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Some Clinical Aspects of Critical Flicker Fusion Perimetry: an in-depth analysis 

 
 

The thesis evaluated, in three studies, the clinical potential of Critical Flicker Fusion perimetry 
(CFFP) undertaken using the Octopus 311 perimeter. 
 
The influence of the learning effect on the outcome of CFFP was evaluated, in each eye at each of 
five visits each separated by one week, for 28 normal individuals naïve to perimetry, 10 
individuals with ocular hypertension (OHT) and 11 with open angle glaucoma (OAG) all of 
whom were experienced in Standard Automated perimetry (SAP). An improvement occurred in 
the height, rather than in the shape, of the visual field and was largest for those with OAG. The 
normal individuals reached optimum performance at the third visit and those with OHT or with 
OAG at the fourth or fifth visits.  

 
The influence of ocular media opacity was investigated in 22 individuals with age-related cataract 
who were naïve to both SAP and CFFP. All individuals underwent both CFFP and SAP in each 
eye at each of four visits each separated by one week. At the third and fourth visit, glare disability 
(GD) was measured with 100% and 10% contrast EDTRS LogMAR visual acuity charts in the 
presence, and absence, of three levels of glare using the Brightness Acuity Tester. The visual field 
for CFF improved in height, only. Little correlation was present between the various measures of 
GD and the visual field, largely due to the narrow range of cataract severity.    

 
The influence of optical defocus for both CFFP and SAP was investigated, in one designated eye 
at each of two visits, in 16 normal individuals all of whom had taken part in the first study. 
Sensitivity for SAP declined with increase in defocus whilst that for CFFP increased. The latter 
was attributed to the influence of the Granit-Harper Law arising from the increased size of the 
defocused stimulus. 
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CHAPTER 1  

AUTOMATED PERIMETRY 

 

1.1 Introduction 

The purpose of this Thesis was threefold. Firstly, to determine the learning effect for CFF 

perimetry in normal individuals, in individuals with OAG and in individuals with OHT. 

Secondly, to determine the influence of age-related cataract on the outcome of CFF perimetry. 

Thirdly, to determine the influence of optical defocus on the outcome of CFF perimetry. These 

studies were carried out using the Octopus 311 perimeter.     

 

1.1.1 The visual field 

The visual field is that portion of the external environment of the observer in which the steadily 

fixating eye(s) detects visual stimuli (Weijland et al 2004). The maximum extent of the visual 

field for a normal fixating eye is approximately 60° nasally, 90° temporally, 70° inferiorly and 

60° superiorly from the straight ahead fixating position (Anderson and Patella 1999).  The full 

field for the eye can be restricted by the facial anatomy such as the extent of the nose, the facial 

bones, deep set eyes and prominent brows (Meyer et al 1993; Anderson and Patella 1999).  

 

The visual field has been described as an ‘island of vision in a sea of blindness’ by Traquair 

(1927). The island/ hill of vision serves as a three-dimensional model of the visual field, 

representing its height (the z-axis describes sensitivity to the stimulus) and its angular extent in 

all directions. Fixation is referenced to the ‘origin’ (x=0, y=0) and corresponds to the fovea 

which exhibits, under photopic conditions, the greatest sensitivity to the stimulus (i.e., the peak, 

or highest point of the island). The sensitivity decreases as the island slopes towards the sea, 

corresponding to increased eccentricity, and the slope of the island is steeper nasally than 
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temporally and steeper superiorly than inferiorly. The normal physiological blind spot (described 

by Mariotte in 1666), which corresponds to the location of the optic nerve head, is centred 

slightly below the horizontal midline, 1.5°, and 15.5° temporally relative to fixation. It measures 

approximately 5.5º in width and 7.5º in height and corresponds to linear dimensions of 1.5mm 

horizontally and 1.8mm vertically on the fundus (Reed and Drance 1972; Choplin and Edwards 

1998). 

 

The ‘island of vision in the sea of blindness’ is an excellent, easily understood way to explain a 

patient’s visual field. A sinking of the ‘island of vision’ into ‘the sea of blindness’ (i.e., a 

reduction in the height) illustrates a generalised depression/ diffuse reduction across the entire 

visual field. A focal, or localised, defect (scotoma) corresponds to a region, of variable size and 

depth, in the ‘island of vision’, depending upon the severity of the underlying cause. A 

constriction of the visual field occurs when there is a total loss of sensitivity in the periphery and 

manifests as an island with steep cliffs at its edges.   

 

Examination of the visual field, perimetry, conventionally involves the measurement of the 

differential light threshold (∆L), the minimum luminance necessary for the detection of a small 

spot of white light (the stimulus) presented on a white background of a given luminance (L). The 

outcome is expressed as ∆L/L. The reciprocal of the differential light threshold is termed the 

differential light sensitivity (L/∆L). Two types of perimetry are available, kinetic perimetry and 

static perimetry.  

 

Kinetic perimetry involves the movement of a stimulus of constant size and luminance, along 

given meridians of the visual field, from the ‘non-seen’ to ‘seen’ and expresses the threshold in 

terms of the position within the visual field at which the given stimulus is first detected. The line 
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joining locations of equal threshold is called an isopter (Groenouw 1893) and is analogous to a 

contour line for the description of height. The procedure is repeated using a stimulus of different 

sizes and luminance. By careful selection of the appropriate stimulus sizes and luminances, a 

quasi three-dimensional estimation, described in terms of isopters (contour lines), of the ‘island 

of vision’ can be achieved. The stimulus is traditionally presented under the manual control of 

the perimetrist.  The Goldmann bowl perimeter, designed by Hans Goldmann in 1945, is the 

‘Gold Standard’ method for kinetic perimetry and enables calibrated stimulus and background 

luminances. However, the procedure is limited by the lack of standardization of the stimulus 

velocity and by the reaction time of the patient, both of which can materially influence the size 

of any given isopter. The Goldmann perimeter is slowly being replaced by the semi-automated 

kinetic perimetry as the ‘Gold Standard’. 

 

Static threshold perimetry uses a stationary stimulus of constant size which is presented at a 

given stimulus location and which is adjusted in given steps of luminance either from the ‘non-

seen’ to ‘seen’  or from the ‘seen’ to ‘non-seen’ or both. Threshold is technically defined as the 

stimulus luminance, which is perceived with a probability of 50%. The procedure is repeated at 

various locations across the visual field in order to obtain a topographical representation of the 

field.  

 

Prior to the automation of static threshold perimetry, the length of the examination was such that 

the technique was not clinically viable.   The first automated perimeter, the Octopus Automated 

Perimeter, was described by Fankhauser et al in 1972. The ensuing principles of threshold static 

perimetry were developed using this perimeter (Fankhauser, Koch and Roulier 1972; Koch, 

Roulier and Fankhauser 1972; Spahr 1975; Fankhauser 1979). Subsequently, other automated 

perimeters were described including the Competer (Heijl and Krakau 1975), the Fieldmaster 
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(Keltner, Johnson and Balestrery 1979), the Perimetron (Heijl and Drance 1981), the Peritest 

(Greve, Dannheim and Bakker 1982), the Dicon (Mills 1984), and the Humphrey Field Analyzer 

(Heijl 1985). As a consequence, static threshold perimetry has become the accepted method of 

clinical assessment of the visual field. Compared to the original manual control of the technique, 

the topography of the visual field can be estimated considerably more quickly and the results are 

more reproducible. The software and hardware enables standardization of the stimulus 

parameters and the capacity for data storage and statistical analysis. Although automation of 

static threshold perimetry has been optimized, the test remains a subjective outcome which is 

prone to the vagaries of the patient’s understanding of the task, co-operation and accuracy of 

response.   

 

Static threshold perimetry has the advantage over kinetic perimetry in that it is more sensitive 

and precise for the detection of small isolated focal defects such as those which usually appear in 

the early stages of glaucoma (Drance, Wheeler and Pattullo 1967; Armaly 1971; Schmied 1980). 

 

Examination of the visual field is undertaken to determine, and wherever possible localize, 

functional damage in the visual pathway. Visual field defects have different origins and can be 

pre-retinal (due to ocular media opacities), within the inner or outer retina, in the optic nerve, at 

the chiasm, in the lateral geniculate body, in the optic tract, in the optic radiations, or at the 

occipital cortex. The visual field loss arising from a retinal lesion usually corresponds in size and 

shape to the lesion which, itself, is usually directly observable and may or may not cross the 

vertical midline. Visual field defects arising from lesions at the optic nerve head reflect damage 

to the retinal nerve fibre layer and include nasal steps, arcuate defects, altitudinal defects, and 

temporal wedge defects. These latter defects usually manifest within the central visual field, 

defined as a radius of 30° from fixation. Visual field defects involving the optic nerve anterior to 
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the chiasm are monocular and, although generally producing central or ceco-central defects, can 

manifest in any format (Choplin and Edwards 1998). Lesions involving the chiasm produce 

bitemporal (hemianopic) field loss which respects the vertical midline. The superotemporal field 

will be initially affected when the lesion lies inferior to the chiasm, such as a pituitary adenoma, 

and the inferotemporal fields will be initially affected when the lesion lies superior to the chiasm 

such as a craniopharyngioma (Kanski 2003). Lesions posterior to the chiasm (i.e. involving the 

optic tract, lateral geniculate nucleus, optic radiation or visual cortex) do not cross the vertical 

meridian and the salient localising feature is the homonymous nature of the field loss (affecting 

the same side of the visual field). Such field loss may manifest as hemianopia or a quadrantopsia 

and, additionally in the case of the occipital lobe lesions, as altitudinal (double quadrantic) 

defects. Lesions affecting the temporal and parietal lobes usually damage the optic radiations and 

will produce homonymous field loss manifesting (initially at least) as superior and inferior 

quadrantanopic defects, respectively. The similarity (congruity) of the visual field loss between 

the two eyes increases with increasing posterior manifestation of the lesion (Anderson and 

Patella 1999).  

 

One of the most common causes of field loss is that of glaucoma. Glaucoma is one of the leading 

causes of blindness and is estimated to affect more than 66 million people worldwide (Quigley 

1996; Fraser, Bunce and Wormald 1999; Musch et al 1999; Gasch, Wang and Pasquale 2000). 

The number of individuals exhibiting either open angle glaucoma (OAG) or angle closure 

glaucoma (ACG) will increase to 79.6 million by 2020; and, of these, 74% will have OAG. It 

was estimated that by 2010, women would comprise 55% of all cases of OAG, 70% of all cases 

of ACG, and 59% of all cases of glaucoma (Quigley and Broman 2006). Asians would represent 

47% of those with glaucoma and 87% of those with ACG (Quigley and Broman 2006). 

Approximately 2% of the 40+ population have glaucoma (Klein et al 1992). However, only 50% 
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of those with glaucoma are aware of their condition (Sommer et al 1991; Quigley 1996). 

Glaucoma is a chronic and progressive multifactorial optic neuropathy characterized by 

excavation of the optic nerve head (ONH) and retinal nerve fibre layer (RNFL) thinning which 

result in loss of visual function (Garway-Heath et al 2000; Burk and Rendon 2001). Raised 

intraocular pressure and increasing age have each been identified as major risk factors for the 

development of OAG. However, 33% to 50% of those with OAG manifest an IOP within the 

normal range (Sommer et al 1991). Such estimates have not yet been validated. 

 

Kinetic perimetry is an indispensable diagnostic method in neuro-ophthalmology, in advanced 

glaucoma and in situations where it is difficult to obtain reliable results with static perimetry.   

 

The purpose of the following review is to describe the fundamentals of static automated 

perimetry with particular reference to the procedures for the measurement, and the analysis, of a 

single visual field examination in individuals with OAG. The literature concerning the methods, 

and the relative efficacy of those methods, for the identification of progressive visual field loss 

by static automated perimetry and the literature concerning the correlation between function (i.e. 

outcomes from perimetry) and structure (i.e. the outcomes from imaging) are beyond the scope 

of the review and of the thesis.  

  

1.1.2 The basics of perimetry 

The variation of sensitivity across the visual field, known as the sensitivity gradient, is 

influenced by a number of factors including the background luminance, the stimulus size, and 

the stimulus duration.  
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1.1.3 Units of Measurements 

Under scotopic conditions, the amount of light needed to detect a stimulus is constant. Under low 

photopic background conditions (1.3cdm 2−  to 10cdm 2− ), the behaviour of the differential light 

threshold can be described by the Rose de Vries Law (∆L/L 5.0  = constant) (Fankhauser 1979; 

Tate 1985).  Above 10cdm 2− , the Weber-Fechner Law is operative namely: 

 

∆L/L=K where K is a constant. 

 

Thus, the differential light threshold increases in a linear relation to the background luminance, 

The standard background luminance used by most perimeters is 10cdm 2−  which lies within that 

described by the Weber-Fechner Law  (Aulhorn and Harms 1972).  

 

On a logarithmic scale: Sensitivity (dB) = k + 10 log (∆L/L) 
 

The sensitivity of the human visual system ranges from approximately one asb to 1,000,000asb. 

For this reason, sensitivity is measured on a logarithmic scale (in decibels [dB]). The dB scale is 

a logarithmic scale where, in perimetry, 0dB is referenced to the maximum stimulus luminance 

of the perimeter and where 1dB represents a 0.1 log unit of attenuation of the maximum 

luminance and 10dB represents a 1.0 log unit attenuation of the maximum luminance. The 

maximum stimulus luminance (0dB) for the Goldmann perimeter is 1000asb, for the current 

Octopus (300 and 900 series) perimeters  4800asb, and that of the Humphrey Field Analyzers 

10,000asb. 
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1.1.4 Background Luminance and Dynamic Range 

To maximise the detection of shallow defect depths within the visual field, it is desirable to 

achieve the maximum possible dynamic range of the perimeter. A low background luminance 

and a large stimulus luminance maximizes the dynamic range (Fankhauser 1979; Heijl 1985; 

Choplin, Sherwood and Spaeth 1990; Zalta 1991). The dynamic range is defined as the 

measurement range over which the neuro-visual system can be tested, using specific equipment 

with a given set of experimental variables (Fankhauser 1979). The stimulus size will also 

influence the dynamic range of a perimeter. For example, an increase in the stimulus size from 

Goldmann I to III increases the dynamic range by 12 dB for a background luminance of 

1.3cdm 2−  at an eccentricity of 50º (Fankhauser 1979). To obtain a satisfactory dynamic range 

and minimize the adaptation time needed prior to the examination, the background luminance of 

10cdm 2− , which lies within Weber-Fechner Law,  is considered to represent a compromise 

between the background luminance/ adaptation time and the maximal dynamic range (Heijl 

1985). 

 

Stimuli with high luminances may result in erroneous measures of sensitivity caused either by 

intra-ocular light scatter or by seepage from the boundaries of the stimulus (Fankhauser and 

Haeberlin 1980a; Dengler-Harles et al 1990). Those early perimeters which used LED sources 

for the stimulus utilized a lower background luminance due to the reduced luminance of the 

available LEDs.  

 

1.1.5 Stimulus Size  

Spatial summation and temporal summation both influence the visibility of the stimulus. Spatial 

summation describes the relationship between the differential light threshold and the size and 

luminance of the stimulus, whereby a dim large stimulus and a brighter smaller stimulus are 
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equally visible. Spatial summation varies with stimulus location, (Wilson 1970; Anderson and 

Patella 1999) and can be expressed as: 

 

A k  x I = C 

 

where A is the area of the stimulus, I is the stimulus luminance and C is a constant at the given 

location. The value of the exponent k varies with location from 0.55 to 0.9 (Anderson and Patella 

1999).   

 

The six stimulus sizes for the Goldmann bowl perimeter are designated by Roman numerals: size 

0 to size V. Each stimulus increases in diameter by a factor of 2 and in area by a factor of 4 

(Table 1.1) compared to the immediately previous smaller stimulus. The Goldmann stimulus 

sizes have been adopted for automated perimetry. The default stimulus size for static threshold 

perimetry is Goldmann size III. This stimulus size is affected less than size I by optical defocus  

(Heijl 1985), and media opacities (Sloan 1961; Wood, Wild and Crews 1987a). The use of 

smaller stimuli reduces the dynamic range, especially in the periphery (Zalta and Burchfield 

1990), but provides the opportunity to measure the visual field with a higher spatial resolution 

(Bek and Lund-Andersen 1989). The variability of the threshold estimate within 30° eccentricity 

increases with successive reduction in stimulus size compared to size III and reduces for 

successive increases in stimulus size compared to size III (Gilpin et al 1990; Wall, Kardon and 

Moore 1993). 

 

1.1.6 Stimulus Duration 

Temporal Summation describes the relationship between the differential light sensitivity and 

stimulus duration. Temporal summation is expressed as: 
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∆L x T k  = C 

 

where ∆L is the differential light threshold, T is the stimulus duration, k is the summation 

coefficient and C is a constant. There are several laws that describe Temporal Summation 

including: Pieron’s Law (k=0.3), Piper’s Law (k=0.5), Goldmann’s approximation (k=0.8) and 

Bloch’s Law or Bunsen-Roscoe’s Law (k=1) (Baumgardt 1959; Greve 1973).   Bloch’s Law 

describes the fact that the differential light sensitivity increases linearly with increase in stimulus 

duration until the duration exceeds a critical value after which, sensitivity is independent of the 

duration (Bloch 1885). Temporal summation decreases with increasing stimulus size (Barlow 

1958; Saunders 1975) and increasing background luminance (Barlow 1958; Saunders 1975; Daly 

and Normann 1985).        

 

The critical stimulus duration in the normal population varies between 60 and 100msec (Barlow 

1958; Greve 1973; Saunders 1975). Short stimulus durations reduce the examination time and 

are useful for patients with poor fixation (Greve 1973) but increase the variability of the 

threshold estimate. The Octopus perimeters use stimulus duration of 100msec whilst the 

Humphrey Field Analyzers use stimulus duration of 200msc. The stimulus duration for the 

Octopus perimeters is such as to achieve complete temporal summation but is shorter than the 

latency time for voluntary eye movements (Weijland et al 2004).  
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Goldmann stimulus size 

(Roman numerals) 

Stimulus diameter 

(degrees) 

Stimulus area (mm²) 

at a viewing distance 

of 30cm 

 

0 0.05° 0.0625 

I 0.11° 0.25 

II 0.22° 1 

III 0.43° 4 

IV 0.86° 16 

V 1.72° 64 
      

Table 1.1 The spatial characteristics of each of the six Goldmann stimuli sizes. 

 

1.1.7 Stimulus Generation 

The mode of stimulus generation varies between different types of perimeter. The Octopus 

100, 300 and 900 series and the Humphrey Field Analyzers utilize projection of a halogen 

source. An alternative approach, employed on the Dicon, Henson and Medmont perimeters, 

utilizes LED stimuli. LEDs have a long life span and, if desirable, can be temporally modulated 

at high frequencies. However, each LED requires individual calibration and the given type of 

perimeter is limited by the number of LEDs incorporated into the design which, in turn, limits 

the spatial possibilities of the stimulus array. The Octopus 1-2-3 and now the Octopus 300 series 

use(d) a direct projection system in which the LED generated stimulus, background illumination 

and fixation target are projected onto the retina from optical infinity (Weijland et al 2004). Most 

other perimeters employ a spherical bowl as a background although the HFA 700 Series uses an 

aspheric bowl.  

    

In some of the early LED perimeters, the LEDs were not covered by the diffusing surface of the 

background and caused localised changes in retinal adaptation (Heijl 1985; Britt and Mills 1988) 

and an increase in variability in areas of high sensitivity (Desjardins and Anderson 1988) arising 

from the resulting “black-hole” effect (Britt and Mills 1988).  Other early perimeters such as the 
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Fieldmaster 200 (Mills 1984) and the Tübingen 2000 used fibre optic waveguides emanating 

from a single light source to generate each stimulus. As with LED stimuli, the use of fibre optics 

limited the number of stimulus locations. The technology was also expensive to manufacture. 

  

1.1.8 Spatial Configuration of Stimuli 

The overall aim of the visual field examination is to balance the requirement to maximize the 

potential for the detection, and the optimum description, of visual field loss with that of a 

realistic examination time.  

 

Clearly, the number of stimulus locations within any given visual field examination largely 

determines the length of the examination. However, the number of, and the extent of the 

separation between, the stimuli determine the resolution with which the defect can be detected 

and/ or described. A circular defect of 9° in diameter has a 95% probability of detection when 50 

regularly distributed stimulus locations are evenly placed out to 30° eccentricity (Greve 1975). 

The probability of detection is 100% using 452 stimulus locations for a defect of 7.5°. It is 95% 

for a defect of 3° in diameter (Greve 1975). The relation between sensitivity for detection and the 

number of stimulus locations is logarithmic, whilst that for specificity is linear. Thus, large 

numbers of stimulus locations are not required to reach high levels of sensitivity (Henson, 

Chauhan and Hobley 1988).  

 

Visual field defects in glaucoma usually occur within the central field and correspond to the 

anatomy of the retinal nerve fiber layer and its projection to the optic nerve (Werner and Drance 

1977; Caprioli and Spaeth 1985). The prevalence of glaucomatous field loss in the peripheral 

field manifesting with a normal central field is 1% (Blum, Gates and James 1959) or 4% (Ballon 

et al 1992).  Glaucomatous field loss initially presents in one hemisphere either as a nasal step or 
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as a deep, frequently absolute, paracentral defect or as a combination of both. Temporal wedge 

defects also reflect the retinal nerve fiber layer anatomy, but are seen less than 5% of the time 

(Walsh 1996). The initial paracentral and/ or nasal step defect progresses to an arcuate defect and 

eventually to an altitudinal defect. At some point, the opposite hemifield becomes involved. In 

the advanced stages of damage, the superior and inferior loss coalesces and results in isolated 

central and temporal islands of residual vision within the central field. The occurrence of purely 

generalized/ diffuse field loss in glaucoma is equivocal (Drance et al 1987; Heijl 1989; 

Langerhorst et al 1989; Asman and Heijl 1994).  

 

The given arrangement of stimulus locations for any given visual field examination is termed the 

Program. The ‘Gold Standard’ stimulus program is Program 32 which was introduced with the 

first Octopus perimeters in 1975. The stimuli are presented in terms of a square grid which is 

offset by 3º both from the horizontal and from the vertical midlines, respectively, and in which 

the inter-stimulus separation is 6º. The corresponding program for the Humphrey Field 

Analyzers is Program 30-2. A focal defect of 8.4º in diameter can be detected with 100% 

probability using stimulus size III and either Program 32 or 30-2. However, the probability of 

detection reduces to 79% for a defect of 6º in diameter (Fankhauser and Bebie 1980). 

Nevertheless, a resolution of 6º is frequently insufficient for the identification of the 

physiological blind spot (King et al 1986). Program G1 of the Octopus is specially designed for 

glaucoma and the number of stimulus locations is weighted towards the paracentral and nasal 

step regions.  In the paracentral region (out to 10º eccentricity) the grid has an inter-stimulus 

separation of 2.8º and between 10º and 30º eccentricity an inter-stimulus separation of 6º 

(Weijland et al 2004). A modification of Program 30-2 is that of Program 24-2 which omits all 

the locations in the outer annulus of the grid with the exception of the two locations immediately 

above and below the horizontal midline, respectively, at the extreme nasal periphery.   
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The concept of spatially adaptive programs is an attractive notion whereby the stimulus 

separation is reduced (i.e. the resolution is increased) in areas of suspected, or actual, reduced 

sensitivity. The Spatially Adaptive Program (SAPRO) was developed for the Octopus perimeters 

(Haeberlin and Fankhauser 1980) whereby the spatial resolution changed from 6º to 3º 

resolution. However, the use of such spatially adaptive programs does not improve the sensitivity 

and specificity of the visual field examination compared to that achieved by the standard 6º 

resolution (Asman et al 1988).   

 

A custom test allows the examiner to design stimulus programs with a given number of stimuli 

and, therefore, a given spatial resolution. A stimulus grid of 9º by 9º containing 100 stimulus 

locations with an inter-stimulus resolution of 1º can identify areas of reduced sensitivity which 

would be undetected by the conventional resolution of 6º (Westcott et al 1997). 

 

1.2 Threshold Algorithms 

The threshold algorithm (strategy) is the name given to the method for determining the estimate 

of threshold. Classically threshold is estimated by compilation of a frequency-of-seeing (FOS) 

curve whereby the frequency of a positive response (ordinate) is plotted as a function of stimulus 

luminance (abscissa). The curve has a sigmoid appearance with a linear part in the middle. The 

frequency of a ‘seen’ response is never 0% due to the presence of false-positive responses and 

never reaches 100% due to the presence of false-negative responses. Threshold is generally taken 

as the luminance which corresponds to a 50% frequency-of-seeing.   

 

The classical method for compiling the FOS curve for estimation of the differential light 

threshold is the Method of Limits. The stimulus luminance is adjusted in small intervals or steps 

either in an ascending or a descending manner until it is perceived with a probability of 50%. 
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The method is time consuming when the initial stimulus luminance is far from the threshold. 

Conversely, the procedure is rapid if the initial stimulus luminance is close to the threshold 

(Taylor 1971).      

 

The current approach, the adaptive method, varies the stimulus luminance in ascending and 

descending steps until the estimate of threshold is obtained. The procedure is termed the staircase 

or bracketing method (Wetherill and Levitt 1965). The most frequently used algorithms in 

perimetry generally employ a double crossing of the threshold whereby, if the initial stimulus is 

not seen, the luminance is increased in unit steps until the a positive response is obtained. The 

stimulus luminance is then decreased in steps (which are half that of those used for the first 

estimation) until a negative response is obtained. The threshold is thereby crossed twice. The 

threshold can, of course, be approached from the opposite direction.   Wherever possible, the 

number of stimuli necessary to estimate the threshold are minimized with the intention of 

shortening the examination duration and thereby reducing the inherent variability in the 

threshold estimate arising from fatigue (Searle et al 1991; Hudson, Wild and O'Neill 1994; 

Gonzalez de la Rosa and Pareja 1997; Anderson and McKendrick 2007). However, the 

variability in the estimation of threshold, itself, reduces with increase in the number of crossings 

of threshold, with reduction in step size and with the number of threshold estimations. 

 

The various threshold algorithms used in automated perimetry can be divided, depending upon 

their date of introduction, into first, second and third generation algorithms. The second 

generation algorithms exhibit a reduction in examination duration, compared to that of the first 

generation, at the cost of some loss of accuracy of the threshold estimate whilst the third 

generation algorithms have utilised the advances in computer processing speed to exhibit a 

reduction in examination duration without loss of accuracy in the threshold estimate.   
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1.2.1 First Generation Algorithms 

The Threshold algorithm for the Octopus series of perimeters commences the examination at 

each of four ‘primary’ stimulus locations (anchor points) located near the centre of each quadrant 

of the visual field (Spahr 1975; Zulauf, LeBlanc and Flammer 1994; Weijland et al 2004). The 

initial luminance of each stimulus is 4dB dimmer than the age-corrected normal value. If the 

response is negative, the subsequent stimulus luminance is increased by 6dB. The process 

continues with an increase of the stimulus luminance in steps of 8dB until a positive response is 

obtained. Following the crossing of threshold, the stimulus luminance is reduced in steps of 4dB 

until the threshold is crossed for the second time. After the second crossing of threshold, the 

stimulus luminance is increased again in 2dB steps until the threshold is crossed for the third 

time. The latter value is adjusted by 1dB in the opposite direction to the last response (Weijland 

et al 2004). If the response to the initial stimulus luminance is positive, the luminance is 

decreased in steps of 2dB until a negative response is obtained after which the luminance is 

increased in 1dB steps until a positive response is obtained.  The sensitivity at the four anchor 

positions is used, in conjunction with the prior knowledge of the slope of the age-corrected 

sensitivity gradient, to calculate the magnitude of the initial luminance for the threshold estimate 

of each of the surrounding locations in the corresponding quadrant. The bracketing procedure 

then continues, as before, in 4-2-1 dB steps. The initial luminances for the next set of subsequent 

locations are calculated, in each case, from the median value of the three previously thresholded 

neighbouring locations and from the slope of the age-corrected sensitivity gradient (Weijland et 

al 2004). 

 

The Full Threshold algorithm of the Humphrey Field Analyzer initially obtains a threshold 

estimate twice at each of four stimuli (seed points) situated 9° from both the horizontal and 

vertical meridians, respectively. The initial luminance at each of these four seed locations is 
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25dB and threshold is crossed twice in 4dB and 2dB steps, respectively. The final 2dB crossing 

of threshold can occur in either an ascending or descending direction. The threshold is taken as 

the mean of the last positive and first negative response. The initial value for the immediate 

adjacent stimulus locations is 2 dB brighter than the expected value derived from knowledge of 

the sensitivity at the primary locations and of the slope of the hill of vision (Wild et al 1999a). 

. 

1.3 Second Generation Algorithms 

The Dynamic Strategy algorithm for the Octopus perimeters reduces the examination duration by 

30-40% in areas of normal sensitivity and by 40-50% in areas of severe loss compared with the 

Threshold algorithm (Weber and Klimaschka 1995).  

 

The luminance steps for the Dynamic Strategy algorithm are adapted to the sensitivity at the 

given stimulus location from a knowledge of the width of the FOS curve. With increasing 

severity of visual field loss, the step size increases from 2dB to 10dB and threshold is crossed 

only once. The threshold estimate is calculated as the mean of the two last two stimulus 

luminances (Weber and Klimaschka 1995). The Dynamic Strategy algorithm exhibits lower 

between-examination variability than the Threshold algorithm for sensitivities in the normal 

range but higher between-examination variability for relative defects (Weber and Klimaschka 

1995).  Alternatively, the short-term fluctuation of the Dynamic Strategy is higher than the 

Threshold algorithm, but the long-term fluctuation is similar (Zulauf, Fehlmann and Flammer 

1996). The ratio of benefit (accuracy) versus cost (time) is largely in favour of the Dynamic 

Strategy algorithm (Weber and Klimaschka 1995). 
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1.3.1 FASTPAC 

The FASTPAC algorithm was introduced for the Humphrey Field Analyser as a shorter 

alternative to the Full Threshold algorithm. The FASTPAC algorithm utilizes a 3dB step size and 

a single crossing of threshold. The threshold is obtained at the initial seed locations as for the 

Full Threshold algorithm after which the initial starting luminance for the secondary locations is 

2dB dimmer than the expected threshold when the expected value is an odd number and 1dB 

brighter when the expected value is an even number. The threshold is designated as the last seen 

stimulus luminance (Flanagan et al 1993). In comparison to the Full Threshold algorithm, the 

FASTPAC algorithm reduces the examination duration by 35% to 40%. The impact of errors 

arising from an incorrect estimate of threshold at a given seed location, and which can lead to a 

masking of relative loss, is greater for the FASTPAC algorithm than for the Full Threshold 

algorithm  (Glass, Schaumberger and Lachenmayr 1995). The Short-term fluctuation is 

approximately 25% higher than that for the Full Threshold algorithm (Flanagan et al 1993; 

Flanagan, Wild and Trope 1993; Glass, Schaumberger and Lachenmayr 1995; Schaumberger, 

Schafer and Lachenmayr 1995). The visual field indices (See Sections  1.11.1 and 1.11.2), Mean 

Sensitivity (MS) and Mean Deviation (MD) are similar between the two algorithms 

(Schaumberger, Schafer and Lachenmayr 1995). However, the Pattern Standard Deviation (PSD) 

and the Corrected Pattern Standard Deviation (CPSD) indices are either smaller (Schaumberger, 

Schafer and Lachenmayr 1995) or larger (Flanagan, Wild and Trope 1993) than those for the 

Full Threshold algorithm.  

 

1.4 Third Generation Algorithms 

1.4.1 Swedish Interactive Threshold Algorithms (SITA)     

The Swedish Interactive Threshold Algorithms became commercially available in 1997 for the 

HFA 700 series. Two algorithms are available: the SITA Standard is analogous to the Full 
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Threshold algorithm and the SITA Fast is analogous to the FASTPAC algorithm (Olsson, 

Rootzen and Heijl 1988; Olsson et al 1993; Bengtsson et al 1997; Olsson et al 1997; Bengtsson, 

Heijl and Olsson 1998; Bengtsson and Heijl 1998a; Bengtsson and Heijl 1998b). Both 

algorithms reduce the examination duration in normal individuals: the SITA Standard algorithm 

is approximately 50% shorter compared to the Full Threshold algorithm and the SITA Fast 

algorithm, 50% shorter compared to the FASTPAC algorithm. The  SITA Fast algorithm is 41% 

shorter than the SITA Standard algorithm (Anderson and Patella 1999; Wild et al 1999a). The 

examination duration of both SITA algorithms increases (i.e. the saving of time compared to the 

Full Threshold algorithm becomes less) as the severity of the glaucomatous field loss increases, 

particularly for the SITA Fast algorithm (Wild et al 1999a; Sekhar et al 2000; Budenz et al 

2002). The SITA Fast algorithm exhibits greater test-retest variability in those areas (Artes et al 

2002).   

 

The reduction in the examination duration for both SITA algorithms is achieved by a complex 

statistical model. The majority of the time-saving arises from a reduction in the number of 

stimulus presentations which is achieved by the use of a Bayesian  approach. The latter uses two 

prior likelihood models (density functions) of the sensitivity for each given stimulus location: 

one model describes the distribution of the probability for the given value of sensitivity in the 

normal field and the other describes the distribution of the probability for the given value of 

sensitivity in the glaucomatous field. The initial luminance at the seed locations is identical to 

that of the Full Threshold algorithm. The initial luminance at any given immediately surrounding 

location is based upon the expected normal value of sensitivity which, itself, is derived from the 

prior density function for normal sensitivity. The initial step size is +/-4dB from this value. 

Subsequent luminance levels are based upon the nature of the response, on knowledge of the 

characteristics of the associated FOS curve at the given location and on the correlation of 
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sensitivity with immediate neighbouring locations. The FOS curve is steep with a narrow width 

and of variability in normal eyes, but flattens as sensitivity declines. The FOS curve in 

glaucomatous eyes exhibits a shallower slope with a resultant increased variability of response 

(Chauhan et al 1993; Olsson et al 1993). The prior density function at each location is modified 

as a consequence of responses from the given individual to produce a corresponding posterior 

density function. The latter are constantly updated following each response, regardless of 

stimulus location, to produce an estimate of the likely threshold at the given location. In the case 

of reduced values of sensitivity, the prior density function for the probability of the given 

sensitivity in the glaucomatous eye is utilized. The height of the peak of the posterior density 

function represents the likely threshold estimate whilst the width represents the potential error in 

the estimate. The accuracy of the estimate is evaluated in the case of the SITA Standard 

algorithm by the use of 4dB steps, and, once threshold has been crossed, by the use of 2dB steps. 

Threshold is taken as the 50% ‘seen’ value of sensitivity on the FOS curve. The corresponding 

step size for the SITA Fast algorithm is 4dB. The staircase procedure is terminated once the 

estimated threshold exhibits accuracy within a predetermined error (the error related factor). 

Threshold estimation with the SITA Standard algorithm cannot be terminated unless there has 

been at least one crossing of the threshold (Bengtsson et al 1997). However, the threshold 

estimation with the SITA Fast algorithm can be terminated at any given location without a 

crossing of threshold (Bengtsson et al 1997; Bengtsson and Heijl 1998b). 

 

The examination duration of the algorithms is also shortened by adapting the inter-stimulus 

interval to the response time of the individual and by estimation of false-positive responses based 

upon the reaction time of the individual  (Bengtsson et al 1997; Anderson and Patella 1999).  
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The Mean Sensitivity in the normal eye is 0.8dB and 1.3dB larger for the SITA Standard and the 

and SITA Fast algorithm, respectively, compared to the Full Threshold algorithm (Wild et al 

1999a). The Mean Sensitivity in the normal eye for the SITA Fast algorithm is 1.47 dB greater 

than that for the FASTPAC algorithm and 0.5dB larger than that for the SITA Standard 

Algorithm (Wild et al 1999a). In the glaucomatous eye, both SITA Standard and SITA Fast 

algorithms generate a marginally higher Mean sensitivity compared to the Full Threshold and 

FASTPAC algorithms but with a statistically deeper defect depth (Wild et al 1999). Both SITA 

algorithms exhibit better test-retest variability for sensitivities above 25dB than for the Full 

Threshold algorithm. Below 25dB, the SITA Standard algorithm exhibits slightly better test-

retest variability, and the SITA Fast algorithm slightly poorer test-retest variability compared to 

the Full Threshold algorithm. The higher sensitivity values, the statistically deeper defect depths 

(Aoki, Takahashi and Kitahara 2007) arising from the narrow confidence intervals for normality,  

and, in general, the better  test-retest variability compared to the Full Threshold algorithms has 

been attributed to the reduction in the perimetric fatigue effect arising from the reduction in 

examination duration (Sharma et al 2000; Artes et al 2002). 

1.4.2 Tendency Orientated Perimetry (TOP) 

Tendency Oriented Perimetry (TOP) was introduced in 1996 (Gonzalez de la Rosa et al 1996) 

for the Octopus perimeters and utilizes the correlation of sensitivity between neighbouring 

stimulus locations.  

The TOP strategy subdivides the various stimulus locations within the given stimulus program 

into four overlapping sub-matrices such that, in the case of Program 32, each sub-matrix 

comprises 19 stimulus locations with a between-stimulus separation of 15° (Anderson 2003). 

Each matrix is examined in sequential order. The stimulus luminance at each of the locations in 

the first sub-matrix is presented at half (8/16) that of the age-corrected value of normal 
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sensitivity at the given location. Each location in the first sub-matrix is examined once. If a 

positive response is obtained at the given location, the sensitivity is recorded as the value of the 

starting luminance less (i.e. dimmer) 4/16 of the age-corrected value of normal sensitivity at the 

location i.e.,  ([8/16 + 4/16] of the age-corrected value of normal sensitivity). If a negative 

response is obtained at the given location, the sensitivity is recorded as the value of the starting 

luminance plus (i.e. brighter) 4/16 of the age-corrected value of normal sensitivity at the location 

i.e.,  ([8/16 - 4/16] of the age-corrected value of normal sensitivity). 

As a consequence of the responses derived for the locations in the first sub-matrix, the expected 

(i.e., age-corrected) value of sensitivity at any given location in the second sub-matrix is 

modified by the average of the response(s) derived by the first sub-matrix at any locations 

situated within 9º vertically and 9º horizontally of the given location in the second sub-matrix.  

The stimulus luminance at each of the locations in the second sub-matrix is presented at the 

expected value of sensitivity at the given location. If a positive response is obtained at the given 

location, the sensitivity is recorded as this value pluss 3/16 of the normal age corrected value. If 

a negative response is obtained at the given location, the sensitivity is recorded as 4/16 of the 

expected value of normal sensitivity at the given location.  

The locations in the third sub-matrix are adjusted by the average of the response derived by the 

second sub-matrix at any locations situated within 9º vertically and 9º horizontally of the given 

location. The stimulus luminance at each of the locations in the third sub-matrix is presented at 

2/16 of that of the expected value of the sensitivity at the given location. The threshold estimate 

for all the locations within the third sub-matrix is recorded as +/- 2/16 of the expected value of 

normal sensitivity at the given location depending upon whether a positive or a negative 

response was obtained.  
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The cycle is repeated for those locations in the fourth sub-matrix and sensitivity is recorded as 

+/- 1/16 of the expected value of normal sensitivity at the given location depending upon 

whether a positive or a negative response was obtained. The final adjustment recalculates the 

estimates based upon the established correlations between adjacent locations.  

The TOP strategy is appropriate for patients in whom time-consuming perimetry is not possible 

or who exhibit advanced loss (Maeda, Nakaura and Negi 2000). The algorithm can be easily 

applied to other perimetric methods such as SWAP, Pulsar perimetry and Critical Flicker Fusion 

(CFF) perimetry, (Chapters 2, 4, 5 and 6). The TOP algorithm yields shallower defects compared 

to the Threshold algorithm (Lachkar et al 1998; Maeda, Nakaura and Negi 2000) and the SITA 

Fast algorithm of the HFA (King et al 2002). The examination duration is between 75% and 80% 

less compared to the Threshold strategy both in normal individuals and in individuals with OAG 

(Morales, Weitzman and Gonzalez de la Rosa 2000; Kratochvilová 2002; Gonzales de la Rosa et 

al 2003 ). 

1.4.3 German Adaptive Thresholding Estimation (GATE-i/GATE) 

The GATE-i algorithm (Schiefer et al 2009) commences by determining the sensitivity at each of 

five predefined seed locations. The measured sensitivity at each seed location is then compared 

to the corresponding age-corrected normal value. The smallest deviation, across the five 

locations, between the measured and age-corrected values of sensitivity is then used to adjust the 

overall height of the expected visual field. The initial stimulus luminance at each subsequent 

stimulus location is 2dB brighter than the expected value from the adjusted hill of vision. If a 

positive response is obtained, the luminance is reduced in 4dB steps until a negative response is 

obtained after which the luminance is increased in 2dB steps until a positive response is 

obtained. If the initial luminance yields a negative response, the subsequent stimulus is presented 
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at the maximum luminance. If the latter yields a negative response, the threshold estimation at 

the given location is terminated. If the maximum luminance yields a positive response, the 

subsequent stimulus is presented at 4dB brighter than the initial presentation and the luminance 

is increased in 4dB steps until a positive response occurs. The stimulus is then presented 2dB 

dimmer than the level at which the previous positive response occurred.  The threshold is defined 

as the mean of the last positive and negative response.  

The GATE algorithm is similar to the GATE-i algorithm but differs only in that the reference 

field for the initial stimulus presentations is based upon the previously determined thresholds for 

the given individual rather than upon the age-corrected normal values.  

The characteristics of the threshold recorded with the GATE-i and GATE algorithms compare 

favourably with those obtained with the Full Threshold algorithm despite the approximate 

halving of the examination duration. The Mean Sensitivities of 60 individuals (40 with OAG, 10 

with suspected OAG and 10 with OHT) derived with Program 24-2 and with the SITA Standard, 

GATE-i and GATE algorithms were 1.2dB, 0.6dB and 0.0dB higher, respectively, than with the 

Full Threshold algorithm. The standard deviation of the difference in the Mean Sensitivity 

obtained at two examinations within a period of 14 days was 3.9dB for the Full Threshold 

algorithm, 4.5dB for GATE-i, 4.2dB for GATE and 3.1dB for the SITA Standard algorithm. 

Test-retest agreements, as measured by the 95% reference interval of the differences, were          

-7.69dB to 7.69dB, -9.76dB to 9.0dB, -8.40dB to 8.56dB and -7.01dB to 7.44dB, respectively. 

The examination durations were 9.0, 5.7, 4.7 and 5.6 minutes, respectively (Schiefer et al 2009).  

 



 57 

1.4.4 Zippy Adaptive Threshold Algorithm (ZATA) 

The Zippy Adaptive Threshold Algorithm (ZATA) was introduced for the Henson 8000 

perimeter. Two versions of ZATA are available: Standard and Fast. Both algorithms use data 

from prior examinations to reduce the time for threshold estimation. The algorithm reduces the 

examination duration in normal eyes and in eyes with severe field loss. However, at the time of 

submission of this thesis, no peer reviewed publications report on the performance of these 

algorithms.   

 

1.4.5 Continuous light increment perimetry (CLIP) SPARK Precision and SPARK Light 

Continuous light increment perimetry (CLIP) SPARK Precision and SPARK Light are third 

generation fast threshold algorithms available for use with the Oculus Easyfield perimeter. At the 

time of submission of this thesis, no detailed descriptions of these algorithms have been 

published. 

 

CLIP uses a ‘modified ramp stimulus’ whereby the stimulus luminance is continuously increased 

from an infrathreshold level ‘according to the patient’s reaction time’ until it is seen (Wabbels, 

Diehm and Kolling 2005). The test is ‘constantly modified according to patient performance’. 

CLIP yields a higher Mean Sensitivity than the 4-2dB algorithm of the Easyfield perimeter in 

individuals with glaucomatous field loss and tends to underestimate the depth of deep focal loss. 

The examination duration for CLIP was 5.6 minutes for 55 stimulus locations compared with 

that of 8.9 minutes for the 4-2dB algorithm (Wabbels, Diehm and Kolling 2005). The mean 

point-wise sensitivity difference in individuals with glaucomatous field loss between the SITA 

Fast and the Full Threshold algorithms of the Humphrey Field Analyzer (0.84 dB) was 

significantly lower than that found between CLIP and the 4-2dB algorithm of the Easyfield 
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perimeter the Oculus FT strategy (1.71 dB) (Capris et al 2008). The examination duration for the 

SITA Fast (367+/-71 sec) and CLIP (453+/-98 sec) algorithms were approximately 55% and 

35% shorter than those found with the respective/ equivalent first generation algorithms. The 

CLIP algorithm has also been found suitable for the examination of children above the age of 8 

years (Wabbels and Wilscher 2005). 

According to Oculus (http://www.oculus.de/us/sites/detail) the SPARK Precision strategy offers 

faster and more reliable threshold perimetry’ and a ‘complete visual field test of glaucoma 

patients can be performed in only 3 minutes per eye, ‘The measurement excels in the stability of 

the results for improved progression analysis.’ The SPARK Light strategy is for follow-up or for 

screening examinations. In those individuals with a previous visual field examination, the quality 

of the results is similar to those of the SPARK Precision algorithm but with a further halving of 

the examination duration. A SPARK Training strategy which lasts approximately 40 seconds is 

also available to reduce the effect of the learning effects in the standard perimetry. The 

performance of these algorithms against the more established algorithms has yet to be evaluated. 

  

1.5 Suprathreshold static perimetry 

Current suprathreshold perimetry uses a stimulus that is presented at a suprathreshold level 

referenced to the sensitivity gradient of the normal field. The sensitivity gradient is either that of 

the age-corrected normal or that derived for the individual and calculated from several individual 

threshold estimates i.e., threshold-related. The technique is limited by the lack of separation of 

abnormalities in height and shape of the field from abnormalities in shape only, i.e., the 

separation of focal loss from that arising from cataract.  The sensitivity and specificity of the 

technique is also dependent upon the magnitude of the suprathreshold increment. Too small an 

increment results in poor specificity whilst too large an increment results in poor sensitivity. The 
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use of an 8dB increment with age-corrected suprathreshold perimetry, for example, with the 

Humphrey Field Analyzer can mask shallow defects, particularly those paracentrally, which can 

be detected with the FASTPAC (Stewart, Shields and Ollie 1989; Mills et al 1994) and SITA 

algorithms. The similarity between the outcomes of suprathreshold and threshold perimetry 

increases as the severity of the defect increases particularly those exhibiting absolute loss as 

encountered in lesions of the optic tract and those more posteriorly (Lewis, Johnson and Keltner 

1986; Sponsel et al 1995; Siatkowski et al 1996; Artes et al 2003; Topouzis et al 2004; 

McKendrick and Turpin 2005b). 

 

1.6 Reliability parameters 

The utility of the visual field examination as a diagnostic tool is dependent upon the ability and 

co-operation of the patient in determining the threshold estimate. The reliability of the response 

can be sampled in terms of the Short-term Fluctuation and the response to several quality control 

parameters, namely the fixation loss catch trials and the false-positive and the false-negative 

catch trials.  

 

1.7 Fixation monitoring 

Fixation stability is essential during the visual field examination. Fixation can be monitored with 

varying degrees of sophistication via the monitor of the perimeter, via the Heijl-Krakau method 

and via eye tracking.   

 

The Heijl-Krakau method of monitoring fixation is used in many perimeters including that of the 

HFA. The technique establishes the position of the blind spot within the visual field at the outset 

of the examination and monitors fixation by projecting a Goldmann size III stimulus into the 

blind spot location at various intervals throughout the examination (Heijl and Krakau 1975). If 
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the individual does not respond to the stimulus, fixation is assumed to be correct. However, a 

positive response indicates an eye movement. Continual positive responses in the presence of 

steady fixation indicate an inappropriate localization of the blind spot at the outset of the 

examination, most usually due to head tilt. They can also be associated with excessive incorrect 

responses to the false-positive catch trials.  In order to prevent the occurrence of pseudo fixation 

losses, it is important initially to map the correct position and size of the blind spot (Sanabria, 

Feuer and Anderson 1991; Fankhauser 1993). Optical effects, caused either by high positive or 

high negative corrective lenses can move the apparent position of the blind spot away from the 

intended location fixation and it is vital to detect such problems early in the test (Sanabria, Feuer 

and Anderson 1991). Media opacities can also reduce the accuracy of the Heijl-Krakau technique 

(Fankhauser and Haeberlin 1980a).   In the HFA series of perimeters, the number of fixation loss 

catch trials comprises 5% of the total number of stimulus presentations.                  

 

The Octopus perimeters use an infrared illumination system to produce two Purkinje I reflexes, 

one either side of the pupil centre. With the Octopus 300 series which employs direct projection 

onto the retina, small sustained re-adjustments of fixation can be compensated for by appropriate 

rotation in the x and y direction of the optical head of the perimeter. If an eye movement is made, 

the Octopus perimeters discount the response from the individual. If the patient blinks or closes 

the eyelids during a stimulus presentation, the Octopus perimeters re-present the stimulus at the 

given location at a later time in the examination (Interzeag  AG 1998; Weijland et al 2004).   

 

Some models of the HFA 700 Series are equipped with gaze monitoring. An infra-red system 

measures the distance between the pupil centre and the Purkinje I reflex. Image analysis 

determines the distance between the pupil centre and the corneal reflex. A deviation in the 

location of the pupil relative to the corneal reflex indicates a change in the direction of gaze. 
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Such deviations are only recorded during a stimulus presentation. An equivalent method is also 

used to monitor the vertex distance of the forehead. The gaze tracker system provides a 

continuous print-out of the quality of fixation during each stimulus presentations. An upward 

deflection indicates an eye movement, the amplitude of which is truncated at 10°, and a 

downward deflection a loss of quality of the image due to blinking, lid closure, tear film rupture 

etc.  

 

The concept of a movable (kinetic) fixation target is employed with the Dicon series of 

perimeters to improve fixation stability. The individual is required to maintain fixation on the 

fixation target which moves in between stimulus presentations and stops immediately prior to the 

presentation of the next stimulus. It is claimed that kinetic fixation is more interesting and 

reduces the fatigue effect (Reitner et al 1996). However, it results in significantly higher fixation 

errors compared to convention fixation in normal individuals and in individuals with 

glaucomatous field loss (Asman et al 1999). 

  

1.8 False-positive and False-negative catch trials 

A false-positive response can be evaluated in two ways. The original method uses the catch-trial 

approach based upon the ‘non-presentation’ of a stimulus in time with the rhythm of the test 

procedure and in conjunction with any mechanical noise associated with the stimulus 

presentation. A false-positive response may occur when the patient either does not understand 

the examination procedure or is anxious and concerned about not seeing all the stimuli. The 

alternative method, available in the Humphrey Field Analyzer 700 series, is based upon the time 

at which a positive response occurs during the periods of the examination when the individual is 

not expected to respond (Olsson et al 1997). The software evaluates whether a positive response 

has occurred at either, or both, of two of three different time periods. The first recording period 
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for the occurrence of false-positive responses corresponds to that between the onset of the 

stimulus and the minimum reaction time of 180msec. The second period is that during which the 

individual is expected to respond to the presence of the stimulus (the ‘response window’) and 

lasts from a minimum of 180msec (but is modified depending upon the individual’s reaction 

time) after the onset of the stimulus to a designated proprietary time point. The third period is 

that of the second recording period for the occurrence of false-positive responses and lasts from a 

given time after the end of the response window to the onset of the subsequent stimulus. Positive 

responses that occur following a positive response during the response window are excluded as 

are those which occur between the given time after the end of the response window and the given 

time to the onset of the subsequent stimulus. In a validation study by Wall et al (2008), the 

average number of false-positive catch trials was 9.9 (SD = 0.3) with an average sampling time 

of 9 seconds per examination (SD = 2.0). The mean duration of the recording time for the 

presence of false-positive responses was 141 seconds (SD = 29 sec) per test. The mean 

frequency of false-positive responses, for the reponse time method, 2.2%, was similar to the 

mean of 3.1% incorrect responses to the false-positive catch trials. In those individuals with 

glaucomatous field loss who exhibit incorrect responses by both methods, the outcome of the 

response time method underestimates what the traditional method by approximately 50% (3.58% 

vs. 7.72%, p=0.007). The response time method also underestimates the frequency of induced 

errors, particularly among normal individuals (Newkirk et al 2006).  

 

False-negative responses are assessed by the catch-trial method which involves the presentation 

of the stimulus, at a given stimulus location, at a known level above (brighter) than the threshold 

estimate derived earlier in the examination. The suprathreshold increment for SAP with the 

Humphrey Field Analyzer is 9dB. For CFF perimetry with the Octopus perimeters, the 
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suprathreshold increment is 100Hz. A False-negative response can occur due to lack of 

understanding of the examination procedure or to a lack of attention/ fatigue. 

 

Age (Bickler-Bluth et al 1989), visual acuity and pupil diameter do not influence the outcome of 

the false-positive or the false-negative catch trials for SAP (Katz and Sommer 1988). The 

frequency of incorrect responses to the false-positive catch trials is higher with poor fixation, 

especially in inexperienced patients (Bickler-Bluth et al 1989; Reynolds, Stewart and Sutherland 

1990; Sanabria, Feuer and Anderson 1991). A high frequency of incorrect responses to the false-

positive catch trials is associated with a hyper-normal value of Mean Sensitivity and of Mean 

Defect both in normal individuals (Katz and Sommer 1990; Cascairo, Stewart and Sutherland 

1991; Demirel and Vingrys 1994) and an underestimation of the defect depth in individuals with 

glaucoma (Katz and Sommer 1990). The frequency of incorrect responses to the false-negative 

catch trials increases for SAP as the severity of the field loss, in general, increases (Katz and 

Sommer 1988; Katz and Sommer 1990; Reynolds, Stewart and Sutherland 1990; Bengtsson 

2000; Bengtsson and Heijl 2000).   The increase in the frequency of incorrect responses to the 

false-negative catch trials occurs partially as a consequence of the increase in the within-

examination variability of the threshold estimate with decline in sensitivity: the suprathreshold 

increment can lie inside the range of variability associated with the given value of sensitivity at 

the given stimulus location.  

 

The upper limit of acceptability for the incorrect responses to the fixation loss catch trials for 

SAP is generally considered to be 20% (Katz, Sommer and Witt 1991). Short-wavelength 

automated perimetry is undertaken with a size V stimulus to ensure maximum SWS isolation and 

the same stimulus is used for the Heijl-Krakau method of monitoring fixation. The larger 

stimulus size can overlap the borders of the blind spot and, as a consequence, a positive response 
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may be obtained. Thus, the upper limit of acceptability for the incorrect responses to the fixation 

loss catch trials can be higher for SWAP than for SAP. The upper limit for the incorrect 

responses to the false-positive catch trials for SAP was originally considered to be 20% (Vingrys 

and Demirel 1998) or 33% (Katz, Sommer and Witt 1991; Anderson and Patella 1999; Sherafat 

et al 2003) but, with the advent of the reaction time-based assessment, is now considered to be 

20% (Bengtsson and Heijl 2000). The corresponding value for the incorrect responses to the 

false-negative catch trials for SAP is generally considered to be 33% (Katz, Sommer and Witt 

1991; Anderson and Patella 1999). However, due to the inherent increase in variability with 

increasing field loss, these values should be modulated, on an individual basis, for those with 

suspected or manifest glaucoma (Bengtsson 2000; Coops and Henson 2005).      

      

The Octopus 300 Series utilises the Reliability Factor which expresses the number of incorrect 

responses to the false-positive and the false-negative catch trials as a fraction of the total number 

of catch trials. The RF should, ideally, be < 15% (Weijland et al 2004).  

   

1.9 Presentation of Perimetric Sensitivity 

1.9.1 Numerical and Greyscale Threshold Printouts 

The print-out for each type of perimeter always contains a display in which the value of the 

threshold estimate at each stimulus location is annotated in terms of sensitivity, expressed in 

dBs, in a spatial configuration representing that employed in the stimulus program. With some 

threshold algorithms, the values of a second threshold estimate at any given stimulus location are 

displayed underneath the initial value.    

 

The Grey scale printout displays the values of sensitivity within the spatial configuration as an 

interpolated grey scale. The Grey scale is intended to facilitate the interpretation of the spatial 
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representation of sensitivity. By convention, lighter shades of grey represent higher sensitivities 

and darker shades represent lower sensitivities with black indicating the lowest levels of 

sensitivity. The greyscale levels are usually organized into groups of 5dB in width. For the 

Octopus perimeters, the greyscale values range from 0 to 45dB assigned in 9 levels of grey 

whilst that of the Humphrey Field Analyzers cover a range from 0 to 51dB in 10 levels of grey. 

In addition, the attenuation in dBs is referenced to the maximum stimulus luminance 

superimposed upon a given background luminance.  The grey scale is neither age nor 

eccentricity corrected. As such, the appearance of the grey scale in the normal eye darkens with 

increase in eccentricity. It also darkens with increase in age, particularly with increase in 

eccentricity, to reflect the reduction in the height and shape (a ‘peripheral’ steepening). The grey 

scale can appear to be normal in the presence of early loss, particularly with the SITA algorithms 

and particularly in the paracentral regions. However, in the presence of severe loss, the grey 

scale becomes increasingly representative of the visual field as the general height adjustment 

(i.e., the method of removing the abnormality in height) becomes increasingly unreliable 

(Asman, Wild and Heijl 2004). The grouping of the greyscale levels for short-wavelength 

automated perimetry is the same as that for standard automated perimetry. As a consequence of 

the difference in the magnitude of the normal values of sensitivity between the two types of 

perimetry, the appearance of the greyscale for short-wavelength automated perimetry in the 

normal eye is darker than that for standard automated perimetry (Wild 2001). 

 

1.9.2 Total Deviation/ Comparison values 

The numerical values of sensitivity, alone, are insufficient for the accurate interpretation of the 

visual field. A second level of analytical complexity is that of the Total Deviation/ Comparison 

analysis whereby the measured value of sensitivity at any given stimulus location is compared 

with that of the corresponding age-corrected value of sensitivity. With the Humphrey Field 
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Analyzer series, the outcome at each stimulus location is called the Total Deviation value. A 

negative value represents the extent to which the measured value of sensitivity is lower than that 

of the age-corrected value and a positive value the extent to which a measured value of 

sensitivity is higher than that of the age-corrected value.  The corresponding approach for the 

Octopus series of perimeters is termed the Comparison value; however, the sign convention is 

reversed. A positive value represents the extent to which the measured value of sensitivity is 

lower than that of the age-corrected value and a negative value the extent to which a measured 

value of sensitivity is higher than that of the age-corrected value. A value within ± 4 dB of the 

age-corrected normal value is represented as a “+” symbol. A value worse (i.e., more) than +4dB 

is represented as the given value; however, a measured value of sensitivity of zero is designated 

by a black square. The Octopus perimeters also have an option for an interpolated greyscale 

representation of the Comparison values whereby each value is expressed as a percentage from 

100% to 0% divided into 9 levels of grey. Thus, an entirely normal field will appear as a 

completely white rendition and a field with absolute loss at each stimulus locations as 

completely.  

 

1.9.3 Pattern Deviation/ Corrected Comparison values 

A continuation of this second level of analytical complexity is that of the Pattern Deviation 

analysis for the Humphrey Field Analyzers and the Corrected Comparison analysis for the 

Octopus perimeters whereby the measured value of sensitivity, corrected for the general height 

adjustment, at any given stimulus location is compared with that of the corresponding age-

corrected value of sensitivity. The outcome of the analysis is displayed in an identical format for 

each type of perimeter to that of Total Deviation and Comparison analysis, respectively.  The 

general height adjustment (Asman, Wild and Heijl 2004) provides an estimate of the magnitude 

of the diffuse/ generalised loss and corrects the value of sensitivity at each stimulus location, 
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accordingly. Diffuse/ generalised loss largely arises from cataract but can also occur from a 

variety of other causes such as an uncorrected or inaccurately corrected, refractive error, a 

naturally occurring small pupil or a pharmacologically constricted pupil etc. Following the 

general height adjustment, any attenuation of sensitivity is considered to be non-optical and to be 

of focal origin.  The basic tenet of the general height adjustment is dependent upon the 

acceptance that glaucomatous, or for that matter any other cause of, visual field loss does not 

exhibit a diffuse component. However, as stated in section 1.1.8, the absence of a diffuse 

component of glaucomatous field loss is equivocal (Lachenmayr and Drance 1992; Lachenmayr, 

Drance and Airaksinen 1992b; Asman and Heijl 1994; Chauhan et al 1997; Henson, Artes and 

Chauhan 1999). The method of estimation of the magnitude of the general height adjustment 

varies between types of perimeter. For the Humphrey Field Analyzers, the general height 

adjustment arising from examination of the central field is based upon the 52 stimulus locations 

of Program 24-2 (the two locations immediately above and below the blind spot are omitted). 

The Total Deviation values are ranked in order from most positive/ least negative to most 

negative value. The general height is defined as the 7th most positive/ least negative ranked value 

(Heijl, Lindgren and Olsson 1987b). This value represents the 87th percentile of the distribution 

of the ranked deviation values. For the Octopus series of perimeters, the general height 

adjustment is based upon the mean of the 12th to the 16th  highest ranked values of sensitivity and 

is expressed as the Diffuse Defect (see Section 1.11.6). 

 

1.9.4 Total Deviation/ Comparison Probability analysis 

The Total Deviation/ Comparison Probability analysis determines the probability of the 

respective Deviation/ Comparison value at the given stimulus location lying within the 

distribution of values encountered for the age-corrected normal eye. A statistically significant 
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value is highlighted in terms of a square with the ‘greyness’ of the square becoming increasingly 

darker as the probability level successively changes through four levels from p<0.05 to p<0.005.  

 

1.9.5 Pattern Deviation/ Corrected Comparison Probability analysis 

The outcome of the corresponding probability analysis for the Pattern Deviation/ Corrected 

comparison values is displayed in an identical manner to that for the Total Deviation/ 

Comparison Probability analysis. The presence of a statistically significant value, in effect, 

indicates the presence of focal abnormality with the severity of the abnormality increasing as the 

‘blackness’ of the symbol increases.  

 

The probability levels displayed by the various probability analyses represent those up to the 5th 

percentile. The use of continuous scale probability plots has been advocated (Wall et al 2009) 

whereby the probability level, regardless of statistical significance, is displayed at each stimulus 

location. Although normal individuals frequently exhibit sensitivities between the 5th and the 20th 

percentiles, the stimulus locations exhibiting such an occurrence are randomly arranged.  

However, as would be expected the extent of focal loss is larger with the use of the continuous 

scale probability scale.  

 

The outcome of probability analysis using stimulus size V recorded with the Full Threshold 

algorithm is similar to that using stimulus size III recorded with the SITA Standard algorithm in 

individuals with glaucoma (Wall et al 2008). The use of stimulus size V with its inherent lower 

variability (Wall, Kutzko and Chauhan 1997; Wall et al 2009) and greater dynamic range and 

number of steps (Wall et al 2010) would be a viable alternative to stimulus size III.  
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1.10 Cumulative Defect curve 

The Cumulative Defect (CD) curve, also known as the Bebié Curve, is a method for rapidly 

visualising the characteristics and the depth of the visual field loss (Bebie, Flammer and Bebie 

1989). The CD curve illustrates, graphically, the sensitivity across each of the locations in ranked 

order from the highest (left) to the lowest (right) and compares this to the mean, and to the 5% 

and 95% confidence limits, of the age-corrected normal curve. A diffuse/ generalised loss of 

sensitivity is represented by a downward displacement of the entire curve ‘parallel’ to the mean 

age-corrected normal curve. Focal loss is indicated by a localised downward displacement of the 

curve, the extent of which describes the area and depth of the loss. The separation of the initial 

manifestation of focal from the diffuse loss can be difficult with the CD curve (Funkhouser, 

Fankhauser and Weale 1992). In addition, the CD curve does not display the spatial localization 

of the visual field loss (Asman and Olsson 1995) and, for this reason, it is necessary to interpret 

the curve outcome in conjunction with the spatial display of the sensitivity values (Kaufmann 

and Flammer 1989).         

 

1.11 Global Indices 

The Octopus perimeters initially provided four global indices: the Mean Defect (MD), Loss 

Variance (LV), Short-term Fluctuation (SF) and Corrected loss variance (CLV) (Flammer et al 

1985; Flammer 1986; Flammer et al 1987). These indices correspond to those subsequently 

introduced for the Humphrey Field Analyzer, namely the Mean Deviation (MD), the Pattern 

Standard Deviation (PSD), the Short-term Fluctuation (SF) and the Corrected Pattern Standard 

Deviation (CPSD) (Heijl, Lindgren and Olsson 1987b). Each type of index is a summary 

measure which describes a given feature of the visual field. The indices are optimally used in 

combination with spatial information particularly that of the Pattern Deviation/ Corrected 

Comparison probability analysis.  
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1.11.1 Mean Sensitivity 

The mean sensitivity (MS) is the arithmetic mean of the sensitivity across all the given stimulus 

locations.  
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i, is the stimulus location; x i  is the sensitivity at stimulus location i, n is the number of stimulus 

locations excluding those in the blind spot region and m is the number of threshold estimates, k, 

at location i. 

 

The MS declines with increase in age (Hermann et al 2008). It is influenced by diffuse/ 

generalised loss; small areas of localised loss exert little influence on the MS (Flammer 1986).  

   

1.11.2 Mean Defect and Mean Deviation 

The Mean Defect, used in the Octopus series of perimeters, is the arithmetic mean of the 

difference between the age-corrected value of normal sensitivity and the measured value of 

sensitivity across all the stimulus locations. For the normal visual field, the Mean Defect 

approaches zero. An increasingly positive value indicates an increasingly abnormal field. A 

negative value indicates a field which is better than the age-corrected field (Flammer 1986). The 

Mean Defect is defined as: 
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where n is the number of stimulus locations excluding those in the blind spot region; iz  is the 

age-corrected normal value of sensitivity at stimulus location i and ix  is the measured value of 

sensitivity. MD primarily describes the extent of the diffuse/ generalised visual field loss but also 

reflects that of increasingly severe localized loss. 

 

The Mean Deviation, used in the Humphrey Field Analyzer, is the weighted mean of the 

difference between the measured sensitivity at each stimulus location and the age-corrected 

normal value across all the stimulus locations. The more centrally located values are weighted to 

reflect the lower variability of the threshold estimate at these locations compared to those 

situated more peripherally. The Mean Deviation primarily describes the extent of the diffuse/ 

generalised visual field loss but also reflects that of increasingly severe localized loss. 

(Heijl, Lindgren and Olsson 1987b) An increasingly negative value indicates an increasingly 

abnormal field. The Mean Deviation is defined as:  
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where n is the number of stimulus locations, excluding those in the blind spot region, xi is the 

measured value of sensitivity at stimulus location i, zi is the age-corrected normal value of 

sensitivity at stimulus location i and S1i
2 is the variance of normal sensitivity at stimulus location 

i.   

 

The weighting function exerts little influence on the Mean Defect (Funkhouser and Fankhauser 

1991) or on the Mean Deviation (Flanagan, Wild and Trope 1993) in glaucomatous field loss.   
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1.11.3 Loss Variance and Pattern Standard Deviation 

The Loss Variance (LV), used in the Octopus series of perimeters, is the variance of the 

difference between the normal age-corrected value of sensitivity and the measured value of 

sensitivity across all the stimulus locations. As a variance, the value is expressed in dB². It is an 

indicator of localized loss and the value initially increases as the localised loss increases but then 

declines as the localised loss becomes increasingly widespread. The Loss variance is defined as:  
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where n is the number of stimulus locations excluding those in the blind spot region, iz  is the 

age-corrected normal value of sensitivity at stimulus location i, ix  is the measured value of 

sensitivity and MD is the Mean Defect.  

 

The Pattern Standard Deviation (PSD), used in the Humphrey Field Analyzer, is the Standard 

Deviation of the difference between the measured sensitivity at each stimulus location and the 

age-corrected normal value across all the stimulus locations and incorporates the weighting 

function used in the calculation of the Mean Deviation. The Pattern Standard Deviation is 

defined as:  
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where n is the number of stimulus locations, excluding those in the blind spot region, xi is the 

measured value of sensitivity at stimulus location i, iz  is the age-corrected normal value of 
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sensitivity at stimulus location i, MD is the Mean Deviation and 2
1iS  is the variance of normal 

sensitivity at stimulus location i. The PSD initially increases as the localised loss increases but 

declines as the localised loss becomes increasingly widespread. 

 

As would be expected from the mathematics of the two functions, the difference between the LV 

and the PSD increases as the severity of the focal loss increases.  

 

1.11.4 Short-term Fluctuation (SF) 

The Short-term Fluctuation is the variation of the threshold estimate at any given location during 

a given visual field examination (Bebie, Fankhauser and Spahr 1976; Flammer et al 1984; 

Flammer, Drance and Zulauf 1984). The SF can be calculated for any given number of stimulus 

locations and for the Octopus perimeters is expressed as: 
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where n is the number of stimulus locations, i is the given stimulus location, and SD is the 

standard deviation of the threshold estimates at location i (Flammer 1986).    

 

For the first and second generation algorithms, the Humphrey Field Analyzer calculates the 

Short-term Fluctuation by measuring the threshold twice at ten pre-determined stimulus locations 

and calculates the weighted mean of the standard deviations at these ten locations. The weighting 

function is to account for the increase in the Short-term Fluctuation with increase in eccentricity 

(Brenton and Phelps 1986; Heijl, Lindgren and Olsson 1987a). The Short-term Fluctuation is 

expressed as: 
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where 1ix  is the first value of sensitivity and, 2ix is the second value of sensitivity at stimulus 

location i and 2
2iS is the variance of the normal sensitivity at stimulus location i. 

 

Weighting with 
2

2

1

iS
 minimises the Short-term Fluctuation in normal individuals (Heijl, 

Lindgren and Olsson 1987b) and in individuals with glaucoma (Flanagan, Wild and Trope 1993). 

The Short-term Fluctuation for the Octopus series of perimeters is approximately 0.3dB greater 

than for the weighted Short-term Fluctuation of the Humphrey Field Analyzer (Brenton and 

Argus 1987) although the stimulus parameters are not the same between the two types of 

perimeter. The Short-term Fluctuation is independent of stimulus duration (Pennebaker et al 

1992) but decreases with increase in stimulus size (Gilpin et al 1990). It is independent of 

background luminance in the low photopic range which is that used in most perimeters 

(originally the Octopus perimeters used 1.27cdm-2 but now some use the 10cdm-2 featured in the 

Humphrey Field Analyzers) but increases with mesopic illumination at or below 0.1cdm-2 

(Croswell et al 1991).  It varies with the type of threshold algorithm being greater for the 

algorithms with larger step sizes and fewer reversals compared to that of the 4dB-2dB double 

crossing of threshold (Bebie, Fankhauser and Spahr 1976; Flanagan, Wild and Trope 1993; 

Weber and Klimaschka 1995). An increased Short-term Fluctuation is considered to be an early 

manifestation of glaucomatous damage (Werner and Drance 1977; Flammer et al 1984). The 

Short-term Fluctuation is also greater at the border of deep focal loss (Haefliger and Flammer 

1991).  
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The third generation threshold algorithms do not incorporate the facility for the measurement of 

the Short-term Fluctuation. The reason for this is unknown but is presumably due to the balance 

between the additional examination time requirement and the clinical value of the index.  

 

1.11.5 Corrected LV and Corrected PSD     

Corrected Loss Variance (CLV), used in the first and second generation algorithms of the 

Octopus series of perimeters, is the LV corrected for the square of the Short-term Fluctuation 

(SF) (Flammer 1986).  CLV is expressed in dB² and is defined as: 
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The Corrected Pattern Standard Deviation (CPSD) used in the first and second generation 

algorithms of the Humphrey Field Analyzer, is defined as:  

 

222
kSFPSDCPSD −=  

 

where k is a constant greater than one and compensates for the non-uniform spatial arrangement 

of the stimulus locations used for the estimation of the SF.  CPSD is considered to be the most 

accurate descriptor of glaucomatous visual field loss (Hayashi et al 2001).         

  

Programs 30-2 and 24-2 generate similar PSD and CPSD indices and the weighting function 

produces a larger PSD and CPSD (Flanagan, Wild and Trope 1993). Weighting of hemifield and 

cluster analyses improves the sensitivity and specificity (Asman and Heijl 1992b). 
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1.11.6 The Diffuse Defect (DD)  

An index to describe the extent of diffuse loss, the Individual General Sensitivity index, was first 

proposed in 1989 (Langerhorst et al 1989). A similar index was the Diffuse Loss Index 

(Funkhouser, Fankhauser and Weale 1992). 

  

The Diffuse Defect (DD) is the difference between the general height of the age-corrected 

normal visual field and that of the individual’s visual field (Buerki and Monhart 2007).  

 

The DD is defined as: 
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where ai is the value of sensitivity of the given ranked value of the measured sensitivity and bi is 

the 50th percentile of the distribution of the corresponding value in the age-corrected normal eye. 

The DD is based upon the 12th (20%) to the 16th (27%) highest ranked values. 

 

1.11.7 The Local Defect (LD)  

The area underneath Cumulative Deficit curve derived from the measured sensitivity having 

adjusted for the DD is known as the Abnormal Response Area (ARA). The ARA  is defined as: 
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where ai is the value of sensitivity of the given ranked value of the measured sensitivity and bi is 

the 50th percentile of the distribution of the corresponding value in the age-corrected normal eye 
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and DD is the diffuse defect. The ARA is based upon the 14th (20%) to the 59th (100%) highest 

ranked values of the measured sensitivity. 

 

The Local Defect is defined as: 

 

i

ARA
LD

∆
=  

 

Since the first 20% of the ranked values are omitted from the calculation of the DD, both the DD 

and the LD are less influenced by inappropriately high values of sensitivity arising from false 

positive responses (Buerki and Monhart 2007). However, the use of a higher ranked value for the 

general height adjustment limits the use of the technique in advance field loss (Asman, Wild and 

Heijl 2004).  As would be expected, the LD correlates with the sLV and the PSD (Buerki and 

Monhart 2007).  

 

1.11.8 Glaucoma Progression Index 

The Glaucoma Progression Index (GPI) (Bengtsson and Heijl 2008) can be calculated for any 

given field and, as its name suggests, is an index for use in the identification of progressive 

glaucomatous loss. However, it can be used as an indication of the severity of field loss at any 

given examination.   The GPI is based upon the Pattern Deviation probability map and scored 

from 100% which represents a normal field to 0% which represents absolute loss. A sensitivity, 

at any given location, lying within the normal range by Pattern Deviation probability analysis is 

scored as 100% and that of absolute loss is scored as 0%. A sensitivity, at any given location, 

exhibiting a Pattern Deviation probability analysis of p≤0.05 is expressed as a percentage, 

namely 
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100 – [(│Total Deviation│/age-corrected normal sensitivity) x 100]. 

 

The outcome at any given location is weighted for cortical magnification whereby the inner- 

most stimulus locations are weighted most highly. The GPI is the mean of the weighted scores.  

 

The hypothesised advantage of the GPI was that it would be ‘largely independent’ of cataract 

and would provide a more appropriate measure of progressive loss than the corresponding Mean 

Deviation index (Bengtsson and Heijl 2008). However, the GPI has been shown to improve in 

patients with glaucomatous field loss following cataract extraction and IOL implantation; the 

improvement in the group mean was 4.3% compared to that for the MD of 13.6% (Ang, 

Shunmugam and Azuara-Blanco 2010). The GPI was implemented on the Humphrey Field 

Analyzer and has become known as the Visual Field Index (VFI). Following 

phacoemulsification cataract extraction and IOL implantation in 41 individuals with nuclear 

sclerotic cataract and in 12 individuals with posterior subcapsular cataracts, all of whom had 

glaucomatous field loss), the VFI remained unchanged whilst the postoperative MD exhibited a 

statistically significant, but clinically insignificant, improvement and the PSD a statistically 

significant, but clinically insignificant, worsening (Rao et al 2011b). The utility of the VFI when 

regressed against time to follow-up, compared to that of the corresponding Mean Deviation is 

equivocal (Artes et al 2011). As the VFI is based upon Pattern Deviation Probability values, a 

‘ceiling effect’ is present which limits the diagnostic sensitivity for detection of progressive early 

damage (Artes et al 2011). The relationship, in Chinese eyes with glaucoma, between 

progressive loss identified with the VFI and that of progressive reduction in the retinal nerve 

fibre layer thickness, as measured with the StratusOCT, and increase in the neuro-retinal rim 

area is poor (Leung et al 2011). However, given the logarithmic nature of the decibel scale of 
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sensitivity and the linear scale of a structural measure this is hardly surprising (Hood et al 2007; 

Gardiner, Demirel and Johnson 2011). Indeed, various linear-based indices have been recently 

proposed in an attempt to improve the identification of progressive glaucomatous damage and 

the understanding of the structure-function relationship (Gardiner, Demirel and Johnson 2011). 

 

1.11.9 Long-Term Fluctuation (LF) 

The Long-term Fluctuation (LF) is the variability of the threshold estimate between 

examinations and occurs over days, months or years. However, the LF is not quantified in 

clinical perimetry despite the need to separate the inherent variability in the threshold estimate 

from the ‘true’ reduction in sensitivity due to the presence of progressive disease (Bebie, 

Fankhauser and Spahr 1976; Flammer, Drance and Schulzer 1983; Flammer et al 1984; 

Flammer, Drance and Schulzer 1984; Parrish, Schiffman and Anderson 1984; Ross et al 1984; 

Wilensky and Joondeph 1984; Lewis, Johnson and Keltner 1986; Brenton and Argus 1987; Katz 

and Sommer 1987; Heijl, Lindgren and Olsson 1987a). Classically, the LF consists of two 

components: the Homogeneous LF ( HOMLTF ) and the Heterogeneous LF ( HETLTF ). The 

HOMLTF  refers to the uniform variability of sensitivity across the field (Hutchings et al 2001). 

The HETLTF  refers to the local variability of sensitivity at different visual field locations (Zulauf 

et al 1991; Hutchings et al 2001). The calculation of the LF excludes the short-term fluctuation, 

the learning effect and age (Bebie, Fankhauser and Spahr 1976; Flammer, Drance and Zulauf 

1984; Blumenthal et al 2000).  The LF is weakly correlated with the SF for both SAP (Hutchings 

et al 1993) and SWAP (Hutchings et al 2001). Other measures of long-term variability increase 

with increase in age (Katz and Sommer 1987; Heijl, Lindgren and Olsson 1987a) with increase 

in the interval between examinations (Katz and Sommer 1986) and with increase in eccentricity 
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in the normal (Heijl, Lindgren and Olsson 1987a; Rutishauser and Flammer 1988) and in the 

glaucomatous eye (Zulauf et al 1991; Boeglin, Caprioli and Zulauf 1992).  

 

1.11.10 Other Indices 

Various other indices have been proposed over the years including the Third Central Moment 

(M3), Skewness (Q) Defect Volume (DV) and Spatial Correlation (SC) indices. The M3 index 

described the sensitivity at the stimulus locations which deviated most from the age-matched 

normal value (Flammer 1986). The Skewness (Q) index also attempted to describe early loss and 

was a standardization of the M3 index with respect to LV (Brechner and Whalen 1984; Flammer 

1986) (Pearson, Baldwin and Smith 1988). The DV index described the volume of the three-

dimensional representation of the normal age-corrected field minus the volume of the measured 

visual field (Langerhorst et al 1985; van Den Berg et al 1985). The SC index described the extent 

of clustering of the visual field loss across the visual field. The SC index increased as the visual 

field loss became increasingly clustered (Flammer 1986).  

Although the concept of Cluster analysis is effective in detecting localized visual field loss and 

in distinguishing a normal visual field from a glaucomatous visual field (Asman and Heijl 1992a; 

Mandava et al 1993). Cluster deteriorating occur more frequently in the superior hemifield than 

in the inferior hemifield in glaucoma (Chauhan, Henson and Hobley 1988).     

 

Cluster size (SIZ), depth (CLUS), centroid (mean x-y coordinate), the number of clusters and the 

total size and depth have also been supported (Chauhan, Drance and Lai 1989). PCLUS 

quantifies the percentage of the MD that was clustered. The sensitivity and specificity of the 

cluster indices, SIZ, CLUS, and PCLUS, have been compared with the global indices MD and 

CLV (Chauhan, Drance and Douglas 1990). Cluster indices are effective in determining 

progressive loss compared to the normal points as well as in determining further deterioration in 
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abnormal visual fields (Chauhan, Drance and Douglas 1990). The specificity demonstrates the 

best results in the superior hemifield (Asman and Heijl 1992a; Asman and Heijl 1992b). 

 

1.11.11 Learner’s Index (LI) 

The presence of a learning effect with SAP (Wood et al 1987b; Werner, Adelson and Krupin 

1988; Heijl, Lindgren and Olsson 1989; Wild et al 1989; Autzen and Work 1990; Kulze, Stewart 

and Sutherland 1990; Werner et al 1990; Marchini, Pisano and Bertagnin 1991 Gardiner et al 

2008; Searle et al 1991; Wild et al 1991; Heijl and Bengtsson 1996) with SWAP using the Full 

Threshold  (Rossetti et al 2006; Wild et al 2006; Gardiner, Demirel and Johnson 2008; Zhong et 

al 2008) and the SITA SWAP algorithms (Fogagnolo et al 2010) and with Frequency Doubling 

Technology perimetry (Centofanti et al 2008; Pierre-Filho et al 2010) is well established. The 

learning effect occurs because the patient becomes increasingly familiar with the requirements of 

the perimetric task and manifests as an improvement in sensitivity, a decrease in measurement 

variability over time and a reduction in the examination duration. A Learner’s index was 

developed to detect regions of low sensitivity possibly due to perimetric inexperience (Olsson, 

Asman and Heijl 1997). The central visual field was divided into five concentric zones, and the 

mean of the deviations from the age-corrected normal values were determined for each zone. The 

variance and covariance between results were used to construct a linear discriminant function, 

the LI (Olsson, Asman and Heijl 1997).  However, the LI has not been the subject of further 

study.    

 

1.11.12 Glaucoma Hemifield Test (GHT) 

 The Glaucoma Hemifield Test (GHT) is specifically designed to detect localized glaucomatous 

visual field loss and is available for the Humphrey Field Analyzers (Asman and Heijl 1992a; 
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Asman and Heijl 1992b). The GHT divides each of the upper and lower hemifields into 5 mirror-

imaged zones, each of which include between 3 and 6 stimulus locations, based upon the 

configuration of the retinal nerve fibre layer. Subsequently, each zone is scored according to the 

number of Pattern Deviation probability values, and compared to its mirror image. The results of 

the GHT are displayed as one of five possible text phrases. ‘Outside normal limits’ is displayed 

when the difference between any one, or more, pairs of zones, is greater than that corresponding 

to the 99th percentile in age-corrected normal individuals. It is also displayed if the combined 

score of one, or more, pairs of zones exhibits a combined score exceeding that of the 99.5th 

percentile in age-corrected normal individuals. A ‘Borderline’ classification is displayed if the 

criteria for ‘Outside normal limits’ are not reached, but the difference between any one, or more, 

pairs of zones, is greater than that corresponding to the 97th percentile in age-corrected normal 

individuals. A ‘General reduction of sensitivity’ is displayed if the criteria for ‘Outside normal 

limits’ are not reached, but that the reduction in the General Height is greater than that of the 

99.5th percentile in age-corrected normal individuals. ‘Abnormally high sensitivity’ is displayed 

if the General Height exceeds that of the 5th percentile in age-corrected normal individuals. 

‘Within normal limits’ is displayed when none of the above criteria are met.             

 

Criteria based on the GHT and on the Pattern Deviation Probability map demonstrate high 

sensitivity and specificity for detecting early glaucomatous visual field changes (Katz, Sommer 

and Gaasterland 1991; Johnson et al 2002).  

 

1.12 Novel techniques of perimetry 

It is has long been established that substantial retinal ganglion cell damage occurs prior to the 

manifestation of visual field loss derived by standard automated perimetry, at least when the 

latter is expressed in dBs (Harwerth et al 1999; Kerrigan-Baumrind et al 2000; Harwerth et al 
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2004). The topic is extensively reviewed by (Anderson 2006; Hood et al 2007; Harwerth et al 

2010 ).  As a consequence of the apparent lack of sensitivity of standard automated perimetry for 

the detection of early glaucomatous damage, a number of other perimetric tests have been 

developed and are reviewed by (McKendrick 2005a).  

 

The modality for each of the newer perimetric tests is based upon one, or more, of three possible, 

but not necessarily independent, hypotheses for retinal ganglion cell loss in early OAG. The 

latter are well reviewed by (Spry et al 2005; Anderson 2006) and (McKendrick 2005a).   

 

The first explanation for retinal ganglion cell loss, based upon histological evidence, suggests 

that retinal ganglion cells with large diameter axons are preferentially damaged in early 

glaucoma (Quigley, Dunkelberger and Green 1988; Glovinsky, Quigley and Dunkelberger 

1991). However, such evidence has been disputed (Morgan 1994; Morgan, Uchida and Caprioli 

2000). The second hypothesis arises from the psychophysical literature which suggests that 

selective testing of functional properties exhibited by retinal ganglion cells (M-cells) which 

project to the magnocellular layers of the lateral geniculate nucleus (and which are larger than 

those projecting to the parvocellular layers (P-cells) such as motion (Silverman, Trick and Hart 

1990; Anderson and O'Brien 1997; Bosworth et al 1998; Sample et al 2000a; Spry et al 2005) 

and flicker (Tyler 1981; Van Toi, Grounauer and Burckhardt 1990; Lachenmayr et al 1991; 

Yoshiyama and Johnson 1997; Matsumoto et al 1999; Matsumoto et al 2006), identifies 

glaucomatous damage at an earlier stage than testing of non-selective ganglion cell function.  

The third hypothesis, the reduced redundancy hypothesis, is also compatible with the second 

hypothesis, and is based upon the concept that all types of retinal ganglion cells are equally 

affected by the glaucomatous disease process(es) but that sparsely represented cell types (which 

exhibit lower degrees of overlap between adjacent receptive fields than the more abundant types) 
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demonstrate functional abnormality, earlier, since loss of only a small number of cells will 

impair retinal receptive field coverage. The latter hypothesis is consistent with that for Short-

wavelength automated perimetry which is mediated, at least in part, by the scarcely represented 

small bistratified ganglion cells which are of similar size to eccentricity-matched M-cells and 

which project to the koniocellular layers of the lateral geniculate nucleus (K cells). 

 

1.12.1 Short Wavelength Automated Perimetry (SWAP) 

Short Wavelength Automated Perimetry (SWAP) was developed in the 1980s and 1990s (Hamill 

et al 1984; Sample, Weinreb and Boynton 1986; Heron, Adams and Husted 1988; Sample and 

Weinreb 1992; Sample et al 1993; Johnson et al 1993a; Johnson et al 1993b; Sample, Martinez 

and Weinreb 1994; Johnson et al 1995; Keltner and Johnson 1995; Wild et al 1995). SWAP 

stimulates the short-wavelength sensitive (SWS) pathway by the use of a narrow band blue 

stimulus in conjunction with a broad band yellow background, to suppress the involvement of 

the medium- and long-wavelength sensitive pathways, which is presented at a background 

luminance at least one log unit higher than that used for standard automated perimetry in order to 

saturate rod involvement. A Goldmann size V stimulus is used to increase the isolation of the 

SWS pathway 

 

The early studies of SWAP involved the use of differing stimulus and background parameters 

(Heron, Adams and Husted 1988; de Jong et al 1990; Sample and Weinreb 1990; Sample and 

Weinreb 1992; Hudson, Wild and Archer-Hall 1993; Moss, Wild and Whitaker 1995; Wild et al 

1995; Wild, Moss and O'Neill 1996). However, the stimulus parameters for the commercially 

available technique are now standardized. The Humphrey Field Analyzers use a 440nm stimulus 

with a bandwidth of 27nm mediated by an Omega filter and a 100cdm 2−  background mediated 

by a Schott OG 530 filter. The Octopus series of perimeters use identical characteristics with the 
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exception that the stimulus is mediated by an Omega 440nm filter with a bandwidth of 14nm. 

The duration of the stimulus is 200 msec for both types of perimeter.  

 

Initially, SWAP was considered to exhibit glaucomatous visual field loss in advance of that 

derived by standard automated perimetry (de Jong et al 1990; Hart et al 1990; Sample and 

Weinreb 1990; Sample and Weinreb 1992; Casson, Johnson and Shapiro 1993; Johnson et al 

1993a; Johnson et al 1993b). However, such studies consisted of small case series and frequently 

lacked robust definitions for field loss and for progressive field loss.      

 

The promise of SWAP for the detection of abnormality prior to that identified by standard 

automated perimetry lasted over the ensuing decade and the evidence base for this has recently 

been reviewed (Jampel et al 2011).  

 

The apparent advantage of SWAP over standard automated perimetry was counter intuitive to 

the increased between-individual normal variability (Wild et al 1995; Wild et al 1998) and to the 

increased within- and between-examination variability for SWAP, relative to standard automated 

perimetry, in normal individuals (Wild et al 1998; Blumenthal et al 2003), in individuals with 

ocular hypertension and in individuals with open-angle glaucoma (Hutchings et al 2001; 

Blumenthal et al 2003). The increased between-individual normal variability, expressed in terms 

of the coefficient of variation, to account for the differences in the dynamic range of the two 

techniques, was shown to be greater by, on average, 2.7 times, than that for standard automated 

perimetry (Wild et al 1998). The implication from these findings is that, for the detection of 

glaucomatous abnormality, a larger deviation from the age-corrected normal value is required for 

SWAP to achieve statistical significance than occurs for standard automated perimetry (Wild et 

al 1998). In addition, forward light scatter arising from cataract influences the visual field to a 



 86 

greater extent for SWAP compared to that of SAP (Kim et al 2001). However, anterior cortical 

cataract exerts greater effect on SAP compared to SWAP whilst the opposite effect occurs with 

posterior subcapsular cataract (Moss, Wild and Whitaker 1995).       

 

The SITA SWAP algorithm, introduced in 2003, exhibits a 22% reduction in the between-

individual normal variability of the SITA SWAP algorithm compared to that of the Full 

Threshold algorithm with a consequent reduction of 14% and 11% in the probability value 

necessary to achieve the 5% significance level in the Total Deviation and Pattern Deviation 

analysis (Bengtsson and Heijl 2003). However, in a study of 101 individuals with either ocular 

hypertension or suspect or early OAG, the identification glaucomatous visual field loss was 

similar between the SITA SWAP and Full Threshold SWAP algorithms and both exhibited 

equivalent diagnostic sensitivity to the SITA Fast algorithm (Bengtsson and Heijl 2006). 

With the current approach for the reference diagnosis to be based upon the outcome from stereo-

photography of the optic nerve head (Ng et al 2009) or from the results of retinal nerve fibre 

layer thickness derived by spectral domain optical coherence tomography (Liu et al 2011), it is 

becoming increasingly accepted that, in cross sectional studies, SWAP generates similar 

diagnostic sensitivities to standard automated perimetry for the detection of glaucomatous optic 

neuropathy regardless as to whether the comparison is that of SITA SWAP to SITA Standard 

(Tafreshi et al 2009 ; Liu et al 2011) or Full Threshold SWAP to SITA Standard (Sample et al 

2006) and or both SITA SWAP and Full Threshold SWAP to SITA Standard (Ng et al 2009).  

 

In one of the few prospective longitudinal studies of standard automated perimetry and SWAP, 

in individuals with ocular hypertension and normal fields by standard automated perimetry at 

baseline, it was concluded that standard automated perimetry appeared to be at least as 

diagnostically sensitive as SWAP for conversion to glaucomatous field loss (van der Schoot et al 
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2010). The study involved 416 individuals who had undergone standard automated perimetry 

and Full Threshold SWAP every 6 months for between 7 and 10 years or until the manifestation 

of repeatable visual field loss by standard automated perimetry. Twenty-four eyes of 21 

individuals exhibited conversion by standard automated perimetry. Of these 24 eyes, 22 did not 

show an earlier conversion by SWAP. Field loss by standard automated perimetry preceded that 

by SWAP in 15 of the 22 eyes. In only 2 eyes did SWAP exhibit an earlier conversion (by up to 

18 months). 

 

1.12.2 High-pass Resolution Perimetry (HRP)    

High-pass resolution perimetry (HRP) was developed to examine P cell ganglion cell sampling 

density (Frisén 1987; Frisén 1993). The stimulus is a ‘vanishing optotype’ stimulus that contains 

predominantly high spatial frequencies and is ring-shaped with dark borders (15cd/m²) 

surrounding a lighter centre (25cd/m²). The background luminance is 20cd/m². The duration of 

the stimulus is 165ms (Wall et al 2004). The size of the stimulus is changed, over a range of 14 

sizes, in a single-reversal staircase procedure with each stimulus being larger/ smaller than the 

previous stimulus by a factor of 1.26. The Ring program comprises 50 stimulus locations within 

the central visual field. 

 

The test was developed on the basis that, as detection and resolution thresholds are the same 

for a high-pass ring stimulus, the threshold estimate would be directly proportional to ganglion 

cell sampling density (Frisén 1987; Frisén 1987a). However, the detection and resolution 

thresholds are not the same beyond the fovea and aliasing is clearly present (Anderson, Ennis 

and McDowell 1999) and indicates that the threshold is more likely to provide an estimate of 

ganglion cell receptive field size rather than spacing or density (Thibos, Cheney and Walsh 

1987). 
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Nevertheless, HRP detects glaucomatous visual field progression earlier than SAP (Chauhan et 

al 1993; Graham and Drance 1995; Martinez, Sample and Weinreb 1995; Chauhan et al 1999). 

Alternatively, the two techniques may yield similar outcomes (Artes and Chauhan 2005). HRP 

may (Meyer and Funk 1995) or may not (Lachenmayr et al 1991) (Sample et al 2006) be more 

diagnostically sensitive than standard automated perimetry for the detection of early 

glaucomatous visual field loss. HRP has been validated in pseudotumor cerebri (Wall et al 1991; 

Wall and White 1998), optic neuritis (Wall 1991) and hemianopsia (Martin-Boglind 1993). It 

continues to be used in its country of origin, Sweden, (Kalaboukhova, Fridhammar and 

Lindblom 2006; Martin 2007; Frisén and Jensen 2008) but has never gain widespread acceptance 

elsewhere.                      

 

1.12.3 Rarebit Perimetry (RBP) 

The use of the Goldmann size III stimulus oversamples the visual field in that it covers many, 

receptive fields. As a consequence, the identification of abnormal function of any one finite 

retinal ganglion cell is hindered by those ganglion cells which remain functional and which 

generate normal receptive fields at the given location of the stimulus. Rarebit Perimetry (RBP) 

uses a stimulus that presents a minimum of information (rare bits) (Frisén 2002) with the 

intention of locating minute gaps in the retinal neuronal matrix arising from dead/ dysfunctional/ 

or disconnected neurons. Indeed, the stimuli used for RBP are much closer in size to an 

individual ganglion cell receptive field in human (Hackett and Anderson 2011).  

 

In the initial version of RBP, two high luminance micro-dots (150 cdm-2), each half the normal 

minimum angle of resolution, are presented for 200 msec on a dark background  (1 cdm-2) within 

each of 30 circular stimulus areas of 5° in diameter within 30° eccentricity. Each circular 

stimulus area is probed five times (i.e. 10 microdots) with a separation of 4° between each pair of 



 89 

dots. The observer is required to indicate the number of micro-dots seen per presentation (i.e., 

two, one or none) and the outcome is defined in terms of the hit/ miss (i.e seen/ not seen) score. 

The results can be presented as the overall Mean or Median Hit Rate (MHR) (Frisén 2002); 

graphically, as the proportion of missed probes, represented by the proportionate diameter of a 

dark circle, within each of the circular stimulus areas of 5° (Frisén 2002); and as the number of 

stimulus areas with a hit rate of less than 90% (Martin and Wanger 2004).   

 

The group median hit rate in 27 normal individuals (aged between 20 – 70 years) was 96% 

(range between 88% - 100%) with the hit rate declining by 1% per decade of age (Frisén 2002).  

 

The initial studies of RBP indicate that the techniques is equivalent to that of standard automated 

perimetry in the detection of glaucomatous field loss (Martin and Wanger 2004; Brusini et al 

2005) and to Frequency Doubling Technology Perimetry in individuals with ocular hypertension 

(Corallo et al 2008). In the latter study, the greatest area under the ROC curve, of 0.95, and 

optimal sensitivity, of 97.4%, were obtained when an abnormal outcome to RBP was defined as 

at least one of an MHR <80%; >15 areas with a non-hit rate of >10%; ≥2 areas with a non-hit 

rate of >50%; and at least one area with a non-hit rate of ≥70%. It is also comparable to standard 

automated perimetry in detecting the homonymous hemianopia in stroke patients with occipital 

lobe infarcts (Gedik, Akman and Akova 2007). 

 

A more recent version of the software, version 4.0, differs from earlier versions in that the 

examination of the central field is divided into 24 rectangular zones of different sizes, as opposed 

to the 30 circular zones of 5° diameter (Chin et al 2011). The rectangular areas increase in size 

from 6° x 8° degrees centrally to 6° x 14° peripherally. The software also includes foveal and 

separate left and right ‘flank’ stimulus programs. The foveal program incorporates 10 square 
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examination areas each subtending 1.5° x 1.5°  and the two microdots are separated by 1° and 

can be displayed by data projector (Winther and Frisén 2010). 

 

The Mean Hit Rate, using the Version 4.0 software, of 54 normal individuals from Singapore, 

was  86.3 ± 13.95% for the central field and 91.6 ± 6.35% for the foveal field. The decline in 

Mean Hit Rate was 4.7% per decade of age. The Mean Hit Rate increased by 3.5 between two 

examinations separated by one month (Chin et al 2011). These values compare favourably from 

a similar study, using Version 4.0, of 75 European normal individuals with a mean age of 52.9 

±13.7 years.  The group mean Mean Hit Rate was 91% (±5.7%) and the age-related decline in 

Mean Hit Rate was 2.1% per decade (Salvetat et al 2007). A learning effect was present between 

the first and the second or third examination.  The decline in the Mean Hit Rates with age 

compares with that in Europeans of 1.5% per decade of age with Version 3.0 (Brusini et al 

2005). 

 

The outcome of RBP is adversely affected by optical defocus (Salvetat et al 2007) and by 

cataract (Salvetat et al 2007; Nilsson et al 2010). In the latter study of 25 patients before and 

after cataract extraction and IOL implantation, the median value of the MHR increased from 77 

(IQR 60-98) pre-operatively to 93 (IQR 85.9-96) postoperatively. The corresponding values for 

the foveal test were 8 (IQR 0-52) and 93.5 (47-100). In individuals with OAG, the correlation 

between MHR and peripapillary retinal nerve fibre layer thickness determined by Time-Domain 

OCT is relatively modest (r=0.39 to 0.47) (Katsanos et al 2008). RBP exhibits lower between-

examination variability for five examinations over a five week period than that for standard 

automated perimetry for both stimulus size I and stimulus size III (Vislisel et al 2011). 
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RBP yields acceptable, but lower sensitivity and specificity compared to standard automated 

perimetry, in the detection of visual field loss resulting from idiopathic intracranial hypertension 

(Celebisoy, Oztürk and Köse 2010). 

 

Critical Flicker Fusion perimetry (CFF), Flicker Defined Form (FDF) technology, Frequency-

Doubling Technology perimetry (FDT), Moorfields Motion Displacement test (MDT) and 

Temporal Modulation perimetry (TMP) are all novel perimetric techniques preferentially based 

on the Magnocellular pathway and will be discussed in Chapter 2.  

 

1.13 Factors potentially affecting the outcome of the perimetric examination  

1.13.1 Perimetric Artefacts 

The successful outcome of any visual field examination is a combination of the skill of the 

perimetrist, the understanding of, and co-operation in, the requirements of the visual field 

examination by the patient and the expertise of the clinician in interpreting the statistical 

analysis. The outcome of any given examination can be influenced by one or more artefacts 

which can either lead to the impression of visual field loss or to the apparent exacerbation of 

existing loss.  

 

1.13.2 Physical Factors 

The facial structure can cause apparent abnormality of the visual field. The most predominant 

causes are a prominent nose, prominent brows, long eyelashes, deep set eyes, ptosis and 

dermatochalasis (Meyer et al 1993). A superior visual field defect, or a restriction of the supero-

temporal quadrant of the visual field, can be caused by either ptosis or dermatochalasis (Kosmin 

1997). These visual field defects may mimic a superior arcuate scotoma or a supero-temporal 



 92 

defect (Riemann, Hanson and Foster 2000). When necessary, the upper lid should be taped to 

prevent artefacts caused by ptosis. Improved instruction by the perimetrist may also be necessary 

(Riemann, Hanson and Foster 2000).        

 

Lens rim artefacts can occur from the use of reduced aperture trial lenses, from thick rims and 

from incorrect placement (Zalta 1989). The latter can result in an induced prismatic effect 

(Atchison 1987; Miller and Gelber 1990). Trial lenses should be used in accordance with the 

instruction from the manufacturer of the perimeter (Weijland et al 2004). It is also important to 

maintain the correct position of the patient during the examination (Anderson and Patella 1999).  

 

1.14 Physiological Factors 

1.14.1 Age 

Age adversely influences the visual field derived by static automated perimetry. The process is 

generally considered to be linear for SAP with a reduction in sensitivity of between 0.4 and 1.1 

dB per decade of age out to 30º eccentricity (Brenton and Phelps 1986; Haas, Flammer and 

Schneider 1986; Heijl, Lindgren and Olsson 1987a; Zulauf, LeBlanc and Flammer 1994; Wild et 

al 1998). The decline increases within increase in eccentricity and is largest in the peripheral and 

superior areas compared to the paracentral and inferior areas (Haas, Flammer and Schneider 

1986; Jaffe, Alvarado and Juster 1986). The net effect of age reduces the height and steepens the 

hill of vision (Haas, Flammer and Schneider 1986; Jaffe, Alvarado and Juster 1986; Heijl, 

Lindgren and Olsson 1987a). The effect is greatest after the age of fifty (Johnson and Choy 

1987) and largely arises from a neural loss (Johnson and Choy 1987; Johnson, Adams and Lewis 

1989). Indeed, a nonlinear function provides the best description of the effect of age on the Mean 

Sensitivity derived by standard automated perimetry in that the Coefficients of Determination 

(R2) for linear, bilinear, and nonlinear functions were 0.21, 0.20, and 0.26, respectively (Spry 
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and Johnson 2001). The decline in sensitivity was 0.43 dB/decade before the age of 53.4 years 

and 1.02 dB/decade beyond that age.  

The age-related decline in sensitivity derived by SWAP is between 1.3dB per decade for both the 

Full and SITA SWAP algorithms to 2.2dB per decade (Johnson et al 1988; Johnson and Marshall 

1995; Wild et al 1995) compared with approximately 0.8 dB per decade for standard automated 

perimetry (Heijl, Lindgren and Olsson 1987a; Flanagan et al 1993) The reason for the difference 

in the slopes between the two methods is unknown. However, several explanations have been 

postulated, e.g. the reduced redundancy of the SWS pathway (Johnson 1994), preferential 

damage to the SWS cones due to the exposure of UV light (Ham et al 1982), age-related cortical 

changes, both in terms of number of neurons and in the morphology (Scheibel et al 1975; 

Devaney and Johnson 1980), loss of retinal ganglion cells (Dolman, McCormick and Drance 

1980; Balazsi et al 1984) and reduction both in photoreceptor density (Gartner and Henkind 

1981; Farber et al 1985) and foveal cone photopigment (Keunen, van Norren and van Meel 

1985; Kilbride et al 1986). 

When the slope of the decline in sensitivity with age for the given type of perimetry is corrected 

for the magnitude of the corresponding dynamic range,  short-wavelength automated perimetry 

shows the largest age effects, followed by Frequency Doubling Technology (FDT), and lastly by 

standard automated perimetry (Gardiner, Johnson and Spry 2006). 

 

1.14.2 Refractive Defocus 

Optical defocus of the retinal image decreases the visibility of the stimulus (Campbell and Green 

1965). Therefore, it is recommended that the visual field examination should be undertaken with 

the distance refractive correction, in trial lens form, together with any near correction, as 
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appropriate. For standard automated perimetry, Goldmann III (0.43°) stimuli, or larger, are less 

affected by optical defocus at the fovea than are smaller stimuli (Adams, Heron and Husted 

1987; Atchison 1987; Anderson and Patella 1999). Nevertheless, even with Goldmann size III, 

the reduction in sensitivity is between 0.80dB and 1.50dB per 1.00DS of defocus with the effect 

diminishing with increase in eccentricity (Atchison 1987; Goldstick and Weinreb 1987; Heuer et 

al 1987). The influence of optical defocus on the outcome of Frequency Doubling Perimetry is 

approximately 0.5dB per 1.00DS for the 10° stimulus (Artes et al 2003) and -0.63dB to -0.74dB 

per 1.00DS of defocus for the 2° stimulus (Anderson and Johnson 2003).         

1.14.3 Pupil Size 

In normal individuals, sensitivity increases with increase in pupil size, modulated with 

thymoxamine 0.5% and with phenylephrine 10% (Wood et al 1988) at background luminances 

of both 10 and 45 asb (Wood et al 1988), with the effect increasing with increase in eccentricity 

(Wood et al 1988). The increase in sensitivity in normal individuals measured with the Tubingen 

Automated Perimeter (10cdm-2 background luminance) with change in pupil size modulated with 

dapiprazole 0.5% and phenylephrine 2%, increased for the central field out to 20° eccentricity, as 

a whole, by 0.21 dB/mm (95% CI 0.09–0.33 dB/mm) with the increase in sensitivity becoming 

less with increase in eccentricity (Martin et al 2005).  In individuals with OAG receiving 

pilocarpine 2% therapy, and following administration of phenylephrine 10% , the MD improved 

by an average of 3.14dB (SD 1.89) and the PSD and by 1.42 dB and 1.73 dB, respectively. The 

increase in sensitivity increased with increase in eccentricity (Rebolleda et al 1992). However, 

following pupil dilation with tropicamide 1%, the MD in normal individuals worsened by 

0.83dB (SD 0.92) (Lindenmuth et al 1990). As would be expected, the use of pilocarpine 2% 

produces a worsening of the MD in normal individuals (Lindenmuth et al 1989).    
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1.14.4 Media Opacities 

Any ocular media opacity, such as a corneal scar or a cataract, will blur, absorb and scatter the 

amount of light reaching the retina with a resultant attenuation in the differential light sensitivity.  

 

Light scatter affects the differential light sensitivity more than light absorption (Bettelheim and 

Chylack 1985). Light scatter can be divided into backward light scatter, i.e. light reflected away 

from the crystalline lens and forward light scatter, i.e. stray light reaching the retina. Forward 

light scatter resulting in the loss of retinal image contrast, described as disability glare (DG) 

(Philipson 1969). The latter is assumed to be the primary cause of image degradation both for a 

narrow and wide angle glare source (Dengler-Harles et al 1990) resulting from cataract 

(Bettelheim and Chylack 1985; Wood et al 1989).   Indeed, the outcomes of standard automated 

perimetry and of short-wavelength automated perimetry are more prone to the effects of 

intraocular stray light, induced by commercially available opacity-containing filters, than are 

Frequency Doubling perimetry and Grating Resolution perimetry (Anderson et al 2009). 

 

The degree of image degradation is dependent both upon the extent and the position of the 

opacity within the ocular media. Posterior capsular cataract produces a proportionately greater 

attenuation of sensitivity because it is located close to the nodal point of the eye (Baraldi, Enoch 

and Raphael 1987).  Nuclear/Colour opalescence cataract occurs with aging and results in 

increased absorption. Absorption of light is dependent upon the wavelength and preferentially 

attenuates the shorter wavelengths (Sample, Boynton and Weinreb 1988; Lam, Alward and 

Kolder 1991; Moss, Wild and Whitaker 1995). Indeed, cataract generally causes a diffuse loss of 

sensitivity (Guthauser and Flammer 1988; Budenz, Feuer and Anderson 1993) and the co-

morbidity of increasing age-related cataract can impair the interpretation of progressive 

glaucomatous visual field loss (Bengtsson et al 1997).   
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The outcome of studies comparing the visual field for standard automated perimetry before and 

after cataract extraction by phacoemulsification and intra-ocular lens implantation in individuals 

with OAG or in otherwise normal individuals are in general agreement. Either modest (Smith, 

Katz and Quigley 1997; Kook et al 2004; Siddiqui, Khairy and Azuara-Blanco 2007) or little 

clinical improvement occurs in the MD (Stewart et al 1995; Koucheki et al 2004; Carrillo et al 

2005) with clinically similar, but generally worse, values for either or both the PSD and the 

CPSD of the glaucomatous field (Stewart et al 1995; Smith, Katz and Quigley 1997; Hayashi et 

al 2001; Koucheki et al 2004; Siddiqui, Azuara-Blanco and Neville 2005) and either for the 

pointwise Total Deviation (Carrillo et al 2005) or the pointwise Pattern Deviation values 

(Koucheki et al 2004). In otherwise normal eyes, the improvement in the MD for short-

wavelength automated perimetry was greater by a factor of 2.4 times than that for standard 

automated perimetry (Kim et al 2001). A similar finding to standard automated perimetry is 

present for Frequency Doubling Technology perimetry in individuals with OAG namely a 

minimal (Arvind et al 2005) or modest (Siddiqui, Azuara-Blanco and Neville 2005) 

improvement in the MD together with a clinically insignificant worsening in the PSD (Arvind et 

al 2005; Siddiqui, Azuara-Blanco and Neville 2005). The presence of advanced cataract, 

particularly that of posterior sub-capsular cataract can cause false-positive outcomes for the C-

20-5 screening mode of the Frequency Doubling Technology perimeter (Casson and James 

2006). 

 

1.14.5 Medical Therapy 

Ocular adverse effects associated with systemic medications have been reviewed by Santaella 

and Fraunfelder (2007) and by Li et al (2008). The principal systemic drugs which result in 

visual field loss are chloroquine/ hydroxychloroquine, ethambutol and vigabatrin.  
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The characteristcs of the field loss attributable to hydroxychloroquine in relation to Programs 10-

2 and 24-2 of standard automated perimetry and of Frequency Doubling perimetry has been 

discussed by (Anderson, Blaha and Marx 2011) and (Tanga et al 2011), respectively; in relation 

to the progressive nature of the damage despite withdrawal of drug (Michaelides et al 2011); and 

in relation to recommendations for screening by (Marmor et al 2011) on behalf of the American 

Academy of Ophthalmology. The latter consider that objective tests, such as multifocal 

electroretinogram, spectral domain optical coherence tomography, and fundus autofluorescence, 

can be more sensitive than perimetry with Program 10-2. As a consequence, it is now 

recommended that, where available, at least one of these objective procedures should be 

undertaken for routine screening in conjunction with perimetry using Program 10-2. However, a 

review of 3 cases of chloroquine and 26 cases of hydroxychloroquine toxicity over a 30 year 

period showed that mfERG failed to diagnose some early patients who either had an abnormal 

fundus or an abnormal outcome to perimetry with Program 10-2. The three recommended tests, 

multifocal electroretinogram, spectral domain optical coherence tomography, and fundus 

autofluorescence, failed to identify all of the cases of retinal toxicity. Multifocal 

electroretinography was the most sensitive of the three tests (Farrell 2012). 

 

Recent studies of ethambutol toxicity (Menon et al 2009) suggest that visual field loss developes 

in 7.7% of cases (8/104 eyes) and that the field loss is reversible in 80% of eyes one month after 

withdrawal of ethambutol (Menon et al 2009) and that, in addition to the standard central or 

cecocentral defect, bitemporal loss can occur which mimics chiasmal decompression (Kho, Al-

Obailan and Arnold 2011). However prospective study of 44 patients (88 eyes) on ethambutol 

therapy at a dose of 15–20 mg/kg/day for 2 months under a Directly Observed Treatment 

Strategy (category I) for primary tuberculosis suggest that visual acuity, contrast sensitivity, and 
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multifocal ERG are sensitive tests to detect ethambutol toxicity in its subclinical stages (Kandel 

et al 2012). 

 

The visual field loss arising from the anti-epileptic drug vigabatrin is a bilateral concentric 

constriction which, within the central field out to 30° eccentricity, manifests by static perimetry 

as a binasal annulus at the extremity of the central field and which extends centripetally towards 

fixation with varying amounts of sparing of the temporal field (Eke, Talbot and Lawden 1997; 

Wild et al 1999). The median value for the prevalence of the field loss is 31% (IQR 21–52) 

(Maguire et al 2010). 

 

The phenothiazines bind to melanin granules and can cause a severe phototoxic retinopathy; 

however, the associated visual field loss has not been documented.  

Tamoxifen retinopathy manifests as crystalline deposits in the inner retina and exhibits a central 

scotoma (Li, Tripathi and Tripathi 2008). The utility of short-wavelength sensitive and 

Frequency Doubling Technology perimetry in relation to the detection of tamoxifen attributed 

dysfunction has been discussed by (Eisner, Austin and Samples 2004). A comparison of the 

standardised mean deviation indices between the two types of perimetry indicated a duration-

dependent abnormality for short-wavelength sensitive perimetry before completion of the 

standard 5 year treatment regimen. It was concluded that tamoxifen appeared to affect some 

types of visual pathways preferentially or selectively, particularly the SWS cone pathways. 

However, standard automated perimetry was not used as a control. 

 

A probable link exists between amiodarone and a bilateral optic neuropathy that is very similar 

to non-arteritic ischaemic optic neuropathy. The cGMP-specific phosphodiesterase type 5 
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inhibitors (erectile dysfunction drugs) have been also implicated in the development of non-

arteritic ischaemic optic neuropathy (Li, Tripathi and Tripathi 2008).  

 

Long-term treatment with linezolid, a synthetic antimicrobial drug, may result in an optic 

neuropathy, symmetric painless decrease of visual acuity and colour vision, and bilateral central 

scotoma (Rucker et al 2006).  

 

Alcohol ingestion in normal individuals prior to the visual field examination reduces the 

reliability of the examination performance as manifest by the increase in the number of incorrect 

responses to the false-positive and false-negative catch trials (Zulauf, Flammer and Signer 1986) 

and in the worsening of the MD, PSD and CPSD (Wild, Betts and Shaw 1990).  

 

Moderate cigarette smoking is associated with both diffuse and localized reduction in sensitivity 

for standard automated perimetry in that smokers exhibited a significantly lower foveal threshold 

and Mean Sensitivity, and a significantly higher PSD and higher CPSD compared to non-

smokers. However, such outcomes were not present for short-wavelength automated perimetry 

(Akarsu et al 2004). 

 

1.15 Psychological Factors 

1.15.1 Learning Effect 

The learning effect in perimetry is also discussed in Section 4.2 whereby sensitivity improves 

and both the variability of the threshold estimate and the examination duration reduce as the 

individual becomes increasingly familiar with the examination procedure. 
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For SAP, the learning effect is present in normal individuals (Wood et al 1987b; Heijl, Lindgren 

and Olsson 1989; Wild et al 1989; Autzen and Work 1990), in individuals with OHT and in 

patients with OAG. The learning effect from the first to the second examination in normal 

individuals manifests as an improvement  in the MS and MD of approximately 1-2dB (Wood et 

al 1987b; Heijl, Lindgren and Olsson 1989; Wild et al 1989; Autzen and Work 1990; Searle et al 

1991).  

 

The learning effect is present for the first eye examined at the initial visit (Searle et al 1991); and 

is transferred between eyes at the first visit (Searle et al 1991); it is present between visits, both 

within- (Searle et al 1991) and between-eyes (Wilensky and Joondeph 1984; Heijl, Lindgren and 

Olsson 1989; Searle et al 1991; Heijl and Bengtsson 1996), generally up to at least the end of the 

second or third visit (Wood et al 1987b; Heijl, Lindgren and Olsson 1989; Searle et al 1991). The 

improvement in sensitivity increases with increase in eccentricity (Wood et al 1987b; Heijl, 

Lindgren and Olsson 1989; Wild et al 1989; Werner et al 1990; Searle et al 1991) and is greatest 

in areas of relative loss (Heijl, Lindgren and Olsson 1989; Wild et al 1989; Kulze, Stewart and 

Sutherland 1990).  

 

The learning effect is often greatest in the superior field, and may be caused by either patients 

learning to raise their upper eyelid (Wood, Wild and Crews 1987a) or instructions from the 

examiner. The learning effect seems to be independent of age (Heijl, Lindgren and Olsson 1989; 

Kulze, Stewart and Sutherland 1990).    

 

The learning effect, over two visits within one week, in young normal individuals is 

proportionately less, in terms of both the MD and the PSD, for the SITA Standard algorithm 

compared to the Full Threshold algorithm (Yenice and Temel 2005). 
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A learning effect is also present for short-wavelength automated perimetry using the Full 

Threshold algorithm in normal individuals (Blumenthal et al 2000; Zhong et al 2008) and in 

individuals with either OHT (Rossetti et al 2006; Wild et al 2006; Zhong et al 2008) or OAG 

(Wild et al 2006; Zhong et al 2008) and experienced in standard automated perimetry. The 

learning effect for the Full Threshold algorithm can last upto the third (Zhong et al 2008) or 

fourth (Wild et al 2006) examinations and is independent of prior experience in standard 

automated perimetry (Zhong et al 2008).  However, the learning effect is absent over five weekly 

visits, save that of the foveal threshold, for short-wavelength automated perimetry using the 

SITA algorithm in individuals with ocular hypertension experienced in standard automated 

perimetry (Fogagnolo et al 2010). 

 

The learning effect for temporal perimetry will be reviewed in Chapter 2.   

           

1.15.2 Fatigue Effect 

The fatigue effect is the term used to describe the reduction in performance with increase in 

duration of the visual field examination (Heijl and Drance 1983; Hudson, Wild and O'Neill 

1994; Gonzalez de la Rosa and Pareja 1997). The fatigue effect largely occurs with the first 

generation algorithms and is present in normal individuals (Searle et al 1991; Hudson, Wild and 

O'Neill 1994), in individuals with OAG (Wild et al 1991; Hudson, Wild and O'Neill 1994) and in 

individuals with neuro-ophthalmic disease (Heijl and Drance 1983; Johnson et al 1988). In the 

normal eye, the fatigue effect constitutes a worsening of the Mean Defect/ Mean Deviation index 

of between 1dB (Johnson et al 1988) to 2.5dB (Hudson, Wild and O'Neill 1994). In individuals 

with OAG, the fatigue effect is approximately 3.0dB (Johnson et al 1988) and in individuals with 

ocular hypertension it is approximately 2.0dB (Hudson, Wild and O'Neill 1994). The fatigue 

effect is greater for the second eye in normal individuals (Searle et al 1991) and in OHT 



 102 

(Hudson, Wild and O'Neill 1994). The fatigue effect is greatest in the peripheral region of the 

central visual field (Hudson, Wild and O'Neill 1994), especially in glaucoma (Johnson et al 

1988) patients exhibiting focal defects (Heijl and Drance 1983).   The threshold estimate for 

Frequency Doubling Technology perimetry worsens (i.e. declines) over six consecutive repeated 

examinations (Artes et al 2003). The outcome of kinetic perimetry also declines with fatigue, as 

modulated by four successive identical examinations of the III4e-isopter position derived by 

semi-automated kinetic perimetry. Fatigue increases the variability of the isopter position and is 

greatest for individuals with OAG, less for those with postchiamsal lesions and less still for those 

with retinitis pigmentosa (Nowomiejska et al 2012). An increase in reaction time was the most 

important factor influencing the increased variability of response and, as such, offers promise as 

a reliability indicator of  Semi-automated kinetic perimetry (SKP) (Nowomiejska et al 2012). 

 

1.15.3 Perimetrist and environmental factors 

The nature of the instruction by the perimetrist prior to the examination can influence the 

threshold estimate by up to 2.04dB in younger patients and up to 6.57dB in older patients 

(Kutzko, Brito and Wall 2000). An educational video shown prior to the initial visual field 

examination increases the number of outcomes deemed to be ‘reliable’ particularly for the eye 

which is examined second (Sherafat et al 2003).  The supervision of individuals with a low 

educational level and/ or an age greater than 70 years and/ or a prior visual field examination 

with a high number of incorrect responses to either/ or the fixation loss and false-positive catch 

trials improves the reliability of the outcome from the visual field examination (Van Coevorden 

et al 1999). The number of incorrect responses to the fixation loss and false-negative catch trials, 

the proportion of false-positive responses and the number of locations exhibiting a probability 

level of p≤0.05 by Pattern Deviation analysis derived with Program 24-2 and the SITA Standard 

algorithm were statistically significantly lower in medical students undergoing visual field 



 103 

examination for the first time and who were exposed to the playing of music by Mozart 

immediately prior to the visual field examination compared to the control of an absence of music 

(Fiorelli et al 2006). However, in older individuals with glaucomatous field loss, exposure to 

music by Mozart prior to the visual field examination does not afford any advantage, in terms of 

improvement in the reliability parameters, over either no music or noise cancellation (Shue et al 

2011).  
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CHAPTER 2  

TEMPORALY MODULATED PERIMETRY 
 

2.1 Introduction 

Even though imaging techniques such as Optical Coherence Tomography, Laser Scanning 

Ophthalmoscopy and Nerve Fibre Layer Polarimetry are now in routine clinical use, perimetry 

still remains an important technique for the detection and monitoring of abnormalities of the eye 

and the visual pathway, particularly that of open angle glaucoma (OAG). The relationship 

between the functional outcome (i.e., perimetry) and the structural outcome (i.e., damage to the 

optic nerve head (ONH) and to the retinal nerve fibre layer (RNFL)) has been the subject of 

numerous studies (Reus and Lemij 2004; Rao et al 2011a; Leite et al 2012; Medeiros et al 2012) 

and yields only statistically moderate relationships (Coefficients of Determination, R2, in the 

region of 0.36).  Nevertheless, it is generally agreed that, in the case of  early OAG, structural 

damage is detectable before functional loss (Johnson et al 2000).  However, in the later stages of 

the disease, progressive loss of the visual field can be seen at an earlier stage than progressive 

change in the structure of either the ONH or the RNFL (Johnson et al 2002; de la Rosa et al 

2007).  

 

Standard Automated Perimetry (SAP) is the most common method for assessment of the visual 

field. However, it is widely accepted that between 25% and 50% of the retinal ganglion cells 

may be damaged before the corresponding visual field loss is detectable by SAP (Quigley, 

Dunkelberger and Green 1988; Harwerth et al 1999; Garway-Heath et al 2000; Kerrigan-

Baumrind et al 2000; Harwerth et al 2004; Anderson 2006; Hood et al 2007; Harwerth et al 

2010). As a consequence, ‘new’ perimetric methods have been introduced over the last two 

decades with the aim of identifying functional abnormality at an earlier stage than that by SAP. 
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The development of these newer perimetric techniques is based upon the use of visual functions 

which are mediated by the different axonal pathways of the various types of retinal ganglion 

cells. The retinal nerve fibre layer contains the axons of at least four major types of retinal 

ganglion cells.  The parasol ganglion cells, the midget ganglion cells and the small bi-stratified 

ganglion cells project, via separate parallel visual pathways, to the Magnocellular, Parvocellular 

and Koniocellular layers of the laterale geniculate nucleus, respectively. The parasol ganglion 

cells (also known as the Magnocellular [M] ganglion cells) represent approximately 10% of the 

total number of retinal ganglion cells and are primarily responsive to temporally modulated 

stimuli (Merigan, Byrne and Maunsell 1991). At the fovea, the M cells constitute approximately 

5% of the total retinal ganglion cell population and approximately 20% at the periphery (beyond 

6°) (Dacey 1993; Dacey 1994). The Magnocellular retinal ganglion cells have fibres with larger 

diameters and larger receptive fields compared to the midget retinal ganglion cells (also known 

as the Parvocellular [P] retinal ganglion cells) (Kaplan and Shapley 1982; Shapley and Perry 

1986; Dacey 1993).  

 

The Parvocellular retinal ganglion cells have the smallest dendritic trees and constitute 80% of 

the total ganglion cell population (Shapley and Perry 1986; Dacey 1993). They are primarily 

responsive to high spatial frequencies, to low temporal frequencies, to colour and to contrast 

(Lennie 1980; Livingstone and Hubel 1987; Livingstone and Hubel 1988; Shapley 1990).  

 

The small bi-stratified ganglion cells comprise approximately 5% of the total retinal ganglion 

cell population (de Monasterio et al 1985; Curcio et al 1991; Dacey 1993; Calkins 2001). They 

are responsive to blue-yellow opponent visual information (Dacey and Lee 1994).  
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A fourth subset of retinal ganglion cells contain melanopsin which are photosensitive and exhibit 

maximum sensitivity to short-wavelength stimuli (Hankins, Peirson and Foster 2008). These 

ganglion cells mediate regulation of circadian rhythms and are also involved with pupil 

constriction (Zaidi et al 2007). 

 

It has been suggested from histological (Quigley 1987; Quigley, Dunkelberger and Green 1988; 

Glovinsky, Quigley and Dunkelberger 1991; Chaturvedi, Hedley-Whyte and Dreyer 1993; 

Glovinsky, Quigley and Pease 1993; Kerrigan-Baumrind et al 2000) and psychophysical studies 

(Johnson and Samuels 1997) that the larger diameter ganglion cell axons are selectively damaged 

in the glaucomatous disease process. However, these findings have been questioned in 

experimental glaucoma models (Morgan, Uchida and Caprioli 2000; Morgan 2002) and it has 

been suggested that retinal ganglion cell loss in early glaucoma is non-selective.  Nevertheless, 

since any sparsely represented retinal ganglion cell type exhibits less degree of overlap between 

adjacent receptive fields than a more abundant type, the axons of such types may be more 

vulnerable to identifiable functional abnormality earlier in the glaucomatous disease process 

(Spry et al 2005).   

 

As discussed in Section 1.12.1, Short Wavelength Automated Perimetry (SWAP) stimulates the 

Short-Wavelength Sensitive (SWS) pathway and therefore the Koniocellular retinal ganglion 

cells (Sample and Weinreb 1992; Johnson et al 1993a; Johnson et al 1993b; Sample, Bosworth 

and Weinreb 1997 ). 

 

Frequency Doubling Technology (FDT) perimetry (Johnson and Samuels 1997; Maddess et al 

1999), Flicker Defined Form (FDF) technology (Rogers-Ramachandran and Ramachandran 

1998; Goren and Flanagan 2008), Temporal Modulation Perimetry (TMP) (Casson, Johnson and 
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Nelson-Quigg 1993; Casson, Johnson and Shapiro 1993; Yoshiyama and Johnson 1997), Critical 

Flicker Fusion (CFF) perimetry (Yoshiyama and Johnson 1997; Rota-Bartelink 1999; 

Matsumoto et al 2006), and Motion Automated Perimetry (MAP) (Silverman, Trick and Hart 

1990; Wall, Jennisch and Munden 1997 ; Bosworth et al 1998), all target the M-pathway.   

 

Pulsar perimetry (Gonzalez-Hernandez et al 2000; González-Hernández et al 2004; Zeppieri et al 

2010; Salvetat et al 2011) stimulates both the parvocellular and the magnocellular visual 

pathways.  

 

2.2 Types of non-standard ‘temporal’ perimetry 

2.2.1 Frequency-Doubling technology perimetry (FDT) 

The initial commercially available version of the Frequency Doubling Technology perimeter 

(Carl Zeiss Meditec, Inc., Dublin, CA) utilized a 0.25 cycles per degree sinusoidal grating, 

presented within a 10° x 10° stimulus patch, which underwent counterphase flicker at 25Hz. 

Contrast is modulated until the grating is detected. With such stimulus parameters, the grating 

appears to exhibit twice the spatial frequency (Kelly 1966; Kelly 1981; Maddess and Henry 

1992). Threshold is determined by a modified binary search (MOBS) staircase algorithm. The 

suprathreshold stimulus is age-corrected and is presented at one of two contrasts which should be 

seen by 95% and 99%, respectively, of the corresponding age-corrected normal population 

(Johnson and Samuels 1997). The specificity and sensitivity of the former is between 85-100% 

and between 78-92%, respectively, whilst that of the latter is between 80-90% and between 85-

95% (Johnson 2008).   
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Figure 2.1 The stimulus for the Frequency-Doubling Technology perimeter illustrating the 

principal of the Frequency-Doubling illusion (Carl Zeiss Meditec, Inc., Dublin, CA).  

 

 

The technology is based upon the assumption that the outcome is mediated by a specific subset 

of retinal ganglion cells, the M y -cells. These latter cells exhibit non-linear response properties 

(Livingstone and Hubel 1987; Livingstone and Hubel 1988) and are thought to be selectively 

damaged by the glaucomatous process (Quigley 1987; Quigley, Dunkelberger and Green 1988; 

Glovinsky, Quigley and Dunkelberger 1991; Kerrigan-Baumrind et al 2000). However, higher 

order cortical visual areas are also involved in the processing (White et al 2002; Zeppieri et al 

2008).  

 

The commercially available second generation version of the Frequency Doubling Technology 

perimeter, the Humphrey Matrix perimeter, utilizes a 0.5 cycles per degree sinusoidal grating, 

presented within a 5° x 5° stimulus patch, which undergoes counterphase flicker at 18Hz. 

(Anderson et al 2005; Johnson 2008) The dynamic range of the device is compatible with that of 

the Humphrey FDT perimeter (Anderson et al 2005; Artes et al 2005). Threshold is determined 

by the Zippy Estimation by Sequential Testing (ZEST) algorithm, which is an adaptive Bayesian 

method for determining sensitivity. As with the SITA algorithms, the method combines prior 
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knowledge about the expected distribution of sensitivity (Anderson and Johnson 2006). ZEST is 

a fast, accurate and reliable algorithm for the determination of threshold in normal and in 

glaucomatous eyes (Turpin et al 2002; Turpin et al 2003).  

 

It was suggested that the initial FDT perimeter exhibited a higher sensitivity and specificity for 

the detection of open OAG (Johnson and Samuels 1997; Casson et al 2000; Cello, Nelson-Quigg 

and Johnson 2000; Holló, Szabó and Vargha 2001; Khong et al 2001; Serguhn and Spiegel 2001; 

Wu et al 2001) compared to that of either SAP (Wu et al 2001), scanning laser polarimetry, 

nerve fiber layer photographs (Paczka et al 2001) or SWAP (Bowd et al 2001). However,  more 

recent studies indicate that the outcome of the Humphrey Matrix is similar to that for SAP in the 

detection of glaucomatous abnormality (Anderson et al 2005; Spry, Hussin and Sparrow 2005; 

Brusini et al 2006; Mastropasqua et al 2006; Hong et al 2007; Bozkurt, Ylmaz and Irkec 2008; 

Racette et al 2008) particularly for the detection of moderate to advanced visual field loss 

(Burgansky-Eliash et al 2007; Hong et al 2007). Nevertheless, it is also claimed that FDT 

perimetry is predictive in determining glaucomatous visual field progression (Medeiros, Sample 

and Weinreb 2004; Haymes et al 2005; Kogure, Toda and Tsukahara 2006).      

 

As would be expected, FDT can detect field loss arising from rhegmatogenous retinal 

detachment (Sheu et al 2001), optic neuritis (Fujimoto and Adachi-Usami 2000), and other 

neuro-ophthalmological disease (Thomas et al 2001). However, the utility of the original FDT, in 

regard to the larger stimulus, for the detection of macular abnormalities (Sheu et al 2001) or in 

regard to the stimulus-offset relative to the vertical midline for the detection of hemianopic 

defects (Thomas et al 2001) is limited.  
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Optical defocus (Artes et al 2003) and forward light scatter influence, adversely, the outcome of 

FDT perimetry. Age-related cataract has an adverse effect on the MD (Tanna et al 2004; Casson 

and James 2006) and schould be considered during the interpretation of the visual field 

(Anderson and Johnson 2003; Kim and Kee 2008) in order to avoid false-positive outcomes/ 

diagnoses. 

 

2.2.2 Flicker Defined Form (FDF) technology 

The Flicker Defined Form (FDF) stimulus (Rogers-Ramachandran and Ramachandran 1998) 

stimulates the magnocellular pathway. The FDF stimulus creates an illusory edge contour which 

arises from a high temporal frequency driven illusory stimulus based upon phase differences 

between the stimulus and the background (Flanagan et al 1995; Rogers-Ramachandran and 

Ramachandran 1998). The commercially available Heidelberg Edge Perimeter (FDF, Heidelberg 

Engineering, Germany) utilises this stimulus. The test consists of flickering random dots on a 

background of 50cdm-2 mean luminance. The stimulus is 5° in diameter and is created by a phase 

reversal of the black and white dots that flicker in counterphase to the background dots at a 

temporal frequency of 15Hz. (Figure 2.2)   
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Phase 1 Phase 2 Stimulus 

 

Figure 2.2 The Flicker Defined Form  stimulus  utilized by 

the Heidelberg Edge Perimeter (Phase 1 + Phase 2 = The 

Illusory Edge stimulus). 
 

 

The visual field indices, Mean Deviation and Pattern Standard Deviation, for the Edge perimeter 

exhibit only a modest correlation with those derived by SAP using the Humprey Visual Field 

Analyser (Perez et al 2010a) for individuals with OAG (Perez et al 2010b).  The lack of 

agreement between the two types of perimetry may be explained by the presence of a leaning 

effect over three visits for the Edge stimulus (Lamparter et al 2011).  

 

2.2.3 Pulsar Perimetry 

Pulsar perimetry purports to evaluate both the parvocellular and the magnocellular visual 

pathways (Gonzalez-Hernandez et al 2000; González-Hernández et al 2004). In this context, the 

Pulsar perimeter evaluates the threshold of various visual functions, the high spatial and high 

temporal frequencies. 

 

The prototype of the Pulsar Perimeter consisted of a 19 inch screen with a resolution of 

1024x768 pixels, a frame rate of 60Hz and a colour temperature is 6500ºK. The screen 

luminance is 100asb. The 5º circular stimulus decreases in contrast towards the edge and 

oscillates at 30Hz below and above the luminance of the background (i.e. is initially iso-luminant 

to the background). The stimulus duration is 500msec.        
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The contrast of the Pulsar stimulus at each stimulus location (V) depends upon the global 

contrast (C), the distance from fixation (D), spatial resolution (SF) and the radius (R) of the 

stimulus,  where  

 

[ ]( ) [ ]( )RDDSFCV /1..2cos. −−= ππ  

 

 
 
 

Figure 2.3 The stimulus used in the clinical version (T30W) of the prototype Pulsar 

perimeter. 

 
 
The spatial resolution (dLog) varies over twelve logarithmic levels (between 0.5 cycles/degree 

and 6.3 cycles/degree) and is described as:  

 

[ ]5.0/10 olutionspatialresLogdLog =  

Where dLog corresponds to the spatial resolution level. 

The contrast varies between 6% and 100% (0-31 dB), over 32 logarithmic levels. 

The contrast level is defined as:  

 

-20Log ([central amplitude contrast - background luminance]  /  [background luminance]) 
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Pulsar perimetry had greater sensitivity in the detection of early visual field loss in patients with 

OHT compared to SAP (Vidal-Fernández et al 2002; Gonzalez-Hernandez et al 2004; Zeppieri et 

al 2010). The between-examination variability is lower for Pulsar Perimetry compared to both 

standard automated perimetry and FDT perimetry (Gonzalez-Hernandez et al 2007a). The Pulsar 

perimeter is seemingly able to detect more cases of apparent progressive glaucomatous damage 

than either confocal scanning laser ophthalmoscopy or nerve fibre layer polarimetry (Gonzalez 

de la Rosa et al 2009).  

 

2.2.4 Flicker perimetry 

There are three types of flickering stimulus utilized in perimetry: Temporal Modulation 

perimetry, Critical Flicker Fusion perimetry and Luminance Pedestal Flicker perimetry. All three 

types stimulate M ganglion cell function. 

 

Temporal Modulation perimetry (TMP)  measures contrast thresholds for a fixed temporal 

frequency, i.e, the minimum luminance at which a flickering stimulus of a given temporal 

frequency is perceived to exhibit flicker (Tyler, Ryu and Stamper 1984).  

 

TMP is assumed to detect glaucomatous damage earlier than standard automated perimetry, but 

the assumption is equivocal. At 25Hz, TMP does not exhibit any increased sensitivity, compared 

with SAP, in the identification of field loss in glaucoma suspect individuals or in those with 

OAG manifesting established field loss by SAP (Feghali et al 1991). However, Casson et al 

(1993) suggest that TMP demonstrates significantly greater abnormality in early glaucoma, at all 

temporal frequencies, and identifies those cases of ocular hypertension that will develop 

glaucoma (Casson, Johnson and Shapiro 1993). Although it has been discussed which temporal 

frequencies provide the optimum diagnostic outcome (Tyler 1981; Casson, Johnson and Nelson-
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Quigg 1993), it appears that all temporal frequencies are able to detect glaucomatous damage in 

a similar manner (Casson and Johnson 1993; Casson, Johnson and Shapiro 1993; Yoshiyama and 

Johnson 1997). Individuals with normal visual function seem to demonstrate a greater age-

related decline in sensitivity for high temporal frequencies compared to low and medium 

temporal frequencies (Casson, Johnson and Nelson-Quigg 1993). 

 

Luminance Pedestal Flicker perimetry presents a flickering stimulus, superimposed on a pedestal 

of a steady luminance, and determines the temporal frequency necessary to distinguish the 

stimulus from the pedestal (Anderson and Vingrys 2000; Anderson and Vingrys 2002). The 

technique is currently incorporated in the commercially available Medmont M600 (Medmont, 

Camberwell, Australia) perimeter However, the clinical utility of Luminance Pedestal Flicker 

perimetry in patients with either OAG or OHT has not been investigated. 

 

Critical Flicker Fusion perimetry represents the highest temporal frequency at which a flickering 

stimulus of constant luminance is initially perceived as a continuous (non-flickering) stimulus 

(Allen 1926; Pieron 1962; Midena 1989). The literature is equivocal as to whether the end point 

for CFF should be determined by increasing the temporal frequency until fusion is reported 

(Mahneke 1957) or by reducing the temporal frequency until flicker is perceived (Knox 1945).   

 

In normal individuals, the CFF increases linearly with increase in the logarithm of the stimulus 

area. This relationship is often referred to as the Granit-Harper Law. The linearity of this 

relationship has been confirmed by several researchers (Berger 1953; Kugelmass and Landis 

1955; Roehrig 1959b) for stimulus diameters up to 13.6° and out to 50º eccentricity (Brown 

1945) in terms of spatial summation and in terms of the increase in stimulus size arising from 

optical defocus (Roehrig 1959a). Subsequent research has questioned the Granit-Harper Law, 
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showing that, for eccentricities beyond 15°, the relationship becomes non-linear (Hartmann, 

Lachenmayr and Brettel 1979).     

     

CFF varies regionally and reaches a maximum at an eccentricity at 40° in the temporal visual 

field and at an eccentricity of 25° to 30° in the nasal field (Hylkema 1942).  

 

CFF increases linearly with increase in the logarithm of the background luminance. The 

maximum CFF increases with increase in stimulus size and reaches a maximum at an 

eccentricity of 40° in the temporal visual field and at an eccentricity of 25° to 30° in the nasal 

field (Hylkema 1942). This outcome is described by the Ferry-Porter Law over a broad range of 

luminances (Brooke 1951).  

 

The background luminance appears to have minimal influence on CFF, for a foveal stimulus. 

When stimuli are varied from 0.5 minutes up to 400 minutes, the maximum influence occurs 

with a circular test area of 1 minute diameter (Fry and Bartley 1936; Berger 1954). A high 

luminance CFF stimulus of 2° in diameter exhibits an increase in sensitivity over a broad range 

of photopic luminances and decline in sensitivity at low luminances (Ross 1936a).        

 

CFF increases with increase in stimulus duration between 100msec and approximately 1 sec 

(Granit and Harper 1930).  

 

CFF is affected by light and dark-adaptation. Some researchers have found that CFF decreases 

with the light adapted eye (Peckham and Arner 1952). Others have found opposite results in 

animals and humans, both based on retinal action potential and with an increase in light 

adaptation (Granit and Riddell 1934; Granit and Therman 1935; Granit 1935b). It has been 
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demonstrated that the effect of increased dark adaptation from the fovea to 90º in the periphery 

for luminances from 0.0003 to 7.3 mL shows a decrease in CFF and adverse the effect with the 

light adapted eye (Lythgoe and Tansley 1929). 

 

 

From a clinical point of view, different methods of flicker perimetry have been reported to detect 

retinal (Phipps, Guymer and Vingrys 1999; Vingrys and Pesudovs 1999; Stavrou and Wood 

2005 ) and macular abnormalities (Mayer et al 1992a; Mayer et al 1992b; Mayer et al 1994; 

Phipps et al 2004). Several studies have also reported that this method is superior to SAP in the 

detection of glaucomatous field loss (Lachenmayr et al 1991; Lachenmayr et al 1991; 

Lachenmayr and Drance 1992; Lachenmayr and Gleissner 1992; Lachenmayr, Drance and 

Airaksinen 1992b; Lachenmayr 1994; Lachenmayr et al 1994; Matsumoto et al 2006). The 

relationship between the MS for SAP (dB) and that for CFF (Hz), based upon patients with 

retinal detachment and patients with open-angle glaucoma, is curvilinear (Figure 2.4) 

(Matsumoto et al 1999). 
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Figure 2.4 Shows that a small dB loss in SAP (at the steep end of the curve) corresponds to 

an important drop in CFF perimetry (Hz).  
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CFF perimetry is currently clinically possible, and commercially available, with the Octopus 311 

and forms the topic for this thesis. The outcome of CFF perimetry in relation to the learning 

effect, media opacities and refractive defocus is described in detail in Chapters 4, 5.and 6, 

respectively. 

 

2.2.5 Moorfield Motion Displacement test (MDT) 

The motion detection threshold test presents a vertical bar of 85% Michelson contrast on a 10-

cdm-2 white background at each of 32 stimulus locations (Oleszczuk, Bergin and Sharkawi 

2012). Three oscillations of 200 msec each modulate the lateral displacement of each bar.  

Threshold is the discernible displacement detected for 50% of the presentations. The test is 

developed as a simple effective test for the detection of glaucoma (Baez et al 1995) and is 

relatively immune to the effects of intra-ocualar light scatter (Bergin et al 2011; Oleszczuk, 

Bergin and Sharkawi 2012) 
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CHAPTER 3  

RATIONALE AND DESCRIPTION FOR THE RESEARCH 

 

3.1 Previous work 

Several studies have evaluated the efficiency of CFF perimetry in detecting early field loss in 

OAG and in OHT (Lachenmayr et al 1991; Yoshiyama and Johnson 1997; Matsumoto et al 

1999; Matsumoto et al 2006) and it is claimed that CFF perimetry can detect abnormality in 

advance of SAP. However, it is only recently that, with the availability of CFF automated 

perimetry, that the viability of these claims can be investigated in routine clinical populations. 

 

A learning effect for CFF Perimetry is seemingly present in normal individuals (Bernardi, Costa 

and Shiroma 2007). The latter findings were published during the course of this Thesis. The 

group mean global, central, and peripheral sensitivity improved from the first to the third 

examinations. However, the age profile of the cohort was not clinically representative of those 

attending either a glaucoma or a retina clinic. In the absence of knowledge of the impact of the 

learning effect on the outcome of CFF perimetry in patients, the potential of the technique for 

identifying visual field loss prior to that with SAP remains unknown.  

 

Any cause of media opacities of the eye, such as a corneal scar or a cataract will blur, absorb and 

scatter, both backwards and forwards, the amount of light reaching the retina and hence reduce 

the visibility of the retinal image (Essock et al 1984; Baraldi, Enoch and Raphael 1987). The 

outcomes of SAP (Guthauser and Flammer 1988; Lam, Alward and Kolder 1991; Budenz, Feuer 

and Anderson 1993), of SWAP (Moss and Wild 1994; Moss, Wild and Whitaker 1995; Kim et al 

2001) and of FDT (Artes et al 2003; Tanna et al 2004; Casson and James 2006) are adversely 

influenced by stray light arising from cataract; SWAP exhibits the greatest attenuation 
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presumably due to the higher background luminance. CFF perimetry is seemingly less influenced 

by media opacities compared to these techniques (Lachenmayr and Gleissner 1992; Takada et al 

2004). However, the resistance of the CFF stimulus to intra-ocular light scatter arising from age-

related cataract (Lachenmayr and Gleissner 1992; del Romo, Douthwaite and Elliott 2005; 

Shankar and Pesudovs 2007) has not been validated/ confirmed with the rigour of current 

research practice particularly in regard to perimetry. 

 

Optical defocus decreases the visibility of the stimulus primarily by reducing the contrast of the 

retinal image (Campbell and Green 1965; Adams, Heron and Husted 1987; Atchison 1987). The 

CFF stimulus modulates the frequency of the flickering stimulus from slow (1-5Hz) to fast 

(towards 50Hz). The influence of defocus in a clinical setting is unknown, but might be expected 

to be relatively minimal (Lachenmayr and Gleissner 1992). It was therefore considered clinically 

important to investigate the influence of defocus on the CFF stimulus. 

 

3.2 Rationale 

This Thesis describes three separate studies of CFF perimetry undertaken at the authors’s 

optometric practice, Rjukan Synssenter Optometri, in Rjukan, Norway, between 2005 and 2011. 

The first study investigated the learning effect for CFF perimetry in normal individuals, in 

individuals with OAG and in individuals with OHT. The second study investigated the influence 

of age-related cataract on the outcome of CFF perimetry. The third study investigated the 

influence of optical defocus on the outcome of CFF perimetry.     
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3.3 The learning effect for critical flicker fusion perimetry in normal individuals, in 

individuals with OHT and in individuals with OAG (Chapter 4). 

The study used a systematic examination protocol comprising 5 examinations each separated by 

one week. The study considered, specifically, the within- and between-individual differences in 

performance within- and between-visits in 28 normal individuals, in 10 individuals with OHT 

and in 11 individuals with OAG, with the Octopus 311 using Program G1 and the TOP 

algorithm. 

 

3.4 The comparative performance of SAP and CFF perimetry in individuals with age-

related cataract (Chapter 5).  

The influence of age-related cataract on the outcome of CFF perimetry and SAP (Octopus 311, 

Program G1 and the TOP algorithm) was investigated in 22 individuals with either monocular 

cataract or with a marked difference in the severity of the cataract between the two eyes. 

Individuals underwent CFF perimetry and SAP in both eyes on each of four occasions each 

separated by one week. Measurement of forward light scatter was undertaken at the third and 

fourth visits. Forward light scatter was assessed by measuring logMAR visual acuity at high and 

low contrast levels in the absence of, and in the presence of, three levels of glare using the 

Brightness Acuity Test. Back scatter was assessed in terms of LOCS III (Chylack et al 1993).  

 

3.5 The influence of defocus on the outcome of CFF perimetry (Chapter 6). 

The influence of defocus on the outcome of CFF perimetry (Octopus 311, Program G1 and the 

TOP algorithm) was investigated in 16 normal individuals all of whom had participated in the 

study of the learning effect on CFF perimetry described in Chapter 4. CFF perimetry and SAP 

was undertaken in one eye on two occasions each separated by one week.  At one visit, two 

randomly selected levels of defocus from plano, +1.00DS, +2.00DS or +4.00DS were 
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superimposed upon the distance correction. The remaining two defocus levels were used at the 

second visit.   

 

3.6 Logistics 

3.6.1 Background  

The author is an Optometrist, registered since 1980 with the Norwegian Department of Health. 

From 1981 to the present date, he has worked in private optometric practice in Rjukan, Norway.  

In 2004, he obtained, by Distance Learning, the degree of Master of Science in Clinical 

Optometry from Pennsylvania College of Optometry (PCO), Philadelphia, USA. 

  

In 2005, the author enrolled for a research degree as a part of the innovative joint Cardiff 

University and PCO programme for individuals who had obtained a Masters Degree in Clinical 

Optometry from PCO. It was envisaged that the research would be undertaken in the author’s 

practice without the necessity for the purchase of expensive dedicated equipment.       

 

By the end of the first year of research, the author was required to submit a First Year 

Continuation Report on his research, to date, and to undergo a vive voce examination of the 

Report. Following his successful vive voce examination, the author continued his research for 

the degree PhD of Cardiff University. 

 

The research was conducted under the academic supervision of Prof John Wild of Cardiff 

University. 
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3.7 Methods 

The research was undertaken in the author’s practice. All three studies were approved by the 

Norwegian Ethical Committee for Medical Research (Regional Komité for medisinsk 

forskningsetikk Sør-Norge [REK Sør]) and the Norwegian Data Protection Registrar 

(Datatilsynet).      

 

Normal individuals and individuals with age-related cataract were recruited from the author’s 

practice. The individuals with either OAG or with OHT were recruited from the clinics of two 

ophthalmologists, Dr Hans Hafskolt and Dr Erik Holmberg, .at Rjukan Hospital.  

 

An ophthalmic examination was undertaken on each individual prior to enrolment in the given 

study to ascertain their suitability. At enrolment, each participant gave signed consent after 

having been informed of the appropriate procedures, risks and possible consequences of the 

given study.   

 

Normal individuals were classified as normal on the basis of the ophthalmic examination 

undertaken by the author and on the basis of the digital stereo-images of the fundus evaluated by 

Prof . Wild. 

 

Individuals with OAG were diagnosed by either of the two ophthalmologists on the basis of the 

appearance of the ONH and by Prof. Wild on the basis of the appearance of the visual field and 

of the digital stereo-images of the ONH.  
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Individuals with age-related cataract were diagnosed and classified according to the Lens 

Opacity Classification System (LOCS III) by the author and by Prof. Wild who evaluated the 

digital images of the crystalline lens obtained from slit lamp photography. 

 

Despite the large number of individuals (approximately 6,000) attending the author’s practice 

and the enthusiastic assistance from Drs. Hafskolt and Holmberg, the recruitment of individuals 

with OAG and the individuals with OHT was time consuming and only partially successful. 

Many potential participants did not meet the strict inclusion criteria for each of the studies. 

General health conditions, such as diabetes or a family history of glaucoma, reduced the number 

of potential participants. Due to the fact that Rjukan is in a rural part of Norway and individuals 

can travel up to 160 kilometres for a return trip to the practice, and that two of the three studies 

required a minimum of 4 visits each separated by one week, it was very difficult to persuade and 

to motivate individuals to participate in any given study. Frequently, work commitments or 

demands of private life were reasons cited for a lack of willingness to participate in any given 

study.  

 

The author planned and coordinated the visits of the individuals recruited into all three studies. 

In total, 87 individuals provided 1146 visual fields. The author undertook all the visual field 

examinations himself. The time spent conducting the visual field examinations was 

approximately 200 hours. The author was trained in the operation of the Octopus 311 by Prof 

Wild over a period of three days prior to the onset of the first study. In addition, Prof Wild also 

followed up the process of the examinations by visiting the author at his optometric practice on 

three separate occasions. The results from each individual in each of the various studies were 

also regularly monitored by Prof Wild.  
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Supervision by Prof Wild was provided via weekly telephone conferences, through meetings at 

conferences e.g. that of the Association for Research in Vision and Ophthalmology (ARVO) and 

through 1-2 visits per year by the author to the Cardiff School of Optometry and Vision 

Sciences.  

 

The author presented his research at meetings of the Association for Research in Vision and 

Ophthalmology, Fort Lauderdale, Florida, in 2007, 2009 and 2010; at the Octopus Users 

Symposium, Berne, Switzerland, in 2008; and at the meeting of the Imaging and Perimetric 

Society, Teneriffe, Spain in 2010. 

 

Despite the time-consuming nature of the recruitment phase of the research and of the clinical 

examinations, the experience of undertaking visual field examinations on such pleasant 

individuals will never be forgotten.        
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CHAPTER 4  

THE LEARNING EFFECT FOR CRITICAL FLICKER 

FUSION PERIMETRY 

 

4.1 Introduction 

CFF perimetry is currently clinically possible, and commercially available, with the Octopus 311 

perimeter. The default adaptation level (31.4 asb), stimulus size (Goldman III) and maximum 

stimulus luminance (4800 asb) are the same as those employed for SAP with the Octopus 300 

series perimeters. The default stimulus duration for CFF perimetry, however, is 1000msec. The 

maximum temporal frequency of the stimulus is 60Hz. The suprathreshold increment for the 

false-negative catch trials is 5Hz. The temporal frequency for the false-positive catch trials is 

100Hz. CFF perimetry with the Octopus perimeter can be undertaken with all the stimulus 

programs and threshold algorithms that are available for SAP. The results of CFF perimetry for 

any given patient with the Octopus perimeters are displayed and evaluated statistically in the 

same manner as for SAP. 

 

4.2 The learning effect for Standard Automated Perimetry in normal individuals 

The presence of a learning effect for SAP (also shown in Section 1.15.1) has long been 

documented (Wood et al 1987b; Werner, Adelson and Krupin 1988; Heijl, Lindgren and Olsson 

1989; Wild et al 1989; Autzen and Work 1990; Kulze, Stewart and Sutherland 1990; Marchini, 

Pisano and Bertagnin 1991; Searle et al 1991; Wild et al 1991; Heijl and Bengtsson 1996). It was 

shown that the learning effect occurs as the observer becomes increasingly familiar with the 

requirements of the perimetric task and manifests as an improvement in sensitivity, a decrease in 

measurement variability, and a reduction in examination duration, over successive examinations. 
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It is present in normal individuals (Wood et al 1987b; Heijl, Lindgren and Olsson 1989; Searle et 

al 1991), in individuals with OHT (Wild et al 1989; Werner et al 1990; Wild et al 1991) and in 

individuals with OAG (Werner, Adelson and Krupin 1988; Kulze, Stewart and Sutherland 1990; 

Marchini, Pisano and Bertagnin 1991; Wild et al 1991; Heijl and Bengtsson 1996). The learning 

effect is present for the first eye examined at the first visit (Searle et al 1991) is transferred 

between eyes at the first visit (Searle et al 1991) and is present between visits, both within- 

(Searle et al 1991) and between-eyes (Heijl, Lindgren and Olsson 1989; Searle et al 1991; Heijl 

and Bengtsson 1996), generally up to at least the end of the second or third visit (Wood et al 

1987b; Heijl, Lindgren and Olsson 1989; Searle et al 1991; Heijl and Bengtsson 1996). The 

improvement in sensitivity increases with increase in eccentricity (Wood et al 1987b; Heijl, 

Lindgren and Olsson 1989; Wild et al 1989; Werner et al 1990; Searle et al 1991; Heijl and 

Bengtsson 1996) and is greatest in areas of relative loss.   

 

A learning effect is also present for SWAP in normal individuals (Wild, Moss and O'Neill 1996; 

Zhong et al 2008) and in individuals with OAG or with OHT regardless of the prior experience 

of SAP (Rossetti et al 2006; Wild et al 2006; Zhong et al 2008; Fogagnolo et al 2010). The 

learning effect for SWAP can also be present over several years (Gardiner, Demirel and Johnson 

2008).  

 

A learning effect is also present for FDT in normal individuals (Contestabile et al 2007; Pierre-

Filho et al 2010) and in individuals with either OAG (Hong et al 2007; Pierre-Filho et al 2010) 

or with OHT (Matsuo et al 2002; Centofanti et al 2008).   

 

Pulsar perimetry exhibits a greater learning effect than either SAP or FDT in individuals with 

OAG and in individuals with OHT (Gonzalez-Hernandez et al 2007a). Similarly, Flicker Defined 
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Form (FDF) perimetry demonstrates a significant learning effect over the first three 3 

examinations (Lamparter et al 2011).   

 

The learning effect for CFF Perimetry has received little attention. The only study, to date, was 

undertaken on a case series of 20 normal, and relatively young individuals (mean age: 28.7 years 

(ranging from 19 to 41 years) who underwent repeated perimetry in one eye, only, on six 

occasions (Bernardi, Costa and Shiroma 2007). The first three examinations covered an interval 

of between one and 30 days (sic) and the last three examinations were undertaken on the same 

day. The group mean Mean Sensitivity increased from the first to the second and third 

examinations by approximately 1.3Hz. (p=0.014). Unfortunately, the young age and the 

normality of the participants used in this study, together with the lack of robustness of the study 

design, namely the interval between examinations, were such as to render the information of 

little clinical value.  

 

The learning effect presents a major clinical problem in the management of OAG in that it 

frequently exerts a substantial influence on the appearance of the recorded visual field at the 

initial examinations, resulting in an overestimation of the severity of the actual field loss, and 

also renders these examinations of little value in the determination of progressive visual field 

loss (Wild et al 2006). Clearly, if CFF perimetry is to have an impact clinically the 

characteristics of the learning effect must be delineated.  
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4.3 The learning effect for Critical Flicker Fusion Perimetry in normal individuals 

4.4 Aims 

The overall aim of the study was twofold. Firstly, to determine the characteristics of any learning 

effect for CFF Perimetry in normal individuals, in individuals with OHT and in individuals with 

OAG, over five consecutive visits each separated by an interval of one week using the Octopus 

311 and Program G1 and the TOP threshold algorithm. Secondly, to compare the outcome at the 

fifth visit with that determined on a sixth occasion, one week later, using the Dynamic threshold 

algorithm.  

 

More specifically, the primary aim was to determine, over the five visits, the between-individual 

between-visit differences in performance. The performance was considered in terms of four 

different types of analysis. Firstly, any change in each of the visual field indices Mean 

Sensitivity, Mean Defect, square root of the Loss Variance, Diffuse Defect and Local Defect 

determined using separate ANOVAs for each index. Secondly, in terms of the change in 

sensitivity at each stimulus location as a function of stimulus eccentricity. Thirdly, in terms of 

the change in sensitivity at each stimulus location as a function of defect depth. Fourthly, in 

terms of the change in sensitivity at each stimulus location expressed in terms of the Comparison 

and of the Corrected Comparison probability level.  

 

4.5 Methods 

The study was a prospective observational case series study. 

 

4.6 Case Series 

The case series comprised 49 consecutively presenting Caucasian individuals who met the 

inclusion criteria for enrolment in the study and who had volunteered to take part in the study. 



 129 

All individuals were provided with verbal and written information concerning the nature of the 

study and had given written consent, in accordance with the requirements, and approval, of the 

Norwegian Research and Ethics Committee (REK, Regional komité for medisinsk 

forskningsetikk Sør-Norge (REK Sør) and the Norwegian Datatilsynet (Enclosure number 1, 2, 

and 5) which are in turn, in accordance with the tenets of the Declaration of Helsinki. 

 

The case series consisted of three groups of individuals. The first group comprised 28 normal 

individuals (14 males) who attended the optometric practice, Rjukan Synssenter, Rjukan, 

Norway, and who were deliberately stratified by age to achieve approximately equal numbers for 

each decade of age after the age of 50 years. The mean age of the normal individuals was 62.4 

years (SD 8.7) and the median 62.5 years (IQR 13.5). A case series of 28 individuals was based 

upon the detection of a 3Hz difference in the Mean Defect between successive examinations 

with 95% power. [(11 participants aged between 50 and 59 years, 10 between 60 and 69 years 

and 7 between 70 and 79 years)] (Table 4.1). 

 

The second group comprised 10 individuals with OHT (4 males) who were recruited from the 

clinics of one or both of two consultant ophthalmologists, Dr Hans Hafskolt and Dr Erik 

Holmberg of the Rjukan Hospital, Rjukan, Norway. The mean age of these individuals was 67.6 

years (SD 7.5) and the median 67.5 years (IQR 9.7). [(one participant aged between 50 and 59 

years, 5 aged between 60 and 69 years and 4 aged between 70 and 79 years)] (Table 4.1). 

 

The third group comprised 11 individuals with OAG (8 males) who were also recruited from the 

clinics of the two ophthalmologists at Rjukan Hospital. The mean age was 62.9 years (SD 7.8) 

and the median 63.0 years (IQR 7.5). ) [(one participant aged between 40 and 49 years, 2 

participants aged between 50 and 59 years, 6 aged between 60 and 69 years and 2 aged between 

70 and 79 years)] (Table 4.1). 
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Age 

(years) 

Normal 

 

OHT OAG 

40 – 49   1 
50 – 59 11 1 2 
60 – 69 10 5 6 
70 – 79 7 4 2 

 

Table 4.1 The number of individuals, by decade of age, within each of the three diagnostic 

groups. 

 

 

At the enrolment visit, potential participants underwent a standard ophthalmic examination to 

confirm the inclusion criteria. The confirmatory examination in each eye included determination 

of visual acuity; refraction; SAP with the Octopus 311 perimeter using Program G1 and the 

Dynamic algorithm, central corneal thickness using the Sonogage Corneogage 2 ultrasonic 

pachometer (Sonogage Inc. Cleveland, USA); Goldmann applanation tonometry; gonioscopy; 

indirect ophthalmoscopy, usually with a +78 dioptre lens; stereo-photography of the optic nerve 

head and posterior pole using the Kowa Nonmyd α-D, non-mydriatic fundus camera (Kowa 

Company. Ltd., Japan). The assessment of IOP, the measurement of central corneal thickness 

and gonioscopy all required the installation of a topical anaesthetic (Oxibuprocaine 0.4%). Slit 

lamp indirect ophthalmoscopy and photography of the posterior pole required pupil dilation with 

one drop of Tropicamide 0.5%.      

 

Potential participants were to be excluded from the study if they exhibited in either eye: a 

corrected visual acuity worse than 6/9;  a distance refractive error greater than +/-5.0 dioptres 

sphere and/or greater than +/- 2.5 dioptres cylinder; a pupil diameter smaller than 3 mm; a 

central corneal thickness-corrected IOP of greater than 20mmHg for the normal individuals; a 

narrow anterior chamber angle; media opacities worse than NC3.0, NO3.0, C2.0 or P2.0 by the 
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Lens Opacities Classification System III (LOCS III) (Chylack et al 1993); any previous ocular 

surgery for the normal individuals; and any ocular disorder or ocular disease other than OHT or 

OAG, in the appropriate group. In addition, individuals were also excluded if they exhibited 

migraine with aura; diabetes; neurological disorder or disease; systemic disease other than 

systemic hypertension manifesting as Grade 1 hypertensive retinopathy; hyperthyroid disease; a 

family history of glaucoma (other than those comprising the groups with OHT or with OAG); or 

previous experience of CFF perimetry.  

 

The images of the optic nerve head and of the posterior pole and the results of the visual field 

plots for the normal individuals were all designated as normal by Professor Wild who was 

masked to the assumed normality of the potential participant.  

 

The diagnosis of either OHT or OAG had been made on the appearance of the ONH.  Nine of the 

eleven individuals with OAG had undergone laser trabecularplasty (LTP) in both eyes. Of these 

nine, two individuals were being treated with a combination of topical beta-blocker, 

prostaglandin analogue and carbonic anhydrase inhibitor; three individuals were treated with a 

combination of topical beta-blockers and carbonic anhydrase inhibitor only; and six individuals 

were being treated with prostaglandin analogue agents.  

 

Eight of the ten individuals with OHT had undergone LTP. Five of these ten individuals were 

also being treated with either a topical beta-blocker or with a prostaglandin analogue. 

 

The five year risk of each individual with OHT for conversion to OAG, based upon the initial 

presenting IOP, was calculated using the S.T.A.R. II (S.T.A.R. Scoring Tool for Assessing Risk) 

(Gordon et al 2002; Kass et al 2002; Weinreb et al 2004; Medeiros et al 2005; Gordon et al 
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2007). Two individuals had a risk in one eye of 43% and 53%, respectively. Six had a risk below 

20% in one or both eyes, three patients had a risk of greater than 33% in one eye (Table 4.2).  

 
Patient 

ID 

Age 

year 

IOP 

mm Hg 

CCT 

µm 

PSD 

dB 

C/D Risk 

% 

R 2356 65 20 624 1.94 0.2 2.1 

L 2356 65 31 607 2.77 0.2 12.3 

R 2530 54 25 506 2.97 0.2 33.6 

L 2530 54 25 501 2.14 0.2 23.5 

R 3117 75 24 562 2.85 0.4 25.6 

L 3117 75 20 562 2.07 0.3 10.1 

R 851 63 20 483 2.04 0.3 27.8 

L 851 63 27 475 1.48 0.2 34.2 

R 4175 71 17 503 1.61 0.3 21.0 

L 4175 71 28 528 2.76 0.3 43.1 

R 652 66 26 569 3.00 0.5 28.3 

L 652 66 24 580 2.92 0.4 16.6 

R 6070 74 22 517 1.84 0.6 33.8 

L 6070 74 23 516 2.92 0.5 52.8 

R1212 60 24 545 1.76 0.6 18.6 

L 1212 60 24 552 1.81 0.5 16.3 

R 3596 79 16 593 2.85 0.3 7.0 

L 3596 79 25 585 2.86 0.3 18.0 

R 562 69 18 583 2.90 0.4 10.0 

L 562 69 25 579 2.53 0.3 13.3 

 
Table 4.2 The risk of developing OAG within a 5 year period following the baseline 

examination for the 10 individuals with OHT calculated in terms of the magnitudes of age, 

IOP, CCT, PSD and vertical cup to disc ratio.  

 

The characteristics of the individuals with OAG are given in Table 4.3. In terms of the associated 

visual field loss in the worst eye, classified using the system of Hodapp (Hodapp et al 1993), six 

individuals manifested early loss, two moderate loss and three severe loss. The appearance of the 

optic nerve head and of the Corrected Probability plot of the visual field in each eye are given in 

Table 4.4. 

 

 



 133 

 

Patient Age 

Year 

ONH 

 

SAP Diagnosis IOP 

mm 

Hg 

CCT 

µm 

MD 

dB 

sLV 

dB 

C/D Hodapp 

 

R85112 66  G G OAG 10 508 7.1 10.2 0.8 Moderate 

L85112 66  G N OAG 10 499 0.8 3.7 0.7 Early 

R2917 59  G G OAG 17 531 1.5 11.9 0.4 Early 

L2917 59  N N N 12 590 -2.3 4.3 0.2 Normal 

R82921 59  G G OAG 36 557 4.0 7.4 0.4 Early 

L82921 59  G G OAG 42 574 4.7 7.2 0.5 Early 

R2124 68  G G OAG 35 600 3.5 6.0 0.7 Early 

L2124 68  G G OAG 14 760 13.9 7.6 0.8 Advanced 

R3226 65  G G OAG 14 564 10.4 9.6 0.6 Moderate 

L3226 65  G G OAG 14 561 14.3 9.5 0.7 Advanced 

R2347 61  G G OAG 14 570 6.4 5.5 0.6 Early 

L2347 61  G G OAG 17 546 13.4 8.7 0.8 Advanced 

R4629 74  N N N 16 482 1.7 2.2 0.4 Normal 

L4629 74  G N OAG 17 491 1.7 3.6 0.5 Early 

R4207 60  G N N 18 572 -1.2 1.9 0.5 Normal 

L4207 60  G N OAG 18 557 0.8 3.6 0.8 Early 

R5037 73  G G OAG 19 550 11.3 11.1 0.7 Moderate 

L5037 73  G G OAG 19 543 10.7 10.7 0.9 Moderate 

R83530 45  G N OAG 25 581 2.1 2.2 0.8 Early 

L83530 45  N N OAG 24 592 1.3 1.8 0.7 Normal 

R344 63  G N OAG 21 586 -1.2 1.9 0.4 Early 

L344 63 G N OAG 21 580 -0.6 2.3 0.3 Early 

  
Table 4.3 The diagnostic characteristics (age, the appearance of the optic nerve head, the 

appearance of the visual field and the magnitudes of the presenting IOP, the CCT, the 

MDSAP and the sLVSAP, and the Cup to disc ratio, respectively), in each eye of the 11 

individuals with OAG.  
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Participant 

ID              

Right eye 

ONH 

Right eye 

Visual field 

Left Eye 

ONH 

Left eye 

Visual field 

1 
 
85112 

    
2 
 
2917 

    
3 
 
82921 
 

    
4 
 
2124 
 
 

    
5 
 
3226 
 
 

    
6 
 
2347 
 
 

    
7 
 
4629 
 
 

    
8 
 
4207 
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Table 4.4 The appearance of the optic nerve head and of the Corrected Comparison 

probability map, derived by SAP, at the enrolment visit for each eye of each of the 11 

individuals with OAG.  

 

 

  

4.7 Perimetric Protocol    

Following enrolment, each participant underwent examination of each eye with CFF perimetry 

14 days after the initial ophthalmic examination.  At this first perimetry visit, both eyes were 

examined using CFF perimetry and Program G1 and the TOP algorithm of the Octopus 311. The 

right eye was always examined before the left eye. Distance refractive correction, in the form of 

full aperture trial lenses, was used for each eye. The non-examined eye was occluded with an 

opaque patch. The influence of the fatigue effect was reduced by the provision of rest periods of 

approximately one minute in duration at 3 minute intervals during the examination of each eye 

and by a 5 minute rest period between examination of each eye. Fixation was monitored 

continuously by the automatic eye tracker of the perimeter and was also viewed via the video 

monitor. 

Participant 

ID 

Right eye 

ONH 

Right eye 

Visual field 

Left Eye 

ONH 

Left eye 

Visual field 

9 
 
5037 
 
 

    
10 
 
83530 
 

    
11 
 
344 
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Each participant then attended for a further four perimetry visits (Table 4.5). The protocol at 

each of the four visits was identical to that at the first visit. Each visit was separated by an 

interval of one week. The same instructions were given at each visit. The visual field 

examinations at all five visits were undertaken by the author.     

 

At the end of the fifth visit, the participants were invited to attend for a sixth visit, one week 

later. All 49 participants responded in the affirmative to this invitation. At this sixth visit, the 

visual field was examined by the author, in exactly the same manner to that of previous five 

visits, using the Dynamic algorithm. 

 

 

Table 4.5 The summary of the perimetric protocol at enrolment and at each of the 

subsequent six visits.  

 

 

 

 

 

 

 

 

 Enrolment Session 

1 

Session 

2 

Session 

3 

Session 

4 

Session 

5 

Session 

6 

Method SAP CFF CFF CFF CFF CFF CFF 
Interval 

from 

immediate 

previous 

session 

(days) 

  
14 

 

 
7 
 

 
7 
 

 
7 
 

 
7 
 

 
7 
 

Program/ 

algorithm 

G1/ 
Dynamic 

G1/ 
TOP 

G1/ 
TOP 

G1/ 
TOP 

G1/ 
TOP 

G1/ 
TOP 

G1/ 
Dynamic 
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4.8 Analysis 

4.9 The between-individual between-visit (Visits One to Five) performance (Primary 

Aim) 

The first analysis of any potential learning effect consisted of separate Analyses of Variance of 

the visual field indices Mean Sensitivity, Mean Defect, square root of the Loss Variance, Diffuse 

Defect and Local Defect and for the examination duration. Age and diagnostic group were 

considered as separate between-subject factors and visit and eye as separate within-subject 

factors. Statistical sugnificans for this study and those in the remainder of the Thesis was 

considered to be p ≤ 0.05. 

 

The second analysis of any potential learning effect involved the change in sensitivity, at each 

given stimulus location between Visits One and Visits Two and between Visit Two and Visit 

Five, respectively, as a function of eccentricity. This was undertaken for the normal individuals 

and for the individuals with OHT, only.  

 

The third analysis investigated the changes in sensitivity, across all stimulus locations, between 

Visit One and Visit Two and between Visit Two and Visit Five, respectively, as a function of the 

magnitude of sensitivity at the initial visit of the given paired comparison. The 10th, 50th and 90th 

percentiles of the distribution of the change in sensitivity were calculated for each magnitude of 

sensitivity for each of the three groups, separately, and combined. 

 

The fourth analysis investigated the changes in the Comparison probability value across all given 

stimulus locations between Visit One and Visit Two and between Visit Two and Visit Five, 

respectively, for each of the three groups, separately, and combined. The analysis was not 

expected to necessitate the evaluation of the corresponding differences in the Corrected 

Comparison probability analysis since the inclusion criterion for the ocular media precluded 
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those individuals likely to yield visual fields in which the height adjustment would have resulted 

in a change to the Corrected Comparison probability value. 

 

4.10 The between-individual difference in the TOP and Dynamic algorithms (Visits Five 

and Visit Six) (Secondary Aim) 

Any difference in the magnitude of sensitivity between the TOP algorithm undertaken at Visit 

Five and the Dynamic algorithm undertaken at Visit Six was analysed in an identical manner to 

that undertaken for the within- and between-individual between-visit change in performance.  

 

4.11 The within-individual between-visit change in performance (Primary Aim) 

The within-individual between-visit change in performance was evaluated in three ways. Firstly, 

in terms of the absolute change in each of the visual field indices between Visit One and Visit 

Two compared to that between Visit Two and Visit Five. Secondly, in terms of the  

proportionate change in Mean Sensitivity between Visit One and Visit Two compared to that 

between Visit Two and Visit Five. Thirdly, in terms of the diagnostic outcome as defined by the 

Comparison and Corrected Comparison probability analysis. 

 

 

The selection of a comparison between Visits One and Visits Two and between Visit Two and 

Visit Five, respectively, was utilised for two reasons. Firstly, the majority of the learning effect 

for other types of perimetry is considered to have occurred over the first two visits and clinicians 

are used to placing less quantitative emphasis on the results from these initial examinations. 

Secondly, to reduce the amount of potential analysis to manageable proportions. 
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4.12 Results 

4.12.1 Age-related decline in Mean Sensitivity 

The slope of the age-related decline in MS, together with the magnitude of the Coefficient of 

Determination (R2) for each eye at each of the five visits and for the Dynamic algorithm at Visit 

Six of the 28 normal individuals is given in Table 4.6. The corresponding slope at each stimulus 

location at Visit Five and at Visit Six for each eye is shown in Figure 4.1a and Figure 4.1b 

respectively.  

 

 

Mean Sensitivity 

Slope 

Visit 1 Visit 2 Visit 3 Visit 4 Visit 5 Visit 6 

Right              Slope 

R² 

-0.129 
0.011 

-0.101 
0.006 

-0.131 
0.009 

-0.155 
0.009 

-0.250 
0.017 

-0.175 
0.010 

Left                Slope 

R² 

-0.105 
0.002 

-0.107 
0.007 

-0.132 
0.008 

-0.164 
0.011 

-0.194 
0.015 

-0.287 
0.032 

 
Table 4.6 The slope of the age-related decline in MSCFF (Hz per year), and the 

corresponding Coefficient of Determination, R², for each eye of the 28 normal individuals 

at each of the five visits for the TOP algorithm and at Visit Six for the Dynamic algorithm.   

 

    

The slope of the age-related decline in MS for the TOP algorithm steepened in the right eye for 

visits four and five and in the left eye for visits three, four and five implying a greater 

improvement in MS for the younger individuals. 

 

The slope of the age-related decline in MS for the Dynamic Algorithm was notably steeper than 

that of the TOP algorithm over each of the first four visits for each eye and particularly so for the 

left eye. It appeared to be broadly similar to that at the fifth visit. 

 

In general, the age-related decline in MS at Visit Five as a function of stimulus eccentricity, 

derived by the TOP algorithm (Figure 4.1a) exhibited some tendency to exhibit a steeper slope 
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with increase in eccentricity, superiorly and nasally, this effect was more apparent for the field of 

the right eye. This tendency was also apparent for the Dynamic Algorithm, particularly for the 

left eye (Figure 4.1b).  

 

4.12.2 The between-individual between-visit (Visits One to Five) change in the Visual Field 

Indices 

4.12.3 Mean Sensitivity (MS) 

The summary statistics for the MS over the six visits are shown in Table 4.7 for each eye of the 

28 normal individuals (Top), each eye of the 10 individuals with OHT (Middle) and each eye of 

the 11 individuals with OAG (Bottom). The distribution of the MS, at each visit, as a function of 

eye, across each of the three groups, is also illustrated in terms of Box and Whisker plots in 

Figure 4.2. 
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Figure 4.1 a The decline of the group MSCFF (Hz per year) at each stimulus location with 

increase in age for the right eye (top) and left eye (bottom) of the 28 normal individuals at 

Visit Five for the TOP algorithm.  The lower value at each location indicates the 

Coefficient of Determination (R²). The stimulus locations for the left eye are displayed in 

right eye format in order to aid the between-eye comparison. The absence of values within 

a white cell corresponds to the absence of a stimulus location.  The increasing ‘warmth’ of 

the colours represents an increasing steepening (i.e. negativity) of the slope. 
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-0.155 
0.004 

-0.063 
0.000 

  -0.211 
0.004 

-0.321 
0.016 

-0.079 
0.002 

-0.097 
0.002 

 -0.116 
0.007 

-0.083 
0.002 

  +0.104 
0.001 

 

   -0.094 
0.002 

-0.117 
0.004 

-0.234 
0.015 

+0.113 
0.002 

   

   -0.207 
0.010 

-0.253 
0.015 

-0.164 
0.010 

-0.147 
0.005 

   

-0.393 
0.025 

-0.283 
0.018 

-0.197 
0.011 

 -0.080 
0.002 

-0.051 
0.002 

  -0.112 
0.001 

 

   -0.061 
0.000 

-0.201 
0.010 

-0.070 
0.002 

+0.041 
0.000 

  -0.099 
0.001 

 -0.234 
0.012 

-0.188 
0.005 

 -0.170 
0.008 

-0.206 
0.010 

 -0.160 
0.004 

-0.127 
0.002 

 

 -0.345 
0.009 

-0.131 
0.002 

 -0.199 
0.006 

-0.148 
0.004 

 -0.268 
0.011 

-0.334 
0.011 

 

   -0.314 
0.011 

  -0.288 
0.010 

   

 
+0.15 +0.10 +0.05 0.00 -0.05 -0.10 -0.15 -0.20 -0.25 -0.30 -0.35 -0.40 -0.45 -0.50 -0.55 
+0.09 +0.04 +0.00 -0.04 -0.09 -0.14 -0.19 -0.24 -0.29 -0.34 -0.39 -0.44 -0.49 -0.54 -0.59 

 
   -0.440 

0.019 
  -0.560 

0.025 
   

 -0.244 
0.009 

-0.345 
0.026 

 -0.206 
0.006 

-0.283 
0.014 

 -0.460 
0.041 

-0.523 
0.024 

 

 -0.389 
0.026 

-0.224 
0.007 

 -0.177 
0.009 

-0.088 
0.003 

 -0.304 
0.017 

-0.283 
0.012 

 

   -0.208 
0.013 

-0.180 
0.010 

-0.166 
0.006 

-0.262 
0.012 

  -0.284 
0.016 

-0.369 
0.028 

-0.338 
0.028 

-0.168 
0.008 

 -0.316 
0.017 

-0.266 
0.025 

  -0.192 
0.008 

 

   -0.338 
0.030 

-0.360 
0.030 

-0.236 
0.027 

-0.262 
0.015 

   

   -0.248 
0.019 

-0.268 
0.028 

-0.295 
0.025 

-0.300 
0.019 

   

-0.379 
0.031 

-0.306 
0.015 

-0.286 
0.030 

 -0.233 
0.015 

-0.166 
0.013 

  -0.242 
0.016 

 

   -0.183 
0.012 

-0.281 
0.017 

-0.302 
0.014 

-0.200 
0.015 

  -0.258 
0.017 

 -0.333 
0.021 

-0.349 
0.023 

 -0.278 
0.024 

-0.241 
0.017 

 -0.290 
0.010 

-0.202 
0.010 

 

 -0.286 
0.014 

-0.173 
0.007 

 -0.203 
0.014 

-0.349 
0.028 

 -0.390 
0.023 

-0.564 
0.048 

 

   -0.288 
0.017 

  -0.342 
0.023 

   

 

Figure 4.1 b The decline of the group MSCFF (Hz per year) at each stimulus location with 

increase in age for the right eye (top) and left eye (bottom) eye of the 28 normal individuals 

at Visit Six for the Dynamic Algorithm.  The lower value at each location indicates the 

Coefficient of Determination (R²). The stimulus locations for the left eye are displayed in 

right eye format in order to aid the between-eye comparison. The absence of values within 

a white cell corresponds to the absence of a stimulus location. The increasing ‘warmth’ of 

the colours represents an increasing steepening (i.e. negativity) of the slope. 
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Mean Sensitivity 

(Hz) 

Visit 1 

TOP 

Visit 2 

TOP 

Visit 3 

TOP 

Visit 4 

TOP 

Visit 5 

TOP 

Visit  6 

Dynamic 

Right Mean 

SD 

34.58 
3.34 

35.10 
3.38 

34.82 
3.76 

35.00 
4.43 

34.71 
5.20 

38.21 
4.77 

Left Mean 

SD 

34.05 
5.46 

35.04 
3.39 

35.24 
4.09 

35.29 
4.32 

35.26 
4.38 

38.01 
4.44 

Right Median 

IQR 

34.80 
3.83 

34.85 
5.25 

35.45 
4.83 

35.55 
5.32 

35.70 
4.52 

37.50 
7.40 

Left Median 

IQR 

34.75 
5.85 

35.70 
4.15 

36.20 
3.62 

36.10 
4.33 

36.15 
5.08 

37.95 
7.25 

 

Mean Sensitivity 

(Hz) 

Visit 1 

TOP 

Visit 2 

TOP 

Visit 3 

TOP 

Visit 4 

TOP 

Visit 5 

TOP 

Visit  6 

Dynamic 

Right  Mean 

SD 

30.66 
6.04 

33.51 
6.34 

33.47 
6.68 

33.65 
6.95 

34.54 
7.57 

37.62 
8.18 

Left Mean 

SD 

32.35 
5.70 

33.88 
5.68 

34.47 
6.45 

34.19 
7.68 

33.83 
8.39 

37.27 
9.99 

Right Median 

IQR 

32.25 
3.85 

35.65 
1.65 

35.35 
2.48 

37.00 
3.55 

36.75 
1.50 

39.55 
4.25 

Left Median 

IQR 

33.70 
3.60 

35.05 
1.05 

36.10 
2.65 

36.35 
2.30 

36.30 
3.40 

39.55 
4.48 

 

 

Mean Sensitivity 

(Hz) 

Visit 1 

TOP 

Visit 2 

TOP 

Visit 3 

TOP 

Visit 4 

TOP 

Visit 5 

TOP 

Visit  6 

Dynamic 

Right  Mean 

SD 

27.5 
6.7 

30.28 
5.58 

30.33 
6.23 

30.61 
6.41 

31.12 
7.12 

35.07 
7.85 

Left Mean 

SD 

26.99 
7.19 

29.32 
7.00 

30.15 
7.14 

29.92 
7.07 

31.12 
6.89 

34.03 
7.13 

Right Median 

IQR  

27.5 
8.8 

30.8 
7.35 

30.7 
5.65 

31.5 
6.35 

31.9 
10.6 

35.1 
8.9 

Left Median 

IQR  

24.3 
9.75 

27.6 
8.85 

29.4 
8.4 

30.6 
9.2 

32.2 
8.1 

32.7 
7.65 

 

Table 4.7  The summary statistics (mean, SD, median, IQR) of the MSCFF (Hz) at each visit 

for the right eye and for the left eye for the 28 normal individuals (Top) for the 10 

individuals with OHT (Middle) and for the 11 individuals with OAG (bottom). 
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Overleaf: Figure 4.2 The Box and Whisker plots of the distribution of the MSCFF of each eye 

at each of the fifth visits using the TOP algorithm and at the sixth visit using the Dynamic 

algorithm for the 28 normal individuals (Top), the 10 individuals with OHT (Middle) and 

for the 11 individuals with OAG (Bottom). The median is represented by the bold line, the 

25
th

 and 75
th

 percentiles by the lower and upper edges of the box, respectively, and the 

lowest and highest values by the lower and upper extremities of the whiskers, respectively. 

The results for the right eye over Visits One to Five are colour coded for the TOP algorithm 

in blue and in white for the left eye. The results at Visit Six for the Dynamic algorithm are 

coded in red for the right eye and in white for the left eye. 
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The ANOVA summary table for the MS with the TOP algorithm over the five visits is given in 

Table 4.8. The group mean MS differed across the three groups (p=0.003) and, as would be 

expected, was lowest for the group with OAG. This difference was seemingly independent of age 

(p=0.120). As would also be expected, the group mean Mean Sensitivity declined with increase in 

age (p=0.003).  

 

The group mean MS improved across the five visits (p<0.001). No difference in the magnitude of 

the improvement over the five visits could be detected across the three diagnostic groups 

(p=0.213), or with age (p=0.502). 

 

Effect Degrees of  Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Age 1 49 10.64 0.002 

Gender 1 49 0.30 0.588 
Diagnosis 2 49 6.65 0.003 

Eye 1 441 0.10 0.750 
Visit 4 441 5.53 <0.001 

     
Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Age 1 49 10.64 0.002 

Gender 1 49 0.30 0.588 
Diagnosis 2 49 6.81 0.003 

Visit 4 441 5.53 <0.001 

     
Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Age 1 49 10.29 0.003 

Diagnosis 2 49 6.65 0.003 

Visit 4 441 5.53 <0.001 

Age x Diagnosis 2 49 2.22 0.120 
Age x Visit 4 441 0.84 0.502 
Diagnosis x Visit 8 441 1.36 0.213 

 
Table 4.8 The Analysis of Variance Summary Table for the MSCFF index over the five 

visits. 
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The ANOVA summary table for the MS for the difference between the TOP algorithm at Visit 

Five and the Dynamic algorithm at Visit Six is given in Table 4.9. The group mean MS was 

higher for the Dynamic Algorithm (p<0.001).  

 

Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Age 1 49 8.57 0.005 

Gender 1 49 0.33 0.571 
Diagnosis 2 49 2.39 0.102 
Eye 1 147 0.12 0.719 
Algorithm 1 147 90.14 <0.001 

     
Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Age 1 49 8.57 0.005 

Gender 1 49 0.33 0.571 
Diagnosis 2 49 2.39 0.102 
Algorithm 1 147 90.06 <0.001 

     
Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Age 1 49 8.20 0.006 

Diagnosis 2 49 2.21 0.120 
     
Effect Degrees of Freedom 

Numerator 
Degrees of Freedom 

Denominator 
F value P value 

Age 1 49 7.09 0.011 

Algorithm 1 147 90.06 <0.001 

Age x Algorithm 1 147 0.00 0.999 
     
Effect Degrees of Freedom 

Numerator 
Degrees of Freedom 

Denominator 
F value P value 

Algorithm 1 147 90.06 <0.001 

 

Table 4.9 The Analysis of Variance Summary Table for the MSCFF index between the TOP 

algorithm at Visit Five and the Dynamic algorithm at Visit Six. 
 
 

 

 

 

 

 



 148 

4.12.4 Mean Defect 

The summary statistics for the MD over the six visits are shown in Table 4.10 for each eye of the 

28 normal individuals (Top), the 10 individuals with OHT (Middle) and the 11 individuals with 

OAG (Bottom). The distribution of the MD is also illustrated in terms of Box and Whisker plots 

for each eye of each of the three groups in Figure 4.3. 

 

Mean Defect 

(Hz) 

Visit 1 

TOP 

Visit 2 

TOP 

Visit 3 

TOP 

Visit 4 

TOP 

Visit 5 

TOP 

Visit  6 

Dynamic 

Right Mean 

SD 

1.53 
3.16 

0.98 
3.32 

1.27 
3.61 

1.09 
4.27 

1.39 
4.86 

-2.12 
4.55 

Left Mean 

SD 

2.36 
5.42 

1.09 
3.34 

0.85 
3.95 

0.81 
4.11 

0.84 
4.08 

-1.88 
3.89 

Right Median 

IQR 

1.4 
3.20 

0.7 
5.22 

0.95 
4.14 

0.3 
3.95 

0.8 
4.70 

-1.65 
7.10 

Left Median 

IQR 

1.85 
5.19 

0.55 
4.45 

-0.35 
4.32 

-0.05 
2.97 

-0.05 
3.67 

-2.95 
5.64 

 
Mean Defect 

(Hz) 

Visit 1 

TOP 

Visit 2 

TOP 

Visit 3 

TOP 

Visit 4 

TOP 

Visit 5 

TOP 

Visit  6 

Dynamic 

Right Mean 

SD 

4.79 
5.68 

1.95 
6.28 

1.97 
6.61 

1.8 
6.84 

0.91 
7.36 

-2.13 
8.30 

Left Mean 

SD 

3.08 
5.39 

1.57 
5.50 

0.97 
6.40 

1.25 
7.48 

1.59 
8.24 

-1.83 
10.04 

Right Median 

IQR 

3.25 
3.45 

0.45 
2.75 

-0.45 
3.35 

-1.05 
5.15 

-1.5 
2.42 

-4.05 
4.57 

Left Median 

IQR 

2.4 
3.7 

0.5 
2.1 

-1.1 
3.37 

-1.2 
1.92 

-1.1 
4.2 

-4.5 
6.45 

 
Mean Defect 

(Hz) 

Visit 1 

TOP 

Visit 2 

TOP 

Visit 3 

TOP 

Visit 4 

TOP 

Visit 5 

TOP 

Visit  6 

Dynamic 

Right Mean 

SD 

8.54 
6.06 

5.81 
5.2 

5.69 
5.63 

5.4 
5.91 

5.04 
6.68 

0.97 
7.38 

Left Mean 

SD 

9.04 
6.41 

6.76 
6.39 

5.86 
6.59 

6.1 
6.59 

5.06 
6.34 

1.99 
6.56 

Right Median 

IQR 

8.2 
8.65 

5.2 
6.95 

4.5 
5.5 

4.7 
6.75 

4.3 
10.05 

1.5 
9.2 

Left Median 

IQR 

11.4 
8.25 

8.9 
8.85 

5.9 
7.85 

5.1 
9.55 

4.7 
8.95 

2.6 
7.1 

 

Table 4.10 The summary statistics (mean, SD, median, IQR) of the MDCFF (Hz) at each visit 

for the right eye and for the left eye for the 28 normal individuals (Top) for the 10 

individuals with OHT (Middle) and for the 11 individuals with OAG (bottom).  
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Overleaf: Figure 4.3 The Box and Whisker plots of the distribution of the MDCFF of each 

eye at each of the first Five Visits using the TOP algorithm and at the Sixth Visit using the 

Dynamic algorithm for the 28 normal individuals (top), the 10 individuals with OHT 

(middle) and the 11 individuals with OAG (bottom). The median is represented by the bold 

line, the 25
th

 and 75
th

 percentiles by the lower and upper edges of the box, respectively, and 

the lowest and highest values by the lower and upper extremities of the whiskers, 

respectively. The results for the right eye over Visits One to Five are colour coded for the 

TOP algorithm in blue and in white for the left eye. The results at Visit Six for the Dynamic 

algorithm are coded in red for the right eye and in white for the left eye. 
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The ANOVA summary table for the MD with the TOP algorithm over the five visits is given in 

Table 4.11. The group mean MD differed across the three groups (p=0.004) and, as would be 

expected, was worst for the group with OAG.  

 

The group mean MD improved across the five visits (p<0.001). No difference in the magnitude 

of the improvement could be detected across the three diagnostic groups (p=0.312). 

 

Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Age 1 49 2.10 0.153 
Gender 1 49 0.29 0.593 
Diagnosis 2 49 6.64 0.003 

Eye 1 441 0.04 0.851 
Visit 4 441 6.36 <0.001 

     
Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Age 1 49 2.10 0.153 
Gender 1 49 0.29 0.593 
Diagnosis 2 49 6.64 0.003 

Visit 4 441 6.36 <0.001 

     
Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Age 1 49 1.91 0.174 
Diagnosis 2 49 6.49 0.003 

Visit 4 441 6.36 <0.001 

     
Effect Degrees of Freedom 

Numerator 
Degrees of Freedom 

Denominator 
F value P value 

Diagnosis 2 49 6.14 0.004 

Visit 4 441 8.41 <0.001 

Diagnosis x Visit 8 441 1.18 0.312 
 

Table 4.11 The Analysis of Variance Summary Table for the MDCFF index over the five 

visits. 
. 
 

The ANOVA summary table for the difference between the group mean MD for the TOP 

algorithm at Visit Five and the Dynamic algorithm at Visit Six is given in Table 4.12. The 

group mean MD was more negative (i.e. more normal) for the Dynamic algorithm (p<0.001). 
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Any difference in the magnitude of the group mean MD could not be detected across the three 

diagnostic groups (p=0.146).   

 

      Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Age 1 49 2.30 0.136 
Gender 1 49 0.39 0.537 
Diagnosis 2 49 2.46 0.096 
Eye 1 147 0.15 0.701 
Algorithm 1 147 91.42 <0.001 

     
Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Age 1 49 2.30 0.136 
Gender 1 49 0.39 0.537 
Diagnosis 2 49 2.46 0.096 
Algorithm 1 147 91.33 <0.001 

     
Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Age 1 49 2.06 0.158 
Diagnosis 2 49 2.26 0.116 
Algorithm 1 147 91.33 <0.001 

     
Effect Degrees of Freedom 

Numerator 
Degrees of Freedom 

Denominator 
F value P value 

Diagnosis 2 49 2.00 0.146 
Algorithm 1 147 91.33 <0.001 

     
Effect Degrees of Freedom 

Numerator 
Degrees of Freedom 

Denominator 
F value P value 

Algorithm 1 147 91.33 <0.001 

 

Table 4.12 The Analysis of Variance Summary Table for the MDCFF index between 

the TOP algorithm at Visit Five and the Dynamic algorithm at Visit Six. 
 

 
 

4.12.5 Square root of the Loss Variance (sLV) 

The summary statistics for the sLV over the six visits are shown in Table 4.13 for each eye of the 

28 normal individuals (top), each eye for the 10 individuals with OHT (middle) and each eye for 

the 11 individuals with OAG (bottom). The distribution of the sLV is also illustrated in terms of 

Box and Whisker plots for each eye of each of the three groups in Figure 4.4. 
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Square root of Loss 

Variance (sLV) 

(Hz) 

Visit 1 

TOP 

Visit 2 

TOP 

Visit 3 

TOP 

Visit 4 

TOP 

Visit 5 

TOP 

Visit  6 

Dynamic 

Right Mean 

SD 

3.33 
1.38 

3.25 
1.35 

3.30 
1.17 

3.17 
1.50 

3.22 
1.40 

4.65 
1.34 

Left Mean 

SD 

3.20 
1.07 

3.28 
1.12 

3.19 
1.33 

3.30 
1.09 

3.27 
1.25 

4.15 
0.90 

Right Median 

IQR 

3.06 
1.13 

2.92 
1.21 

3.15 
1.31 

2.91 
1.61 

2.81 
1.49 

4.33 
1.61 

Left Median 

IQR 

3.18 
1.25 

3.17 
1.39 

2.78 
1.28 

3.21 
1.09 

2.97 
1.09 

4.30 
1.43 

 

 

Square root of Loss 

Variance (sLV) 

(Hz) 

Visit 1 

TOP 

Visit 2 

TOP 

Visit 3 

TOP 

Visit 4 

TOP 

Visit 5 

TOP 

Visit  6 

Dynamic 

Right Mean  

SD 

3.81 
2.49 

3.32 
2.17 

3.73 
2.75 

3.63 
2.49 

3.41 
2.23 

5.65 
2.2 

Left Mean  

SD 

3.91 
1.74 

3.84 
1.5 

3.43 
2.22 

3.4 
2.23 

3.29 
1.80 

5.4 
1.97 

Right Median 

IQR  

3.20 
1.35 

3.01 
1.4 

2.92 
2.29 

2.78 
1.59 

3.02 
0.89 

5.42 
1.15 

Left Median 

IQR 

3.32 
1.96 

3.37 
1.34 

2.59 
0.83 

2.99 
0.56 

2.81 
1.31 

5.06 
0.75 

 

 

Square root of Loss 

Variance (sLV) 

(Hz) 

Visit 1 

TOP 

Visit 2 

TOP 

Visit 3 

TOP 

Visit 4 

TOP 

Visit 5 

TOP 

Visit  6 

Dynamic 

Right Mean  

SD 

6.39 
3.15 

6.7 
3.85 

6.35 
3.44 

6.97 
3.81 

6.59 
4.03 

8.06 
3.65 

Left Mean  

SD 

6.38 
3.74 

6.36 
3.64 

6.16 
3.57 

6.16 
3.72 

6.31 
4.19 

8.23 
4.07 

Right Median 

IQR 

5.91 
4.53 

7.54 
5.49 

5.29 
5.31 

7.54 
6.25 

6.21 
7.02 

7.16 
5.81 

Left Median 

IQR 

5.00 
6.60 

4.96 
5.79 

5.86 
6.09 

5.21 
6.50 

5.12 
6.99 

7.00 
7.94 

 

Table 4.13 The summary statistics (mean, SD, median, IQR) of the sLVCFF (Hz) at each 

visit for the right eye and for the left eye for the 28 normal individuals (Top) for the 10 

individuals with OHT (Middle) and for the 11 individuals with OAG (bottom). 
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Overleaf: Figure 4.4 The Box and Whisker plots of the distribution of the sLVCFF for each 

eye at each of the first Five Visits using the TOP algorithm and at the Sixth Visit using the 

Dynamic algorithm for the 28 normal individuals (top), for the 10 individuals with OHT 

(middle) and for the 11 individuals with OAG (bottom). The median is represented by the 

bold line, the 25
th

 and 75
th

 percentiles by the lower and upper edges of the box, respectively, 

and the lowest and highest values by the lower and upper extremities of the whiskers, 

respectively. The results for the right eye over Visits One to Five are colour coded for the 

TOP algorithm in blue and in white for the left eye. The results at Visit Six for the Dynamic 

algorithm are coded in red for the right eye and in white for the left eye. 
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The ANOVA summary table for the sLV with the TOP algorithm over the five visits is given in 

Table 4.14. The group mean of the sLV differed across the three groups (p<0.001) and, as would 

be expected, was largest for the group with OAG. It increased with age (p=0.041) 

 

The group mean of the sLV remained the same across the five visits (p=0.976). 

 

Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Age 1 49 5.02 0.030 

Gender 1 49 0.99 0.325 
Diagnosis 2 49 15.24 <0.001 

Eye 1 441 0.45 0.501 
Visit 4 441 0.12 0.976 
     
Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Age 1 49 5.02 0.030 

Gender 1 49 0.99 0.325 
Diagnosis 2 49 15.24 <0.001 

Eye 1 441 0.45 0.501 
     
Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Age 1 49 5.02 0.030 

Gender 1 49 0.99 0.325 
Diagnosis 2 49 15.24 <0.001 

     
Effect Degrees of Freedom 

Numerator 
Degrees of Freedom 

Denominator 
F value P value 

Age 1 49 4.39 0.041 

Diagnosis 2 49 14.48 <0.001 

Age x Diagnosis 2 49 1.58 0.217 
 
Table 4.14 The Analysis of Variance Summary Table for the sLVCFF index over the five 

visits. 
. 
 

 

The ANOVA summary table for the group mean of the sLV between the TOP algorithm at Visit 

Five and the Dynamic algorithm at Visit Six is given in Table 4.15.  
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The group mean of the sLV increased with increase in age (p=0.011), As would be expected, it 

varied across the groups (p<0.001) being largest for the group with OAG. It was lager for the 

Dynamic algorithm (p<0.001) and the difference between the two algorithms was seemingly 

independent of age (p=0.190) and of diagnosis (p=0.098).  

 

 

 
Table 4.15 The Analysis of Variance Summary Table for the sLVCFF index between the 

TOP algorithm at Visit Five and the Dynamic algorithm at Visit Six. 

 

 

4.12.6 Diffuse Defect 

The summary statistics for the DD over the six visits are shown in Table 4.16 for each eye of the 

28 normal individuals (Top), each eye for the 10 individuals with OHT (Middle) and each eye 

for the 11 individuals with OAG (Bottom). The distribution of the DD is also illustrated in terms 

of Box and Whisker plots for each eye of each of the three groups in Figure 4.5. 

 

Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Age 1 49 7.76 0.008 

Gender 1 49 1.00 0.322 
Diagnosis 2 49 16.46 <0.001 

Eye 1 147 0.83 0.364 
Algorithm 1 147 58.99 <0.001 

     
Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Age 1 49 7.76 0.008 

Gender 1 49 1.00 0.322 
Diagnosis 2 49 16.46 <0.001 

Algorithm 1 147 58.66 <0.001 

     
Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Age 1 49 6.96 0.011 

Diagnosis 2 49 15.67 <0.001 

Algorithm 1 147 58.66 <0.001 

Age x Diagnosis 2 49 1.06 0.354 
Age x Algorithm 1 147 1.73 0.190 
Diagnosis x Algorithm 2 147 2.36 0.098 
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Diffuse Defect 

(Hz) 

Visit 1 

TOP 

Visit 2 

TOP 

Visit 3 

TOP 

Visit 4 

TOP 

Visit 5 

TOP 

Visit  6 

Dynamic 

Right Mean 

SD 

1.13 
2.66 

0.50 
2.49 

0.80 
2.81 

0.77 
3.44 

1.07 
4.23 

-3.15 
4.56 

Left Mean 

SD 

1.63 
5.02 

0.82 
3.03 

0.50 
2.97 

0.43 
3.55 

0.47 
3.20 

2.59 
4.09 

Right Median 

IQR 

0.90 
4.09  

0.55 
3.52  

0.30 
3.49 

-0.25 
3.85 

0.50 
4.20 

-2.45 
5.87  

Left Median 

IQR 

0.40 
4.02 

0.50 
4.90 

-0.20 
2.77 

0.50 
2.67 

0.60 
3.17 

-3.60 
5.52 

 

 

Diffuse Defect 

(Hz) 

Visit 1 

TOP 

Visit 2 

TOP 

Visit 3 

TOP 

Visit 4 

TOP 

Visit 5 

TOP 

Visit  6 

Dynamic 

Right Mean 

SD 

3.17 
4.45  

1.27 
4.34  

0.93 
3.99 

0.81 
3.87 

-0.03 
4.67  

-4.41 
6.55  

Left Mean 

SD 

2.33 
4.36 

0.49 
4.24 

-0.11 
3.88 

0.2 
4.73 

1.15 
6.64 

-3.92 
8.55 

Right Median 

IQR 

2.2 
4.42 

-0.2 
2.04  

-0.35 
3.02  

-0.95 
5.04  

-1.6 
1.6  

-5.85 
5.25  

Left Median 

IQR  

1.85 
4.49 

-0.85 
2.22 

-1.2 
2.35 

-1.35 
1.33 

-1.0 
3.94 

-4.55 
7.4 

 

Diffuse Defect 

(Hz) 

Visit 1 

TOP 

Visit 2 

TOP 

Visit 3 

TOP 

Visit 4 

TOP 

Visit 5 

TOP 

Visit  6 

Dynamic 

Right Mean 

 SD 

5.49 
4.45  

2.31 
3.06  

2.7 
3.89  

2.15 
3.91  

1.53 
4.17  

-2.44 
6.01 

Left Mean  

SD 

5.82 
4.4 

3.28 
4.01 

2.7 
4.02 

3.13 
3.86 

1.78 
3.57 

1.86 
4.6 

Right Median 

IQR 

6.1 
4.65  

1.9 
1.95  

2.9 
5.0 

1.1 
3.1 

1.0 
4.05 

-1.4 
7.75 

Left Median 

IQR 

6.3 
5.35 

3.8 
5.4 

3.3 
5.75 

4.0 
5.05 

0.7 
4.25 

-2.7 
3.7 

 

Table 4.16 The summary statistics (mean, SD, median, IQR) of the DDCFF (Hz) at each visit 

for the right eye and for the left eye for the 28 normal individuals (Top) for the 10 

individuals with OHT (Middle) and for the 11 individuals with OAG. 
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Overleaf: Figure 4.5 The Box and Whisker plots of the distribution of the DDCFF of each eye 

at each of the first Five Visits using the TOP algorithm and at the Sixth Visit using the 

Dynamic algorithm for the 28 normal individuals (top), the 10 individuals with OHT 

(middle) and the 11 individuals with OAG (bottom). The median is represented by the bold 

line, the 25
th

 and 75
th

 percentiles by the lower and upper edges of the box, respectively, and 

the lowest and highest values by the lower and upper extremities of the whiskers, 

respectively. The results for the right eye over Visits One to Five are colour coded for the 

TOP algorithm in blue and in white for the left eye. The results at Visit Six for the Dynamic 

algorithm are coded in red for the right eye and in white for the left eye. 
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The ANOVA summary table for the mean DD with the TOP algorithm over the five visits 

is given in Table 4.17. The difference in the group mean DD across the three groups 

exhibited marginal significance (p=0.077). The group mean DD improved across the five 

visits (p<0.001). The improvement varied across the three groups (p=0.041) and was 

greatest for the group with OAG.  

 

 

 

 

Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Age 1 49 0.52 0.476 
Gender 1 49 0.01 0.939 
Diagnosis 2 49 2.62 0.083 
Eye 1 441 0.01 0.930 
Visit 4 441 7.38 <0.001 

     
Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Age 1 49 0.54 0.464 
Diagnosis 2 49 2.79 0.071 
Eye 1 441 0.01 0.930 
Visit 4 441 7.38 <0.001 

     
Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Age 1 49 0.54 0.464 
Diagnosis 2 49 2.79 0.071 
Visit 4 441 7.38 <0.001 

     
Effect Degrees of Freedom 

Numerator 
Degrees of Freedom 

Denominator 
F value P value 

Diagnosis 2 49 2.71 0.077 
Visit 4 441 7.38 <0.001 

Diagnosis x Visit 8 441 2.04 0.041 

 
Table 4.17 The Analysis of Variance Summary Table for the DDCFF index over the five 

visits. 
 
 
 
The ANOVA summary table for the group mean DD for the difference between the TOP 

algorithm at Visit Five and the Dynamic algorithm at Visit Six is given in Table 4.18. The group 
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mean for the DD was independent of age (p=0.459), was similar between the two eyes 

(p=0.429). Any difference in magnitude of the group mean DD across the three diagnostic 

groups could not be detected (p=0.429).  It was higher for the Dynamic algorithm (p<0.001).  

 

 

Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Age 1 49 0.88 0.353 
Gender 1 49 0.02 0.900 
Diagnosis 2 49 0.50 0.608 
Eye 1 147 0.63 0.429 
Algorithm 1 147 152.14 <0.001 

     
Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Age 1 49 0.86 0.357 
Diagnosis 2 49 0.63 0.429 
Eye 1 147 0.50 0.610 
Algorithm 1 147 152.14 <0.001 

     
Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Age 1 49 0.56 0.459 
Eye 1 147 0.63 0.429 
Algorithm 1 147 152.14 <0.001 

     
Effect Degrees of Freedom 

Numerator 
Degrees of Freedom 

Denominator 
F value P value 

Eye 1 147 0.63 0.429 
Algorithm 1 147 152.14 <0.001 

     
Effect Degrees of Freedom 

Numerator 
Degrees of Freedom 

Denominator 
F value P value 

Algorithm 1 147 151.49 <0.001 

 
Table 4.18 The Analysis of Variance Summary Table for the DDCFF index between the TOP 

algorithm at Visit Five and the Dynamic algorithm at Visit Six. 
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4.12.7 Local Defect 

The summary statistics for the LD over the six visits are shown in Table 4.19 for each eye of the 

28 normal individuals (Top) each eye for the 10 individuals with OHT (Middle) and each eye for 

the 11 individuals with OAG (Bottom). The distribution of the LD is also illustrated in terms of 

Box and Whisker plots for each eye of each of the three groups in Figure 4.6. 
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Local Defect 

(Hz) 

Visit 1 

TOP 

Visit 2 

TOP 

Visit 3 

TOP 

Visit 4 

TOP 

Visit 5 

TOP 

Visit  6 

Dynamic 

Right Mean 

SD 

0.41 
0.78 

0.43 
0.86 

0.32 
0.68 

0.39 
0.84 

0.35 
0.68 

0.89 
0.99 

Left Mean 

SD 

0.30 
0.47 

0.32 
0.80 

0.41 
0.83 

0.28 
0.51 

0.41 
0.92 

0.48 
0.53 

Right Median 

IQR 

0.00 
0.30  

0.00 
0.60  

0.00 
0.22  

0.00 
0.30  

0.00 
0.20  

0.70 
1.15  

Left Median 

IQR  

0.05 
0.42 

0.00 
0.25 

0.00 
0.20 

0.05 
0.32 

0.00 
0.10 

0.35 
0.82 

 

Local Defect 

(Hz) 

Visit 1 

TOP 

Visit 2 

TOP 

Visit 3 

TOP 

Visit 4 

TOP 

Visit 5 

TOP 

Visit  6 

Dynamic 

Right Mean 

SD 

1.42 
2.81  

0.77 
2.4  

1.38 
3.33  

1.37 
3.82  

1.05 
3.32  

2.74 
3.6  

Left Mean 

SD 

0.68 
1.3 

0.73 
1.42 

1.1 
2.71 

1.16 
3.2 

0.67 
2.04 

2.06 
3.13 

Right Median 

IQR 

0.10 
0.32  

0.00 
0.00  

0.00 
0.80 

0.00 
0.22  

0.00 
0.00  

1.75 
1.30  

Left Median 

IQR 

0.10 
0.57 

0.00 
0.80 

0.00 
0.00 

0.00 
0.00 

0.00 
0.07 

0.90 
1.72 

 

Local Defect 

(Hz) 

Visit 1 

TOP 

Visit 2 

TOP 

Visit 3 

TOP 

Visit 4 

TOP 

Visit 5 

TOP 

Visit  6 

Dynamic 

Right Mean 

SD 

3.25 
3.25 

3.80 
4.25 

3.04 
3.09 

3.54 
3.67 

3.74 
4.15 

3.64 
3.09 

Left Mean 

SD 

3.53 
3.9 

3.62 
3.84 

3.69 
3.42 

3.28 
3.7 

3.54 
4.24 

4.06 
4.12 

Right Median 

IQR 

2.50 
5.05 

2.30 
6.05 

3.00 
5.45 

2.80 
6.70 

2.40 
6.55 

2.90 
5.50 

Left Median 

IQR 

1.40 
6.90 

1.60 
6.30 

3.20 
5.10 

1.10 
6.55 

0.90 
8.05 

2.10 
7.05 

 

Table 4.19 The summary statistics (mean, SD, median, IQR) of the LDCFF (Hz) at each visit 

for the right eye and for the left eye for the 28 normal individuals (Top) for the 10 

individuals with OHT (Middle) and for the 11 individuals with OAG (bottom). 
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Overleaf: Figure 4.6 The Box and Whisker plots of the distribution of the LDCFF of each eye 

at each of the first Five Visits using the TOP algorithm and at the Sixth Visit using the 

Dynamic algorithm for the 28 normal individuals (top), the 10 individuals with OHT 

(middle) and the 11 individuals with OAG (bottom). The median is represented by the bold 

line, the 25
th

 and 75
th

 percentiles by the lower and upper edges of the box, respectively, and 

the lowest and highest values by the lower and upper extremities of the whiskers, 

respectively. The results for the right eye over Visits One to Five are colour coded for the 

TOP algorithm in blue and in white for the left eye. The results at Visit Six for the Dynamic 

algorithm are coded in red for the right eye and in white for the left eye. 
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The ANOVA summary table for the LD with the TOP algorithm over the five visits is given in 

Table 4.20. The group mean LD differed across the three groups (p<0.001) and, as would be 

expected, was worst for the group with OAG. The group mean LD did not improve across the 

five visits (p=0.999). 

 

Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Age 1 49 3.74 0.059 

Gender 1 49 1.05 0.311 
Diagnosis 2 49 13.99 <0.001 

Eye 1 441 0.36 0.551 
Visit 4 441 0.02 0.999 
     
Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Age 1 49 3.74 0.059 

Gender 1 49 1.05 0.311 
Diagnosis  2 49 13.99 <0.001 

Eye 1 441 0.36 0.551 
     
Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Age 1 49 3.74 0.059 

Gender 1 49 1.05 0.311 
Diagnosis 2 49 13.99 <0.001 

     
Effect Degrees of Freedom 

Numerator 
Degrees of Freedom 

Denominator 
F value P value 

Age 1 49 3.18 0.081 
Diagnosis 2 49 13.18 <0.001 

Age x Diagnosis 2 49 1.24 0.299 
 

Table 4.20  The Analysis of Variance Summary Table for the LDCFF over the five visits. 
. 
 
 
The ANOVA summary table for the difference between the group mean LD for the TOP 

algorithm at Visit Five and the Dynamic algorithm at Visit Six is given in Table 4.21. As would 

be expected, the group mean LD varied across the groups (p<0.001) being largest for the group 

with OAG. It was larger for the Dynamic algorithm (p=0.004). The increase in the group mean 
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LD with increase in age almost reached statistical significance (p=0.055); however, the 

magnitude of the increase with age was different between the two algorithms (p=0.009).  

 

 Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Age 1 49 4.63 0.036 

Gender 1 49 1.44 0.237 
Diagnosis 2 49 11.90 <0.001 

Eye 1 147 0.92 0.338 
Algorithm 1 147 8.69 0.004 

     
Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Age 1 49 4.63 0.036 

Gender 1 49 1.44 0.237 
Diagnosis  2 49 11.90 <0.001 

Algorithm 1 147 8.63 0.004 

     
Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Age 1 49 3.86 0.055 

Diagnosis  2 49 10.90 <0.001 

Algorithm 1 147 8.63 0.004 

Age x Diagnosis 2 49 1.45 0.244 
Age x Algorithm 1 147 2.95 0.009 

Diagnosis x  

Algorithm 

2 147 3.48 0.033 

     
Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Algorithm 1 147 8.63 0.004 

 

Table 4.21  The Analysis of Variance Summary Table for the LDCFF index between the 

TOP algorithm at Visit Five and the Dynamic algorithm at Visit Six. 

 

 

4.12.8 Examination Duration 

The summary statistics for the examination duration over the six visits are shown in Table 4.22 

for each eye of the 28 normal individuals (Top), for each eye of the 10 individuals with OHT 

(Middle) and for each eye of the 11 individuals with OAG glaucoma (Bottom). The distribution 



 169 

of the examination duration is also illustrated in terms of Box and Whisker plots for each eye of 

each of the three groups in Figure 4.7. 

 

Examination 

Duration 

(Seconds) 

Visit 1 

TOP 

Visit 2 

TOP 

Visit 3 

TOP 

Visit 4 

TOP 

Visit 5 

TOP 

Visit 6 

Dynamic 

Right Mean 

SD 

339 
144 

272 
108 

210 
60 

233 
63 

250 
104 

905 
302 

Left Mean 

SD 

264 
97 

246 
102 

247 
130 

247 
103 

223 
51 

814 
224 

Right Median/ 

IQR   

301 
150 

227 
93 

205 
25 

218 
46 

208 
57 

851 
446 

Left Median/ 

 IQR  

241 
74 

220 
54 

204 
65 

208 
50 

207 
46 

751 
321 

 

Examination 

Duration 

(Seconds) 

Visit 1 

TOP 

Visit 2 

TOP 

Visit 3 

TOP 

Visit 4 

TOP 

Visit 5 

TOP 

Visit 6 

Dynamic 

Right Mean 

SD 

309 
99 

245 
95 

252 
44 

233 
81 

237 
129 

803 
189 

Left Mean 

SD 

253 
114 

236 
100 

207 
40 

225 
112 

231 
129 

920 
312 

Right Median  

IQR  

286 
120 

209 
40 

263 
64 

210 
37 

198 
41 

759 
178 

Left Median 

IQR 

226 
28 

204 
46 

197 
28 

186 
29 

189 
43 

810 
438 

 

Examination 

Duration 

(Seconds) 

Visit 1 

TOP 

Visit 2 

TOP 

Visit 3 

TOP 

Visit 4 

TOP 

Visit 5 

TOP 

Visit 6 

Dynamic 

Right Mean 

SD 

242 
31 

234 
36 

248 
67 

227 
32 

223 
49 

932 
416 

Left Mean 

SD 

263 
66 

227 
46 

209 
33 

229 
48 

214 
35 

766 
202 

Right Median 

IQR  

244 
20 

231 
60 

222 
77 

216 
30 

203 
52 

801 
374 

Left Median 

IQR 

241 
81 

216 
63 

203 
27 

207 
54 

210 
42 

733 
179 

 
Table 4.22 The summary statistics (mean, SD, median, IQR) of the examination duration 
(Seconds) at each visit for the right eye and for the left eye for the 28 normal individuals 

(Top) for the 10 individuals with OHT (Middle) and for the 11 individuals with OAG 

(bottom). 
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Overleaf: Figure 4.7 The Box and Whisker plots of the distribution of the examination 

duration of each eye at each of the first Five Visits using the TOP algorithm and at the Sixth 

Visit using the Dynamic algorithm for the 28 normal individuals (top), the 10 individuals 

with OHT (middle) and the 11 individuals with OAG (bottom). The median is represented 

by the bold line, the 25
th

 and 75
th

 percentiles by the lower and upper edges of the box, 

respectively, and the lowest and highest values by the lower and upper extremities of the 

whiskers, respectively. The results for the right eye over Visits One to Five are colour coded 

for the TOP algorithm in blue and in white for the left eye. The results at Visit Six for the 

Dynamic algorithm are coded in red for the right eye and in white for the left eye. 
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The ANOVA summary table for the examination duration with the TOP algorithm over the five 

visits is given in Table 4.23. The group mean examination duration was similar across the three 

groups (p=0.370). It decreased over the five visits (p<0.001) and was longer for the first eye 

examined (p<0.008).  

 

 
Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Age 1 49 3.78 0.058 

Gender 1 49 1.28 0.264 
Diagnosis 2 49 1.01 0.370 
Eye 1 441 7.05 0.008 

Visit 4 441 5.67 <0.001 

     
Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Age 1 49 2.92 0.094 
Gender 1 49 1.34 0.253 
Eye  1 441 7.05 0.008 

Visit 4 441 5.67 <0.001 

     
Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Age 1 49 2.45 0.124 
Eye  1 441 7.05 0.008 

Visit 4 441 5.67 <0.001 

     
Effect Degrees of Freedom 

Numerator 
Degrees of Freedom 

Denominator 
F value P value 

Eye 1 441 7.05 0.008 

Visit 4 441 5.67 <0.001 

Eye x Visit 4 441 1.26 0.284 
 

Table 4.23 The Analysis of Variance Summary Table for the examination duration over the 

five visits. 
 
 

 

The ANOVA summary table for the difference between the group mean examination duration 

for the TOP algorithm at Visit Five and the Dynamic algorithm at Visit Six is given in Table 

4.24. As would be expected, the group mean examination duration was considerably longer for 

the Dynamic algorithm (p<0.001) and the difference between the two algorithms was seemingly 

independent of age (p=0.812) of diagnosis (p=0.875) and of eye (p=0.112).    
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Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Age 1 49 0.09 0.766 
Gender 1 49 0.64 0.426 
Diagnosis 2 49 0.13 0.875 
Eye 1 147 2.55 0.112 
Algorithm 1 147 563.57 <0.001 

     
Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Age 1 49 0.06 0.812 
Gender 1 49 0.49 0.488 
Eye  1 147 2.55 0.112 
Algorithm 1 147 563.57 <0.001 

     
Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Gender 1 49 0.46 0.503 
Eye  1 147 2.55 0.112 
Algorithm 1 147 563.57 <0.001 

     
Effect Degrees of Freedom 

Numerator 
Degrees of Freedom 

Denominator 
F value P value 

Eye 1 147 2.55 0.112 
Algorithm 1 147 563.57 <0.001 

     
Effect Degrees of Freedom 

Numerator 
Degrees of Freedom 

Denominator 
F value P value 

Algorithm 1 147 553.95 <0.001 

 
Table 4.24 The Analysis of Variance Summary Table for the examination duration between 

the TOP algorithm at Visit Five and the Dynamic algorithm at Visit Six. 

  
 

4.12.9 Catch Trials 

The Group mean (SD) for the incorrect responses to the False-positive (FP) and False-negative 

(FN) catch trials over the six visits for each eye of the 28 normal individuals, for the 10 

individuals with OHT and for the 11 individuals with OAG are shown in Table 4.25. 
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FP and FN  

Catch trials 

Visit 1 

TOP 

Visit 2 

TOP 

Visit 3 

TOP 

Visit 4 

TOP 

Visit 5 

TOP 

Visit 6 

Dynamic 

Right FP  

SD 

10% 
19% 

11% 
21% 

6% 
13% 

5% 
12% 

10% 
15% 

14% 
15% 

Left FP  

SD 

13% 
19% 

9% 
14% 

2% 
6% 

9% 
17% 

6% 
10% 

11% 
12% 

Right FN  

SD 

1% 
4% 

0% 
2% 

1% 
5% 

2% 
7% 

2% 
6% 

0% 
1% 

Left FN  

SD 

2% 
7% 

1% 
3% 

0% 
0% 

2% 
7% 

1% 
5% 

0% 
1% 

 
FP and FN  

Catch trials  

Visit 1 

TOP 

Visit 2 

TOP 

Visit 3 

TOP 

Visit 4 

TOP 

Visit 5 

TOP 

Visit 6 

Dynamic 

Right FP  

SD 

11% 
16% 

5% 
11% 

5% 
10% 

18% 
32% 

8% 
12% 

22% 
18% 

Left FP  

SD 

10% 
17% 

5% 
16% 

8% 
17% 

8% 
14% 

5% 
11% 

19% 
17% 

Right FN  

SD 

9% 
17% 

3% 
9% 

6% 
19% 

2% 
5% 

1% 
5% 

1% 
2% 

Left FN  

SD 

9% 
20% 

0% 
0% 

0% 
0% 

0% 
0% 

3% 
9% 

3% 
9% 

 

FP and FN  

Catch trials  

Visit 1 

TOP 

Visit 2 

TOP 

Visit 3 

TOP 

Visit 4 

TOP 

Visit 5 

TOP 

Visit 6 

Dynamic 

Right FP  

SD 

12% 
19% 

8% 
15% 

13% 
17% 

10% 
17% 

4% 
9% 

19% 
16% 

Left FP  

SD 

11% 
17% 

6% 
10% 

20% 
25% 

10% 
19% 

15% 
22% 

25% 
16% 

Right FN  

SD 

7% 
12% 

0% 
0% 

2% 
6% 

6% 
11% 

0% 
0% 

4% 
5% 

Left FN  

SD 

0% 
0% 

4% 
9% 

0% 
0% 

2% 
6% 

2% 
5% 

3% 
7% 

 

Table 4.25 The summary statistics of the incorrect responses to the False-positive and False-

negative catch trials at each visit for each eye of the 28 normal individuals (top) of the 10 

individuals with OHT (middle) and for the 11 individuals with OAG (bottom). 

 

 
The relative lack of incorrect responses to the various catch trials was insufficient to warrant 

analysis by ANOVA. The number of individuals across each of the three groups exhibiting 

greater than 30% incorrect responses to the FP catch trials for each eye over each of the six visits 

together with the frequency of the false responses are shown in Table 4.26.   
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Within the limitations of the dataset (Table 4.26), the Dynamic algorithm at Visit Six yielded, 

across the three groups, a slightly greater frequency of incorrect responses to the FP catch trials 

than the TOP algorithm at Visit Five.  

 

Normal 

individuals 

Individuals with 

OHT 

 

Individuals with 

OAG 

 

False 

Positive 

respons

es 

 

Visit 

 
Right 

eye 

Left 

eye 

Right 

eye 

Left 

eye 

Right 

eye 

Left 

eye 

>30% 1 5 3 1 1 2 1 
>30% 2 4 2 0 1 1 0 
>30% 3 2 0 0 1 1 2 
>30% 4 1 3 3 1 1 1 
>30% 5 4 0 0 0 0 2 
>30% 6 5 2 2 1 2 1 

 

Table 4.26 The number of individuals across each of the three groups exhibiting greater 

than 30% incorrect responses to the FP catch trials for each eye over each of the six visits 

together with the frequency of the false-responses. 

 

 

 

4.12.10 The ratio of the Peripheral Mean Sensitivity (PMS) to the Central Mean Sensitivity 

(CMS)  

The ratio of the Peripheral Mean Sensitivity (PMS) to the Central Mean Sensitivity (CMS) over 

the six visits for each eye of the 28 normal individuals (top), of the 10 individuals with OHT 

(middle) and the 11 individuals with OAG (bottom) is shown in Table 4.27. 
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Peripheral/Central 

MS 

Visit 1 

TOP 

Visit 2 

TOP 

Visit 3 

TOP 

Visit 4 

TOP 

Visit 5 

TOP 

Visit  6 

Dynamic 

Right Mean 

SD 

0.94 
0.07 

0.93 
0.07 

0.93 
0.07 

0.92 
0.05 

0.93 
0.07 

0.96 
0.08 

Left Mean 

SD 

0.93 
0.07 

0.93 
0.06 

0.92 
0.07 

0.93 
0.05 

0.93 
0.08 

0.96 
0.05 

Right Median 

IQR  

0.95 
0.06 

0.93 
0.10 

0.94 
0.09 

0.94 
0.06 

0.95 
0.10 

0.97 
0.11 

Left Median 

IQR 

0.94 
0.09 

0.94 
0.06 

0.92 
0.07 

0.92 
0.08 

0.93 
0.09 

0.97 
0.07 

 

Peripheral/Central 

MS 

Visit 1 

TOP 

Visit 2 

TOP 

Visit 3 

TOP 

Visit 4 

TOP 

Visit 5 

TOP 

Visit  6 

Dynamic 

Right Mean 

SD 

0.94 
0.12 

0.93 
0.11 

0.87 
0.18 

0.89 
0.20 

0.92 
0.20 

1.03 
0.05 

Left Mean 

SD 

0.92 
0.09 

0.93 
0.13 

0.93 
0.16 

0.91 
0.21 

0.90 
0.20 

0.93 
0.23 

Right Median 

IQR  

0.94 
0.06 

0.97 
0.03 

0.94 
0.09 

0.95 
0.04 

0.99 
0.06 

1.06 
0.05 

Left Median  

IQR 

0.93 
0.06 

0.97 
0.06 

0.98 
0.05 

0.97 
0.05 

0.95 
0.08 

1.01 
0.07 

 

 
Peripheral/Central 

MS 

Visit 1 

TOP 

Visit 2 

TOP 

Visit 3 

TOP 

Visit 4 

TOP 

Visit 5 

TOP 

Visit  6 

Dynamic 

Right Mean 

SD 

0.90 
0.11 

0.87 
0.10 

0.91 
0.09 

0.89 
0.13 

0.89 
0.14 

0.97 
0.11 

Left Mean 

SD 

0.86 
0.14 

0.86 
0.14 

0.89 
0.15 

0.88 
0.15 

0.89 
0.13 

0.94 
0.16 

Right Median 

IQR 

0.88 
0.18 

0.88 
0.12 

0.94 
0.11 

0.92 
0.14 

0.94 
0.19 

1.01 
0.12 

Left Median 

IQR  

0.91 
0.12 

0.90 
0.17 

0.94 
0.14 

0.89 
0.10 

0.96 
0.21 

0.95 
0.20 

 

Table 4.27 The ratio of the PMSCFF to the CMSCFF in each eye of the 28 normal 

individuals (top), the 10 individuals with OHT (middle) and the 11 individuals with 

OAG (bottom) at each of the Six Visits.  
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The Group Mean and Median ratio of the PMS to the CMS for the TOP threshold algorithm were 

essentially similar at each of the five visits. The ratio based upon the mean was slightly lower 

than that of the median particularly for the group with OHT and the group with OAG. A ratio of 

less than one indicates that the MS was higher centrally than peripherally.  The ratio for the 

Dynamic algorithm at Visit Six was greater than that for the TOP algorithm at Visit Five. 

 
 

 

4.13 The change in sensitivity at each given stimulus location (i.e. the variation with 

eccentricity) for the TOP algorithm between Visit Two and Visit One, and between 

Visit Five and Visit Two, and that between the Dynamic algorithm at Visit Six and 

the TOP algorithm at Visit Five.  

The summary statistics of the change in MS at each stimulus location between Visit Two and 

Visit One for the right eye (top) and for the left eye (bottom) of the 28 normal individuals are 

shown in Figure 4.8 (mean [SD]) and in Figure 4.9 (median [IQR]), respectively, and for the 

right eye (top) and left eye (bottom) of the 10 individuals with OHT in Figure 4.10 and Figure 

4.11, respectively.  In general, the median tended to slightly underestimate the between-visit 

change in MS, relative to that indicated by the mean, in the field of each eye. Nevertheless, both 

measures suggested a slightly higher MS at Visit Two which was more apparent for the 

individuals with OHT, and that the magnitude of the change was approximately similar with 

increased eccentricity for the field of each eye in both groups of individuals.  
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Figure 4.8 The group mean (SD) of the difference in MSCFF at each stimulus location 

between Visit Two and Visit One for the right eye (top) and left eye (bottom) for the 28 

normal individuals. The stimulus locations for the left eye are displayed in right eye format 

to aid the between-eye comparison. The lower value indicates the SD. An increasing 

‘warmth’ of the colour at each stimulus location indicates an improvement in sensitivity at 

Visit Two.  
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Figure 4.9 The group median (IQR) of the difference in MSCFF at each stimulus location 

between Visit Two and Visit One for the right eye (top) and left eye (bottom) for the 28 

normal individuals. The stimulus locations for the left eye are displayed in right eye format 

to aid the between-eye comparison. The lower value indicates the IQR. An increasing 

‘warmth’ of the colour at each stimulus location indicates an improvement in sensitivity at 

Visit Two.  
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Figure 4.10 The group mean (SD) of the difference in MSCFF at each stimulus location 

between Visit Two and Visit One for the right eye (top) and left eye (bottom) for the 10 

individuals with OHT. The stimulus locations for the left eye are displayed in right eye 

format to aid the between-eye comparison. The lower value indicates the SD. An increasing 

‘warmth’ of the colour at each stimulus location indicates an improvement in sensitivity at 

Visit Two.  
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Figure 4.11 The group median (IQR) of the difference in MSCFF at each stimulus location 

between Visit Two and Visit One for the right eye (top) and left eye (bottom) for the 10 

individuals with OHT. The stimulus locations for the left eye are displayed in right eye 

format to aid the between-eye comparison. The lower value indicates the IQR. An 

increasing ‘warmth’ of the colour at each stimulus location indicates an improvement in 

sensitivity at Visit Two.  
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Similarly, the summary statistics of the change in MS at each stimulus location between Visit 

Five and Visit Two for the right eye (top) and left eye (bottom) for the 28 normal individuals are 

shown in Figure 4.12 (mean [SD]) and in Figure 4.13 (median [IQR]), respectively, and for the 

right eye (top) and left eye (bottom) for the 10 individuals with OHT in Figure 4.14 and Figure 

4.15, respectively.   

 

In general, the median again tended to slightly underestimate the magnitude of the between-visit 

change in sensitivity relative to that indicated by the mean, in the field of each eye. Both 

measures suggested an approximately similar magnitude of the MS at each examination with 

increase in eccentricity for the field of each eye. 

 

The summary statistics of the change in MS at each stimulus location between the TOP 

algorithm at Visit Five and the Dynamic algorithm at Visit Six for the right eye (top) and left eye 

(bottom) for the 28 normal individuals are shown in Figure 4.16 (mean [SD]) and in Figure 4.17 

(median [IQR]), respectively, and for the right eye (top) and left eye (bottom) for the 10 

individuals with OHT in Figure 4.18 and Figure 4.19, respectively.   
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Figure 4.12 The group mean (SD) of the difference in MSCFF at each stimulus location 

between Visit Five and Visit Two for the right eye (top) and left eye (bottom) for the 28 

normal individuals. The stimulus locations for the left eye are displayed in right eye format 

to aid the between-eye comparison. The lower value indicates the Standard Deviation. An 

increasing ‘warmth’ of the colour at each stimulus location indicates an improvement in 

sensitivity at Visit Five.  
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Figure 4.13 The group median (IQR) of the difference in MSCFF at each stimulus location 

between Visit Five and Visit Two for the right eye (top) and left eye (bottom) for the 28 

normal individuals. The stimulus locations for the left eye are displayed in right eye format 

to aid the between-eye comparison. The lower value indicates the IQR. An increasing 

‘warmth’ of the colour at each stimulus location indicates an improvement in sensitivity at 

Visit Five.  
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Figure 4.14 The group mean (SD) of the difference in MSCFF at each stimulus location 

between Visit Five and Visit Two for the right eye (top) and left eye (bottom) for the 10 

individuals with OHT. The stimulus locations for the left eye are displayed in right eye 

format to aid the between-eye comparison. The lower value indicates the Standard 

Deviation. An increasing ‘warmth’ of the colour at each stimulus location indicates an 

improvement in sensitivity at Visit Five.  
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Figure 4.15 The group median (IQR) of the difference in MSCFF at each stimulus location 

between Visit Five and Visit Two for the right eye (top) and left eye (bottom) for the 10 

individuals with OHT. The stimulus locations for the left eye are displayed in right eye 

format to aid the between-eye comparison. The lower value indicates the IQR. An 

increasing ‘warmth’ of the colour at each stimulus location indicates an improvement in 

sensitivity at Visit Five. 
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Figure 4.16 The group mean (SD) of the difference in MSCFF at each stimulus location for 

the TOP algorithm at visit Five and the Dynamic algorithm at visit Six for the right eye 

(top) and left eye (bottom) for the 28 normal individuals. The stimulus locations for the left 

eye are displayed in right eye format to aid the between-eye comparison. The lower value 

indicates the Standard Deviation. An increasing ‘warmth’ of the colour at each stimulus 

location indicates an improvement in sensitivity for the Dynamic algorithm at Visit Six.  
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Figure 4.17  The group median (IQR) of the difference in MSCFF at each stimulus location 

for the TOP algorithm at visit Five and the Dynamic algorithm at visit Six for the right eye 

(top) and left eye (bottom) for the 28 normal individuals. The stimulus locations for the left 

eye are displayed in right eye format to aid the between-eye comparison. The lower value 

indicates the IQR. An increasing ‘warmth’ of the colour at each stimulus location indicates 

an improvement in sensitivity for the Dynamic algorithm at Visit Six.  
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Figure 4.18 The group mean (SD) of the difference in MSCFF at each stimulus location for 

the TOP algorithm at visit Five and the Dynamic algorithm at visit Six for the right eye 

(top) and left eye (bottom) for the 10 individuals with OHT. The stimulus locations for the 

left eye are displayed in right eye format to aid the between-eye comparison. The lower 

value indicates the Standard Deviation. An increasing ‘warmth’ of the colour at each 

stimulus location indicates an improvement in sensitivity for the Dynamic algorithm at 

Visit Six.  
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Figure 4.19 The group median (IQR) of the difference in MSCFF at each stimulus location 

for the TOP algorithm at visit Five and the Dynamic algorithm at visit Six for the right eye 

(top) and left eye (bottom) for the 10 individuals with OHT. The stimulus locations for the 

left eye are displayed in right eye format to aid the between-eye comparison. The lower 

value indicates the IQR. An increasing ‘warmth’ of the colour at each stimulus location 

indicates an improvement in sensitivity for the Dynamic algorithm at Visit Six.  
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In general, the mean tended to slightly underestimate the difference between the TOP and the 

Dynamic algorithm in MS, relative to that indicated by the median, in the field of each eye. Both 

measures suggested, for the field of each eye, an increase in the disparity (i.e. the greater MS for 

the Dynamic algorithm) between the two algorithms with increase eccentricity and was more 

pronounced for the individuals with OHT. 

 

 

4.14 The change in sensitivity, across all stimulus locations, between Visit Two and Visit 

One, between Visit Five and Visit Two, and between the Dynamic algorithm at Visit 

Six and the TOP algorithm at Visit Five, respectively, as a function of the magnitude 

of sensitivity at the initial visit of the given paired comparison.  

The change in sensitivity, across all stimulus locations, between Visit Two and Visit One as a 

function of the magnitude of sensitivity at Visit One for the 28 normal individuals, the 10 

individuals with OHT, the 11 individuals with OAG and for all three groups, combined,  is given 

in Figure 4.20. The corresponding changes between Visit Five and Visit Two are given in Figure 

4.21 and between the Dynamic algorithm at Visit Six and the TOP algorithm at Visit Five is 

given in Figure 4.22. 

 

The 50th percentile of the distribution of the change in sensitivity at each location for the normal 

individuals between Visits Two and One as a function of the sensitivity at Visit One (i.e. the 

defect depth) exhibited a tendency, within the limitations of the size of the case series, to exhibit 

a positive slope with reduction in sensitivity indicating an increasingly preferential improvement 

for the lower values of sensitivity at Visit Two. The corresponding slope was more positive for 

the left eye. A similar result was present for the individuals with OHT. However, the slopes for 

each eye of the individual with OAG remained flat, i.e. approximated to zero. The slopes for all 

three groups, combined, were, by definition, based upon a larger number of individuals than 

those for each individual group and, as a consequence, clearly exhibited the trend for an 
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increasing improvement in sensitivity at Visit Two with increasing defect depth manifested at 

Visit One (i.e. a positive slope).    

 

Within the limitation of the data set, the slope of the 50th percentile of the distribution of the 

change in sensitivity at each location between Visit Five and Visit Two tended to zero for each 

eye of each group and for all three groups, combined, indicating little change between the two 

visits. 

 

The 50th percentile of the distribution of the change in sensitivity at each location for the normal 

individuals between the Dynamic algorithm recorded at Visit Six and the TOP algorithm 

recorded at Visit Five as a function of the sensitivity recoded with the TOP algorithm exhibited a 

positive slope in each eye indicating an increasingly greater sensitivity for the Dynamic 

algorithm compared to the TOP algorithm with increasing defect depth as defined by the TOP 

algorithm.  

 

The corresponding slope for the individuals with OHT tended to zero for each eye whilst that for 

the individuals with OAG exhibited a slight positive slope. The slopes for all three groups, 

combined, clearly exhibited the trend for an increasingly higher sensitivity for the Dynamic 

algorithm compared to the TOP algorithm with increasing defect depth as defined by the TOP 

algorithm.  
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Figure 4.20 The 90
th 

(red), 50
th

 (black) and 10
th

 (blue) percentiles of the distribution of the differences in 

sensitivity across all stimulus locations between Visits Two and Visit One as a function of the sensitivity at the 

corresponding stimulus location recorded at Visit One for the right (left column) and left (right column) eye, 

for the normal individuals (top), the individuals with OHT (middle top), the individuals with OAG (middle 

bottom) and for all three groups, combined (bottom), using the Octopus 311, Program G1, TOP algorithm. 
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Figure 4.21 The 90
th 

(red), 50
th

 (black) and 10
th

 (blue) percentiles of the distribution of the differences in 

sensitivity across all stimulus locations between Visits Five and Visit Two as a function of the sensitivity at the 

corresponding stimulus location recorded at Visit Two for the right (left column) and left (right column) eye, 

for the normal individuals (top), the individuals with OHT (middle top), the individuals with OAG (middle 

bottom) and for all three groups, combined (bottom), using the Octopus 311, Program G1, TOP algorithm. 
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Figure 4.22 The 90
th 

(red), 50
th

 (black) and 10
th

 (blue) percentiles of the distribution of the differences in 

sensitivity across all stimulus locations between the Dynamic algorithm at Visit Six and the TOP algorithm at 

Visit Five as a function of the sensitivity at the corresponding stimulus location recorded at for the TOP 

algorithm at Visit Five for the right (left column) and left (right column) eye, normal individuals (top), the 

individuals with OHT (middle top), the individuals with OAG (middle bottom) and for all three groups, 

combined (bottom), using the Octopus 311, Program G1, TOP algorithm. 



 196 

4.15 The difference in the Comparison Probability value and in the Corrected 

Comparison Probability value, respectively, across all given stimulus locations 

between Visit One and Visit Two, between Visit Two and Visit Five and between the 

TOP algorithm at visit Five and the Dynamic algorithm at visit Six, respectively for 

each of the three groups, separately, and combined. 

     The Comparison probability values across all given stimulus locations at Visit Two compared 

with those at Visit One for the 28 normal individuals, for the 10 individuals with OHT and for 

the 11 individuals with OAG, and for the three groups, combined, is given in Table 4.28. The 

corresponding values at Visit Two compared to those at Visit Five are given in Table 4.29. The 

corresponding values between the TOP algorithm at Visit Five and the Dynamic algorithm at 

Visit Six are given in Table 4.30. A grater number of data entries below the shaded line (of 

unity) represents an improvement from Visit One to Visit Two in one or more probability levels 

at the given location. 

 

The extent of the improvement between Visits One and Two in the Comparison probability value 

across the normal individuals, as a group, (Table 4.28) was relatively small in each eye, (right 

eye, 65 locations exhibiting an improvement and 37 locations exhibiting a deterioration, from a 

total of 1652 locations, i.e. overall,  a 1.8 fold improvement,; left eye, 106 locations exhibiting an 

improvement, 66 locations exhibiting a deterioration i.e. overall,  a 1.6 fold improvement). Thus, 

the field of the right eye showed an improvement of one or more probability levels at 2.3 

stimulus locations per individual and a deterioration at 1.3 locations per individual. The field of 

the left eye showed an improvement at 3.8 locations per individual and a deterioration at 2.4 

locations per individual.   

The improvement between Visits One and Two in the Comparison probability value across the 

10 individuals with OHT, as a group, (Table 4.28) was also modest (right eye, 72 locations 

exhibiting an improvement, 56 locations exhibiting a deterioration i.e. overall, a 1.3 fold overall 
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improvement; left eye, 69 locations exhibiting an improvement, and 49 locations exhibiting a 

deterioration i.e. overall, a 1.4 fold overall improvement). The field of the right eye showed an 

improvement of one or more probability levels at 7.2 stimulus locations per individual and a 

deterioration at 5.6 locations per individual. The field of the left eye showed an improvement at 

6.9 locations per individual and a deterioration at 4.9 locations per individual.   

The improvement between Visits One and Two in the Comparison probability value across the 

11 individuals with OAG, as a group, (Table 4.28) was the largest of the three groups, both in 

absolute and in proportionate terms (right eye, 121 locations exhibiting an improvement, 34 

locations exhibiting a deterioration i.e. overall, a 3.5 fold overall improvement; left eye, 123 

locations exhibiting an improvement, and 59 locations exhibiting a deterioration i.e. overall, a 

2.1 fold overall improvement). The field of the right eye showed an improvement of one more 

probability levels at 11.0 stimulus locations per individual and a deterioration at 3.1 locations per 

individual. The field of the left eye showed an improvement at 11.1 locations per individual and 

a deterioration at 5.3 locations per individual.   

One facet of the improvement, apparent, across each of the three groups, particularly for the left 

eye, was the number of stimulus locations exhibiting abnormality at p<0.005 at Visit One which 

exhibited normality at Visit Two. 
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Visit Two  Visit Two 

 NS <5% <2% <1% <0.5%   NS <5% <2% <1% <0.5% 

NS 411 8 2 2 2  NS 370 18 11 2 10 

<5% 42 6 2 2 4  <5% 29 12 2 0 9 

<2% 13 6 3 2 6  <2% 16 2 4 1 4 

<1% 19 1 2 2 4  <1% 7 2 3 5 2 

V
is

it
 O

n
e 

<0.5% 19 5 6 8 72  

V
is

it
 O

n
e 

<0.5% 39 11 9 5 76 

 

Visit Two  Visit Two 

 NS <5% <2% <1% <0.5%   NS <5% <2% <1% <0.5% 

NS 2397 31 20 10 14  NS 2313 55 30 20 42 

<5% 86 15 6 3 14  <5% 64 17 6 0 11 

<2% 34 16 12 5 15  <2% 46 2 6 1 7 

<1% 27 4 6 4 9  <1% 21 2 5 5 2 

V
is

it
 O

n
e 

<0.5% 60 6 8 11 78  

V
is

it
 O

n
e 

<0.5% 124 18 9 7 78 

 

Table 4.28 The Comparison probability value across all the given stimulus locations at 

Visit Two compared with that at Visit One for the right eye (left column) and for the left 

eye (right column) for the 28 normal individuals (top), for the 10 individuals with OHT 

(middle top) and for the 11 individuals with OAG (middle bottom), and for the three 

groups, combined (bottom). The shading indicates the number of locations exhibiting 

identical probability levels at the two examinations. The data entries above the grey line 

indicate a statistically more severe field loss at Visit Two compared to that at Visit One and 

those below the line a statistically less severe field loss at Visit Two compared to Visit One, 

i.e. an improvement from Visit One to Visit Two. 

 

 

  

Visit Two  Visit Two 

 NS <5% <2% <1% <0.5%   NS <5% <2% <1% <0.5% 

NS 1533 13 7 5 2  NS 1474 31 13 14 3 

<5% 30 8 3 0 2  <5% 24 5 3 0 1 

<2% 12 6 6 1 0  <2% 11 0 1 0 1 

<1% 6 0 2 1 4  <1% 10 0 1 0 0 

V
is

it
 O

n
e 

<0.5% 8 0 0 1 2  

V
is

it
 O

n
e 

<0.5% 57 3 0 0 0 
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No overall improvement in the Comparison probability value was present between Visits Two 

and Five for the normal individuals, as a group, (Table 4.29)  (right eye, 44 locations exhibiting 

an improvement and 100 locations exhibiting a deterioration, i.e. overall, a 2.3 fold overall 

deterioration; left eye, 52 locations exhibiting an improvement, 84 locations exhibiting a 

deterioration i.e. overall, a 1.6 fold deterioration). The field of the right eye thus showed an 

improvement of one more probability levels at 1.6. stimulus locations per individual and a 

deterioration at 3.5 locations per individual. The field of the left eye showed an improvement at 

1.8 locations per individual and a deterioration at 3.0 locations per individual.  

Little improvement occurred between Visits Two and Five in the Comparison probability value 

across the 10 individuals with OHT, as a group, (Table 4.29) (right eye, 42 locations exhibiting 

an improvement, 23 locations exhibiting a deterioration i.e. a 1.8 fold overall improvement; left 

eye, 40 locations exhibiting an improvement, and 25 locations exhibiting a deterioration i.e. 

overall, a 1.6 fold overall improvement). The field of the right eye showed an improvement of 

one or more probability levels at 4.2 stimulus locations per individual and a deterioration at 2.3 

locations per individual. The field of the left eye showed an improvement at 4.0 locations per 

individual and a deterioration at 2.5 locations per individual.   

The improvement between Visits Two and Five in the Comparison probability value across the 

11 individuals with OAG, as a group, (Table 4.29) was again the largest of the three groups, both 

in absolute and in proportionate terms (right eye, 51 locations exhibiting an improvement, 46 

locations exhibiting a deterioration i.e. overall no improvement; left eye, 110 locations exhibiting 

an improvement, and 42 locations exhibiting a deterioration i.e. overall, a 2.6 fold overall 

improvement). The field of the right eye showed an improvement of one or more probability 

levels at 4.6 stimulus locations per individual and a deterioration at 4.1 locations per individual. 
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The field of the left eye showed an improvement at 10 locations per individual and a 

deterioration at 3.8 locations per individual.   

Across the three groups, combined, the probability values for the field of the right eye tended to 

be lower at Visit Five compared with Visit Two whereas the reverse applied for the field of the 

left eye. 

For the TOP algorithm, across the normal individuals, (Table 4.30 Top left) 101 locations for the 

field of the right eye exhibited a smaller Comparison Probability value (i.e. a statistically deeper 

defect), compared to the Dynamic algorithm and 41 locations a larger probability value, (i.e. a 

statistically less deep defect), resulting in overall, a 2.4 fold greater emphasis in the magnitude of 

the statistical probability associated with the height of the field compared to the Dynamic 

algorithm. Similarly, (Table 4.30 Top right) the statistical probability was less severe for the 

field of the left eye with the Dynamic Algorithm (97 locations exhibited a statistically deeper 

Comparison Probability value for the TOP algorithm compared to the Dynamic algorithm and 27 

locations a less severe defect, i.e. overall, a 3.6 fold difference). 

Across the 10 individuals with OHT, as a group, (Table 4.30) the Comparison Probability values 

were almost identical (2 locations for the field of the right eye exhibited a statistically deeper 

loss by Comparison Probability analysis for the TOP algorithm compared to the Dynamic 

algorithm and 5 locations the reverse). For the field of the left eye, 3 locations exhibited a 

statistically deeper loss by  Comparison Probability value for the TOP algorithm compared to the 

Dynamic algorithm and 15 locations a larger probability value).  
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Visit Five  Visit Five 

 NS <5% <2% <1% <0.5%   NS <5% <2% <1% <0.5% 

NS 1489 29 15 11 39  NS 1507 18 16 14 20 

<5% 21 4 1 2 1  <5% 28 3 2 1 4 

<2% 11 2 7 0 1  <2% 12 2 4 0 8 

<1% 1 2 0 4 1  <1% 2 2 0 1 1 

V
is

it
 T

w
o

 

<0.5% 1 2 1 3 4  

V
is

it
 T

w
o

 

<0.5% 5 1 0 0 1 

 

Visit Five  Visit Five 

 NS <5% <2% <1% <0.5%   NS <5% <2% <1% <0.5% 

NS 497 3 1 1 6  NS 522 2 1 0 8 

<5% 14 2 1 0 3  <5% 13 0 1 0 4 

<2% 10 0 2 0 6  <2% 12 1 0 0 8 

<1% 9 1 0 0 2  <1% 7 0 1 2 1 

V
is

it
 T

w
o

 

<0.5% 6 1 1 0 24  

V
is

it
 T

w
o

 

<0.5% 5 1 0 0 1 

 

Visit Five  Visit Five 

 NS <5% <2% <1% <0.5%   NS <5% <2% <1% <0.5% 

NS 481 12 11 2 5  NS 428 11 8 2 6 

<5% 16 2 1 3 1  <5% 28 8 4 0 3 

<2% 7 1 1 3 5  <2% 24 4 3 2 2 

<1% 4 4 0 3 6  <1% 7 2 2 0 4 

V
is

it
 T

w
o

 

<0.5% 4 4 3 8 65  

V
is

it
 T

w
o

 

<0.5% 26 8 4 5 58 

 

Visit Five  Visit Five 

 NS <5% <2% <1% <0.5%   NS <5% <2% <1% <0.5% 

NS 2467 44 27 14 47  NS 2457 31 25 16 34 

<5% 51 8 3 5 5  <5% 69 11 7 1 11 

<2% 28 3 10 3 12  <2% 48 7 7 2 18 

<1% 14 7 0 7 9  <1% 16 4 3 3 6 

V
is

it
 T

w
o

 

<0.5% 11 7 5 11 93  

V
is

it
 T

w
o

 

<0.5% 36 10 4 5 60 

 
Table 4.29 The change in the Comparison probability value across all the given stimulus 

locations between Visit Five and Visit Two for the right eye (left column) and for the left 

eye (right column) for the 28 normal individuals (top), for the 10 individuals with OHT 

(middle top) and for the 11 individuals with OAG (middle bottom), and for the three 

groups, combined (bottom). The shading indicates the number of locations exhibiting 

identical probability levels at the two examinations. The data entries above the grey line 

indicate statistically more severe field loss at Visit Five compared to that at Visit Two and 

those below the line statistically less severe field loss at Visit Two compared to Visit Five, 

i.e. an improvement from Visit Two to Visit Five. 
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Across the 11 individuals with OAG, as a group, (Table 4.30) 72 locations for the field of the 

right eye exhibited a smaller Comparison Probability value for the TOP algorithm compared to 

the Dynamic algorithm and 17 locations a larger probability value, i.e. a 4.2 fold reduction in the 

magnitude of the statistical probability associated with the height of the field recorded with the 

Dynamic Algorithm.  Similarly, the magnitude of the statistical probability associated with the 

height of the field was reduced for the field of the left eye with the Dynamic Algorithm (68 

locations exhibited a smaller Comparison Probability value for the TOP algorithm compared to 

that of the Dynamic algorithm and 26 locations a larger probability value, i.e. a 2.6 fold 

reduction. 

The reduced magnitude of the statistical probability associated with the height of the field 

recorded with the Dynamic algorithm compared to that of the TOP algorithm is readily apparent 

in the data for all three groups, combined, and primarily occurs in the normal individuals and in 

those with OAG from the number of locations which lies within the normal range for the 

Dynamic algorithm but are abnormal with the TOP algorithm. Thus, it would appear that the 

Dynamic algorithm will underestimate the statistical height of the normal visual field compared 

to that of the TOP algorithm.  
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Dynamic Algorithm  Dynamic Algorithm 

 NS <5% <2% <1% <0.5%   NS <5% <2% <1% <0.5% 

NS 555 2 3 0 0  NS 542 4 5 1 3 

<5% 1 0 0 0 0  <5% 2 0 1 0 1 

<2% 1 0 0 0 0  <2% 1 0 1 0 0 

<1% 0 0 0 0 0  <1% 0 0 0 0 0 T
O

P
 A

lg
o
ri

th
m

 

<0.5% 0 0 0 0 28  

T
O

P
 

<0.5% 0 0 0 0 29 

 

Dynamic Algorithm  Dynamic Algorithm 

 NS <5% <2% <1% <0.5%   NS <5% <2% <1% <0.5% 

NS 497 6 3 1 0  NS 490 10 2 1 7 

<5% 23 1 1 0 2  <5% 26 2 2 1 1 

<2% 12 3 2 1 2  <2% 12 4 1 0 2 

<1% 8 0 3 2 1  <1% 8 0 0 1 0 T
O

P
 A

lg
o
ri

th
m

 

<0.5% 15 3 1 4 58  

T
O

P
 

<0.5% 13 2 2 1 61 

 

Dynamic Algorithm  Dynamic Algorithm 

 NS <5% <2% <1% <0.5%   NS <5% <2% <1% <0.5% 

NS 2554 24 17 7 5  NS 2554 27 13 5 13 

<5% 52 3 2 0 3  <5% 56 4 4 1 2 

<2% 33 3 4 1 3  <2% 29 5 3 0 3 

<1% 22 0 5 2 1  <1% 23 1 0 2 0 T
O

P
 A

lg
o
ri

th
m

 

<0.5% 49 3 2 6 90  

T
O

P
 

<0.5% 46 5 2 1 92 

 

Table 4.30 The change in the Comparison probability value across all the given stimulus 

locations between the Dynamic Algorithm at Visit Six and the TOP Algorithm at Visit Five 

for the right eye (left column) and for the 28 normal individuals (top), for the 10 

individuals with OHT (middle top) and for the 11 individuals with OAG (middle bottom), 

and for the three groups, combined (bottom). The data entries above the grey line indicate 

statistically more severe field loss at Visit Six using the Dynamic algorithm compared to 

that at Visit Five using the TOP algorithm and those below the line a statistically less severe 

field loss at Visit Six using the Dynamic algorithm compared to Visit Five using the TOP 

algorithm. 

Dynamic Algorithm  Dynamic Algorithm 

 NS <5% <2% <1% <0.5%   NS <5% <2% <1% <0.5% 

NS 1502 16 11 6 5  NS 1522 13 6 3 3 

<5% 28 2 1 0 1  <5% 28 2 1 0 0 

<2% 20 0 2 0 1  <2% 16 1 1 0 1 

<1% 14 0 2 0 0  <1% 15 1 0 1 0 T
O

P
 A

lg
o
ri

th
m

 

<0.5% 34 0 1 2 4  

T
O

P
 

<0.5% 33 3 0 0 2 
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All 49 individuals across the three groups exhibited identical Comparison and Corrected 

Comparison probability maps in both eyes at each of the 6 visits. It was subsequently learned 

that the corrected comparison map was not calculated for CFF. This outcome avoided the 

necessity to evaluate the learning effect in terms of the changes in Corrected Comparison 

Probability level.     

4.16 The within-individual between-visit change in performance of the visual field indices 

between Visits One to Two and Visit Two to Five.  

The within-individual between-visit change in performance was considered firstly, in terms of 

the absolute change, for each of the visual field indices, between Visit One and Visit Two 

compared to that between Visit Two and Visit Five; and, secondly, in terms of the proportionate 

change in the MS index, only, between Visit One and Visit Two compared to that between Visit 

Two and Visit Five. Such an analysis was undertaken to compare, for each individual, the 

magnitude of the learning effect occurring between the first two examinations with that 

occurring over the remaining visits. 

 

4.16.1 Mean Sensitivity  

The difference in the MS from Visit One to Visit Two compared to that between Visit Two and 

Visit Five for each eye of the 28 normal individuals is shown graphically in Figure 4.23. The 

corresponding difference in proportionate terms are given in Table 4.31.  
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Figure 4.23 The scatter plot of the difference in the magnitude of the MSCFF (Hz) between 

Visit One and Visit Two (abscissa) against the difference in the magnitude between Visit 

Two and Visit Five (ordinate) for each of the 28 normal individuals for the right (top), and 

left (bottom) eyes. Data points in the top left quadrant represent a deterioration from Visit 

One to Visit Two and an improvement from Visit Two to Visit Five. Data points in the top 

right quadrant represent an improvement from Visit One to Visit Two and also from Visit 

Two to Visit Five. Data points in the bottom right quadrant represent an improvement 

from Visit One to Visit Two and a deterioration from Visit Two to Visit Five. Data points 

in the bottom left quadrant represent a deterioration both from Visit One to Visit Two and 

from Visit Two to Visit Five.  

 

 

 

A wide variation in performance between Visits One and Two was present amongst the normal 

individuals both between-eyes of an individual and between individuals for a given eye. A 

similar variation was present between Visits Two and Five, not only between-eyes of an 

individual and between individuals for a given eye but also between the two pairs of visits. 
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The difference in the MS from Visit One to Visit Two compared to the difference between Visit 

Two and Visit Five for each eye of the 10 individuals with OHT is shown graphically in Figure 

4.24. The corresponding difference in proportionate terms is given in Table 4.32. Six of the 10 

individuals with OHT exhibited an improvement in each eye from Visit One to Visit Two. Of 

these six individuals, two also exhibited an improvement in each eye from Visit Two to Visit 

Five.  

 

The difference in the MS from Visit One to Visit Two compared to the difference between Visit 

Two and Visit Five for each eye of the 11 individuals with OAG is shown graphically in Figure 

4.25. The corresponding difference in proportionate terms is given in Table 4.33. Seven of the 11 

individuals with OAG exhibited an improvement in each eye from Visit One to Visit Two (Table 

4.33). Of these seven individuals, five also exhibited an improvement in each eye from Visit 

Two to Visit Five. The magnitude of the improvement varied both between-eyes of an individual 

and between individuals for a given eye and also between the two pairs of visits     
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Case 
Number 

 

Right Eye 
Absolute 
Change (Hz) 
V1 to V2 

Right Eye 
Proportionate 
Change (%) 
V1 to V2 

Right Eye 
Absolute  
Change (Hz) 
V2 to V5 

Right Eye 
Proportionate 
Change (%) 
V2 to V5 

Left Eye 
Absolute  
Change (Hz) 
V1 to V2 

Left Eye 
Proportionate 
Change (%) 
V1 to V2 

Left Eye 
Absolute  
Change (Hz) 
V2 to V5 

Left Eye 
Proportionate 
Change(%) 
V2 to V5 

1 2.80 8.41% -1.40 -3.88% 0.10 0.28% -1.10 -3.06% 
2 -2.00 -5.71% 6.70 20.30% 22.30 170.23% 4.50 12.71% 
3 -2.90 -8.26% -1.50 -4.66% -1.60 -5.06% 2.40 8.00% 
4 -0.20 -0.65% 4.10 13.40% 1.20 3.93% -3.40 -10.73% 
5 -0.60 -1.53% 0.40 1.03% -0.70 -1.82% 0.50 1.32%% 
6 0.50 1.45% 5.00 14.25% -1.90 -5.21% 3.50 10.12% 
7 3.80 11.55% -0.70 -1.91% 1.90 5.57% 0.50 1.39% 
8 -3.20 -8.82% -2.90 -8.76% 2.60 8.52% 0.00 0.00% 
9 -1.10 -3.44% 5.30 17.15% -5.20 -14.73% 5.90 19.60% 

10 -2.70 -7.56% -1.80 -5.45% 3.30 10.09% -3.00 -8.33% 
11 0.00 0.00% 0.20 0.53% -1.20 -2.99% 0.30 0.77% 
12 -0.20 -0.61% -17.30 -53.23% -9.40 -25.68% -7.20 -26.47% 
13 4.60 13.81% -1.10 -2.90% -0.10 -0.27% -0.30 -0.80% 
14 0.00 0.00% 2.00 6.33% 1.60 5.23% 3.20 9.94% 
15 -0.20 -0.54% -1.50 4.07% 0.40 1.05% 0.30 0.78% 
16 0.30 0.81% -0.30 -0.80% -3.20 -8.29% 1.20 3.39% 
17 -0.40 -0.94% 0.40 0.95% -1.50 -3.55% 0.80 1.96% 
18 1.40 3.74% -2.00 -5.15% 2.50 6.51% -1.30 -3.18% 
19 -1.40 -3.92% 0.80 2.33% 2.20 6.90% 2.20 6.45% 
20 2.20 6.21% -1.40 -3.72% 1.30 3.74% -1.60 -4.43% 
21 0.20 0.49% 0.40 0.98% 0.00 0.00% -0.30 -0.74% 
22 1.40 4.83% -2.60 -8.55% 4.60 14.42% -0.90 -2.47% 
23 4.00 13.65% -0.10 -0.30% 1.10 3.50% 0.10 0.31% 
24 2.00 6.13% -2.20 -6.36% -0.70 -2.19% 1.30 4.15% 
25 2.30 6.53% 0.40 1.07% 1.80 5.11% -0.30 -0.81% 
26 -1.30 -3.88% 0.80 2.48% 0.70 2.16% 1.80 5.44% 
27 4.40 12.87% -1.90 -4.92% -1.50 -4.32% 3.10 9.34% 
28 0.80 2.83% 1.10 3.78% 7.20 26.18% -5.90 -17.00% 

Table 4.31 The absolute (Hz) and proportionate change (%) in MSCFF for each eye of the 28 individuals between Visit One and Visit Two 

and between Visit Two and Visit Five.  The green shading denotes an improvement from the first to the second visit of either given paired 

comparison. The red shading denotes a deterioration from the first to the second field of either given paired comparison. 
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Figure 4.24 The scatter plot of the difference in the magnitude of the MSCFF (Hz) between 

Visit One and Visit Two (abscissa) against the difference in the magnitude between Visit 

Two and Visit Five (ordinate) for each of the  10 individuals with OHT for the right (top), 

and left (bottom) eyes. A negative value represents deterioration in performance. Data 

points in the top left quadrant represent a deterioration from Visit One to Visit Two and 

an improvement from Visit Two to Visit Five. Data points in the top right quadrant 

represent an improvement from Visit One to Visit Two and also from Visit Two to Visit 

Five. Data points in the bottom right quadrant represent an improvement from Visit One 

to Visit Two and a deterioration from Visit Two to Visit Five. Data points in the bottom left 

quadrant represent a deterioration both from Visit One to Visit Two and from Visit Two to 

Visit Five.  



 209 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.32 The absolute (Hz) and proportionate change (%) in MSCFF for each eye of the 10 individuals  with OHT between Visit One and 

Visit Two and between Visit Two and Visit Five.  The green shading denotes an improvement from the first to the second field of either 

given paired comparison. The red shading denotes a deterioration from the first to the second field of either given paired comparison. 

 

 

 

Case 
Number 

 

Right Eye 
Absolute 
Change (Hz) 
V1 to V2 

Right Eye 
Proportionate 
Change (%) 
V1 to V2 

Right Eye 
Absolute  
Change (Hz) 
V2 to V5 

Right Eye 
Proportionate 
Change (%) 
V2 to V5 

Left Eye 
Absolute  
Change (Hz) 
V1 to V2 

Left Eye 
Proportionate 
Change (%) 
V1 to V2 

Left Eye 
Absolute  
Change (Hz) 
V2 to V5 

Left Eye 
Proportionate 
Change(%) 
V2 to V5 

1 3.90 12.23% -0.90 -2.51% 3.40 10.97% -2.30 -6.90% 
2 -10.20 -35.17% -5.60 -29.79% -12.20 -40.26% -7.40 -40.88% 
3 1.10 3.08% 0.70 1.90% 2.70 8.39% 3.60 10.32% 
4 1.50 4.49% 1.70 4.87% 2.70 8.18% -0.30 -0.84% 
5 4.10 12.89% -0.10 -0.28% 1.10 3.20% -0.70 -1.97% 
6 2.40 7.36% 1.50 4.29% 0.40 1.16% -0.10 -0.29% 
7 2.10 5.69% -0.40 -1.03% -0.40 -1.03% 0.30 0.78% 
8 22.00 137.50% -1.10 -2.89% 16.70 93.82% 2.90 8.41% 
9 1.90 5.65% 2.50 7.04% 0.80 2.20% 0.10 0.27% 
10 -0.30 -1.17% 12.00 47.24% 0.10 0.29% 3.40 9.69% 
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Figure 4.25 The scatter plot of the difference in the magnitude of the MSCFF (Hz) between 

Visit One and Visit Two (abscissa) against the difference in the magnitude between Visit 

Two and Visit Five (ordinate) for each of the 11 individuals with OAG for the right (top), 

and left (bottom) eyes. A negative value represents a deterioration in performance. Data 

points in the top left quadrant represent a deterioration from Visit One to Visit Two and an 

improvement from Visit Two to Visit Five. Data points in the top right quadrant represent 

an improvement from Visit One to Visit Two and also from Visit Two to Visit Five. Data 

points in the bottom right quadrant represent an improvement from Visit One to Visit Two 

and a deterioration from Visit Two to Visit Five. Data points in the bottom left quadrant 

represent a deterioration both from Visit One to Visit Two and from Visit Two to Visit 

Five.  
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Case 
Number 

 

Right Eye 
Absolute 
Change (Hz) 
V1 to V2 

Right Eye 
Proportionate 
Change (%) 
V1 to V2 

Right Eye 
Absolute  
Change (Hz) 
V2 to V5 

Right Eye 
Proportionate 
Change (%) 
V2 to V5 

Left Eye 
Absolute  
Change (Hz) 
V1 to V2 

Left Eye 
Proportionate 
Change (%) 
V1 to V2 

Left Eye 
Absolute  
Change (Hz) 
V2 to V5 

Left Eye 
Proportionate 
Change(%) 
V2 to V5 

1 3.60 16.98% 0.80 3.23% 4.60 13.33% 0.20      0.51% 
2 4.30 21.18% 0.20 0.81% -1.20 -5.36% 2.10 9.91% 
3 -0.90 -2.64% -2.70 -8.13% 1.70 6.56% -1.10 -3.99% 
4 -0.20 -0.61% 4.50 13.72% 1.30 3.95% 0.40 1.17% 
5 0.80 1.96% 1.50 3.60% 0.30 0.71% 0.70 1.64% 
6 3.50 12.03% 1.30 3.99% 0.10 0.42% 8.50 35.86% 
7 3.20 13.73% -3.60 -13.58% 4.50 22.50% -3.70 -15.10% 
8 7.50 27.68% 3.30 9.54% 10.70 50.95% 3.40 10.73% 
9 1.80 6.55% 2.60 8.87% 2.50 12.63% 4.70 21.08% 
10 3.90 21.31% -2.10 -9.46% 1.70 7.00% 1.10 4.23% 
11 3.00 10.79% 3.50 11.36% -0.50 -1.67% 3.50 11.86% 

 

 

Table 4.33 The absolute (Hz) and proportionate change (%) in MSCFF for each eye of the 11 individuals with OAG between Visit One and 

Visit Two and between Visit Two and Visit Five.  The green shading denotes an improvement from the first to the second field of either 

given paired comparison. The red shading denotes a deterioration from the first to the second field of either given paired comparison. 
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4.16.2 Mean Defect  

The difference in the MD from Visit One to Visit Two compared to the difference from Visit 

Two to Visit Five for each eye of the 28 normal individuals, for each eye of the 10 individuals 

with OHT and for each eye of the 11 individuals with OAG is shown graphically in Figures 4.26 

to Figure 4.28.  

 

As would be expected from the analysis of the MS, a wide variation in performance between 

Visits One and Two was present amongst the normal individuals both between-eyes of an 

individual and between individuals for a given eye. A similar variation was present for the MD, 

sLV, DD and LD between Visits Two and Five not only between-eyes of an individual and 

between individuals for a given eye but also between the two pairs of visits. 

 

The difference in the MD from Visit One to Visit Two compared to the difference from Visit 

Two to Visit Five for each eye of the 10 individuals with OHT showed that five of the 

individuals with OHT exhibited an improvement in each eye both from Visit One to Visit Two 

and from Visit Two to Visit Five. Three of the 10 individuals showed an improvement from Visit 

One to Visit Two and a deterioration from Visit Two to Visit Five in the right eye. For the left 

eye, four of the individuals showed an improvement both from Visit One to Visit Two and from 

Visit Two to Visit Five whilst four individuals improved from Visit One to Visit Two but 

deteriorated from Visit Two to Visit Five.  

 

The difference in the MD from Visit One to Visit Two compared to the difference from Visit 

Two to Visit Five for each eye of the 11 individuals with OAG showed that six individuals 

exhibited an improvement in the right eye from Visit One to Visit Two and from Visit Two to 

Visit Five. Seven individuals exhibited the corresponding improvements in the left eye.  
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Figure 4.26 The scatter plot of the difference in the magnitude of the MDCFF (Hz) between 

Visit One and Visit Two (abscissa) against the difference in the magnitude between Visit 

Two and Visit Five (ordinate) for each of the 28 normal individuals for the right (top), and 

left (bottom) eyes. A negative value represents an improvement in performance. Data 

points in the top left quadrant represent an improvement from Visit One to Visit Two and 

a deterioration from Visit Two to Visit Five. Data points in the top right quadrant 

represent a deterioration from Visit One to Visit Two and also from Visit Two to Visit Five. 

Data points in the bottom right quadrant represent a deterioration from Visit One to Visit 

Two and an improvement from Visit Two to Visit Five. Data points in the bottom left 

quadrant represent an improvement both from Visit One to Visit Two and from Visit Two 

to Visit Five.  
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Figure 4.27 The scatter plot of the difference in the magnitude of the MDCFF (Hz) between 

Visit One and Visit Two (abscissa) against the difference in the magnitude between Visit 

Two and Visit Five (ordinate) for each of the 10 individuals with OHT for the right (top), 

and left (bottom) eyes. A negative value represents an improvement in performance. Data 

points in the top left quadrant represent an improvement from Visit One to Visit Two and 

a deterioration from Visit Two to Visit Five. Data points in the top right quadrant 

represent a deterioration from Visit One to Visit Two and also from Visit Two to Visit Five. 

Data points in the bottom right quadrant represent a deterioration from Visit One to Visit 

Two and an improvement from Visit Two to Visit Five. Data points in the bottom left 

quadrant represent an improvement both from Visit One to Visit Two and from Visit Two 

to Visit Five.  
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Figure 4.28 The scatter plot of the difference in the magnitude of the MDCFF (Hz) between 

Visit One and Visit Two (abscissa) against the difference in the magnitude between Visit 

Two and Visit Five (ordinate) for each of the 11 individuals with OAG for the right (top), 

and left (bottom) eyes. A negative value represents an improvement in performance. Data 

points in the bottom left quadrant represent an improvement from Visit One to Visit Two 

and a deterioration from Visit Two to Visit Five. Data points in the top right quadrant 

represent a deterioration from Visit One to Visit Two and also from Visit Two to Visit Five. 

Data points in the bottom right quadrant represent a deterioration from Visit One to Visit 

Two and an improvement from Visit Two to Visit Five. Data points in the bottom left 

quadrant represent an improvement both from Visit One to Visit Two and from Visit Two 

to Visit Five.  
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4.16.3 Square root of the Loss Variance  

The difference in the sLV from Visit One to Visit Two compared to the difference from Visit 

Two to Visit Five for each eye of the 28 normal individuals in, of the 10 individuals with OHT 

and of the 11 individuals with OAG are shown in Figures 4.29, 4.30, and 4.31, respectively.  

 

The difference in the sLV from Visit One to Visit Two compared to the difference from Visit 

Two to Visit Five for each eye of the 10 individuals with OHT showed that, for the right eye, 

five exhibited an improvement from Visit One to Visit Two and a deterioration from Visit Two 

to Visit Five and 3 individuals an improvement from Visit Two to Visit Five and a deterioration 

from Visit One to Visit Two. For the left eye, three individuals showed an improvement both 

from Visit One to Visit Two and from Visit Two to Visit Five. Five individuals deteriorated from 

Visit One to Visit Two but improved from Visit Two to Visit Five.  

 

The difference in the sLV from Visit One to Visit Two compared to the difference from Visit 

Two to Visit Five for each eye of the 11 individuals with OAG showed that, for the right eye, 

two individuals exhibited an improvement from Visit One to Visit Two and from Visit Two to 

Visit Five and three individuals exhibited an improvement between Visit One and Visit Two and 

a deterioration from Visit Two to Visit Five. For the left eye, four individuals exhibited an 

improvement from Visit One to Visit Two and from Visit Two to Visit Five. 
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Figure 4.29 The scatter plot of the difference in the magnitude of the sLVCFF (Hz) between 

Visit One and Visit Two (abscissa) against the difference in the magnitude between Visit 

Two and Visit Five (ordinate) for each of the 28 normal individuals for the right (top), and 

left (bottom) eyes. A negative value represents an improvement in performance. Data 

points in the superior left quadrant represent an improvement from Visit One to Visit Two 

and a deterioration from Visit Two to Visit Five. Data points in the superior right quadrant 

represent deterioration from Visit One to Visit Two and also from Visit Two to Visit Five. 

Data points in the inferior right quadrant represent deterioration from Visit One to Visit 

Two and an improvement from Visit Two to Visit Five. Data points in the inferior left 

quadrant represent an improvement both from Visit One to Visit Two and from Visit Two 

to Visit Five.  
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Figure 4.30 The scatter plot of the difference in the magnitude of the sLVCFF (Hz) between 

Visit One and Visit Two (abscissa) against the difference in the magnitude between Visit 

Two and Visit Five (ordinate) for each of the 10 individuals with OHT for the right (top), 

and left (bottom) eyes. A negative value represents an improvement in performance. Data 

points in the superior left quadrant represent an improvement from Visit One to Visit Two 

and a deterioration from Visit Two to Visit Five. Data points in the superior right quadrant 

represent deterioration from Visit One to Visit Two and also from Visit Two to Visit Five. 

Data points in the inferior right quadrant represent deterioration from Visit One to Visit 

Two and an improvement from Visit Two to Visit Five. Data points in the inferior left 

quadrant represent an improvement both from Visit One to Visit Two and from Visit Two 

to Visit Five.  
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Figure 4.31 The scatter plot of the difference in the magnitude of the sLVCFF (Hz) between 

Visit One and Visit Two (abscissa) against the difference in the magnitude between Visit  

Two and Visit Five (ordinate) for each of the 11 individuals with OHT for the right (top), 

and left (bottom) eyes. A negative value represents an improvement in performance. Data 

points in the superior left quadrant represent an improvement from Visit One to Visit Two 

and a deterioration from Visit Two to Visit Five. Data points in the superior right quadrant 

represent deterioration from Visit One to Visit Two and also from Visit Two to Visit Five. 

Data points in the inferior right quadrant represent deterioration from Visit One to Visit 

Two and an improvement from Visit Two to Visit Five. Data points in the inferior left 

quadrant represent an improvement both from Visit One to Visit Two and from Visit Two 

to Visit Five.  
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4.16.4 Diffuse Defect 

The difference in the DD from Visit One to Visit Two compared to the difference between  Visit 

Two and Visit Five for each eye of the 28 normal individuals, of the 10 individuals with OHT 

and of the 11 individuals with OAG is shown graphically in Figure 4.32 to Figure 4.34, 

respectively. 

 

The difference in the DD from Visit One to Visit Two compared to the difference from Visit 

Two to Visit Five for each eye of the 10 individuals with OHT showed that, for the field of the 

right eye, three individuals exhibited an improvement in each eye from Visit One to Visit Two 

and from Visit Two to Visit Five and five individuals an improvement from Visit One to Visit 

Two and a deterioration from Visit Two to Visit Five. For the left eye, five showed an 

improvement from Visit One to Visit Two and from Visit Two to Visit Five and three 

individuals improvement from Visit One to Visit Two but a deterioration from Visit Two to Visit 

Five.  

 

The difference in the DD from Visit One to Visit Two compared to the difference from Visit 

Two to Visit Five for each eye of the 11 individuals with OAG showed that six of the individuals 

exhibited an improvement from Visit One to Visit Two and from Visit Two to Visit Five for both 

eyes and three individuals an improvement between Visit One and Visit Two and a deterioration 

between Visit Two and Visit Five for both eyes. 
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Figure 4.32 The scatter plot of the difference in the magnitude of the DDCFF (Hz) between 

Visit One and Visit Two (abscissa) against the difference in the magnitude between Visit 

Two and Visit Five (ordinate) for each of the 28 normal individuals for the right (top), and 

left (bottom) eyes. A negative value represents an improvement in performance. Data 

points in the superior left quadrant represent an improvement from Visit One to Visit Two 

and deterioration from Visit Two to Visit Five. Data points in the superior right quadrant 

represent deterioration from Visit One to Visit Two and also from Visit Two to Visit Five. 

Data points in the inferior right quadrant represent deterioration from Visit One to Visit 

Two and an improvement from Visit Two to Visit Five. Data points in the inferior left 

quadrant represent an improvement both from Visit One to Visit Two and from Visit Two 

to Visit Five.  
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Figure 4.33 The scatter plot of the difference in the magnitude of the DDCFF (Hz) between 

Visit One and Visit Two (abscissa) against the difference in the magnitude between Visit 

Two and Visit Five (ordinate) for each of the 10 individuals with OHT for the right (top), 

and left (bottom) eyes. A negative value represents an improvement in performance. Data 

points in the superior left quadrant represent an improvement from Visit One to Visit Two 

and deterioration from Visit Two to Visit Five. Data points in the superior right quadrant 

represent deterioration from Visit One to Visit Two and also from Visit Two to Visit Five. 

Data points in the inferior right quadrant represent deterioration from Visit One to Visit 

Two and an improvement from Visit Two to Visit Five. Data points in the inferior left 

quadrant represent an improvement both from Visit One to Visit Two and from Visit Two 

to Visit Five.  
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Figure 4.34 The scatter plot of the difference in the magnitude of the DDCFF (Hz) between 

Visit One and Visit Two (abscissa) against the difference in the magnitude between Visit 

Two and Visit Five (ordinate) for each of the 11 individuals with OAG for the right (top), 

and left (bottom) eyes. A negative value represents an improvement in performance. Data 

points in the superior left quadrant represent an improvement from Visit One to Visit Two 

and deterioration from Visit Two to Visit Five. Data points in the superior right quadrant 

represent deterioration from Visit One to Visit Two and also from Visit Two to Visit Five. 

Data points in the inferior right quadrant represent deterioration from Visit One to Visit 

Two and an improvement from Visit Two to Visit Five. Data points in the inferior left 

quadrant represent an improvement both from Visit One to Visit Two and from Visit Two 

to Visit Five.  

 

4.16.5 Local Defect 

The difference in the LD from Visit One to Visit Two compared to the difference from Visit 

Two to Visit Five for each eye of the 28 normal individuals, of the 10 individuals with OHT and 

of the 11 individuals with OAG is shown graphically in Figure 4.35 to Figure 4.37, respectively. 
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The difference in the LD from Visit One to Visit Two compared to the difference from Visit 

Two to Visit Five for each eye of the 10 individuals with OHT showed that seven individuals for 

the right eye and eight individuals for the left eye exhibited little change in the LD between 

visits.  

 

 The difference in the LD from Visit One to Visit Two compared to the difference from Visit 

Two to Visit Five for each eye of the 11 individuals with OAG showed that only three of the 

individuals for the right eye and one individual for the left eye exhibited an improvement from 

Visit One to Visit Two and from Visit Two to Visit Five individuals exhibited an improvement 

for the left eye between Visit One and Visit Two and a deterioration between Visit Two and 

Visit Five.  
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Figure 4.35 The scatter plot of the difference in the magnitude of the LDCFF (Hz) between 

Visit One and Visit Two (abscissa) against the difference in the magnitude between Visit 

Two and Visit Five (ordinate) for each of the 28 normal individuals for the right (top), and 

left (bottom) eyes. A negative value represents an improvement in performance. Data 

points in the superior left quadrant represent an improvement from Visit One to Visit Two 

and deterioration from Visit Two to Visit Five. Data points in the superior right quadrant 

represent deterioration from Visit One to Visit Two and also from Visit Two to Visit Five. 

Data points in the inferior right quadrant represent deterioration from Visit One to Visit 

Two and an improvement from Visit Two to Visit Five. Data points in the inferior left 

quadrant represent an improvement both from Visit One to Visit Two and from Visit Two 

to Visit Five.  
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Figure 4.36 The scatter plot of the difference in the magnitude of the LDCFF (Hz) between 

Visit One and Visit Two (abscissa) against the difference in the magnitude between Visit 

Two and Visit Five (ordinate) for each of the 10 individuals with OHT for the right (top), 

and left (bottom) eyes. A negative value represents an improvement in performance. Data 

points in the superior left quadrant represent an improvement from Visit One to Visit Two 

and deterioration from Visit Two to Visit Five. Data points in the superior right quadrant 

represent deterioration from Visit One to Visit Two and also from Visit Two to Visit Five. 

Data points in the inferior right quadrant represent deterioration from Visit One to Visit 

Two and an improvement from Visit Two to Visit Five. Data points in the inferior left 

quadrant represent an improvement both from Visit One to Visit Two and from Visit Two 

to Visit Five.  
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Figure 4.37 The scatter plot of the difference in the magnitude of the LDCFF (Hz) between 

Visit One and Visit Two (abscissa) against the difference in the magnitude between Visit 

Two and Visit Five (ordinate) for each of the 11 individuals with OAG for the right (top), 

and left (bottom) eyes. A negative value represents an improvement in performance. Data 

points in the superior left quadrant represent an improvement from Visit One to Visit Two 

and deterioration from Visit Two to Visit Five. Data points in the superior right quadrant 

represent deterioration from Visit One to Visit Two and also from Visit Two to Visit Five. 

Data points in the inferior right quadrant represent deterioration from Visit One to Visit 

Two and an improvement from Visit Two to Visit Five. Data points in the inferior left 

quadrant represent an improvement both from Visit One to Visit Two and from Visit Two 

to Visit Five.  
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4.17 Discussion 

The major finding from this study is that, when considered in terms of each diagnostic group, 

separately and combined, sensitivity derived by CFF perimetry, and expressed in terms of either 

the MS or the MD, improved across the central field (i.e. out to 30º eccentricity from fixation) in 

each eye over a training regime of five examinations each separated by an interval of one week. 

Although these visual field indices were statistically significantly different between the three 

groups, the ANOVA could not detect any difference between the groups in the magnitude of the 

improvement over the five visits. The DD also improved over the five visits; however, the 

improvement in the DD was greater for the individuals with OHT compared to the normal 

individuals and greater for the individuals with OAG compared to those with OHT. This 

suggests that diffuse visual field is present in OHT and in OAG and that it is the diffuse 

component which is largely responsible for the improvement in the height of the field.   The lack 

of an improvement in the sLV and LD over the five visits suggests a uniform increase of the 

height, rather any change in the shape, of the field for CFF perimetry, over the five visits.  The 

data also suggest that the normal individuals reached optimum performance at the third visit 

whilst the individuals with OHT and the individuals with OAG, both groups of which were 

experienced in SAP, reached optimum performance at the fourth or fifth visit. 

 

The analysis of the pointwise change in sensitivity over the five visits, as a function of 

eccentricity, showed no clear evidence of any eccentricity dependent improvement in sensitivity 

thereby adding further credence to the hypothesis of a uniform change in the height of the field 

over the five visits. In addition, no improvement occurred in the PMS to CMS ratio. 

 

The analysis of the pointwise change in sensitivity over the five visits, as a function of the 

magnitude of the initial sensitivity, exhibited an increasing improvement in sensitivity with 
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decline in the initial sensitivity to approximately 10Hz which, within the remit of the data sets, 

was more evident for the group with OAG.  Such an outcome is consistent with the improvement 

in the DD.  

 

The analysis of the pointwise change in the Comparison Probability level, showed very little 

overall improvement in probability level over the five visits. However, the group with OAG 

manifested the greatest improvement. Such a finding suggests that, in general, the magnitude of 

the improvement in sensitivity, at any given location, across the five visits lay within the 

magnitude of the confidence interval for the given probability level manifested at the initial visit. 

Thus, the magnitude of the learning effect, at least in Comparison Probability terms, has very 

little influence on the clinical diagnostic outcome of CFF perimetry. Such an outcome could be 

explained either in terms of the small magnitude of the learning effect or in terms of 

(excessively) wide confidence limits for abnormality with CFF perimetry. In proportionate 

terms, the change in MS for CFF perimetry was similar to that for SAP which suggests that the 

explanation can be attributed to wider confidence limits for CFF.  

It should be noted that all 49 individuals across the three groups exhibited identical Comparison 

and Corrected Comparison differences and probability maps in both eyes at each of the 6 visits. 

The reason for the absence of a general height adjustment for CFF perimetry is unknown. It can 

be speculated that the reason arises from the commonly held assumption that CFF perimetry, 

which targets the magnocellular pathway, is unaffected by abnormalities which affect the general 

height (e.g. cataract, defocus, etc) and, therefore, such an adjustment is unnecessary. If such 

speculation is correct, then the rationale for the inclusion in the Seven-in-One printout of the 

Corrected Comparison difference and probability maps, which are identical to those of the 

Comparison, must be questioned   
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The improvement in the MS, MD and DD indices for the normal individuals exhibited a 

sustained improvement over the first four visits. The greatest improvement in these indices for 

the individuals with OHT and for the individuals with OAG occurred between Visits One and 

Two but a continued improvement was evident over Visits Three and Four. 

 

The examination duration reduced over the five visits and was shorter for the second eye 

examined at any given examination. The latter finding indicated a between-eye transfer of the 

learning effect at each visit. Such a finding is compatible with that for SAP over the first two 

visits (Wild et al 2006; Castro, Kawase and Melo 2008), and for FDT (Horani et al 2002), and 

indicates the absence of the influence of the fatigue effect (Hudson, Wild and O'Neill 1994) 

whereby sensitivity declines with increase in the examination duration, particularly in the second 

eye. 

 

In terms of individual performance across the five visits, the widest variation between 

individuals for each of the indices, expressed in absolute terms, occurred in the group of normal 

individuals. It was lower for, but similar between, the individuals with OHT and the individuals 

with OAG.  

 

It would thus seem that the normal individuals who had only experienced one examination in 

each eye for SAP at enrolment and who were naïve to CFF perimetry exhibited the least 

improvement and the widest between-individual variation in performance. Such variation ranged 

from a deterioration at successive examinations from the baseline to an increasing improvement 

at all examinations.  Surprisingly, the individuals with OHT and the individuals with OAG, 

although familiar with SAP exhibited the greatest improvement in the outcome to CFF. These 



 231 

findings suggest that sustained prior experience with SAP possibly aids the outcome of CFF 

perimetry. 

 

The age related decline in Mean Sensitivity for CFF perimetry in the normal eye at the first visit 

using the Dynamic algorithm has previously been shown to be -0.141Hz per year (Bernardi, 

Costa and Shiroma 2007). This published value compares favourably with that recorded at Visit 

One in the current study of -0.129 Hz for the field of the right eye and -0.105Hz for the field of 

the left eye. 

 

The improvement in the Group Mean Sensitivity for the normal individuals from Visit One to 

Visit Three was 0.2Hz for the field of the right eye and 1.2Hz for the field of the left eye. The 

corresponding improvement in the median was 0.6Hz and 1.5Hz, respectively. These figures 

compare with a mean of 1.2Hz for the case series of 20 younger individuals (Bernardi, Costa and 

Shiroma 2007). 

 

The greatest improvement in CFF perimetry for the individuals with OHT and for the individuals 

with OAG occurred between Visits One and Two. This finding is compatible with that present in 

SAP (Wood et al 1987b; Heijl, Lindgren and Olsson 1989; Wild et al 1989) and SWAP (Wild, 

Moss and O'Neill 1996; Zhong et al 2008). However, a sustained improvement was also present 

at Visits Three and Four. Such a finding is compatible with that for SWAP in individuals with 

OHT and in individuals with OAG who were experienced in SAP (Wild et al 2006) whereby the 

learning effect for SWAP was present over the first four of an identical protocol of five 

examinations each separated by one week. 
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The PMS/CMS ratio was similar across the five visits. The stability of the ratio is in contrast to 

that reported for SAP which manifests as a greater improvement peripherally compared to 

centrally (Heijl, Lindgren and Olsson 1987a; Wood et al 1987b; Wild et al 1989). It is also 

compatible with the consept of an overall improvement  in the height of  the visual field for CFF.  

 

The wide variation in performance between the normal individuals in the current study may 

explain some of the magnitude of the potential increased confidence intervals for normality 

compared to those for SAP.  

 

The learning effect could have been investigated over almost any number of successive 

examinations over almost any time period. The use of 5 visits each separated by a one week 

interval has become a standard designin perimetric research, and represents a trade-off between 

the opportunity for improvement over a sustained training regime and clinical reality (Heijl, 

Lindgren and Olsson 1989; Rossetti et al 2006; Wild et al 2006). Clearly, the results for the 

current study are only applicable to such a protocol. 

        

The magnitudes of each of the indices were notably different between the TOP algorithm at Visit 

Five and the Dynamic algorithm at Visit Six for each diagnostic group. The Dynamic algorithm 

yielded a higher MS, a less positive MD and DD (i.e.better) and a larger sLV and DD (i.e. 

worse) than the TOP algorithm. The difference between the two algorithms for each respective 

index was in general, greatest for the individuals with OHT and the individuals with OAG. The 

difference in the magnitudes of the outcomes of the two algorithms indicates a difference in the 

estimate of the threshold between the two algorithms and a further difference in the magnitude of 

the normal values associated with each algorithm. The reason for the latter is unknown. The 

Dynamic algorithm also yielded fewer locations exhibiting abnormality in terms of the 
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Comparison Probability level i.e. the TOP algorithm yielded a statistically deeper defect depth. 

This would suggest a difference in the width of the confidence intervals between the two 

algorithms which again implies a difference in the magnitude of the normal values associated 

with each algorithm. 

 

The TOP algorithm for CFF utilizes a ceiling effect which is 9/8 of the age-corrected normal 

value above (i.e. overall, a higher sensitivity) the normal value. This approach reduces the 

potential for abnormally high sensitivities compared to that of the Dynamic algorithm which 

does not employ a cut-off. Thus, it is possible that some of the higher sensitivities encountered 

with the Dynamic algorithm can be explained by the lack of truncation. However, it is more 

likely that the difference arises from the differences in the threshold estimate between the two 

algorithms. Indeed, the Dynamic algorithm has been shown to yield a larger MS for SAP 

compared to the TOP algorithm of approximately 1-2dB (Morales, Weitzman and Gonzalez de la 

Rosa 2000). It was discussed in Chapter One that the TOP algorithm for SAP also tends to 

underestimate the severity of focal visual field loss compared with the Dynamic algorithm and 

the findings of the current study, when expressed in terms of sLV, would suggest the same 

outcome for CFF perimetry. However, the defect depth expressed in terms of Comparison 

Probability values yields a statistically deeper defect depth for the TOP algorithm, particularly in 

OAG.  

 

Although not a formal aim of the study, it was interesting to note that the outcome for SAP 

recorded with the Dynamic strategy, immediately prior to enrolment in the study, yielded either 

greater or deeper, or both, field loss in 6 of the 11 individuals with OAG compared with that for 

CFF recorded at the sixth visit (Figure 4.38). Of the remaining 5 individuals, 4 exhibited 

equivalence between the two types of perimetry. Such an outcome is likely to reflect the 
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increased confidence limits for CFF perimetry compared with SAP and contradicts the concept 

that CFF perimetry is a more sensitive indicator of functional damage than SAP. The difference 

in threshold estimate between the TOP and Dynamic algorithms and the additional difference 

influencing the magnitudes of the normal values poses a potential problem in the interpretation a 

series of visual fields using a mixture of the two algorithms.     
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SAP CFF 

Right Left Right Left 

    

MD 7.1 

sLV 10.2 
MD 0.8 

sLV 3.7 
MD 15.2 

sLV 9.9 
MD 7.3 

sLV 5.6 

    

MD 4.0 

sLV 7.4 
MD 4.7 

sLV7.2 
MD 3.0 

sLV 9.3 
MD 4.1 

sLV 9.2 

    

MD 8.1 

sLV 9.3 
MD -2.0 

sLV 1.6 
MD 1.5 

sLV 11.9 
MD -2.3 

sLV 4.3 

    

MD 3.5 

sLV 6.0 
MD 13.9 

sLV 7.6 
MD -3.4 

sLV 7.16 
MD 2.6 

sLV 11.5 
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SAP CFF 

    

MD 10.4 

sLV 9.6 

MD 14.3 

sLV 9.5 

MD 7.1 

sLV 12.2 

MD 13.5 

sLV 13.4 

    

MD 6.4 

sLV 5.5 

MD 13.4 

sLV 8.7 

MD -4.9 

sLV 5.9 

MD 4.1 

sLV 13.6 

    

MD 1.7 

sLV 2.2 

MD 1.7 

sLV 3.5 

MD -6.8 

sLV 5.0 

MD -5.2 

sLV 4.1 

    

MD -1.2 

sLV 1.9 

MD 0.8 

sLV 3.6 

MD 1.5 

sLV 5.2 

MD -0.5 

sLV 7.0 
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SAP CFF 

    

MD 11.3 

sLV 11.1 

MD 10.7 

sLV 10.7 

MD 8.3 

sLV 14.1 

MD 8.4 

sLV 13.0 

    

MD 2.1 

sLV 2.2 

MD 1.3 

sLV 1.8 

MD -10.5 

sLV 3.3 

MD -9.8 

sLV 3.9 

    

MD -1.2 

sLV 1.9 

MD -0.6 

sLV 2.3 

MD -0.3 

sLV 4.2 

MD -0.3 

sLV 4.4 

 
Figure 4.38 The Corrected Comparison probability map, derived by SAP, for the field of 

the right eye (extreme left hand column) and of the left eye (left column) and by CFF 

perimetry for the field of the right eye (right column) and of the left eye (extreme right 

column) for the 11 individuals with OAG.   

 

 

4.18 Conclusion 

The presence of a learning effect for CFF perimetry in individuals with OHT and in individuals 

with OAG, and which is sustained over four visits, together with the likelihood for increased 

confidence limits of normality compared to SAP and the uncertainty as to whether CFF 
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perimetry identifies visual field abnormality in advance of SAP, currently suggests that CFF 

perimetry offers little clinical advantage compared to SAP. 
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CHAPTER 5  

THE INFLUENCE OF AGE-RELATED CATARACT ON 

CRITICAL FLICKER FUSION PERIMETRY 

 

5.1 Introduction 

5.2 Ocular media 

Opacities in the ocular media will influence the amount of light reaching the retina thereby 

affecting the outcome of the visual field examination. Cataract causes image blur; increased 

absorption and therefore decreased retinal illumination; increased intraocular light scatter and 

therefore increased veiling glare. The effect of media opacities on the visual field has been 

documented both for manual kinetic and manual static perimetry (Bigger and Becker 1971; 

Greve 1973; Greve 1979; Lyne and Phillips 1996); for SAP (Lam, Alward and Kolder 1991; 

Hayashi et al 2001; Koucheki et al 2004; Rehman Siddiqui, Khairy and Azuara-Blanco 2007; 

Mutlu, Akay and Bayer 2009); for HRP (Martin 1997; Martin et al 2008); for SWAP (Moss, 

Wild and Whitaker 1995; Kim et al 2001); for RBP (Salvetat et al 2007; Nilsson et al 2010) and 

for FDT perimetry (Kook et al 2004; Tanna et al 2004; Simakova and Boĭko 2010).  

 

Cataract reduces the sensitivity for SAP (Lam, Alward and Kolder 1991; Stewart et al 1995; 

Klein, Klein and Jensen 1996) and can mask glaucomatous visual field loss (Heider, Seez and 

Schnaudigel 1991; Bengtsson et al 1997; Smith, Katz and Quigley 1997; Chen and Budenz 1998; 

Hayashi et al 2001). Several studies of individuals with cataract, examined pre- and post-

operatively following cataract extraction and IOL implantation have reported an improvement in 

the MD (Tanna et al 2004; Siddiqui, Azuara-Blanco and Neville 2005; Ueda et al 2006), but not 

in the PSD (Tanna et al 2004; Ueda et al 2006) which can also be worse post-operatively 

(Siddiqui, Azuara-Blanco and Neville 2005). The number of incorrect responses to the false-
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positive catch trials is lower following cataract extraction and IOL implantation for advance age-

related cataracts and for mild posterior subcapsular cataract (Casson and James 2006).    The 

presence of age-related cataract, and the subsequent extraction and IOL implantation, also leads 

to difficulty in determining the presence of progressive visual field loss.  

     

A number of studies suggest that CFF (Dudzinski, Zawojska and Kinasz 2003; del Romo, 

Douthwaite and Elliott 2005) or CFF perimetry (Gleissner and Lachenmayr 1992; Lachenmayr 

and Gleissner 1992) is relatively unaffected by cataract and that CFF can successfully predict 

visual outcome after cataract surgery (Douthwaite, Vianya-Estopà and Elliott 2007; Shankar and 

Pesudovs 2007). Unfortunately, the studies of CFF/ CFF perimetry and cataract were undertaken 

either with customised equipment (del Romo, Douthwaite and Elliott 2005; Shankar and 

Pesudovs 2007) and/ or with simulated cataract (Lachenmayr and Gleissner 1992; Matsumoto et 

al 1996), or both, and are such as to render the information of minimal clinical quantitative 

value. Thus, there is a pressing need to determine the extent to which the CFF stimulus in 

clinical perimetry is resistant to image degradation arising from age-related cataract. 

 

As was discussed in the previous Chapter, the influence of the learning effect on the outcome of 

SAP is well documented for normal individuals, for individuals with OHT and individuals with 

OAG. However, the characteristics of the learning effect for individuals with cataract is 

unknown. In addition, the influence of age-related cataract on the learning effect for CFF 

perimetry is also unknown. Clearly, if CFF perimetry is to have an impact clinically, the extent 

of the resistance to image degradation in age-related cataract must also be delineated.  

5.3 Intraocular light scatter 

Light entering the eye will be scattered as a result of opacities in the ocular media. This light 

scatter can be subdivided into light scattered towards the retina (forward light scatter) and light 
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scattered backwards from the retina (backscatter). Forward light scatter results in a veiling 

luminance superimposed upon the retinal image thereby reducing the contrast of the image on 

the retina. The visual loss in cataract is principally due to increased forward light scatter (Hess 

and Woo 1978; Paulsson and Sjøstrand 1980; Bettelheim and Ali 1985; van den Berg 1991; de 

Waard et al 1992; Brown 1993). The veiling luminance can lead to a variety of complaints, 

including poor distance vision, monocular diplopia, poor night vision, and changes in colour 

perception (McAlinden et al 2011).  

 

Glare Disability (GD) is a quantitative measure of the effect of the forward light scatter, arising 

from a glare source, on a patient’s visual function. It can be measured clinically by determining 

VA under a variety of levels of disability glare. GD can be defined as the reduction in (logMAR) 

VA in the presence of the glare source. Individuals with cataract generally exhibit a GD which is 

greater than that predicted from their VA in normal illumination, alone (Cinotti 1979; Paulsson 

and Sjøstrand 1980; Maltzman, Horan and Rengel 1988; Neumann et al 1988a; Elliott, Gilchrist 

and Whitaker 1989; Koch 1989; Elliott and Hurst 1990). 

 

Disability glare testing in individuals with age-related cataract is becoming more frequent as a 

clinical measure of visual disability. The outcome from such tests is also used to justify cataract 

surgery. Disability glare is the reduction in VA or contrast sensitivity resulting from a nearby 

glare source and is the result of forward intraocular light scatter. Many practitioners have 

suggested that VA should be complemented by contrast sensitivity and disability glare testing 

(Miller et al 1972 ; Hess and Woo 1978; Paulsson and Sjøstrand 1980; LeClaire et al 1982 ). 

An evaluation of five commercially available glare tests to determine how accurately each device 

predicted outdoor Snellen acuity within one Snellen line in cataract individuals with cataract  

showed that the Brightness Acuity Test (BAT) produced the best result (73%) folloved by the 
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InnoMed True Vision Analyzer (TVA) (69%), the VisTech VCT 8000 (56%), the Miller-Nadler 

(47%) and the EyeCon (15%) (Neumann et al 1988).    

 

The BAT is a hand-held instrument that consists of a hemispheric bowl with an internally 

illuminated surface. The individual holds the device to their eye and views the chart through a 

central 12 mm aperture ( Figure. 5.78) 

 

The high intensity setting on the BAT has been reported to give inappropriately high predictions 

of disability glare (Neumann et al 1988; Prager et al 1989) and can reduce contrast beyond a 

chart’s limits of the chart with some early cataract patients (Elliott and Hurst 1990; Regan 1991).      

 

A combination of the Pelli-Robson/BAT test has been shown to be the most repeatable, with the 

coefficient of repeatability of  0.18 log units (Elliott, Bullimore and Bailey 1991; Elliott and 

Bullimore 1993).  

 

The new commercially available straylight meter, the Oculus C-Quant instrument (Oculus 

Optikergeräte GmbH, Münchholzhäuser, Wetzlar) shows good correlation between decreased 

quality of vision and presence, type and severity of age-related  cataract (Franssen, Coppens and 

van den Berg 2006; Beerthuizen et al 2007; de Vries et al 2008). 

 

The effect on the perimetric threshold caused by the presence of forward light scatter, secondary 

to cataract, is a major clinical problem in the management of OAG in that it attenuates the height 

of the recorded visual field, resulting in a mimicking, and therefore an overestimation, of diffuse 

damage to the visual field.  Although the influence of cataract on the visual field can be 

minimised mathematically by the general height adjustment (Heijl, Lindgren and Olsson 1987b; 
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Asman and Heijl 1992a; Asman, Wild and Heijl 2004), the adjustment cannot differentiate the 

attenuation arising from optical causes from that due to neural causes. The concept of diffuse 

loss as an initial stage of OAG is equivocal (Drance et al 1987; Heijl 1989; Langerhorst et al 

1989; Lachenmayr et al 1991; Henson, Artes and Chauhan 1999) largely because of the inability 

of the height adjustment to separate the optical from the neural attenuation. Quantification of the 

influence of forward light scatter on the perimetric profile by disability glare would enable some 

separation of the optical and diffuse components of diffuse loss at any given examination or over 

successive examinations. 

 

5.4 The influence of age-related cataract on Critical Flicker Fusion Perimetry 

5.5 Aims 

The overall aim of the study was twofold. The primary aim was to determine the influence of 

age-related cataract on the outcome of commercial available Critical Flicker Fusion (CFF) 

perimetry using an experimental protocol which was intended to minimise the influence of any 

potential learning effect, i.e., repeated CFF perimetry at each of four consecutive visits each 

separated by an interval of one week. It was hypothesised that, if the CFF stimulus was 

unaffected by cataract, the height and shape probability analysis would have a clinically identical 

appearance to one another. The clinically identical appearance would cover a scenario where all 

the stimulus locations exhibit normality, in an experienced observer, through to a scenario where 

any number of locations could exhibit apparent abnormality depending upon the extent of the 

previous experience of CFF perimetry. As further confirmation of the resistance to cataract, it 

was hypothesised that forward intra-ocular light scatter, expressed as GD, would correlated with 

the outcomes of SAP but not with that of CFF perimetry. 
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The secondary aim was to determine the characteristics of any learning effect in the presence of 

the age-related cataract. More specifically, the secondary aim was to determine, over the four 

visits, the between-individual differences in performance for both CFF and SAP.  

 

5.6 Methods 

The study was a prospective observational case series study. 

 

5.7 Case Series 

The case series comprised 22 (11 males) consecutively presenting Caucasian individuals who 

exhibited an age-related cataract in each eye and who otherwise met the inclusion criteria for 

enrolment in the study and who had volunteered to take part in the study.  

 

Prior to the enrolment visit, potential participants underwent a standard ophthalmic examination 

to confirm the inclusion criteria. The confirmatory examination in each eye included 

determination of visual acuity, refraction; SAP with the Octopus 311 perimeter using Program 

G1 and the Dynamic algorithm, central corneal thickness measurement using the Sonogage 

Corneogage 2 ultrasonic pachometer (Sonogage Inc. Cleveland); Goldmann applanation 

tonometry; gonioscopy, indirect ophthalmoscopy, usually with a +78 dipotre lens, photography 

of the crystalline lens, stereo-photography of the optic nerve head and posterior pole using the 

Kowa Nonmyd α-D (Kowa Company. Ltd., Japan) non-mydriatic fundus camera. The 

assessment of IOP, the measurement of central corneal thickness and gonioscopy all required the 

installation of a topical anaesthetic (Oxibuprocaine 0.4%). Photography of the crystalline lens, 

slit lamp indirect ophthalmoscopy and photography of the posterior pole required pupil dilation 

with one drop of Tropicamide 0.5%. The images of the crystalline lens, of the optic nerve head 
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and of the posterior pole and the results of the visual field examinations were all designated as 

normal by Prof Wild who was masked to the clinical characteritics of the potential participant.  

 

Potential participants were to be excluded from the study if they exhibited in either eye:   a 

distance refractive error greater than +/-5.0 dioptres sphere and/or greater than +/- 2.5 dioptres 

cylinder; a pupil diameter smaller than 3 mm; a central corneal thickness-corrected IOP of 

greater than 20 mm Hg; a narrow anterior chamber angle; previous ocular surgery; and any 

ocular disorder or ocular disease. In addition, individuals with migraine with aura; diabetes; 

neurological disorder or disease; systemic disease, other than systemic hypertension manifesting 

as Grade 1 hypertensive retinopathy, or hyperthyroid disease; a family history of glaucoma or of 

diabetes; and previous experience of CFF perimetry were also excluded.  

 

All individuals were provided with verbal and written information concerning the nature of the 

study and given written consent, in accordance with the requirements, and approval, of the 

Norwegian Research and Ethics Committee (REK, Regional komité for medisinsk 

forskningsetikk Sør-Norge (REK Sør) and the Norwegian Datatilsynet (Enclosure number 3 and 

5) which is, in turn, in accordance with the tenets of the Declaration of Helsinki. 

 

The mean age of the twenty-two individuals was 69.7 years (SD 9.1), the median 71.0 years 

(IQR 13.5) and the range from 50 to 79 years (Table 5.1). 

 

 

Age 

(years) 

Cataract 

Individuals 

NC ACC PSC Mixed 

50 – 59 2   2  
60 – 69 6 1 4 1  
70 – 79 14 7 3 2 2 

 

Table 5.1 The number of individuals, and distribution of age, classified by cataract type. 
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5.8 Perimetric Protocol    

Fourteen days after enrolment, each participant attended for the first visit of the study. At this 

visit, both eyes were examined using both SAP and CFF perimetry and Program G1 and the TOP 

algorithm of the Octopus 311. The order of the type of perimetry was held constant between the 

two eyes of an individual but was randomized between individuals. The examination procedure 

for both types of perimetry was undertaken in an identical fashion to that described in Chapter 

Four. The field of the right eye was always examined before that of the left eye. Distance 

refractive correction, in the form of full aperture trial lenses, was used for each eye. The non-

examined eye was occluded with an opaque patch. The influence of the fatigue effect was 

reduced by the provision of rest periods of approximately one minute in duration, at 3 minutes 

intervals, during the examination of each eye, and by a 5 minute rest period between the 

examinations of each eye and by a further 5 minute rest period between the two types of 

perimetry. Fixation was monitored continuously by the automatic eye tracker of the Octopus 311 

perimeter and was also viewed via the video monitor of the perimeter. 

 

Each participant then attended for a further three perimetry visits (Table 5.2). The protocol at 

each of these three visits was identical to that at the first visit with the exception that the order of 

perimetry for each individual was alternately reversed over each of these three visits. Each visit 

was separated by an interval of one week. The same instructions were given at each visit and the 

visual field examinations at all four visits were undertaken by the author.  
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Table 5.2  The summary of the perimetric protocol at enrolment and at each of the 

subsequent four visits. The asterisk denotes that the perimetry could also have been 

undertaken in reverse order.  
 

 

5.9 Glare disability protocol 

At the third and fourth visits, and after the perimetry, each individual also underwent assessment 

of glare disability using high (100%) and low (10%) contrast Log MAR visual acuity charts each 

contained within a light box (Good-Lite, Model No. ESV1200, Standardized Viewer, Input: 

12VDC, 1A) (Figure 5.1 [top]) in the absence, and then in the presence, of each of the three 

different levels of disability glare generated with the Brightness Acuity Tester (BAT Brightness 

Acuity Tester, MARCO Ophthalmic, INC, Jacksonville, FL) (Figure 5.1 [bottom]). The 

equivalence of the luminance of each light box was verified using a Hagner Universal 

Photometer/Radiometer S-171 02 (Solna,  Sweden). 

 

The individual viewed the given test chart at a distance of 4m and wore their distance refraction 

in both eyes in full aperture trial lens form. The non-examined eye was always occluded with a 

white opaque occluder. The examined eye viewed the 100% contrast chart through the BAT. Log 

MAR visual acuity was recorded in the ‘Off’ position, i.e., with a glare source, and then at each 

of the three BAT disability glare settings, ‘Low’ (41 cdm-2) ‘Medium’(343 cdm-2) and ‘High’ 

 Enrolment Session 

1 

Session 

2 

Session 

3 

Session 

4 

Method SAP CFF 
and 

SAP* 

SAP 
and 

CFF* 

CFF 
and 

SAP* 

SAP 
and 

CFF* 
Interval 

between 

sessions 

(days) 

  
14 

 

 
7 
 

 
7 
 

 
7 
 

Program/ 

algorithm 

G1/ 
Dynamic 

G1/ 
TOP 

G1/ 
TOP 

G1/ 
TOP 

G1/ 
TOP 
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(1371 cdm-2). An adaptation period of 30 seconds between BAT settings was used. The 

contralateral eye was then examined in an identical manner. The order of the eye examined was 

randomized between individuals. The procedure was then repeated for the 10% contrast chart. 

Four charts at each of the two contrast levels enabled a different randomly assigned chart to be 

used at each of the two contrast levels for each of the four brightness settings reduced the 

possibility of individuals recognising any previous letter combinations. 

 

 

 
 

 
Figure 5.1 The high and low contrast ETDRS charts contained within the light boxes 

(top). The Brightness Acuity Test (BAT) (bottom). 
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The measurement of disability glare was repeated at Visit Four in an identical manner to that at 

Visit Three with the exception that the order of the examined eye was reversed and that the 10% 

contrast chart was used before the 100% chart.  

 

The GD for each of the three glare sources at each of the two contrasts of the EDTRS chart was 

calculated from the values obtained at Visit 4 as: 

 

 log MARVA with glare - log MARVA without glare  

The characteristics of the age-related cataract(s), based upon the LOCS III grading; the Snellen 

visual acuity recorded at the enrolment examination; the MD and the sLV (Program G1 and the 

TOP algorithm) for SAP recorded at Visit Four; for each eye of the 22 individuals are given in 

Table 5.3.  
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Table 5.3 The “Worst eye” classified in terms of, the LOCS III grading; the Snellen visual 

acuity; the Mean Defect (MD) and the square root of the Loss Variance (sLV), at the fourth 

visit (SAP, Program G1 and the TOP algorithm); for each eye of the 22 individuals with 

age-related cataract.  

 

 

5.10 Analysis 

The relationship between the visual field and GD was investigated by the use of scatter plots of 

MD as a function of Glare Disability resulting from each of the three glare sources. 

 

The analysis of the between-individuals between visits of the learning effect for each type of 

perimetry was considered in terms of the four different types of analysis described in Chapter 

Four. Firstly, any change in each of the visual field indices Mean Sensitivity, Mean Defect, 

Gender/ 

Age 

LOCS III 

Right 

LOCS III 

Left 

VA 

Right 

VA 

Left 

MD4 

Right 

MD4 

Left 

sLV4 

Right 

sLV4 

Left 

Worst 

eye 

M - 79 y C2/P 2 C1 0.5 1.0 -1.0 -1.9 1.2 1.1 Right 
FM - 61 y C2 C3 0.7 0.6 9.9 7.2 72 39 Left 
M - 50 y P 1 P 1 0.9 0.9 -2.1 0 0.6 1.1 Left 
FM - 71 y C3 C2 0.5 0.5 1.0 1.1 4.6 9.0 Right 
M - 76 y C2/NO2 C2/NO2 0.6 0.7 0.5 1.3 2.2 2.9 Right 
FM - 60 y C3 C2 0.7 0.7 0.3 -0.1 0.8 1.8 Right 
M - 75 y NO2/NC2 NO2/NC2 0.6 0.6 4.3 3.6 6.0 4.6 Left 
FM - 68 y NO1/NC1 NO1/NC1 0.9 0.8 -1.8 -1.4 1.6 2.1 Left 
FM - 50 y P3 P1 0.8 1.0 2.8 0.1 7.3 0.8 Right 
FM - 60 y P4 P1 0.3 1.0 7.0 1.8 14.8 11.0 Right 
FM - 79 y NO3/NC3 NO3/NC4 0.6 0.6 5.4 10.2 11.9 19.4 Left 
FM - 70 y P4 P2 0.7 0.7 0.9 0 5.4 3.7 Right 
M - 79 y NO3/NC3 NO3/NC3 0.8 0.7 -0.5 -1.8 10.5 1.2 Left 
FM - 77 y NO4/NC4 NO4/NC4 0.6 0.6 0.7 2.6 5.1 5.1 Left 
FM - 77 y NO3/NC3 NO4/NC4 0.7 0.6 0.3 0.8 2.5 5.1 Left 
M - 63 y C2 C3 0.7 0.7 -0.2 -0.3 0.9 4.0 Left 
M - 76 y C3 C2 0.9 1.0 -1.4 -2.3 1.5 0.6 Right 
M - 71 y P3 P2 0.8 1.0 0.8 -0.4 7.0 4.0 Right 
FM - 71 y NO2/NC2 NO3/NC3 0.9 0.7 0.7 0.9 3.5 2.9 Left 
M - 79 y NO4/NC4 NO3/NC3 0.6 0.8 1.5 0.7 9.2 4.5 Right 
M - 65 y C4 C3 0.8 1.0 2.4 -0.6 13.7 3.8 Right 
M - 77 y C3 C3 1.0 0.9 0 0.9 3.2 3.3 Left 
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square root of the Loss Variance, Diffuse Defect and Local Defect determined using separate 

ANOVAs for each index. Secondly, in terms of the change in sensitivity at each stimulus 

location as a function of stimulus eccentricity. Thirdly, in terms of the change in sensitivity at 

each stimulus location as a function of the initial sensitivity. Fourthly, in terms of the change in 

sensitivity at each stimulus location expressed in terms of the Comparison and of the Corrected 

Comparison probability levels.  

 

The within-individual between-visit change in performance was considered, in the same way, as 

for Chapter Four. Firstly, in terms of the absolute change, for each of the visual field indices, 

from Visit One to Visit Two compared to that from Visit Two to Visit Four; and, secondly, in 

terms of the proportionate change in the MS index, only, from Visit One and Visit Two 

compared to that from Visit Two to Visit Four. Such an analysis was again undertaken to 

compare, for each individual, the magnitude of the learning effect occurring between the first 

two examinations with that occurring over the remaining visits. The analysis for the learning 

effect was undertaken prior to that for GD in order to identify the improvement in perimetric 

performance. 

 

5.11 Results 

5.11.1 The between-individual between-visit (Visits One to Four) performance of the 

Visual Field Indices 

 

5.11.2 Mean Sensitivity 

The summary statistics for the MS derived by SAP, MSSAP, (Top) and that derived by CFF 

perimetry, (Bottom) over the four visits are shown in Table 5.4 for each eye of the 22 individuals 
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with age-related cataract. The distributions of MSSAP and of MSCFF by eye, are also illustrated in 

terms of Box and Whisker plots in Figure 5.2. 

 

Mean Sensitivity 

(dB) 

Visit 1 

TOP 

Visit 2 

TOP 

Visit 3 

TOP 

Visit 4 

TOP 

Right Mean 

SD 

23.26 
3.86 

24.23 
3.22 

24.42 
4.23 

25.14 
2.82 

Left Mean 

SD 

23.93 
3.76 

25.03 
3.33 

24.88 
3.99 

25.41 
3.03 

Right Median 

IQR 

24.55 
5.10 

25.30 
4.52 

25.65 
5.07 

25.95 
1.45 

Left Median 

IQR 

24.90 
4.02 

25.95 
3.25 

25.95 
3.05 

26.55 
2.70 

 

Mean Sensitivity 

(Hz) 

Visit 1 

TOP 

Visit 2 

TOP 

Visit 3 

TOP 

Visit 4 

TOP 

Right Mean 

SD 

32.18 
5.14 

34.54 
4.82 

33.81 
4.82 

33.41 
5.42 

Left Mean 

(SD) 

31.60 
5.84 

32.09 
6.25 

32.36 
5.31 

32.53 
5.26 

Right Median 

IQR 

32.85 
7.63 

35.40 
3.28 

35.75 
6.68 

35.05 
8.13 

Left Median 

IQR 

33.30 
7.00 

33.30 
7.10 

33.85 
8.05 

31.95 
7.53 

 

Table 5.4 The summary statistics (mean, SD, median and IQR) of the MSSAP (top) and 

MSCFF perimetry (bottom) at each visit for the right eye and for the left eye of the 22 

individuals with age-related cataract. 
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Figure 5.2 The Box and Whisker plots of the distribution of the Mean Sensitivity for SAP 

(top) and CFF Perimetry (bottom) of each eye at each of the four visits using the TOP 

algorithm for the 22 individuals with age-related cataract. The median is represented by 

the bold line, the 25
th

 and 75
th

 percentiles by the lower and upper edges of the box, 

respectively, and the lowest and highest values by the lower and upper extremities of the 

whiskers, respectively. The results for the right eye over Visits One to Four are colour 

coded for the TOP algorithm in blue for SAP and in red for CFF perimetry.  The results 

for the left eye are colour coded in white for SAP and for CFF perimetry.   

 

The ANOVA summary table for MSSAP, with the TOP algorithm over the four visits is given in 

Table 5.5 The MSSAP was, as would be expected, lowest in the worst of the two eyes (p=0.008). 

It was also higher in the right eye than in the left eye (p=0.020). It improved across the four visits 

(p<0.001).  
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Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Age 1 22 1.79 0.195 
Gender 1 22 4.35 0.049 

Eye 1 154 5.53 0.020 

Order of Perimetry 1 22 0.20 0.662 
Visit 3 154 8.89 <0.001 

Worst Eye 1 154 7.30 0.008 

     
Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Age 1 22 1.70 0.206 
Gender 1 22 4.17 0.053 

Eye  1 154 5.53 0.020 

Visit 3 154 8.89 <0.001 

Worst Eye 1 154 7.30 0.008 

     
Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Gender 1 22 2.96 1.00 
Eye  1 154 5.53 0.020 

Visit 3 154 8.89 <0.001 

Worst Eye 1 154 7.30 0.008 

Visit x Eye 3 154 0.24 0.869 
Visit x Worst Eye 3 154 0.40 0.991 
Eye x Worst Eye 1 22 1.77 0.197 
Gender x Worst Eye 1 154 6.88 0.010 

Eye x Gender 1 154 1.04 0.310 
 

Table 5.5 The Analysis of Variance Summary Table for the MSSAP index over the Four 

Visits. 

 

 

 

The ANOVA summary table for the MSCFF with the TOP algorithm over the four visits is given 

in Table 5.6 The MSCFF declined with age (p=0.019) and this reduction in sensitivity with age 

was greater for the right eye (p=0.023). The MSCFF was lower in the left eye than in the right eye 

(p<0.001) and was higher when CFF was performed first at any given visit (p=0.025). It 

improved across the four visits (p=0.013).  
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Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Age 1 22 6.30 0.020 

Gender 1 22 0.05 0.830 
Eye 1 154 16.60 <0.001 

Order of Perimetry 1 22 5.81 0.025 

Visit 3 154 3.74 0.013 

Worst Eye 1 154 0.28 0.595 
     
Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Age 1 22 6.40 0.019 

Eye 1 154 16.60 <0.001 

Order 1 22 5.75 0.025 

Visit 3 154 3.74 0.0125 

Worst Eye 1 154 0.28 0.595 
     
Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Age 1 22 6.40 0.019 

Eye  1 154 16.57 <0.001 

Order 1 22 5.75 0.025 

Visit 3 154 3.73 0.013 

Age x Eye 1 154 5.31 0.023 

Age x Order 1 22 0.74 0.398 
Age x Visit 3 154 0.17 0.919 
Eye x Order 1 154 3.32 0.070 
Eye x Visit 3 154 1.62 0.188 
Order x Visit 3 154 1.10 0.350 

 

Table 5.6 The Analysis of Variance Summary Table for the MSCFF index over the Four 

Visits. 
 
 

5.11.3 Mean Defect 

The summary statistics for the MD for SAP, MDSAP, (top) and for CFF perimetry, MDCFF, 

(bottom) over the four visits are shown in Table 5.7 for each eye of the 22 individuals with age-

related cataract. The distribution of the MDs, as a function of eye, is also illustrated in terms of 

Box and Whisker plots in Figure 5.3. 
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Mean Defect 

(dB) 

Visit 1 

TOP 

Visit 2 

TOP 

Visit 3 

TOP 

Visit 4 

TOP 

Right Mean 

(SD) 

3.07 
3.81 

2.12 
3.25 

1.93 
4.26 

1.15 
2.98 

Left Mean 

(SD) 

2.42 
3.69 

1.32 
3.24 

1.55 
3.83 

0.94 
2.93 

Right Median 

IQR 

1.50 
4.65 

0.95 
4.22 

0.65 
2.52 

0.30 
1.42 

Left Median/ 

IQR 

1.05 
3.45 

0.35 
2.62 

0.40 
2.02 

0.05 
2.02 

 
 

Mean Defect 

(Hz) 

Visit 1 

TOP 

Visit 2 

TOP 

Visit 3 

TOP 

Visit 4 

TOP 

Right Mean 

(SD) 

2.91 
4.59 

0.59 
4.43 

1.31 
4.36 

1.71 
5.04 

Left Mean 

(SD) 

3.48 
5.70 

3.03 
5.97 

2.77 
4.99 

2.58 
5.11 

Right Median 

IQR 

2.60 
7.10 

-0.55 
3.75 

0.10 
5.57 

0.55 
7.27 

Left Median 

IQR 

2.15 
6.40 

2.60 
6.00 

1.90 
7.12 

3.75 
7.82 

 
Table 5.7  The summary statistics (mean, SD, median and IQR) of the MDSAP (top) and 

MDCFF perimetry (bottom) at each visit for the right eye, and for the left eye, of the 22 

individuals with age-related cataract. 

 

 

 

 

 

 

Overleaf: Figure 5.3 The Box and Whisker plots of the distribution of the MDSAP (top) and 

MDCFF (bottom) of each eye at each of the Four Visits using the TOP algorithm for the 22 

individuals with age-related cataract. The median is represented by the bold line, the 25
th

 

and 75
th

 percentiles by the lower and upper edges of the box, respectively, and the lowest 

and highest values by the lower and upper extremities of the whiskers, respectively. The 

results for the right eye over Visits One to Four are colour coded for the TOP algorithm in 

blue for SAP and red for CFF perimetry.  The results for the left eye are colour coded in 

white for SAP and in white for CFF perimetry.   
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The ANOVA summary table for the MDSAP with the TOP algorithm over the four visits is given 

in Table 5.8. The MDSAP was, as would be expected, worst for the worse eye (p=0.004) and this 

finding was more marked for females (p=0.001). As would be also expected from the ANOVA 

of the MSSAP, MDSAP was worse for the right eye than for the left eye (p=0.030). The MDSAP  

improved across the four visits (p<0.001).  
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Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Age 1 22 0.21 0.652 
Gender 1 22 4.46 0.046 

Eye 1 154 4.80 0.030 

Order of Perimetry 1 22 0.20 0.661 
Visit 3 154 9.08 <0.001 

Worst Eye 1 154 8.49 0.004 

     
Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Age 1 22 0.18 0.676 
Gender 1 22 4.27 0.051 

Eye  1 154 4.80 0.030 

Visit 3 154 9.08 <0.001 

Worst Eye 1 154 8.49 0.004 

     
Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Gender 1 22 4.07 0.056 
Eye  1 154 4.80 0.030 

Visit 3 154 9.08 <0.001 

Worst Eye 1 154 8.49 0.004 

Visit x Eye 3 154 0.33 0.803 
Visit x Worst Eye 3 154 0.02 0.995 
Gender x Visit 3 154 2.10 0.103 
Eye x Worst Eye 1 22 1.60 0.220 
Gender x Worst Eye 1 154 6.89 0.001 

Eye x Gender 1 154 1.10 0.296 
 

Table 5.8 The Analysis of Variance Summary Table for the MDSAP index over the Four 

Visits. 
 

 

 

 

The ANOVA summary table for the MDCFF with the TOP algorithm over the four visits is given 

in Table 5.9. The MDCFF was lower for the left eye than for the right eye (p<0.001) and was 

worse when CFF was performed first at any given visit (p=0.034). It improved across the four 

visits (p=0.019).  
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Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Age 1 22 1.39 0.251 
Gender 1 22 0.04 0.849 
Eye 1 154 16.32 <0.001 

Order of Perimetry 1 22 5.71 0.026 

Visit 3 154 3.44 0.018 

Worst Eye 1 154 0.28 0.598 
     
Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Age 1 22 1.36 0.256 
Eye 1 154 16.32 <0.001 

Order 1 22 5.67 0.026 

Visit 3 154 3.44 0.018 

Worst Eye 1 154 0.28 0.598 
     
Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Age 1 22 1.36 0.256 
Eye 1 154 16.29 <0.001 

Order 1 22 5.67 0.026 

Visit 3 154 3.43 0.019 

     
Effect Degrees of Freedom 

Numerator 
Degrees of Freedom 

Denominator 
F value P value 

Eye 1 154 16.29 <0.001 

Order 1 22 5.09 0.034 

Visit 3 154 3.43 0.019 

Eye x Order 1 154 3.15 0.078 
Eye x Visit 3 154 1.61 0.189 
Order x Visit 3 154 0.95 0.418 

 

Table 5.9 The Analysis of Variance Summary Table for the MDCFF index over the Four 

Visits. 

   

5.11.4 Square root of the Loss Variance (sLV) 

The summary statistics for the Square root of the sLVSAP and sLVCFF over the four visits are 

shown in Table 5.10 for each eye of the 22 individuals with age-related cataract. The 

distributions of the sLVSAP, are also illustrated in terms of Box and Whisker plots in Figure 5.4. 
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Square root of Loss 

Variance (sLV) 

(dB) 

Visit 1 

TOP 

Visit 2 

TOP 

Visit 3 

TOP 

Visit 4 

TOP 

Right Mean 

SD 

2.88 
1.52 

2.76 
2.18 

2.44 
1.95 

2.17 
1.67 

Left Mean 

SD 

2.78 
1.92 

2.33 
1.95 

2.51 
2.08 

1.98 
1.31 

Right Median 

IQR 

2.42 
2.16 

1.92 
2.26 

1.71 
0.92 

1.82 
1.32 

Left Median 

IQR 

2.10 
1.79 

1.71 
1.47 

1.75 
1.52 

1.59 
1.10 

 

Square root of Loss 

Variance (sLV) 

(Hz) 

Visit 1 

TOP 

Visit 2 

TOP 

Visit 3 

TOP 

Visit 4 

TOP 

Right Mean 

 SD 

4.02 
1.80 

3.86 
2.11 

3.64 
2.23 

3.57 
2.52 

Left Mean  

SD 

4.02 
2.12 

3.96 
2.21 

4.05 
2.47 

3.79 
2.01 

Right Median 

IQR 

3.42 
1.86 

3.23 
1.13 

2.85 
1.24 

2.87 
1.63 

Left Median 

IQR  

3.55 
1.78 

3.58 
2.20 

3.68 
1.52 

3.44 
2.48 

 

Table 5.10  The summary statistics of the sLVSAP (top) and sLVCFF (bottom) at each visit for 

the right eye and for the left eye of the 22 individuals with age-related cataract. 

 

 

 

 

 

 

 

 

 

Overleaf: Figure 5.4 The Box and Whisker plots of the distribution of the sLVSAP (top) and 

sLVCFF (bottom) of each eye at each of the four visits using the TOP algorithm of the 22 

individuals with age-related cataract. The median is represented by the bold line, the 25
th

 

and 75
th

 percentiles by the lower and upper edges of the box, respectively, and the lowest 

and highest values by the lower and upper extremities of the whiskers, respectively. The 

results for the right eye over Visits One to Four are colour coded for the TOP algorithm in 

blue for SAP and in red for CFF perimetry.  The results for the left eye are colour coded in 

white for SAP and for CFF perimetry.   
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The ANOVA summary table for the sLVSAP with the TOP algorithm is given in Table 5.11. The 

sLVSAP improved over the four visits (p=0.003). 
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Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Age 1 22 0.93 0.345 
Gender 1 22 0.39 0.537 
Eye 1 154 1.52 0.219 
Order of Perimetry 1 22 6.78 0.016 

Visit 3 154 1.00 0.393 
Worst Eye 1 154 1.56 0.213 
     
Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Age 1 22 0.69 0.415 
Eye 1 154 1.52 0.219 
Order 1 22 6.39 0.019 

Visit 3 154 1.00 0.393 
Worst Eye 1 154 1.56 0.213 
     
Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Gender 1 22 4.24 0.052 

Eye 1 154 1.29 0.258 
Order 1 22 1.10 0.305 
Visit 3 154 5.02 0.002 

     
Effect Degrees of Freedom 

Numerator 
Degrees of Freedom 

Denominator 
F value P value 

Gender 1 22 3.70 0.068 
Eye 1 154 1.29 0.258 
Visit 3 154 5.02 0.002 

     
Effect Degrees of Freedom 

Numerator 
Degrees of Freedom 

Denominator 
F value P value 

Gender 1 22 3.70 0.068 
Visit 3 154 4.98 0.003 

Gender X Visit 3 154 0.51 0.678 
 

Table 5.11 The Analysis of Variance Summary Table for the sLVSAP index over the Four 

Visits. 
 

 

The ANOVA summary table for the sLVCFF with the TOP algorithm over the four visits is given 

in Table 5.12. sLVCFF was higher when SAP was undertaken before CFF perimetry (p=0.023).  
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Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Age 1 22 1.39 0.251 
Gender 1 22 0.04 0.849 
Eye 1 154 16.32 <0.001 

Order of Perimetry 1 22 5.71 0.026 
Visit 3 154 3.44 0.018 

Worst Eye 1 154 0.28 0.598 
     
Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Age 1 22 1.36 0.256 
Eye 1 154 16.32 <0.001 

Order 1 22 5.67 0.026 

Visit 3 154 3.44 0.018 

Worst Eye 1 154 0.28 0.598 
     
Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Eye 1 154 1.52 0.219 
Order 1 22 6.01 0.023 

Visit 3 154 1.00 0.393 
Worst Eye 1 154 1.56 0.214 

 
Table 5.12 The Analysis of Variance Summary Table for the sLVCFF index over the Four 

Visits. 
 

 

 

 

 

 

 

5.11.5 Diffuse Defect 

The summary statistics for the DDSAP (top) and DDCFF (bottom) over the four visits are shown in 

Table 5.13 for each eye of the 22 individuals with age-related cataract. The distribution of the 

DD, as a function of eye, are also illustrated in terms of Box and Whisker plots in Figure 5.5. 
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Diffuse Defect 

(dB) 

Visit 1 

TOP 

Visit 2 

TOP 

Visit 3 

TOP 

Visit 4 

TOP 

Right Mean 

SD 

2.18 
2.58 

1.19 
1.41 

1.35 
2.68 

0.91 
1.76 

Left Mean 

SD 

1.57 
1.96 

0.82 
1.55 

0.99 
2.18 

0.74 
1.91 

Right Median 

IQR 

1.15 
2.60 

1.00 
1.32 

0.55 
1.57 

0.55 
1.35 

Left Median 

IQR 

1.10 
1.70 

0.50 
1.40 

0.80 
1.57 

0.50 
1.52 

 

 

Diffuse Defect 

(Hz) 

Visit 1 

TOP 

Visit 2 

TOP 

Visit 3 

TOP 

Visit 4 

TOP 

Right Mean 

SD 

1.78 
3.44 

-0.18 
3.25 

0.44 
2.90 

1.00 
3.35 

Left Mean 

SD 

2.22 
3.91 

2.11 
4.25 

1.46 
3.40 

1.65 
3.68 

Right Median 

IQR 

1.10 
5.30 

-1.05 
2.80 

-0.35 
4.30 

0.30 
6.22 

Left Median 

IQR 

1.50 
5.70 

1.65 
4.87 

0.85 
6.40 

2.05 
6.97 

 

Table 5.13  The summary statistics of the DDSAP (top) and DDCFF (bottom) at each visit for 

the right eye and for the left eye of the 22 individuals with age-related cataract. 

 

 

 

 

 

 

 

 

 

 

 

Overleaf: Figure 5.5 The Box and Whisker plots of the distribution of the DDSAP (top) and 

DDCFF (bottom) of each eye at each of the four visits using the TOP algorithm for the 22 

individuals with age-related cataract. The median is represented by the bold line, the 25
th

 

and 75
th

 percentiles by the lower and upper edges of the box, respectively, and the lowest 

and highest values by the lower and upper extremities of the whiskers, respectively. The 

results for the right eye over Visits One to Four are colour coded for the TOP algorithm in 

blue for SAP and red for CFF perimetry. The results for the left eye are colour coded in 

white for SAP and for CFF perimetry.   
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The ANOVA summary table for the DDSAP with the TOP algorithm over the four visits is given 

in Table 5.14 The DDSAP was lower for the left eye than for the right eye (p=0.016) and was 

worst for the worst eye (p<0.002). It improved across the four visits (p<0.001) and the 

improvement over the four visits was greater for females (p=0.007). 
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Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Age 1 22 0.02 0.882 
Gender 1 22 3.25 0.085 
Eye 1 154 5.97 0.016 

Order of Perimetry 1 22 0.08 0.787 
Visit 3 154 8.77 <0.001 

Worst Eye 1 154 10.43 0.002 

     
Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Gender 1 22 3.32 0.082 
Eye 1 154 5.97 0.016 

Order 1 22 0.08 0.778 
Visit 3 154 8.77 <0.001 

Worst Eye 1 154 10.43 0.002 

     
Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Gender 1 22 3.43 0.078 
Eye 1 154 5.97 0.016 

Visit 3 154 8.77 <0.001 

Worst Eye 1 154 10.43 0.002 

Visit x Eye 3 154 0.33 0.804 
Visit x Worst Eye 3 154 0.09 0.963 
Gender x Visit 3 154 4.24 0.007 

Eye x Worste Eye 1 22 0.95 0.341 
Gender x Worst Eye 1 154 6.36 0.013 

Eye x Gender 1 154 3.03 0.084 

 
Table 5.14 The Analysis of Variance Summary Table for the DDSAP index over the Four 

Visits. 
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Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Age 1 22 1.53 0.229 
Gender 1 22 0.00 0.960 
Eye 1 154 13.75 <0.001 

Order of Perimetry 1 22 4.17 0.053 

Visit 3 154 2.73 0.046 

Worst Eye 1 154 0.19 0.664 
     
Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Age 1 22 1.59 0.220 
Eye 1 154 13.75 <0.001 

Order 1 22 4.19 0.053 

Visit 3 154 2.73 0.046 

Worst Eye 1 154 0.19 0.664 
     
Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Age 1 22 1.59 0.220 
Eye 1 154 13.73 <0.001 

Order 1 22 4.19 0.527 
Visit 3 154 2.73 0.046 

     
Effect Degrees of Freedom 

Numerator 
Degrees of Freedom 

Denominator 
F value P value 

Eye 1 154 13.73 <0.001 

Order 1 22 3.68 0.068 
Visit 3 154 2.73 0.046 

Eyex Order 1 154 1.23 0.269 
Eye x Visit 3 154 2.05 0.110 
Order x Visit 3 154 0.82 0.484 

 
Table 5.15 The Analysis of Variance Summary Table for the DDCFF index over the Four 

Visits. 
 
 

 

The ANOVA summary table for the DDCFF with the TOP algorithm over the four visits is given 

in Table 5.15. The DDCFF was lower for the left eye than for the right eye (p<0.001). It improved 

across the four visits p=0.046). 
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5.11.6 Local Defect 

The summary statistics for the LDSAP (top) and LDCFF (bottom) over the four visits are shown in 

Table 5.16 for each eye of the 22 individuals with age-related cataract. The distribution of the 

LD, as a function of eye, is also illustrated in terms of Box and Whisker plots in Figure 5.6. 

 
 
 

Local Defect 

(dB) 

Visit 1 

TOP 

Visit 2 

TOP 

Visit 3 

TOP 

Visit 4 

TOP 

Right  

SD 

1.74 
1.85 

1.68 
2.90 

1.27 
2.69 

1.03 
2.00 

Left  

SD 

1.70 
2.45 

1.26 
2.55 

1.31 
2.82 

0.94 
1.84 

Right Median 

IQR 

1.20 
2.35 

0.45 
1.90 

0.10 
0.83 

0.25 
1.20 

Left Median 

IQR  

0.70 
1.90 

0.10 
1.35 

0.25 
1.28 

0.20 
0.78 

 

Local Defect 

(Hz) 

Visit 1 

TOP 

Visit 2 

TOP 

Visit 3 

TOP 

Visit 4 

TOP 

Right  

SD 

1.06 
1.89 

0.75 
1.91 

0.82 
2.18 

0.89 
2.64 

Left  

SD 

1.25 
2.57 

1.33 
2.33 

1.21 
2.39 

1.07 
1.95 

Right Median 

IQR 

0.05 
1.28 

0.00 
0.10 

0.00 
0.25 

0.00 
0.15 

Left Median 

IQR 

0.15 
0.88 

0.10 
0.90 

0.25 
0.85 

0.10 
0.90 

 
Table 5.16  The summary statistics of the LDSAP (top) and LDCFF (bottom) at each visit for 

the right eye and for the left eye of the 22 individuals with age-related cataract. 

 
 
 
 
Overleaf: Figure 5.6 The Box and Whisker plots of the distribution of the LDSAP (top) and 

LDCFF (bottom) for each eye at each of the four visits using the TOP algorithm for the 22 

individuals with age-related cataract. The median is represented by the bold line, the 25
th

 

and 75
th

 percentiles by the lower and upper edges of the box, respectively, and the lowest 

and highest values by the lower and upper extremities of the whiskers, respectively. The 

results for the right eye over Visits One to Four are colour coded for the TOP algorithm in 

blue for SAP and red for CFF.  The results for the left eye are colour coded in white for 

both SAP and CFF.   
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Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Age 1 22 0.10 0.749 
Gender 1 22 3.69 0.068 
Eye 1 154 0.55 0.460 
Order of Perimetry 1 22 1.18 0.290 
Visit 3 154 3.24 0.024 

Worst Eye 1 154 1.27 0.262 
     
Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Gender 1 22 3.59 0.071 
Eye 1 154 0.55 0.460 
Order 1 22 1.13 0.300 
Visit 3 154 3.24 0.024 

Worst Eye 1 154 1.27 0.262 
     
Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Gender 1 22 3.59 0.071 
Order 1 22 1.13 0.300 
Visit 3 154 3.23 0.024 

Worst Eye 1 154 1.26 0.263 
     
Effect Degrees of Freedom 

Numerator 
Degrees of Freedom 

Denominator 
F value P value 

Gender 1 22 3.10 0.092 
Visit 3 154 3.23 0.024 

Worst Eye 1 154 1.26 0.263 
     
Effect Degrees of Freedom 

Numerator 
Degrees of Freedom 

Denominator 
F value P value 

Gender 1 22 3.10 0.092 
Visit 3 154 3.23 0.024 

Gender x Visit 3 154 0.66 0.578 

 

Table 5.17 The Analysis of Variance Summary Table for the LDSAP  index over the Four 

Visits. 
 

The ANOVA summary table for the LDSAP with the TOP algorithm over the four visits is given 

in Table 5.17. The LDSAP improved across the four visits p=0.024). 
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Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Age 1 22 0.09 0.772 
Gender 1 22 0.19 0.667 
Eye 1 154 6.39 0.013 

Order of Perimetry 1 22 4.17 0.053 

Visit 3 154 0.33 0.802 
Worst Eye 1 154 1.35 0.247 
     
Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Age 1 22 0.09 0.772 
Gender 1 22 0.19 0.667 
Eye 1 154 6.35 0.013 

Order 1 22 4.17 0.053 

Worst Eye 1 154 1.34 0.249 
     
Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Gender 1 22 0.14 0.710 
Eye 1 154 6.35 0.013 
Order 1 22 4.08 0.056 

Worst Eye 1 154 1.34 0.249 
     
Effect Degrees of Freedom 

Numerator 
Degrees of Freedom 

Denominator 
F value P value 

Eye 1 154 6.35 0.013 

Order 1 22 3.95 0.060 

Worst Eye 1 154 1.34 0.249 
     
Effect Degrees of Freedom 

Numerator 
Degrees of Freedom 

Denominator 
F value P value 

Eye 1 154 6.30 0.013 

Order 1 22 3.95 0.059 

Eye x Order 1 154 5.68 0.018 

 

Table 5.18 The analysis of Variance Summary Table for the LDCFF index over the Four 

Visits. 
 

The ANOVA summary table for the LDCFF with the TOP algorithm over the four visits is given 

in Table 5.18. The LDCFF was lower for the left eye than for the right eye (p=0.013) and this 

difference was more pronounced when CFF perimetry was performed last (p=0.018) 
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5.11.7 Examination Duration  

The summary statistics for the examination duration for SAP (top) and CFF perimetry (bottom) 

over the four visits are shown in Table 5.19 for each eye of the 22 individuals with age-related 

cataract. The distribution of the examination duration, as a function of eye, is also illustrated in 

terms of Box and Whisker plots in Figure 5.7. 

 

Examination 

Duration SAP 

(Seconds) 

Visit 1 

TOP 

Visit 2 

TOP 

Visit 3 

TOP 

Visit 4 

TOP 

Right Mean 

SD 

163 
25 

152 
14 

155 
36 

153 
29 

Left Mean 

SD 

160 
21 

146 
19 

151 
31 

150 
27 

Right Median 

IQR   

157 
19 

150 
20 

147 
18 

145 
24 

Left Median 

 IQR  

156 
27 

138 
22 

144 
19 

138 
31 

 

Examination 

Duration CFF 

(Seconds) 

Visit 1 

TOP 

Visit 2 

TOP 

Visit 3 

TOP 

Visit 4 

TOP 

Right Mean 

SD 

272 
58 

228 
53 

234 
69 

233 
70 

Left Mean 

SD 

265 
76 

224 
47 

229 
59 

221 
58 

Right Median 

IQR  

265 
56 

215 
55 

212 
62 

222 
55 

Left Median 

IQR 

244 
61 

209 
41 

213 
59 

199 
69 

 

Table 5.19  The summary statistics of the examination duration (seconds) for SAP (Top) 

and CFF (Bottom) at each visit for the right eye and for the left eye of the 22 individuals 

with age-related cataract. 
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Overleaf: Figure 5.7 The Box and Whisker plots of the distribution of the examination 

duration for SAP (top) and CFF (bottom) for each eye at each of the four visits using the 

TOP algorithm for the 22 individuals with age-related cataract. The median is represented 

by the bold line, the 25
th

 and 75
th

 percentiles by the lower and upper edges of the box, 

respectively, and the lowest and highest values by the lower and upper extremities of the 

whiskers, respectively. The results for the right eye over Visits One to Four are colour 

coded for the TOP algorithm in blue for SAP and red for CFF.  The results for the left eye 

are colour coded in white for both SAP and CFF.   
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The ANOVA summary table for the examination durationSAP with the TOP algorithm over the 

four visits is given in Table 5.20 The examination durationSAP became shorter over the four 

examinations (p=0.006). 

 

Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Age 1 22 1.69 0.207 
Gender 1 22 3.75 0.066 
Eye 1 154 2.29 0.132 
Order of Perimetry 1 22 0.04 0.850 
Visit 3 154 4.36 0.006 

Worst Eye 1 154 0.00 0.961 
     
Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Age 1 22 1.69 0.207 
Gender 1 22 3.75 0.066 
Eye 1 154 2.29 0.132 
Order 1 22 0.04 0.850 
Visit 3 154 4.36 0.006 

     
Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Age 1 22 1.74 0.201 
Gender 1 22 3.86 0.062 
Eye 1 154 2.29 0.132 
Visit 3 154 4.36 0.006 

     
Effect Degrees of Freedom 

Numerator 
Degrees of Freedom 

Denominator 
F value P value 

Gender 1 22 2.69 0.115 
Eye 1 154 2.29 0.132 
Visit 3 154 4.36 0.006 

     
Effect Degrees of Freedom 

Numerator 
Degrees of Freedom 

Denominator 
F value P value 

Gender 1 22 2.69 0.115 
Visit 3 154 4.29 0.006 

     
Effect Degrees of Freedom 

Numerator 
Degrees of Freedom 

Denominator 
F value P value 

Visit 3 154 4.29 0.006 

 

Table 5.20 The Analysis of Variance Summary Table for the examination duration (SAP) 

index over the Four Visits. 
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The ANOVA summary table for the examination durationCFF with the TOP algorithm over the 

four visits is given in Table 5.21 The examination durationCFF also became shorter over the four 

examinations (p<0.001). 

 

 

 
Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Age 1 22 1.13 0.298 
Gender 1 22 4.88 0.038 

Eye 1 154 1.25 0.265 
Order of Perimetry 1 22 0.05 0.833 
Visit 3 154 9.41 <0.001 

Worst Eye 1 154 0.006 0.811 
     
Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Age 1 22 1.10 0.305 
Gender 1 22 4.82 0.039 

Eye 1 154 1.25 0.265 
Visit 3 154 9.41 <0.001 

Worst Eye 1 154 0.06 0.811 
     
Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Age 1 22 1.10 0.305 
Gender 1 22 4.82 0.039 

Eye 1 154 1.25 0.265 
Visit 3 154 9.41 <0.001 

     
Effect Degrees of Freedom 

Numerator 
Degrees of Freedom 

Denominator 
F value P value 

Gender 1 22 4.83 0.063 
Eye 1 154 1.25 0.265 
Visit 3 154 9.41 <0.001 

     
Effect Degrees of Freedom 

Numerator 
Degrees of Freedom 

Denominator 
F value P value 

Gender 1 22 3.83 0.063 
Visit 3 154 9.33 <0.001 

Gender x Visit 3 154 2.07 0.106 

 

Table 5.21 The Analysis of Variance Summary Table for the examination duration (CFF) 

index over the Four Visits. 
 
 

 



 276 

5.11.8 The ratio of the Peripheral Mean Sensitivity (PMS) to the Central Mean Sensitivity 

(CMS)  

The summary statistics for the ratio of the Peripheral Mean Sensitivity (PMS) to the Central 

Mean Sensitivity (CMS) for SAP (top) and for CFF perimetry (bottom) over the four visits are 

shown in Table 5.22a and 5.22b for each eye of the 22 individuals with age-related cataract.  

 

 
Peripheral/Central 

MS 

Visit 1 

TOP 

Visit 2 

TOP 

Visit 3 

TOP 

Visit 4 

TOP 

Right  

(SD) 

0.85 
(0.12) 

0.85 
(0.14) 

0.86 
(0.15) 

0.89 
(0.08) 

Left  

(SD) 

0.84 
(0.13) 

0.87 
(0.13) 

0.86 
(0.17) 

0.89 
(0.10) 

Right Median/ 

IQR  

0.87 
(0.11) 

0.91 
(0.04) 

0.90 
(0.05) 

0.92 
(0.05) 

Left Median/ 

IQR 

0.89 
(0.11) 

0.90 
(0.05) 

0.92 
(0.08) 

0.91 
(0.04) 

 
Table 5.22a  The ratio of the PMS to the CMS for the 22 individuals with age-related 

cataract derived by SAP. 

 

 

 
 
 
 
 

 

 

 

 

 

 

 

 

 

Table 5.22b The ratio of the PMS to the CMS for the 22 individuals with age-related 

cataract derived by CFF perimetry. 

 
 
 
 
 
 

Peripheral/Central 

MS 

Visit 1 

TOP 

Visit 2 

TOP 

Visit 3 

TOP 

Visit 4 

TOP 

Right  

(SD) 

0.91 
(0.12) 

0.93 
(0.13) 

0.92 
(0.13) 

0.91 
(0.13) 

Left  

(SD) 

0.89 
(0.14) 

0.90 
(0.15) 

0.91 
(0.14) 

0.92 
(0.12) 

Right Median/ 

IQR  

0.92 
(0.08) 

0.95 
(0.07) 

0.95 
(0.06) 

0.95 
(0.09) 

Left Median/ 

IQR 

0.92 
(0.11) 

0.95 
(0.09) 

0.96 
(0.15) 

0.95 
(0.10)x 
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The ANOVA summary table for the ratio of the Peripheral Mean Sensitivity (PMS) to the 

Central Mean Sensitivity (CMS) for SAP with the TOP algorithm over the four visits is given in 

Table 5.23 The ratio became greater over the four visits (p=0.021) indicating a greater learning 

effect in the peripheral zone. 

 
 

Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Age 1 22 2.88 0.104 
Gender 1 22 0.00 0.970 
Eye 1 154 0.09 0.771 
Order of Perimetry 1 22 0.68 0.420 
Visit 3 154 3.35 0.021 

Worst Eye 1 154 3.03 0.084 
     
Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Age 1 22 3.02 0.100 
Eye 1 154 0.09 0.771 
Order 1 22 0.69 0.415 
Visit 3 154 3.35 0.021 

Worst Eye 1 154 3.03 0.084 
     
Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Age 1 22 3.02 0.100 
Order 1 22 0.69 0.415 
Visit 3 154 3.35 0.021 

Worst Eye 1 154 3.03 0.084 
     
Effect Degrees of Freedom 

Numerator 
Degrees of Freedom 

Denominator 
F value P value 

Age 1 22 3.09 0.093 
Visit 3 154 3.35 0.021 

Worst Eye 1 154 3.03 0.084 
Age x Worst Eye 1 154 0.39 0.531 
Age x Visit 3 154 0.88 0.451 
Visit x Worst Eye 3 154 0.14 0.935 

 
Table 5.23 The Analysis of Variance Summary Table for the PMS to the CMS 

(SAP) index over the Four Visits. 
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Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Age 1 22 0.05 0.817 
Gender 1 22 0.77 0.391 
Eye 1 154 3.59 0.060 
Order of Perimetry 1 22 0.13 0.725 
Visit 3 154 1.30 0.278 
Worst Eye 1 154 0.20 0.652 
     
Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Gender 1 22 0.92 0.348 
Eye 1 154 3.59 0.060 
Order 1 22 0.14 0.712 
Visit 3 154 1.30 0.278 
Worst Eye 1 154 0.20 0.652 
     
Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Gender 1 22 0.86 0.365 
Eye 1 154 3.59 0.860 
Visit 3 154 1.30 0.278 
Worst Eye 1 154 0.20 0.652 
     
Effect Degrees of Freedom 

Numerator 
Degrees of Freedom 

Denominator 
F value P value 

Gender 1 22 0.86 0.365 
Eye 1 154 3.58 0.060 
Visit 3 154 1.30 0.278 
     
Effect Degrees of Freedom 

Numerator 
Degrees of Freedom 

Denominator 
F value P value 

Eye 1 154 3.58 0.060 
Visit 3 154 1.30 0.278 
     
Effect Degrees of Freedom 

Numerator 
Degrees of Freedom 

Denominator 
F value P value 

Eye 1 154 3.58 0.060 

 
Table 5.24 The Analysis of Variance Summary Table for the PMS to the CMS (CFF) index 

over the Four Visits. 

 

 

The ANOVA summary table for the ratio of the Peripheral Mean Sensitivity (PMS) to the 

Central Mean Sensitivity (CMS) for CFF with the TOP algorithm over the four visits is given in 

Table 5.24. None of the variables achieved statistical significance. 
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5.11.9 Catch Trials 

The summary statistics for the incorrect responses to the FP and FN for SAP and for CFF 

perimetry over the Four visits for each eye of the 22 individuals with age-related cataract are 

shown in Table 5.25 and Table 5.26. 

 
 
 

FP and FN  SAP 

Catch trials (%) 

Visit 1 

TOP 

Visit 2 

TOP 

Visit 3 

TOP 

Visit 4 

TOP 

Right Mean FP 

SD 

1.14 
5.33 

1.52 
7.11 

1.52 
7.11 

3.03 
9.81 

Right Median FP 

IQR  

0.00 
0.00 

0.00 
0.00 

0.00 
0.00 

0.00 
0.00 

Left Mean FP  

SD 

3.79 
9.87 

5.30 
13.98 

5.30 
11.66 

4.55 
11.71 

Left Median FP 

IQR   

0.00 
0.00 

0.00 
0.00 

0.00 
0.00 

0.00 
0.00 

Right Mean FN  

SD 

0.91 
4.26 

2.27 
7.36 

5.68 
10.52 

4.55 
9.87 

Right Median FN 

IQR   

0.00 
0.00 

0.00 
0.00 

0.00 
0.00 

0.00 
0.00 

Left Mean FN  

SD 

6.82 
13.76 

2.27 
7.36 

4.55 
.87 

0.00 
(0.00) 

Left Median FN 

IQR   

0.00 
0.00 

0.00 
0.00 

0.00 
0.00 

0.00 
0.00 

 
Table 5.25 The summary statistics of the incorrect responses to the false-positive and false-

negative catch trials at each visit for each eye of the 22 individuals with age-related 

cataract for SAP. 
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FP and FN  CFF 

Catch trials (%) 

Visit 1 

TOP 

Visit 2 

TOP 

Visit 3 

TOP 

Visit 4 

TOP 

Right Mean FP 

SD 

15.73 
18.05 

13.11 
21.11 

11.82 
15.91 

10.23 
18.35 

Right Median FP 

IQR 

13.89 
25.00 

0.00 
25.00 

0.00 
25.00 

0.00 
18.75 

Left Mean FP  

SD 

11.14 
12.53 

16.29 
21.44 

10.15 
14.87 

7.95 
14.20 

Left Median FP 

IQR   

0.00 
25.00 

0.00 
31.25 

0.00 
23.75 

0.00 
18.75 

Right Mean FN  

SD 

13.26 
21.64 

2.95 
7.66 

8.64 
17.81 

3.18 
8.24 

Right Median FN 

IQR   

0.00 
20.00 

0.00 
0.00 

0.00 
15.00 

0.00 
0.00 

Left Mean FN  

SD 

5.00 
12.54 

6.36 
12.93 

5.91 
11.71 

3.18 
11.29 

Left Median FN 

IQR   

0.00 
0.00 

0.00 
0.00 

0.00 
0.00 

0.00 
0.00 

 
Table 5.26 The summary statistics of the incorrect responses to the false-positive and false-

negative catch trials at each visit for each eye of the 22 individuals with age-related 

cataract for CFF perimetry. 

 

 

The number of incorrect responses to each of the two types of catch trials was insufficient to 

permit statistical analysis. 

 

The number of individuals across each of the two types of perimetry exhibiting greater than 30% 

incorrect responses to the false-positive (FP) catch trials for each eye over each of the four visits 

are shown in Table 5.27. Within the limits of the dataset, the frequency was greater for CFF 

perimetry than for SAP. 
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Cataract 

Individuals 

SAP 

Cataract 

Individuals  

CFF 

 

False 

Positive. 

responses 

 

Visit 

 
Right 

eye 

Left 

eye 

Right 

eye 

Left 

eye 

>30% 1 0 1 4 0 
>30% 2 1 2 3 6 
>30% 3 1 2 3 2 
>30% 4 2 3 3 1 

 

 

Table 5.27  The number of individuals across each of the two perimetric examination 

procedures exhibiting greater than 30% incorrect responses to the False-positive (FP) catch 

trials for each eye over each of the four visits.  

 

 

5.12 The change in sensitivity at each given stimulus location between Visits One and 

Visits Two and between Visit Two and Visit Four respectively, as a function of 

eccentricity for SAP and for CFF perimetry.  

The change in sensitivity at each stimulus location between Visit Two and Visit One for the right 

eye (top) and left eye (bottom) for the 22 individuals with age-related cataract is shown for the 

mean (SD) in Figure 5.8 (SAP), Figure 5.9 (CFF) and for the median (IQR) in Figure 5.10 

(SAP), and Figure 5.11 (CFF). In general, both measures of central tendency suggested an 

approximately similar magnitude of change at Visit Two with increase in eccentricity for the 

field of each eye for SAP. For CFF perimetry, the mean possibly suggested a greater 

improvement for the peripheral zones in the field of the right eye at Visit Two, however, the 

median was less clear in this regard. The field of the left eye showed no evidence of a greater 

improvement for the peripheral zones at Visit Two, compared to the central zone, either for the 

mean or for the median. 

 

 

 



 282 

   -0.50 
7.10 

  0.72 
6.57 

   

 2.55 
7.59 

1.33 
6.41 

 0.50 
6.80 

0.00 
5.13 

 0.49 
6.73 

0.99 
7.07 

 

 3.30 
6.37 

2.94 
4.79 

 2.03 
4.63 

-0.13 
4.61 

 0.70 
4.74 

0.52 
5.47 

 

   0.65 
2.57 

0.18 
2.77 

2.32 
2.90 

1.03 
4.88 

  0.40 
4.92 

1.78 
4.73 

2.26 
4.46 

1.33 
5.63 

 0.47 
2.78 

1.96 
3.75 

  0.65 
4.28 

 

   0.62 
2.12 

0.63 
2.36 

1.95 
3.78 

1.36 
3.45 

   

   0.00 
2.56 

0.28 
1.95 

1.20 
2.41 

1.35 
3.30 

   

1.88 
7.42 

1.88 
6.04 

1.69 
2.82 

 -0.33 
3.65 

1.53 
3.68 

  -0.78 
4.75 

 

   0.93 
2.64 

0.52 
2.21 

1.61 
4.36 

1.18 
4.53 

  -0.64 
6.70 

 1.65 
6.14 

1.38 
4.00 

 0.60 
3.37 

1.25 
5.57 

 -0.10 
5.11 

-1.15 
7.02 

 

 1.09 
6.75 

1.20 
5.45 

 1.31 
5.56 

1.41 
5.20 

 0.25 
6.39 

-0.09 
7.51 

 

   1.05 
6.39 

  1.77 
5.55 

   

 
-2.00 -1.50 -1.00 -0.50 0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 
-1.49 -0.99 -0.49 -0.01 0.49 0.99 1.49 1.99 2.49 2.99 3.49 3.99 4.49 4.99 5.49 >5.99 

 
   0.89 
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  3.46 

4.09 
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4.27 
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4.66 

 0.85 
4.01 
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4.41 

2.15 
5.96 

 

 0.89 
3.04 
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3.64 

1.66 
5.37 
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5.46 

1.27 
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1.89 
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2.43 
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2.12 
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2.26 
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0.10 
2.38 
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1.83 
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3.40 

0.58 
2.57 

1.37 
2.56 

1.45 
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5.07 
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-0.05 
5.11 

 0.77 
3.36 

1.42 
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2.43 
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3.95 
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0.04 
4.07 
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4.23 
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4.28 

 1.47 
4.29 

1.56 
4.30 

 -0.09 
3.61 

-0.10 
4.34 

 

   1.84 
4.87 

  0.63 
4.53 

   

 
Figure 5.8 The group mean (SD) of the difference in sensitivity (SD) for SAP, Program G1 

and the TOP algorithm at each stimulus location between Visit Two and Visit One for the 

right eye (top) and left eye (bottom) for the 22 individuals with age-related cataract. The 

stimulus locations for the left eye are displayed in right eye format to aid the between-eye 

comparison. The lower value indicates the Standard Deviation. Increasing ‘warmth’ of the 

colour at each stimulus location indicates an improvement in sensitivity at Visit Two.  
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Figure 5.9 The group mean (SD) of the difference in sensitivity (SD) for CFF perimetry, 

Program G1 and the TOP algorithm at each stimulus location between Visit Two and Visit 

One for the right eye (top) and left eye (bottom) for the 22 individuals with age-related 

cataract. The stimulus locations for the left eye are displayed in right eye format to aid the 

between-eye comparison. The lower value indicates the Standard Deviation. Increasing 

‘warmth’ of the colour at each stimulus location indicates an improvement in sensitivity at 

Visit Two.  
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Figure 5.10 The group median (IQR) of the difference in sensitivity (SD) for SAP, Program 

G1 and the TOP algorithm at each stimulus location between Visit Two and Visit One for 

the right eye (top) and left eye (bottom) for the 22 individuals with age-related cataract. 

The stimulus locations for the left eye are displayed in right eye format to aid the between-

eye comparison. The lower value indicates the IQR. Increasing ‘warmth’ of the colour at 

each stimulus location indicates an improvement in sensitivity at Visit Two.  
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Figure 5.11 The group median (IQR) of the difference in sensitivity (SD) for CFF 

perimetry, Program G1 and the TOP algorithm at each stimulus location between Visit 

Two and Visit One for the right eye (top) and left eye (bottom) for the 22 individuals with 

age-related cataract. The stimulus locations for the left eye are displayed in right eye 

format to aid the between-eye comparison. The lower value indicates the IQR. Increasing 

‘warmth’ of the colour at each stimulus location indicates an improvement in sensitivity at 

Visit Two.  
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The change in sensitivity at each stimulus location between Visit Four and Visit Two for the 

right eye (top) and left eye (bottom) for the 22 individuals with age-related cataract are shown 

for the mean (SD) in Figure 5.12 (SAP), Figure 5.13 (CFF) and for the median (IQR) in Figure 

5.14 (SAP), Figure 5.15 (CFF).  

 

In general, both measures of central tendency suggested an approximately similar magnitude of 

change at Visit Four with increase in eccentricity for the field of each eye for SAP. For CFF 

perimetry, the mean possibly suggested a deterioration for the peripheral zones in the field of the 

right eye at Visit Four, however, the median did not confirm this trend. The field of the left eye 

showed no evidence of a greater improvement for the peripheral zones at Visit Four either for the 

mean of for the median. 
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Figure 5.12 The group mean (SD) of the difference in sensitivity (SD) for SAP, Program G1 

and the TOP algorithm at each stimulus location between Visit Four and Visit Two for the 

right eye (top) and left eye (bottom) for the 22 individuals with age-related cataract. The 

stimulus locations for the left eye are displayed in right eye format to aid the between-eye 

comparison. The lower value indicates the Standard Deviation. Increasing ‘warmth’ of the 

colour at each stimulus location indicates an improvement in sensitivity at Visit Four.  
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Figure 5.13 The group mean (SD) of the difference in sensitivity (SD) for CFF perimetry, 

Program G1 and the TOP algorithm at each stimulus location between Visit Four and Visit 

Two for the right eye (top) and left eye (bottom) for the 22 individuals with age-related 

cataract. The stimulus locations for the left eye are displayed in right eye format to aid the 

between-eye comparison. The lower value indicates the Standard Deviation. Increasing 

‘warmth’ of the colour at each stimulus location indicates an improvement in sensitivity at 

Visit Four.  
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Figure 5.14 The group median (IQR) of the difference in sensitivity (SD) for SAP, Program 

G1 and the TOP algorithm at each stimulus location between Visit Four and Visit Two for 

the right eye (top) and left eye (bottom) for the 22 individuals with age-related cataract. 

The stimulus locations for the left eye are displayed in right eye format to aid the between-

eye comparison. The lower value indicates the IQR. Increasing ‘warmth’ of the colour at 

each stimulus location indicates an improvement in sensitivity at Visit Four.  
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Figure 5.15 The group median (IQR) of the difference in sensitivity (SD) for CFF 

perimetry, Program G1 and the TOP algorithm at each stimulus location between Visit 

Four and Visit Two for the right eye (top) and left eye (bottom) for the 22 individuals with 

age-related cataract. The stimulus locations for the left eye are displayed in right eye 

format to aid the between-eye comparison. The lower value indicates the IQR. Increasing 

‘warmth’ of the colour at each stimulus location indicates an improvement in sensitivity at 

Visit Four.  
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5.13 The change in sensitivity, across all stimulus locations for SAP and CFF perimetry, 

respectively, from Visit One to Visit Two and between Visit Four and Visit Two, 

respectively, as a function of the magnitude of sensitivity at the initial visit of the 

given paired comparison.  

The change in sensitivity for SAP, across all stimulus locations, from Visit One and Visit Two as 

a function of the magnitude of sensitivity at Visit One for the 22 individuals with age-related 

cataract is given in Figure 5.16 (top) and that from Visit Two and Visit Four as a function of the 

magnitude of sensitivity at Visit Two in Figure 5.16 (bottom). The corresponding changes for 

CFF perimetry are given in Figure 5.17 Top and Bottom, respectively. 

 

The 50th percentile of the distribution of the change in sensitivity for SAP from Visits One to 

Two as a function of the magnitude of sensitivity at Visit One exhibited a positive slope for the 

field of each eye indicating a greater improvement in sensitivity for the lower values of 

sensitivity at Visit Two.  

 

A similar trend was apparent for the fields of both eyes from Visit Two and Visit Four as 

function of the the magnitude of sensitivity at Visit Two. The range of the magnitude of 

sensitivity along the abscissa was less than that at Visit One due to the resultant improvement in 

sensitivity from Visit One to Visit Two. 

 

The corresponding figures for CFF perimetry are shown in Figures 5.17 top and bottom. A 

positive slope was present for the field of each eye for the difference in sensitivity from Visit 

One to Visit Two as a function of the magnitude of sensitivity at Visit One and for that from 

Visit Two to Visit Four as a function of the magnitude of sensitivity at Visit Two. However, the 

data was more variable for the lower values of sensitivity for the field of the right eye compared 

to that of the left eye and, in general, was more variable for the fields of both eyes compared to 

that for SAP. 
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Figure 5.16 The 90
th 

(red), 50
th

 (black) and 10
th

 (blue) percentiles of the distribution of the 

differences in sensitivity for SAP across all stimulus location from Visit One and Visit Two 

as a function of the sensitivity at the corresponding stimulus location recorded at Visit One 

(top) and from Visit Two and Visit Four as a function of the sensitivity at the 

corresponding stimulus location recorded at Visit Two (bottom) for the right (left column) 

and left (right column) eye for the 22 individuals with age-related cataract (Program G1, 

TOP algorithm). 
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Figure 5.17 The 90
th 

(red), 50
th

 (black) and 10
th

 (blue) percentiles of the distribution of the 

differences in sensitivity for CFF across all stimulus location from Visit One to Visit Two as 

a function of the sensitivity at the corresponding stimulus location recorded at Visit One 

(Top) and from Visit Two to Visit Four as a function of the sensitivity at the corresponding 

stimulus location recorded at Visit Two (bottom) for the right (left column) and left (right 

column) eye for the 22 individuals with age-related cataract (Program G1, TOP algorithm). 

 

 

5.14 The change in the Comparison Probability value, across all given stimulus locations 

from Visit One to Visit Two, Visit Two to Visit Four, respectively, for the 22 

individuals with age-related cataract. 

     The change in the Comparison Probability value across all given stimulus locations from Visit 

One to Visit Two for SAP and for CFF perimetry for the 22 individuals with age-related cataract, 

is given in the Table 5.28 top and bottom, respectively,  and from Visits Two to Visit Four in 

Table 5.29 top and bottom, respectively.  
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Table 5.28 The change in the Comparison Probability value across all the given stimulus 

locations between Visit Two and Visit One for SAP (Top) and CFF perimetry (Bottom), for 

the 22 individuals with age related cataract. The shading indicates the number of locations 

exhibiting identical probability levels at the two examinations. A reduced number of data 

entries above the grey line compared to that below the line represents an improvement in 

sensitivity from Visit One to Visit Two. The data for the field of the right eye is given in the 

left column and that for the left eye in the right column.  

 

 

The extent of the improvement between Visits One and Two in the Comparison probability value 

derived by SAP for the 22 individuals with age-related cataract, as a group, (Table 5.28 top) was 

relatively large for each eye, (right eye, 230 locations exhibiting an improvement and 125 

locations exhibiting a deterioration, i.e. a 1.8 fold improvement, from a total of 1298 locations; 

left eye, 151 locations exhibiting an improvement, 58 locations exhibiting a deterioration i.e. a 

2.6 fold improvement). Thus, the field of the right eye showed an improvement, on average, of 

one or more probability levels at approximately 10 stimulus locations per individual (230 

locations; 22 individuals) and a deterioration at approximately 6 locations per individual. The 

Visit Two   Visit Two 

 NS <5% <2% <1% <0.5%   NS <5% <2% <1% <0.5% 

NS 900 30 10 8 42  NS 1034 25 4 1 12 

<5% 56 8 6 2 6  <5% 39 11 2 3 2 

<2% 31 5 5 1 13  <2% 19 9 1 3 1 

<1% 13 2 1 1 7  <1% 8 5 0 0 5 

V
is

it
 O

n
e 

<0.5% 71 22 12 17 29  

V
is

it
 O

n
e 

<0.5% 50 6 11 4 43 

Visit Two  Visit Two 

 NS <5% <2% <1% <0.5%   NS <5% <2% <1% <0.5% 

NS 1084 11 3 8 7  NS 1005 30 23 11 26 

<5% 56 4 1 2 3  <5% 48 5 5 1 5 

<2% 31 2 2 1 3  <2% 18 5 5 1 4 

<1% 14 3 2 0 1  <1% 4 2 1 1 7 

V
is

it
 O

n
e 

<0.5% 27 2 7 3 21  
V

is
it

 O
n

e 
<0.5% 36 6 3 6 40 
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field of the left eye showed an improvement at approximately 7 locations per individual and a 

deterioration at approximately 3 locations per individual.   

The extent of the improvement between Visits One and Two in the Comparison probability value 

derived by CFF perimetry for the 22 individuals with age-related cataract, as a group, (Table 

5.28 bottom) was also relatively high for the right eye, (right eye, 147 locations exhibiting an 

improvement and 40 locations exhibiting a deterioration, i.e. a 3.7 fold improvement, from a 

total of 1298 locations; left eye, 129 locations exhibiting an improvement, 113 locations 

exhibiting a deterioration i.e. a 1.1 fold improvement). Thus, the field of the right eye showed an 

improvement of one or more probability levels at approximately 7 stimulus locations per 22 

individual (147 locations; 22 individuals) and a deterioration at approximately 2 locations per 

individual. The field of the left eye showed an improvement at approximately 6 locations per 

individual and a deterioration at approximately 5 locations per individual.   

Two hundred and thirty locations in the field of the right eye exhibited an improvement in 

probability level between the two visits for SAP (Table 5.28 top). Of these, 171 (74.35) resulted 

in a normal value at Visit Two with 56 of these (32.7%) exhibiting an improvement from the 5% 

probability level to normal and 71 (41.5%) an improvement from the 0.5% probability level to 

normal. Of the 147 locations in the field of the right eye which exhibited an improvement in 

probability level between the two visits, 128 (87.1%) locations exhibited an improvement to 

normal at Visit Two with 56 of these (38.0%) exhibiting an improvement from the 5% 

probability level to normal and 27 (0.18%) an improvement from the 0.5% probability level to 

normal. A similar but less pronounced trend was present for CFF perimetry (Table 5.28 bottom) 

to that of SAP. Of the 128 locations in the field of the right eye which improved to normal at 

Visit Two, 106 locations (82.1%) exhibited an improvement to normal at Visit Two with 48 
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(45.2%) of these exhibiting an improvement from the 5% probability level to normal and 36 

(33.9%) an improvement from the 0.5% probability level to normal. Of the 129 locations in the 

field of the left eye which improved to normal at Visit Two, 116 locations (89.9%) exhibited an 

improvement to normal at Visit Two with 56 (48.2%) of these exhibiting an improvement from 

the 0.5% probability level to normal and 27 (23.2%) an improvement from the 0.5% probability 

level to normal. 

 

 
 

 

 

Table 5.29 The change in the Comparison probability value across all the given stimulus 

locations from Visit Two to Visit Four for SAP (Top) and for CFF perimetry (Bottom), for 

the 22 individuals with age-related cataract. The shading indicates the number of locations 

exhibiting identical probability levels at the two examinations. A reduced number of data 

entries above the grey line compared to that below the line represent an improvement in 

sensitivity from Visit Two to Visit Four. The data for the field of the right eye is given in 

the left column and that for the left eye in the right column. 

 

 

The extent of the improvement from Visit Two to Visit Four in the Comparison probability value 

derived by SAP (Table 5.29 top) was again relatively high for each eye, (right eye, 155 locations 

Visit Four   Visit Four 

 NS <5% <2% <1% <0.5%   NS <5% <2% <1% <0.5% 

NS 1029 25 7 5 10  NS 1093 23 6 4 13 

<5% 42 9 0 6 4  <5% 48 7 3 0 3 

<2% 28 5 5 0 1  <2% 5 6 1 2 4 

<1% 14 5 2 6 2  <1% 3 3 1 0 2 

V
is

it
 T

w
o

 

<0.5% 45 7 4 3 34  

V
is

it
 T

w
o

 

<0.5% 15 7 5 6 38 

Visit Four  Visit Four 

 NS <5% <2% <1% <0.5%   NS <5% <2% <1% <0.5% 

NS 1146 22 16 5 14  NS 1070 25 20 5 9 

<5% 12 2 1 1 2  <5% 27 10 6 5 4 

<2% 7 3 1 1 1  <2% 19 6 2 2 6 

<1% 8 2 0 2 1  <1% 7 1 2 2 4 

V
is

it
 T

w
o

 

<0.5% 14 6 1 2 28  

V
is

it
 T

w
o

 

<0.5% 31 6 3 9 17 
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exhibiting an improvement and 60 locations exhibiting a deterioration, i.e. a 2.6 fold 

improvement, from a total of 1298 locations; left eye, 99 locations exhibiting an improvement, 

60 locations exhibiting a deterioration i.e. a 1.6 fold improvement). Thus, the field of the right 

eye showed an improvement of one or more probability levels at approximately 7 stimulus 

locations per individual and deterioration at approximately 3 locations per individual. The field 

of the left eye showed an improvement at approximately 5 locations per individual and 

deterioration at approximately 3 locations per individual.  Of the 155 locations exhibiting an 

improvement in the field of the right eye, 129 (83.2%) became normal at Visit Four. Similarly of 

the 99 locations exhibiting an improvement in the field of the left eye, 71 (71.7%) became 

normal at Visit Four.   

From Visits Two to Visit Four Table 5.29 bottom), 55 locations in the field of the right eye 

exhibited an improvement in the Comparison probability value derived by CFF perimetry and 64 

locations exhibited deterioration, i.e. a 1.2 fold deterioration, from a total of 1298 locations. For 

the field of the left eye, 111 locations exhibited an improvement and 86 locations exhibiting 

deterioration i.e. a 1.3 fold improvement). Thus, the field of the left eye showed an improvement 

at approximately 5 locations per individual and deterioration at approximately 4 locations per 

individual.  Of the 111 locations exhibiting an improvement for the left eye, 84 (77.4%) 

improved to normal at Visit Four. 

As was expected from the absence of a general height adjustment for CFF perimetry which was 

identified in Chapter 4, all 22 individuals exhibited identical Comparison and Corrected 

Comparison probability maps in both eyes at each of the 4 visits derived by CFF perimetry. 
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5.15 Mean Sensitivity  

The difference in the Mean Sensitivity for SAP and for CFF perimetry from Visit One to Visit 

Two compared to the difference from Visit Two to Visit Four for each eye of the 22 individuals 

with age-related cataract is shown graphically in Figure 5.18 for SAP and in Figure 5.19 for CFF 

perimetry. The corresponding difference for each individual, is given in proportionate terms, in 

Table 5.30 for SAP and in Table 5.31 for CFF perimetry.  

 

A wide variation in MS from Visits One to Visit Two, both in absolute (Figures 5.18 and 5.19), 

and in proportionate terms (Tables 5.30 and 5.31) was present for both types of perimetry, both 

between-eyes of an individual and between individuals for a given eye. A similar variation was 

present between Visits Two and Four not only between-eyes of an individual but also between 

individuals for a given eye. Considerable variation was also present between the two pairs of 

visits. 
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Figure 5.18 The scatter plot of the difference in the magnitude of the Mean SensitivitySAP 

(dB) between Visit One and Visit Two (abscissa) against the difference in the magnitude 

between Visit Two and Visit Four (ordinate) for each of the 22 individuals with age-related 

cataract for the right (top), and left (bottom) eyes. A negative value represents a 

deterioration in performance. Data points in the superior left quadrant represent 

deterioration from Visit One to Visit Two and an improvement from Visit Two to Visit 

Four. Data points in the superior right quadrant represent an improvement from Visit One 

to Visit Two and also from Visit Two to Visit Four. Data points in the inferior right 

quadrant represent improvement from Visit One to Visit Two and deterioration from Visit 

Two to Visit Four. Data points in the inferior left quadrant represent deterioration both 

from Visit One to Visit Two and from Visit Two to Visit Four.  
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Figure 5.19 The scatter plot of the difference in the magnitude of the Mean SensitivityCFF 

(Hz) between Visit One and Visit Two (abscissa) against the difference in the magnitude 

between Visit Two and Visit Four (ordinate) for each of the 22 individuals with age-related 

cataract for the right (top), and left (bottom) eyes. A negative value represents a 

deterioration in performance. Data points in the superior left quadrant represent 

deterioration from Visit One to Visit Two and an improvement from Visit Two to Visit 

Four. Data points in the superior right quadrant represent an improvement from Visit One 

to Visit Two and also from Visit Two to Visit Four. Data points in the inferior right 

quadrant represent improvement from Visit One to Visit Two and deterioration from Visit 

Two to Visit Four. Data points in the inferior left quadrant represent deterioration both 

from Visit One to Visit Two and from Visit Two to Visit Four.  
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Case 
Number 

 

Right Eye 
Absolute 

Change (dB) 
V1 to V2 

Right Eye 
Proportionate 
Change (%) 
V1 to V2 

Right Eye 
Absolute 

Change (dB) 
V2 to V4 

Right Eye 
Proportionate 
Change (%) 
V2 to V4 

Left Eye 
Absolute 

Change (dB) 
V1 to V2 

Left Eye 
Proportionate 
Change (%) 

V1 to V2 

Left Eye 
Absolute 

Change (dB) 
V2 to V4 

Left Eye 
Proportionate 
Change (%) 

V2 to V4 
1 5 31.65 -0.8 -3.85 5 22.73 -1.9      -7.04 
2 -0.2 -0.74 -0.1 -0.37 -0.1 -0.36 -0.2 -0.73 
3 1.6 6.08 0.4 1.43 3.6 14.52 -0.6 -2.11 
4 -0.8 -3.16 0.5 2.04 0.1 0.36 -0.1 -0.36 
5 1.6 8.12 4.2 19.72 4.3 21.83 2.3 9.58 
6 3.4 18.68 0.2 0.93 -0.5 -2.49 2.9 14.80 
7 0.8 3.04 -0.1 -0.37 0.4 1.45 -0.8 -2.87 
8 7.9 59.85 -0.7 -3.32 5.5 39.57 -3.9 -20.10 
9 0.9 3.70 0.4 1.59 0.9 3.72 0.0 0.00 
10 3.3 16.34 1.7 7.23 0.7 3.10 0.0 0.00 
11 -6.7 -27.02 8.2 45.30 -0.5 -2.03 3.5 14.52 
12 -3.8 -19.39 1.2 7.59 -0.5 -3.23 4.8 32.00 
13 1.3 5.63 0.9 3.69 1.8 7.66 -0.2 -0.79 
14 -0.6 -2.21 1.4 5.26 -0.3 -1.10 0.8 2.97 
15 1.3 5.78 1.7 7.14 -0.4 -1.69 1.5 6.47 
16 0.7 2.71 0.1 0.38 1.2 4.46 -0.5 -1.78 
17 0.8 2.96 -0.4 -1.44 1.3 5.02 1.0 3.68 
18 2.3 9.47 0.2 0.75 0.0 0.00 -0.1 -0.37 
19 1.2 4.69 -0.3 -1.12 0.7 2.76 0.7 2.68 
20 -0.1 -0.39 1.0 3.94 0.0 0.00 0.5 1.87 
21 1.9 7.82 0.2 0.76 0.8 3.20 -0.3 -1.16 
22 -0.5 -1.93 0.0 0.00 0.2 0.80 -0.9 -3.57 

 

Table 5.30 The absolute (dB) and proportionate (%) change  in Mean Sensitivity for each eye of the 22 individuals with 

age-related cataract between Visit 1 and Visit 2 and between Visit 2 and Visit 4. 
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Case 
Number 

 

Right Eye 
Absolute 

Change (Hz) 
V1 to V2 

Right Eye 
Proportionate 
Change (%) 
V1 to V2 

Right Eye 
Absolute 

Change (Hz) 
V2 to V4 

Right Eye 
Proportionate 
Change (%) 
V2 to V4 

Left Eye 
Absolute 

Change (Hz) 
V1 to V2 

Left Eye 
Proportionate 
Change (%) 

V1 to V2 

Left Eye 
Absolute 

Change (Hz) 
V2 to V4 

Left Eye 
Proportionate 
Change (%) 

V2 to V4 
1 1.6 4.13 -1.6 -3.97 -0.1 -0.31 -0.5 -1.53 
2 0.6 1.79 1.8 5.28 2.1 6.89 -0.8 -2.45 
3 1.7 4.89 1.5 4.11 1.2 3.43 2.7 7.46 
4 -2.8 -7.29 2.3 6.46 1.2 3.54 -4.3 -12.25 
5 3.7 11.49 -2.6 -7.24 -0.8 -2.34 -1.6 -4.79 
6 3.3 9.82 -7.5 -20.33 -1.9 -6.19 0.4 1.39 
7 -0.3 -0.81 -1.4 -3.81 1.8 5.23 -1.3 -3.59 
8 1.4 4.46 -7.0 -21.34 -5.1 -18.21 1.6 6.99 
9 4.2 12.43 1.0 2.63 0.8 2.09 0.0 0.00 
10 4.2 13.82 2.8 8.09 -0.9 -2.56 2.7 7.87 
11 -2.7 -13.64 4.3 25.15 -0.6 -3.90 9.7 65.54 
12 7.2 27.59 -9.8 -29.43 -2.2 -9.36 2.1 9.86 
13 4.8 17.91 -2.1 -6.65 2.6 10.00 -1.3 -4.55 
14 0.5 1.20 -0.2 -0.48 0.0 0.00 0.3 0.71 
15 1.4 5.11 1.4 4.86 -0.1 -0.35 1.2 4.21 
16 6.2 21.38 -0.4 -1.14 1.1 3.06 -1.8 -4.85 
17 0.9 2.56 -0.8 -2.22 0.8 2.26 -1.6 -4.42 
18 7.7 28.00 -1.7 -4.83 8.7 35.51 4.4 13.25 
19 -0.9 -2.44 2.0 5.56 0.9 2.52 0.8 2.19 
20 1.7 4.78 0.2 0.54 0.9 2.61 0.6 1.69 
21 2.2 7.01 -5.5 -16.37 -1.9 -5.81 -1.5 -4.87 
22 5.4 20.07 -1.6 -4.95 2.4 8.70 -2.1 -7.00 

 

Table 5.31 The absolute (Hz) and proportionate  (%) changein Mean Sensitivity for each eye of the 22 individuals with age-

related cataract between Visit 1 and Visit 2 and between Visit 2 and Visit 4. 
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5.16 Mean Defect  

The difference in the Mean Defect for SAP and for CFF perimetry from Visit One to Visit Two 

compared to the difference from Visit Two to Visit Four is given in Tables 5.20 and 5.21, 

respectively. 

 

As would be expected from the analysis of the MS for SAP and for CFF perimetry, a wide 

variation was also present in the MD for both types of perimetry between Visits One and Two 

both between-eyes of an individual and between individuals for a given eye.  A similar variation 

was also present between Visits Two and Four . 

 

5.17 Square root of the Loss Variance 

The difference in the Square root of the Loss Variance for SAP and for CFF perimetry from Visit 

One to Visit Two compared to the difference from Visit Two to Visit Four is given in Tables 

5.22 and 5.23, respectively. A wide range of performance was present for both types of 

perimetry within each pair of visits between eyes of an individual and between individuals. 

 

5.18 Diffuse Defect  

The difference in the Diffuse Defect for SAP and CFF perimetry from Visit One to Visit Two 

compared to the difference from Visit Two to Visit Four is shown graphically in Figure 5.24 for 

SAP and in Figure 5.25 for CFF perimetry. As would be expected, the trend was similar to that 

for the MD but was of lower magnitude. 
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Figure 5.20 The scatter plot of the difference in the magnitude of the Mean Defect (dB) 

between Visit One and Visit Two (abscissa) against the difference in the magnitude 

between Visit Two and Visit Four (ordinate) for each of the 22 individuals with age-related 

cataract for the right (top), and left (bottom) eyes. A negative value represents an 

improvement in performance. Data points in the superior left quadrant represent an 

improvement from Visit One to Visit Two and deterioration from Visit Two to Visit Four. 

Data points in the superior right quadrant represent deterioration from Visit One to Visit 

Two and also from Visit Two to Visit Four. Data points in the inferior right quadrant 

represent deterioration from Visit One to Visit Two and an improvement from Visit Two to 

Visit Four. Data points in the inferior left quadrant represent an improvement both from 

Visit One to Visit Two and from Visit Two to Visit Four. 
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Figure 5.21 The scatter plot of the difference in the magnitude of the Mean Defect (Hz) 

between Visit One and Visit Two (abscissa) against the difference in the magnitude 

between Visit Two and Visit Four (ordinate) for each of the 22 individuals with age-related 

cataract for the right (top), and left (bottom) eyes. A negative value represents an 

improvement in performance. Data points in the superior left quadrant represent an 

improvement from Visit One to Visit Two and deterioration from Visit Two to Visit Four. 

Data points in the superior right quadrant represent deterioration from Visit One to Visit 

Two and also from Visit Two to Visit Four. Data points in the inferior right quadrant 

represent deterioration from Visit One to Visit Two and an improvement from Visit Two to 

Visit Four. Data points in the inferior left quadrant represent an improvement both from 

Visit One to Visit Two and from Visit Two to Visit Four. 
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Figure 5.22 The scatter plot of the difference in the magnitude of the square root of the 

Loss Variance (dB) between Visit One and Visit Two (abscissa) against the difference in the 

magnitude between Visit Two and Visit Four (ordinate) for each of the 22 individuals with 

age-related cataract for the right (top), and left (bottom) eyes. A negative value represents 

an improvement in performance. Data points in the superior left quadrant represent an 

improvement from Visit One to Visit Two and a deterioration from Visit Two to Visit Four. 

Data points in the superior right quadrant represent a deterioration from Visit One to Visit 

Two and also from Visit Two to Visit Four. Data points in the inferior right quadrant 

represent a deterioration from Visit One to Visit Two and an improvement from Visit Two 

to Visit Four. Data points in the inferior left quadrant represent an improvement both 

from Visit One to Visit Two and from Visit Two to Visit Four.  
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Figure 5.23 The scatter plot of the difference in the magnitude of the square root of the 

Loss Variance (Hz) between Visit One and Visit Two (abscissa) against the difference in the 

magnitude between Visit Two and Visit Four (ordinate) for each of the 22 individuals with 

age-related cataract for the right (top), and left (bottom) eyes. A negative value represents 

an improvement in performance. Data points in the superior left quadrant represent an 

improvement from Visit One to Visit Two and a deterioration from Visit Two to Visit Four. 

Data points in the superior right quadrant represent a deterioration from Visit One to Visit 

Two and also from Visit Two to Visit Four. Data points in the inferior right quadrant 

represent a deterioration from Visit One to Visit Two and an improvement from Visit Two 

to Visit Four. Data points in the inferior left quadrant represent an improvement both 

from Visit One to Visit Two and from Visit Two to Visit Four.  
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Figure 5.24 The scatter plot of the difference in the Diffuse Defect (dB) between Visit One 

and Visit Two (abscissa) against the difference in the magnitude between Visit Two and 

Visit Four (ordinate) for each of the 22 individuals with age-related cataract for the right 

(top), and left (bottom) eyes. A negative value represents an improvement in performance. 

Data points in the superior left quadrant represent an improvement from Visit One to Visit 

Two and deterioration from Visit Two to Visit Four. Data points in the superior right 

quadrant represent deterioration from Visit One to Visit Two and also from Visit Two to 

Visit Four. Data points in the inferior right quadrant represent deterioration from Visit 

One to Visit Two and an improvement from Visit Two to Visit Four. Data points in the 

inferior left quadrant represent an improvement both from Visit One to Visit Two and 

from Visit Two to Visit Four.  
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Figure 5.25 The scatter plot of the difference in the Diffuse Defect (Hz) between Visit One 

and Visit Two (abscissa) against the difference in the magnitude between Visit Two and 

Visit Four (ordinate) for each of the 22 individuals with age-related cataract for the right 

(top), and left (bottom) eyes. A negative value represents an improvement in performance. 

Data points in the superior left quadrant represent an improvement from Visit One to Visit 

Two and deterioration from Visit Two to Visit Four. Data points in the superior right 

quadrant represent deterioration from Visit One to Visit Two and also from Visit Two to 

Visit Four. Data points in the inferior right quadrant represent deterioration from Visit 

One to Visit Two and an improvement from Visit Two to Visit Four. Data points in the 

inferior left quadrant represent an improvement both from Visit One to Visit Two and 

from Visit Two to Visit Four. 
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5.19 Local Defect cataract individuals 

The difference in the Local Defect for SAP and CFF perimetry from Visit One to Visit Two 

compared to the difference from Visit Two to Visit Four is shown graphically in Figure 5.26 for 

SAP and in Figure 5.27 for CFF perimetry.  
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Figure 5.26 The scatter plot of the difference in the magnitude of the Local Defect (dB) 

between Visit One and Visit Two (abscissa) against the difference in the magnitude 

between Visit Two and Visit Four (ordinate) for each of the 22 individuals with age-related 

cataract for the right (top), and left (bottom) eyes. A negative value represents an 

improvement in performance. Data points in the superior left quadrant represent an 

improvement from Visit One to Visit Two and deterioration from Visit Two to Visit Four. 

Data points in the superior right quadrant represent deterioration from Visit One to Visit 

Two and also from Visit Two to Visit Four. Data points in the inferior right quadrant 

represent deterioration from Visit One to Visit Two and an improvement from Visit Two to 

Visit Four. Data points in the inferior left quadrant represent an improvement both from 

Visit One to Visit Two and from Visit Two to Visit Four. 
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Figure 5.27 The scatter plot of the difference in the magnitude of the Local Defect (Hz) 

between Visit One and Visit Two (abscissa) against the difference in the magnitude 

between Visit Two and Visit Four (ordinate) for each of the 22 individuals with age-related 

cataract for the right (top), and left (bottom) eyes. A negative value represents an 

improvement in performance. Data points in the superior left quadrant represent an 

improvement from Visit One to Visit Two and deterioration from Visit Two to Visit Four. 

Data points in the superior right quadrant represent deterioration from Visit One to Visit 

Two and also from Visit Two to Visit Four. Data points in the inferior right quadrant 

represent deterioration from Visit One to Visit Two and an improvement from Visit Two to 

Visit Four. Data points in the inferior left quadrant represent an improvement both from 

Visit One to Visit Two and from Visit Two to Visit Four. 
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5.20 Glare Disability (GD) 

5.20.1 LogMAR Visual Acuity in relation to Brightness Acuity Tester settings 

The summary statistics for the LogMAR Visual Acuity for the 100% ETDRS (top) and for the 

10% ETDRS (bottom) charts without glare and at each of the three BAT glare settings at Visit 

Three and at Visit Four for each eye of the 22 individuals with age-related cataract are shown in 

Table 5.32. LogMAR VA deteriorated with increase in disability glare and the decline was 

greater for the low contrast charts. 

 

The distribution of the LogMAR VA at Visit Three and at Visit Four for each eye without glare 

and at each of the three glare settings is also illustrated in terms of Box and Whisker plots in 

Figure 5.28 (100% contrast) and in Figure 5.29 (10% contrast). 

 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
Overleaf: Table 5.32 The group mean (SD), the median and the IQR of the LogMAR 

Visual Acuity for the 100% ETDRS (top) and for the 10% ETDRS (bottom) charts without 

glare and at each of the three BAT glare settings at Visit Three and at Visit Four for each 

eye of the 22 individuals with age-related cataract.  
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 LogMAR VA 100% Contrast 

 
Visit Three 

BAT 
Off 

BAT 
Low 

41 cdm-² 

BAT 
Medium 

343 cdm-² 

BAT 
High 

1371 cdm-² 
Right Mean 

SD 
0.28 
0.16 

0.28 
0.18 

0.33 
0.19 

0.41 
0.17 

Left Mean 

SD 
0.22 
0.11 

0.22 
0.10 

0.26 
0.12 

0.33 
0.13 

Right Median 

IQR 
0.24 
0.17 

0.26 
0.18 

0.32 
0.20 

0.40 
0.15 

Left Median 

IQR 
0.22 
0.17 

0.22 
0.19 

0.28 
0.18 

0.34 
0.23 

     
Visit Four  

Right Mean 

SD 
0.26 
0.15 

0.29 
0.15 

0.31 
0.17 

0.40 
0.18 

Left Mean 

SD 
0.24 
0.10 

0.25 
0.10 

0.27 
0.10 

0.32 
0.13 

Right Median 

IQR 
0.27 
0.18 

0.31 
0.15 

0.32 
0.14 

0.37 
0.18 

Left Median 

IQR 
0.22 
0.14 

0.22 
0.17 

0.27 
0.17 

0.35 
0.17 

 
 

LogMAR VA 10% Contrast 

 
Visit Three 

BAT 
open 

BAT 
Low 

41 cdm-² 

BAT 
Medium 

343 cdm-² 

BAT 
High 

1371 cdm-² 
Right Mean 

SD 
0.48 
0.19 

0.52 
0.16 

0.53 
0.16 

0.67 
0.16 

Left Mean 

SD 
0.41 
0.15 

0.46 
0.15 

0.46 
0.16 

0.59 
0.17 

Right Median 

IQR 
0.42 
0.31 

0.50 
0.19 

0.50 
0.20 

0.66 
0.21 

Left Median 

IQR 
0.40 
0.20 

0.50 
0.22 

0.45 
0.22 

0.54 
0.18 

     
Visit Four  

Right Mean 

SD 
0.47 
0.15 

0.51 
0.15 

0.53 
0.13 

0.66 
0.18 

Left Mean 

SD 
0.45 
0.14 

0.48 
0.15 

0.48 
0.14 

0.60 
0.17 

Right Median 

IQR 
0.47 
0.24 

0.53 
0.24 

0.53 
0.21 

0.64 
0.26 

Left Median 

IQR 
0.45 
0.19 

0.51 
0.19 

0.50 
0.16 

0.56 
0.25 
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Figure 5.28 The Box and Whisker plots of the distribution of the LogMAR Visual Acuity 

derived with the 100% ETDRS charts without glare and at each of the three BAT settings 

at Visit Three (top) and at Visit Four (bottom) for each eye of the 22 individuals with age-

related cataract. The median is represented by the bold line, the 25
th

 and 75
th

 percentiles by 

the lower and upper edges of the box, respectively, and the lowest and highest values by the 

lower and upper extremities of the whiskers, respectively. The results for the right eye are 

colour coded in blue at Visit Three and in red at Visit Four. The results for the left eye are 

colour coded in white at Visits Three and Four.   
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Figure 5.29 The Box and Whisker plots of the distribution of the LogMAR Visual Acuity 

derived with the 10% ETDRS charts without glare and at each of the three BAT settings at 

Visit Three (top) and at Visit Four (bottom) for each eye of the 22 individuals with age-

related cataract. The median is represented by the bold line, the 25
th

 and 75
th

 percentiles by 

the lower and upper edges of the box, respectively, and the lowest and highest values by the 

lower and upper extremities of the whiskers, respectively. The results for the right eye are 

colour coded in blue at Visit Three and in red at Visit Four. The results for the left eye are 

colour coded in white at Visits Three and Four.   
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5.21 The difference in LogMAR Visual Acuity between Visit 3 and Visit 4.  

The difference in LogMAR VA for the 100% and the 10% contrast charts between Visit Three 

and Visit Four without glare (top) and at each of the three glare (Low: middle top. Medium: 

middle bottom. High: bottom) for the right and for the left eye are shown in Figures 5.30 and 

5.31, respectively, where the difference between the two values is plotted against the sum of the 

two values (Bland and Altman 1986; Bland and Altman 1999).  

 

For the 100% contrast chart, the mean of the difference for each combination of glare source and 

contrast approximated to zero in all cases. The limits of agreement (i.e. the range over which 

95% of the differences lie) was wider for the right eye (approximately +/- 0.2 log units) than for 

the left eye (between approximately +/- 0.1 - 0.2 log units) and was narrowest for the medium 

glare source for the left eye. A difference of 0.2 log units represents a difference of two lines in 

acuity.  

 

For the 10% contrast chart, the mean of the difference for each combination of glare source and 

contrast again approximated to zero in all cases. The limits of agreement were approximately 

similar between the two eyes (approximately +/- 0.2 log units).  
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Figure 5.30 The difference in LogMAR VA for the 100% contrast ETDRS chart between 

Visit Three and Visit Four for the low (top) medium (middle) and high (bottom) glare 

sources for the Right eye (left column) and for Left eye (right column). The solid line 

indicates the mean of the difference and the upper and lower dotted lines the mean of the 

differences +/- 1.96SD, respectively.  
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Figure 5.31 The difference in LogMAR VA for the 10% contrast ETDRS chart between 

Visit Three and Visit Four for the low (top) medium (middle) and high (bottom) glare 

sources for the Right eye (left column) and for Left eye (right column). The solid line 

indicates the mean of the difference and the upper and lower dotted lines the mean of the 

differences +/- 1.96SD, respectively.  
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5.22 The relationship between Mean Defect and Glare Disability 

Following the completion of the learning study, four individuals were excluded from the 

investigation of the relationship between Mean Defect and Glare Disability. These exclusions 

were made on the basis of the appearance of the visual field results. One individual was excluded 

on the basis of an apparent central scotoma by SAP; two individuals on the basis of an abnormal 

field for SAP by Corrected Comparison probability analysis; and one on the basis of an apparent 

grossly abnormal field for CFF perimetry in the presence of a completely normal field by SAP.  

 

The MDSAP and the MDCFF in the worst eye at Visit Four as a function of the high and of the low 

contrast logMAR VA without glare, for the remaining 18 individuals is shown in Figure 5.32. 

The MDSAP and the MDCFF were weakly correlated with the high (r=0.16 and r=0.30,  

respectively) and with the low (r=0.10 and r=0.24, respectively) contrast logMAR VA. The MD 

for both types of perimetry worsened with reduction in both types of VA. The between-

individual variability was greater for CFF perimetry.  

 

The corresponding functions, by the most severe type of cataract, for SAP are shown in Figure 

5.33 and for CFF perimetry in Figure 5.34. The limited numbers within each cataract type 

precluded any quantitative comparison between MD for either type of perimetry and any of the 

three types of cataract. 
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Figure 5.32 The Mean Defect for SAP (top) and for CFF (bottom) in the worst eye at Visit 

Four as a function of the high (right) and of the low (left) contrast logMAR VA recorded, 

in the absence of glare,  at Visit 4 for the 18 individuals with age-related cataract.  
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Figure 5.33 The Mean Defect for SAP in the worst eye at Visit Four as a function of the 

high (right) and of the low (left) contrast logMAR VA recorded at Visit 4, in the absence 

of glare, for each of the 4 individuals with posterior subcapsular cataract (top), the 6 

individuals with anterior cortical cataract (middle top), the 2 individuals with combined 

cataract (C2-NO2 and C2-P2) (middle bottom) and the 6 individuals with nuclear 

cataract (bottom). Note the scaling of the abscissa is referenced to that of Figure 5.32. 
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Figure 5.34 The Mean Defect for CFF in the worst eye at Visit Four as a function of the 

high (right) and of the low (left) contrast logMAR VA recorded at Visit 4, in the 

absence of glare, for each of the 4 individuals with posterior subcapsular cataract (top), 

the 6 individuals with anterior cortical cataract (middle top), the 2 individuals with 

combined cataract (C2-NO2 and C2-P2) (middle bottom) and the 6 individuals with 

nuclear cataract. Note the scaling of the abscissa is referenced to that of Figure 5.32. 

 

 

 

The MDSAP in the worst eye at Visit Four against each of the three Glare Disability measures 

calculated from the low (top), medium (middle) and high (bottom) glare sources and derived 

with the 100% (left column) and 10% contrast (right column) ETDRS charts for each of the 18 

individuals with age-related cataract is shown in Figure 5.35.   
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The corresponding functions of the most severe type of cataract for SAP are shown in Figure 

5.37 to 5.40. The limited numbers within each cataract type, precluded any quantitative 

comparison between MD for either type of perimetry and any of the measures of glare 

disability. 

 

 

 
Figure 5.35 The Mean Defect for SAP in the most affected eye at Visit Four as a function of 

Glare Disability obtained with the low (top) medium (middle) and high (bottom) glare 

sources and derived with the ETDRS 100% (left) and 10% (right) contrast chart for each 

of the 18 individuals with age-related cataract. Note the scaling of the abscissa is referenced 

to that of Figure 5.32. 
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Figure 5.36 The Mean Defect for CFF in the most affected eye at Visit Four as a function of 

Glare Disability obtained with the low (top) medium (middle) and high (bottom) glare 

sources and derived with the ETDRS 100% (left) and 10% (right) contrast chart for each 

of the 18 individuals with age-related cataract. Note the scaling of the abscissa is referenced 

to that of Figure 5.32. 

 

 

 

 

The Mean Defect for CFF in the worst eye at Visit Four as a function of the change in each of 

the three Glare Disability measures from the no-glare baseline calculated for the low (top), 

medium (middle) and high (bottom) glare sources and derived with the 100% (left column) and 

10% contrast (right column) ETDRS charts for each of the 18 individuals with age-related 

cataract is shown in Figure 5.36.   
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The corresponding figures as a function of the most severe cataract type for CFF are shown in 

Figures 5.41 to 5.44. The limited numbers within each cataract type precluded any quantitative 

comparison between MD for either type of perimetry and any of the measures of glare disability. 
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Figure 5.37 The Mean Defect for SAP in the most affected eye at Visit Four as a function of 

Glare Disability obtained with the low (top) medium (middle) and high (bottom) glare 

sources and derived with the ETDRS 100% (left) and 10% (right) contrast chart for each 

of the 4 individuals with posterior subcapsular cataract. Note the scaling of the abscissa is 

referenced to that of Figure 5.32. 
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Figure 5.38 The Mean Defect for SAP in the most affected eye at Visit Four as a function of 

Glare Disability obtained with the low (top) medium (middle) and high (bottom) glare 

sources and derived with the ETDRS 100% (left) and 10% (right) contrast chart for each 

of the 6 individuals with anterior cortical cataract. Note the scaling of the abscissa is 

referenced to that of Figure 5.32. 
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Figure 5.39 The Mean Defect for SAP in the most affected eye at Visit Four as a function of 

Glare Disability obtained with the low (top) medium (middle) and high (bottom) glare 

sources and derived with the ETDRS 100% (left) and 10% (right) contrast chart for each 

of the 2 individuals with combined cataract (C2-NO2 and C2-P2). Note the scaling of the 

abscissa is referenced to that of Figure 5.32. 
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Figure 5.40 The Mean Defect for SAP in the most affected eye at Visit Four as a function of 

Glare Disability obtained with the low (top) medium (middle) and high (bottom) glare 

sources and derived with the ETDRS 100% (left) and 10% (right) contrast chart for each 

of the 6 individuals with nuclear cataract. Note the scaling of the abscissa is referenced to 

that of Figure 5.32. 
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Figure 5.41 The Mean Defect for CFF in the most affected eye at Visit Four as a function of 

Glare Disability obtained with the low (top) medium (middle) and high (bottom) glare 

sources and derived with the ETDRS 100% (left) and 10% (right) contrast chart for each 

of the 4 individuals with posterior subcapsular cataract. Note the scaling of the abscissa is 

referenced to that of Figure 5.32. 
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Figure 5.42 The Mean Defect for CFF in the most affected eye at Visit Four as a function of 

Glare Disability obtained with the low (top) medium (middle) and high (bottom) glare 

sources and derived with the ETDRS 100% (left) and 10% (right) contrast chart for each 

of the 6 individuals with anterior cortical cataract. Note the scaling of the abscissa is 

referenced to that of Figure 5.32. 
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Figure 5.43 The Mean Defect for CFF in the most affected eye at Visit Four as a function of 

Glare Disability obtained with the low (top) medium (middle) and high (bottom) glare 

sources and derived with the ETDRS 100% (left) and 10% (right) contrast chart for each 

of the 2 individuals with combined (C2-NO2 and C2-P2) cataract. Note the scaling of the 

abscissa is referenced to that of Figure 5.32. 
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Figure 5.44 The Mean Defect for CFF in the most affected eye at Visit Four as a function of 

Glare Disability obtained with the low (top) medium (middle) and high (bottom) glare 

sources and derived with the ETDRS 100% (left) and 10% (right) contrast chart for each 

of the 6 individuals with nuclear cataract. Note the scaling of the abscissa is referenced to 

that of Figure 5.32. 

   

 

 

Within the obvious limitations in the numbers of the data set, little correlation was present, either 

for the four types of cataract, combined, or for each type of cataract considered separately, 

between either the MD for SAP and the MD for CFF and the Glare Disability determined for any 

of the three glare sources for either contrast chart.  

 
 

5.23 Discussion 

5.24 Learning Effect 

A learning effect was present for SAP. The visual field indices MS, MD and DD successively 

improved over the four visits indicating an increase in the overall height of the visual field. In 

addition, the sLV and the LD also successively improved over the four visits indicating a 
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reduction in the area and/ or depth of apparent non-uniform loss. This latter finding was 

compatible with the successive increase in the peripheral/ central mean sensitivity ratio over the 

four visits which indicated a greater improvement in the peripheral regions of the central field. 

The increase in the overall height of the field together with a proportionately greater increase 

peripherally compared to centrally has been previously documented for normal individuals (Wild 

et al 1989; Werner et al 1990; Searle et al 1991; Heijl and Bengtsson 1996; Castro, Kawase and 

Melo 2008). Although the learning effect for SAP has been found to be greater for the second 

eye examined at the initial visits both for normal individuals (Wood et al 1987b; Heijl, Lindgren 

and Olsson 1989; Searle et al 1991) for individuals with OHT (Wild et al 1989; Werner et al 

1990; Wild et al 1991) and for individuals with OAG (Werner, Adelson and Krupin 1988; Kulze, 

Stewart and Sutherland 1990; Marchini, Pisano and Bertagnin 1991; Wild et al 1991; Heijl and 

Bengtsson 1996), any difference in the learning effect between-eyes for any of the indices in the 

current study did not reach statistical significance even for the worst of the two eyes. The greater 

peripheral improvement in the MS was not readily apparent in the analysis, by eccentricity, 

across each stimulus location. The learning effect from Visits One to visit Two was maximal at 

intermediate levels of sensitivity of approximately 12-15dB and from Visits Two to visit Four at 

15-18dB. This depth-dependency of the learning effect is compatible with other studies (Wild et 

al 1989; Wild et al 2006). The latter findings were reflected in the number of locations exhibiting 

a Comparison Probability value which became statistically less severe (i.e. an improvement) by 

one or more probability levels from Visits One to visit Two and which was approximately 2.2 

fold greater, across the two eyes, than those locations exhibiting a statistically more severe  (i.e. a 

worsening) by one or more probability levels. A clinically similar finding was present between 

Visits Two and Four. The corresponding figures for the Corrected Comparison Probability value 

between Visits One and Two and between Visits Two and Four were 1.75 fold and 2.75 fold 

respectively. 
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The characteristics of the learning effect for CFF perimetry were similar to those described in 

Chapter 4 for the normal individuals and for the individuals with OHT and the individuals with 

OAG. The visual field indices MS, MD and DD successively improved over the first three visits 

indicating an increase in the overall height of the visual field. However, the sLV and the LD 

remained similar over the four visits confirming the clinically uniform increase in the height of 

the field. This similarity was also consistent with the lack of improvement in the ratio of the 

peripheral/ central mean sensitivity over the four visits. Within the remit of a uniform increase in 

the height of the field, the learning effect for CFF perimetry was also more apparent for the 

intermediate levels of sensitivity. From Visits One to visit Two, it was maximal at approximately 

18Hz. From Visits Two to visit Four the slope of the improvement was much flatter, however, 

the peak was, again, at approximately 18-21Hz. As would be hypothesized with a lack of 

degradation to the CFF stimulus, the number of locations exhibiting abnormality by Comparison 

and by Corrected Comparison Probability analysis were equal for any given individual and 

declined over the four visits. However, a more plausible explanation for the former finding is 

that discussed in Chapter 4, namely, the lack of a general height adjustment for CFF perimetry. 

The number of locations exhibiting a Comparison, and therefore, a Corrected Comparison 

Probability, value which increased in magnitude (i.e. became statistically less severe, - an 

improvement) by one or more probability levels from Visits One to visit Two was greater for the 

right eye than the left eye and was approximately 2.3 fold greater, across the two eyes, than those 

locations exhibiting a reduction (i.e. a statistically deeper defect, - a worsening) by one or more 

probability levels. The corresponding value across the two eyes from Visits Two to visit Four 

was 1.2.  

 

The achievement of optimum performance for CFF perimetry at Visit Three, rather than at Visit 

Four as with SAP, is also compatible with that for the normal individuals described in Chapter 4. 
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The reason for the difference in the length of the training regime required to reach optimum 

performance is unknown. The influence of the veiling glare, by reducing the stimulus contrast, 

may have had a greater effect for SAP than for CFF perimetry in terms of extending the learning 

outcome. It should be noted that the individuals with OHT and the individuals with OAG, both 

groups of which were described in Chapter 4 and who were experienced in SAP, reached 

optimum performance for CFF perimetry at the fourth or fifth visit. It could be argued that the 

neural attenuation, particularly for those with OAG, rather than the optical degradation, results in 

a more difficult task which requires a longer period of learning. In addition, the criterion for 

threshold amongst these individuals could be more critical since they have a vested interest in 

performing optimally.  

 

The learning effect in both eyes was similar, in proportionate terms, between SAP and CFF 

perimetry. The median (IQR) improvement for SAP in each eye from Visit One to Visit Two 

was 4.2% (8.7%) for the right eye and 2.1% (5.2%; 42.8%) for the left eye compared with 5.0% 

(11.5%; 41.6%) in the right eye and 2.2% (6.0%) in the left eye for CFF.  Although such 

magnitudes would appear to be small, they should be placed in the context that, for the SITA 

algorithms for SAP, 1dB may account for up to two levels of probability on the Total and Pattern 

Deviation probability analysis (Wild et al 1999). The median (IQR; range) improvement for SAP 

from Visit Two to Visit Four was 1.2% (5.2%) and -0.18% (5.13) for the right and left eyes 

respectively, and for CFF  -1.7% (10.90%) and 0.4% (10.8%).  

 

No evidence was present, within the remit of the types and mild nature of the cataracts in the 

case series, that CFF perimetry was more resistant to image degradation than SAP (Figure 5.45).  
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Figure 5.45 The Comparison and Corrected Comparison probability maps for CFF 

perimetry (left hand column) and for SAP (right hand column) for the field corresponding 

to the eye with the more severe cataract for each of the 22 individuals. 

 

 

The three measures of Glare Disability derived from each of the two contrast charts correlated 

poorly with the SAP MD. Such an outcome was perhaps surprising given the close relationship 

between the degree of forward light scatter quantified as the stray light parameter, and expressed 

relative to age-correction, as the isolated cataract straylight parameter (ICSP) and the MDs for 

SAP and SWAP (Moss, Wild and Whitaker 1995; Bergin et al 2011). However, the two 
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measures of forward light scatter, calculated from the BAT and straylight meter, are not 

determined in the same manner. The stray light parameter determined using the straylight meter 

(van den Berg, IJspeert and de Waard 1991; de Waard et al 1992) involves the observer fixating 

the centre of a l° diameter dark target surrounded by an annulus with an outer radius of 2° and a 

luminance of 30 cdm-2. The latter contains a yellow glare source of 137 cdm-2  comprised light-

emitting diodes (maximum wavelength, 570 nm; half width, 30 nm) flickering at 8 Hz which are 

arranged in a circular display at one of each of three different glare angles (3.5°, 10°, and 28°). 

Because of forward light scatter, flicker is seen in the central dark area. The luminance 

modulation of a counterphase flickering light is adjusted to cancel the resulting central 8 Hz 

flicker.  

 

The range of cataract severity would appear to have been narrower in the current study than in 

previous studies (Moss, Wild and Whitaker 1995). The lack of individuals with severe cataract in 

the current study is likely to have arisen from the improvement in access to healthcare delivery 

across the Western World (i.e. cataract extraction and IOL implantation is now being undertaken 

at an earlier stage of severity). 

 

Both measures of light scatter do not consider the role of the pupil size in the assessment of 

forward light scatter. In addition, a difference in the pupil size is present between that for the 

assessment of forward light scatter and that operative for perimetry. The luminances of the High 

and Medium glare sources used for the BAT are substantially greater than that for the straylight 

meter. Although these higher luminances should result in greater disability glare and, therefore, a 

greater reduction in visual performance, the very nature of the increased glare may lead to an 

increased variability in the measurement of visual acuity under such glare conditions. The 

discrepancy in the pupil sizes between the two assessments, i.e. the light scatter and the 
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perimetry field, is likely to have reduced the correlation between disability glare and the MD for 

SAP particularly given the variation in performance arising from the interaction of the pupil size 

with the type of cataract. Had the pupil size been artificially maintained at the same level, both 

for the assessment of disability glare and for the visual field, the correlation between the two 

measures might have been higher but would still have been limited by the range of cataract 

severity. 

 

 

The high and low-contrast VA measured in the absence of a glare source produced a more 

plausible, albeit weak, correlation with the SAPMD compared to the correlation between SAPMD 

and disability glare at any of the three glare levels. Such a finding is in agreement with that of  

Elliott and colleagues (Elliott and Hurst 1990) in individuals with cataract and expected normal 

neural function.   

 

The concept  of the BAT has been challenged on the basis of the induced pupil miosis (Tan, 

Spalton and Arden 1998; Wachler et al 1999). The use of the high luminance glare source has 

been shown to overestimate the magnitude of disability glare and can also saturate the contrast of 

some types of letter charts even in cases of early cataract (Neumann et al 1988a; Prager et al 

1989).    Nevertheless, disability glare calculated with the BAT is considered to be useful in that 

the outcome is independent of abnormalities in neural function (Elliott and Hurst 1990).  

 

In conclusion, a learning effect was present in individuals with mild cataract for both SAP and 

CFF perimetry. In general, the effect was present over three visits for CFF and lasted slightly 

longer for SAP. No relationship could be determined between MD and low and high contrast 

visual acuity determined in the absence and in the presence, respectively, of glare. The lack of a 

relationship maybe attributed to the narrow range of mild cataract severity. 
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CHAPTER 6  

THE EFFECT OF DEFOCUS ON THE VISUAL FIELD FOR 

CFF  PERIMETRY IN NORMAL INDIVIDUALS 
 

6.1 Introduction 

It is well accepted that the magnitude of the differential light sensitivity derived by Goldmann 

stimulus size III reduces with increase in optical defocus for both SAP (Beneddeto et al 1985, 

Weinreb and Perlman 1986; Goldstick and Weinreb 1987, Heuer et al 1987) and for manual 

kinetic perimetry (Maguire 1971). For SAP, the gradient approximates, clinically, to 1.4dB 

attenuation per dioptre (Heuer et al 1987), per 1.3dB per dioptre (Weinreb and Perlman 1986) or 

per 2.5dB per dioptre (Lachenmayer and Gleissner 1992) of uncorrected refractive error. The 

effect of optical defocus increases with reduction in Goldmann stimulus size (Sloan 1961, 

Atchison 1987) out to 30°-40° eccentricity (Atchison 1987). The preferential effect of defocus on 

the smaller stimulus sizes becomes more pronounced with increase in eccentricity (Anderson et 

al 2001) such that, following correction for peripheral refractive error at 30° eccentricity, 

sensitivity to a stimulus equating to Goldmann size V is unaffected by defocus (Anderson et al 

2001). 

The effect of optical defocus on the 10° square stimulus size (containing a grating with a spatial 

frequency of 0.25 cyc/deg counterphased at 25 Hz) of Frequency-Doubling Technology 

perimetry is equivocal. A reduction in sensitivity of 0.05 to 0.1 log unit has been reported for a 

defocus of up to +/-6.00 DS (Johnson and Samuels 1997, Artes et al 2003). The impact of 

defocus on the smaller 4° square stimulus size (containing a grating with a spatial frequency of 

0.50 cyc/deg counterphased at 18 Hz), of the Matrix perimeter is also negligible. The MD 

declines by 0.11dB per dioptre of defocus (Anderson and Johnson 2003).  
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The early research on CFF suggests that the outcome is independent of refractive error (Ong and 

Wong 1971), even to the extent of uncorrected aphakia, for stimuli of 2-3° in diameter. 

(Havener and Henderson 1954; Tyler 1991). However, it has also been suggested that defocus 

reduces CFF, that the reduction is most evident for a foveal stimulus of 50 min of arc in 

diameter and that the tolerance of CFF to blur is greater in the periphery particularly for larger 

stimuli (Jennings and Charman 1981). The latter results are not in accord with those of 

Lachemayer and Gleissner (1992) who found that the influence of defocus on CFF within the 

central field for a 1°  diameter stimulus was minimal up to 3.00DS after which sensitivity 

declined almost linearly with increase in defocus up to the maximum defocus of +9.00DS. This 

lack of consensus is further compounded by the results of Matsumoto and colleagues 

(Matsumoto et al 1996) who found that CFF, for Goldmann stimulus size III, was relatively 

unaffected by defocus up to +10.00DS within 10-15° eccentricity after which CFF declined with 

increase in defocus.     

 

The effect of defocus is less for TMP than that for SAP (Demirel 1995) and appears, in this 

regard, to be similar to that for CFF (Gleissner and Lachenmayr 1992).   

 

6.2 The effect of the defocus on CFF perimetry in normal individuals 

6.3 Aims 

 
Clearly, the outcome of defocus on CFF perimetry is unclear. The aim of the study, therefore, 

was to determine the effect of optical defocus on CFF perimetry in normal individuals and to 

compare the outcome with that determined for SAP. 
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6.4 Methods 

 The study was a prospective observational case series study. 

 

6.5 Case series 

The case series comprised 16 (6 males) consecutively presenting Caucasian individuals who met 

the inclusion criteria for enrolment in the study and who had volunteered to take part in the 

study. The mean age of these individuals was 66.6 years, the median 67.0 years (IQR 12.75) and 

the range from 53 to 79 years. All individuals were experienced in CFF perimetry having taken 

part in the learning study described in Chapter 4. As with the previous studies, all individuals 

were provided with written and verbal information concerning the nature of the study, and gave 

written consent, in accordance with requirements, and approval, of the Norwegian Ethical 

Committee (Regional komitè for medisinsk forskningsetikk Sør- Norge [REK Sør]) and the 

Norwegian Datatilsynet (Enclosure nr. 4 and 5) which in turn, is in accordance with the tenets of 

Declaration of Helsinki. The age profile of the case series is given in Table 6.1. 

 
 

 
 

Age (years) Normal individuals 

50 – 59 3 
60 – 69 7 
70 – 79 6 

 
Table 6.1 The number and age distribution of the individuals within the case series. 

 

 
 

All individuals underwent an updated standard ophthalmic examination at baseline comprising 

the same procedure for the normal individuals as described in Chapter 4. 
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The exclusion criteria were that as described in Chapter 4 for the normal individuals. Potential 

participants were to be excluded from the study if they exhibited in either eye: a corrected visual 

acuity worse than 6/9; a distance refractive error greater than +/-5.0 dioptres sphere and/or 

greater than +/- 2.5 dioptres cylinder; a pupil diameter smaller than 3mm; a central corneal 

thickness-corrected IOP of greater than 20 mm Hg; a narrow anterior chamber angle; media 

opacities worse than NC3.0, NO3.0, C2.0 or P2.0 by the Lens Opacities Classification System III 

(LOCS III) (Chylack et al 1993); any previous ocular surgery; and any ocular disorder or ocular 

disease. In addition, individuals with migraine with aura, diabetes; neurological disorder or 

disease; systemic disease, other than systemic hypertension manifesting as Grade 1 hypertensive 

retinopathy, or hyperthyroid disease; a family history of glaucoma or of diabetes; and previous 

experience of CFF perimetry; were also excluded.  

 

The images of the optic nerve head and of the posterior pole and the results of the visual field 

plots for the normal individuals had all been designated as normal by Professor Wild who was 

masked to the assumed normality of the potential participants.  

 

6.6 Examination protocol 

Following recruitment, each participant underwent examination of one designated eye with the 

Octopus 311 perimeter for both SAP and CFF perimetry using Program G1 and the TOP 

algorithm on two separate occasions separated by one week. Both SAP and CFF perimetry were 

undertaken with the distance refractive correction, in the form of full aperture trial lenses, for the 

designated eye of each patient (i.e. Plano defocus), and under each of the three levels of defocus: 

+1.00DS, +2.00DS and +4.00DS (superimposed upon the distance correction). It will be recalled 

from Chapters 2 and 4 that the stimulus of the Octopus 311 is projected to infinity and, therefore, 
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does not require correction for near for the viewing distance. The non-examined eye was 

occluded with an opaque patch. 

 

The designated eye for examination was randomized between individuals and the sequence of 

defocus and type of perimetry was randomized within the visit and also varied between 

individuals over Visit 2 and Visit 3. 

 

Each individual adapted to the background luminance of the Octopus 311, perimeter for one 

minute. The influence of the fatigue effect was reduced by providing a rest period of 2 minutes 

between each examination. Each individual was given the same instructions at each examination 

at each visit in order to reduce operator bias.  All examinations were undertaken by the same 

perimetrist, the author.  The examination routine is given in Table 6.2. 
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V
is

it
 1

  

                            Ophthalmic examination 

 

50% of individuals 

SAP first 

Defocus first: Plano 

Defocus second: +1.00 

CFF second 

Defocus first: +2.00 

Defocus second: +4.00 

V
is

it
 2

 

 

50% of individuals 

CFF first 

Defocus first: Plano 

Defocus second: +1.00 

SAP second 

Defocus first: +2.00 

Defocus second +4.00 

 

50% of individuals 

CFF first 

Defocus first: Plano 

Defocus second: +1.00 

SAP second 

Defocus first: +2.00 

Defocus second +4.00 

V
is

it
 3

 

 

50% of individuals 

SAP first 

Defocus first: Plano 

Defocus second: +1.00 

CFF second 

Defocus first: +2.00 

Defocus second: +4.00 

 

Table 6.2 The examination routine for SAP and CFF perimetry, undertaken by the 

designated eye, with Program G1 and the TOP algorithm at Visit 2 and Visit 3 for the 16 

individuals. 

 

 

6.7 Analysis 

The extent of any change over the 4 defocus levels in the visual field indices, MSSAP, MDSAP, 

sLVSAP, DDSAP and LDSAP; and MSCFF, MDCFF, sLVCFF, DDCFF and LDCFF; in the examination 

duration; and in the ratio of the PMS to the CMS was separately modelled using repeated 

measures of Analysis of Variance (ANOVA) for each dependent variable. Age, gender, the 

designated eye, pupil size, order of the type of perimetry, defocus and order of defocus were 

each considered as separate between-subject factors. The level of defocus and the visit were 

considered as separate within-subject factors.      
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6.8 Results 

The summary statistics for the incorrect responses to the FP and FN catch trials as a function of 

the type of perimetry for the 16 normal individuals is given in Table 6.3. All 64 visual field 

examinations for SAP yielded responses to the false-positive/false-negative catch trials 

(reliability factor [RF%]) within 14.3%. Of the 64 visual field examinations for CFF perimetry, 3 

individuals each yielded, at one examination, an RF factor greater than 15% (22.2%, 22.2% and 

25%). 

 

False positive/False negative answers 

% 

 

Plano 

DS 

+1.00  

DS 

+2.00 

DS 

+4.00 

DS 

Mean FP 

SD 

1.56 
6.25 

1.56 
6.25 

1.56 
6.25 

0 
0 

Median FP 

IQR 

0 
0 

0 
0 

0 
0 

0 
0 

Mean FN 

SD 

0 
0 

0 
0 

3.13 
8.54 

3.13 
8.54 

Median FN 

IQR 

0 
0 

0 
0 

0 
0 

0 
0 

 

False positive/False negative answers 

% 

 

Plano 

DS 

+1.00  

DS 

+2.00 

DS 

+4.00 

DS 

Mean FP 

SD 

15 
16.83 

5.42 
9.86 

4.69 
10.08 

9.06 
15.19 

Median FP 

IQR 

12.5 
24 

0 
4.17 

0 
0 

0 
21.25 

Mean FN 

SD 

0 
0 

0 
0 

1.56 
6.25 

2.50 
6.83 

Median FN 

IQR 

0 
0 

0 
0 

0 
0 

0 
0 

 
 

Table 6.3 The summary statistics (mean, SD: median, IQR) for the incorrect responses to 

the FP and the FN catch trials derived by SAP and by CFF perimetry at each of the four 

levels of defocus, undertaken by the designated eye, with Program G1 and the TOP 

algorithm for the 16 individuals. 
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6.9 The outcome for the TOP algorithm 

6.9.1 Mean Sensitivity 

The summary statistics of the magnitude of the MSSAP and of the MSCFF in the designated eye at 

each of the four levels of defocus are given in Tables 6.4 for the 16 normal individuals.  The 

distributions of the MSSAP and of the MSCFF, as a function of defocus, are also illustrated in 

terms of Box and Whisker plots in Figure 6.1. 

 

 
 

MSSAP 

dB 

Plano 

DS 

+1.00 

DS 

+2.00 

DS 

+4.00 

DS 

Mean 

SD 

27.24 
1.32 

26.34 
1.26 

25.42 
1.07 

23.33 
1.14 

Median 

IQR 

27.40 
1.42 

26.40 
0.83 

25.55 
0.92 

23.35 
1.15 

 

 

 

MSCFF 

Hz 

Plano 

DS 

+1.00 

DS 

+2.00 

DS 

+4.00 

DS 

Mean 

SD 

34.73 
4.80 

35.07 
4.91 

34.78 
4.70 

36.84 
3.91 

Median 

IQR 

36.50 
8.47 

35.75 
7.65 

35.30 
5.30 

37.50 
4.32 

 

Table 6.4 The summary statistics (mean, SD: median, IQR) for MSSAP (dB) (top) and for 

MSCFF (Hz) (bottom) at each of the four levels of defocus, undertaken by the designated 

eye, for the 16 normal individuals.  
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Figure 6.1 Box and whisker plots for the distributions of MSSAP (dB) (top) and of MSCFF 

(Hz) (bottom) at each of the four levels of defocus, undertaken by the designated eye, for 

the 16 normal individuals. The median is represented by the black line, the 25
th

 and 75
th

 

percentile by the edges of the box and the range by the extremities of the whiskers. 
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Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Age 1 16 6.28 0.023 

Gender 1 16 9.87 0.006 

Eye 1 16 0.70 0.416 
Order of Perimetry 1 16 1.50 0.238 
Order of Defocus 1 48 9.57 0.003 

Defocus 3 48 176.19 <0.001 

Pupil size 1 16 0.45 0.510 
     

Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Age 1 16 5.72 0.029 

Gender 1 16 9.26 0.008 

Eye 1 16 0.47 0.505 
Order of Perimetry 1 16 1.81 0.197 
Order of Defocus 1 48 9.57 0.003 

Defocus 3 48 176.19 <0.001 

     
Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Age 1 16 5.42 0.033 

Gender 1 16 9.24 0.008 

Order of Perimetry 1 16 1.33 0.266 
Order of Defocus 1 48 9.57 0.003 

Defocus 3 48 176.19 <0.001 

Age x Gender 1 16 0.01 0.912 
Age x Visit 1 48 4.60 0.037 

Age x Defocus 3 48 2.15 0.107 
Gender x Defocus 3 48 0.79 0.503 

Gender x Visit 1 48 5.07 0.029 

Visit x Defocus 3 41.2 0.60 0.616 
 
Table 6.5 The Analysis of Variance Summary Table for MSSAP (dB) at the four levels of 

defocus. 

 

 

 

 

 

 

 

 

 

The ANOVA modelling showed that, as would be expected, the decline in MSSAP and in MSCFF 

increased with increase in age (p< 0.033 and p= 0.002, respectively). In the case of MSSAP , the 

influence of age on the MSSAP  was greater at the first of the two visits (p=0.037). An interesting 
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 interaction was present within the ANOVA model, namely that the difference in sensitivity 

between males and females was different between the two visits (p=0.029). 

 

As would be expected, the influence of defocus was also highly significant for both types of 

perimetry (p<0.001 and p< 0.001, respectively).   
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Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Age 1 16 5.90 0.270 
Gender 1 16 1.01 0.330 
Eye 1 16 3.09 0.098 
Order of Perimetry 1 16 0.76 0.396 
Order of Defocus 1 48 1.22 0.275 
Defocus 3 48 6.46 <0.001 

Pupil size 1 16 0.06 0.806 
     
Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Age 1 16 6.26 0.024 
Gender 1 16 0.96 0.341 
Eye  1 16 3.48 0.080 
Order of Perimetry 1 16 0.70 0.415 
Order of Defocus 1 48 1.22 0.275 
Defocus 3 48 6.46 <0.001 

     
Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Age 1 16 6.47 0.022 
Gender 1 16 0.82 0.378 
Eye 1 48 2.78 0.115 
Order of Defocus 1 48 1.22 0.275 
Defocus 3  6.46 <0.001 

     

Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value 

 
P value 

Age 1 16 5.71 0.030 

Eye 1 16 2.60 0.126 
Defocus 3 48 6.30 0.001 

     
Effect Degrees of Freedom 

Numerator 
Degrees of Freedom 

Denominator 
F value 

 
P value 

Age 1 16 13.14 0.002 

Defocus 3 48 6.30 0.001 

Age x Defocus 3 48 0.99 0.410 
 

Table 6.6 The Analysis of Variance Summary Table for MSCFF (Hz) at the four levels of 

defocus. 

 
 

6.9.2 Mean Defect 

The summary statistics of the magnitude of the MDSAP and of the MDCFF in the designated eye at 

each of the four levels of defocus are given in Table 6.7 for the 16 normal individuals.  The 
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distributions of the MDSAP and of the MDCFF, as a function of defocus, are also illustrated in 

terms of Box and Whisker plots in Figure 6.2. 

 

 
MDSAP 

 dB 

Plano 

DS 

+1.00 

DS 

+2.00 

DS 

+4.00 

DS 

Mean 

SD 

-0.61 
1.15 

0.26 
1.11 

1.18 
1.05 

3.30 
1.16 

Median 

IQR 

0.80 
0.97 

0.00 
1.04 

1.15 
1.00 

3.50 
1.60 

 

MDCFF 

Hz 

Plano 

DS 

+1.00 

DS 

+2.00 

DS 

+4.00 

DS 

Mean 

SD 

0.88 
4.27 

0.55 
4.24 

0.83 
4.14 

-1.21 
3.29 

Median 

IQR 

-1.55 
7.29 

-0.25 
7.34 

0.05 
4.22 

-1.80 
4.12 

 

Table 6.7 The summary statistics (mean, SD: median, IQR) for MDSAP (dB) (top) and for 

MDCFF (Hz) (bottom) at each of the four levels of defocus, undertaken by the designated 

eye, for the 16 normal individuals.  
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Figure 6.2 Box and whisker plots for the distributions of MDSAP (dB) (top) and of MDCFF 

(Hz) (bottom) at each of the four levels of defocus, undertaken by the designated eye, for 

the 16 normal individuals. The median is represented by the black line, the 25
th

 and 75
th

 

percentile by the edges of the box and the range by the extremities of the whiskers. 
 

 

The ANOVA modelling showed that, as would be expected, the MDSAP and the MDCFF did not 

alter with age (p=0.685 and p= 0.222, respectively). The MDSAP  was more negative (i.e. better) 

for females (p=0.010). The MDCFF was more negative (i.e. better) when the right eye was the 

designated eye (p=0.019). As would be expected, the influence of defocus was also highly 

significant for both types of perimetry (p<0.001 and p=0.001, respectively).  The influence of 
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defocus on MDSAP  was greater (i.e. the MDSAP was worse) when the lower powered lenses were 

used first (p=0.005). 

 
Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Age 1 16 0.17 0.685 
Gender 1 16 9.64 0.007 
Eye 1 16 0.69 0.419 
Order of Perimetry 1 16 1.39 0.255 
Order of Defocus 1 48 8.85 0.005 

Defocus 3 48 178.58 <0.001 

Pupil size 1 16 0.47 0.505 
     
Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Gender 1 16 9.37 0.008 
Eye 1 16 0.51 0.484 
Order of Perimetry 1 16 1.32 0.267 
Order of Defocus 1 48 8.85 0.005 

Defocus 3 48 178.58 <0.001 

Pupil size 1 16 0.38 0.546 
     
Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Gender 1 16 8.89 0.009 

Eye 1 16 0.37 0.553 
Order of Perimetry 1 16 1.62 0.221 
Order of Defocus 1 48 8.85 0.005 

Defocus 3 48 178.58 <0.001 

     

Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Gender 1 16 9.29 0.008 

Order of Perimetry 1 16 1.29 0.273 
Order of Defocus 1 48 8.85 0.005 

Defocus 3 48 178.58 <0.001 

     
Effect Degrees of Freedom 

Numerator 
Degrees of Freedom 

Denominator 
F value P value 

Gender 1 16 8.60 0.010 

Order of Defocus 1 48 8.85 0.005 

Defocus 3 48 178.58 <0.001 

Gender x Order of  

Defocus 

1 48 4.11 0.048 

Gender x Defocus 3 48 0.85 0.471 
Order x Defocus 3 41.2 0.65 0.588 

 
Table 6.8 The Analysis of Variance Summary Table for MDSAP at the four levels of 

defocus. 
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Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Age 1 16 1.85 0.192 
Gender 1 16 1.11 0.307 
Eye 1 16 3.06 0.099 
Order of Perimetry 1 16 0.79 0.389 
Order of Defocus 1 48 1.26 0.266 
Defocus 3 48 6.48 0.001 

Pupil size 1 16 0.07 0.789 
     
Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Age 1 16 1.82 0.196 
Gender 1 16 1.06 0.320 
Eye 1 16 3.47 0.081 
Order of Perimetry 1 16 0.72 0.410 
Order of Defocus 1 48 1.26 0.266 
Defocus 3 48 6.48 0.001 

     
Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Age 1 16 1.61 0.222 
Eye 1 16 2.55 0.130 
Defocus 3 48 6.31 0.001 

     

Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Eye 1 16 6.80 0.019 

Defocus 3 48 6.31 0.001 

Eye x Defocus 3 48 1.02 0.390 
 

Table 6.9 The Analysis of Variance Summary Table for MDCFF (Hz) at the four levels of 

defocus. 

 
 

6.9.3 Square root of the Loss Variance (sLV) 

The summary statistics of the magnitude of the sLVSAP and of the sLVCFF in the designated eye 

at each of the four levels of defocus are given in Table 6.10 for the 16 normal individuals.  The 

distributions of the sLVSAP and of the sLVCFF, as a function of defocus, are also illustrated in 

terms of Box and Whisker plots in Figure 6.3. 
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sLVSAP 

 dB 

Plano 

DS 

+1.00 

DS 

+2.00 

DS 

+4.00 

DS 

Mean 

SD 

1.44 
0.47 

1.54 
0.69 

1.79 
0.45 

1.86 
0.50 

Median 

IQR 

1.32 
0.50 

1.35 
0.65 

1.90 
0.35 

1.88 
0.45 

 

sLVCFF 

 Hz 

Plano 

DS 

+1.00 

DS 

+2.00 

DS 

+4.00 

DS 

Mean 

SD 

3.09 
1.11 

2.99 
1.45 

3.41 
1.26 

3.43 
1.83 

Median 

IQR 

2.83 
1.17 

3.11 
2.03 

3.42 
1.09 

3.08 
2.25 

 

Table 6.10 The summary statistics (mean, SD: median, IQR) for sLVSAP (dB) (top) and for 

sLVCFF (Hz) (bottom) at each of the four levels of defocus, undertaken by the designated 

eye, for the 16 normal individuals.  
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Figure 6.3 Box and whisker plots for the distributions of sLVSAP (dB) (top) and of sLVCFF 

(Hz) (bottom) at each of the four levels of defocus, undertaken by the designated eye, for 

the 16 normal individuals. The median is represented by the black line, the 25
th

 and 75
th

 

percentile by the edges of the box and the range by the extremities of the whiskers. 
 

 

 
Interestingly, the sLVCFF  increased with age (p<0.001).  

 

The sLVSAP was attenuated by defocus (p=0.033); however, the influence of defocus on the 

sLVCFF did not reach statistical significance (p=0.343). The  sLVCFF  was larger (i.e. worse) 

when the higher powered lenses were used first (p=0.013). 
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Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Age 1 16 0.87 0.366 
Gender 1 16 0.98 0.337 
Eye 1 16 0.24 0.630 
Order of Perimetry 1 16 0.29 0.595 
Order of Defocus 1 48 0.04 0.852 
Defocus 3 48 3.18 0.032 

Pupil size 1 16 0.50 0.489 
     
Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Age 1 16 0.87 0.366 
Gender 1 16 0.98 0.337 
Eye 1 16 0.24 0.630 
Order of Perimetry 1 16 0.29 0.595 
Defocus 3 48 3.18 0.032 

Pupil size 1 16 0.50 0.489 
     
Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Age 1 16 0.62 0.444 
Gender 1 16 0.99 0.335 
Order of Perimetry 1 16 0.11 0.746 
Defocus 3 48 3.18 0.032 

Pupil size 1 16 0.72 0.410 
     

Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Age 1 16 0.83 0.376 
Gender 1 16 1.04 0.322 
Defocus 3 48 3.18 0.033 

     
Effect Degrees of Freedom 

Numerator 
Degrees of Freedom 

Denominator 
F value P value 

Gender 1 16 0.88 0.361 
Defocus 3 48 3.18 0.032 

     
Effect Degrees of Freedom 

Numerator 
Degrees of Freedom 

Denominator 
F value P value 

Defocus 3 48 3.18 0.033 

 
Table 6.11 The Analysis of Variance Summary Table for sLVSAP at the four levels of 

defocus. 
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Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Age 1 16 15.17 0.001 

Gender 1 16 2.51 0.133 
Eye 1 16 2.84 0.111 
Order of Perimetry 1 16 4.21 0.057 

Order of Defocus 1 48 7.15 0.010 

Defocus 3 48 1.14 0.343 
Pupil size 1 16 0.15 0.702 
     
Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Age 1 16 16.03 0.001 

Gender 1 16 2.37 0.143 
Eye 1 16 3.33 0.087 
Order of Perimetry 1 16 4.02 0.062 
Order of Defocus 1 48 7.15 0.010 

Defocus 3 48 1.14 0.343 
     
Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Age 1 16 12.93 0.002 

Eye 1 16 2.65 0.123 
Order of Perimetry 1 16 3.16 0.095 
Order of Defocus 1 48 6.68 0.013 

     

Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Age 1 16 22.29 <0.001 

Order of Perimetry 1 16 0.87 0.366 
Order of Defocus 1 48 6.68 0.013 

     
Effect Degrees of Freedom 

Numerator 
Degrees of Freedom 

Denominator 
F value P value 

Age 1 16 20.46 <0.001 

Order of Defocus 1 48 6.68 0.013 

Age x Order of  

Defocus 

1 48 0.030 0.869 

 

Table 6.12 The Analysis of Variance Summary Table for sLVCFF at the four levels of 

defocus. 
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6.9.4 Diffuse Defect 

The summary statistics of the magnitude of the DDSAP and of the DDCFF in the designated eye at 

each of the four levels of defocus are given in Table 6.13 for the 16 normal individuals.  The 

distributions of the DDSAP and of the DDCFF, as a function of defocus, are also illustrated in 

terms of Box and Whisker plots in Figure 6.4. 

 

 
Diffuse Defect 

dB 

Plano 

DS 

+1.00 

DS 

+2.00 

DS 

+4.00 

DS 

Mean 

SD 

-0.33 
1.07 

0.56 
0.82 

1.24 
0.89 

3.36 
1.29 

Median 

IQR 

-0.55 
1.46 

0.55 
1.05 

1.30 
0.55 

3.45 
2.53 

 

Diffuse Defect 

Hz 

Plano 

DS 

+1.00 

DS 

+2.00 

DS 

+4.00 

DS 

Mean 

SD 

0.51 
3.65 

0.16 
3.20 

0.14 
3.62 

-1.68 
2.26 

Median 

IQR 

-1.65 
5.31 

-0.90 
5.55 

-0.65 
3.70 

-2.45 
2.20 

 

Table 6.13 The summary statistics (mean, SD: median, IQR) for DDSAP (dB) (top) and 

for DDCFF (Hz) (bottom) at each of the four levels of defocus, undertaken by the 

designated eye, for the 16 normal individuals.  
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Figure 6.4 Box and whisker plots for the distributions of DDSAP (dB) (top) and of DDCFF 

(Hz) (bottom) at each of the four levels of defocus, undertaken by the designated eye, for 

the 16 normal individuals. The median is represented by the black line, the 25
th

 and 75
th

 

percentile by the edges of the box and the range by the extremities of the whiskers. 
 

 

 
The ANOVA modeling showed that the DDSAP was worse in males (P=0.005). The DDCFF was 

worse when the left eye was the designated eye (p=0.034). 

 

As would be expected, the influence of defocus was also highly significant for both types of 
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perimetry (p<0.001 and p< 0.001, respectively).  The influence of defocus on MDSAP  was greater 

(i.e. the DDSAP was worse) when the higher powered lenses were used first (p=0.018). 

 
Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Age 1 16 0.01 0.941 
Gender 1 16 13.69 0.002 

Eye 1 16 1.51 0.237 
Order of Perimetry 1 16 3.26 0.090 
Order of Defocus 1 48 6.01 0.018 

Defocus 3 48 109.29 <0.001 

Pupil size 1 16 1.32 0.268 
     
Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Gender 1 16 14.00 0.002 

Eye 1 16 2.17 0.160 
Order of Perimetry 1 16 3.29 0.089 
Order of Defocus 1 48 6.01 0.018 

Defocus 3 48 109.29 <0.001 

Pupil size 1 16 1.39 0.256 
     
Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Gender 1 16 12.26 0.003 

Eye 1 16 1.51 0.237 
Order of Perimetry 1 16 3.95 0.064 
Order of Defocus 1 48 6.01 0.018 

Defocus 3 48 109.29 <0.001 

     

Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Gender 1 16 12.41 0.003 

Order of Perimetry 1 16 2.24 0.154 
Order of Defocus 1 48 6.01 0.018 

Defocus 3 48 109.29 <0.001 

     
Effect Degrees of Freedom 

Numerator 
Degrees of Freedom 

Denominator 
F value P value 

Gender 1 16 10.89 0.005 

Order of Defocus 1 48 6.01 0.018 

Defocus 3 48 109.29 <0.001 

Gender x Order of  

Defocus 

1 48 0.62 0.434 

Gender x Defocus 3 48 0.45 0.722 
Order of  Defocus 

x Defocus 

3 41.2 1.05 0.379 

 
Table 6.14 The Analysis of Variance Summary Table for DDSAP at the four levels of 

defocus. 
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Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Age 1 16 0.78 0.390 
Gender 1 16 0.93 0.348 
Eye 1 16 2.29 0.150 
Order of Perimetry 1 16 0.38 0.544 
Order of Defocus 1 48 0.00 0.966 
Defocus 3 48 7.54 <0.001 

Pupil size 1 16 0.17 0.685 
     
Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Age 1 16 0.78 0.390 
Gender 1 16 0.93 0.348 
Eye 1 16 2.29 0.150 
Order of Perimetry 1 16 0.38 0.544 
Defocus 3 48 7.54 <0.001 

Pupil size 1 16 0.17 0.685 
     
Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Age 1 16 0.61 0.445 
Gender 1 16 0.84 0.372 
Eye 1 16 2.72 0.118 
Order of Perimetry 1 16 0.30 0.594 
Defocus 3 48 7.54 <0.001 

     

Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Gender 1 16 0.58 0.456 
Eye 1 16 5.91 0.027 
Defocus 3 48 7.54 <0.001 

     
Effect Degrees of Freedom 

Numerator 
Degrees of Freedom 

Denominator 
F value P value 

Eye 1 16 5.41 0.034 

Defocus 3 48 7.54 <0.001 

Eye x Defocus 3 48 0.89 0.451 
 

Table 6.15 The Analysis of Variance Summary Table for DDCFF at the four levels of 

defocus. 

 
 

6.9.5 Local Defect 

The summary statistics of the magnitude of the LDSAP and of the LDCFF in the designated eye at 

each of the four levels of defocus are given in Table 6.16 for the 16 normal individuals.  The 
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distributions of the LDSAP and of the LDCFF, as a function of defocus, are also illustrated in terms 

of Box and Whisker plots in Figure 6.5. 

 
 

Summary Statistics 

 (dB) 

Plano 

DS 

+1.00 DS +2.00 

DS 

+4.00 

DS 

Mean 

SD 

0.16 
0.31 

0.28 
0.54 

0.36 
0.31 

0.43 
0.62 

Median 

IQR 

0.00 
0.20 

0.05 
0.23 

0.30 
0.60 

0.30 
0.53 

 

Summary Statistics 

 (Hz) 

Plano 

DS 

+1.00 

DS 

+2.00 

DS 

+4.00 

DS 

Mean 

SD 

0.26 
0.59 

0.40 
0.66 

0.41 
0.65 

0.51 
0.88 

Median 

IQR 

0.00 
0.10 

0.05 
0.45 

0.05 
0.63 

0.00 
0.63 

 

Table 6.16 The summary statistics (mean, SD: median, IQR) for LDSAP (dB) (top) and for 

LDCFF (Hz) (bottom) at each of the four levels of defocus, undertaken by the designated 

eye, for the 16 normal individuals.  
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Figure 6.5 Box and whisker plots for the distributions of LDSAP (dB) (top) and of LDCFF 

(Hz) (bottom) at each of the four levels of defocus, undertaken by the designated eye, for 

the 16 normal individuals. The median is represented by the black line, the 25
th

 and 75
th

 

percentile by the edges of the box and the range by the extremities of the whiskers. 
 

 
 
The LDCFF increased  (i.e. worsened) with increase/ decrease in age (p=0.002).  

 

The LDSAP and the LDCFF  were not influenced by defocus (p=0.198 and 0.513 respectively).  

 
 
 
 

0

2

4

0.00 +1.00 +2.00 +4.00

Level of defocus 

L
o

c
a

l 
D

e
fe

c
t 

(d
B

) 

0

2

4

0.00 +1.00 +2.00 +4.00

Level of defocus 

L
o

c
a

l 
D

e
fe

c
t 

(H
z
)



 369 

 
Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Age 1 16 0.14 0.714 
Gender 1 16 2.00 0.176 
Eye 1 16 0.17 0.685 
Order of Perimetry 1 16 0.09 0.767 
Order of Defocus 1 48 0.50 0.481 
Defocus 3 48 1.63 0.194 
Pupil size 1 16 0.34 0.570 
     
Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Age 1 16 0.15 0.699 
Gender 1 16 1.94 0.183 
Eye 1 16 0.09 0.770 
Order of Defocus 1 48 0.50 0.481 
Defocus 3 48 1.63 0.194 
Pupil size 1 16 0.41 0.531 
     
Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Age 1 16 0.46 0.509 
Gender 1 16 1.95 0.182 
Order of Defocus 1 48 0.50 0.481 
Defocus 3 48 1.63 0.194 
Pupil size 1 16 0.32 0.579 
     

Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Gender 1 16 1.80 0.198 
Order of Defocus 1 48 0.50 0.481 
Defocus 3 48 1.63 0.194 
     
Effect Degrees of Freedom 

Numerator 
Degrees of Freedom 

Denominator 
F value P value 

Gender 1 16 1.80 0.198 
Defocus 3 48 1.62 0.198 
     
Effect Degrees of Freedom 

Numerator 
Degrees of Freedom 

Denominator 
F value P value 

Defocus 3 48 1.62 0.198 
 
Table 6.17 The Analysis of Variance Summary Table for LDSAP at the four levels of 

defocus. 
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Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Age 1 16 6.48 0.019 

Gender 1 16 1.12 0.306 
Eye 1 16 1.85 0.193 
Order of Perimetry 1 16 0.29 0.595 
Order of Defocus 1 48 6.22 0.016 

Defocus 3 48 0.88 0.460 
Pupil size 1 16 0.38 0.548 
     
Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Age 1 16 6.84 0.019 

Gender 1 16 1.12 0.306 
Eye 1 16 1.85 0.193 
Order of Defocus  48 0.29 0.595 
Defocus 3 48 0.78 0.513 
Pupil size 1 16 0.38 0.549 
     
Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Age 1 16 6.77 0.019 

Gender 1 16 1.01 0.330 
Eye 1 16 1.56 0.230 
Defocus 3 48 0.78 0.513 
Pupil size 1 16 0.26 0.618 
     

Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Age 1 16 6.64 0.020 

Gender 1 16 0.90 0.357 
Eye 1 16 2.52 0.132 
     
Effect Degrees of Freedom 

Numerator 
Degrees of Freedom 

Denominator 
F value P value 

Age 1 16 5.83 0.028 

Eye 1 16 2.34 0.146 
     
Effect Degrees of Freedom 

Numerator 
Degrees of Freedom 

Denominator 
F value P value 

Age 1 16 13.16 0.002 

 

Table 6.18 The Analysis of Variance Summary Table for LDCFF at the four levels of 

defocus. 
 

6.9.6 Examination duration 

The summary statistics of the magnitude of the examination duration for SAP and of the 

examination duration for CFF perimetry, in the designated eye, at each of the four levels of 



 371 

defocus are given in Table 6.19 for the 16 normal individuals.  The distributions of the 

examination duration for SAP and of the examination duration for CFF perimetry, as a function 

of defocus, are also illustrated in terms of Box and Whisker plots in Figure 6.6. 

 

 

 
Examination  

Duration (sec) 

Plano 

DS 

+1.00 

DS 

+2.00 

DS 

+4.00 

DS 

Mean 

SD 

141 
9.92 

150 
30.40 

148 
13.40 

158 
16.70 

 Median 

IQR 

140 
9.25 

140 
12.50 

143 
14.00 

151 
20.25 

 

Examination  

Duration (sec) 

Plano 

DS 

+1.00 

DS 

+2.00 

DS 

+4.00 

DS 

Mean 

SD 

205 
19.56 

212 
58.94 

211 
39.71 

220 
36.46 

Median 

IQR 

204 
28.25 

201 
21.75 

205 
57.25 

214 
58.00 

 

Table 6.19 The summary statistics (mean, SD: median, IQR) for the examination 

duration for SAP (seconds) (top) and the examination duration for CFF (seconds) 

(bottom) at each of the four levels of defocus, undertaken by the designated eye, for the 

16 normal individuals.  
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Figure 6.6 Box and whisker plots for the distributions of the examination duration (sec.) 

for SAP (top) and for CFF perimetry (bottom) at each of the four levels of defocus, 

undertaken by the designated eye, for the 16 normal individuals. The median is 

represented by the black line, the 25
th

 and 75
th

 percentile by the edges of the box and the 

range by the extremities of the whiskers. 
      

 
 
The ANOVA modelling showed that the examination duration for SAP was shorter in males 

(p=0.004). The examination duration for SAP increased with increase in defocus (P=0.024) and 

this increase was greater for females when the higher powered lenses were used first (p=0.026). 
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Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Age 1 16 0.44 0.514 
Gender 1 16 4.45 0.051 

Eye 1 16 0.34 0.567 
Order of Perimetry 1 16 1.36 0.261 
Order of Defocus 1 48 2.98 0.091 
Defocus 3 48 3.43 0.024 

Pupil size 1 16 0.03 0.862 
     
Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Age 1 16 0.42 0.528 
Gender 1 16 4.58 0.480 
Eye 1 16 0.31 0.585 
Order of Perimetry 1 16 1.33 0.266 
Order of Defocus 1 48 2.98 0.091 
Defocus 3 48 3.43 0.024 

     
Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Age 1 16 0.18 0.678 
Gender 1 16 4.39 0.053 

Order of Perimetry 1 16 3.36 0.085 
Order of Defocus 1 48 2.98 0.091 
Defocus 3 48 3.43 0.024 

     

Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Gender 1 16 4.74 0.045 

Order of Perimetry 1 16 3.16 0.095 
Order of Defocus 1 48 2.98 0.091 
Defocus 3 48 3.43 0.024 

Gender x Order of 

Perimetry 

1 16 0.13 0.722 

Gender x Order of 

Defocus 

1 48 5.25 0.026 

Gender x Defocus 3 48 0.42 0.740 
Order of Perimetry 

X Defocus 

2 48 2.52 0.091 

Order of Defocus 

x Defocus 

2 48 2.52 0.091 

 
Table 6.20 The Analysis of Variance Summary Table for the examination duration for 

SAP at the four levels of defocus. 
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Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Age 1 16 3.05 0.100 
Gender 1 16 0.32 0.580 
Eye 1 16 0.00 0.982 
Order of Perimetry 1 16 0.05 0.818 
Order of Defocus 1 48 0.22 0.638 
Defocus 3 48 0.55 0.652 
Pupil size 1 16 1.18 0.294 
     
Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Age 1 16 4.19 0.058 
Gender 1 16 0.32 0.578 
Order of Perimetry 1 16 0.07 0.799 
Order of Defocus 1 48 0.22 0.638 
Defocus 3 48 0.55 0.653 
Pupil size 1 16 1.24 0.283 
     
Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Age 1 16 5.22 0.036 

Gender 1 16 0.35 0.561 
Order of Defocus 1 48 0.22 0.638 
Defocus 3 48 0.55 0.652 
Pupil size 1 16 1.74 0.206 
     

Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Age 1 16 5.22 0.036 

Gender 1 16 0.35 0.561 
Order of Defocus 1 48 0.22 0.643 
Pupil size 1 16 1.74 0.206 
     
Effect Degrees of Freedom 

Numerator 
Degrees of Freedom 

Denominator 
F value P value 

Age 1 16 5.22 0.036 

Gender 1 16 0.35 0.561 
Pupil size 1 16 1.74 0.206 
     
Effec Degrees of Freedom 

Numerator 
Degrees of Freedom 

Denominator 
F value P value 

Age 1 16 4.80 0.044 
Pupil size 1 16 1.57 0.223 
     
Effec Degrees of Freedom 

Numerator 
Degrees of Freedom 

Denominator 
F value P value 

Age 1 16 3.74 0.071 
 
Table 6.21 The Analysis of Variance Summary Table for the examination duration for 

CFF at the four levels of defocus. 
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6.9.7 Ratio of the peripheral mean sensitivity to the central mean sensitivity 

The summary statistics of the magnitude of the PMSSAP/CMSSAP ratio and of the 

PMSCFF/CMSCFF ratio in the designated eye at each of the four levels of defocus are given in 

Table 6.22 for the 16 normal individuals.  The distributions of the PMSSAP and of the PMSCFF, as 

a function of defocus, are also illustrated in terms of Box and Whisker plots in Figure 6.7. 

 

 
 

Peripheral/Central 

(dB) 

Plano 

DS 

+1.00 

DS 

+2.00 

DS 

+4.00 

DS 

Mean 

SD 
0.91 
0.04 

0.90 
0.05 

0.89 
0.04 

0.88 
0.03 

Mean Median 

IQR  

0.92 
0.04 

0.91 
0.04 

0.89 
0.05 

0.88 
0.03 

 
Peripheral/Central 

(Hz) 

Plano 

DS 

+1.00 

DS 

+2.00 

DS 

+4.00 

DS 

Mean 

SD 
0.95 
0.07 

0.94 
0.07 

0.94 
0.06 

0.92 
0.07 

Mean Median 

IQR  

0.93 
0.11 

0.96 
0.05 

0.95 
0.05 

0.95 
0.07 

 
Table 6.22 The summary statistics (mean, SD: median, IQR) for the PMSSAP/CMSSAP 
ratio (top) and the PMSCFF/CMSCFF ratio (bottom) at each of the four levels of defocus, 

undertaken by the designated eye, for the 16 normal individuals.  
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Figure 6.7 Box and whisker plots for the distributions of the PMSSAP/CMSSAP ratio (top) 

and of the PMSCFF/CMSCFF ratio (bottom) at each of the four levels of defocus, undertaken 

by the designated eye, for the 16 normal individuals. The median is represented by the 

black line, the 25
th

 and 75
th

 percentile by the edges of the box and the range by the 

extremities of the whiskers. 
 

 
 
 

Neither the PMSSAP/CMSSAP ratio nor the PMSCFF/CMSCFF ratio were influenced by any of the 

independed variables included in the ANOVA modelling. 
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Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Age 1 16 8.05 0.012 

Gender 1 16 0.35 0.563 
Eye 1 16 2.44 0.138 
Order of Perimetry 1 16 4.36 0.053 

Order of Defocus 1 48 1.96 0.168 
Defocus 3 48 4.33 0.009 

Pupil size 1 16 1.14 0.302 
     
Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Age 1 16 7.58 0.014 

Eye 1 16 2.43 0.139 
Order of Perimetry 1 16 4.51 0.050 

Order of Defocus 1 48 1.96 0.168 
Defocus 3 48 4.33 0.009 

Pupil size 1 16 1.27 0.276 
     
Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Age 1 16 8.18 0.011 

Eye 1 16 3.33 0.087 
Order of Perimetry 1 16 3.57 0.077 
Order of Defocus 1 48 1.96 0.168 
Defocus 3 48 4.33 0.009 

     

Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Age x Eye 1 16 0.48 0.500 
Age x Order of 

Perimetry 

1 16 1.13 0.303 

Age x Defocus 3 48 0.79 0.503 
Eye x Order of 

Perimetry 

1 16 4.26 0.056 

Eye x Defocus 3 48 0.51 0.676 
Order of Perimetry 

x Defocus 

3 48 2.49 0.080 

 
Table 6.23 The Analysis of Variance Summary Table for the PMSSAP/CMSSAP ratio. 
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Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Age 1 16 0.69 0.418 
Gender 1 16 0.55 0.469 
Eye 1 16 1.08 0.315 
Order of Perimetry 1 16 0.70 0.414 
Order of Defocus 1 48 0.99 0.323 
Defocus 3 48 1.16 0.333 
Pupil size 1 16 1.12 0.306 
     
Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Age 1 16 0.51 0.484 
Eye 1 16 1.01 0.330 
Order of Perimetry 1 16 0.58 0.457 
Order of Defocus 1 48 0.99 0.324 
Defocus 3 48 1.16 0.333 
Pupil size 1 16 0.92 0.353 
     
Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Eye 1 16 2.65 0.123 
Order of Perimetry 1 16 0.60 0.451 
Order of Defocus 1 48 0.99 0.324 
Defocus 3 48 1.16 0.333 
Pupil size 1 16 0.55 0.468 
     

Effect Degrees of Freedom 

Numerator 

Degrees of Freedom 

Denominator 

F value P value 

Eye 1 16 2.74 0.117 
Order of Perimetry 1 16 0.38 0.548 
Order of Defocus 1 48 0.99 0.324 
Defocus 3 48 1.16 0.333 
     
Effect Degrees of Freedom 

Numerator 
Degrees of Freedom 

Denominator 
F value P value 

Eye 1 16 2.61 0.126 
Order of Defocus 1 48 0.99 0.324 
Defocus 3 48 1.16 0.333 
     
Effect Degrees of Freedom 

Numerator 
Degrees of Freedom 

Denominator 
F value P value 

Eye 1 16 2.61 0.126 
Order of Defocus 1 48 0.93 0.341 
     
Effect Degrees of Freedom 

Numerator 
Degrees of Freedom 

Denominator 
F value P value 

Eye 1 16 2.61 0.126 
 

Table 6.24 The Analysis of Variance Summary Table for the PMSCFF/CMSCFF ratio. 
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6.10 The change in sensitivity with defocus 

The gradients of the overall group means for the MSSAP, MSCFF, MDSAP, and MDCFF with 

increase in defocus, are given in Table 6.25 for the 16 normal individuals.  

 

 
Perimetry MS dB 

 per dioptre 

MD dB 

per dioptre 

SAP gradient 

R² 

-0.9803 
0.9985 

0.982 
0.9976 

 MS Hz 

 per dioptre 

MD Hz 

per dioptre 

CFF gradient 

R² 

0.5149 
0.7712 

-0.5106 
0.7721 

 

Table 6.25 The gradients, and the corresponding value of the Coefficient of Determination 

(R²), of the decline in the group mean MSSAP, MSCFF, MDSAP, and MDCFF with increase in 

defocus, for the 16 normal individuals.   

 

 

 

The gradient for MSSAP was negative whilst that for MSCFF was positive. The gradients for 

MDSAP and MDCFF exhibited the reverse polarity, as would be expected. The gradients of the 

group mean MSSAP and MDSAP with increase in defocus were approximately unity. Those for 

CFF perimetry and were approximately 0.5Hz per dioptre.  

 

6.11 The change in sensitivity at each stimulus locations with defocus  

The gradients of the group mean MSSAP, and of the group mean MSCFF, with increase in defocus, 

at each stimulus location for the 16 normal individuals are given in Figure 6.8. The gradients of 

the group mean MSSAP tended to steepen with increase in eccentricity, particularly superiorly. 

The gradients of the group mean MSCFF  were approximately unity, centrally, and, in general, 

became less positive with increase in eccentricity. 
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Figure 6.8 The gradient of the group mean MSSAP (top) and the group mean MSCFF 

(bottom), as a function of increasing defocus, at each stimulus location for the 16 normal 

individuals. The lower value is the Coefficient of Determination (R²). The results are 

presented in right eye format. 
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6.12 Discussion 

The decline in the overall group mean MSSAP with increase in defocus was 0.98dB per dioptre. 

This figure is compatible with that of 1.3dB per dioptre (Weinreb and Perlman 1986) and 1.25dB 

per dioptre (Heuer et al 1987) but not with that of 2.5dB per dioptre (Lachenmayer and Gleissner 

1992). In the current study, the decline in MSSAP at each stimulus location tended to steepen with 

increase in eccentricity, particularly superiorly. This is contrary to that of Heuer and colleagues 

(1987) who found that the gradients at fixation, and at 5°, 10°, 15°, 20°, and 25° eccentricities 

along the nasal meridian, to be of similar magnitude.  

 
The overall group mean MSCFF increased with increase in defocus. A positive gradient was 

present at the majority of stimulus locations; however, the magnitude of the gradient, in general, 

declined with increase in eccentricity and became negative at the superior extremities of the 

central field.  The positive gradient is contrary to the findings of Lachenmayer and Gleissner 

(1992) who found that defocus of +9.00 only attenuated the 1° diameter stimulus by 0.5Hz.  

However, the presence of positive gradients beyond 10-15° eccentricity has been reported by 

Matsumoto et al (1997). 

 

The outcome of CFF perimetry is essentially dependent upon the Granit-Harper Law which 

states that sensitivity increases with increase in the logarithm of the stimulus area (Berger 1953; 

Kugelmass and Landis 1955; Roehrig 1959a; Roehrig 1959b) for stimulus areas up to 13.6° and 

eccentricities up to 50° (Brown 1945). The linearity of the Granit-Harper Law beyond 

eccentricities of 15° has been questioned (Hartmann, Lachenmayr and Brettel 1979). The Granit-

Harper Law is considered to be valid for defocused images (Roehrig 1959a).  
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The gradient of the increase in MSCFF with increase in defocus was approximately 0.5Hz per 

dioptre. The reason for the positive gradient for CFF perimetry with increase in defocus can be 

attributed to the increase in retinal image size of the blurred stimulus which increases with 

increase in defocus and is most profound for the +4.00DS defocus. A blur circle is formed on the 

retina when the image of an object is focused either in front of, or behind, the retina or when 

excessive aberrations are present in the optical system of the eye. The size of the blur circle at 

the fovea increases as a function of the distance of the image from the retina and as a function of 

pupil diameter. The diameter of the blur circle, α, can be expressed in angular terms (in min arc) 

as:  

α = 3.48 . ΧF . d 

 
where 3.48 is a constant,  ΧF is the defocus (in dioptres) with respect to the object point, and d 

the pupil diameter (in mm).  

 
 
In the current study, the equation for a defocus of +4.00DS and a pupil diameter of 4.0mm solves 

as: 

α = 3.48 . 4 . 4 = 55.68 min of arc 

 

which is equivalent to 0.93° and is slightly larger than the diameter of Goldmann size IV which 

is 0.86°. 

 

In addition, the retinal image is magnified by the defocus lens, itself (Pascal 1955). The vergence 

of the light prior to entering the eye, Lc, can be expressed as: 
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where L = the power of the defocusing lens (in this instance +4.00DS), d = distance of the 

defocusing lens from the eye and n = refractive index of air. Solving this equation: 

 

L

Lc
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1
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− 06.01
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94.0
4

= 4.25 

 
. 
 

and,  
'L

Lc
M =  

 
where, in this instance, L’ = the vergence of the light from the Goldmann stimulus. Solving this 

equation: 

    

066.0
17.64
25.4

==M
   

 
Thus, a +4.00DS defocusing lens leads to an additional 6.6% magnification of the Goldmann 

size III stimulus. The net result of the increases in the size of the perceived Goldmann size III is 

illustrated in Figure 6.9.   

 

The increase in the size of the Goldmann size III stimulus to that slightly larger than Goldmann 

size IV, for example, occurs in the presence of the same stimulus luminance and is applicable to 

both SAP and CFF perimetry. However, in the case of CFF, the flicker is present over the entire 

magnified stimulus and, as a consequence of the Granit-Harper Law, results in an increase in 

sensitivity.  

 

 



 384 

 

 

 
Figure 6.9 The Goldmann size III stimulus, as projected on the perimeter bowl of the 

Octopus 311, in the absence of defocus (top) and arising from a defocus of +4.00DS 

(bottom).  Note the corresponding increase in the size of the fixation cross with defocus. 

 

A comparison of the CFF stimulus generated by Goldmann size IV in the absence of defocus 

with that generated by Goldmann size III in the presence of +4.00DS would be of interest. 

However, the software of the Octopus 311 perimeter does not permit CFF perimetry to be 

undertaken with Goldmann size IV.    
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It can be speculated that the discrepancy between the positive gradient of the current study and 

the negative gradient of Lachenmayer and Gleisser (1992) can be explained, at least in part, on 

the basis of the difference in age of the individuals, and in the stimulus size, between the two 

studies and, therefore, the corresponding difference in the magnitude of sensitivity to the CFF 

stimulus. The mean age of the individuals generating the negative gradient in the study of 

Lachenmayer and Gleisser (1992) was 26.7 years (median 26.5, range 23 to 32 years). With the 

1° stimulus diameter, such young individuals exhibit close to the maximum sensitivity for CFF 

(i.e. saturation) before defocus and, therefore, do not manifest an increased CFF, via the Granit-

Harper Law, from the increase in stimulus area arising from the defocus. The mean age of the 

individuals generating the positive gradient in the current study was 66 years (SD 7.9, median 

67.0, IQR 12.75). With the 0.431° stimulus diameter, such older individuals exhibit a sensitivity 

in the region of 35Hz before defocus, compared to approximately 45Hz for those aged 25 years. 

Thus, the stimulus is not saturated for the older age group and these individuals exhibit an 

increase in CFF, via the Granit-Harper Law, from the increase in stimulus area arising from the 

defocus. The age of the case series used by Matsumoto et al (1997) was not stated in the 

publication.  

  

It is clear from the results illustrated in Figure 6.8 that the magnitude of the gradient of the local 

group mean MSCFF becomes less positive with increase in stimulus eccentricity. However, 

considerable between-stimulus variability is present within the dataset. Such variability could, 

perhaps, be overcome by the utilization of smaller and more numerous increments in defocus 

over a wider range of defocus. The validity of the Grant-Harper Law as a function of stimulus 

eccentricity would be an interesting area for future study.  
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In summary, the decline in the group mean MSSAP within increase in defocus, of approximately 

1.00dB per dioptre, was compatible with that of  previous estimates, 1.40dB per dioptre found by 

Heuer et al (1987).  The increase in the MSCFF and in the local MSCFF with increase in defocus 

was attributed to the Granit-Harper Law whereby CFF increases linearly with increase in 

stimulus area irrespective of defocus. From a clinical perspective, the utilization of the 

appropriate refractive correction is essential for CFF perimetry. 
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CHAPTER 7  

SUMMARY, CONCLUSIONS AND SUGGESTIONS FOR 

 FURTHER RESEARCH 

 
 

7.1 Results summary and conclusions 

Critical Flicker Fusion perimetry determines the highest flicker frequency that can be 

distinguished from a uniform steady stimulus. A number of studies have reported that CFF 

perimetry to be superior to that of SAP for the detection of glaucomatous visual field loss in that 

the technique identifies loss at an earlier stage and is resistant to image degradation arising from 

cataract (Lachenmayr et al 1991; Lachenmayr et al 1991; Lachenmayr and Drance 1992; 

Lachenmayr and Gleissner 1992; Lachenmayr, Drance and Airaksinen 1992b; Lachenmayr 

1994; Lachenmayr et al 1994; Matsumoto et al 2006).  

 

In this Thesis, four groups of individuals were investigated in three different studies. The normal 

individuals and the individuals with age-related cataract were naïve to SAP and to CFF 

perimetry.  The individuals with either OAG or OHT were experienced in SAP and naïve to CFF 

perimetry.     

 

 
The study of the learning effect for CFF perimetry was undertaken in 28 normal individuals, 10 

individuals with OHT and in 11 individuals with OAG. Each individual attended for 5 

examinations each separated by one week. The visual field indices MS, MD and DD for the 

normal individuals exhibited a sustained improvement over the first four visits. A learning effect 

was also present for the individuals with OHT and for the individuals with OAG. The greatest 

improvement for these individuals occurred between the two first visits after which they also 

exhibited a sustained improvement over the remaining three visits. The examination duration 
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became shorter over the five visits for all three groups and, in general, was shortest for the 

second (left) eye examined at any given examination. The ratio PMS/CMS was similar across the 

five examinations for each of the three groups.  

 

The magnitude of the improvement in the visual field over the five visits was modest for the 

normal individuals amounting to, for example an improvement of approximately 2.3Hz in the 

median MS across the two eyes. The corresponding improvement for the individuals with OHT 

and for the individuals with OAG was greater amounting to approximately 3.5Hz and 6.1Hz, 

respectively.  

 

The majority of the improvement in CFF perimetry for the individuals with OHT and for the 

individuals with OAG occurred between the first and second visits. This finding is compatible 

with that for SAP (Wood et al 1987b; Werner, Adelson and Krupin 1988; Heijl, Lindgren and 

Olsson 1989; Wild et al 1989; Autzen and Work 1990; Kulze, Stewart and Sutherland 1990; 

Marchini, Pisano and Bertagnin 1991; Searle et al 1991; Wild et al 1991; Heijl and Bengtsson 

1996), for FDT (Matsuo et al 2002; Contestabile et al 2007; Hong et al 2007; Centofanti et al 

2008; Pierre-Filho et al 2010) and for SWAP (Wild, Moss and O'Neill 1996; Rossetti et al 2006; 

Gardiner, Demirel and Johnson 2008; Zhong et al 2008; Fogagnolo et al 2010). However, the 

continued improvement for CFF over the remaining three visits is not conducive to the 

implementation of the technique into clinical practice. The lack of an improvement in the 

PMS/CMS is contrary to that for SAP (Wood et al 1987b; Heijl, Lindgren and Olsson 1989; 

Wild et al 1989; Werner et al 1990; Searle et al 1991; Heijl and Bengtsson 1996) and indicates 

an improvement in the height, only, of the visual field for CFF perimetry.  

 



 389 

The magnitudes of each of the indices were generally worse for the TOP algorithm at Visit Five 

compared to those of the Dynamic algorithm at Visit Six and the defect depth expressed, in terms 

of Comparison Probability values, also yielded a statistically deeper defect depth for the TOP 

algorithm, particularly in OAG. These findings would pose a problem in the interpretation of a 

series of visual fields if a mixture of the two algorithms were to be used. The reason for the 

difference in magnitude of the indices undoubtedly lies in the difference between the two 

algorithms in determining the threshold estimate including the cut-off by the TOP algorithm for 

CFF at a sensitivity of 9/8 above the age-corrected normal value above (i.e. a higher sensitivity). 

However, it could be expected that the values for the indices such as the MD, which reference 

the result for any given algorithm to that of the corresponding age-corrected normal field, to be 

similar between the TOP and Dynamic algorithms compared to those of the Dynamic algorithm.  

The difference in terms of the Comparison Probability values between the two algorithms can be 

explained by the narrower confidence limits for the TOP algorithm in CFF perimetry. 

Interestingly, the Dynamic Strategy for SAP, undertaken prior to enrolment, on the 11 

individuals with OAG yielded a greater abnormality by Comparison Probability analysis 

compared to the Dynamic Strategy for CFF at Visit Six. Thus, it would appear that the 

confidence limits for normality are narrower for SAP than for CFF and that, within CFF, the 

confidence limits are narrower for the TOP algorithm compared to the Dynamic Strategy 

algorithm. Thus, in addition to the clinically unacceptable long time course of the learning effect 

for CFF perimetry in individuals experienced in SAP and with either OHT or OAG, the wider 

confidence limits for CFF compared to SAP provides further evidence for the lack of clinical 

plausibility of the technique. 

 

The study of the influence of age-related cataract on the CFF perimetry, undertaken on 22 

individuals naïve to any form of perimetry, used an experimental protocol which was intended to 
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minimize the influence of any potential learning effect for CFF and included a comparison with 

that of SAP.  

 

The learning effect for SAP expressed in the proportionate change in the median, was 5% and 

6% for the fields of the right and left eyes, respectively. The corresponding improvement in the 

field of the right eye for CFF was 6.7%; no improvement was present in the field of the left eye 

(the second eye examined) and, since the median MS was consistently lower than that for the 

field of the right eye, the absence of such an effect may have arisen from the fatigue effect.  

 

No evidence was present, in terms of the results of the Comparison probability analysis, to 

suggest that CFF perimetry recorded with the TOP algorithm was more resistant to image 

degradation than SAP. Little relationship was present between the MD and low and high contrast 

visual acuity determined either in the presence, or in the absence of, disability glare. The lack of 

an unequivocal outcome is likely to have arisen from the lack of individuals with severe cataract 

in the case series. The clinical utility of CFF perimetry in this regard requires further study with 

respect to the influence of severe age-related cataract. However, it could be argued that, in the 

healthcare operative in the developed world where surgery for the extraction of early cataract is 

widely available, the utility of CFF perimetry is minimal since it does not offer any advantage 

over SAP in the presence of mild cataract and, seemingly in the context of the current study, in 

the evaluation of glaucomatous field loss. 

 

The study of the influence of optical defocus on CFF perimetry was undertaken on 16 of the 

normal individuals who had taken part in the study of the learning effect described in Chapter 4. 

A comparison was made with the outcome for that for SAP. It was assumed that these 

individuals were experienced in CFF perimetry and, having undergone SAP at two previous 
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visits as part of the protocols for the studies described in Chapters 4 and 6, were also reasonably 

experienced in SAP. The group mean MS for SAP, MSSAP, exhibited a linear decline with 

increase in defocus of approximately 1.00dB per dioptre. The slope was compatible with that of 

a previous estimate for SAP of 1.25dB per dioptre (Heuer et al 1987).  The corresponding 

function for CFF increased linearly by 0.52Hz per dioptre of defocus. The increase in the global 

and in the local MSCFF with increase in defocus was attributed to the Granit-Harper Law. This 

law states that CFF increases linearly with increase in stimulus area (regardless of whether the 

increase in size results from defocus). Since the outcome of any form of perimetry is dependent 

upon a comparison of the measured result with that of the age-corrected normal result, the 

utilization of the appropriate refractive correction would appear to be particularly necessary for 

CFF perimetry. 

 

The compilation of the individuals for the studies described in Chapters 4 and 5 were based 

upon the number needed (n=27) to detect, with 95% power, a difference in the MD for SAP of 

3.00dB. The difficulty in, and lack of, recruitment of sufficient individuals with either OHT or 

OAG limited the inferences from some outcomes which could have potentially been attributable 

to differences between diagnostic groups. However, as the general trends were so strong in most 

cases, the numbers of individuals were clearly sufficient for these purposes. 

 

Due to the diversity of the between-individual variation in the magnitude of the perimetric 

learning effect for SAP and for SWAP, the results from Chapters 4 and 5 were analyzed using 

an in-depth approach involving various levels of sophistication which concentrated both on the 

summary statistics for the given group, as a whole, and on the performance of the given 

individual. For the identification of an individual’s performance, the most useful would appear 

to be those of the absolute and proportionate change in performance between Visit One and 
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Visit Two plotted against that between Visits Two and Five. This approach enabled a rapid 

appreciation of the extent to which the majority of the expected learning effect (i.e., between 

Visits One and Two) should have occurred.  It also enabled a rapid appreciation of the 

magnitude of the remaining improvement in sensitivity over the remaining visits. Equally, the 

approach immediately identifies those individuals who exhibit a decline in performance. For the 

identification of the performance of the group, as a whole, the most useful would appear to be 

that of the summary statistic of MS. A comparison of the Comparison probability values at each 

stimulus location between the appropriate visits and displayed as a contingency table is also of 

benefit. 

 

The study of the learning effect for CFF perimetry could have been undertaken for SAP, as a 

control. However, such a study would have required an unrealistic examination time per visit. It 

was felt that knowledge of the between-eye learning effect for CFF perimetry was more useful 

than that, which could have been obtained within the same time constraints, namely the 

difference in the learning effect, for one eye, between CFF perimetry and SAP.  

 

A necessary feature for any kind of novel perimetric technique is the requirement for minimal 

short- and long-term variability of the threshold estimate. Both measures require a second 

threshold estimate at fixed locations within the given examination. The option for a second 

estimate of threshold at a given location is not available for either the TOP or the Dynamic 

Strategy algorithms using CFF perimetry with the Octopus 300 series perimeters. Nevertheless, 

a study both of the short- and long-term fluctuation for CFF perimetry would be of academic, if 

not clinical, interest. 
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The relation between defocus of the CFF stimulus and the Granit-Harper Law could be further 

investigated to establish the range of linearity by the use of additional optical defocus of 

+6.00DS and +9.00DS. A useful control would require a change in software of the Octopus 311 

perimeter which would permit the use of Goldmann size IV as well as the available Goldmann 

III and V. This would enable a comparison of the slope of CFF against the area of the variously 

defocused size III stimulus with that of the CFF against the actual (i.e. non-defocused) 

Goldmann III, IV and V area. Little is known about the age-dependency of the Granit-Harper 

Law and this should also be investigated. 

 

CFF perimetry is a difficult task for the ‘typical’ patient. It is possible that an increase in the 

stimulus duration from the default of 1000msec to 1500msec or even 2000msec might render the 

judgement of flicker easier and thereby reduce both the requirement for a learning period and 

also the inherent variability associated with the threshold estimate. Eye tracking technology 

could be used to negate the influence of eye movements on the outcome of the examination. It is 

also possible that the task could be made easier for the patient by the use of Goldmann size V 

rather than the default size III. The variability of response might also be improved by a real-time 

feedback to the patient throughout the examination concerning the number of incorrect responses 

to the false-positive and false-negative catch trials.  

 

The major strengths of the study were the robust control over the exacting schedule of a weekly 

separation of visits within each of the three studies, the consistency of the same perimetrist (the 

author) for all 1146 visual field examinations and of the same instruction for each individual.  

To the author’s knowledge, it remains the most extensive study of fully automated CFF 

perimetry within the age range representative of those attending secondary and tertiary eye care.  
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7.2 Conclusion 

CFF perimetry is unlikely to become the technique of choice for perimetry. Such a conclusion is 

based upon the finding that the outcome of CFF perimetry in individuals with either OHT or 

OAG, and experienced in SAP, requires in the region of four visits to overcome the perimetric 

learning effect. It is also based upon the fact that the advantage claimed for CFF perimetry in 

regard to the earlier detection of glaucomatous field loss compared to SAP was not found in the 

limited case series studies in this Thesis. Similarly, the apparent resistance to image degradation 

of the CFF stimulus compared to that of SAP was not present within the case series exhibiting 

mild cataract. The CFF stimulus was also not resistant to optical defocus. 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



 395 

APPENDIX: A.1 ABSTRACTS 

 

 

Luraas K, Wild JM (2007). Where Is the Learning Effect for CFF Perimetry in Normal 
Individuals? ARVO. E-5897  
 

 

Luraas K, Wild JM (2009). Is CFF Perimetry Affected by Cataract? ARVO. E-2011 
 
 
Luraas K, Uchermann B, Wild JM (2010). Is CFF Perimetry Affected by Optical Defocus? 
ARVO. E-1821 
 
 

 

APPENDIX: A.2 LECTURES 

 

 

Luraas K (2007). Aspekter ved Standard Automatisert Perimetri (SAP), „Klinisk verdi i 
optometrisk praksis“. Meeting of the locale group of ophthalmologists and optometrists. 
Haugesund, Norway.    
 

 

Luraas K (2008). Is there a learning effect in CFF perimetry? Octopus symposium. October 29- 
November 1, 2008, Berne, Switzerland.  
 

 

Luraas K (2009). Is CFF Perimetry Affected by the Learning Effect?, Kongsberg Vision 

Meeting Kongsberg, Norway. 
 

 

Luraas K (2010). The comparative performance of standard automated perimetry and critical 
flicker frequency perimetry in individuals with cataract. Imaging and Perimetry Society, March 
23-26, 2010, Puerto de La Cruz, Tenerife. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 



 396 

ENCLOSURES 

 
1 Comments to the project from the Norwegian Ethical Committee (REK Sør, 20.12.05). 

 
2 Approval to the project from  the Norwegian Ethical Committee (REK Sør, 11.01.06). 

 
3 Approval to alteration to the project from the Norwegian Ethical Committee (REK Sør, 

20.11.06). 
 

4 Approval to alteration to the project from the Norwegian Ethical Committee (REK Sør, 
12.07.07). 

 
5 Approval in regards to keeping personal information from the Norwegian Datatilsynet 

(03.03.06). 
 
 
 



 397 

 
 
 
 
 
 
 



 398 

 
 
 
 
 
 
 



 399 

 
 
 
 
 
 
 



 400 

 
 
 
 
 
 
 



 401 

 
 
 
 
 
 
 



 402 

REFERENCES 
 
 
Adams AJ, Heron G and Husted R. Clinical measures of central vision function in glaucoma and 
ocular hypertension. Archives of Ophthalmology 1987;105:782-787. 
 
Akarsu C, Yazici B, Taner P and Ergin A. Effects of moderate smoking on the central visual 
field. Acta Ophthalmogica 2004;82:432-435. 
 
Allen F. Effect upon the persistence of vision of exposing the eye to light of various 
wavelengths. Physical Review 1900;11:257-290. 
 
Allen F. The persistence of vision. American Journal of Physiological Optics 1926;7:439-457. 
 
Anderson AJ and McKendrick A. Quantifying adaptation and fatigue effects in Frequency 
Doubling perimetry. Investigative Ophthalmology and Visual Science 2007;48:943-948. 
 
Anderson AJ. Spatial resolution of the Tendency-Oriented Perimetry algorithm. Investigative 

Ophthalmology and Visual Science 2003;44:1962-1968. 
 
Anderson AJ and Johnson CA. Frequency-Doubling Technology perimetry and optical defocus. 
Investigative Ophthalmology and Visual Science 2003;44:4147-4152. 
 
Anderson AJ and Johnson CA. Comparison of the ASA, MOBS, and ZEST threshold methods. 
Vision Research 2006;46:2403-2411. 
 
Anderson AJ, Johnson CA, Fingeret M, Keltner JL, Spry PG, Wall M and Werner JS. 
Characteristics of the normative database for the Humphrey Matrix perimeter Investigative 

Ophthalmology and Visual Science 2005;46:1540-1548. 
 
Anderson AJ and Vingrys AJ. Interactions between flicker thresholds and luminance pedestals. 
Vision Research 2000;40:2579-2588. 
 
Anderson AJ and Vingrys AJ. Effect of eccentricity on luminance-pedestal flicker thresholds. 
Vision Research 2002;42:1149-1156.  
 
Anderson C, Blaha GR and Marx JL. Humphrey visual field findings in hydroxychloroquine 
toxicity. Eye 2011;25:1535-1345. 
 
Anderson DR and Patella VM. Automated Static Perimetry. St. Louis, MI: Mosby; 1999.  

Anderson RS. The psychophysics of glaucoma: improving the structure/ function relationship. 
Progress in Retinal and Eye Research 2006;25:79-97. 
 
Anderson RS, Ennis F and McDowell DR. Detection and resolution thresholds in the fovea and 
periphery for high-pass tumbling E's. In: Wall M, Wild JM, eds. Perimetry Update 1998/1999 
Amsterdam, The Netherlands: Kugler Publications; 1999. 177-178. 
 
Anderson RS and O'Brien C. Psychophysical evidence for a selective loss of M ganglion cells in 
glaucoma. Vision Research 1997;37:1079-1083. 



 403 

Anderson RS, Redmond T, McDowell DR, Breslin KM and Zlatkova MB. The robustness of 
various forms of perimetry to different levels of induced intraocular stray light. Investigative 

Ophthalmology and Visual Science 2009;50:4022-4028. 
 
Ang GS, Shunmugam M and Azuara-Blanco A. Effect of cataract extraction on the glaucoma 
progression index (GPI) in glaucoma patients. Journal of Glaucoma 2010;19:275-278. 
 
Aoki Y, Takahashi G and Kitahara K. Comparison of Swedish Interactive Threshold Algorithm 
and Full Threshold algorithm for glaucomatous visual field loss. European Journal of 

Ophthalmology 2007;17:196-202. 
 
Armaly MF. Visual field defects in early open angle glaucoma. Transactions of the American 

Ophthalmological Society 1971;69:147-162. 
 
Artes PH and Chauhan BC. Longitudinal changes in the visual field and optic disc in glaucoma. 
Progress in Retinal and Eye Research 2005;24:333-354. 
 
Artes PH, Henson DB, Harper R and McLeod D. Multisampling suprathreshold perimetry: a 
comparison with conventional suprathreshold and Full Threshold strategies by computer 
simulation. Investigative Ophthalmology and Visual Science 2003;44:2582-2587. 
 
Artes PH, Hutchison DM, Nicolela MT, LeBlanc RP and Chauhan BC. Threshold and variability 
properties of Matrix Frequency-Doubling Technology and standard automated perimetry in 
glaucoma. Investigative Ophthalmology and Visual Science 2005;46:2451-2457. 
 
Artes PH, Iwase A, Ohno Y, Kitazawa Y and Chauhan BC. Propertes of perimetric threshold 
estimates from Full Threshold, SITA Standard and SITA Fast strategies. Investigative 

Ophthalmology and Visual Science 2002;43:2654-2659. 
 
Artes PH, Nicolela MT, McCormick TA, LeBlanc RP and Chauhan BC. Effects of blur and 
repeated testing on sensitivity estimates with Frequency Doubling Perimetry. Investigative 

Ophthalmology and Visual Science 2003;44:646-652. 
 
Artes PH, O'Leary N, Hutchison DM, Heckler L, Sharpe GP, Nicolela MT and Chauhan BC. 
Properties of the Statpac visual field index. Investigative Ophthalmology and Visual Science 
2011;8:4030-4038. 
 
Arvind H, George R, Baskaran M, Raju P, Ramesh SV, Paul PG and Vijaya L. Effect of cataract 
surgery with intraocular lens implant on Frequency Doubling Perimetry. Current Eye Research 
2005;30:123-128. 
 
Asman P, Britt JM, Mills RP and Heijl A. Evaluation of adaptive spatial enhancement in 
suprathreshold visual field screening. Ophthalmology 1988;95:1656-1662. 
 
Asman P, Fingeret M, Robin A, Wild JM, Pacey IE, Greenfield D, Liebmann J and Ritch R. 
Kinetic and static fixation methods in automated threshold perimetry. Journal of Glaucoma 
1999;8:290-296. 
 
Asman P and Heijl A. Glaucoma Hemifield Test, automated visual field evaluation. Archives of 

Ophthalmology 1992a;110:812-819. 



 404 

Asman P and Heijl A. Weighting according to location in computer-assisted glaucoma visual 
field analysis. Acta ophthalmologica 1992b;70:671-678. 
 
Asman P and Heijl A. Diffuse visual field loss and glaucoma. Acta Ophthalmologica 
1994;72:303-308. 
 
Asman P and Olsson J. Physiology of cumulative defect curves; consequences in glaucoma 
perimetry. Acta Ophthalmologica Scandinavica 1995;73:197-201. 
 
Asman P, Wild JM and Heijl A. Appearance of the Pattern Deviation map as a function of 
change in area of localized field loss. Investigative Ophthalmology and Visual Science 
2004;45:3099-3106. 
 
Atchison DA. Effect of defocus on visual field measurement. Ophthalmic and Physiological 

Optics 1987;7:259-265. 
 
Aulhorn E and Harms H. Handbook of Sensory Physiology. Vol. VII: Springer-Verlag, Berlin, 
1972; 102-145. 
 
Autzen T and Work K. The effect of learning and age on short-term fluctuation and mean 
sensitivity of automated static perimetry. Acta Ophthalmologica 1990;68:327-330. 
 
Baez KA, McNaught AI, Dowler JG, Poinoosawmy D, Fitzke FW and Hitchings RA. Motion 
detection threshold and field progression in normal tension glaucoma. British Journal of 

Ophthalmology 1995;79:125-128. 
 
Balazsi AG, Rootman J, Drance SM, Schulzer M and Douglas GR. The effect of age on the 
nerve fiber population of the human optic nerve. American Journal of Ophthalmology 
1984;97:760-766. 
 
Ballon BJ, Echelman DA, Shields MB and Ollie AR. Peripheral visual field testing in glaucoma 
by automated kinetic perimetry with the Humphrey Field Analyzer. Archives of Ophthalmology 
1992;110:1730-1732. 
 
Baraldi P, Enoch JM and Raphael S. A Comparison of visual impairment caused by nuclear 
(NC) and posterior subcapsular (PSC) cataracts. In Greve EL and Heijl A eds Proceedings of the 
Seventh International Visual Field Symposium, Amsterdam, September 1986. Documenta 
Ophthalmologica Proceedings Series. The Hague, The Netherlands: Martinus Nijhoff/ Dr W 
Junk Publishers; Documenta Ophthalmologica Proceedings Series, 1987; 49:363-366. 
 
Barlow HB. Temporal and spatial summation in human vision at different background 
intensities. Journal of Physiology 1958;141:337-350. 
 
Baumgardt E. Visual spatial and temporal summation. Nature 1959;184:1951-1952. 
 
Bebie H, Fankhauser F and Spahr J. Static perimetry: Strategies. Acta Ophthalmologica 
1976;54:325-338. 
 



 405 

Bebie H, Flammer J and Bebie T. The Cumulative Defect curve: separation of local and diffuse 
components of visual field damage. Graefe's Archive of Clinical and Experimental 

Ophthalmology 1989;227:9-12. 
 
Beerthuizen JJ, Franssen L, Landesz M and van den Berg TJ. Straylight values 1 month after 
laser in situ keratomileusis and photorefractive keratectomy. Journal of Cataract and Refractive 

Surgery 2007;33:779-783. 
 
Bek T and Lund-Andersen H. The influence of stimulus size on perimetric detection of small 
scotoma. Graefe's Archive of Clinical and Experimental Ophthalmology 1989;227:531-534. 
 
Bengtsson B. Reliability of computerized perimetric threshold tests as assessed by reliability 
indices and threshold reproducibility in patients with suspect and manifest glaucoma. Acta 

Ophthalmolgica Scandinavica 2000;78:519-522. 
 
Bengtsson B and Heijl A. SITA Fast, a new rapid perimetric threshold test. Description of 
methods and evaluation in patients with manifest and suspect glaucoma. Acta Ophthalmologica 

Scandinavica 1998a;76:431-437. 
 
Bengtsson B and Heijl A. Evaluation of a new perimetric threshold strategy SITA, in patients 
with manifest and suspect glaucoma. Acta Ophthalmolgica Scandinavica 1998b;76:268-272. 
 
Bengtsson B and Heijl A. False-negative responses in glaucoma perimetry: indicators of patient 
performance or test reliability. Investigative Ophthalmology and Visual Science 2000;41:2201-
2204. 
 
Bengtsson B and Heijl A. Normal inter-subject threshold variability and normal limits of the 
SITA SWAP and Full Threshold SWAP perimetric programs. Investigative Ophthalmology and 

Visual Science 2003;44. 
 
Bengtsson B and Heijl A. Diagnostic sensitivity of fast blue-yellow and standard automated 
perimetry in early glaucoma: a comparison between different test programs. Ophthalmology 
2006;113:1092-1097. 
 
Bengtsson B and Heijl A. A visual field index for calculation of glaucoma rate of progression. 
American Journal of Ophthalmology 2008;145:343-353. 
 
Bengtsson B, Heijl A and Olsson J. Evaluation of a new threshold visual field strategy, SITA, in 
normal subjects. Acta Ophthalmologica Scandinavica 1998;76:165-169. 
 
Bengtsson B, Lindgren A, Heijl A, Lindgren G and Asman P. Perimetric probability maps to 
separate change caused by glaucoma from that by cataract. Acta Ophthalmologica Scandinavica 
1997;75:184-188. 
 
Bengtsson B, Olsson J, Heijl A and Rootzen H. A new generation of algorithms for 
computerized threshold perimetry SITA. Acta Ophthalmologica Scandinavica 1997;75:368-375. 
 
Berger C. Area of retinal image and flicker fusion frequency. Acta Physiology Scandinavica 
1953;28:224-233. 
 



 406 

Berger C. Illumination of surrounding field and flicker fusion frequency with foveal images of 
different sizes. Acta Physiology Scandinavica 1954;30:161-170. 
 
Bergin C, Redmond T, Nathwani N, Verdon-Roe GM, Crabb DP, Anderson RS and Garway-
Heath DF. The effect of induced intraocular straylight on perimetric tests. Investigative 

Ophthalmology and Visual Science 2011;52:3676-3682. 
 
Bernardi L, Costa VP and Shiroma LO. Flicker perimetry in healthy subjects: influence of age 
and gender, learning effect and short-term fluctuation. Arquivos Brasileiros de Oftalmologia 
2007;70:91-99. 
 
Bettelheim FA and Ali S. Light scattering of normal human lens. III. Relationship between 
forward and back scatter of whole excised lenses. Experimental Eye Research 1985;41:1-9. 
 
Bettelheim FA and Chylack LT. Light scattering of whole excised human cataractous lenses. 
Relationships between different light scattering parameters. Experimental Eye Research 
1985;41:19-30. 
 
Bickler-Bluth M, Trick GL, Kolker AE and Cooper DG. Assessing the utility of reliability 
indices for automated visual fields. Ophthalmology 1989;96:616-619. 
 
Bigger JF and Becker B. Cataracts and open angle glaucoma. American Journal of 

Ophthalmology 1971;71:335-340. 
 
Bland JM and Altman DG. Statistical methods for assessing agreement between two methods of 
clinical measurement. Lancet 1986;8:307-310. 
 
Bland JM and Altman DG. Measuring agreement in method comparison studies. Statistical 

Methods in Medical Research 1999;8:135-160. 
 
Bloch A. Expèriences sur la vision. Paris. Société de Biologie Mémoires 1885;37:493-495. 
 
Blum FG, Gates LK and James BR. How important are peripheral fields? Archives of 

Ophthalmology 1959;61:1-8. 
 
Blumenthal EZ, Sample PA, Berry CC, Lee AC, Girkin CA, Zangwill L, Caprioli J and Weinreb 
RN. Evaluating several sources of variability for standard and SWAP visual fields in glaucoma 
patients, suspects, and normals. Ophthalmology 2003;110:1895-1902. 
 
Blumenthal EZ, Sample PA, Zangwill L, Lee AC, Kono Y and Weinreb RN. Comparison of 
long-term variability for standard and short-wavelength automated perimetry in stable glaucoma 
patients. American Journal of Ophthalmology 2000;129:309-313. 
 
Boeglin RJ, Caprioli J and Zulauf M. Long-term fluctuation of the visual field in glaucoma. 
American Journal of Ophthalmology 1992;113:396-400. 
 
Bosworth CF, Sample PA, Gupta N, Bathija R and Weinreb RN. Motion automated perimetry 
identifies early glaucomatous field defects. Archives of Ophthalmology 1998;116:1153-1158. 
 



 407 

Bowd C, Zangwill LM, Berry CC, Blumenthal EZ, Vasile C, Sanchez-Galeana C, Bosworth CF, 
Sample PA and Weinreb RN. Detecting early glaucoma by assessment of retinal nerve fiber 
layer thickness and visual function. Investigative Ophthalmology and Visual Science 
2001;42:1993-2003. 
 
Bozkurt B, Ylmaz PT and Irkec M. Relationship between Humphrey 30-2 SITA Standard test, 
Matrix 30-2 threshold test, and Heidelberg Retina Tomograph in ocular hypertensive and 
glaucoma patients. Journal of Glaucoma 2008;17:203-210. 
 
Brechner RJ and Whalen WR. Creation of the transformed Q statistic probability distribution to 
aid in the detection of abnormal computerized visual fields. Ophthalmic Surgery 1984;15:833-
836. 
 
Brenton RS and Argus WA. Fluctuations on the Humphrey and Octopus perimeters. 
Investigative Ophthalmology and Visual Science 1987;28:767-771. 
 
Brenton RS and Phelps CD. The normal visual field on the Humphrey Field Analyzer. 
Ophthalmologica 1986;193:56-74. 
 
Britt JM and Mills RP. The black hole effect in perimetry. Investigative Ophthalmology and 

Visual Science 1988;29:795-801. 
 
Brooke RT. The variation of critical fusion frequency with brightness of various retinal 
locations. Journal of the Optical Society of America 1951;41:1010-1016. 
 
Brown HC. The relationship of flicker to stimulus area in peripheral vision. Archives of 

Psychology 1945;41:1-61. 
 
Brown NA. The morphology of cataract and visual performance. Eye 1993;7:63-67. 
 
Brusini P, Salvetat ML, Parisi L and Zeppieri M. Probing glaucoma visual damage by Rarebit 
perimetry. British Journal of Ophthalmology 2005;89:180-184. 
 
Brusini P, Salvetat ML, Zeppieri M and Parisi L. Frequency Doubling Technology perimetry 
with the Humphrey Matrix 30-2 test. Journal of Glaucoma 2006;15:77-84. 
 
Budenz DL, Feuer WJ and Anderson DR. The effect of simulated cataract on the glaucomatous 
visual field. Ophthalmology 1993;100:511-517. 
 
Budenz DL, Rhee P, Feuer WJ, McSoley J, Johnson CA and Anderson DR. Sensitivity and 
specificity of the Swedish Interactive Threshold Algorithm for glaucomatous visual field defects. 
Ophthalmology 2002;109:1052-1058. 
 
Buerki E and Monhart M. An update to Octopus perimetry. European Ophthalmic Review 
2007;12:20-22. 
 
Burgansky-Eliash Z, Wollstein G, Patel A, Bilonick RA, Ishikawa H, Kagemann L, Dilworth 
WD and Schuman JS. Glaucoma detection with Matrix and standard achromatic perimetry. 
British Journal of Ophthalmology 2007;91:933-938. 
 



 408 

Burk ROW and Rendon R. Clinical detection of optic nerve damage: measuring changes in cup 
steepness with use of a new image alignment algorithm. Survey of Ophthalmology 2001;45:297-
303. 
 
Calkins DJ. Seeing with S cones. Progress in Retinal and Eye Research 2001;20:255-287. 
 
Campbell FW and Green DG. Optical and retinal factors affecting visual resolution. Journal of 

Physiology 1965;181:576-593. 
 
Caprioli J and Spaeth GL. Static threshold examination of the peripheral nasal visual field in 
glaucoma. Archives of Ophthalmology 1985;103:1150-1154. 
 
Capris P, Autuori S, Capris E and Papadia M. Evaluation of threshold estimation and learning 
effect of two perimetric strategies, SITA Fast and CLIP, in damaged visual fields. European 

Journal of Ophthalmology 2008;18:182-190. 
 
Carrillo MM, Artes PH, Nicolela MT, LeBlanc RP and Chauhan BC. Effect of cataract 
extraction on the visual fields of patients with glaucoma. Archives of Ophthalmology 
2005;123:929-932. 
 
Cascairo MA, Stewart WC and Sutherland SE. Influence of missed catch trials on the visual field 
in normal subjects. Graefe's Archive for Clinical and Experimental Ophthalmology 
1991;229:437-441. 
 
Casson EJ and Johnson CA. Temporal modulation perimetry in glaucoma and ocular 
hypetension. In: Mills R, ed. Perimetry Update, 1992/1993. Amsterdam, The Netherlands: 
Kugler Publications; 1993. 443-450. 
 
Casson EJ, Johnson CA and Nelson-Quigg JM. Temporal modulation perimetry: the effects of 
aging and eccentricity on sensitivity in normals. Investigative Ophthalmology and Visual Science 
1993;34:3096-3102. 
 
Casson EJ, Johnson CA and Shapiro LR. Longitudinal comparison of temporal-modulation 
perimetry with white-on-white and blue-on-yellow perimetry in ocular hypertension and early 
glaucoma. Journal of the Optical Society of America 1993;10:1792-1806. 
 
Casson RJ and James B. Effect of cataract on Frequency Doubling perimetry in the screening 
mode. Journal of Glaucoma 2006;15:23-25. 
 
Casson RJ, James B, Rubinstein A and Ali H. Clinical comparison of Frequency Doubling 
Technology perimetry and Humphrey perimetry. British Journal of Ophthalmology 
2000;85:360-362. 
 
Castro DP, Kawase J and Melo LAJ. Learning effect of standard automated perimetry in healthy 
individuals. Arquivos Brasileiros de Oftalmologia 2008;71:523-528. 
 
Celebisoy N, Oztürk T and Köse T. Rarebit perimetry in the evaluation of visual field defects in 
idiopathic intracranial hypertension. European Journal of Ophthalmology 2010;20:756-762. 
 



 409 

Cello KE, Nelson-Quigg JM and Johnson CA. Frequency Doubling Technology perimetry for 
detection of glaucomatous visual field loss. American Journal of Ophthalmology 2000;129:314-
322. 
 
Centofanti M, Fogagnolo P, Oddone F, Orzalesi N, Vetrugno M, Manni G and Rossetti L. 
Learning effect of Humphrey Matrix Frequency Doubling Technology perimetry in patients with 
ocular hypertension. Journal of Glaucoma 2008;17:436-441. 
 
Chaturvedi N, Hedley-Whyte ET and Dreyer EB. Lateral geniculate nucleus in glaucoma. 
American Journal of Ophthalmology 1993;116:182-188. 
 
Chauhan BC, Drance SM and Douglas GR. The use of visual field indices in detecting changes 
in the visual field in glaucoma. Investigative Ophthalmology and Visual Science 1990;31:512-
520. 
 
Chauhan BC, Drance SM and Lai C. A cluster analysis for threshold perimetry. Graefe's Archive 

for Clinical and Experimental Ophthalmology 1989;227:216-220. 
 
Chauhan BC, Henson DB and Hobley AJ. Cluster analysis in visual field quantification. 
Documenta Ophthalmologica 1988;69:25-39 
 
Chauhan BC, House PH, McCormick TA and LeBlanc RP. Comparison of conventional and 
High-pass Resolution perimetry in a prospective study of patients with glaucoma and healthy 
controls. Archives of Ophthalmology 1999;117:24-33. 
 
Chauhan BC, LeBlanc RP, McCormick TA and Rogers JB. Comparison of High-pass Resolution 
perimetry and Pattern Discrimination perimetry to conventional perimetry in glaucoma. 
Canadian Journal of Ophthalmology 1993;28:306-311. 
 
Chauhan BC, LeBlanc RP, Shaw AM, Chan AB and McCormick TA. Repeatable diffuse visual 
field loss in open-angle glaucoma. Ophthalmology 1997;104:532-538. 
 
Chauhan BC, Tompkins JD, Le Blanc RP and McCormick TA. Characteristics of Frequency-of-
seeing curves in normal subjects, patients with suspected glaucoma and patients with glaucoma. 
Investigative Ophthalmology and Visual Science 1993;34:3534-3540. 
 
Chen PP and Budenz DL. The effects of cataract extraction on the visual field of eyes with 
chronic open-angle glaucoma. American Journal of Ophthalmology 1998;125:325-333. 
 
Chin CF, Yip LW, Sim DC and Yeo AC. Rarebit perimetry: normative values and test-retest 
variability. Clinical and Experimental Ophthalmology 2011;39:752-759. 
 
Choplin N and Edwards R. Visual Fields. Thorofare, NJ: Slack; 1998.  

Choplin N, Sherwood M and Spaeth G. The effect of stimulus size on the measured threshold 
values in automated perimetry. Ophthalmology 1990;97:371-374. 
 
Chylack LT, Wolfe JK, Singer DM and Leske C. The Lens Opacities Classification System III. 
Archives of Ophthalmology 1993;111:831-836. 
 



 410 

Cinotti AA. Evaluation of indications for cataract surgery. Ophthalmic Surgery 1979;10:25-31. 
Contestabile MT, Perdicchi A, Amodeo S, Recupero V and Recupero SM. The influence of 
learning effect on Frequency Doubling Technology perimetry (Matrix). Journal of Glaucoma 
2007;16:297-301. 
 
Coops A and Henson DB. A new reliability index for threshold visual field tests utilizing a 
filtering technique. Investigative Ophthalmology and Visual Science, 2005; E-Abstract 3736. 
 
Corallo G, Iester M, Scotto R, Calabria G and Traverso CE. Rarebit perimetry and Frequency 
Doubling Technology in patients with ocular hypertension. European Journal of Ophthalmology 
2008;18:2005-2211. 
 
Croswell HH, Stewart WC, Cascairo MA and Hunt HH. The effect of background intensity on 
the components of fluctuation as determined by threshold-related automated perimetry. Graefe's 

Archive for Clinical and Experimental Ophthalmology 1991;229:119-122. 
 
Curcio CA, Allen KA, Sloan KR, Lerea CL, Hurley JB, Klock IB and Milam AH. Distribution 
and morphology of human cone photoreceptors stained with anti-blue opsin. Journal of 

Comparative Neurology 1991;312:610-624. 
 
Dacey DM. Morphology of a small-field bistratified ganglion cell type in the macaque and 
human retina. Visual Neuroscience 1993;10:1081-1098. 
 
Dacey DM. The mosaic of midget ganglion cells in the human retina. Journal of Neuroscience 
1993;13:5334-5355. 
 
Dacey DM. Physiology, morphology and spatial densities of identified ganglion cell types in 
primate retina. Ciba Foundation Symposium 1994;184:12-28. 
 
Dacey DM and Lee BB. The 'blue-on' opponent pathway in primate retina originates from a 
distinct bistratified ganglion cell type. Nature 1994;367:731-735. 
 
Daly SJ and Normann RA. Temporal information processing in cones: effects of light adaptation 
on temporal summation and modulation. Vision Research 1985;25:1197-1206. 
 
de Jong LAMS, Snepvangers CEJ, Van Den Berg TJTP and Langerhorst CT. Blue-yellow 
perimetry in the detection of early glaucomatous damage. Documenta Ophthalmologica 
1990;75:303-314. 
 
de la Rosa MG, Gonzalez-Hernandez M, Lozano-Lopez V, Mendez MS and de la Vega RR. 
Optic disc tomography and perimetry in controls, glaucoma suspects, and early and established 
glaucomas. Optometry and Vision Science 2007;84:33-41. 
 
de Monasterio FM, McCrane EP, Newlander JK and Schein SJ. Density profile of blue-sensitive 
cones along the horizontal meridian of macaque retina. Investigative Ophthalmology and Visual 

Science 1985;26:289-302. 
 
 
 
 



 411 

de Vries NE, Franssen L, Webers CA, Tahzib NG, Cheng YY, Hendrikse F, Tjia KF, van den 
Berg TJ and Nuijts RM. Intraocular straylight after implantation of the multifocal AcrySof 
ReSTOR SA60D3 diffractive intraocular lens. Journal of Cataract and Refractive Surgery 
2008;34:957-962. 
 
de Waard PW, IJspeert JK, van den Berg TJ and de Jong PT. Intraocular light scattering in age-
related cataracts. Investigative Ophthalmology and Visual Science 1992;33:618-625. 
 
del Romo GB, Douthwaite WA and Elliott DB. Critical Flicker Frequency as a potential vision 
technique in the presence of cataracts. Investigative Ophthalmology and Visual Science 
2005;46:1107-1112. 
 
Demirel S. Optimising the reliability of automated perimetry for the early detection of visual 
disorders. PhD Thesis. Melbourne University, 1995. 
 
Demirel S and Vingrys AJ. Acceptable false response rates for reliable perimetric outcomes. In: 
Mills RP, Wall M, eds. Perimetry Update 1994/1995. Amsterdam, The Netherlands: Kugler 
Publications; 1996, 83-88. 
 
Dengler-Harles M, Wild JM, Cole MD, O'Neill EC and Crews SJ. The influence of forward light 
scatter on the visual field indices in glaucoma. Graefe's Archive for Clinical and Experimental 

Ophthalmology 1990;228:326-331. 
 
Desjardins D and Anderson DR. Threshold variability with an automated LED perimeter. 
Investigative Ophthalmology and Visual Science 1988;29:915-921. 
 
Devaney KO and Johnson HA. Neuron loss in the aging visual cortex of man. Journal of 

Gerontology 1980;35:836-841. 
 
Dolman CL, McCormick AQ and Drance SM. Aging of the optic nerve. Archives of 

Ophthalmology 1980;98:2053-2058. 
 
Douthwaite WA, Vianya-Estopà M and Elliott DB. Predictions of postoperative visual outcome 
in subjects with cataract: a preoperative and postoperative study. British Journal of 

Ophthalmology 2007;91:638-643. 
 
Drance SM, Douglas GR, Airaksinen PJ, Schulzer M and Hitchings RA. Diffuse visual field loss 
in chronic open angle and low-tension glaucoma. American Journal of Ophthalmology 

1987;104:577-580. 
 
Drance SM, Wheeler C and Pattullo M. The use of static perimetry in the early detection of 
glaucoma. Canadian Journal of Ophthalmology 1967;2:249-258. 
 
Dudzinski A, Zawojska I and Kinasz R. Flicker perimetry (CFF) in glaucoma diagnosis. Klinika 

Oczna 2003;105:283-287. 
 
Eisner A, Austin DF and Samples JR. Short-wavelength automated perimetry and tamoxifen use. 
British Journal of Ophthalmology 2004;88:125-130. 
 



 412 

Eke T, Talbot JF and Lawden MC. Severe persistent visual field constriction associated with 
vigabatrin. British Medical Journal 1997;314:180-181. 
 
Elliott DB and Bullimore MA. Assessing the reliability, discriminative ability, and validity of 
disability glare tests. Investigative Ophthalmology and Visual Science 1993;34:108-119. 
 
Elliott DB, Bullimore MA and Bailey IL. Improving the reliability of the Pelli-Robson contrast 
sensitivity test. Clinical Vision Sciences 1991;6:471-475. 
 
Elliott DB, Gilchrist J and Whitaker D. Contrast sensitivity and glare sensitivity changes with 
three types of cataract morphology: are these techniques necessary in a clinical evaluation of 
cataract? Ophthalmic and Physiological Optics 1989;9:25-30. 
 
Elliott DB and Hurst MA. Simple clinical techniques to evaluate visual function in patients with 
early cataract. Optometry and Vision Science 1990;67:822-825. 
 
Essock EA, Williams RA, Enoch JM and Raphael S. The effects of image degradation by 
cataract on vernier acuity. Investigative Ophthalmology and Visual Science 1984;25:1043-1050. 
 
Fankhauser F. Problems related to the design of automatic perimeters. Documenta 

Ophthalmologica 1979;47:89-138. 
 
Fankhauser F. Influence of missed catch-trials on the visual field in normal subjects. Graefe's 

Archive for Clinical and Experimental Ophthalmology 1993;231:58-59. 
 
Fankhauser F and Bebie H. Threshold fluctuations, interpolations and spatial resolution in 
perimetry. In Greve EL ed Proceedings of the Fourth international Visual Field Symposium, 
Bristol, UK, 13-16 April, 1980. Documenta Ophthalmologica Proceedings Series, Springer-
Verlag, New York, NY. 1980; 19: 295-309. 
 
Fankhauser F and Haeberlin H. Dynamic range and stray light. An estimate of the falsifying 
effects of stray light in perimetry. Documenta Ophthalmologica 1980;50:143-167. 
 
Fankhauser F, Koch P and Roulier A. On automation of perimetry. Albrecht von Graefes Archiv 

fu ̈r Klinische und Experimentelle Ophthalmologie 1972;184:126-150. 
 
Farber DB, Flannery JG, Lolley RN and Bok D. Distribution patterns of photoreceptors, protein, 
and cyclic nucleotides in the human retina. Investigative Ophthalmology and Visual Science 
1985;26 1558-1568. 
 
Farrell DF. Retinal toxicity to antimalarial drugs: chloroquine and hydroxychloroquine: a 
neurophysiologic study. Clinical Ophthalmology 2012;6:377-383. 
 
Feghali JG, Bocquet X, Charlier J and Odom JV. Static flicker perimetry in glaucoma and ocular 
hypertension. Current Eye Research 1991;10:205-212. 
 
Fiorelli VM, Kasahara N, Cohen R, França AS, Della Paolera M, Mandia CJ and de Almeida 
GV. Improved automated perimetry performance following exposure to Mozart. British Journal 

of Ophthalmology 2006;90:543-545. 
 



 413 

Flammer J. The Concept of visual field indices. Graefe's Archive for Clinical and Experimental 

Ophthalmology 1986;224:389-392. 
 
Flammer J, Drance SM, Augustiny L and Funkhouser A. Quantification of glaucomatous visual 
field defects with automated perimetry. Investigative Ophthalmology and Visual Science 
1985;26:176-181. 
 
Flammer J, Drance SM, Fankhauser F and Augustiny L. Differential light threshold in automated 
static perimetry: Factors influencing short-term fluctuation. Archives of Ophthalmology 
1984;102:876-879. 
 
Flammer J, Drance SM and Schulzer M. The estimation and testing of the components of long-
term fluctuation of the differential light threshold. In Greve EL and Heijl A eds. Proceedings of 
the Fifth international Visual Field Symposium, Sacramento, CA, October 20-23,1982. 
Documenta Ophthalmologica Proceedings Series. The Hague, The Netherlands: Dr W Junk 
Publishers; 1983 35:383-389. 
 
Flammer J, Drance SM and Schulzer M. Covariates of the long-term fluctuation of the 
differential light threshold. Archives of Ophthalmology 1984;102:880-882. 
 
Flammer J, Drance SM and Zulauf M. Differential light threshold:  short- and long-term 
fluctuation in patients with glaucoma, normal controls, and patients with suspected glaucoma. 
Archives of Ophthalmology 1984;102:704-706. 
 
Flammer J, Jenni F, Bebie H and Keller B. The Octopus glaucoma G1 program. Glaucoma 
1987;9:67-72. 
 
Flanagan JG, Moss ID, Wild JM, Hudson C, Prokopich L, Whitaker D and O'Neill EC. 
Evaluation of FASTPAC : A new strategy for threshold estimation with the Humphrey Field 
Analyser. Graefe's Archive for Clinical and Experimental Ophthalmology 1993;231:465-469. 
 
Flanagan JG, Wild JM and Trope GE. The visual field indices in primary open-angle glaucoma. 
Investigative Ophthalmology and Visual Science 1993;34:2266-2274. 
 
Flanagan JG, Williams-Lyn GE, Trope GE, Hatch W and Harrison E. The phantom contour 
illusion letter test: a new psychophysical test for glaucoma? In: Mills RP, Wall M, eds. Perimetry 
Update 1994/1995. Amsterdam, The Netherlands: Kugler Publications; 1996, 405-410. 
 
Fogagnolo P, Tanga L, Rossetti L, Oddone F, Manni G, Orzalesi N and Centofanti M. Mild 
learning effect of short-wavelength automated perimetry using SITA program. Journal of 

Glaucoma 2010;19:319-323. 
 
Franssen L, Coppens JE and van den Berg TJ. Compensation comparison method for assessment 
of retinal straylight. Investigative Ophthalmology and Visual Science 2006;47:768-776. 
 
Fraser S, Bunce C and Wormald R. Risk factors for late presentation in chronic glaucoma. 
Investigative Ophthalmology and Visual Science 1999;40:2251-2257. 
 
 



 414 

Frisén L. A computer graphics visual field screener using high-pass spatial frequency resolution 
targets and multiple feedback devices. In Greve EL and Heijl A eds Proceedings of the Seventh 
International Visual Field Symposium, Amsterdam, September 1986. Documenta 
Ophthalmologica Proceedings Series. The Hague, The Netherlands: Martinus Nijhoff/ Dr W 
Junk Publishers; Documenta Ophthalmologica Proceedings Series, 1987; 49:441-446. 
 
Frisén L. High-pass resolution targets in peripheral vision. Ophthalmology 1987;94:1104-1108. 
 
Frisén L. High-pass resolution perimetry. Documenta Ophthalmologica 1993;83:1-25. 
 
Frisén L. New, sensitive window on abnormal spatial vision: Rarebit probing. Vision Research 
2002;42:1931-1939. 
 
Frisén L and Jensen C. How robust is the optic chiasm? Perimetric and neuro-imaging 
correlations. Acta Neurologica Scandinavica 2008;117:198-204. 
 
Fry GA and Bartley SH. The effect of steady stimulation of one part of the retina upon the 
critical frequency in another. Journal of Experimental Psychology 1936;19:351-356. 
 
Fujimoto N and Adachi-Usami E. Frequency Doubling Perimetry in resolved optic neuritis. 
Investigative Ophthalmology and Visual Science 2000;41:2558-2560. 
 
Funkhouser A and Fankhauser F. The effects of weighting the Mean Defect visual field index 
according to threshold variability in the central and mid-peripheral visual field. Graefe's Archive 

for Clinical and Experimental Ophthalmology 1991;229:228-231. 
 
Funkhouser AT, Fankhauser F and Weale RA. Problems related to diffuse versus localized loss 
in the perimetry of glaucomatous visual fields. Graefe's Archive for Clinical and Experimental 

Ophthalmology 1992;230:243-247. 
 
Gardiner SK, Demirel S and Johnson CA. Is there evidence for continued learning over multiple 
years in perimetry? Optometry and Vision Science 2008;85:1043-1048. 
 
Gardiner SK, Demirel S and Johnson CA. Perimetric indices as predictors of future 
glaucomatous functional change. Optometry and Vision Science 2011;88:56-62. 
 
Gardiner SK, Johnson CA and Spry PG. Normal age-related sensitivity loss for a variety of 
visual functions throughout the visual field. Optometry and Vision Science 2006;83:438-443. 
 
Gartner S and Henkind P. Aging and degeneration of the human macula. 1. Outer nuclear layer 
and photoreceptors. British Journal of Ophthalmology 1981;65:23-28. 
 
Garway-Heath DF, Caprioli J, Fitzke FW and Hitchings RA. Scaling the hill of vision: the 
physiological relationship between light sensitivity and ganglion cell numbers. Investigative 

Ophthalmology and Visual Science 2000;41:1774-1782. 
 
Gasch AT, Wang P and Pasquale LR. Determinants of glaucoma awareness in a general eye 
clinic. Ophthalmology 2000;107:303-308. 
 



 415 

Gedik S, Akman A and Akova YA. Efficiency of Rarebit perimetry in the evaluation of 
homonymous hemianopia in stroke patients. British Journal of Ophthalmology 2007;91:1065-
1069. 
 
Gilpin LB, Stewart WC, Hunt HH and Broom CD. Threshold variability using different 
Goldmann stimulus sizes. Acta Ophthalmogica 1990;68:674-676. 
 
Glass E, Schaumberger M and Lachenmayr BJ. Simulations for FASTPAC and the standard 4-2 
dB full-threshold strategy of the Humphrey Field Analyzer. Investigative Ophthalmology and 

Visual Science 1995;36:1847-1854. 
 
Gleissner M and Lachenmayr BJ. Light perception and flicker perimetry. Effect of refractive 
error, artificial media opacities and pupillary size. Der Ophthalmologe 1992;89:162-165. 
 
Glovinsky Y, Quigley HA and Dunkelberger GR. Retinal ganglion cell loss is size dependent in 
experimental glaucoma. Investigative Ophthalmology and Visual Science 1991;32:484-491. 
 
Glovinsky Y, Quigley HA and Pease ME. Foveal ganglion cell loss is size dependent in 
experimental glaucoma. Investigative Ophthalmology and Visual Science 1993;34:395-400. 
 
Goldstick BJ and Weinreb RN. The effect of refractive error on automated global analysis 
program G-1. American Journal of Ophthalmology 1987;104:229-232. 
 
Gonzales de la Rosa M, Morales J, Dannheim F, Papst E, Papst N, Seiler TJ, Matsumoto C, 
Lachkar Y, Mermoud A and Prünte C. Multicenter evaluation of Tendency Oriented Perimetry 
(TOP) using the G1 grid. European Journal of Ophthalmology 2003 13:32-41. 
 
Gonzalez-Hernandez M, de la Rosa MG, de la Vega RR and Hernandez-Vidal A. Long-term 
fluctuation of standard automatic perimetry, Pulsar perimetry and Frequency-Doubling 
Technology in early glaucoma diagnosis. Ophthalmic Research 2007;39:338-343. 
 
González-Hernández M, García-Feijoó J, Mendez MS and de la Rosa MG. Combined spatial, 
contrast, and temporal functions perimetry in mild glaucoma and ocular hypertension. European 

Journal of Ophthalmology 2004;14:514-522. 
 
Gonzalez-Hernandez M, Rios AP, Rodriguez M and Gonzalez de la Rosa M. Combined spatial 
resolution and contrast perimetry in normal subjects.  In Wall M, Mills RP eds Perimetry Update 

2000/ 2001. Amsterdam, The Netherlands: Kugler Publications; 2001 PAGES. 
 
Gonzalez de la Rosa M, Gonzalez-Hernandez M, Sanchez-Mendez M, Medina-Mesa E and 
Rodriguez de la Vega R. Detection of morphological and functional progression in initial 
glaucoma. British Journal of Ophthalmology 2009;94:414-418. 
 
Gonzalez de la Rosa M, Martinez A, Sanchez M, Mesa C, Cordoves L and Losada MJ. Accuracy 
of the Tendency-Oriented Perimetry with the Octopus 1-2-3 perimeter. In: Wall M, Heijl A, eds. 
Perimetry Update  1996/97. Amsterdam, The Netherlands: Kugler Publications;1997: 119-123. 
 
Gonzalez de la Rosa M and Pareja A. Influence of the fatigue effect on the Mean Deviation 
measurement in perimetry. European Journal of Ophthalmology 1997;7:29-34. 
 



 416 

Gordon MO, Beiser JA, Brandt JD, Heuer DK, Higginbotham EJ, Johnson CA, Keltner JL, 
Miller JP, Parrish RK, Wilson MR and Kass MA. The Ocular Hypertension Treatment Study: 
Baseline factors that predict the onset of primary open-angle glaucoma. Archives of 

Ophthalmology 2002;120:714-720. 
 
Gordon MO, Torri V, Miglior S, Beiser JA, Floriani I, Miller JP, Gao F, Adamsons I, Poli D, 
D'Agostino RB and Kass MA. Validated prediction model for the development of primary open 
angle glaucoma in individuals with ocular hypertension. Ophthalmology 2007;114:10-19. 
 
Goren D and Flanagan JG. Is flicker-defined form (FDF) dependent on the contour? Journal of 

Vision 2008;8:1-11. 
 
Graham SL and Drance SM. Interpretation of High-pass Resolution perimetry with a probability 
plot. Graefe's Archive for Clinical and Experimental Ophthalmology 1995;233:140-149. 
 
Granit R. Two types of retinae and their electrical responses to intermittent stimuli in light and 
dark adaptation. Journal of Physiology 1935b;85:421-438. 
 
Granit R and Harper P. Comparative studies on the peripheral and central retina: II. Synaptic 
reactions in the eye. American Journal of Physiological Optics 1930;95:211-227. 
 
Granit R and Riddell LA. The electrical responses of light- and dark-adapted frogs eyes to 
rhythmical and continuous stimuli. Journal of Physiology 1934;81:1-28. 
 
Granit R and Therman PO. Excitation and inhibition in the retina and in the optic nerve. Journal 

of Physiology 1935;83:359-381. 
 
Greve EL. Single and multiple stimulus static perimetry in glaucoma; the two phases of 
perimetry. Documenta Ophthalmologica, 1973; 36. 1-355. 
 
Greve EL. Static Perimetry. Journal International d'Ophtalmologie 1975;171:26-38. 
 
Greve EL. Visual field, glaucoma and cataract. Documenta Ophthalmologica Proceedings Series. 
1979; 22. 79-88. 
 
Greve EL, Dannheim F and Bakker D. The Peritest, a new automatic and semi-automatic 
perimeter. International Ophthalmology 1982;5:201-214. 
 
Guthauser U and Flammer J. Quantifying visual field damage caused by cataract. American 

Journal of Ophthalmology 1988;106:480-484. 
 
Hackett DA and Anderson AJ. Determining mechanisms of visual loss in glaucoma using 
Rarebit perimetry. Optometry and Vision Science 2011;88:48-55. 
 
Haeberlin H and Fankhauser F. Adaptive programs for analysis of the visual field by automatic 
perimetry - basic problems and solutions  Efforts oriented towards the realisation of the 
generalised spatially adaptive Octopus program Sapro. Documenta Ophthalmologica 
1980;50:123-141. 
 



 417 

Haefliger IO and Flammer J. Fluctuation of the differential light threshold at the border of 
absolute scotomas - comparison between glaucomatous visual field defects and blind spots. 
Ophthalmology 1991;98:1529-1532. 
 
Ham WTJ, Mueller HA, Ruffolo JJ, Guerry D and Guerry RK. Action spectrum for retinal injury 
from near-ultraviolet radiation in the aphakic monkey. American Journal of Ophthalmology 
1982;93:299-306. 
 
Hamill TR, Post RB, Johnson CA and Keltner JL. Correlation of color vision deficits and 
observable changes in the optic disc in a population of ocular hypertensives. Archives of 

Ophthalmology 1984;102:1637-1639. 
 
Hankins MW, Peirson SN and Foster RG. Melanopsin: An exciting photopigment. Trends in 

Neurosciences 2008;31:27-36. 
 
Hart WM, Silverman SE, Trick GL, Nesher R and Gordon MO. Glaucomatous visual field 
damage. Luminance and color-contrast sensitivities. Investigative Ophthalmology and Visual 

Science 1990;31:359-367. 
 
Hartmann E, Lachenmayr BJ and Brettel H. The peripheral critical flicker frequency. Vision 

Research 1979;19:1019-1023. 
 
Harwerth RS, Carter-Dawson L, Shen F, Smith EL and Crawford MLJ. Ganglion cell losses 
underlying visual field defects from experimental glaucoma. Investigative Ophthalmology and 

Visual Science 1999;40:2242-2250. 
 
Harwerth RS, Carter-Dawson L, Smith EL, Barnes G, Holt WF and Crawford MLJ. Neural 
losses correlated with visual losses in clinical perimetry. Investigative Ophthalmology and Visual 

Science 2004;45:3152-3160. 
 
Harwerth RS, Wheat JL, Fredette MJ and Anderson DR. Linking structure and function in 
glaucoma. Progress in Retinal and Eye Research 2010 29:249-271. 
 
Havener WH and Henderson JW. Comparison of flicker perimetry with standard perimetric 
methods. Archives of Ophthalmology 1954;52:91-105. 
 
Hayashi K, Hayashi H, Nakao F and Hayashi F. Influence of cataract surgery on automated 
perimetry in patients with glaucoma. American Journal of Ophthalmology 2001;132:41-46. 
 
Haymes SA, Hutchison DM, McCormick TA, Varma DK, Nicolela MT, LeBlanc RP and 
Chauhan BC. Glaucomatous visual field progression with Frequency-Doubling Technology and 
standard automated perimetry in a longitudinal prospective study. Investigative Ophthalmology 

and Visual Science 2005;46:547-554. 
 
Heider HW, Seez KJ and Schnaudigel OE. Changes in the visual field caused by lens opacities. 
Klinische Monatsblätter für Augenheilkunde 1991;198:15-19. 
 
Heijl A. The Humphrey Field Analyzer, construction and concepts. In: Greve EL, Heijl A, eds. 
Proceedings of the Sixth International Visual Field Symposium. Santa Margherita, Ligure, Italy, 
1984.  Documenta Ophthalmologica Proceedings Series: 1985; 42: 77-84. 



 418 

Heijl A. Lack of diffuse loss of differential light sensitivity in early glaucoma. Acta 

Ophthalmologica 1989;67:353-360. 
 
Heijl A and Bengtsson B. The effect of perimetric experience in patients with glaucoma. 
Archives of Ophthalmology 1996;114:19 - 22. 
 
Heijl A and Drance SM. A clinical comparison of three computerized automatic perimeters in 
the detection of glaucoma defects. Archives of Ophthalmology 1981;99:832-836. 
 
Heijl A and Drance SM. Changes in differential threshold in patients with glaucoma during 
prolonged perimetry. British Journal of Ophthalmology 1983;67:512-516. 
 
Heijl A and Krakau CET. An automatic static perimeter, design and pilot study. Acta 

Ophthalmogica 1975;53:293-310. 
 
Heijl A, Lindgren G and Olsson J. Normal variability of static perimetric threshold values across 
the central visual field. Archives of Ophthalmology 1987a;105:1544-1549. 
 
Heijl A, Lindgren G and Olsson J. A package for the statistical analysis of visual fields. 
Documenta Ophthalmologica Proceedings Series 1987b;45:153-168. 
 
Heijl A, Lindgren G and Olsson J. The effect of perimetric experience in normal subjects. 
Archives of Ophthalmology 1989;107:81-86. 
 
Hendry SH and Reid R, C. The koniocellular pathway in primate vision. Annual Review of 

Neuroscience 2000;23:127-153. 
 
Henson DB, Artes PH and Chauhan BC. Diffuse loss of sensitivity in early glaucoma. 
Investigative Ophthalmology and Visual Science 1999;40:3147-3151. 
 
Henson DB, Chauhan BC and Hobley A. Screening for glaucomatous visual field defects: the 
relationship between sensitivity and specificity and the number of test locations. Ophthalmic and 

Physiological Optics 1988;8:123-127. 
 
Heron G, Adams AJ and Husted R. Central visual fields for short-wavelength sensitive pathways 
in glaucoma and ocular hypertension. Investigative Ophthalmology and Visual Science 
1988;29:64-72. 
 
Hess R and Woo G. Vision through cataracts. Investigative Ophthalmology and Visual Science 
1978;17:428-435. 
 
Heuer DK, Anderson DR, Feuer WJ and Gressel MG. The influence of refraction accuracy on 
automated perimetric threshold measurements. Ophthalmology 1987;94:1550-1553. 
 
Hodapp E, Parrish RK, Anderson DR and Perkins TW. Clinical decisions in glaucoma. St. Louis, 
MI: Mosby, 1993; 52-61. 
 
Holló G, A. S and Vargha P. Scanning Laser Polarimetry versus Frequency-Doubling Perimetry 
and conventional threshold perimetry: changes during a 12-month follow-up in preperimetric 
glaucoma. A pilot study. Acta Ophthalmogica Scandinavia 2001;79:403-407. 



 419 

Hong S, Na K, Kim CY and Seong GJ. Learning effect of Humphrey Matrix perimetry. 
Canadian Journal of Ophthalmology 2007;42:707-711. 
 
Hong S, Yeom HY, Kim CY and Seong GJ. Comparison between indices of Humphrey Matrix 
and Humphrey perimetry in early glaucoma patients and normal subjects. Annals of 

Ophthalmology 2007;39:318-320. 
 
Hood DC, Anderson SC, Wall M and Kardon RH. Structure versus function in glaucoma: an 
application of a linear model. Investigative Ophthalmology and Visual Science 2007;48:3662-
3668. 
 
Horani A, Frenkel S, Yahalom C, Farber MD, Ticho U and Blumenthal EZ. The learning effect 
in visual field testing of healthy subjects using Frequency Doubling Technology. Journal of 

Glaucoma 2002;11:511-516. 
 
Hudson C, Wild JM and Archer-Hall J. Maximizing the dynamic range of the Humphrey Field 
Analyzer for blue-on-yellow perimetry. Ophthalmic and Physiological Optics 1993;13:405-408. 
 
Hudson C, Wild JM and O'Neill EC. Fatigue effects during a single session of automated static 
threshold perimetry. Investigative Ophthalmology and Visual Science 1994;35:268-280. 
 
Hutchings N, Hosking SL, Wild JM and Flanagan JG. Long-term fluctuation in short-wavelength 
automated perimetry in glaucoma suspects and glaucoma patients. Investigative Ophthalmology 

and Visual Science 2001;42:2332-2337. 
 
Hutchings N, Wild JM, Hussey MK and Trope GE. The homogeneous and heterogeneous 
components of the long-term fluctuation in glaucomatous field loss. Investigative Ophthalmology 

and Visual Science 1993;34:1263. 
 
Hylkema BS. Examination of the visual field by determining the fusion frequency. Acta 

Ophthalmologica  1942;20:181-193. 
 
Haas A, Flammer J and Schneider U. Influence of age on the visual fields of normal subjects. 
American Journal of Ophthalmology 1986;101:199-203. 
 
Interzeag  AG. OCTOPUS, Visual Field Digest. Interzeag AG, Schliren, Switzerland, 1998. 
 
Jaffe GJ, Alvarado JA and Juster RP. Age-related changes of the normal visual field. Archives of 

Ophthalmology 1986;104:1021-1025. 
 
Jampel HD, Singh K, Lin SC, Chen TC, Francis BA, Hodapp E, Samples JR and Smith SD. 
Assessment of visual function in glaucoma: a report by the American Academy of 
Ophthalmology. Ophthalmology 2011;118:986-1002. 
 
Jennings JA and Charman WN. The effects of central and peripheral refraction on critical fusion 
frequency. Ophthalmic and Physiological Optics 1981;1:91-96. 
 
Johnson CA. Selective versus nonselective losses in glaucoma. Journal of Glaucoma 
1994;3:532-544. 
 



 420 

Johnson CA. FDT Perimetry for the detection of glaucomatous visual field loss. The 
effectiveness of the FDT and Humphrey Matrix Perimeters. Glaucoma Today 2008;6:26-28. 
 
Johnson CA, Adams AJ, Casson EJ and Brandt JD. Blue-on-yellow perimetry can predict the 
development of glaucomatous visual field loss. Archives of Ophthalmology 1993a;111:645-650. 
 
Johnson CA, Adams AJ, Casson EJ and Brandt JD. Progression of early glaucomatous visual 
field loss as detected by blue-on-yellow and standard white-on-white automated perimetry. 
Archives of Ophthalmology 1993b;111:651-656. 
 
Johnson CA, Adams AJ and Lewis RA. Evidence for a neuronal basis of age-related visual field 
loss in normal observers. Investigative Ophthalmology and Visual Science 1989;30:2056-2064. 
 
Johnson CA, Adams AJ, Twelker JD and Quigg JM. Age-related changes in the central visual 
field for short-wavelength-sensitive pathways. Journal of the Optical Society of America 
1988;5:2131-2139. 
 
Johnson CA, Adams CW, Lewis RA and Keltner JL. Fatigue effects in automated perimetry. 
Applied Optics 1988;27:1030-1037. 
 
Johnson CA, Brandt JD, Khong AM and Adams AJ. Short-wavelength automated perimetry in 
low, medium, and high risk ocular hypertensive eyes. Archives of Ophthalmology 1995;113:70-
76. 
 
Johnson CA, Cioffi GA, Liebmann JR, Sample PA, Zangwill LM and Weinreb RN. The 
relationship between structural and functional alterations in glaucoma: a review. Seminars in 
Ophthalmology, 2000. 
 
Johnson CA and Marshall DJ. Aging effects for opponent mechanisms in the central visual field. 
Optometry and Vision Science 1995;72:75-82. 
 
Johnson CA, Sample PA, Cioffi GA, Liebmann JR and Weinreb RN. Structure and Function 
Evaluation (SAFE): I. Criteria for glaucomatous visual field loss using standard automated 
perimetry (SAP) and short-wavelength automated perimetry (SWAP). American Journal of 

Ophthalmology 2002;134:177-185. 
 
Johnson CA and Samuels SJ. Screening for glaucomatous visual field loss with Frequency-
Doubling Perimetry. Investigative Ophthalmology and Visual Science 1997;38:413-425. 
 
Johnson MA and Choy D. On the definition of age-related norms for visual function testing. 
Applied Optics 1987;26:1449-1454. 
 
Kalaboukhova L, Fridhammar V and Lindblom B. Glaucoma follow up by the Heidelberg Retina 
Tomograph - new graphical analysis of optic disc topography changes. Graefe's Archive for 

Clinical and Experimental Ophthalmology 2006;244:654-662. 
 
Kandel H, Adhikari P, Shrestha GS, Ruokonen EL and Shah DN. Visual function in patients on 
ethambutol therapy for tuberculosis. Journal of Ocular Pharmacology and Therapeutics 

2012;28:174-178. 
 



 421 

Kanski JJ. Clinical Ophthalmology, a systematic approach. Oxford, UK: Butterworth-Heinemann, 
2003.  
 
Kaplan E and Shapley RM. X and Y cells in the lateral geniculate nucleus of macaque monkeys. 
Journal of Physiology 1982;330:125-143. 
 
Kass MA, Heuer DK, Higginbotham EJ, Johnson CA, Keltner JL, Miller JP, Parrish RK, Wilson 
MR and Gordon MO. The Ocular Hypertension Treatment Study: A randomized trial determines 
that topical ocular hypotensive medication delays or prevents the onset of primary open angle 
glaucoma. Archives of Ophthalmology 2002;120:701-713. 
 
Katsanos A, Labiris G, Fanariotis M, Tsirouki T and Chatzoulis D. The relationship between 
Rarebit perimetry and OCT-derived retinal nerve fibre layer thickness in glaucoma. Acta 

Ophthalmologica 2008;86:871-876. 
 
Katz J and Sommer A. Asymmetry and variation in the normal hill of vision. Archives of 

Ophthalmology 1986;104:65-68. 
 
Katz J and Sommer A. A longitudinal study of the age-adjusted variability of automated visual 
fields. Archives of Ophthalmology 1987;105:1083-1086. 
 
Katz J and Sommer A. Reliability indexes of automated perimetric tests. Archives of 

Ophthalmology 1988;106:1252-1254. 
 
Katz J and Sommer A. Reliability of automated perimetric tests (letter, comment). Archives of 

Ophthalmology 1990;108:777-778. 
 
Katz J, Sommer A and Gaasterland DE. Comparison of analytic algorithms for detecting 
glaucomatous visual field loss. Archives of Ophthalmology 1991;109:1684-1689. 
 
Katz J, Sommer A and Witt K. Reliability of visual field results over repeated testing. 
Ophthalmology 1991;98:70-75. 
 
Kaufmann H and Flammer J. Clinical experimence with the Bebie curve. In: Heijl A, ed. 
Perimetry Update 1988/1989.  Amsterdam, The Netherlands: Kugler Publications; 1989; 235-
238. 
 
Kelly DH. Frequency Doubling in visual responses. Journal of the Optical Society of America 
1966;56:1628-1633. 
 
Kelly DH. Nonlinear visual responses to flickering sinusoidal gratings. Journal of the Optical 

Society of America 1981;71:1051-1055. 
 
Keltner JL and Johnson CA. Short-wavelength automated perimetry in neuro-ophthalmological 
disorders. Archives of Ophthalmology 1995;113:475-481. 
 
Keltner JL, Johnson CA and Balestrery FG. Suprathreshold static perimetry. Initial clinical trials 
with the Fieldmaster automated perimeter. Archives of Ophthalmology 1979;97:260-272. 
 



 422 

Kerrigan-Baumrind LA, Quigley HA, Pease ME, Kerrigan DF and Mitchell RS. Number of 
ganglion cells in glaucoma eyes compared with threshold visual field tests in the same persons. 
Investigative Ophthalmology and Visual Science 2000;41:741-748. 
 
Keunen JE, van Norren D and van Meel GJ. Density of foveal cone pigments at older age. 
Investigative Ophthalmology and Visual Science 1985;28:985-991. 
 
Kho RC, Al-Obailan M and Arnold AC. Bitemporal visual field defects in ethambutol-induced 
optic neuropathy. Journal of Neuro-Ophthalmology 2011;31:121-126. 
 
Khong JJ, Dimitrov PN, Rait J and McCarty CA. Can the specificity of the FDT for glaucoma be 
improved by confirming abnormal results? Journal of Glaucoma 2001;10:199-202. 
 
Kilbride PE, Hutman LP, Fishman M and Read JS. Foveal cone pigment density difference in 
the aging human eye. Vision Research 1986;26:321-325. 
 
Kim JH and Kee C. The Effect of myopic optical defocus on the Humphrey Matrix 30-2 
threshold test. Journal of the Korean Ophthalmological Society 2008;49:119-124. 
 
Kim YY, Kim JS, Shin DH, Kim C and Jung HR. Effect of cataract extraction on blue-on-yellow 
visual field. American Journal of Ophthalmology 2001;132:217-220. 
 
King-Smith PE, Grigsby SS, Vingrys AJ, Benes SC and Supowit A. Efficient and unbiased 
modifications of the QUEST threshold method: theory, simulations, experimental evaluation and 
practical implementation. Vision Research 1994;34:885-912. 
 
King AJW, Taguri A, Wadood AC and Azuara-Blanco A. Comparison of two fast strategies, 
SITA Fast and TOP, for the assessment of visual fields in glaucoma patients. Graefe's Archive 

for Clinical and Experimental Ophthalmology 2002;240:481-487. 
 
King D, Drance SM, Douglas GR and Wijsman K. The detection of paracentral scotomas with 
varying grids in computed perimetry. Archives of Ophthalmology 1986;104:524-525. 
 
Klein BE, Klein R and Jensen SC. Visual sensitivity and age-related eye diseases. The Beaver 
Dam Eye Study. Ophthalmic Epidemiology 1996;3:47-55. 
 
Klein BEK, Klein R, Sponsel WE, Franke T, Cantor LB, Martone J and Menage MJ. Prevalence 
of glaucoma.  The Beaver Dam Eye Study. Ophthalmology 1992;99:1499-1504. 
 
Knox GW. Investigations of flicker fusion. I. The effect of practice, under the influence of 
various attitudes, on the CFF. Journal of General Psychology, 1945;33:121-129. 
 
Koch DD. Glare and contrast sensitivity testing in cataract patients. Journal of Cataract and 

Refractive Surgery 1989;15:158-164. 
 
Koch P, Roulier A and Fankhauser F. Perimetry - The information theoretical basis for its 
automation. Vision Research 1972;12:1619-1630. 
 



 423 

Kogure S, Toda Y and Tsukahara S. Prediction of future scotoma on conventional automated 
static perimetry using Frequency Doubling Technology perimetry. British Journal of 

Ophthalmology 2006;90:347-352. 
 
Kook MS, Yang SJ, Kim S, Chung J, Kim ST and Tchah H. Effect of cataract extraction on 
Frequency Doubling Technology perimetry. American Journal of Ophthalmology 2004;138:85-
90. 
 
Kosmin AS. Apparent glaucomatous visual field defects caused by dermatochalasis. Eye 
1997;11:682-686. 
 
Koucheki B, Nouri-Mahdavi K, Patel G, Gaasterland D and Caprioli J. Visual field changes after 
cataract extraction: The AGIS experience. American Journal of Ophthalmology 2004;138:1022-
1028. 
 
Kratochvilová P. Computer perimetry - rapid TOP (Tendency Oriented Perimetry) and normal 
threshold methods in clinical practice - comparison of results. Ceská a Slovenská Oftalmologie 

2002;58:187-193. 
 
Kugelmass S and Landis C. The relation of area and luminance to the threshold for critical 
flicker fusion. American Journal of Psychology 1955;68:1-19. 
 
Kulze JC, Stewart WC and Sutherland SE. Factors associated with a learning effect in glaucoma 
patients using automated perimetry. Acta Ophthalmologica 1990;68:681-686. 
 
Kutzko KE, Brito CF and Wall M. Effect of instructions on conventional automated perimetry. 
Investigative Ophthalmology and Visual Science 2000;41:2006-2013. 
 
Lachenmayr BJ. The role of temporal threshold criteria in psychophysical testing in glaucoma. 
Current Opinion in Ophthalmology 1994;5:58-63. 
 
Lachenmayr BJ and Drance SM. Diffuse field loss and central visual function in glaucoma. 
German Journal of Ophthalmology 1992;1:67-73. 
 
Lachenmayr BJ, Drance SM and Airaksinen PJ. Diffuse field loss and diffuse retinal nerve fiber 
loss in glaucoma. German Journal of Ophthalmology 1992;1:22-25. 
 
Lachenmayr BJ, Drance SM, Chauhan BC, House PH and Lalani S. Diffuse and localized 
glaucomatous field loss in light sense, flicker and resolution perimetry. Graefe's Archive for 

Clinical and Experimental Ophthalmology 1991;229:267-273. 
 
Lachenmayr BJ, Drance SM, Douglas GR and Mikelberg FS. Light sense, flicker and resolution 
perimetry in glaucoma: a comparative study. Graefe's Archive for Clinical and Experimental 

Ophthalmology 1991;229:246-251. 
 
Lachenmayr BJ and Gleissner M. Flicker perimetry resists retinal image degradation. 
Investigative Ophthalmology and Visual Science 1992;33:3539-3542. 
 



 424 

Lachenmayr BJ, Kojetinsky S, Ostermaier N, Angstwurm K, Vivell PM and Schaumberger M. 
The different effects of aging on normal sensitivity in flicker and light-sense perimetry. 
Investigative Ophthalmology and Visual Science 1994;35:2741-2748. 
 
Lachkar Y, Barrault O, Lefrançois A and Demailly P. Rapid Tendency Oriented Perimetry 
(TOP) with the Octopus visual field analyzer. Journal Français d'Ophtalmologie 1998;21:180-
184. 
 
Lam BL, Alward WL and Kolder HE. Effect of cataract on automated perimetry. Ophthalmology 
1991;98:1066-1070. 
 
Lamparter J, Schulze A, Schuff AC, Berres M, Pfeiffer N and Hoffmann EM. Learning curve 
and fatigue effect of flicker defined form perimetry. American Journal of Ophthalmology 
2011;151:1057-1064. 
 
Langerhorst CT, Thomas JTP, Van Den Berg TJTP and Greve EL. Is there a general reduction of 
sensitivity in glaucoma? International Ophthalmology 1989;3:31-35. 
 
Langerhorst CT, Van Den Berg TJTP, Van Spronsen R and Greve EL. Results of a fluctuation 
analysis and defect volume program for automated static threshold perimetry with the 
scoperimeter. In: Greve EL, Heijl A, eds. Proceedings of the 6th International Visual Field 
Symposium. Santa Margherita, Ligure, Italy, 1984.  Documenta Ophthalmologica Proceedings 
Series: 1985. 1-6. 
 
LeClaire J, Nadler MP, Weiss S and Miller D. A new glare tester for clinical testing. Results 
comparing normal subjects and variously corrected aphakic patients. Archives of Ophthalmology 
1982 100:153-158. 
 
Leite MT, Zangwill LM, Weinreb RN, Rao HL, Alencar LM and Medeiros FA. Structure-
function relationships using the Cirrus spectral domain optical coherence tomograph and 
standard automated perimetry. Journal of Glaucoma 2012;21:49-54. 
 
Lennie P. Parallel visual pathways: A review. Vision Research 1980;20:561-594. 
 
Leung CK, Liu S, Weinreb RN, Lai G, Ye C, Cheung CY, Pang CP, Tse KK and Lam DS. 
Evaluation of retinal nerve fiber layer progression in glaucoma: a prospective analysis with 
neuroretinal rim and visual field progression. Ophthalmology 2011;118 1551-1557. 
 
Lewis RA, Johnson CA and Keltner JL. Variability of quantitatitve automated perimetry in 
normal observers. Ophthalmology 1986;93:878-881. 
 
Li J, Tripathi RC and Tripathi BJ. Drug-induced ocular disorders. Drug Safety 2008;31:127-141. 
 
Lindenmuth KA, Skuta GL, Rabbani R and Musch DC. Effects of pupillary constriction on 
automated perimetry in normal eyes. Ophthalmology 1989;96:1298-1301. 
 
Lindenmuth KA, Skuta GL, Rabbani R, Musch DC and Bergstrom TJ. Effects of pupillary 
dilation on automated perimetry in normal patients. Ophthalmology 1990;97:367-370. 
 



 425 

Liu S, Lam S, Weinreb RN, Ye C, Cheung CY, Lai G, Lam DS and Leung CK. Comparison of 
standard automated perimetry, Frequency-Doubling Technology perimetry, and short-
wavelength automated perimetry for detection of glaucoma. Investigative Ophthalmology and 

Visual Science 2011;52:7325-7331. 
 
Livingstone MS and Hubel DH. Psychophysical evidence for separate channels for the 
perception of form, color, movement, and depth. The Journal of Neuroscience 1987;7:3416-
3468. 
 
Livingstone MS and Hubel DH. Segregation of form, color, movement, and depth: anatomy, 
physiology, and perception. Science 1988;240:740-749. 
 
Lyne AJ and Phillips CI. Visual field defects due to opacities in the optical media. British 

Journal of Ophthalmology 1996;53:119-122. 
 
Lythgoe RJ and Tansley K. The relation of the critical frequency of flicker to the adaptation of 
the eye. Proceedings of the Royal Society of London 1929;105:60-92. 
 
Maddess T, Goldberg I, Dobinson J, Wine S, Welsh AH and James AC. Testing for glaucoma 
with the spatial frequency doubling illusion. Vision Research 1999;39:4258-4273. 
 
Maddess T and Henry GH. Performance of nonlinear visual units in ocular hypertension and 
glaucoma. Clinical Vision Sciences 1992;7:371-383. 
 
Maeda H, Nakaura M and Negi A. New perimetric threshold test algorithm with Dynamic 
Strategy and Tendency Oriented Perimetry (TOP) in glaucomatous eyes. Eye 2000;14 747-751. 
 
Maguire MJ, Hemming K, Wild JM, Hutton JL and Marson AG. Prevalence of visual field loss 
following exposure to vigabatrin therapy: a systematic review. Epilepsia 2010;51:2423-2431. 
 
Mahneke A. Flicker-fusion thresholds; comparison between the continuous and the 
discontinuous method. Acta Ophthalmologica 1957;35:53-61. 
 
Maltzman BA, Horan C and Rengel A. Penlight test for glare disability of cataracts. Journal of 

Ophthalmic Nursing and Technology 1988;7:137-139. 
 
Mandava S, Zulauf M, Zeyen T and Caprioli J. An evaluation of clusters in the glaucomatous 
visual field. American Journal of Ophthalmology 1993;116:684-691. 
 
Marchini G, Pisano F and Bertagnin F. Perimetric learning effect in glaucoma patients. 
Glaucoma 1991;13:102-106. 
 
Marmor MF, Kellner U, Lai TY, Lyons JS and Mieler WF. Revised recommendations on 
screening for chloroquine and hydroxychloroquine retinopathy. Ophthalmology 2011;118:415-
422. 
 
Martin-Boglind LM. Computer-assisted interpretation of resolution visual fields from patients 
with chiasmal and retrochiasmal lesions. Ophthalmologica 1993;207:148-154. 
 



 426 

Martin DD, Vonthein R, Wilhelm H and Schiefer U. Pupil size and Perimetry - a 
pharmacological model using increment and decrement stimuli. Graefe's Archive for Clinical 

and Experimental Ophthalmology 2005;243:1091-1097. 
 
Martin L. Cataract and High-pass resolution perimetry. Acta Ophthalmogica Scandinavia 
1997;75:174-177. 
 
Martin L. Intraocular pressure before and after visual field examination. Eye 2007;21:1479-1481. 
 
Martin L, Magnusson G, Popovic Z and Sjöstrand J. Resolution visual fields in children 
surgically treated for bilateral congenital cataract. Investigative Ophthalmology and Visual 

Science 2008;49:3730-3733. 
 
Martin L and Wanger P. New perimetric techniques: A comparison between Rarebit and 
Frequency Doubling Technology perimetry in normal subjects and glaucoma patients. Journal of 

Glaucoma 2004;13:268-272. 
 
Martinez GA, Sample PA and Weinreb RN. Comparison of High pass resolution perimetry and 
standard automated perimetry in glaucoma. American Journal of Ophthalmology 1995;119:195-
201. 
 
Mastropasqua L, Brusini P, Carpineto P, Ciancaglini M, Di Antonio L, Zeppieri MW and Parisi 
L. Humphrey Matrix Frequency Doubling Technology perimetry and optical coherence 
tomography measurement of the retinal nerve fiber layer thickness in both normal and ocular 
hypertensive subjects. Journal of Glaucoma 2006;15:328-335. 
 
Matsumoto C, Okuyama S, Iwagaki A, Otsuki T, Uyama K and Otori T. The influence of target 
blur on perimetric threshold values in automated light-sensitive perimetry and flicker perimetry. 
In: Wall M, Heijl A, eds. Perimetry Update 1996/1997. Amsterdam, The Netherlands, Kugler, 
1997:191-199. 
 
Matsumoto C, Okuyama S, Iwagaki A, Takada S and Otori T. Automated flicker perimetry in 
glaucoma and retinal detachment patients. In: Wall M, Wild JM, eds. Perimetry Update 

1998/1999 Amsterdam, The Netherlands, Kügler, 2000:85-82,. 
 
Matsumoto C, Takada S, Okuyama S, Arimura E, Hashimoto S and Shimomura Y. Automated 
flicker perimetry in glaucoma using Octopus 311: a comparative study with the Humphrey 
Matrix. Acta Ophthalmologica Scandinavica 2006;84:210-215. 
 
Matsuo H, Tomita G, Suzuki Y and Araie M. Learning effect and measurement variability in 
Frequency-Doubling Technology perimetry in chronic open-angle glaucoma. Journal of 

Glaucoma 2002;11:467-473. 
 
Mayer MJ, Spiegler SJ, Ward B, Glucs A and Kim CB. Foveal flicker sensitivity discriminates 
ARM risk from healthy eyes. Investigative Ophthalmology and Visual Science 1992a;33:3143-
3149. 
 
Mayer MJ, Spiegler SJ, Ward B, Glucs A and Kim CB. Mid-frequency loss of foveal flicker 
sensitivity in early stages of age-related maculopathy. Investigative Ophthalmology and Visual 

Science 1992b;33:3136-3142. 



 427 

Mayer MJ, Ward B, Klein R, Talcott JB, Dougherty RF and Glucs A. Flicker sensitivity and 
fundus appearance in pre-exudative age-related maculopathy. Investigative Ophthalmology and 

Visual Science 1994;35:1138-1149. 
 
McAlinden C, Gothwal VK, Khadka J, Wright TA, Lamoureux EL and Pesudovs K. A head-to-
head comparison of 16 cataract surgery outcome questionnaires. Ophthalmology 2011;118:2374-
2381. 
 
McKendrick AM. Recent developments in perimetry: test stimuli and procedures. Clinical and 

Experimental Optometry 2005;88:73-80. 
 
McKendrick AM and Turpin A. Combining perimetric suprathreshold and threshold procedures 
to reduce measurement variability in areas of visual field loss. Optometry and Vision Science 
2005;82:43-51. 
 
Medeiros FA, Sample PA and Weinreb RN. Frequency Doubling Technology perimetry 
abnormalities as predictors of glaucomatous visual field loss. American Journal of 

Ophthalmology 2004;137:863-871. 
 
Medeiros FA, Weinreb RN, Sample PA, Gomi CF, Bowd C, Crowston JG and Zangwill LM. 
Validation of a predictive model to estimate the risk of conversion from ocular hypertension to 
glaucoma. Archives of Ophthalmology 2005;123:1351-1360. 
 
Medeiros FA, Zangwill LM, Girkin CA, Liebmann JM and Weinreb RN. Combining structural 
and functional measurements to improve estimates of rates of glaucomatous progression. 
American Journal of Ophthalmology 2012;Epub ahead of print. 
 
Menon V, Jain D, Saxena R and Sood R. Prospective evaluation of visual function for early 
detection of ethambutol toxicity. British Journal of Ophthalmology 2009;93:1251-1254. 
 
Merigan WH, Byrne CE and Maunsell JH. Does primate motion perception depend on the 
magnocellular pathway? Journal of Neuroscience 1991;11:3422-3429. 
 
Meyer DR, Stern JH, Jarvis JM and Lininger LL. Evaluating the visual field effects of 
blepharoptosis using automated static perimetry. Ophthalmology 1993;100:651-659. 
 
Meyer JH and Funk J. High-pass resolution perimetry and light-sense perimetry in open-angle 
glaucoma. German Journal of Ophthalmology 1995;4:222-227. 
 
Michaelides M, Stover NB, Francis PJ and Weleber RG. Retinal toxicity associated with 
hydroxychloroquine and chloroquine: risk factors, screening, and progression despite cessation 
of therapy. Archives of Ophthalmology 2011;129:30-39. 
 
Midena E. Psychophysics and visual aging. Metabolic, Pediatric and Systemic Ophthalmology 
1989;12:28-31. 
 
Miller BA and Gelber EC. Aphakic visual fields by automated perimetry. Annals of 

Ophthalmology 1990;22:419-422. 
 



 428 

Miller D, Jernigan ME, Molnar S, Wolf E and Newman J. Laboratory evaluation of a clinical 
glare tester. Archives of Ophthalmology 1972 87:324-332. 
 
Mills RP. A comparison of Goldmann, Fieldmaster 200, and Dicon AP2000 perimeters used in a 
screening mode. Ophthalmology 1984;91:347-354. 
 
Mills RP. Usefulness of peripheral testing in automated screening perimetry. In: Heijl A, Greve 
EL, eds. Proceedings of the 6th International Visual Field Symposium. Santa Margherita, Ligure, 
Italy, 1984.  Documenta Ophthalmologica Proceedings Series. 1985:207-211. 
 
Mills RP, Barnebey HS, Migliazzo CV and Li Y. Does saving time using FASTPAC or 
suprathreshold testing reduce quality of visual fields? Ophthalmology 1994;101:1596-1603. 
 
Morales J, Weitzman ML and Gonzalez de la Rosa M. Comparison between Tendency-Oriented 
Perimetry (TOP) and Octopus threshold perimetry. Ophthalmology 2000;107:134-142. 
 
Morgan JE. Selective cell death in glaucoma: does it really occur? British Journal of 

Ophthalmology 1994;78:875-879. 
 
Morgan JE. Retinal ganglion cell shrinkage in glaucoma. Journal of Glaucoma 2002;11:365-
370. 
 
Morgan JE, Uchida H and Caprioli J. Retinal ganglion cell death in experimental glaucoma. 
British Journal of Ophthalmology 2000;84:303-310. 
 
Moss ID and Wild JM. The influence of induced forward light scatter on the normal blue-on-
yellow perimetric profile. Graefe's Archive for Clinical and Experimental Ophthalmology 

1994;232:409-414. 
 
Moss ID, Wild JM and Whitaker DJ. The influence of age-related cataract on blue-on-yellow 
perimetry. Investigative Ophthalmology and Visual Science 1995;36:764-773. 
 
Musch DC, Lichter PR, Guire KE, Standardi CL and Group CS. The collaborative initial 
glaucoma treatment study. Ophthalmology 1999;106:653-662. 
 
Mutlu FM, Akay F and Bayer A. Effect of pseudophakia on standard perimetry parameters. 
Current Eye Research 2009;34:711-716. 
 
Neumann AC, McCarty GR, Locke J and Cobb B. Glare disability devices for cataractous eyes: 
a consumer's guide. Journal of Cataract and Refractive Surgery 1988;14:212-216. 
 
Neumann AC, McCarty GR, Steedle TO, Sanders DR and Raanan MG. The relationship between 
cataract type and glare disability as measured by the Miller-Nadler glare tester. Journal of 

Cataract and Refractive Surgery 1988;14:40-45. 
 
Newkirk MR, Gardiner SK, Demirel S and Johnson CA. Assessment of false-positives with the 
Humphrey Field Analyzer II Perimeter with the SITA Algorithm. Investigative Ophthalmology 

and Visual Science 2006;47:4632-4637. 
 



 429 

Ng M, Racette L, Pascual JP, Liebmann JM, Girkin CA, Lovell SL, Zangwill LM, Weinreb RN 
and Sample PA. Comparing the Full-Threshold and Swedish Interactive Thresholding 
Algorithms for Short-wavelength automated perimetry. Investigative Ophthalmology and Visual 

Science 2009;50:1726-1733. 
 
Nilsson M, Abdiu O, Laurell CG and Martin L. Rarebit perimetry and fovea test before and after 
cataract surgery. Acta Ophthalmologica 2010;88:479-482. 
 
Nowomiejska K, Brzozowska A, Zarnowski T, Rejdak R, R.G. W and Schiefer U. Variability in 
isopter position and fatigue during semi-automated kinetic perimetry. Ophthalmologica 
2012;227:166-172. 
 
Oleszczuk JD, Bergin C and Sharkawi E. Comparative resilience of clinical perimetric tests to 
induced levels of intraocular straylight. Investigative Ophthalmology and Visual Science 
2012;53:1219-1224. 
 
Olsson J, Bengtsson B, Heijl A and Rootzen H. An improved method to estimate frequency of 
false-positive answers in computerized perimetry. Acta Ophthalmologica Scandinavica 
1997;75:181-183. 
 
Olsson J, Heijl A, Bengtsson B and Rootzen H. Freqency-of-seeing in computerized perimetry. 
In: Mills RP, ed. Perimetry update 1992/1993. Amsterdam, The Netherlands. Kugler. 1993:551-
556. 
 
Olsson J, Rootzen H and Heijl A. Maximum likelihood estimation of the frequency of false-
positive and false-negative answers from the up-and-down staircases of computerized threshold 
perimetry. In: Heijl A, ed. Perimetry Update 1988/1989  Amsterdam, The Netherlands. Kugler. 
1988:245-251. 
 
Olsson J, Åsman P and Heijl A. A perimetric learner's index. Acta Ophthalmogica Scandinavia 
1997;75:665-668. 
 
Ong J and Wong T. Effect of ametropias on critical fusion frequency. American Journal of 

Optometry and Archives of American Academy of Optometry 1971;48:736-739. 
 
Paczka JA, Friedman DS, Quigley HA, Barron Y and Vitale S. Diagnostic capabilities of 
Frequency-Doubling Technology, scanning laser polarimetry, and nerve fiber layer photographs 
to distinguish glaucomatous damage. American Journal of Ophthalmology 2001;131:188-197. 
 
Parrish RK, Schiffman J and Anderson DR. Static and kinetic visual field testing;  
Reproducibility in normal volunteers. Archives of Ophthalmology 1984;102:1497-1502. 
 
Pascal JI. Retinal image in axial and refractive ametropia. British Journal of Ophthalmology 
1955;39:380-381. 
 
Paulsson LE and Sjøstrand J. Contrast sensitivity in the presence of a glare light. Theoretical 
concepts and preliminary clinical studies. Investigative Ophthalmology and Visual Science 
1980;19:401-406. 
 



 430 

Pearson PA, Baldwin LB and Smith TJ. The Q-Statistic in glaucoma and ocular hypertension. In: 
Heijl A, ed. Perimetry update 1988/1989. In: Heijl A, ed. Perimetry Update 1988/1989  
Amsterdam, The Netherlands. Kugler. 1989: 229-233. 
 
Peckham RH and Arner WJ. Visual acuity, contrast, and flicker, as measures of retinal 
sensitivity. Journal of the Optical Society of America 1952;42:621-625. 
 
Pennebaker GE, Stewart WC, Stewart JA and Hunt HH. The effect of stimulus duration upon the 
components of fluctuation in static automated perimetry. Eye 1992;6:353-355. 
 
Perez PC, Gil-Arribas L, Ferreras A, Altemir I, Otin S, Fernandez S, Garcia E and Monclus NG. 
Relationship between FDF perimetry and standard automated perimetry. Acta Ophthalmogica 
2010;88:Supplement 246. 
 
Philipson B. Light scattering in lenses with experimental cataract. Acta Ophthalmologica 
1969;47:1089-1101. 
 
Phipps JA, Dang TM, Vingrys AJ and Guymer RH. Flicker perimetry losses in age-related 
macular degeneration. Investigative Ophthalmology and Visual Science 2004;45:3355-3360. 
 
Phipps JA, Guymer RH and Vingrys AJ. Temporal sensitivity deficits in patients with high-risk 
drusen. Australian and New Zealand Journal of Ophthalmology 1999;27:265-267. 
 
Pieron H. Neurophysiological mechanisms of critical flicker frequency and harmonic 
phenomena. Journal of the Optical Society of America 1962;52:475-475. 
 
Pierre-Filho PT, Gomes PR, E.T. P and Pierre LM. Learning effect in visual field testing of 
healthy subjects using Humphrey Matrix Frequency Doubling Technology perimetry. Eye 
2010;24:851-856. 
 
Pierre-Filho PT, Gomes PR, Pierre ET and Pierre LM. Learning effect of Humphrey Matrix 
Frequency Doubling Technology perimetry in patients with open angle glaucoma. European 

Journal of Ophthalmology 2010;20:538-541. 
 
Prager TC, Urso RG, Holladay JT and Stewart RH. Glare testing in cataract patients: instrument 
evaluation and identification of sources of methodological error. Journal of Cataract and 

Refractive Surgery 1989;15:149-157. 
 
Quigley HA. Chronic glaucoma selectively damages large optic nerve fibers. Investigative 

Ophthalmology and Visual Science 1987;28:913-920. 
 
Quigley HA. Number of people with glaucoma worldwide. British Journal of Ophthalmology 
1996;80:389-393. 
 
Quigley HA and Broman AT. The number of people with glaucoma worldwide in 2010 and 
2020. British Journal of Ophthalmology 2006;90:262-267. 
 
Quigley HA, Dunkelberger GR and Green R. Chronic human glaucoma causing selectively 
greater loss of large optic nerve fibers. Ophthalmology 1988;95:357-363. 
 



 431 

Racette L, Medeiros FA, Zangwill LM, Ng D, Weinreb RN and Sample PA. Diagnostic accuracy 
of the Matrix 24-2 and original N-30 Frequency-Doubling Technology tests compared with 
standard automated perimetry. Investigative Ophthalmology and Visual Science 2008;49:954-
960. 
 
Rao HL, Jonnadula GB, Addepalli UK, Senthil S and Garudadri CS. Effect of cataract extraction 
on visual field index in glaucoma. Journal of Glaucoma 2011; Epub ahead of print. 
 
Rao HL, Zangwill LM, Weinreb RN, Leite MT, Sample PA and Medeiros FA. Structure-
function relationship in glaucoma using spectral-domain optical coherence tomography. Archives 

of Ophthalmology 2011a;129:864-871. 
 
Rebolleda G, Muñoz FJ, Fernández Victorio JM, Pellicer T and del Castillo JM. Effects of 
pupillary dilation on automated perimetry in glaucoma patients receiving pilocarpine. 
Ophthalmology 1992;99:418-423. 
 
Reed H and Drance SM. The essentials of perimetry. Oxford: Oxford University Press, 1972; 
177. 
 
Regan D. The Charles F. Prentice Award Lecture 1990: specific tests and specific blindnesses: 
keys, locks, and parallel processing. Optometry and Vision Science 1991;68:489-512. 
 
Rehman Siddiqui MA, Khairy HA and Azuara-Blanco A. Effect of cataract extraction on SITA 
perimetry in patients with glaucoma. Journal of Glaucoma 2007;16:205-208. 
 
Reitner A, Tittl M, Ergun E and Baradaran-Dilmaghani R. The efficient use of perimetry for 
neuro-ophthalmic diagnosis. British Journal of Ophthalmology 1996;80:903-905. 
 
Reus NJ and Lemij HG. Scanning laser polarimetry of the retinal nerve fiber layer in 
perimetrically unaffected eyes of glaucoma patients. Ophthalmology 2004;111:2199-2203. 
 
Reynolds M, Stewart WC and Sutherland S. Factors that influence the prevalence of positive 
catch trials in glaucoma patients. Graefe's Archive for Clinical and Experimental Ophthalmology 
1990;228:338-341. 
 
Riemann CD, Hanson S and Foster JA. A comparison of manual kinetic and automated static 
perimetry in obtaining ptosis fields. Archives of Ophthalmology 2000;118:65-69. 
 
Roehrig WC. The influence of the portion of the retina stimulated on the critical flicker fusion 
threshold. Journal of Psychology 1959a;48:57-63. 
 
Roehrig WC. The influence of area on the critical flicker fusion threshold. Journal of Physiology 
1959b;47:317-330. 
 
Rogers-Ramachandran DC and Ramachandran VS. Psychophysical evidence for boundary and 
surface systems in human vision. Vision Research 1998;38:71-77. 
 
Ross DF, Fishman GA, Gilbert LD and Anderson RJ. Variability of visual field measurements in 
normal subjects and patients with retinitis pigmentosa. Archives of Ophthalmology 
1984;102:1004-1010. 



 432 

Ross RT. The fusion frequency in different areas of the visual field: II. The regional gradient of 
fusion frequency. Journal of General Psychology 1936;15:161-170. 
 
Rossetti L, Fogagnolo P, Miglior S, Centofanti M, Vetrugno M and Orzalesi N. Learning effect 
of short-wavelength automated perimetry in patients with ocular hypertension. Journal of 

Glaucoma 2006;15:399-404. 
 
Rota-Bartelink A. The diagnostic value of automated flicker threshold perimetry. Current 

Opinion in Ophthalmology 1999;10:135-139. 
 
Rucker JC, Hamilton SR, Bardenstein D, Isada CM and Lee MS. Linezolid-associated toxic 
optic neuropathy Neurology 2006;66:595-598. 
 
Rutishauser C and Flammer J. Retests in static perimetry. Graefe's Archive for Clinical and 

Experimental Ophthalmology 1988;226:76-77. 
 
Salvetat ML, Zeppieri M, Parisi L and Brusini P. Rarebit perimetry in normal subjects: test–
retest variability, learning effect, normative range, influence of optical defocus, and cataract 
extraction. Investigative Ophthalmology and Visual Science 2007;48:5320-5331. 
 
Salvetat ML, Zeppieri M, Parisi L, Johnson CA, Sampaolesi R and Brusini P. Learning effect 
and test-retest variability of Pulsar perimetry. Journal of Glaucoma 2011;Epub ahead of print. 
 
Sample PA, Bosworth CF, Blumenthal EZ, Girkin C and Weinreb RN. Visual function-specific 
perimetry for indirect comparison of different ganglion cell populations in glaucoma. 
Investigative Ophthalmology and Visual Science 2000;41:1783-1790. 
 
Sample PA, Bosworth CF and Weinreb RN. Short-wavelength automated perimetry and motion 
automated perimetry in patients with glaucoma. Archives of Ophthalmology 1997 115   1129-
1133. 
 
Sample PA, Boynton RM and Weinreb RN. Isolating the color vision loss in primary open-angle 
glaucoma. American Journal of Ophthalmology 1988;106:686-691. 
 
Sample PA, Martinez GA and Weinreb RN. Short-wavelength automated perimetry without lens 
density testing. American Journal of Ophthalmology 1994;118:632-641. 
 
Sample PA, Medeiros FA, Racette L, Pascual JP, Boden C, Zangwill LM, Bowd C and Weinreb 
RN. Identifying glaucomatous vision loss with visual-function-specific perimetry in the 
Diagnostic Innovations in Glaucoma Study. Investigative Ophthalmology and Visual Science 
2006;47:3381-3389. 
 
Sample PA, Taylor JDN, Martinez GA, Lusky M and Weinreb RN. Short-wavelength color 
visual fields in glaucoma suspects at risk. American Journal of Ophthalmology 1993;115:225-
233. 
 
Sample PA and Weinreb RN. Color perimetry for assessment of primary open angle glaucoma. 
Investigative Ophthalmology and Visual Science 1990;31:1869-1875. 
 



 433 

Sample PA and Weinreb RN. Progressive color visual field loss in glaucoma. Investigative 

Ophthalmology and Visual Science 1992;33:2068-2071. 
 
Sample PA, Weinreb RN and Boynton RM. Acquired dyschromatopsia in glaucoma. Survey of 

Ophthalmology 1986;31:54-64. 
 
Sanabria O, Feuer WJ and Anderson DR. Pseudo-loss of fixation in automated perimetry. 
Ophthalmology 1991;98:76-78. 
 
Saunders RM. The critical duration of temporal summation in the human central fovea. Vision 

Research 1975;15:699-703. 
 
Schaumberger M, Schafer B and Lachenmayr BJ. Glaucomatous visual fields. FASTPAC versus 
Full Threshold strategy of the Humphrey Field Analyzer. Investigative Ophthalmology and 

Visual Science 1995;36:1390-1397. 
 
Scheibel ME, Lindsay RD, Tomiyasu U and Scheibel AB. Progressive dendritic changes in 
aging human cortex. Experimental Neurology 1975;47:392-403. 
 
Schiefer U, Pascual JP, Edmunds B, Feudner E, Hoffmann EM, Johnson CA, Lagrèze WA, 
Pfeiffer N, Sample PA, Staubach F, Weleber RG, Vonthein R, Krapp E and Paetzold J. 
Comparison of the new perimetric GATE strategy with conventional Full Threshold and SITA 
Standard strategies. Investigative Ophthalmology and Visual Science 2009;50:488-494. 
 
Schmied U. Automatic (Octopus) and manual (Goldmann) perimetry in glaucoma. Graefe's 

Archive for Clinical and Experimental Ophthalmology 1980;213:239-244. 
 
Searle AE, Wild JM, Shaw DE and O'Neill EC. Time-related variation in normal automated 
static perimetry. Ophthalmology 1991;98:701-707. 
 
Sekhar GC, Naduvilath TJ, Lakkai M, Jayakumar AJ, Pandi GT, Mandal AK and Honavar SG. 
Sensitivity of Swedish Interactive Threshold Algorithm compared with standard Full Threshold 
algorithm in Humphrey visual field testing. Ophthalmology 2000;107:1303-1308. 
 
Serguhn S and Spiegel D. Comparison of Frequency Doubling perimetry and standard 
achromatic computerized perimetry in patients with glaucoma. Graefe's Archive for Clinical and 

Experimental Ophthalmology 2001;239:351-355. 
 
Shankar H and Pesudovs K. Critical flicker fusion test of potential vision. Journal of Cataract 

and Refractive Surgery 2007;33:232-239. 
 
Shapley R. Visual sensitivity and parallel retinocortical channels. Annual Review of Psychology 
1990;41:635-658. 
 
Shapley R and Perry VH. Cat and monkey retinal ganglion cells and their functional roles. 
Trends in Neuroscience 1986;9:229-235. 
 
Sharma AK, Goldberg I, Graham SL and Moshin M. Comparison of the Humphrey Swedish 
Interactive Thresholding Algorithm (SITA) and Full Threshold strategies. Journal of Glaucoma 
2000;9:20-27. 



 434 

Sherafat H, Spry PGD, Waldock A, Sparrow JM and Diamond JP. Effect of a patient training 
video on visual field test reliability. British Journal of Ophthalmology 2003;87:153-156. 
 
Sheu SJ, Chen YY, Lin HC, Chen HL, Lee IY and Wu TT. Frequency-Doubling Technology 
perimetry in retinal diseases - preliminary report. The Kaohsiung Journal of Medical Sciences 
2001;17:25-28. 
 
Shue B, Chatterjee A, Fudemberg S, Katz LJ, Moster MR, Navarro MJ, Pro M, Schmidt C, 
Spaeth GL, Stirbu O, Yalcin A and Myers JS. The effects of Mozart's music on the performance 
of glaucoma patients on automated perimetry. Investigative Ophthalmology and Visual Science 
2011;52:7347-7349. 
 
Siatkowski RM, Lam BL, Anderson DR, Feuer WJ and Halikman AM. Automated 
suprathreshold static perimetry screening for detecting neuro-ophthalmologic disease. 
Ophthalmology 1996;103:907-917. 
 
Siddiqui MA, Azuara-Blanco A and Neville S. Effect of cataract extraction on Frequency 
Doubling Technology perimetry in patients with glaucoma. British Journal of Ophthalmology 

2005;89:1569-1571. 
 
Siddiqui MA, Khairy HA and Azuara-Blanco A. Effect of cataract extraction on SITA perimetry 
in patients with glaucoma. Journal of Glaucoma 2007;16:205-208. 
 
Silverman SE, Trick GL and Hart WMJ. Motion perception is abnormal in primary open angle 
glaucoma and ocular hypertension. Investigative Ophthalmology and Visual Science 
1990;31:722-729. 
 
Simakova IL and Boĭko EV. Impact of cataract and age-related macular degeneration on the 
results of various perimetry techniques. Vestnik Oftalmologii 2010;126:10-14. 
 
Sloan LL. Area and luminance of test object as variables in examination of the visual field by 
projection perimetry. Vision Research 1961;1:121-138. 
 
Smith SD, Katz J and Quigley HA. Effect of cataract extraction on the results of automated 
perimetry in glaucoma. Archives of Ophthalmology 1997;115:1515-1519. 
 
Sommer A, Tielsch JM, Katz J, Quigley HA, Gottsch JD, Javitt J and Singh K. Relationship 
between intraocular pressure and primary open angle glaucoma among white and black 
Americans. The Baltimore Eye Survey. Archives of Ophthalmology 1991;109:1090-1095. 
 
Spahr J. Optimization of the presentation pattern in automated static perimetry. Vision Research 
1975;15:1275-1281. 
 
Sponsel WE, Ritch R, Stamper R, Higginbotham EJ, Anderson DR, Wilson MR and Zimmerman 
TJ. Prevent Blindness America visual field screening study. The Prevent Blindness America 
Glaucoma Advisory Committee. American Journal of Ophthalmology 1995;120:699-708. 
 
Spry PG, Hussin HM and Sparrow JM. Clinical evaluation of Frequency Doubling Technology 
perimetry using the Humphrey Matrix 24-2 threshold strategy. British Journal of Ophthalmology 
2005;89:1031-1035. 



 435 

Spry PG, Johnson CA, Mansberger SL and Cioffi GA. Psychophysical investigation of ganglion 
cell loss in early glaucoma. Journal of Glaucoma 2005;14:11-19. 
 
Stavrou EP and Wood JM. Central visual field changes using flicker perimetry in Type 2 
diabetes mellitus. Acta Ophthalmologica Scandinavica 2005 83:574-580. 
 
Stewart WC, Rogers GM, Crinkley CMC and Carlson AN. Effect of cataract extraction on 
automated fields in chronic open-angle glaucoma. Archives of Ophthalmology 1995;113:875-
879. 
 
Stewart WC, Shields MB and Ollie AR. Full Threshold versus Quantification of Defects for 
visual field testing in glaucoma. Graefe's Archive for Clinical and Experimental Ophthalmology 
1989;227:51-54. 
 
Tafreshi A, Sample PA, Liebmann JM, Girkin CA, Zangwill LM, Weinreb RN, Lalezary M and 
Racette L. Visual function-specific perimetry to identify glaucomatous visual loss using three 
different definitions of visual field abnormality. Investigative Ophthalmology and Visual Science 
2009 50:1234-1240. 
 
Takada S, Matsumoto C, Arimura E, Hashimoto S, Okuyama S and Shimomura Y. Influence of 
media opacities on SAP, SWAP, HRP, FDP and flicker perimetry. Investigative Ophthalmology 

and Visual Science 2004;45:E-Abstract 4330. 
 
Tan JC, Spalton DJ and Arden GB. Comparison of methods to assess visual impairment from 
glare and light scattering with posterior capsule opacification. Journal of Cataract and 

Refractive Surgery 1998;24:1626-1631. 
 
Tanga L, Centofanti M, Oddone F, Parravano M, Parisi V, Ziccardi L, Kroegler B, Perricone R 
and Manni G. Retinal functional changes measured by Frequency-Doubling Technology in 
patients treated with hydroxychloroquine. Graefe's Archive for Clinical and Experimental 

Ophthalmology 2011;249:715-721. 
 
Tanna AP, Abraham C, Lai J and Shen J. Impact of cataract on the results of Frequency 
Doubling Technology perimetry. Ophthalmology 2004;111:1504-1507. 
 
Tate GW. The physiological basis for perimetry. Orlando, FL: Grune & Stratton Inc, 1985; 1-28. 
 
Taylor MM. On the efficiency of psychophysical measurement. Journal of the Acoustical Society 

of America 1971;49:505-508. 
 
Thibos LN, Cheney FE and Walsh DJ. Retinal limits to the detection and resolution of gratings. 
Journal of the Optical Society of America 1987;4:1524-1529. 
 
Thomas D, Thomas R, Muliyil JP and George R. Role of Frequency Doubling Perimetry in 
detecting neuro-ophthalmic visual field defects. American Journal of Ophthalmology 
2001;131:734-741. 
 
 
 



 436 

Topouzis F, Coleman AL, Yu F, Mavroudis L, Anastasopoulos E, Koskosas A, Pappas T, 
Dimitrakos S and Wilson MR. Sensitivity and specificity of the 76-suprathreshold visual field 
test to detect eyes with visual field defect by Humphrey threshold testing in a population-based 
setting: the Thessaloniki eye study. American Journal of Ophthalmology 2004;137:420-425. 
 
Turpin A, McKendrick AM, Johnson CA and Vingrys AJ. Performance of efficient test 
procedures for Frequency-Doubling Technology perimetry in normal and glaucomatous eyes. 
Investigative Ophthalmology and Visual Science 2002;43:709-715. 
 
Turpin A, McKendrick AM, Johnson CA and Vingrys AJ. Properties of perimetric threshold 
estimates from Full Threshold, ZEST, and SITA-like strategies, as determined by computer 
simulation. Investigative Ophthalmology and Visual Science 2003;44:4787-4795. 
 
Tyler CW. Specific deficits of flicker sensitivity in glaucoma and ocular hypertension. 
Investigative Ophthalmology and Visual Science 1981;20:204-212. 
 
Tyler CW. Analysis of normal flicker sensitivity and its variability in the visuogram test. 
Investigative Ophthalmology and Visual Science 1991;32:2552-2560. 
 
Tyler CW, Ryu S and Stamper R. The relation between visual sensitivity and intraocular 
pressure in normal eyes. Investigative Ophthalmology and Visual Science 1984;25:103-105. 
 
Tyrrell RA and Owens DA. A rapid technique to assess the resting states of the eyes and other 
threshold phenomena: The Modified Binary Search (MOBS). Behavior Research Methods, 

Instruments and Computers 1988;20:137-141. 
 
Ueda T, Ota T, Yukawa E and Hara Y. Frequency Doubling Technology perimetry after clear 
and yellow intraocular lens implantation. American Journal of Ophthalmology 2006;142:856-
858. 
 
Van Coevorden RE, Mills RP, Chen YY and Barnebey HS. Continuous visual field test 
supervision may not always be necessary. Ophthalmology 1999;106:178-181. 
 
van den Berg TJ. On the relation between glare and straylight. Documenta Ophthalmologica 

Proceedings Series 1991;78:177-181. 
 
van den Berg TJ, IJspeert JK and de Waard PW. Dependence of intraocular straylight on 
pigmentation and light transmission through the ocular wall. Vision Research 1991;31:1361-
1367. 
 
van Den Berg TJTP, van Spronsen R, van Veenendaal WG and Bakker D. Psychophysics of 
intensity discrimination in relation to defect volume examination on the scoperimeter. In: Heijl 
A, Greve EL, eds. Proceedings of the Sixth International Visual Field Symposium. Santa 
Margherita, Ligure, Italy, 1984. Documenta Ophthalmologica Proceedings Series 1985:147-151. 
 
van der Schoot J, Reus NJ, Colen TP and Lemij HG. The ability of short-wavelength automated 
perimetry to predict conversion to glaucoma. Ophthalmology 2010;117:30-34. 
 



 437 

Van Toi V, Grounauer PA and Burckhardt CW. Artificially increasing intraocular pressure 
causes flicker sensitivity losses. Investigative Ophthalmology and Visual Science 1990;31:1567-
1574. 
 
Vidal-Fernández A, García Feijoó J, González-Hernández M, González De La Rosa M and 
García Sánchez J. Initial findings with Pulsar perimetry in patients with ocular hypertension. 
Archivos de la Sociedad Española de Oftalmología 2002;77:321-326. 
 
Vingrys AJ and Demirel S. False-response monitoring during automated perimetry. Optometry 

and Vision Science 1998;75:513-517. 
 
Vingrys AJ and Pesudovs K. Localized scotomata detected with temporal modulation perimetry 
in central serous chorioretinopathy. Australian and New Zealand Journal of Ophthalmology 
1999;27:109-116. 
 
Vislisel JM, Doyle CK, Johnson CA and Wall M. Variability of Rarebit and standard perimetry 
sizes I and III in normals. Optometry and Vision Science 2011;88:635-639. 
 
Wabbels BK, Diehm S and Kolling G. Continuous light increment perimetry compared to Full 
Threshold strategy in glaucoma. European Journal of Ophthalmology 2005;15:722-729. 
 
Wabbels BK and Wilscher S. Feasibility and outcome of automated static perimetry in children 
using continuous light increment perimetry (CLIP) and fast threshold strategy. Acta 

Ophthalmologica Scandinavica 2005;83:664-669. 
 
Wachler BSB, Durrie DS, Assil KK and Krueger RR. Improvement of visual function with glare 
testing after photorefractive keratectomy and radial keratotomy. American Journal of 

Ophthalmology 1999;128:582-587. 
 
Wall M. High-pass Resolution perimetry in optic neuritis. Investigative Ophthalmology and 

Visual Science 1991;32:2525-2529. 
 
Wall M, Brito CF, Woodward KR, Doyle CK, Kardon RH and Johnson CA. Total Deviation 
probability plots for stimulus size V perimetry: a comparison with size III stimuli. Archives of 

Ophthalmology 2008;126:473-479. 
 
Wall M, Chauhan B, Frisén L, House PH and Brito C. Visual Field of High-pass Resolution 
perimetry in normal subjects. Journal of Glaucoma 2004;13:15-21. 
 
Wall M, Conway MD, House PH and Allely R. Evaluation of sensitivity and specificity of 
spatial resolution and Humphrey automated perimetry in pseudotumor cerebri patients and 
normal subjects. Investigative Ophthalmology and Visual Science 1991;32:3306-3312. 
 
Wall M, Doyle CK, Brito CF, Woodward KR and Johnson CA. A comparison of catch-trial 
methods used in standard automated perimetry in glaucoma patients. Journal of Glaucoma 
2008;17:626-630. 
 
Wall M, Jennisch CS and Munden PM. Motion perimetry identifies nerve fiber bundle like 
defects in ocular hypertension. Archives of Ophthalmology 1997 115:26-33. 
 



 438 

Wall M, Johnson CA, Kardon RH and Crabb DP. Use of a continuous probability scale to 
display visual field damage. Archives of Ophthalmology 2009;127:749-756. 
 
Wall M, Kardon R and Moore P. Large size stimuli of automated perimetry have lower 
variability. Investigative Ophthalmology and Visual Science 1993;34:1262. 
 
Wall M, Kutzko KE and Chauhan BC. Variability in patients with glaucomatous visual field 
damage is reduced using size V stimuli. Investigative Ophthalmology and Visual Science 
1997;38:426-435. 
 
Wall M and White WN. Asymmetric papilledema in idiopathic intracranial hypertension: 
prospective interocular comparison of sensory visual function. Investigative Ophthalmology and 

Visual Science 1998;39:134-142. 
 
Wall M, Woodward KR, Doyle CK and Artes PH. Repeatability of automated perimetry: a 
comparison between standard automated perimetry with stimulus size III and V, Matrix, and 
Motion perimetry. Investigative Ophthalmology and Visual Science 2009;50:974-979. 
 
Wall M, Woodward KR, Doyle CK and Zamba G. The effective dynamic ranges of standard 
automated perimetry sizes III and V and Motion and Matrix perimetry. Archives of 

Ophthalmology 2010;128:570-576. 
 
Walsh TJ. Visual Fields. San Francisco, CA: American Academy of Ophthalmology, 1996; 309. 
 
Weber J and Klimaschka T. Test time and efficiency of Dynamic Strategy in glaucoma 
perimetry. German Journal of Ophthalmology 1995;4:25-31. 
 
Weijland A, Fankhauser F, Bebie H and Flammer J. Automated Perimetry Visual Field Digest. 
Haag-Streit AG, 2004.  
 
Weinreb RN, Friedman DS, Fechtner RD, Cioffi GA, Coleman AL, Girkin CA, Liebmann JM, 
Singh K, Wilson MR, Wilson R and Kannel WB. Risk assessment in the management of patients 
with ocular hypertension. American Journal of Ophthalmology 2004;138:458-467. 
 
Weinreb RN and Perlman JP. The effect of refractive error on automated global analysis 
program G-1. American Journal of Ophthalmology 1986;104:229-232. 
 
Werner EB, Adelson A and Krupin T. Effect of patient experience on the results of automated 
perimetry in clinically stable glaucoma patients. Ophthalmology 1988;95:764-767. 
 
Werner EB and Drance SM. Early visual field disturbances in glaucoma. Archives of 

Ophthalmology 1977;95:1173-1175. 
 
Werner EB, Krupin T, Adelson A and Feitl ME. Effect of patient experience on the results of 
automated perimetry in glaucoma suspect patients. Ophthalmology 1990;97:44-48. 
 
Westcott MC, McNaught AI, Crabb DP, Fitzke FW and Hitchings RA. High spatial resolution 
automated perimetry in glaucoma. The British Journal of Ophthalmology 1997;81:452-459. 
 



 439 

Wetherill GB and Levitt H. Seqential estimation of points on a psychometric function. British 

Journal of Mathematical and Statistical Psychology 1965;18:1-10. 
 
White AJ, Sun H, Swanson WH and Lee BB. An examination of physiological mechanisms 
underlying the Frequency-Doubling illusion. Investigative Ophthalmology and Visual Science 
2002;43:3590-3599. 
 
Wild JM. Short-wavelength automated perimetry. Acta Ophthalmologica Scandinavica 
2001;79:546-559. 
 
Wild JM, Betts TA and Shaw DE. The Influence of a social dose of alcohol on the central visual 
field. Japanese Journal of Ophthalmology 1990;34:291-297. 
 
Wild JM, Cubbidge RP, Pacey IE and Robinson R. Statistical aspects of the normal visual field 
in short-wavelength automated perimetry. Investigative Ophthalmology and Visual Science 
1998;39:54-63. 
 
Wild JM, Dengler-Harles M, Searle AE, O'Neill EC and Crews SJ. The influence of the learning 
effect on automated perimetry in patients with suspected glaucoma. Acta Ophthalmologica 
1989;67:537-545. 
 
Wild JM, Kim LS, Pacey IE and Cunliffe IA. Evidence for a learning effect in short-wavelength 
automated perimetry. Ophthalmology 2006;113:206-215. 
 
Wild JM, Martinez C, Reinshagen G and Harding FA. Characteristics of a unique visual field 
defect attributed to Vigabatrin. Epilepsia 1999;40:1784-1794. 
 
Wild JM, Moss ID and O'Neill EC. Baseline alterations in blue-on-yellow normal perimetric 
sensitivity. Graefe's Archive for Clinical and Experimental Ophthalmology 1996;234:141-149. 
 
Wild JM, Moss ID, Whitaker DJ and O'Neill EC. The statistical interpretation of blue on yellow 
visual field loss. Investigative Ophthalmology and Visual Science 1995;36:1398-1410. 
 
Wild JM, Pacey IE, Hancock SA and Cunliffe IA. Between-algorithm, between-individual 
differences in normal perimetric sensitivity: Full Threshold, FASTPAC, and SITA. Investigative 

Ophthalmology and Visual Science 1999a;40:1152-1161. 
 
Wild JM, Pacey IE, O’Neill EC and Cunliffe IA. The SITA Perimetric Threshold Algorithms in 
glaucoma.  Investigative Ophthalmology and Visual Science 1999b;40:1998-2009. 
 
Wild JM, Searle AE, Dengler-Harles M and O'Neill EC. Long-term follow-up of baseline 
learning and fatigue effects in the automated perimetry of glaucoma and ocular hypertensive 
patients. Acta Ophthalmologica  1991;69:210-216. 
 
Wilensky JT and Joondeph BC. Variation in visual field measurements with an automated 
perimeter. American Journal of Ophthalmology 1984;97:328-331. 
 
Wilson ME. Invariant features of spatial summation with changing locus in the visual field. 
Journal of Physiology 1970;2007:611-622. 
 



 440 

Winther C and Frisén L. A compact Rarebit test for macular diseases. British Journal of 

Ophthalmology 2010;94:324-327. 
 
Wood JM, Wild JM, Bullimore MA and Gilmartin B. Factors affecting the normal perimetric 
profile derived by automated static threshold LED perimetry. I. Pupil size. Ophthalmic and 

Physiological Optics 1988;8:26-31. 
 
Wood JM, Wild JM and Crews SJ. Induced intraocular light scatter and the sensitivity gradient 
of normal visual field. Graefe's Archive for Clinical and Experimetal Ophthalmology 
1987a;225:369-373. 
 
Wood JM, Wild JM, Hussey MK and Crews SJ. Serial examination of the normal visual field 
using Octopus automated projection perimetry. Evidence for a learning effect. Acta 

Ophthalmologica 1987b;65:326-333. 
 
Wood JM, Wild JM, Smerdon DL and Crews SJ. Alterations in the shape of the automated 
perimetric profile arising from cataract. Graefe's Archive for Clinical and Experimental 

Ophthalmology 1989;227:157-161. 
 
Wu LL, Suzuki Y, Kunimatsu S, Araie M, Iwase A and Tomita G. Frequency-Doubling 
technology and confocal scanning ophthalmoscopic optic disc analysis in open-angle glaucoma 
with hemifield defects. Journal of Glaucoma 2001;10:256-260. 
 
Yenice O and Temel A. Evaluation of two Humphrey perimetry programs: Full Threshold and 
SITA Standard testing strategy for learning effect. European Journal of Ophthalmology 
2005;15:209-212. 
 
Yoshiyama KK and Johnson CA. Which method of flicker perimetry is most effective for 
detection of glaucomatous visual field loss? Investigative Ophthalmology and Visual Science 
1997;38:2270-2277. 
 
Zalta AH. Lens rim artifact in automated threshold perimetry. Ophthalmology 1989;96:1302-
1311. 
 
Zalta AH. Use of a central 10 degrees field and size V stimulus to evaluate and monitor small 
central islands of vision in end stage glaucoma. British Journal of Ophthalmology 1991;74:289-
293. 
 
Zalta AH and Burchfield JC. Detecting early glaucomatous field defects with the size I stimulus 
and Statpac. The British Journal of Ophthalmology 1990;74:289-293. 
 
Zeppieri M, Brusini P, Parisi L, Johnson CA, Sampaolesi R and Salvetat ML. Pulsar perimetry in 
the diagnosis of early glaucoma. American Journal of Ophthalmology 2010;149:102-112. 
 
Zeppieri M, Demirel S, Kent K and Johnson CA. Perceived spatial frequency of sinusoidal 
gratings. Optometry and Vision Science 2008;85:318-329. 
 
Zhong Y, Chen L, Cheng Y and Huang P. Influence of learning effect on blue-on-yellow 
perimetry. European Journal of Ophthalmology 2008;18:392-399. 
 



 441 

Zulauf M, Caprioli J, Hoffman DC and Tressler CS. Fluctuation of the differential light 
senstivity in clinically stable glaucoma. In: Mills RP, Heijl A, eds. Perimetry Update 1990/1991 
Proceedings of the IXth International Perimetric Society Meeting. Malmø, Sweden: Kugler and 
Ghedini; 1991, 183-188. 
 
Zulauf M, Fehlmann P and Flammer J. Perimetry with normal Octopus technique and Weber 
'Dynamic' technique. Initial results with reference to reproducibility of measurements in 
glaucoma patients. Ophthalmologe 1996;93:420-427. 
 
Zulauf M, Flammer J and Signer C. The influence of alcohol on the outcome of automated static 
perimetry. Graefe's Archive for Clinical and Experimental Ophthalmology 1986;224:525-528. 
 
Zulauf M, LeBlanc RP and Flammer J. Normal visual fields measured with Octopus program G1 
II. Global visual field indices. Graefe's Archive for Clinical and Experimental Ophthalmology 
1994;232:516-522. 


