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Thesis Summary 
 
Previous research at the Institute of Nephrology (IoN) has focused on the role of the 
vertebrate extracellular matrix (ECM) glycosaminoglycan, hyaluronan (HA), in renal 
fibrosis. The most effective predictors of disease outcome are interstitial 
accumulation of myofibroblasts and associated ECM expansion. The function of HA 
in the differentiation of resident and/or infiltrating fibroblasts to myofibroblasts, or by 
epithelial-to-mesenchymal transition of renal proximal tubular epithelial cells (PTCs) 
to a myofibroblastic phenotype, is therefore of great interest.  
 
HA is synthesised by the HA synthase (HAS) enzymes, encoded by the 
corresponding HAS genes. Work at the IoN has shown HAS2 induction by fibrotic 
mediating cytokine transforming growth factor-β1 (TGF-β1) and pro-inflammatory 
cytokine interleukin-1 beta (IL-1β), and that HAS2 is the dominant HAS isoform in 
the regulation of fibroblast and PTC phenotype. 
 
Recent data from the IoN showed coordinated expression of HAS2 and its natural 
antisense RNA, HAS2-AS1, in TGF-β1- and IL-1β-treated PTCs. The work described 
in this thesis began with confirmation of these findings, and this cytokine-driven 
coordinated expression pattern was then demonstrated in primary fibroblasts. 
 
Forced expression of the HAS2 open reading frame in PTC induced up-regulated 
HAS2-AS1 transcription, while inhibition of HA synthesis down-regulated IL-1β-
driven antisense up-regulation; HAS2 siRNA knockdown in PTC did not significantly 
change HAS2-AS1 expression. By contrast, and confirming previous IoN findings, 
siRNA knockdown of HAS2-AS1 expression also resulted in significant down-
regulation of HAS2 mRNA synthesis, while novel data showed that forced HAS2-
AS1 expression had no significant effect on HAS2 transcription. 
 
In conclusion, TGF-β1 and IL-1β-driven coordinated expression of HAS2 and HAS2-
AS1 was demonstrated for the first time in primary lung, oral mucosal, and dermal 
fibroblasts. Data from manipulation of HAS2 and HAS2-AS1 expression in PTC 
suggested that antisense transcription was regulated by HA-driven signalling, and that 
transcription of HAS2-AS1 antisense RNA stabilised and/or augmented HAS2 
expression. 
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Hyaluronan  
 
 
1.1 History 
 
Hyaluronan (HA), or hyaluronic acid, is a negatively charged and non-sulphated linear 

glycosaminoglycan (GAG) distributed broadly throughout vertebrate organs, fluids, 

connective tissue, epithelial and neural tissues. It was initially isolated from the vitreous 

of the eye [1], and its exact chemical structure was determined in 1954 as a large linear 

polymer composed of a repeated disaccharide sequence [2]. It is a ubiquitous component 

of the vertebrate exracellular matrix (ECM) and participates in a wide variety of cellular 

processes including differentiation, adhesion, migration and proliferation. 

 

1.2 Chemical Structure and Morphology 

The basic disaccharide motif that forms HA is comprised of N-acetylglucosamine and D-

glucuronic acid, linked together via alternating β-1,4 and β-1,3 glycosidic bonds [2] and 

is shown in Figure 1.1. This disaccharide structure is then repeated to form a hyaluronan 

molecule or HA chain. The number of repeat disaccharides in a completed HA chain can 

approach 30,000 units in some tissues. It can therefore have a molecular mass of up to 10 

x106 kilodalton (kDa), and an extended length of more than 25 µm, if straightened, much 

larger than any other member of the GAG family [3]. 

 

Molecules of HA are highly hydrophilic, with a stiffened helical configuration that gives 

the molecule an overall random coil structure [4][5]. This random-coil structure and the 

large size of HA enable it to interact with molecules of water, thereby forming solutions 
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with high elasticity and viscosity [5][6] that provide space-filling and lubricating 

functions in tissues such as cartilage. As a result of these properties,  HA has been used as 

a therapeutic agent to treat the joints of race horses [7] and, in the  1980s, HA became an 

established aid in ophthalmic surgery [8][9]. 

 

 

 

 
 
 
 
 
 
 
 
 
 
Figure 1.1 Chemical structure of HA .The repeating disaccharide unit is made of  
D-glucuronic acid and D-N-acetylglucosamine linked via alternating β-1, 4 and  
β-1, 3 glycosidic bands. 
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1.3 HA metabolism, assembly and signalling 

1.3.1 HA synthesis  

HA is synthesized by HA synthase (HAS) enzymes located within the plasma membrane. 

Three mammalian genes have been identified which encode HAS enzymes and these are 

known as HAS1, HAS2, and HAS3 [10,11] [12][13][14][15]. Each of the three 

mammalian HAS genes has been mapped to a different human autosome with HAS1 

located at 19q13.3-13.4, HAS2 at 8q24.12 and HAS3 at 16q22.1 [14]. 

 

Each HAS enzyme catalyses the elongation of HA polymers via the addition of the 

uridine-diphospho (UDP) sugar nucleotide precursors UDP-glucuronic acid and UDP-N- 

acetyl glucosamine [16]. The HA chain is synthesized in the inner cytoplasmic surface of 

the cell membrane and then passes through the membrane to the extracellular space [17], 

as shown in figure 1.2. 
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Figure1.2 Hyaluronan biosynthesis by hyaluronan synthase (HAS) occurs by addition of 
sugars (N-acetylglucosamine and glucuronic acid) to the reducing end of the polymer. 
M++ refers to a metal ion cofactor. Adapted from http://www.ncbi.nlm.nih.gov. 
 
 
 
The properties, catalytic rate and mode of regulation for each isoenzyme are different and 

may underlie physiologically distinct functions [18][6]. Furthermore, many biological 

and physiological roles of HA have been related to its molecular weight. The molecular 

sizes of HA synthesised by the different HAS enzymes that are encoded by the respective 

HAS genes have therefore also been established. HAS1 has been shown to be the least 

active enzyme and drives the synthesis of high molecular weight HA (up to 2 x106 Da). 

HAS2 has a higher catalytic activity than HAS1 also, and generates high molecular 

weight HA polymers of greater than 2 x106 Da in size. In comparison, HAS3 produces 

lower molecular weight HA chains ranging from 2 x 105 to 3 x 105 Da in vitro. HAS3 is 

the most active of the three isoforms and drives the synthesis of large amounts of lower 

molecular weight HA chains [18][19][6].  

 Hyaluronan biosynthesis

Chapter 15, Figure  2
Essentials of Glycobiology 

Second Edition

Hyaluronan biosynthesis

Chapter 15, Figure  2
Essentials of Glycobiology 

Second Edition
Essentials of Glycobiology 

Second Edition
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1.3.2 HA Degradation  

The degradation of HA is as essential as the synthesis of HA in maintaining tissue 

homeostasis, and it is estimated that about a third of the HA within the human body is 

removed and replaced during an average day [6]. The catabolic rate of HA differs 

extensively between tissues, and its half-life ranges from two to five minutes in 

circulating blood to roughly 70 days in the vitreous body [20]. 

 

The enzymes involved in HA degradation are the hyaluronidase enzymes (HYALs). 

Several hyaluronidase-like genes have been identified, however, only three (HYAL1, 

HYAL2 and HYAL3) encode proteins expressed in human tissues [21][22]. In humans, 

the three genes coding for these enzymes are tightly clustered at chromosome 3p21.3 

[21]. HYAL1 cleaves high molecular weight HA into small oligosaccharides [23]. 

HYAL2 is glycosylphosphatidylinositol (GPI)-anchored to the plasma membrane and 

cleaves HA at a much slower rate to intermediate size fragments of approximately 50 

disaccharides (roughly 20 KDa) [23]. HYAL3 does not appear to possess any 

hyaluronidase activity and very little is known about it [21][22]. HA degradation can 

occur also via two beta-exoglycosidases; beta-glucuronidase and β-N-acetyl-

glucosaminidase (24][25], and has been demonstrated in the presence of reactive oxygen 

species [26].  

 

Following HA degradation, pieces of HA are then taken up either into the surrounding 

tissues or into the lymph nodes and liver via endocytic uptake where it is then further 

degraded within lysosomes [20]. The endocytic uptake of HA is mediated through the 
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HA receptors Cluster of differentiation-44 (CD44), receptor for hyaluronan mediated 

motility (RHAMM) [27][28][6] and HARE (HA receptor for endocytosis) [29]. 

Alternatively, the high molecular weight HA may bind to the GPI-anchored HYAL2 on 

the plasma membrane, which degrades high molecular weight HA into 20 KDa fragments 

[30]. These fragments are then transported via endosomes to lysosomes where they are 

further degraded [31][32][28][33]. Once in lysosomes, further degradation of HA occurs 

through HYAL1, β-glucuronidase, and β-N-acetyl-glucosaminidase [24][25][33]. 

 

 

1.3.3 HA Assembly 

1.3.3.1 HA binding proteins and organisation of the HA matrix  

The HA binding proteins are known as hyaladherins. Most of the known hyaladherins 

and HA receptors couple to HA via an approximately 100 amino acid globular binding 

domain  known as the link module, which is essential for ligand binding [34]. The 

consensus link module structure comprising an immunoglobulin domain and two adjacent 

link modules is common to many hyaladherins including versican and aggrecan. The 

immunoglobulin domains are most likely responsible for the link protein-proteoglycan 

interaction, whereas the link modules mediate binding to HA [34][35][36]. 

 

The hyaladherins can be further divided based upon their cellular or extracellullar 

location, and by the amino acid sequence of their HA binding site.  The location of 

various hyaladherins is important for the formation of HA matrices and the balance 
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between these hyaladherins maintains an equilibrium that regulates the assembly of HA 

in the pericellular and extracellular matrix [37][38].  

 

The extracellular hyaladherin group comprises many proteoglycans including aggrecan, 

versican, neurocan, and brevican. These proteoglycans can form large complexes with 

HA that are stabilised by the link module. These stable proteoglycan HA complexes can 

provide the load-bearing function in articular cartilage, contribute to maintaining the 

structural of numerous tissues, for example skin, and give elasticity in blood vessels 

[36][39][40].  

 

 

A number of extracellular hyaladherins have been recognized that do not contain the link 

module domain. These include inter-α-trypsin inhibitor (IαI), pre-α-inhibitor (PαI) and 

inter-α- link inhibitor(IαLI), which cannot form link protein-stabilised complexes with 

HA, although heavy chains of IαI are known to covalently bind to HA and are also 

essential components of HA structures [41][42]. The heavy chains have been 

demonstrated to be an important component of pericellular HA structures and have been 

implicated in regulating cellular processes such as HA-mediated cell motility [37][43].  

 

 

Tumour necrosis factor stimulated gene 6 (TSG-6) is secreted in response to 

inflammatory stimuli [44][45] and is known to contain a link module [46]. TSG-6 has 

been implicated in the stabilization of ECM structure, particularly by supporting the 
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formation of cross-linked HA networks [47]. TSG-6 catalyses the transfer of IαI heavy 

chains to HA forming a stable, covalently linked complex which has an important role in 

formation of the pericellular matrix [37][38][48]. Fülöp et al have also shown that TSG-6 

-/- mice are infertile due to their inability to form a HA-rich extracellular matrix [48]. 

 

 

Recent studies from our laboratory have investigated the role of hyaladherin Inter-α-

Inhibitor (IαI) family of proteins together with TSG-6 and the HA-binding proteoglycans 

bikunin and versican in the macro-molecular assembly of HA by renal proximal tubular 

epithelial cells (PTC) [37][49][38].The results demonstrated that the TSG-6-mediated 

formation of IαI heavy chain-HA complexes was critical for the formation of a peri-

cellular HA matrix.  As discussed above, it has been suggested that the TSG-6-mediated 

transfer of heavy chains from IαI to HA is necessary for the formation of the HA 

pericellular matrix [37]. 

 

 

Knudson et al, have demonstrated that HA binding sites or “receptors” participate in the 

assembly and retention of the HA-dependent aggrecan-rich portion of the chondrocyte 

pericellular matrix [50]. Matrix assembly was monitored on live, intact cells by the use of 

phase-contrast microscopy in combination with a particle exclusion assay. With this 

assay, the extent of the matrix was described as a “coat” surrounding the chondrocytes 

[50]. The HA rich pericellular matrix is anchored to the surface of cells through 

interactions with its principle receptor CD44 [50].CD44 has also been shown to be 
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important in the retention of pericellular matrix by chondrocytes and it is the main 

receptor associated with the formation of HA pericellular matrix [50]. Morphological and 

biochemical studies of matrix re-growth show that monoclonal antibodies directed 

against the HA receptor CD44 blocked chondrocyte pericellular matrix assembly [50]. 

 

 

1.3.3.2 Hyaladherins as HA receptors 

The cellular hyaladherins comprise the receptors CD44 and RHAMM. The genes 

encoding CD44 and RHAMM can undergo alternate splicing of multiple variant exons, 

leading to the formation of numerous isoforms [51][34][52][53].  

 

CD44 is a multifunctional trans-membrane glycoprotein [54]. CD44 is expressed on the 

plasma membrane where it can bind to and organise the actin cytoskeleton, and is also 

involved with the endocytotic uptake of HA at the cell surface [27][55] [56]. CD44 can 

also exist as a soluble form, shed from the plasma membrane, and can compete with 

membrane-associated CD44 for HA binding [57].  In addition, O-glycosylation of CD44 

can occur resulting in an increased affinity for HA [58]. CD44 has been shown to be 

critical in the maintenance of local HA homeostasis. HA-CD44 interactions participate in 

a wide variety of cellular functions, including cell-cell aggregation, retention of 

pericellular matrix, matrix cell and cell-matrix signalling, receptor mediated 

internalization/ degradation of HA, cell migration and proliferation [59][60]. For this 

reason, HA-CD44- mediated interactions are critical in wound healing. For example, 
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CD44 plays an important part in regulating leukocyte extravasation into inflammatory 

sites [61] and mediated phagocytosis [62]. 

Isoforms of RHAMM can be located on cell surface, within the cytoplasm, or within the 

nucleus depending on the isoform expressed [63]. RHAMM does not contain the link 

module [34], instead it binds to HA through a 9-11 amino acid sequence containing 

multiple basic amino acids [64]. 

  

 

 1.3.3.3 CD44 and HA signalling   

It is clear that in some cell types, the multivalent interaction of polymeric HA with CD44 

causes clustering of CD44 in the plasma membrane and that this event is associated with 

glycosylation and phosphorylation of CD44, interaction with the cytoskeleton and 

changes in cell behaviour [65][52][54]. It has been shown that CD44-HA interactions 

lead to activation of various components of the intracellular signaling pathways including 

NF-kB [66][67], phosphoinositide 3’-kinase [68], Src kinase [69] and Rac1[70][71]. 

Rearrangement of cytoskeletal elements such as ankyrin [72] and ezrin [73] result from 

the interaction of HA with CD44 in different cell types as show in figure 1.3. CD44 can 

also function as a co-receptor, physically co-localising with receptors such as TGF-β type 

I and type II receptors and resulting in modulation of intracellular transduction pathways 

involved in TGF-β signaling [74][75].  
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Figure 1.3 A current model for hyaluronan dependent, CD44-specific signaling 
pathways. CD44-hyaluronan interaction promote tyrosine kinase (TK) activity of the non-
receptor kinase, Src. Src phosphorylates cortactin, which recruits it to the cell membrane. 
CD44-HA interactions also activate RHOA and Rac1, and CD44 binds to Tiam 1 and 
Vav2. HA also promotes the association of CD44 forms with cytoskeletal proteins such 
as ankyrin. Activation of these signaling pathways contributes to the role of CD44 in a 
wide diversity of cellular functions. Adapted from [63]. 
 

 

 

 

Wide diversity of cellular functions  
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1.3.3.4 RHAMM and HA signalling 

The HA receptor and hyaladherin RHAMM is unique in that it can be present at the cell 

surface, within the cytoplasm, and in the nucleus depending on alternative splicing of the 

transcript. It is expressed in many cell types and, depending on which isoform is present, 

contributes to HA–mediated migration, cytoskeletal reorganization and intracellular 

signal transduction [76]. Interaction of HA with RHAMM can trigger a number of 

cellular signaling pathways, including those that involve protein kinase C, focal adhesion 

kinase, MAP kinase, NF-κB, phosphatidylinositol kinase, tyrosine kinase, Src 

[36][77][78][79][63], Ras [80][81] and extracellular signal-regulated kinase (Erk) [82]. 

As shown in figure1.4, interacellular RHAMM is localized in the centrosome and 

modulates cell cycle control and mitotic spindle formation through cross-linking and 

association with actin and microtubule cytoskeletal elements [36]. RHAMM is also 

involved in regulating cell migration and has been shown to compensate for the loss of 

CD44 [83], whereby loss of CD44 resulted in increased HA accumulation allowing 

increased signalling of HA through RHAMM [83]. 
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Figure 1.4 A current model for hyaluronan (HA)-dependent, RHAMM-mediated 
signaling pathways. Cell surface RHAMM-HA interactions regulate signaling through 
Ras and Src. Cell surface RHAMM modifies the ability of the PDGF receptor to activate 
Erk kinase, a key map kinase involved in cell motility. Intracellular RHAMM proteins 
possess multiple kinase recognition sites. Intracellular forms also associate with the 
cytoskeleton, notably interphase and mitotic spindle microtubules. Adapted from [63].  
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1.4 Biological function of HA  

It was believed for many years that HA was an inert material which simply performed 

space-filling by organizing and modifying the extracellular matrix (ECM), however, 

numerous functions of HA have since been identified. Much of the work investigating the 

functionality of HA has come from studies on cancer, development and embryogenesis. 

As a result, HA has now been implicated in a wide range of extra-cellular matrix (ECM) - 

mediated processes including migration [84], differentiation [85], and proliferation [86]. 

 

1.4.1 HA in cell migration  

 

Numerous studies suggest that HA may be involved in epithelial cancer cell migration 

and metastatic potential [87][88]. HA may actively promote tumour metastasis by 

promoting tumor cell adhesion and/or migration and may also protect against immune 

surveillance [36]. Furthermore, the level of HAS2 expression influences lamellipodial 

outgrowth, a key function in the migration process [6]. Nevertheless, over-expression of 

HAS2 and HAS3 genes in Chinese hamster ovary cells resulted in greater than 1000-fold 

enhancement of HA production and inhibited cell migration [6][89], suggesting that cell 

type is a crucial factor in determining the function of HA.  In addition, HA synthesis has 

been shown to correlate with cell migration in a number of other cell types, and several 

reports have shown that cell movement can be inhibited by HA degradation or blocking 

HA receptor occupancy [90][91][92]. The extravasation of leukocytes from the blood into 

the vascular wall involves HA anchored to the surface of the endothelial cells by CD44 or 

RHAMM [93]. 
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1.4.2 HA in cell differentiation  

Previous work in vivo has demonstrated that differentiation of endothelial cells to 

mesenchymal cells is essential for the development of the atrioventricular canal (AVC) 

and subsequent septation and valve formation [85]. HA has multiple functions during 

AVC morphogenesis [45]. For example, HA promotes Ras-dependent differentiation into 

pre-valvular mesenchyme [85]. Camenisch et al, have shown that induction of cardiac 

endothelial-cell differentiation by a HA-modulated pathway involves ErbB2 and ErbB3 

activation [85]. 

 

1.4.3 HA in cell proliferation  

HA has long been implicated in malignant transformation and tumor progression 

[94][95], and an increase in HA accumulation has been observed around malignant cells 

found in breast, stomach and colon carcinoma [96][97][98]. Genetic manipulation of 

HAS genes in cancer cells has allowed investigation of the role of HA in tumour 

formation and progression. Over-expression of HAS2 and increased production of HA 

enhanced anchorage-independent growth and proliferation of human fibrosarcoma cells 

[99]. Similarly, over-expression of HAS3 promoted the growth of a prostate cancer cell 

line along with increased angiogenesis [100]. An altered balance in the ratio of synthesis 

to catabolism of HA is essential in both proliferation and migration, both of which have 

been shown to be enhanced in melanoma cells following the over-expression of either 

HAS1 or HAS2 genes [99][101]. 
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Increased HA accumulation has been described in arterial disease where HA is thought to 

enhance the growth of vascular lesions through its effects on smooth muscle and 

endothelial cell proliferation and extracellular matrix synthesis [93][102].  

Atherosclerosis and re-stenosis are characterized by marked changes in the content and 

distribution of HA [93]. The accumulation of HA in atherosclerotic lesions is frequently 

associated with increased expression of molecules that associate with HA, such as CD44 

and TSG-6 [93]. 
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1.5 HA in health  

1.5.1 HA in development  

HA is essential during embryonic development [103], where both the synthesis and turn-

over of HA are required for heart formation [104][105].  Genetic deletion of the HAS 

isoforms in vivo has shown that mice deficient in HAS1 and HAS3 were embryonically 

viable [106], however deletion of HAS2 resulted in death at embryonic day ten due to 

failed development of the heart [45][106], indicating  that HAS2 is vital to cardiac 

development. 

 

1.5.2 HA in joint stability 

The rheological properties that HA solutions exhibit (e.g. in synovial fluid) have also led 

to speculation about its role in the lubrication of joints and tissues. HA is commonly 

found in the body between surfaces that move along each other, for example, cartilage 

surfaces. HA solutions demonstrate similar visco-elastic properties shown by joint fluid 

[107][5]. 

 

1.5.3 HA in renal medulla  

In the normal kidney, HA is expressed mainly in the interstitium of the renal papilla.  

Alterations in papillary interstitial HA has been implicated in regulating renal water 

handling by affecting the physiochemical characteristics of the papillary interstitial 

matrix and thus influencing the interstitial hydrostatic pressure [108]. HA plays a role in 

the urinary concentrating process [108][109].The lipid-laden interstitial cells are thought 
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to be the major source of HA synthesis in the inner medulla. These cells regulate 

hydration, as the amount of medullary hyaluronan has been shown to correlate with the 

hydration state [110]. 

 

1.6 HA in large organ fibrosis  

 Increased expression of HA has been detected in numerous fibrotic conditions associated 

with organ dysfunction such as lung [111], liver [112][113] and kidney [114][115][116].  

 

1.6.1 HA in lung fibrosis 

Pulmonary fibrosis is a component of interstitial lung disease, a diverse group of 

disorders that are characterized by chronic inflammation and progressive fibrosis of the 

pulmonary interstitium [117]. Elevated levels of HA have been established in numerous 

interstitial lung diseases, for instance idiopathic pulmonary fibrosis [118]. Furthermore, 

experimental models of pulmonary fibrosis have shown a substantial increase in HA 

accumulation in lung tissue and broncho-alveolar lavage fluid in rats with bleomycin- 

induced pulmonary fibrosis [119]. 

 

1.6.2 HA in liver fibrosis 

 In the liver, the concentration of HA in normal conditions is low. But, in the fibrotic liver 

it accumulates, and increased serum levels of HA are found in liver diseases of a variety 

of causes for instance alcoholic cirrhosis [120], chronic viral hepatitis [121] and primary 

biliary cirrhosis [122]. Serum HA levels have been found to correlate with the severity of 
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liver fibrosis [100][112], and HA has the potential to be a useful non-invasive biomarker 

for monitoring liver function, evaluating the extent of liver fibrosis and assessing 

response to therapy. 

 

1.6.3 HA in renal fibrosis  

Chronic kidney disease (CKD) is characterized by fibrosis, and in all renal diseases the 

progression of renal insufficiency leading to end-stage renal failure is closely correlated 

to the degree of fibrosis in the renal corticointerstitum. Increased expression of both HA 

and CD44 have been established in the cortical interstitium in a variety of interstitial and 

glomerular diseases such as ischemic renal injury [116], diabetic nephropathy [123], IgA 

nephropathy [124], anti-GBM nephritis [125], lupus nephritis [126], interstitial nephritis 

[127] and allograft rejection [128].  Stenvinkel and colleagues demonstrated that serum 

HA levels in a pre-dialysis population were strongly inversely correlated with survival on 

dialysis [129]. 

 

1.7 Tubulointerstitial fibrosis          

Fibrosis is defined as expansion of stromal elements at the expense of highly 

differentiated parenchymal cells within the tissue. In renal disease, the expansion of 

stromal elements disrupts the kidney architecture and impairs fluid and solute exchange. 

The pathological changes associated with CKD and end-stage renal disease (ESRD) are 

progressive expansion of the tubulointerstitial space and subsequent fibrosis. The 

expansion of the interstitial volume is the result of proliferation of fibroblasts within the 
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interstitium, infiltration of monocytes and the excessive production of matrix within the 

interstitium by all these cells and by the tubular epithelial cells. 

 

1.7.1 The histological changes of interstitium in 

tubulointerstitial fibrosis 

Under physiological conditions, comparatively few renal fibroblasts reside in the 

interstitium. During renal fibrogenesis, fibroblast accumulation occurs in the 

tubulointerstitium. These pathologic, activated fibroblasts directly mediate fibrosis by 

leading to excessive deposition of ECM, and also by secretion of many pro-fibrotic 

factors such as transforming growth factor-Beta (TGF-β), platelet derived growth factor 

(PDGF) and fibroblast growth factor (FGF)[130]. 

 

There are several potential origins for the fibroblasts that drive tubulointerstitial fibrosis 

including local proliferation of resident fibroblasts, migration from the perivascular 

region, and recruitment of bone marrow derived precursors[131] [132].  

 

In addition to being a source of profibrotic cytokines, PTCs may directly mediate fibrosis 

by acquiring a myofibroblast phenotype during renal injury via a process known as 

epithelial-mesenchymal transition (EMT) [133][134]. During EMT, tubular epithelial 

cells acquire mesenchymal gene expression and a migratory phenotype, accumulate 

excess ECM and secrete pro-fibrotic factors. A series of reports has shown that TGF-β1 

is a vital pro-fibrotic factor in renal fibrosis, and is the principal stimulus of related 

processes, including EMT [135]. 
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1.8 Previous work carried out at the IoN 

Research in our laboratory has demonstrated that in normal conditions HA promotes 

renal proximal tubular epithelial cell (PTC) migration through interaction between CD44 

and HA in vitro [84]. In addition, cell migration can be inhibited by an increase in HA 

degradation [90][21][136]. 

 

Work carried out at the Institute of Nephrology (IoN) has also demonstrated that the HA 

plays a pivotal role in regulating TGF-β1-driven cellular differentiation, facilitating 

fibroblast-myofibroblast transition [137][138]. Different TGF-β1-induced patterns of HA 

generation were associated with varying proliferative responses by dermal and oral 

mucosal fibroblasts, and inhibition of HA synthesis in dermal fibroblasts abrogated the 

TGF-β1-mediated induction of proliferation [137]. Lung fibroblasts also differentiate to a 

myofibroblastic phenotype [139], in response to TGF-β1 [140][141]. 
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1.9 The Importance of the pericellular matrix HA in the 

regulation of cell phenotype  

A number of cell types exhibit highly hydrated, HA pericellular matrices or “coats” that 

are usually 5-10 µm in thickness and can be removed by hyaluronidase treatment 

[142][143][144]. These pericellular matrices provide the essential environment for 

biological processes such as proliferation and migration [145]. Embryonic mesenchymal 

cells, including the precursors of muscle and cartilage, embryonic glial cells, neural crest 

cells and even some embryonic epithelial cells exhibit prominent pericellular matrices.   

 

Recent IoN research has shown that the assembly of a HA pericellular matrix is necessary 

for myofibroblastic differentiation, and that sustained formation of a HA pericellular 

matrix may play an important role in maintaining the myofibroblast phenotype [138]. The 

role of HA can vary depending upon cell type and the HAS isoform expressed: in PTC, 

HAS2 has specifically been shown to be involved in the formation of a HA pericellular 

matrix [37], whereas HAS3 appears to be critical for HA cable formation [38]. In 

addition, De la Motte et al. showed that the increase of leukocyte binding was due to their 

interaction with HA cable-like structures, and that IαI has a crucial role in the formation 

of these cables [146]. 

 

Other work at the IoN has shown that HA can form pericellular cable-like structures in 

proximal tubular cell culture when stimulated with bone morphogenic protein-7 (BMP-7) 

[49]. Further research has shown that pericellular HA cables are anti-inflammatory and 
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inhibit the activation of monocytes [38], and that peripheral blood monocytes can bind to 

HA pericellular cable-like structures in a CD44 dependent manner [49]. These 

observations indicate that packaging of HA into pericellular cables plays an important 

role in HA function. 

 

 

1.10 Organisation of the fibroblast pericellular HA matrix in 

myofibroblastic transdifferentiation  

Fibroblasts are mesenchymal cells that in vivo have a bipolar spindle shape [147]. They 

have prominent nuclei, indicating a high level of protein synthesis. Fibroblasts play a 

central role in synthesis, degradation, and remodeling of the extracellular matrix in both 

health and disease [148][149][150][151][152][153]. In fibrosis, fibroblasts undergo 

activation to myofibroblasts [140][154][139][137][155] and this cell type perpetuates 

injury leading to organ fibrosis. The myofibroblast has a contractile phenotype 

characterized by the expression of a distinct actin isoform, α-smooth muscle actin (α-

SMA) [153].  

 

 HA is essential for fibroblast to myofibroblast differentiation [138][137][156][157][158], 

and previous IoN work has demonstrated a functional role for HA in the differentiation of 

myofibroblasts from dermal fibroblasts, this regulatory role being deficient in aged 

fibroblasts that resist myofibroblastic differentiation [156]. In the renal cortico-

interstitum, fibroblasts may be resident or derived from EMT of PTC [159]. 
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The presence of myofibroblasts at biopsy is a marker of fibrotic progression, correlating 

to clinical outcome in CKD [160][161][162][163].  As the formation of the HA 

pericellular matrix accompanies myofibroblastic differentiation, it is likely that it may be 

involved in modulating this process [139]. Consequently, the formation of a HA 

pericellular matrix during myofibroblastic differentiation represents a potential target for 

the attenuation of progressive fibrosis.  

 

 

Research at the IoN has shown an increased accumulation of high molecular weight HA 

during myofibroblast differentiation and demonstrated that it is organized into a 

pericellular matrix [139]. HA synthesis has been shown to be important for promoting 

this differentiation process, dermal fibroblast differentiation was associated with an 

induction of HAS1 and HAS2 transcription and assembly of pericellular HA coats, 

whereas resistance to differentiation in oral fibroblasts was associated with failure of 

pericellular coat assembly [138].  It therefore appears that inhibition of HA synthesis 

results in a corresponding reduction in this phenotypic change and maintenance of 

fibroblastic phenotype.  

 

Webber et al. demonstrated that inhibition of autocrine TGF-β1 signalling and loss of the 

myofibroblast phenotype was associated with suppression of the expression of 

hyaladherin TSG-6, which has been demonstrated in numerous cell types to be a critical 

regulator of HA coat assembly [37][48]. This suppression of TSG-6 expression was 

associated with a loss of myofibroblast pericellular HA [141]. 
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 Simpson et al. confirmed a role for TSG-6 in facilitating fibroblast differentiation by 

demonstrating that siRNA knockdown of TSG-6 gene expression led to an inhibition of 

TGF-β1-dependent induction of α-SMA. This result suggests that TSG-6 facilitation of 

HA pericellular coat assembly is necessary to allow TGF-β1-dependent phenotypic 

activation of fibroblasts [156]. The importance of the pericellular HA coat in regulating 

the fibroblast-myofibroblast activation process is further highlighted by data 

demonstrating that inhibition of coat formation by hyaluronidase also prevented TGF-β1 

mediated phenotypic conversion [156].  

 

1.11 Organisation of pericellular renal proximal tubular 

epithelial cell (PTC) HA in Epithelial-to-Mesenchymal 

transition   

PTC contribute to pathological changes in the renal interstitium by the generation of 

cytokines and alterations in the composition of the extracellular matrix 

[164][165][166][167]. PTC also play a key role in fibrosis as they undergo EMT to 

acquire a myofibroblastic phenotype [168]. The principal growth factor implicated in the 

phenotypic transition of EMT in vitro and in progressive disease in vivo is TGF-β1 [169]       

[170][171]. 
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Work at the IoN has demonstrated that TSG-6 is also a major factor mediating the 

mechanism of EMT in PTC and thereby contributes to changes in cell phenotype in renal 

pathology [172].  

 

It has been proposed that the HAS isoforms may have an essential role in differentiation 

from one cellular phenotype to another. Forced expression of HAS2 by adenoviral 

transfection promotes EMT in Madin-Darby canine kidney cells and MCF-10A human 

mammary epithelial cells [173]. 

 

 HAS activity has also been shown to have an influential role in the organisation of HA 

pericellular structures. The forced expression of HAS3 in PTC leads to the formation of 

pericellular cables [38], while the forced expression of HAS2 in the same cells leads to 

the formation of HA pericellular matrix, and inhibits HA cable formation [37]. In PTCs 

in vitro, formation of HA cables/ coats and how they are put together can lead to different 

functional effects. Pericellular HA coat formation is associated with cell migration [38], 

while HA cables modify epithelial –mononuclear leukocytes interactions and decrease 

fibrotic effects by binding of monocytes to these structures, thereby attenuating 

monocyte-dependent PTC generation of TGF- β1 [38].   
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 1.12 HAS2-driven HA synthesis 

 

1.12.1 Role of HAS2 expression in the regulation of epithelial 

cell phenotype 

 

 HAS2 expression and HA metabolism are thought to have a role in EMT, which drives a 

wide range of physiological processes such as tissue remodelling, organ development and 

wound healing, and may also contribute to pathophysiological processes. HAS2-driven 

HA synthesis may be important in CKD, where EMT causes tubular epithelial cells to 

transform into myofibroblasts [174][168].  

 

At the IoN and in other laboratories, it has been demonstrated that increased HA 

synthesis in PTC is accompanied by up-regulation of HAS2 expression in the presence of 

disease-related stimuli such as elevated concentrations of glucose and IL-1β [175]. 

Furthermore, data from the IoN have suggested that both HAS2 transcriptional induction 

and subsequent HAS2-driven HA synthesis may impact on renal fibrosis through their 

role in the phenotypic modulation and alteration of the PTC function. For example, 

forced-expression of HAS2 in PTC resulted in the formation of peri-cellular HA coats 

and an increase in cell motility - an essential early stage in EMT [37][ 133][38].  

 

Other work has shown that HAS2 expression is important for EMT both in vitro [173] 

and in vivo [45]. HAS2 inactivation in the mouse embryo is lethal because of failure of 
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cardiac endothelial cells to undergo epithelial to mesenchymal transition [45]. Phenotypic 

alteration in human mammary epithelial cells may be driven by adenoviral expression of 

HAS2, the increase of synthesis of HA through this induction of HAS2 then initiating 

epithelial-mesenchymal transformation [173]. In addition, in renal epithelial cells there is 

an increase in HA following the up-regulation of HAS2 transcription in autoimmune 

renal injury [176].  

 

1.12.2 Role of HAS2 expression in the regulation of fibroblast 

phenotype  

 Work carried out at the IoN has shown the importance of HAS2-isoform-dependent 

effects on fibroblast phenotype. In lung fibroblasts for example, HAS2 mRNA synthesis 

and HA peri-cellular coat formation are associated with the myofibroblastic phenotype, 

[139], and increased HA synthesis together with up-regulated HAS2 transcription have 

been reported in lung fibrosis [177]. Furthermore, work at the IoN has shown that TGF-

β1 stimulation was associated with induction of HAS2 in dermal fibroblasts, while there 

was a lack of induction of HAS2 transcription in oral fibroblasts which are resistant to 

phenotype activation [138]. In addition, the impaired ability of ageing dermal fibroblasts 

to acquire a myofibroblastic phenotype was associated with failure of HAS2 induction 

following TGF-β1 stimulation, and this study shows that over-expression of HAS2 in 

older dermal fibroblasts, aged in vitro, restores their TGF-β1-responsiveness [156]. 

Moreover, in human lung fibroblasts, knockdown of HAS2 expression using a HAS2-

specific siRNA resulted in attenuated differentiation to the myofibroblast phenotype and 

decreased expression of α-SMA [141]. In addition, scratch-wound studies using skin 
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keratinocyte monolayers show an increase in HA following an up-regulation of HAS2 

transcription [178,179].  

 

1.13 Regulation of HAS2 expression  

HAS2 transcription can be induced by a variety of stimuli. Epidermal keratinocytes, for 

example, show an increase in HAS2 expression in response to epidermal growth factor 

[178][179], and also to keratinocyte growth factor [180]. Other cytokines and growth 

factors reported to induce HAS2 expression include PDGF in both corneal endothelial 

cells [181] and mesothelial cells [182], tumor necrosis factor-α (TNF-α) in periodontal 

ligament cells [183], as well as fibroblast growth factor (FGF) and insulin-like growth 

factor-1 (IGF-1) in human articular chondrocytes and osteosarcoma cells [184].  

 

In addition, previous reports from the IoN and other laboratories have demonstrated that a 

number of cytokines, including IL-1β and TGF-β1, are implicated in transcriptional 

regulation of the HAS2 gene. For example, IL-1β has been reported to increase HAS2 

expression in PTC via NF-κB signaling [175], and IL-1β was reported to induce HAS2 

expression in periodontal ligament cells [183]. IL-1β stimulation of human peritoneal 

mesothelial cells (PMC) [185] and adult dermal fibroblasts [186] resulted in the up-

regulation of HAS2 and an associated rise in HA synthesis.  
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TGF-β1, on other hand, can either stimulate or suppress HAS2 expression, depending on 

the cell type.  For instance, it has been shown to increase the transcription of HAS2 in 

corneal endothelial cells via Smad signaling [181], whereas TGF-β1 downregulates 

HAS2 in rat epidermal keratinocyte cells [179] and also suppresses HAS2 gene 

expression in mesothelial cells [182]. Moreover, work at the IoN has shown that TGF-β1 

was associated with induction of HAS2 in dermal fibroblasts, while there was a lack of 

induction of HAS2 transcription in oral fibroblasts [138]. In addition, the impaired ability 

of ageing dermal fibroblasts to acquire a myofibroblastic phenotype was associated with 

failure of HAS2 induction following TGF-β1 stimulation [156]. 

 

In high glucose concentrations in vitro, to model mimic diabetic nephropathy, PTC 

synthesise high levels of HA, which is coincident with specific up-regulation of 

transcription at the HAS2 locus [175].  

 

 

 

 

 

 

 

 

 

 



 31 

 

1.14 Genomic structure of HAS2  

The human HAS2 gene has been mapped to 8q24.12 [14]. Work at the IoN reconstructed 

the putative genomic structure for each human HAS isoform, including the HAS2 gene, 

identifying the putative upstream proximal promoter region in each case [187]. Figure 1.5 

shows a schematic representation of the genomic structure of each human HAS gene, 

compared with their murine Has orthologues [19][187]. 

 

The genomic structure for the HAS2 isoform spanned four exons, exon one forming a 

discrete 5′-untranslated region (5′-UTR), with the translation start site at nucleotide one 

of exon two. The mouse Has2 and human HAS2 isoforms have similar genomic 

structures [19] and a comparison between human HAS2 intron/ exon boundaries and the 

corresponding regions in murine Has2 gene [19][188] established there is high level of 

both nucleotide and amino acid sequence identity among human and mouse orthologues. 
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Figure 1.5 Genomic structures for human HAS1, HAS2, HAS3v1 and HAS3v2 are 
drawn to scale in 5'-3' orientation together with murine Has 2 orthologues [82].(a) Exons 
are represented by filled boxes and are separated by introns (solid lines), preceded by 
promoter regions (dotted lines) and followed by downstream 3' sequences (dotted and 
dashed lines). (b) The second part of the figure shows the alignment of the exons of the 
human HAS genes and murine Has orthologues [82] in 5'-3' orientation, showing the 
translation start (ATG) and termination codons (TGA). Exons are represented by 
numbered boxes, with the coding regions filled and the 5'-and 3'-UTRs empty. Adapted 
from Monslow et al. 2003 [187]. 
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1.15 Transcriptional regulation of HAS2  

1.15.1 Role of the promoter in constitutive and stimulated HAS2 

gene transcription 

Promoters are combinations of DNA sequence elements that are usually located in the 

immediate upstream region of the gene, often within 200 bp of the transcription start site, 

that serve to initiate transcription. The binding of RNA polymerase II at the core 

promoter is a key stage in gene transcription, and gene expression is initiated via the 

binding of transcription factors and other key elements such as tissue specific 

transcription factors to the promoter and the formation of a transcriptional complex with 

RNA polymerase II.  

 

Recent work at the IoN has investigated the regulatory elements responsible for the 

transcription of the human HAS2 gene [187][189]. This work detected an extended 

sequence for HAS2 exon 1 and relocated the HAS2 transcription initiation site (TIS) 130 

nucleotides upstream of the reference HAS2 mRNA sequence [189]. Data from in silico 

analysis in our laboratory of the newly-defined HAS2 promoter region highlighted a 

cluster of three Sp1/Sp3 recognition sites immediately adjacent to the relocated TSS 

[189]. Later work demonstrated that transcription factors Sp1 and Sp3 act as co-activators 

at these sites, mediating HAS2 constitutive transcription in PTC [190].  

 

 

 



 34 

Previous work at the IoN has also shown that IL-1β stimulation of PTC in vitro leads to 

HAS2 up-regulation via an NF-κB dependent mechanism [175][190] and identified an 

NF-κB site 250 bp upstream of the HAS2 TSS in silico. The presence of p50 and p65, the 

NF-κB sub-units typical of the canonical pathway up-regulation, in PTC nuclei following 

IL-1β stimulation was also demonstrated, although NF-κB binding to HAS2 promoter 

was not seen [190]. More recently, quantitative qRT- PCR data demonstrated that siRNA 

knockdown of Sp1 and Sp3 inhibits HAS2 induction following incubation with IL-1β, 

and that the TGF-β1 induction of HAS2 in PTC is abrogated by siRNA knockdown of 

Smad2 and Smad3 [191]. 

 

 

Saavalainen et al. showed that, in keratinocytes, the human HAS2 promoter is under the 

control of the inducible transcription factors NF-kβ and retinoic acid receptor (RAR), as 

well as constitutively active Sp1 [192][193]. These regulatory proteins share common 

cofactors, providing numerous possibilities for functional interaction between associated 

signalling pathways. Moreover, Makkonen et al found that cyclic AMP Response 

element-binding protein (cREB) and retinoic acid regulate the human HAS2 gene [194].  
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1.16 Genomic organization of HAS2-AS1, a natural antisense 
RNA to HAS2  
 

In addition to transcription, HAS2 expression may also be regulated at the post-

transcriptional, translational and post-translational levels. Post-transcriptional regulation 

of HAS2 expression by natural antisense RNA, HAS2-AS1, has recently been described 

[195]. 

 

The human HAS2-AS1 gene is transcribed from the opposite genomic DNA strand to 

HAS2 at locus 8q24.12, and comprises four exons, as shown below in Figure 1.6.This 

antisense transcript was originally designated as human HASNT (for HAS2 antisense), 

and the symbol Hasnt was used for the corresponding mouse orthologue [195]. NCBI has 

since annotated the human transcript as HAS2-AS1. 

 

 

 

 

 

 

 

Figure 1.6 Genomic organization of the HAS2-AS1 gene with respect to HAS2. The red 
box indicates the difference in nucleotide composition of the long and short splice-
variants of HAS2AS exon 2. 
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As shown in Figure 1.6, the HAS2-AS1 exon 1 sequence lies within intron 1 of the HAS2 

gene, the second HAS2-AS1 exon is complementary to a portion of HAS2 exon 1, and 

the nucleotide sequences of HAS2AS exons 3 and 4 are located upstream of HAS2. 

 

Expression of a “long” HAS2-AS1 splice-variant, L-HAS2-AS1, and a corresponding 

“short” alternatively-spliced product, S-HAS2-AS1, has been reported in osteosarcoma 

cells [195]. This length variation involves a difference of 83 nucleotides of the HAS2-

AS1 exon 2 sequence and thus changes the length of complementary sequence with 

HAS2. L-HAS2-AS1 shares 257 nucleotides with HAS2 exon 1, while S-HAS2-AS1 has 

a corresponding 174 nucleotide region of complimentarity [191][195]. 

 

 

1.17 Post Transcriptional Regulation of HAS2 gene expression 

by HAS2-AS1 

 

Natural antisense RNAs have been found in viruses, prokaryotes and eukaryotes, and are 

plentiful in mammals, including human and mouse [196]. They have a wide range of 

potential functional roles, including the regulation of gene expression 

[197][195][184][198]. Chao and Spicer demonstrated that overexpression of the HAS2-

AS1 gene down-regulated both HAS2 mRNA transcription and HA synthesis in 

osteosarcoma cells [195]. These finding suggested that HAS2-AS1 may regulate HAS2 
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transcription in vivo, and the authors predicted that HAS2 and HAS2-AS1 transcriptional 

activity was independent and mutually exclusive [195]. 

 

At the beginning of the work described in this thesis, the data summarized above 

described the extent of knowledge on the expression of HAS2-AS1 and its interaction 

with HAS2. As described above, previous work at the IoN had implicated HA in renal 

fibrosis. From in vivo studies, HA was shown to be a correlate of fibrosis in analysis of 

renal biopsy samples from diabetic nephropathy patients [114]. In addition, HAS2-driven 

HA synthesis has been shown to play a role in the modulation of the phenotype of two 

cell types: transdifferentiation of fibroblasts to myofibroblasts and EMT of PTC to an 

activated, myofibroblastic phenotype [37][38][138][139][141][156]. 

 

 

To pursue further the connection between HAS2 expression and HAS2-driven HA 

synthesis and renal fibrosis, the work outlined in this thesis set out to establish the role of 

HAS2-AS1 in the regulation of HAS2 expression. Following experiments showing 

coordinated expression of sense and antisense RNAs in response to three disease-related 

stimuli in PTC, simultaneous transcriptional induction of HAS2-AS1 and HAS2 

expression was also demonstrated in a variety of fibroblasts cell types in response to 

cytokine stimulation. Since these data suggested that sense: antisense relationship in these 

cells was different to that described previously in osteosarcoma cell [195], further 

experiments were designed to modulate the expression of HAS2-AS1 or HAS2 and to 

observe any changes in expression of the other RNA. 
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1.18 Project Aims 

The aim of this project is to further ongoing work looking at regulation of HAS2. In 

particular, this thesis examines the relationship between HAS2 and HAS2-AS1 in order 

to give us some functional insight into what HAS2-AS1 does and how HAS2-AS1 RNA 

may regulate HAS2 mRNA expression. The specific aims were: 

 

1) To compare and contrast the regulation of HAS2 and HAS2-AS1 expression in 

PTC in response to the pro-inflammatory cytokine IL-1β and the pro-fibrotic 

cytokine TGF-β1, that are known to be implicated in kidney fibrosis. In addition, 

elevated glucose concentration was also investigated as this mimics diabetic 

nephropathy and has been reported to drive HA synthesis. Having established 

these patterns of expression in PTCs, to extend these observations to the other cell 

types, lung, dermal and oral fibroblasts. 

 

2) To use forced expression or siRNA knockdown of HAS2 mRNA to determine the 

effect of this manipulation of expression on the inducibility of HAS2-AS1 RNA 

in response to IL-1β or TGF-β1. 

 

 

3) To use forced expression or siRNA knockdown of HAS2-AS1 RNA to determine 

the effect of this manipulation of expression on the inducibility of HAS2 mRNA 

in response to IL-1β or TGF-β1. 
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2.1 Tissue culture 

Human proximal renal tubular epithelial cell (PTC) line HK-2 and human lung fibroblasts 

were cultured in 75 cm2 tissue culture flasks at 37˚C in a humidified incubator (Cell 

House 170, Heto Holten, Derby, UK) with an atmosphere containing 5% CO2 and 95% 

air.  Spent medium was removed by aspiration and fresh growth medium was added 

every 3 to 4 days until the cells reached 100% confluence [199].  When sub-cultured, the 

content of each original 75 cm2 (T-75) flask was divided into three new flasks. 

 

HK-2 cells were purchased from the American Type Culture Collection (Manassas, VA, 

USA) and grown in 1:1 (v/v) mixture of glucose-free D-MEM : F-12 Ham (NMF-12) 

medium (10 mmol/l glucose; Gibco/BRL Life Technologies Ltd, Paisley, UK) 

supplemented with 10 ml of HEPES (Gibco) per 500 ml medium, 5µg/ml of insulin 

(Sigma, Poole, Dorset, UK), 5µg/ml of transferrin (Sigma), 5 ng/ml of sodium selenite 

(Sigma), 400 ng/ml of hydrocortisone (Sigma) and 10% foetal calf serum (FCS; Autogen 

Bioclear Ltd, Calne, Wiltshire, UK). 

 

Primary human lung fibroblasts (AG02262) were purchased from Corriel cell repositories 

(Coriell Institute for Medical Research, NJ, USA). These cells were cultured in D-MEM 

supplemented with 2 mM of L-glutamine, 100 µg/ml of penicillin (Sigma), 100 µg/ml of 

streptomycin (Sigma) and supplemented with 10% foetal calf serum (FCS). 
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Dermal and oral mucosal fibroblasts were obtained by biopsy from consenting adults 

undergoing routine minor surgery, and ethical approval for the biopsies was obtained 

from the South East Wales Research Ethics Committee. 

2.2 Sub-culture of cells 

Confluent cell monolayers for passage were sub-cultured using the following method. 

1. Spent medium was aspirated from the cell monolayer and the cells were washed 

once with 10 ml of PBS. 

2. A sufficient volume of a 1:9 (v/v) solution of trypsin : PBS was added to cover 

the cell monolayer. 

3. Cells were inspected by light microscopy and, after 4-5 min incubation at 37˚C, 

were detached from the flask by gentle agitation. 

4. Trypsin protease activity was neutralised by the addition of 30 - 40 ml of fresh 

growth medium, containing 10% FCS, to prevent cell lysis of the cells. 

5. The cell suspension was transferred to a sterile 50 ml universal tube. 

6. Cells were pelleted by centrifugation at 1,500 rpm at 4˚C for 6 min. 

7.  The supernatant was aspirated and the cells were re-suspended in 45 ml of fresh 

supplemented medium containing 10% FCS and seeded into appropriate culture 

vessels: 2 ml / well in a 6-well plate, 5 ml / T-25 flask, 15 ml per T-75 flask. 

 

2.3 Serum starvation / Growth arrest 

All experiments were carried out following a period of growth arrest for the cells.  

Growth medium was removed from confluent cell monolayers, which were then washed 
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twice with PBS.  Fresh, serum-free growth medium was then added and the cells were 

incubated for a further 48 h at 37˚C. 

 

2.4 Cell stimulation 

Serum-free growth arrest medium was aspirated and replaced with control serum-free 

medium or medium containing 1 ng/ml of recombinant interleukin-1-beta (IL-1β; R&D 

Systems Europe Ltd., Abingdon, Oxfordshire, UK) or 10 ng/ml of recombinant transforming 

growth factor-beta1 (TGF-β1; R&D).  The duration of cell stimulation was determined in 

time course experiments. 

 

2.5 RNA Extraction 

1. Supernatants were removed and 1 ml of TRI-Reagent solution (Sigma) was added 

per well of a 6 well plate, incubated at room temperature for 1 min, then pipetted 

repeatedly to ensure complete cell lysis. 

2. Each cell lysate was transferred to a sterile 1.5 ml tube and incubated at room 

temperature for 5 min to ensure complete dissociation of nucleoprotein 

complexes.  Lysates were then stored at -80˚C, until ready for RNA extraction. 

            The following steps were performed on ice. 

3. Samples were defrosted and 200 µl of chloroform was added per 1 ml lyaste. The 

samples were agitated by inversion for 15 s, until completely emulsified. 

4. Samples were incubated at room temperature for 5 min to allow clear phase 

separation. 

5. Centrifugation was carried out at 12,000 rpm for 15 min at 4˚C. 
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6. The colourless upper aqueous phase (approximately 0.5 ml) was transferred 

carefully to a fresh tube for each sample, removing any of the interface. The lower 

organic phase was discarded. 

7. To precipitate RNA, 0.5 ml of isopropanol was added to each sample per 0.5 ml 

of upper aqueous phase. The samples were then mixed by inversion and stored 

overnight at -20˚C. 

8. Samples were defrosted, centrifuged at 12,000 rpm for 15 min at 4˚C, and 

supernatants were decanted to leave an RNA pellet.  Each pellet was washed with 

1.5 ml of ice-cold 75% ethanol, vortexed briefly and centrifuged at 12,000 rpm 

for 15 min at 4˚C. 

9. Supernatants were decanted and RNA pellets were air-dried for 1 h to remove all 

traces of ethanol. 

10. Pellets were re-suspended in 20 µl of water, and vortexed to ensure all the RNA  

             had been solubilised.  

11. The absorbance at 260 nm (A260) of a 1:50 dilution of each sample was analysed 

spectrophotometrically and RNA concentrations were calculated using the 

following equation: 

                           A260 x dilution factor x extinction coefficient = [RNA] (µl/µg) 

                                                            1000 

12.      The integrity of extracted RNA was determined by flat-bed electrophoresis 1µl   

            of each RNA extract though a 2% agarose gel (see Appendix 1).  The presence of  

            discrete bands representing the 28S and 18S subunits of ribosomal RNA indicated        

            intact RNA suitable for experimental analysis. 
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2.6 Reverse Transcription 

1. Reverse transcription was carried out using the High Capacity cDNA Reverse 

Transcription Kit with RNase Inhibitor (Applied Biosystems, Warrington, Cheshire, 

UK).  The final volume of the reverse transcriptase (RT) master mix (MM) was 

adjusted for the number of RNA samples, and included sufficient for one no 

template control reaction with no RNA. 

2. These ingredients comprised the MM (totalling 10 µl per sample) 

10 x RT Buffer    2.0 µl 

25 x dNTP Mix (100 mM)  0.8 µl 

10 x RT random primers   2.0 µl 

Multi-Scribe reverse transcriptase 1.0 µl 

RNase inhibitor    1.0 µl 

nuclease-free H2O    3.2 µl 

               10.0 µl 

3. A total of 1 µg of each RNA sample was diluted in 10 µl of water 

4. An aliquot of 10 µl of MM was added to each RNA sample, making a total 

reaction volume of 20 µl.  Reverse transcription was carried out in a 

thermocycler, using the following cycling protocol. 

 

 Step 1 Step2 Step 3 Step 4 

Temperature 25˚C 37˚C 85˚C 4˚C 

Time 10 min 120 min 5 s  
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2.7 Quantitative Reverse Transcription-Polymerase Chain 

Reaction (qRT-PCR) 

Master mixes (MMs) for qRT-PCR of HAS2 and 18S ribosomal (r) RNA, and HAS2-

AS1, were made up as shown below, in each case comprising a total reaction volume of 

20 µl. 

MM for HAS2 
TaqMan fast universal PCR master mix 10 µl 

HAS2 primer and probe     1 µl 

cDNA from RT reaction     1 µl 

H2O        8 µl 

       20 µl 

MM for HAS2-AS1 
TaqMan fast universal PCR master mix 10 µl 

HAS2-AS1 primer and probe     1 µl 

cDNA from RT reaction     2 µl 

H2O        7 µl 

       20 µl 

MM for 18S rRNA 
TaqMan fast universal PCR master mix 10 µl 

18S rRNA primer and probe     1 µl 

cDNA from RT reaction     1 µl 

H2O        8 µl 

       20 µl 
 

Taqman assay reagents for qRT-PCR analysis of HAS2, HAS2-AS1 and 18S rRNA were 

obtained from Applied Biosystems.  Samples were processed in an Applied Biosystems 

Fast Optical 96-well reaction plates in a Fast Real-Time PCR system with cycling 

parameters of 95˚C for 10 min followed by 40 cycles of 95˚C for 15 s and 60˚C for 1 
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min.  Onboard SDS software was used for the analysis of output data from biological 

triplicates. The process of Q-PCR is summarised in figure 2.1.  

The comparative CT method was used for relative quantification of gene expression. The 

CT (threshold cycle where amplification is in the linear range of the amplification curve) 

for the standard reference gene 18S ribosomal RNA (rRNA) was subtracted from the 

target gene CT to obtain the ΔCT for each sample. The mean ΔCT values for similar 

samples were then calculated. The expression of the target gene in experimental samples 

relative to expression in control samples was calculated: 

 

                               Relative Expression = 2 ─ (ΔCT (1) ─ ΔCT (2))   

 

Where ΔCT  (1) is the mean ΔCT  value calculated for the experimental samples, and 

 ΔCT  (2) is the mean ΔCT  value calculated for the control samples. Data were analysed 

using “RQ Manager” software from Applied Biosystems UK Ltd. 

 

CT , or the threshold cycle, is a number of PCR cycles needed to detect fluorescence 

associated with the amplification of a specific product. If efficiency of the reaction is 

100%, with every PCR cycle the number of copies of the product is doubled. Therefore, 1 

cycle different (i.e. ΔCT  =1) between two samples means that there was initially 2-fold 

difference in expression of a particular gene between those samples. The difference of 2 

cycles (ΔCT  =2) means 4-fold (22) difference in expression, ΔCT  =3 means 8-fold (23) 

difference, and so on. 
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Figure 2.1: Mechanism of Q-PCR.   
The forklike-structure-dependent, polymerisation- associated, 5`to 3` nuclease activity of 
AmpliTaq Gold Polymerase. The subsequent release of the fluorescent reporter is related 
directly to the exponential accumulation of PCR products. 
Modified from the Taq Man Universal PCR Master Mix protocol (Applied Biosystems). 
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Detection of the PCR product relies on the cleavage of the TaqMan probe. The TaqMan 

probe contains a reporter dye at the 5ʼ end a quencher dye at the 3ʼ end. When the probe 

is intact, the proximity of the quencher dye to the reporter dye enables the quencher dye 

to suppress the fluorescence of the reporter dye. If the target gene is present, during the 

PCR reaction, the probe will specifically anneal between the forward and reverse primer 

sites. During the reaction, cleavage of the probe occurs due to the forklike-structure-

dependent polymerisation-associated 5ʼto 3ʼ nuclease activity of the AmpliTaq Gold 

DNA polymerase. This releases the fluorescent reporter from the probe, and close 

proximity of the quencher, therefore allowing the reporter to fluoresce. Fluorescence of 

the reporter allows detection of PCR products, and the increase in fluorescence is directly 

related to the amount of PCR product. This process occurs in every cycle and does not 

interfere with the exponential increase of PCR product. The 3ʼ end of the probe is 

blocked to prevent extension of the probe during PCR. If the target sequence is not 

present the probe will not hybridise to the cDNA, therefore the probe will not be cleaved 

and the fluorescence of the reporter will remain suppressed. 
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2.8 qRT-PCR reagents 
 

qRT-PCR down by Taqman gene expression assays were purchased from Applied 

Biosystems.The qRT-PCR reaction was carried out using standard protocols as 

recommended for the Taqman assay reagents.  

 

                       Gene Primer/ Probe Catalogue Number 

                      HAS2           Hs_00193435_ml 

                      HAS2-AS1            AI5H05G 

 

                         Table: Taq Man Gene Expression Assays (Applied Biosystems). 
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2.9 Transforming competent cells for pCR-3.1 and pCR-3.1 

HAS2 expression vector 

 
Prior to the transformation procedure, a water bath was equilibrated at 42˚C, an 

appropriate volume of SOC medium was pre-warmed to room temperature and selective 

LB plates (see Appendix 2) were pre-warmed at 37˚C for 30 min. 

1. One vial of One Shot TOP10 chemically competent E. coli cells (Invitrogen) were 

thawed on ice for each transformation. 

2. Approximately 10 ng of each plasmid DNA (kind gifts from Dr Russell Simpson, 

Institute of Nephrology, Cardiff University School of Medicine) was added to the 

bacterial cells and mixed by gentle flicking. 

3. Vial(s) were placed on ice for 30 min with mixing by gentle flicking of the tube 

every 10 min. 

4. Cells were heat-shocked for 30 s at 42˚C without mixing. 

5. Vial(s) were placed on ice for 2 min and then 250 µl of pre-warmed SOC medium 

was added aseptically to each vial. 

6.  Vial(s) were capped tightly and shaken at 37˚C for 1 h at 225 rpm in an orbital 

shaking incubator. 

8. Aliquots of 5 µl and 50 µl from each transformation were spread on pre-warmed 

selective LB plates, which were then inverted and incubated overnight at 37˚C. 

9. A suitable single colony was picked and processed by mini-preparation and 

restriction endonuclease digestion to confirm presence of the transformed HAS2 

expression plasmid as overleaf.  
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2.10 Plasmid DNA Extraction by Alkaline Lysis 

A single colony was picked from an agar plate showing growth of appropriate density 

and used to inoculate 5 ml of LB broth + 50 µg/ml ampicillin and incubated at 37˚C 

overnight in an orbital shaker.  An aliquot of 4 ml was then screened, as outlined below, 

for the presence of plasmid vectors containing HAS2 promoter sequence (see Monslow et 

al., 2004). 

1. The bacterial cells in each 4 ml aliquot of broth culture were pelleted by 

sequential addition to, and centrifugation in, a sterile 1.5 ml Eppendorf tube.  

After each spin, the supernatant was decanted and the final pellet was taken up in 

100 µl of a resuspension solution comprising 50 mM glucose, 10 mM EDTA and 

25 mM Tris-HCl, pH 8.0. 

2. Samples were vortexed briefly and left to stand at room temperature for 5 min. 

3. A total of 200 µl of a freshly-prepared lysis solution of 0.2 M NaOH in 1% SDS 

was added and placed on ice for 5 min. 

4. A freshly-prepared aliquot of 150 µl of a neutralizing solution of 3 M potassium / 

5 M acetate was added, the mixture was then vortexed for 10 s, placed on ice for a 

further 5 min and then centrifuged at 13, 000 rpm for 5 min. 

5. Supernatants were decanted to sterile 1.5 ml Eppendorf tubes, and an equal 

volume of approximately 400 µl of phenol/chloroform was added (bottom layer) 

and vigorous brief vortexing was carried out, followed by centrifugation at 13, 

000 rpm for 2 min. 

6. Supernatants were decanted to sterile 1.5 ml Eppendorf tubes, and 2 volumes 

(approximately 800 µl) of ice-cold ethanol. 
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7. Brief, vigorous vortexing was followed by 5 min centrifugation at 13,000 rpm, 

after which supernatants were decanted. 

8. Pellets were washed by the addition of 1 ml of ice-cold 70% ethanol followed by 

brief vigorous vortexing until the white pellet was detached from bottom of tube, 

after which centrifugation was carried out at 13,000 rpm for 5 min. 

9. Supernatants were decanted and pellets were allowed to air dry. 

10. A volume of 30 µl of H2O + 0.5 U/ µl of RNase A (Qiagen, Crawley, West 

Sussex, UK) was added to each pellet, brief vigorous vortexing was carried out 

and extracts were left to stand at room temperature for 30 min prior to 

commencing restriction endonuclease digestion. 

11. Digestion with restriction endonucleases (NEB UK Ltd, Hitchin, Hertfordshire, 

UK) of e.g. HAS2 (insert) was set up as shown below: 

Not I     0.3 µl 
KpnI    0.3 µl 
Multi-copre TM 10xbuffer 1.0 µl 
BSA    1.0 µl 
Water                          7.4 µl 

                10.0 µl 
and incubated at 37˚C for 2 h. 

12. Following incubation, 3 µl of loading buffer was added to each sample.  Samples 

were then applied to a 2% agarose gel prepared in TAE buffer containing 0.5 

µg/ml of ethidium bromide, separated by electrophoresis at 75 V for 90 min and 

visualised using ultra-violet light.  The HiSpeed Plasmid Midi Kit (Qiagen) was 

used to prepare larger quantities of vectors from larger volumes of positive 

cultures according to the manufacturer’s instructions.  Prepared plasmids were 

sequenced to ensure fidelity of amplification and ligation, used in downstream 

analyses and glycerol stocks of cultures were stored in addition to purified 
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plasmid preparations. As described above.  Following this, an aliquot of one 

positive culture was used to inoculate a starter culture for midi-preparation of a 

larger-scale column-based plasmid purification using kit reagents according to the 

manufacturer’s instructions (Promega). 
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2.11 Forced HAS2 expression in lung fibroblasts 

Lung fibroblasts were transfected with the pCR-3.1 expression vector containing the 

HAS2 open reading frame using Lipofectamine LTX Reagent (Invitrogen). 

For each sample, the transfection complex for each well was prepared as follows:  

1. A mixture of 1 µg of the HAS2 vector insert was diluted in 200 µl Opti-MEM I 

Reduced Serum Medium (Invitrogen) without serum and mixed thoroughly. 

2.       A mixture of 1 µg of the empty vector was diluted in 200 µl Opti-MEM I Reduced 

Serum Medium (Invitrogen) without serum and mixed thoroughly. 

3. A volume of 1.0 µl of PLUS Reagent (Invitrogen) was added directly to the 

diluted DNA, mixed gently and incubated at room temperature for 5 min. 

4. An aliquot of 2.5 µl of Lipofectamine LTX Reagent (Invitrogen) was then added 

to the diluted DNA, mixed thoroughly and incubated at room temperature for 30 

min, after which time the transfection complexes were ready. 

5. A total of 200 µl of the DNA-Lipofectamine complexes was added to each well 

containing cells, mixing was carried out by gentle rocking of the plate. 

6. Cells were incubated at 37˚C in a CO2 incubator for 24 h. A time course of 

transfection of 24 h, 48 h, 72 h and 96 h was carried out to optimize HAS2 

expression, with RNA extraction carried out using TRI-Reagent as described 

above.  Transfection with empty pCR-3.1 vector was carried out as a negative 

control. 
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2.12 Transfection of HK-2 Cells with HAS2 and HAS2-AS1 

specific siRNAs 

1. HK-2 cells were cultured to approximately 30-50% confluence. 

2. Cells were washed with PBS and then growth arrested for 3-4 h prior to 

transfection. 

3.       Similarly to the experiments described above for the transfection of the HAS2 

vector, transfection complexes for the transfection of siRNAs were prepared using 

a working concentration of 30 nM in Opti-MEM I Reduced Serum Medium, and 

Lipofectamine 2000 (Invitrogen) was used as the transfection reagent according to 

the manufacturer’s instructions. 

 

2.13 siRNA reagents  

siRNA reagent for specific gene knockdown experiments were purchased from Applied 

Biosystems. The qRT-PCR reaction was carried out using standard protocols as 

recommended for the Taqman assay reagents.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

           Gene  siRNA  Catalogue Number 

           HAS2            117326 

       HAS2-AS1            4426961 
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2.14 Effect of glucose concentration on HAS2 and HAS2-AS1 

gene expression in HK-2 cells 

 
 
PTCs were grown to confluence and stimulated under serum-free conditions with 

normoglycemic (5 mM), high (25 mM) D-glucose concentration and an osmotic control 

of 5 mM D-glucose + 20 mM D-Mannitol for 0, 24, 48, 72 and 96 h time course . At each 

time point, cells were harvested by homgenisation in TRI-reagent. At the end of the 

experiment, RNA extraction was carried out prior to quantitative reverse transcription 

PCR (qRT-PCR) for HAS2 mRNA and HAS2-AS1 RNA expression as described 

previously. (Section 2.7). 

 

2.15 HAS2-AS1 Overexpression 

HK2 cells were grown to sub confluency in 24 well plates, and were growth arrested in 

serum free medium for over 4h prior to transfection. 

To study the biological activity of HAS2-AS1 three plasmid preparation were transfected 

into HK2-cells.  

1. Full length HAS2-AS1 in pcDNA3.1 purchased from Epoch Biolabs, INC. Missouri 

City Texas, USA. 

2. L HAS2-AS1 exon 2 in pc DNA3.1 as described by Chao and Spicer [195] (prepared 

earlier in our laboratory by Dr D. Michael). 

3.  Empty vector PCR 3.1. 
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Transfection was carried out in triplicate and the incubation continued for both 24 hours 

and 48 hours time points post transfection. 

1. RNA was collected in Tri reagent (Sigma) as per manufacturer’s instructions,    RNA 

was purified and quantified, RT was carried out on 1µg of the total RNA extracted 

from each sample and qRT-PCR was the carried out on the resultant cDNA to 

determine HAS2 expression.  

      The transfection mixtures were prepared in advance to reduce any bias in transfection       

       condition. 

2. Lipofectamine LTX (Invitrogen) was used to transfect the cells as per manufacturers 

instructions in 500 µl/well in medium containing 10% serum.  

3.  100 µl Optimem was used per well (x3 so 300 µl) of Optimem was prepared for each 

transfection.  

4.  500 ng DNA was added per well (x3 so 1.5 µg) DNA (4.8 µl empty vector), (9.15 µl 

HASAS) or 9.3 µl L-HAS2AS). 

5.  0.5 µl PLUS /well was added (x3 so 1.5 µl) and the samples were then mixed and 

incubated for 10-15 min at RT. 

6. 2.5 µl LTX was then added per well (x3 so 7.5 µl), and the samples incubated for a 

further 30 min at RT.  100 µl was then added to each well containing 500 µl of 

medium with 10% serum. 
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2.16 HA synthesis inhibition by 4-methyl-umbelliferone (4-

MU) blocks the stimulated effect of HAS2  

1. HK2 cells were seeded into a 24 well plate and grown until the cells were 80% 

confluent. 

2. Six groups of quadruplicate wells were treated as follows: empty vector (pcdna4, 500 

ng /well), over-expressing HAS2 vector, empty vector plus 4-MU treatment, over-

expressing HAS2 vector plus 4-MU, empty vector plus IL-1β (1 ng/ml) and empty 

vector plus both IL-1β and 4-MU. 

3. HA synthesis inhibitor 4-MU was prepared by preparing a stock of 1 M in DMSO, 

diluting this to 1 mM in medium immediately before use, and then adding this at 

50:50 to the medium in the well to give a final concentration of 0.5 mM on the cells.  

IL-1β was used at a final concentration on 1 ng/ml. 

4. Transfection was carried out using Lipofectamine LTX. 

5. Briefly, for each well, 0.5 µg vector was added to 100 µl Optimem and 0.5 ml “Plus 

reagent” added and incubated for 10 min at room temperature in a 1.5 ml tube. 

6. Then 2.5 µl LTX was added for each well, and the incubation continued for a further 

20 mins. 100 µl of this DNA Lipofectamine complex was added to each well of cells, 

together with 150 µl medium (+ or – IL-1β) and a further 250 µl of medium (+ or – 4-

MU) was added to each well, giving a final volume of 0.5 ml. 

7. The incubation was continued for 3 days, after which the medium was removed, the 

cells washed with PBS, and the RNA extracted as previously described for analysis 

by qRT-PCR.  
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2.17 Statistical Analysis 

All experiments were performed at least in triplicate. Arithmetic mean, standard deviation 

and standard error were calculated and the data are represented as ± Standard Error of 

Mean (SEM). Comparisons were performed using an unpaired Studentʼs t-test. The value 

of P < 0.05 was considered as statistically significant. Using the “two sample assuming 

unequal variances” within Microsoft excel (2003 edition).  
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Expression of  HAS2 and  HAS2-AS1 in renal proximal tubular 

epithelial cell line HK-2 and lung, dermal and oral mucosal 

fibroblasts in response to IL-1β and TGF-β1 

 

3.1 Introduction: 

 

3.1.1 HA synthesis, HAS2 and HAS2-AS1 expression  

 

One principal research theme at the Institute of Nephrology is the identification of 

mechanisms by which PTC and fibroblasts drive renal fibrosis. Fibrosis is the common 

end-point of CKD, and increased deposition of HA has been demonstrated to correlate 

with the degree of interstitial fibrosis in progressive renal dysfunction associated with 

diseases such as IgA nephropathy [200] and diabetic nephropathy [114]. Of the three 

HAS isoforms,work carried out at the IoN to date has focused specifically on expression 

of the HAS2 gene and HAS2-driven HA synthesis, as this isoform has been shown to be 

a key phenotypic modulator of both PTC [37] and fibroblast [138] in both cases driving a 

pro-fibrotic effect.   
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Post-transcriptional down- regulation of both HAS2 mRNA synthesis and subsequent 

HAS2-driven HA synthesis by the natural antisense RNA HAS2-AS1 has recently been 

reported in osteosarcoma cells [195]. HAS2-AS1 is transcribed from the opposite 

genomic DNA strand at the HAS2 locus, and exon two of HAS2-AS1 is complementary 

to the first HAS2 exon (see figure 3.1). 

 

 

 

 

 

Figure 3.1 Genomic organisation of HAS2-AS1 and HAS2 at locus 8q24.12. The four 
exons of HAS2AS on the upper (+) strand of chromosome 8 at locus 8q24.12 are shown 
as filled boxes, with the transcription start site illustrated as an arrow.  HAS2 on the 
lower (–) strand is depicted similarly, and the overlap of HAS2-AS1 exon 2 and HAS2 
exon 1 is evident. Adapted from Michael et al. (2011) [191]. 
 
 
Previous work at the Institute on Nephrology has studied HAS2 regulation in depth. 

[37][138][188][189][192]. Most recently, coordinated expression of HAS2 and HAS2-

AS1 expression in HK-2 cells, in response to IL-1β and TGF-β1, has been shown [191]. 

The relationship between HAS2 and HAS2-AS1 is, however, not fully defined, and it is 

possible that HAS2-AS1 may be a target through which HAS2 expression could be 

regulated. Further insight into factors regulating HAS2 expression and its relationship 

with its antisense RNA may therefore identify potential targets for future therapeutic 

intervention in the fibrotic process [201]. 

 

-15 -10 -5 0 5-20-25
Chromosome 8 genomic DNA (kb)

HAS2AS

HAS2

+
- -

+

-15 -10 -5 0 5-20-25
Chromosome 8 genomic DNA (kb)

-15 -10 -5 0 5-20-25
Chromosome 8 genomic DNA (kb)

HAS2AS

HAS2

+
- -

+
HAS2AS

HAS2

+
- -

+
HAS2-AS1

 



 61 

One of the diseases of interest at the IoN is diabetic nephropathy (DN). This chapter 

confirmed experiments showing coordinated HAS2 and HAS2-AS1 expression in 

response to addition of DN-associated stimuli cells from PTC line HK-2 [191], and then 

extended these observations to include other cell types. 

 

3.1.2 Diabetic nephropathy  

Diabetes mellitus is a condition characterised by the presence of elevated blood glucose 

levels. This may be caused by lack of insulin production (type I diabetes, ~5-10% 

patients with diabetes mellitus), or most often, inability to respond to insulin (type II 

diabetes). Over time, hyperglycaemia causes significant anomalies in the vasculature 

[202], which lead to micro- and macrovascular complications of diabetes: nephropathy, 

retinopathy, neuropathy, and atherosclerosis. Approximately one third of diabetic patients 

(both type I and II diabetes) suffer from kidney disease [203]. DN is therefore the most 

common single cause of ESRD, accounting for 20% of all patients requiring renal 

replacement therapy in the UK [204]. Furthermore, mortality is higher in diabetic patients 

in comparison with non-diabetic patients [204]. 

 

Clinically incipient nephropathy manifests initially as persistent microalbuminria (i.e. 

albumin excretion: 20-200 mg per day). Then, persistent proteinuria occurs (i.e. total 

protein excretion > 200 mg per day) and is an indication of overt DN. Following the 

onset of proteinuria, there is a progressive decline in kidney function, leading to ESRD. 

In approximately 50% of patients with overt nephropathy, progression is quick and 

kidney function is usually lost in less than five years [205]. 
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3.1.3 Extracellular matrix expression in DN  

The changes seen within the diabetic kidney are similar whether the underlying diagnosis 

is type I or II diabetes mellitus. The earliest histopathological change in DN is renal 

hypertrophy [206]. This may be explained by both mesangial and interstitial expansion. 

In the course of the disease, further damage in both the renal corpuscle and 

tubulointerstitium is observed. In addition to mesangial expansion, corpuscular changes 

include glomerular basement membrane thickening, glomerular sclerosis, and, at later 

stages of the disease, loss of podocytes [206]. In the tublointerstitium fibrosis develops. 

The tubular basement membrane thickens [207]. Tubules and peritubular capillaries are 

gradully replaced by extracellular matrix and interstitial cells. The latter include, apart 

from usual fibroblasts and resident macrophages, myofibroblasts and infiltrating immune 

cells [208]. As with all other couses of CKD the outcome correlates with interstitial 

fibrosis and the presence of myofibroblasts in renal biopses.  

 

3.1.4 HA modulation of cell phenotype in DN 

 

3.1.4.1 The renal proximal tubular epithelial cell (PTC), HA and diabetic 

nephropathy (DN)  

In health, renal proximal tubular epithelial cells (PTCs) reabsorb the majority of filtered 

water and solutes, and contribute to tubular basement membrane formation via secretion 

of type IV collagen and laminin.  
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A number of in vitro studies carried out at the IoN have suggested that HA contributes to 

the pathogenesis of renal fibrosis via transition of PTC to a myofibroblastic phenotype, 

which is  associated with increased HA synthesis [209]. 

 

3.1.4.2 Potential drivers of fibrosis in DN  

Transforming growth factor-beta 1 (TGF-β1) 

The cytokine and fibrotic mediator TGF-β1 has been implicated in progressive renal 

interstitial fibrosis [210][211][212].  Increased levels of TGF-β1 have been reported in a 

variety of diseases associated with renal fibrosis, including glomerulonephritis [213] and 

DN [214]. Moreover, the over expression of TGF-β1 has been shown to induce CKD 

[215], and inhibition of its action has been shown to prevent renal injury in animal 

models of glomerulonephritis [216] and also in a model of progression of interstitial 

fibrosis [217].  

 

 Interleukin-1 beta (IL-1β) 

Inflammation may also play a part in the progression of fibrosis.  Early stages of fibrosis 

are typically characterised by inflammation, and this leads to changes in renal interstitial 

matrix, tubular atrophy, cellular transformation and the accumulation of myofibroblasts 

[218,219, 220,221]. In many conditions the extent of renal fibrosis and the number of 

infiltrating inflammatory cells change in parallel, and these inflammatory cells are 

therefore thought to contribute to the loss of renal function and fibrosis. Support for this 
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comes from animal models of injury in which macrophages are depleted [222] and from 

animals lacking in genes encoding proteins involved in inflammatory cell recruitment      

[223][224]. Furthermore, even in conditions such as DN where the primary insult is 

considered to be metabolic, many studies have also implicated an inflammatory 

component in its pathogenesis [225][226][227].          

 

Previous work at the IoN has shown that IL-1β increases HAS2 mRNA expression in 

HK-2 cells in an NF-κB-dependent manner [175]. IL-1β was also shown to increase the 

expression of CD44, the HA receptor and this was associated with internalization of HA, 

suggesting increase functional form of receptors facilitating this process [58]. IL-1β has 

numerous roles leading to the promotion of fibrosis, including promotion of leukocyte 

infiltration, inducing proinflammatory mediators and inducing production of TGF-β1, 

which is a key profibrotic growth factor [228][229]. 

 

 

 Glucose and hyperglycaemia  

In addition to pro-inflammatory and pro-fibrotic cytokines, disease-specific stimuli such 

as raised glucose concentration drive HA synthesis [230][231][232].  More specifically, 

increased HAS2 transcription, together with raised levels of HA synthesis, have been 

reported in PTC line HK-2 cells cultured in vitro in glucose concentration similar to those 

found in DN [175]. As previously demonstrated at the IoN, the combined effects of 

glucose and IL-1β may modulate the profibrotic potential of the PTCs in DN, by an 

increase in the TGF-β1 production [164]. It has been demonstrated that strict glycaemic 
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control is effective in prevention of development and progression of DN at early stages 

[233]. High glucose concentration may directly up-regulate the synthesis of TGF-β, a 

profibrotic cytokine, in mesangial cells and PTC, leading to increased production of 

extracellular matrix proteins [234]. There is evidence that in addition to increased 

synthesis of ECM components, glucose may also decrease degradation of matrix 

components which may also contribute to ECM accumulation in DN [235]. 

 

TGF-β1 may function in conjunction with hyperglycaemia, to mediate the changes seen 

within the tubulo-interstitium in DN. Phillips et al suggested that the role of 

hyperglycaemia may be to prime the kidney for an enhanced pro-fibrotic response to a 

second stimulus[164][199]. Addition of 25mM D-glucose to PTC in culture caused an 

increase in TGF-β1 mRNA. This increase was only seen following the application of a 

second stimulus (IL-1β) [164].  

 

 Macrophage influx previously has been implicated in the pathogenesis of DN, both in 

animal models and in human diease [236][237]. This suggests that the generation of 

macrophage-derived cytokines such as IL-1β, in combination with the effect of elevated 

glucose concentrations, may act synergistically to influence the pathogenesis of DN. In 

IoN has shown that increased HA synthesis in response to either IL-1β or elevated 25 

mM D-glucose is associated with NF-κB activated transcription of HAS2 [175]. 
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3.1.4.3 Oral mucosal and dermal fibroblasts  

In the kidney, fibroblasts are mainly distributed in both cortical and medullary 

interstitium. In cortical interstitium and outer medullary interstitium, fibroblasts 

synthesise ECM and are the major source of HA in the inner medulla; medullary HA 

correlates with hydration state [110].  

 

Fibroblasts located in the cortical and outer interstitium are responsible for most of the 

excessive ECM deposition seen in fibrosis [238]. Under physiological conditions, only a 

few renal fibroblasts can be found in the interstitium. However, during renal fibrogenesis, 

their number increases dramatically and they take on an activated, alpha smooth-muscle 

(α-SMA) expressing myofibroblast phenotype. 

 

 

Phenotypic conversion from fibroblast to myofibroblast is associated with major changes 

in the synthesis and metabolism of HA, in which the activated myofibroblast phenotype 

is charactersed by the accumulation of intracellular and extracellular HA, and the 

assembly of enlarged HA pericellular matrices [139]. Furthermore, inhibition of HA 

synthesis (Meran et al., 2007), or removal of the pericellular HA coat (Simpson et al., 

2009), inhibited phenotypic activation of dermal fibroblasts [138][156].  

 

Progressive renal fibrosis can be thought as uncontrolled, aberrant scarring of renal 

tissue. Previous work from this laboratory using dermal fibroblasts as a model of a 

scarring fibroblast phenotype has shown that TGF-β1 drives phenotypic differentiation of 
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these cells from fibroblast to myofibroblast [138]. Meran et al. have confirmed that the 

resistance of non-scarring model cells oral mucosal fibroblasts to TGF-β1 mediated 

myofibroblastic change is associated with the failure of induction of HAS2 [138].  

 

 

Meran et al. (2007) demonstrated that IL-1β stimulation induced HAS2 mRNA 

expression in both dermal and oral mucosal fibroblasts, but neither cell type differentiated 

to a myofibroblast phenotype [138]. IL-1β promotes fibroblast proliferation and, 

fibroblasts derived from diseased kidneys demonstrate greater IL-1β responsiveness than 

those from normal kidneys [239][240]. 

 

As outlined above, much is now known about the up-regulation of HAS2 mRNA 

synthesis by numerous disease-associated stimuli. However, significantly less is known 

about the mechanisms regulating HAS2 expression, including the relationship between 

the synthesis of HAS2 mRNA and the expression of natural antisense HAS2-AS1. The 

work in this chapter began with confirmation of coordinated regulation of HAS2 and 

HAS2-AS in HK-2 cells following TGF-β1 and IL-1β treatment [191]. Regulation of 

expression was then also analysed in response to elevated D-glucose levels in these cells. 

In addition, the effects of TGF-β1 and IL-1β stimulation on sense and antisense 

expression in primary human lung, dermal and oral mucosal fibroblasts were also 

investigated.  
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Aims: 

 

1) To compare and contrast the regulation of HAS2 and HAS2-AS1 expression in 

response to the cytokines IL-1β and TGF-β1, and to elevated glucose 

concentration in PTC. 

2) Having established patterns of expression in PTC, to see how these results apply 

more widely across different fibroblast cell types.   
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3.2 Results 

 

3.2.1 RNA quality control 

Following RNA extraction the integrity of RNA was determined by flat-bed 

electrophoresis of 1µl of RNA extract through a 1 % agarose gel. The presence of two 

bands representing18S and 28S subunits of ribosomal (r)RNA indicated intact, high-

quality RNA suitable for use in further experiments (Figure 3.2). 

 

           
Figure 3.2: Flat-bed 1% Agarose gel electrophoresis of RNA extracts from HK-2 cells. 
The two discrete bands represent intact 28S and 18S rRNAs, showing that the samples 
contain undegraded total RNA suitable for use in further experiments.  
 
 
 
 

28S rRNA 
18S rRNA 
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3.2.2 qRT-PCR analysis of cDNA generated from RNA 

extracts  

In figures 3.3 and 3.4, amplification of the endogenous control 18S rRNA was seen at 

comparatively low cycle number, due to its high abundance. HAS2 transcripts were not 

as abundant, and were therefore detected at higher cycle numbers.  

 

.  

  

 

                                                     

                                        Rrna---------- 

 

                                 HAS2      ----- 

 

 
Figure 3.3 :  Amplification plot of cycle number against normalised fluorescence, qRT-
PCR reaction profiles from cDNA prepared from HK-2 cells, stimulated with IL-1β for 0 
, 3, 12, and 24 h. Time course analyses were carried out in  triplicate and each sample 
was assayed in triplicate. Amplification of endogenous control 18S rRNA reaction was 
evident between cycle numbers 10 and 15, with HAS2 amplification appearing after 27-
33 cycles.  A typical amplification curve starts with background fluorescence, followed 
by the exponential amplification phase, a linear phase, and final plateau. The threshold 
point at which a reaction reaches a predetermined fluorescent intensity above background 
is set early in the exponential phase of amplification. The PCR cycle at which the sample 
reaches the threshold is known as the threshold cycle (CT). 
 
 
 
 
 
 

 

------18S rRNA 
 
----- HAS2 
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                                    Rrna------ 

 

                        HAS2---- 

Figure 3.4: Amplification plot of cycle number against normalised fluorescence, the 
qRT-PCR reaction profiles from cDNA prepared from HK-2 cells, stimulated by TGF-β1 
for 0, 3, 12, 24 h. Time course analyses were carried out in triplicate and each sample was 
run in triplicate.  
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3.3 Regulation of HAS2 and HAS2-AS1 in PTCs  

 

3.3.1Effect of IL-1β on HAS2 and HAS2-AS1 gene expression in 

HK-2 cells 

 
To examine the effect of IL-1β on HAS2 and HAS2-AS1 transcription in growth arrested 

(serum deprived for 48 hours) HK-2 cells, 1 ng/ml of IL-1β was added to HK-2 cultures 

for 0, 3, 6, 9, 12, 24 and 48 h. At each time point, cells were harvested by homogenisation 

in TRI-reagent. At the end of the experiment, RNA extraction was carried out prior to 

qRT-PCR analysis for HAS2 mRNA and HAS2-AS1 RNA expression as described 

previously (section 2.7). 

 

 

 As shown in Figure 3.5.A, following stimulation by IL-1β there was a rapid induction in 

HAS2 mRNA expression which peaked at 3 h. Subsequent HAS2 expression levels 

declined, although these remained greater than those detected in the corresponding un-

stimulated controls for the duration of the experiment. With the exception of the 12 h 

time-point, the difference between HAS2 transcription in IL-1β-treated and untreated 

cells was statistically significant. 
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A) 

 

 

 

 

 

 

 

 

 

B) 

 

 

 

 

 
 
 
 
 
Figure 3.5.  Transcriptional induction of A) HAS2 mRNA and B) HAS2-AS1 RNA 
in response to IL-1β-(1ng/ml) in HK-2 cells.  Empty bars represent unstimulated PTC, 
filled bars represent IL-1β- treated cells. Collated data are shown from two reproducible 
experiments, each carried out in triplicate, and error bars show standard error of the mean 
(n = 6). Statistical analysis was performed by the Student’s t test: *, P < 0.05. 
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Similarly, addition of 1 ng/ml of IL-1β stimulated a pattern of HAS2-AS1 transcriptional 

induction that exactly mirrored that of HAS2 expression (Figure 3.5.B). The maximal 

induction of HAS2-AS1 expression was also seen after 3h of IL-1β treatment, and 

stimulated cells showed a statistically significant increase in HAS2-AS1 transcription, 

with the exception of the 12 h time point.   

 

The data from Figures 3.5.A and 3.5.B therefore demonstrated that IL-1β induction of 

HAS2 and HAS2-AS1 transcription in HK-2 cells was coordinated. 
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3.3.2 Effect of TGF-β1 stimulation on HAS2 and HAS2-AS1 gene 

expression in HK-2 cells 

 

To examine the effect of TGF-β1 on HAS2 and HAS2-AS1 transcription in growth –

arrested HK-2 cells, 10 ng/ml of TGF-β1 was added to HK-2 cultures for 3, 6, 9, 12, 24 

and 48 h. At each time point, cells were harvested by homogenisation in TRI-reagent. At 

the end of the experiment, RNA extraction was carried out prior to quantitative reverse 

transcription PCR (qRT-PCR) for HAS2 mRNA and HAS2-AS1 RNA expression as 

described previously (Section 2.7). 

 

 

As shown in figure 3.6.A, HAS2 expression increased over the time course of TGF-β1 

stimulation, reaching a maximal level at 48 h. However, the difference in HAS2 

expression between TGF-β1-treated and untreated cells was only statistically significant 

at the 24 h and 48 h time points. Similarly, Figure 3.6.B shows that a similar profile of 

HAS2-AS1 transcriptional up-regulation was seen, in response to TGF-β1 treatment, 

reaching statistical significance at the 24 h and 48 h time-points. 

 

The data from Figure 3.6 demonstrated that both HAS2 mRNA and HAS2-AS1 RNA 

transcription were up-regulated in a coordinated fashion in response to TGF-β1. 

 

These data show essentially the same results as those reported by Michael et al 2011 

[191] with an increase in the expression of HAS2 and HAS2-AS1. Michael et al. 
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however, showed a significant increase at an earlier time point than reported here. This 

discrepancy may be due to the relatively large error bars for the 3, 6, 9 and 12 h time 

points, resulting from biological variation or experimental error. A larger number of 

experimental samples may have shown less variation and statistical significance at earlier 

time points. 

 

The above data for coordinated expression of HAS2 and HAS2-AS1 in response to TGF-

β1 and IL-1β confirmed the findings published previously from the IoN [191]. 
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A) 

 

 

 

 

 

 

 
 
 
 
 
B) 
 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.6  Transcriptional induction of A) HAS2 mRNA and B) HAS2-AS1 RNA 
in response to TGF-β1-(10ng/ml) in HK-2 cells. Empty bars represent unstimulated 
PTC, filled bars represent TGF-β1 treated cells. Collated data are shown from two 
reproducible experiments, each carried out in triplicate, and error bars show standard 
error of the mean (n = 6). Statistical analysis was performed by the Student’s t test: *, P < 
0.05. 
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3.3.3 Effect of glucose concentration on HAS2 and HAS2-AS1  

gene expression in HK-2 cells 

 

 

The effect of glucose concentration on HAS2 and HAS2-AS1 expression was 

investigated using normal (5 mM) and high (25mM) D-glucose concentration, and an 

osmotic control of 5 mM D-glucose + 20 mM D-Mannitol over a 96 h time course, as 

shown in Figure 3.7 below. 

 

As seen in figure 3.7.A, HAS2 expression was up-regulated by 25 mM D-glucose after 

48 h, 72 h and 96 h, and at the latter two time-points this up-regulation was statistically 

significant. Up-regulated HAS2 transcription was also seen in the osmotic control of 5 

mM D-glucose + 20 mM D-mannitol at 96 h, but this was not statistically significant. 

 

 

The effect of glucose concentration on HAS2-AS1 gene expression (Figure 3.7.B) 

followed a similar temporal profile to that for HAS2, and was statistically significant at 

the same time points.   
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A) 

 

 

 

 

 

 

 

 

B)  

 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
Figure 3.7  Transcriptional induction of A) HAS2 mRNA and B) HAS2-AS1 RNA in 
response to elevated glucose concentration in HK-2 cells. Empty bars represent the 
effect of 5 mM -D-glucose, black bars represent the effect of 25 mM D-glucose and grey 
bars represent the effect of 5 mM D-glucose + 20 mM D-mannitol. Data show one 
experiment, carried out in triplicate, and error bars show standard error of the mean (n = 
3).  Statistical analysis was performed by the Student’s t test: *, P < 0.05. 
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3.4 Regulation of HAS2 and HAS2-AS1 in Fibroblasts  

 

3.4.1Effect of IL-1β stimulation on HAS2 and HAS2-AS1 gene 

expression in lung fibroblasts 

 
Lung fibroblasts have been shown to differentiate into a myofibroblastic phenotype in a 

process involving peri-cellular HA coat formation [139]. Growth-arrested lung fibroblasts 

were treated with 1 ng/ml of IL-1β for 0, 3, 6, 9, 12, 24, 48 and 72 h. HAS2 and HAS2-

AS1 transcription was then analysed by q-RT-PCR as described previously (section 2.7). 

 

 

In response to IL-1β treatment (Figure 3.8.A) a statistically significant and discrete peak 

of HAS2 expression was seen after 12 h, but HAS2 expression in unstimulated cells was 

no different than the levels of stimulated HAS2 transcription at all other time points. 

Figure 3.8 B illustrates a similar temporal profile of HAS2-AS1 expression, with a 

distinct, statistically significant peak after 12 h. 
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A) 

 

 

 

 

 

 

 

 

B) 

 

 

 

 

 

 

 

Figure 3.8  Transcriptional induction of A) HAS2 mRNA and B) HAS2-AS1 RNA 
by IL-1β (1ng/ml) treatment in lung fibroblasts. Empty bars represent unstimulated 
lung fibroblast cells, filled bars represent IL-1β treated cells. Collated data are shown 
from three reproducible experiments, each carried out in triplicate, and error bars show 
standard error of the mean (n = 9). Statistical analysis was performed by the Student’s t 
test: *, P < 0.05. 
 

 

 

0
2
4
6
8
10
12
14
16
18

0 3 6 9 12 24 48 72

Time (H)

H
A

S2
 R

el
at

iv
e 

Ex
pr

es
si

on

 

* 

0

1

2

3

4

5

0 3 6 9 12 24 48 72

Time (H)

HA
S2

-A
S1

 R
el

at
iv

e 
Ex

pr
es

si
on

 

* 



 82 

3.4.2 Effect of TGF-β1 stimulation on HAS2 and HAS2-AS1 gene 

expression in lung fibroblasts 

 

Growth-arrested lung fibroblasts cell were treated with 10 ng/ml of TGF-β1for 0, 24, 48 

and 72 h. HAS2 and HAS2-AS1 transcription was then analysed by qRT-PCR (see 

section 2.7). 

 

As seen in figure 3.9.A, in response to TGF-β1 treatment there was a statistically 

significant up-regulation in HAS2 gene expression only at the 48 h time point.          

Figure 3.9.B shows a similar temporal profile for HAS2-AS1 expression, with a discrete 

peak of expression after 48 h. 
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A) 

 

 

 

 

 

 

 
              

 
B)  

 
 

            

 
 

 

 
 
Figure 3.9 Transcriptional induction of A) HAS2 mRNA and B) HAS2-AS1 RNA by 
TGF-β1 (10 ng/ml) in lung fibroblasts. Empty bars represent unstimulated lung 
fibroblast cells, filled bars represent TGF-β1 treated cells. Collated data are shown from 
three reproducible experiments, each carried out in triplicate, and error bars show 
standard error of the mean (n = 9). Statistical analysis was performed by the Student’s t 
test: *, P < 0.05. 
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3.4.3 Regulation of HAS2 / HAS2-AS1 gene expression in two 

models resistant to  TGF-β1 stimulation of HAS2 expression  

 

Simpson et al. (2009) demonstrated an age-dependent resistance to TGF-β1-mediated 

phenotypic activation of dermal fibroblasts, a functional change that may contribute to 

age related impaired wound healing. Age associated resistance to phenotypic activation is 

associated with decreased HAS2 expression and the failure of its induction by TGF-β1 

[156]. In addition, Meran et al. (2007) have demonstrated that resistance of oral mucosal 

fibroblasts to TGF-β1 mediated myofibroblastic change is also associated with the failure 

of induction of HAS2 [138]. 

 

3.4.3.1  Aged model of TGF-β1 resistance  

 

To investigate the effect of TGF-β1 on HAS2 and HAS2-AS1 transcription in dermal 

fibroblasts, cells were stimulated for 72 h. “Young” dermal fibroblasts were cells at 

passage 8; “Aged” dermal fibroblasts were cells at passage 15 as described previously 

[156]. 
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A) 

 

 

 

 

 

 

 

         
 

 

 

B) 

 

 

 

 

 

 
 
 
 
 
 
 
 
Figure 3.10 Transcriptional induction of A) HAS2 mRNA and B) HAS2-AS1 RNA 
by TGF-β1 (10 ng/ml) treatment in young and aged dermal fibroblasts. Empty bars 
represent unstimulated cells, filled bars represent TGF-β1treated cells. Data represent one 
experiment, carried out in triplicate, and error bars show standard error of the mean (n = 
3). Statistical analysis was performed by the Student’s t test:*, P < 0.05. N/S, not 
significant. 
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The data shown in figure 3.10 demonstrated that the addition of TGF-β1 to dermal 

fibroblasts leads to the coordinated transcription of HAS2 and HAS2-AS1 in young 

dermal fibroblast, a statistically significant change that was not seen in aged cell. In the 

aged cells, failure of induction of HAS2 following addition of TGF-β1 was also 

associated with a failure of induction of HAS2-AS1. 

 

3.4.3.2 Oral fibroblast model of TGF-β1 resistance   

 

Oral mucosal fibroblasts were growth arrested and then treated with 10 ng/ml of TGF-β1 

for 72 h. Cells where used at passage 8. 

 

 

 

The data displayed in Figure 3.11 showed that, following stimulation of oral mucosal 

fibroblasts with TGF-β1, both HAS2 and HAS2-AS1 expression was down-regulated, but 

that this reduction was not found to be statistically significant.   
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A) 

 

 

 

 

 

 

 

 

 

 

B) 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
Figure 3.11  Transcriptional induction of A) HAS2 mRNA and B) HAS2-AS1 RNA 
by TGF-β1(10 ng/ml) in oral mucosal fibroblast cells. Empty bars represent 
unstimulated cells, filled bars represent TGF-β1 treated cells. Data represent one 
experiment, carried out in triplicate, and error bars show standard error of the mean (n = 
3). Statistical analysis was performed by the Student’s t test:  N/S, not significant. 
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3.5 Discussion 

 

The work described in this chapter is based on previous work carried out at the IoN 

showing that HAS2-driven changes in cell phenotype are important in the progression of 

fibrosis, and that there may be a relationship between disease-associated HAS2 

transcriptional regulation and post-transcriptional HAS2 regulation by HAS2-AS1.  

 

In PTCs, work from the IoN has shown that forced expression of HAS2 increased 

assembly of HA into pericellular coats, a phenotypic change that is associated with a 

migratory phenotype [37]. Migration of PTCs has been identified as one of the important 

steps of epithelial cell transdifferentiation [241], and is a key early stage in EMT. 

Furthermore, phenotypic alteration in renal epithelial cells may be driven by adenoviral 

expression of HAS2 [173]. This is consistent with previous data which examined the 

regulation of HA synthesis by renal PTCs in vitro [175] and demonstrated that increased 

HA synthesis was associated with the transcriptional activation of HAS2 by stimuli that 

are implicated in the pathogenesis of renal damage such as TGF-β1, elevated glucose 

concentration and the proinflammatory cytokine IL-1β. In the context of progressive 

renal disease, an increase in pericellular HA may therefore facilitate the fibrotic response 

and inducible HAS2 may contribute to renal injury. 

 

Formation of pericellular HA coats are also associated with fibroblast to myofibroblast 

transformation [139]. Myofibroblasts mediate fibrosis and their numbers best predict the 

outcome in diverse models of renal injury [160][161][162][163][168]. Although the 
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primary interest of work at the IoN is in kidney fibrosis, due to the practical difficulties of 

culturing primary renal fibroblasts, in vitro models of TGF-β1 dependent lung and dermal 

fibroblast to myofibroblast activation are used. Using these models, previous data have 

shown the importance of HAS2-isoform-dependent effects on fibroblast phenotype.  

 

In lung fibrosis, the accumulation of HA has been observed [242][243], and in other 

cases the up-regulation of HAS2 transcription has also been reported [183]. Furthermore, 

in lung fibroblasts, HAS2 mRNA synthesis and the HA peri-cellular coat formation are 

associated with the myofibroblastic phenotype [139]. The TGF-β1-driven activation of 

young dermal fibroblasts is associated with the induction of HAS2 transcription [156]. In 

contrast, in vitro studies show resistance to TGF-β1 mediated phenotypic differentiation 

and the induction of HAS2 mRNA in aged dermal [156] and oral mucosal fibroblasts 

[138]. 

 

 

Post- transcriptional regulation of HAS2 mRNA synthesis by the natural antisense RNA 

HAS2-AS1 has been reported [195]. Therefore, increasing our knowledge of the 

relationship between HAS2 and HAS2-AS1 will further our understanding of the 

function and mechanism of HAS2-AS1: HAS2 interaction.  

 

In this chapter the coordinated transcriptional induction of both HAS2 and HAS2-AS1 

transcripts in PTCs in response to the proinflammatory cytokine interleukin-1β, the 

fibrotic mediator transforming growth factor-β1, and elevated glucose concentration was 
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demonstrated. Furthermore, the data showed that coordinated expression of HAS2 and 

HAS2-AS1 was also seen in lung, dermal and oral fibroblasts. 

 

 In contrast, in aged dermal fibroblasts, no stimulation was seen following stimulation 

with TGF-β1 of either HAS2 or HAS2-AS1 transcription. In oral mucosal fibroblasts, 

following stimulation with TGF-β1, both HAS2 and HAS2-AS1 expression were down-

regulated, but this effect was not statistically significant.  

 

These results were not predicted on the basis of data described by Chao and Spicer in 

osteosarcoma cells in which forced expression of the complementary HAS2-AS1 exon 2 

sequence down-regulated HAS2 transcription and HA synthesis [195]. In the range of 

cells used in the present study, induction of HAS2 sense and HAS2-AS1 antisense 

transcription occurred simultaneously in response to several stimuli. This so called 

“correlated” sense and antisense expression has been reported as one of a series of 

mechanisms by which natural antisense transcripts regulate their sense-strand 

counterparts via double-stranded RNA-dependent mechanisms [244][245]. Indeed,  

recent genomic data provide compelling evidence that gene expression at many loci is 

modulated by interaction between transcripts from the sense strand and complimentary 

transcripts from the opposite, anti-sense strand [244][246].  

 

However, the phrase “ natural anti-sense” RNA can be misleading since complementary, 

non-coding RNAs do not always accelerate degradation of their corresponding sense 
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strand messages, but may stabilize the coding strand transcript. The data presented here 

shows that HAS2-AS1 is widely co-expressed with HAS2 in a range of cells types.  

 

The experimental data closely paralleled the recent observations of Faghihi and 

colleagues who have shown that β-secretase-1 (BACE1) mRNA expression is controlled 

by a regulatory non-coding RNA, BACE1-AS, that is partially complementary to BACE1  

mRNA [247]. BACE-1AS increases BACE-1 stability leading to an increase in the 

BACE1 product and, by this mechanism, may drive Alzheimer`s disease-associated 

pathophysiology [247]. Similarly the data in this chapter suggest HAS2-AS1 RNA 

stabilizes HAS2 mRNA and leads to an increase in HAS2-driven HA synthesis, raising 

the possibilty that HAS2-AS1 expression may contribute to the phenotypic transition of 

cells thought to be important in the pathology of renal fibrosis. 

 

An in silico study of the HAS2 proximal promoter region [248] and analyses of the 

sequences immediately upstream of HAS2-AS1 [191][248][249][250] have identified a 

similar range of putative upstream transcription factor-binding sits in both of these genes 

(see figure 3.12). This suggests that HAS2 and HAS2-AS1 may be controlled at least in 

part, by the same transcriptional “switches” to initiate the induction of transcription of 

both genes, and  that the cytokine-stimulated up regulation of HAS2 and HAS2-AS1 

transcription involves the simultaneous binding of transcription factors to both proximal 

promoters at the HAS2/ HAS2-AS1 locus. 
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The data in figure 3.9 show that no significant induction of HAS2 or HAS2-AS1 was 

observed in human lung fibroblasts following treatment with TGF-β1 for 72 h. By 

contrast, figure 3.10 shows significat TGF-β1-driven up-regulation of both transcripts 

after 72 h. These data highlight a potential tissue- specific fibroblast response to TGF-β1 

that would be an interesting subject for further investigation, but that fell outside the 

scope of this project. 

 

 

 

  

 

 

  

 

 

 

 

 
Figure 3.12 Sp1/Sp3  and Smad binding upstream of HAS2-AS1 and HAS2. 
Genomic organization of HAS2-AS1 and HAS2 at locus 8q24.12 and locations of 
consensus transcription factor binding site motifs. Adapted from [189][190][191]. 
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In this work, qRT-PCR was used because it is one of the most accurate methods for 

analyzing gene expression at the level of transcription. Prior to qRT-PCR, the most 

common method for determining expression levels were Northern blotting, RNase 

protection assays, or traditional (end-point) reverse transcription (RT) PCR. qRT-PCR 

was an improvement over the older methods such as Northern blotting, due to its ease of 

use and the much smaller amounts of RNA needed for the reaction and is run in real time. 

Whereas with other methods, the expression levels can only be observed after the 

completion of the entire reaction by running the end point of the reaction on an agarose 

gel.  

 

While end-point RT-PCR can be useful to detect the presence or absence of a particular 

gene product at a predetermined cycle number, qRT-PCR has the advantage of measuring 

the starting copy number and detecting small difference in expression levels between 

samples during the amplification process. Therefore, using qRT-PCR, the entire 

amplification curve may be observed, and amplification and quantification occur 

simultaneously.  

 

A typical PCR amplification plot has an exponential, linear, and plateau phase, where the 

amplification reaches a plateau as the reaction components are exhausted. Therefore, q 

RT-PCR quantifies the amplification products while the amplification reaction is in 

progress using a fluorescence detector in conjunction with the thermal cycler. In end-

point RT-PCR, results are based on size discrimination, which may not be precise. Also, 
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since the precise reaction end point may vary between samples, gels may not be able to 

resolve variability in yield.  

 

The need for accurate detection by qRT-PCR is particularly important for the work 

described in this thesis due to a lack of commercially-available HAS antibodies. 
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3.6 Conclusion: 

 

In both HK-2 cells and fibroblasts, transcriptional induction of both HAS2 and HAS2-

AS1 genes was coordinated in response to TGF-β1, IL-1β and elevated glucose 

concentration. Therefore, it is unlikely that the antisense transcript inhibits HAS2 

induction, but that it has alternative functional significance for HAS2 expression.  
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Manipulation of HAS2  Expression in HK-2 cells and its effect on 

HAS2-AS1 expression 
 

4.1 Introduction  

 

In the previous chapter it was shown that the presence of a range of disease-associated 

stimuli led to coordinated expression profiles of HAS2 and HAS2-AS1 genes in a range 

of cell types. The aim of the work outlined in this chapter was to manipulate the 

expression of one gene to see the effect of this manipulation on the expression of the 

other gene, both under basal and stimulated conditions.  

 

For the work described in this chapter, initial experiments were carried out in both lung 

fibroblasts and PTCs. Subsequently, it was decided to focus on the PTC. Through their 

role in matrix and cytokine generation, and acquisition of activated myofibroblastic 

phenotype via EMT, PTCs are thought to contribute to the initiation of renal fibrosis, and 

therefore represented a logical cell type in which to develop the experimental 

observations from chapter 3. Data are also presented on forced HAS2 expression in lung 

fibroblasts, in order to confirm the findings of the previous chapter regarding the general 

applicability of co-regulation of HAS2 and HAS2-AS1 expression.  
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4.1.1 Forced gene expression 

     

Forced gene expression studies can be carried out using plasmid expression vectors 

containing the respective open-reading frame (ORF) insert to determine the effects of the 

expression of above average amounts of a target protein. This technique can be 

particularly useful when the target protein is present in small amounts under normal 

conditions, but may potentially be expressed in higher amounts in pathological situations.  

 

4.1.2 Small interfering RNAs (siRNAs) knockdown of gene 

expression  

 

Small interfering RNAs (siRNAs), sometimes known as short interfering RNAs or 

silencing RNAs, are recently-identified, naturally occurring 20-25 nucleotide long RNA 

molecules that modulate gene expression. The use of synthetic siRNAs for gene 

knockdown in mammalian cells has provided a wide range of experimental applications 

in biomedical research. In characterising the functional and phenotypic effects of HA in 

determining cell phenotype, previous work carried out in fibroblasts using siRNA has 

supported a role for HAS2 driving a pro-fibrotic phenotype [141][156]. 
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The work outlined in this chapter was therefore designed to complement functional 

studies to further understand the relationship between HAS2 and its natural antisense 

HAS2-AS1. 

 

Having previously demonstrated coordinated transcriptional regulation of HAS2 and 

HAS2-AS1, the series of experiments outlined in this chapter were designed to: 

 

1- To use forced expression or siRNA knockdown of HAS2 mRNA to determine the 

effect of this manipulation of expression on the inducibility of HAS2-AS1 RNA 

in response to IL-1β or TGF-β1.  

2- To use forced expression or siRNA knockdown of HAS2-AS1 RNA to determine 

the effect of this manipulation of expression on the inducibility of HAS2 mRNA 

in response to IL-1β or TGF-β1. 

   

 

 

 

 

. 
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4.2. Results: 

4.3 plasmid extraction  

Figures 4.1 and figure 4.2 show plasmid extraction by mini-prep and Hi-speed plasmid 

midi kit methods. 

 

 

 

 

 

     
                                                                  

                                            -----1,650bp 

                                                                                                   

 

 

 

Figure 4.1 Mini-prep of pCR3.1 with the ORF insert HAS2, the purified plasmid was 
digested using Not I and Kpn I restriction endonucleases for 3 h, and digestion were 
loaded on to 1.5 % agarose gel. Lanes 1, 2 show PCR 3.1 and HAS2 (insert) at 1,650 
base pairs, lanes 3-4 show empty vector pCR 3.1.   
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Figure 4.2 Agarose gel electrophoresis of pCR3.1 containing HAS2 using the Hi-speed 
plasmid Midi kit (QIAGEN). The purified plasmid was digested using Not I and Kpn I 
restriction endonucleases for 3 h and loaded on to 1.5 % agarose gel. Lanes 1 and 2 show 
pCR 3.1 and the HAS2 insert at 1,650 base pairs, lanes 3-4 show empty vector pCR 3.1. 
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4.4 Forced expression of HAS2 vector in lung fibroblasts 

 

4.4.1 Confirmation of forced expression of HAS2 vector in lung 

fibroblasts  

 

Lung fibroblasts were grown to approximately 70% confluence, growth arrested for 4 h 

and then transfected for 24 h with either the HAS2 expression vector or the empty vector 

as control (see 2.11).  Transfection was carried out using Lipofectamine TM LTX Reagent 

(Invitrogen), the cells were incubated with vector and LTX for 24 h and the culture 

medium was renewed after 24 h. The following time points were examined in order to 

determine the optimum duration of HAS2 forced expression in subsequent experiments : 

24, 48 , 72 , and 96 h. Cells were homogenized in TRI-Reagent, RNA was extracted and 

qRT-PCR was carried out for HAS2. 
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Figure 4.3 Time-course of forced expression of HAS2 in lung fibroblasts. Empty bars 
represent untransfected cells; filled bars represent cells transfected with HAS2 vector. 
Data are shown from one experiment, carried out in triplicate, and error bars show 
standard error of the mean (n = 3).  Statistical analysis was performed by the Student’s t 
test: *, P < 0.05. 
      

 

The results demonstrated the optimal time-points for HAS2 forced expression were 24 h 

and 48 h. HAS2 expression was comparatively low in both untransfected cells and in 

cells transfected with empty vector.   
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4.4.2 Effect of HAS2 forced expression on HAS2-AS1 expression in lung 
fibroblasts 
 
 
Lung fibroblasts were transfected for 24 h with either the HAS2 expression vector or the 

empty vector (see 2.11). Transfection was carried out using Lipofectamine TM LTX 

Reagent (Invitrogen). Following transfection, cells were incubated at 37ºC in a CO2 

incubator for 24 h and the culture medium was renewed after 24 h. In the following 

experiment, HAS2 and HAS2-AS1 expression were examined at 24 h and 48 h, cells 

were homogenized in TRI-Reagent, RNA was extracted and qRT-PCR was carried out 

for HAS2 and HAS2-AS1.  
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A) 

 

 

 

 
 
 
 
 
 
 
 
 

B)                 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.4 Forced expression of HAS2 in lung fibroblast cells at 24 and 48 h. 
A) Relative expression of HAS2 mRNA. B) Relative expression of HAS2-AS1 mRNA. 
Empty bars represent the 24 h time-point and filled bars the 48 h time-point. Data show 
one experiment, carried out in triplicate, and error bars show standard error of the mean 
(n = 3).  Statistical analysis was performed by the Student’s t test: *, P < 0.05. 
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Statistically significant up-regulation of HAS2 was seen at both 24 h and 48 h following 

HAS2 vector transfection, with peak HAS2 expression at 48 h (Fig.4.4.A), while 

expression in untransfected cells and cells transfected with empty vector was 

comparatively low. At both time points, HAS2 forced expression resulted in statistically 

significant induction of HAS2-AS1 transcription. Peak HAS2-AS1 expression was seen 

at 48 h and once more expression in untransfected cells and cells transfected with empty 

vector was very low (figure 4.4.B). These data demonstrated that forced HAS2 

expression in lung fibroblasts also lead to increased HAS2-AS1 expression.  
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4.5 HA synthesis inhibition by 4-MU stimulated effect of HAS2  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.5 Transcriptional induction of HAS2-AS1 RNA in HK-2 cells. The data show 
two experiments, carried out in quadruplicate, and error bars show standard error of the 
mean (n=8). Statistical analysis was performed by the Studentʼs t test:*, P < 0.05. 
 
 
Data from figure 4.5 showed a significant decrease in HAS2-AS1 expression in HK-2 

cell following forced HAS2 expression and treatment with 4-MU compared to cell 

transfected with HAS2 overexpression vector only. Similarly, cells transfected with 

empty vector, treated with 4-MU and stimulated with IL-1β showed a significant 

abrogation of IL-1β stimulated HAS2-AS1 induction compared to cells stimulated with 

IL-1β following transfection with empty vector. 

 

 

 

 

0

1

2

3

4

5

6

7

8

Empty Vector HAS2 Vector empty V + 4-MU HAS2 V+ 4-MU empty V + IL-1B empty V+ 4-
MU+IL1B

H
A

S
2A

S
-1

 R
el

at
iv

e 
E

xp
re

ss
io

n

 

* 

* 



 107 

4.6 siRNA knockdown of HAS2 expression in HK-2 cells  

 

 

 HK-2 cells were growth arrested at approximately 30-50% confluence and, where 

appropriate, stimulated with cytokine and/ or transfected with HAS2-specific siRNA (see 

section 2.12). At predetermined time points, cells were homogenised in TRI-Reagent 

followed, at the end of the experiment, by total RNA extraction and qRT-PCR to analyse 

the expression of HAS2 and HAS2-AS1. 
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4.6.1 Effect of siRNA knockdown of HAS2 on HAS2-AS1 expression 
following IL-1β stimulation of HK-2 cells 
 
 
A) 
 
 
 
 
 
 
 
 

 

 

 
 

B) 

 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.6: Relative expression of A)   HAS2 mRNA and B) HAS2-AS1 RNA 
following HAS2 siRNA knockdown and / or IL-1β (1ng/ml) stimulation of HK-2 
cells. Data are shown from one experiment, carried out in triplicate, and error bars show 
standard error of the mean (n = 3).  Cells were transfected with either HAS2 siRNA or a 
scrambled oligonucleotide in the presence or absence of 1 ng/ml IL-1β for 3 h.  Statistical 
analysis was performed by the Student’s t test: *, P < 0.05.N/S, not significant. Control 
graphs (left) show the normal expression of untreated and IL-1β stimulated of HAS2 or 
HAS2-AS1 relative expression in absence of knockdown of the gene.   
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The data shown in Figure 4.6.A demonstrated that HK-2 cells transfected with HAS2 

siRNA exhibited a significant attenuation in HAS2 expression when compared to cells 

transfected with scrambled control alone. Furthermore, cells transfected with HAS2 

siRNA and stimulated with IL-1β for 3 h showed a significant abrogation of IL-1β 

stimulated HAS2 induction compared to cells stimulated with IL-1β following 

transfection with a scrambled control, demonstrating the efficacy of the HAS2-specific 

siRNA. 

 

 Data from figure 4.6.B showed that HK-2 cells transfected with HAS2 siRNA did not 

have significant lower HAS2-AS1 expression when compared to cells transfected with 

scrambled control alone. Similarly, cells transfected with HAS2 siRNA and stimulated 

with IL-1β showed no significant reduction in IL-1β stimulated HAS2-AS1 induction in 

comparison with cells stimulated with IL-1β following transfection with a scrambled 

control. 

 

 

As described previously in chapter 3, the experimental data demonstrated coordinated up-

regulation of both HAS2 and HAS2-AS1 in response to IL-1β.  However, in this 

experiment, the failure of IL-1β to induce HAS2 transcription due to HAS2 siRNA did 

not significally abrogate HAS2-AS1 induction.  
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4.6.2 Effect of siRNA knockdown of HAS2 on HAS2-AS1 expression 
following TGF-β1 stimulation of HK-2 cells 
 

 

A) 

 

 

 

 

 
 
 
 
 

B) 

 

 

 

 

 

 

 
Figure 4.7. Relative expression of A) HAS2 mRNA and B) HAS2-AS1 RNA 
following HAS2 siRNA knockdown and / or TGF-β1 (10 ng/ml) stimulation of HK-2 
cells. Data are shown from one experiment, carried out in triplicate, and error bars show 
standard error of the mean (n = 3). HK-2 cells were transfected with either HAS2 siRNA  
or a scrambled oligonucleotide in the presence or absence of 10 ng/ml TGFβ-1 for 48 h. 
Statistical analysis was performed by the Student’s t test: *, P < 0.05. N/S, not significant. 
Control graphs (left) show the normal expression of untreated and TGFβ-1 stimulated of 
HAS2 or HAS2-AS1 relative expression in absence of knockdown of the gene.   
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The data shown in figure 4.7.A demonstrated that HK-2 cells transfected with HAS2 

siRNA exhibited a significant attenuation in HAS2 expression when compared to cells 

transfected with scrambled control alone. In addition, cells transfected with HAS2 siRNA 

and stimulated with 10 ng/ml of TGF-β1 for 48 h showed a significant abrogation of 

TGF-β1-stimulated HAS2 induction compared to cells stimulated with TGF-β1  

following transfection with a scrambled control. 

 

 Data from figure 4.7.B showed that HK-2 cells transfected with HAS2 siRNA did not 

show significantly decreased HAS2-AS1 expression when compared to cells transfected 

with scrambled control alone.Similarly, cells transfected with HAS2 siRNA and 

stimulated with TGF-β1 treatment at 10 ng/ml for 48 h showed no significant abrogation 

of TGF-β1-stimulated HAS2-AS1 induction in comparison with cells treated with TGF-

β1 following transfection with a scrambled control. 

 

As described previously in chapter 3, the experimental data demonstrated coordinated up-

regulation of both HAS2 and HAS2-AS1 in response to TGF-β1. However, in this 

experiment, the failure of TGF-β1 to induce HAS2 transcription due to HAS2 siRNA did 

not significantly abrogate HAS2-AS1 induction. 
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4.7 siRNA knockdown of HAS2-AS1 expression in HK-2 cells 

 

This work was carried out to investigate the relationship between HAS2 and HAS2-AS1, 

in order to determine whether regulation of HAS2-AS1 expression affects that of HAS2, 

and whether regulation of HAS2 expression affects HAS2-AS1 expression. 

 

 

 HK-2 cells were transfected with HAS2-AS1-specific siRNAs (see 2.12) using 

Lipofectamine TM 2000 (Invitrogen) transfection reagent. Following transfection, cells 

were incubated at 37ºC in a CO2 incubator overnight. The following morning, the 

medium was replaced with serum-free medium and the cells were then left for a further 

24 h prior to stimulation with IL-1β for 3 h, or TGF-β1 for 48 h. 

 

At predetermined time points, the cells were lysed and total RNA was extracted. qRT-

PCR was then carried out, as previously described, in order to analyse HAS2 and HAS-

AS1 expression following siRNA treatment.  

 
 

 

 



 113 

4.7.1 Effect of siRNA knockdown of HAS2-AS1 on HAS2 expression 
following IL-1β stimulation of HK-2 cells 
                                               

A) 

 

 

 
 
 
 
 
 
 
             
B) 
 
 
 
 
 
 
 

 

 
 
 
 
 
Figure 4.8 Relative expression of A) HAS2-AS1 RNA and B) HAS2 mRNA following 
HAS2-AS1 siRNA knockdown and /or IL-1β (1ng/ml) stimulation of HK-2 cells.  
 Data are shown from one experiment, carried out in triplicate, and error bars show 
standard error of the mean (n = 3).  HK-2 cells were transfected with either HAS2-AS1 
siRNA or a scrambled oligonucleotide in the presence or absence of 1 ng/ml IL-1β for 3 
h. Statistical analysis was performed by the Student’s t test: *, P < 0.05, N/S, not 
significant. Control graphs (left) show the normal expression of untreated and IL-1β 
stimulated of HAS2-AS1 or HAS2 relative expression in absence of knockdown of the 
gene.   
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The data shown in figure 4.8.A demonstrated that HK-2 cells transfected with HAS2-AS1 

siRNA exhibited a significant attenuation in HAS2-AS1 expression when compared to 

cells transfected with scrambled control alone. Furthermore, cells transfected with HAS2-

AS1 siRNA and stimulated with IL-1β for 3 h showed a significant abrogation of IL-1β 

stimulated HAS2-AS1 induction compared to cells stimulated with IL-1β following 

transfection with a scrambled control, demonstrating the efficacy of HAS2-AS1-specific 

siRNA.  

 

Data from figure 4.8.B showed that HK-2 cells transfected with HAS2-AS1 siRNA did 

not have significantly decreased HAS2 expression when compared to cells transfected 

with scrambled control alone. However, cells transfected with HAS2-AS 1 siRNA and 

stimulated with IL-1β showed a significant abrogation of IL-1β stimulated HAS2 

induction compared to cells stimulated with IL-1β following transfection with a 

scrambled control. 

 

As described previously in chapter 3, the experimental data demonstrated coordinated up-

regulation of HAS2-AS1 and HAS2 in response to IL-1β. In this experiment, the failure 

of IL-1β to induce HAS2-AS1 transcription due to HAS2-AS1 siRNA also prevented 

HAS2 induction. 
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4.7.2 Effect of siRNA knockdown of HAS2-AS1 on HAS2 expression 
following TGF-β1 stimulation of HK-2 cells 
 

A) 

 

 

 

 
 
 
 
 
 
 
 
 
 
B) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.9 Relative expression of A) HAS2-AS1 RNA and B) HAS2 mRNA following 
HAS2AS siRNA knockdown and / or TGF-β1 (10 ng/ml) stimulation of HK-2 cells.  
Data shown from one experiment, carried out in triplicate, and error bars show standard 
error of the mean (n = 3). HK-2 cells were transfected with either HAS2-AS1 siRNA or a 
scrambled oligonucleotide in the presence or absence of 10 ng/ml TGF-β1 for 48 h. 
Statistical analysis was performed by the Student’s t test: *, P < 0.05. Control graphs 
(left) show the normal expression of untreated and TGFβ-1 stimulated of HAS2-AS1 or 
HAS2 relative expression in absence of knockdown of the gene.   
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 The data shown in figure 4.9.A demonstrated that HK-2 cells transfected with HAS2-AS 

1 siRNA exhibited a significant attenuation in HAS2-AS1 expression when compared to 

cells transfected with scrambled control alone. Furthermore, cells transfected with HAS2-

AS1 siRNA and stimulated with 10 ng/ml of TGF-β1 for 48 h, showed a significant 

abrogation of TGF-β1 stimulated HAS2-AS1 induction compared to cells stimulated with  

TGF-β1 following transfection with a scrambled control.  

 

Data from figure 4.9.B showed that HK-2 cells transfected with HAS2-AS1 siRNA 

exhibited significantly decreased HAS2 expression when compared to cells transfected 

with scrambled control alone. In addition, cells transfected with HAS2-AS1 siRNA and 

stimulated with TGF-β1 showed a significant abrogation of TGF-β1 stimulated HAS2 

induction compared to cells stimulated with TGF-β1 following transfection with a 

scrambled control. 

 

As described previously in chapter 3, the experimental data demonstrated coordinated up-

regulation of both HAS2-AS1 and HAS2 in response to TGF-β1. In this experiment, the 

failure of TGF-β1 to induce HAS2-AS1 transcription due to HAS2-AS1 siRNA also 

prevented HAS2 induction. 
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4.8 HAS2-AS1 forced expression 

This work investigated whether forced HAS2-AS1 expression increased or decreased 

expression of HAS2.  

To study the biological activity of HAS2-AS1, three plasmid preparations were 

transfected into HK2-cells: 

1) Full length HAS2-AS1 in pcDNA3.1. 

2) L-HAS2-AS1 exon 2 in pc DNA3.1 as described by Chao + spicer [195]. 

3) Empty vector PCR 3.1. 

 

 

 

 

 

 

                        

 
 
 
 
 
Figure 4.10 HAS2-AS1 forced expression in HK-2 cells. Transfection for 24 h. data are 
shown from one experiment, carried out in triplicate, and error bars show standard error 
of the mean (n=3). Statistical analysis was performed by the Studentʼs t test: N/S, not 
significant.  
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Figure 4.11 HAS2-AS1 forced expression in HK-2 cells. Transfection for 48 h. data are 
shown from one experiment, carried out in triplicate, and error bars show standard error 
of the mean (n=3). Statistical analysis was performed by the Studentʼs t test: N/S, not 
significant.  
 
 
 
Figures 4.10 and 4.11 show that forced expression of full-length HAS2-AS1 and L-

HAS2-AS1 led to up-regulated HAS2 expression at 24 h and 48 h following transfection, 

respectively, but that this was not statistically significant in comparison to transfection 

with the empty vector. 
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4.9 Discussion 

 

In the previous chapter the expression of human HAS2 and HAS2-AS1 genes was 

investigated, and showed coordinated transcriptional induction in response to several 

disease-related stimuli in four cell types. This coordinated temporal regulation suggested 

that HAS2-AS1 is unlikely to act as an antisense which inhibits HAS2 expression in these 

cells. These data, together with examples in the literature of interactions between 

complementary non-coding RNAs which stabilize and/ or facilitate expression of the 

respective mRNA suggest such a facilitatory role for HAS2-AS1 in the regulation of 

HAS2. 

     

In this chapter, the aim was to manipulate the expression of either HAS2 or HAS2-AS1 

to examine the resultant effect on the expression of the other gene to obtain more 

information on the potential functional relationship between HAS2 and HAS2-AS1.   

 

 

 Forced expression of HAS2 in both lung fibroblasts and PTCs, in the absence of 

cytokine stimulation, led to a significant up-regulation of HAS2-AS1 expression when 

compared to cells transfected with empty vector. In the previous chapter, it was 

postulated that coordinated regulation may be related to common transcription factor 

responsive elements in the promoter of HAS2 and HAS2-AS1. This, however, is unlikely 

to explain up-regulation of HAS2-AS1 following forced HAS2 expression. Another 



 120 

possible explanation for this increase is that HA being produced by the forced HAS2 

expression may drive expression of HAS2-AS1 via a signalling mechanism. It is well 

established that HA may activate numerous intracellular events, and that many of these 

effects are mediated via activation of intracellular signalling following engagement of 

HA with CD44, the principal extracellular HA receptor.    

 

 

The work described here also investigated the possibility that the mechanism for up-

regulation of HAS2-AS1 following forced HAS2 expression in HK2 cells was due to a 

subsequent increase in HA synthsis. HA synthesis was inhibited using 4-MU. This 

inhibition resulted in a significant decrease in the expression of HAS2-AS1 in these cells 

in comparison to forced HAS2 expression in the absence of 4-MU. These results imply 

that the increase in HAS2-AS1 seen in these experiments is due to the function of 

increased HA levels, rather than increased HAS2 mRNA synthesis. Depletion of the 

UDP-glucuronic acid pool by 4-MU has been shown previously to inhibit HA synthesis 

and peri-cellular HA coat formation in a number of cell types [137]. 

 

 

HAS2 siRNA knockdown did not result in statistically significant abrogation of HAS2-

AS1 transcription under basal or cytokine-stimulated conditions. The basal result was not 

unexpected, since HAS2-AS1 is expressed at low abundance in unstimulated cells. One 

possible interpretation of the cytokine-stimulated data is that the down-regulation in 

HAS2-AS1 transcription due to decreased facilitatory interaction between HAS2 mRNA 
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and HAS2-AS1 RNA lacked statistical difference due to partial compensation by residual 

HAS2-driven HA synthesis resulting from incomplete HAS2 mRNA knockdown. 

 

 

siRNA knockdown of HAS2-AS1 induction following cytokine stimulation (both IL-1β 

and TGF-β1) resulted in a statistically significant reduction in HAS2 transcriptional 

induction. This corroborates the findings at the IoN described by Michael et al 2011[191], 

and supports the case for a direct interaction between HAS2-AS1 and HAS2 that 

facilitates HAS2 transcription [191]. HAS2-AS1 siRNA knockdown showed no effect on 

the basal expression of HAS2, probably due to the low copy number of HAS2-AS1 in 

unstimulated cells as mentioned above. This is consistent with recent genomic data 

providing compelling evidence that gene expression at many genomic loci is modulated 

by interactions between transcripts from the sense strand and complimentary transcripts 

from the opposite, antisense strand [244][246] as discussed previously for BACE-1 [247].  

 

 

 

Forced expression of either HAS2-AS1 or L-HAS2-AS1 exon 2 in HK-2 cells had no 

significant effect on HAS2 expression. Forced HAS2-AS1 exon 2 overexpression was 

show by Chao and Spicer to down-regulate HAS2 expression and subsequent HA 

synthesis in osteosarcoma cell [195]. However, on the basis of data show in chapter 3, we 

did not expect this to be the case in PTC. Indeed, we obtained no effect on HAS2 

expression with the forced expression of this transcript. As this represents only part of L-
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HAS2-AS1 RNA, we also carried out forced expression of the full-length antisense RNA. 

It may be important that, even in the presence of cytokine stimulation, the abundance of 

HAS2-AS1 is relatively low. Forced expression analyses therefore create an imbalance in 

the HAS2-AS1 RNA: HAS2 mRNA ratio that is never seen in PTC, either in health or 

disease. The fact that neither transcript affected HAS2 expression may therefore reflect a 

subtle mechanism of interaction between the two RNAs in the PTC cytoplasm, and their 

export to the cytoplasm following transcription will need to be analysed further. 
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4.10 In summary 

 

Forced expression of HAS2 in lung fibroblasts, in the absence of any additional stimulus, 

lead to a significant an increase in HAS2-AS1 expression dependent on increase in HA 

synthsis. The experimental data described in this chapter also showed that siRNA 

knockdown of HAS2-AS1 RNA in HK-2 cells attenuated cytokine stimulated 

transcriptional induction of HAS2 mRNA. However, HAS2 siRNA and cytokine 

stimulation did not result in statistically significant abrogation of HAS2-AS1 induction. 

These findings suggest that the regulation of HAS2-AS1 may be related to HAS2-

dependent generation of HA, whilst HAS2 regulation by HAS2-AS1 may be dependent 

on direct interaction between the complementary parts of the two RNA sequences.  
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                                        General Discussion 

 

1. Coordinated expression of HAS2 mRNA and HAS2-AS1 RNA in response to 

cytokine stimulation 

 

The online Oxford English Dictionary (http://www.oed.com/) defines antisense as 

“Designating or pertaining to the strand of duplex DNA that acts as a template for the 

synthesis of mRNA in a cell; also, designating or pertaining to RNA produced by the 

transcription of sense DNA, having a complementary base sequence to mRNA and able to 

bind with it, thereby preventing translation of the latter into protein.”  The italicized part 

of this definition highlights the widely held belief that antisense sequences are negative 

regulators of “sense”-strand gene function at the translational level, as above, or at 

transcriptional or post-transcriptional levels. 

 

On the basis of the experimental data contained in this thesis, the relationship between 

HAS2-AS1 RNA and HAS2 mRNA is not a traditional “antisense” interaction in which 

the expression of the antisense RNA leads to a down-regulation of HAS2 mRNA and a 

decrease in HA synthesis as described in osteosarcoma cells by Chao and Spicer (2005) 

[195]. 

 

Indeed, the simultaneous transcriptional up-regulation of HAS2-AS1 RNA and HAS2 

mRNA in response to IL-1β and TGF-β1 demonstrated correlated expression of these 

genes.  This demonstration of correlated expression suggested that HAS2 and HAS2-AS1 
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are co-ordinately regulated and that they may be controlled by the same transcriptional 

regulators. Thus, the cytokine-stimulated up-regulation of HAS2 and HAS2-AS1 

transcription may involve simultaneous binding of transcription factors to both proximal 

promoters at the HAS2/HAS2-AS1 locus.  This hypothesis is supported by an silico study 

of the HAS2 proximal promoter region [248] and analysis of the sequences immediately 

upstream of HAS2-AS1 [191][248][249][250] that  have identified a similar range of 

shared putative upstream transcription factor-binding sites (TFBSs) in both of these 

genes. 

 

At the IoN, previous in silico analysis of the HAS2 promoter region highlighted a cluster 

of three Sp1/Sp3 recognition sites immediately adjacent to the HAS2 TSS [189], and 

demonstrated that Sp1 and Sp3 acted as co-activators at these sites to mediate constitutive 

transcription [190]. These data were augmented by recent findings describing functional 

upstream elements in the HAS2 promoter, which may interact with Sp1 and Sp3 [193]. 

Further recent data from the IoN demonstrated that siRNA knockdown of Sp1 and Sp3 

inhibits both HAS2 and HAS2-AS1 induction following incubation with IL-1β; and 

following knockdown of Smad2 and Smad3, the induction of HAS2 and HAS2-AS1 by 

TGF-β1 was blunted [191].   
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2. Regulation of HAS2-AS1 by HAS2 expression  

 

Forced HAS2 expression in the absence of any further stimulus lead to a significant up-

regulation of HAS2-AS1 expression. This is unlikely to be due to direct transcriptional 

up-regulation. One possible alternative mechanism is the interaction of HA with cell-

surface receptors and subsequent signal transduction cascade leading to an up-regulation 

of HAS2-AS1. Inhibition of HA synthesis using 4-MU down-regulated HAS2-AS1 

expression in HK-2 cells, suggesting that antisense expression was in this case modulated 

by up-regulated HA production and not increased transcription of HAS2. 

 

HAS2-specific siRNA knockdown decreased HAS2 mRNA levels, but had no significant 

effect on HAS2-AS1 RNA. However, the presence of residual HA, possibly as a result of 

incomplete HAS2 siRNA knockdown, cannot be ruled out. It is well established that HA 

may activate numerous intracellular events, and that many of these effects are mediated 

via activation of intracellular signalling following engagement of HA with CD44, the 

principal extracellular HA receptor. It is therefore possible that the lack of statistical 

significance of the HAS2-AS1 attenuated response to both IL-1β and TGF-β1 following 

HAS2 siRNA knockdown supports a role for HAS2-driven HA in the regulation of 

HAS2-AS1 transcriptional regulation. 
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3. Regulation of HAS2 by HAS2-AS1 expression 

 

HAS2-AS1-specific siRNA knockdown inhibited cytokine induced up-regulation of 

HAS2 mRNA and HAS2-AS1 RNA expression in HK-2 cells. These data suggest that 

HAS2-AS1 has a facilitatory role which stabilises and / or augments the expression of 

HAS2 mRNA in these cells. This so-called “correlated” transcription of RNA and mRNA 

from either genomic DNA strand at the same locus is one documented mechanism by 

which natural anti-sense transcripts regulate their sense-strand counterparts [244][245]. 

Clearly, it is possible that the influence of HAS2-AS1 on HAS2 expression may occur as 

a result of RNA: mRNA interaction.  Indeed, research carried out at the IoN has provided 

evidence from both in silico and in vitro analyses that cytoplasmic interaction between 

sense and antisense transcripts was detected in the form of a double-stranded (ds) RNA 

duplex [191]. 

 

 

Another example of natural antisense regulation of sense expression is the recent study 

demonstrating that the Wilms’Tumor gene (WT1) locus encodes conserved antisense 

RNAs that may regulate WT1 expression via RNA: mRNA interactions, and this can 

become deregulated by a variety of mechanisms in Wilms’ Tumour [251]. A similar 

interdependence has been reported between the β-secretase-1(BACE-1) gene and natural 

antisense BACE-1-AS.  BACE-1 is a candidate gene for Alzheimer’s disease that may 

drive disease associated pathology [247]. BACE-1 mRNA expression is up-regulated by 

increased transcription of the natural antisense RNA BACE-1-AS, leading to increased 
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BACE-1 protein levels in vitro and in vivo [247]. These data also parallel the recent 

observations of Matsui et al., where correlated expression of overlapping sense:antisense 

transcripts has been reported in the expression of rat inducible nitric oxide synthase 

(iNOS), where iNOS mRNA is stabilised by interaction with a natural antisense iNOS 

RNA [252]. 

 

 

As expected, forced HAS2-AS1 expression resulted in up-regulated HAS2-AS1 levels. 

However, no significant up-regulation of HAS2 mRNA was observed. These forced 

expression results are in contrast to the observation by Chao and Spicer; that over-

expression of HAS2-AS1 in osteosarcoma cells down-regulated HAS2 mRNA synthesis 

and that subsequent HA synthesis was inhibited [195]. There are a number of possible 

reasons for the differences between these data and the findings in this work. These 

include the fact that the two studies were carried out in cells from different lineages, one 

malignant and one non-malignant, and differentiation in malignant cells is known to be 

different to non-malignant cells [253][254]. In addition, in the Chao and Spicer study, 

only RNA from the second exon of HAS2-AS1 was expressed, since this represented the 

extent of antisense sequence complementary to HAS2 mRNA [195]. This truncated 

antisense transcript might conceivably behave differently from the entire HAS2-AS1 

RNA. Indeed, in their analyses on BACE-1 expression, Faghihi and colleagues expressed 

the full-length BACE-AS transcript in their corresponding control studies [247]. 
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In addition, sense:antisense interaction may be cell-specific, and this may explain 

differences that occur as a result of the S- and L- HAS2-AS1 splice variants that differ 

only in their length of sequence complementarity with HAS2. As stated above, previous 

IoN data suggest these splice variants infer a role for HAS2-AS1 in the facilitation or 

augmentation of HAS2 expression in different cells and in HAS2-AS1:HAS2 interaction 

[191]. It is also possible that the presence of the HAS2-AS1 splice variants provides 

evidence of a potential additional level of regulation of HAS2 expression in these cells. 

 

 

 Reports from the IoN and other laboratories have demonstrated the importance of HAS2 

expression in HA metabolism in kidney disease. An increase in HA expression in the 

renal corticointerstitium is commonly associated with the progression of interstitial 

fibrosis leading to ESRD. For example, in high glucose concentrations which mimic 

diabetic nephropathy, renal PTCs synthesise high level of HA, which is coincident with 

specific up-regulation of transcription at the HAS2 locus. Since HAS2-AS1 has a 

facilitatory role which stabilises and /or augments the expression of HAS2 gene, it is a 

potential target to modulate HAS2 expression, and therefore also represents a possible 

therapeutic target for intervention in renal fibrosis.  
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                                               Future Work 

 

Further investigation into the functional impact of the coordinated expression of HAS2-

AS1 and HAS2 on cell phenotype would generate valuable data. For example, does this 

coordinated regulation have a synergistic effect on cell function? More specifically, it 

would be interesting to examine the effects of this expression on epithelial-to-

mesenchymal transition, fibroblast-to-myofibroblast transdifferentiation, cell proliferation 

and cell migration. 

 

Preliminary work by Simpson et al. has demonstrated that in vitro aged cells resist 

fibroblast to myofibroblast differentiation, and this resistance is associated with reduced 

HAS2 induction by TGF-β1 [156]. It is interesting to speculate, therefore, that a 

modification in HAS2-AS1 expression in aged dermal fibroblasts could contribute to this 

diminished HAS2 induction by TGF-β1. Previous data suggest that increased HAS2 

mRNA levels promote transformation to a pro-fibrotic and migratory phenotype 

[37][38][139][141][156][174][255][256], so does the coordinated expression of HAS2-

AS1 and HAS2 have a synergistic effect on cell function in this context? 

 

In addition, if HAS2 over-expression is pathogenic [6][37][99][257], modulation of  

HAS2-AS1 expression could provide a novel method for the manipulation of HAS2 

expression and could therefore have therapeutic potential effects.  
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Appendix 1  

 
 
PCR gel- protocol: 

 
1.5 % gel use 1.5% agarose powder. 

150 ml gel = 2.25g Agarose +150 ml TAE buffer 

(Tris base, acetic acid and ethylenediaminetetraacetic acid). 

Microwave Agarose TAE mix, swirl periodically, caution it is very HOT. 

Mix will bobble and go clear when ready  

Swirl gently to “de-gas” 

Add 1µl of stoch ethidum bromide for every 10 ml mix. So final concentration of 0.5 

µg/ml. 

For example 150ml =15µl Ethidum bromide. 

Caution ethidum bromide = carcinogenic. 

Pour into mould, move any bubbles to side with pipette tip. 
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Appendix 2 
 
LB Amp selective plates preparation 

Prepare 1 liter LB broth (Luria-Bertani broth) 

Bacto Tryptone                     10 g/litre 

Bacto Yeast Extract              5 g/litre 

NaCl                                     10 g/litre 

Adjust PH to 7.5 with NaOH 

Add Agar 1.5 g per 100ml (1.5% agar plates used) 

Autoclave to sterilise and dissolve  

Allow to cool to 65ºC 

Add Ampicillin 100 µl of 50 mg/ml stock per 100 ml so final concentration of 50 

µg/ml. 

Pour 10 ml / 100mm plate.  

 

 

 

   

 

 

 

 

 

 


