

 

Growth factors play a pivotal role in bone healing and regeneration within 

periodontal defects and implant-related bone augmentation.  Importantly, growth 

factors are known to be sequestered in bone matrix.  A commercial bone 

substitute material known as Bio-Oss® is derived from bovine sources.  There is 

conflicting evidence regarding its residual protein content that requires further 

investigation.  Furthermore, there is potential that residual protein within Bio-

Oss® is in the form of growth factors.  Consequently ,the release of these 

growth factors could have positive effects on bone regeneration. 

 

This thesis will initially characterise the presence of residual protein within Bio-

Oss®.  In addition, it will focus on in vitro assessment of the impact that this 

bone substitute has on cellular activity.  It will identify whether the effect of 

growth factors locked within bone matrix can be extracted by chemical pre-

treatment of the bone substitute.  This data will form the initial phase of a 

strategy to improve clinical techniques available for bone regeneration, 

particularly in conditions that result in bone resorption or negatively affect bone 

healing. 
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1.1 Introduction to bone biology 

 

1.1.1 Macrostructure 

 

In order to understand the requirement for bone substitutes in a given clinical 

situation, it is important to have an understanding of bone biology.  Bone is 

known to be a dynamic, specialized connective tissue composed of a 

mineralised organic matrix.  This matrix consists of collagen fibres and non-

collagenous proteins surrounding mineral hydroxyapatite (Nanci 1999; 

McCauley and Nohutcu 2002).  By necessity, bone has been described 

previously in terms of maturity, bone marrow content and location (Davies 2003; 

Bosshardt 2009).  In terms of its maturity, immature woven bone, which is 

produced rapidly by the mineralisation of osteoid, has a disorganised fibrillar 

structure that is not capable of withstanding the same load as mature lamellar 

bone.  In contrast, lamellar bone is mature, organized bone formed after a 

period of remodelling of woven bone and is considerably more adapted to 

functional requirements (Nanci 1999).  The second characteristic often used to 

describe bone is its bone marrow content.  Cancellous bone (spongy or 

trabecular bone), which is found in the centre of long bones and alveolar 

processes, contains islands of lamellar bone which have been termed 

trabeculae that are separated by bone marrow.  Of vital importance to 

regenerative strategies, this bone marrow is known to be a potent source of 

multipotent mesenchymal stem cells that have the ability to self renew and 

divide into a variety of cell types (Davies 2003; Huang 2009).  Cortical bone (or 

compact bone) on the other hand is located at the periphery of long bones, the 

mandible and maxilla but in different proportions depending upon location.  This 

cortical bone is composed of dense lamellar bone without intervening bone 

marrow.  Within these lamellae the basic structural units are cylindrical 
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structures termed haversian systems that contain vascular canals within their 

centre important for the vitality of bone. 

 

It is worth noting that cortical bone contributes to high primary stability during 

implant placement and therefore its presence is of clinical importance. 

Cancellous bone is contained within this cortical bone and is composed of 

varying densities of trabeculae (Davies 2003).  In Implantology, trabecular bone 

has been described by some as biologically superior bone due to its faster 

remodelling potential even though, as explained below, many clinicians reported 

that this type of bone is of “poor quality” (Davies 2003).  It is well known that the 

bone in the mandible and maxilla has been previously classified clinically by 

Lekholm and Zarb based on the proportion of cortical and cancellous bone 

(Lekholm and Zarb 1985).   Within this classification, class 1 bone is mainly 

cortical and located in the anterior mandible.  Conversely class 4 has very little 

cortical bone and is located primarily in the posterior maxillae.  This is a useful 

clinical classification, of particular relevance during the placement of 

endosseous titanium dental implants that has been shown to correlate with the 

success rate of early machined implants (Jaffin and Berman 1991).  The poor 

clinical success of initial designs of dental implants reported by Jaffin et al 

(1991) led to type 4 bone being termed “poor quality bone”.  In contrast, more 

recent clinical studies of modern implant surfaces using modified surgical 

techniques tentatively suggests that the success rate in type 4 bone is 

approaching that of other bone types, with one retrospective study reporting less 

than 3% failure in type 4 bone (Friberg et al. 2002). 

 

The bone within the jaw is classified as either alveolar where the alveolar bone 

supports the teeth in the dentate subject or basal bone below this.  The socket 

wall surrounding teeth has also been described as bundle bone due to the 

bundles of inserting collagen fibres, termed Sharpey’s fibres, between the tooth 

cementum and the bone (Araújo and Lindhe 2005).  This bone has been shown 

in animal models to be entirely dependent upon these inserting periodontal 
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ligament fibres.  In a histological study, following tooth extraction these fibres 

were torn and the alveolar bone was shown to be lost within 4 – 8 weeks  

(Araújo and Lindhe 2005). Clinically, this bone loss can make subsequent 

implant placement impossible without bone augmentation and therefore 

regenerative strategies have been developed to preserve the socket that will be 

described in detail in section 1.7.6. 

 

1.1.2 Microstructure 

 

Microscopically, bone is composed of mineral, cells, collagens, non-collagenous 

proteins and proteoglycans.  It is often described that bone matrix is composed 

of approximately 70% mineral, 30% organic components and water, although 

slight variations appear in the literature (McCauley and Nohutcu 2002). Bone is 

similar to other connective tissues in that it relies on specific cell types for its 

production and remodelling.  Specifically, three key cells are associated with 

bone, namely osteoblasts, osteocytes and osteoclasts (Katagiri and Takahashi 

2002; Bosshardt 2009).  Osteoblasts are fully-differentiated cells, derived from 

mesenchymal cells that are unable to migrate and proliferate and are uniquely 

involved in bone formation and remodelling (Mackie 2003; Hughes et al. 2006).  

Osteocytes are thought to coordinate bone homeostasis and are derived from 

osteoblasts that become trapped within bone.  Lastly, osteoclasts are known to 

initiate and maintain bone resorption (Davies 2003). Osteoclasts are found 

within lacunae at the resorption front of bone,  whereas osteoblasts are found 

on newly-formed organic matrix at the bone deposition front (Giannobile 2008; 

Bosshardt 2009).  Further details on cellular behaviour will be discussed in other 

sections of this review. 

 

As already mentioned, cancellous bone contains trabeculae of lamellar bone 

separated by bone marrow.  Bone marrow is known to contain a rich 

vasculature and a potent source of multipotent mesenchymal stem cells that can 
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differentiate into multiple cell types (Bruder et al. 1994; Davies 2003).  Stem 

cells, importantly, are not terminally differentiated, have unlimited division 

capability and are described as either multipotent or pluripotent (Kuhn and Tuan 

2010).  Pluripotent (embryonic) stem cells can differentiate into any cell type but, 

multipotent mesenchymal stem cells primarily differentiate down the 

mesenchymal lineages including the osteogenic lineage (Kuhn and Tuan 2010).   

Mesenchymal stem cells, which also originate from granulation tissue and 

periosteal surfaces, are self-renewing undifferentiated cells that are capable of 

extensive replication (Dimitriou et al. 2005).   These cells must not be confused 

with osteoproginator cells which are undifferentiated cells of mesenchymal 

origin.  They migrate to sites of new bone formation and can differentiate into 

osteoblasts when stimulated by appropriate signalling molecules termed, growth 

factors (Bruder et al. 1994).  Osteoblast-like cells are demonstrated 

biochemically by biosynthesis of osteocalcin and activity of the enzyme alkaline 

phosphatase (McCauley and Nohutcu 2002).  Alkaline phosphatase is known to 

promote hydrolysis of phosphate containing substrates, increase deposition of 

calcium phosphate, and enhance mineralisation of collagen matrices (Açil et al. 

2000).  As will be discussed later, the local production or therapeutic application 

of growth factors will have an osteogenic effect driving cells down an 

osteoblastic lineage. 

 

1.1.3 Osteogenesis 

 

Osteogenesis is the process of bone formation by osteoblasts (Nefussi 2007).  

In terms of bone grafting or healing around implants, it requires the migration 

and proliferation of mesenchymal stem cells from the marrow space to the site 

of healing adjacent to the graft or implant material.  The process has been 

described elsewhere in terms of healing around implants, with the terms contact 

and distance osteogenesis being used, depending on whether bone formation 

occurs on the implant or bone surface respectively (Davies 2003).  Once at the 
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site of bone formation, the cells will proliferate, commit to an osteogenic lineage 

and pass down the osteoblast proliferation pathway guided by an array of 

signalling molecules (Bruder et al. 1994; Katagiri and Takahashi 2002).  Once 

fully differentiated, proliferation ceases and osteoblasts will secrete a mixture of 

proteins, including collagen type 1, proteoglycans and glycoproteins (Mackie 

2003).  However, the initial stages of bone formation involve the secretion of 

collagen free organic matrix, termed osteoid, containing these non-collagenous 

proteins that facilitate calcium phosphate mineralization (Davies 2003).  As the 

osteoblast cell lays down new bone, they form an ability to migrate over or 

within particulate bone graft materials which is critical to the success of theses 

augmentation procedures and the biocompatibility of the graft material itself. 

 

1.1.4 Cellular behaviour, bone healing and osseointegration 

 

Bone healing following surgical trauma must involve bleeding, clot formation, 

recruitment of inflammatory cells and undifferentiated mesenchymal cells, the 

release of growth factors and cytokines and finally osteogenesis (Davies 2003). 

In alveolar healing, unlike in long bones, no intervening callous formation stage 

occurs (Nefussi 2007).  Haemostasis initially involves the formation of the 

platelet plug following their adhesion and aggregation to wound surfaces.  

Subsequently the platelets degranulate and release the contents of their 

secretory vesicles and a coagulation cascade begins that will ultimately produce 

a stabilized fibrin clot (Vander et al. 2011).  This fibrin clot undergoes 

replacement by granulation tissue and the inflammatory process results in the 

release of bone-derived growth factors.  These will promote the migration of 

mesenchymal stem cells from the periosteum and medullary spaces and 

osteogenesis (Bruder et al. 1994). 
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Much later, bone remodelling includes an important series of events that occurs 

following trauma or infection, but is also a continuous process throughout life.  

Bone remodelling involves two key processes that must be considered as 

occurring in unison, but at different rates depending on the requirements of the 

remodelling site (Figure 1.1).  These two processes are bone resorption and 

bone formation (Giannobile 2008).  It has been suggested the resorptive phase 

occurs over 3 to 4 weeks and the bone formation process occurs over 3 to 4 

months (Rodan 1997; McCauley and Nohutcu 2002).  The remodelling cycle 

has been summarised in the review by McCauley and Nohutcu (McCauley and 

Nohutcu 2002).  Briefly, pre-osteoclasts are recruited and differentiate into 

osteoclasts that resorb bone.  Interestingly, through a process of coupling, pre-

osteoblasts are recruited and differentiate into active secreting osteoblasts with 

some osteoblasts becoming entrapped as osteocytes. The ability of 

undifferentiated mesenchymal stem cells to migrate and proliferate is under the 

control of growth factors, cytokines and local nutrients before ultimately they 

become osteoblasts (Bruder et al. 1994).  These signalling molecules are 

produced by inflammatory cells, platelet degranulation, exposed bone surfaces 

and, potentially, bone mineral substitutes (Schwartz et al. 2000; Davies 2003).  

Transcription factors such as Cbfa-1 (Runx-2) are also required for expression 

of osteoblast specific genes, such as osteocalcin and bone sialoprotein (Mackie 

2003).  
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Figure 1.1 Diagrammatic overview of the cells involved in bone remodelling (Adapted from 

Mackie 2003) 

 

As already stated, osteoblasts are derived from mesenchymal osteoprogenitor 

cells found in the bone marrow and periosteum through a process of 

differentiation that, although well described, is not fully understood (McCauley 

and Nohutcu 2002; Mackie 2003; Hughes et al. 2006).  Briefly, mesenchymal 

cells differentiate through stages of being osteoprogenitor cells followed by 

preosteoblasts before ultimately becoming osteoblasts that can be identified by 

expression of specific markers. From an in vitro perspective, during matrix 

production the osteoblast expresses a variety of factors that can be detected to 

aid its identification, such as osteocalcin and bone sialoprotein (Franceschi 

1999).  Through this pathway, the cells retain the capability of proliferation until 

they become fully differentiated osteoblasts (Hughes et al. 2006).  Signalling 

molecules termed growth factors such as bone morphogenetic proteins (BMP’s), 

transforming growth factors (TGF’s), platelet derived growth factors (PDGF), 

insulin-like growth factor (IGF) and fibroblast growth factor (FGF) are known to 
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be capable of initiating osteoblast differentiation from progenitor cells and 

importantly, osteoblasts themselves secrete these growth factors (Yamaguchi et 

al. 2000; McCauley and Nohutcu 2002). 

 

The other key cell in bone homeostasis is the osteoclast.  This is identified as a 

multinucleated cell and is derived from the haematopoietic lineage within the 

bone marrow (Katagiri and Takahashi 2002; Boyle et al. 2003).  Importantly, in 

in vitro experiments these cells can be detected by their expression of the lytic 

enzyme, tartrate-resistant acid phosphatase (TRAP) (McCauley and Nohutcu 

2002).  Bone resorption by osteoclasts is known to be achieved by the 

degradation of the organic component by matrix metalloproteinases followed by 

liberation of bone mineral through secretion of hydrochloric acid (Teitelbaum 

2000).  Bone resorption was once thought to be purely mediated by osteoclasts.  

However, it is becoming established in the literature that osteoblasts play a key 

role in the differentiation of osteoclasts, in particular via receptor activator of 

nuclear factor kappa B ligand (RANKL)(Katagiri and Takahashi 2002; Boyle et 

al. 2003; Hughes et al. 2006).  RANKL is a receptor located on the surface of 

osteoblasts and its activation has been shown to be a key stimulator of bone 

resorption by osteoclasts via interaction with the RANK receptor (Boyle et al. 

2003).  The effects of RANKL can be blocked by osteoprotegerin (OPG), a 

decoy factor produced by osteoblasts, which helps to regulate the bone 

remodelling process, but excessive expression leads to increased bone density 

(Horowitz et al. 2001).  Furthermore, colony stimulating factor 1 (CSF-1), also 

known as macrophage colony stimulating factor (MCSF) that is secreted by 

osteoblasts has also been shown to play a role in the differentiation of 

osteoclast progenitors (Boyle et al. 2003).  CSF-1 and RANKL are therefore 

required to induce expression of genes that characterise the osteoclast lineage.  

The combined evidence therefore clearly demonstrates that osteoblasts 

maintain bone not only through matrix deposition but also osteoclast regulation. 
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Other key mediators of bone resorption reported in the literature include, but not 

exclusively, interleukin 1, interleukin 6, prostaglandin E2, tumour necrosis factor, 

parathyroid hormone, vitamin D, oestrogens and calcitonin (McCauley and 

Nohutcu 2002).  It is beyond the scope of this project to discuss each factor in 

detail but certain factors will be discussed where appropriate. 

 

As mentioned, the third fully-differentiated cell type within bone is the osteocyte 

and it has been described as the most differentiated cell of the osteoblast linage 

(Mackie 2003; Hughes et al. 2006).  Briefly, this cell is believed to co-ordinate 

bone homeostasis via communications with osteoblasts and osteoclasts 

controlling both formation and resorption respectively (Rodan 1997; Mackie 

2003). 

 

From a clinical perspective, the ideal outcome of the remodelling process 

following surgical or non surgical trauma is the regeneration of mature, 

functional new bone.  If this is not achieved, the osseous tissue may be repaired 

rather than regenerated forming fibrous scar tissue.  This tissue is not adapted 

to functional demands like bone.  During remodelling woven immature bone 

becomes replaced by lamellar bone which is adapted to resist functional load.  

Knowledge of the cell types involved in bone remodelling enables their detection 

via identification of signalling molecules or gene expression specific to them. 

 

1.1.4.1 Osseointegration 

 

Osseointegration can be defined as the direct functional and structural 

connection between living bone and the surface of a load carrying implant 

(Branemark 1983).  The objective is to achieve a predictable tissue response to 

the placement of a dental implant which originally required bone growth from the 

bone towards the implant surface (Davies 2003). The response should be to 

produce a highly differentiated tissue that becomes organised depending on 

functional demands (Branemark 1983).  Following implant placement, 
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processes of healing occur with bone remodelling starting after 7 days.  This is 

the first stage of osseointegration.  Using transmission electron microscopy, it is 

possible to see cell processes from bone and marrow cells adhering to the 

titanium oxide surface of implants (Berglundh et al. 2003).  Osseointegration 

can only be achieved when the following factors are met: use of a pure titanium 

alloy, minimal surgical trauma, good quality bone and a sufficient healing period 

prior to loading (Adell et al. 1981).  Conversely, failure of osseointegration 

occurs where a thick layer of connective tissue surrounds the implant prior to 

bone contact.  Furthermore, failure is increased by surgical trauma, adverse 

loading, local bone quality and patient systemic factors.  During implant 

placement, it is important that the implant is firm immediately following insertion.  

This concept is known as primary stability and is a determinant of long-term 

success.  Where primary stability is unlikely to be achieved methods of bone 

augmentation may be required.  Even if primary stability will be possible, bone 

augmentation is often required in the anterior aesthetic zone to prevent loss of 

buccal hard and soft tissue (Buser et al. 2004).  This helps to ensure an 

integrated implant and an aesthetic prosthesis. 

 

1.1.5 Systemic factors affecting bone quality and remodelling 

 

Innate regulatory molecules are important in the systemic control of bone 

remodelling.  This includes, but not exhaustively, parathyroid hormone, growth 

hormone and steroids, but the detail of their action is outside the scope of this 

review (Bosshardt 2009).  Importantly, systemic conditions will affect bone 

density, volume and remodelling that clinically can alter periodontal disease 

progression and prejudice dental implant replacement (Karoussis et al. 2007).  

Knowledge of these conditions is therefore essential since it drives the search 

for improved bone regeneration techniques that may be used in the 

management of such conditions. 
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Osteoporosis is one such condition, defined as a skeletal disease that results in 

low bone mineral density (BMD) that predisposes long bones to fracture (Glaser 

and Kaplan 1997).  Specifically, bone loss has been shown in the alveolar bone 

in patients with osteoporosis via bitewing radiograph densitometric analysis 

(Payne et al. 1997).  Although the pathology of osteoporosis is not fully 

understood, it has been described as a metabolic disorder resulting from 

imbalances in the expression of bone signalling molecules that leads to altered 

bone homeostasis and inadequate osteoblastic bone formation in relation to 

osteoclastic bone resorption (Rodan 1997; Mackie 2003; Bosshardt 2009).  Of 

relevance to dentistry, osteoporosis is a risk indicator for periodontal disease 

based on the majority of studies demonstrating an association between the two 

conditions (Stabholz et al. 2010).  In the absence of a plaque induced 

inflammatory lesion, attachment loss will not occur in a patient with 

osteoporosis.  However, where a lesion is present, it has been shown in several 

studies that there will be proportionally more bone loss as a result of periodontal 

disease compared to an individual without osteoporosis (Geurs 2007).  

Osteoporosis is also considered by some to be a risk indicator for implant 

placement (Alsaadi et al. 2007).  It is important to be aware that increasingly 

over the last 15 years patients with osteoporosis have been treated with 

bisphosphonate medication.  These agents inhibit osteoclast initiated bone 

resorption by promoting cell apoptosis and should therefore contribute to 

increased BMD (Rodan 1997).  Unfortunately, the accumulation of 

bisphosphonates in surrounding bone has led to sporadic cases of 

bisphosphonate-associated osteonecrosis of the jaws (McCauley and Nohutcu 

2002; Ruggiero et al. 2004).  Although this destructive condition can occur 

spontaneously, it may be triggered by surgical trauma and therefore guidelines 

have been produced for the management of these patients when planning 

implant treatment (Madrid and Sanz 2009). 

 

The second particularly important condition in terms of bone biology and healing 

is diabetes mellitus.  This common endocrine disorder is increasing in incidence 
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in the western world (Giannobile 2008).  It has most recently been classified as 

type 1, where insufficient insulin is produced and type 2, where there is relative 

insulin resistance (Giannobile 2008).  Bone formation and remodelling is 

decreased in diabetes mellitus as a result of decreased osteoblast differentiation 

and a reduction of growth factors (Giannobile 2008). 

 

Animal experiments using a diabetic mouse model have suggested that 

diabetes may affect bone repair through its effects on growth factors and 

osteoblast differentiation, demonstrated by decreased expression of osteocalcin 

(Lu et al. 2003).  In terms of dental disease, individuals with diabetes mellitus 

have been shown in a number of studies to be at increased risk of periodontitis, 

progressive alveolar bone loss and ultimate tooth loss (Loos et al. 2005; Kinane 

et al. 2006).  In addition, tooth replacement is also complicated by diabetes 

mellitus.   In a review of both animal and human studies Kotsovilis and co-

workers demonstrated impaired bony healing in diabetics (Kotsovilis et al. 

2006).  This has been confirmed in a recent study using a diabetic rat model 

following the insertion of implants into incisor sockets (Colombo et al. 2011).   In 

this study, histological examination revealed delayed osteoblastic differentiation 

in diabetic rats.   In humans, where diabetic control is good there will be little 

effect on implant prognosis, however, overall diabetic patients have higher 

implant failure rates (Moy et al. 2005; Kotsovilis et al. 2006). The combined 

evidence clearly shows that among systemic disorders osteoporosis and 

diabetes mellitus impact on bone healing, periodontal disease and implant 

placement.  Predictable bone regeneration is therefore required in these patient 

groups.  
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1.2 Extracellular structure 

 

 

1.2.1 Collagen 

 

The extracellular structure of bone contains several types of collagen with type 1 

being the most abundant representing 90% of the organic matrix (Mackie 2003; 

Hughes et al. 2006). This contributes to its physical properties.  Type 1 collagen 

is synthesised by osteoblasts during bone formation arranged in fibrils and when 

in an ordered arrangement, as in lamellar bone, contributes to the strength of 

living bone (Nanci 1999).  Indeed, type 1 collagen forms a scaffold, in 

combination with non-collagenous proteins around which calcium and 

phosphate ions can accumulate to form mineral crystals during the 

mineralization process  (Nanci 1999; Bosshardt 2009).  It appears that there 

may be a correlation between the amount and formation of collagen and non-

collagenous protein content of bone (Nanci 1999).   The relative distribution of 

these will impact on mineralisation and the physical properties of bone at that 

anatomic location.  Importantly, in tissue culture experiments, the expression of 

type 1 collagen can be a useful indicator of osteoblastic differentiation (Lu et al. 

2003). 

 

1.2.2 Proteoglycans 

 

Proteoglycans are glycosylated proteins that are composed of a core protein 

and one or more glycosaminoglycan side chains.  Biglycan and decorin are 

proteoglycans demonstrated in bone tissue that have been identified as critical 

in bone remodelling with high affinity for calcium binding (Hughes et al. 2006; 

Smith et al. 2011).  The mechanism through which they exert their affect in vivo 

is not fully known, but in vitro studies have demonstrated correlation between 
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expression of biglycan and decorin, collagen fibrillogenesis, cell proliferation and 

matrix deposition (Mackie 2003; Waddington et al. 2003).  Biglycan and decorin 

are known to sequester growth factors and importantly may protect transforming 

growth factor β1 (TGF-β1) within the matrix or be involved in its presentation to 

the TGF-β1 receptor (Takeuchi et al. 1994; Baker et al. 2009).  As will be 

described later, TGF-β1 is critical to bone remodelling.   Biglycan and decorin 

may regulate cellular signalling promoting osteoblast differentiation and 

therefore are key extracellular matrix components critical in driving 

osteogenesis. 

 

 

1.2.3 Glycoproteins 

 

Several non-collagenous proteins are markers of bone remodelling that are 

detected in various concentrations in different regions of bone (Nanci 1999).  

These include osteocalcin, osteonectin, osteopontin and bone sialoprotein 

(Hughes et al. 2006; Bosshardt 2009).  In histological studies using 

immunocytochemistry, bone sialoprotein and osteopontin have been detected in 

cement lines within bone (Nanci 1999).  These so called glycoproteins are also 

proteins that contain oligosaccharide side chains that, like proteoglycans are 

found with the extracellular matrix. 

 

Osteocalcin is widely accepted as the most abundant non collagenous protein in 

the mineralised bone matrix and is associated with bone formation (Franceschi 

1999; Taba et al. 2005).  Osteocalcin is a late marker of osteoblastic 

differentiation and bone formation produced only by osteoblasts and can 

therefore be used to detect their presence (Ducy et al. 1996).  Studies using 

osteocalcin knockout mice have shown an increase in bone mass as a 

consequence of this deletion signifying its importance in bone remodelling (Ducy 
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et al. 1996; Hughes et al. 2006).  This suggests osteocalcin may function to limit 

bone formation to produce brittle hypomineralised bone. 

 

Osteopontin is an extracellular matrix protein produced by osteoblasts and 

osteoclasts.  Preosteoblasts also demonstrate osteopontin expression and its 

levels have been shown to be increased at sites of active bone metabolism 

(Hughes et al. 2006).  Osteopontin is therefore an early marker of osteoblastic 

differentiation. The detection of osteocalcin and osteopontin via the 

experimental technique, polymerase chain reaction, identifies that mature 

osteoblasts are present. 

 

Osteonectin and bone sialoprotein are other non-collagenous proteins that may 

play a role in bone remodelling and bone cell adhesion (Bradshaw and Sage 

2001; McCauley and Nohutcu 2002; Mackie 2003).  Bone sialoprotein is a 

marker of bone resorption and its detection during tissue culture experiments 

suggests the cells are either pre-osteoblasts or osteoblasts (McCauley and 

Nohutcu 2002; Hughes et al. 2006).  Further, it has been suggested that bone 

sialoprotein acts as a nucleator for bone mineral deposition (Mackie 2003; 

Amerio et al. 2010).  Meanwhile, osteonectin is proposed to modulate the 

activity of the growth factor TGF-β1 by increasing production of its mRNA, 

promotes osteoblast differentiation, affects collagen synthesis and binds calcium 

ions (Bradshaw and Sage 2001; Amerio et al. 2010). 

 

Fetuin (also known as α2 HS glycoprotein) is another glycoprotein that may 

have an important role in bone metabolism and accumulates in the mineralized 

matrix of bone (Schinke et al. 1996).  In vitro studies have demonstrated that 

fetuin has a high affinity for calcium binding in foetal bovine serum  (Suzuki et al. 

1994).  Furthermore, fetuin has also been shown to stimulate bone cell 

proliferation in vitro but inhibit hydroxyapatite formation in cell cultures (Schinke 

et al. 1996).  In cell culture studies fetuin has been shown to block the 
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osteogenic activity of bone morphogenetic proteins and antagonises the 

antiproliferative effect of TGF-β1 (Binkert et al. 1999). 

 

Taken together, the detection of these selected non-collagenous proteins from 

cells cultured in association with bone substitute materials would be highly 

suggestive of osteoblastic activity. The aforementioned studies clearly show the 

importance of glycoproteins and proteoglycans in bone homeostasis.  

Subsequently, their identification in biomaterials may be suggestive of 

osteoinductive potential. 
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1.3 Signalling molecules of bone 

 

1.3.1 Introduction 

 

It is necessary to understand how a variety of signalling molecules can regulate 

bone homeostasis to appreciate why their detection in in vitro experiments is 

valuable.  The signalling molecules of bone have been categorized elsewhere 

as belonging to three groups (Dimitriou et al. 2005; Hallman and Thor 2008): 

 

 TGF-β superfamily, including BMP’s and other growth factors (e.g. 

PDGF). 

 Pro-inflammatory cytokines (e.g. IL-1). 

 Angiogenic factors (e.g. VEGF). 

 

Due to the scope of the project, only certain molecules will be discussed in 

detail but it must be appreciated that a cocktail of growth factors act together in 

the in vivo situation.  Growth factors have been described as natural biological 

mediators secreted by cells that regulate tissue repair by binding to specific cell 

surface receptors that in turn activate genes that can alter cellular activity  

(Giannobile 1996; Lieberman et al. 2002).  They regulate critical healing events 

including cell proliferation, chemotaxis, differentiation and matrix synthesis 

(Giannobile 1996; Bessade et al. 2007).  This is achieved through activation of 

intracellular transcription factor reactions leading to gene expression, 

transcription of mRNA and ultimately protein release (Lieberman et al. 2002; 

Hallman and Thor 2008).  Following an injury such as surgery,  platelets and 

adjacent cells release these growth factors which exert their affects (Giannobile 

1996).  Furthermore, as will be discussed in detail later, bone and dentine matrix 

are known to be reservoirs for these growth factors (Graham et al. 2006; Smith 
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et al. 2011).  The following is a summary of key molecules that are involved in 

the bone remodelling process. 

1.3.2 TGF-β 

 

Transforming growth factor-β 1, 2 and 3 belong to the transforming growth factor 

β (TGF-β) superfamily of polypeptide factors that control development and 

homeostasis.  They have previously been ascribed with several important 

functions that include the regulation of cell growth, development, tissue 

remodelling and controlling the inflammatory response (Grande 1997).  Their 

effects are known to be mediated through a variety of ligand-receptor reactions 

that activate intracellular signals that affect gene expression (Dimitriou et al. 

2005).  TGF-β binds to type-I and type-II serine / threonine kinase receptors 

which activates the SMAD 2 and 3 pathway (Dimitriou et al. 2005).  SMADs 

have been described as a class of intracellular proteins that are involved in 

TGF-β signalling (Lieberman et al. 2002).  The SMAD protein family contains 

eight members with SMAD 6 and 7 having inhibitory effects.  Furthermore, in 

vitro and in vivo studies have shown these growth factors stimulate chemotaxis 

and survival of osteoblasts and affect osteoblast cell growth, migration and 

differentiation, deposition of matrix and mineralization (Pfeilschifter et al. 1990; 

Giannobile 1996; Binkert et al. 1999; Hallman and Thor 2008).  TGF-β1 is known 

to be produced by fibroblasts, osteoblasts, platelets and inflammatory cells and 

is expressed throughout the process of bone healing (Robey et al. 1987; 

Dimitriou et al. 2005).   Its release is the result of activation of transcription 

factors, such as SMAD proteins.  Importantly, TGF-β1 reportedly acts on the 

differentiation of osteoproginator cells to pre-osteoblasts but conversely may 

inhibit the later stages of differentiation into osteoblasts and mineralisation 

(Giannobile 1996; Maeda et al. 2004).  Therefore, it appears from this evidence 

that the affect of TGF-β1 on osteoproginators is variable.  This contrasting 

evidence shows that the effect of TGF-β1 may be dose or location dependent.  

Indeed, in mouse bone marrow cultures, TGF-β1 levels rise in the first 5 days of 



21 

 

osteogenic differentiation, then decrease and rise again late in the 

mineralization phase (Binkert et al. 1999). TGF-β also stimulates the production 

of a large number of extracellular matrix components, including the synthesis of 

type 1 collagen, osteopontin and osteonectin, that are important in bone 

remodelling (Giannobile 1996; Cochran and Wozney 1999; Dimitriou et al. 

2005).  In particular, TGF-β1 stimulates the expression of BMP’s and inhibits the 

activity of matrix metalloproteinases (Overall et al. 1989).    

Importantly from a clinical perspective, in vitro studies suggest that when 

osteoblast-like cells are cultured on rougher biocompatible materials, TGF-β1 

production increases which would have the effect to increase osteoblast 

differentiation locally (Schwartz et al. 1997).  This would suggest that if surface 

geometry and porosity of an implant or bone substitute material could be 

optimised bone regeneration would improve. 

 

It has been demonstrated that TGF-β1 is excreted in an inactive form as a latent 

complex with a latency associated peptide (TGF-β1 – LAP) which requires 

subsequent activation following the binding of accessory molecules such as 

biglycan (Sloan et al. 2002).  It follows that TGF-β1 – LAP found in the bone 

matrix may therefore be responsible for the large amounts of latent transforming 

growth factor sequestered in bone matrix. Further, in some cells this latent 

complex binds with a 125 – 160kDa protein, termed the latent TGF-β binding 

protein, to form a larger latent complex (Grande 1997).  It is noteworthy that, 

osteoclasts have the ability to activate bone-derived latent TGF-β1, but TGF-β1 

itself can inhibit osteoclast proliferation by blocking the formation of osteoclast 

precursors and has an inhibitory effect on mature osteoclasts (Robey et al. 

1987).  TGF-β1 therefore has key roles in mineralisation, by controlling the 

differentiation of pluripotent cells into mesenchymal cells, the differentiation and 

proliferation of osteoblasts stimulating collagen type 1 production and 

production of fibronectin and osteopontin (Robey et al. 1987).  Conversely, in 

vitro experiments have clearly shown that excess TGF-β1 will inhibit 

mineralisation completely (Binkert et al. 1999). 
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Taken together, the combined evidence suggests that this family of growth 

factors are critical in controlling the behaviour of both osteoblasts and 

osteoclasts and their expression occurs during bone repair.  It follows that the 

ability to detect TGF-β1 within bone substitute materials would show that 

residual growth factors remain in such materials that may be extracted by 

chemical pre-treatment. 

1.3.3 Bone Morphogenetic Proteins 

 

Bone morphogenetic proteins (BMP’s) form a subgroup of the TGF-β 

superfamily, mentioned previously (Chen et al. 2004; Dimitriou et al. 2005).  

They promote osteogenesis and are involved in bone remodelling.  The 

differentiation of bone forming cells has been described as the hallmark of these 

molecules (Giannobile 1996).  BMP’s are known to promote recruitment of 

mesenchymal cells, chondroblast differentiation, cartilage formation and 

vascular invasion (Chen et al. 2004).  Currently, at least 30 BMP’s have been 

identified and in particular BMP 2 , 4, 6, 7, 8 and 9 show high osteogenic activity 

in both in vitro and in vivo studies directing pluripotent cells down the 

osteoblastic lineage (Cheng et al. 2003; Dimitriou et al. 2005; Hughes et al. 

2006; Hallman and Thor 2008).  Specifically, BMP’s are known to stimulate 

progenitor cell migration and osteoblast differentiation from undifferentiated 

mesenchymal cells (Giannobile 1996; Dimitriou et al. 2005; Hughes et al. 2006).  

These effects are mediated by type 1 and 2 BMP receptors and downstream 

molecules, such as Smad 1, 5 and 8 (Chen et al. 2004).   

 

Although BMP’s have the ability to induce bone formation, TGF-β1 does not.  

However, it is currently agreed that both molecules are critical to osteoblast 

formation with TGF-β1 increasing cell numbers and BMP’s acting on later 

differentiation (Hughes et al. 2006).  Indeed, only the combination of growth 

factors is likely to achieve biological effects in vivo.  Importantly, mesenchymal 
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stem cells, which form osteoblasts, have several BMP-receptors which 

corroborates BMP’s role in directing mesenchymal cells down the osteoblast cell 

linage (Katagiri and Takahashi 2002; Nefussi 2007).   Osteoblasts and 

importantly osteoprogenitor cells secrete BMP’s and their antagonists e.g. 

noggin, during bone formation and remodelling and some of the growth factor 

will become sequestered within the bone matrix (Mackie 2003; Dimitriou et al. 

2005).  In contrast, over-expression of BMP antagonists can lead to 

osteoporosis in mice. 

 

Based on the evidence for the role of BMP in bone remodelling,  its therapeutic 

use has understandably been investigated.  Both clinical and in vitro studies 

demonstrate that BMP-2 has therapeutic use where bone healing is required 

(Cheng et al. 2003; Chen et al. 2004).   In its recombinant form BMP-2 has been 

used therapeutically in bone defects , non-healing fractures, periapical surgery 

defects and around peri-implant defects (Cochran and Wozney 1999).  Taken 

together this evidence summarises the critical roles BMP’s have to play in bone 

remodelling.   Subsequently, when BMP’s are detected experimentally from 

cultured cells they are indicative that cells are becoming osteoblasts. 

 

1.3.4 Other growth factors 

 

Numerous other growth factors are involved in bone remodelling processes, 

including PDGF, FGF and IGF.  PDGF is released by degranulating platelets, 

inflammatory cells and osteoblasts.  PDGF has been shown to have a strong 

positive effect on the proliferation of both animal and human osteoblasts and 

their differentiation (Lynch et al. 1991; Giannobile 1996; Hughes et al. 2006).  

Histologically, using a rat tissue culture model, PDGF has been shown to 

promote collagen synthesis (Giannobile 1996).  It is also known to be released 

at the very early stages of fracture healing (Dimitriou et al. 2005). 
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FGF’s and IGF’s are other growth factor families known to be involved in the 

osteoblast differentiation pathway and in particular, osteoprogenitor cell 

proliferation (Dimitriou et al. 2005; Hughes et al. 2006). Hughes et al also 

suggested that in vitro, FGF’s mainly act to stimulate proliferation in immature 

cells, resulting in expansion of the osteoblast progenitor pool (Hughes et al. 

2006).  It has been suggested that in particular, IGF-1 becomes more critical 

later in the differentiation process than fibroblast growth factor  (Dimitriou et al. 

2005; Hughes et al. 2006).  IGF, which is also produced by osteoblasts induces 

their proliferation, differentiation, chemotaxis and collagen 1 synthesis (Lynch et 

al. 1991; Giannobile 1996).  Of potential clinical relevance, animal studies have 

shown that the combination of recombinant human IGF and BMP-2 may 

produce an osteoinductive effect around implants (Lan et al. 2006).  Further, the 

combination of IGF and PDGF improved periodontal regeneration within bone 

defects in beagle dogs (Lynch et al. 1991). 

 

1.3.5 IL-1, 6 and prostaglandin E2 

 

Another important group of signalling molecules that control inflammation and 

regeneration are the cytokines.  Cytokines are glycoproteins which act as local 

signalling molecules to co-ordinate cellular behaviour and function. They are 

known to bind to cell-surface receptors resulting in the modulation of gene 

expression in their target cells (Hughes et al. 2006).  In particular, interleukin 1 

(IL-1) is a potent bone resorbing cytokine that is secreted by macrophages, 

neutrophils, lymphocytes, fibroblasts and epithelial cells (Boch et al. 2001; 

Dimitriou et al. 2005).  It is widely accepted that IL-1 is one of the major 

cytokines produced at inflamed sites and is involved in the initiation and 

progression of connective tissue destruction, including bone, partly through 

osteoclast recruitment and activation (Boch et al. 2001). This inflammatory 

response is perpetuated by a chemotactic effect on other inflammatory cells.  

Importantly, IL-1 has been shown to initially stimulate the bone repair process in 
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addition to interleukin 6 and tumour necrosis factor-α, by enhancing the 

proliferation and differentiation of osteoblast progenitor cells; and extracellular 

matrix synthesis (Dimitriou et al. 2005; Hughes et al. 2006).  Prostaglandin E2 

also stimulates bone resorption, potentially through activation of RANK ligand 

located on the osteoblast surface (Horowitz et al. 2001).  This is further 

evidence of the role osteoblasts play as a regulator binding both signalling 

molecules and osteoclasts.  Of potential clinical importance is the identification 

of IL-1 and prostaglandin E2 in gingival crevicular fluid and its relationship to 

active periodontal diseases (Boch et al. 2001; Taba et al. 2005). 

 

1.3.6 Growth factors within extracellular matrix 

 

Growth factors are considered by many as a subset of cytokines (Hughes et al. 

2006).  It is known that during both bone and dentine formation, cells lay down 

growth factors within the bone matrix (Graham et al. 2006; Hughes et al. 2006; 

Bosshardt 2009; Smith et al. 2011).  Furthermore, during tissue repair, growth 

factors are produced by local cells, but importantly are released from the bone 

matrix itself (Bosshardt 2009).  For example, the extracellular matrix is thought 

to contain the main source of BMP’s produced by osteoprogenitors and 

osteoblasts (Dimitriou et al. 2005).  It has been suggested that the challenge for 

tissue engineering is to maintain growth factor activity over time since ultimately 

their degradation will occur (Lieberman et al. 2002). It has also been stated that 

it may be combinations of growth factors in healing tissues that produce optimal 

effects (Pfeilschifter et al. 1990; Bessade et al. 2007).  This has been confirmed 

by both in vitro and in vivo studies showing increased bone formation when a 

combination of growth factors have been used (Giannobile 1996).  The previous 

section has outlined the role that growth factors play in bone remodelling.  The 

ability to harness the effects of these molecules, if identified within the matrix of 

bone substitute materials, may provide faster bone regeneration in the 

challenging clinical situations mentioned later. 
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1.4 Calcium Hydroxide and EDTA 

 

 

1.4.1 Introduction 

 

In order to appreciate the potential for growth factor release from bone tissue, it 

is important to review the evidence supporting the use of two important chemical 

agents in particular.  As already mentioned, mineralised tissues have been 

shown to be a store of growth factors (Graham et al. 2006; Smith et al. 2011).  

Calcium hydroxide and ethylenediaminetetraacetic acid (EDTA) are important, 

external factors that have the ability to extract and activate growth factors.  Their 

mechanisms of action can only be understood after their chemistry is reviewed. 

 

EDTA is known to be a potent chelating agent used routinely as an endodontic 

irrigant that has recently been shown to improve the clinical outcome of 

endodontic retreatment (Bystrom and Sundqvist 1985; Ng et al. 2011).  It is 

proposed to solubilise growth factors by mineral demineralisation, the chelation 

of calcium ions and the solubilisation of non-collagenous proteins (Hulsmann et 

al. 2003).  Hulsmann has summarised the mechanism of action of EDTA on 

mineralised tissue as follows,  “An equilibrium is established between the EDTA 

solution and the precipitate because ions from the mineral precipitate constantly 

go into solution while ions from the solution are precipitated as solids” 

(Hulsmann et al. 2003).  EDTA forms a stable complex with calcium such that 

when all ions are bound no further dissolution takes place (Hulsmann et al. 

2003). 

 

Calcium hydroxide has already seen many uses in dentistry including direct and 

indirect pulp capping, apexification, apexogenesis and as an inter-appointment 

root canal dressing (Sathorn et al. 2007; Huang 2009; Mohammadi and 

Dummer 2011).  There is, however, a trend for contemporary materials such as 
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mineral trioxide aggregate (MTA), to render the use of calcium hydroxide 

unnecessary for many clinical situations (Torabinejad and Chivian 1999).  

Nonetheless, calcium hydroxide remains in clinical use. Most of its therapeutic 

properties are due to its high pH of approximately 12.5 and is therefore a strong 

base.   The ionic dissociation of calcium and hydroxyl ions affect vital tissues, 

induce hard-tissue deposition and has antibacterial properties (Mohammadi and 

Dummer 2011).  Calcium hydroxide is a known extractant capable of solubilising 

proteins from mineralised surfaces and therefore, has potential for liberating 

proteins from the matrix of bone substitutes (Smith et al. 2011).  

 

 

1.4.2 Effect on dentine matrix proteins 

 

The application of calcium hydroxide to the dentine surface and exposed pulps 

has been shown to stimulate reparative dentine formation (Horsted-Bindslev et 

al. 2003). The formation of reparative dentine is similar to bone repair, requiring 

recruitment to and stimulation of progenitor cells at the injury site.  The release 

of growth factors from dentine would potentiate this cellular response.  In vitro 

experiments have examined the ability of chemical treatment to extract growth 

factors from powdered dentine.  For example, chemical treatments with EDTA, 

and calcium hydroxide, have been demonstrated to solubilise TGF-β1 and other 

bioactive molecules from the mineralised matrix of dentine using a variety of in 

vitro techniques, including enzyme linked immunosorbant assays and 1D 

polyacrylamide gel electrophoresis (Graham et al. 2006; Tomson et al. 2007).  

The release of this and other growth factors as a result of the caries process or 

dental intervention may result in dentinogenesis through increased expression 

of osteopontin and BMP-2 (Graham et al. 2006). 
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1.4.3 Effect on bone matrix proteins 

 

Bone matrix and bone healing forms many parallels with dentine and the ability 

of calcium hydroxide and EDTA to release growth factors from the bone matrix 

have been investigated previously, in terms of beneficial effects on bone repair.  

An in vitro study using a rat model was used to demonstrate release of TGF-β1 

from bone slabs, following application of EDTA and calcium hydroxide (Smith et 

al. 2011).  Importantly, this study also demonstrated increased osteoblastic 

differentiation from bone marrow stromal cells when bone slabs were chemically 

treated, compared to a PBS control.  Although this study was limited to the 

investigation of the growth factor TGF-β1, the authors recognised that the 

interplay of other growth factors probably contributed to the differences in 

osteoblastic differentiation.  Indeed, the presence of growth factors within the 

bone matrix provides a reservoir of bioactive molecules that may influence 

cellular behaviour during bone regeneration.  It follows that a variety of 

preparations of natural bone particles, including those from animal sources, may 

also contain these molecules. 
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1.5 Clinical requirements for bone augmentation and 

regeneration 

 

 

Two main fields of clinical dentistry utilize bone augmentation and regeneration 

techniques.  These are periodontology and implantology. In periodontal therapy, 

the ideal treatment goal is to replace bone lost as a consequence of the disease 

process.  Prior to, or during implant placement a certain bone volume is required 

that is consistent with the specific implant system parameters.  Furthermore, 

systemic conditions compromise the available bone quality or adversely affect 

the bone remodelling process.  It is therefore advantageous for current bone 

regeneration techniques to be refined or modified to improve the biological 

response that will allow clinicians to manage these clinical scenarios.  Faster 

and more predictable bone regeneration would be significantly beneficial in 

these situations.  It has been summarised by others that predictable 

regeneration requires the elimination of bacteria, wound stability, elimination of 

undesirable tissue types and appropriate surface characteristics (Schwartz et al. 

1997).  What follows is a summary of the clinical challenges that require bone 

augmentation and regeneration procedures. 

 

1.5.1 Periodontal disease 

 

Periodontal diseases are a group of inflammatory disorders that can lead to the 

ultimate destruction of the supporting structures around teeth (Socransky et al. 

1984; Löe et al. 1986).  A variety of classification systems have been used over 

the years but most recently destructive periodontal diseases have been 

diagnosed as either aggressive or chronic (Armitage 1999).  Both forms of 

disease result in an inflammatory lesion that leads to the loss of attachment and 
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bone (Löe et al. 1986).  Following the irreversible destruction of tissue caused 

by advanced periodontal disease, there is often a decrease in bone height 

surrounding the dentition.  Progressive bone resorption leads to the formation of 

craters of bone loss or intrabony defects where the periodontal pocket extends 

below the level of the surrounding bone (Cortellini and Tonetti 2000).  

It is accepted that the presence of bacteria in dental plaque adjacent to the 

gingival crevice is the trigger for gingivitis (Löe et al. 1965).  In susceptible 

patients bacteria stimulate monocytes, neutrophils, macrophages and other 

cells to release inflammatory mediators, such as IL-1, tumour necrosis factor 

(TNFα), and prostaglandin E2, that can result in tissue damage and osteoclast 

mediated bone loss (Taba et al. 2005; Kinane 2008). 

 

The treatment of periodontal disease has been described in three phases (Salvi 

2008).  Firstly, “initial cause related therapy”, which aims to improve plaque 

control and manage risk factors, a second “corrective phase”, where persistent 

pathological pockets can be reduced or lost tissue regenerated; and an ongoing 

phase of “supportive therapy” to reduce disease recurrence.  As mentioned, 

destructive periodontal disease can result in intrabony defects.  These defects 

cannot always be treated successfully by nonsurgical therapy.  To reduce the 

pocket depth further, these defects are often amenable to guided tissue 

regeneration than can result in the formation of new cementum, bone and 

periodontal ligament that results in reduction of the defect (Nyman et al. 1982; 

Reynolds et al. 2003).   The theory supporting the clinical use of grafting 

procedures is that the complete regeneration of the attachment apparatus 

(including new bone formation and new connective tissue attachment) is 

enhanced by biomaterials.  This is either due to their osteogenic potential (if the 

graft contained viable bone-forming cells), osteoinductive capacities (exerted by 

the release of bone inducing  substances), or osteoconductive properties (i.e. 

the possibility to create a scaffold to support bone formation) (Trombelli 2005).  

The clinical use of the guided tissue regeneration technique is discussed in 

more detail in section 1.7.2.
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1.5.2 Dental implants 

 

Dental implants are defined as prosthetic devices made of alloplastic materials 

implanted into the oral tissues within the bone to provide retention and support 

for a fixed or removable dental prosthesis (The Academy of Prosthodontics 

2005).  It is clear that the clinical use of dental implants absolutely depends on 

bone quality and volume.  The majority of systems are composed of pure 

titanium alloy.  Branemark who pioneered implant dentistry, first treated 

edentulous patients in 1965 (Branemark 1983). Dental implant systems have 

evolved through the years to number over 480 systems.  These systems differ in 

design, surface treatments and surface roughness. Examples of some of the 

most popular systems include sandblasted and acid etched surfaces (SLA 

Active® Straumann) and oxidised moderately rough surfaces (Ti-unite® Nobel 

Biocare) and it has been known for some time that osseointegration is better on 

rough surfaces in vivo (Schwartz et al. 1997). 

 

The original implant placement protocol involved the placement of the fixture 

which was then covered immediately by soft tissue, followed by exposure at 6 

months after which the implant could be loaded.  This first implant placement 

protocols suggested no loading for 3 – 4 months in the mandible and 5 – 6 

months in the maxilla (Adell et al. 1981).  As the technique has become more 

predictable time to loading has reduced and some clinicians place and load 

implants immediately although this may be less predictable (Grutter and Belser 

2009).  The success rates of dental implants have been well-documented in the 

literature (Adell et al. 1981; Lindh et al. 1998; Jung et al. 2008a).  An extensive 

review of the literature by Esposito concluded that in edentulous patients, 

maxillary implant failure is about 3 times higher than that of the mandible.  

(Esposito et al. 1998).  It is clear from these results that there are differences in 

success rates between the jaw bones and often it is maxillary implant sites that 

require bone augmentation, particularly bone width anteriorly and bone height 
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posteriorly.  More recent studies looking at implant outcomes have quite rightly 

used the term implant survival rather than implant success to describe the 

maintenance of implant integration over time (Albrektsson et al. 1986; 

Pjetursson et al. 2007).  According to a variety of authors (Albrektsson et al. 

1986; Buser et al. 1997; Karoussis et al. 2004; Ong et al. 2008), in order to be a 

success an implant should demonstrate: 

 

 The absence of mobility. 

 The absence of recurrent peri-implant infection with suppuration. 

 The absence of a continuous radiolucency around the implant. 

 No probing pocket depth >5mm or bleeding on probing. 

 No more than 0.2mm annual vertical bone loss after the first year of 

service.   

 

Studies have shown implant supporting single crown survival of 96.8% and 

implant supporting fixed bridge survival of 95.2% at 5 years (Pjetursson et al. 

2007; Jung et al. 2008a). 

 

Low bone volume can occur following the loss of the dentition as a result of 

resorption patterns and pneumatisation of the maxillary sinus.  In the anterior 

maxilla, loss of the buccal plate of bone can result in significant horizontal 

defects that can lead to functional and aesthetic compromise.   This means that 

local conditions of the edentulous ridge may be unfavourable for implant 

placement, particularly vertical deficiency which results in insufficient volume for 

implants of adequate length (Chiapasco et al. 2007).  Where there is insufficient 

bone anteriorly options for management include either separate staged block 

grafts or simultaneous particulate grafts placed at the time of implant insertion 

(von Arx and Buser 2006).  The use of bone mineral particulate grafts for sinus 

augmentation and lateral ridge augmentation will be discussed in detail later.  A 

systematic review has been performed to compare the survival of implants in 
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regenerated bone, versus implants placed in non-regenerated sites after 12 

months of loading.  The authors used well defined outcome criteria, however a 

limited electronic search was carried out.  Eleven studies were included at 

varying levels of evidence.  The majority of studies demonstrated survival of 

over 90% in regenerated bone, which is comparable to that of non regenerated 

bone (Hammerle et al. 2002). 

 

Not all implants survive and can be deemed successful with a proportion of 

failures attributed to inflammatory processes.  Peri-implant mucositis describes 

an inflammatory lesion that resides in the mucosa, while peri-implantitis also 

affects the supporting bone around a dental implant (Lindhe and Meyle 2008).  

Peri-implantitis presents with the cardinal signs of inflammation, suppuration 

and always with bone loss.  Recent evidence suggests that the incidence is 

considerably higher than previously thought and per-implantitis may occur in as 

much as 28 – 56% of patients (Esposito et al. 1998; Zitzmann and Berglundh 

2008).  Currently, it is unclear what the most favourable treatment modality is 

although some guidelines do exist (Lindhe and Meyle 2008).  Briefly, treatment 

involves anti-infective therapy and possibly surgical intervention using bone 

grafts in appropriate cases. 

 

1.5.3 Indications for bone regeneration 

 

Bone grafting or periodontal regeneration is required in several aspects of 

dentistry, including Implantology, Periodontics and Endodontics.  Although the 

clinical use of the materials may be similar, the techniques have been described 

using different terminology dependent upon the indication.  This includes block 

grafting with intraoral autogenous bone for significant alveolar defects, guided 

tissue regeneration in periodontal defects or endodontic microsurgery; and 

simultaneous guided bone regeneration procedures for smaller peri-implant 
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defects.  The main indications for bone grafting or periodontal regeneration, 

therefore, include: 

 

 Guided bone regeneration for peri-implant dehiscences or fenestrations. 

 Horizontal or vertical ridge augmentation, prior to implant placement. 

 Augmentation of the maxillary sinus. 

 Surgical treatment of peri-implantitis. 

 Guided tissue regeneration of periodontal bony defects. 

 Guided tissue regeneration of large bony crypts following endodontic 

microsurgery. 

 

1.5.4 Use and limitations of autogenous bone 

 

Autogenous bone is bone derived from the host.  In implant dentistry, the most 

popular sites have been the symphiseal region or mandibular ramus for 

moderate volumes of bone, or the iliac crest for larger volumes of bone.  

Autogenous bone is often reported as the gold standard with osteogenic, 

osteoinductive and osteoconductive effects (Block and Kent 1997).  This is 

mainly related to its osteogenic effects, where viable cells and growth factors 

can be transferred to the donor site and stimulate new bone formation directly.  

Also as it is harvested from the recipient, there is no antigenic effect.  There are 

several disadvantages which have propagated the development of alternatives 

including non-human particulate grafts.  The disadvantages of autogenous bone 

include: 

 

 The need for two operative sites with associated morbidity of the second 

site. 

 Increased operative time and cost 

 Finite volume particularly at intraoral sites 

 The need for sedation or general anaesthesia to allow graft harvest 
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 Resorption of autogenous blocks with time and subsequent loss of 

volume (von Arx and Buser 2006). 

  

Graft surgery also carries with it the possibility of graft loss, infection, 

neurological deficit and increased postoperative discomfort.  In view of these 

challenges a variety of bone substitute materials have been developed and are 

gaining popularity that will be discussed in the next section. 

 



36 

 

1.6 Bone grafting 

 

1.6.1 Introduction and classification 

 

The aim of bone grafting or bone augmentation is to restore critical defects or 

alveolar bone volume to normal form and function, where the defect exceeds 

the regeneration potential of the adjacent bone itself (Giannobile 1996).  In order 

for bone regeneration to be successful, there needs to be bone-forming cells 

(ultimately derived from mesenchymal stem cells), differentiation signalling 

molecules and a scaffold upon which tissue can proliferate (Dimitriou et al. 

2005). Bone graft materials are commonly described as belonging to one of the 

four following groups:  autografts, allografts, alloplasts and xenografts (Antoun 

2007). 

 

The mechanisms important in bone grafting include osteogenesis, 

osteoconduction and osteoinduction.  These three processes may all occur 

together, depending on the grafting technique used.  Osteogenesis is definitively 

the formation of bone.  In bone grafting, this process occurs when viable mature 

osteoblast cells and their precursors are transplanted with the graft material into 

the defect and result in bone formation (Giannobile 2008).  An autogenous bone 

graft has osteogenic properties by virtue of the transfer of osteoblasts, their 

precursors and signalling molecules within the graft (Bosshardt 2009).  These 

facilitate direct bone formation upon the graft.    An osteoconductive material 

works as a scaffold, over which cells migrate and around which new bone can 

form (Albrektsson and Johansson 2001).   The process relies on the recruitment 

and migration of osteogenic cells to the site of healing through the blood clot 

(Davies 2003).  Autogenous cortical bone and several bone substitutes can form 

such scaffolds including synthetic calcium phosphates and xenografts.  
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Resorption of the graft material and replacement by bone is variable between 

graft materials, and some materials remain in the defect in the long-term. A 

literature review by Hallman and Thor stated that using solely an 

osteoconductive grafting material in implant cases may prolong the healing 

period by 2–6 months, which may be of clinical significance (Hallman and Thor 

2008)  Finally, osteoinduction is the process by which primitive undifferentiated 

pluripotential cells are stimulated down the osteoblast cell lineage (Albrektsson 

and Johansson 2001; Dimitriou et al. 2005).   An osteoinductive material has the 

ability to bind or release proteins, such as TGF and BMP, which are capable of 

stimulating undifferentiated mesenchymal cells to transform into preosteoblasts 

and osteoblasts to form new bone (Antoun 2007).  Osteoinduction describes a 

process of accelerated bone formation that results in a shorter healing period, 

following surgical intervention (Hallman and Thor 2008).  If the term is used to 

describe a bone substitute, it means the material can stimulate new bone 

formation by virtue of the proteins it contains.  Further, the factors that contribute 

to osteoinduction have been summarised as osteoinductive signals, appropriate 

cell types and a supportive scaffold to carry cells and signalling molecules 

(Bosshardt 2009).   Confusingly, several materials are often described as either 

osteoinductive or osteoconductive, which is attributed to contradictory results in 

in vitro studies.   In summary, certain bone substitute materials may result in 

slower and less complete bone formation, compared to autogenous grafts, 

based on the depleted biological components mentioned above. 

 

1.6.2 Bone substitute materials 

 

Bone substitute materials (BSM’s), including particulate bone grafts and pastes, 

have been developed as an alternative to human derived autogenous bone for 

the reasons already listed.  Key considerations with these materials are 

biocompatibility, degrees of resorption, ease of use, patient acceptance, non-

infectivity and preferably bioactivity (Antoun 2007).  An ideal bone substitute 
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would also be osteoinductive and have a large surface area through porosity to 

allow revascularisation (Peetz 1997).  Most commercially available materials are 

marketed as scaffolds with only osteoconductive properties, which biologically 

make them inferior to autogenous bone in this respect.  The ability of these 

materials to demonstrate osteoinductive properties is thus appealing in clinical 

dentistry.  BMP’s and TGF-β1 are osteogenic factors found in some 

osteoinductive bone graft materials that can differentiate mesenchymal cells into 

osteogenic cells (Tapety et al. 2004).  The clinical availability of materials is 

expanding continuously so only selected materials will be discussed here briefly. 

 

1.6.2.1 Alloplasts 

 

Alloplasts are synthetic materials that are grouped as calcium phosphates, 

calcium sulphates, bioactive glasses and polymers.  These materials have the 

advantages of varying degrees of resorbability, biocompatibility and the lack of 

antigenic effects.  Alone they are unlikely to provide any osteoinductive effect as 

they are devoid of proteins.  Biphasic calcium phosphate is commercially 

available as Straumann Bone Ceramic®, composed of synthetic 60% 

hydroxyapatite and 40% β tricalcium phosphate (Cordaro et al. 2008).  Β 

tricalcium phosphate has been shown to have favourable osteoconductivity and 

resorption rates over short follow up times (Antoun 2007).  Vital®, produced by 

Fortoss, is a composite of β tricalcium phosphate in a calcium sulphate matrix 

that has demonstrated bone formation in animal models (Podaropoulos et al. 

2009). 

 

1.6.2.2 Allografts 

 

Allografts are those bone products that come from other humans e.g. 

demineralised freeze-dried bone allograft from cadavers.  It is biocompatible, 

resorbable and contains type 1 collagen.  Bone allografts have been found to 
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contain BMP’s that potentially could provide osteoinductive properties although 

less bone formation occurs compared to autogenous bone (Giannobile 1996; 

Mattout 2007).  Human-derived alternatives are more popular in Northern 

America than the United Kingdom, with many clinicians concerned about 

potential transmission of infected material and the stimulation of an immune 

response. 

 

1.6.2.3 Xenografts 

 

Xenografts are materials derived from species other than human.  Included in 

this group is bone derived from equine, porcine and bovine sources, but also 

corals.  Xenografts are often described as purely osteoconductive space 

maintainers.   Currently, the most researched bone substitute material is Bio-

Oss®, produced by Geistlich.  This is marketed as a natural bone substitute 

material obtained from the mineral portion of bovine bone. Bio-Oss® will be 

considered in detail in section 1.7 

1.6.2.4 Advantages of bone substitute materials 

 

The previously mentioned materials have limitless supply and do not require a 

second operative site which can make surgery more efficient.  They are often 

supplied in blocks or specific carrier devices that facilitate easy placement in 

periodontal defects or the maxillary sinus.  A recent review of bone substitutes 

listed several advantages of particulate bone grafting (Hallman and Thor 2008).  

These included the ability to place grafts in tiny grooves, the reduction in risk of 

soft tissue in growth between graft and bone; and possibly more rapid vascular 

in growth.  It is unlikely that bone substitutes are an appropriate alternative to 

autogenous bone for onlay grafts, although case series have demonstrated 

some clinical success when combination grafts are used (von Arx and Buser 

2006; Simion et al. 2007).  The combined evidence demonstrates that bone 
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substitute materials have a major role in sinus grafting, peri-implant 

augmentation and ridge preservation. 

 

1.6.3 Growth factors and bone grafting 

 

Growth factors have also become commercially available and are now being 

added to a variety of bone graft materials or used alone with the intention of 

facilitating alveolar bone regeneration by chemo-attraction, differentiation and 

proliferation (Lieberman et al. 2002; Giannobile and Somerman 2003).  As 

mentioned, growth factors are key signalling molecules released at different 

phases in bone healing.  Previous evidence identified autogenous bone as 

having osteoinductive capacity, based on the transfer of growth factors to the 

recipient site (Block and Kent 1997).  The many disadvantages of autogenous 

graft harvest, already discussed, have led investigators to combine growth 

factors with particulate bone grafts, thus using the graft as a scaffold or carrier 

for these growth factors.  The use of exogenous growth factors may have 

therapeutic benefit to overcome the limitations of conventional regeneration 

techniques, but only if a suitable carrier device is used (Lieberman et al. 2002).  

Using a dog model, Giannobile (1996) demonstrated earlier bone formation, 

using guided tissue regeneration combined with growth factors to treat furcation 

defects (Giannobile 1996).  Also, there is increasing evidence that growth 

factors alone or in combination with bone substitute materials can improve bone 

formation especially around dental implants (Giannobile 1996). 

 

The use of enamel matrix proteins derived from embryonic tooth germs is 

another technique becoming ever more popular in the regeneration of 

periodontal defects (Giannobile and Somerman 2003).   The main biological 

effects of enamel matrix derivatives (EMD’s) have been attributed to their 

predominant protein, amelogenin (Hughes et al. 2006).  Although clinically 
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successful, further discussion of the evidence regarding its use is outside the 

scope of this project. 

 

Notwithstanding the above biological advantages of combining growth factors 

and bone substitute materials there is a growing body of opinion that this may 

not be a practical approach in view of short half lives of the growth factor and 

need for costly supraphysiological concentrations (Lieberman et al. 2002; Lee et 

al. 2011).  The use of growth factors with Bio-Oss® in particular will be 

discussed in section 1.7.8. 
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1.7 Bio-Oss® 

 

1.7.1 Characterization of material 

 

Bio-Oss® is a grafting material that has been used as a bone substitute for 

several years.  Its use in the literature has been documented since the early 

1990’s.  Some confusion about the material is generated by the different terms 

that have been used to describe it.  These have included cancellous bovine 

bone mineral (Berglundh and Lindhe 1997), deproteinized bovine bone mineral 

(Araujo et al. 2009), anorganic bovine bone mineral (von Arx and Buser 2006), 

natural bone mineral (Tonetti et al. 2004) and bovine porous bone mineral 

(Molly et al. 2008).  The term Deproteinized Bovine Bone Mineral (DBBM) shall 

be used throughout this thesis. 

 

DBBM is commercially available in two main forms: Bio-Oss® granules and Bio-

Oss® collagen block.  Bio-Oss® granules consist of cancellous bone of bovine 

origin and Bio-Oss® collagen consists of Bio-Oss® granules with the addition of 

10% porcine collagen.  The manufacturing process of DBBM has been 

described by Schwartz et al (2000) and Tapety et al (2004).  The bone particles 

undergo treatment with a strong alkali and sintering at 300°C for 15 hours.  It is 

then treated with an organic solvent and sterilized (Schwartz et al. 2000; Tapety 

et al. 2004).  The manufacturers claim this eliminates any protein leaving only 

inorganic material. 

 

One of the suggested favourable qualities of DBBM is that its structure closely 

resembles human bone (Peetz 1997).  It contains wide interconnecting pores 

that acts as a scaffold and could promote migration and attachment of cells and 

vascularisation.  The pore size is variable with macropores of 300-1500 

microns, micropores corresponding to haversian canals and inter-crystalline 
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spaces of 3 – 13 nm.  In comparison to commercially available synthetic 

particulate grafts, it has a large internal surface area 100 m2 / g and porosity of 

70 -75% (Tapety et al. 2004). 

 

The clinical advantage of Bio-Oss ® collagen over Bio-Oss® granules lies in its 

handling characteristics, where it is possible to trim the material with scissors to 

fit the dimensions of periodontal or peri-implant defects.  Bio-Oss® granules are 

available in grain sizes of 0.25 – 1mm diameter or 1 – 2 mm which are designed 

for different clinical indications.  Figures 1.2 and 1.3 shows samples of Bio-

Oss® granules and Bio-Oss® collagen.   Bio-Oss® collagen is also supplied in 

a combination pack along with a resorbable collagen membrane called Bio-

Gide®.  This is composed of porcine collagen and is used to protect the 

granules or blocks in a variety of indications. Bio-Oss® is strongly hydrophilic 

and the particles stick to each other when combined with blood at the surgical 

site. 
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Figure 1.2 Bio-Oss® collagen block as supplied by manufacturer 

 

Figure 1.3 Bio-Oss® granules as supplied by manufacturer
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1.7.2 DBBM and guided tissue regeneration 

 

Guided tissue regeneration (GTR) is a surgical procedure that specifically aims 

to regenerate the periodontal tissues, when the disease is advanced (Nyman et 

al. 1982).  It is principally a form of tissue engineering attempting to control cell 

behaviour.  The contemporary technique involves the use of a resorbable 

membrane to exclude epithelial down growth, while bone and connective tissue 

regeneration occurs.  This can be supplemented by a variety of bone substitutes 

to fill the defect area.  The concept promotes the cells derived from the 

periodontal ligament as the first cells to colonise the root surface, thereby 

permitting new attachment.  A Cochrane systematic review has examined, 

amongst other things, the additional benefit of GTR with graft materials over 

open flap debridement (OFD) therapy and concluded there was a  significant 

benefit of GTR with bone substitutes, though the magnitude itself remains 

unclear (Needleman et al. 2005).  A contemporary application of the GTR 

technique involves the placement of DBBM usually in the form of Bio-Oss® 

collagen into the bony defect to support a collagen membrane (Bio-Gide®) to 

prevent epithelial down growth.  Several studies have shown the clinical benefits 

of Bio-Oss® in the management of intra-bony and furcation defects with short 

and long term follow-up.  Sculean et al performed a multi-centre randomised 

controlled trial showing results at 5 years.  The difference in clinical attachment 

level (CAL) gain was shown to be significantly higher (p<0.01) in the group that 

received Bio-Oss® (Sculean et al. 2007).  A clinical case treated by the author 

of the current thesis demonstrating the guided tissue regeneration technique, 

using Bio-Oss® and Bio-Gide®, is shown in Figures 1.4 to 1.6.    
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Figure 1.4 Three walled intrabony defect associated with the distal aspect of tooth 12 in a 

patient with localized severe chronic periodontitis 

 

 

Figure 1.5 Placement of Bio-Oss® collagen to fill the intrabony defect.   

 

 

Figure 1.6 Coverage of graft with a Bio-Gide® collagen membrane.  The surgical flap was 

closed with sutures. 
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1.7.3 DBBM and guided bone regeneration 

 

It is no longer acceptable for an implant simply to osseointegrate, but it is critical 

that aesthetic hard and soft tissue profiles develop adjacent to the implant.  

Depending on the implant system used, the minimum crestal width of bone from 

buccal to palatal is between 5 and 7 mm, which allows at least 1mm of bone 

surrounding the implant.  Where hard tissue is insufficient to achieve this goal, 

then bone augmentation becomes necessary.  This may be performed during 

implant placement or where more severe deficiencies are present as a separate 

“staged” procedure. Bio-Oss® granules have been used as a sole graft or in 

combination with autogenous bone to augment potential implant sites as an 

alternative to the traditional autogenous block graft (von Arx and Buser 2006).  

In an alternative approach, Hammerle described 12 consecutive cases where 

only Bio-Oss® and a collagen membrane (Bio-Gide®) were used to horizontally 

augment bone prior to implant placement in sites with insufficient bone width 

(Hammerle et al. 2008).  Implants were placed 9-10 months following 

augmentation and the authors commented that clinically, “integration” of Bio-

Oss® particles into newly formed bone was observed.  To promote passage of 

cells, particularly osteoprogenitors, crucial to the remodelling process, their 

methodology included perforating the host site cortical plates.  

 

The principle of guided bone regeneration (GBR) at the time of implant 

placement is similar to GTR, where space is provided for bone-forming cells to 

expand bone volume.  In this technique, only bone is laid down, in contrast to 

cementum and periodontal fibres in the GTR technique.  Most commonly, a 

membrane is placed between the soft tissue and bone surface, either on its own 

or supported by autogenous or bone substitute materials.  The membrane 

isolates the osseous site from the mucosal connective tissue, protects the clot, 

thus promoting osteoinduction (Mattout 2007).  DBBM either alone or in 

combination with autogenous bone chips, is becoming popular during 
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simultaneous grafting procedures using the principles of GBR.    In a 

comparative study in beagle dogs, 1.35mm circumferential defects with 5mm 

deep gaps surrounding implants were filled with either Bio-Oss® (0.25 – 1mm 

granules), autogenous bone or blood clot alone.  A control with conventional 

implant placement was also used (Abushahba et al. 2008).  Three months after 

placement, biopsies were taken and the distance from the top of the implant to 

first bone contact (FBIC) was significantly lower when either autogenous bone 

or Bio-Oss® was used, suggesting more bone deposition. There was a greater 

area of bone formation within the defects where a graft had been used; and their 

conclusion was that both autogenous bone graft and Bio-Oss® play an 

important role in hard tissue fill and osseointegration within marginal bone 

defects of 1.35mm.  Clinical experiments confirm the findings of the 

aforementioned animal study for the use of DBBM in GBR (Zitzmann et al. 

2001).  A case treated by the author of the current thesis where an implant was 

placed combined with a GBR procedure, is shown in Figures 1.7 – 1.12.   
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Figure 1.7 and 1.8 Developmentally absent permanent maxillary canines and associated 

reduction in bone width.   

 

  

Figure 1.9 and 1.10 Implant placement resulted in a labial fenestration that was managed 

with Bio-Oss® granules and a Bio-Gide® membrane.  
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Figure 1.11 and 1.12 Following a period of integration the implant was restored with a cement 

retained crown.  The figures show acceptable soft tissue architecture determined by the 

underlying bone volume.
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1.7.4 DBBM and maxillary sinus augmentation 

 

Over time, the maxillary sinus undergoes pneumatisation which reduces the 

available height for implant placement in the posterior maxilla.  One solution to 

this problem is maxillary sinus augmentation to facilitate the placement of dental 

implants following a period of healing.  This was first described by Boyne and 

James in 1980.  Their technique used autogenous bone and a lateral window 

approach to access the maxillary sinus cavity (Boyne and James 1980). 

 

A variety of bone substitute materials have been used for sinus augmentation, 

and DBBM can be used alone or mixed with autogenous bone in sinus grafting 

procedures.  Hürzeler performed a 5 year clinical study comparing a variety of 

bone substitute materials.  Although the subgroups were small, there were no 

differences noted between augmentation materials and the overall implant 

survival rate within augmented sinuses was 98.8%, which demonstrates the 

predictably of the procedure (Hurzeler et al. 1996).  Indeed, the predictability of 

implant survival within augmented sinuses has been confirmed by others 

(Aghaloo and Moy 2007).  The use of DBBM for this technique removes the 

necessity for harvesting bone from a second surgical site within the patient and 

therefore simplifies the procedure.  There is some evidence showing that the 

use of DBBM alone can be successful and that the addition of autogenous bone 

is unnecessary (Valentini and Abensur 2003) and this is supported by a recent 

Cochrane systematic review (Esposito et al. 2010). 
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1.7.5 DBBM and peri-implantitis 

 

Bio-Oss® has shown some promise in the management of bony defects as a 

result of peri-implantitis although this is not universally recommended (Lindhe 

and Meyle 2008).  A prospective, randomized study by Schwarz et al (2008) 

showed that Bio-Oss® granules may have a role in the treatment of moderate 

intrabony peri-implantitis defects.  Their sample included 22 patients, 11 of 

which received Bio-Oss® and Bio-Gide® treatment for defects with an intrabony 

component of 3 mm. The other 11 patients received an alternate graft material.  

The results demonstrated an approximate 2mm gain in clinical attachment level 

following treatment with DBBM at 24 months after surgery which was superior to 

the effect of the alternative graft material (Schwarz et al. 2008). 

 

1.7.6 DBBM and extraction socket preservation 

 

Following the extraction of teeth bone resorption will occur that can decrease 

residual bone volume horizontally and vertically. Two thirds of the resorption 

occurs in the first 3 months following tooth extraction (Schropp et al. 2003). 

In an attempt to reduce the dimensional changes of the residual ridge following 

tooth extraction, techniques in socket and ridge preservation utilizing DBBM 

have developed.  Techniques include the use of Bio-Oss® collagen or granules 

to support a gingival graft or collagen membrane as a space maintainer that 

should improve hard and soft tissue contour in the aesthetic zone.  The effect of 

Bio-Oss® on ridge preservation has been studied in animal and clinical studies 

(Nevins et al. 2006; Heberer et al. 2008; Araujo et al. 2009). These studies 

generally show the width of bone at the extraction sites suffers less reduction in 

dimension of the marginal bone tissue in the grafted group compared to the 

control group.  Although it is unlikely that DBBM increases bone formation within 

extraction sockets it does maintain site dimensions prior to implant placement. 
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Some clinicians are concerned that remaining graft material may interfere with 

bone deposition onto the implant surface, or it may promote overheating of the 

bone during the drilling procedure for the implant (Molly et al. 2008).  A clinical 

case treated by the author of the current thesis where a Bio-Oss® collagen 

block was placed within an extraction socket to preserve volume is shown in 

Figures 1.13-1.15.   
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Figure 1.13 Following extraction of tooth 23 with apical periodontitis and microdont 22 Bio-

Oss® collagen was immediately placed within the socket and the soft tissue sutured.  This 

photograph shows the situation after 2 weeks  

 

  

 

Figure 1.14 and 1.15  Following four months of healing good ridge width has been preserved 

facilitating implant placement. 
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1.7.7 DBBM and endodontic surgery 

 

 

Apical periodontitis is an inflammatory lesion of the periapical tissues as a result 

of necrosis and infection of the root canal system.  Although this is routinely 

treated with orthograde root canal treatment, a proportion of these treatments 

fail and surgical treatment may be necessary consistent with accepted 

guidelines (European Society of Endodontology 2006; Wu et al. 2006).  Surgical 

treatment involves the curettage of inflammatory and potentially cystic tissue 

that often leaves a large residual bony defect.  If the defect involves crestal 

bone loss, the prognosis of the procedure is known to be poor (Skoglund and 

Persson 1985).  One method of managing these lesions is with the GTR 

procedure, although long term evidence to support this treatment concept is 

lacking (Lin et al. 2010; Tsesis et al. 2011).  Indeed, a recent review on the topic 

concluded that GTR may improve the bony regeneration of certain defects 

during endodontic surgery, but that large scale clinical trials are needed to 

demonstrate additional benefits (Tsesis et al. 2011).  A case treated by the 

author of the current thesis, is shown in Figures 1.16 – 1.19 and demonstrates 

the use of Bio-Oss® Collagen in the augmentation of a bone defect during 

endodontic surgery.     
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Figure 1.16 and 1.17 Tooth 11 demonstrates a lateral perforation, following the placement of 

a post crown, unsuccessfully repaired through an orthograde approach.  After the elevation of a 

mucoperiosteal flap the inflammatory lesion was curetted. 

 

   

Figure 1.18 and 1.19  The perforation was repaired with BioDentine® (Septodont) and the 

lateral and crestal bony defect was repaired with Bio-Oss® collagen and a Bio-Gide® 

membrane. 
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1.7.8 Modifications of DBBM with growth factors 

 

Modification of the commercially available forms of Bio-Oss® with growth factors 

has been carried out to improve the osteoinductive properties of the material.  

One case series reports on the use of Bio-Oss® to preserve extraction sockets 

where the Bio-Oss® is combined with recombinant human PDGF (Nevins et al. 

2009). No membrane was used in this report to protect the DBBM, but primary 

closure was achieved with mucoperiosteal flap advancement and sutures.  

Implants were placed in half of the subjects at 4 months following extraction and 

the other half at 6 months following extraction.  Although the authors concluded 

that the Bio-Oss® with PDGF up-regulated bone metabolism, since there was 

no control group it was not possible to quantify improvements in ridge 

preservation, as compared to no Bio-Oss® treatment.  Further, the remaining 

particles of Bio-Oss® collagen demonstrated demineralization lines on the 

surface in intimate contact with multinucleate giant cells which is suggestive of 

active remodelling (Nevins et al. 2009).  BMP-2 is also currently being 

investigated in combination with a deproteinized bovine bone mineral.  Human 

histomorphometric studies have demonstrated increased bone to graft contact 

with the addition of BMP-2 over control (Jung et al. 2008b). It is the potential of 

growth factors to up-regulate osteogenic wound healing that merits further 

investigation.  
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1.8 Aims of research 

 

1.8.1 Introduction 

 

This research aims to investigate if there are methods for enhancing further the 

clinical performance of DBBM, by promoting faster healing. The results arising 

from this project are intended to form the early stages of a process to establish 

modified clinical protocols to enhance the properties of DBBM in implantology 

and periodontology. 

 

1.8.2 Hypothesis 

 

Endogenous growth factors bound in the bone matrix of DBBM can be released 

from the bone mineral by pre-treatment with calcium hydroxide or EDTA.  The 

released growth factors will provide optimised signalling potential to stimulate 

recruitment of progenitor stem cells to the site of injury and provide the 

osteoinductive signals to promote bone formation. 

 

1.8.3 Research questions 

 

DBBM may contain the “ideal” cocktail of growth factors to promote bone repair 

within its bone matrix. Through a series of in vitro studies to investigate growth 

factor release and cellular behaviour, this research intends to investigate the 

application of calcium hydroxide and EDTA to mobilise growth factor stores from 

the matrix of DBBM. Specifically the following questions will be answered: 

1. Does the chemical pre-treatment of DBBM increase growth factor release 

from the substitute? 

2. How does DBBM or its extracted components influence cell behaviour in 

a tissue culture model? 
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Chapter 2 

 

Characterisation of protein content of 

Demineralised Bovine Bone Mineral following 

extraction by chemical pre-treatment 
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2.0 Introduction 

 

 

Bio-Oss®, or demineralised bovine bone mineral (DBBM), has been used 

extensively in the management of the consequences of periodontal disease and 

is used during the placement of dental implants.  It is now clear there is 

conflicting research reporting on the protein content within DBBM.  Moreover, 

investigation is required to identify if residual protein is in the form of growth 

factors, which may be released by chemical pre-treatment.  

  

Bio-Oss® collagen blocks clearly contain protein of porcine origin, as described 

in chapter 1. However, there have been conflicting reports in the literature on 

whether Bio-Oss® granules themselves contain any residual protein.  The 

majority of the literature states that all the protein is removed by the pre-

treatment procedures explained in chapter 1 section 1.7.1 (Tapety et al. 2004). 

This pre-treatment performed by the manufacturers includes the treatment with 

a strong alkali, followed by sintering at 300°C for 15 hours.  It is then treated 

with an organic solvent and sterilized (Tapety et al. 2004).  The manufacturers 

claim this eliminates any protein leaving only inorganic material; however it is 

unlikely that an alkali alone will be sufficient to extract all residual proteins.  

Hallman and Thor suggest that the proteins in deproteinized bovine bone 

mineral have been extracted by the manufacturer to avoid immunologic rejection 

after implantation  (Hallman and Thor 2008). They also state that the absence of 

protein results in DBBM losing any osteoinductive properties, this certainly 

suggests it behaves only as an osteoconductive scaffold (Hallman and Thor 

2008).  

 

Benke et al were amongst the first to carry out protein chemical analysis of 

DBBM in 2001 and concluded that it contained no protein to any measurable 

extent (Benke et al. 2001). Following chemical extractions, this group performed 
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SDS-PAGE, silver staining and also Western blotting, but failed to demonstrate 

proteins. In contrast, when this group used Coomassie blue to stain Bio-Oss® it 

resulted in an intense irreversible stain that the authors attributed to carbonate 

content rather than protein.  The results of this study obviously also allows the 

conclusion that protein is actually present, but in amounts that are difficult to 

measure.  Indeed, this group used a protein assay with detection limit of 0.25µg 

and so it is noteworthy that the ability to detect residual protein within DBBM is 

linked to the sensitivity of the technique used.  Contradictory evidence is also 

available that demonstrates residual protein within Bio-Oss® granules.  In 1999, 

Honig briefly reported on a single case of a failed Bio-Oss® spongiosa block 

graft.  This graft had failed 10 months following placement.  Following removal 

of the graft, it was analysed using polarisation microscopy.  The graft stained 

positive with Comassie Blue stain which identified the presence of proteins 

within the failed graft.  Obviously, the source of the protein could be due to 

protein deposition from the host and not protein within the graft itself.  

Nevertheless, the authors warned that residual protein could lead to 

transmission of Creutzfeldt-Jakob disease (CJD) or other infections (Honig et al. 

1999). 

 

A key study by Schwartz et al in 2000 further analysed the protein content of 

DBBM (Schwartz et al. 2000). They used laboratory based protein analysis 

techniques and suggested a small amount of residual protein may be present, 

but importantly, closely associated with the mineral phase.  Using 

spectrophotometry, they demonstrated 11µg/g protein content and positive 

staining with silver stain.  They were able to demonstrate via Western blot 

analysis the protein in the form of TGF-β and BMP-2 in DBBM particles 

(Schwartz et al. 2000). It is important to realise that this demonstration of protein 

does not mean that it is in an active form.   

 

Another approach to the detection of protein is to use tissue culture techniques.  

Taylor et al concluded that residual protein may be present in DBBM following 
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the culturing of rabbit osteoclasts directly on a variety of bone substitutes, 

including DBBM.  This group identified residual nitrogen content of between 

0.17 – 0.47% within DBBM samples, although this was reduced compared with 

normal bovine bone controls (6.01 – 9.25%).  They also identified collagen type 

1 using antibody staining on the surface of DBBM after osteoclast activity, 

although this could have been laid down by the tissue culture cells (Taylor et al. 

2002). 

 

Taken together, there is evidence stating that residual proteins may be present 

in DBBM particles, in the form of Bio-Oss® granules, and therefore the material 

may be osteoinductive (Honig et al. 1999; Schwartz et al. 2000; Taylor et al. 

2002), however there is also evidence reporting that DBBM is devoid of organic 

matter and therefore is only osteoconductive (Açil et al. 2000; Benke et al. 2001; 

Norton et al. 2003; Hallman and Thor 2008).  Norton et al recognised that 

further studies are required, as it remains unclear whether proteins are present 

in DBBM (Norton et al. 2003).  In contrast, there is a lack of existing evidence 

analysing specifically the nature of the protein content of DBBM in its other form, 

namely Bio-Oss® collagen.  Indeed, the body of research has focussed on the 

original material in the form of Bio-Oss® granules.  Although it is expected that 

Bio-Oss® collagen will contain protein, more detailed investigation is required to 

establish if it too contains bioactive molecules.  This is likely, as it has been 

suggested by others that bioactive molecules can be sequestered along with 

proteoglycans closely associated with the collagen network within the 

extracellular matrix of mineralised tissues (Schonherr and Hausser 2000; Baker 

et al. 2009; Smith et al. 2011).  It is clearly important to determine whether 

residual protein is present in DBBM, as this may help determine whether it 

behaves as an osteoconductive or osteoinductive material. 

 

In light of the aforementioned conflicting evidence, the characterisation of 

residual protein potentially in the form of growth factors within DBBM, merits 

further investigation and will be a focus of this research project. It is evident that 
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the protein content within Bio-Oss® granules themselves may be low, but 

sufficient to be bioactive, therefore the aim of this chapter was to demonstrate 

and characterise protein in DBBM.  In view of the challenges that some groups 

have faced in demonstrating residual protein, a carefully chosen extraction 

protocol was developed.  In this chapter, experimental techniques were used to 

determine whether protein is trapped in the mineral phase and can therefore be 

demineralised with hydrochloric acid, or ethylenediaminetetraacetic acid or 

extracted with calcium hydroxide.  Bioactive components were extracted from 

the substitute using either 0.02M Ca(OH)2, 10% EDTA or 0.5M HCl. Subsequent 

extracts were analysed by sodium dodecyl sulphate polyacrylamide gel 

electrophoresis (SDS PAGE) and Western Blot analysis for molecules known to 

be important in regulating bone regeneration, specifically TGF-β1.  

 

 

2.1 Materials and Methods 

 

2.1.1 Extraction protocol 

 

 

DBBM samples were prepared by weighing 5 grams of Bio-Oss® granules (Lot 

080305, 080374, Geistlich Pharmaceuticals) and 1000mg of Bio-Oss® Collagen 

(Lot 070522, 080425, Geistlich Pharmaceuticals).  Accurate samples were 

obtained in triplicate using an electronic balance.  Double distilled water (DDW) 

was used throughout the experiments, with ultrapure water (UPW) being used 

where stated. 

 

To each Bio-Oss® granules or Bio-Oss® Collagen sample was added either 

150ml of 0.5M HCl (Fisher Scientific), 150ml of 0.02M Ca(OH)2 (Fisher 

Scientific) pH 11.7 or 150mls of 10% EDTA (Fisher Scientific) pH 7.2.  These 

extraction solutions contained protease inhibitors, 5mM 
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phenylmethanesulfonylfluoride (PMSF) (Sigma-Aldrich, UK) and 10 mM n-ethyl 

maleimide (NEM) (Sigma-Aldrich, UK).  A final extraction solution was used on 

all 6 samples following treatment with either HCl, Ca(OH)2 or EDTA.  This final 

solution contained 4M guanidinium chloride (GuCl) (Fisher Scientific), 50mM 

tris(hydroxymethyl)methylamine (Tris) (Fisher Scientific) pH 7.4. All pH 

adjustments were carried out using a pH meter by adding either concentrated 

HCl or NaOH.  

 

The Bio-Oss® granules and Bio-Oss® collagen samples were extracted in the 

HCl solution for 24 hours, and the EDTA and Ca(OH)2 solutions for 48 hours at 

a constant temperature of 4°C, with continuous agitation with a magnetic stirrer.  

Following 24 or 48 hours, the soluble fractions were decanted after 

centrifugation for 15 minutes at 4000 rpm.  Samples were nominated as either 

HCl, Ca(OH)2 or EDTA “Extraction 1” for each sample and stored at -20°C for 

later volume reduction.  The insoluble fractions were re-suspended in 4M GuCl, 

50mM Tris, 5mM PMSF and 10 mM NEM, pH 7.4 for 18 hours at 4°C.  The 

soluble fractions were again removed after centrifuging for 15 minutes at 

4000rpm and stored at -20°C as HCl, Ca(OH)2 or EDTA “Extraction 2” for each 

sample.  The remaining undisolved samples were also stored. This extraction 

protocol is summarized in figure 2.1. 
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2.1.1.1 Buffer Exchange 

 

The extraction process produced 12 extract solutions which were subsequently 

concentrated.  The volume of each was reduced to approximately 10ml with the 

use of 15ml Amicon ultra centrifugal filter devices (Millipore, UK) and the 

solutions were buffer exchanged with DDW.  This process of ultrafiltration 

reduces the volume overall.   The solutions were continuously suspended in the 

spin columns within a centrifuge at 3500rpm for 30 minutes and the waste 

pipetted from the column. This resulted in a concentrated sample.  The HCl, 

Ca(OH)2  and EDTA DBBM extracts were stored at -20oC, prior to use.  These 

extracts were subsequently analysed by protein analysis, SDS-PAGE and 

Western Blot analysis. 
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Figure 2.1 DBBM Extraction protoocol followed to release residual proteins 
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2.1.2 Protein Analysis 

 

 

2.1.2.1 BCA assay 

 

The bicinchoninic acid (BCA) assay (Pierce, UK) was used to determine the 

total concentration of protein within the extract solutions.  A series of standards 

was prepared from bovine serum albumin (BSA) at a concentration of 0 – 2000 

μg/ml, to produce a calibration curve against which the concentration of protein 

in the sample could be quantified.  Using a 96 well plate, 10 μl of the test 

solution was added to 190 μl of BCA buffer and the degree of colour change 

was measured after 30 minutes following incubation at 37°C, using a Microplate 

reader (Bio-Tek Instruments Limited) by measuring the absorbance at 570nm.   

A control well contained water in place of extract sample.  

 

 

2.1.2.2 Concentration of samples 

 

Based on the results of the BCA assay (see section 2.2.2), the HCl extracted 

samples were further concentrated prior to analysis with SDS-PAGE.  

Concentration was carried out via a process of lypophilization.   The extract 

solutions produced from Bio-Oss® granules (Extract 1 and 2) were concentrated 

by a factor of 10, by freeze drying 500 μl and reconstituting it in 50 μl of water.  

The extract solutions from Bio-Oss® collagen (Extract 1 and 2) were 

concentrated by a factor of 4 by freeze drying 200 μl and reconstituting in 50 µl 

of water.  Different concentration factors were used, since the BCA assay had 

demonstrated a detectable protein concentration in the Bio-Oss® collagen 

extraction samples only and not in the Bio-Oss® granules.  Therefore, it was not 

possible to equalize the protein concentrations.  
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2.1.3 SDS-PAGE 

 

 

Proteins were separated from the extract samples by sodium dodecyl sulphate 

polyacrylamide gel electrophoresis (SDS – PAGE).  SDS – PAGE was 

performed using NuPage Novex 4 - 12% Bis Tris mini gels (Invitrogen, UK).  

Prior to placement in the electrophoresis tank (XCell 2 blotting module, 

Invitrogen UK), the gels were washed thoroughly with DDW, the electrode 

exposed and the plastic comb removed from the gel cartridge.  200 ml of 

running buffer (NuPage MES SDS running buffer, Invitrogen, UK) containing 

500 μl of antioxidant (NuPage, Invitrogen, UK) was prepared in the inner 

chamber of the electrophoresis tank and 300ml of running buffer alone prepared 

in the outer chamber.  12μl of each extract sample, 3μl of LDS sample buffer 

(NuPage, Invitrogen, UK) and 1.5μl of sample reducing agent (NuPage, 

Invitrogen, UK) were heated at 70 °C for 10 minutes and centrifuged for 1 

minute at 3000 rpm before and after thermal treatment.  The prepared samples 

were loaded into the gel along with 10μl of a molecular weight marker (See Blue 

Plus 2 Pre-stained Standard, Invitrogen, UK) in a separate well.  The pre-

stained marker contains 10 pre-stained bands and allows visualization of 

molecular weights.  The gels were electrophoresed for 35 minutes at 200V, 

120mA.   Upon completion, the gels were either silver stained or processed for 

Western Blot analysis. 

 

 

2.1.3.1 Silver Staining 

 

Prior to silver staining with the Color Silver stain Kit (Pierce Biotechnology Inc), 

the gels were fixed with 5 ml 5% acetic acid and 50 ml 50% alcohol for 1 hour.  

Fixation was complete when each gel ceased to shrink.  The gels were washed 

with 4 changes of ultrapure water for 40 minutes per change, until they returned 
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to their original dimensions.  The gels were incubated in the silver working 

solution for 30 minutes, followed by a 20 second rinse.  The gels were then 

incubated in the reducer working solution for 5 minutes (prepared by mixing the 

reducer aldehyde and reducer base working solutions immediately before use).  

Following a 5 second water rinse, each gel was incubated at room temperature 

in the stabilizer working solution for a further 60 minutes.  After the application of 

each solution, the gels were agitated using a platform shaker.  Upon completion 

of the staining procedure, the gels were visualized on a white light box and 

photographed.  

 

 

2.1.4 Electroblotting 

 

 

Electroblotting was performed using unstained gels loaded with each extract 

sample, as described in section 2.1.3.  Individual proteins were detected 

following their transfer to a nitrocellulose membrane and incubation with 

appropriate primary and secondary antibodies conjugated to horseradish 

peroxidise, as detailed below.   

Gels were electrophoresed initially for 35 minutes at 200V, 120mA using the 

electrophoresis tank.  The gel was placed in a blotting box adjacent to a 

nitrocellulose membrane (Hybond ECL, GE Healthcare) and sandwiched 

between 4 foam sponges and 4 filter paper layers, all soaked in NuPage 

transfer buffer (20X) (Invitrogen, UK).  The blotting box was placed inside the 

electrophoresis tank filled with NuPage transfer buffer (20X).  A NuPage 

Western blot cycle was run for 1 hour at 25V and 160mA.  Following completion 

of the cycle, the filter paper and the gel were discarded and the membrane 

retained and stored in TBS, prior to analysis. 
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2.1.4.1 Ponceau staining 

 

Ponceau staining was performed to detect protein on the nitrocellulose 

membrane produced using the HCl extracted components.  The membrane was 

soaked in Ponceau stain (0.1% Ponceau in 5% acetic acid) for 3 minutes with 

gentle agitation.  The stain was poured off and the membrane rinsed with TBS, 

prior to inspection.  Ponceau will adhere to proteins transferred to the 

membrane resulting in red banding.  Following use, a destaining procedure was 

performed prior to Western blotting by submerging the membrane in DDW until 

all traces of stain were removed. 

 

 

2.1.4.2 Immunodetection 

 

Nitrocellulose membranes were stained for the presence of protein following 

transfer.  All experiments used primary antibodies and secondary antibodies, 

conjugated with horseradish peroxidase (HRP) enzyme and were detected via 

enhanced chemiluminescence (ECL).  Antibodies were prepared to the 

appropriate concentration (Table 2.1) using 5% TBS nonfat dried milk.  Prior to 

staining with antibodies, the membranes were blocked overnight with 5% TBS 

milk.  Milk contains casein which can bind to nonspecific proteins to reduce the 

likelihood of non specific binding.  The following day, the milk was poured off 

and the membrane incubated with primary antibody and agitated for 1 hour on a 

platform shaker.  The membrane was washed 3 times for 5 minutes with 5% 

Tween / TBS to remove unbound primary antibody.  The secondary antibody 

was added and agitated for 1 hour followed by 3 further washes with 5% Tween 

/ TBS. 

 

Immunoreactivity was detected using ECL Plus Western Blot Detection 

Reagents (Amersham Biosciences, Amersham, UK).  Following staining with the 

appropriate antibodies, the membrane was treated using the ECL Plus Western 
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Blot Detection Reagent for 3 minutes with agitation.  Following this stage, the 

membrane was drip dried, wrapped in saron wrap and placed face up inside a 

radiographic cassette and secured with insulation tape.  In the dark room, 

radiographic film was placed in the radiographic cassette for various time 

intervals, ranging from 30 seconds to 10 minutes, depending on the intensity of 

the staining observed. 

 

As a negative control, the primary antibody was replaced with an IgG isotype 

control that was diluted to the working concentration of the primary antibody.  

Membranes were also stained after the primary antibody was pre-incubated 

overnight with a 10 fold excess of the TGF-β1 blocking peptide.  The antibody 

bound to the blocking peptide should no longer be available for binding to the 

protein on the membrane.  This procedure was used to identify nonspecific 

binding. 
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 Antibody name Antibody 

Source 

Dilution 

TGF-β1 primary Anti-TGF-β1 (v) 

Rabbit polyclonal 

IgG 

Santa Cruz 

Sc 146 

1:200 – 1:2000 

TGF-β1 

secondary 

Polyclonal swine 

anti-rabbit IgG 

HRP 

Dako 1:2000 -  1:10000 

TGF-β1 

Blocking peptide 

TGF-β1 (v) P 

Blocking peptide 

Santa Cruz 

Sc 146p 

10 X primary 

antibody 

concentration 

Non-immune IgG 

(Isotype control) 

Rabbit IgG Santa Cruz Same 

concentration as 

primary 

Fetuin A primary Anti Fetuin-A 

goat polyclonal 

IgG 

Santa Cruz 

Sc 9663 

1:200 

Fetuin A 

secondary 

Donkey anti-goat 

IgG HRP 

Santa Cruz 

Sc 2020 

1:2000 

 
 

Table 2.1 Details of antibodies used during Western blotting 
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2.2 Results 
 

 

2.2.1 Extraction solutions 

 

At the end of the extraction process, the following 12 solutions were produced 

as described in figure 2.1: 

 

 Bio-Oss® Granules Extract 1 HCl treatment only 

Extract 2 HCl and GuCl, Tris treatment 

 

 Bio-Oss® Collagen Extract 1 HCl treatment only 

Extract 2 HCl and GuCl, Tris treatment 

 

 Bio-Oss® Granules Extract 1 Ca(OH)2 treatment only 

Extract 2 Ca(OH)2 and GuCl, Tris treatment 

 

 Bio-Oss® Collagen Extract 1 Ca(OH)2 treatment only 

Extract 2 Ca(OH)2 and GuCl, Tris treatment  

 

 Bio-Oss® Granules Extract 1 EDTA treatment only 

Extract 2 EDTA and GuCl, Tris treatment 

 

 Bio-Oss® Collagen Extract 1 EDTA treatment only 

Extract 2 EDTA and GuCl, Tris treatment  
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2.2.2 BCA assay 

 

BCA assay was performed on the extract samples to determine protein content.  

The protein concentration within each sample was determined from the 

standard curve shown in Figure 2.1, by reading the absorbance value for each 

solution following subtraction of control.  The protein content of the HCl 

extracted components are shown in Table 2.2.  Analysis of these results 

demonstrated undetectable protein in the Bio-Oss® granules sample (Extract 1 

and 2).  The Bio-Oss® Collagen samples treated with HCl only (Extract 1) 

demonstrated a protein concentration of 132 μg /ml.  Following further extraction 

with GuCl / Tris solution (Extract 2), the protein concentration increased to 955 

μg/ml (Table 2.2).  On the basis of these results, all HCl extract solutions were 

concentrated as described in section 2.1.2.2, prior to SDS-PAGE.  Protein was 

undetectable in other extract solutions. 
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Figure 2.1 Standard curve demonstrating relationship of protein standard and BCA 

absorbance values. 

 

 

  Control Bio-Oss 

Granules 

Extract 1 

Bio-Oss 

Granules 

Extract 2 

Bio-Oss 

Collagen 

Extract 1 

Bio-Oss 

Collagen 

Extract 2 

 First 
experiment 

0.086 0.087 0.085 0.153 0.482 

Absorbance 

values 

Repeat 
experiment 

0.084 0.088 0.087 0.152 0.491 

 Mean 0.085 0.088 0.086 0.153 0.487 

Protein 

Concentration 

(µg/ml) 

   
0 

 
0 

 
132 

 
955 

 

Table 2.2 Protein content of Bio-Oss® granules and Bio-Oss® Collagen following 

extraction with HCl (Extract 1) followed by GuCl and Tris (Extract 2).  Table demonstrates BCA 

absorbance values and protein concentration as calculated using graph 2.1.  
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2.2.3 SDS-PAGE with silver stain 

 

To determine the protein profile present in the extraction solutions, SDS-PAGE 

was performed. Figures 2.2 to 2.4 illustrate the banding pattern revealed by 

silver staining of the extraction solutions.  Silver banding is present in both the 

concentrated and neat solutions of the Bio-Oss® granules Extract 1 and 2 

groups, following treatment with HCl.  Strong banding is present at 

approximately 62 kDa and fainter banding at 98 kDa.  In the Bio-Oss® collagen 

samples, there were no distinct bands only non distinct streak-like staining 

(Figure 2.2).  It is clear from the figure that a similar level of staining was 

detected in both neat and concentrated extraction components.  In view of this 

finding, SDS-PAGE was only subsequently performed on neat extracted 

components from EDTA and Ca(OH)2 solutions without an additional 

concentration procedure. 

 

Figure 2.3 shows the silver staining profile following extraction with Ca(OH)2.  

SDS-PAGE revealed silver stained banding in Bio-Oss® granules Extract 1 and 

2 and Bio-Oss® collagen Extract 1, after treatment with Ca(OH)2.  Strong 

banding was detected at 62 kDa.  Streak like staining was detected in the Bio-

Oss® collagen extract 2 after calcium hydroxide and GuCl / Tris treatment 

(Figure 2.3).  This pattern was similar in Bio-Oss® samples treated with EDTA 

with the most intense banding in the Bio-Oss® granules Extract 2 after EDTA 

and GuCl / Tris treatment (Figure 2.4). 

 

 

2.2.4 Ponceau Staining 

 

Figure 2.5 demonstrates that Ponceau staining was unable to detect any distinct 

banding in any of the extracts following treatment with HCl.  Only streak like 

staining was detected on the membrane throughout the molecular weight range 

in Bio-Oss® collagen Extract 2 following GuCl / Tris treatment (Figure 2.5). 
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Figure 2.2 SDS PAGE and silver stain of HCl extracted components (Typical gel). Lane 1 

molecular weight marker, lane 2 Bio-Oss® granules Extract 1, Lane 3 Bio-Oss® granules 

Extract 2, Lane 4 Bio-Oss® collagen Extract 1, Lane 5 Bio-Oss® collagen Extract 2.  Lanes 6 – 

9 were loaded with concentrated solutions in the same order as lane 2 to 5. 

 

 

 

Figure 2.3 SDS PAGE and silver stain of Ca(OH)2 extracted components (Typical gel).  

Lane 1 molecular weight marker, Lane 2 Bio-Oss® granules Extract 1, Lane 3 Bio-Oss® 

granules Extract 2, Lane 4 Bio-Oss® collagen Extract 1, Lane 5 Bio-Oss® collagen Extract 2.   
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Figure 2.4 SDS PAGE and silver stain of EDTA extraction components (Typical Gel).  Lane 

1 molecular weight marker, lane 2 Bio-Oss® granules Extract 1, Lane 3 Bio-Oss® granules 

Extract 2, Lane 4 Bio-Oss® collagen Extract 1, Lane 5 Bio-Oss® collagen Extract 2.   

 

       

Figure 2.5 Staining patterns following Ponceau staining of nitrocellulose membrane after 

transfer of HCl extraction components.  Lane 1 molecular weight marker, Lane 2 Bio-Oss® 

granules Extract 1, Lane 3 Bio-Oss® granules Extract 2, Lane 4 Bio-Oss® collagen Extract 1, 

Lane 5 Bio-Oss® collagen Extract 2.   
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2.2.5 Western blot analysis 

 

Western blot analysis was used to demonstrate immunoreactive protein on 

nitrocellulose membranes.  Figure 2.6 demonstrates immunoreactivity using 

antibodies for TGF-β1 in all extracts following treatment with HCl, apart from Bio-

Oss® collagen Extract 2.  There was an intense band present at approximately 

62kDa and a less intense band at 98kDa.  The intensity of the band was 

strongest in extracts recovered from Bio-Oss® granules Extract 1 and Bio-Oss® 

collagen Extract 1, after only HCl treatment and not with guanidinium chloride 

treatment (Figure 2.6).  Western blot analysis following overnight pre-incubation 

with TGF-β1 blocking peptide continued to demonstrate immunoreactive protein 

at 62kDa following treatment with HCl, but importantly with less intensity (Figure 

2.7) 

 

Figure 2.8 demonstrates Western blot analysis of the Ca(OH)2 extracts 

revealing immunoreactivity for TGF-β1 in all extract groups.  Banding at 62kDa 

was particularly intense in the Bio-Oss® collagen Extract 1 prior to further 

suspension in GuCl / Tris.  Following pre-incubation with the blocking peptide, 

the intensity of the banding decreased in all Ca(OH)2 extract groups and 

disappeared in the Bio-Oss® collagen Extract 1 (Figure 2.9). 

 

Western Blot analysis of the EDTA extracts revealed immunoreactivity for TGF-

β1 in all extract groups, except Bio-Oss® collagen Extract 2 (Figure 2.10).  

Intense staining was present at 62kDa with slightly less intense staining in 

98kDa.  Following pre-incubation with the blocking peptide banding was only 

reduced significantly in the Bio-Oss® granules Extract 2 group (Figure 2.11).  

Interestingly, with the blocking peptide a band at 62kDa appeared in Bio-Oss® 

collagen Extract 2 which had not appeared when the blocking peptide had not 

been used. 
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Figure 2.12 demonstrates the negative control when non-immune IgG replaced 

the primary antibody.  Western blotting failed to demonstrate immunoreactive 

proteins in the HCl, Ca(OH)2 or EDTA derived samples using non-immune IgG 

(Figure 2.12).   

 

Western blot analysis was unable to demonstrate immunoreactivity using 

antibodies for Fetuin A in extracts produced following treatment with HCl (Figure 

2.13). 
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Figure 2.6 Western blot analysis for immunodetection of TGFβ1 after HCl extraction. Lane 

1 Bio-Oss® granules Extract 1, Lane 2 Bio-Oss® granules Extract 2,  Lane 3 Bio-Oss® collagen 

Extract 1, Lane 4 Bio-Oss® collagen Extract 2.   

 

 

 

 

Figure 2.7 Western blot analysis following overnight incubation with TGFβ1 blocking 

peptide after HCl extraction. Lane 1 Bio-Oss® granules Extract 1, Lane 2 Bio-Oss® granules 

Extract 2,  Lane 3 Bio-Oss® collagen Extract 1, Lane 4 Bio-Oss® collagen Extract 2.   
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Figure 2.8 Western blot analysis for immunodetection of TGFβ1 after Ca(OH)2 extraction. 

Lane 1 Bio-Oss® granules Extract 1, Lane 2 Bio-Oss® granules Extract 2,  Lane 3 Bio-Oss® 

collagen Extract 1, Lane 4 Bio-Oss® collagen Extract 2.   

 

 

 

Figure 2.9 Western blot analysis after overnight incubation with TGFβ1 blocking peptide 

after Ca(OH)2.  Lane 1 Bio-Oss® granules Extract 1, Lane 2 Bio-Oss® granules Extract 2,  Lane 

3 Bio-Oss® collagen Extract 1, Lane 4 Bio-Oss® collagen Extract 2.   
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Figure 2.10 Western blot analysis for immunodetection of TGFβ1 after EDTA extraction. 

Lane 1 Bio-Oss® granules Extract 1, Lane 2 Bio-Oss® granules Extract 2,  Lane 3 Bio-Oss® 

collagen Extract 1, Lane 4 Bio-Oss® collagen Extract 2.   

 

 

Figure 2.11  Western blot analysis after overnight incubation with TGFβ1 blocking peptide 

after EDTA.  Lane 1 Bio-Oss® granules Extract 1, Lane 2 Bio-Oss® granules Extract 2,  Lane 3 

Bio-Oss® collagen Extract 1, Lane 4 Bio-Oss® collagen Extract 2.   
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Figure 2.12 Western blot analysis following substitution of primary antibody with non-

immune IgG. Membranes were produced using a) HCl extracted components, b) Ca(OH)2 

extracted components and c) EDTA extracted components of DBBM.

a) 

b) 

c) 
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Figure 2.13 Western blot analysis for immunodetection of Fetuin A using HCl extracted 

components of DBBM 
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2.3 Discussion 

 

 

This chapter provides evidence that there may be small amounts of residual 

protein in Bio-Oss® granules, that although not detectable by BCA assay, can 

be demonstrated using SDS-PAGE and Western blotting.  This chapter has for 

the first time examined the nature of residual proteins within Bio-Oss® collagen 

block, in addition to Bio-Oss® granules. 

 

The bicinchoninic acid assay (BCA) was used to determine the total 

concentration of protein within the extraction solutions.   The results in this 

chapter show that only the Bio-Oss® collagen samples demonstrated detectable 

protein levels using the BCA assay.  This is unsurprising considering that during 

the manufacture process 10% porcine collagen is added to the DBBM particles.  

When performed on Bio-Oss® granules, the BCA assay failed to detect protein.  

These results contrast with that of Schwartz et al 2000 who were able to detect 

protein at 11µg/g in Bio-Oss® granules based on absorbance of 280nm 

(Schwartz et al. 2000).  Indeed, difficulty in detecting protein at a measurable 

level has also been reported by other research groups (Benke et al. 2001).  It 

would appear from the present project that it is difficult to measure protein 

concentration within DBBM using certain assay techniques.    

 

SDS – PAGE is a method for analyzing proteins that separates them based on 

their size.   Silver staining is 5 – 200 fold more sensitive than another stain, 

Coomassie Blue, and is able to detect bands containing less than 1-2ng of 

protein, according to the manufacturers of the staining kit.   Conventionally, 10 

µg of protein are used for experimental techniques involving gels and blotting.  

In this chapter, it was not possible to equalize the proteins in each sample to a 

known concentration prior to loading gels, since the BCA assay had failed to 

record a protein level in the Bio-Oss® granules groups.   The results for silver 
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staining in this chapter demonstrated clear bands at 62kDa in both neat and 

concentrated solutions from HCl extracted components of Bio-Oss® granules.  

Fainter banding was also detected at 98kDa.  In the extracts produced by both 

Ca(OH)2 and EDTA, similar banding was detected at 62kDa.  Staining at this 

molecular weight was only detected in the Bio-Oss® collagen Extract 1 after 

Ca(OH)2 treatment alone.  The remaining Bio-Oss® collagen extracts failed to 

demonstrate a distinct band which is possibly a reflection of the denaturing of 

the collagen network following the extraction process.  The ability of extracts to 

stain positively with silver staining mirrors the results of Schwartz et al 2000 who 

demonstrated particularly intense staining in Bio-Oss® granules, following 

extraction with EDTA and guanidinium chloride (Schwartz et al. 2000).  

However, this group also point out that silver stain bands may be produced by 

binding to phospholipids which means that silver staining alone is only 

suggestive of protein.  Ponceau staining was also used as it is a relatively fast 

method of identifying proteins once transferred to a nitrocellulose membrane 

during the electroblotting process.    The benefits of the stain are that it is rapid, 

reversible and can be washed off prior to Western blotting; however the 

technique is non-specific.  In this chapter, Ponceau staining failed to detect 

protein in the HCl extraction group and was not used further. This appears to 

confirm the dependence of technique sensitivity on the detection of protein 

within DBBM. 

 

Western blotting was used to demonstrate specific proteins.  It is a technique for 

protein analysis whereby fractionated proteins are transferred via a current to a 

nitrocellulose membrane and detected using monoclonal and polyclonal 

antibodies.  Primary antibodies bind to the protein under investigation and 

secondary antibodies are active against the primary antibodies.  This binding 

can be detected using enhanced chemiluminescence. The results in this chapter 

show that following incubation with TGF-β1 antibody, immunoreactivity occurred 

at approximately 62 kDa in all the Bio-Oss® granules extracts following 

treatment with HCl, EDTA and Ca(OH)2 which may suggest the presence of this 
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growth factor within DBBM.  This protein complex may have been released by 

chemical pre-treatment  In addition, immunoreactivity was also detected at 

98kDa, with particular intensity in the EDTA extraction group.  However, the 

results must be interpreted with caution, since the presence of bands at these 

two molecular weights is not equivalent to that of TGF-β1 which is 12.5kDa or 

25kDa when it exists in dimer form.  These uncharacteristic results mirror that of 

Schwartz et al 2000, who using anti-TGF-β antibody suggested that the 

immunoreactive band at 60 – 65kDa in their study was due to a high molecular 

weight complex of TGF-β (Schwartz et al. 2000).   This high molecular weight 

complex could be in the form of latent TGF-β binding proteins which are 

complex carrier molecules involved in the regulation of TGF-β.  Secondly, 

another possibility is that the antibodies are bound to TGF-β receptors type I 

and type II, which have molecular weights that may correspond to 62kDa and 

98kDa, respectively (Grande 1997).  In addition since TGF-β is known to bind to 

decorin and biglycan this would significantly increase their molecular weight 

during immunodetection. It is noteworthy that TGF-β is secreted associated to 

its latency associated peptide with a molecular weight of 45kDa (Grande 1997, 

Sloan et al. 2002) 

 

In the present study, it was not possible to detect differences in the ability of 

HCl, EDTA or Ca(OH)2 to liberate protein from the DBBM matrix.  This conflicts 

with research from other groups on dentine matrix where EDTA was shown to 

liberate more TGF-β1, although this group were able to measure the absolute 

concentration of growth factor, which was not possible in the present study 

(Tomson et al. 2007).  In the present study the blocking peptide was relatively 

ineffective.  This can be for several reasons which include an insufficient 

concentration, excess TGF-β1 in the sample, non specific binding or a faulty 

blocking peptide. 

 

Western blot analysis was unable to demonstrate immunoreactivity for Fetuin A.  

Even when the concentration of antibodies was increased substantially, 
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immunoreactivity was not demonstrated suggesting that it is highly unlikely that 

residual protein within DBBM is in this form.  Antibodies for Fetuin A were used 

since the initial silver staining of gels had detected protein at 62 kDa which is 

the approximate molecular weight for Fetuin A (more precisely 59kDa).   

 

Taken together, the observations in this chapter suggest that residual protein is 

present within Bio-Oss® granules, in addition to Bio-Oss® collagen.  Potentially, 

the pre-treatment of DBBM with HCl, EDTA and Ca(OH)2 may liberate the 

protein complex from the matrix of this bone graft material.   It would appear, 

therefore, that these proteins are able to evade the manufacturers own pre-

treatment procedures.  This may be due to growth factor binding associated with 

the mineral phase of bone, as suggested by other groups, which requires 

extensive extraction and demineralisation for their release (Schwartz et al. 2000; 

Smith et al. 2011).  Therefore, demineralisation of the DBBM with HCl and the 

chelating effect of EDTA in this chapter, may have liberated this protein.   

Equally important is the suggestion for the first time that a TGF-β1 antibody 

binding site may be present in the protein complex within Bio-Oss® Collagen 

Block.   The intense protein banding in Bio-Oss® collagen following suspension 

in calcium hydroxide may be accounted for by its behaviour as a protein 

extractant.  The existing descriptions in the literature of DBBM (primarily in Bio-

Oss® granule form) being devoid of organic matter may be a result of the 

sensitivity of the assay technique used by the manufacturer.  It has been 

reported that the Lowry method is one of three methods used to demonstrate 

the absence of protein, with a detection limit of 135ppm (Peetz 1997).  This may 

be insensitive to smaller protein concentrations protected within the mineral 

phase. 

 

The potential effects of TGF-β1 if locked within the mineral phase of Bio-Oss® 

granules or closely associated with collagen in Bio-Oss® Collagen block, are far 

reaching.  Critically, it is the presence of stem cells, an appropriate scaffold and 

signalling molecules, such as TGF-β1, that form the triad of factors required for 
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bone regeneration (Malhotra et al. 2009).  In terms of tissue engineering, this 

growth factor will affect stem cell growth, differentiation, promote chemotaxis of 

osteoblasts, their migration and differentiation and ultimately the deposition of 

matrix and its mineralization (Giannobile 1996; Grande 1997; Binkert et al. 

1999; Hallman and Thor 2008). It will also impact on tissue remodelling and 

controlling the inflammatory response.  It must be recognised that TGF-β1 will 

not act alone and an appropriate cocktail of growth factors is likely to be more 

effective.  It is therefore possible that Bio-Oss® contains other growth factors 

not investigated in this study, such as BMP-2, 6, 7 and IGF.  The potential 

presence of growth factors within this graft material, in addition to that released 

from the tissue bed as a result of surgical trauma, is of clear benefit.   As 

previously mentioned, mineralised matrix in other forms is known to contain 

TGF-β1 that has the ability to exert the aforementioned bioactive effects.  These 

bioactive molecules can be sequestered along with proteoglycans bound to the 

collagen network in mineralised tissues (Schonherr and Hausser 2000; Baker et 

al. 2009; Smith et al. 2011).  Further, it has been suggested that these 

molecules control the bioavailability of growth factors and their presentation to 

cell receptors. 

 

The potential presence of growth factors in DBBM, even at low concentration, 

may help explain the effects on cells both in vitro and in vivo.  This is important 

since it is recognised that only low concentrations of growth factor are needed to 

exert biological effects, probably at the nanogram level.  Indeed, it has been 

suggested that the administration of supra-physiological concentrations of 

growth factors may lead to side effects due to the initial high concentration.  This 

may lead to their rapid degradation and not allow sufficient concentration of the 

growth factors to reach target tissue for enough time to exert their effects (Lee 

et al. 2011).  The next chapter will investigate the effect that the extracted 

components produced in this chapter; and the effect that commercial DBBM, 

have on cell behaviour in an in vitro cell culture model. 
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Chapter 3 

 

The effect of Demineralised Bovine Bone Mineral 

and its extracted components on cell behaviour 
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3.0 Introduction 

 

 

The previous chapter has demonstrated that residual proteins are highly likely to 

be present within commercial Bio-Oss® granules, in addition to Bio-Oss® 

Collagen block.  Tentatively, this maybe in the form of growth factors.  The focus 

of this chapter was to investigate the effect that DBBM and its extracted 

components have on the behaviour of animal cells in vitro. 

 

Several previous in vivo animal studies have demonstrated the biocompatibility 

of DBBM by investigating cellular behaviour over the graft surface. In 1997, 

Berglundh examined the healing around implants placed in bone defects in 

Beagle dogs, where the defects had been filled with DBBM three months 

previously. This group reported that DBBM was biocompatible and its volume 

was observed to reduce over a 7 month period, which they presumed to be due 

to a process of resorption.   Importantly, the graft particles were in direct contact 

with new bone and the level of osseointegration of the titanium implants was 

observed to be similar to non-grafted sites (Berglundh and Lindhe 1997). Using 

cell culture techniques, Açil et al (2000) studied the growth and extracellular 

matrix synthesis of human osteoblast-like cells, derived from iliac crest grafts, 

on DBBM.  Following culturing for 6 weeks, this group observed osteoblasts 

forming a three dimensional structure on the surface of the Bio-Oss® block and 

the accumulation of mature collagen fibrils was visible on transmission electron 

microscopy and scanning electron microscopy.  This is evidence of the ability of 

DBBM to support cell growth and matrix synthesis.  Importantly, their 

biochemical analysis demonstrated increasing concentrations of 

hydroxylysylpyridinoline, lysylpyridinoline and hydroxyproline (the constituents of 

collagen) when cells were cultured on DBBM demonstrating, the ability of 

osteoblast-like cells to deposit collagen on the DBBM scaffold (Açil et al. 2000).  

These studies together confirm DBBM is a biocompatible scaffold. 
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The capacity of DBBM to display osteoconductive and osteoinductive behaviour 

has also been investigated.  Tapety et al examined the response of bone cells 

to DBBM to assess the osteoconductive capacity. This group performed 

histochemical analysis following placement of the graft into rat femur defects, 

compared with controls.  Importantly, at day 3, alkaline phosphatase 

immunoreactivity was only detected in defects filled with DBBM, which is 

characteristic of the presence of osteoblasts within the defects treated with the 

graft.  Furthermore, bone formation occurred by day 5 in both groups and the 

DBBM that was adjacent to new bone demonstrated osteocalcin 

immunoreactivity.  Using transmission electron microscopy, the authors were 

able to demonstrate osteoblasts depositing bone matrix on the surface of 

DBBM.  These results clearly demonstrate that DBBM acts as a scaffold for 

bone formation with an affinity for osteogenic cells (Tapety et al. 2004). The 

authors concluded that there may be growth factors bound within DBBM but as 

the graft does not induce ectopic bone in other tissues, it may not contain 

sufficient volumes of growth factors to be effective.  It is possible that local host 

growth factors accumulate on the graft particles following surgical trauma that 

promote cell migration, attachment and differentiation.  Hämmerle and co-

workers investigated the ability of DBBM to treat peri-implant dehiscence 

defects using a guided bone regeneration technique.  Importantly, in this study, 

DBBM particles were shown to integrate into newly-formed bone within the 

defects when examined histologically and therefore, the group concluded that 

DBBM is osteoconductive (Hammerle et al. 1998).  The osteoconductivity of 

DBBM has been further studied in humans (Schwartz et al. 2000; Norton et al. 

2003).  Schwartz et al describe a case where DBBM was used as part of a sinus 

augmentation procedure.  Histologically bone cores demonstrated new bone 

and multinucleated giant cells on the surfaces of DBBM particles (Schwartz et 

al. 2000).  This appearance has been replicated in a larger clinical study on 15 

consecutive patients, where 22 bone cores taken from sites previously grafted 

with DBBM were analysed (Norton et al. 2003).  In this study, trephines were 
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used to collect bone cores at least 4 months following grafting, prior to implant 

placement and were found to contain 26.9% new bone, 25.6% residual graft and 

47.4% connective tissue.  The results demonstrated that in 3 of the 22 

specimens, less than 5% of the core was composed of bone, suggesting a 

failure of some of the grafts. 

 

Another controversial subject is the ability of Bio-Oss® to resorb over time and 

be replaced by human bone which relates to its ability to promote the 

attachment and migration of cells upon its surface.  Opinions in the literature 

have changed on the resorbability of DBBM over the last 15 years.  In 

Berglundh et al’s early study of peri-implant defects in Beagle dogs, a reduction 

in the amount of DBBM from 17% to 11% in biopsies obtained during a 3 to 7 

month time period was observed (Berglundh and Lindhe 1997).   Although these 

authors also commented that the remodelling of DBBM was similar to pristine 

bone, their conclusions were only based on subjective assessment of bone 

biopsies.   This early research suggested that DBBM is resorbed with time, 

however, more recent studies suggest that this assumption may be incorrect.  In 

order to understand why opinions have changed, it is important to appreciate 

how graft resorption occurs.  As previously mentioned, the cells responsible for 

bone resorption are osteoclasts and the process of resorption requires adhesion 

molecules for the attachment of the osteoclastic cells (Benke et al. 2001).  

These include fibronectin, fibrinogen, vitronectin, type I collagen, osteopontin 

and bone sialoprotein.  Evidence already reviewed from Benke et al and other 

groups suggested that DBBM is free of proteins which would theoretically mean 

that resorption could not occur as osteoclastic adhesion would not be possible 

(Benke et al. 2001).  However, the results in chapter 1 and the evidence 

summarised earlier from both clinical and animal models suggests that residual 

protein is indeed present in DBBM and that partial resorption occurs.  Further, 

Taylor et al used a rabbit osteoclast model to evaluate resorptive capacity of 

DBBM and a variety of other grafting materials.  Following 4 days of culture the 

DBBM samples were examined using scanning electron microscopy, tartrate 
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resistant acid phosphatase (TRAP) staining, immunohistochemical staining and 

surface chemistry analysis.  DBBM demonstrated less TRAP staining compared 

to controls; and with atypical resorptive pits under SEM unlike the other bone-

derived materials.  This suggests slow resorption activity within DBBM (Taylor et 

al. 2002).  This group agreed with the findings of Benke in that a reduction in 

non-collagenous protein content may reduce cell attachment and therefore, 

resorptive capacity.  Tapety has also reviewed the literature on the resorbability 

of Bio-Oss® noting that some studies demonstrate delayed resorbability and 

others a complete lack of resorbability (Tapety et al. 2004). 

 

Clinical evidence demonstrating slow resorption of DBBM also exists.   Using 

bone cores taken from grafted maxillae, Tadjoedin demonstrated TRAP stain 

positive osteoclasts, signifying resorption, in close approximation to DBBM 

treated sinus’ (Tadjoedin et al. 2003).  Piattelli retrieved Bio-Oss® samples up to 

4 years, after sinus augmentation procedures in humans.  Their samples 

showed that osteoclastic resorption was occurring at grafted sites as much as 4 

years after grafting, confirming a slow resorption process (Piattelli et al. 1999).  

Over a longer follow-up time, another study has examined the histology of 

DBBM within a sinus over 10 years; and although is limited to a single case, 

provides useful information (Sartori et al. 2003).  In this study, at 8 months 

following augmentation, a bone sample showed 29.8% of native bone tissue 

within the augmented sinus.  When samples were repeated at 10 years, the 

bone content increased to 86.7% with a corresponding decrease in DBBM 

particles, suggesting its resorption (Sartori et al. 2003).  Although this study 

demonstrates new bone formation and partial DBBM resorption over time, the 

reproducibility of the sampling techniques must be questioned.   Another study 

looked at the resorptive capacity of DBBM in extraction sockets rather than the 

sinus; and failed to demonstrate osteoclastic activity on the particle surfaces 

(Molly et al. 2008).  This study also demonstrated 20% by volume material 

remaining in bone biopsies taken 4 months after placement of DBBM into 

extraction sockets (Molly et al. 2008). Furthermore, in a dog study where DBBM 
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(in the Bio-Oss® Collagen form) was placed into extraction sockets, no 

resorption was observed over 6 months (Araujo et al. 2009).  Recently, a study 

of Bio-Oss® Collagen modified with PDGF was placed in human extraction 

sockets.  This study demonstrated that the modified DBBM showed signs of 

resorption at 4 and 6 months (Nevins et al. 2009). This may be due to the 

presence of proteins acting as chemoattractants for osteoclasts. Hallman et al 

reviewed much of the evidence for and against resorption by concluding that 

DBBM acts as a non-resorbable grafting material in humans (Hallman and Thor 

2008). 

 

The aforementioned evidence from animal and human studies demonstrates the 

biocompatibility of DBBM, but it is unclear on the absolute behaviour of DBBM 

within human bone. There is, however, convincing clinical and in vitro evidence 

that bone is laid down on DBBM particles which confirms its ability to behave, at 

least, as an osteoconductive scaffold.  In this chapter, an in vitro rat bone 

marrow stromal cell model was used to investigate whether DBBM or its 

extracted components influence cell behaviour, as assessed by cell expansion 

and gene expression.  Cell culture techniques allowed the assessment of the 

behaviour of osteoblast like cells on Bio-Oss®.   
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3.1 Materials and methods 

 

3.1.1 Harvesting rat bone marrow stromal cells 

 

 

Bone marrow stromal cells (BMSC’s) were isolated from the femurs and ulnars 

of 28 day old male Wistar rats, following sacrifice via CO2 asphyxiation.  Rats 

were dipped in 70% ethanol and bones were dissected and placed in a 10 X 

antibiotic media consisting of α-MEM (Invitrogen, UK), and 10% penicillin / 

streptomycin (Sigma-Aldrich, UK).  The marrow of the femurs and ulnars were 

flushed with 15ml culture media into falcon tubes containing α-MEM (Invitrogen, 

UK), 10% heat inactivated foetal calf serum (Sigma-Aldrich, UK), 1% penicillin / 

streptomycin (Sigma-Aldrich, UK), 250 ng/mL amphotericin B (Invitrogen, UK).  

Cells were centrifuged at 1500 rpm for 5 minutes and the pellet was dispersed 

into 500 µl of collagenase / dispase (Sigma-Aldrich, UK) and incubated for 15 

minutes at 37°C.  Following incubation, 5 ml of culture media was added to the 

tube and it was centrifuged at 1500 rpm for 5 minutes; and the supernatant 

decanted.  The pellet was re-suspended in 10 ml α-MEM and passed through a 

40 µm microfilter (Falcon) to generate a single cell suspension.    Cells were 

seeded onto 10 µg/ml fibronectin-coated T75 flasks at 2 bones per flask and 

incubated for 20 minutes at 37°C.  After 20 minutes non-adherent cells were 

flushed off using fresh media.  Cells were subsequently cultured in an incubator 

at 37ºC, 5% CO2 in air with medium changes every 2 days using 20 ml α-MEM, 

10% FCS and 1% antibiotic mixture.  After approximately 2 weeks, near 

confluent cells were trypsinised with 1ml trypsin (Invitrogen, UK). The cell 

suspension was centrifuged at 1500 rpm for 5 minutes before re-suspension in 

1 ml of media. The cells were seeded at 1x104 cells/cm2 onto either 96-well 

polystyrene plates for an MTS assay or 6-well polystyrene plates for mRNA 

extraction. 
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3.1.2  Culture of mesenchymal cells in the presence of DBBM 

 

 

All experimental protocols used either Bio-Oss® granules (Lot numbers 080305) 

or Bio-Oss® collagen block (Lot numbers 070522, 080156). 

 

 

3.1.2.1 Analysis of cell expansion 

 

In order to assess cell expansion, BMSC were seeded directly into wells 

containing Bio-Oss® granules or Bio-Oss® collagen, for analysis with an MTS 

assay. The MTS assay is a colorimetric method for determining the number of 

viable cells and cell proliferation during tissue culture experiments. The MTS 

compound is reduced by cells into a formazan product that is soluble in tissue 

culture medium. The quantity of formazan product is measured by the amount of 

absorbance at 490nm.  This correlates with the number of living cells in the 

wells.   Bio-Oss® granules were added to the 96-well plates until the base of the 

well was completely covered (10 mg approximately).  A 250 mg Bio-Oss® 

collagen block was divided into 20 approximately equal slices and a single slice 

was placed into each well.  Control wells did not contain Bio-Oss® and wells 

were prepared in triplicate.  Cells were seeded at 104 cells per cm2 and separate 

plates were prepared for 5 days.  A no cell control consisted of plain media.  

 

The cells were cultured in osteoblast differentiation media (containing  α-MEM 

(Invitrogen, UK), 10% heat inactivated foetal calf serum (Sigma-Aldrich, UK), 

1% 10mM β-glycerophosphate (Sigma-Aldrich, UK),),  1% 10mM 

dexamethasone (Sigma-Aldrich, UK) 1% 50µg/ml ascorbic acid (Sigma-Aldrich, 

UK), 1% penicillin / streptomycin (Sigma-Aldrich, UK) for 5 days, with media 

changes every 2 days.  On each day of the experiment, a plate was removed 

from the incubator.  Subsequently, 100µl of media was removed from each well 
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and 20µl of the MTS assay (CellTiter 96® Aqueous Solution Reagent) solution 

added to the well to make the total volume remaining within each well to120µl, 

as per the manufacturer’s instructions.  This was performed under low lighting 

conditions due to the photosensitive nature of the MTS assay.  The plate was 

returned to the incubator at 37°C and 5% CO2 for 2.5 hours, after which 

absorbance was measured using a FLUOstar™ Optima plate reader at 490nm.  

Data was captured using the Optima software programme. 

 

Cells were also cultured in 6-well plates containing either  300 mg Bio-Oss® 

granules, Bio-Oss® collagen block or control. A 250mg Bio-Oss® collagen block 

was divided into 5 approximately equal slices with a scalpel and 2 slices placed 

into each well of a 6-well plate.   An empty well acted as control.   BMSC were 

seeded at 104 cells per cm2 directly onto the Bio-Oss® or control wells in 

duplicate.  Cells were fed osteoblast differentiation media as described 

previously, with media changes every 2 days.  Cell growth was examined using 

an inverted light microscope (Eclipse TS100, Nikon) and images were captured 

with a digital camera (Canon Powershot S5 IS). 
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3.1.3 Culture of mesenchymal cells in the presence of DBBM 

extracts 

 

 

Cells were harvested from rats, as described in section 3.1.1. 

 

 

3.1.3.1 Preparation of media supplemented with DBBM extracts 

 

Freeze-dried samples from DBBM extracted components produced during the 

protein content experiments, outlined in chapter 2, were used to produce 

supplemental media.  Specifically, these samples were the extraction 

components of the Bio-Oss® granules alone prior to extraction with GuCl. To 

make the media, 5mg of each powdered sample (EDTA extract, Ca(OH)2 

extract and HCl extract) were added to 3 separate falcon tubes and mixed with 

double distilled water (DDW) to a concentration of 10µg/ml.  This solution was 

then passed through a 0.2 micron sterilizing syringe filter. Each extract solution 

was diluted to a final concentration of  100 ng/ml in standard osteoblast 

differentiation media (containing  α-MEM, 10% heat inactivated foetal calf 

serum, 1% 10mM β-glycerophosphate, 1% 10mM dexamethasone, 1% 50µg/ml 

ascorbic acid and 1% penicillin / streptomycin). 

 

 

3.1.3.2 Analysis of cell expansion 

 

In order to investigate the effect of DBBM extracted components on cell 

expansion, an MTS assay was performed as described in section 3.1.2.1.  

BMSC were seeded at 104 cells per cm2 onto 96-well plates and were cultured 

with standard media on day 1.  From day 2 onwards cells were cultured with 

media supplemented with Ca(OH)2, EDTA or HCl extraction components and 
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control media, as prepared above for 5 days.  The MTS assay was performed 

each day.  Differences in mean absorbance (as correlated to cell number) 

between cells cultured in the presence of media supplemented with DBBM 

extracts and control media, were analysed statistically using one way analysis of 

variance using the Instat® programme (Graphpad software). P value <0.05 

were considered significant. 

 

 

3.1.3.3 Analysis of bone matrix markers 

 

In order to investigate the effect of DBBM extracted components on gene 

expression of bone matrix markers, mRNA extraction followed by reverse 

transcription polymerase chain reaction (RT-PCR) was performed.  BMSC were 

seeded onto 6-well plates and were cultured on first day with standard 

osteoblast differentiating media.  From day 2 onwards, cells were cultured in 

media supplemented with one of three extraction components from Bio-Oss® 

granules, or a control media, as prepared above.  These supplemented media 

contained EDTA extraction components, calcium hydroxide extracted 

components, and HCl extracted components, described in chapter 2 and a plain 

control.  Control media consisted of α-MEM (Invitrogen, UK), 10% heat 

inactivated foetal calf serum (Sigma-Aldrich, UK), 1% 10mM β-

glycerophosphate (Sigma-Aldrich, UK), 1% 10mM dexamethasone (Sigma-

Aldrich, UK) 1% 50µg/ml ascorbic acid (Sigma-Aldrich, UK). A 6-well plate was 

prepared for day 5, 9, 12 in duplicate.  

 

In order to extract mRNA at day 5, 9, 12, the following protocol was followed.  

All working areas were cleaned with 70% alcohol.  Excess media was removed 

from each well and the well washed with PBS.  350µl of a solution containing 

10µl of β-mercaptoethanol and 1ml of RLT lysis buffer (containing guanidine 

thiocyanate) was added to each well and agitated to disrupt cell walls.  Total 

mRNA was isolated after homogenization, using the RNeasy™ mini kit (Qiagen, 
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UK).  The lysate was pipetted into a QIAshredder™ and centrifuged at 13,600 g 

for 2 minutes; to homogenise.  350µl of 70% ethanol was added to the cell 

solution.  The sample was transferred to a spin column to bind total RNA and 

centrifuged for 15 seconds at 8000 g (10,000 rpm). 700µl of buffer RW1 was 

added and centrifuged, as above, and the flow through discarded.  500 µl of 

buffer RPE was added and column centrifuged for 15 seconds and the flow 

through was discarded.  This stage was repeated and centrifugation performed 

for 2 minutes, followed by placement of the RNeasy column in a fresh tube, and 

centrifugation for 1 minute.  30 µl of RNase-free water was added and 

centrifuged for 1minute at 8000 g.  Total RNA was subsequently measured at 

an absorbance of 260nm using Nanovue™ Spectrometry (GE Healthcare), to 

enable equalisation of the RNA concentration during RT-PCR.   The solution 

was pipetted into 1.5ml sterile eppendorff’s and stored at -80°C until needed 

later for RT-PCR. 

 

 

3.1.4 RT-PCR 

 

Where measurable mRNA was detected, RT-PCR was used to characterise for 

changes in differentiation potential of cells by expression of osteopontin, bone 

sialoprotein, osteonectin and osteocalcin. β-actin was used as a housekeeping 

gene.   

 

The first stage of the RT-PCR process is the production of copy DNA from the 

RNA extracted.  All work areas were cleaned with 70% ethanol and RNA 

stability was maintained by performing procedures on ice.  1 µg of RNA was 

added to a sterile PCR tube along with 1 µl of random primer and DEPC 

(RNAase free) water, to a final volume of 15 µl.   This was incubated at 70°C for 

5 mins then stored on ice.  A master mix solution using Promega® reagents of  
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5 µl MMLV reaction buffer, 1.25 µl dNTPS, 0.6 µl RNasin, 1 µl MMLV Reverse 

Transcriptase (Promega, UK) and 2.15 µl DEPC water was made to sufficient 

volume for the number of PCR reactions.  10 µl of the master mix was added to 

each of the RNA / random primer mix solution and incubated at 37°C for 1 hour.  

A negative control (labelled RT negative) was performed in the absence of RNA, 

using water as a replacement. All reverse transcription reactions were run on G-

Storm™ GS1 Thermal Cycler (Genetic Research Instrumentation Ltd).  The 

product of the above reaction is copy DNA which was stored at -20°C until 

required for PCR reactions. 

 

The PCR reactions were performed using Promega reagents. A 10 mM stock of 

dNTP’s was made from 50 µl each of ATP, CTP, GTP, TTP (adenosine, 

cytosine, guanine and thyamine triphosphates, respectively) and 300 µl PCR 

grade water.   A master mix was prepared containing, 5 µl Buffer, 0.5 µl dNTP’s 

PCR Nucleotide Mix (Promega, UK), 1.25 µl forward primer 1, 1.25 µl reverse 

primer 2, 1 µl magnesium chloride, 14.75 µl PCR grade water, 0.25 µl GoTaq 

flexi DNA polymerase (Promega, UK).  The PCR reaction solution consisted of 

24 µl of the master mix and 1 µl of cDNA.  Negative controls consited of the 

PCR reaction, performed with only the mastermix (labelled PCR negative) and 

the PCR reaction with mastermix and cDNA reaction in the absence of mRNA 

(labelled RT negative).  The primers used were rat β-actin, osteopontin, 

osteonectin, octeocalcin, bone sialoprotein and their primer sequences are 

shown in table 3.1.  The reactions were run on a G-Storm™ GS1 Thermal 

Cycler and the PCR cycle is shown in table 3.2. 

 

The PCR product was visualised using  2% agarose gel electrophoresis.  10x 

TBE buffer was used to make the agarose gels and used as a running buffer.  

TBE buffer contained 1M tris-base (Sigma-Aldrich, UK), 1M boric acid (Sigma-

Aldrich) and 0.06M EDTA at a pH of 8.0.  The buffer was diluted to 0.5x prior to 

use.   Agarose powder was disolved in 0.5x TBE buffer and this was agitated in 

a microwave for 20 second cycles until the solution became clear.  Following 
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cooling, 5 µl of 10 mg/ml ethidium bromide (Promega, UK) was added to the 

solution, prior to being poured into a gel cast with combs in situ.  Once set, the 

gel was placed into a electrophoresis tank containing TBE buffer and the combs 

removed.  10 µl of each PCR reaction was added to each well.  A seperate well 

contained a 100 base pair DNA ladder (Promega, UK).  The gel was run at 80V 

for approximately 45 minutes.  The gel was visualised using Gel Doc™ scanner 

(BioRad, UK) and images captured with Quantity One image analysis software 

(BioRad, UK). 
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Primer Product 

size 

Sequence 

β-actin 180 bp F: TGAAGATCAAGATCATTGCTCCTCC 

R: CTAGAAGCATTTGCGGTGGACGATG 

BSP 

 

211bp F:CTGCTTTAATCTTGCTCTG 

R: CCATCTCCATTTTCTTCC 

Osteopontin 

 

189bp F: GGAGTCCGATGAGGCTATCAA 

R: TCCGACTGCTCAGTGCTCTC 

Osteocalcin 

 

293bp F: ATGAGGACCCTCTCTCTGCTC 

R: GTGGTGCCATAGATGCGCTTG 

Osteonectin 395bp F: CTGCAGAAGAGATGGTGGCGG 

R: CAGGCAGGGGGCAATGTATTTG 

 

 

Table 3.1 Details of rat pimer sequences for bone matrix markers used in PCR reactions.  

BSP, Bone sialoprotein; β-actin as housekeeping gene. 
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Temperature Time Number of cycles 

95°C (Denaturing) 4 MINS 1 

95°C 1 MIN 35 

56°C (Annealing) 1 MIN  

72°C (Extension) 1 MIN  

72°C 10 MINS 1 

 

 

Table 3.2  Details of PCR cycle including temperature, time and number of cycles  

 



107 

 

3.2 Results 

 

 

3.2.1 Influence of DBBM on cell expansion 

 

The MTS assay demonstrated no cell proliferation after 3 days when cells were 

cultured in the presence of Bio-Oss® granules or Bio-Oss® collagen.  The 

ability for cells to survive in association with DBBM particles and the 

morphological features of cells in control wells are demonstrated in figure 3.1.  

Both Bio-Oss® granules and Bio-Oss® collagen appeared to inhibit cell growth 

in close proximity to the particles by Day 5.  However, cells in the control well 

were viable at Day 5 (Figure 3.1).  Subsequently total mRNA collection could 

not be performed. 

 

 

3.2.2 Influence of DBBM extracts on cell expansion 

 

The MTS assay results produced from cells cultured in the presence of DBBM 

extracts, produced by HCl, EDTA or Ca(OH)2 extraction, are shown in Figure 

3.2.  The graphs demonstrate the variation in absorbance over time detected 

using the MTS assay, which is directly proportional to cell number.  The cell 

numbers for all test media was higher than control media by Day 4 and this was 

maintained at Day 5.   There was a 2.6 fold increase in mean cell number in the 

Ca(OH)2 group compared to control at Day 4.  The EDTA and HCl groups 

demonstrated 2.4 fold and an almost 2 fold increase in mean cell number over 

control respectively at Day 4.  EDTA and HCl extracts continued to support 

increased cell expansion up to Day 5.  The cell numbers decreased slightly 

between Day 4 and Day 5 in media supplemented with Ca(OH)2 extracts.    

Importantly, between Day 2 and Day 4 there was approximately a 2 fold 

increase in mean cell number in the calcium hydroxide extract group and a 2.5 
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fold increase in mean cell number in the EDTA extract group.   Although cell 

expansion was slower in HCl extract group, between Day 4 and Day 5 mean cell 

number increased by 2.9 fold.  Overall, cell numbers in control media decreased 

steadily over the first 3 days, before increasing at Day 4 and 5.  The differences 

in cell expansion were not statistically significant between cells cultured with 

EDTA, Ca(OH)2 or HCl extracts, compared to control.   This may be a reflection 

of low n number, however there were trends towards differences in cell 

expansion between groups. 
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Figure 3.1 Cell growth in wells containg Bio-Oss® granules, Bio-Oss® collagen and control 

wells at Day 5 post seeding (Magnification x 10). a) Lack of cell growth around 

io-Oss® granules. b) Lack of cell growth around Bio-Oss® collagen. c) 

Morphological features of viable cells in control well  

a) 

b) 

c) 
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Figure 3.2a, b  Effects of DBBM extracts on cell expansion. Mean MTS assay absorbance 

values following subtraction of absorbance reading from no cell control.  Graphs demonstrate 

cell expansion over 5 days with media supplemented with DBBM extracts following treatment 

with a) Ca(OH)2, b) EDTA.  Error bars represent 1 standard deviation. 

 

a) 

b) 
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Figure 3.2c, d  Effects of DBBM extracts on cell expansion. Mean MTS assay absorbance 

values following subtraction of absorbance reading from no cell control.  Graphs demonstrate 

cell expansion over 5 days with media supplemented with DBBM extracts following treatment 

with c) HCl and d) control media.  Error bars represent 1 standard deviation. 

c) 

d) 
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3.2.3 Influence of DBBM extracts on expression of bone matrix markers 

 

Cells that were cultured in the presence of DBBM extraction components 

survived the experimental period and mRNA was successfully extracted.  The 

temporal expression of bone matrix markers following culture of bone marrow 

stromal cells in the presence of  DBBM extracted components, are shown in 

figure 3.3.  All osteoblast markers were found to be expressed by BMSC 

cultured with all three supplemental media types and control media.   

Osteopontin and osteonectin were expressed intensly and consistently at all 

time points and in all four media groups during the culture period with little 

differences between groups.  Within all supplemental media groups, BSP was 

expressed more intensly at Day 5, compared to control.  At Day 9 and Day 12, 

BSP expression in the control media group had risen to that demonstrated in the 

three medias containing DBBM extracts.  In contrast at Day 5, the band for 

osteocalcin was most intense in the BMSC’s cultured with HCl supplimented 

media.  In addition, all groups demonstrated osteocalcin expression at Day 9 

and 12, although the banding was less intense as compared to other markers.   

Of note, at Day 12, the expression of osteocalcin in the supplimental media 

groups was less than control.  Neither RT negative controls nor PCR negative 

controls demonstrated product formation. 
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Day 5  

 

 

Day 9 

 

 

Day 12 

 

 

 

 

Figure 3.3 Effects of DBBM extracts on temporal gene expression.  Typical RT-PCR result 

showing mRNA expression profiles for osteogenic markers of BMSC’s cultured in the presence 

of DBBM extracts.  β-actin was used as a housekeeping gene. 
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3.3 Discussion 

 

The results within this chapter demonstrate trends towards increased 

proliferation of bone marrow stromal cells cultured with media supplimented with 

DBBM extracted components.  Also, the results demonstrate this media may 

induce mRNA production and altered bone matrix gene expression profiles.  In 

addition and importantly, the results suggest that BMSC are not capable of 

growing in close proximity to Bio-Oss® granules or the Bio-Oss® collagen block 

in this cell culture model. 

 

The results presented suggest it was not possible to grow bone marrow stromal 

cells in close proximity to commercially available Bio-Oss® granules and Bio-

Oss® collagen in this in vitro model.  It has been accepted recently that surface 

characteristics of DBBM may have an impact on cell attachment and the 

behaviour of cells of the osteoblastic lineage (Ayobian-Markazi et al. 2012).  In 

contrast to the present study, other researchers have successfully cultured 

human-derived osteoblasts directly on Bio-Oss® granules in a petri dish, 

although these cells were cultured longer for 6 – 28 days (Turhani et al. 2005; 

Amerio et al. 2010).  Interestingly, in Turhani’s study, cells from human 

mandibular blocks that were grown on Bio-Oss® granules were only able to 

form a monolayer by day 2,1 compared to the multilayers observed on a graft 

that they supplemented with a cell binding peptide (Pep Gen P-15™), 

suggesting less favourable cell growth.  Other groups have also been able to 

demonstrate attachment of human osteoblasts and ultimately mature collagen 

production on DBBM in cell culture and the potential for tissue engineered 

growth of human bone (Açil et al. 2000).   Interestingly, a very recent in vitro 

study that cultured primary human osteoblasts (SaOS-2 cells) on Bio-Oss® 

revealed good cell differentiation, as shown by ALP staining, but lower rates of 

cell proliferation and less favourable morphological features of the cell layer 

(Ayobian-Markazi et al. 2012).  Early investigations performed with rat 
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osteoblasts, demonstrated attachment and proliferation of cells on DBBM, 

although observations only occurred for less than 48 hours (Stephan et al. 

1999). 

 

The difficulty in supporting cell growth in proximity to DBBM in the present study 

may be related to several factors that include calcium concentration. It is known 

that high calcium and phosphate concentrations suppress cell growth (Knabe et 

al. 2000; Maeno et al. 2005; Saldana et al. 2009).  An in vitro study 

demonstrated that osteoblasts were unable to survive in a calcium hydroxide 

content of 2.5 mg ml-1 (Narita et al. 2010).    It is possible that cells are unable to 

survive in close association with the high calcium concentration of the surface of 

DBBM in this in vitro situation.   In addition, surface roughness of biomaterials 

has a dramatic effect on cellular attachment and migration.  Importantly the 

ability to culture cells on any biomaterial is critically related to cell type, 

particularly if they are immortalised, and culture conditions (Ayobian-Markazi et 

al. 2012).  Other studies have utilized mature cell lines such as mature 

osteoblasts which possess a high ability to adhere to surfaces and proliferate 

(Stephan et al. 1999; Petrovic et al. 2006; Amerio et al. 2010).  In contrast, the 

cells used in the present study, were relatively immature and may therefore lack 

specific cell surface receptors required for effective attachment to the Bio-Oss® 

surface.  Petrovic et al suggest that difficulty in culturing cells on biomaterials 

may be a function of the seeding density in tissue culture  (Petrovic et al. 2006).  

In keeping with their study the seeding density in the present project is 

significanly lower than other groups demonstrating more favourable cell growth 

(Açil et al. 2000).   

 

The results of this project support  the findings of other groups that have 

assessed the potential osteoinductive effect of commercially available DBBM, 

when implanted into mouse calf muscle (Schwartz et al. 2000).  This group 

failed to demonstrate new bone formation or inflammation associated with these 

particles suggesting inhibition of local cells in close proximity to the DBBM 
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substance.  These findings are significant and support the observations that Bio-

Oss® does not fully resorb, particlulalry if cells are unable to attach directly to 

DBBM. However, when Bio-Oss® is used at a more ususal site, such as the 

alveolar bone, it has been widely reported that new bone formation occurs upon 

the surface of DBBM particles (Norton et al. 2003; Tadjoedin et al. 2003).  

Following on from these observations, it is likely that in the in vivo situation, the 

fibrin clot rich in inflammatory molecules that surround Bio-Oss® granules 

during clinical use, acts as a matrix to support and sustain cell viability allowing 

the secretion of bone matrix proteins and mineralisation. Indeed, Schwartz 

group used demineralized freeze-dried bone allograft (DFDBA)  as a carrier or 

matrix for extracted components of DBBM, produced by suspension in HCl, 

GuCl and EDTA.  New bone formation was observed histologically adjacent to 

the DFDBA particles supplemented with extracts produced from DBBM.  This 

data suggests that extracted components from DBBM released by acidic 

chemical treatment may have osteoinductive effects. 

 

In this chapter, cell expansion was not observed  in association with DBBM 

directly.  This conflicts with evidence from Petrovic et al 2006 using mature 

human osteoblast like cells, (NHOst cells) which showed measureable but 

reduced proliferation and differentiation of cells grown on Bio-Oss® granules 

and Bio-Oss® collagen, compared to control.  When the results of this study are 

examined closely, the proliferation of cells on the biomaterial, as measured by 

absorbance values, was actually negligible by the fifth day (Petrovic et al. 2006).   

In this chaper, assessment of cell expansion  in the presence of DBBM 

extracted components, however, showed a trend towards faster proliferation 

than those cells cultured with control.  This trend of increasing cell expansion 

over time occurred with calcium hydroxide, EDTA and HCl extracted 

components of Bio-Oss® granules.   In particular, by Day 4, there was a 2.4 fold 

increase in mean cell number in wells cultured in the presence of EDTA 

extracted components over control, although this was not statistically significant.  

The reason for this increased proliferation could be the ability of chemical pre-
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treatment to release growth factors locked within the mineral phase of the 

DBBM particles.  Growth factors (e.g. TGF-β1), in conjunction with 

proteoglycans (e.g. biglycan), are known to increase the proliferation of 

mesenchymal stem cells and cells of the osteoblast linage (Robey et al. 1987; 

Waddington et al. 2003).  Indeed, the chemical pre-treatment of bone slabs has 

been able to extract growth factors from within the matrix (Smith et al. 2011).  It 

is likely that in vivo, only small concentrations (at the nanogram level) are 

required, due to several growth factors acting together and the protection 

afforded by other proteins (Lee et al. 2011). 

 

To investigate the gene expression of osteogenic markers in the presence of 

DBBM extracted components, RT-PCR was used.  Reverse transcription 

polymerase chain reaction utilises the reverse transcriptase enzyme which can 

transcribe RNA into DNA.  In this chapter, the gene expression profiles 

demonstrated through PCR were largely similar between the different 

supplimental media, suggesting that cellular activity was similar.   All media 

types were, therefore, capable of supporting cells of an osteoblastic linage 

through the maintenance of osteonectin and osteopontin expression.   It is worth 

noting that BSP had more expression in the DBBM supplemental media groups 

at Day 5, suggesting the formation of pre-ostoblasts and osteoblasts may occur 

more rapidly in the presence of DBBM extracted components.  Since BSP is 

known to aid attachment of osteoblasts and act as a nucleator for bone mineral 

deposition, these effects could lead to faster mineralisation if translated to the in 

vivo situation (Mackie 2003; Hughes et al. 2006).  It is noteworthy that in Amerio 

et al 2010 study with cells cultured directly on DBBM granules, BSP expression 

was shown to be reduced (Amerio et al. 2010).  The altered gene expression in 

the experimental media groups, compared with control, could reflect the fact that 

proteins extracted from Bio-Oss® granules are osteoinductive and increase 

cellular activity.  It was not possible to extract mRNA from cells seeded directly 

on DBBM and as mentioned these cells failed to survive.  These results contrast 

with those of Amerio et al 2010, who demonstrated expression of mRNA for a 
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variety of osteogenic and inflammtory markers when human osteoblasts (NHOst 

cells) were cultured on Bio-Oss® granules (Amerio et al. 2010). 

 

Taken together, the observations in this chapter suggest that  the extracted 

components of Bio-Oss® granules support an osteoblastic phenotype and could 

influence bone marrow stromal cell behaviour, as demonstrated by an increased 

overall production of mRNA.  In addition, earlier differentiation of cells down the 

osteoblastic linage is suggested by increased expression of bone sialoprotien.  

If the liberation of growth factors occurs in vivo this could result in 

osteoinduction and, for example, account for improved first bone to implant 

contact in the management of circumferental perimplant defects (Abushahba et 

al. 2008). 

 

The inability of DBBM to directly support cell growth in this in vitro model may go 

some way to explain the clinical observations outlined previously.  Bio-Oss® is 

able to maintain ridge width when used in extraction sockets, possibly a 

reflection of minimal resorption over short time periods due to a lack of direct 

cellular attachment (Nevins et al. 2006; Molly et al. 2008).  If resorption of 

DBBM occurs at all, it appears to be a slow process taking many years 

particularly when used in sinus augmentation (Sartori et al. 2003).    If DBBM in 

the form it is manufactured does not resorb, then what remains in grafted sites 

would be non-vital, non-active, mineralised bone.  Certainly, from a clinical point 

of view, Bio-Oss® augmented sites demonstrate a different texture and density 

on surgical re-entry compared with native bone.  However, it would seem from 

long-term studies and clinical experience, this has little if any clinical 

significance. 
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Chapter 4 

 

General discussion 
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The management of periodontal diseases and the placement of dental implants 

require a biological approach to the resolution of bone defects associated with 

the periodontal or alveolar tissues.  Bone substitute materials and specifically 

DBBM, in the form of Bio-Oss® granules and Bio-Oss® collagen, have been 

used extensively in periodontal and implant-related treatment modalities (von 

Arx and Buser 2006; Sculean et al. 2008).  In order to be effective a bone 

substitute material, such as Bio-Oss®, must be at the very least 

osteoconductive and ideally, osteoinductive.  To demonstrate osteoinductive 

behaviour, it is necessary to demonstrate bioactive proteins within DBBM 

particles, or the ability of these particles to bind growth factors released from the 

tissue bed during surgical trauma.  Harnessing key molecules locked with the 

mineralised matrix of DBBM could facilitate bone regeneration.  The objective of 

this research was to investigate the ability of chemical pre-treatment to release 

residual protein in the form of growth factors within DBBM and investigate if this 

protein is bioactive such that it alters the behaviour of cells in an in vitro tissue 

culture model. 

 

4.1 Growth factor release 

 

Conflicting existing evidence has been presented with regard to the protein 

content of Bio-Oss® granules, based on a variety of experimental techniques.  

The results in chapter 2 suggest that Bio-Oss® granules are highly likely to 

contain residual protein within its matrix demonstrated by silver staining of gels 

produced by SDS PAGE.  Potentially this protein is in the form of growth factors 

and the Western blot results suggest the potential for TGF-β1 to be part of the 

protein complex.  It is clear that the concentration of this protein is small and can 

therefore not be detected via BCA assay or other relatively insensitive 

techniques, such as Ponceau stain.  The results of electroblotting also suggest 

TGF-β1 may be present associated with the porcine collagen that is added to 

DBBM to form the Bio-Oss® Collagen block.   The ability of EDTA, Ca(OH)2 and 
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HCl to release these proteins from close association with the mineral phase has 

been demonstrated in chapter 2.  These investigations provide further evidence 

that residual protein remains in DBBM, despite the manufacturing process and 

can be liberated by the application of Ca(OH)2, EDTA and HCl.  This detection 

of protein corroborates the findings of other groups (Schwartz et al. 2000).   

Specifically, antibody staining using western blot was positive using antibodies 

for TGF-β1, although this did not occur at the expected molecular weight.  The 

inability to identify protein at high concentration with BCA assay is consistent 

with the work of other groups investigating the protein content of DBBM.  

Schwartz et al 2000 suggested a small amount of protein was present 

associated with the mineral phase; however, Benke et al 2001 stated that 

protein was not present at a detectable level and questioned the methodology of 

Schwartz (Benke et al. 2001).  The ability of acidic chelating agents and 

Ca(OH)2 to augment the release of TGF-β1 from mineralized matrices has been 

confirmed recently in an in vitro model (Smith et al. 2011).  The present study 

provides pilot data which are consistent with the findings of Smith et al 2011, in 

terms of the mineralised matrix of a xenographic bone graft, namely DBBM. In 

the case of Bio-Oss® collagen, it is likely that growth factors are sequestered 

with proteoglycans, such as biglycan and decorin, associated with the collagen 

fibrils.  Biglycan and decorin may protect TGF-β1 within the matrix or be involved 

in its presentation to the TGF-β1 receptor (Takeuchi et al. 1994; Baker et al. 

2009). 

 

The present study may have clinical implications given the wide range of 

functions that growth factors, such as TGF-β1, possess.  The TGF-β superfamily 

possess several important functions in bone healing and remodelling that 

include; the regulation of cell growth , chemotaxis, osteoblast cell growth, 

migration and differentiation, deposition of matrix and mineralization 

(Pfeilschifter et al. 1990; Giannobile 1996; Grande 1997; Binkert et al. 1999; 

Hallman and Thor 2008).  It also stimulates the production of type 1 collagen, 

osteopontin and osteonectin, which are important in bone healing (Giannobile 
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1996; Cochran and Wozney 1999; Dimitriou et al. 2005).  Although this project 

focussed on the identification of TGF-β1, it is unlikely that this growth factor acts 

alone on the osteoblast cell lineage.  As outlined in the first chapter, the 

interplay of the ideal cocktail of growth factors, including bone morphogenic 

proteins (BMP’s), platelet derived growth factor (PDGF), Insulin-like growth 

factor (IGF) and fibroblast growth factor FGF is necessary to positively impact 

on bone formation. The potential of DBBM to contain TGF-β1 and other growth 

factors, would help explain the bone regeneration seen with its use clinically. 

 

4.2 Cell behaviour 

 

Following the confirmation of residual protein in DBBM, a series of cell culture 

experiments were performed to enable investigation of differences in cell 

behaviour in response to Bio-Oss® granules, Bio-Oss® collagen or DBBM 

extracted components.   It is noteworthy that in order to regenerate any tissue 

type, three key elements are required.  These are a supply of stem cells, a 

biocompatible scaffold, and the presence of appropriate growth factors as 

signalling molecules to control the regenerative process (Petrovic et al. 2006). 

Although a number of osteoconductive scaffolds are in clinical use in dentistry 

as an alternative to autogenous bone, it is desirable for graft materials to be 

osteoinductive.  This would enable the release of intrinsic growth factors or the 

ability to bind locally released growth factors upon its surface that would drive 

bone regeneration by committing undifferentiated mesenchymal cells down an 

osteoblastic lineage. 

 

The results shown in chapter 3 demonstrated increased cell expansion and 

increased gene expression of BSP by rat derived BMSC when cultured under 

osteogenic differentiation conditions.  Specifically, cells were cultured with 

media supplemented by the extraction components released from DBBM 

following chemical pre-treatment.   The MTS assay suggested increased cell 

numbers in association with all DBBM extracted media over control.  This 
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suggests that once solubilised by chemical pre-treatment with EDTA, Ca(OH)2 

or HCl, residual proteins within DBBM are able to support cell proliferation and 

growth.  Later, the increased concentration of mRNA transcribed would be used 

for protein translation and this data suggests that the components of DBBM 

have a positive osteoinductive effect on bone regeneration. The osteoblastic 

phenotype was confirmed via RT-PCR with the continued expression of 

osteopontin, osteonectin and osteocalcin throughout the culture period.  The 

specific bone matrix marker BSP demonstrated earlier temporal expression 

when cells were cultured with media supplimented with DBBM extracts 

suggesting more rapid osteoblastic differentiation. 

 

In this study it was observed that cells were unable to survive in media in close 

proximity to DBBM particles, even though the direct growth of cells upon DBBM 

itself this has been demonstrated by other authors (Açil et al. 2000; Amerio et al. 

2010).  The osteoinductive effect of Bio-Oss® was suggested elsewhere 

(Schwartz et al. 2000).  This group concluded Bio-Oss® may support osteoblast 

attachment and proliferation, such that growth factors on or near the xenograft 

influence osteogenesis.  Further, the release of osteoinductive factors from the 

matrix of DBBM may be tissue specific. These contrasting results to the present 

study clearly show the sensitivity of cell culture techniques.  Monolayer cell 

cultures, as used in the present study, consistently exhibit osteogenic potential 

when stem cells are cultured in the presence of dexamethasone, ascorbic acid 

and β-glycerophosphate (Karner et al. 2007).  Cell culture studies on other 

materials demonstrate that the cell response to a biomaterial may depend on 

many factors including cell types used, duration of study, freshness of material, 

frequency of media changes, direct contact of cells on materials or extraction 

components of materials and the concentration of material used (Bonson et al. 

2004; Hakki et al. 2009; Torabinejad and Parirokh 2010).  Nevertheless, in in 

vivo studies, it is repeatedly shown that cells have the ability to grow and form 

new bone on the surface of DBBM granules histologically (Norton et al. 2003). 

This may reveal the importance that bleeding, the inflammatory response and 
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extracellular components have to provide a matrix for osteoblasts to migrate 

through to reach the bone graft surface prior to bone formation. 

 

4.3 Future research 

 

There are several potential avenues with which to progress this research further 

to identify specific growth factors and confirm bioactivity.  Future studies are 

envisaged which include electroblotting to identify other growth factors in 

addition to TGF-β1, since the combination of growth factors are likely to be 

important. Although this study demonstrated mRNA synthesis and expression of 

osteogenic markers via PCR, their expression by cells could be confirmed in 

future at protein level, via Western blot or immunocytochemistry. 

 

Mass spectrometry could be utilized to identify the composition of the stained 

bands identified with silver stained gels.  Although some preliminary work has 

been carried out by the author, it was not possible to complete this within the 

time constraints of the research programme. 

 

Further, animal models could be utilized to compare chemically pre-treated Bio-

Oss® and commercial Bio-Oss® in bone defects.  Although supplementation of 

DBBM with recombinant growth factors has been performed by other groups, to 

the authors knowledge, this has not yet been performed with chemically pre-

treated DBBM.    It is noteworthy that the application of growth factors, such as 

recombinant BMP and scaffolds (e.g collagen), can only be effective if the 

carrier and delivery sytem is appropriate, the growth factor is delivered at an 

appropriate dose and the tissue dynamics of the recipients site are favourable 

(Lieberman et al. 2002).  If animal studies showed promise, the clinical pre-

treatment of Bio-Oss® particles with either calcium hydroxide or EDTA, prior to 

placement in extraction sockets or at the time of GTR procedures, may release 

proteins locked within the DBBM matrix.  This may result in faster bone 

regeneration in these clinical scenarios.  Future studies are envisaged that will 
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investigate whether, as an alternative approach, chemical pre-treatment of the 

host bone surface itself will enhance growth factor release that may improve 

regeneration in concert with Bio-Oss®, that acts as a scaffold.    

 

The aformentioned future strategies aim to provide the biological justification for 

optimisation of current treatment protocols associated with implant placement or 

the management of periodontal defects.  In terms of implant dentistry, more 

predictable bone augmentation procedures using this xenograft will reduce the 

need for autogenous bone.  This is a valid goal since autogenous bone 

harvesting is often more complex, associated with more morbidity and is usually 

more demanding of healthcare resources, which are already under significant 

pressure.  Alternative approaches being investigated by others in this research 

field include the abandonment of grafts altogether, by altering the behaviour of 

host cells directly.  For example, gene therapy using viral vectors to tranfer 

genetic material directly into cells can upregulate specific protein production by 

host cells  (Lieberman et al. 2002). 

 

4.4 Conclusions 

 

This project has demonstrated that Ca(OH)2, EDTA and HCl can extract 

residual protein from Bio-Oss®.   The results of the present study indicate that 

DBBM in the form of both Bio-Oss® granules and Bio-Oss® collagen, contain 

protein that may be in the form of TGF-β1.  The results from cell culture 

demonstrate that chemical pre-treatment of Bio-Oss® alters mRNA production 

and gene expression of osteoprogenitor cells, specifically BSP. 

 

In conclusion, these data suggest that the biocompatibility and bone 

regeneration associated with Bio-Oss® clinically may be related to residual 

protein, in the form of growth factors within the particulate bone material. 
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