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“When there is name-and-form, consciousness comes to be; consciousness has name-and-

form as its condition… it does not go further back than name-and-form.” 

 

(Samyutta Nikaya (Connected Discourses) 12:65, pp. 602. Cf. D. ii 32, pp.211, circa 500 BC, 

Siddhartha Gautama (the Historical Buddha), translated by Stephen Batchelor) 
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Chapter 1. 
Introduction to experimental design 
 

1.1 Overview  
 

 This thesis explores the effects of transcranial magnetic stimulation (TMS) on 

conscious perception and visual processing. Chapter 1 addresses issues of experimental 

design. Two broad classes of TMS intervention were used and are reported in separate 

chapters. Chapter 2 involves repetitive ‘off-line’ TMS combined with neuroimaging 

techniques. Chapter 3 employs ‘on-line’ TMS applied with temporal specificity to track the 

passage of information through early visual cortex. Chapter 4 is a general discussion 

primarily concerned with the issues encountered experiments oriented towards consciousness. 

 

 The area of interest in this research is conscious processing. One approach to this field 

is to contrast clear reports of awareness with perception explicitly lacking in consciousness. 

The neurological phenomenon of blindsight exemplifies this contrast. Blindsight can follow 

damage to the primary visual cortex and is expressed by subjects insisting that they are not 

consciously aware of stimuli while nevertheless being able to guess the stimulus 

characteristics above chance. Similar effects have previously been reported following TMS of 

early visual cortex in healthy observers. Like clinical blindsight, TMS-induced blindsight 

straddles the boundary between consciousness and perception lacking in consciousness. 

 

 Most of the experiments reported in this thesis exploited a similar behavioural 

paradigm in which subjects were presented with simple arrow stimuli and asked several 

questions. One set of questions was a forced choice discrimination decision which allowed 

for the tracking of perception independently of conscious criteria. Other questions, such as 

‘Did you consciously see the target?’ were employed to ascertain measures of the subjects’ 

conscious experience of the stimuli. As with clinical blindsight, independent changes in these 

measures illustrate the borders that surround conscious awareness, revealing the neuronal 
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processes that contribute to conscious processing in contrast to those responsible for 

perception lacking in consciousness.  

 

 The effects of off-line repetitive TMS can last for approximately one hour or longer 

and are explored in Chapter 2. This series of experiments initially aimed to use the 

suppressive after-effect of TMS to study the behavioural consequences of reducing cortical 

excitability in areas where lesions can cause blindsight. However, contrary to expectations, a 

repetitive TMS protocol that suppresses cortical excitability was found to enhance rather than 

impair a measure of subjects’ conscious experience. This finding contradicted the hypothesis 

and warranted further investigation. The experimental configuration and initial results were 

therefore replicated (2.6.1) in conjunction with magnetoencephalography (MEG) and other 

experimental manipulations (2.6). In addition, magnetic resonance spectroscopy (MRS) was 

employed to measure corresponding biochemical changes induced by TMS (2.5). The overall 

conclusion of the off-line experiments was that repetitive TMS increased conscious detection 

of stimuli, and that this intervention potentiated mechanisms of gating through inhibition.  

 

 Chapter 3 reports a series of experiments involving on-line (or event-related) occipital 

TMS, in which single pulses or short bursts of stimulation are delivered at varying intervals 

relative to visual stimuli. This approach allowed for mapping the time course and role of 

activity that is causally constitutive for visual perception and awareness. Visual stimulus 

characteristics were also manipulated to permit conclusions concerning the role of specific 

anatomical pathways in perception and awareness. Two main on-line studies experiments 

were conducted: a between-subjects study (3.3) and a single-subject case study (3.4-3.7). The 

single-subject case study included three independent experiments (3.5-3.7) that considered 

the role of different phases of occipital activity and different anatomical pathways in 

perception. The between-subjects experiment employed similar interventions to those of the 

single-subject study but with lower resolution. Overall, the on-line TMS experiments suggest 

that conscious awareness of stimuli depends on visual cortical activity from approximately 

100ms after stimulus onset, and that it may benefit from input through retinotectal and/or 

magnocellular pathways during the very early and very late stages of processing. In contrast 

the preserved ‘unseen’ abilities during TMS-induced blindsight did not appear to rely on such 

input, contrary to previous suggestions, and may instead depend on geniculostriate activity 

and activity subsequent to the 100ms epoch that is central to conscious processing.  
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 In sum, the experiments described here explored the neural basis of consciousness. By 

analysing changes in reported awareness of stimuli following different experimental 

interventions, it has been possible to link various neuronal substrates to distinct aspects of 

visual processing. 

 

1.2 General background  
 

1.2.1 Philosophical context 
 

 This section will explore some of the background considerations and aims that 

informed the experimental design. 

  

The philosophical strategy adopted for this research has been that of 

Neurophenomenology (Lutz, 2003; Varela, 1996; Varela, Thompson, & Rosch, 1991). This 

framework seeks to explore the coupling between physiology and phenomenology1. Subjects’ 

phenomenological experiences of experiments were quantified predominantly through 

psychophysical methods, and related to physiological changes assessed through the use of 

neuro-interventional and neuroimaging techniques.  

 

The principal technique used in all experiments was TMS. This method perturbs 

neuronal activity and can also have phenomenological consequences (e.g. Boyer, Harrison, & 

Ro, 2005). TMS thus has a unique advantage over the more traditional or common cognitive 

neuroscience techniques: it allows us to move beyond the correlation of brain-behaviour 

states to assess their causal relationship (Campbell, 2007; Chambers & Mattingley, 2005; 

Walsh & Cowey, 2000). 

 

                                                            
1 Phenomenology can be understood as the study of the first person subjective element of 
consciousness and experience. It is commonly linked with the ‘what it is like’ (Nagel, 1974) aspect to 
experience and the notion of ‘qualia’ (Lewis, 1929). Historically it derives from the work of 
continental philosophers such as Husserl and Merleau-Ponty, but it can also be attributed to the 
investigations of Hume and eastern traditions. 
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 The investigation of differences between states of consciousness - that is, differences 

in content - appears to be a perfectly valid approach to the investigation of consciousness 

(e.g. Lutz, Lachaux, Martinerie, & Varela, 2002) but it is not the one adopted here (some of 

these alternative approaches are considered in Chapter 4). Rather, my approach has been to 

consider the presence versus lack of subjective awareness. This can be thought of as a border 

that surrounds conscious experience. This framework conveys an understanding of what is 

involved in conscious experience in contrast to processes closely related but not involved, 

thus drawing what Dehaene calls a ‘negative picture’ (pp13 Dehaene & Changeux, 2004). 

This contrast between perception and explicit conscious awareness is also discussed by 

Dretske (2000) as one of the few viable directions for investigations that isolate, and 

therefore operationally define, consciousness. 

 

 There is scope within this contrast between conscious processing and perception 

lacking consciousness to look at differences that are uninformative in terms of the conscious 

experiences in question. For example, the processes of the circulatory system are necessary 

for, and coupled to, conscious experience, but the contrasts between a functioning and a non-

functioning heart are not particularly informative about consciousness. Likewise, 

inflammatory responses due to skin contact with poisonous plants can be described as a form 

of perception, but again the utility of this as a contrast state would be uninformative due to 

vast differences between the inflammatory system and the systems that support consciousness 

(Dretske, 2000). There is, therefore, a need to be as ‘minimal’ (Chalmers, 2000) or tight 

around this border as possible.  

 

In order to frame an optimally informative contrast, we require both states of 

conscious experience and states in which all things are equal except for the conscious 

experience. Blindsight (Sanders, Warrington, Marshall, & Wieskrantz, 1974) is deemed to be 

just such a state (Holt, 2003). Subjects with blindsight are able to respond veridically to the 

environment (in a manner that in other circumstances might be credited with conscious 

awareness) but insist that they are not aware of the environmental stimuli being presented. 

Hence, what they lack is specifically conscious experience (Holt, 2003). This is why 

blindsight, and in particular, TMS-induced blindsight (e.g. Boyer, et al., 2005) forms the 

focus of this thesis.  
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1.2.2 Blindsight 
 

 Blindsight classically arises following lesions to primary visual cortices and has been 

defined as “visual capacity in a field defect in the absence of acknowledged awareness” 

(pp166 Weiskrantz, 1986). Blindsight patients demonstrate perception insofar as their 

performance in forced choice tasks is greater than expected by chance, yet at the same time 

will not acknowledge awareness of the stimuli having been presented, often insisting that 

they are guessing (Weiskrantz, 1986). These demonstrable abilities, in the presence of a 

negative report of awareness, include localisation, orientation, colour, and lexical 

discrimination (Cowey, 2010; Weiskrantz, 1986). Residual abilities in blindsight are most 

often demonstrated using forced choice tasks (e.g. Sanders, et al., 1974). However, blindsight 

has also been shown indirectly where a cue presented within a subject’s ‘blind field’ may not 

be acknowledged but still affects other motor responses (e.g. Kentridge, Heywood, & 

Weiskrantz, 1999). Blindsight therefore corresponds to a dissociation or disjunction between 

conscious detection and perceptual abilities (Weiskrantz, 1986, 2001, 2009). Although 

Weiskrantz was the principal investigator on the paper that coined the term (Sanders, et al., 

1974), and remains a central figure in blindsight literature, it is worth noting that a 

dissociation between subjects reporting not having ‘seen’ stimuli despite above-chance 

performance was first documented over 100 years ago (Sidis, 1898).  

 

Blindsight is a controversial phenomenon; its very existence has been questioned 

(Campion, Latto, & Smith, 1983) and its implications and interpretations are diverse 

(compare Block, 1995; Chalmers, 1996; Dennett, 1991). Some of these issues are dealt with 

in the general discussion (Chapter 4). For now, it need only be acknowledged that blindsight 

illustrates a condition in which subjective conscious awareness is suppressed while 

perceptual performance without acknowledged awareness is relatively preserved; this is a 

relatively uncontroversial claim around which the current project was conceived. 

Experiments were therefore required to be capable of tracking subjects’ awareness of stimuli 

and, independently, subjects’ perceptual abilities when they reported a lack of awareness.  

Hence experiments should be capable of illustrating the dissociations between conscious 

experience and response abilities, i.e. blindsight type effects. As in previous studies, the 

general rationale for using blindsight in the current investigation of consciousness is that it 
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offers a set of contrast states where all things are equal except, specifically, conscious 

awareness.  

 

1.2.3 TMS-induced blindsight 
 

 During TMS a strong current (~1.8 kV, 7kA) briefly (~250 μs) is passed through a 

coil to induce a time-varying magnetic field (~2 tesla) (Magstim Company Limited, 

Carmarthenshire; stimulator specifications; Wagner, Rushmore, Eden, & Valero-Cabre, 

2009). When applied over the head this time-varying magnetic field induces an electrical 

field in the underlying cortex, resulting in the activation of nerve cells (Barker, Jalinous, & 

Freeston, 1985). 

  

Under certain circumstances, disruption to ongoing activity caused by TMS has been 

seen as analogous to lesions (Pascual-Leone, Walsh, & Rothwell, 2000). Given the existence 

of lesion-based blindsight, TMS-induced blindsight was therefore a natural progression for 

experimentation. Although electromagnetic disruption of visual perception has been known 

about for over 100 years (d'Arsonval, 1896) it was not until 1989 that such disruption was 

clearly linked with visual cortical processes (Amassian et al., 1989). In 2004 the first study 

used the term blindsight to describe a disruption of visual areas caused by TMS (Ro, Shelton, 

Lee, & Chang, 2004). Ro and colleagues used TMS to reduce subjects’ reported awareness of 

centrally presented distracters and showed that the distracter, even though it was reportedly 

beyond awareness, increased response times during a saccadic but not manual response task 

(Ro, et al., 2004). The distracter was thus described as being rendered ‘unaware’ by the TMS, 

even though it still had a measurable perceptual effect – a ‘blindsight type’ effect. 

 

 It is possible to argue that oculomotor mechanisms are somewhat lower down the 

cognitive scale from the perceptual abilities common in the most influential demonstrations 

of classic blindsight (Weiskrantz, 1986), due to their governance, at least in part, being 

reflexive (de No, 1933). Hence, influence over saccades might be expected to function 

independently of effects on conscious awareness and therefore might not be considered 

relevant to blindsight. However, Ro and colleagues went on to demonstrate different aspects 
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of TMS induced blindsight, including those involving higher, more complex, perceptual 

abilities such as colour and orientation discrimination (Boyer, et al., 2005). 

  

 Using a variety of tasks, investigators have been able to demonstrate that different 

perceptual abilities can be dissociated from conscious awareness. This has involved the 

application of TMS to attenuate measures of awareness relative to measures of perceptual 

ability. For example, Jolij et al (2005) claimed to uncover ‘affective blindsight’ by showing 

that occipital TMS applied 110ms after target onset impaired reportedly conscious 

localisation of targets without degrading the emotional content of targets (cartoon faces). 

Others have shown that deflections in grasping action can result from distracters for which 

awareness is suppressed by occipital TMS (Christensen, Kristiansen, Rowe, & Nielsen, 

2008). 

 

 Apart from its reversible nature, a great advantage of TMS-induced blindsight over 

classic blindsight is the opportunity it affords to explore the time course of the dissociation 

between conscious and unconscious vision. Pulses can be applied and activity disrupted at 

specific times relative to visual stimuli (on-line), and periods of activity may therefore be 

revealed which can be related to phenomenal and behavioural consequences. TMS-induced 

blindsight thus contributes to a wider literature where TMS is used to elucidate the timing 

and role of visual cortical activity (see section 3.1.2). One of the main aims of the work 

described here has been to disrupt activity in a temporally precise manner and relate this to 

the contrast involving consciousness. Similar reasoning and experiments have led to the 

proposal that there is an early feedforward sweep of activity that is ‘unconscious’ and 

preserved in classic blindsight, which is then followed by a recurrent phase of processing that 

confers conscious awareness (Lamme, 2001, 2006b; Lamme & Roelfsema, 2000).  Probing 

this theory was a major aim of the experiments undertaken here, particularly the ‘on-line’ 

experiments. The research which inspired, and is therefore most relevant to, the experiments 

described here are previous demonstrations of TMS induced blindsight (Boyer, et al., 2005; 

Christensen, et al., 2008; Jolij & Lamme, 2005; Ro, et al., 2004), all of which involve on-line 

TMS. These are considered in greater depth in Chapter 3. 

 

 The off-line TMS experiments (Chapter 2) focused instead on the neuronal correlates 

of changes in conscious awareness following repetitive TMS. In particular, these experiments 
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studied the oscillatory and neurochemical changes that might govern the conscious detection 

of visual stimuli.   

 

1.2.4 Types of blindsight and the pathways involved 
 

 Blindsight has been divided into sub-classes. The most commonly discussed 

differentiation is between type I and type II (Weiskrantz, 1997). Type I corresponds to an 

absolute absence of awareness, whereas type II demonstrates a markedly reduced form of 

awareness. Type II subjects are not reflectively aware of the precise content of a presented 

stimulus yet can guess as to its character and had a minimal sense that something was 

presented to them (as in ‘agnosopsia’, not knowing what one sees Danckert & Rossetti, 

2005). A similar phenomenon that has been considered akin to type II blindsight is Riddoch 

syndrome, where a subject may be aware of moving but not stationary visual stimuli in the 

blind field. This ability has been related to pathways that bypass the primary visual cortex 

and directly innervate the motion sensitive area V5/middle temporal cortex (MT+) (Zeki & 

Ffytche, 1998). 

 

Danckert and Rossetti (2005) offer a further distinction between ‘action’ vs 

‘attentional’ blindsight (as well as agnosopsia). However, this differentiation does not seem 

to have been widely adopted, perhaps because it attempts to reflect differences in underlying 

neuronal pathways that remain unproven: action blindsight is assumed to involve direct 

innovation of posterior parietal cortex, whereas attention blindsight is assumed to rely on 

extrastriate visual areas, including V5/MT+. The distinction may also blur the categorisation 

between blindsight and widely accepted neurological disorders, such as neglect and visual 

agnosia.  

 

In terms of the nature of classic blindsight (type I and II), a frequently overlooked 

point is that subjects with blindsight express their condition in only a portion of their visual 

field; they are often normally sighted across the bulk of their field. The straightforward 

possibility of light being scattered from retinal locations corresponding to the blind field into 

their sighted field has been raised as an explanation that trivialises blindsight (Campion, et 

al., 1983). Proponents of blindsight have gone to great lengths in order to demonstrate that 
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this is not the case (e.g. Kentridge, Heywood, & Weiskrantz, 1997). Another aspect, again 

often overlooked, is the role of the intact visual cortex and plasticity in supporting residual 

guessing abilities, although this has been suggested (Campion, et al., 1983 commentary by 

Bach-y-Rita, P.)   

 

In addition to debates over the nature and interpretation of blindsight, the physiology 

that facilitates the residual abilities is one of the most keenly debated aspects in the literature 

(Cowey, 2010), driven by compelling evidence for opposing points of view (cf. Leh, Mullen, 

& Ptito, 2006; Schmid et al., 2010). There are broadly two theories or positions for the 

pathways that facilitate blindsight type abilities. Some advocate a role for spared projections 

from the lateral geniculate nucleus (LGN) (Schmid, et al., 2010) which mainly projects to the 

primary visual cortex and is consistent with there being ‘spared islands’ of primary visual 

cortex that facilitate residual perception (Radoeva, Prasad, Brainard, & Aguirre, 2008). An 

opposing view is that the residual abilities of blindsight are supported by pathways that 

mainly bypass the striate cortex, primarily via the retinotectal route that includes the superior 

colliculus (e.g. Leh et al 2006, 2009). In terms of classic blindsight, the majority of studies 

favour the latter interpretation, although the matter is by no means settled (see section 3.1.3, 

and figure 3.1.3.1). Moreover, in terms of the relatively new phenomenon of TMS-induced 

blindsight, the question of which pathway supports these perceptual abilities is still very 

much open. It could be the case that the pathways which support the positive abilities seen in 

classic blindsight are not the same as those found to mediate abilities seen in TMS-induced 

blindsight, or possibly that no single pathway underlies the spared abilities of blindsight. 

Rather, the pathways that support the spared abilities of blindsight may be dependent on the 

task used to quantify the residual abilities and method of neurological intervention.  

 

 These accounts were contrasted in Chapter 3 (see section 3.1.3), exploiting the 

observation that the retinotectal and magnocellular pathways of the LGN do not appear to 

receive colour opponent input from short wave cones of the retina (Sumner, Adamjee, & 

Mollon, 2002). A key aim of these on-line experiments was to adjudicate between competing 

theories of blindsight by combining time-locked TMS with stimuli that were calibrated to 

activate or bypass specific anatomical pathways. 
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1.2.5 Summary of background and aims 
 

 The broadest aim of this research has been to study the relationship between 

physiological and phenomenological measures (Varela, 1996), with a view to elucidating 

neural mechanisms of visual awareness in the human brain. In doing so the experiments 

focused on TMS-induced blindsight to investigate the mechanisms of consciousness and 

phenomenology through a contrast between explicit conscious awareness and states 

specifically lacking in consciousness. The next section focuses on establishing a reliable 

method for deriving phenomenologically-related measures that allow this contrast. Chapters 2 

and 3 address the physiological side of these relationships. Specifically, Chapter 2 makes use 

of several imaging and interventional modalities to probe the physiological mechanisms that 

may underlie modulation of conscious awareness, with a particular focus on biochemical and 

oscillatory effects of TMS. Chapter 3 aims to elucidate the time course and pathways of early 

visual processing that support conscious awareness and perception lacking in consciousness. 

 

1.3 Tasks, measures and stimuli 
 

 This section provides a general overview of the stimuli and behavioural measures 

employed in this project. It focuses on the stimuli and tasks originally developed and 

deployed in the off-line TMS experiments and the reasons for their use. Issues arising and 

subsequent adaptations are covered in the discussion of the off-line experiments (2.8) and 

introduction to the on-line experiments (3.2). 

 

 Fred Dretske has pointed to the utility of comparing at least two tasks which give 

access to the subjective experience of subjects, in contrast with those that probe raw 

perceptual abilities (Dretske, 2000). This is also what is required to demonstrate the 

dissociation of blindsight (Weiskrantz, 1986) and a principle upon which these experiments 

were designed.  

 

 There are many perceptual responses to stimuli that have the potential to reveal 

blindsight type abilities. Here an explicit question, ‘Did you consciously see the stimulus?’ 
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was posed in conjunction with a non-speeded forced choice discrimination judgement about 

the stimulus. Subjects’ forced choice discrimination ability, specifically when they reported 

not having seen the stimulus, served as a measure of their perceptual ability, explicitly 

lacking in conscious awareness. This design was intended to reflect the principal components 

of the classic demonstrations of blindsight by Weiskrantz and colleagues (1986). It was also 

partly inspired by the Perceptual Awareness Scale (PAS) of Overgaard and colleagues, which 

has been used to compare the confidence subjects place in a judgment with their objective 

performance (Overgaard, 2003; Ramsoy. T.Z., 2004). 

 

 Reaction times, manual response effects in terms of speeded cueing, saccadic effects 

and indirect measures in general are also capable of demonstrating blindsight type effects 

(e.g. Leh, Mullen, et al., 2006; Ro, et al., 2004; Weiskrantz, 1996). However, these were not 

used in the studies presented here for the following three related reasons. First, there are 

statistical considerations: forced choice discrimination performance can be more 

straightforwardly equated with detection performance than can effects on reaction times or 

movement deflections. Thus, dissociations between two forced choice measures are easier to 

interpret and are less likely to be conflated by differential sensitivity of very different 

measures to cortical interference. Second, and more importantly, if blindsight is to be used to 

reveal consciousness through a comparison with perceptual states lacking in awareness, then 

the differences between the perceptual and awareness probes should be minimised in all other 

respects (Chalmers, 2000; Marcel, 1983). Intuitively and phenomenally, detection tasks have 

more in common with overt forced choice discrimination tasks than with cueing tasks and 

other more indirect measures. Relatedly, it seems entirely possible that the neuronal 

architecture underlying cueing might be quite different from that underlying perceptual 

abilities involved in higher perceptual discriminations; thus the use of cueing as a contrast 

state might reveal something quite different, and possibly less informative. It is also possible 

that abilities demonstrated with different tasks (cueing vs. forced choice discrimination) 

could reflect different types of blindsight (e.g. attentional vs. action). Third, one of the 

questions we wished to pose was in relation to the role of the superior colliculus, so we 

required a probe that could operate via this route but did not necessarily require such input 

under normal conditions. If we had chosen a probe that had previously been shown to depend 

critically upon the superior colliculus under normal conditions, such as saccadic dynamics 

(Lee, Rohrer, & Sparks, 1988; Ro, et al., 2004), then the capacity of experiments to reveal 
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whether or not residual abilities of blindsight depend on the superior colliculus would be 

compromised.  

 

1.3.1 Stimuli and questions 
 

 The visual stimuli were arrows (see figure 1.3.1.1). At least two tasks or probes are 

required to track the borders between conscious perception and perception that is independent 

of, or lacking in, awareness (Dretske, 2000). One task is required to be capable of tracking 

subjective phenomenal experience of presented stimuli. The second task must be capable of 

illustrating perception and of being modulated independently of the first task. Two questions 

were therefore applied to each trial: i) ‘Was the arrow pointing left or right?’ (prompted by 

the display of ‘L/R’) – a forced choice discrimination judgement that is capable of revealing 

perception even when the subject reports not being aware of the stimulus (Kolb & Braun, 

1995); and  ii) ‘Did you consciously see the arrow? Yes or No’ (prompted by ‘Y/N’) – a 

question designed to track the subject’s reflective experience of the stimulus2. 

 

 
Figure 1.3.1.1. A left arrow, approximately as presented to subjects. The surrounding 

bars are the luminance noise, which alternated every 20ms with a range of 10cd/m2.  

 

                                                            
2 To minimise the influence of the two questions upon one another, the (‘L/R’) discrimination 

question was posed prior to the detection (‘Y/N’) question. This was because, intuitively, the 
reflection upon the detection question could affect the subject’s response to the discrimination 
judgment through the adjustment of criteria, whereas the effect of the discrimination task had upon 
the detection judgement was likely to be less influential. Therefore the discrimination question was 
presented first.   
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Arrows were chosen because their presence can be detected and they can be 

discriminated between. Several other features of arrows also encouraged their use. Most 

importantly they have particularly strong cueing properties (e.g. Ristic & Kingstone, 2006). 

This meant that they were thought likely to elicit above chance responses in the forced choice 

tasks at or below thresholds of awareness, as was confirmed in preliminary piloting. They 

also offered the possibility of examining the cueing or indirect elements of blindsight 

abilities, which are an ongoing aspect of this series of experiments not covered in this thesis.  

 

Arrows were sometimes presented (stimulus-present) and sometimes not (stimulus-

absent) in order to facilitate the use of Signal Detection Theory (SDT section 1.3.2) in 

relation to the conscious detection question. The luminance of the arrow was titrated for each 

subject so that, in the absence of TMS, it was detected on approximately half of stimulus-

present trials. This level of detection was deemed low enough to be susceptible to TMS, yet 

was high enough to be capable of demonstrating a range of response changes. 

 

A key feature of the stimuli was the luminance noise, which alternated at candela 

intervals over a range of ~10 cd/m2 with the same periodicity as the stimulus presentation 

(20ms). Noise is a required feature of the ‘s-cone’ stimuli used in Chapter 3 to isolate the 

collicular pathways (see section 3.1.3 and 3.2.1). Because this manipulation was a possibility 

in all experiments the noise was present during all stimuli presentations (although it was only 

exploited in the on-line experiments). An additional advantage of using a noisy background 

for stimuli is that it might increase ‘false alarm rates’, which aided the application of SDT to 

the detection task (see below 1.3.2.1). It is worth noting that the level of luminance of the 

arrows (or saturation of s-cone / purple colour in the case of the pathway-specific stimuli) 

was always greater than the range of the noise. Thus stimulus-present conditions always 

differed physically from stimulus-absent conditions. Noise was presented beyond the edge of 

the central region where the arrows were presented (see figure 1.3.1.1); this allowed the 

arrow to be presented at different locations within the noise (a manipulation not used in the 

final experiments). The special distribution of the noise also reduced the illusory appearance 

of arrows within the noise during stimulus-absent conditions, an effect which became 

apparent during preliminary piloting and development of the stimuli.  

 

 As with the choice of probes / questions, the intention in the design of the stimuli was 

to develop a task that required perception with a degree of abstraction or higher order 
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processing. If responses to stimuli are reflexive then it may not be appropriate to use them in 

the construction of a contrast state to reveal consciousness (Dretske, 2000). It was felt that the 

detection and discrimination of arrows required a sufficient level of abstraction (syntax) to 

draw on mechanisms of cognitive control and thus minimise the contribution of reflexive 

processes to performance.  

 

 Non-lateralised foveal stimuli allowed for foveally targeted TMS, avoiding potential 

inconsistencies in the lateralisation of TMS’s effects (e.g. Corthout, Hallett, & Cowey, 2002). 

Additionally ‘S-cones’ (see section 3.1.3) are distributed more densely and consistently 

within the fovea than at the periphery (Sumner, 2000), additionally suggesting foveal 

presentation.  

 

1.3.2 Derivation of measures 

 

 As mentioned, in order to illustrate blindsight type effects we require a measure of 

conscious detection and perceptual ability revealed by a discrimination judgement. This 

section describes the rationale and methodology for deriving these measures.  

 

1.3.2.1 Detection 

 

A major criticism of approaches that attempt to tackle measures of awareness, and 

phenomenologically led approaches in general, is that a subject’s response criteria might 

fluctuate independently of changes in the conscious experience (e.g. Campion, et al., 1983; 

Eriksen, 1960; Nisbett, 1977). This concern of ‘response bias’ will be returned to in greater 

depth in Chapter 4. For now, it is sufficient to note that the application of Signal Detection 

Theory (SDT)(see Green & Swets, 1966; Macmillan & Creelman, 1990) to the ‘Did you 

consciously see?’ question allows us to compute measures of bias, and of conscious 

sensitivity largely independent of bias. In this context, the measure of sensitivity (e.g. d’, 

Tanner & Swets, 1954) reflects the difference between subjects’ propensity to say they saw 

the stimulus when it was present, and their propensity to say they saw it when it was absent. 

That is, it denotes the subject’s acknowledged detection of, or explicit sensitivity to, external 

stimuli. Bias measures (e.g. β, Green & Swets, 1966) are expressions of the propensity of 

subjects to say they saw the stimuli independently of what was presented.  The application of 
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such measures to blindsight type phenomena was first explored in the original case study by 

Weiskrantz (1986). 

 

In SDT a positive response to a presented stimulus is a ‘Hit’, while a positive 

response when the stimulus is absent is a ‘False Alarm’. If a stimulus is present but reported 

as unseen then the trial is classed as a ‘Miss’, whereas the same negative response to an 

absent stimulus is a ‘Correct Rejection’. This stimulus-response mapping can be represented 

as follows: 

 

Table 1.3.2.1.1. SDT classification used in the derivation of measures of conscious 

detection and bias in detection. 

 Hit 

False 

Alarm 

Correct 

Rejection Miss 

Stimulus Present Absent Absent Present 

Response ‘Yes’ ‘Yes’ ‘No’ ‘No’ 

 

In the current studies, the occurrence of these conditions and responses was computed 

into hit rates and false alarm rates, forming the basic units from which the measures of 

sensitivity and bias were derived. Hit Rates (HR eq1.1) are the number of hits divided by the 

number of stimulus-present trials. False Alarms Rates (FAR eq1.2) are the number of false 

alarms divided by the number of stimulus-absent trials. There are however several different 

sensitivity and bias measures available to the experimenter; these form the focus of the next 

section. 

 

HR ൌ  
Hits

ሺHits ൅ Missesሻ 

         eq1.1 

FAR ൌ
False Alarms

ሺFalse Alarms ൅ Correct Rejectionsሻ 

         eq1.2 
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1.3.2.2 Which SDT measures? 

 

Early piloting revealed that the conscious detection question, as opposed to the forced 

choice discrimination question, was subject to bias. This bias manifested conservatively as a 

preponderance toward saying ‘No, I have not seen it’, leading to low false alarm rates. 

Subjects often adopt conservative criteria in comparable ‘yes/no’ tasks (Macmillan & 

Creelman, 1990). The cause and interpretation of this phenomenon is considered in greater 

depth in Chapter 4. Here, the criterion has consequences for the choice of which SDT 

measures to apply.  

 

Parametric versions of SDT such as the classic d’, C or β involve z normalising HR 

and FAR (eq 1.3 to 1.5). If either of these rates is 1 or 0 then this is not possible. So where 

FAR is 0, classic SDT cannot be straightforwardly applied, which may often be the case in 

the context of such conservative criteria. Some transforms allow for extreme responses, 

including the 1/2n adjustment.  The 1/2n calculation assumes that when extreme responses 

are found (e.g. FAR=0) the number of false alarms actually lies between 0 and 1 over the 

number of trials, i.e. 1/2n (Hautus, 1995; Macmillan & Kaplan, 1985). 

 

d’ ൌ  zሺHRሻ െ  zሺFARሻ 

         eq1.3 

c ൌ  െ0.5ሺzሺHRሻ  ൅  zሺFARሻሻ 

         eq1.4 

β ൌ  e
୸మሺFARሻି୸మሺHRሻ

ଶ  

         eq1.5 

 

   Formulae taken from Wright, Horry, & Skagerberg (2009)  

 

An additional concern is the central assumption of classic SDT that the distributions 

of signal (from which hits result) and noise (from which false alarms result) are both normal 

and equal in their variance (pp140 Stanislaw & Todorov, 1999). The low incidence of false 

alarms suggested that this assumption may not have been valid, as did likely imbalances of 

trial numbers in the stimulus-present vs. stimulus-absent conditions (e.g. owing to trials being 
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excluded owing to TMS-induced blinks or different classes of stimuli). For these reasons a 

non-parametric form of SDT was employed throughout these experiments (Corwin, 1994).  

 

Although A’ and B” (Pollack & Norman, 1964; Stanislaw & Todorov, 1999 ; eq 1.6 

and 1.7) are non-parametric SDT measures and thus not subject to parametric assumptions of 

d’ and β, they nevertheless cope poorly with zero FARs or maximal HRs, again because such 

levels of detection would require division by 0 (see eq 1.6 and eq 1.7). For this reason, the 

simpler measures of Pr and Br (Corwin, 1994, eq 1.8. and 1.9) were used here as they are 

appropriate for low FARs, make fewer statistical assumptions, and have a far greater 

tolerance to imbalances in the ratio of stimulus-present to stimulus-absent trials (Corwin, 

1994). Here Pr was used as an alternative to d’ that is range-compatible with the proportion 

of correct ‘unseen’ discriminations in the forced choice task (1.3.2.3). The measure Br was 

adopted for bias, being approximately equivalent to β or C. 

 

if  HR≥FAR  

Aᇱ ൌ  0.5 ൅ 
ሺሺHR െ FARሻሺ1 ൅ HR െ FARሻሻ

ሺ4HRሺ1 െ FARሻሻ  

else 

Aᇱ ൌ  0.5 െ 
ሺሺFAR െ HRሻሺ1 ൅ FAR െ HRሻሻ

4FARሺ1 െ HRሻ  

         eq 1.6 

 

if HR≥FAR  

Bᇱᇱ ൌ  
ሺHRሺ1 െ HRሻ െ FARሺ1 െ FARሻሻ
ሺHRሺ1 െ HRሻ ൅ FARሺ1 െ FARሻሻ 

else 

Bᇱᇱ ൌ  
ሺFARሺ1 െ FARሻ െ HRሺ1 െ HRሻሻ
ሺFARሺ1 െ FARሻ ൅ HRሺ1 െ HRሻሻ 

         eq 1.7 

Pr ൌ HR െ FAR 

         eq 1.8  

Br ൌ  
FAR

ሺ1 െ ሺHR െ FARሻሻ 

         eq 1.9  
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Eq 1.6 and 1.7 taken from Snodgrass & Corwin, (1988). Eq 1.8 and 1.9 taken from 

Corwin, (1994). 

 

 

 

1.3.2.3 Discrimination 

 

In deciding which discrimination judgments to incorporate in the measures of 

capacity which may persist when consciousness is suppressed, there two options are 

available. The first approach is to analyse all discrimination judgments; the alternative is to 

focus exclusively only on discrimination performance when subjects report the target as 

‘unseen’. Both approaches have been previously adopted. Classic blindsight studies (e.g. 

Weiskrantz, 1986) often opt for the use of all forced choice discrimination trials. However, 

since subjects rarely, if ever, report awareness in classic blindsight, the two measures would 

be expected to produce equivalent results. Studies of subliminal processing also often use all 

available trials to demonstrate perceptual abilities but may also assess the absence of 

awareness separately (e.g. Sumner, Tsai, Yu, & Nachev, 2006, for review see Kouider & 

Dehaene, 2007). The use of all discrimination trials has also been applied to the closely 

related, yet distinct, contrast between ‘objective’ and ‘subjective’ measures of detection (e.g. 

de Graaf, Goebel, & Sack, 2012); this distinction is discussed in section 4.4 and appendix A6. 

TMS-induced blindsight studies, which contrast conscious awareness with perception lacking 

in awareness, tend to use ‘unseen’ trials only in the demonstration of preserved abilities 

(Boyer, et al., 2005; Ro, et al., 2004). 

 

Discrimination ability on reportedly ‘seen’ trials is arguably uninformative because 

subjects are invariably at ceiling; mean percentage correct for ‘seen’ discrimination in the 

first off-line TMS experiment (section 2.1) was 97.7% ± 0.53% (SD). This positive aspect of 

a report is unsurprising – if a subject sees an arrow and is aware of the experience, they tend 

correctly to judge its direction. Moreover, if the measure of discrimination includes 

conditions in which subjects are aware of the stimulus, then a genuine dissociation between 

detection and discrimination would be obscured because ‘seeing’ the stimulus more (or less) 

often would coincide with an increase (or decrease) in discrimination ability. Thus, the key 

measure of perception independent of consciousness is required to be discrimination on 

‘unseen’ trials. In addition, to ensure that discrimination performance indexes perceptual 
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processing, reportedly ‘unseen’ performance must remain above chance in the control 

conditions (as was confirmed for these stimuli during pilot experiments). For these reasons 

discrimination responses were categorised according to whether or not they occurred on trials 

when the subject reported having seen the stimulus (‘seen’ or ‘unseen’). ‘Seen’ trials were 

then removed from the analysis to produce a measure of ‘unseen’ discrimination. 

 

The categorisation of the discrimination judgment according to the detection question 

has consequences for inferential statistical power: within any set number of trials, the greater 

the proportion of conscious detections then the lower the proportion of ‘unseen’ 

discriminations. This discrepancy between the measures can often be overcome by increasing 

the numbers of trials, although this adjustment is subject to limitations (as discussed in 

Chapter 2). Statistical tests can also be applied to confirm that the two measures are 

appropriately comparable in power. One such approach is to compare the variance of the two 

measures based on these trial numbers (Keppel, 1982). In particular, Keppel recommends that 

the ratio of standard error estimates should not exceed 3:1 if the measures are to be 

considered comparable. This approach was used in the on-line experiments in particular (e.g. 

see section 3.3).  

 

With these considerations in mind, the number of trials per cell of the study design 

was determined by calculating the number of trials required to demonstrate above chance 

performance on ‘unseen’ trials. To determine this, a power analysis was applied based on a χ2 

distribution of performance on ‘unseen’ trials. As can be seen in figure 1.3.2.3.1, the benefit 

in terms of the likelihood of demonstrating above chance performance, conferred by adding 

additional trials, began to plateau from ~25 trials. Subjects were thresholded to detection 

levels at which they reported not having seen the arrow on approximately 25% of all trials. 

Therefore, the number of trials required for any one experimental condition was 

approximately 100 trials, which was usually rounded up to ~120 trials. 
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Figure 1.3.2.3.1 Illustration of the performance (proportion correct ratio) required to 

demonstrate above chance performance (α = 0.05), given the number of ‘unseen’ 

trials, using a χ2 test. 

 

SDT can also be applied to the forced choice discrimination questions (Macmillan & 

Creelman, 1990) by calculating detection sensitivity to left arrows and bias towards saying 

‘left’, or likewise for right arrows. For example, in terms of left arrows, the number of hits, 

false alarms, correct rejections and misses can be calculated according to Table 1.3.2.3.1 

(below). These calculations were only used to ensure that subjects were performing the task 

as instructed (i.e. not simply giving the same response on all trials during which they felt they 

could not see the arrow). The measure used to quantify ‘unseen’ abilities in these experiments 

(PcU) was the proportion-correct performance of the ‘left/right’ decision, when subjects 

reported not having seen the arrow.  

 

Table 1.3.2.3.1 Table of SDT classification used to ensure subjects performance. 

 Hit 

False 

alarm 

Correct 

Rejection Miss 

Response ‘Left’ ‘Left’ ‘Right’ ‘Right’ 

Stimulus Left Right Right Left 

 

It is worth noting that describing these abilities as unseen in the literal sense is 

potentially misleading and can be considered incorrect because the fact that subjects perform 

above chance means they still see the stimuli (Dretske, 2000). This is why, throughout the 

thesis, ‘unseen’ is used as the bracketing or epoché, which qualifies the term as referring to 



29 
 

the subjective state of the subject (Dapraz, 1999; Dennett, 1991; Lutz, 2003; Varela, et al., 

1991). That is, objectively the stimuli are seen / perceived, but in terms of the subjective 1st 

person perspective they are ‘unseen’. Bracketing moves the subjective report into the 3rd 

person domain. There is also the possibility of describing these abilities in terms of 

unconscious or subliminal processing, which is perfectly acceptable (see Dehaene, Changeux, 

Naccache, Sackur, & Sergent, 2006 for synopsis), but describing them as lacking in 

consciousness and reportedly ‘unseen’ is less controversial and captures the important 

elements of the task performance. 

 

 

1.3.3 What do we define as blindsight?  
 

 What pattern of responses should we consider corresponds to TMS-induced 

blindsight? In classic lesion-based blindsight, where the suppression of conscious awareness 

is essentially permanent and absolute, subjects’ conscious detection of stimuli will always 

approximate to a d’ (eq 1.3) or Pr (eq 1.8) of 0, and their forced choice discrimination ability 

(which demonstrates blindsight) will dissociate and be greater than 0 (Cowey, 2010; 

Weiskrantz, 1986). TMS-induced blindsight, on the other hand, is a relative state revealed by 

the difference between active and control conditions. As such, the way in which blindsight 

manifests upon the measure of conscious detection is one of differential suppression between 

experimental conditions, with reportedly ‘unseen’ discrimination remaining above chance 

and relatively unaffected by TMS (Weiskrantz, 2001, 2009).  

 

 The possibility of reducing conscious detection to a d’ or Pr of 0 is clearly preferable 

in terms of interpretation, as it allows greater confidence that the concurrent ‘unseen’ ability 

approaches a complete lack of awareness (Eriksen, 1960). However, such a conservative 

definition of blindsight is neither necessary nor practical: a dissociable effect of TMS on the 

two measures can be demonstrated independently of whether detection is fully abolished. 

Furthermore, simply reporting the stimuli as ‘unseen’ indicates that subjects were less 

consciously aware of the stimuli than when ‘seen’, highlighting the relative difference upon 

which the experiments are based. Finally, to my knowledge, none of the previous 

demonstrations of TMS-induced blindsight have reported complete elimination of conscious 
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detection (Boyer, et al., 2005; Christensen, et al., 2008; Jolij & Lamme, 2005; Ro, et al., 

2004). 

 

 Demonstrations of blindsight in ‘normal observers’ are often based on masking 

paradigms which dissociate consciousness and performance (e.g. Lau & Passingham, 2006). 

However, whether or not this dissociation is complete and should be termed blindsight is 

controversial (for contrasting interpretations of data compare (Kolb & Braun, 1995; Lau & 

Passingham, 2006) to (Morgan, Mason, & Solomon, 1997; Robichaud & Stelmach, 2003)). 

Independently of whether or not these experiments failed or succeeded in demonstrating 

blindsight in ‘normal observers’, they all have a common approach; they do not seek to 

obtain complete suppressions of conscious detection type measures (Kolb & Braun, 1995; 

Lau & Passingham, 2006; Morgan, et al., 1997; Robichaud & Stelmach, 2003), but rather 

seek to demonstrate blindsight through a relative dissociation between subjective detection 

and accuracy performance under a task condition such as masking or rivalry. 

  

 Defining TMS-induced blindsight as a complete absence of conscious detection (i.e. 

Pr ~ 0 criteria) does not take account of baseline levels of performance. That is, if the levels 

of performance in the baseline condition were relatively high, then even large suppressions 

specific to conscious awareness might not be classed as blindsight. On the other hand, were 

baseline performance to be lower, much smaller effects would be classed as blindsight. 

Hence what is classed as blindsight might only depend upon the baseline condition. I 

therefore adopted the relative functional definition of blindsight as a statistically significant 

drop in the measure of conscious detection, while under the same experimental conditions, 

subjects’ reportedly ‘unseen’ performance was unaffected or differentially affected, but 

above chance. 
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Chapter 2. Off-line experiments 
The effects of continuous Theta Burst Stimulation on gating 

consciousness: a combined TMS, MEG and MRS study. 

 

2.1 Overview 
 

 These experiments originally aimed to demonstrate blindsight type effects following a 

repetitive TMS (rTMS) protocol that is thought to reduce cortical excitability, in areas similar 

to those affected by lesions in classic blindsight. However, results indicated that rTMS had 

the opposite effect to that predicted: conscious detection increased (section 2.2). This 

counterintuitive finding therefore merited replication and further investigation. Subsequent 

experiments included the same behavioural and TMS paradigm in combination with 

magnetoencephalographic (MEG) recording and magnetic resonance spectroscopy (MRS) to 

investigate the electrophysiological and neurochemical basis of the observed effects.  

 This chapter begins with the report of the initial behavioural experiment (2A section 

2.2) which is followed by a preliminary discussion of the effects on vision (2.3). Subsequent 

experiments to uncover the basis of these behavioural effects are then described (sections 2.4-

6). Collectively, these comprised three experiments: a study of how rTMS influences the 

excitability of the visual cortex, (2B section 2.4), an MRS experiment to study how rTMS 

influences neurochemistry (2C section 2.5) and an MEG experiment (2D section 2.6), that 

includes a behavioural replication of the initial finding (2.6.1). These are then followed by a 

section-specific general discussion (2.7) that encompasses all of the off-line TMS 

experiments. Finally, I discuss the limitations of the behavioural paradigm (2.8), which 

informed modifications to the design in the subsequent on-line TMS experiments (Chapter 3). 

Additional analyses and relationships between measures are reported in appendix A1-3. 
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2.2 Behavioural experiment (2A) 
 

2.2.1 Introduction  
 

Blindsight has been one of the most informative conditions in recent investigations of 

consciousness (e.g. Block, 1995; Dehaene & Naccache, 2001; Lamme, 2001; Lau & 

Passingham, 2006). As previously described (1.2.2) patients with blindsight typically present 

with lesions to their early visual cortex and do not acknowledge conscious awareness of 

stimuli presented, yet can demonstrate residual perceptual abilities in forced choice tasks 

(Sanders, et al., 1974; Weiskrantz, 1986). Blindsight thus corresponds to a lack of conscious 

awareness that dissociates from residual perceptual abilities, highlighting the role of the 

affected brain regions in conscious processing. 

 Previous demonstrations of TMS-induced blindsight are based upon the application of 

single- or double-pulse TMS, which have been used to disrupt conscious processing through 

disruption of early visual areas at various times relative to stimulus onset (e.g. Boyer, et al., 

2005). Continuous theta burst stimulation (cTBS) is an alternative ‘off-line’ repetitive TMS 

protocol that is thought to reduce cortical excitability and alter GABAergic function for 

approximately one hour (Franca, Koch, Mochizuki, Huang, & Rothwell, 2006; Huang, 

Edwards, Rounis, Bhatia, & Rothwell, 2005; Stagg et al., 2009). Following application of 

cTBS to motor areas the TMS intensity required to elicit a motor twitch for the same motor 

area, has been shown to increase (Huang, et al., 2005).  

Here we sought to simulate an occipital lesion using cTBS within a behavioural 

paradigm capable of demonstrating blindsight-type effects. To this end we presented subjects 

with arrows and asked them in which direction the arrows were pointing and whether or not 

they were consciously aware of having seen the arrows (figure 2.2.1.1). From this was 

derived a measure of subjects’ conscious detection of the arrows (PrC, section 1.3) and their 

forced choice discrimination ability, specifically, on trials where they reported not having 

seen the arrow (PcU). A blindsight-type effect, resulting from the cTBS-induced reduction in 

cortical excitability, was expected to manifest as a reduction in conscious detection while 

leaving reportedly ‘unseen’ discrimination ability above chance and relatively intact.  
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Using a related cTBS protocol over the dorsolateral prefrontal cortex, Rounis et al 

(2010) demonstrated the impairment of meta-cognitive confidence judgments (Rounis, 

Maniscalco, Rothwell, Passingham, & Lau, 2010). In addition, a suppression of similar 

capacities has been reported in a conference abstract when applying TBS to visual cortical 

areas (see Rahnev, Bahdo, Munneke, de Lange, & Lau, 2010). 

 

Figure 2.2.1.1. Experimental Design. 

A. Example of arrow stimuli, noise (stimulus-absent) and the questions. The questions 

presented on every trial were ‘Was the arrow pointing left or right?’ denoted by ‘L/R’ 

and ‘Did you see the arrow? Yes or No’ denoted by ‘Y/N’.   

B. Time course of each trial. Fixation was followed by noise alternating at 50Hz with 

a stimulus frame (20ms) displayed at 800ms on half of the trials. Responses to 

questions followed after a further 400ms of noise and were not speeded. Questions 

commenced with the ‘L/R?’ decision. 

C. Time course of the experiment. Behavioural and MEG acquisition blocks of eight 

minutes (Experiment 2A and 2D) were collapsed into 16-minute analysis blocks, to 

align with the acquisition of MRS (Experiment 2C) and phosphene threshold data 
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(Experiment 2B) acquisitions. Pre-TBS blocks were used to baseline the data (see 

section 2.2.2 for details). Active and control TMS were applied in separate sessions. 

 

2.2.2 Methods  
 

Sixteen neurologically healthy subjects participated in the first experiment, for which 

they were paid £10 per hour (5 female and 11 male, aged 22 to 35 mean 28). I was one of the 

subjects (see section 4.8.2). All provided informed consent and were screened for medical 

contraindications to TMS, including personal or family history of epilepsy (Maizey, In Press). 

This research was approved by the Ethics Committee at Cardiff University School of 

Psychology. 

Visual stimuli were presented using a Cambridge Research Systems (CRS) Visage 

and Real Time Sequencer system on a Matlab platform, via a Mitsubishi Diamond Pro 

2070sb monitor, refreshing at 100Hz, which was degaussed and regularly gamma-corrected. 

Infra-red eye tracking was carried out using a CRS 250Hz eye-tracker. Eye movements and 

pupil diameter were recorded. Two subjects were excluded from this analysis of eye-tracking 

data owing to failure of the eye-tracker to record reliable pupillometry data. Trials in which 

the subject blinked during the stimuli presentation, identified by a vertical shift in signal 

followed by a transitory loss of signal coincident with the stimuli presentation, were removed 

from the analysis. Across all subjects, this criterion resulted in the exclusion of 72 trials from 

a possible 25,600. 

 The arrow target stimulus was a 20ms increase in luminance amongst luminance noise 

(figure 2.2.1.1). Noise started 800ms prior to the target and continued for 400ms afterwards 

against a black background, alternating every 20ms within a range of 17.5 to 32.5 cd/m2.  Left 

and right arrows were presented singularly and in equal proportions, with equivalent 

luminance at the fixation point subtending the vertical meridian. The noise occupied 1.97o × 

1.97o of the visual angle and the target arrow subtended 0.90° × 1.34°. On half the trials 

(stimulus-absent condition) a noise frame supplemented the target stimulus. On each trial, 

subjects were first asked in which direction the arrow was pointing (L/R?) and then whether 

or not they were consciously aware of having seen the arrow (Y/N?) (figure 2.2.1.1). From 

these questions three measures were derived: (a) their conscious detection of the arrow (PrC); 
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(b) their discrimination ability specifically when they reported not having seen the arrow 

(PcU); and (c) their response bias (BrC, see statistical methods below). 

  The luminance of the target was titrated in a separate session prior to experimental 

days, so that subjects were consciously detecting the target at Pr = 0.6. Following a period of 

familiarisation with the task and stimuli, this involved adjusting the luminance of the stimuli 

in 20-trial runs of 80-trial blocks and repeating for approximately 15 blocks. This produced a 

psychophysical function to which a linear or sigmoidal curve was fitted (depending on 

goodness of fit), which was then solved for the threshold value. A block consisting of 80 

trials at the derived luminance value were then completed to confirm the threshold values, 

and small adjustments were made as required if performance exceeded a tolerance of ± 0.15 

Pr units. If adjustments were made, blocks were repeated at the new luminance value. For 

experimental sessions, if the performance over baseline ‘pre’ TBS blocks (see figure 

2.2.1.1.C) exceeded the tolerance, similar small adjustments were made to the luminance of 

the stimuli and the blocks repeated to maintain performance.  If performance exceeded the 

criteria after 4 blocks then the experimental session was abandoned in order to avoid 

additional fatigue effects, and the session rescheduled.  

Blocks consisted of 80 trials in a randomised order. Ten blocks were undertaken in 

each session, including two blocks prior to the application of the TBS to provide a baseline, 

and eight blocks following. Eight minutes were allocated for each block; as blocks took 

approximately 5 minutes to complete, a short rest period was included. The first block started 

1 minute 20 seconds after TBS had ended, such that data was collected up to 66 minutes after 

the TBS had started.  After every trial, subjects were asked two questions which were 

explained to them prior to testing. The two questions were: ‘Was the arrow pointing Left or 

Right?’ (the discrimination question for which they were prompted ‘L/R’), and ‘Did you 

consciously see the arrow?’ (the detection question, for which they were prompted ‘Y/N’). 

Questions were posed in that order to reduce the impact the later question might have upon 

the former. Responses were recorded via key press on a standard keyboard (response 

mapping is the same as in the participant inscriptions for the on-line studies: appendix A4). 

A round coil (Magstim High Power 90mm Coil and Magstim biphasic Ripid2 

stimulator) was used, delivering 600 pulses over 40 seconds (following Huang, et al., 2005) at 
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an intensity of 80% of the subjects’ resting motor threshold3; this corresponded to a mean 

TMS intensity of 41.7% stimulator output (± 3.6% SD). Motor threshold was established 

using the observation of movement method, and was calculated as the average across 

hemispheres (Stokes et al., 2005; Varnava, Stokes, & Chambers, 2011). Positioning was 

achieved using a miniBIRD system (Ascension Technology Corp) in conjunction with 

MRIcro, MRIreg software (Chris Rorden) and structural MRI scans (Rorden & Brett, 2000). 

TMS was targeted at the striate cortex (V1); that is, the closest scalp coordinate to the mid-

hemispheric termination of the left and right calcarine sulci, calculated with Surface 

Extraction Tool software (Version 2, Chris Chambers and Mark Stokes). However, because 

of the relatively diffuse effect of a round coil and consistent with the work of Thielscher et al 

(2010), the direct effect of this intervention in terms of magnetic induction can only 

definitively be said to be across occipital cortices (and not selectively V1). In the active cTBS 

condition the rim of the coil was positioned 2cm below the closest scalp coordinate to V1, 

which centred the rim over V1, with the handle pointing upward and side ‘B’ facing away 

from the subject. The position was closely matched in sham (control) conditions except that 

the coil was oriented horizontally and a 9mm spacer was placed between scalp and coil to 

replicate the contact artefact. The two conditions (active and sham) occurred on different 

days, the order of which was counter balanced between subjects. This protocol was used in all 

subsequent applications of TBS. 

Statistical methods.  

Behavioural blocks of 8 minutes were concatenated into blocks of 16 minutes to 

improve the power / reliability of individual data points and to align the behavioural 

experiment with subsequent MRS acquisitions (see Experiment 2C, section 2.5). 

The behavioural measures were obtained via the application of non-parametric SDT to 

the subjects’ responses (Corwin, 1994; Green & Swets, 1966; Macmillan & Creelman, 1990). 

Non-parametric SDT was used because of imbalances in stimulus conditions and response 

profiles, which violated the assumptions of classic SDT (Corwin, 1994). The measure of 

subjects’ conscious detection (PrC) was taken as the veridical acknowledged sensitivity to the 

                                                            
3 The motor thresholds used were collected by members of Cardiff University TMS-group according 
to the methods set out in (Stokes et al., 2005; Varnava, Stokes, & Chambers, 2011) and the Cardiff 
University TMS lab manual. Contributors to the motor threshold database therefore may include, 
myself, Alice Varnava, Chris Chambers, Frederick Verbruggen, Leah Maizey, Mark Stokes, Martynas 
Dervinis, Michail Kozlov and Rachel Adams. 
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arrow’s presence. The application of SDT was therefore as follows: acknowledged awareness 

in the presence of an arrow was a ‘hit’; acknowledged awareness when no arrow was 

presented was a ‘false alarm’; denial of awareness when no arrow was presented was a 

‘correct rejection’; and denial of awareness when there was an arrow present was a ‘miss’. 

The same allocations of SDT classes were used in the measure of response bias in conscious 

detection (BrC). The measure of ‘unseen’ discrimination ability was derived from the 

subject’s left/right proportion correct performance, only when subjects reported not having 

seen the arrow (PcU). Bias in left/right discrimination was also calculated (for left bias) but 

this measure was only used to ensure that subjects were performing the task as instructed. 

Effects of cTBS were assessed using repeated measures ANOVAs for each measure in 

the analysis. The dependent variable therefore consisted of the measure of interest for each 

post TBS block baselined to pre TBS levels. The factors for the ANOVA were TMS site (2 

levels, active vs. control) and time since the TMS (4 levels, 2-18, 18-34, 34-50, 50-66 

minutes). The experimental hypotheses are represented by the factor of TMS site. Of 

secondary concern was the development of these effects over the course of the experiment 

(TMS site × TMS time) and the purely time-dependent effects. For this reason the effects of 

TMS ‘site’ are reported in the first instance. Greenhouse-Geisser corrected p values are 

reported. The analyses were applied to measures separately as they informed independent 

hypotheses. All subsequent analyses of other dependent variables conform to this structure, 

unless otherwise stated. 

 ‘Unseen’ performance was compared to chance using  single sample t-tests applied to 

each block and appropriate Holm-Bonferroni corrections applied for the multiple blocks / 

comparisons (Holm, 1979). 

Outliers were identified and excluded on the basis of Chauvenet’s criterion (Taylor, 

1997), applied to the dependent variable capable of representing a TMS dependent effect. 

Specifically, a vector was constructed that included active cTBS minus control (sham) cTBS, 

averaged across post-TBS blocks and further subtracted from the pre-TBS baseline. This 

provided a single measure per subject representing the distribution in effect sizes following 

cTBS. If the probability of any subject’s data within this group vector, times the number of 

samples in that group, was less than 0.5 then the subject’s data was excluded from the 

analysis of that measure. This resulted in the exclusion of a single subject’s data from the 

analyses involving PrC, BrC and PcU.  
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2.2.3 Results  
 

 To reiterate, the experimental hypothesis was that conscious detection should be 

suppressed by the application of the cTBS to the occipital lobe; in other words, there should 

be a reduction in PrC following active TMS compared to control TMS. If concurrent ‘unseen’ 

abilities remain above chance but unaffected by disruption, this would fit the expected profile 

of a blindsight type effect.  The central measures for this experiment were therefore conscious 

detection and ‘unseen’ discrimination. Both dependent variables were initially baselined to 

pre-TBS levels within session, thus taking into account day-to-day differences in 

performance. 

Contrary to the hypothesis, conscious detection of stimuli increased following 

application of cTBS relative to sham (site effect: F(1,14) =14.015, p=0.002, figure 2.2.3.1). The 

ability to discriminate the arrow’s direction on trials when the subject reported not having 

seen the arrow, remained above chance over all experimental blocks (all t(15) >7.170, all 

p<0.001, relative to a initial Holm-Bonferroni corrected alpha level of 0.005). This ‘unseen’ 

discrimination ability appeared to be unaffected by the application of the cTBS (site effect: 

F(1,14) =0.041, p=0.843, figure 2.2.3.2). The effect, being specific to the measure of conscious 

detection, in contrast to above chance ‘unseen’ discrimination ability, is of the same class as 

TMS-induced blindsight (e.g. Ro, et al., 2004) but is in the opposite direction: subjects were 

more aware of the arrow stimuli following a neuronally suppressive intervention. This was 

the central finding of Experiment 2A. 
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Figure 2.2.3.1. Effects of cortical stimulation on conscious detection (PrC) in 

Experiment 2A. The dependent variable is the change in PrC from the pre-TBS 

baseline following cTBS and control (sham) stimulation, illustrating the increase in 

PrC following cTBS relative to control. Error bars are within-subject standard error 

(Loftus & Masson, 1994; Masson & Loftus, 2003). Time corresponds to the 4 analysis 

blocks collected after the TBS was applied. All subsequent line plots in this chapter 

conform to this structure. 
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Figure 2.2.3.2. Change in proportion correct in ‘unseen’ discrimination (PcU) in 

Experiment 2A from pre-TBS baseline following cTBS and control (sham) 

stimulation. 

The critical effect in terms of the hypothesis was the main effect of TMS site. 

However it is possible that this effect could evolve over the course of the experiment as 

illustrated by a potential site × time interaction. Since the effects of cTBS are thought to last 

for approximately the full course of the experiment, no predictions were cast in terms of the 

evolution of TMS over time and no corresponding interactions were observed on the main 

measures (PrC site × time interaction: F(3,42) =0.369, p=0.755; PcU site × time interaction: 

F(3,42) = 0.352, p=0.729). However, following both control and active stimulation, a 

significant decline in conscious detection performance throughout the course of the 

experiment was observed (PrC time effect: F(3,42) =6.511, p=0.002). No time-dependent 

change was observed for ‘unseen’ discrimination (PcU time effect: F(3,42) =1.738, p=0.195). 

The drop in detection over the course of the experiment suggests fatigue, as did the discursive 

reports made by the subjects following the experiment. Consistent with this interpretation, 

which does not inform the main experimental hypothesis, are changes observed upon other 

measures associated with fatigue detailed in section 2.6.2 and appendix A2. 

 Asking subjects whether or not they were subjectively aware of stimuli, together with 

knowledge of stimulus presence/absence, enabled us to look at another secondary aspect of 

the subject’s experience of the task, in addition to the contrast between conscious detection 

and perception lacking in awareness. That is, their response criteria or bias, quantified here as 

BrC (Corwin, 1994). Interpretations of what changes in bias refer to are diverse and 

controversial (cf. Campion, et al., 1983; Weiskrantz, 2001, discussed further in section 4.3 to 

4.4). However, it seems to have been generally accepted that removing bias from measures of 

conscious detection makes changes in measures simpler to interpret, as was implemented here 

for the PrC measure.  

Subjects reported seeing the stimuli more often irrespective of stimulus 

presence/absence following active TMS relative to sham (TMS site effect on the measure of 

bias in conscious detection: F(1,14) =6.772, p=0.021, see figure 2.2.3.3). There was also a 

general tendency to respond positively less often towards the end of the experiment (time 

effect: F(3,42) =5.585, p=0.015), again suggestive of fatigue. This change did not interact with 

the TMS dependent effect (site × time interaction: F(3,42) =1.386, p=0.267). One subject, 
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expressing a shift toward reporting ‘no’ more often following the application of the TMS, was 

excluded as an outlier from this analysis according to Chauvenet’s criterion.  

 

 

Figure 2.2.3.3. Change in response criteria / bias in conscious report (BrC), from pre-

TBS baseline following cTBS and control (sham) stimulation. 

 

2.3 Preliminary discussion and introduction to 
subsequent experiments 
 

Contrary to the initial hypothesis, conscious detection of the stimuli increased 

following the application of cTBS relative to the sham control condition. ‘Unseen’ 

discrimination remained above chance but appeared to be unaffected by the TMS. The 

increase in conscious detection as a result of suppression was counterintuitive and thus 

warranted replication and further exploration (sections 2.4-6).  

A common assumption is that increased activity in sensory cortical areas indicates 

increased conscious representations (e.g. Polonsky, Blake, Braun, & Heeger, 2000). 

However, it is possible that of equal importance is the negative aspect, that is, active 



42 
 

suppression of sensory representations relative to others is crucial for consciousness. That is, 

the quieting down or active inhibition of neuronal processes may be conducive to optimal 

detection. We hypothesised that this negative aspect of selection in the determination or 

gating of conscious percepts might explain the increase in detection, whilst being consistent 

with cTBS being a suppressive protocol. This is henceforth denoted as the gating-by-

inhibition hypothesis. This hypothesis therefore became the focus of the subsequent 

investigation, in which we also replicated the original effect and explored alternative 

explanations, such as increased arousal and increased cortical excitability.  

We applied the behavioural and TMS paradigms in the context of 

magnetoencephalographic (MEG) recording (Experiment 2D). Of particular interest were 

changes in oscillatory activity in the alpha band (6-12Hz). The alpha band has been 

associated with the active suppression of task irrelevant and superfluous activity (Foxe & 

Snyder, 2011; Jensen & Mazaheri, 2010; Varela, Toro, John, & Schwartz, 1981). The 

principal induced oscillatory response in the alpha band is the Event Related 

Desynchronisation (ERD; Pfurtscheller, Neuper, & Mohl, 1994) which can be seen as 

representative of a gating mechanism (Pfurtscheller, 1992): it is a shift from a synchronised 

state, where suppression is imposed by the alpha oscillation, to a less synchronised state 

following the presentation of stimuli. The gating by inhibition hypothesis therefore predicts 

that the ERD might be facilitated following the application of cTBS (section 2.6.4). 

Active suppression almost certainly involves the principle inhibitory neurotransmitter 

Gamma-Aminobutyric Acid (GABA).  Magnetic resonance spectroscopy (MRS) can quantify 

in vivo GABA concentration and has previously been used to demonstrate that levels of 

GABA increase following the application of cTBS to motor areas (Stagg, et al., 2009). 

Replication of this functional change in GABA over occipital areas would be consistent both 

with cTBS having a neuronally suppressive effect and with the gating by inhibition 

hypothesis for the increase in conscious detection (Experiment 2C section 2.5). 

The ERD and GABA measures were therefore designed to provide evidence which 

informed the gating by inhibition hypothesis. Three further independent hypotheses were 

probed with additional measures. First, replication in the MEG allowed us to probe the 

possibility that cTBS might be effective in increasing neuronal responses to stimuli, rather 

than in suppressing neuronal noise (the increased response hypothesis). Later evoked 

responses were collected and have previously been associated with the processing of 
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conscious signals (Del Cul, Baillet, & Dehaene, 2007; Koivisto & Revonsuo, 2003; Melloni 

et al., 2007; Niedeggen, Wichmann, & Stoerig, 2001; Quiroga, Mukamel, Isham, Malach, & 

Fried, 2008).Therefore cTBS increasing late evoked responses might be taken as evidence for 

increased excitatory signals and responses, contrary to the gating hypothesis (detailed in 

section 2.6.3).  

Another alternative hypothesis for the mechanism by which cTBS might be affecting 

conscious detection was the possibility that cTBS may increase general cortical excitability 

and possibly add noise to the affected regions. This could lead to an increased probability of 

any particular representation crossing a threshold for detection, as it would be boosted by the 

increased background activity. This would be a ‘stochastic resonance’ type effect and has 

previously been suggested as the mechanism by which on-line TMS can enhance visual 

detection (Schwarzkopf, Silvanto, & Rees, 2011). Such an interpretation of increasing the 

likelihood of crossing a threshold for detection, irrespective of the stimulus condition, may 

also be consistent with the finding that response criteria was more liberal following the 

application of cTBS. In order to quantify levels of cortical excitability a separate experiment 

probed the effect of cTBS on the intensity of subsequent occipital TMS in eliciting visual 

perceptions known as phosphenes. The gating-by-inhibition hypothesis would predict an 

increased phosphene threshold (PT) following cTBS (Franca, et al., 2006) and a stochastic 

resonance or increased excitability based explanation might predict a reduction (Experiment 

2B, section 2.4).  

The final alternative explanation for the mechanism by which cTBS was affecting 

conscious detection was the possibility of it increasing levels of arousal. According to the 

arousal hypothesis, this could arise owing to the subject’s expectations of cTBS and the 

generally ineffective blinding of active vs. sham conditions in TMS designs. Such a ‘reactive’ 

process (Ericsson, 2003, see section 4.3 for clarification) might operate independently of the 

direct neuronal effects of the TMS. We quantified arousal in both the original and replication 

of the behavioural effects through the concurrent measurement of pupil diameter commonly 

linked with autonomic arousal (Bradshaw, 1967). If the enhancement of conscious vision was 

caused by a general arousal effect then cTBS should increase pupil diameter relative to sham 

(section 2.6.2). 

To anticipate, the ERD and GABA concentration were each potentiated following the 

application of the cTBS, whereas the three other hypotheses received no support. 
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Collectively, these experiments indicated that selection via inhibition is an important element 

in determining the conscious fate of representations. 

 

2.4 Phosphene threshold experiment (2B) 
 

2.4.1 Introduction  
 

 Phosphenes are percepts generated by activation of neurons in the visual cortex. To 

test the suppressive effect of cTBS at the neuronal level we used the stimulator intensity 

required to elicit phosphenes, known as phosphene threshold (PT), as a measure of intrinsic 

cortical excitability (Franca, et al., 2006). Although cTBS has been previously shown 

suppressive effects (Franca, et al., 2006; Huang, et al., 2005), it is possible that the cTBS 

applied here had the opposite effect; reversals of the expected effect (from suppression to 

facilitation) have been demonstrated when the levels of TMS used have been lowered 

(Abrahamyan, Clifford, Arabzadeh, & Harris, 2011). Here, the absolute stimulator output 

used was (42.42% of maximum ±7.35SD), which is less than those of previously reported 

suppressions  by cTBS (45.68% of maximum ±10.88SD, Franca, et al., 2006).  

 

2.4.2 Methods 
  

 Twelve subjects participated in Experiment 2B (aged 20 to 41, mean age=24, 7 

females), three of whom also participated in behavioural experiments. The apparatus for this 

experiment is as described in the preceding section (2.2.2) unless otherwise stated. 

 The intensity of a single TMS pulse required to elicit a phosphene (PT) depends on 

the levels of cortical excitability within that region. The method used here resembled that of 

Franca et al., (2006). First, we assessed subjects’ susceptibility to phosphenes within safety 

limits (160% of motor threshold, MT). The coil was initially positioned using the miniBird 
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system and tripod as in the main experiment, with single pulses applied at 120% of MT. If 

stimulation did not elicit phosphenes that the subject reported as being ‘reasonably clear’ the 

coil was moved until it did so, while minimising the distance to the original coil position. 

This location was recorded using a Brainsight system (Rogue Research Inc.) based on the 

subjects’ anatomical MRI scans (collected on a 3T whole-body General Electric scanner). An 

approximate PT was obtained using an up-down staircase method, applying single pulses 

approximately every 5 seconds, starting at 50% of maximum output and adjusting TMS 

intensity in steps of 5%, then 2%, then 1%, so that subjects verbally reported seeing 5 

phosphenes from 10 pulses. This level was then used as the basis of the more accurate 

thresholds where the number of reported phosphenes arising out of 10 pulses was recorded at 

-10, -5, 0, +5, +10 and +15% of the estimated PT. The orders of these sets of 10 pulses were 

randomised and the full range of intensities was repeated three times in separate runs 

separated by short breaks. The coil was repositioned at the start of each run. Averaging across 

runs yielded a function representing the number of phosphenes out of 10 over a range of 

intensities, to which a curve was fitted (sigmoid or linear depending on goodness of fit). 

Solving this curve for 5/10 phosphenes thus provided the PT.  

 These sets of three runs comprised a block of data, collected over 16 minutes, 

corresponding to the timing of the MRS acquisition (section 2.5.2) where one block was 

taken before the cTBS and three were acquired afterward. Three rather than four post-cTBS 

blocks were completed because, even with three post cTBS blocks, the quantity of TMS 

applied approached the limit permitted by the local ethics committee (based on Wassermann, 

1998 and Maizey et al, In Press). Again, sham and active cTBS were applied on separate 

days, the order of which was counterbalanced across subjects. The mean intensity at which 

the cTBS was applied for this group was 42.4% ± 7.4 SD. 

 

2.4.3 Results  
 

 The TMS intensity required to elicit phosphenes increased significantly following the 

application of cTBS relative to controls (site effect: F(1,11) =5.395, p=0.040, figure. 2.4.3.1).  

No time dependent effects were observed (site × time interaction: F(2,22) =1.59, p=0.23, time 

effect: F(2,22) =1.59, p=0.23). 
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Figure 2.4.3.1. Change in phosphene threshold from pre-TBS levels, in Experiment 

2B, following occipital cTBS and control stimulation.  

 

 These results are consistent with the expected inhibitory effect of cTBS, replicating 

previous observations (Franca, et al., 2006; Huang, et al., 2005). An explanation of the cTBS-

induced enhancement of awareness in Experiment 2A according to increased excitability or 

stochastic resonance is therefore inconsistent with this data. The relationship between 

increased phosphene threshold and decreased threshold for conscious detection is discussed in 

section 2.7. 
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2.5 Magnetic Resonance Spectroscopy 

experiment (2C) 
 

2.5.1 Introduction 
 

 Critical to the balance between neuronal excitation and suppression is the inhibitory 

neurotransmitter GABA. For example, many drugs used in the control of epilepsy target the 

GABAergic system, and its dysfunction appears to be the cause of some forms of epilepsy 

(Baulac et al., 2001). At the molecular / synaptic level, GABA increases chlorine flux across 

the neuronal membrane, hyperpolarising cells, making them less susceptible to excitatory 

input. 

  The GABA molecule (H3N+CH2CH2CH2COO-) has a magnetic resonance signature 

that can be measured using magnetic resonance spectroscopy (MRS). The pairs of carbon 

bound hydrogens occupy an almost (see methods) unique electromagnetic environment. The 

relaxation of their alignment with a strong magnetic field, following a radio frequency pulse,  

produces a response in the magnetic response spectra at 1.9, 2.3 and 3 ppm (parts per million 

of the proton frequency). The magnitude of the response, following editing (see methods), is 

proportional to levels of GABA concentration (see Puts & Edden, 2012). 

 This technique has revealed an increase in GABA concentration following cTBS of 

the motor cortex (Stagg, et al., 2009), raising the question of whether such effects are 

reproducible in non-motor cortical areas. Furthermore, the MRS applied to functional changes 

in GABA is a relatively new and unconfirmed approach, the implementation of which can 

differ widely between laboratories.  For example, Stagg et al., calibrated their quantification 

of GABA according to in situ N-acetylaspartate levels, whereas here, as in many previous 

MRS studies (Puts & Edden, 2012), GABA concentration was normalised relative to water. 

Therefore, the reliability of MRS in terms of reproducibility of effects is central to the 

development and trustworthiness of the technique as a whole.  



48 
 

 The measurement of GABA offers the opportunity to assess the brain’s governance of 

the balance between excitation and inhibition. In addition to testing the replicability and 

generalizability of the findings by Stagg et al., the current experiment sought to contrast two 

competing hypotheses as to the effect cTBS might have. If the application of cTBS increases 

excitability, with the increase in conscious detection possibly operating through a stochastic 

resonance mechanism, then an overall decrease in occipital GABA concentration might be 

expected. In contrast, if the same TMS protocol that increased conscious detection also leads 

to an increase in GABA concentration, then the results would favour an explanation in terms 

of a potentiated inhibitory gating system.  

 

2.5.2 Methods  
  

 Data was collected from 18 subjects (aged 21 to 40, mean 26, 7 female), of whom 12 

participated in the behavioural experiment (2A), and 10 in the MEG experiment (2D).  

 MRS data were acquired on a GE 3 Tesla MRI scanner over two separate sessions 

corresponding to cTBS and sham control conditions, which were counterbalanced across 

subjects. The mean TMS intensity used was 40.8% ± 5.0SD. 

 Four MRS acquisitions were undertaken per session, the first prior to cTBS to provide 

a within-subject, within-session baseline.  The three following cTBS ran consecutively, 

commencing 2 minutes 40 seconds after the start of the cTBS. Before the pre-cTBS MRS 

acquisition, subjects’ T1-weighted anatomical scan (1 mm3 isotropic resolution) were 

collected. This allowed positioning of the MRS voxel, which was a 3cm × 3cm × 3cm volume 

centred over V1 defined by the calcarine sulcus, as with TMS targeting. The voxel was then 

moved toward the centre of the head in order to avoid non-brain tissue, and dorsally, so that 

the lower edge followed the cortical surface and did not enter the cerebellum (figure 2.5.2.1). 

This voxel position was recorded relative to anatomical landmarks in three dimensions using 

a screen shot and repeated for subsequent acquisitions. The cTBS was performed in the MRI 

control room and the subject was then immediately transferred to the scanner. The first MRS 

acquisition commenced 3 minutes 40 seconds after the start of the TBS and was preceded by 

localisation and calibration scans (1 minute), allowing repositioning of the voxel. Each MRS 
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acquisition lasted 16 minutes and comprised a MEGA-PRESS (Mescher, Merkle, Kirsch, 

Garwood, & Gruetter, 1998) spectral sequence consisting of 512 transients (TE = 68ms, TR = 

1800) and 8 unsuppressed water transients (PRESS). During the MEGA-PRESS sequence 

Gaussian GABA editing pulses (alternating at 1.9 and 7.5 ppm) were applied to the standard 

magnetic resonance spectra in order to isolate the spine coupling of the GABA molecule from 

the response due to glutamate, glutamine, creatine and N-acetyl aspartate, which lie at 

approximately the same position on the chemical shift spectra (Puts & Edden, 2012). During 

the MRS acquisitions all subjects watched the same film and did not perform any behavioural 

task. 

 GABA concentration was quantified using the Gannet analysis tool kit (Puts & Edden, 

2012) applied to the MEGA-PRESS edited spectra (figure 2.5.2.2). This involved fitting a 

Gaussian curve to the GABA peak at 3ppm with a liner baseline component, where the area 

under the curve, relative to that of water, allowed quantification of GABA concentration in 

institutional units (see Mescher, et al., 1998).   

 Sessions containing clearly low quality data were repeated (2 sessions, owing to 

subject movement during acquisition). Fit quality was improved by manual phasing of the 

spectra where the experimenter was blind to the TMS condition.  Because I was aware in 

some cases of which spectra corresponded to which condition, and because the manual 

phasing technique is developed with practice, it was completed by Dr C J Evans (MRI lab 

manager, CUBRIC). 
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Figure 2.5.2.1. Illustration of the typical MRS voxel placement in Experiment 2C, as 

shown in the sagittal view of one participant. 

 

Figure 2.5.2.2. Illustration of model fitting applied to MEGA-PRESS edited spectra 

that allowed for quantification of GABA concentration. Units are parts per million 

(ppm) of proton frequency. Glx is the combined glutamate and glutamine peak. 

NAA is the peak caused by N-acetyl aspartate.  

 

2.5.3 Results  
 

Baseline-corrected GABA concentration in occipital cortex increased significantly 

following the application of occipital cTBS relative to sham cTBS (site effect: F(1,16) =5.347, 

p= 0.034, figure 2.5.3.1). No time-dependent effects were observed (site × time interaction: 

F(2,22) =0.416, p=0.603, time effect: F(2,32) =0.347, p=0.656). One outlier was rejected from this 

data set on the basis of Chauvenet’s criterion. 
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Figure 2.5.3.1. Change in GABA concentration in Experiment 2C. The ordinate 

indicates change in GABA in institutional units (i.u) relative to the pre-TBS baseline, 

plotted according to the TMS condition (occipital cTBS vs. Sham control) and time 

after stimulation (mins). 

 

 These findings replicate the increase in GABA concentration in motor cortex 

following cTBS of M1 (Stagg, et al., 2009) and, moreover, are consistent with the hypothesis 

that an increase in inhibitory processes may underlie the enhancement of conscious detection 

following occipital cTBS. As with Experiment 2B, the results run counter to the hypothesis 

that cTBS increases cortical excitability.   
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2.6 Magnetoencephalography experiment (2D) 
 

 This section includes four sub-sections that report the outcome of different questions 

addressed in Experiment 2D. The first section (2.6.1) describes the replication of the 

behavioural effects of cTBS, carried out inside the MEG scanner. The second section (2.6.2) 

analyses the eye tracking data with a view to probing the arousal hypothesis. The third and 

fourth sections concern the MEG data specifically, with section 2.6.3 addressing the evoked 

responses to stimuli that reflect of the increased signal hypothesis, section 2.6.4 reporting the 

induced oscillatory response in the alpha band associated with gating. 

 

2.6.1 Behavioural replication 
 

2.6.1.1 Methodological adaptations 

 

Eighteen subjects (aged 20 to 32; mean age 26; 7 female) participated in Experiment 

2D, four of whom had participated in the initial cTBS behavioural experiment (2A).  

 Subjects were thresholded to a level of Pr = 0.5 (as opposed to 0.6 in Experiment 2A) 

in order to optimise the sensitivity to detect both increases and decreases in detection ability. 

The ratio of stimuli-present to stimulus-absent was changed from 50:50 to 60:40 in favour of 

stimulus-present trials to optimise the power for the analysis of the stimulus-evoked 

electrophysiological response.  

 Responses were collected via a LUMItouchTM response pad. Owing to the need to 

change rooms (TMS conducted outside the MEG magnetically sealed room) and the delay 

caused by the requirement to localise the subject’s head before recording MEG data, 3 

minutes were allocated between the termination of cTBS and commencement of the 

behavioural task.  The mean TMS intensity was 42.1% stimulator output (± 4.6 SD). 

A potential criticism of Experiment 2A (section 2.2) is that subjects were clearly 

aware of the difference between sham and cTBS conditions. The increase in conscious 
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detection might therefore have arisen due to a reactive response (Ericsson, 2003) by the 

subjects to the active TMS (see section 4.3 for further discussion). One alternative to sham 

TMS is the selection of an appropriate control site to replicate the auditory and tactile 

artefacts of stimulation. However, owing to the geometry of the round coil and the relatively 

broad distribution of the induced electric field in the brain, this approach was discounted in 

the current experiments: wherever the coil was placed, this relative lack of focality could be 

sufficient to disruption perceptual or cognitive processes.  

Instead, we implemented intermittent theta burst stimulation (iTBS) as an alternative 

active control. During iTBS the same number of pulses is applied at the same intensity as 

cTBS but with a temporal profile that includes intermittent (8 second) gaps between 

continuous bursts of 2 second. In the motor cortex the physiological effect of iTBS opposes 

that of cTBS, reliably increasing cortical excitability (Huang, et al., 2005). For reasons that 

are not clear, this potentiating effect does not appear to be reproducible in the occipital cortex 

(Franca, et al., 2006). Nevertheless, evidence that iTBS produces either opposite or null 

effects on cortical excitability makes it an ideal occipital control condition to achieve 

effective participant blinding. The order of the different TBS conditions in Experiment 2D 

was thus counterbalanced across sessions between cTBS, iTBS and sham.  

 

2.6.1.2 Behavioural results 

 

The first question posed in the analysis of the behavioural results was whether iTBS is  

an appropriate control condition. As noted above, iTBS was implemented to address the 

concern that the effect of cTBS in Experiment 2A might be have resulted from subjects’ 

expectations and/or non-specific effects of the active cTBS protocol. The central effect of 

interest, around which other analyses were based, was upon conscious detection. The question 

of whether iTBS was an appropriate baseline was therefore tested by comparing iTBS with 

sham performance on the measure of conscious detection. There was no evidence of a reliable 

difference between the effects of iTBS and those of sham on the critical central measure of 

conscious detection (TMS site effect iTBS vs. sham: F(1,17) =0.24, p=0.63, site × time 

interaction: F(3,51) =1.24, p=0.31). Because the application of iTBS did not discernibly differ 

from sham in terms of the central measure of interest, and to reduce the number of statistical 
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comparisons, all subsequent analyses in Experiment 2D collapsed the iTBS and sham 

conditions to yield a single control condition (also see section 4.2 and appendix A3).  

The increase in conscious detection following cTBS relative to the control condition 

was replicated (site effect: F(1,17) =5.282, p=0.035, figure 2.6.1.2.1). Again ‘unseen’ 

discrimination ability appeared to be unaffected by cTBS (site effect: F(1,17) =0.458, p=0.508,  

figure 2.6.1.2.2) while, crucially, remaining above chance (all t(17)>6.747, all p<0.001).  

 

Figure 2.6.1.2.1 Change in the measure of conscious detection (PrC) from pre-TBS 

baseline following cTBS and control stimulation, in Experiment 2D. 
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Figure 2.6.1.2.2 Change in ‘unseen’ discrimination measure (PcU) from pre-TBS 

baseline following cTBS and control stimulation, in Experiment 2D. 

No interaction involving a change in conscious detection over the course of the 

experiment was observed (PrC site × time interaction: F(3,51) =1.318, p=0.281), and, although 

a general decline in detection was observed throughout the experiment (as in Experiment 2A; 

see figure 2.2.3.1), this effect was not significant (PrC time effect: F(3,51) =1.557, p=0.221).  

Changes in the measures of ‘unseen’ discrimination over the course of the experiment 

were observed (PcU time effect F(3,51) =5.787, p=0.003). This effect did not appear to depend 

upon the presence of active TMS (PcU site × time interaction F(3,51) =1.41, p=0.26) so does 

not relate to the experimental hypothesis. Given the ‘u’ shaped distribution of the change in 

PcU (see figure 2.6.1.2.2) it is possible to speculate that this effect might correspond to a 

combination of two effects: an initial fatigue effect, which the pupilometry data suggests had 

the greatest effect over the first two blocks (see figures 2.6.2.3.1 and 2.6.2.3.2), followed by a 

practice-driven improvement in performance towards the end of the sessions. 
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Figure 2.6.1.2.3. Change in response criteria / bias in conscious report (BrC) from 

pre-TBS baseline following cTBS and control stimulation, in Experiment 2D. 

The effect of cTBS upon response bias observed in Experiment 2A did not replicate 

(BrC site effect: F(1,17) =0.171, p=0.706, BrC site × time interaction: F(3,51) =0.347, p=0.684, 

figure 2.2.6.3). Because the change in bias failed to replicate, further probing the possibility 

of an effect across experiments was justified. For subjects who participated in both 

experiments averages were drawn across repetitions.  However, when the bias results from 

the original experiment were combined with the replication, no significant TMS effect was 

observed (site effect: F(1,26) =2.430, p=0.131). This lack of reproducibility indicates that little 

can be drawn from the data here in relation to response criteria/bias. A single subject’s data 

was excluded from the analysis of BrC as an outlier, in both Experiment 2D and the 

combined analysis. 

Overall, the central behavioural finding from Experiment 2D was that cTBS reliably 

increased conscious detection relative to the control condition, thus replicating the 

serendipitous effects observed in Experiment 2A. 
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2.6.2 Eye-tracking and arousal 
 

2.6.2.1 Introduction  

 

An alternative explanation for the effect of occipital cTBS on conscious detection is 

that it stems from enhanced arousal, potentially as part of a reaction (Ericsson, 2003) by 

subjects to active stimulation, and possibly independent of the direct neuronal effects of TMS. 

Pupil diameter is one of the most commonly used and reliable measures of autonomic arousal 

(Bradley, Miccoli, Escrig, & Lang, 2008; Bradshaw, 1967). Pupil diameter has previously 

been shown to increase following application of repetitive TMS, where it can be attributed to 

arousal \ sympathetic activation (Niehaus, Guldin, & Meyer, 2001).We measured pupil 

diameter in both the original and replication experiments and took this to quantify arousal. If 

arousal increased following the application of the active cTBS condition then we would 

expect an increase in pupil diameter relative to the control condition. The following section 

considers pupilometry data collected in Experiments 2A and 2D. 

 

2.6.2.2 Methods  

 

 The original experiment (2A) made use of the CRS 250Hz chin mounted eye-tracker 

averaging pupil diameter collected on each trial into a block average. The MEG replication 

made use of a SensoMotoric Instruments infrared 50Hz eye tracking system mounted on a 

tripod. The replication did not divide the eye tracking data into trials, so averages were taken 

across blocks. This was because of the added time cost of relocating the subject into the 

magnetically sealed room following the TBS and head localisation procedures, preventing 

eye tracking calibration. This was also the reason for which the units of the replication are 

arbitrary rather than in mm and trials over which the subject blinked during stimuli 

presentation were not excluded in replication (the removal of such trials in the original 

experiment made no appreciable difference to the data and analysis). The data was filtered for 

losses of signal. Pupil diameter was averaged across blocks and the dependent variable was 

change in pupil diameter from pre-TBS baseline.  
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2.6.2.3 Results 

 

Figure 2.6.2.3.1. Change in pupil diameter in Experiment 2A, from pre-TBS baseline 

following cTBS and control stimulation. 

 

Figure 2.6.2.3.2. Change in pupil diameter in Experiment 2D, from pre-TBS baseline 

following cTBS and control stimulation. Units in replication are arbitrary (see 

methods) 
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In Experiment 2A, there was a trend towards a dissociation in the measure of pupil 

diameter between TMS conditions (site: F(1,13) =3.463, p=0.089, site × time interaction: F(3,39) 

=1.02, p=0.37) with arousal reduced following cTBS relative to sham (see figure 2.6.2.3.1). 

This direction of this trend suggests that the cTBS-induced increase in conscious detection in 

Experiment 2A is unlikely to have stemmed from increased arousal. In the replication 

experiment, average pupil diameter was instead greater following cTBS vs. control, although 

this difference was not statistically significant (site: F(1,16) =1.124, p=0.305, site × time 

interaction: F(3,48) =1.861, p=0.183, figure 2.6.2.3.2). A similar temporal profile in 

pupilometry was observed for both experiments: pupil diameter increased following the 

application of control and active TMS and then subsided throughout the course of the 

experiment, indicating its sensitivity to changes in arousal (original time effect on pupil 

diameter: F(3,39) =9.71, p <0.001, and in replication: F(3,48) =5.212, p=0.009, figure 2.6.2.3.1-

2). 

 Two subjects were excluded from the analysis in Experiment 2A due to the eye 

tracker failing to acquire reliable data. One subject was excluded from the analysis of 

Experiment 2D as an outlier. 

Because pupil diameter was not reliably affected by TMS, modulation of arousal is 

not a viable explanation for the effect of cTBS on conscious detection. Decreased arousal 

(fatigue) over the course of the experiment, may better explain many of the changes in the 

pupilometry data. Indeed, fatigue may also explain a number of other changes observed over 

the course of the experiments: there was a general increase in the power of alpha band 

oscillations throughout the course of the experiment (see appendix A2), which is consistent 

with increased fatigue (Boksem, Meijman, & Lorist, 2005).  Also, there was a drop in 

performance in the conscious detection task, over the course of the study, irrespective of the 

TMS condition (section 2.2.3).  
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2.6.3  Evoked Magnetoencephalography 
 

2.6.3.1 Introduction  

 

 Magnetoencephalography (MEG) offers the unique opportunity to observe a detailed 

and direct picture of how cTBS influences neural processing.  The MEG detects 

electromagnetic changes emitted from the scalp, which are thought to originate 

predominantly from the summation of post-synaptic activity of pyramidal cells (Hamalain, 

2002; Singh, 2006). 

 In addition to measuring the effect of cTBS on visual perception, Experiment 2D also 

tracked two aspects of the magnetic changes that have previously been associated with 

conscious processing. These are the evoked response to stimuli and the phase-independent 

oscillatory or induced changes (section 2.6.4). 

 The search for the neural correlates of consciousness (NCC; Crick, 1990) has become 

central to the scientific investigation of consciousness. Of the many correlates proposed, 

perhaps the most widely acknowledged NCC has been the correlation between conscious 

awareness and relatively late (>~100ms) cortical electromagnetic evoked responses to stimuli 

(Del Cul, et al., 2007; Kaernbach, Schroger, Jacobsen, & Roeber, 1999; Koivisto & 

Revonsuo, 2003; Quiroga, et al., 2008). One of the clearest demonstrations of this 

relationship and most relevant to the current studies is work carried out by Claire Sergent and 

colleagues using an attentional blink paradigm (Sergent, Baillet, & Dehaene, 2005).  They 

subtracted the electroencephalographic (EEG) trace in the absence of stimuli from those 

collected in the presence of stimuli and showed that both reportedly ‘seen’ and ‘unseen’ trials 

resulted in comparable early (P1 and N1) evoked responses, whereas the later N3/4 (~300ms) 

components were potentiated when the subjects reported the stimuli as ‘seen’, hence 

correlating the late evoked responses with specifically conscious processing.  

In contrast, there is some evidence that earlier potentials are also modulated according 

to the presence / absence of conscious processing (Kaernbach, et al., 1999; Marzi, Girelli, 

Miniussi, Smania, & Maravita, 2000; Schubert, Blankenburg, Lemm, Villringer, & Curio, 

2006; Vuilleumier et al., 2001), although these studies also demonstrated later awareness-
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dependent effects4. Therefore, there appears to be a broad consensus that beyond ~200ms the 

amplitude of evoked responses reflects the extent to which information is processed 

consciously (Babiloni, Vecchio, Miriello, Romani, & Rossini, 2006; Del Cul, et al., 2007; 

Kostandov & Arzumanov, 1977; Melloni, et al., 2007; Quiroga, et al., 2008). These processes 

may reflect the passage of conscious information in a recurrent occipital-frontal exchange 

(Del Cul, et al., 2007; Lamy, Salti, & Bar-Haim, 2009; Schubert, et al., 2006; Vuilleumier, et 

al., 2001).  

 The motivation for the quantification of late evoked responses applied here is in the 

service of the increased-response hypothesis. According this account, rather than suppressing 

superfluous representations, as posited by the gating-by-inhibition hypothesis, cTBS 

potentiated conscious representations directly. Late evoked responses may therefore be taken 

as representative of the conscious representation.  

2.6.3.2 Methods 

 

 

Figure 2.6.3.2.1. Illustration of example ERF produced from a single-subject, single 

analysis block, average across trials at the sensor level (peak channel selected) 

                                                            
4 The study here was incapable of probing early evoked components as they were not clearly 
observable across the group. This is likely to be due to the stimuli being presented at peri-threshold 
levels, combined with their foveal presentation resulting in the cancellation of early evoked responses 
across the two hemifields (Luck, 2005). 
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changes from the -0.5 sec baseline. Also illustrated is the time course of the 

presentation of the task.  

 MEG acquisition 

MEG was acquired on a 273-channel radial gradiometer system (CTF MEG, MEG 

International Services Ltd) sampled at 1200Hz, analysed as 3rd order synthetic gradiometers 

(Vrba & Robinson, 2001). Data sets were collected in single 8-minute blocks with head 

localization procedures applied at the beginning and end of each block. Pairs of 8-minute 

blocks were then concatenated into single analysis blocks, resulting in 16-minute data sets 

that were consistent with the MRS acquisition. Trials were epoched from -2.3 to +1 second 

relative to the stimuli onset and band passed filtered with a 1-300Hz Butterworth filter. This 

resulted in 15 datasets for each subject (pre, post 1, post 2, post 3, post 4 × three TMS 

conditions of cTBS, iTBS and sham). Following DC offset the data were visually inspected 

and clearly corrupted data (e.g. from movement) were removed on a trial-by-trial basis. 

Together with other data loss, this resulted in a mean of 152 trials per data set (±13 trials SD). 

The two control TMS conditions (iTBS and sham) were processed separately and then 

collapsed prior to the application of inferential statistics. 

Statistical analysis was conducted in sensor space and channels were clustered 

according to their CTF designation. All analyses were applied to the occipital / parietal 

cluster, unless otherwise stated, as these channels covered the region directly affected by the 

TMS. 

 Evoked response 

 The data was band pass filtered 1:40Hz (Butterworth). The baseline used was the 

mean field strength for each channel during the 500ms prior to the stimulus onset (see figure 

2.6.3.2.1). To summate opposing evoked components, traces were squared and rooted. 

Evoked responses for each data set were measured by the peak amplitude of deflection from 

baselines applied to data sets averaged across stimulus-present trials. The peak was defined as 

the maximum amplitude of any channel in the cluster between 100ms and 500ms post 

stimulus.  

 This peak measure was taken to represent a combination of later M3 and M4 

components which have been linked to conscious processing of a signal (Liddell, Williams, 

Rathjen, Shevrin, & Gordon, 2004; Sergent, et al., 2005). The mean latency for the peak was 
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320ms (± 101ms SD), indicating that this methodology largely targeted the M3 component of 

the evoked response.  

 

2.6.3.3 Results  

 

 Late evoked responses (Event Related Fields: ERFs) were reliably collected from 

stimulus-present trials but the peak amplitude did not appear to be affected by the application 

of cTBS (site effect: F(1,16) =1.938, p=0.183, figure 2.6.3.3.1-2). If peak amplitude had 

significantly increased then this would have lent weight to the alternative increased response 

hypothesis of the effect of cTBS on conscious detection. No time-dependent effects were 

observed (time: F(3,48) =0.20, p=0.87, site × time: F(3,48) =0.38, p=0.75). One outlier was 

excluded from this analysis. 

 

Figure 2.6.3.3.1. Group averaged evoked responses (ERF) following cTBS (blue) and 

control (yellow) stimulation, where shaded areas are one standard deviation across 

subjects. Plot derived from data averaged across post-TBS stimulus-present trials over 

occipital parietal clusters of channels. Δ refers to change from pre-stimulus baseline. 
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Figure 2.6.3.3.2. Change firm pre-TBS baseline in peak amplitude of evoked 

response following stimuli presentation for occipital / parietal channels. Active and 

control conditions are shown. 

 These results provides no conclusive evidence that occipital cTBS potentiates late 

evoked responses. Were there to have been such a demonstration, this would have provided 

evidence against the idea that the regulatory gating mechanisms, alone, were affected by the 

cTBS, favouring an explanation in terms of potentiation of conscious signals (the increased 

response hypothesis). However, it is worth emphasising that an absence of a statistically 

discernible effect should not be taken as evidence for or against any interpretation, especially 

given that there is a weak trend for increased evoked response following cTBS relative to 

controls as is apparent in figure 2.6.3.3.2.  It is entirely possible that the measure of peak 

amplitude applied here was simply insensitive to the underlying changes, which, on the basis 

of the effect size in the measure of conscious detection (~8%5), may have been subtle.  

 

 

                                                            
5 The mean difference between active and control conditions in the relevant MEG replication was 
0.043 Pr units for the conscious detection measure. The maximum possible range of this measure was 
0.5 Pr units. Therefore the effect size was roughly 8%. 
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2.6.4 Induced Magnetoencephalography 
 

2.6.4.1 Introduction 

 

 Oscillations in magnetic activity at the scalp have been associated with a variety of 

brain processes, dissociable according to frequency. Higher frequencies, such as those in the 

gamma range (~30-100Hz) have been linked with the passage of explicit information 

throughout the brain (Crick, 1990, see appendix A2). Lower frequencies, particularly in the 

alpha band (~6-12Hz), been linked with the active suppression of superfluous information 

(Foxe & Snyder, 2011), gating (Jensen & Mazaheri, 2010) and idling (Pfurtscheller, 1992). 

Idling here refers to processes that occur during periods of inactivity or non-functionality. 

Alpha rhythms act to impose suppression in a temporal manner, such that suppression is 

maximal when the oscillation peaks; therefore it can be seen as segmenting information into 

discrete individual percepts (Varela, et al., 1981).  

 These attributes of alpha frequency oscillations clearly reflect the proposed gating-by-

inhibition hypothesis. In particular, following the presentation of stimuli, there is a shift from 

a period when alpha activity is relatively high and suppression is imposed, to a less 

synchronised state following the appearance of the stimuli. This ‘disinhibition’ (Pfurtscheller, 

Schwarz, Pfurtscheller, & List, 1983; Romei, Gross, & Thut, 2010), operating through the 

induced6 responses in the alpha band, is known as the event related desynchronisation (ERD, 

Pfurtscheller & Aranibar, 1979) and was the target of this experimental section. 

 A link between the alpha ERD and specifically conscious processing has been 

established (Pfurtscheller, et al., 1983). Event related synchronisation in response to visual 

                                                            
6 Induced responses are changes in phase independent oscillatory activity following presentation of 
stimuli (Singh, 2006). There is a relationship between the evoked and induced responses: the evoked 
responses of the previous section summate activity over trials. Therefore, oscillations in phase with 
one another relative to or as a result of, the presentation of the stimuli will be expressed by the evoked 
responses. Because the late evoked responses (~300ms) were targeted in section 2.6.3, the measures 
used corresponded to phase locked activity in the delta-theta (1-6Hz) range (Yordanova, Kolev, & 
Polich, 2001). In contrast, induced responses to stimuli are the result of summation of oscillatory 
activity independent of phase and are applied to any frequency band prescribed, as it is performed via 
a Fourier (in this case Hilbert) transformation (Singh, 2006). 
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stimuli can be produced from comatose patients, whereas the extent to which the ERD is 

apparent follows recovery from such a state and appearance of conscious processing 

(Pfurtscheller, et al., 1983). In masking experiments it has also been shown that when 

subjects report stimuli as ‘seen’, the subsequent ERD over occipital and parietal channels is 

larger than when they report stimuli as ‘not seen’ (Babiloni, Vecchio, Bultrini, Luca Romani, 

& Rossini, 2006). According to the gating-by-inhibition account, the prediction here is that 

the ERD might be facilitated following the application of the cTBS.   

 

2.6.4.2. Methods  

 

 

Figure 2.6.4.2.1. A typical time-frequency plot, illustrating event related 

desynchronisation (ERD) in the α band. Data is taken from group averaged post-TBS 

blocks, collapsed across TMS conditions. Power is derived from the application of a 

Hilbert transform to the data collected over occipital / parietal channels. Also 

illustrated is the time course of the presentation of the task, baseline period and period 

over which the ERD was quantified.  

 Acquisition parameters are as described in the evoked section (2.6.3.2). Oscillatory 

power within the alpha band (6-12Hz, Pfurtscheller, et al., 1994) was quantified by the 

application of a Hillbert transform (8Hz band width and 0.5Hz step size) applied to all trials 

in the data sets, down sampled to 600Hz. Calculated in sensor space, this resulted in a matrix 

for each data set of time (-2.3 to 1sec) × frequency (6-12Hz) × channel (85). From each 
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channel and frequency pair a baseline was taken from -500ms to the stimulus onset.  This 

resulted in time × frequency plots for each data set of the induced oscillatory response (e.g. 

figure 2.6.4.2.1).  

 The ERD was quantified by the gradient of the desynchronisation between 100ms and 

400ms following the stimuli onset (figures 2.6.4.2.1 and 2.6.4.2.2). The 100ms corresponds to 

the onset of the ERD irrespective of TMS conditions (see figure 2.6.4.2.1) and is consistent 

with previous reports (Pfurtscheller, et al., 1994). The offset of the visual noise and 

subsequent presentation of the questions from 400ms restricted quantification of the ERD to 

before this period. Rather than average power change (Pfurtscheller & Lopes da Silva, 1999) 

or area under the curve (Nogawa, Katayama, Tabata, Ohshio, & Kawahara, 1976), the rate of 

change of synchronisation was chosen as it was more representative of the desynchronisation 

aspect of the ERD and it should theoretically be less susceptible to outlying data points and 

potential confounds such as prior (Romei, et al., 2010; van Dijk, Schoffelen, Oostenveld, & 

Jensen, 2008) or subsequent synchronisations (Pfurtscheller, 1992). The gradient was 

obtained by a linear regression applied to the data collapsed across the frequency pairs in the 

alpha range. The channel most clearly (greatest negative gradient) demonstrating an ERD was 

selected to represent the ERD for each data set, as, owing to the localisation of the ERD (See 

SAM analysis below) many channels would not have expressed the desynchronisation. 

 Tomographic images of the localisation of the ERD were produced using Synthetic 

Aperture Magnetometry (SAM, Robinson and Vrba 1990).  Although synthetic channels 

themselves were not used in the final statistical analysis, this allowed us to localise the 

oscillatory power changes in terms of group level anatomy (figure 2.6.4.3.3). This analysis 

made use of the same parameters as in the sensor space analysis of the ERD (baseline from -

500ms to stimuli onset, 6-12Hz band width, 100-400ms period of interest) but applied to data 

sets that combined all post-TBS blocks. Co-registration of this data to subjects’ anatomical 

MRI images was achieved with MRIViewer software (Krish Singh) in conjunction with 

digital photographs that depicted the position of the localisation coils (one above the nose 

bridge and two over the tragi). The resulting outputs were pseudo T maps (values below 0.4 

were removed from the image), which were averaged across subjects and overlaid on a 

FreeSurfer (Harvard MA) inflated brain mesh using mri3dx (Krish Singh) (figure 2.6.4.3.3).  
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Figure 2.6.4.2.2. Example of linear fit applied to individual time frequency analysis 

of the ERD in each data set. The fit (yellow) was applied to the data (red) between 

0.1 and 0.4 seconds post stimulus averaged across the 6-12Hz alpha frequency. The 

gradient of this fit was the dependent variable and the channel selected was the 

channel expressing steepest gradient in the occipital / parietal cluster. 

 

2.6.4.3 Results 

 

 The ERD, being a drop in synchronisation was quantified by the rate of change of 

phase independent oscillatory power over fixed period relative to stimuli presentation.  Its 

presentation was consistent with previous reports (Pfurtscheller, et al., 1994) in terms of 

frequency and temporal range (figure 2.6.4.2.1). The gradient of the ERD was found to 

increase significantly (become more negative) following the application of cTBS relative to 

controls (F(1,16) =6.828, p=0.019, figure 2.6.4.31-3), indicating facilitation of the alpha band 

response. These analyses were conducted over the occipital / parietal cluster of sensors and 

additionally localisation of the ERD to the targeted occipital lobe is illustrated in figure 

2.6.4.3.3. No time dependent effects were observed (time: F(3,48) =0.863, p=0.45, site × time: 

F(3,48) = 0.399, p=0.678). One outlier was excluded from this analysis. 
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Figure 2.6.4.3.1. Change in gradient of the ERD. The more negative the gradient the 

steeper the onset of the shift from synchronisation to desynchronisation. 

 

Figure 2.6.4.3.2. Group level time frequency plots collapsed over all post TMS blocks 

in control and cTBS conditions, covering the alpha frequencies. 
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Figure 2.6.4.3.3. Synthetic aperture analysis illustrating localisation of the ERD to the 
occipital lobe (left hemifield depicted). Applied to data sets following cTBS and 
control stimulation. 

 The drop in synchronisation in the occipital lobe (the ERD) was more rapid following 

the application of the cTBS, indicating potentiation of the active relief from suppression. This 

mirrors the gating-by-inhibition hypothesis.  
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2.7 General Off-line Discussion 
 

 Experiment 2A showed that subjects’ reported awareness of stimuli became more 

frequent following the application of cTBS, whereas their forced choice ‘unseen’ ability 

remained unaffected. This behavioural effect was replicated in Experiment 2D. Experiment 

2B revealed an elevation of phosphene threshold following the application of cTBS, 

replicating Franca, et al., (2006). Experiment 2C showed a corresponding cTBS-induced 

increase in the inhibitory neurotransmitter GABA, consistent with the findings of Stagg et al., 

(2009). Experiment 2D additionally demonstrated that the onset of ERD in the alpha band 

became steeper following the application of the cTBS. 

 The occipital lobe has long been known to play a prominent role in visual 

consciousness. This study refines our understanding of that role by emphasising the 

mechanism of gating in the formation of conscious percepts. As with blindsight, the effect 

can be said to be relatively specific to conscious processing in that the contrast state of 

‘unseen’ discrimination was above chance but unaffected by the intervention. Determination 

of whether or not a subject consciously perceives stimuli is likely to involve selection, which 

in turn involves discarding representations that do not enter the frame. The suggestion is that 

it was this negative aspect of selection which was facilitated by the application of the cTBS. 

 Selective gating and active suppression are associated with oscillatory changes in the 

alpha band (Foxe & Snyder, 2011; Jensen & Mazaheri, 2010). Decreases in alpha power are 

observed when the requirement for processing is raised; for example, alpha oscillations 

decrease when the eyes are open relative to closed (Berger, 1929). Alpha oscillations have 

also been implicated in the framing of individual percepts, where subjects are more likely to 

group percepts together if they are presented during the negative trough of alpha oscillations 

than they are during the peak (Varela, et al., 1981). Furthermore, the presence of ERDs in the 

alpha band has been specifically associated with the presence of explicitly conscious 

processing, whereas event related synchronisations have been observed following both 

conscious and unconscious processing (Pfurtscheller, 1992). The governance of perceptibility 

by alpha rhythms and their dissolution in the form of the ERD therefore seemed to exemplify 

the kind of gating mechanism that might be responsible for the observed increase in 
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conscious detection following the application of cTBS. Indeed the ERD dropped more rapidly 

following the application of the cTBS, indicating a facilitation of the gating response. 

 The balance of activity at the biochemical level is played out by the balance between 

excitatory and inhibitory neurotransmitters. The hypothesis put forward is that this balance is 

tipped towards inhibition by the application of cTBS, increasing the contrast or gain (Katzner, 

Busse, & Carandini, 2011) between representations. A similar interpretation has been offered 

following the demonstration that microiontophoretically (micro injection and measurement 

using ionic currents) applied GABA suppressed spontaneous discharges, but did not affect 

evoked response to auditory stimuli in rats (Ebert & Ostwald, 1995).The increase in observed 

GABA concentration following cTBS was therefore consistent with the gating-by-inhibition 

hypothesis, suggesting that an important factor in determining whether or not a representation 

is realised as conscious is the active suppression involving GABA. 

Of the three rival hypotheses we explored, none received support in the data. Clearly 

arousal, as measured by pupil diameter, did not appear to correlate with the application of the 

cTBS (Kindler et al., 2012), although arousal or rather lack of arousal did influence the data. 

 If the late evoked MEG responses are seen as representative of conscious signals, 

then increased peak ERF as a result of cTBS can be seen as consistent with the alternative 

hypothesis that cTBS increased excitatory content-bearing responses. Furthermore, if the 

claim were to be that general neuronal activity was suppressed (irrespective of function) 

owing to the application of cTBS, then we might have expected the ERP to have been 

reduced. No clear evidence of such changes was apparent. 

A general suppression of neural activity caused by the cTBS is not sufficient in itself 

to explain the observed increase in conscious detection. Rather, the proposal is that the 

mechanisms which gate consciousness involve suppression / inhibition under normal 

conditions, and it was these selection mechanisms that were specifically facilitated by 

occipital cTBS. This may be why the application of cTBS resulted in the decreased detection 

of phosphenes and increased detection of normal external stimuli. Detection of phosphenes 

differs fundamentally from detection of external stimuli in that phosphenes are the result of 

direct pervasive stimulation of neurons in visual areas (Thielscher, et al., 2010), whereas 

conscious detection of external stimuli is the result of refined teleological mechanisms. 

Therefore, the increase in phosphene threshold is consistent with there being a general 

reduction in excitability and it being this inhibitory element - as part of the mechanism that 
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produces conscious percepts - which benefits from the application of cTBS. The increase in 

phosphene threshold also replicates the work of (Franca, et al., 2006) and detracts from the 

alternative hypothesis that cTBS might increase excitation and/or noise (stochastic 

resonance). 

Although the effect of cTBS increasing conscious detection was replicated, two points 

of caution are worth emphasising. First, the stimuli used here were presented among 

luminance noise and the effect we claim cTBS to have can be interpreted in terms of 

suppression of superfluous noise. It is therefore possible that the increase in conscious 

detection may only be realised during tasks that embed task-relevant stimuli within noise, 

with the facilitation arising through suppression of that noise. Second, the TMS intensity 

applied in these experiments was relatively low. This raises the question: would higher 

intensities cause suppression (Abrahamyan, et al., 2011). A correlation analysis involving 

motor threshold designed to probe this question is described in appendix A1.2. Essentially 

this failed to provide conclusive evidence with respect to this question. It therefore remains a 

potential avenue for future research.  

One of the more common assumptions in the design and interpretation of TMS 

experiments is that TMS operates as some form of ‘virtual lesion’ (Hilgetag, Theoret, & 

Pascual-Leone, 2001; Pascual-Leone, Bartres-Faz, & Keenan, 1999; Pascual-Leone, et al., 

2000; Walsh & Cowey, 2000). The finding that this form of repetitive TMS facilitates 

conscious processing in contrast to the blockage of activity caused by actual lesions (as in 

classic blindsight, where consciousness is lost) indicates that the virtual lesion interpretation 

would be an oversimplification if applied here, and therefore might not be an appropriate 

default assumption of repetitive TMSs mode of operation (Hilgetag, et al., 2001).  

The facilitation of conscious detection following cTBS is by no means the first 

demonstration of improvements in cognitive capacities following repetitive TMS (Cazzoli et 

al., 2012; Cazzoli, Wurtz, Muri, Hess, & Nyffeler, 2009; Funke & Benali, 2011; Kindler, et 

al., 2012; Marzi et al., 1998; Tegenthoff et al., 2005; Thompson, Mansouri, Koski, & Hess, 

2008; Waterston & Pack, 2010; Yamanaka, Yamagata, Tomioka, Kawasaki, & Mimura, 

2010).  Some of these investigations are less relevant to the interpretation of current 

experiments than are others. This is because the frequency at which some experiments 

applied TMS are thought to be excitatory protocols, leading to increased activation of 

corresponding cortical representations (Funke & Benali, 2011; Tegenthoff, et al., 2005; 
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Thompson, et al., 2008; Yamanaka, et al., 2010), unlike cTBS (Franca, et al., 2006; Huang, et 

al., 2005). For example, Tegenthoff et al used an excitatory 5Hz TMS protocol to improve 

tactile discrimination when applied to somatosensory finger areas, and showed that this effect 

correlated with increased blood-oxygen-level-dependent activation in the corresponding 

region as measured by functional magnetic resonance imaging. Other studies where 

improvements have been observed can be attributed to the artefactual effects of the TMS such 

as auditory or inter-sensory facilitation (Marzi, et al., 1998). 

Of greater relevance here is the study by Waterson et al., (2010) who reported that 

cTBS boosted visual sensitivity when applied at similar intensity to the current study. 

However, the findings of that study are questionable. In particular, they report in the text of 

the paper that 6 out of 7 subjects showed an improvement following the application of cTBS 

to primary visual areas. However, in the figure they present, drawn from the same data, the 

effect relative to controls is only apparent in 3 out of 7 subjects and it appears to be these 3 

subjects that drove the group-level mean difference in performance.  Although there are 

statistical concerns with this study, the authors’ conclusions are consistent with the data 

collected over the current experiments. In particular, they describe cTBS as being effective in 

improving ‘coarse’ perceptual judgements (using large angular displacement, low contrast 

gratings) and not ‘fine’ judgments (small angular displacement, high contrast gratings). It is 

notable that the detection task employed here more closely resembled the coarse task, 

consistent with the findings of Waterson et al., (2010).  

The most promising areas in which improvements in performance following cTBS 

might be applied is within the clinical context; for instance, cTBS has been shown to relieve 

symptoms of unilateral spatial neglect (Cazzoli, et al., 2012; Cazzoli, et al., 2009). It has been 

proposed that the cause of spatial neglect is a lack of inter-hemispheric inhibition, leading to 

hyperactivity with the contralesional hemisphere and the maintenance of attention to the 

corresponding contralesional visual field (Cazzoli, et al., 2009; Koch et al., 2008; Reuter-

Lorenz, Kinsbourne, & Moscovitch, 1990). The interpretation offered by Cazzoli et al, is that 

cTBS increased the mechanism of inhibition leading to a reduction in the symptoms of 

neglect (Cazzoli, et al., 2012; Cazzoli, et al., 2009). This is consistent with the interpretation 

of the improvements based on facilitation of inhibitory gating mechanisms offered here. A 

similar interpretation (potentiation of intercortical inhibition mechanisms) could explain the 

finding that other forms of rTMS can help alleviate the symptoms of amblyopia (see 

Thompson, et al., 2008). The increase in conscious detection here is also consistent with the 
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recent demonstration that a similar cTBS protocol can speed verbal responses for aphasic 

patients following stroke (Kindler, et al., 2012). In conjunction with the data here, the further 

speculative suggestion can be made that the observed changes may reflect part of a 

homeostatic response orientated towards the return of optimal conditions following the 

presumably high levels of enforced activity that occurred during the application of the cTBS.   

In summary, this study found cTBS to increase conscious detection of stimuli, 

contrary to the expected profile of blindsight. The confirmation of cTBS being neuronally 

suppressive and the demonstration of increases in measures associated with active regulation, 

suggests that mechanisms which gate, select and bring into relief consciousness are those that 

were influenced by occipital cTBS. 

 

2.8 Limitations  
 

2.8.1 Behavioural Task Limitations 

 

 This section will set out the principal limitations encountered. Resulting modifications 

in task design are discussed in section 3.2.1. 

 There were two interrelated problems encountered in these experiments. The first is 

the extent to which reportedly ‘unseen’ abilities can be regarded as unconscious.  This in turn 

has two facets – one conceptual and one practical. The conceptual problem of what 

behavioural pattern should be interpreted as unconscious (and conscious) is discussed in 

section 4.3. The practical aspect is the possibility of subjects being aware – consciously – of a 

portion of the arrow (figure 2.8.1.1), and are therefore provided with directional information, 

yet, this representation is insufficient to elicit a categorical ‘yes’ response to the ‘arrow?’ 

question. It is therefore possible that the TMS may cause such partial ablation, resulting in the 

demonstration of above chance reportedly ‘unseen’ ability, yet the processing upon which 

these demonstrations are based would be conscious.   
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Figure 2.8.1.1 Illustration of the possibility that TMS could cause a partial scotoma 

which might prevent acknowledgment of conscious awareness, yet facilitate task 

performance on the basis of partial conscious awareness.   

 The second problem concerns the application of SDT when relatively few false alarms 

are produced. Subjects’ response criteria to the ‘yes/no’ question was very conservative (BrC 

mean = 0.067 ± 0.087SD, where Br = 0 is 0 false alarms and 1 is responding ‘yes’ on all 

trials). That is, subjects were unlikely to report being aware of stimuli that had not been 

presented. This feature of ‘yes/no’ tasks has previously been described (Macmillan & 

Creelman, 1990) and is to be expected given the meta-cognitive aspect of the question. Meta, 

here, refers to the requirement for a secondary level of report and/or measurement referring to 

a primary level representation. The secondary response is unlikely to be positive in the 

absence of a primary representation (see section 4.4.1.1 for further details). The resulting 

willingness of subjects to report ‘No/Unseen’ relates to the difficulty of defining these 

responses as categorically unconscious (1.3.2.3). The problem this poses for the application 

of classic parametric SDT is that small changes such as single false alarms will have a 

disproportionately large effect on the data. Single trial differences in the context of low 

overall rates will correspond to the tail ends (most non-linear) of the normal distributions 

applied. Although the application of non-parametric SDT reduces this problem, the capacity 

of any form of SDT to extract bias from sensitivity measures and to track changes 

independently, is limited if no false alarms are produced. 
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 Fortunately, the impact of these problems upon the conclusions of the off-line TMS 

experiments in this chapter is arguably limited. The central findings of these experiments all 

concern changes upon the measure of conscious detection, not ‘unseen’ discrimination.  The 

relation between the measure of conscious detection and conscious awareness is only made 

more tenable through subjects’ adoption of conservative criteria, as any token reported 

awareness is more likely to be veridical. Furthermore, the contrast between conscious 

awareness and perception lacking awareness is maintained even if the perception lacking 

awareness is not described as unconscious. This is because what is required for the contrast, 

revealing of conscious processing, to function as intended, is the relative difference between 

when the subject reports awareness and reports ‘no’ awareness, not the absolute absence of 

awareness when reporting ‘no’. In this way, consciousness can still be said to be suppressed 

in the case of the partial scotoma. 

Although these problems do not impact greatly upon the interpretation of the 

experiments described in this Chapter, they are important for the demonstrations of TMS-

induced blindsight in Chapter 3. Task adaptations applied to lessen the impact of these 

problems are discussed in section 3.2.1. 

 

2.9 Summary of off-line TMS study  
 

 These experiments have developed from the initial counterintuitive finding that 

suppressing cortical excitability with TMS can increase the conscious detection of stimuli. 

This facilitation was replicated and was found to be coincident with potentiation of the ERD 

and the elevation of occipital GABA concentration. Together these findings suggest that 

inhibitory gating is an important element in the formation of visual consciousness.  
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Chapter 3. On-line experiments  
Using event related TMS to track the temporal dynamics and 

anatomy of information flow in visual perception. 

 

3.1 Introduction 
 

3.1.1 Overview 

 

This series of experiments comprised two broad sections: a between-subjects study 

(Experiment 3A, section 3.3) and a single subject case study (section 3.4-6). The single 

subject study was conducted over three individual experiments (3B, 3C, 3D). The 

experimental tasks and aims were essentially the same across the two studies, so this chapter 

is prefaced with a general introduction followed by separate descriptions of the individual 

experiments. 

 The over-arching aim of this chapter was to look at the timing and pathways of 

activity that support conscious vision and visual perception lacking in conscious awareness. 

The main novel findings are that input from the superior colliculus is not necessary for the 

residual abilities of TMS-induced blindsight, and that these abilities appear to depend upon 

later recurrent activity, rather than the early feedforward sweep of activity as has been 

previously suggested (Lamme, 2001). In contrast to reportedly ‘unseen’ abilities, the 

conscious detection of stimuli appears to be supported by input from the superior colliculus 

and/or magnocellular routes of the lateral geniculate nucleus, during very early and very late 

stages of occipital processing.  
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3.1.2 The timing of visual activity  

 

Individual TMS pulses applied to the occipital lobe, at times relative to visual stimuli, 

can track the passage of information through the visual system in a temporally precise 

manner. Amassian and colleagues were the first to use TMS in this mode, applying 

stimulation at 20ms intervals between 0 and 200ms during a letter recognition task 

(Amassian, et al., 1989). They showed that TMS caused a suppression or dip in performance 

accuracy when it was applied between 80-100ms after stimulus onset. They speculated that 

there is an early unconscious stage of processing and a second consciousness-related stage, 

corresponding to the 80-100ms dip, which is more susceptible to the effects of TMS 

(Amassian, et al., 1989). This strategy, of applying TMS at times relative to stimuli in order 

to reveal the timing of activity, became a theme running through a great deal of subsequent 

work and inspired this series of experiments. 

The drop in detection as a result of applying TMS at ~ 100ms, first reported by 

Amassian et al, is probably the most widely replicated effect to have emerged from the non-

motor TMS literature (e.g. Corthout, Uttl, Juan, Hallett, & Cowey, 2000; Corthout, Uttl, 

Walsh, Hallett, & Cowey, 1999; Corthout, Uttl, Ziemann, Cowey, & Hallett, 1999; Kammer, 

Puls, Strasburger, Hill, & Wichmann, 2005; Koivisto, Railo, & Salminen-Vaparanta, 2011; 

Overgaard, Nielsen, & Fuglsang-Frederiksen, 2004; Sack, van der Mark, Schuhmann, 

Schwarzbach, & Goebel, 2009; Thielscher, et al., 2010). It has also been suggested that there 

are other periods over which TMS is effective in reducing perception. For example, papers 

produced by Erik Corthout and colleagues suggest that there are several additional periods 

during which TMS is effective before the ~100ms period (Corthout, et al., 2002; Corthout, 

Hallett, & Cowey, 2003; Corthout, et al., 2000; Corthout, Uttl, Walsh, et al., 1999; Corthout, 

Uttl, Ziemann, et al., 1999). Others have suggested that there are periods where TMS is 

effective, in addition to ~100ms, at a much later stage, beyond 200ms (Camprodon, Zohary, 

Brodbeck, & Pascual-Leone, 2010; Chambers, Allen, Maizey, & Williams, 2012; Heinen, 

Jolij, & Lamme, 2005). Recently, it has even been suggested that the period of TMS efficacy 

at ~100ms can be divided into sub-components via the demonstration of additional dips in 

performance over the 60 to 120ms range (de Graaf, Herring, & Sack, 2011). 
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The central concern regarding the demonstrations of periods of TMS efficacy in 

addition to the ~100ms dip is consistency in replication. For example, work produced by the 

same researchers has appeared to provide evidence both for and against the existence of 

additional periods of TMS efficacy upon visual processing (cf. Sack, et al 2009., with de 

Graaf, et al., 2012; and Koivisto, Mantyla, & Silvanto, 2010; with Koivisto, et al., 2011). The 

early period of TMS efficacy (20-60ms post stimulus Corthout, Uttl, Walsh, et al., 1999) has 

also been resistant to replication with many studies capable of demonstrating efficacy of 

TMS applied at these times (e.g. Amassian, et al., 1989; Koivisto, Henriksson, Revonsuo, & 

Railo, 2012) but few having achieved such replication (Koivisto, et al., 2010). The efficacy of 

TMS when applied at times after the ~100ms period does seem slightly more consistent than 

the very early effects, although relatively few TMS experiments have targeted activity 

beyond 200ms. These experiments are explored in greater depth in section 3.5.3.  

One reason for inconsistencies in the reporting of multiple periods of TMS efficacy 

may be statistical. In order to demonstrate two separable periods of TMS efficacy, the 

orthodox strategy is often to show two periods which express significant drops in 

performance (often performed with t-tests) with an intervening period where TMS is 

ineffective (e.g. Corthout, Uttl, Ziemann, et al., 1999). However, this may not be a valid 

approach because the demonstration of multiple periods rests on the demonstration of the 

intervening period when TMS is ineffective and the application of orthodox Fisher-based 

statistics does not address this null hypothesis (Dienes, 2008; Nieuwenhuis, Forstmann, & 

Wagenmakers, 2011); the absence of a significant effect of TMS applied over the intervening 

period does not mean there is no effect. Indeed, it is often the case with demonstrations of 

multiple periods that the statistics referring to the intervening period are simply absent from 

the published report (e.g. Juan & Walsh, 2003). 

Another, and possibly more influential, reason for inconsistencies of effects may be 

differences in the behavioural tasks employed. Intuitively, different behavioural tasks put 

different demands upon early cortical areas in order to form correct responses. In particular, 

long exposures to stimuli and more complex tasks may require later activity, whereas speeded 

and reflexive responses are likely to depend upon earlier activity (cf. Ro, et al., 2004 with 

Chambers, et al., 2012). 

The demarcation between early and late activity is most widely recognised as 

corresponding to the neuronal processes of feedforward followed by recurrent activity, as 
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described by Victor Lamme. He describes feedforward activity as corresponding to pre-

attentive or unconscious vision and the later recurrent phase as conferring conscious 

awareness (Lamme, 2001; Lamme & Roelfsema, 2000).  This differentiation maps on to the 

distinction between ‘unseen’ discrimination vs. conscious detection, in the current 

experiments, and the dissociation of blindsight type phenomena generally. Indeed, Lamme 

cites in support of his theory the disruption to recurrent processing in blindsight, the resulting 

lack of conscious awareness, the preservation of pathways that might still provide an early 

feedforward sweep of activity, and the preservation of unconscious abilities (Lamme, 2001). 

TMS-induced blindsight studies tend to adopt the feedforward followed by recurrent – 

conscious processing model in their interpretation of data (Boyer, et al., 2005; Jolij & 

Lamme, 2005 ; Ro, et al., 2004). That is, the disruption caused by applying TMS from 

approximately 100ms post stimulus onset disrupts recurrent processing and therefore leads to 

a suppression of conscious awareness. One of the main aims of the current experiments has 

been to uncover whether there are one or multiple periods of TMS efficacy in response to this 

arrow based task, and to ascertain whether the early and late distinctions correspond to the 

distinctions between consciousness and perception lacking in consciousness.   

 

3.1.3 The pathways of visual activity 

  

According to Lamme (2001), the retinotectal pathway via the superior colliculus (SC)  

is the main route responsible for the feedforward sweep of activity and residual perceptual 

abilities of blindsight (Lamme, 2001). However, whether or not the residual abilities of 

blindsight are supported by this pathway, as opposed to other pathways such as preserved 

projections from the lateral geniculate nucleus (LGN), is not clearly resolved and this debate 

forms a central question in the blindsight literature (Cowey, 2010 see figure 3.1.3.1). The 

current series of experiments addressed this question by demonstrating TMS-induced 

blindsight and using stimuli types which do or do not activate the SC (Sumner, et al., 2002). I 

will briefly discuss the evidence in support of this stimulus intervention isolating collicular 

tracts before addressing the evidence in relation to the role of the SC in blindsight. 
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Figure 3.1.3.1. Illustration of the experimental configuration with TMS functionally 

targeted at visual cortices (see Thielscher, et al., 2010)(V1). The main geniculate 

pathway, via the lateral geniculate nucleus (LGN), is represented in grey / purple 

(purple depicting the s-cone opponent projection via the koniocellular layers of the 

LGN). These pathways project mainly to V1, but are also thought to contribute some 

inputs directly to extrastriate areas, represented by the junction between the LGN and 

V1 (e.g. Fries, 1981; Sincich, Park, Wohlgemuth, & Horton, 2004). The collicular / 

retinotectal pathway, also suggested as supportive of the residual abilities of 

blindsight, is illustrated as projecting via the superior colliculus (SC), here represented 

in grey below the geniculate pathway. From the SC, this route makes onward 

projections to pulvinar and several cortical areas including extrastriate, parietal and 

frontal regions (Fries, 1984). 

The critical stimulus intervention in these studies is based on the principle that, of the 

three classes of colour receptors in the retina, short wavelength responsive cones (s-cones) 

are thought to be the only cells that do not activate the tectum of the SC in a colour opponent 

manner (Sumner, et al., 2002). In addition to bypassing the retinotectal (collicular) pathways, 

s-cones are also thought not to project via the magnocellular layers of the LGN, and possibly 

parvocellular layers (Dacey, 2000; Mollon, 1989). These non-s-cone retinotectal and 

magnocellular pathways are therefore collectively denoted henceforth as ‘R/M’. This 

anatomical peculiarity has previously been exploited to demonstrate the roles of these 

pathways. The use of s-cone specific stimuli impoverishes R/M input, and differences in 
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responses, relative to comparable luminance stimuli, can be attributed to a functional role of 

the isolated pathways (e.g. Sumner, et al., 2002; Sumner, Nachev, Vora, Husain, & Kennard, 

2004). 

 Evidence supporting the absence of s-cone input to the retinotectal pathway has 

emerged largely from primate electrophysiological work carried out in the 1970s. For 

instance, de Monasterio (1978) probed the responsiveness and connectivity of retinal 

ganglion cells by displaying monochromatic colours and antidromic stimulation of various 

areas of the monkey visual system. Although he found cells responsive to all wavelengths of 

visible light and cells activated by stimulation of the SC, he found no cell type that was 

responsive to both blue (short wave) light and to stimulation of the SC. Similarly, Schiller 

and Malpeli (1977) found a lack of colour opponency in ganglion cells projecting to the SC 

(and suggested the segregation of a blue ‘on’ opponent pathway to the LGN). Consistently, 

Marrocco and Li (1977) showed no colour opponent processing when probing the activity of 

the SC using microelectrodes, and argued that previous work (Humphrey, 1968; Wolin, 

Massopust, & Meder, 1966) which appeared to demonstrate colour processing in the SC 

could be attributed to luminance differences between coloured stimuli that did not appear to 

be adequately controlled for in the earlier experiments, and to which the SC is sensitive. 

Lesions of the SC in monkeys have also been shown to impair responses to some visual tasks, 

but not those that involve s-cone opponent (blue-yellow) discriminations (Butter, 1974). 

 The magnocellular layers of the LGN provide an additional pathway whose function 

can be addressed using s-cone stimuli. A significant proportion of magnocellular projections 

bypass primary visual areas, directly innovating extrastriate regions such as the middle 

temporal cortex (MT, Chatterjee & Callaway, 2002). As with the SC, it is not that 

magnocellular projections lack s-cone input but that they lack colour opponency in their 

response profiles, which enables their functional isolation (Derrington, Krauskopf, & Lennie, 

1984). The presence of s-cone input was demonstrated in about 10% of magnocellular LGN 

neurons sampled by Chatterjee and Callaway (2002), but these responses summated in the 

presence of other colours rather than showing colour opponency. Since these pathways 

respond to changes in luminance, the use of s-cone stimuli to isolate the R/M pathways 

mandates the inclusion of luminance noise in order to mask the stimuli in terms of any 

luminance change. Instead of a change in luminance the s-cone stimuli are presented as an 

increment of s-cone colour saturation, rendering the R/M pathways blind to these stimuli. 
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Note that here ‘s-cone stimuli’ is used to denote the transition between gray and purple in the 

context of luminance noise, rather than the presence of the purple arrow per se. 

 These s-cone stimuli provide an avenue of enquiry into one of the central debates in 

the blindsight literature. Namely, which pathways support the residual vision when primary 

visual areas are disrupted? Collicular pathways fulfilling this role were first suggested by 

Weiskrantz (1986). A series of psychophysical (Leh, Mullen, et al., 2006) and imaging (Leh, 

Johansen-Berg, & Ptito, 2006; Leh, Ptito, Schonwiesner, Chakravarty, & Mullen, 2010; 

Tamietto et al., 2010) experiments claimed to show that this was indeed the case via the use 

of s-cone stimuli. They demonstrated that collicular projections were preserved when 

geniculate routes were damaged in patients with blindsight (Leh, Johansen-Berg, et al., 

2006). The superior colliculus responded to visual stimulation (Leh, et al., 2010; Tamietto, et 

al., 2010) and, most importantly, blindsight type effects were suppressed when s-cone stimuli 

were used (Leh, Mullen, et al., 2006; Tamietto, et al., 2010); that is, when R/M input 

including SC input was diminished, so too were residual unconscious abilities. It has also 

been suggested that the SC plays a critical role in the preserved perceptual responses of TMS-

induced blindsight (Ro, et al., 2004). Ro et al demonstrated the preservation of saccadic 

responses during a TMS-induced suppression of awareness, whereas a manual response task 

was affected by the application of the TMS (Ro, et al., 2004). Because Ro et al., link saccadic 

response to role of the SC and manual responses to activity provided by other routes, they 

concluded that input from the SC is necessary for the residual abilities of TMS induced 

blindsight.  

 In contrast to these demonstrations of s-cone and collicular dependency of blindsight, 

it has been demonstrated that reversible blockade of the LGN is coupled to the reversible 

elimination of blindsight responses (Schmid, et al., 2010). This may be the clearest 

demonstration that the residual abilities of blindsight can depend on the LGN rather than the 

SC. This is also consistent with previous demonstrations that ‘spared islands’ of striate cortex 

(in the geniculostriate stream) respond to stimuli presented to the blind field of blindsighted 

patients (Fendrich, Wessinger, & Gazzaniga, 1992). Recently, it has also been demonstrated 

that in the context of a TMS-induced suppression of conscious detection, subjects’ forced 

choice discrimination ability showed no preference for red vs. blue stimuli (Railo, Salminen-

Vaparanta, Henriksson, Revonsuo, & Koivisto, 2012). If this ability were dependent upon SC 

input then we might expect a relative impairment in the selection of blue stimuli. The results 

of Railo et al., therefore provide weak evidence in support of the LGN providing the input for 
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the residual abilities of TMS-induced blindsight. However, because Railo et al., made no 

attempt to mask the stimuli in terms of a luminance change, the conclusions that can be 

drawn are limited. 

 These conflicting and equally compelling demonstrations of the neural basis for the 

preserved abilities of blindsight indicate that the debate over the pathways is far from 

resolved. In the current experiments, applying this s-cone intervention therefore allowed 

assessment of the role of collicular tracks in the preserved abilities of TMS-induced 

blindsight. 

 

3.1.4 Synopsis of experimental aims for the on-line TMS 

experiments 

 

 The aims of this series of experiments were first to establish the time course of 

causally relevant information flow through visual cortical areas in the support of visual 

consciousness and reportedly ‘unseen’ perception.  Second, the intention was to investigate 

the contributions made to such processing from sub-cortical pathways, particularly those via 

the SC and LGN. We therefore sought to investigate the correspondence between early 

feedforward and unconscious processing, as well as the dependency of conscious processing 

upon recurrent activity. If this correspondence holds, and the effects are consistent with 

previous reports, then the disruption of recurrent processing (~100ms) should lead to TMS-

induced blindsight. Within the context of TMS-induced blindsight the dependency of the 

preserved abilities upon input from the SC can be obtained via the use of s-cone stimuli, 

where – if the collicular hypothesis is correct – ‘unseen’ abilities should be diminished 

relative to those in response to luminance stimuli.  
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3.2 Task adaptations for on-line TMS study 
 

3.2.1 Modifications 

 

 The difficulties with the task encountered in the off-line experiments approximate to 

the possibility of there being some residual awareness that might facilitate discrimination 

ability when stimuli are reportedly ‘unseen’, and low incidence of false alarms (highlighted in 

section 2.8). In an attempt to alleviate some of these difficulties two modifications of the task 

were implemented. 

 The first and most important task modification was the introduction of a further 

question: ‘Did you see something?’ This was added to limit the impact of the problem, 

common in blindsight studies, that there is the possibility that some residual awareness of the 

target stimulus could support ‘unseen’ discrimination performance, even when the level of 

awareness is insufficient to elicit a categorical ‘yes’ response (Campion, et al., 1983). The 

additional question was explained to subjects as corresponding to lower levels of awareness. 

They were instructed to respond positively to this question if they saw something that may 

have been an arrow and/or were unsure (see appendix A4 participant instructions). 

Alternatively, if the subjects thought the trial to be equivalent to a stimulus-absent condition 

then they were to respond ‘No’ to both ‘Did you see the arrow?’ and ‘Did you see 

something?’ In this way, any accessible awareness that the subject holds of the stimulus on a 

given trial should lead to the exclusion of that trial from the category of ‘unseen’ 

discriminations. This experimental manipulation not only reduces the concern that residual 

conscious awareness could facilitate ‘unseen’ discrimination judgements; it also allows the 

subject to register degrees of awareness against which the efficacy of interventions can be 

compared. 

 Another reason for the inclusion of the additional ‘something?’ question was that 

some subjects also reported a degree of uncertainty during some trials of the off-line TMS 

experiments. The addition of the ‘something?’ question is therefore partly intended as a 

response to this phenomenological lead (Gallagher, 2003; Lutz, 2007). In addition, type II 

blindsight abilities have been associated with awareness that ‘something’ occurred in the 
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visual field without subjects being aware of what that ‘something’ was (Cowey, 2010; 

Weiskrantz, 1996). The presence of some vague feeling that something may have been 

presented in contrast to clear explicit detection of arrows may also be seen as corresponding 

to Ned Block’s differentiation between phenomenal and access consciousness (Block, 2007), 

which is discussed in section 4.6. The ‘something’ question was therefore also intended to 

reflect these potential aspects of blindsight. The inspiration for the addition of this question 

should, in addition to the suggestions made by the subjects, also be partly attributed to the 

Perceptual Awareness Scale of Ramsoy and Overgaard (2004), which measures four levels of 

reported awareness (as opposed to the three included here), but which does not make use of 

SDT in its application.  

 

 

Figure 3.2.1.1. Examples of stimuli used, illustrating arrows for luminance and s-

cone conditions, a stimulus-absent frame and a non-arrow luminance frame. 

 

 The second task modification was the addition of a non-arrow condition to the 

stimulus-absent condition. These were bars, equal in luminance (or s-cone colour in the s-

cone condition) to that of the arrow, but containing no directional information, see figure 

3.2.1.1. These control stimuli were presented on half the stimulus-absent trials (25% of all 

trials). This manipulation increased the number of false alarm responses in arrow detection 

irrespective of TMS conditions, which has the advantage of increasing the reliability of SDT 

analyses (Macmillan & Creelman, 1990). Subjects were instructed to respond positively to 

the ‘something’ question and negatively to the arrow question if they were aware of this non-

arrow being present, as was reflected in the application of SDT (see below and appendix A4). 

The logic of using the something question in this way firstly ensured that the subjects were 
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performing the task correctly, i.e. not simply responding to the ‘something?’ in the same way 

as the arrow question, nor could they simply be responding ‘yes’ to ‘something?’ on all trials, 

as these response patterns would have prevented them from achieving threshold levels of 

detection. Secondly, if subjects’ criteria were such that they were responding positively to a 

change in luminance in the range of the arrows’ presentation (or the presence of colour in s-

cone conditions) rather than when they actually saw an arrow, the presence of the non-arrow, 

classed as stimulus-absent, would again prevent them from obtaining threshold levels of 

detection. 

 The imbalance of stimulus-absent conditions and the now two classes of non-targets 

further necessitates the use of non-parametric versions of SDT which can cope with such 

imbalances, thus confirming the use of Pr as the preferred measure of sensitivity and Br as 

the preferred measure of bias (Corwin, 1994). 

 There was also an additional modification to the stimuli, which did not relate to 

matters concerning the off-line experiments. This was that the background colour on which 

the stimuli were presented was changed from black to the mean grey of the luminance noise 

stimuli (Smithson, 2003)(25 cd/m2). This was the same background luminance as used in the 

s-cone calibration tasks (see 3.3.2). 

 The other notable difference between the off-line and on-line experiments (other than 

the mode of TMS) was in statistical approach adopted. Since some of the hypotheses of the 

on-line section required tests for both variance and invariance between experimental 

conditions, we employed a combination of orthodox significance tests and complementary 

Bayesian analyses (Dienes, 2008; Gallistel, 2009). Unlike conventional significance testing, 

Bayesian analyses can estimate the likelihood of the null hypothesis given data (Dienes, 

2008; Rouder, Speckman, Sun, Morey, & Iverson, 2009). 

 

3.2.2 Measures used 
 

 The addition of the ‘something?’ question and the non-arrow stimuli increased the 

number of SDT measures that could potentially be applied to the task. To minimise the 
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number of comparisons, the measures to which statistics are applied should be reduced to 

those that directly correspond to the logic of the task and address the hypotheses. 

 The primary measure of subjects’ conscious awareness of the arrow applied the 

following responses to the SDT classes as follows: 

Table 3.2.2.1. SDT classes for measures of conscious awareness (PrC) and bias in 

conscious detection (BrC). FA = False Alarms; CR = Correct Rejections. Hit Rate = 

Hits/(Hits + Miss); False Alarm Rate = FA/(FA+CR); Pr = Hit Rate – False Alarm 

Rate; Br = False Alarm Rate /(1-Pr) (Corwin, 1994). 

  RESPONSE   

STIMULUS Something? Arrow? SDT 

Class 

Arrow Yes Yes HIT 

  No No MISS 

Non-arrow Yes Yes FA 

  Yes No CR 

  Yes Yes FA 

Nothing Yes No FA 

  No No CR 

 

 The task aimed to quantify the subjects’ conscious awareness of the arrow, so ‘hits’ 

could only be achieved by reporting awareness of the arrow (and something) in the arrow’s 

presence. Conversely, a ‘miss’ could be achieved by denying awareness of the ‘arrow’ and 

‘something’ in the presence of an arrow. ‘False alarms’ could be achieved by reporting that 

the arrow was present when it was not, and by reporting that ‘something’ occurred when no 

stimuli were present. This meant that even small shifts in bias as reflected by their use of the 

‘something’ question might be reflected in the derived measures. Registering ‘correct 

rejections’ also made use of the ‘something’ question: reporting having not seen an arrow 

when none was presented was a ‘correct rejection’, as was responding ‘no’ to the arrow 

question and ‘yes’ to the ‘something’ question in the presence of a non-arrow. This profile 

was not classed as a ‘hit’ (which it was in terms of the non-arrow) because the principal task 

instruction referred to awareness of the arrow stimulus. There are of course many other ways 

in which responses could be classified to bring out different aspects of the task, but the above 

scheme was most closely aligned to the logic and phenomenology of the task. This 
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classification of SDT was also discussed with the subjects after their completion of the 

experiment or piloting, and took the descriptions they offered in reference to their experience 

of the task into account (Gallagher, 2003; Varela, 1996). The classification was established 

prior to the analysis of the data and used for the primary measure of conscious detection 

(PrC) and bias in detection (BrC).  

 The presence of the ‘something’ question meant that trials in which subjects reported 

not seeing the ‘arrow’ and not seeing ‘something’ could be assuredly categorised as lacking 

in conscious awareness of the stimuli. The use of these double ‘unseen’ discriminations to 

illustrate blindsight type effects means that the responses are more akin to type I blindsight 

than type II and hence of more utility in revealing the contrast of interest with overt conscious 

experience. The measure of ‘unseen’ perceptual ability was taken as proportion correct in 

terms of the left/right discrimination, when subjects reported both not having seen the 

‘arrow’, nor ‘something’ (PcU). 

 These two measures (PrC and PcU) are the principal dependent variables of the 

following experiments, used to illustrate conscious detection and reportedly ‘unseen’ 

discrimination abilities. Fluctuations in secondary measure of response criteria (BrC) are also 

considered. There are also other measures derived from responses to the task that may shed 

light on secondary questions, the principal additional measure discussed being subjects’ 

propensity to report awareness of ‘something’, which is discussed in Chapter 4.6 and 

appendix A5.  

 

3.3 Between-subjects study, experiment 3A. 
 

3.3.1 Between-subjects introduction 
 

As noted in section 1.2.2, blindsight is the intriguing phenomenon in which observers 

can successfully identify visual stimuli for which they deny awareness (Weiskrantz, 1986). 

This condition typically arises from damage to the primary visual cortex (Sanders, et al., 

1974) and can also be mimicked through reversible interference using TMS (e.g. Boyer, et 
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al., 2005). By dissociating visual ability from awareness, blindsight offers a unique insight 

into the neural basis of consciousness and perception lacking in awareness (Dretske, 2000), 

yet a consensus view remains elusive. Two central problems remain unsolved. The first, long-

standing, question concerns which neural pathways are crucial for vision lacking in 

awareness (Cowey, 2010). The second, more recent, question concerns the temporal 

dynamics of vision – whether residual ability in blindsight is supported by early feedforward 

processing, and whether the later recurrent phase of processing corresponds to conscious 

vision (Lamme, 2001). 

A classic point of contention in blindsight has been whether the residual vision 

depends on the ancient retinotectal pathway between the eye and superior colliculus (SC), 

which remains the main visual pathway in reptiles and birds (Cowey, 2010). Information via 

this route can bypass the visual cortex rapidly to reach frontal and parietal brain regions 

(Fries, 1984). In primates, however, the collicular pathway has become weakened compared 

with the abundant pathways from retina to visual cortex via the lateral geniculate nucleus 

(LGN). Thus, an alternative to the collicular hypothesis is that blindsight is supported by 

spared fibres or areas within geniculate pathways (Schmid, et al., 2010). Both the collicular 

and geniculate hypotheses have received empirical support from a range of studies (see 

section 3.1.3), with the majority in favour of the collicular hypothesis (Leh, Johansen-Berg, et 

al., 2006; Leh, Mullen, et al., 2006; Leh, et al., 2010; Rafal, Smith, Krantz, Cohen, & 

Brennan, 1990; Ro, et al., 2004; Tamietto, et al., 2010), cf. (Radoeva, et al., 2008; Railo, et 

al., 2012; Schmid, et al., 2010; Wessinger, Fendrich, & Gazzaniga, 1997). 

In this study we directly contrasted the collicular and geniculate accounts of TMS-

induced blindsight by comparing responses to stimuli that do or do not activate the collicular 

pathway, following the approach introduced by Sumner et al., (2002). As shown in figure 

3.1.3.1, the collicular pathway is thought not to receive colour opponent input from short-

wave cones (s-cones) of the retina (de Monasterio, 1978; Schiller & Malpeli, 1977; Sumner, 

et al., 2002). This means that the use of s-cone specific stimuli, when masked by luminance 

noise, will prevent information from passing via the collicular route. 

Recently, the question of how neural processing produces vision has focused on the 

temporal dynamics of information flow. According to a popular account (Lamme, 2001; 

Lamme & Roelfsema, 2000), the onset of a visual stimulus triggers a rapid feedforward 

volley that is sufficient for some degree of unconscious processing; this is then followed 
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(from ~100ms post-stimulus) by recurrent feedback that facilitates awareness. This theory is 

linked to the anatomical question of blindsight as it has implicated collicular tracts in the 

unconscious feedforward sweep. 

 To determine how these temporal dynamics of visual processing interact with 

neuroanatomy, not only were visual stimuli manipulated either to activate or to bypass the 

collicular pathway, but the onset time of occipital TMS was also varied. In the paradigm, 

active or sham (control) TMS was applied in 25Hz pulse pairs over the occipital cortex (see 

figure 3.1.3.1 and 3.3.1.1). To modulate the earliest phases of visual processing, TMS was 

applied at 0-40ms and 40-80ms after stimulus onset. Recurrent processing was targeted by 

applying TMS at 90-130ms and during a later period at 280-320ms. These four periods were 

tested to capture possible independent early and late phases (e.g. Corthout, et al., 2002). The 

target stimulus was an arrow embedded in luminance noise, presented on 50% of all trials 

(figure 3.3.1.1).  On each trial, subjects were asked if they were aware of the arrow stimulus, 

whether they were aware of ‘something’ having been presented (see section 3.1.1) and in 

which direction it was pointing (left or right). Demonstration of blindsight would thus 

manifest as a TMS-induced impairment of conscious detection while leaving the ability to 

discriminate reportedly ‘unseen’ arrows above chance and relatively unaffected by TMS. 

If feedforward and recurrent phases of processing map directly onto unconscious and 

conscious vision (Lamme, 2001) respectively, then we expected early TMS to impair 

‘unseen’ abilities through the selective disruption of feedforward processes, and possibly also 

to reduce awareness through the transmission of impoverished feedforward information. 

Later disruption, on the other hand, was predicted selectively to impair feedback, producing 

the characteristic signature of blindsight in which conscious detection is specifically impaired 

without influencing ‘unseen’ abilities. 

Both the collicular and geniculate hypotheses predict that conscious detection is more 

likely to be disrupted by occipital TMS during later periods (e.g. ≥100 ms) than during earlier 

periods. In addition, both hypotheses predict that corresponding ‘unseen’ discrimination of 

luminance stimuli should be spared – resulting in blindsight – because these stimuli are 

processed by all visual pathways. Where these competing accounts can be dissociated is 

through ‘unseen’ discrimination performance for s-cone stimuli. According to the collicular 

hypothesis, there should be no blindsight for s-cone stimuli: whenever TMS impairs 

conscious detection, ‘unseen’ discrimination should also suffer because the collicular route is 
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unable to provide residual information. In contrast, according to the geniculate hypothesis, 

blocking the collicular pathway should be inconsequential and thus s-cone stimuli should be 

equally likely to produce blindsight. 

 

 

Figure 3.3.1.1. Illustration of the times at which TMS was delivered relative to 

stimulus presentation in the four experiments presented in this chapter.  

 

3.3.2 Between-subjects materials and methods 
 

3.3.2.1 Subjects 

 

Sixteen neurologically healthy subjects with normal colour vision were recruited (7 

male, aged 20 to 32, mean 24).  All procedures were approved by the research ethics 

committee at the School of Psychology, Cardiff University.  
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3.3.2.2 Stimuli and task 

 

Each trial commenced with a fixation cross (1.5 s) followed by luminance noise, 

which was produced by alternating the luminance of the bars at 50Hz (figure 3.3.1.1 and 

3.2.1.1). The noise continued for 800ms before the onset of the target stimulus (20ms; or 

noise of equal duration on stimulus-absent trials). Following target offset, the noise continued 

for a further 380ms (figure 3.3.1.1). The three questions were then asked and responses 

collected on a standard computer keyboard. The questions and measures are described and 

discussed in section 3.2. 

Two classes of target stimuli were employed (figure 3.2.1.1): luminance stimuli, 

which were defined by an increase in luminance, and s-cone stimuli, which were defined by 

an increase in colour saturation that stimulated s-cones, but not (or minimally) long and 

medium wave cones (Sumner, et al., 2002; Sumner, Nachev, Castor-Perry, Isenman, & 

Kennard, 2006; Sumner, et al., 2004). To mask the s-cone stimuli from R/M channels 

(Bompas & Sumner, 2009; Sumner, Nachev, et al., 2006), all stimuli were presented against a 

background of luminance noise (mean luminance of noise and background: 25 cd/m2; range 

of noise: 10 cd/m2). The noise occupied a 1.91o square at fixation, while the arrows and non-

arrows subtended 0.81 × 1.43o. To aid stimulus comparability of stimulus classes, the noise 

also contained low levels of colour noise along the tritan axis (range: ±8% of mean s-cone 

saturation of stimuli). Arrow stimuli were present on 50% of all trials, while non-arrows and 

stimulus-absent trials comprised 25% of trials each. The use of one or other of the two 

possible non-arrows was randomised. 

 

3.3.2.3 Procedure 

 

Prior to the main experiment, each subject completed approximately four hours of 

preparatory testing. During this phase, stimulus levels were calibrated to ensure that all 

subjects performed at comparable levels of detection, subjects were screened for suitability 

for TMS, and the phosphene threshold was obtained (PT, Franca, et al., 2006). Subjects’ 

individual tritan lines in colour space were also established, enabling s-cone stimuli to be 
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presented (Smithson, 2003, detailed below). The reason subject-specific tritan lines must be 

established is that there are individual differences and variance across retinal locations within 

subjects in the wavelength of light that specifically activate s-cones (Smithson, 2003). Thus, 

were a non-specific s-cone colour to be used (e.g. 00 in MacLeod-Boynton 1979 space) such 

a colour may have activated additional channels in some subjects. 

Subjects then completed six experimental sessions of ~1 hour. Each session consisted 

of 4 blocks, one for each of the experimental conditions: s-cone stimuli or luminance stimuli 

combined with sham or active TMS, with the order randomised between sessions. Blocks 

consisted of 80 trials, including the 4 stimulus types (left arrow, right arrow, non-arrow and 

stimulus-absent) and 4 TMS onset times (0-40, 40-80, 90-130 and 280-320ms) in a 

randomised order.  

The order of the response questions (Arrow? Something? Left/Right?) was different 

for each session, so that across the experiment each subject completed a fully 

counterbalanced set of question orders. Subjects were given ten practice trials at the start of 

each session to become familiar with the order. The sequence in which these question orders 

was presented was randomised between subjects.  

 

3.3.2.4 Equipment and TMS procedure 

 

Cortical stimulation was delivered with a Magstim high-power 90mm round coil in 

conjunction with a Magstim Rapid2 biphasic stimulator. Pulse delivery was controlled via a 

Cambridge Research Systems (CRS) Visage running Real Time Sequencer software on a 

Matlab platform, which also governed stimulus presentation on a gamma-corrected 21” 

Mitsubishi CRT monitor (100Hz vertical refresh rate). Pairs of TMS pulses were applied at 

95% of PT (group mean 54.4% of maximum stimulator output ±11.5% SD). The same 

method for determining PT was used as described for a single analysis block in Experiment 

2C, with the exception that there was no time critical aspect to the calibration applied here. 

This TMS intensity was adopted because higher intensities in pilot experiments caused 

blinks, twitches and phosphenes that the subjects reported as visible during the task. In pilot 

experiments, lower intensities and single pulses of TMS were found not to produce reliable 

effects on performance. The coil was oriented with the handle pointing upward and side ‘B’ 
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facing the subject, so that the induced current passed initially in a left-to-right direction. Coil 

positioning was initially based on anatomical proximity to the calcarine sulcus, localised in 

individual structural MRI scans. Immediately prior to each active TMS block, the intensity 

was set to 120% of PT and the coil was moved so that it produced a phosphene that the 

subject reported as being ‘reasonably clear’ and ‘at least in part, covering the centre of their 

visual field’ with their eyes closed. This procedure usually required ~10 pulses. The coil 

position was then recorded using a Brainsight system (Rogue Research Inc.) and used for the 

subsequent block of trials. If the subject moved beyond a 5mm tolerance of the original 

position, then the block was paused and the coil repositioned to the recorded site. An 

approximation of this position was used in the sham condition but with the coil perpendicular 

to the scalp so that the rim pointed toward the head, with a 9mm plastic spacer inserted 

between the scalp and coil to replicate the contact artefact.  

To exclude effects of TMS-induced blinks on performance, eye tracking was 

undertaken throughout the experiment using a CRS chin-rest mounted infrared eye tracker 

(250Hz).  Trials were excluded on the basis of blinks identified by a shift in pupil position 

followed by a transitory loss of pupil signal, coincident with the stimulus presentation. 

Overall, 241 of a total 30,720 trials were excluded from the analysis (<0.8%).  

 

3.3.2.5 Statistical analyses 

 

Effects were assessed using repeated measure ANOVAs with TMS site (2 levels: 

active and sham), stimulus type (2 levels: luminance and s-cone) and time of TMS relative to 

stimulus onset (4 levels: 0-40,40-80,90-130 and 280-320ms) as factors, conducted separately 

on measures of conscious detection (PrC), ‘unseen’ discrimination (PcU) and bias in 

conscious detection (BrC). Analyses of simple main effects exploited the relevant 

Greenhouse-Geisser corrected error terms from the ANOVAs (Winer, Brown, & Michels, 

1991), and the sham condition as a baseline. ‘Unseen’ discrimination performance was 

assessed relative to chance using single-sample t-tests. All t-tests and analyses of simple main 

effects applied the Holm–Bonferroni method of correction for multiple comparisons (Holm, 

1979). 
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Complementary Bayesian analyses were based upon models representing the critical 

hypotheses. The Bayes factor (B) represents the strength of support for the alternative 

hypothesis (H1) relative to the null (Dienes, 2008), with B>1 indicating evidence in favour of 

H1 and B<1 indicating evidence in favour of the null. In practice, values of B greater than 3 

or smaller than 1/3 are regarded as providing substantial evidence in favour of H1 or the null 

hypothesis, respectively (Dienes, 2011; Jeffreys, 1961). Bayesian tests were conducted 

separately on both positive and negative changes from the sham baseline in order to avoid 

specifying opposing changes within a single model, with the hypotheses represented by a 

uniform distribution (Dienes, 2008). Since the critical measures were calculated relative to a 

baseline, zero was selected as the starting point for the distributions. The maximum 

reasonable shift on both measures was 0.5 and so was used as the upper limit for the 

theoretical distributions. To assess TMS-dependent effects, the analysis was applied to the 

change in measures from sham at each level of TMS onset time and stimulus condition. To 

assess TMS independent effects of stimulus type on ‘unseen’ abilities we analysed data from 

the sham condition only.  This collapsed data across TMS onset times, and utilised the s-cone 

condition as the baseline for comparison. This was to ensure that baseline differences in task 

performance could not explain effects in the presence of the active TMS condition. 

To distinguish between the collicular and geniculate accounts we tested for 

differences in ‘unseen’ performance between stimulus types, during TMS-induced blindsight 

(as observed 90-130ms after stimulus onset). For this reason, the comparisons involving 

‘unseen’ discrimination at this time were reported individually (s-cone and luminance relative 

to sham) and a further analysis was undertaken which directly compared the change in PcU 

from sham between luminance vs. s-cone stimuli. The vector for this Bayesian analysis was 

thus calculated as: (Luminanceoccipital - sham) - (s-coneoccipital - sham). The hypothesis for this 

analysis was represented by a uniform distribution between 0 and 0.5, corresponding to a 

benefit bestowed by the additional input of luminance stimuli. Also, for these comparisons 

involving ‘unseen’ discrimination with TMS at 90-130ms, the complementary t-tests were 

reported, as were the B statistics representing effects in the opposite direction. Because each 

comparison involved 16 independent data points (subjects), appropriate standard error 

adjustments were applied, as recommended by Dienes (2008). 

Tests for outlier rejection were applied at a subject level using Chauvenet’s criterion 

(Taylor, 1997). No subjects were excluded using this criterion. 
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3.3.2.6 Task calibration 

 

  Detection thresholds were calculated using a psychophysical method of constants. 

Following a period of familiarisation with the task, subjects completed approximately ten 

blocks over a range of stimulus intensities, separately for s-cone and luminance stimuli. For 

luminance stimuli, the threshold was obtained by adjusting stimulus intensity, whereas for s-

cone stimuli the colour saturation was varied along the s-cone axis / tritan line. Data were 

then regressed using a sigmoidal or linear function (depending on fit quality), solving for the 

intensity which produced a PrC of 0.5; this corresponded to the stimulus level at which 

subjects reported consciously seeing the stimulus on 50% of target-present trials if no false 

alarms were reported. Following the initial calibration, subjects then completed several 

blocks at the derived intensity and minor adjustments were made to the stimulus levels to 

compensate for any learning effects, thus maintaining PrC≅0.5. At the start of each 

experimental session, subjects completed at least one pre-block with sham TMS (40 trials), 

and similar adjustments were made as required (criteria >±0.1 PrC from 0.5). If subjects 

completed two sessions in one day, then the mean value for the previous sham block was 

taken as the starting point for subsequent recalibration. The mean luminance for luminance 

stimuli was 36.5 cd/m2 (±3.5 SD). Subject-specific s-cone stimuli were produced following 

the methods described in Smithson et al (2003) and used in several previous experiments 

(Anderson, Husain, & Sumner, 2008; Bompas, Sterling, Rafal, & Sumner, 2008; Bompas & 

Sumner, 2008, 2009, 2011; Sumner, 2006; Sumner, et al., 2002; Sumner, Nachev, et al., 

2006; Sumner, et al., 2004). This procedure yielded individual s-cone colours with the 

following coordinates in CIE 1931 space: Mean (±SD): 0.249 (0.009), 0.186 (0.022), 25.067 

(0.809) and is described below. 

 

3.3.2.7 S-cone Calibration 

 

Calibration of s-cone stimuli within each subject followed the methodology outlined 

by Smithson et al., (2003). In brief, this procedure included a four-alternative forced-choice 
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detection task to ascertain the hue to which subjects were maximally insensitive during a 

period of ‘transient tritanopia’(Mollon & Polden, 1975): their tritan line. Transient tritanopia 

is a brief (~2 seconds) period where the retina (and/or retinal ganglion cells) are rendered 

insensitive to short wave input, following a period of exposure to a yellow-field stimulus and 

subsequent darker field exposure. During this period, subjects should be selectively 

insensitive to s-cone input; hence, the elevation of threshold for detecting coloured stimuli 

should be maximal in the presence of stimuli that specifically activate s-cone channels. 

To ensure that subjects were performing this task on the basis of s-cone sensitivity 

rather than changes in luminance, the luminance of each colour stimulus was adjusted in a 

separate ‘minimum motion task’ (Sumner, 2000), designed to equate coloured stimuli with 

the surrounding grey patches. During this task, bars of s-cone colour and luminance grey 

were presented vertically above one another, alternating every 50ms, and giving rise to the 

illusion of motion. Using an up-down staircase to adjust the luminance of the bars, this 

apparent discrepancy between the coloured and grey bars was minimised, resulting in 

luminance values that were then used in the production of subsequent s-cone stimuli. The 

calibration stimuli appeared within the same spatial location as the noise of the experimental 

stimuli, used the same background luminance, and were presented using the same equipment 

as the main experiment.   

Chromaticity vectors for the initial calibration were set to a range of -15º to +15º, in 

5º intervals of MacLeod-Boynton space, where 0º is the theoretical average tritan line for 

foveal viewing. The procedure commenced by estimating the point of equi-luminance for 

these seven vectors (-15º, -10º, -5º, 0º, +5º, +10º, +15º standard MacLeod-Boynton 1979 

space) using the minimum motion task, including 40 trials for each vector that were randomly 

interleaved in up-down staircases (step-size of 2cd/m2). The resulting luminosities were then 

used to construct the seven stimuli for the estimation of transient tritanopia. This phase 

involved 25 trials per stimulus, which were again interleaved. The initial adapting exposure 

to the yellow-field lasted 25 seconds, with a 3 second exposure between trials. Immediately 

following adaptation, target stimuli were then presented for 250ms in one of four locations. 

The other target locations displayed a change in luminance within a 2 cd/m2 range. The 

vector that produced the most elevated threshold was taken as an approximation of the tritan 

vector and used for a subsequent more accurate calibration in which three to five vectors 

were selected around the initial peak and the procedures repeated. If no peak was observed, 

or if a trend indicated that the peak might lie outside the -15º to +15º range, more eccentric 
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hue angles were tested. This iterative procedure was stopped when a peak was observed with 

lower threshold levels ±1º to either side. The final vector was taken as the subject’s tritan line 

and the minimum motion task was repeated to ensure equi-luminance. If no reliable peak 

could be established, subjects were excluded from the subsequent experiments. Three 

subjects were excluded in addition to the 16 who participated in the full experiment. 

 

3.3.2.8 Rationale for TMS Pulse Timing 

 

Pilot experiments indicated that pairs of TMS pulses were more effective than single 

pulses in suppressing perception. In addition, pairs of pulses did not produce reportable 

phosphenes during the task (consistent with Rauschecker, Bestmann, Walsh, & Thilo, 2004). 

As noted, the timing of pulses was selected carefully to target early and late stages of visual 

processing. More specifically, TMS has been reported to disrupt the earliest stages of visual 

processing from 20ms after stimulus onset (Corthout, Uttl, Walsh, et al., 1999; Koivisto, et 

al., 2010) motivating the 0-40ms intervention. Although controversial, two temporally 

distinct suppressions or ‘dips’ in perception have also been described (Camprodon, et al., 

2010; Corthout, et al., 2002; Corthout, Uttl, Walsh, et al., 1999; Corthout, Uttl, Ziemann, et 

al., 1999; Heinen, et al., 2005; Juan & Walsh, 2003; Koivisto, et al., 2010; Stevens, McGraw, 

Ledgeway, & Schluppeck, 2009). In order to demonstrate independence of these two periods, 

an intervening, unaffected period needs to be demonstrated, which motivated in part the 

inclusion of the 40-80ms intervention. In addition, it has been suggested (Camprodon, et al., 

2010; Sack, et al., 2009) that the early feedforward period occurs later than described in some 

previous studies (Corthout, Uttl, Walsh, et al., 1999; Koivisto, et al., 2010); if so, then the 40-

80ms intervention would be expected to capture such later feedforward activity.  

The intervention at 90-130ms corresponds to the most clearly replicated period of 

TMS-induced visual disruption, which peaks at ~100ms (e.g. Amassian, et al., 1989; 

Kammer, et al., 2005). Since the input from s-cone stimuli is thought to arrive in the occipital 

cortex slightly later (~20ms) than the input from luminance stimuli (Bompas & Sumner, 

2008; Cottaris & De Valois, 1998; Maunsell et al., 1999), and since our aim was to achieve 

comparable suppression in detection across stimuli types, the mean pulse time for this epoch 

(110ms) was slightly later than 100ms. Activity within the occipital cortex at ~300ms and 
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beyond has been widely linked to higher cognitive processes and re-entrant processing (e.g. 

Chambers, et al., 2012; Liddell, et al., 2004; Sergent, et al., 2005). Relatively few studies 

have applied occipital TMS as late as 300ms, although the published exceptions demonstrate 

suppressive effects during similar late epochs (Camprodon, et al., 2010; Chambers, et al., 

2012; Heinen, et al., 2005). The 280-320ms intervention was therefore chosen to target this 

very late period. 

 

3.3.3 Between-Subjects Results 
 

As an overview, conscious detection was suppressed by TMS during the middle and 

later time periods, whereas ‘unseen’ performance remained above chance and statistically 

unaffected, indicating characteristic TMS-induced blindsight. The key result was that s-cone 

and luminance stimuli produced the same pattern of results during the principal blindsight 

epoch (~100ms), indicating that the residual abilities of TMS-induced blindsight did not rely 

on the collicular pathway. Beyond this, it was also demonstrated that the TMS appeared to 

facilitate rather than impair conscious detection at the earliest time point (0-40ms), for 

luminance stimuli only. Finally, TMS impaired conscious detection at the latest time point 

(280-320ms), also only occurred for luminance stimuli.  
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Figure 3.3.3.1. Sham-normalised effects of occipital TMS on (A) conscious detection 

(PrC) and (B) ‘unseen’ discrimination (Proportion correct ‘Unseen’ PcU), plotted 

according to stimulus type (s-cone or luminance) and TMS onset time. PrC is 

calculated as a non-parametric equivalent of d’ (Corwin, 1994). Error bars are the 

within-subjects standard error  (Loftus & Masson, 1994). Occipital TMS selectively 

enhanced (0-40ms) or impaired (280-320ms) PrC for luminance stimuli relative to s-

cone stimuli, while impairing PrC for both stimulus types at 90-130ms. No significant 

effect of TMS was observed for PrC at 40-80ms, or for PcU at any TMS onset times.  
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3.5.3.1 Conscious detection 

 

If conscious processing is supported by recurrent activity then TMS during middle 

and later time periods (≥100ms) should reduce conscious detection performance. Although no 

specific predictions were cast in terms of s-cone dependency, such effects are clearly a 

possibility, given the significant contribution of R/M pathways to cortical input (Nealey & 

Maunsell, 1994). Indeed, the modulation of awareness by TMS was both time- and stimulus- 

dependent: a significant three-way interaction (F(3,45) =3.3, p=0.028; see figure 3.3.3.1.A) was 

revealed between factors of TMS condition (occipital, sham), TMS onset time (0-40, 40-80, 

90-130, 280-320) and stimulus type (luminance, s-cone).  

For luminance stimuli, occipital stimulation significantly facilitated conscious 

detection relative to sham when delivered early after stimulus onset (0-40ms; t(15) =5.59, 

p<0.001), while having no significant effect at a slightly later time (40-80ms; t(15) =0.27, 

p=0.792), and then impairing detection at even later times of 90-130ms and 280-320ms(t(15) 

=4.19, p<0.001; t(15) =5.09, p<0.001). For s-cone stimuli, however, occipital TMS 

significantly reduced conscious detection only when applied at 90-130ms (t(15) =4.00, 

p=0.002; all other t <1.7, p>0.098). Additional comparisons of the change in conscious 

detection relative to sham revealed that both the early potentiation (0-40ms) and later 

impairment (280-320ms) were significantly greater for luminance stimuli compared with s-

cone stimuli (t(15) =2.70, p=0.016. t(15) =3.53, p=0.004 respectively). At 90-130ms, however, 

the impairment in conscious detection did not significantly dissociate between stimulus types 

(t(15) =0.23, p=0.822). 

A convergent analysis of TMS-induced changes in conscious detection was 

undertaken using Bayesian methods. Corresponding analyses of change in conscious 

detection at each level of TMS onset time and stimulus type, baselined to sham, confirmed an 

early potentiation (0-40ms) and late impairment (280-320ms) that was specific to luminance 

stimuli (B=8.96 and B=169.49, respectively) and not observed for s-cone stimuli at 

equivalent times (B=0.31 and B=0.11). At 90-130ms, occipital TMS also impaired conscious 

detection for s-cone stimuli (B=59.98) and less robustly for luminance stimuli (B=1.58). All 

other comparisons of conscious detection between occipital TMS and sham revealed 
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evidence in favour of the null (all B<0.33). This outcome aligns with the orthodox analysis, 

indicating that the early (0-40ms) and late (280-320ms) modulation of conscious detection 

was dependent on inputs via the R/M pathways, whereas the intermediate period of disruption 

(90-130ms) was pathway-independent. 

 

3.3.3.2 ‘Unseen’ discrimination 

 

The key question in this study is whether above-chance ‘unseen’ discrimination is 

maintained in the context of the TMS-induced impairment of conscious detection – i.e. 

whether TMS-induced blindsight occurred – and whether these ‘unseen’ abilities are stimulus 

independent, as predicted by the geniculate hypothesis, or differentially impaired in the 

presence of s-cone vs. luminance stimuli, as predicted by the collicular hypothesis. 

Furthermore, a TMS-induced early suppression of unseen abilities, compared to later time 

periods would support the role of the feedforward sweep in unconscious processing. 

Discrimination performance on ‘unseen’ trials was consistently above chance at all 16 

combinations of TMS condition, TMS onset time, and stimulus type (mean proportion correct 

= 0.71, ± 0.15 SD, all t(15) >3.14, p<0.007 with Holm–Bonferroni correction), indicating that 

the measure tracked a form of perception. In contrast to the analysis of conscious detection, a 

three-way ANOVA of ‘unseen’ discrimination revealed no significant interaction of TMS 

condition × TMS onset time × stimulus type (F(3,45) =0.36, p=0.75; figure 3.3.3.1.B), and no 

significant main effects or lower-order interactions (all F<2.37, all p>0.142). Bayesian 

analyses of the difference in ‘unseen’ discrimination between occipital TMS and sham 

supported the null hypothesis of equivalence in all conditions (all B<0.35). Since this analysis 

included any potential early suppression of ‘unseen’ abilities, these results do not directly 

support a correspondence between early occipital processing and unconscious vision 

(Lamme, 2001, 2006b). 

During the critical time-period where conscious detection was suppressed for both 

stimulus types (90-130ms), ‘unseen’ ability was unaffected by occipital TMS in the presence 

of both s-cone stimuli (Boccipital < sham=0.18, Boccipital > sham=0.15, t(15) =-0.14, p=0.89) and 

luminance stimuli (Boccipital < sham=0.07, Boccipital > sham=0.12, t(15) =0.39, p=0.70). Additional 

comparisons between sham-normalised discrimination performance (occipital – sham) 
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confirmed no reliable difference between stimulus types (Bluminance > s-cone=0.16, Bluminance < s-

cone=0.24; t(15) =0.40, p=0.77). Moreover, the strongest trend in this comparison was a 

tendency for reduced performance to luminance over s-cone stimuli (B=0.24), contrary to the 

pattern predicted by the collicular hypothesis. Taken together, the findings for ‘unseen’ 

discrimination ability are thus consistent with the characteristic signature of blindsight in 

which conscious detection is selectively impaired while ‘unseen’ discrimination performance 

is spared. 

It is notable that PcU is calculated from ‘unseen’ trials only, whereas more trials 

contribute to the measure of conscious detection (PrC calculated from a total of 22,275 trials, 

whereas PcU was calculated from 5,525 trials). Thus, it could be argued that the analysis of 

PcU is hindered by a relative lack of statistical power. To test whether this was the case, an 

additional analysis was undertaken. The estimates of standard error based on these specific 

trial numbers (the number of data points convolved for the number of contributing trials) can 

be compared in order to test whether heterogeneity of variance could be responsible for the 

observation of significant effects on one measure and not another. Keppel (1982) 

recommends a 3:1 ratio of such variances (Fmax ratio) as the cut-off point, beyond which the 

variances should be considered heterogeneous and the conditions non-comparable. For the 

data, the Fmax ratio was calculated as 1.84:1 (0.032/0.017), thus satisfying this requirement.  

If ‘unseen’ abilities were dependent upon input from the SC without disruption of the 

occipital cortex, then this might negate the demonstration of collicular independency, because 

the difference indicating a role for the collicular pathway would be present in the baseline. In 

order to test whether this was the case we contrasted s-cone and luminance stimuli in the 

sham condition the results of which did not reveal any such difference (t(15) =1.51, p=0.15, 

B=0.39). There was a weak non-significant trend, observed in the sham condition, for higher 

‘unseen’ discrimination performance in the presence of luminance vs. s-cone stimuli; this 

suggests that R/M pathways could contribute to ‘unseen’ abilities when there is no disruption 

to early visual areas. However, given that this potential difference occurred in the presence of 

clearly above-chance performance when of R/M inputs are blocked, general (non-blindsight) 

‘unseen’ abilities are unlikely to be crucially dependent upon such input. Furthermore, any 

potential difference between ‘unseen’ performances across stimuli classes in the sham 

condition could (speculatively) be attributed to the observed criterion difference between 

stimuli types: lower performance on ‘unseen’ trials, in the presence of s-cone stimuli, may be 

expected if the criteria subjects used to identify ‘unseen’ trials are more stringent. That is, the 
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analysis of bias (3.3.3.3 below) demonstrated subjects to be more likely to report s-cone 

stimuli as ‘seen’ independently of what has been presented to them. This meant that when 

they reported s-cone stimuli as ‘unseen’ they may have been doing so on the basis of less 

information than was the case for luminance stimuli. This possibility therefore highlights the 

necessity of baselining active TMS conditions to control conditions, such as sham, because 

doing so cancels out the bias difference between stimuli types. 

 

3.3.3.3 Response Bias 

 

It is possible that the pattern of behaviour that characterises blindsight could 

potentially be attributed to changes in response bias together with there being a disruption of 

‘normal’ vision (Campion, et al., 1983; Nisbett, 1977). To alleviate these concerns we applied 

signal detection theory, which provides a measure of conscious detection that is essentially 

independent of response criteria (Pr), and a measure of response bias (Br) that is independent 

of sensitivity (Corwin, 1994). The analysis of Br revealed no higher level interactions, but 

there were main effects: subjects were more prone to respond positively in the presence of 

occipital over sham TMS (site effect: F(1,15) =5.235, p=0.037; replicating Rahnev, Maniscalco, 

Luber, Lau, & Lisanby, 2011), s-cone  over luminance stimuli (stimuli type effect: F(1,15) 

=16.642, p=0.001) and at earlier TMS onset times (time effect F(3,45) =14.931, p<0.001, figure 

3.3.3.3). The reduced propensity to respond ‘yes’ when TMS was applied at later times, 

independently of coil orientation (occipital or sham) is consistent with the effects of auditory 

distraction. Likewise, the stimulus-dependent effects may reflect differences in subjects’ 

attribution of the stimulus noise across the stimuli conditions. The posing of experimental 

questions can affect subject’s experience of the task, independently of stimuli conditions. 

This is the observer paradox (Labov, 1972). The application of active TMS is equally capable 

of producing such a reactive (Ericsson, 2003) effect, potentially independently of direct 

neuronal effects. This therefore could explain the increased propensity to respond positively 

under the active condition. These contingent bias effects are relatively uninformative and 

would have been conflated with effects on veridical conscious perception were it not for the 

application of SDT. These effects are considered in greater depth in section 4.3. 
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Figure 3.3.3.3. Bias in conscious detection (BrC) for all TMS and stimulus 

conditions. Higher values indicate greater propensity to respond ‘yes’. Error bars are 

±1 SEM (Loftus & Masson, 1994). 

 

3.3.4 Between-Subjects Discussion 
 

The results of Experiment 3A suggest that the residual abilities of TMS-induced 

blindsight shown here are predominantly geniculate (Schmid, et al., 2010) rather than 

collicular (e.g. Ro, et al., 2004) in origin. Blindsight was demonstrated most clearly by the 

suppression of reported awareness at 90-130ms for both stimulus types, in the presence of 

above chance ‘unseen’ discrimination. This corresponds to the classically reported epoch of 

visual suppression by occipital TMS (Amassian, et al., 1989). The central question posed was 

whether or not the concurrent ‘unseen’ abilities were dependent upon stimulus type, i.e. 

whether or not the residual abilities were maintained when input via the SC was blocked. The 

preservation of such abilities in the presence of s-cone stimuli indicates that the residual 

abilities in this case of TMS-induced blindsight are supported by chromatic geniculate 

pathways rather than the collicular route. Moreover, it seems unlikely that the absence of 

stimulus-specific effects on the measure of ‘unseen’ discrimination was due to the stimuli not 

isolating the R/M pathways or the TMS being ineffective, because both TMS effects and 



108 
 

stimulus specificity were reliably demonstrated upon the contrasting measure of conscious 

detection. 

How can the previous evidence in favour of the collicular hypothesis be reconciled 

with the current evidence in support of the geniculate hypothesis? Much of the evidence 

consistent with collicular mediation does not in fact logically exclude a geniculate role, but in 

patients where the geniculate pathways are surgically cut the evidence for collicular 

mediation is particularly strong (Leh, Johansen-Berg, et al., 2006; Leh, et al., 2010; Tamietto, 

et al., 2010). Our results are not inconsistent with a role for the collicular pathway in certain 

kinds of residual ability in some contexts, particularly those following permanent brain 

injuries where plasticity may alter the functional contribution of different pathways (Huxlin, 

2008; Mittmann & Eysel, 2001). Yet, our findings do negate the claim of collicular necessity 

(Ro, et al., 2004). Rather than exclusively supporting the geniculate hypothesis and 

disconfirming the collicular hypothesis, the position taken is that the data disconfirms the 

core idea implicit in the long debate between these theories – that because blindsight has been 

categorised as a single phenomenon we should expect a single pathway to support it. 

Different pathways are likely to support unconscious abilities that depend on different types 

of information (Danckert & Rossetti, 2005). 

Although the results provide no evidence for collicular dependency of unconscious 

abilities, R/M pathways did make a time-specific contribution to conscious vision. 

Interestingly, the earliest effect we observed (0-40ms) was a facilitation of conscious 

detection. Early TMS has been previously reported to cause either suppression (Corthout, 

Uttl, Walsh, et al., 1999; Corthout, Uttl, Ziemann, et al., 1999) or enhancement 

(Abrahamyan, et al., 2011; Schwarzkopf, et al., 2011) in perception. Such enhancement 

effects have been attributed to the addition of neuronal noise, producing stochastic resonance 

and driving cortical activity across a threshold for detection (see Schwarzkopf, et al., 2011). 

Earlier potentiation and later suppression of functionality can be further understood if the role 

of the early period is seen as preparatory (Marr, 1982), potentially in the service of later 

conscious processing. Because the state of activation leading up to the arrival of information 

is crucial in determining whether or not that information is perceived (Mathewson, Gratton, 

Fabiani, Beck, & Ro, 2009; Romei, et al., 2010), the application of early TMS may thus 

provide a pedestal of activity, priming the region for subsequent processing. This might not 

be the case for later applications because increasing activity without interfering with 

information is only possible when TMS is applied prior to the arrival of that information. 
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Here this rapid facilitation was only realised in the presence of luminance stimuli, indicating 

that this early period was dependent upon fast (Bompas & Sumner, 2008; Cottaris & De 

Valois, 1998; Maunsell, et al., 1999; McKeefry, Parry, & Murray, 2003) input provided by 

R/M pathways. 

The observed disruption of conscious detection at later TMS onset-times is consistent 

with existing proposals (Lamme, 2001) that delayed re-entrant processing supports conscious 

vision. The latest of these effects (280-320ms) occurred only in the presence of luminance 

stimuli, indicating that information conveyed via R/M pathways supports this later period. 

What then provides this late R/M input? Our findings do not provide a definitive answer for 

this question. However, it seems unlikely to be dependent upon feedforward or recurrent 

activity that has first passed through the affected early visual cortex, because s-cone inputs 

are thought to be integrated with other signals within these regions (Cottaris & De Valois, 

1998; Sincich & Horton, 2005). It is more plausible that R/M information is first passed 

through unaffected, more rostral, areas – possibly via the aforementioned extrastriate 

pathways – and is then fed back to interact with feedforward processing. In this way, the later 

stage of conscious processing may have been susceptible to later TMS because it is supported 

by R/M inputs that initially enter frontoparietal networks (Corbetta, Patel, & Shulman, 2008) 

before later feeding back into the disrupted occipital cortex.  

The differential directions of early and late effects upon conscious detection, together 

with the Bayesian analysis indicating an intervening (40-80ms) absence of effects, suggests 

that there are multiple periods during which TMS can affect perception. However, because 

the first period is expressed by an increase in the measure, the existence of more than a single 

‘dip’ or period over which TMS directly interferes with responses to arrows, is not supported 

by this data. This issue is discussed further in section 3.5.3. 

In conclusion, the residual visual abilities of TMS-induced blindsight shown here 

originate primarily from spared geniculate projections. These findings thus stand in contrast 

to the popular explanation of blindsight that relies on the collicular pathway (Ro, et al., 

2004), instead adding weight to evidence that spared regions in the geniculate pathway can 

support unconscious vision following occipital disruption (Schmid, et al., 2010). The results 

also indicate that conscious vision depends on activity within the early occipital cortex from 

~100ms after stimulus onset, and that R/M pathways make a contribution to awareness during 

early preparatory (0-40 ms) and later feedback (280-320 ms) stages of visual processing.  
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3.4 Single-subject introduction 
 

 Experiments 3B, 3C and 3D were developed to address very similar questions to those 

posed in Experiment 3A, but with higher temporal resolution than is feasible with multiple 

subjects. In terms of their development over the course of this research, it is worth noting that 

these experiments were originally designed as between-subject studies and were initially 

piloted on three subjects. However, it soon became apparent that applying this quantity of 

testing to multiple subjects was impractical, mainly owing to subject availability and their 

willingness to participate in experiments with such a prolonged exposure to TMS. The 

experiments were therefore adjusted to become single subject case studies where the subject 

underwent approximately 50 hours of testing, conducted over 1 to 3 hour sessions, occurring 

roughly weekly. Data were collected concurrently for the between-subject and single-subject 

studies. 

The single subject study comprised three experiments. The first, Experiment 3B, 

aimed to establish a high-resolution time course for conscious and reportedly ‘unseen’ 

perceptual processing. This involved the application of single pulses (hence described as the 

single-subject single-pulses experiment) of TMS at 24 times relative to stimulus onset (see 

figure 3.3.1.1), designed to cover the range of previously reported effects from very early 

effects ~ 0ms (e.g. Corthout, et al., 2003) to late recurrent effects ~350-400ms (e.g. 

Chambers, et al., 2012), with the exception of the effects of TMS when applied 70-50ms 

before stimuli onset that have been attributed to blinks (Corthout, Uttl, Walsh, et al., 1999). 

The primary question was whether the data would conform to a ‘single dip’ in conscious 

detection as has been reported (e.g. Amassian, et al., 1989), or whether it would be better 

described by two (e.g. Lamme & Roelfsema, 2000) or more (e.g. Corthout et al 1999 -2002) 

periods of suppression, as has also been reported. This experiment also served to provide a 

Blindsight Inducing Pulse (BIP) which was exploited in subsequent sections. Once a reliable 

method for demonstrating TMS-induced blindsight had been established (the BIP) it was then 

possible to apply additional manipulations to study the role of different phases of activity and 

pathways in relation to TMS-induced blindsight. 

The second of the single-subject experiments (3C) applied the BIP and additional 

TMS pulses before and after the BIP (described as the double-pulses experiment). This 
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permitted analysis of different phases of activity in the provision of the residual abilities of 

TMS-induced blindsight. Specifically, it has been proposed that the residual abilities of 

blindsight correspond to an early feedforward sweep of activity prior to the conscious 

recurrent phase (Lamme, 2001), presumably being disrupted by the BIP. If so, the 

expectation would be that application of additional pulses prior to the BIP to cause a greater 

suppression of ‘unseen’ abilities than comparable pulses applied after the BIP (Lamme, 

2006b).  

The third section was an s-cone experiment (3D), where performance was compared 

between stimuli types in the context of the BIP. This employed the same stimuli manipulation 

as in the between subjects study (3A), isolating the SC through the use of stimuli which do 

not activate the SC in a colour opponent manner. If the residual abilities of TMS-induced 

blindsight depend on input from the collicular pathway, then we would expect there to be a 

reduction or elimination of ‘unseen’ abilities in the presence of s-cone stimuli relative to 

luminance stimuli. 

 

3.5 Single-subject single-pulse, experiment 

3B. 
 

3.5.1. Single-pulse methods 
 

3.5.1.1 General methods 

 

Methods are as in the between subjects study unless otherwise stated. 

 The subject was male, aged 28 - 29 at the time of the experiment, with normal vision 

and no known neurological abnormalities. He provided informed consent to participation in 

this experiment, which was approved by the ethics committee of the School of Psychology, 

Cardiff University. 
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Prior to experimental sessions the subject’s conscious detection performance was 

calibrated to Pr = 0.6 in the presence of luminance stimuli. Ability to discriminate arrows 

above chance when reported ‘unseen’ was assessed through the concatenation of later 

practice and calibration blocks and application of χ2 tests – in order to ensure the possibility 

of demonstrating blindsight type effects. Structural MRI scans and motor threshold (based on 

the methods set out by Rossini et al., 1994) were collected on separate sessions. The tritan-

line and susceptibility to phosphenes were also assessed prior to experimental sessions. 

 The subject completed 12 experimental sessions, each involving 5 blocks of active 

TMS and one of sham, the order of which was counter balanced across sessions. Each session 

lasted approximately 2 hours and each block consisted of 100 trials. TMS was applied at 24 

time conditions relative to stimulus onset (-20, 0, 10 ,20 ,30 , 40, 50, 60, 70, 80, 90, 100, 110, 

120, 130, 140, 160, 180,  200, 220, 250, 300, 400 ms) and one condition where TMS was not 

applied, yielding a total of 25 TMS conditions. As mentioned, there were four stimulus 

conditions (arrow left, arrow right, non-arrow and stimulus-absent). Each block thus 

contained a full set of stimulus and TMS conditions, the order of which was randomised. The 

order in which the three questions were presented was counterbalanced between sessions. At 

the start of each session the subject was given a block of 40 practice trials in order to re-

familiarise himself with the task and the new question order. The practice blocks and sham 

blocks were used to re-calibrate over the course of the experiments. That is, if the subject’s 

detection behaviour was outside a tolerance of ± 0.1 of the Pr value of 0.6, the stimuli were 

adjusted accordingly, so that detection performance  might be maintained at around 0.6 in the 

subsequent sessions. This meant that the luminance of the target ranged from 53 to 59 cd/m2 

with a mean of 56.5 (±1.9 SD). 

 The TMS intensity at which pulses were applied during the experiment was set at 

120% of PT (70% of maximum stimulator output, the subject’s PT being 58% of output) for 

the pulses applied during the experiment. This intensity did not appear to cause facial 

twitches when applied to occipital areas and rarely caused blinks in this subject. Eye tracking 

flagged 43 trials for exclusion from a possible 6000 active TMS trials, on the basis of blinks 

concurrent with visual stimuli exposure. 
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3.5.1.2 Statistical methods 

 

Analyses were applied to single SDT or proportion correct data for each time point, 

resulting in a variable representing the time course of the effects of TMS on the measure of 

conscious detection (PrC) and ‘unseen’ discrimination (PcU). The main comparisons of 

interest were between active and sham TMS for both PrC and PcU measures. Comparisons 

were made by analysis of where data points sat in relation to the variance of the 

corresponding state of contrast: equivalent to z-tests for each time point. Therefore, if TMS 

effects upon conscious detection were to be assessed relative to sham, then z-scores were 

produced from PrC for each time point with active TMS, relative to variance in task 

performance across all points with sham TMS. These z-scores were converted to p values, 

which were assessed for significance relative to a Holm-Bonferroni adjusted alpha level (with 

25 time points the most stringent p value required to reject the null hypothesis was < 0.002 ). 

Points that pass these criteria are denoted as significantly different (S) in figure 3.5.2.1. 

 Demonstration of ‘unseen’ discrimination ability (PcU) was provided by assessment 

of the subjects’ forced choice proportion correct performance, coincident with reporting not 

seeing the ‘arrow’ nor ‘something’, relative to a binomial distribution. As with PrC, Holm-

Bonferroni correction for the 25 time point comparisons was also applied. Note that this 

differs from the single sample t-test methodology applied in the between-subjects study 

because the absence of multiple mean values at each data point mandates the use of an 

alternative binomial test. Bayesian analyses were not applied to this data set because of the 

absence of variance information at each data point / condition.  

 Gaussian models were fitted to the data, using the curve fitting toolbox of MATLAB 

(Mathworks Inc) and Sigmaplot (SPSS Inc). These models described one or two distinct 

epochs as single and double peaks. Quality of fit was used to assess models on the basis of 

least means squared regression values.  

The BIP was determined as being the minima of the lowest drop in conscious 

detection modelled. This value was rounded up to the closest CRT refresh (100Hz) in order to 

avoid the presentation artefact caused by the electromagnetic pulse of TMS when applied 

mid-frame. Another reason for the BIP being rounded up was because the input provided by 

s-cone stimuli is relatively slow (Bompas & Sumner, 2008; Cottaris & De Valois, 1998; 
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Maunsell, et al., 1999). Hence in order that the BIP that was comparable in terms of its effect 

across stimuli types, a slightly later timing for the BIP (120ms), was used than would have 

been chosen for purely luminance stimuli (110ms, see below).   

 

3.5.2 Single-pulse results 
  

3.5.2.1 Conscious detection 

 

 Active TMS, relative to sham, reduced conscious detection when applied at 10 times 

between 50 and 160ms after stimulus onset. The chance that these were drawn from the same 

population as the sham results is less than 0.2% (2.8782 standard deviations; figure 3.5.2.1).  

 

Figure 3.5.2.1. Conscious detection performance (PrC) in Experiment 3B over the 

range of times where TMS was applied relative to stimulus onset, under both active 

and sham (control) TMS conditions. Yellow points indicate times which significantly 

differ from the mean of the sham detection measure (S).  
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The simplest best fit to the conscious detection data is a Gaussian model expressing a 

‘dip’ (Adjusted R2 = 0.928, F(3,20) =99.314, p<0.001, see figure 3.5.2.3). The model is 

specified in equation 3.1. The fit for a double Gaussian model was not as good (model 

specified in equation 3.2, adjusted R2 = 0.875)  

 

ܻ ൌ ைܻ + a݁
ቈି଴.ହቀ௑ି௑ೀ

௕ ቁ
మ

቉
 

     eq 3.1 

Coefficients a =-0.70, b= 55.05, Xo=102.5 and Yo = 0.74 

 

ܻ ൌ ைܻ + a1݁
ቈି଴.ହቀ௑ି௑ೀభ

௕ଵ ቁ
మ

቉
+ a2݁

ቈି଴.ହቀ௑ି௑ೀమ
௕ଶ ቁ

మ
቉
 

eq 3.2 

Coefficients Yo =0.74 a1 =0.87, b1= 140, Xo1=306.4, a2 =0.81, b2=71.1 and Xo2 = -32.48 
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Figure 3.5.2.3. Conscious detection measure over time fitted with a Gaussian model 

(blue line, eq 3.1). Adjusted R2 = 0.9276, F(3,20) = 99.3136, p<0.001. 

 

3.5.2.2 ‘Unseen’ discrimination 

 

Figure 3.5.2.2. Proportion correct in ‘unseen’ discrimination (PcU) in Experiment 3B 

over the range of times where TMS was applied relative to stimulus onset, under both 

active and sham (control) TMS conditions.  No data points were shown to be 

significantly affected by the active TMS. 

 

The subject displayed above chance ‘unseen’ discrimination ability at all time points 

(2-tailed binomial t(>16)>2.4, p<0.024), all of which survived correction for multiple 

comparisons. The same analysis as was applied to PrC, when applied to PcU ‘unseen’ 

discrimination, revealed no data points that were affected by the TMS according to these 

criteria (figure 3.5.2.2). Curve fitting using the Gaussian models failed to produce reliable fits 

to the ‘unseen’ discrimination data. However, a linear fit indicated a trend indicating lower 
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‘unseen’ abilities when TMS was applied at later times (the gradient of a linear fit being -0.25 

PcU units per second, adjusted R2 = 0.118, F of regression (1,22) = 4.08, p = 0.056). Although 

only marginally significant the trend is worthy of note as it is consistent with and relevant to 

the double-pulse data discussed in the next section (Experiment 3C, section 3.6). 

 

3.5.2.3 Response bias 

 

Analysis of bias was impractical in this experiment as the subject only made 15 false 

alarms (in contrast to 1678 correct rejections) over the 25 time conditions. Attributing effects 

on the basis of the distribution of these 15 trials was considered invalid.  

The Fmax ratio based on contributing trial numbers which compared the variance of 

PrC to PcU across times was 1.09. However, it can be argued that the application of Fmax 

here is not valid, as the variance of PrC is disproportionately increased (reducing the ratio) 

owing to PrC’s susceptibility to the TMS. The alternative comparison of variance, at each 

data point, is not possible.    

 

3.5.3 Single-pulse discussion 
 

This section demonstrates that single pulse TMS can cause an unambiguous 

suppression of conscious detection of stimuli (see figures 3.5.2.1). As with the between-

subjects study, Experiment 3A, this is consistent with the classically reported occipital 

suppression at ~100ms after stimulus onset (Amassian, et al., 1989). Concurrent above 

chance ‘unseen’ discrimination ability was maintained, indicating specificity of the 

suppression to the measure of conscious detection and, thus, a blindsight type effect. 

 This suppression is best described as a ‘single dip’, as all the time points which 

statistically illustrate this suppression are grouped over a single period of TMS interference 

and the fit provided by a single Gaussian model was extremely high. Given this consistency 

in the data pattern, it seems reasonable to suggest that if there were two or more distinct and 

separable periods of TMS efficacy, then this should have been apparent within this data set. 
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Although the conclusions that can be drawn from single subject data are limited, there is a 

degree of inconsistency in the literature over the existence of two or more discrete periods of 

TMS interference, lending weight to this interpretation. What follows is a brief synopsis of 

experiments that have previously claimed to show two or more distinct periods of TMS 

efficacy when applied to visual cortical areas. 

Juan and Walsh (2003) appear to show that TMS applied from 0 to 120ms was 

effective in reducing perceptual abilities (p 0.01-0.05) as was applying pulses at 200 and 

240ms (p=0.053) but they suggest that TMS applied at 140 and 180ms was ineffective. 

However, these results are difficult to interpret mainly because of the absence of statistical 

information that could have supported the claim of two distinct periods. No corrections for 

the multiple comparisons were applied (of which there were at least six capable of informing 

the experimental hypothesis). The 200-240ms intervention did not show a clear suppression, 

and, more importantly, no information was presented regarding any changes due to the 140-

180ms intervention, upon which demonstration of two independent periods rests. 

 

As mentioned there has been a series of experiments, carried out by Corthout and 

colleagues, in which at least four independent periods during which TMS applied to visual 

areas was reported as causing disruption in a letter discrimination task. Some of these periods 

are not relevant here and others seem to be inconsistent across subjects to the extent that their 

existence is questionable. The first of these periods of sensitivity occurred 70 to 50 ms prior 

to the onset of the stimulus (hence irrelevant to this study) and was attributed to TMS induced 

blinks, as this effect was independent of coil position (Corthout, Uttl, Walsh, et al., 1999; 

Corthout, Uttl, Ziemann, et al., 1999). The second and third ‘dips’ are reported as having 

occurred at approximately the same time as the stimuli (-10 to 0ms) and at 20ms post stimuli 

onset. The earliest of these was proposed in the 2003 paper (Corthout, et al., 2003). However 

none of the three participants showed a dip around -10ms to 0ms that was clearly independent 

of either the earliest dip, prior to stimuli onset or the later 20ms dip. The existence of the 

20ms dip appears to be slightly more consistent as it was reported in four separate papers 

(Corthout, et al., 2002, 2003; Corthout, et al., 2000; Corthout, Uttl, Walsh, et al., 1999), 

however it is difficult to assess the extent to which data and participants overlapped between 

papers. The statistical methodology for testing the existence of this ‘dip’ only appeared in one 

of these papers (Corthout, et al., 2002) which applied a t-test to the difference between the 

20ms dip relative to a 50ms period which appeared to be unaffected. Why precisely these 
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periods were chosen for entry into the analysis is unclear, as are the reasons for which the 

authors suggest that the 20ms period is independent of the period of TMS efficacy prior to the 

stimulus onset. Furthermore, across these papers the demonstration of the 20ms dip and two 

independent periods of TMS efficacy was expressed by the data pattern in, at best, three out 

of four subjects (Corthout, Uttl, Walsh, et al., 1999).  In all of these experiments the classic 

~100ms disruption was reported, highlighting the fragility of the demonstration of secondary 

early periods of TMS efficacy in causing suppressions.  

 

Several studies using moving stimuli have demonstrated two distinct periods of TMS 

efficacy, which are difficult to reconcile with the results presented here (Pascual-Leone & 

Walsh, 2001; Silvanto, Cowey, Lavie, & Walsh, 2005; Silvanto, Lavie, & Walsh, 2005; 

Stevens, et al., 2009). For example, Koivisto et al (2010) reported two distinct periods in 

which awareness of moving stimuli was disrupted by TMS applied to early visual areas at 

20ms and at 60ms as well as showing a intervening period at 40ms where TMS applied to 

V1/V2 was ineffective, but was effective when applied to motion sensitive area V5/MT – 

indicating recurrent feedback7. Although there are statistical concerns (regarding the absence 

of reporting effect sizes corresponding to the intervening period), the reproducibility of the 

‘double dip’ when tasks involving moving stimuli are used does support the existence of 

separable periods. 

 

In contrast to studies which have claimed to demonstrate two distinct periods of TMS 

disruption, more studies have shown a single period during which TMS applied to early 

visual areas is effective in causing disruptions replicating the classic study of Amassian et al 

(1989), (e.g. Kamitani & Shimojo, 1999; Kammer, 2007; Kammer, et al., 2005; Koivisto, et 

al., 2012; Koivisto, et al., 2011; Overgaard, et al., 2004; Sack, et al., 2009; Thielscher, et al., 

2010). Most relevant to the data described here are those studies that have used 

discrimination and/or detection of arrows in their demonstration of perceptual abilities and 

have shown a single period of TMS efficacy (Koivisto, et al., 2011; Sack, et al., 2009 ). 

  

                                                            
7 Note: the discrepancy between these times and those reported elsewhere is likely to be due to the use 
of the difference between stimuli offset and the TMS pulse being used to quantify the temporal 
distribution of TMS pulses, as opposed to the more conventional stimuli onset asynchrony. 
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The question this brief discussion of previous experiments was aimed at addressing 

was whether or not there exists more than one period over which perception is susceptible to 

TMS applied to the occipital lobe. The data here, together with the majority of other on-line 

experiments, points to a single period of causal importance in perception, where simple 

detection tasks are employed. However, the performance of other tasks may well involve two 

or more periods of processing in occipital cortical areas (e.g. Chambers, et al., 2012; Heinen, 

et al., 2005), the clearest examples of which are probably the demonstrations of independent 

periods in motion detection tasks, where an initial appraisal of the state of primary areas 

followed by a secondary recurrent monitoring phase might aid task performance (Pascual-

Leone & Walsh, 2001; Silvanto, Lavie, et al., 2005; Stevens, et al., 2009). The overall 

picture, then, is that there likely exists a feedforward phase of processing which is then 

followed by a recurrent phase. However, whether or not TMS is capable of isolating them, 

and indeed, whether or not the two phases are temporally separate and do not overlap 

(Heinen, et al., 2005), is likely to depend upon the task involved. It would seem that simple 

detection and discrimination tasks do not allow for reliable independency to be demonstrated. 

 

Perception lacking consciousness was demonstrated by the above-chance performance 

on ‘unseen’ trials. However, no effects of TMS on PcU were observed at any time period. 

This null effect suggests that the activity upon which the residual perception depends persists 

on the basis of lower levels of activity than are affected by occipital TMS. There was, 

however, a trend toward disruption of ‘unseen’ discrimination as a result of later TMS as 

opposed to earlier TMS. This is potentially weak evidence against the prediction made by 

Lamme (2006b) that TMS should affect unconscious abilities at earlier times and is addressed 

more thoroughly in the next section (Experiment 2C). 

 

The minima of the suppression of conscious detection (at 110ms with a PrC value of 

0.0375) is well within 1 standard deviation of zero (no detection at all). The absence of 

almost any sign of conscious detection, whilst coincident with consistently above chance 

‘unseen’ discrimination ability, can be interpreted as one of the most conservative 

demonstrations of blindsight type abilities in this series of experiments. This time point was 

taken to establish the BIP but rounded up to the nearest stimuli refresh of the CRT display 

(120ms). 
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3.6 Single-subject double-pulse, experiment 

3C. 
 

 The single pulse experiment (3B) established the blindsight inducing pulse (BIP), at 

120ms. This pulse was present in all trials of the double pulse experiment, which allowed us 

to investigate at the roles of different phases of activity within the context of a blindsight type 

effect. Specifically, we sought to address the question of whether the residual, reportedly 

‘unseen’ abilities of TMS-induced blindsight were dependent upon activity prior to the phase 

of conscious processing disrupted by the BIP. As noted, ‘unseen’ abilities of TMS induced 

blindsight have been linked to the early feedforward sweep prior to the recurrent conscious 

phase (Lamme, 2001). Interfering with these periods involved adding pulses in addition to the 

BIP, the prediction being that if the early period is responsible for unconscious / ‘unseen’ 

processing then the application of pulses prior to the BIP should suppress ‘unseen’ 

discrimination to a greater extent than pulses applied after the BIP, (Lamme, 2006b). 

 

3.6.1 Double-pulse methods 
 

 Methods were identical to the single pulse experiment (3B) unless otherwise stated. 

The pulses in addition to the BIP were at 40ms intervals ranging from 0 to 240ms (that is, 

pairs of pulses at [0,120], [40,120], [80,120], [120,160], [120,200], [120,240] ms, see figure 

3.3.1.1). This provided six TMS conditions of pulse pairs that were equivalent in terms of 

inter-pulse interval and balanced across the period prior to the BIP (early) and following the 

BIP (late). The reported effects of early TMS in particular appear to be highly variable (cf. 

Experiment 3A vs. Corthout et al 1999-2002); for this reason, a range of timings was 

covered.  

Blocks consisted of 120 trials, yielding five repetitions of each stimulus and TMS 

condition with each block. The subject completed eight blocks of active TMS and eight 
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blocks of sham TMS on each session. Six sessions were completed on different days, 

separated by at least 24 hours, which produced six data points (one per session) for each 

measure and TMS conditions upon which analysis was based. The order of questions was 

counterbalanced across the six sessions. TMS intensity was again 120% of subjects PT for 

both pulses on every trial. Eye tracking resulted in the removal of 12 out of a possible 5760 

trials. 

Primary analysis of this data involved ANOVAs applied to each measure with TMS 

site (sham vs. active) and time (additional pulses applied before vs. after the BIP) as factors, 

using the individual sessions as data points. This meant there were 18 data points before and 

after the BIP. If time-dependent effects of the TMS were observed, then these were further 

probed with 2-tailed t-tests; comparing active to sham TMS effects, at each of the six time 

points, correcting for these six comparisons with the Holm-Bonferroni method. 

‘Unseen’ discrimination ability relative to chance performance was assessed in two 

ways: single sample t-tests were applied to the data at each of the twelve time points (6 active 

and 6 sham), contrasting PcU performance relative to chance. This mirrored the analysis 

applied to the between-subjects study (3A). Also, a binomial test was applied to the 

correct/incorrect ‘unseen’ choices. This analysis collapsed the discriminations made across 

sessions and matched the analysis applied to the BIP task (3B). 

In addition, the temporal spacing of pulses was analysed using ANOVAs with site 

(active vs. sham) and the three pulse spacings as factors. Pulse spacing here refers 

specifically to the difference between additional pulses and the BIP, i.e. the spacing of the 

40,120ms intervention is 80ms and its comparable pair is 120, 200ms. This temporal spacing 

analysis did not directly relate to the experimental hypothesis, as it addressed whether or not 

pulses closer together were more effective than those further apart, which may be of interest 

in itself. However, entry of this temporal spacing factor (pulse spacing) as a covariate into the 

ANOVAs which compared early vs. late effects allowed us to eliminate variance due to the 

temporal spacing of pulses, the effects of which are reported separately as an ANCOVA 

(3.6.2.4). 

The Bayesian analyses were designed to mirror those of the conventional analysis 

above and followed the methods of the between-subject experiment (3A) in application. This 

meant that Bayesian analysis was applied to this data in two ways to each of the primary 

measures. First, the early effects were compared to the later effects to substantiate any 
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difference between these two periods. A single vector representing this comparison was 

derived using change from sham data and subtracting post-BIP data averaged across the three 

late times from averaged pre-BIP data, the variance of which was taken across sessions (data 

points). Thus the vector was calculated as (Earlyoccipital - sham) – (Lateoccipital - sham). Therefore, 

on this vector a suppression specific to additional early stimulation would result in positive 

values and would be represented by a positive prior. Effects in the opposite direction (i.e. 

later TMS being more effective than earlier) were also tested ((Lateoccipital - sham) – (Earlyoccipital 

- sham)). Second, the effects of the TMS were analysed at each of the six time points. This 

probed the efficacy of the TMS and how it evolved over time. The dependent variable was 

the change from sham data, and the prior represented a uniform suppression of perceptual 

abilities. Priors involving PcU ranged from 0 to 0.5 and those involving PrC ranged from 0 to 

0.6 because threshold levels resulted in those being the maximum reasonable range.  

Outlier rejection was again based on Chauvenet’s criterion applied to each data 

condition, using the variance across the sessions. In the event, no data was shown to be out-

lying in this experiment. 

 

3.6.2 Double-pulse results  
 

3.6.2.1 Conscious detection 

 

Conscious detection was suppressed by the application of the double pulses (site 

effect: F(1,68) =144.301, p<0.001), and although there appeared to be a time dependent effect 

where later pulses resulted in lower detection (time effect: F (1,68) =4.184, p=0.045), this did 

not interact with the type of TMS and so cannot be attributed to the magnetic / cortical effects 

of TMS (site × time interaction: F(1,68) =1.291, p=0.260).   

Bayesian comparison between early and late effects was inconclusive as the Bayes 

factors representing effects being expressed flowing later TMS was weak (B= 0.8495). The 

Bayes factor modelling an earlier effect of TMS, relative to late efficacy, favoured the null 

(B= 0.043), indicating an absence of a difference between the early and later periods on the 
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PrC measure. Bayesian priors which modelled a drop in PrC at each of the time points closely 

represented the data (B ranging from 1396 to 2.712e11, see table 3.6.2.2). 

 

Figure 3.6.2.1. Conscious detection (PrC) as affected by double pulse interventions. 

The vertical dotted line indicates the time at which the BIP was applied relative to 

onset of the visual stimulus. Other timings represent the application of pulses in 

addition to the BIP. Error bars are standard error across session. 

 

3.6.2.2 ‘Unseen’ discrimination 

 

 For ‘unseen’ discrimination the effect of the active TMS was time dependent (site × 

time interaction: F(1,68) =8.681, p=0.004, see figure 3.6.2.2). ‘Unseen’ discrimination was also 

shown to be suppressed by the TMS (site effect: F(1,68) = 19.462, p<0.001). Independent of 

TMS site effects, no effect of when the pulse were applied (early vs. late) were observed 

(time effect F(1,68) =0.014, p =0.907). 
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 The greatest contributions to this effect were made by the two suppressions in PcU as 

a result of TMS applied at [120,160] (t(5) =4.607, p= 0.006)  and [120,200] (t(5) =4.963, 

p=0.004). T-tests which compared active to sham conditions applied to other times were non-

significant (t<1.828, p>0.127). The Bayesian analysis reflected this; first, comparing early to 

later effects indicated strong support for the effect being greatest as a result of late TMS (B = 

7.4×10e5), support for the effect being expressed earlier strongly supported the null 

(B=0.007).  When applied to the individual time points, the analysis favoured the null of 

there being no effect of the TMS during the early period of intervention (B 0.07 to 0.35). 

TMS applied following the BIP, however, was effective in suppressing PcU, particularly 

during the 160,120ms (B=25.48) and 200,120ms (B=46.12) interventions. For the 120,240 

intervention the effect was inconclusive (B=0.58, t(5) =1.828, p=0.127). These analyses are 

summarised in table 3.6.2.2. 

‘Unseen’ performance was consistently above chance as assessed by single sampled t-

tests applied to all 12 data points (6 active and 6 sham)(t(5) >4.63, p<0.006) or binomial 

statistics (all p <0.001). 

 

Figure 3.6.2.2. ‘Unseen’ discrimination as affected by double pulse interventions in 

Experiment 3C. This figure conforms to the same structure as figure 3.6.2.1. 
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Table 3.6.2.2. Bayes factors representing the effects of the double pulse interventions. 

Applied to individual times the Bayes factors represent the strength of support for the 

hypothesis that the TMS caused suppression in measures. When applied to the early 

vs. late analysis the Bayes factor represents the strength of support for TMS being 

effective when applied earlier vs. later, and vice versa.  

Bayes factor (B) 

 Time TMS             

 0,120 40,120 80,120 160,120 200,120 240,120 Early>Late Late>Early 

PrC 1394.626 2.73×10e8 2211.119 4.68×10e8 3.22×10e8 2.71×10e11 0.0434 0.8495 

PcU 0.07151 0.347722 0.317055 25.48766 46.12056 0.582341 0.0071 7.38×10e5 

 

 The Fmax ratio of variance in PcU/PrC was 1.45 based on average contributing trial 

numbers. 

 

3.6.2.3 Response bias 

 

 The subject responded positively less often with active TMS (site effect: F(1,68) 

=12.056, p=0.001). This effect did not interact with whether the additional pulse was applied 

before or after the BIP (site × time interaction: F(1,68) =0.579, p=0.449). Neither was there a 

main effect of pulse timing (time effect: F(1,68) =0.352, p=0.555). The analysis of the temporal 

spacing of pulses indicates that the temporal proximity of pulses affected response criteria 

(TMS site × pulse spacing interaction F(2,66) =4.001, p=0.023). This is potentially suggestive 

of a distracting effect in which temporally close TMS pulses distract more than temporally 

distant ones. However, given the high degree of variability in the sham condition (see figure 

3.6.2.3.) this result should be treated with caution. Here 127 false alarms were made in 

contrast to 3308 correct rejections. 
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Figure 3.6.2.3. Bias in conscious detection as affected by double pulse interventions. 

This figure conforms to the same structure as 3.6.2.1. 

 

3.6.2.4 ANCOVA 

 

 The spacing of pulses indicated that pulses placed closer together were more effective 

in suppressing conscious detection (F(1,67) =7.55, p=0.008). A similar but non-significant 

trend was observed for ‘unseen’ discrimination (F(1,67) =2.178, p=0.145). The addition of this 

as a covariance factor into the main site × time ANOVAs, resulted in an ANCOVA, which 

did not reveal any main effects or interactions not observed in the original analysis. 
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3.6.3 Double-pulse discussion 
 

 Again, the application of occipital TMS produced a blindsight type effect. Conscious 

detection was suppressed to a greater extent than ‘unseen’ discrimination. The ‘unseen’ 

discrimination measure, on the other hand, showed time-dependent effects which were not 

expressed upon the measure of conscious detection. The specificity of different effects to 

both measures can be considered a double dissociation and is therefore the clearest 

demonstration in this series of experiments that the measures used are sensitive to 

independent properties. The demonstration that the PcU measure is sensitive to the 

interventions supports the conclusions that can be drawn from other experimental sections, as 

it suggests that the absence of effects, for example, in reference to the between subjects s-

cone intervention (Experiment 3A), were not a result of insensitivity of the measure, but 

rather arose due to the measure being unaffected by that particular intervention. 

 

 The time-dependent effect of the TMS upon ‘unseen’ discrimination has implications 

for the proposed correspondence between unconscious processing and the early feedforward 

sweep (Lamme, 2001; Lamme & Roelfsema, 2000). In particular, the observed effects had 

the opposite temporal signature to that which would have been expected; ‘unseen’ 

discrimination was reduced when TMS was applied later, during the more recurrent phase, 

rather than as a result of early TMS. Indeed, no clear effect of the TMS was observed when 

TMS was applied early and was only realised when TMS was added after the BIP.  This 

study can therefore be seen as providing evidence against the idea that the basis of 

‘unconscious’ vision lies in the early feedforward sweep of information through the visual 

system, as it is more likely to depend on activity occurring after 120ms. 

 

 The element of Lamme’s theory that relates conscious awareness to later recurrent 

processing is well supported by evidence. However, there is relatively little direct evidence in 

Lamme’s theory to support the early-unconscious claim. In terms of evidence for the theory, 

he cites the preservation of fast collicular routes (collicular input being early to arrive) in 

classic blindsight (Lamme, 2001) - evidence which the s-cone interventions applied here 

contradict. In addition, he discusses electrophysiological evidence, which shows that the 

earliest evoked activations (prior to later recurrent / conscious processing - in reference to 
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which the results here agree) carry information to sensory areas such as orientation selectivity 

in vision (Lamme & Roelfsema, 2000; Super, Spekreijse, & Lamme, 2001). 

 

 The current results might be seen as ruling against Lamme’s theory (2001). However, 

rather than ruling against the claim of a correspondence between early processing and 

unconscious processing, it may be possible to reconcile this theory with the current data in 

two ways: by considering the definition of unconscious, and by considering what might 

contribute toward the residual abilities of TMS-induced blindsight. It should be noted that 

what follows is a tentative attempt at reconciliation between the data and the theory. 

 

 What is it that is referred to in Lamme’s theories when he uses the term ‘unconscious’ 

and does this match the forced choice ‘unseen’ abilities demonstrated here? It is possible to 

read Lamme’s use of ‘unconscious’ as referring to something more akin to ‘subpersonal’. 

(Sub-personal is a level of description first expounded by Dennett (1969), which is a way of 

describing processes at the purely physical level, such as neuronal processes, in contrast to 

personal level descriptions which refer to the experience of the subject.) In which case, early  

to arrive activity might therefore be sub-personal and carry information such as orientation 

selectivity. Such activity might be at such a basic level that the TMS was incapable of 

affecting it at the levels applied here (e.g. columnar segmentation). Therefore on the ‘sub-

personal’ reading of Lamme’s theory the TMS applied here did not affect the feedforward 

sweep and the theory is maintained. 

 

 It is also possible that what is measured by the forced choice discrimination of arrows 

when reportedly ‘unseen’ is neither unconscious nor subpersonal. It is possible that what it is 

(the perception) that is referred to by the PcU measure actually depends on or is facilitated by 

the reactive (Ericsson, 2003) processes caused by the posing of the question. That is, when 

subjects are asked in which direction the arrow was pointing, they consciously reflected upon 

this question and although the activations caused by the stimuli were insufficient to elicit a 

categorical ‘seen’ response, it was the reflection itself that supported the discrimination 

decision, to the extent that it was above chance over a number of trials. The later conscious 

reflection, then, was the target of the perturbation caused by later TMS and the reason for 

which reportedly ‘unseen’ abilities were diminished at these later times. In which case, this 

experiment simply may not confront Lamme’s theory. This argument is expanded upon in 

Chapter 4. 
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 It is important to note that this entire discussion may reflect an over-interpretation of 

the data, and implies that we have not targeted purely ‘unconscious’ processing (or 

phenomenal consciousness in Block’s sense (Block, 1995), discussed in Chapter 4.6). Even 

so, what does appear to have been tracked by this measure is perception which is less 

conscious than when the subject acknowledges veridical awareness (Cohen & Dennett, 

2011). This difference is all that is required to make the contrast which reveals our target of 

conscious awareness, upon which the majority of the conclusions drawn here have been 

based. 

 

3.7 Single-subject s-cone intervention, 

experiment 3D. 
 

 The aim of this experiment was to probe the pathways that contribute to processing in 

the context of TMS-induced blindsight. The principal question was whether or not the 

preserved abilities critically depend upon input via the superior colliculus. In doing so it 

made use of the same s-cone intervention as the between-subjects study (3A) and applied the 

BIP to reveal blindsight type responses. 

 

3.7.1 S-cone intervention methods 
 

 Unless otherwise stated, procedures and equipment are the same as in previously 

described experiments. Prior to commencing these experiments the subject’s tritan line and 

point of equiluminance were ascertained using the method described in Experiment 3A. The 

subject’s tritan line was found to be at an angle of 9o in MacLoed-Boynton (1979) space with 

an equiluminance point of 24.7 cd/m2. The colour used in CIE1931 coordinates was 0.256, 

0.230, 17.62. Eye tracking resulted in the elimination of 26 trials from a possible 1920. 
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 Single pulses of TMS were applied at the BIP (120ms) in either active or sham coil 

orientation. Stimuli were either s-cone or luminance. This yielded four conditions that were 

acquired in separate blocks over the course of a single session, the order of which was 

randomised. The subject completed 6 sessions, each involving the use of a different question 

order of presentation. Each block consisted of 80 trials and resulted in a single data point per 

block entered into the subsequent analysis. 

The primary analyses applied ANOVAs to each measure with TMS site (active vs. 

sham) and stimuli type (s-cone vs. luminance) as factors. Analysis of above-chance 

performance on ‘unseen’ trials was performed both with a single sample t-test (matching the 

between subject study, 3A) and binomial tests of unseen abilities (matching the double pulses 

section, 3B), including Holm-Bonferonni correction for multiple comparisons.  

The Bayesian analysis again made use of the variance across sessions. It was first 

applied to the change from sham data for each stimulus type and measure separately. Then, 

using the change from sham data and taking away the s-cone data from the luminance data, a 

vector was produced that, if positive, would represent the benefit bestowed by the additional 

input provided by luminance stimuli from RM pathways. The Fmax ratio between the PrC 

and PcU measures was 0.98. 

 

3.7.2 S-cone intervention results 
 

3.7.2.1 Conscious detection 

 

 Conscious detection was suppressed by the application of TMS (TMS site effect: 

F(1,20) =129.1, p<0.001), but this effect did not depend on the type of stimuli used (site × 

stimuli interaction: F(1,20) =0.572, p=0.458), nor was there a discernible difference between 

detection of stimuli types independent of TMS effects (stimuli effect: F(1,20) =2.553, p=0.126), 

see figure 3.7.2.1 . BrC was not analysed for this section due, again, to the low numbers of 

false alarms (19 false alarms across all conditions, compared to 578 correct rejections).  
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Figure 3.7.2.1.  Conscious detection and ‘unseen’ discrimination in the presence of s-

cone and luminance stimuli in active (BIP at 120ms) and sham conditions. Error bars 

are standard error.  

 

3.7.2.2 ‘Unseen’ discrimination 

 

Changes in ‘unseen’ discrimination mirrored those found for conscious detection. 

PcU was suppressed by the TMS (TMS site effect F(1,20) =10.26, p=0.004) and showed no 

dependency upon stimulus type (site × stimuli interaction: F(1,20) =1.724, p=0.204, and 

stimulus effect: F(1,20) =0 .150, p=0 .702). 

Binomial tests indicated that ability to discriminate above chance when stimuli were 

reportedly ‘unseen’ was only clearly preserved for luminance sham condition (p<0.001), and 

was completely absent for the active luminance condition (p=0.689). Conscious detection 

being around zero for luminance stimuli (see figure 3.7.2.1) implies that all perception was 

eliminated at this data point. For s-cone stimuli in the active and sham conditions, above 

chance performance was only demonstrable relative to an uncorrected alpha level of 0.05 

(sham p= 0.029, active p= 0.048). These values do not withstand correction for multiple 

comparisons. The same pattern of above-chance responses was also observed using the single 

sample t-test method with above-chance performance for luminance stimuli in the sham 

condition (t(5)= 5.385, p=0.003) but not others (s-cone sham t(5)=3.044, p=0.029, s-cone 
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active t(5) =2.152, p=0 .084, luminance active t(5) =0.804, p=0.458, again relative to alpha of 

0.0167).  

 

3.7.2.3 Bayesian analysis 

 

The Bayesian analysis indicated that TMS suppressed conscious detection for both 

stimulus types (s-cone B=4.26×10e16 , luminance B=5.19×10e5). ‘Unseen’ discrimination was 

also suppressed for luminance stimuli (B=1.62×10e5) but not in the presence of s-cone 

stimuli (B=0.63). The direct comparison of stimulus types, using of change from sham data, 

revealed no conclusive support for more pronounced suppression in the presence of s-cone 

stimuli compared with luminance stimuli (For PrC B=0.44, PcU B=0.14). In fact, the 

opposite effect, of ‘unseen’ ability being suppressed to a greater extent when the additional 

input provided by the luminance stimuli is present, was more strongly supported by the data 

(B=0.93).  

 

3.7.3 S-cone intervention discussion 
 

 The conclusions that can be drawn from this experiment are limited. The absence of 

above-chance performance for ‘unseen’ trials in three out of four conditions means that it 

cannot be claimed that these data represent a form of blindsight. 

 A point worth highlighting is that ‘unseen’ performance dropped to a greater extent in 

the presence of luminance stimuli than it did for s-cone stimuli; an effect in the opposite 

direction to that which would have lent weight to the principle of collicular support for 

‘unseen’ abilities (Schmid, et al., 2010). Alternatively, it could be argued that the absence of 

‘unseen’ above chance performance in the s-cone sham condition could be taken as evidence 

that all ‘unseen’ abilities in this subject (irrespective of occipital disruption) operate via the 

superior colliculus (e.g. Fuchs & Ansorge, 2012). However, this seems improbable, as the 

reason for which ‘unseen’ performance in this condition was not considered above chance 

was the correction for multiple comparisons, and performance here was at 70% correct. 
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Additionally in the between-subjects study (3A) this subject’s performance in the s-cone 

sham condition was at 68%. Therefore insufficient statistical power appears to be the primary 

reason for failing to demonstrate above-chance performance, and therefore failure to reveal 

TMS-induced blindsight.  

  

3.8 General on-line conclusions  
 

 The experiments have demonstrated dissociations where conscious detection was 

suppressed by TMS applied at ~100ms while ‘unseen’ discrimination was preserved; 

corresponding to previous reports of TMS-induced blindsight (e.g. Boyer, et al., 2005). There 

are two aspects of these demonstrations that can be seen as contrary to prevailing views as to 

the neural basis of blindsight. First, the residual unconscious abilities of blindsight do not 

depend upon input via the superior colliculus. Second, neither do they appear to depend upon 

the early feedforward sweep of activity; rather, later interference suggests a later causal basis. 

 If, however, the unconscious abilities associated with blindsight are more nuanced 

than an early-collicular-unconscious relationship, then the data presented here might not 

contradict previous descriptions of the neural basis of blindsight. This might be the case if 

different tasks that fall under the banner of the unconscious abilities of blindsight call upon 

different resources. Some demonstrations might show collicular dependency (Leh, Mullen, et 

al., 2006) while others may not (here and Schmid, et al., 2010). Likewise, some early 

information that facilitates ‘unseen’ abilities might be at such a basic level of partition (e.g. of 

columnar segregation) or may directly pass to unaffected regions, that it is resistant to the 

early TMS intervention. Late conscious reflection upon the percept, on the other hand, which 

could mediate the residual abilities, may have been what it is that is susceptible to late TMS.  

 These issues of task dependency and, in particular, the problem that the reportedly 

‘unseen’ abilities could be mediated by a conscious reaction to the task, suggests that a more 

indirect task may be preferable in demonstrations of blindsight type effects. This is because 

tasks involving, e.g. attentional cueing effects (see for review Mulckhuyse & Theeuwes, 

2010; Shipp, 2004) might be thought of as less susceptible to this problem of reactivity (the 

posing of the question itself affecting the processing under analysis, see Ericsson, 2003; 
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Gagne & Smith, 1962, and section 4.3). Such attentional cueing tasks, especially those 

involving peripheral cues, are also more likely to illustrate independence of anatomical 

function (Ansorge, 2003; Leh, Mullen, et al., 2006; Mulckhuyse & Theeuwes, 2010), (but 

also see Bompas, et al., 2008). Indeed, comparisons of cued measures to overt forced choice 

paradigms are promising avenues for research.  

However, what is gained by the use of indirect measures might not outweigh what is 

lost through the rejection of overt forced choice measures. What is lost is the proximity of the 

contrast used to reveal conscious processing. That is, for the contrast to be maximally 

informative, it is required that the difference between the two states / tasks be as minimal as 

possible in all respects, other than the difference of interest (ceteris paribus ,Chalmers, 1996). 

If a contrast state were to be chosen that is known to operate via a different set of pathways to 

consciousness under all conditions then the informative nature of the contrast is weakened. 

For example, we demonstrated R/M – potentially collicular – dependent effects upon the 

measure of conscious detection. If we had chosen a task to demonstrate the preserved abilities 

that are supported by the SC irrespective of interventions (as with Leh, Johansen-Berg, et al., 

2006; Tamietto, et al., 2010), such as unconscious attentional cueing task (Mulckhuyse & 

Theeuwes, 2010; Shipp, 2004), then it may not have been possible to show that these 

pathways also play a role in specifically conscious processing. This would be because both 

‘unseen’ abilities and conscious detection would presumably demonstrate s-cone dependent 

effects. In such a circumstance it would only be possible to claim that perception in general is 

supported by collicular and/or magnocellular input. 

 There is therefore no contradiction between the data presented here and previous work 

other than in prior claims of necessity (e.g. Ro, et al., 2004). Rather this work furthers our 

understanding by demonstrating that conscious processing, in particular, benefits from R/M 

input during early and late phases of occipital activity. Moreover, consciousness is more 

susceptible to direct interference of occipital cortical areas than are ‘unseen’ abilities, which 

can persist on the basis of presumably lower levels of input provided by a variety of routes 

that are likely to be task-dependent. 
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Chapter 4.  

General discussion 
 

4.1 Overview of experimental findings 
 

 These experiments sought to probe the neuronal processes involved in visual 

consciousness. The strategy developed for doing so involved deriving a measure that referred 

to subjects’ conscious experience of arrow stimuli and to compare variation in this measure 

with a measure of perception where consciousness was lacking. The variations were the result 

of the direct causal intervention of TMS. Similar paradigms have previously been used to 

demonstrate the phenomena of blindsight (Boyer, et al., 2005; Lau & Passingham, 2006; 

Sanders, et al., 1974; Weiskrantz, 1986). 

 The ‘off-line’ experiments applied repetitive TMS (cTBS), which caused suppression 

in cortical excitability (Franca, et al., 2006; Huang, et al., 2005) while, increasing subjects’ 

conscious detection of stimuli (Experiment 2A). This effect on conscious detection was 

replicated (Experiment 2D) and a number of other experiments were developed to probe this 

effect. Experiment 2B confirmed that the regions affected by the cTBS became less 

susceptible to direct stimulation. This was further consistent with the demonstration cTBS 

increased concentration of the inhibitory neurotransmitter GABA, as measured by MRS in 

Experiment 2C. The replication of the behavioural experiment was conducted in conjunction 

with MEG. Late evoked responses to stimuli, as measured by MEG, can be seen as 

representative of conscious signals (Koivisto & Revonsuo, 2007; Sergent, et al., 2005). There 

was no clear evidence that occipital cTBS altered the passage of such signals. Instead effects 

were observed in the oscillatory alpha band. The alpha band is thought to play an important 

role in the gating and segmentation of percepts (Jensen & Mazaheri, 2010; Pfurtscheller, et 

al., 1983; Varela, et al., 1981). In particular, the alpha ERD can be seen as representative of a 

gating mechanism, where a shift occurs from a period in which the power / inhibitory 



137 
 

influence of the alpha oscillation is high to a desynchronised, disinhibited state following the 

presentation of the stimuli. The rate of onset of this ERD became steeper following the 

application of the cTBS. Collectively, these experiments suggested that the facilitation of 

conscious detection observed may have been the result of a potentiation of the mechanisms 

involved in the formation of conscious percepts through gating of representations. The 

interpretation offered is that discrete conscious percepts are brought into relief by inhibitory 

processes, involving GABA and the ERD, and it is this function that benefited from the 

application of occipital cTBS. 

 The ‘on-line’ experiments addressed a long running debate in the blindsight literature 

as to whether conscious vs. unconscious processes map functionally onto anatomically 

distinct pathways via the LGN and SC (Cowey, 2010; Lamme, 2001, 2006b). Contrary to this 

correspondence, Experiment 3A showed that the residual, reportedly ‘unseen’ abilities of 

TMS-induced blindsight, can persist when informative input via the SC was removed. This 

experiment also confirmed previous demonstrations (e.g. Amassian, et al., 1989) that the 

critical period for TMS efficacy, when applied to visual areas, operates from ~100ms after 

stimulus onset. It has also been previously suggested that the level of activity in early visual 

cortical areas when the first feed-forward sweep of input arrives can determine whether or not 

stimuli are perceived (Romei, et al., 2010; van Dijk, et al., 2008). Experiment 3A extends our 

understanding of what this period may involve by showing that TMS applied around the same 

time as the stimuli (0-40ms) might add additional activity upon which early input, from the 

faster R/M pathways (Bompas & Sumner, 2008; Cottaris & De Valois, 1998; Maunsell, et al., 

1999; McKeefry, et al., 2003) can be boosted (Schwarzkopf, et al., 2011). It was also shown 

that the latest (280-320ms) period of recurrent processing targeted may benefit from input 

from these pathways, which may first pass information to more frontal regions, before re-

entry.   

 The single-subject single-pulse study (Experiment 3B) revealed that conscious 

detection was supported by a single disenabled period of processing in occipital cortex, 

consistent with previous demonstrations (Amassian, et al., 1989; Koivisto, et al., 2011; Sack, 

et al., 2009 ). This was perhaps the clearest demonstration of TMS-induced blindsight 

throughout these experiments. The findings of Experiment 3C appear contrary to previous 

suggestions that the early feedforward phase is the basis of ‘unconscious’ processing and that 

the later recurrent period corresponds to the conscious phase of processing (Lamme, 2001; 

Lamme & Roelfsema, 2000). Although a correspondence between later activity and 
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conscious processing was consistent with the data, TMS applied at later times suppressed 

reportedly ‘unseen’ abilities to a greater extent than did its earlier applications, indicating a 

later recurrent basis for the activity that supports ‘unseen’ abilities. It is, however, possible to 

reconcile this data with previous models (Lamme, 2001) if the measures of ‘unseen’ 

discrimination do not correspond to the intention behind  Lamme’s use of ‘unconscious’ 

and/or the ‘unseen’ measure is in some way mediated by conscious processing. Such 

discrepancies in the interpretation of these measures and the conceptual problems 

encountered in experiments directed at consciousness are the focus of this chapter, 

particularly sections (4.3-4.4). Before addressing the conceptual problems, some of the 

practical limitations of these experiments are first considered (4.2). Sections 4.5 to 4.8 

discuss three of the influential positions in the literature that relate to these conceptual 

concerns, interpretation of the data and status of subjective reports. This is followed by a 

brief overview of some potential directions for future research (4.9). 

 

4.2 Practical concerns with the experiments 
described 
 

 If the experiments were to be repeated or extended, there are two important changes 

to procedures that should be made. 

1. Following each subject’s participation in the experiments, informal discussions were 

conducted. This involved discussing with subjects how they approached they approached the 

experiments and explored any adverse reactions to TMS they may have experienced (see 

Maizey, In Press). In retrospect, these informal discussions should have been formalised and 

recorded beyond the recording of adverse reactions. This is because the discussions 

influenced the derivation of the PrC and BrC measures in the on-line experiments (Chapter 3) 

in accordance with the neurophenomenological position adopted (see section 1.2.1 and 4.8). 

That is, the way in which response patterns were allocated to signal detection classes was 

influenced by these discussions. Responding ‘Yes’ to the ‘something?’ question and ‘No’ to 

the ‘arrow?’ question, in the presence of a non-arrow, can logically be assigned as either a 

‘hit’ (in terms of the non-arrow stimulus) or a ‘correct rejection’ (in terms of the arrow 

stimulus). The majority of subjects reported that this response profile should not count as 
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seeing the target (a hit), as detection of the arrow was their primary concern. Therefore, this 

response pattern was classed as a ‘correct rejection’ (see table 3.2.2.1). Also, subjects 

acknowledged that responding positively to the ‘something?’ question, when nothing had 

been presented, was incorrect, hence classed as a ‘false alarm’, although it could also 

logically have been classed as a ‘correct rejection’ of the arrow’s presence. These allocations 

were established prior to the analysis of the data and followed the logic of the task 

instructions (appendix A4). Therefore, although these influential discussions should have 

been recorded as a matter of scientific rigour, the way in which the discussions influenced the 

analysis should not detract from the experimental findings. 

 

2. There are statistical limitations to these experiments which may have been alleviated 

through increased trial or participant numbers. These limitations are most apparent in three 

aspects of the experiments. First, it may be thought desirable to combine the two main 

measures involved in the demonstration of TMS-induced blindsight (PrC and PcU) in a single 

analysis or to derive a combined measure from the two, representing the extent to which 

reportedly ‘unseen’ discrimination outpaces conscious detection8. The derivation of such a 

measure or the application of a combined analysis, would add an additional factor to the 

analysis, increasing the likelihood of a type II error (Smith, Levine, Lachlan, & Fediuk, 

2002). This is especially the case here, where the highest order interaction would be most 

sensitive to a cross-over interaction (double dissociation); whereas the prediction made on the 

basis of the definition of TMS-induced blindsight is a single dissociation (statistically 

conforming to a reduction in PrC and absence of effect on PcU, section 1.3.3). The absence 

of a higher order interaction would prevent analysis of the lower order effects (as probed by 

the analyses implemented here), which may more accurately describe the hypothesis. The 

cost of the additional factor of ‘measure’ may be overcome through additional power in the 

analysis (Smith, et al., 2002), but because these experiments were designed only to be 

capable of illustrating effects on measures independently, such an analysis was not 

implemented. It should also be noted that none of the previous studies which have clearly 
                                                            
8 A combined measure could be derived by taking one measure (e.g. PrC) away from the other (e.g 
PcU). Alternatively, the two measures could also be treated as factors where the interaction terms 
involving ‘measure’ might describe dissociations between the measures. If so, then any interaction 
term using a difference score would be mathematically identical to the higher level interaction term 
involving ‘measure’. These two options are therefore considered as equivalent. 
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claimed to demonstrate TMS-induced blindsight have exploited a factorial / combined 

measure (Boyer, et al., 2005; Christensen, et al., 2008; Jolij & Lamme, 2005; Ro, et al., 

2004). In the demonstration that cTBS reduced metacognitive confidence when applied to the 

prefrontal areas, Rounis et al (2010) derive a combined measure of meta-d’ – d’ (see 

appendix A6 for further details). However, p-values they reported were halved, because their 

hypothesis was unidirectional (Rounis, et al., 2010). This is questionable, as it seems likely 

that they would have reported effects with the opposite directionality had they arisen, as 

described in the off-line experiments (Lombardi & Hurlbert, 2009). The derivation of 

combined measures or a factorial approach across measures is not required to demonstrate 

blindsight, as an acceptable statistical definition (section 1.3.3) is adequately served by 

analysis of the two measures independently.  However, derivations of such measures are 

certainly a promising avenue for future research. 

 The second concern related to statistical power pertains to the replication in the off-

line experiments only (section 2.6, Experiment 2D). The replication employed two control 

conditions (iTBS and sham). The inclusion of all three TMS conditions in the corresponding 

ANOVA would again have led to increased type II error rates (Smith. et al., 2002). This 

reduced capacity of such an analysis to demonstrate effects of interest would be exacerbated 

if a single 3-level ANOVA were to test the differences between all three TMS conditions. 

This is because the hypothesis of interest is described by a pairwise difference between cTBS 

and the other conditions. Because differences between the three TBS conditions may be of 

interest, they are described in appendix A3. It is, however, worth emphasising that analyses 

described in appendix A3 are multiple comparisons and therefore should be treated with 

caution.  

 Finally, the capacity of any form of SDT to dissociate sensitivity from response 

criteria is severely limited if no ‘false alarms’ are produced. This is discussed further in 

section 4.4.1. Across the between subjects experiments there were 188 out of 686 cells (data 

points) containing no false alarms. Increasing the number of trials may have reduced this 

problem.  

 

 



141 
 

4.3 Problems encountered in directing 

experiments at consciousness 
 

 Many psychologists have been sceptical about questions related to conscious 

experience (e.g. Skinner, 1965). This failure to confront consciousness stems from 

differences concerning the epistemic status of subjective reports, which is the focus of this 

section. However, a contributing factor in the avoidance of consciousness as a topic of 

enquiry may be the misconception within psychology that there are broader philosophical 

reasons which directly block its investigation. While the metaphysical nature and epistemic 

strategy for the investigation of consciousness are by no means settled, there has to some 

extent been a consensus reached within modern philosophy of mind, to the point where it is 

possible to say that regardless of the status of consciousness, its empirical investigation can 

be informative and should be of use. Disparate points of view as to what constitutes an 

investigation of consciousness, and what consciousness is, can be to some extent reconciled 

in the agreement that consciousness is a legitimate target for investigation (e.g. compare  

Lutz, (2003) and Dennett, (2003)). There is the ‘hard problem’ of consciousness which 

suggests there may be something further to explain than purely objective science is capable of 

(Chalmers, 1996), discussed in section 4.7. But even Dave Chalmers, who established the 

notion of the ‘hard problem’, advocates the application of empirical methods to 

consciousness as a fruitful endeavour. 

 The central criticism of phenomenologically led approaches, and a reason why 

behaviourism was adopted by many psychologists, can be to some extent reduced to one of 

response bias. That is, any response to an introspective probe may not reflect the state to 

which the probe was targeted, but instead correspond to the response criteria of the subject, to 

which such probes are often responsive (Nisbett, 1977; Wilson & Nisbett, 1978). This 

questions the status of subjective reports as being capable of referring to conscious 

experiences of the subject, which is fundamentally problematic for the research presented 

here.  

 The central dilemma is that it is possible that there are differences between being 

aware, knowing you are and reporting that it is so. If there are such differences, then any 
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instance of a report may not correspond to its referent in the experience, because the criteria 

for awareness may be met, yet the subject may have no access to this awareness upon 

reflection and thus incapable of forming a report that reflects the original conscious percept 

(Nisbett, 1977). The construction of a report being additional to, and dependent upon, 

different substrates, than the conscious experience at which the experiments were directed, 

limits the conclusions that can be drawn. This is because the report and experience are 

intertwined in the responses provided by the subject, and there appears to be a limit to 

obtaining measures that refer to the experience of the subject independently of the report 

process. This problem may cut even deeper than the conflation between report process and 

the conscious experience of the subject. There is also the possibility that the requirement for a 

behavioural response may itself affect the experience, again preventing any measure based on 

subjective reports as referring directly to an instance of conscious (or even unconscious) 

experience (Gagne & Smith, 1962), this is also known as the ‘observer paradox’, (Labov, 

1972). This problem of the report aspect of behavioural responses being additional to the 

experience itself is not trivial as it prevents these experiments from directly referring to their 

target of internal subjective states of the subject. The problem of there being additional 

elements related to report has been described as the problem of ‘reactivity’ (Ericsson, 2003), 

which is the term I will use to refer to it in the following discussion of some of the strategies 

that can and have been deployed to reduce the impact of this issue on this research. 

 

4.4 Attempts at solutions 
 

4.4.1 Signal detection theory and response allocations 
 

 The motivation for the development of the two principal measures, applied here, was 

primarily to obtain measures of subjects’ conscious experience of stimuli and their perceptual 

ability which lacked conscious awareness; thus revealing consciousness through the contrast 

between them (Baars, 2005; Dretske, 2000). The secondary objective was to derive measures 

that were robust to the influence of potential confounds. This section will discuss how these 

measures were developed with respect to the problems encountered. The measure of 
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conscious detection is first discussed (4.4.1.1), followed by the ‘unseen’ discrimination 

measure (4.4.1.2). Finally, I discuss the issues of interpretation with respect to measures used 

to quantify blindsight more generally (4.4.1.3).  

 

4.4.1.1 The conscious detection measures 

 

 Reactivity limits the extent to which measures can be attributed to their intended 

referent in conscious experience and it provides a source of potential confounds. As the 

previous section suggests, if any intervention (e.g. a disruption caused by TMS) is effective at 

the level of the report process, rather than upon the intended target of conscious awareness, 

then the effect in terms of the subject’s response is the same – a negative report is produced, 

hence conflating the report and the conscious experience. The application of signal detection 

theory (SDT) was intended to help alleviate this problem by delineating measures of 

sensitivity and response criteria. By taking into account the state of the stimuli it is possible 

to reduce the conflation between the two processes. If TMS is effective in reducing the 

subject’s conscious experience of the stimuli then the TMS should cause negative responses 

when the stimuli are presented. If, on the other hand, it is the report process that was targeted 

by the intervention then we might also expect a negative report, but we have no reason to 

think that such an occurrence of negative report should depend upon the stimuli’s presence or 

absence (N.B. the same structure of argument applies to the production of positive reports). 

Hence, response criteria / bias as the propensity to acknowledge awareness independently of 

what was presented (Macmillan & Creelman, 1990) has been linked to changes at the level of 

reports, while sensitivity-based measures have been used to reflect subjects’ conscious 

experience of the stimuli. 

 The principal experimental confounds in the on-line TMS experiments (Chapter 3) 

were the auditory and tactile artefacts accompanying TMS discharge, independent of direct 

neuronal effects. Additionally, there were differences in the extent to which the noise of the 

stimuli may have been attributed by the subjects across the two stimuli classes (S-cone or 

luminance stimuli9). In the off-line experiments (Chapter 2) the effect of fatigue and 

                                                            
9 Because the two stimuli classes were not independently calibrated in terms of response criteria, the 
noise of the stimuli may have appeared to more closely resemble the s-cone target than it did the 
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expectation10 may have been the primary causes of uninformative changes in the data. That 

many of these factors were also present in the control conditions provides the first line of 

defence in drawing secure conclusions. However, subtraction from baseline may not fully 

alleviate the influence of these factors, particularly when the magnitude of the confound 

differs between experimental conditions. This was the case for the stimuli class difference in 

the on-line experiments and the potential expectation difference in the off-line experiments. 

Both of these can be considered aspects of the problem of reactivity and may be reduced 

through the application of SDT. If a subjects’ expectations are such that they expect to see 

stimuli less often (or more often) following the application of active TMS relative to control 

TMS, then they should respond ‘no’ (or ‘yes’) more often under the active TMS condition 

irrespective of the stimuli’s status, and hence express the expectation confound as a 

fluctuation in the measure of bias rather than sensitivity. This may explain the initial 

observation (section 2.2.3) and subsequent trend (section 2.6.1) for an increased propensity to 

respond positively in the off-line experiments. Likewise, if subjects are more likely to 

attribute the stimulus noise to the presence of s-cone arrows than they are to the presence of 

luminance arrows, then this difference also should be expressed upon the measure of bias, not 

sensitivity, as was observed (see figure 3.3.3.3).  

 The segregation of bias and sensitivity in reported conscious awareness, additionally 

aided the experiments as the variability between subjects in terms of their criteria was 

removed from the primary measure of interest (Macmillan & Creelman, 1990). Subjects may 

approach the task with differing levels at which they acknowledge awareness of the stimuli, 

which in turn could result in differences in their susceptibility to the interventions; this would 

then limit the extent to which the experiments are able to demonstrate significant differences 

of interest. Again, such differences, across subjects, constitute differences in criteria and 

                                                                                                                                                                                         
luminance target. This led to increased ‘false alarm’ rates for s-cone stimuli and an imbalance of 
criteria across stimuli conditions, see section 3.3.3. Furthermore, owing to the insensitivity of BrC to 
fluctuations in the stimuli noise (see below), apparent during piloting, it is questionable whether it 
would have been possible to calibrate response bias across stimuli classes.  
10 Subjects were almost certainly aware of the difference between control/sham and active TMS in the 
off-line experiments, and therefore may have expected the TMS to have an effect upon their 
performance, resulting in a general adjustment of response criteria. The same difference (between 
active and sham TMS) does not apply to the same extent in the on-line experiments because the 
effects of interest were also time-dependent, resting upon differences between TMS epochs as small 
as 40ms. It is highly unlikely that subjects were capable of distinguishing and subsequently reacting 
to, such differences. 
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should be expressed upon the measure of bias, from which the primary measure of interest 

(sensitivity, PrC) is effectively independent. 

 The application of SDT may reduce this problem of reactivity but does not eliminate 

it, for three reasons. First, because of the causal aspect to the problem of reactivity – that the 

requirement for report could actively change the experience in question – the problem is to 

some extent unavoidable when SDT measures are acquired (hence its description as a 

paradox; Labov, 1972). Second, the elimination is not complete because the measure of 

sensitivity may not cover the full extent of conscious experience; that is, there are conscious 

experiences of the task whose occurrence will result in fluctuations in the measure of bias, 

but not sensitivity. For instance, misrepresentation of the noise of the stimuli grouped into 

arrow-like percepts would lead to an increase in bias, not sensitivity, and can easily be 

understood as a form of conscious awareness. It has even been suggested that a key to 

understanding what it is to be an intentional agent is the ability to misrepresent information 

(see Dretske, 1986). This means that the connection made between conscious awareness and 

the measure of sensitivity is limited to veridical awareness of actual stimuli. Therefore 

differences in the measures of bias may express report level and/or confound differences (as 

described above), but the measures of bias may also fluctuate in accordance with certain non-

veridical aspects of the subject’s conscious experience of the task, such as those occurring 

during misrepresentation.  Consequently, the separation of changes in conscious awareness 

and changes in reactive report might not perfectly match the division between sensitivity and 

bias measures. Even so, acknowledgement of the division and practical segregation of the 

two facets seems preferable to the alternative (Weiskrantz, 2001), being a measure of 

reported awareness which derives from subjects’ reports irrespective of the stimuli status. 

Such a measure would conflate the veridical awareness with response criteria and, therefore, 

may be more susceptible to experimental confounds such as the expectations of the subjects. 

Third, as acknowledged in section 1.3.2.2 and 4.2, false alarm rates were low, often 

approaching floor levels. The capacity of any form of SDT to dissociate response criteria 

from sensitivity is severely hampered by such floor effects. 

 All applications of SDT applied here have been non-parametric, owing to the 

violation of the central assumptions of classic parametric SDT. These assumptions are: “(1) 

The signal and noise distributions are both normal, and (2) the signal and noise distributions 

have the same standard deviation” (pp140 Stanislaw & Todorov, 1999). Although it is often 

unclear as to what exactly it is that is referred to by these distributions, I take the noise 
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distribution to refer to the information provided on stimulus-absent trials, and the signal 

distribution to be representative of stimulus-present information. Due to imbalances in the 

number of stimulus-absent and stimulus-present conditions in both experimental behavioural 

sections (see 2.6.1.1 methods and 3.2.1 methods) the distributions of the two may not be 

equal (Stanislaw & Todorov, 1999; Swets, 1986). Furthermore, false alarms were relatively 

rare, limiting the applicability of classic SDT. This can be interpreted as the result of the 

subjects’ criteria for this task being situated toward the tail end of the noise distribution 

(Macmillan & Creelman, 1990; Stanislaw & Todorov, 1999). In development of the stimuli, 

an attempt was made to increase the rate of false alarms by increasing the range of luminance 

noise; however, this was found to have little effect in piloting experiments. Although the 

range of the luminance noise for the stimuli used in the final experiments was relatively high, 

the false alarm rates were still relatively low (the range of noise displayed here was 10-15 

cd/m2, in a previous comparable study the range was 3.6 cd/m2; Sumner, et al., 2002). By 

contrast, hit rates appeared to be highly sensitive to fluctuations in the luminance of the 

target, as differences in hit rates over a range of target intensities drove the psychometric 

functions used to calibrate task performance. The insensitivity of false alarm rates to changes 

in stimulus noise, relative to the sensitivity of hit rates, further indicates that the distributions 

of the noise and the signal may not have been comparable. 

 Subjects typically adopt conservative criteria in forced choice yes/no tasks 

(Macmillan & Creelman, 1990), even over a range of noise presentations. Why should this 

be? It may be a characteristic of higher cognitive processes, such as consciousness, that 

agents are unlikely positively to report seeing a stimulus when no stimulus is presented. If 

part of what it is to be conscious is to have a higher order process that monitors the content of 

first order representations, then such a mechanism should act to minimise the incidence of 

false alarms. This is the ‘higher order thought’ position discussed in section 4.5 below and 

follows the proposition that “a conscious mental state is a compound of two things: the 

mental state, which itself is not conscious and one’s being transitively conscious of it” (pp 

738 Rosenthal, 2002). Such a mechanism would compare the information received with a 

higher order representation and produce a positive response only if a match is achieved, with 

the default response in the absence of a match being negative. The structure of this 

monitoring/meta-cognitive relationship is therefore such that it limits positive responses when 

information is limited. It has also been suggested that minimising false alarms is precisely the 

type of function consciousness has evolved to perform (Millikan, 1984). 
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 The non-parametric versions of SDT adopted here make no such assumptions in 

relation to noise and signal distributions and therefore do not suffer from the problems caused 

by low false alarm rates which hinder classic SDT to the same extent. For the Pr and Br 

measures used, Pr simply reflects the extent to which subjects correctly identified the 

presence of the stimuli, whereas Br reflects the subjects’ propensity to identify the presence 

of the stimuli irrespective of what was actually presented (Corwin, 1994, see section 1.3).  

 

4.4.1.2 Reportedly ‘Unseen’ discrimination 

 

 In addition to the Pr and Br measures, the other measure of interest in these 

experiments was subjects’ forced choice discrimination ability when they reported not having 

seen the stimuli (PcU). Both PrC and PcU are measures of sensitivity and operate over the 

same range. This ensures that the difference between the two principal measures is as 

minimal as possible (section 1.2-3), with the key difference being that the PcU measure 

applies when the subject is not reportedly consciously aware of the stimulus presented. 

Section 1.3.2 discussed the reasons for using ‘unseen’ trials only in the derivation of this 

measure (ensuring that the perceptual ability under consideration was lacking in 

consciousness and was not directly influenced by variation in reported awareness, during 

which discrimination ability was at ceiling level). In the on-line TMS experiments, which 

developed from the off-line experiments, the PcU measures were derived from trials when the 

subject reported ‘unseen’ to both ‘arrow?’ and ‘something?’ questions, allowing more 

confidence to be placed in the concurrent processing lacking consciousness. Even so, this did 

not alleviate the problem of reactivity in reference to PcU: while the content of experience 

with respect to the exposure to stimuli may lack consciousness, the report process is unlikely 

also to lack consciousness. This conscious reflection upon the trial, required to produce the 

report, could mediate residual visual abilities.  As described, this could be the cause of the 

late effects in Experiment 3C (the double-pulse single-subject case study, section 3.6). 

 However, before endorsing such an interpretation, it is worth highlighting some 

characteristics of the negative report. First, the problematic awareness under consideration 

and the cause of the problem of reactivity with respect to PcU, is awareness of the question. 

Awareness of the arrow is still lacking in trials that contribute to the PcU measure. Second, 
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awareness of the question is contingent upon a number of factors (e.g. subjects not becoming 

habituated to the questioning through practice, see section 4.8.2). In contrast, the presence of 

conscious awareness when the arrow was presented and the subject responding positively to 

‘Did you see the arrow?’ is far less open to question. Awareness may or may not be present 

on trials which contribute to PcU, but it is almost certainly present in trials which contribute 

positively to PrC. Therefore, the difference between the two measures exemplifies a 

difference specific to conscious awareness of the stimuli, and this difference is sufficient to 

make the contrast revealing of consciousness. 

 

4.4.1.3 Blindsight and criteria  

 

 One of the major criticisms of blindsight as a distinct neurological phenomenon is the 

possibility that it reflects an extreme response criterion where subjects do not ‘acknowledge’ 

awareness and blindsight is therefore not fundamentally distinct from degraded normal vision 

(Campion, et al., 1983)11. Such an argument can comprehensively describe blindsight without 

referring to there being an absence of conscious awareness. As possibly the chief proponent 

of the phenomenon of blindsight, Weiskrantz has argued that the degraded normal vision 

interpretation is not viable (Weiskrantz, 1986, 2001, 2009). He argues that the discrepancy 

between subjects’ reported experience of stimuli and their forced choice performance 

represents a double dissociation, as both have been perturbed independently, indicating that 

blindsight is a deficit largely specific to consciousness (Kentridge, et al., 1999; Weiskrantz, 

1986 chapter 16 and 19 ). The single dissociation of blindsight is simply that conscious 

awareness is affected by the lesion while the residual abilities remain. The double 

dissociation has been demonstrated by effects on the residual abilities independent of the 

subjects’ conscious knowledge: for example, reportedly ‘unseen’ responses can be modulated 

by the presence of cues (Kentridge, et al., 1999). Furthermore, recent work has indicated that 

                                                            
11 Informal conversations with blindsight researchers have also raised an additional related criticism of 
classic blindsight: some subjects’ know that their participation in, and payment for potential future 
experiments rests upon their not acknowledging any awareness of stimuli presented to their blind 
field. This could result in their maintenance of extreme response criteria independent of experience. 
Fortunately, this was not a consideration here as subjects were not paid according to experimental 
conditions.   
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a well-studied blindsight subject (DB) has greater sensitivity to stimuli, within a two 

alternative forced choice task, in his impaired classically blindsighted field, than in his 

reportedly sighted field (Trevethan, Sahraie, & Weiskrantz, 2007). This makes it difficult to 

see how degraded normal vision could support the residual vision of blindsight. The 

application of SDT here was therefore partly intended to circumvent this criticism via the 

derivation of measures that could evince blindsight (PrC and PcU) and operate independently 

of subjects’ criteria (BrC). 

 Nevertheless, it is also possible to formulate an explanation of blindsight based on 

extreme response criteria that does not detract from its being a distinct phenomenon, and 

which also results in an absence of – or inability to access – consciousness. This is Ko and 

Lau’s SDT based explanation of blindsight (Ko & Lau, 2012). They regard blindsight as a 

failure of frontal areas to update criteria according to the information available to them, 

owing to the lesions of the primary visual cortex. The blockage of reciprocal processing, 

leads to the failure to modulate extreme response criteria by frontal regions that are 

responsible for the initiation of the report. This highlights an important feature of the 

discussion of response criteria, bias and signal-to-noise ratio in general: that there are many 

different meanings to the applications of these terms and they may not all correspond to one 

another, as discussed further in appendix A2. The Ko and Lau model is a ‘subpersonal’ 

(Dennett, 1969)12 mechanistic description, where failure to update criteria leads to an absence 

of higher order consciousness, hence does not detract from blindsight as illustrating a specific 

lack of consciousness. The meaning of criteria / bias in the criticism of blindsight (Campion, 

et al., 1983), in contrast, applies at the ‘personal’ level (Dennett, 1969) of the subject where 

changes in the data may not reflect the presence / absence of consciousness, but instead 

fluctuate according to changes in the report process and strategy. Because the uses of criteria 

in these two interpretations of blindsight differ, they may not contradict or even inform one 

another.  

 However, because the SDT explanation of Ko and Lau and the gating-by-inhibition 

hypothesis put forward in Chapter 2 each apply at the ‘sub-personal’ level they can be 
                                                            
12 The personal / sub-personal distinction was introduced by Dennett (1969) which pertains to 
different levels of explanation. The personal level applies at the level of the subject as a whole, to 
their sensations and reported responses. The sub-personal level is the mechanistic physical level 
describing the brain and nervous system. Dennett emphasises that descriptions offered at each level 
may not be directly applicable or comprehensible when applied to the other level. 
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interpreted as mutually consistent. In the off-line TMS experiments described here, the signal 

provided to frontal regions, as quantified by the ERF, was not significantly influenced by 

cTBS, whereas the gating mechanism that potentially reflected the criteria (expressed by the 

ERD and changes in GABA) was facilitated in the presence of enhanced conscious 

awareness, mirroring the mechanism described by Ko and Lau (2012). 

 The conflation between levels of description provides a reason why a deliberate 

attempt was made to avoid discussing the gating-by-inhibition hypothesis in terms of Signal-

to-Noise Ratio (SNR), even though it is acceptable to interpret it as a suppression of neuronal 

noise, leading to increased SNR. The difficulty in framing the hypothesis in terms of SNR is 

that neuronal SNR cannot easily be extricated from the SNR of the imaging techniques 

themselves used to assess the neuronal processes (detailed in appendix A2). 

 Discussing gating-by-inhibition in terms of SNR also suggests a relationship with the 

SDT based behavioural measures, which straddles levels of explanation and is also 

potentially misleading. For example, increased gating could potentially be expected to result 

in a decrease in the measure of bias (BrC), following the application of cTBS. This would be 

because the mechanisms that govern entry into consciousness (and which set the criteria) 

become facilitated and the increased active inhibition might lead to a suppression of 

superfluous representations, thus reducing false alarms. Although superficially compelling 

this argument is flawed. This is because the incidence of false alarms (produced at the 

personal level) might increase following the suppression of noise at the subpersonal level. 

This would be because the neuronal representations of the stimulus noise may be facilitated 

relative to the representation of stimuli background, leading to increased misrepresentation of 

the stimulus noise as a target and increasing false alarms. Hence two predictions are made 

which are incompatible if an attempt is made to forge an explanation based on SNR that runs 

across levels of explanation. 

 The work of Ko and Lau highlights the point that differences in criteria may have 

implications for the mechanistic basis of changes in conscious awareness, and are therefore of 

interest. Yet, in part because of the potential for confusion over the definition of ‘criteria’, 

and more importantly because of the susceptibility of the bias measures to confounds 

(described above in section 4.4.1.1), fluctuations of bias in the current experiments are of 

secondary interest. 
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 Another criticism of the experimental paradigm developed here, and blindsight more 

generally, is the use of a forced choice question procedure in relation to conscious awareness, 

particularly the two alternative “Yes/No?” detection question of the off-line experiments. The 

procedure itself could potentially be the source of any dissociation between the measures. 

This would be due to the bifurcation of consciousness enforced by the questions used not 

accurately describing the likely graduated nature of consciousness (Overgaard, Rote, 

Mouridsen, & Ramsoy, 2006). Within a more graduated model of awareness, there may be a 

non-categorical ‘grey area’ where there is sufficient consciousness for performance on 

‘unseen’ trials to exceed chance levels, yet insufficient to elicit a categorical ‘yes’ response. 

This is consistent with the work of Overgaard et al (2008) who showed that a blindsighted 

subject (GR) admitted no awareness of the stimuli when asked ‘Did you see it? Yes or No?’ 

but would nonetheless demonstrate some degree of awareness using a questioning procedure 

with a finer granularity of response options. This possibility motivated the application of the 

‘something?’ question in the on-line experiments (Chapter 3). Subjects’ performance was 

well above chance even when they reported having seen neither the ‘arrow’ nor ‘something’, 

indicating the existence of perception when consciousness was lacking. Furthermore, recent 

work using the perceptual awareness scale developed by Overgaard et al, has shown that 

although conscious confidence correlates with accuracy, above-chance performance can still 

be demonstrated when subjects use the lowest categories of reported awareness available to 

them (Sandberg, Timmermans, Overgaard, & Cleeremans, 2010).  

Notwithstanding this defence of the current procedures, I feel this criticism of the 

forced choice method remains because there is clearly a limit to which simple behavioural 

descriptions, to which statistics are applicable, can capture the richness and variety of 

conscious experience (Overgaard, et al., 2006). Although cogent, this criticism does not 

prevent the ‘unseen’ category from referring to experiences that are relatively lacking in 

consciousness compared to when subjects acknowledge veridical awareness, which is the key 

relative difference upon which these experiments have been based (discussed further in 

section 4.8)  
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4.4.2 Other strategies  
 

 Clearly, there is a number of additional simple contingencies that were implemented 

which lessened the problematic possibility of reports not referring to consciousness. For 

example, lying could potentially be a source of confounds in this respect, but subjects are 

unlikely to lie if there is no reason to do so (Roepstorff & Jack, 2004). Similarly, a mismatch 

between experience and report might arise from complexities in the report process, which can 

be minimised by the use of relatively simple tasks (Ericsson, 2003; Gallagher, 2003; 

Hurlburt, 2004). 

 Another way to reduce the problem of reactivity is through the use of additional 

experimental conditions without the requirement for report (Gagne & Smith, 1962; Lau, 

2008). The contrast of the two (with and without report) isolates the additional computation 

associated with the report (Lau, 2008).  This manipulation is more easily applied in imaging 

studies than in TMS studies where the dependent variable is often based on some form of 

report. Because the MEG experiment involved a replication of the behavioural study and was 

time-restricted, this manipulation was not implemented. The capacity of MRS to demonstrate 

functional changes based on visual task differences is far from reliable at this point in the 

development of the technique (Puts & Edden, 2012), so this manipulation was not 

implemented in the MRS experiment either. Since a contrast between conditions requiring 

and not requiring a response was not implemented, it is not possible to extricate changes as a 

result of the experimental manipulation being at the level of the report rather than at the level 

of the conscious experience (or unconscious experience in the double-pulse TMS Experiment 

3C, see section 3.6.7). However, because reports are required on all trials it is possible to 

reduce what may be one of the more difficult aspects of the problem of reactivity: that the 

observed changes are the result of applying a behavioural probe (Dehaene et al., 2001; Gagne 

& Smith, 1962). The probe is also present in the baseline conditions, thus controlling for 

general effects of questioning on performance (Rees, 2007). 

 Clearly whether or not one regards the problems raised above as cogent or straw men 

depends on the position one takes as to the nature of consciousness and reports – i.e. the 

ontology of mind that the investigator chooses to adopt. If one accepts that the reporting 

process of awareness differs from awareness itself, then there is a difficulty in the 
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interpretation of these experiments because it remains unclear as to which is being measured 

by the data. If on the other hand one’s ontologies are such that what it is to be conscious is to 

have full access to content (as the introductory quotation suggests) then the problem 

dissolves, as there are few reasons to believe reported awareness and awareness are 

dissociable in any meaningful way. If so then the PrC measures directly refer to subjects’ 

conscious awareness of the stimuli and PcU is lacking in consciousness. This is essentially 

the interpretation position adopted by higher order thought theorists (e.g. Baars, Rosenthal) 

and is discussed in the next section 4.5. Another, widely cited, way in which this issue has 

been cast has been in terms of a difference between phenomenal consciousness and access 

consciousness (Block, 1995, 2007). This is discussed in section 4.6. Following a brief 

discussion of the ‘hard problem’ (4.7), section 4.8 will then discuss the intermediate 

neurophenomenological approach I have chosen to adopt in these experiments.  

  

4.5 Interpretations under Global Workspace 

and Higher Order Theories. 
 

 There are several versions of higher order thought (HOT) and global workspace (GW) 

theories of consciousness (Carruthers, 2007; Lau & Rosenthal, 2011; Rosenthal, 1993). This 

section will briefly summarise some of the principal treatments of these theories and their 

correspondence to the measures and results. Because the predictions made by both these 

theories (see Lau & Rosenthal, 2011 for review) appear to be equivalent in terms of the data 

presented here, they are described in a single section. 

 The basic premise, common and defining of HOT theories, is that what makes a state 

conscious is that there is a primary level representation (e.g. sensory information), call it X, 

and that there is a secondary level, contemporaneous, representation whose content is of 

being in X. Mental states are conscious by virtue of there being a higher order state which 

represents the primary state: “...a mental state’s being conscious consists in one’s being 

conscious of being in that state” (pp 209 Rosenthal, 1993).  
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 Under HOT theories, being aware, knowing you are aware, and being able to report 

that it is so, are intertwined. Being aware and knowing one is aware, are to some extent, 

constitutive of what it is to be conscious. Although the report aspect does not have to be 

present, there should be no objections to reports when they occur in veridical cases (see 

4.4.1.1 and 4.4.2) referring to higher-order / conscious processes, because the requirement for 

monitoring upon which the report depends is the same requirement as is made of processes 

for them to be conscious. The impact of the problem of reactivity on the interpretation of 

these experiments is therefore nullified because accessing percepts and forming reports are 

not considered additional to conscious awareness under HOT theories. Therefore, the 

measures of conscious detection employed here refer directly to conscious awareness, and the 

corresponding interpretation of reportedly ‘unseen’ abilities would be that they correspond to 

first order processing that is lacking in consciousness (Dehaene & Naccache, 2001).  

 Like HOT theories GW theories are based on operational definitions which originate 

from the premise that consciousness has limited capacity (Baars, 1988; Baars, 2007). 

Representations gain access to a GW which is likely to involve thalamo-cortical complexes 

(Baars, 2007). Such information is then available and can be broadcast throughout such 

complex networks (Baars, 2007). In this way consciousness can be seen as involving 

unconscious representations that are gated and selected for entry into the GW (Baars, 1988; 

Baars, 2007), which is consistent with the interpretation of the off-line TMS experiments 

reported here. This is particularly the case with respect to the ERD results (section 2.6.4), as 

Baars has linked similar alpha band changes to such a gating mechanism (Baars, 2007). In 

terms of the interpretation of the current experimental paradigm, as a whole, the PrC measure 

can be interpreted as tracking representations of task-relevant stimuli that gain access to the 

GW and become broadcastable / conscious. BrC can be seen as the criteria set for entry into 

the GW, and PcU as corresponding to the overflow in unconscious processing that fails to 

gain entry to the global network.     

 In contrast to PrC, the interpretation of ‘unseen’ abilities, particularly under HOT 

theories, is complicated by the problem of reactivity. ‘Unseen’ measures are based upon trials 

in which the subject reports ‘No’. Do the questions applied (both ‘left/right?’ and ‘yes/no?’) 

and responses collected require second order representations (Sahraie, Hibbard, Trevethan, 

Ritchie, & Weiskrantz, 2010)? If they do, then it is difficult to use data collected when 

subjects report stimuli as ‘unseen’ to draw conclusions that equate this response type with an 

absence of consciousness. Indeed, it might be that the second order-conscious reflection on 
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the question that was the target of the disruption of ‘unseen’ abilities caused by the TMS 

applied at later times in Experiment 3C (section 3.6), i.e. first order processes may not have 

been tracked by the ‘unseen’ measure.  

 As with the interpretation offered in 3.6.3, the proposition that ‘unseen’ abilities are 

mediated by the conscious requirement for report may be an over-interpretation of that data 

set and is not consistent with the conclusions offered by proponents of HOT theories to 

similar data sets (Rosenthal, 2012). For the HOT theorist, the requirement for report can be 

seen as evoking an additional third order relationship which may be conscious (of the form of 

‘Did I see anything?’), but the second order relationship that is the target of the question is 

not conscious by virtue of there being no primary representation which is discernible to the 

second order process (Rosenthal, 2012).  

 An additional consideration in the interpretation of these experiments under HOT 

theories is that it is possible that the measures of criteria / bias (BrC) could refer to higher 

order processing (Dienes, In Press; Ko & Lau, 2012; Timmermans, Schilbach, Pasquali, & 

Cleeremans, 2012). This prompts the question: should BrC also be considered a measure of 

higher order / conscious thought, and thus be treated as a measure of central interest in these 

experiments? Within the context of these experiments the ‘Did you consciously see the 

arrow?’ question was targeted at secondary level sensitivity in its construction. So here it is 

perhaps more appropriate to relate the measure of sensitivity to the conscious processing 

which is the target of this investigation (Dienes, In Press). Bias / BrC can be seen as 

corresponding to third order relationships, which may be conscious, but whose content is 

more likely to involve the reactive process mentioned in the preceding paragraph. 

Additionally it has been demonstrated that the criteria subjects apply to a task can be 

manipulated even when the subject is unaware of the stimuli to which the criteria refer 

(Kentridge & Heywood, 2000). That is, criteria can change independently of the presence of 

conscious awareness. Such changes have been reported within the context of classic 

blindsight where there is a loss of awareness (Kentridge & Heywood, 2000). Therefore, 

because it appears that criteria can fluctuate in the absence of awareness, the PrC measure is 

perhaps the safer referent for second order – conscious – processing than are changes in BrC. 
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4.6 Interpretations under a distinction between 

phenomenal and access consciousness 
 

 This section will consider the distinction between phenomenal and access 

consciousness (Block, 1995, 2007). In addition to describing this distinction, the data 

produced over the on-line experiments in particular affords us the opportunity to test a 

prediction, made by Block, that informs the validity of the differentiation. One interpretation 

of the distinction (Block, 2007) suggests the derivation of an additional measure not 

previously described, the analysis of which can be found in appendix A5.  

 What it is that the measures described and responses to tasks refer to is always open to 

interpretation. The assumption made here has been that PrC corresponds to conscious 

awareness and PcU corresponds to perception that is distinctly lacking in conscious 

awareness. These assumptions were adopted because they were felt to be broadly consistent 

with many, if not the majority of contemporary models of mind (HOT,GW, 

Heterophenomenology (see Dennett, 1991; Dennett, 2003), Neurophenomenology (see 

section 4.7 and Varela, 1996; Varela, et al., 1991) and previous interpretations of similar data 

(Boyer, et al., 2005; Holt, 2003; Lamme, 2006b; Ro, et al., 2004; Weiskrantz, 1986, 1996)). 

Additionally, the measures themselves were adjusted according to reports collected from the 

subjects following their experience of the experiments, placing the epistemic referents of the 

measure upon the subjects themselves (Dennett, 2003; Varela, 1996). 

 One notable exception to this consistency is the theory put forward in a series of 

influential articles by Ned Block. The basic differentiation made by Block is between 

phenomenal and access consciousness. Phenomenal consciousness (p-consciousness) is 

commonly associated with the ‘what it is like’ (Nagel, 1974) or ‘qualia’ (Lewis, 1929) aspect 

of experience (pp 230 Block, 1995). Block clarifies this by defining p-consciousness as 

having content, as in the difference between seeing red and green (Block, 2005). Access 

consciousness (a-consciousness) on the other hand is that which the subject has full, 

reportable reflective access to – thus associated with the mechanisms of report (Block, 1995, 

2005, 2007). In terms of evidence, Block cites blindsight as a case in which phenomenality 

has greater capacity or overflows conscious access, indicating their disjunction (Block, 1995). 
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Because blindsight subjects differentiate between contents of stimuli, they express p-

consciousness, but because they are not reflectively aware of whether or not stimuli were 

presented, they lack a-consciousness (Block, 1995). 

 The a-consciousness side of Blocks’ argument is relatively uncontroversial and can be 

seen as represented by the PrC measure, PrC varying in accordance with the extent to which 

subjects have reportable / accessible awareness of the stimuli. The on-line experiments 

(Chapter 3) therefore show that a-consciousness is primarily supported by recurrent late 

processing, as it was most susceptible to disruption when TMS was applied at later times. 

Additionally, a-consciousness may also receive support from R/M pathways practically 

during the very early and very late stages of visual processing. The off-line experiments 

(Chapter 2) could be interpreted as displaying a potentiation of a-consciousness, and it may 

be the mechanisms governing which representations become accessed and which benefit 

from the application of occipital cTBS. The more controversial side of Block’s argument is 

the existence of, and the way in which, p-consciousness can be understood.  

 The problem Block’s theory raises for this series of experiments and their 

interpretation is that what has been classed as lacking in consciousness might actually be a 

form of consciousness (p-consciousness). According to this interpretation, the experimental 

contrast between the two measures fails to reveal anything about consciousness per se but 

rather highlights a difference between different forms of consciousness. My aim in this 

section is not to show that Block’s interpretation of the phenomenon of blindsight is incorrect 

(for arguments of that type see peer comments in Block, (1995, 2007) and Cohen & Dennett, 

(2011)). Rather, Block makes a prediction which some of the findings of these experiments 

may inform. 

 The prediction made by Block, which is tractable in these data sets, is that 

phenomenal consciousness will be accompanied by recurrent processing (pp 498 Block, 

2007). The ‘on-line’ experiments disrupted what can be regarded as recurrent processing, 

therefore was concurrent phenomenal consciousness suppressed? In order to tackle this, the 

additional question must be posed: What responses made by the subjects should be associated 

with presence of phenomenal consciousness?  

 The attribution of phenomenally and access consciousness status to any of the 

measures is open to interpretation. In earlier writings of Block (circa 1995) p-consciousness 

is associated with ‘unseen’ discrimination ability (PcU) as Block cites blindsight as a case for 
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p-consciousness. If so, then the previous discussions in Chapters 2 and 3 can be framed in 

terms of the p- / a- consciousness disjunction (reading in p-conscious for reportedly ‘unseen’ 

abilities, PcU) and support for Block’s theory can be found. Although the multiple subject 

study (Experiment 3A) did not support (or refute) the correspondence between recurrent 

processing and p-consciousness / PcU, Experiment 3B and 3C did. In particular, Experiment 

3C showed that when TMS was applied over later rather than at earlier times, disrupting 

recurrent processing, suppression in PcU / p-consciousness was observed (see figure 3.6.2.2), 

mirroring Block’s prediction (Block, 2007). This same pattern and support for Block’s theory 

is also suggested by the trend for TMS to be disruptive of PcU when applied over later times 

in Experiment 3B (see figure 3.5.2.2).   

 In later writings (Block, 2007, 2011) Block appears subtly to shift his position by 

emphasising the way in which experiments such as those of Sperling (1960)13 express 

phenomenal consciousness in the form of a vague feeling or gist-like quality. This is perhaps 

in response to criticisms made by many authors (see peer responses in both Brain and 

Behavioural Science articles (Block, 1995, 2007) and (Cohen & Dennett, 2011)) along the 

lines of what defines blindsight (which Block in earlier writings cites in support of p-

conscious) is a lack of consciousness, not the presence of phenomenal consciousness. This 

has been interpreted as ‘phenomenal consciousness lite’ (pp 520 O’Regan and Myin in Block, 

2007). One interpretation of this later position could be that this ‘phenomenal consciousness 

lite’ corresponds to a subject’s responding positively to the ‘something?’ question, as 

opposed to their explicit veridical awareness of the ‘arrow’ (PrC) which might be thought of 

as representative of their conscious access. 

 The rate of positive responses to the ‘something?’ question at each data point was 

computed. This measure compiled the number of ‘yes’ responses to the ‘something?’ 

question only (i.e. when the subject did not acknowledge awareness of the arrow) relative to 

the number of opportunities for such a response. If responding positively to the ‘something’ 

question can be attributed to the presence of p-consciousness, which involves recurrent 

                                                            
13 The Sperling experiments (Sperling, 1960) involved showing subjects arrays of up to 4×3 letters or 
numbers. When an attentional cue was provided the subject could report any sub-set of the content of 
the array – i.e. they had access. When no cue was provided they reported a gist-like impression of all 
the characters, yet were only able to report correctly a reduced sub-set of what had been presented. 
Block discusses this pattern of results as an illustration of p-consciousness outpacing a-consciousness 
(Block, 2007).  
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processing, then the resulting hypothesis would be that the rate of reporting of ‘something’ 

(in trials without a ‘yes’ to the ‘arrow?’ question) should be suppressed by TMS applied at 

later times, disrupting recurrent processing. There are of course many more potential ways in 

which the phenomenal / access difference can be understood in terms of allocation of 

responses to measures. However the use of rate of reporting ‘something’ seems to fit the 

descriptions offered Block and makes a minimal number of assumptions. The analysis of this 

measure is described in appendix A5; no clear evidence was obtained for a correspondence 

between subjects’ acknowledging awareness of ‘something’ and relatively late occipital 

TMS. 

 The question posed in this section was whether or not p-consciousness was 

accompanied by recurrent processing, following Block’s prediction (Block, 2007), if one 

were to adopt an allocation of response patterns to the p- / a- distinction offered in earlier 

writings (Block, 1995), then the data may be consistent with Block’s differentiation. That is, 

the residual abilities of blindsight have been linked with p-consciousness (Block, 1995) and 

here, when recurrent processing was disrupted by later TMS so too were residual ‘unseen’ (p-

conscious) abilities, matching Block’s prediction. 

 If, on the other hand, the measures of ‘something’ represents p-consciousness, then 

the data shows no correspondence with the disruption of later recurrent processing (see 

appendix A5). Hence, this measure does not provide evidence in favour of Block’s later 

interpretation. A further distinction offered by Block in later writings, is the 

acknowledgement of the existence of ‘unconscious’ processing in addition to the p- / a- 

distinction (Block, 2011), under this, unconscious processing might be seen as represented by 

the PcU measure. If so, the disruption of PcU’s at later times (Experiment 3C) relative to the 

absence of later disruption of the ‘something’ measure can be seen as evidence against 

Block’s theory. This is because the data here suggests that ‘unseen’ / unconscious abilities are 

more sensitive to (therefore more likely to be dependent upon) the disruption of recurrent 

processing than is the ‘gist-like’ (phenomenal) acknowledgement of seeing ‘something’.  

 Perhaps the more widely acceptable interpretation of the data and measures here (that 

is consistent with both earlier and later writings of Block and Lamme’s interpretation of the 

p-/a- distinction (see peer review responses pp 511 Block, 2007)), is that the PcU measure, 

rather than corresponding to a form of consciousness directly, is indirectly supported by 

access consciousness. That is, conscious reflection upon the question to which the subject has 
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conscious access mediates the reportedly unseen abilities. The TMS applied at later times 

being effective upon the conscious reflection on the question, which itself is likely to involve 

recurrent processing (section 3.6.3). Therefore, the PcU measure simply does not reflect p-

consciousness. Furthermore, the option is available to Block and his proponents to argue that 

the reason for which the ‘something’ measure failed to demonstrate a correspondence with 

the later intervention was that it simply failed to capture the intention behind Block’s 

description of p-consciousness. 

 Overall, if one chooses to adopt Block’s differentiation, then the data do not refute 

that belief, particularly if the understanding is based on the early description of p-

consciousness. The later differentiation appears to be less well supported by the data. 

However it should be noted that this discussion has largely focused on the single subject’s 

data and the conclusions that can be drawn from case studies must always be tentative. 

Therefore further to elucidate Block’s theory, a between-subjects replication of the single-

subject double-pulse study (3C) would be required. The task might also be developed more 

closely to reflect Block’s differentiation, possibly via the adaptation of a task similar to the 

Sperling experiments, but in conjunction with event related / on-line TMS. As it stands, it 

remains possible to interpret these experiments as exemplifying a difference between two 

forms of consciousness rather than a difference between consciousness and a lack thereof.  

 

4.7 The hard problem 
 

 The ‘hard problem’ places limitations on the strength of conclusions that can be 

drawn from research such as that which has been presented here. No novel attempt will be 

made to surmount the ‘hard problem’ here. Rather a brief overview of the problem will be 

given. The next section will then point the reader towards literature that has claimed to 

neutralise the problem and has been used as the epistemic basis for this research. 

 The hard problem of consciousness is essentially that it is entirely possible that all the 

neuronal architecture that we describe as the physical basis of consciousness could occur in 

the absence of consciousness. This is the basis of Chalmers’ ‘zombie’ argument: creatures 

with all the physical attributes of anyone but are devoid of consciousness (Chalmers, 1996). 
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The hard problem places limits on the extent to which physically orientated science can 

explain consciousness.  It can be attributed to a derivation of Cartesian dualism, but, more 

specifically, is based on Kripke’s demonstrations (1980): regardless of the description of the 

neural basis of pain the designation of the physical processes to pain will never be as rigid or 

necessary as, say, water = H2O. This is because it is possible that there are creatures that 

experience pain but which share none of the physical attributes of the original designation.  

 A closely related element of the argument is the ‘explanatory gap’(Levine, 1983), 

which is probably most clearly expressed in Nagel’s demonstration that regardless of our 

state of scientific knowledge as to bats’ echo location we might still never know ‘what it is 

like to be a bat’ (Nagel, 1974). The doubt raised by these arguments is that there is something 

further to explain in phenomenal first person experience than any explanation rooted in pure 

third person objective science can achieve (this notion of third person objective science is 

most clearly captured in Dennett’s heterophenomenology; see Dennett, 1991; Dennett, 2003).  

 

4.8 The relative position and 

neurophenomenology 
 

 The goal of understanding the relationship between consciousness and its 

physiological underpinnings is one of the greatest challenges in modern science (Miller, 

2005) and philosophy (Metzinger, 1995).The strategy initially adopted and outlined in 

Chapter 1 seeks to explore the coupling between physiology and phenomenology, and is 

known as neurophenomenology (Varela, 1996; Varela, et al., 1991). This section starts by 

discussing one of the key contentions in consciousness research which places limitations on 

what can and cannot be said in this type of research: the use of ‘necessity’ in the ‘hard 

problem’ (Chalmers, 1996; Chalmers, 2000) and the search for the ‘neural correlates of 

consciousness’ (Koch 2004) (4.8.1). The neurophenomenological position is then clarified 

and discussed with respect to some of the other problems encountered (4.8.2). How 

neurophenomenology relates to the other two positions (HOT/GW and the differentiation 

between p- and a- consciousness) is discussed in the final section (4.8.3). 
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4.8.1 The use of necessity 
 

 A key move in the development of the hard problem is the rigidity or necessity of 

some relationships in science (e.g. water = H2O) in contrast to others involving phenomenal 

consciousness (Chalmers, 1996; Kripke, 1980). My opinion, derived from the work of 

Varela, is that it is the call for necessity that is the cause of the intractability of the hard 

problem. Necessary relations are notoriously easy to refute, which is particularly the case in 

such a massively parallel system such as the brain.  

 The search for the ‘Neural Correlates of Consciousness (NCC)’(Chalmers, 2000) is 

often framed in terms of identifying the ‘necessary’ and ‘sufficient14’ conditions under which 

consciousness exists (e.g. Koch, 2004). This use of necessity sets the bar for classification of 

NCC’s too high, as claims are too easily refuted. For example, Ffytche and Zeki (Barbur, 

Watson, Frackowiak, & Zeki, 1993; Ffytche, Guy, & Zeki, 1996; Ffytche & Zeki, 2011; Zeki 

& Ffytche, 1998) claim that the primary visual cortex and its involvement in recurrent 

processing is not necessary for consciousness, as has been previously claimed (Lamme, 2001; 

Pascual-Leone & Walsh, 2001; Silvanto, Cattaneo, Battelli, & Pascual-Leone, 2008; Silvanto, 

Cowey, et al., 2005; Silvanto, Lavie, et al., 2005; Tong, 2003). They show that subjects with 

lesions to their primary visual cortex can express a markedly reduced form of visual 

awareness when they are presented with moving stimuli and the authors attribute the residual 

awareness to pathways which parallel the main striate projections, directly innovating areas 

such as MT (Riddoch  syndrome e.g. Ffytche & Zeki, 2011). Whilst this reasoning does 

appear valid (negating previous claims of necessity), it does not follow that the primary 

visual cortex could not be the site at which many of the changes occur that are causally 

                                                            
14 The other element to the search for the NCCs involves the requirement that the description covers 
all ‘sufficient’ conditions. As noted previously (1.2.1) this is not particularly useful in the 
development of criteria for determining what is involved in consciousness, unless it is qualified by the 
use of ‘minimally sufficient’ (Chalmers, 2000) as here, i.e. uncontroversial. This is because, for 
example, a circulatory system is required as a sufficient condition for the conscious system to operate, 
yet its function contributes little to our understanding of consciousness. Furthermore, it is entirely 
possible that what constitutes some conscious processes extends beyond the body boundary into the 
world (Clark & Chalmers, 1998) further reducing the utility of relying upon sufficiency as a criterion. 
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constitutive of consciousness15. This is especially relevant in cases where the form of 

consciousness under consideration is the everyday veridical visual experiences that were not 

displayed by the subjects in the Ffytche and Zeki experiments, but which were the target of 

the experiments developed here. The data presented here suggests a prominent role for early 

visual areas such as V1 in consciousness.  

 The on-line experiments also took advantage of the relative ease with which claims of 

necessity are refuted. Ro et al (2004) claimed the superior colliculus to be necessary for the 

residual abilities of TMS-induced blindsight and it was demonstrated here that such residual 

abilities can operate via projections in the geniculate stream. Importantly, no claim was made 

that the superior colliculus is not involved in the performance of some related tasks. For 

example, tasks involving saccadic eye movements seem likely candidates for the involvement 

of the superior colliculus (Ro, et al., 2004; Walker, Fitzgibbon, & Goldberg, 1995). By 

avoiding a reliance upon claims of necessity it is possible to develop a more nuanced 

understanding of brain processes and consciousness, where different pathways contribute 

different inputs, the content of which – and the contribution made by each – is dependent 

upon the content of the experience caused by the task requirements.  

 What then is the alternative to calling upon necessity? John Campbell has offered the 

interventionist approach, which discusses relations in terms of causally constitutive 

conditions and emphasises that the way in which these relations should be explored is via 

interventional techniques, such as TMS (see Campbell, 2007; Campbell, 2008). This has been 

one of the strategies adopted here (also see Chambers & Mattingley, 2005). Perhaps more 

pertinent to the current concerns regarding the hard problem and claims of necessity are the 

arguments and strategies developed by Varela et al, in terms of it being the relative difference 

between states that is of critical importance in the development of understanding of the nature 

of consciousness (Varela, 1996; Varela, et al., 1991). If our notion of water and H20 arise in 

relation to one another and neither of them is fundamentally grounded beyond co-dependent 

observation, then we have no reason to think the relationship between water and H20 is set 

under all possible conditions, and therefore all such relations are to some extent contingent 

(Varela, 1996; Varela, et al., 1991). This both implies that the use of necessity as a rigid fixed 

                                                            
15 The same structure of argument applies to Crick and Koch’s statement that the visual cortex is not 
necessary as the neural realiser of consciousness (Crick & Koch, 1995). See also Block (1996) for a 
similar argument in reference to Crick and Koch’s claims. 
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designation is ill-advised, and that relations between brain processes and phenomenal 

experience is not as fundamentally intractable as the hard problem suggests. The dualist 

arguments of Kripke and Chalmers rest upon their bringing into question the necessity of the 

relationship between consciousness and physiology. If the emphasis is placed on this 

relationship, rather than the attempt to maintain claims of necessity, then the hard problem 

does not seem quite so intractable. 

 

4.8.2 Neurophenomenology 
 

 Neurophenomenology has been presented as a methodological solution to the hard 

problem (Varela, 1996). Neurophenomenology is fundamentally an epistemic strategy which 

regards neither the level of subjective phenomenal conscious experience nor objective 

physical architecture as fundamentally grounded (Varela, et al., 1991). Rather they arise in 

relation to one another16 and therefore the coupling between the two (1st and 3rd person 

perspectives) is where we should focus our research efforts. It is epistemic in that it accepts 

that the subject and the experimenter have different information available to them17 and 

refocuses enquiry on the relations and coupling between the two. 

 Central to the neurophenomenological approach is the understanding that properties 

such as consciousness are relational, i.e. properties only exist in relation to other properties. 

Such a position lessens the impact of problems such as reactivity on the interpretation of 

experiments. Because the emphasis is placed upon the differences between states, the 

difference between the measures of acknowledged awareness and perception when the 
                                                            
16 In terms of acknowledging the historical derivation of neurophenomenology, it owes much to the 
continental phenomenological traditions of Husserl and Merlo-Pontey, from which the notion of 
epoché (see section 1.3.2.3) is taken and an emphasis is placed on the physical embodiment of the 
subject. The methodology is also consistent with and indebted to elements of Buddhist scripture, in 
particular the notion of co-dependent arising and baselessness (Varela, et al., 1991), from which are 
derived the notion that neither the physical nor the phenomenal are fundamentally grounded (exist in 
isolation or are the basis for existence) and that the extent to which they do exist is in relation to one 
another (Varela, 1996; Varela, et al., 1991).  

 
17 To have an optimal understanding of the investigation we would have to be both experimenter and 
subject in the investigation (contra Dennett, 2003), in order to acquire both first person experiential 
knowledge and objective knowledge. It follows that I was a subject in the original TBS experiments. 
However, I was excluded from the on-line studies owing to my colour blindness. 
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subjects do not acknowledge awareness, is critical to the investigation. The fact that both 

measures may require some form of reflection in order to produce a response is secondary, 

reducing the problem of reactivity. 

 The high levels of practice / familiarity obtained by subjects, particularly during the 

calibration phase of the experiment, together with the simplicity of the task, further reduced 

the problem of reactivity. This aspect of the task follows suggestions made by proponents of 

neurophenomenology that the distinction between being aware and knowing you are (and 

consequentially being able to report that it is so) is reduced through practice and repetition as 

the report aspect becomes habituated (Dapraz, 1999; Gallagher, 2003; Lutz, 2003; 

Vermersch, 1999). 

 

4.8.3 The middle level 
 

 The position of neurophenomenology in relation to HOT/GW theories and first order 

theories (such as Block’s) has been described as ‘intermediate’. Functionally intermediate 

theories describe the level at which consciousness arises as being at the level of grouping of 

elements into individual percepts (Jackendoff, 1987; Prinz, 2007). For example, in reading, 

low-level information such as edge detection may not be conscious (e.g. Marr’s primary 

sketch, section 3.3.4, Marr, 1982), neither are high-level grammatical rules, which we have 

learned and have become habituated to. What we are conscious of is the intermediate level of 

processing of the words and their meaning (Jackendoff, 1987).  

 This intermediate position is neatly summarised by the introductory quotation, which 

is consistent with the view put forward by Varela et al, particularly in the embodied mind 

(Varela, et al., 1991) in the description of the ‘middle way’, and various other works 

describing neurophenomenology (Lutz, 2007; Varela, 1996; Varela, 1999).  

 The intermediate position expresses some of the attributes of both first order and 

higher order theories. Both first order theories (Block 2007, 1995) and intermediate theories 

consider the primary level at which consciousness arises to involve content and the other 

element to be access to that content. Both theories also accept there is an issue with the 

demonstration of phenomenal aspect of consciousness.  For Block the difficulty lies in the 

demonstration of a form of consciousness which by definition can only be observed, in 
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isolation, in the presence of a negative report or absence of a positive report. Under 

neurophenomenology the difficulty in the demonstration of the phenomenal aspect is due to 

the epistemic structure of the investigation. Phenomenology tends to refer specifically to one 

side of the explanation – the contribution made by the subject. This hinders its interpretation 

from the third person perspective.  Although the first order and intermediate positions are 

therefore related they are not completely comparable.   

 Intermediate theories such as neurophenomenology are probably more closely related 

to HOT theories (Baars, 2003; Lau & Rosenthal, 2011) than to first order theories. Varela et 

al., describe a theory of radical embodiment in which conscious phenomenology is embodied 

in the large-scale temporal dynamics of the brain (Thompson & Varela, 2001). More 

specifically, phase synchronisation of oscillations offers a mechanism for the large scale 

integration of information over multiple brain regions, thus providing a mechanistic and 

embodied framework for the implementation of properties such as awareness (Varela, 

Lachaux, Rodriguez, & Martinerie, 2001). These principles are similar to those of GW 

models in particular. Within this framework, alpha rhythms play an important role in the 

governance of perception via its segmentation. In one of the last articles Varela wrote, he 

suggested this is a promising avenue for research, noting that alpha “rhythms could provide 

the slower temporal framing for successive cognitive moments of synchronous assemblies” 

(pp 273 Varela, et al., 2001). This is consistent with the finding in Experiment 2D that the 

ERD in the alpha band was facilitated, coincident with the increase in conscious detection 

and with the interpretation of the ERD more generally as performing a gating function. 

 

 How this neurophenomenological strategy differs from HOT and GW theories is that 

HOT/GW theories are essentially third person descriptions only. Neurophenomenology, on 

the other hand, accredits the first person perspective with a domain of knowledge vital in the 

development of the enquiry. This places the first person and third person perspectives on 

equal footing in terms of the investigation as a whole (this directly contradicts the strategy 

outlined by Lamme (Lamme, 2006a) and Dennett (Dennett, 1991, 2003)).  

 First person subjective experience is part of the explanation offered by 

neurophenomenology: only the embodied subjects know precisely what is meant when any 

instance of report is made (Clark, 1997; Varela, 1996; Varela, et al., 1991). The strategy has 

been to couple the subjects’ experience with a third person objective understanding, through 

the measures (Varela, 1996; Varela, et al., 1991). By acknowledging the epistemic structure 
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of enquiries oriented towards consciousness the possibility that there will always be 

something further to explain (4.6) may be rendered less problematic. 

 

4.9 Future directions 
 

 This section is restricted to a list of potential developments from the findings and 

protocols specifically established here, rather than a general discussion of the future of this 

type of research.   

 

4.9.1 Off-line experiments 
 

- The intensity at which the cTBS is applied could determine under what conditions the cTBS 

protocol was inhibitory or facilitatory. Applying cTBS over a range of intensities may lead to 

a more highly differentiated understanding of its effects. This could aid its application in a 

clinical context (e.g. Kindler, et al., 2012) and allow for the use of cTBS in the improvement 

of other cognitive abilities. 

- Application of the same TMS protocol over a range of tasks and questioning procedures 

might further elucidate the nature of the effect caused by the cTBS and its applicability to 

other domains. More specifically, is the increase in conscious detection only observable when 

the task in question involves the isolation of a target from a background noise? Is the increase 

in detection reflected by an increase in reflective confidence potentially measured by 

Overgaard’s PAS scale or post-decision wagering (Sandberg, et al., 2010)? 

- The ERD’s involvement in the gating of awareness and the method of quantifying the ERD 

according to its gradient of onset are promising avenues for future research. The change in 

the ERD in relation to a psychometric function representing conscious detection across a 

range of stimuli intensities might be a relatively informative and simple initial experiment.   

- Differences in the MEG data in terms of the contrast between reportedly ‘seen’ and 

‘unseen’ yet correct trials should, theoretically, be capable of revealing processes involved in 
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consciousness specifically. This contrast was not implemented here because the division of 

the data between analysis blocks and TMS conditions meant that there was relatively low 

power (number of trials) for each condition (‘seen’ and ‘unseen’ correct). Additionally the 

power of each condition was determined by the behavioural changes in that block, which 

would have made it difficult to claim that any change in the MEG data was not driven by this 

power difference. Experiments specifically directed towards this difference between ‘seen’ 

and ‘unseen’ conditions may also reveal reactive processes. 

- A common assumption in neuroimaging, particularly functional magnetic resonance 

imaging (fMRI), is that an increase in activity (as indicated by blood oxygen level dependent 

(BOLD) response) relates to increased processing (Logothetis & Pfeuffer, 2004). The claim 

here is that, following cTBS, active suppression is potentiated and conscious detection is 

facilitated.  Might this therefore result in a decrease in basic BOLD signal in the affected 

region (Allen, Pasley, Duong, & Freeman, 2007), where increased processing is apparent 

through other measures? Could different analysis techniques (e.g. mass univariate vs. 

multivoxel pattern analysis, Kamitani & Tong, 2005) be compared within the context of such 

a change? Such a result might inform our understanding by attenuating the link between 

BOLD changes and functionality.  

 

4.9.2 On-line experiments 
 

- The finding that both very early and very late activity in visual areas, related to visual 

consciousness, appear to be supported by input from the retinotectal and/or magnocellular 

routes was made without an a priori hypothesis. Confirmation of this result through 

replication is therefore desirable. 

- Finer granularity of pulse timings in the between subjects study would further elucidate the 

temporal dynamics of information-flow through the early visual system. Through the addition 

of a second TMS coil (e.g. Silvanto, Cowey, et al., 2005), potentially over frontal areas such 

as the dorsolateral prefrontal cortex (Lau & Passingham, 2006), the recurrent and frontal 

dependency of such processing might be further understood.  

- A key demonstration of Experiment 3A was that the residual abilities of TMS induced 

blindsight did not require input from the retinotectal pathways. However, this leaves open the 
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question as to whether the retinotectal pathway contributes to the residual abilities required to 

perform other tasks that are illustrative of TMS-induced blindsight. The task here might be 

easily adapted to include a peripheral cue or saccadic response, both of which are more likely 

to involve input from the superior colliculus (Ansorge, 2003; Leh, Mullen, et al., 2006; 

Mulckhuyse & Theeuwes, 2010).  

-The main finding of Experiment 3C, that ‘unseen’ discrimination abilities were susceptible 

to pairs of TMS pulses applied at later times, was an intriguing finding which requires 

confirmation in a larger cohort. However, it is possible that there may be difficulties in 

recruiting a large group of participants that can tolerate the high levels of TMS which may be 

required to produce such effects. 

- It is possible to develop an automated task and calibration system, similar to that presented 

here, which could operate over the internet. This would allow us to probe the extent to which 

reportedly ‘unseen’ abilities are above chance across a large population and range of criteria 

differences. Such a potentially large data pool might also be able to probe the contribution 

made to perception when subjects report stimuli as ‘unseen’, made by different pathways as 

probed by chromaticity differences. Not only would such a design be capable of probing such 

questions, it would also provide an ideal opportunity for public engagement with 

consciousness research.  

  

4.10 Closing remarks 
 

 This research has attempted to contribute to our understanding of consciousness. To 

some extent, this has been achieved. Results confirmed that visual awareness, specifically, is 

supported primarily by activity in early visual areas from ~100ms post stimulus onset. 

Additionally, activity prior to this period also appears to contribute to consciousness, possibly 

via the provision of a pedestal of activity originating from the fast retinotectal and/or 

magnocellular pathways. Furthermore, some input from these pathways may first pass to 

more frontal regions and then contribute to later re-entrant conscious processing. In contrast, 

perception lacking in consciousness may operate via geniculate pathways, as well as the 

previously demonstrated collicular projections (e.g. Leh, Mullen, et al., 2006). The increase 
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in specifically conscious detection following the application of the cTBS is also a novel 

finding. The cTBS protocol was also associated with a sharpening of the ERD gating 

response and an increase in the levels of the inhibitory neurotransmitter GABA. These results 

collectively suggest a prominent role of early visual areas in the formation of conscious 

percepts involving selection and gating by inhibition.  
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Appendix 

A1. Cross correlation  
 

A1.1 The relationships between measures 
 

A1.1.1 Introduction  
 

 The multiple measures employed in Chapter 2 allowed us to probe the relationships 

between the processes measured. For example, do changes in the gradient of the ERD predict 

the increase in conscious detection? Further, can causal relationships between such variables, 

in terms of moderation and mediation, be established (Baron & Kenny, 1986)? The claims 

made in reference to the gating-by-inhibition explanation would clearly be greatly 

strengthened by the demonstration of such interrelations. This section offers a tentative 

exploration of these relationships. 

 The relationships between processes measured can be described by correlations, 

making use of the variability in effect size, across subjects. The previously demonstrated 

differences between TMS conditions contributed to the gating-by-inhibition explanation, and 

can also be described as correlations between TMS conditions. This involved treating active 

vs. control TMS as a dichotomous discrete variable, entry of which into a Pearson’s linear 

correlation being equivalent to an unpaired two tailed t-test between conditions (denoted as 

the ‘TMS’ variable in figures). Partial analysis (Baron & Kenny, 1986) involves the removal 

of the variance of one variable from a correlation that describes the relationship between 

another pair, thereby assessing the role of the third variable in mediating the relationship 

between the original pair. For example, we have demonstrated that the increase in conscious 

detection and the ERD appear to result from the application of TMS. If this significant effect 

of TMS on PrC is eliminated by the removal of the variance observed in the ERD, but 
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removal of the variance in PrC from the analysis that demonstrated a change in the ERD had 

no effect, then the shift in conscious detection would appear to be dependent upon (and 

linearly mediated by) the alpha band ERD. That is, the effect of the TMS upon conscious 

detection would be explained through the changes in the ERD as a result of the TMS. Under 

such conditions the effect of the TMS upon the ERD and the subsequent partialling out of the 

variance of the change in conscious detection would be required to assess the causal direction 

of influence. This section implements such a partial analysis strategy and additionally 

describes the relationships between measures as affected by the TMS by depicting the 

correlation of effect sizes (change from control TMS condition) observed for each subject 

across the measures of interest.  

 The partial analyses and correlations of measures were restricted to data from those 

subjects who participated in multiple experimental sections. The dependent variable for each 

measure entered into the partial analysis comprised of a single vector, baselined to pre-TBS 

levels, collapsed across post-TBS blocks. The partial analysis was applied to the following 

pairs of measures which have contributed to the gating-by-inhibition explanation: conscious 

detection (PrC) with the gradient in the ERD (A1.1.2), PrC with the change in GABA 

concentration (A1.1.3) and the change in the ERD with the change in GABA concentration 

(A1.1.4). All of these partial correlations were studied in relation to the presence of active vs. 

control ‘TMS’ (the independent variable). A further analysis is also applied (A1.1.5) which 

takes the change from control data for all three dependent variables (PrC, ERD and GABA) 

and applies a partial analysis to these change from baseline (pre-TBS) measures. Because 

only three subjects participated in the phosphene threshold experiment who had participated 

in the other experimental sections the cross correlation involving this measure was not 

computed. Outliers in terms of the correlation were identified, using Cooks distance and 

excluded from the corresponding analysis (Cook, 1977). Because of the relatively low power 

of these analyses, they should be treated as exploratory and tentative. 
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A1.1.2 Analysis: PrC and ERD 

 

 Seventeen subjects’ data was available for entry into the partial analysis, as one 

subject was shown to be outlying in terms of the change in the ERD. The partial analysis of 

these measures is summarised in figure A1.1.2.1. No correlation representative of the 

difference between TMS conditions was observed. Therefore, removal of variance in other 

measures cannot be interpreted.  Furthermore, no relationship between the size of the changes 

in conscious detection and gradient of the ERD following the application of the cTBS were 

observed (see figure A1.1.2.2., R2 = 0.07, p=0.30, RS =0.196, p=0.45). 

 

 

 Figure A1.1.2.1 Summary of partial analyses applied to the measures of conscious 

detection, gradient of the ERD and the effect of the TMS. Red lines correspond to the 

bivariate Pearsons correlation between two measures and the blue lines correspond to 

the same correlation following the removal of the variance of the third variable from 

the partial analysis. Subsequent partial analyses conform to this structure of 

presentation. 
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Figure A1.1.2.2 Linear correlation (blue line) between change in conscious detection 

(PrC, SDT derived units) and change in event related desynchronisation (ERD, Units 

tesla per second ×10-14). Data points are individual subject’s data baselined to pre-

TBS levels, then to control conditions, collapsed across post TBS blocks. Note: The 

more negative the change in the ERD the greater the shift or the steeper the gradient of 

the ERD.  

 

A1.1.3 Analysis: PrC and GABA 

 

 12 subjects participated in the behavioural and MRS sections to these experiments, 

one of whom was excluded from the correlation analysis on the basis of being an outlier 

according to Cook’s criteria. In order to match the data between the measures, only the first 

three post-TBS analysis blocks were collapsed across to form the vector representing the 

change in PrC (i.e. since there were three MRS acquisitions post-TBS). Three subjects 

participated in both original and replication behavioural experiments for which the relevant 

data was averaged across repetitions. 

 No significant primary relationships between the variables was revealed by the 

correlation analysis (see figure A1.1.3.1-2). 
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Figure A1.1.3.1 Summary of partial analyses of the relationship between the 

measures of conscious detection, GABA concentration, and application of the TMS.  

 

Figure A1.1.3.2  Linear correlation (blue line) between change in conscious detection 

(PrC, SDT derived units) and change in GABA concentration ([GABA], institutional 

units). No correlation was observed between the changes in these two measures 

following the TBS (R2 = 0.03, p=0.94, RS =0.091, p=0.79).  
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A1.1.4 Analysis: ERD and GABA 

 

 Nine subjects participated in both the MEG and MRS experiment and so were entered 

into the partial correlation analyses. No significant correlations were observed. 

 

 

 

 Figure A1.1.4.1 Summary of partial analyses applied to the relationships between the 

measures of the gradient of the ERD, GABA concentration, and application of the 

TMS.  
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Figure 2.7.1.4.2. Linear correlation (blue line) between change in GABA 

concentration ([GABA], institutional units) and change in event related 

desynchronisation (ERD, Units tesla per second ×10-14) following application of cTBS 

(R2 = -0.089, p=0.820, RS=-0.050, p=0.898). 

 

A1.1.5 Analyses of change in PrC, ERD and GABA 

 

 Nine subjects participated in all experimental sections so could be entered into this 

analysis. Each dependent variable here is a vector of the change in that measure, for each 

subject, from control levels. No significant correlations were demonstrated. 
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 Figure A1.1.5. Summary of partial analyses applied to changes in the conscious 

detection PrC, ERD gradient and GABA concentration, from control levels. That is 

the between-subjects correlations between dependent variables and the effects of 

removing the variance of the third variable from these relationships. 

 

A1.1.6 Discussion  

 

 Because no statistically demonstrable relationships were shown, no conclusions as to 

the interdependence between the processes targeted by the measures can be drawn here. This 

was not altogether unexpected for three reasons. First, there seems to be little theoretical 

reason to suppose that the relationship between the properties measured might be in any way 

linear: if other factors (such as individual differences in rates of metabolic turnover) 

intervene, between, for example, the change in the ERD and the change in GABA 

concentration, then we have no reason to think that a potentiation in one might predict a direct 

increase in the other.  

 Second, these analyses were lacking in sufficient statistical power. Primarily, this was 

limited by the availability of subjects to participate in experiments conducted over the course 

of roughly 2 ½ years. In an attempt to improve the power of these partial analyses we 

conducted the replication experiment on 18 subjects (the last 4 of whom were available for 
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both MRS and MEG acquisitions), whereas, a direct replication of the original experiment 

and strict enforcement of a stopping rule (see Dienes, 2008) might have meant the use of 16 

subjects. The relatively low power of these analyses is likely to be the main cause of failure to 

demonstrate the TMS-related effects previously shown.  

 The final contribution made to this failure to demonstrate effects which had 

previously been shown was that the correlation method makes use of the variability between 

subjects. In the repeated measures analysis applied in previous experimental sections, this 

source of variance was effectively removed, improving the reliability of the repeated 

measures analysis. Therefore were this set of analyses to be perused further, a mixed-model 

approach should be adopted (e.g. West, Welch and Galecki, 2006).  

 

A1.2. Correlation with Motor Threshold 
 

A1.2.1 Introduction  
 

The aim of this section is to address the question of whether the effect of cTBS on 

awareness is intensity-dependent, with relatively small levels of inhibition facilitating 

awareness while larger inhibitory levels are disruptive. 

The mechanism proposed for the increase in conscious detection involves a 

facilitation of the mechanisms that select through inhibition. Because this mechanism is 

centred upon inhibition, it follows that were the levels of inhibition to have been increased 

further, beyond functionally optimal levels, then more pervasive suppression of 

representations, including conscious processing, may be expected. Consistent with such an 

effect are previous demonstrations of reversals of TMS effects, where lower levels of TMS 

can facilitate processing, whereas higher levels are shown to be suppressive (Abrahamyan, et 

al., 2011). Here, facilitation was displayed and the intensity at which the TMS was applied 

was relatively low, compared with previous demonstrations of suppressions; 42% of total 

output compared to 46% in the Franca et al., study (2006). This may be due to the method 

used here for obtaining the TMS intensity being based on motor threshold (via the observed 

resting contraction across hand muscles) which is one of the most sensitive threshold 
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measures and thus results in relatively low thresholds (Hanajima et al., 2007; Varnava, et al., 

2011).  

TBS applied to occipital regions has been described as being capable of reducing 

metacognative abilities, indicative of TMS-induced blindsight (Rahnev, et al., 2010). This has 

the opposite directionality to the effect described here. If lower intensity applications 

facilitate abilities whereas higher intensities are suppressive then the findings of Rahnev et al, 

and those presented here may be reconciled if the intensity they used was relatively high. The 

analysis of this section was designed to test this possibility. However, the description of the 

experiment by Rahnev et al (2010) has only appeared in abstract form, so it is very difficult 

directly to compare studies. The suggestion being made here is that the TMS intensity used 

here is likely to be less than those of the Rahnev et al, study or Rahnev et al, found the 

efficacy of the cTBS to be inconsistent over a range of intensities. The same principal 

investigator has published a more extensive account of the application of cTBS to the 

dorsolateral prefrontal cortex (DLPFC), which again reduces reports of meta-cognitive / 

conscious awareness of stimuli that dissociate from forced-choice ability (Rounis, et al., 

2010). However the difference in target area, together with the absence of information about 

stimulator output levels again makes comparison difficult (Stokes, et al., 2005). 

Subjects’ motor thresholds18 vary according to individual differences in cortical 

excitability. This limits the extent to which differences in the motor threshold can be expected 

to correlate with effect size differences in the dependent measures, if they are dependent on 

cortical excitability. However, because there appears to be no (Stewart, et al., 2001) or only 

weak (Deblieck, Thompson, Iacoboni, & Wu, 2008) correlation between motor and visual 

                                                            
18 The reason TBS was applied as a fraction of motor threshold, here as opposed to phosphene 

threshold (which would be more likely to track occipital cortical excitability) was that phosphene 
thresholds are higher than motor thresholds. Mean phosphene threshold collected over experiment 2C 
= 71.1% stimulator output ±15.3 SD (based on all 12 subjects), mean motor threshold = 51.9% 
stimulator output , ±6.2 SD (based on 12 randomly chosen subjects from the behavioural experiment); 
this is consistent with (Stewart, Walsh, & Rothwell, 2001). Applying cTBS at this lower intensity 
reduced the risk of adverse reactions to the TBS and was essential to ensure that the stimulation fell 
within international safety guidelines (Maizey, In Press; Rossi, Hallett, Rossini, & Pascual-Leone, 
2009; Wassermann, 1998). Furthermore, a high proportion of subjects simply cannot perceive 
phosphenes within the range of TMS intensities applicable. This also was the reason why only three 
subjects participated in both the phosphene experiment (2C) and the behavioural experiments (2 A and 
D). Additionally, phosphene thresholds are less consistent across subjects (Stewart, et al., 2001). For 
these reasons, motor threshold was used to determine the intensity of stimulation, which resulted in 
relatively low intensities at which the TBS was applied. 
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cortical thresholds for excitation and there are several additional sources of variation in the 

determination of motor threshold (e.g. subtle irregularities in angular coil placement 

(Kammer, Beck, Thielscher, Laubis-Herrmann, & Topka, 2001)), there is a degree of 

variability in the range of TMS intensities applied. This might reflect differences in the 

efficacy of the TBS when applied to the occipital lobe. Such variability might be sufficient to 

demonstrate correlations between the intensity of TMS applied and dependent measures, 

which might inform experimental hypotheses.  With regard to the central question of this 

section: if the cTBS applied here increased conscious detection through a mild increase in 

inhibitory processes, then stronger potentiation of inhibition caused by higher intensity cTBS 

might lead to a reduction in conscious perception.  

In order to probe this possibility two post-hoc analyses were applied which correlated 

the intensity at which TMS was applied with subjects’ change in conscious detection. If 

relatively small increases in inhibition bestowed a benefit upon conscious detection, whereas 

larger increases in inhibition are suppressive, then a negative correlation between stimulator 

output (motor threshold) and the increase in conscious detection is predicted. The alternative 

method for describing this relationship was a median split, based on motor threshold. The 

hypothesis being that subjects in the group of lower motor thresholds would be more likely to 

express the increase in conscious detection than members of the higher TMS intensity group.  

This method of correlation using motor threshold was not applied to the other 

dependent measures (ERD and GABA) for three reasons: i) such an analysis might constitute 

unnecessary multiple comparisons, ii) the difficulties with the correlations described in 

section A1.1.5 apply here, and, additionally iii) there is the limitation upon such a correlation 

owing to motor threshold’s reflecting individuals’ cortical excitability (mentioned above). 

 The analysis of the relationship between TMS intensity and the effect of the cTBS 

upon conscious detection made use of the data collected over both the original and replication 

results. Outlier rejection was performed according to Cook’s distance (Cook, 1977) applied to 

the concatenated group and resulted in the elimination of 1 subject. With respect to subjects 

who participated in both behavioural experimental sections (4 subjects), the variables used 

applied an average across the two experiments. This resulted in the inclusion of 29 subjects in 

this analysis. Since cTBS was applied at 80% of motor threshold, the subjects’ motor 

thresholds were correlated with a variable representing subjects’ change in conscious 

detection. This variable comprised change from pre-TBS baseline in the PrC data, and was 
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subtracted from control data and averaged across post-TBS blocks. The correlation was a 

least-means-square linear correlation.  

 Additionally, a median-split analysis based on motor threshold was applied to the 

behavioural change in PrC. The median split divided the group into two (13 subjects) 

according to the subjects who received higher and lower levels of TMS. Because three 

subjects’ motor threshold was at the median level (53% of total output), they could not be 

allocated to one or other of the groups so were excluded from the median split analysis. 

 

A1.2.2 Results and discussion of correlation between change 
in PrC and motor threshold 
 

 

Figure A1.2.2. Correlation between motor threshold (the determinate of the intensity 

at which TBS was applied) and the change in conscious detection following the 

application of cTBS relative to controls. Blue line is the linear correlation where R = - 

0.238, Adjusted R2 =0.021, F(1,28) =1.61, p=0.216. The red line indicates the position 

of the median split. 

 

The correlation between the intensity at which the TMS was applied and the benefit in 

conscious detection was not significant (R = - 0.238, Adjusted R2 =0.021, F(1,28)=1.61, 
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p=0.213), but it was in the negative direction, which suggested that increased conscious 

detection may be more likely to result from applications of cTBS when the intensity used is 

relatively low. Consistently, a significant increase in conscious detection was only observed 

in the group of subjects where a lower intensity was applied (F(1,12) = 10.08, p =0.008), 

whereas the group for whom the intensity applied was higher, no clearly significant effect of 

the cTBS was observed (F(1,12)=3.35, p=0.092).  

These analyses tested the hypothesis that lower levels of cTBS might facilitate 

reported awareness, whereas higher levels of TMS might lead to suppressions. The 

conclusions that can be drawn in relation to this question are limited. The correlation between 

the TMS intensity applied and the change in conscious detection was not significant and 

caution should always be applied when attempting to draw conclusions from p values around 

0.1, as with the absence of effect in the median split analysis of the higher intensity group. 

However, the direction of the potential correlation suggests that the benefit bestowed by 

cTBS might be greater when the intensity used is relatively low. This would be consistent 

with the gating-by-inhibition hypothesis, where increased facilitation of gating might be 

brought about by relatively lower levels of increased inhibition; whereas higher levels are 

likely to lead to more pervasive suppression of vision.  

The absence of a definitive answer to this question suggests that future 

experimentation may be profitable. Such an experiment could fruitfully include a range of 

TMS intensities to the same group of subjects using the behavioural paradigm in Experiment 

2A. 
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A2. Additional MEG Analysis 
 

 Several analyses in addition to those described in the main experiment were 

undertaken. This section discusses them and the reasons for their exclusion from the main 

experimental discussion.  

 In the planning of the follow-on experiments (following section 2.3) we initially 

described the effect that we thought the TBS might have in terms of signal-to-noise ratio 

(SNR). That is, cTBS might increase signal-to-noise ratio via a suppression of neuronal noise 

leading to increased conscious detection (Waterston & Pack, 2010). On the grounds of 

simplicity, this description of effects at the neuronal level may be considered more appealing 

than the gating-by-inhibition description, although it is worth noting that the two explanations 

(SNR and gating-by-inhibition) do not necessarily contradict one another and are to some 

extent different ways of describing the same process. 

 The reason for reducing the emphasis placed upon an SNR-based explanation was the 

potential for confusion about which SNR is referred to by any particular measures. The 

problem is that there is an unavoidable conflation between neuronal SNR and SNR of the 

imaging technique itself. This means that when neuroimaging techniques are directed towards 

the investigation of the SNR explanation, the interpretation is potentially misleading. For 

example, gamma frequency (~40-80Hz) oscillations might be taken as representative of the 

carriers of signals (Bressler, 1990), therefore affording us the opportunity to probe the 

alternative hypothesis that it is increased signal (represented by a general increase in 

oscillatory power in the gamma band following cTBS) rather than suppression of noise that 

leads to the increased SNR. However, if neuronal noise is reduced, this too should lead to an 

increased ability to detect gamma frequency oscillations, irrespective of changes in the 

gamma band. The two competing hypotheses therefore make the same prediction. Likewise, 

the general levels of oscillatory power in the alpha band might be interpreted as a correlate of 

active suppression of noise.  However, the observed increase in alpha power (figure A2.1) 

cannot dissociate any actual change in alpha power from increased ability to detect alpha 

oscillations. This difficulty in interpretation is the reason SNR was not emphasised as central 

to the explanation of the cTBS effect in question. 
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Figure A2.1. Alpha (6-12Hz) power changed over the course of Experiment 2D. 

Alpha power was not statistically dependent upon the application of the cTBS (site 

effect: F(1,17) =1.940, p=0.182, site × time interaction: F(3,51) =1.490, p=0.240). 

However it did increase over the course of the experiment (time effect: F(3,51) =8.033, 

p=0.004), which is suggestive of increased fatigue (Steriade, McCormick, & 

Sejnowski, 1993).  

 The evoked and induced measures used did not suffer from this problem (of increased 

fidelity conflated with change in question) to the same extent as did the measures based on 

general oscillatory power (described above in the alpha and gamma bands). This is because 

the baseline for induced and evoked responses are taken within trial following the cTBS. 

Hence any increased fidelity as a result of reduced noise will be present prior to the stimuli 

presentation – hence removed from the data. 

 Induced gamma band responses to stimuli at around 100ms have previously been 

suggested as conveying conscious information (Crick, 1990; Fries, 2009).  As such, they can 

be considered representative of conscious signals and therefore could have been incorporated 

into the experiment in a manner similar to that of the late evoked responses. Although a 

subset of subjects did display such gamma band responses to the stimuli, such responses were 

not by any means apparent across subjects and experimental blocks. Therefore the analysis of 

induced gamma in response to the stimuli was abandoned.  
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 An additional way in which the SNR hypothesis was probed was via the derivation of 

a measure based on the variance at the sensor level, which might be representative of 

neuronal noise. This quantified levels of noise via the application of a simple root-mean-

square analysis of variance to raw DC offset sensor data. Higher variance corresponding to 

increased noise. The SNR based explanation of the effect cTBS has would therefore predict a 

reduction in this measure. However, it displayed the same modulation as a measure of raw 

oscillatory power across frequency bands and – most importantly – it followed the general 

pattern of changes in the dominant alpha band (cf. figure A2.1 and A2.2). Given that 

oscillatory power as quantified via Hillbert transforms is based on such variance and the 

relative influence the alpha band has upon the sensors, this should have been expected. The 

result is that, again, it was not possible to dissociate competing hypotheses on the basis of this 

measure. Increases in the variance measure can be interpreted as increased noise and 

increased alpha suggests increased suppression of noise, yet the two correlate.  

 

Figure A2.2. Root mean square analysis of variance applied to sensor level data. No 

significant effects of the TMS were observed (site: F(1,17) =0.012, p=0.916, site × time 

interaction: F(3,51) =0.130, p=0.913) but the variance did increase over the course of the 

experiment (time effect: F(3,51) =5.541, p=0.009). Because of the correspondence 

between this and the alpha / oscillatory analysis, no conclusions can be drawn from 

these effects. 
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A3. Analysis of iTBS and sham control 

conditions in off-line experiment 2D 
 

 For completeness, this section reports the results for each of the three TMS conditions 

in Experiment 2D: cTBS, iTBS and sham. These analyses should not be interpreted as part of 

the main experiment as they incorporate multiple unnecessary comparisons. 

 

Figure and table A.3.1. Change in conscious detection (PrC) in the three TMS 

conditions (cTBS,iTBS and sham) of Experiment 2D, calculated relative to the 

session-specific pre-TBS baseline and plotted over the course of the experiment. Error 

bars are the within-subject standard error (Loftus & Masson, 1994; Masson & Loftus, 

2003). Table provides F and p values from repeated measures ANOVAs applied in the 

same way as described for the experiments in Chapter 2, but contrasting all the 

possible combinations of TMS conditions. Subsequent plots and tables in this section 

all conform to this structure. 
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Figure and table A.3.2. Change in ‘Unseen’ discrimination (PcU) form pre-TBS 

baseline in Experiment 2D. 

 

Figure and table A.3.3. Change in response criteria/Bias in conscious detection 

(BrC) form pre-TBS baseline in Experiment 2D. * denotes analysis in which a single 

outlier was rejected according to Chauvenet’s  criteria. Resultant degrees of freedom 

for corresponding site effects are 1,16 and for comparisons involving time it is 3,48. 

Graphs make use of data with this outlier excluded.  
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Figure and table A.3.4. Change in pupil diameter (arbitrary units) form pre-TBS 

baseline in Experiment 2D. 

. 

 

Figure and table A.3.5. Change in ERF peak amplitude form pre-TBS baseline in 

Experiment 2D.  * denotes analysis in which a single outlier was rejected according to 

Chauvenet’s criteria. Resultant degrees of freedom for corresponding site effects are 

1,16 and for comparisons involving time it is 3,48. Graphs make use of data with this 

outlier excluded. 

 

Figure and table A.3.6. Change in ERD gradient form pre-TBS baseline in 

Experiment 2D. * denotes analysis in which a single outlier was rejected according to 

Chauvenet’s criteria. Resultant degrees of freedom for corresponding site effects are 

1,16 and for comparisons involving time it is 3,48. Graphs make use of data with this 

outlier excluded. 
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A4. Participant instructions  
 

You will be shown arrows (figure. PI 1) that appear very briefly against a noisy 

background (figure. PI 2). Sometimes the arrow will not appear. Your task is to decide if you 

saw the arrow and which direction it was pointing in. You will be asked 3 questions about 

this:  

Did you see the arrow?   Yes/No. 

Which direction was it pointing in?  Left/Right. 

Did you see something?   Yes/No. 

 

It is important for the purpose of this study that you give your best guess for the 

direction discrimination question (Left/Right?), even when you don’t see the arrow, i.e. do 

not simply press the same button when you think no stimulus has been presented. 

Sometimes you will see something that might have been an arrow but you cannot be 

sure; this is why we ask the extra question: ‘Did you see something?’. If you have the 

impression that you saw something which might have been the arrow, but cannot be sure, you 

should say ‘Yes’ to this question and ‘No’ to the ‘Did you see the arrow?’ question.  You 

should say ‘Yes’ to the arrow question if you were consciously aware of the arrow. Also, we 

sometimes show non-arrows (figure PI 3). If you see this or think you might have, you should 

answer ‘Yes’ to the something question. If you saw nothing but the noise you should answer 

‘No’ to both the arrow and the something questions. 

The order of the questions will change from testing session to session. At the start of 

each session you will be given some practice trials to get you familiar with the order of the 

question and refresh your memory of the task.  

So you will be asked 3 questions: ‘Was the arrow pointing left or right?’ which will 

appear on the screen as ‘L/R’, ‘Did you see the arrow?’ which will appear as ‘Arrow Y/N’ 

and ‘Did you see something?’ which will appear as ‘something Y/N’. Responses will be 

taken on the keyboard number pad using the 1,3,4 and 6 keys (see figure PI 4). The buttons 

on the left (1 and 4) are for responding ‘Left’ and the ones on the right (2 and 6) are for 
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‘Right’. The upper buttons (4 and 6) are for responding ‘Yes’ and the lower ones (1 and 3) 

are for responding ‘No’. If at any point you enter the wrong response please tell the 

experimenter immediately so that she/he can make a note of it. 

 Sessions will involve four blocks of testing, each consisting of 80 trials. Two of these 

blocks will involve s-cone (purple) stimuli and two luminance (black and white) stimuli. To 

complete the experiment, you will complete 6 sessions over the course of 3 to 6 days, plus 

calibration days. 

Calibration days will involve establishing thresholds for the task. This means we will 

vary the ease of the task so that we can get a stable level of performance, which we will then 

use in subsequent sessions. This will probably involve about 16 blocks of 80 trials and some 

of 40 trials. There will also be one of these shorter blocks at the start of each normal testing 

session to check that levels of performance are constant, and adjust them if necessary.  

During the first days we will be assessing your susceptibility to phosphenes. 

Phosphenes are apparent flashes of light caused by the TMS. The experimenter will go 

through this with you in more detail during the first session. Also, during these calibration 

days we will also go through a series of tasks to calibrate the ‘purple’ colour stimuli. Again 

the experimenter will explain this. 

 If you have any questions, please ask. 

 Thanks for reading this and participating in our experiments. 

       
Figure PI 1.     Figure PI 2.    Figure PI 3. 

The arrow that you will   The noise in the absence  The non-arrow. 

be looking for.    of an arrow. 
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7  8  9 

4  5   6 

2 1  3 

Yes 

No 

Right

Left

Figure PI 4. 

The layout of the button responses on the 
number pad of the keyboard. 
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A5. Analysis of the ‘something’ – p-
conscious measure 
 

 The rate at which subjects reported awareness of ‘something’ is the measure derived 

to represent Blocks discussion of phenomenal (p-) consciousness (Block, 2007, 2011), 

discussed in section 4.6. Block makes the prediction that p–consciousness will be 

accompanied by recurrent processing (Block, 2007). This analysis tested the hypothesis that 

the application of TMS at relatively late times would lead to the disruption of recurrent 

processing and suppression in the frequency at which subjects reported ‘something’. The 

three experiments capable of addressing this were those which applied TMS over a range of 

times relative to stimuli onset (Experiments 3 A,B,C). The analysis applied the same 

statistical methods as described in chapter 3 to the additional measure. The measure 

quantifies the incidence of subject’s responding positively the ‘something?’ probe and 

negatively to the ‘arrow?’ question over the number of opportunities for such a response. The 

results are reported below, the discussion and interpretation of which can to be found in 

section 4.6. 



194 
 

 

Figure A.5. Depiction of the main sections of the ‘on-line’ experiments with respect to the 

‘something’ measure. The ‘something’ measure is the number of positive reports of 

‘something’ only, over the number of trials at any given data point.  

A. Rate of report of ‘something’ over the course of Experiment 3A. Error bars are the 

standard error across subjects according to (Loftus & Masson, 1994).  

B. Rate of report of ‘something’ over the course of the single-subject single-pulse study 

(Experiment 3B).  
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C.  Rate of report of ‘something’ over the course of the single-subject double-pulses study 

(Experiment 3C). Error bars are standard error across experimental sessions. 

 

Experiment 3A, Between-subject study: 

 The critical effect in terms of relating p-consciousness (as measured by rate of reports 

of ‘something’) to recurrent processing would be a site (TMS vs. sham) effect that interacts 

with time, via a later suppression. See figure A5.1.A. No such effects or interactions were 

observed (site × time: F(3,45) =0.329, p= 0.762, site effect: F(1,15) =0.260, p=0.617). There were 

however significant effects involving time (F(3,45) =9.383, p<0.001), again indicating the 

sensitivity of the measure and auditory distracting effects. Also, there was a significant effect 

of stimuli type (s-cone or luminance) (F(1,15) =13.315, p=0.002), which simply indicates that 

subjects were more likely to respond positively to the ‘something?’ question in the presence 

of the s-cone stimuli. Since the s-cone and luminance stimuli were not independently 

calibrated in terms of propensity of the subjects to report ‘something’, this likely reflects a 

difference at the level of the stimuli rather than at the level of the pathways that the s-cone 

intervention can isolate. For this reason, together with the fact that no predictions were made 

in terms of s-cone dependency of the ‘something’ measure, the single subject s-cone 

experiment (3D) was not analysed in terms of this measure. 

 It is worth noting that there is a correspondence between the effects observed in the 

measure of ‘something’ and bias (BrC), which is due to the overlap between the attributions 

of responses over the two measures (both increase when subjects responded positively to the 

‘something?’ question more often irrespective of stimuli presented). As these measures are 

applied to independent hypotheses, this form of auto-correlation is acceptable. 

Experiment 3B, Single-subject, single-pulse study: 

 Based on the equivalent statistical tests applied to PrC and PcU measure in this 

experimental section 3.5.2 (which compared each data point in the active condition to that of 

the variance observed over the sham condition), no data points showed a significant effect of 

the TMS (Z < 1.79, p>0.037 relative to Bonferroni alpha of 0.002). See figure A5.1.B 

Experiment 3C, Single-subject, double-pulse study: 
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 The comparison of interest is the interaction between TMS site (active vs. sham) and 

time (early vs. late). The hypothesis supporting Block’s theory is that there should be a later 

suppression of reports of ‘something’ if there is a correspondence between p-consciousness 

and recurrent processing. This analysis is of the same structure as applied to PrC and PcU 

measures, in section 3.6.2 and is depicted in figure A5.1.C.  

 The ANOVA indicated that there was no site × time interaction (F(1,1) = 0.63, p=0.43), 

no significant effect of the TMS (F(1,1) = 3.41, p = 0.07), but a significant effect of the time at 

which TMS was applied (F(1,1) = 10.46, p = 0.002). The non-significant trend for suppressed 

reports of ‘something’ in the presence of active TMS suggests that the TMS may have been 

effective in suppressing p-consciousness. However, the absence of a time-dependent 

interaction does not support the links between p-consciousness – awareness of ‘something’ – 

and any particular stage of processing, such as recurrence. The effect over time illustrates the 

sensitivity of the measure. Because this drop occurred over the later interventions and is 

expressed to a similar extent in the sham TMS condition as the active TMS condition, the 

effect is most easily attributable to an auditory distracting effect (e.g. Terao et al., 1997). 
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A6. An alternative response attribution 
 

 This section outlines an alternative way in which behavioural response could have 

been allocated to measures based on previously described experiments (e.g. Rounis, 

Maniscalco, Rothwell, Passingham, & Lau, 2010).  

 

 The principal dependent variables in these experiments have been conscious detection 

and ‘unseen’ discrimination. These two measures approximate to non-parametric versions of 

type-2 and type-1 measures in the SDT literature, respectively (Clarke, Birdsall, & Tanner, 

1959; Galvin, Podd, Drga, & Whitmore, 2003; Pollack, 1959). Type-1 decisions 

corresponding to the information the subject can objectively display in forced choice tasks. 

Type-2 (also known as meta-d’ (Maniscalco & Lau, 2012)) abilities correspond to the 

confidence that subjects place upon their primary discussion or their subjective judgment 

(Galvin, et al., 2003; Pollack, 1959). Independent differences between these two measures of 

task performance (type-1 and-2) have been used to demonstrate blindsight type phenomena 

(Dienes & Berry, 1997; Rounis, et al., 2010). 

  

  The match between type-2 / type-1 abilities and the detection / ‘unseen’ 

discrimination measures applied here is incomplete and was not pursued in these experiments 

for the following reason: the ‘Did you consciously see the arrow?’ question is a detection task 

which refers to presence / absence of subjects’ conscious experience under presence / absence 

truth conditions. In contrast, the truth conditions under which type-2 probes are commonly 

tested is the discrimination difference (e.g. left/right) not the detection judgment (Galvin, et 

al., 2003; Maniscalco & Lau, 2012). Combining the two (detection and discrimination) in 

order to form a type-2 measure with these data sets is possible (see table A6.1), but it would 

result in the measure no longer tracking the conscious detection question posed, but rather a 

combination of responses to both questions, rendering interpretation difficult.  

 

 Two further, interrelated, practical concerns also limited the feasibility of applying 

type-1/2 style analysis to the data sets produced over these experiments: first, as described in 

section 1.3.2.3, the number of trials which the subject reported as being ‘seen’ yet the 

direction decision was incorrect was extremely low. As this response profile contributes to 
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produce meaningful type-2 measures (Galvin, et al., 2003; Maniscalco & Lau, 2012) this 

paucity of trials presents a significant practical limitation. Second, the construction of type 1 

measures commonly use all discrimination judgments in their derivation (Galvin, et al., 2003; 

Maniscalco & Lau, 2012). As such they conflate ‘seen’ and ‘unseen’ trials. Because ‘seen’ 

performance is invariably at ceiling levels, changes in conscious awareness will be reflected 

in the type 1 measure (as discussed in section 1.3.2.3).  

 

Table A6.1 Table of SDT classification for the task in order to produce a meta-d’ / 

type-2 measure. Type-1 measure would consist of all forced choice discrimination 

(left/right) decisions.  

        Hit False alarm Correct rejection       Miss 
Response     ‘seen’       ‘seen’        ‘unseen’     ‘unseen’ 
  ‘left’ ‘right’ ‘left’ ‘right’   ‘left’  ‘right’ ‘left’ ‘right’ 
Stimulus left right right left    left   right right   left 
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