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Summary 

 

 

Age-related macular degeneration (AMD) is the leading cause of visual impairment in the 

developed world (Resnikoff et al., 2004). The prevalence of this disease will continue to 

increase over the coming decades as the average age of the global population rises (United 

Nations, 2009). There is consequently an urgent need to develop tests that are sensitive to 

early visual dysfunction, in order to identify individuals that have a high risk of developing 

AMD, to identify patients that would benefit from treatment, to assess the outcomes of that 

treatment and to evaluate emerging treatment strategies. 

 

An emerging body of evidence suggests that dark adaptation is a sensitive biomarker for 

early AMD. Cone dark adaptation is of particular interest to clinicians, as it can identify 

patients with early AMD in a relatively short recording period. Consequently, this thesis 

aimed to optimise psychophysical and electrophysiological techniques for the assessment 

of cone dark adaptation in early AMD, in order to maximise its diagnostic potential. 

 

A range of psychophysical methods were shown to be capable of monitoring the rapid 

changes in threshold that occur during cone dark adaptation. An optimal psychophysical 

protocol for the assessment of cone dark adaptation in early AMD was developed based on 

the results of a systematic evaluation of the effect of stimulus parameters and pre-adapting 

light intensity on the diagnostic potential of cone dark adaptation in early AMD. When 

compared to the focal cone ERG photostress test, both techniques were shown to be 

similarly diagnostic for early AMD. In addition, the time constant of cone recovery was 

shown to be significantly correlated with age, hence the sensitivity and specificity of cone 

dark adaptation as a biomarker for early macular disease may be further improved by 

considering these age-related changes. 

 

In conclusion, this thesis has confirmed that cone dark adaptation is a sensitive functional 

biomarker for early AMD. However, as cross-sectional studies are unable to determine the 

true diagnostic potential of a biomarker, longitudinal investigations are needed to explore 

the long-term potential of cone dark adaptation and other visual functions as biomarkers 

for early AMD. 
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1. Introduction 

 

 

Age-related macular degeneration (AMD) is a degenerative disease of the central retina 

that typically presents after 55 years of age. Although treatments for this prevalent disease 

are limited at present, they are advancing rapidly, which means that there is currently an 

urgent need to develop tests that are sensitive to subtle functional abnormalities in AMD, 

in order to facilitate early diagnosis and effective monitoring of treatment outcomes. 

 

The overall objective of this PhD is to investigate the potential of dark adaptation 

assessment as a test for early AMD. This introductory chapter begins by providing an 

overview of the structure of the healthy retina, before describing the aetiology, 

classification, investigation and treatment of AMD. This is followed by a comprehensive 

review of an emerging body of evidence which suggests that dark adaptation is a sensitive 

functional biomarker for early AMD. The latter part of the chapter provides an overview of 

psychophysical and electrophysiological investigative techniques for the assessment of 

dark adaptation, with a particular emphasis on their use in AMD. Finally, the specific aims 

of the PhD are outlined. 

 

 

1.1. The healthy retina 

The retina is the first stage of visual processing. It is located between the choroid and the 

vitreous humour and extends from the optic nerve head to the ora serrata, just posterior to 

the ciliary body (Figure 1.1.). Light energy focused on the retina is converted to nervous 

impulses via phototransduction. These impulses are transferred through the retinal layers 

and ultimately exit the eye at the optic nerve head. The human retina comprises a series of 

well-defined layers (Figure 1.2.), including an outer pigmented layer, three layers of 

neuronal cell bodies and two plexiform layers that contain synaptic connections. 
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Figure 1.1. A cross-section of the human eye, including a schematic enlargement of the 

retina (Kolb, 2003a). 

 

The blood supply to the retina consists of two separate circulatory systems that originate 

from the ophthalmic artery. The inner retinal layers are supplied by the central retinal 

artery. It enters the eye through the optic nerve head where it bifurcates into inferior and 

superior branches, before further dividing into additional nasal and temporal branches. In 

contrast, the outer retinal layers, including the photoreceptor layer, receive their blood 

supply from the choriocapillaris, the densely branching capillary network of the choroidal 

circulation. The choriocapillaris is the only blood supply to the avascular region of the 

macula (Hendrickson, 2005). 

 

Figure 1.2. A schematic diagram of a vertical section through the human retina, including 

the major retinal cell types (Kolb, 2003a). 
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1.1.1. Healthy macular anatomy 

Unique to primates, the macula is a highly specialised retinal region that is responsible for 

high resolution visual acuity (VA). Anatomically, it is defined as the area of the posterior 

retina that contains xanthophyll, a carotenoid, and more than one layer of retinal ganglion 

cells. Located within the vascular arcades, the macula is 5-6mm in diameter, or 15-20º of 

visual angle (Figure 1.3) (Hendrickson, 2005). It is centred on the fovea; a 1.5mm diameter 

area, located 4mm temporally and 0.8mm inferiorly to the optic nerve head. The 0.35mm 

foveola, visible ophthalmoscopically as the foveal light reflex, is a thin central depression 

in the fovea and is composed entirely of cones. The neural components of the inner retina 

are displaced away from this area, allowing the photoreceptors unobstructed access to the 

incident light. These anatomical features facilitate high resolution visual acuity. 

 

Figure 1.3. Diagrammatic representation of the anatomical regions of the human macula 

(Hendrickson, 2005). 

 

1.1.2. Bruch’s membrane 

Bruch’s membrane is a thin, semi-permeable structure composed of collagen and elastic 

fibres, located between the retinal pigment epithelium (RPE) and the choriocapillaris. 

Although it is not actually considered part of the retina, Bruch’s membrane is closely 

associated with the basement membrane of the RPE. It may be divided into 5 layers: the 

basement membrane of the RPE, the inner collagenous layer, the elastin layer, the outer 
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collagenous layer and the basement membrane of the choriocapillaris (Guymer et al., 1999; 

Booij et al., 2010). Bruch’s membrane is considered to have three primary functions 

(Guymer et al., 1999; Booij et al., 2010): 

 regulation of the diffusion of biomolecules between the retina and the choroidal 

circulation 

 provision of physical support for the RPE 

 and restriction of cell migration. 

 

Bruch’s membrane is approximately 2µm thick in young human eyes, but thickens with 

age to approximately 4.7µm in the 10th decade of life (Ramrattan et al., 1994). This is 

accompanied by changes in the elastic and collagenous fibres and an accumulation of 

waste material within the membrane (Feeneyburns and Ellersieck, 1985; Bird, 1992). 

These changes cause a reduction in the elasticity of the membrane, increased 

hydrophobicity and an increased resistance to diffusion, thus generating a barrier to normal 

metabolic exchange (Bird, 1992). 

 

1.1.3. The retinal pigment epithelium (RPE) 

 The retinal pigment epithelium is located between the photoreceptor outer segments and 

the choroidal blood supply. It consists of a single layer of hexagonal cells, connected by 

tight junctions (zonulae occludens), which contain pigment granules and organelles for the 

digestion of photoreceptor outer segments. The highly specialised apical surface of the 

RPE comprises multiple long microvilli that project into the inter-photoreceptor matrix 

(IPM) and surround the tips of the photoreceptor outer segments. Several comprehensive 

reviews of the RPE have identified its key functions (Bok, 1993; Boulton & Dayhaw-

Barker, 2001; Strauss, 2005). These include: 

 stray light absorption 

 epithelial transport (of ions, water and metabolic end products from the subretinal 

space to the bloodstream, and of nutrients from the bloodstream to the 

photoreceptors) 

 spatial ion buffering 

 recycling of retinoid during the visual cycle 

 phagocytosis of photoreceptor outer segments 

 secretion of growth factors 
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 and immune modulation. 

Clearly, the failure of one or more of these functions may cause retinal degeneration and 

subsequent loss of visual function (Stauss, 2005). 

 

1.1.4. Photoreceptor cells 

The human retina contains two photoreceptor subsystems that operate optimally under 

different viewing conditions (Young, 1970). The cones of the photopic system are 

dominant at high retinal illuminance levels and are responsible for high acuity vision and 

colour perception. In contrast, the rod based scotopic system is monochromatic. It 

functions best at low illuminances as it is extremely sensitive to light, but is insensitive to 

spatial detail. A degree of overlap between the systems occurs across intermediary mesopic 

retinal illuminances. 

 

The density of the photoreceptors varies with retinal location. Cone density is maximal at 

the fovea (200,000 cells/mm²) (Curcio et al., 1990) and then decreases rapidly with 

increasing eccentricity (Figure 4.11, Page 119). In contrast, rod photoreceptors first appear 

in the parafovea and increase to a maximum density of 150,000 cells/mm² at 12-18º from 

fixation (Curcio et al., 1990). 

 

The rods and cones comprise several specialized compartments (Figure 1.4). The outer 

segment, adjacent to the RPE, is devoted to light absorption, while the inner segment 

houses the organelles of the cell (Young, 1970). A nerve fibre, containing the cell nucleus, 

extends from the inner segment and culminates in a synaptic terminal to which other cells 

connect. The photoreceptor outer segment consists of a series of membranous discs 

containing visual pigment molecules (Young, 1970). The outer segments of the rods and 

cones are distinctly different in shape (Figure 1.4). The discs in the rod outer segment 

maintain a consistent diameter throughout the structure. In contrast, in cones there is a 

progressive reduction in the diameter of the discs contained within the outer segment with 

increasing distance from the inner segment. This results in their characteristic conical 

shape. Protein synthesized in the inner segment of the cell migrates to the outer segment to 

renew the discs. In cone photoreceptors this protein is distributed diffusely throughout the 

outer segment to replenish the existing discs, whereas in the rods new discs are formed at 
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the base of the outer segment and the oldest discs are shed from the tip and phagocytosed 

by the RPE (Young, 1969). 

 

Figure 1.4. The structure of human photoreceptor cells (Schwartz, 2004). 

 

Visual pigment 

Human visual pigment comprises 11-cis retinaldehyde (11-cis retinal) and opsin. 11-cis 

retinal is a light sensitive chromophore molecule derived from vitamin A and opsin is an 

intracellular membrane protein. The visual pigment present in the rod outer segment is 

known as rhodopsin and has a peak spectral sensitivity of 507nm. Cone visual pigment is 

known as iodopsin and there are three types: cyanolabe, chloralabe and erythrolabe, 

sensitive to short (426nm), medium (530nm) and long (557nm) wavelengths respectively 

(Gouras, 1984).  

 

The absorption of light quanta by the visual pigment initiates the process that leads to the 

generation of visual signal. On absorption of a photon the visual pigment molecule 

becomes transparent, or ‘bleached’, and is unable to capture further quanta. However, 

given that there are approximately 120 million rods in the human retina, each of which 

contain approximately 10
8
 rhodopsin molecules, the probability of absorption of quanta is 

high (Lamb & Pugh, 2004). 
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1.1.5. Bipolar cells 

The bipolar cell bodies are located in the inner nuclear layer of the retina. They convey 

signals from the photoreceptors in the outer plexiform layer to the amacrine and ganglion 

cells in the inner plexiform layer. In the human retina, eleven different types of bipolar cell 

have been identified using Golgi staining (Figure 1.5) (Mariani, 1984; Boycott and Wassle, 

1991; Kolb et al., 1992; Kolb, 2001). Only one type of bipolar cell is known to synapse 

with rod photoreceptors, whilst the remaining ten synapse with cone photoreceptors. 

Bipolar cells may be differentiated by the shape of their dendrites (Kolb et al., 1992). Cone 

bipolars have clusters of dendritic terminals in the plane of the cone pedicles, whereas rod 

bipolars have spiky dendrites that generally extend further, to reach the rod spherules. 

 

Figure 1.5. Bipolar cell types in the human retina, identified by Golgi staining (Kolb, 

2001). 

 

Ten different types of cone bipolar have been identified in the human retina (Figure 1.5). 

These may be further subdivided into the following categories (Mariani, 1984; Boycott and 

Wassle, 1991; Kolb et al., 1992): 

 diffuse bipolar cells (6 types) 

 midget bipolar cells (2 types) 

 short wavelength sensitive or blue cone bipolar cells 

 and giant bistratified bipolar cells. 
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The diffuse and giant bistratified bipolar cells converge information from many cone 

photoreceptors. In contrast, the midget and short wavelength sensitive bipolar cells each 

synapse with a single cone only, although each cone is in contact with two of these bipolar 

types (Kolb, 2001). As shown in Figure 1.5, ON-centre (centre depolarising) and OFF-

centre (centre hyperpolarising) bipolar cells synapse in different strata of the inner 

plexiform layer. 

 

1.1.6. Horizontal cells 

Horizontal cells are a form of interneuron that convey information laterally within the 

outer plexiform layer by forming synapses with the photoreceptor and bipolar cells. They 

therefore provide feedback to the photoreceptor cells and feed forward to bipolar cells, 

which helps to generate bipolar and ganglion cell receptive field surrounds (Dacey, 1999). 

Three types of horizontal cell have been identified in the human retina on the basis of 

dendritic field characteristics and spectral preferences: HI, HII and HIII (Kolb et al., 1992; 

Kolb et al., 1994; Kolb, 2001) (Figure 1.6). 

 

Figure 1.6. Horizontal cell types in the human retina, shown with their spectral preferences 

(Kolb, 2001). 

 

1.1.7. Müller cells 

The Müller cells are the principal glial cell of the retina (Bringmann et al., 2006). Their 

cell bodies are located in the inner nuclear layer and their processes span the radial 

thickness of the retina: from the outer limiting membrane to the inner limiting membrane. 

The Müller cell processes occupy most of the space between the retinal neurones and one 
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of their main functions is to provide structural and architectural support for the retina. 

Müller cells are involved in: 

 metabolic support and nutrition of neurons 

 maintenance of ion and water homeostasis 

 protection against oxidative stress 

 contribution to neuronal signalling 

 recycling of photopigments 

 release of neuroactive and vasoactive substances 

 transmission of light from retinal surface to photoreceptors (Franze et al., 2007) 

 and retinal development. 

For an excellent review of the key functions of the Müller cells, the reader is referred to 

Bringmann et al. (2006). 

 

Recently, the Müller cells have been implicated in an alternative pathway for cone 

photopigment regeneration (Das et al., 1992; Mata et al., 2002; Wang, & Kefalov, 2009; 

2011). This will be discussed further in Section 1.3.3 (Page 36). 

 

1.1.8. Amacrine cells 

Amacrine cells are a type of interneuron that facilitate the lateral transfer of information 

within the inner plexiform layer by synapsing with the bipolar and retinal ganglion cells. 

At least 25 morphological types of amacrine cell have been identified in the human retina 

(Mariani, 1990; Kolb et al., 1992). These are classified according to their dendritic tree size 

and this morphological variation appears to reflect a wide range of functions. AII and A17 

amacrine cells are particularly important in the rod pathway because, unlike cone bipolar 

cells, rod bipolar cells do not make direct contact with retinal ganglion cells (Kolb & 

Famiglietti, 1974; Kolb, 1994). Rather, they contact AII and A17 amacrine cells, which, in 

turn, pass the information to the ganglion cells, either directly or via cone bipolar cells.  

 

1.1.9. Retinal ganglion cells (RGCs) 

The RGC bodies are located in the ganglion cell layer. Retinal ganglion cells receive 

information from amacrine and bipolar cells, which they pass along their axons to higher 

visual processing centres via the optic nerve. Ganglion cell density varies with retinal 
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location: it peaks 1.5-7º from fixation and declines rapidly at increasingly eccentric retinal 

locations (Curcio & Allen, 1990). 

 

At least 18 types of RGCs have been identified in the human retina (Kolb et al., 1992). 

These may be classified according to where their axons terminate in the lateral geniculate 

nucleus (LGN): P-cells (midget-type morphology) project to the parvocellular layers of the 

LGN and M-cells (parasol type morphology) project to the magnocellular layers (Figure 

1.7) (Perry and Cowey, 1981; 1984; Perry et al., 1984). RGCs may also be classified 

according to the organisation of their receptive fields. OFF-centre (centre hyperpolarising) 

RGCs synapse with OFF-centre bipolar cells in sublamina ‘a’ of the inner plexiform layer, 

whilst ON-centre (centre depolarising) RGCs synapse with ON-centre bipolar cells in 

sublamina ‘b’ of the inner plexiform layer. 

 

The axons of the RGCs form the innermost layer of the retina: the retinal nerve fibre layer 

(RNFL). In most individuals these axons remain unmyelinated until they exit the retina at 

the optic nerve head. The nerve fibre layer is thickest at the optic nerve head. 

 

Figure 1.7. P- and M- ganglion cell types in the human retina (Kolb, 2003b). 

 

1.1.10. The visual pathway 

After the RGC axons exit the retina they travel along the optic nerve to the chiasm, where 

those fibres arising from the nasal retina decussate to the opposite side of the brain before 

entering the optic tracts. From here, approximately 90% of the axons project to the LGN 

(Perry et al., 1984), while the remaining 10% of axons follow a separate pathway to the 

superior colliculus and pretectum (Perry & Cowey, 1984). Finally information is relayed 

from the LGN to the primary visual cortex by the optic radiations. It is beyond the scope of 
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this thesis to describe the anatomy of the visual cortex, but for the interested reader 

excellent descriptions are provided by Schmolesky (2007). 

 

 

1.2. Age-related macular degeneration (AMD) 

 

1.2.1. Incidence and prevalence of AMD 

Age-related macular degeneration is the primary cause of visual impairment in the UK 

(Bunce and Wormald, 2008). The number of registrations of ‘sight impairment’ and 

‘severe sight impairment’ as a consequence of AMD increased by 30-40% between 1950 

and 1990 (Evans and Wormald, 1996). Recent estimates of visual impairment registrations 

attributed to AMD stand at 55.9-57.2% in England and Wales (Evans et al., 2004; Bunce 

and Wormald, 2008) and 44.2% in the Republic of Ireland (Kelliher et al., 2006). 

Registration of visual impairment in the UK is voluntary and requires validation by an 

ophthalmologist. It has been estimated that less than 50% of patients that are eligible for 

registration are actually registered (Robinson et al., 1994), and this means that the true 

proportion of the population affected by AMD is likely to be significantly higher than these 

statistics suggest. This suggestion has recently been supported by a Bayesian meta-analysis 

of 31 population studies with a combined sample size of 57,173, which estimated the 

prevalence of late stage AMD to be 2.4% in the UK, which means that there are 

approximately half a million adults in the UK currently living with late stage AMD (Owen 

et al., 2012). In addition, a recent cross-sectional study of European adults (UK, Norway, 

Estonia, France, Italy, Greece, and Spain) estimated the prevalence of early AMD to be 

36.48% in the population aged over 65 years (Augood et al., 2006).  

 

The prevalence of AMD is closely associated with age (Bamashmus et al., 2004; Owen et 

al., 2012). The prevalence of late stage AMD in the UK has been estimated as 2.4% in the 

population aged over 50 years compared to 12.2% in the population aged over 80 years 

(Owen et al., 2012). The Office for National Statistics has predicted a 32% increase in the 

population of state pension age from 11.8 million in 2008 to 15.6 million by 2033 and a 

100% increase in the population aged over 85 years in the same period (Office for National 

Statistics, 2009). As a consequence of the ageing population, significant increases in the 
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prevalence of AMD, and its associated costs, have been predicted (Congdon et al., 2004; 

Rein et al., 2009). 

 

1.2.2. Clinical features of AMD 

 

1.2.2.1. Drusen 

Drusen are deposits of extracellular membranous debris that accumulate between the RPE 

and the inner collagenous layer of Bruch’s membrane. They vary in size, colour, shape, 

elevation and distinctness. The drusen that are most commonly associated with AMD are 

known as hard and soft drusen. In addition, reticular drusen have been associated with 

progression to late AMD (Klein et al., 2008a; Zweifel et al., 2010; Schmitz-Valckenberg et 

al., 2011). 

 

Hard drusen 

Small (< 63µm), round, flat, yellow or white deposits are classified as hard drusen (Figure 

1.8.A). They have been reported in 50-80% of the population aged over 30 years and are 

therefore not considered indicative of AMD when present in isolation (Bressler et al., 

1989; Bird et al., 1995; Sarks et al., 1999). 

 

Figure 1.8. Funduscopic appearance of hard (A) and soft (B) drusen. (Hageman et al., 

2001).  

 

Soft drusen 

Soft drusen are larger than hard drusen. They are grey or yellow in colour and have 

variable margins (Figure 1.8.B). They may form independently or develop from pre-

existing hard drusen (Sarks et al., 1994) and as they enlarge, they may coalesce to form 
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confluent drusen. The presence of soft drusen is diagnostic for early AMD (Bird et al., 

1995) and in large numbers they are associated with a significantly increased risk of 

progression to advanced disease (Klein et al., 1997). 

 

Reticular drusen 

Reticular drusen form an interlacing network of yellow lobular or ribbon like deposits, 

which tend to appear in the outer macula (Arnold et al., 1995), and are typically associated 

with pigmentary changes (Zweifel et al., 2010). It has been proposed that the presence of 

reticular drusen in AMD may have previously been underestimated, due to 

misclassification as other types of drusen (Sarks et al., 2011). In recent years, reticular 

drusen have been recognised as an additional distinctive feature of AMD and have been 

shown to be associated with progression to late stage disease (Klein et al., 2008a; Zweifel 

et al., 2010; Schmitz-Valckenberg et al., 2011). 

 

1.2.2.2. Pigmentary abnormalities 

Focal areas of pigment change within the RPE are another characteristic sign of early 

AMD (Bird et al., 1995; AREDs, 2001). Focal hyperpigmentation is evident as small areas 

of pigment clumping, resulting from an increase in the melanin content of RPE cells, or 

from cell proliferation or migration (Bressler et al., 1994). In contrast, focal 

hypopigmentation manifests as small patches of mottled pigment, in areas where the 

melanin content of RPE cells is reduced, potentially due to RPE atrophy or thinning. Focal 

pigment changes are associated with an increased risk of progression to advanced disease 

(Klein et al., 1997). 

 

1.2.2.3. Geographic atrophy (GA) 

Geographic atrophy represents the end stage of dry AMD (Bird et al., 1995; AREDs, 

2001). It is characterised by well demarcated areas of RPE atrophy, a reduction in retinal 

thickness and increased visibility of the underlying choroidal vasculature (Biarnes et al., 

2011). GA progresses slowly over time and is associated with a gradual reduction in VA 

and the development of scotomas, which can significantly impair visual function (Sunness 

et al., 2008), although the fovea is typically preserved until relatively late in the disease 

process (Sunness et al., 2008). 
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1.2.2.4. Neovascular AMD (nAMD) 

In healthy eyes, the choroidal architecture is maintained by a balance between the anti-

angiogenic growth factor PEDF (pigment epithelial derived factor), also present in the 

optically clear cornea and vitreous, and the pro-angiogenic growth factor VEGF (vascular 

endothelial growth factor). In eyes with advanced AMD, a local imbalance of these growth 

factors in favour of VEGF induces inward growth of capillaries from the choroid, through 

Bruch’s membrane, into the subretinal space (Roth et al., 2004). Patients may report 

metamorphopsia and blurring or loss of vision and a green-grey lesion may be visible 

ophthalmoscopically. As the new vessels are fragile, they are prone to leakage and 

haemorrhage and are therefore often associated with hard exudate, subretinal or intraretinal 

haemorrhage and pigment epithelial detachment (PED). Ultimately, the end stage of wet 

AMD is the formation of a disciform scar, with accompanying absolute scotoma, which 

leads to devastating central vision loss. 

 

1.2.2.5. Pigment epithelial detachment (PED) 

Pigment epithelial detachments occur between the basal lamina of the RPE and the inner 

collagenous layer of Bruch’s membrane. Clinically, this is visible as a well-demarcated 

round elevation of the retina, usually confined to the macula. PEDs are generally 

asymptomatic, except when the fovea is affected. There are three types of PED associated 

with AMD, which may be differentially diagnosed using fluorescein and indocyanine 

green angiography: serous, fibrovascular and drusenoid (Zayit-Soudry et al., 2007). 

Although PEDs may spontaneously flatten, there is a risk of tearing and vision loss 

(Pauleikhoff et al., 2002). 

 

1.2.3. Clinical classification of AMD 

Prior to the 1990s, there were no standardized definitions or severity scales for grading of 

AMD. The development of a standardized system was deemed necessary to enhance the 

comparability of results between research studies. The ‘Wisconsin Age-related 

Maculopathy Grading System’ (Klein et al., 1991a) was initially developed for use in the 

Beaver Dam and Framingham eye studies (Krueger et al., 1980; Klein et al., 1991b). This 

formed the basis for the ‘International Classification and Grading System’ (Bird et al., 

1995) and the ‘Age-related Eye Disease Study System’ (AREDS, 2001; Davis et al., 2005; 

Ferris et al., 2005). 
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Table 1.1. Classification of AMD according to the AREDS Grading System (modified 

from Davis et al., 2005). C-1, C-2, I-2, O-2 and DA (disc area) denote the standard circles 

used to assess the size of the fundus features (Figure 1, Davis et al., 2005). The final 

column shows how participants were classified during the investigations included in this 

thesis. As the AREDS scale was primarily developed to allow monitoring of disease 

progression, it did not originally include steps 10 and 11 (late AMD). 

Step Drusen area Increased 

pigment 

 Depigmentation-

Geographic 

atrophy 

 

 

1  < C-1 0  0 Normal 

ageing 

2  ≥ C-1, < C-2, 

< C-1 

0 

≥ Q 

 

&/or 

0 

≥ Q, < 1-2 

Early 

3 ≥C-2, < I-2 0  0 Early 

4 

 

≥ I-2, < O-2 

≥ C-1, < I-2 

< C-2 

0 

≥ Q 

≥ 0 

 

&/or 

0 

≥ Q, < I-2 

≥ I-2, < 0.5 DA 

Early 

5 ≥ O-2, < 0.5 DA 

≥ I-2, < O-2 

≥ C-2, < I-2 

0 

≥ Q 

≥ 0 

 

&/or 

0 

≥ Q, < I-2 

≥ I-2, < 0.5 DA 

Early 

6 ≥ 0.5 DA 

≥ O-2, < 0.5 DA 

≥ I-2, < O-2 

0 

≥Q 

≥ 0 

 

&/or 

0 

≥Q, < I-2 

≥ I-2, < 0.5 DA 

Early 

7 ≥ 0.5 DA 

≥ O-2, < 0.5 DA 

≥ Q 

≥ 0 

&/or ≥ Q, < I-2 

≥ I-2, < 0.5 DA 

Intermediate 

8 ≥ 0.5 DA 

Any 

≥ 0 

≥ 0 

 ≥ I-2, < 0.5 DA 

≥ 0.5 DA 

Intermediate 

9 Any ≥  Noncentral 

geographic atrophy  

Intermediate 

10 Central geographic atrophy Late 

11 Wet AMD Late 

 

These grading systems are based purely on the morphological changes that occur in the 

ageing eye; visual acuity is disregarded (Bird et al., 1995). Colour stereoscopic fundus 

photographs are used to identify key stages of the disease, including early AMD, dry AMD 

or wet AMD (Bird et al., 1995; AREDS, 2001; Davis et al., 2005; Ferris et al., 2005). 

Table 1.1 summarises the diagnostic criteria for AMD based on The Age-Related Eye 
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Disease Study grading scale (AREDS) (AREDS, 2001; Davis et al., 2005). The 

International Classification and Grading System (Bird et al., 1995) comprises fewer 

subsections with which to classify the disease (Table 1.2). During this thesis, drusen and 

pigmentary changes will be defined as ‘early AMD’, while geographic atrophy (GA) and 

neovascular AMD (nAMD) will be defined as ‘late AMD’. 

 

Table 1.2. Classification of AMD according to the International Classification and 

Grading System (modified from Bird et al., 1995) 

Disease status Diagnostic criteria 

Early AMD Drusen with or without associated pigment and/or hypopigmentation 

of the RPE 

Late AMD: dry Geographic atrophy > 175µm in diameter 

Late AMD: wet At least one of the following: subRPE/subretinal neovascular 

membrane, RPE detachment, hard exuates, subretinal haemorrhage, 

disciform scar 

 

1.2.4. Risk factors for AMD 

Age-related macular degeneration is a disease of the ageing eye and it is widely agreed that 

increasing age is the most inextricable risk factor for the development and progression of 

AMD (Evans, 2001; Buch et al., 2005; Coleman et al., 2008). There are however many 

additional factors that are closely associated with the progression of AMD. For excellent 

reviews of risk factors for AMD, the reader is referred to Evans (2001), Seddon et al. 

(2009) and Chakravarthy et al. (2010). A summary of the key risk factors that are strongly 

associated with the development and progression of AMD is included here. 

 

1.2.4.1. Smoking 

Smoking is the most significant modifiable risk factor for AMD (Thornton et al., 2005; 

Khan et al., 2006; Klein et al., 2008b), most likely as a result of the oxidative damage it 

induces (Thornton et al., 2005) (see section 1.2.5.1, page 19). The duration and intensity of 

the smoking have been shown to influence the degree of risk (Khan et al., 2006; Chang et 

al., 2008) and the risk of developing AMD may increase by up to five times for a current 

smoker compared an individual that has never smoked (Smith et al., 1996). However, these 

effects appear to be reversible, as it has been shown that 20 years after ceasing to smoke, 

an individual’s risk of developing AMD becomes similar to that of a non-smoker (Khan et 

al., 2006). 
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1.2.4.2. Genetics 

 A family history of AMD is associated with an increased risk of disease development 

(Klein et al., 2001) and correspondingly AMD has been shown to occur more frequently 

and at a younger age in the first degree relatives of patients with late stage AMD (Klein et 

al., 2001). Similarly, studies of twins have shown a higher concordance of AMD in 

monozygotic twins compared to dizygotic twins (Hammond et al., 2002). Attempts to 

identify the genetic risk factors for AMD are ongoing and recently a number of genetic 

variants have been shown to be independently associated with an increased prevalence and 

incidence of AMD (Seddon et al., 2009), in particular, the complement factor H (CFH) 

gene, the C2 gene, both associated with the complement pathway, and the age-related 

maculopathy susceptibility (ARMS2) gene (Bergeron-Sawitzke et al., 2009; Farwick et al., 

2009; Seddon et al., 2009; Ting et al., 2009). 

 

1.2.4.3. Race 

Racial differences in the incidence of AMD have been demonstrated. A higher risk of the 

development and progression of large drusen and pigmentary abnormalities at the macula, 

as well as progression to late stage AMD has been demonstrated in white people compared 

to black people (Klein et al., 2003a; Klein et al., 2006 Chang et al., 2008; Klein, 2011; 

Klein et al., 2011). It has been suggested that the higher concentration of melanin present 

in darker skin may help to protect the RPE and outer retina against oxidative damage 

(Jampol and Tielsch, 1992). The evidence regarding the prevalence of AMD in Hispanics 

has previously been inconclusive (Klein, 2011). However, recent studies have shown that 

although the prevalence of early AMD may be similar in Hispanic and white populations, 

Hispanic people are less likely to develop late AMD (Klein et al., 2006; Varma et al., 

2010; Klein, 2011; VanderBeek et al., 2011). 

 

1.2.4.4. General health 

A recent systematic review of the literature identified several aspects of a patient’s general 

health that have been consistently associated with the development of late AMD 

(Chakravarthy et al., 2010). These included cardiovascular disease, in which the risk of late 

AMD is doubled, hypertension and elevated levels of plasma fibrinogen. In addition, the 
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risk of late stage disease increased with increasing body mass index (BMI) (Chakravarthy 

et al., 2010). 

 

1.2.4.5. Diet 

The retina is particularly prone to oxidative damage (Beatty et al., 2000) (See Section 

1.2.5.1, Page 19). Anti-oxidant enzymes, vitamins and caratenoids have been proposed to 

minimise this damage and therefore lower the risk of progression to advanced AMD 

(Evans, 2008). The Age-Related Eye Disease Study (AREDS) Research Group 

investigated the ability of high-dose antioxidant vitamins (C, E and beta carotene) and zinc 

to delay the development of advanced AMD (Kassoff et al., 2001; Chew et al., 2009). The 

4757 participants were classified on the basis of their fundus appearance, before they were 

randomly assigned to receive one of four types of oral tablets daily: antioxidants, zinc, 

antioxidants plus zinc or a placebo. There was a 25% reduction in the risk of progression to 

advanced AMD in those participants that exhibited signs of AMD (extensive intermediate 

drusen, large drusen or advanced AMD) on commencing supplementation with the anti-

oxidant vitamin and zinc formulation (Kassoff et al., 2001). Consequently the study 

concluded that that these supplements should be recommended to patients at a high risk of 

developing advanced disease (Kassoff et al. 2001; Chew et al., 2009). 

 

Docosahexaenoic acid (DHA) is a type of omega-3 fatty acid present in high concentration 

in the photoreceptor outer segments (Krishnadev et al., 2010). These fatty acids cannot be 

synthesized by humans and therefore must be obtained wholly from dietary sources. There 

is an emerging body of evidence to suggest that a diet rich in omega-3 fatty acids is 

associated with a reduced risk of AMD (SanGiovanni et al., 2009; Tan et al., 2009; 

Krishnadev et al., 2010; Christen et al., 2011; Ho et al., 2011; Merle et al., 2011). For 

example, in a large cohort (n=2454) included in a recent epidemiological study, one 

serving of fish each week was associated with a reduction of the 10-year risk of incident 

early AMD (Tan et al., 2009). Furthermore, the risk of progression to advanced disease has 

been shown to be lowest in the proportion of the population with the highest consumption 

of omega-3 fatty acids (SanGiovanni et al., 2009). 

 

Macular pigment comprises the xanthophylls lutein and zeaxanthin (Bone et al., 1985). 

These plant pigments selectively accumulate at the macula, although they are present in 
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lower concentrations throughout the retina (Ahmed et al., 2005). They must be obtained 

entirely from dietary sources and are abundant in a variety of coloured fruit and vegetables, 

especially dark green leafy vegetables, and corn products (Sommerburg et al., 1998; Perry 

et al., 2009). Macular pigment is thought to play a crucial role in limiting light induced 

damage to the retina (Ahmed et al., 2005) and correspondingly a diet rich in these nutrients 

has been shown to reduce the risk of AMD (Gale et al., 2003; Delcourt et al., 2006; 

SanGiovanni et al., 2007; Tan et al., 2008). Two large multi-centre, randomised-control 

trials are underway to systematically assess the effects of daily oral supplementation with 

lutein and zeaxanthin, in conjunction with anti-oxidant vitamins (Neelam et al., 2008) and 

omega-3 fatty acids (AREDS2, 2012), on the progression to advanced AMD. 

 

1.2.4.6. Sunlight 

The effect of exposure to sunlight on the development of AMD is less clear. The amount of 

leisure time spent outside before the age of 40 years has been linked to the development of 

AMD (Cruickshanks et al., 2001) and a significant association between extended exposure 

to sunlight and the 10-year incidence of early AMD has been reported (Tomany et al., 

2004). However, there is additional evidence to suggest that the effect of sunlight is only 

significant in individuals with low antioxidant levels (Fletcher et al., 2008). 

 

1.2.5. Pathogenesis of AMD 

Age-related macular degeneration is a complex multi-factorial disease, in which a series of 

overlapping events contribute to abnormalities in the photoreceptors, RPE, Bruch’s 

membrane and choroid. 

 

1.2.5.1. Oxidative stress 

Oxygen metabolism during aerobic respiration releases energy from carbohydrates, 

proteins and lipids. The physiological by-products of this process are reactive oxygen 

intermediates (ROIs) and comprise free radicals, hydrogen peroxide and singlet oxygen 

(Beatty et al., 2000). These ROIs cause cellular damage, known as oxidative stress. The 

retina is particularly prone to oxidative damage because of its high oxygen demands, its 

life-long exposure to visible light, the high proportion of polyunsaturated fatty acids in the 

photoreceptor outer segments and RPE phagocytosis (Beatty et al., 2000). 

 



Chapter 1 

 

20 

 

The human body uses antioxidants to neutralise the effect of ROIs (Muller et al., 2007). At 

the macula, this function is fulfilled by the macular pigments lutein and zeaxanthin. 

However, with increasing age the quantity of ROIs often exceeds the capacity of these 

antioxidants, resulting in tissue damage. At the macula this manifests as RPE and 

photoreceptor cell death, increases in the thickness of Bruch’s membrane with a 

subsequent reduction in its permeability and the up-regulation of VEGF (Kannan et al., 

2006). 

 

There is a range of evidence to indicate that oxidative mechanisms contribute to the disease 

process in AMD. Firstly, smoking, the primary modifiable risk factor for AMD, is known 

to exacerbate oxidative stress (Thornton et al., 2005; Khan et al., 2006; Klein et al., 

2008b). In addition, clinical studies have demonstrated that the risk of developing 

advanced AMD is reduced by supplementation with antioxidant vitamins and minerals 

(Kassoff et al., 2001; Chew et al., 2009; Ho et al., 2011). This is consistent with evidence 

that individuals with high levels of systemic carotenoids are less likely to develop 

advanced AMD (Sperduto, 1993), and post-mortem studies that have demonstrated that a 

reduction in the concentration of macular pigments lutein and zeaxanthin is associated with 

an increased risk of AMD (Bone et al., 2001). Finally, a series of studies have recorded 

higher level of systemic homocysteine, an amino acid that rapidly oxidises to form ROIs, 

in patients with AMD compared to controls (Coral et al., 2006; Seddon et al., 2006; 

Rochtchina et al., 2007). 

 

1.2.5.2. Lipofuscin formation 

Incomplete phagocytosis of photoreceptor outer segments by the RPE and prolonged 

oxidative stress gradually leads to the accumulation of lipofuscin granules in the lysosomal 

compartments of RPE cells (Wolf, 2003; Roth et al., 2004; Schmitz-Valckenberg et al., 

2009). Lipofuscin contains a cytotoxic component which further aggravates oxidative 

damage and contributes to the impairment of RPE function (Wolf et al., 2003; Roth et al., 

2004). This impairment of RPE function is considered to be a critical event in the 

development of AMD (Nowark, 2006) and may initiate the complement cascade, leading 

to chronic inflammation at the macula (Zhou et al., 2006). 
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1.2.5.3. Chronic inflammation and the immune response 

There is a growing body of evidence to suggest that inflammatory processes contribute to 

the pathogenesis of AMD. Inflammatory markers, including elevated levels of plasma 

fibrinogen (Smith et al., 1998; Chakravarthy et al., 2010) and a high white blood cell count 

(Klein et al., 2003b; Shankar et al., 2007; Yasuda et al., 2009) are associated with the 

development of both early and advanced AMD. Proteins that are associated with the 

immune response have been identified in drusen (Hageman et al., 2001; Rodrigues, 2007; 

Buschini et al., 2011). These drusen and additional debris trapped between the RPE and 

Bruch’s membrane generate a local pro-inflammatory signal which, in turn, initiates the 

complement cascade, an innate physiological immune reaction to dead, damaged or foreign 

cells (Roth et al., 2004).  

 

Genetic polymorphisms in the complement factor H (CFH) gene and other regulatory 

proteins involved in the complement cascade have also been shown to have a significant 

role in the development and progression of AMD (Donoso et al., 2006; Fletcher and 

Chong, 2008; Kanda et al., 2008; Bergeron-Sawitzke et al., 2009; Farwick et al., 2009; 

Seddon et al., 2009; Ting et al., 2009). These polymorphisms lead to uncontrolled 

complement activation and alter the cellular response of the RPE to injury (Nowark, 2006). 

 

Most recently, a link between C-reactive protein (CRP) and AMD has been established. 

CRP is an initiation factor that is bound by CFH during the complement cascade that has 

previously been identified as a major risk factor for cardiovascular disease (Hong et al., 

2011). A recent meta-analysis of the literature demonstrated a significant association 

between high levels of serum and plasma CRP (greater than 3mg/L) and late stage AMD, 

although the association with early AMD was weaker (Hong et al., 2011). 

 

It has been proposed that the pathological changes associated with AMD are initially 

triggered by ageing and oxidative stress and that subsequent cellular damage is amplified 

by the inflammatory response (Figure 1.9) (Kanda et al., 2008). The clinical presentation 

of the disease is therefore subject to immense individual variation as it is influenced by 

polymorphisms in the genes governing the inflammatory process. 
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Figure 1.9. The proposed role of inflammation and the immune response in the 

pathogenesis of AMD (Kanda et al., 2008). 

 

1.2.5.4. Hypoxia and choroidal vascular changes 

As described (See Section 1.2.2.4, Page 14), in healthy eyes, the choroidal architecture is 

maintained by a balance between numerous growth factors, including the anti-angiogenic 

growth factor PEDF and the pro-angiogenic growth factor VEGF. Hypoxia in retinal cells 

has been shown to increase VEGF expression (Aiello et al., 1995; Blaauwgeers et al., 

1999; Stefánsson et al., 2011), which, in turn, induces the inward growth of blood vessels 

from the choroid. Support for this relationship between hypoxia, VEGF and angiogenesis 

has emerged from studies that have identified ‘Hypoxia inducible factor’ (HIF) in the 

endothelium and macrophages of the choroidal neovascular membrane (CNVM) (Inoue et 

al., 2007; Sheridan et al., 2009). 

 

In the healthy eye, the choroidal circulation is barely sufficient to meet the metabolic needs 

of the outer retina, and the partial pressure of oxygen falls to almost zero proximal to the 

photoreceptor outer segments in the dark adapted eye (Wangsa-Wirawan & Linsenmeier, 

2003). The changes to the choroidal circulation and Bruch’s membrane that occur in AMD 

are therefore hypothesised to result in outer retinal hypoxia (Feigl, 2009; Stefánsson et al., 
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2011). In the healthy retina, oxygen diffuses from the choriocapillaris, through Bruch’s 

membrane to the RPE and photoreceptors. However, the reduction in the density of the 

choriocapillaris that occurs with increasing age and in AMD (Ramrattan et al., 1994) 

causes delayed choroidal perfusion and decreased choroidal blood flow (Ciulla et al., 

2002). This hinders removal of waste from the RPE, exacerbating drusen formation and 

changes to the RPE and Bruch’s membrane (Feigl, 2009). Soft confluent drusen and 

thickening of Bruch’s membrane increase the distance between the choriocapillaris and the 

retinal cells, which disturbs the delivery of oxygen to the cells, thereby further promoting 

hypoxia (Stefánsson et al., 2011). Correspondingly increasing drusen size has been shown 

to be associated with an increased risk of CNV (Solomon et al., 2009). Similarly, retinal 

elevation, detachment and oedema all effectively thicken the retina, which increase the 

distance over which the oxygen has to diffuse and increases the risk of hypoxia (Stefánsson 

et al., 2011). The effect of these hypoxic changes may be exaggerated by vitreoretinal 

adhesion, which reduces the diffusion of oxygen towards hypoxic retinal locations 

(Stefánsson et al., 2011). In addition, inflammation is proposed to independently stimulate 

formation of VEGF (Stefánsson et al., 2011) and chronic sub-RPE inflammation causes 

local damage to Bruch’s membrane, which facilitates the subsequent protrusion of vessels 

through the membrane (Roth et al., 2004). 

 

1.2.6. Clinical investigation of AMD 

Historically, AMD has been evaluated clinically using measures of visual acuity, central 

visual field testing and fundus photography. However, there are a range of new techniques 

that may be more sensitive to the changes that occur in early AMD. In particular, 

psychophysical tests of visual function and advanced imaging techniques may be used to 

detect subtle changes at the macula before they are visible ophthalmoscopically (Neelam et 

al., 2009). 

 

1.2.6.1. Fundus photography 

Digital retinal photography is the primary method used to image the posterior pole in the 

clinic and in the absence of more advanced imaging techniques is a useful method for 

detecting AMD and for monitoring its progression (Jain et al., 2006). It has been suggested 

that colour fundus photographs should be used in conjunction with optical coherence 

tomography (OCT) to establish the need for treatment of wet AMD (Hibbs et al., 2011). 
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Stereoscopic fundus photography is particularly advantageous as it allows appreciation of 

the height and depth of retinal features. All of the AMD grading systems described in 

Section 1.2.3 (Page 14) are based solely on the assessment of morphological changes in the 

eye using colour stereoscopic photographs and templates to aid assessment of lesion size 

and location (Bird et al., 1995; AREDS, 2001; Davis et al., 2005; Ferris et al., 2005). 

 

1.2.6.2. Fundus angiography (FA) 

Prior to the development of OCT imaging, fundus angiography (FA) was the gold standard 

for evaluating the integrity of the macula (Yannuzzi, 2011). Fluorescein or Indocyanine 

Green dye is administered via intravenous injection and sequential fundus photos are taken 

to assess the choroidal and retinal circulation, using filters to excite the molecules within 

the dye (Lim et al., 2012). Hyperfluorescence caused by leakage of the dye may is 

indicative of wet AMD and may be classified by location and type (Lim et al., 2012). A 

classic neovascular lesion is well defined and causes early leakage of dye, whereas an 

occult lesion is less well defined and does not leak until later.  

 

1.2.6.3. Fundus autofluorescence (FAF) 

As discussed (Section 1.2.5.1, Page 19), the prolonged oxidative stress that is associated 

both with normal ageing and AMD leads to an accumulation of lipofuscin granules in the 

lysosomal compartments of RPE cells (Wolf, 2003; Roth et al., 2004; Schmitz-

Valckenberg et al., 2009). The autofluorescent phosphores within the granules emit a 

characteristic yellow fluorescence when stimulated with blue light (Heimes et al., 2008; 

Schmitz-Valckenberg et al., 2009). The development of the confocal scanning laser 

ophthalmoscope has facilitated the assessment of the distribution of fundus 

autofluorescence (FAF) in the eye (Midena et al., 2007; Schmitz-Valckenberg et al., 2009). 

Changes in autofluorescence have been shown to be associated with drusen (vonRuckmann 

et al., 1997; Delori et al., 2000; Roth et al., 2004), geographic atrophy (vonRuckmann et 

al., 1997; Holz et al., 2001; 2007), CNVM (vonRuckmann et al., 1997; Spaide, 2003; Silva 

et al., 2011) and a reduction in visual sensitivity (Midena et al., 2007). 

 

1.2.6.4. Optical coherence tomography (OCT) 

Although retinal photography has previously been used to monitor the progression of 

AMD over time, in the last decade, optical coherence tomography (OCT) has emerged as a 
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valuable clinical tool for the analysis of retinal microstructure (Yasuno et al., 2009; Chung 

et al., 2011; Wood et al., 2011a). This non-invasive technique constructs high resolution 

cross-sectional images of the retina (Figure 1.10) by using low coherence light to measure 

the backscattered light from within the tissue (Wood et al., 2011a). OCT is now 

acknowledged as the standard clinical method for the assessment of AMD in hospital 

ophthalmology clinics (Drexler & Fujimoto, 2008) and recently, novel algorithms have 

been developed to allow automated volumetric analysis of drusen, which can be used to 

assess disease progression over time (Gregori et al., 2011; Yehoshua et al., 2011). 

 

Figure 1.10. OCT images from our laboratory, obtained using a Spectral Domain OCT 

operating at 1050nm, showing soft drusen (top panel), geographic atrophy (middle panel) 

and CNV (bottom panel). 

 

1.2.6.5. Visual acuity (VA) 

Visual acuity is the standard psychophysical test of visual function in the clinic. However, 

there is considerable variation in the best corrected VA attained by patients with AMD, 

most likely as a result of the heterogeneity of the lesions associated with the disease 

(Beirne et al., 2006, Sunness et al., 2008). Although advanced AMD is associated with a 

significant reduction in VA, during the earlier stages of the disease process, VA remains 
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relatively unaffected (Klein et al., 1995). As early AMD is typically characterised by the 

absence of noticeable vision loss (Bird et al., 1995) and foveal vision often remains intact 

until relatively late in the disease (Sunness et al., 2008), the measurement of VA in 

isolation has limited diagnostic potential. 

 

1.2.6.6. Visual field testing 

During visual field testing, the sensitivity of the eyes is determined at a range of retinal 

locations, by presenting stimuli of variable intensity. Generally, lower mean sensitivities in 

the central field have been reported in patients with AMD compared to healthy controls 

(Midena et al., 1994; 1997; Owsley et al., 2000) and focal sensitivity losses have been 

recorded over large soft drusen (Takamine et al., 1998; Midena et al., 1997). However, 

standard automated perimetry is rarely used in the clinical assessment of AMD. 

 

Conventional visual field testing requires stable foveal fixation and is therefore likely to be 

inaccurate for the precise evaluation of macular disorders (Rohrschneider et al., 2008). In 

recent years, microperimetry has been used as an alternative technique to evaluate the 

central visual field in AMD. Microperimetry is based on integrating fundus images with 

computerised threshold perimetry, in order to correlate fundus lesions to retinal sensitivity 

(Rohrschneider et al., 2008). The technique has been used effectively to identify and 

monitor the progression of geographic atrophy (Rohrschneider et al., 2008; Meleth et al., 

2011) and to monitor the accumulation of lipofuscin in the RPE cells (Midena et al., 2007). 

Furthermore, microperimetry has been shown to be a more sensitive measure of visual 

outcome after antiVEGF therapy than the assessment of visual acuity (Parravano et al., 

2010). 

 

The technique classically used to assess the integrity of the central visual field in macular 

disease is the Amsler grid (Amsler, 1953). The patient is instructed to fixate the centre of a 

grid pattern presented monoculary and to report any defects or disturbances to the pattern. 

The chart may also be used by patients to self-monitor their vision at home. A sudden 

onset of distortion is considered to indicate incipient wet AMD, requiring urgent 

ophthalmological assessment. 
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1.2.6.7. Contrast sensitivity 

As discussed (Section 1.2.6.5, Page 25), visual acuity, that is, the highest spatial frequency 

that may be resolved by the visual system at 100% contrast (Owsley, 2003), is relatively 

unaffected by early macular disease (Bird et al., 1995; Klein et al., 1995) and there is 

considerable variation in the best corrected visual acuity attained by patients with advanced 

AMD (Beirne et al., 2006; Sunness et al., 2008). Consequently the assessment of contrast 

sensitivity across a range of spatial frequencies has been investigated as a more 

comprehensive assessment of visual function in AMD. 

 

A range of studies have demonstrated a loss of contrast sensitivity across all spatial 

frequencies in early AMD, with the most marked reduction at medium and high spatial 

frequencies (Kleiner et al., 1988; Stangos et al., 1995; Midena et al., 1997; Feigl et al., 

2005a; Mei & Leat, 2007; Hahn et al., 2009). This is accompanied by a shift in the peak of 

the contrast sensitivity function towards lower spatial frequencies (Mei & Leat, 2007). 

These changes in contrast sensitivity have been shown to correlate with disease severity 

(Kleiner et al., 1988; Midena et al., 1997). 

 

1.2.6.8. Temporal sensitivity 

Temporal vision describes the eye’s ability to detect flickering stimuli (Neelam et al., 

2009). A reduction in temporal sensitivity across a range of temporal frequencies has been 

demonstrated in patients with early AMD compared to control patients (Mayer et al., 1992; 

1994; Phipps et al., 2003; Dimitrov et al., 2011), especially at low to mid-temporal 

frequencies (Mayer et al., 1992; 1994). In addition flickering stimuli may be more sensitive 

to functional changes in AMD than static stimuli because of the increased metabolic 

demand placed on the retina by the flicker (Kiryu et al., 1995). 

 

1.2.6.9. Colour vision 

The majority of studies that have examined the relationship between colour vision and 

AMD indicate that colour discrimination deteriorates in early AMD, with tritan defects 

most commonly recorded (Eisner et al., 1991; 1992; Cheng & Vingrys, 1993; Frennesson 

et al., 1995; Arden & Wolf, 2004; Feigl et al., 2005a). These defects have been shown to 

progressively worsen in patients at high risk of developing wet AMD (Eisner et al., 1991; 

1992; Arden & Wolf, 2004). 
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1.2.6.10. Dark adaptation 

Dark adaptation classically refers to the relatively slow recovery of visual threshold that 

occurs in the dark following exposure to a bright light (Lamb & Pugh, 2004). Patients with 

early AMD often report visual difficulties when moving from high to low illumination and 

there is an emerging body of evidence to suggest that dark adaptation is a sensitive 

biomarker for the disease (Brown & Lovie-Kitchin, 1983; Eisner et al., 1987a; Collins & 

Brown, 1989; Eisner et al., 1991; Sandberg & Gaudio, 1995; Midena et al., 1997; Owsley 

et al., 2001; Phipps et al., 2003; Binns & Margrain, 2007; Owsley et al., 2007; Dimitrov et 

al., 2008; 2011). That is, it is a characteristic that may be objectively measured and 

evaluated as an indicator of normal and pathogenic biological processes (Puntmann, 2009). 

In studies that have measured a range of visual functions in patients with AMD, dark 

adaptation abnormalities appear to be the most sensitive markers for the condition (Eisner 

et al., 1991; Phipps et al., 2003; Owsley et al., 2001). For example, Eisner et al. (1991), 

showed that although colour vision and dark adaptation parameters both provided 100% 

specificity in AMD, the sensitivity of photopic dark adaptation (65%) was superior to that 

of the colour matching (48%). A comprehensive discussion of the relationship between 

dark adaptation and AMD is included later in this chapter (Section 1.3.5.3, Page 42). 

 

1.2.7. Prevention and treatment 

The treatment options for AMD have evolved rapidly over recent decades and are 

constantly advancing. Currently, most treatments target the neovascular form of the 

disease. 

 

1.2.7.1. Focal laser photocoagulation 

The first treatment for wet AMD to be used with some success was laser photocoagulation. 

This technique uses a laser burn to occlude the leaking blood vessels of the neovascular 

membrane (Chakravarthy et al., 2006). It has been shown to reduce the rate of vision loss 

in small well demarcated lesions, although its efficacy for poorly demarcated lesions is less 

clear (Hawkins and Fine, 1993). However, the laser causes irreversible damage to the 

overlying retina and the resultant scotoma renders the technique unsuitable for the 

treatment of subfoveal lesions (Ciulla et al., 1998; Chakravarthy et al., 2006). In addition, 

high recurrence rates of CNV have been reported (Maguire et al., 1994). A review of 
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fifteen trials in which laser photocoagulation was used to treat wet AMD concluded that 

although laser photocoagulation of the CNVM was shown to slow vision loss in wet AMD, 

in many cases the technique was contraindicated for use in the clinic as a result of the 

associated scotoma and the risk of laser-induced vision loss (Virgili & Bini, 2007). 

 

1.2.7.2. Verteporfin photodynamic therapy (PDT) 

The aim of PDT is to reduce the rate of vision loss in AMD by destruction of the CNVM 

without damage to the overlying retina. Verteporfin, a benzoporphyrin derivative, is 

administered via intravitreous injection and shows a selective uptake by active neovascular 

vessels, providing a targeted therapy for wet AMD (National Institute for Health and 

Clinical Excellence, 2003). Activation of the Verteporfin using a low powered laser causes 

the formation of short-lived free radicals that induce major platelet action, thrombosis and 

subsequent occlusion of the new vessels (Chakravarthy et al., 2006; Cruess et al., 2009). 

Photodynamic therapy is considered superior to focal laser photocoagulation due to the 

preservation of the overlying retina.  Early multi-centre randomized placebo-controlled 

trials of patients with subfoveal CNV showed that PDT reduced the risk of vision loss in 

patients with predominantly ‘classic’ (well-defined) AMD lesions over a 36 month follow 

up period, but was less effective for minimally classic or ‘occult’ lesions (Bressler, 1999; 

Blumenkranz et al., 2001; Bressler, 2002; Greve et al., 2005; Cruess et al., 2009). 

Consequently, the National Institute for Health and Clinical Excellence (NICE) guidelines 

recommend the use of PDT for the treatment of classic AMD lesions only (National 

Institute for Health and Clinical Excellence, 2003). 

 

1.2.7.3. Anti-VEGF drugs 

As discussed (section 1.2.2.4, page 14), the formation of the neovascular membrane in wet 

AMD is induced by a local imbalance of soluble growth factors in favour of the pro-

angiogenic growth factor VEGF. Consequently, a series of pharmacological agents has 

been developed to inhibit VEGF. These anti-VEGF drugs are administered by intravenous 

injection. Ranibizumab (Lucentis; Novartis) is a humanised monoclonal antibody fragment 

that binds to all human isoforms of VEGF, whereas Pegaptanib (Macugen; Eyetech) is a 

pegylated modified oligonucleotide that selectively binds the VEGF-165 isoform 

(Chakravarthy et al., 2006). It is perhaps unsurprising that better visual outcomes have 

been recorded following treatment with Ranibizumab compared to Pegaptanib, and 
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therefore Ranibizumab is more commonly used (Ip et al. 2008). Under guidelines issued by 

the National Institute for Health and Clinical Excellence (NICE) Ranibizumab, but not 

Pegaptanib, is recommended for the treatment of wet AMD under the NHS in Britain 

(National Institute for Health and Clinical Excellence, 2008). It is appropriate for all major 

types of CNVM and is primarily indicated for active subfoveal lesions (Mitchell et al., 

2010). 

 

As the first treatment for wet AMD to generate a clinically significant improvement in VA, 

monthly Ranibizumab injections have proved groundbreaking (Brown et al., 2006; 

Rosenfeld et al., 2006; Brown et al., 2009). The most significant gain in VA has been 

shown to occur after the first injection and this level of VA is maintained when 

Ranibizumab injections are administered monthly (Figure 1.11). The recommended 

treatment schedule comprises an initial loading phase, in which an injection is 

administered monthly for the first three months. This is followed by a maintenance phase, 

in which the patient is monitored on a monthly basis and further injections administered as 

required (National Institute for Health and Clinical Excellence, 2008; Mitchell et al., 

2010). 

 

Figure 1.11. Mean change from baseline in best-corrected visual acuity by month, with 

administration of monthly Ranibizumab injections compared to a) monthly placebo 

injections (Rosenfeld et al., 2006) and b) monthly verteperfin PDT (Brown et al., 2009). 

 

A third anti-VEGF drug, Bevacizumab (Avastin; Genentech), a full-length monoclonal 

antibody that binds all human isoforms of VEGF, is not yet licensed for the treatment of 

AMD (Ip et al., 2008; Martin et al., 2011). However, recent trials have suggested that the 

effectiveness of Bevacizumab is as high as that of Ranibizumab (Martin et al., 2011) and, 

given the substantially lower unit cost of Bevacizumab, many advocate further 

B.A.
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investigation of its possible use for the treatment of wet AMD (Jackson & Kirkpatrick, 

2011; Martin et al., 2011; Mitchell et al., 2011). 

 

1.2.7.4. Management of dry AMD 

There is currently no effective treatment for dry AMD. Instead, preventative strategies can 

be used to reduce the risk of disease development, for example, patients should be advised 

to stop smoking (Khan et al., 2006) and sunglasses worn to protect the eyes from sunlight 

induced damage (Fletcher et al., 2008). Nutritional supplements and dietary advice may 

also be effective (see Section 1.2.4.5, Page 18). 

 

1.2.7.5. Novel therapies 

Although anti-VEGF therapy can improve VA in patients with wet AMD (Brown et al., 

2006; Rosenfeld et al., 2006; Brown et al., 2009), the monthly follow up appointments that 

are required to assess the need for retreatment place a huge pressure on limited healthcare 

resources. Consequently, alternative therapies are constantly being evaluated. A summary 

of some of the key emerging strategies is included here. 

 

There are some patients that do not respond to treatment with a single anti-VEGF agent 

(Miller 2010). As a result, combination therapy, in which PDT and/or intravitreal steroids 

are used in conjunction with an anti-VEGF agent, has been suggested in order to improve 

visual outcomes and to reduce the frequency of retreatment (Miller 2010; Couch & Bakri, 

2011). A recent review of the clinical trials that have assessed the outcomes of this therapy 

concluded that although favourable visual outcomes were achieved, further investigation is 

required to determine the optimal combination and dosage administered (Couch & Bakri, 

2011). 

 

As described (Section 1.2.5.3, Page 21), inflammation has a key role in the pathogenesis 

and progression of AMD. Consequently, a range of anti-inflammatory agents have been 

proposed as an addition or alternative to anti-VEGF therapy, including corticosteroids, 

nonsteroidal anti-inflammatories (NSAIDS) and immunosuppressive agents (Wang et al., 

2011). For an excellent review of the use of anti-inflammatory agents for the treatment of 

AMD the reader is referred to Wang et al (2011). 
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Stem cells transplanted into an injured central nervous system secrete neurotrophic factors 

and inflammatory modulators that provide neuroprotection for the tissue. Exploitation of 

this property for the treatment of neurodegenerative diseases such as AMD is currently 

under investigation (Bull & Martin, 2011). Subretinal transplantation of RPE cells aims to 

preserve photoreceptors, and therefore visual function, by replacing dysfunctional RPE 

with functional RPE generated from embryonic stem cells (Bull & Martin, 2011). It has 

been shown to improve retinal function in animal models of photoreceptor degeneration 

(Pinilla et al., 2007; Lu et al., 2009) and consequently a range of clinical trials to evaluate 

the technique in patients with AMD are currently planned (Bull & Martin, 2011). 

 

 

1.3. Visual adaptation 

As described previously in this chapter, a range of visual functions are affected by early 

AMD. In particular, there is an emerging body of evidence to suggest that dark adaptation 

is a sensitive biomarker for this disease (Brown & Lovie-Kitchin, 1983; Eisner et al., 

1987a; Collins & Brown, 1989; Eisner et al., 1991; Sandberg & Gaudio, 1995; Midena et 

al., 1997; Owsley et al., 2001; Phipps et al., 2003; Binns & Margrain, 2007; Owsley et al., 

2007; Dimitrov et al., 2008; 2011). This section outlines the physiology of dark adapation 

in the healthy retina, before reviewing the literature regarding the changes to dark 

adaptation that occur in AMD. 

 

1.3.1. Dark adaptation 

The human visual system functions over a vast light intensity range and generally adapts 

rapidly to changes in the ambient illumination. However, after exposure to a prolonged or 

intense adapting light source, the visual pigment becomes deactivated or ‘bleached’ and 

can take many minutes to recover. The slow recovery of visual sensitivity that occurs over 

time in the dark following exposure to an adapting light source is known as dark adaptation 

(Lamb and Pugh, 2004). 

 

After an intense bleach of visual pigment, the recovery of visual sensitivity follows a 

biphasic course (Figure 1.12), in which the visual threshold reduces (and correspondingly 

visual sensitivity increases) by approximately 5 log units during a 35-40 minute period of 

darkness (Hecht et al., 1937). During the first 10 minutes in the dark there is a rapid 
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reduction of visual threshold, followed by a period over which threshold remains stable, 

known as the cone plateau. The end of the plateau is marked by the rod-cone-break (RCB), 

after which threshold continues to reduce at a slower pace. The initial rapid reduction in 

visual threshold is mediated by the cones, while the slower threshold reduction that follows 

is governed by the rods (Hecht et al., 1937). The visual threshold at any given moment 

during dark adaptation is determined by the most sensitive photoreceptor system at that 

time and the RCB indicates the change in the dominant system. 

 

Figure 1.12. Dark adaptation functions for a normal observer recorded after exposure to 

adapting lights of increasing intensity (Hecht et al., 1937). 

 

The configuration of the dark adaptation function is affected by the characteristics of the 

adapting light. The full biphasic function is only evident at high adapting intensities (Hecht 

et al., 1937). As the intensity of the adapting light decreases, a lower proportion of 

photopigment is bleached and consequently the cone-mediated portion is less prominent 

(Figure 1.12). 

 

In addition, the shape of the dark adaptation curve is altered by variations in the parameters 

of the stimulus, including its retinal location, size and wavelength. Rod photoreceptor 

density increases with increasing retinal eccentricity (Curcio et al., 1990). Consequently, 

the rod portion of the curve becomes progressively more prominent as the position of the 

stimulus moves from the central to the peripheral retina (Figure 1.13) (Hecht et al., 1935). 

Similarly, as the size of the stimulus increases, exciting increasingly peripheral retinal 
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locations at which rod density is higher, as well as increasing the effect of spatial 

summation, the rod portion is accentuated and absolute threshold is reduced (Figure 1.13) 

(Hecht et al., 1935; Wolf & Zigler, 1950). Finally, short wavelength stimuli, to which the 

rods are maximally sensitive, induce a prominent rod portion (Hecht, 1937). 

 

Figure 1.13. Dark adaptation functions recorded using a 2º stimulus placed at different 

retinal eccentricities (left panel) and a centrally fixated stimulus of increasing size (right 

panel) (Hecht et al., 1935). 

 

1.3.2. Physiology of dark adaptation: the retinoid cycle 

The series of events, initiated by photon capture, which leads to the generation of visual 

signal, is known as phototransduction (Burns & Baylor, 2001). In the initial stages, the 11-

cis retinal chromophore is isomerised to all-trans retinal and the molecule becomes 

‘bleached’. Once activated in this way, the molecule is unable to respond to a further 

photon until the 11-cis retinal has been restored (Lamb & Pugh, 2004). In vertebrates, this 

process of photopigment bleaching and restoration is governed by a process known as the 

retinoid cycle (Figure 1.14). For an excellent review of the stages of the retinoid cycle, the 

reader is referred to Lamb and Pugh (2004), a summary of which appears below. 

 

Stage 1: Photoisomerization 

On absorption of a photon, the 11-cis retinal chromophore (in rhodopsin or the cone 

equivalent) is isomerised to all-trans retinal. 
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Figure 1.14. The retinoid cycle of vision (Lamb & Pugh, 2004). 

 

Stage 2: Metarhodopsin conversion 

Initially, the all-trans retinal exists as part of metarhodopsin I, but it is rapidly converted to 

metarhodopsin II. This corresponds with the bleaching of visual pigment. A third subtype, 

metarhodopsin III is also formed. 

 

Stage 3: Decay of metarhodopsin 

The covalent bond that exists between all-trans retinal and the intracellular membrane 

protein opsin is hydrolysed. Some of the all-trans retinal remains covalently bound to the 

opsin (Figure 1.14: 3a), while some is released as free retinoid and forms a condensation 

product in the lipid membrane (Figure 1.14: 3b). 

 

Stages 4, 5 and 6: Formation of all-trans retinol 

The all-trans retinol that remains covalently bound to the opsin is reduced to opsin-all-trans 

retinol (Ops-trans ROL) by the enzyme all-trans retinol dehydrogenase (RDH) and all-

trans retinol (Vitamin A) is then released. Simultaneously, the condensation product 
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formed by the free retinoid is reduced by RDH in the cytoplasm, forming additional all-

trans retinol. 

 

Stage 7: Transportation of all-trans retinol 

When the all-trans retinol moves across the IPM, it is chaperoned by the inter-

photoreceptor binding protein: IPBP, to increase its solubility. Within the RPE, this 

chaperone is replaced by the cellular retinol binding protein (CRBP). Similar chaperone 

processes exist throughout the retinoid cycle to ensure the delivery of the retinoid to the 

next locus of activity without degradation. 

 

Stages 8, 9 and 10: Formation of 11-cis retinal within the RPE 

The enzyme lecithin retinol acyl transferase (LRAT) is responsible for the esterification of 

all-trans retinol. The all-trans retinyl ester that is produced is chaperoned by the protein 

RPE65. The all-trans retinyl ester is then isomerized to 11-cis retinol by the enzyme retinyl 

ester isomerohydrolase. The 11-cis retinol then undergoes further oxidation to form 11-cis 

retinal, which is then chaperoned by the cellular retinaldehyde binding protein (CRALBP). 

 

Stages 11, 12 and 13: Formation of rhodopsin/cone photopigment 

The 11-cis retinal diffuses across the IPM to the photoreceptor outer segments. When it 

reaches the disc membranes in the photoreceptor outer segments, it forms a non-covalent 

bond with opsin. This is converted to a Schiff-base bond and rhodopsin, or the cone 

equivalent, is formed. 

 

1.3.3. The Müller cell hypothesis: An alternative pathway for photopigment 

regeneration 

Clearly, the presence of a healthy RPE is fundamental to photopigment renewal, and 

therefore the recovery of visual sensitivity, during the retinoid cycle. Correspondingly, 

little rhodopsin regeneration occurs in isolated rod photoreceptors (Goldstein, 1970; Jones 

et al., 1989). Conversely, there is a body of evidence to suggest that cone photopigment 

can regenerate in the absence of the RPE (Goldstein, 1970; Hood & Hock, 1973; Das et al., 

1992; Mata et al., 2002; Wang, & Kefalov, 2009; 2011). In addition, when RPE65, a 

protein normally abundantly expressed in the RPE, is deficient, all-trans retinyl ester is not 

converted to 11-cis retinal and there is no regeneration of rhodopsin (Redmond et al., 



Chapter 1 

 

37 

 

1998). However, regeneration of cone photopigment does occur in the RPE65 deficient 

retina (Redmond et al., 1998). This implies that the cone photoreceptors have access to an 

alternative supply of retinoid for photopigment regeneration. 

 

The Müller cells have been strongly implicated in the alternative pathway of cone 

photopigment regeneration (Das et al., 1992; Mata et al., 2002; Wang, & Kefalov, 2009; 

2011). Evidence for this secondary pathway initially emerged from studies of the cone-

dominated retina of ground-squirrel and chicken (Das et al., 1992; Mata et al., 2002). More 

recently, this additional pathway was also shown to exist in the rod-dominated retina of the 

mouse, primate and human (Wang & Kevlov; 2009). Rod photopigment can only 

regenerate when provided with 11-cis retinal (Jones et al., 1989). In contrast, cone 

photopigment will regenerate when provided with an alternative form of retinoid: 11-cis 

retinol. Müller cells contain all-trans-retinol isomerase and 11-cis-retinyl-ester synthase; 

catalytic enzymes that enable the Müller cells to take up all-trans retinol and convert it to 

11-cis retinol, which is then released into the surrounding media and taken up by the cones 

(Mata et al., 2002). A third enzyme, 11-cis-retinol dehydrogenase, present in cones but not 

rods, facilitates the final stages of photopigment regeneration. 

 

While rods and cones must compete for RPE derived 11-cis retinal, this additional pathway 

provides cones with an exclusive secondary source of retinoid. This facilitates rapid 

photopigment regeneration, which contributes to sustained visual sensitivity in photopic 

viewing conditions. It has been suggested that this Müller cell pathway has a critical role in 

the rod-dominated retina, in which the cones compete with the rods for a limited supply of 

11-cis retinal from the RPE (Mata et al., 2002). 

 

1.3.4. The retinoid cycle and visual threshold during dark adaptation 

Several theories have explored the close relationship between the retinoid cycle and visual 

threshold during dark adaptation, namely; the photochemical and equivalent background 

hypotheses. 

 

1.3.4.1. The photochemical hypothesis 

It was originally proposed that the visual threshold during dark adaptation was directly 

proportional to the amount of unbleached photopigment (Hecht et al., 1937), i.e. a 50% 
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bleach of photopigment would cause threshold to double. However, this hypothesis was 

later disproved when retinal densitometry data showed that although both the regeneration 

of rhodopsin and visual threshold during dark adaptation followed an exponential time 

course, threshold remained elevated by 3 log units after 90% of rhodopsin had regenerated 

(Campbell & Rushton, 1955). 

 

Following work in the albino rat (Dowling, 1960) and a rod monochromat (Rushton, 

1961), it was proposed that the logarithm of the visual threshold during dark adaptation 

was proportional to the concentration of bleached rhodopsin. This relationship between 

threshold and bleached rhodopsin is known as the Dowling-Rushton relationship (Equation 

1a) and for many years it was adopted as a comprehensive explanation of dark adaptation. 

The relationship was later also shown to provide an appropriate description of the 

regeneration of cone photopigment (Hollins & Alpern, 1973). 

 

Equation 1a.   log(It/Ia) = αB  

 

where It is the visual threshold at a given time, Ia is the final dark adapted threshold, α is a 

constant and B is the proportion of bleached rhodopsin. 

 

The Dowling-Rushton relationship was subsequently shown to be restricted to the 

description of dark adaptation under specific conditions only (Lamb, 1990; Lamb & Pugh, 

2004). When a low intensity photopigment bleach is administered, the initial threshold 

recorded is markedly higher than that predicted by the model, whereas at large bleaching 

intensities, the initial threshold is lower than predicted (Lamb, 1990). In addition, the 

constant ‘α’ included in the model has been shown to vary with the bleaching intensity and 

is therefore not actually a constant (Pugh, 1975). 

 

1.3.4.2. The equivalent background hypothesis 

Stiles and Crawford (1932) proposed that the elevation of threshold at any given time 

during dark adaptation may be described by an ‘equivalent background’. This theory 

suggests that sensitivity during dark adaptation is equivalent to that produced by exposure 

to an adapting light (the so-called ‘equivalent background’) and that this equivalent 

background has the same effect on vision as a real background light (Stiles & Crawford, 
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1932). Consequently, dark adaptation is considered to be a unique form of light adaptation, 

in which the adaptational state is quantified in terms of the intensity of a steady 

background light that would produce an equal desensitization of the retina. During dark 

adaptation, the equivalent background gradually fades and correspondingly, threshold 

decreases. The decay of the equivalent background was proposed to be related to a 

hypothetical photoproduct of bleaching (Stiles & Crawford, 1932). 

 

Figure 1.15. Dark adaptation functions (left panel) and increment threshold functions 

(right panel), recorded in response to a range of stimuli. Threshold at any given time in the 

dark may be described in terms of the adapting background that produces the same 

increment threshold as that recorded in the dark (Blakemore and Rushton, 1965). 

 

The equivalent background hypothesis states that threshold elevation, spatial resolution 

and temporal resolution measured at any given time during dark adaptation should be 

equivalent to those measured in the presence of a real background light. This was 

demonstrated by Blakemore and Rushton (1965). Dark adaptation and increment threshold 

functions were recorded using a range of stimuli, in a rod monochromat, (Figure 1.15). 

Although the shape of the dark adaptation curve and increment threshold function were 

different, for all stimuli the threshold at any given time in the dark was equivalent to that 

measured on a steady background. However, there is evidence to suggest that the 

equivalent background hypothesis breaks down under certain conditions, for example 

when the temporal modulation threshold is measured after exposure to a long, dim 

adapting light (Hayhoe & Chen, 1986). 
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Researchers have proposed that the photoproduct responsible for generating the equivalent 

background (and therefore threshold elevation) during dark adaptation is likely to be a 

metarhodopsin photoproduct, such as free-opsin or all-trans retinal (Lamb & Pugh, 2004). 

In the 1960s, threshold elevation was shown to be associated with the presence of 

metarhodopsin photoproducts (Donner & Reuter, 1967). Some years later, when rod dark 

adaptation data were collected at a range of bleaching intensities, the recovery of the 

logarithm of visual threshold was accurately described by three straight lines with recovery 

constants of 5, 100 and 400 seconds (Lamb, 1981). It was proposed that these distinct 

components were generated by the presence of metarhodopsin photoproducts (Lamb, 

1981). Additional evidence for the relationship between metarhodopsin photoproducts and 

visual threshold elevation emerged from work with the inorganic compound 

hydroxylamine (Leibrock et al., 1998). When added to rod photoreceptors hydroxylamine 

was shown to expedite threshold recovery during dark adaptation (Leibrock et al., 1998). 

As hydroxylamine is known to destroy metarhodopsin, this strongly implied that 

metarhodopsin photoproducts contribute to the elevation of visual threshold.  

 

As discussed (Section 1.3.2, Page 34), regeneration of visual pigment during dark 

adaptation requires the recombination of 11-cis retinal with free-opsin. The free-opsin 

formed when metarhodopsin is hydrolysed has been proposed to be responsible for 

threshold elevation during dark adaptation, particularly during the second component of 

rod recovery (Lamb & Pugh, 2004). The time course of threshold recovery during the 

second component of rod dark adaptation is therefore determined by the removal of opsin 

as it recombines with 11-cis retinal.  

 

1.3.5. Adaptational dysfunction 

 

1.3.5.1. Dark adaptation and age 

Visual difficulties in low illumination are often reported by elderly adults in the absence of 

ocular pathology (Kline et al., 1992; McGregor & Chaparro, 2005) and, correspondingly, a 

reduction in photopic and scotopic sensitivity with increasing age has been reported 

(Robertson & Yudkin, 1944; Steven 1946; Birren et al., 1948; Birren & Shock 1950; 

Eisner et al., 1987b; Sturr et al., 1997; Jackson et al., 1998). For example, scotopic 

sensitivity has been shown to decline by 0.51 log units between the ages of 20 and 80 years 
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(Jackson et al., 1998). The reduction in visual sensitivity that occurs with age may be 

partially explained by age-related changes to pre-retinal structures that restrict the amount 

of light reaching the retina, such as age-related pupilliary miosis (Birren et al., 1950) and 

increases in the density of the ocular media (Bron et al., 2000). In addition, retinal changes, 

including the loss of RPE and photoreceptor cells, are also likely to contribute to 

diminishing visual sensitivity (Dorey et al., 1989; Gao & Hollyfield, 1992; Curcio et al., 

1993). However, differences between the topographical distribution of rod photoreceptor 

loss and the loci of scotopic sensitivity loss (Curcio et al., 1993; Jackson et al, 1998) imply 

that additional retinal factors may also contribute to the changes in visual sensitivity. 

 

Although increases in rod thresholds have consistently been reported with increasing age, 

the dynamics of rod dark adaptation were initially shown to be independent of age (Birren 

& Shock, 1950). However, contemporary investigations have since reported an age-related 

slowing of rod dark adaptation (Holopigian et al., 1997; Jackson et al., 2006a), with 

increases in the time constant of rod recovery of 20.4 seconds/decade (Jackson et al., 

1999). The evidence regarding the relationship between age and cone dark adaptation also 

varies between investigations. Early studies of cone dark adaptation found it to be 

independent of age (Birren & Shock, 1950; Eisner et al., 1987b). However, more recently 

the time constant of cone recovery has been reported to increase by 16.4 seconds/decade 

(Coile & Baker, 1992). The differences in the outcomes of these studies may, in part, be 

attributed to methodological differences in the study design and will be discussed in detail 

in Chapter 3. 

 

1.3.5.2. Dark adaptation and retinal disease 

As discussed (Section 1.3.2, Page 34), recovery of visual sensitivity in the dark is 

dependent on the regeneration of visual pigment via the retinoid cycle. This process relies 

on the integrity of the photoreceptors, RPE, choriocapillaris and Bruch’s membrane (Lamb 

& Pugh, 2004). Consequently, diseases that affect these outer retinal structures are likely to 

prolong dark adaptation in rods and cones (Midena et al., 1997). Abnormal dark adaptation 

kinetics have been reported in a range of conditions including retinitis pigmentosa (Moore 

et al., 1992; Sandberg et al., 1999), congenital stationary night blindness (Petzold & Plant, 

2006), Sorsby’s fundus dystrophy (Cideciyan et al., 1997), vitamin A deficiency (Kemp et 

al., 1988, Cideciyan et al., 1997), diabetic retinopathy (Phipps et al., 2006; Newsome & 
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Negreiro, 2009) and AMD (Steinmetz et al., 1993; Owsley et al., 2001; Phipps et al., 2003; 

Binns & Margrain, 2007; Owsley et al., 2007; Dimitrov et al., 2008; 2011). 

 

1.3.5.3. Dark adaptation in AMD 

As AMD may be considered to be a pathological extension of normal retinal ageing 

(Zarbin, 2004), it is perhaps unsurprising that abnormal dark adaptation has been reported 

in AMD (Brown & Lovie-Kitchin, 1983; Eisner et al., 1987a; Collins &Brown, 1989; 

Eisner et al., 1991; Sandberg & Gaudio 1995; Midena et al., 1997; Owsley et al., 2001; 

Phipps et al., 2003; Binns & Margrain, 2007; Owsley et al., 2007; Dimitrov et al., 2008; 

2011). One of the earliest studies to explore dark adaptation in AMD reported elevated rod 

and cone thresholds, an increase in the time to RCB (which may be due to a change in cone 

final threshold or delayed rod adaptation) and slower dark adaptation in participants with 

AMD (Brown & Lovie-Kitchin, 1983). A myriad of evidence has since emerged regarding 

the relative adaptational dysfunction of rods and cones in AMD. 

 

Figure 1.16. Rod dark adaptation (main figure) recorded from one elderly adult in good 

retinal health and three patients with different stages of AMD. The inset shows the cone 

dark adaptation data for the same patients (Owsley et al., 2007). 
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There is a clear consensus within the literature that rod dark adaptation is delayed in early 

AMD (Brown & Lovie-Kitchin, 1983; Brown et al., 1986a; Owlsey et al., 2001; Owsley et 

al., 2007; Dimitrov et al., 2008; 2011). For example, Owsley et al. (2007) indentified 

significant abnormalities in rod-mediated parameters of dark adaptation, including the time 

to RCB, rod recovery rate and rod sensitivity in participants with AMD compared to age-

matched control participants. Moreover, the extent of the rod recovery deficit in AMD was 

found to worsen with increasing disease severity (Figure 1.16). 

 

The evidence for abnormal cone dark adaptation in AMD however, is equivocal. In their 

2007 study, Owsley et al. reported that cone-mediated parameters of dark adaptation were 

unaffected by AMD, even during the later stages of the disease. This is consistent with 

histological evidence to show that rod photoreceptors exhibit the earliest signs of 

degeneration in AMD, while cones may remain unaffected until later in the disease process 

(Curcio, 2001). In contrast, there an emerging body of evidence to indicate that cone-

mediated parameters of dark adaptation are highly sensitive to early AMD (Phipps et al., 

2003; Dimitrov et al., 2008; 2011). In addition, photostress or ‘glare’ recovery (see Section 

1.3.5.4, Page 44) is prolonged in AMD (Smiddy and Fine, 1984; Collins & Brown, 1989; 

Wu et al., 1990; Sandberg and Gaudio, 1995; Midena et al., 1997; Sandberg et al. 1998; 

Binns and Margrain, 2007; Newsome & Negreiro, 2009). This discrepancy may relate to 

the difficulty of accurately monitoring the rapid threshold changes that occur during the 

initial stages of cone dark adaptation. 

 

When measured alongside other visual functions, such as colour vision and static 

thresholds, rod and cone dark adaptation appears to be the single most sensitive marker for 

AMD (Eisner et al., 1991, Owsley et al., 2001; Phipps et al., 2003). It has proved a more 

sensitive predictor of the disease than conventional clinical tests, including VA, contrast 

sensitivity and Amsler testing (Midena et al., 1997; Sandberg et al., 1998) and has been 

identified as an independent risk factor for wet AMD (Sandberg et al., 1998). This has 

important clinical implications for the early detection of AMD, the management of patients 

at a high risk of developing the disease and the evaluation of treatment outcomes. 
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1.3.5.4. Photostress recovery in AMD 

‘Photostress recovery’ may also be used as a measure of retinal cone function in AMD 

(Glaser et al., 1977). During conventional dark adaptation measurement, visual threshold is 

monitored over time in the dark. In contrast, during photostress testing the eye is exposed 

to an intense light from an ophthalmoscope or pen torch and the time taken for a particular 

aspect of visual function, such as VA or contrast sensitivity, to return to a predetermined 

level is monitored. Prolonged photostress recovery has been reported in AMD (Glaser et 

al., 1977; Collins & Brown, 1989; Wu et al., 1990; Cheng & Vingrys, 1993; Sandberg & 

Gaudio, 1995; Midena et al., 1997; Bartlett et al., 2004; Newsome & Negreiro, 2009). The 

delay in photostress recovery appears to parallel disease progression, as longer recovery 

times have been recorded in advanced disease (Cheng & Vingrys, 1993; Midena et al., 

1997). There is also evidence to suggest that the photostress test has the potential to 

identify eyes at risk of development of CNV (Sandberg & Gaudio, 1995; Sandberg et al., 

1998). 

 

The psychophysical photostress test is little used by clinicians due to the absence of a 

standardized protocol for the technique (Margrain & Thomson, 2002). The Eger Macular 

Stressometer (EMS) was developed to address this issue in order to provide a standardized 

clinical tool to monitor photostress recovery (Neelam et al., 2009). Initially, significant 

differences in photostress recovery times between participants with AMD and healthy 

controls were measured using the device (Bartlett et al., 2004). However, later evidence 

failed to identify a difference between the two groups, possibly due to the use of an 

insufficient pre-adapting light source (Wolffsohn et al., 2006). Recently, a new 

commercially available clinical tool for measuring photostress recovery has been 

developed. Preliminary data using the Macular Degeneration Detection Device (MDD-2) 

were favourable (Newsome & Negreiro, 2009); however the diagnostic/prognostic 

potential remains unexplored. 

 

 

1.4. Visual psychophysics 

Chapter 2 describes the evaluation of four psychophysical methods of measuring threshold 

during dark adaptation. The measurement of psychophysical thresholds is often 

problematic but during dark adaptation the challenge is even greater because of the rate at 
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which threshold changes, particularly during the early stages of cone recovery. To acquaint 

the reader with the range of psychophysical methods available and some of the associated 

challenges, this section describes some of the key psychophysical methods that may be 

used to quantify dark adaptation. 

 

1.4.1. Classical psychophysical methods 

Psychophysics is the scientific study of the relationships between physical stimuli and 

perceptual sensations (Gescheider, 1997). It is based around the concept of threshold 

testing. Sensory events must exceed a critical strength, known as a sensory threshold, in 

order to enter conscious awareness. ‘Absolute threshold’ describes the smallest amount of 

stimulus energy required to produce a sensation. In visual psychophysics, this is the fully 

dark adapted threshold. When operating in the range above absolute threshold, many 

aspects of vision may be assessed by recording thresholds, for example, acuity, contrast, 

colour and flicker thresholds. A ‘difference threshold’ is defined as the smallest change in 

stimulus energy required to produce a ‘just noticeable difference’ in sensation. Weber’s 

law states that the difference threshold is dependent on the starting energy of the stimulus 

and that it remains a constant fraction of that starting energy i.e. at high stimulus energies, 

a larger difference must exist between two stimuli for perception of a difference threshold 

(Green & Swets, 1966). 

Figure 1.17. A typical psychometric function (Gescheider, 1997). Threshold is the 

stimulus intensity that would be detected 50% of the time. 
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As biological systems are subject to variation in their response patterns, psychophysical 

thresholds are liable to vary. Fundamental to this concept is the psychometric function, 

which plots the probability of a correct response at a range of stimulus intensities (Figure 

1.17). At high stimulus intensities, above the observer’s threshold, the stimulus is correctly 

detected on every trial. Conversely, at low stimulus intensities, which are well below the 

observer’s threshold, the stimulus remains undetected on every trial. Threshold is typically 

taken as the stimulus level that corresponds to an intermediary level of performance, such 

as 50% detection rate (Gescheider, 1997). 

 

In 1860, Fechner described three methods of threshold measurement, which have since 

been widely used (Treutwein, 1995): 

 the method of constant stimuli 

 the method of limits 

 and the method of adjustment. 

 

1.4.1.1. The method of constant stimuli 

The method of constant stimuli involves the repeated presentation of a fixed collection of 

stimulus levels, in a random order, throughout the experiment. The cumulative responses 

are used to plot a psychometric response function to illustrate the rate of detection as a 

function of stimulus intensity (Figure 1.17). Threshold is usually defined as the stimulus 

level that corresponds to a 50% detection rate. 

 

1.4.1.2. The method of limits 

During the methods of limits, stimuli are presented in ascending or descending steps until 

the observer first reports the appearance or disappearance of the stimulus. The procedure is 

repeated several times and threshold is calculated as the average of the threshold points 

estimated by several ascending and descending series. 

 

1.4.1.3. The method of adjustment 

The observer is responsible for altering the level of the stimulus during the method of 

adjustment. A number of ascending and descending series are completed and threshold is 

calculated by averaging the responses. 
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1.4.1.4. Disadvantages of classical psychophysical methods 

Humans are not perfect observers. Given that classical psychophysical methods are reliant 

on subjective feedback from the observer, they are often subject to degradation by a series 

of inconsistencies (Kalloniatis & Luu, 2011). Habituation errors manifest as a tendency by 

the observer to repeatedly give the same response on consecutive trials. Conversely, 

anticipation errors occur when the observer reports seeing the stimulus before their true 

threshold has been reached. These errors result in false threshold points being recorded. 

The randomisation of the order in which the stimuli are presented during the method of 

constant stimuli helps to minimise these errors of habituation and anticipation. 

 

Classical psychophysical methods have also been criticised for their time consuming 

nature, the lack of justification for certain aspects of the procedures, redundant data 

collection at stimulus levels far from threshold and the lack of control over the observer’s 

decision criterion (Treutwein, 1995). 

 

1.4.2. Adaptive psychophysical methods 

In contrast to the classical psychophysical methods described, adaptive procedures are 

performance dependent, that is, the stimulus presented on any one trial is determined by 

one, several or all of the preceding responses given by the participant (Hall, 1981). 

Adaptive procedures aim to improve the efficiency of testing by concentrating stimulus 

presentations at or near the presumed threshold, thereby minimising redundant 

presentations (Treutwein, 1995). 

 

Adaptive psychophysical methods should clearly specify the following conditions 

(Treutwein, 1995): 

 when to change the testing level and what the next testing level should be 

 when to terminate the test sequence 

 and how to determine the estimate of final threshold. 

A summary of several of the key adaptive psychophysical procedures is included here. 

However, for a comprehensive review of adaptive methods the reader is referred to 

Treutwein (1995). 
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1.4.2.1. The staircase procedure 

The staircase procedure is based on the method of limits and was developed in order to 

improve the efficiency of testing (Cornsweet, 1962). Stimuli are first presented in an 

ascending or descending series until the observer reports the appearance or disappearance 

of the stimulus. The direction of stimulus presentation is then reversed and a second series 

completed. Additional series, starting progressively closer to threshold, are implemented 

each time the appearance or disappearance of the stimulus is reported. Threshold is then 

calculated as the average of the reversal values. This method eliminates largely redundant 

presentations, which increases the efficiency of the procedure. 

 

1.4.2.2. Parameter estimation by sequential testing (PEST) 

The PEST procedure was designed to address the problem of determining the optimal 

starting stimulus level and change in stimulus level with each presentation (Taylor & 

Creelman, 1967). The initial stimulus level is set by the investigator and the aim is to 

determine, in as few trials as possible, whether the testing level is above or below 

threshold. The testing level is then progressively modified in order to move closer to 

threshold. The session begins with large step sizes, which become progressively smaller as 

threshold approaches (Taylor & Creelman, 1967). Threshold is recorded as the final testing 

level. 

 

1.4.2.3. Maximum-likelihood procedures 

During a maximum-likelihood procedure, the stimulus level presented at each trial is 

determined by a statistical estimation of threshold based on all of the observer’s responses 

throughout the session (Hall, 1981). After each trial, a new threshold estimate is calculated 

and the stimulus level is adjusted accordingly. The final threshold is reached after a 

predetermined number of trials or when there is minimal change in the stimulus level 

between trials. 

 

The maximum-likelihood method has formed the basis for techniques such as QUEST 

(quick estimate by sequential testing), ZEST (zippy estimate of sequential testing), SITA 

(Swedish interactive threshold algorithm) (Kalloniatis & Luu, 2011) and the ‘hybrid-

adaptive procedure’ (Friedburg et al., 1998). During these procedures, prior knowledge 

about the distribution of threshold for a given stimulus, from published data or pilot 
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studies, is used to construct a probability distribution function. On the basis of this 

information a stimulus is presented that is most likely to be at the observer’s threshold. The 

observer’s response is used to modify the probability distribution function before the next 

stimulus is presented. The observer’s threshold is defined as the point at which the 

stimulus intensity becomes stable. 

 

1.4.3. Forced-choice psychophysical methods 

Forced choice psychophysical methods, based on the theory of signal detection (TSD) 

(Tanner & Swets, 1954), were developed to minimise the effects of noise and changes in 

the observer’s criterion on the results obtained; therefore improving the reliability of 

psychophysical data. 

 

Signals generated by a stimulus occur against a background of randomly occurring noise. 

Two overlapping probability distribution functions are formed (Figure 1.18): SN, which 

comprises the signal and the noise, and N, which comprises the noise only (Tanner & 

Swets, 1954). These two distributions are assumed to be Gaussian and of equal variance. 

The observer must decide, on the basis of neural activity, whether a particular sensation 

may be attributed to the signal or is evoked by noise alone. When the signal is small, there 

is a higher degree of overlap between the two distributions (Figure 1.18), which makes it 

increasingly difficult for the observer to differentiate between the distributions. 

 

The theory of signal detection assumes that the observer designates a response criterion on 

which to base their judgements (Tanner & Swets, 1954). The signal must exceed the 

observer’s criterion for detection to occur. Consequently, the performance during a 

psychophysical task is dependent on the degree of overlap between the SN and N 

distributions, as well as the observer’s criterion level. The outcomes of a psychophysical 

procedure become biased if the observer fails to maintain a consistent response criterion 

throughout the procedure. A range of psychophysical procedures based on the principles of 

TSD have developed to minimise the effect of changes in the observer’s criterion on the 

results obtained. 
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Figure 1.18. Theoretical probability distribution functions of signal and noise (SN) and 

background noise alone (N) for three different values of signal strength. The top panel 

shows the strongest signal while the second and third panels show progressively smaller 

signals (Gescheider, 1997). 

 

1.4.3.1. Forced choice methods 

During a forced-choice procedure, the observer is required to select one of a number of 

presented options on every trial. In the absence of a response bias, the observer should 

select the option that contains the largest sensory signal (Green & Swets, 1966). As the 

number of options available to the observer increases, the probability of a correct response 

due to chance alone declines (Gescheider, 1997). Forced-choice methods have been shown 

to consistently produce lower and more accurate threshold estimates compared to unforced 

subjective procedures because the measurements are criterion free (Sekuler & Blake, 

2006). 

 

1.4.3.2. Yes-No methods 

During a Yes-No procedure, the observer is required to judge the presence or absence of a 

signal (Green & Swets, 1966). A designated proportion of trials contain a signal, while the 

remainder contain noise alone. Presentation cues, such as light or sound, are used to signal 

the start of the trial. 
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1.4.4. Psychophysical assessment of dark adaptation 

The fundamental difficulty associated with measuring visual thresholds during dark 

adaptation is the speed with which threshold changes. This is especially problematic when 

monitoring cone dark adaptation, in which threshold falls by approximately 2 log units 

during the initial 10 minutes in the dark (Hecht et al., 1937, Hollins & Alpern, 1973). 

Clearly, rapid psychophysical methods capable of obtaining robust and repeatable 

threshold measurements are necessary, and consequently many of the more robust 

techniques, such as forced-choice methods, have been rejected in favour of faster 

techniques. 

 

Early work by Hecht et al (1935; 1937) used a custom made dark adaptometer and the 

method of adjustment to explore dark adaptation. Many other investigators have since 

developed custom-made dark adaptometers in order to record dark adaptation data during 

their experiments (Hecht & Shlaer, 1938; Goldstein, 1975; Henson & Allen, 1977; 

Friedburg et al., 1998; Jackson et al., 1999). However, there are currently only a small 

number of commercially available instruments for the clinical assessment of dark 

adaptation, including LKC Technologies’ SST-1 (Peters et al., 2000; Jackson et al., 2006b) 

and Apeliotus Vision Science’s AdaptDx (Jackson & Edwards, 2008). 

 

The Goldmann-Weekers adaptometer was considered the ‘gold standard’ method for 

measurement of dark adaptation for many decades. It used an operator controlled ‘method 

of ascending limits’ to determine the visual threshold, which was recorded directly onto 

logarithmic paper (Dieterle & Gordon, 1956). This ‘method of limits’ has formed the basis 

for many custom-made dark adaptometers that implement simple computer controlled 

staircases, similar to those used in visual field testing equipment (Jackson et al., 1999, 

Owsley et al., 2001, Owsley et al., 2007; Jackson & Edwards’ 2008) 

 

The increasing sophistication of computer technology has enabled the implementation of 

increasingly complex algorithms that present stimuli according to adaptive psychophysical 

principles, such as the hybrid adaptive procedure described by Friedburg et al. (1998). This 

procedure uses a set of three decision criteria to determine the luminance of the stimulus 

on the basis of all of the participant’s previous responses during the session, and a 

maximum-likelihood computation to calculate threshold (Friedburg et al., 1998). Despite 
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their theoretical advantages, forced choice procedures have not, thus far, been used to track 

threshold during dark adaptation. 

 

 

1.5. The electroretinogram (ERG) 

The electroretinogram (ERG) is an objective, non-invasive method of assessing the 

integrity of the retina (Berrow et al., 2010). Measured at the cornea, the ERG is the 

summed potential arising from the retinal cells in response to light stimulation (Robson & 

Frishman, 1999). As discussed in a recent review (Berrow et al., 2010) the ERG has been 

used to investigate retinal function in AMD and therefore this section aims to provide the 

reader with an overview of common ERG techniques. 

 

1.5.1. The transient (flash) ERG 

Recorded in response to a single flash stimulus, the transient ERG is a highly repeatable 

waveform comprising distinct features that represent the electrical activity of different 

groups of retinal cells. Granit’s classic 1933 analysis of the scotopic transient ERG in the 

cat retina showed that the signal was the result of three distinct underlying physiological 

processes (Figure 1.19). These three independent processes dominate the ERG at different 

times following light stimulation: PI is a slow positive component, PII a moderately fast 

positive component and PIII is a negative component comprising fast and slow portions 

(Granit, 1933). The three processes combine to form the subcomponents of the ERG 

waveform and so are inseparable in the standard flash ERG. 

 

 

Figure 1.19. The three ‘fundamental’ processes of the ERG (After Granit, 1933). 

 

The subcomponents of the ERG are formed by the summation of the active retinal 

elements at any given moment after the offset of the stimulus. Several methods have been 

used in experimental animals to identify the cellular origins of these components (Robson 
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& Frishman, 1999). During current source-density analysis microelectrodes are used to 

identify the retinal layer from which the electrical signals originate (Penn & Hagins, 1969; 

Witkovsky et al., 1973). Alternatively, pharmacological agents may be used to block 

synapses between the retinal layers to isolate the origin of the signal (Sillman et al., 1969; 

Wakabayashi et al., 1988; Stockton & Slaughter, 1989; Bush & Sieving, 1994; 

Viswanathan et al., 1999; Xu & Karwoski, 1994; Lei & Perlman, 1999). In humans, the 

effect of diseases known to affect specific populations of retinal neurons on the ERG 

subcomponents provides further evidence for their origin, as does the change in the ERG 

waveform under different adaptational and stimulus conditions (Robson & Frishman, 

1999). 

 

1.5.1.1. Early receptor potential (ERP) 

First identified in 1964, the ERP is only recorded when the eye is exposed to a very bright 

flash of less than 1ms duration (Brown & Murakami, 1964; Galloway, 1967). It is a 

biphasic waveform, comprising a small positive phase followed by a larger negative phase. 

The ERP is the fastest occurring waveform of the ERG and is thought to originate from the 

photoreceptor cells (Fain, 2006). 

 

1.5.1.2. a-wave 

Dominated by Granit’s ‘fast PIII’ process, the a-wave is a negative potential that occurs 

within 25 msecs of the flash offset (Figure 1.20) (Robson & Frishman, 1999). The 

amplitude and latency of the a-wave are dependent on the adaptational state of the eye. In 

both photopic and scotopic conditions the a-wave is truncated by the rising edge of the b-

wave (Frishman, 2006). The early portion of the a-wave is generally considered to reflect 

photoreceptor activity (Penn & Hagins, 1969; Sillman et al., 1969; Wakabayashi et al., 

1988). Current source density analysis has demonstrated that the a-wave follows a similar 

time course to the light-evoked extracellular current of the photoreceptors (Penn & Hagins, 

1969). In addition, the a-wave is not extinguished by the administration of sodium 

aspartate, a glutamate agonist that prevents the transmission of signal from the 

photoreceptors to the bipolar cells (Sillman et al., 1969; Wakabayashi et al., 1988). More 

recently, Bush and Sieving (1994) used more specific glutamate agonists and antagonists 

to demonstrate that there is also an inner retinal contribution to the a-wave of the photopic 

ERG, which is more dominant at low stimulus intensities (Bush & Sieving, 1994). 
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Figure 1.20. A dark-adapted ERG recorded from our own laboratory. The initial negative 

component is the a-wave. This is followed by a large positive component: the b-wave. 

 

1.5.1.3. b-wave and oscillatory potentials (OPs) 

The b-wave is a positive potential, which occurs after the a-wave, and is dependent on the 

underlying PII process (Figure 1.20) (Frishman, 2006). PII has been shown to originate 

from ON-bipolar activity, but intracellular recordings from the mudpuppy retina and 

current source density analysis in the monkey retina initially also implicated the Müller 

cells in the generation of the b-wave (Miller & Dowling, 1970; Heynen & van Norren, 

1985). However, later evidence showed that the b-wave was relatively unaffected when 

barium ions were administered to block Müller cell activity in the frog and rabbit retina 

(Xu & Karwoski, 1994; Lei & Perlman, 1999). In contrast, administration of 2-amino-4-

phosphonobutyrate, a glutamate known to eliminate the ON-bipolar cell response, was 

shown to extinguish the b-wave in the mudpuppy and salamander (Stockton & Slaughter, 

1989). Therefore, although Müller cell activity may contribute to the b-wave, it is now 

generally accepted that the b-wave directly reflects the activity of the ON-bipolar cells (Xu 

& Karwoski, 1994; Stockton & Slaughter, 1989). 

 

Exposure to a bright flash evokes a series of small wavelets, known as oscillatory 

potentials, superimposed on the rising edge of the b-wave (Lachapelle, 2006). This low 

voltage, high frequency component of the ERG may be isolated using a bandpass filter, 

where the low-frequency cut-off is set at 70-100Hz and the high-frequency cut-off is set to 

at least 300Hz (Marmor et al., 2009). Although the exact origin of the oscillatory potentials 

is unconfirmed, they are believed to be postreceptoral in origin, and there is evidence to 

suggest input from both the retinal ganglion and amacrine cells (Lachapelle, 2006). 
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1.5.1.4. Photopic negative response (PhNR) 

The PhNR is a negative wave that follows the b-wave under photopic conditions and is 

most clearly visible when the ERG is recorded in response to a red stimulus presented on a 

blue background (Frishman, 2006). There is a range of evidence to suggest that it 

originates in the RGCs (Viswanathan et al., 1999; Drasdo et al., 2001; Viswanathan et al., 

2001; Tamada et al., 2010). When tetrodotoxin, a neurotoxin, was used to block ganglion 

cell action potentials in monkeys, the PhNR was eliminated (Viswanathan et al., 1999). In 

addition, the PhNR was also extinguished when experimental glaucoma was induced in the 

monkeys (Viswanathan et al., 1999).  In humans, a reduction in the amplitude of the PhNR 

has been linked to retinal ganglion cell loss in primary open angle glaucoma (Drasdo et al., 

2001; Viswanathan et al., 2001; Tamada et al., 2010). 

 

1.5.1.5. Scotopic threshold response (STR) 

This negative potential is only evident when an extremely dim flash is presented to the 

dark-adapted eye (Sieving et al., 1986; Sieving & Nino, 1988; Wakabayashi et al., 1988). 

As the intensity of the stimulus increases, it is obscured by the much larger b-wave. Unlike 

the a-wave, the STR is eliminated by the administration of sodium aspartate, which implies 

that it is postreceptoral in origin (Wakabayashi et al., 1988), and it is generally considered 

to originate from the amacrine or ganglion cells of the rod pathway (Sieving & Nino, 1988; 

Wakabayashi et al., 1988). 

 

1.5.1.6. c-wave 

When a bright flash is presented to the dark adapted eye, the b-wave is followed by a slow 

positive phase, known as the c-wave. It is largely dependent on rod photoreceptor cell 

activity and is therefore most distinct in dark adapted conditions. The c-wave is generally 

considered to be the sum of positive PI and slow negative PIII (Frishman, 2006). The 

positive process contributing to the c-wave has been attributed to the RPE, as it is 

abolished by intravenous injection of sodium iodate, which is poisonous to RPE cells 

(Noell, 1953) and by removing the RPE in the frog retina (Sillman et al., 1969). In 

contrast, intraretinal recordings have indicated that the slow negative contribution to the c-

wave originates from a cell that spans the whole retina, such as the Müller cell (Witkovsky 

et al., 1973). There is evidence that both of the processes contributing to the c-wave are 
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generated by the reduction in extracellular potassium concentration in the subretinal space 

that occurs in response to light (Oakley & Green, 1976; Bolnick et al., 1979; Hu & 

Marmor, 1984). 

 

1.5.1.7. d-wave 

The positive d-wave occurs when a long duration stimulus is presented under photopic 

conditions (Figure 1.21). It is eliminated by pharmacological suppression of the OFF-

bipolar cells and is proposed to reflect the fluctuation in potassium ions caused by 

depolarization of the OFF-bipolar cells at the light offset (Stockton & Slaughter, 1989). 

 

Figure 1.21. The d-wave of the photopic ERG recorded in our own laboratory. 

 

1.5.2. The steady state (flicker) ERG 

When stimuli are presented to the eye in quick succession, the responses to successive 

stimuli are likely to overlap. Consequently, ERGs recorded in response to a flickering 

stimulus form a sinusoidal waveform that matches the frequency of the stimulus, known as 

a ‘steady state’ response (Figure 1.22). At stimulus frequencies greater than 15Hz the 

steady state response is an isolated cone photoreceptor response, as rod photoreceptors are 

unable to detect higher temporal frequencies due to their poor temporal resolution (Hecht 

& Schlaer, 1936; Sharpe et al., 1989). Pharmacological suppression of the postreceptoral 

contribution to the response has been shown to virtually eliminate the flicker ERG (Bush & 

Sieving, 1996; Kondo & Sieving, 2002). This major postreceptoral contribution to the 

flicker ERG has primarily been attributed to the bipolar cells (Bush & Sieving, 1996; 

Kondo & Sieving, 2002). 
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Figure 1.22. A steady state ERG recorded in response to a 41Hz flickering stimulus in our 

own laboratory. 

 

1.5.3. The focal ERG 

As described (Section 1.5, Page 52), the full field ERG is a summed response from all of 

the retinal cells in response to light stimulation (Robson & Frishman, 1999). Consequently, 

it is relatively insensitive to the functional changes that occur in diseases such as AMD, 

which affect a much smaller retinal area (Sunness et al., 1985; Holopigian et al., 1997; 

Jackson et al., 2004). In contrast, the focal ERG allows selective stimulation of a discrete 

retinal locus to facilitate identification of localised defects. In order to avoid stimulation of 

the peripheral retina by scattered light during focal ERG recording, a desensitising 

surround or background should be used. This is particularly important when recording rod-

dominated focal ERGs, as rods lack directional sensitivity and so are particularly prone to 

stimulation by scattered light, which causes the formation of a double b-wave, making the 

focal rod response difficult to interpret (Fry & Bartley, 1935; Sandberg et al., 1996; Hood 

et al., 1998). The application of the desensitising surround, as well as several other 

approaches that have been used to eliminate the scattered light response during focal ERG 

recording, will be described in Section 6.2.1 (Page 157). 

 

1.5.4. The multifocal ERG (mfERG) 

The multifocal ERG (mfERG) allows simultaneous assessment of numerous discrete 

locations within the central retina. It is usually a cone-specific response, recorded under 

light-adapted conditions from the central 20-30º of the retina (Hood et al., 2011). The 

stimulus comprises an array of hexagonal elements (Figure 1.23), usually 61 or 103, which 

are scaled to produce responses of equal amplitude at all locations (in a control subject) 
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(Sutter & Tran, 1992). During the recording period, each hexagon flickers in a pseudo-

random sequence of black and white presentations. The local ERG signal is then calculated 

by correlating the continuous signal with the on- and off- responses at each retinal location 

(Hood et al., 2011). The resultant mfERG waveform obtained at each retinal location 

consists of three components (Figure 1.23): two negative peaks (N1 and N2) and a positive 

peak (P1) (Hood & Birch, 2006). Pharmacological evidence has shown that the mfERG is 

primarily dependent on bipolar cell activity, with smaller contributions from the 

photoreceptor and inner retinal cells (Hood et al., 2002). Adapted mfERG protocols have 

been developed to assess rod pathway function (Hood et al., 1998; Chen et al., 2004). 

 

Figure 1.23. The multifocal ERG (mfERG). The left panel illustrates a typical array of 103 

hexagons used to elicit a retinal response (right panel) at each retinal location (adapted 

from Hood et al., 2011). 

 

1.5.5. The pattern ERG (PERG) 

The pattern ERG (PERG) is evoked by stimulating the central retina with a reversing 

black-white square checkerboard or grating stimulus of constant mean luminance (Holder 

et al., 2007). The transient PERG consists of three components (Figure 1.24): a small 

negative component at 35msecs (N35), a positive component at 45-60msecs (P50), and a 

larger negative component at 95-100msecs (N95) (Holder et al., 2007). 

 

There is evidence to suggest that the PERG originates from the inner retina, specifically 

the RGCs (Maffei & Fiorentini, 1981; Maffei et al., 1985). For example the PERG was 

extinguished after the optic nerve was sectioned in the cat and primate retina (Maffei & 

Fiorentini, 1981; Maffei et al., 1985). More recently, when tetrodotoxin was used to block 

ganglion cell action potentials in the monkey, the P50 component of the response was 

markedly reduced and N95 was completely extinguished (Viswanathan et al., 2000). The 

P50 component appears to be less reliant on RGC activity, for example, it shows less 
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spatial tuning than N95 (Berninger & Schuurmans, 1985). A reduced N95:P50 amplitude 

ratio is therefore thought to be indicative of RGC disease (Holder et al., 1999).  

 

Figure 1.24. The pattern ERG waveform (Holder et al., 2007). 

 

1.5.6. Recording the ERG 

The International Society for Clinical Electrophysiology of Vision (ISCEV) has published 

standardized protocols to allow comparable full field ERGs to be recorded worldwide 

(Marmor et al., 2009). These are regularly reviewed to keep pace with advances in 

knowledge and technology. Five standard responses are outlined (Figure 1.25a) and an 

additional two dark adapted ERGs recorded in response to high intensity flashes are 

recommended (Figure 1.25b). The use of a modifiable stimulus is advised, in order to 

allow adjustment of stimulus intensity, frequency and wavelength.  In addition, the 

guidelines recommend maximal pupil dilation and pre-adaptation to the ambient light 

levels prior to ERG recording. However, there are currently no published standards for the 

recording of focal ERGs. 

 

1.5.6.1. Electrodes 

Active, reference and ground electrodes are required to record an ERG. The active 

electrode should maintain contact with the cornea or bulbar conjunctiva, while the 

corresponding reference electrode should be proximal to or contacting the eye. Ideally, the 

active and reference electrodes should be of the same metallic type to ensure that the 

potential difference between the two is zero (Coupland, 2006). A third electrode, the 

ground, is usually placed on the forehead or the ear. 
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The amplitude of the ERG is dependent on the contact between the active electrode and the 

cornea (Marmor et al., 2009). Corneal contact lens electrodes are considered the ‘gold 

standard’, but are uncomfortable, require topical anaesthetic and impair vision when in 

place. The Dawson-Trick-Litzkov (DTL) electrode, a low mass silver impregnated nylon 

fibre that is draped in the lower fornix, was developed in order to overcome these problems 

(Dawson et al., 1979). The signal obtained when a DTL electrode is used is of similar 

quality as that obtained using a contact electrode, (Dawson et al., 1979), although smaller 

in amplitude (McCulloch et al., 1997). 

 

Figure 1.25. Standard full field ERG responses as defined by ISCEV (Marmor et al., 

2009). The five responses shown in the top panel (a) should be recorded as standard. The 

additional dark adapted responses shown in the bottom panel (b) are also recommended. 

The large arrow heads indicate the stimulus flash. 

 

1.5.6.2. Electrical noise and noise reduction 

Evoked potentials within the visual system are extremely small and are therefore easily 

affected by electrical noise. This may include mains interference (50Hz in the UK), 

randomly occurring electrical noise (internal and external) and unwanted biological noise, 

such as muscle activity. A high signal-to-noise ratio (SNR) is necessary to obtain a high 
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quality signal and, consequently, a range of techniques has emerged to minimise the effect 

of electrical noise on ERG recording. 

 

The electrical activity recorded by the active electrode comprises both signal and 

background noise, whereas the reference electrode records noise alone. Differential 

amplification, where the electrical activity recorded by the reference electrode is subtracted 

from that recorded by the active electrode, may be used to isolate the true retinal signal 

(Weisinger et al., 1996). 

 

An evoked potential is time locked to the stimulus, whereas electrical noise is spontaneous 

and occurs randomly. Consequently, the averaging of multiple ERG traces, or recordings, 

reinforces the signal but cancels out the noise. This is particularly important when 

recording low amplitude ERGs (Marmor et al., 2009). However, as recording multiple 

ERG traces can be time consuming, it is important to select a level of averaging that 

reinforces the signal but does not require a disproportionately long recording session. 

 

Blinks and eye movements are examples of biological artefacts that generate relatively 

high voltages that distort the ERG signal. Prior to ERG recording, the acquisition system 

may be programmed to reject any electrical signals of an amplitude that falls above a 

preset value. Traces containing components that are greater than this ‘artefact reject’ 

setting are excluded from the averaging process (Hogg & Nusinowitz, 2006). 

 

The majority of transient and flicker ERG waveforms fall within the limited frequency 

range of 1 to 100Hz. Electronic filters may be applied to reduce the amount of redundant 

data that is collected (Hogg & Nusinowitz, 2006). The application of a high pass filter 

eliminates frequencies that fall below the range of interest. Conversely, the application of a 

low pass filter eliminates those frequencies that fall above the range. Alternatively, 

bandpass filters may be used to reject frequencies outside of a given range. At specific 

frequencies for which noise a particularly problematic, for example the mains interference 

that occurs at 50Hz, a notch filter may be applied to remove the frequencies within a given 

range. However, as these electronic filters do not have a sharp cut off at any given 

frequency, they may distort the waveform of the ERG (Hogg & Nusinowitz, 2006). 

 



Chapter 1 

 

62 

 

1.5.7. The ERG in AMD 

There is currently no electrophysiological technique that is considered to be the ‘gold 

standard’ method for the investigation of retinal dysfunction in AMD (Gerth, 2009). 

Consequently, a variety of techniques have previously been used to investigate AMD. 

 

The full field ERG is a summed response generated by the whole retina and it is therefore 

unsurprising that some investigations have shown it to be insensitive to the subtle, 

localised dysfunction that occurs in early AMD (Sunness et al., 1985; Holopigian et al., 

1997; Jackson et al., 2004). For example, the a-wave amplitude of the full field rod 

mediated ERG has been shown to be similar in participants with early AMD and healthy 

controls (Jackson et al., 2004). However, a reduction in the a-wave amplitude was later 

demonstrated in participants with advanced AMD (Jackson et al., 2006a). In addition, a 

reduction in the amplitude of the a- and b-waves of the photopic ERG has been recorded in 

patients with established AMD (Walter et al., 1999). This indicates that although full field 

ERGs may be useful to monitor the progression of advanced AMD, they are likely to be 

less valuable for the diagnosis of early AMD. 

 

Multifocal ERGs (mfERG) allow the electrical activity from a number of specific retinal 

locations to be recorded in isolation. Reductions in photopic (Huang et al., 2000; Li et al., 

2001; Chen et al., 2004) and scotopic (Chen et al., 2004; Feigl et al., 2005b; 2006) mfERG 

amplitudes have been recorded in patients with AMD compared to healthy control 

participants. While the reduction in the amplitude of the photopic mfERG was shown to be 

independent of retinal eccentricity, the reduction in the amplitude of the scotopic mfERG 

was maximal at approximately 5º from fixation (Chen et al., 2004). This is consistent with 

histological evidence to suggest that rod loss in AMD is maximal in the parafovea (Curcio 

et al., 1996). However, although the photopic mfERG is widely used, the scotopic mfERG 

is more difficult to record and the therefore not suitable for use in all patients (Hood et al., 

1998). The reader is referred to Berrow et al. (2010) for a comprehensive review of the use 

of the mfERG for the assessment of AMD. 

 

Similarly, focal ERGs may be used to isolate the electrical signal from a discrete retinal 

location, for example the macula. There is evidence to suggest that focal ERGs recorded at 

the macula are affected by AMD (Seiple et al., 1986; Sandberg et al., 1993; Remulla et al., 
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1995; Sandberg et al., 1998; Falsini et al., 1999; Binns & Margrain 2007; Piccardi et al., 

2009; Wood et al., 2011b). For example, extended implicit times of the a- and b-waves of 

the photopic focal ERG have been recorded in participants with early AMD (Binns & 

Margrain, 2007). In addition, a reduction in the amplitude of the focal cone flicker ERG 

has also been reported in participants with AMD (Falsini et al., 1999; Binns & Margrain, 

2007; Piccardi et al., 2009). The extent of the amplitude reduction appears to parallel the 

disease progression, with the greatest reduction in flicker ERG amplitude reported in 

people with advanced AMD (Falsini et al, 1999). As a whole, this literature indicates that 

the focal cone flicker ERG may be a valuable diagnostic and prognostic tool in early 

AMD. 

 

The focal cone flicker ERG has also been used as an objective measure of photostress 

recovery after a photopigment bleach in participants with early AMD (Binns & Margrain, 

2005; 2007). The technique monitors the recovery of the amplitude of the first harmonic of 

the focal cone ERG after a photopigment bleach. The recovery of the foveal flicker ERG 

amplitude was shown to be significantly slower in people with early AMD compared to 

control participants (Binns & Margrain, 2007). Clearly, focal ERG techniques are sensitive 

to the localised retinal dysfunction that occurs in early AMD, However, the small signal 

obtained from specific retinal regions is susceptible to interference from electrical noise, 

which leads the degradation of the signal quality (Gerth, 2009). 

 

The potential of electrophysiological techniques as a means of monitoring treatment 

outcomes in patients with AMD has also been explored (Oner et al., 2005; Maturi et al., 

2006; Mackay et al., 2008). For example, the pattern ERG has been used successfully to 

monitor retinal function after PDT (Oner et al., 2005). There is also evidence that the 

mfERG may be used to predict the outcomes of PDT treatment (Mackay et al., 2008) and 

to monitor retinal function during antiVEGF therapy (Maturi et al., 2006). However, the 

outcomes of these investigations have often been considered unreliable as a result of 

insufficient follow up intervals, small sample sizes or the inhomogeneous disease 

characteristics of the participants (Gerth et al., 2009). 
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1.5.8. Assessment of dark adaptation using the ERG and related techniques 

The a- and b-waves of the full field scotopic ERG are initially completely extinguished 

after a near-total bleach of visual pigment, before the amplitude gradually recovers to the 

pre-bleach level during a 30-40 minute period in darkness (Thomas & Lamb, 1999; 

Cameron et al., 2006; 2008). When plotted as a function of time after the photopigment 

bleach, the recovery of the scotopic b-wave amplitude was shown to follow an ‘S-shaped’ 

configuration (Cameron et al., 2006; 2008). The b-wave was unrecordable for the initial 10 

minutes after the bleach and half recovery occurred at 23 minutes. Similar recovery curves 

have been recorded for the scotopic a-wave amplitude (Thomas & Lamb., 1999). After a 

substantial photopigment bleach, the a-wave was extinguished for the first 5 minutes of 

recording, half recovery occurred at 14-17 minutes and pre-bleach amplitude was regained 

within 30 minutes in the dark. The S-shaped curve was shown to accurately describe the 

recovery of the a-wave amplitude after a photopigment bleach of 40% or greater (Figure 

1.26) (Thomas and Lamb., 1999). 

 

Previous electrophysiological assessments of cone dark adaptation have measured the 

recovery of the a-wave of the photopic ERG after a photopigment bleach (Paupoo et al., 

2000; Mahroo & Lamb, 2004). After a substantial bleach of photopigment, Paupoo et al. 

(2000) found the recovery of the a-wave amplitude was well described by an exponential 

function with a time constant of 1.5 minutes and full recovery of the a-wave amplitude 

occurred within 6 minutes. The reduction in the a-wave amplitude is more marked at 

higher pre-adapting intensities (Mahroo & Lamb, 2004). 

 

 

Figure 1.26. The recovery of the a-wave amplitude of the full field scotopic ERG plotted 

as a function of time after a near-total bleach of photopigment (Thomas & Lamb., 1999). 
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The visual evoked potential (VEP) has been used as an objective measure of photostress 

recovery (Lovasik, 1983; Parisi & Bucci, 1992; Parisi et al, 1994; 1998; 2002). During this 

technique, the amplitude of the PI component of the VEP response was recorded at regular 

intervals after a photopigment bleach. PI was significantly reduced immediately after the 

bleach and gradually recovered during the time in the dark (Lovasik, 1983). In healthy 

participants, full recovery of the VEP was shown to occur within one minute (Lovasik, 

1983; Parisi & Bucci, 1992). In addition, as discussed (Section 1.5.7, Page 62) the focal 

cone flicker ERG has also been used as an objective measure of photostress recovery in 

healthy participants and those with early AMD, by monitoring the recovery of the 

amplitude of the first harmonic of the focal cone ERG after a photopigment bleach (Binns 

& Margrain, 2005; 2007). 

 

 

1.6. Overview and aims 

Age-related macular degeneration is the leading cause of visual impairment in the UK and 

developed world (Bunce and Wormald, 2008; Resnikoff et al., 2004). Treatment options 

for this disease are evolving rapidly and the development of anti-VEGF agents, such as 

Ranibizumab, have for the first time enabled doctors to generate clinically significant 

improvements in VA in patients with wet AMD (Brown et al., 2006; Rosenfeld et al., 

2006; Brown et al., 2009), although at a substantial on-going cost to the NHS (National 

Institute for Health and Clinical Excellence, 2008). However, there is as yet no effective 

treatment for dry AMD. Given that the average age of the population is predicted to 

increase in the UK and across the world during the coming decades (Office for National 

Statistics, 2009; United Nations, 2009), the prevalence of AMD and associated vision loss 

will rise. There is consequently an urgent need for the development of new treatments for 

dry AMD, and of more economically viable interventions for wet AMD. This necessitates 

the identification of functional markers that are sensitive to early visual dysfunction in 

order to: 

 identify patients who are at an increased risk of developing early AMD 

 identify patients who are at risk of progression to late AMD 

 identify patients that are suitable for treatment 

 assess treatment outcomes 

 and evaluate emerging treatment strategies. 
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There is an emerging body of evidence to suggest that dark adaptation is a highly sensitive 

functional biomarker for early AMD (Brown & Lovie-Kitchin, 1983; Brown et al., 1986a; 

Eisner et al., 1987a, Eisner et al., 1991; Owsley et al., 2001; Phipps et al., 2003; Binns & 

Margrain, 2007; Owsley et al., 2007; Dimitrov et al., 2008; 2011). In particular, cone dark 

adaptation may be useful clinically, as it can identify patients with early AMD in a 

relatively short recording period (Phipps et al., 2003, Dimitrov et al., 2008; 2011). 

However, at present, dark adaptation is an underexploited clinical tool, most likely as a 

result of the lack of standardised instrumentation and protocols for monitoring the rapid 

changes in visual threshold that occur during dark adaptation and ambiguity surrounding 

the extent to which cone photoreceptors are affected by early AMD (Brown et al., 1986b; 

Phipps et al., 2003; Binns & Margrain, 2007; Owsley et al., 2007; Dimitrov et al., 2008; 

2011). 

 

The primary aim of this series of studies was therefore to optimise psychophysical and 

electrophysiological techniques for the assessment of dark adaptation in AMD, with an 

emphasis on cone dark adaptation, in order to maximise its diagnostic potential for 

detection of the disease. The specific aims were: 

 

1) To identify the most robust, clinically applicable psychophysical technique for the 

measurement of visual threshold during cone dark adaptation, by assessing the 

repeatability and agreement of three computer-based psychophysical methods and 

the Goldmann-Weekers adaptometer. 

Hypothesis: The repeatability of the data obtained using the Goldmann-Weekers 

adaptometer will be inferior to that obtained using computer based techniques 

because operator error will introduce an additional source of variability to the 

threshold measurements. However, there will be no significant difference in the 

time constant of cone recovery (τ) (the time required for threshold to recover to 

approximately 63% of the dark adapted value) between the techniques, because 

cone τ should be independent of differences in variability between techniques. 

 

2) To assess the effect of age on the dynamics of cone dark adaptation in a cohort of 

healthy adults. 
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Hypothesis: Given the changes that occur to the retina with increasing age, 

including the thickening of Bruch’s membrane, accumulation of lipofuscin in the 

RPE and photoreceptor loss (Zarbin, 2004), and the subjective reports by elderly 

adults of visual difficulties adjusting to low illumination (Kline et al., 1992; 

McGregor & Chaparro, 2005), cone dark adaptation is predicted to become slower 

with increasing age in healthy adults. 

 

3) To assess the dynamics of dark adaptation as a function of retinal eccentricity in 

healthy participants. 

Hypothesis: In light of the heterogeneity of the retinal mosaic, dark adaptation is 

expected to vary as a function of retinal location. 

 

4) To identify the most appropriate mathematical model to describe cone and rod 

recovery during dark adaptation. 

Hypothesis: A rate-limited model will provide the best fit to recovery data as this 

most accurately represents the current understanding of recovery in the dark being 

limited by the presence of metarhodopsin photoproducts. 

 

5) To quantify differences in cone dark adaptation between participants with early 

AMD and healthy controls at different retinal locations and to determine the 

diagnostic potential of cone dark adaptation and the time to RCB at each retinal 

location. 

Hypothesis: Cone dark adaptation and the time to RCB will be significantly 

delayed in participants with early AMD. The current literature implies that this 

difference is likely to be most marked within the central 4º for cone-mediated 

recovery  parameters (Dimitrov et al., 2008) and at 12º from fixation for the time to 

RCB (Owsley et al., 2007). 

 

6) To quantify the diagnostic potential of cone dark adaptation in discriminating 

between participants with early AMD and healthy controls at a range of pre-

adapting light intensities. 

Hypothesis: Cone dark adaptation and the time to RCB will be significantly 

delayed in participants with early AMD at all pre-adapting intensities. However, 
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the most distinct separation in the recovery parameters between participants with 

early AMD and healthy controls is expected occur at the highest pre-adapting 

intensity, as this will place the greatest metabolic demand on the retina. 

 

7) To develop a focal ERG technique for the assessment of macular rod dark 

adaptation within a clinically viable timeframe, in order to expand the range of 

objective techniques available for dark adaptation measurement. 

Hypothesis: The b-wave amplitude of the full field rod ERG is initially markedly 

reduced by photopigment bleaching, before slowly returning to the pre-bleach 

amplitude over time in the dark (Thomas & Lamb, 1999; Cameron et al., 2006; 

2008). It is anticipated that the b-wave of the focal rod ERG will be affected in the 

same way by exposure to a pre-adapting light and therefore measuring the b-wave 

amplitude at pre-specified intervals in the dark will enable the objective assessment 

of rod dark adaptation. 

 

8) To compare the diagnostic potential of the optimal psychophysical and 

electrophysiological protocols for the assessment of dark adaptation for the 

detection of early AMD. 

Hypothesis: Rod and cone dark adaptation will be significantly delayed in 

participants with early AMD when measured using both psychophysical and 

electrophysiological methods. However, psychophysical data are based on the 

subjective responses of the participant, and may therefore be degraded by human 

inconsistencies such as expectation and habituation errors (Treutwein, 1995). 

Therefore the diagnostic potential of these techniques may be inferior to that of 

objective electrophysiological methods. 
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2. A comparison of psychophysical methods of 

monitoring cone dark adaptation 

 

 

Investigators have used psychophysical methods to quantify the process of dark adaptation 

for eight decades (Hecht et al., 1935; Windsor and Clark, 1936; Hecht et al., 1937; Wald & 

Clark, 1937; Hecht & Schlaer, 1938; Haig et al., 1938; Haig, 1941; Dieterle & Gordon, 

1956; Goldstein, 1975; Henson & Allen, 1977; Friedburg et al., 1998; Jackson et al., 1999; 

Peters et al., 2000; Lamb & Pugh, 2004; Jackson et al., 2006b; Jackson and Edwards, 

2008). The measurement of dark adaptation has played an important role in the diagnosis 

of a range of conditions, including retinitis pigmentosa (Moore et al., 1992; Sandberg et 

al., 1999), congenital stationary night blindness (Petzold & Plant, 2006), Sorsby’s fundus 

dystrophy (Cideciyan et al., 1997), vitamin A deficiency (Kemp et al., 1988; Cideciyan et 

al., 1997), diabetic retinopathy (Phipps et al., 2006; Newsome & Negreiro, 2009) and 

AMD (Steinmetz et al., 1993; Owsley et al., 2001; Phipps et al., 2003; Binns & Margrain, 

2007; Owsley et al., 2007; Dimitrov et al., 2008; 2011). The clinical significance of dark 

adaptation measurement is growing because of emerging evidence to suggest that it is a 

sensitive biomarker in AMD (Brown & Lovie-Kitchin, 1983; Eisner et al., 1987a; Eisner et 

al., 1991; Owsley et al., 2001; Phipps et al., 2003; Binns & Margrain, 2007; Owsley et al., 

2007; Dimitrov et al., 2008; 2011), the primary cause of blindness in the developed world. 

Recently there has been particular interest in the measurement of cone dark adaptation 

because of its ability to identify people with early AMD in a relatively short recording 

period (Phipps et al., 2003; Dimitrov et al., 2008; 2011). However, although dark 

adaptation is clearly an important diagnostic tool, there is little published literature 

regarding the most robust psychophysical technique for the assessment of the change in 

visual threshold over time in the dark. This chapter will explore the repeatability of a range 

of psychophysical methods for monitoring cone dark adaptation. 
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2.1. The repeatability of the Goldmann-Weekers adaptometer for 

monitoring cone dark adaptation 

 

2.1.1. Introduction 

The Goldmann-Weekers adaptometer was once a commercially available instrument that 

was considered the ‘gold standard’ method for measurement of dark adaptation for many 

decades. It uses an operator controlled ‘method of ascending limits’ to determine the visual 

threshold, which is recorded directly onto logarithmic paper (Dieterle & Gordon, 1956). 

Despite its widespread use, there is little information about the performance of this device 

and no published data regarding its repeatability for the assessment of the kinetics of dark 

adaptation. 

 

Dark adaptation data have also been recorded using custom made dark adaptometers 

(Hecht & Shlaer, 1938; Goldstein, 1975; Henson & Allen, 1977; Friedburg et al., 1998; 

Jackson et al., 1999) and several commercially available instruments, including LKC 

Technologies’ SST-1 (Peters et al., 2000; Jackson et al., 2006b) and Apeliotus Vision 

Science’s AdaptDx (Jackson & Edwards, 2008). Given the increasing prevalence of 

disorders like AMD (Minassian et al., 2011; Owen et al., 2012), in which the kinetics of 

dark adaptation are impaired, it seems likely that the range of contemporary dark 

adaptometers will expand. Knowledge of the performance of these devices, in particular 

their repeatability, will be important. Ideally, the repeatability of emerging techniques 

should be superior to that obtained with existing clinical devices. It is, therefore, useful to 

obtain repeatability data from the Goldman-Weekers device as a comparison measure. The 

data presented in this section have been published in a peer-reviewed journal (see Gaffney 

et al., 2011a in Appendix III). 

 

2.1.2. Aims 

The aim of this study was to assess the inter-session repeatability of the Goldmann-

Weekers adaptometer for the measurement of cone dark adaptation in a population of 

healthy participants, in order to obtain data that may be used as a benchmark for the 

performance of future comparisons. 

 

 



Chapter 2 

 

71 

 

2.1.3. Methods 

Participants 

Thirty-one healthy adults, aged 19-30 years (mean = 21.5 +/- 2.5 years) were recruited to 

the study from the staff and students at the School of Optometry and Vision Sciences, 

Cardiff University. All participants had a corrected visual acuity of 6/6 or better in the test 

eye, clear ocular media (≤ Grade 3, LOCS-III) (Chylack et al., 1993), and a normal retinal 

appearance, in the absence of any history of ocular or systemic disease known to affect 

visual function. The study was approved by the School’s Research Ethics Committee and 

all procedures adhered to the tenets of the Declaration of Helsinki. All participants 

provided informed written consent prior to participation. 

 

Calibration 

The Goldmann-Weekers adaptometer recorded luminance in units of log microapostilbs, 

rather than the more contemporary unit of luminance, log cd/m². In order to ensure that the 

values recorded by the Goldmann-Weekers adaptometer were accurately converted to log 

cd/m², the luminance of the stimulus was calibrated using a photometer (LS-110; Konica 

Minolta, Osaka, Japan) (Appendix I).  

 

Experimental procedure 

All participants attended the laboratory on two days within a two week period. Baseline 

data, including best corrected visual acuity and assessment of fundus appearance, were 

obtained at the start of the first session. At each session, participant’s pupils were dilated 

with one drop of 1.0% Tropicamide in each eye. After a short familiarisation trial, dark 

adaptation was monitored in the right eye of all participants (the left eye was occluded). 

Refractive correction was worn as required. 

 

LED mount

Achromatic doublet

+20D

Achromatic doublet

+20D

Eyepiece & chin rest

5cm 5cmVariable aperture

5cm 5cm

 

Figure 2.1. A schematic diagram of the Maxwellian view optical system 
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In order to obtain precise control of photopigment bleaching, a Maxwellian view optical 

system was used instead of the Goldmann-Weeker’s integrated bleaching light (Figure 

2.1). A 95% bleach (5.78 log phot.Td for 60s) of cone photopigment (Hollins & Alpern, 

1973) was administered to the central 43.6º of the test eye. 

 

Figure 2.2. The Goldmann-Weekers adaptometer. The participant positioned their chin on 

the rest at the front of the device and fixated the stimulus at the back of the bowl, the 

luminance of which was manually adjusted by the investigator using the controls at the rear 

of the device. 

 

Upon cessation of the bleach, the participant turned to fixate the stimulus in the bowl of the 

Goldmann-Weekers adaptometer within 3 seconds and recording commenced immediately 

(Figure 2.2). Cone dark adaptation was monitored continuously for 5 minutes. The 

stimulus was a 4º diameter achromatic spot viewed centrally and was presented for 1 

second every 2 seconds (i.e. 0.5Hz). The luminance of the stimulus was under direct 

control of the investigator, who used a method of ascending limits to record the dark 

adaptation function. That is, the examiner manually increased the intensity of the stimulus 

until the participant reported that it was just seen. Threshold was recorded by marking the 
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recording paper (Figure 2.3), before the stimulus intensity was reduced and the procedure 

repeated. This continued throughout the recording period. Subsequently, the marks on the 

recording paper were digitised (DigitizeIt Ver 1.5) and transferred to a spreadsheet for 

analysis. 

 

Figure 2.3. The logarithmic recording paper used by the Goldmann-Weekers adaptometer 

to record visual threshold. 

 

Statistical analysis 

The time constant of cone recovery (τ) was determined by fitting a single exponential 

function (Equation 2a), on a least squares basis, to the threshold recovery data recorded 

from each participant, using Microsoft Excel (2003). 

 

Equation 2a.  T(t) = a + (b.exp
(-t/τ)

)  

 

where T is the threshold at time t after the bleach, a is the final cone threshold, b is the 

change in cone threshold from t = 0 and τ is the time constant of cone recovery (McGwin 

et al., 1999). The final cone threshold and the change in cone threshold were added 

together to calculate the initial cone threshold. 

 

The repeatability of cone τ, initial cone threshold and final cone threshold of the best fitting 

models was assessed using established statistical techniques (Bland & Altman, 1986), 

including by calculating the coefficient of repeatability (CoR). The CoR is calculated as 

1.96 multiplied by the standard deviation of differences between visits one and two. A 

paired t-test was used to determine whether parameters of adaptation differed significantly 
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between visits. This would indicate a systematic difference between the two visits e.g. due 

to a learning effect. 

 

2.1.4. Results 

Cone dark adaptation data were recorded from all 31 participants, on two occasions, using 

the Goldmann-Weekers adaptometer. The cone τ, initial cone threshold and final cone 

threshold given by the best fitting exponential model are shown for each participant in 

Table 2.1. An example of the dark adaptation data obtained from a typical participant (SH) 

at the two visits are shown in Figure 2.4, with the best fitting exponential model for each 

visit. 
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Figure 2.4. Cone dark adaptation data and best fitting exponential model for SH, recorded 

using the Goldmann-Weekers adaptometer at visit 1 (a) and visit 2 (b), shown with the 

time constant of cone recovery (τ) in minutes. 

 

The difference in cone τ recorded at the first and second visit is plotted as a function of the 

mean cone τ for all 31 participants in the Bland and Altman plot shown in Figure 2.5a. 

Similar plots for the initial and final cone thresholds are shown in Figure 2.5b and 2.5c. In 

each plot, the solid horizontal line represents the bias i.e. the mean difference observed 

between visits, and the dashed horizontal lines indicate the limits of agreement i.e. the 

mean difference +/- the coefficient of repeatability (CoR). The CoR for cone τ was 1.32 

minutes, for the initial threshold 0.71 log cd/m² and for the final threshold 0.58 log cd/m². 
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Table 2.1. Cone τ, initial cone threshold and final cone threshold for all participants 

Participant Cone τ (minutes) Initial cone threshold 

(log cd/m²) 

Final cone threshold  

(log cd/m²) 

 Visit 1 Visit 2 Visit 1 Visit 2 Visit 1 Visit 2 

AG 1.53 2.25 0.52 0.12 -1.79 -1.90 

AH 1.92 2.41 0.93 0.58 -2.08 -2.07 

AW 1.69 2.36 0.65 0.41 -1.79 -2.23 

BP 2.48 1.55 0.95 1.2 -1.75 -1.60 

CD 1.94 2.15 0.84 0.56 -1.72 -2.21 

CL 1.32 1.15 0.63 0.88 -1.91 -2.71 

CP 1.17 2.12 0.81 0.68 -1.34 -2.06 

CW 2.33 1.59 0.41 0.97 -2.09 -2.00 

EB 3.53 2.26 0.78 0.88 -2.27 -1.77 

EBA 1.74 2.04 0.65 0.37 -1.91 -2.02 

EC 2.37 1.91 0.07 1.11 -1.70 -1.82 

FD 1.46 1.49 1.26 0.67 -1.67 -1.87 

GN 2.25 2.32 1.22 0.57 -2.05 -2.45 

HD 1.76 1.87 0.74 0.60 -2.06 -2.25 

HH 2.05 1.62 0.72 0.77 -2.00 -2.03 

HS 2.46 2.79 0.3 0.42 -2.22 -2.36 

JH 1.94 3.06 0.93 0.51 -2.28 -2.37 

JAH 2.30 1.95 0.55 0.61 -2.32 -1.85 

KK 1.90 1.41 0.75 0.32 -1.83 -1.83 

KM 2.49 1.68 0.68 0.78 -1.96 -1.61 

LF 1.40 1.55 0.88 0.46 -1.94 -1.69 

LS 1.30 1.77 0.81 0.29 -1.81 -2.14 

MC 2.43 1.58 0.35 0.55 -2.10 -1.52 

PG 2.65 2.10 1.06 1.00 -2.29 -1.39 

PH 4.10 3.61 0.78 0.73 -2.25 -1.49 

PJ 2.52 2.66 0.62 0.92 -2.57 -2.52 

RE 1.09 1.99 0.79 0.79 -1.79 -1.89 

SM 2.37 1.51 0.45 0.63 -2.07 -1.78 

SH 1.84 2.09 0.74 0.82 -2.25 -2.40 

ST 2.02 0.92 0.96 0.75 -2.09 -1.78 

SW 2.09 2.19 0.74 1.05 -2.84 -1.89 
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Figure 2.5. Bland-Altman plots for cone τ (a), initial threshold (b) and final threshold (c). 

The difference between the value recorded at visit 1 and visit 2 is plotted as a function of 

the mean value for all 31 participants and is shown with the bias (solid line) and 95% 

limits of agreement (dashed lines). 
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The mean (+/- standard deviation) cone τ, initial cone threshold and final cone threshold 

are shown in Table 2.2, for visit one and visit two. There were no statistically significant 

differences in any of these parameters between the two visits (p > 0.05), which indicate 

that there was no significant learning effect within the dataset. 

 

Table 2.2. Mean (+/- standard deviation) of dark adaptation parameters assessed at visit 

one and visit two 

 Mean (+/- standard deviation) p-value 

 Visit 1 Visit 2 (paired t-test) 

Cone τ (minutes) 2.11 (+/-0.67) 2.00 (+/-0.55) 0.376 

Initial threshold (log cd/m
2
) 0.73 (+/-0.25) 0.68 (+/-0.25) 0.443 

Final threshold (log cd/m
2
) -1.99 (+/-0.25) -2.02 (+/-0.29) 0.652 

 

2.1.5. Discussion 

The Goldmann-Weekers adaptometer was capable of monitoring the rapid changes in 

threshold that occur during dark adaptation, and cone dark adaptation data were 

successfully recorded from all of the participants on each of the trials. Despite being the 

default clinical instrument for the measurement of dark adaptation for a number of 

decades, there has, until now, been no published data on the repeatability of the Goldmann-

Weekers adaptometer for measurement of the kinetics of dark adaptation. The repeatability 

data collated in this study may be used as a benchmark with which to compare other 

contemporary adaptometers, such as LKC Technologies’ SST-1 (Peters et al., 2000; 

Jackson et al., 2006b) and Apeliotus Vision Science’s AdaptDx (Jackson & Edwards, 

2008). 

 

When a technique is evaluated for clinical use, it is important to consider the CoR, as it 

indicates the extent of inherent variability, and therefore the smallest change that may be 

considered to be clinically significant (Bland & Altman, 1986). In order for a change in 

dark adaptation between visits to be considered clinically significant, a difference that is 

equal to or greater than the CoR must be measured. Relative to the mean cone τ recorded at 

the two visits (2.11 +/- 0.67 and 2.00 +/- 0.55 minutes at the first and second visits 

respectively) the CoR (1.32 +/- 0.25 minutes) is large, i.e. the adaptometer is not capable of 

identifying individual differences in cone τ of less than 1.32 minutes. Consequently, small 
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to moderate changes in dark adaptation may go undetected. This is important as recently, 

cone τ has been shown to be diagnostic for conditions such as AMD (Phipps et al., 2003; 

Binns & Margrain, 2007; Dimitrov et al., 2008; 2011) and may therefore be a useful 

clinical measure if assessed appropriately. 

 

As described in the methodology, this study used a Maxwellian view optical system to 

deliver a standardised bleach of known intensity prior to dark adaptation. In the clinic, the 

Goldmann-Weekers’ integrated light source may be used to deliver a continuous 

background bleach. However, the bleach delivered is not consistent between instruments, 

because it is dependent on the wattage of the bulb used. Consequently, the repeatability 

may differ between units, but it is unlikely that the performance of the device will be better 

than that reported here, where results were obtained under optimal control of bleach 

conditions. It may therefore be useful to evaluate the repeatability of each instrument 

before clinical use. 

 

In summary, the results of this study suggest that the Goldmann-Weekers adaptometer is 

insensitive to small to moderate changes in dark adaptation. This data may be used as a 

benchmark for future comparison with new modalities of dark adaptation assessment. 

 

 

2.2. A comparison of four psychophysical methods for measurement of 

cone dark adaptation 

 

2.2.1. Introduction 

The ‘method of limits’ employed by the Goldmann-Weekers adaptometer has been used by 

other dark adaptometers, for example, by implementing simple computer controlled 

staircases, similar to those used in visual field testing equipment (Jackson et al., 1999, 

Owsley et al., 2001, Owsley et al., 2007; Jackson & Edwards’ 2008). However, although it 

is fast, the psychophysical method of limits is prone to errors that may result from changes 

in the observer’s criterion (Treutwein, 1995), i.e. the rationale used by an observer to 

determine the presence or absence of a stimulus. In addition, non-automated devices, such 

as the Goldmann-Weekers adaptometer, are affected by changes in the performance of the 

operator too, for example, the rate at which the luminance of the stimulus is increased. 



Chapter 2 

 

79 

 

 

Adaptive staircases were developed to overcome the limitations of classical 

psychophysical procedures, such as the method of limits used by the Goldmann-Weekers 

adaptometer (Treutwein, 1995). Threshold is estimated by fitting psychometric functions to 

a series of threshold estimations. The psychometric function plots the probability of a 

correct response for a range of stimulus levels (see Figure 1.17, Page 44). Threshold is 

taken as the stimulus level that corresponds to a preselected level of performance. Adaptive 

procedures aim to improve the efficiency of testing by concentrating stimulus presentations 

at or near the presumed threshold, thus minimising redundant presentations (Treutwein, 

1995). Unlike classical psychophysical methods, during which stimuli are presented at 

fixed intervals, adaptive procedures are performance dependent, that is, the stimulus 

presented on any one trial is determined by one, several or all of the preceding responses 

given by the participant (Hall, 1981). 

 

Although adaptive techniques allow increasingly robust measurement of dark adaptation, 

they are not entirely free from the effects of changes in the observer’s criterion. 

Consequently, forced choice methods may be considered preferable. During a forced 

choice procedure, the observer is required to respond by selecting one of a number of 

presented options on each trial. The greater the number of options presented, the smaller 

the probability of the observer obtaining a correct response due to chance alone 

(Gescheider, 1997). However, despite their advantages, as forced choice procedures tend to 

be time consuming, they have not, thus far, been used to track threshold during dark 

adaptation. 

 

Cone dark adaptation is particularly attractive to clinicians as a diagnostic tool because of 

its sensitivity to early AMD (Phipps et al., 2003; Dimitrov et al., 2008; 2011) and the 

relative speed with which it can be recorded. However, the fundamental difficulty 

associated with measuring visual thresholds during dark adaptation is the speed with which 

threshold changes. This is most problematic when monitoring cone adaptation, in which 

the threshold decreases by approximately 2 log units during the initial 10 minutes in the 

dark (Hecht et al., 1937, Hollins & Alpern, 1973). Clearly, rapid psychophysical methods 

capable of obtaining robust and repeatable threshold measurements are desirable. 

 



Chapter 2 

 

80 

 

2.2.2. Aims 

In order to identify the most robust, clinically applicable technique for the measurement of 

visual threshold during cone dark adaptation, the repeatability and agreement of three 

computer based methods and the Goldmann-Weekers adaptometer were assessed. The 

computer based methods evaluated were: a hybrid adaptive stimulus presentation 

combined with a maximum likelihood calculation (Friedburg et al., 1998), a modified 

staircase procedure based on a method previously used with the Humphrey Visual Field 

Analyser (Jackson et al., 1999) and a novel 10-alternative forced choice procedure. The 

analysis of the CoR concentrated on cone τ, as this parameter appears to be most affected 

by early AMD (Phipps et al., 2003; Binns & Margrain, 2007; Dimitrov et al., 2008; 2011). 

 

Three hypotheses were proposed: 

1. The repeatability of the data obtained using the Goldmann-Weekers adaptometer would 

be inferior to that obtained using the computer based techniques because operator error 

would introduce an additional source of variability to the threshold measurements. 

2. The estimates of final cone threshold would be lower for the 10-alternative forced 

choice and hybrid adaptive techniques than for the method of limits because these 

techniques should provide a genuine estimate of the observer’s threshold (Friedburg et al., 

1998; Sekuler & Blake, 2006). 

3. Finally, there would be no significant difference in the time constant of cone recovery 

(τ) between techniques, because cone τ should be independent of the expected translation 

of the data up or down the vertical axis and, to some extent, differences in variability 

between techniques. 

 

2.2.3. Methods 

Participants 

A new cohort of thirty-one healthy adults, aged 20-31 years (mean age 21.6 +/- 2.5 years) 

were recruited to the study from the staff and students at the School of Optometry and 

Vision Sciences, Cardiff University. The inclusion criteria were similar to that of the 

preceding investigation: a corrected visual acuity of 6/6 or better in the test eye, clear 

ocular media (≤ Grade 3, LOCS-III) (Chylack et al., 1993), a normal retinal appearance 

and no history of ocular or systemic disease. The study was approved by the School’s 

Research Ethics Committee and all procedures conformed to the tenets of the Declaration 
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of Helsinki. Informed written consent was provided by all participants prior to 

participation. 

 

Psychophysical methods 

As described (Section 2.1.3, Page 72), the Goldmann-Weekers adaptometer used the 

method of ascending limits to record the dark adaptation function directly onto logarithmic 

paper. The luminance of the 4º diameter achromatic spot stimulus was under direct control 

of the investigator, who manually increased the intensity of the stimulus until it was just 

seen. Threshold was recorded by marking the recording paper, before the stimulus intensity 

was reduced and the procedure repeated. This continued throughout the recording period. 

Subsequently, the marks on the recording paper were digitised (DigitizeIt Ver 1.5) and 

transferred to a spreadsheet for analysis. 

 

The remaining three methods were computer based and all stimuli were presented on a 

calibrated high resolution CRT monitor (Iiyama LS 902UT) driven by an 8-bit graphics 

board (nVIDIA Geforce 9) under software control (Matlab, R2009a, The MathWorks Inc.). 

The luminance output of the monitor was γ-corrected (Metha et al., 1993; Brainard et al., 

2001) and modified by neutral density filters mounted on the screen to expose the full 

range of visual recovery. The background luminance of the CRT (-0.85 log cd/m²) was 

attenuated by a 1.2 ND filter in place throughout recordings. As the lower end of the 

luminance range approached, additional filters were added to further attenuate the 

luminance. This ensured that only 2.1 log units of the linear range of the γ-corrected 

monitor was used during testing. 

 

The 4º diameter achromatic stimulus was presented at the centre of the screen, indicated by 

four fixation markers (Figure 2.6). The hybrid adaptive and modified staircase procedures 

used spot stimuli, whilst numeric stimuli were presented during the forced choice 

paradigm. The participant was instructed to fixate the centre of the screen and to indicate 

perception of the stimulus via the computer keyboard, or to report the number seen in the 

case of the forced choice program. The three computer programs are shown in Appendix 

II. 
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Figure 2.6. CRT display used by the computer based dark adaptation procedures; at a 

viewing distance of 55cm. Participants were instructed to fixate the centre of the screen 

indicated by four 1º x 0.5º fixation markers (a), where a 4º diameter achromatic spot or 

numeric stimulus was presented (b). 

 

The hybrid adaptive procedure has previously been described by Friedburg et al. (1998). 

On each trial, the luminance of the stimulus was determined by a set of three decision 

criteria, based on the participant’s previous responses (Table 2.3). A visual threshold 

estimate was recorded when a maximum of twelve trials were exceeded or five consecutive 

reversals (‘seen to not seen’, or vice versa) occurred. A maximum likelihood computation 

was employed to determine threshold by estimating values of the midpoint and spread of 

the psychometric function on the basis of the distribution of all of the participant’s 

previous responses to the stimuli presented (Hall, 1981). 

 

The modified staircase procedure was based on a method previously implemented using a 

Humphrey perimeter (Jackson et al., 1999). The stimulus was presented for 200 msec, 

followed by a 600 msec response window and then a randomly determined interstimulus 

delay of 0.9 – 2.4 seconds. If the participant reported perception of the stimulus within the 

600 msec response window, the luminance was reduced by 0.3 log units for the next 

presentation. Conversely, if the participant took longer than 600 msec to respond to the 

stimulus, or failed to respond at all, the intensity was increased by 0.1 log units on the 

following presentation. Threshold was recorded when the stimulus first became visible on 

an ascending staircase. 

 

36cm

28cm

a

b
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Table 2.3. Decision criteria used by the hybrid adaptive procedure to determine the 

stimulus luminance (Friedburg et al., 1998). 

Response sequence Target luminance 

Response ‘changes from ‘seen’ to ‘not 

seen’ or vice versa 

Reversal of step direction and step size 

reduced by 60% 

Response consistent for 2 trials Step size and direction remain unchanged 

Response consistent for 3 trials Step size doubled but step direction 

remains unchanged 

 

The 10-alternative forced choice program presented numeric stimuli, from zero to nine. 

Participants were instructed to report the number shown after every stimulus presentation, 

irrespective of their level of confidence, and the investigator entered the response via the 

computer keyboard. After each correct response the stimulus luminance was reduced by 

0.3 log units on the subsequent presentation, and for each incorrect response it was 

increased by 0.1 log units. Similarly to the modified staircase procedure, threshold was 

recorded when the stimulus first became visible on an ascending staircase. 

 

Experimental procedure 

Participants attended the laboratory on two days within a two week period. Baseline data, 

including best corrected visual acuity and assessment of fundus appearance, were obtained 

at the start of the first session. At each session, participant’s pupils were dilated with one 

drop of 1.0% Tropicamide in each eye. Dark adaptation was assessed in the right eye of all 

participants (the left eye was occluded) and refractive correction was worn as required. 

 

At the start of each session, the procedures involved were explained to the participant and a 

5 minute practice trial was provided. This was extended at the investigator’s discretion, 

until the participant appeared to be competent with the procedures. 

 

A Maxwellian view optical system was used to administer a 95% bleach (5.78 log phot.Td 

for 60s) of cone photopigment (Hollins & Alpern, 1973) to the central 43.6º of the test eye. 

Upon cessation of the bleach, participants turned to fixate the test stimulus within 3 

seconds and recording commenced immediately. Cone dark adaptation was monitored 

continuously for 5 minutes, in response to a 4º diameter achromatic stimulus centred on the 
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fovea, using one of the four psychophysical techniques, selected at random. This procedure 

was repeated for each of the remaining psychophysical methods. A 10 minute ‘wash out’ 

period was interleaved between successive photopigment bleaches to avoid carry-over 

effects. In conjunction with the wash-out period, the use of a long duration ‘equilibrium’ 

bleaching light would ensure the same baseline level of adaptation on each trial. The same 

protocol was followed at the second visit, excluding the collection of baseline data. 

 

Statistical analysis 

The time constant of cone recovery (τ), initial cone threshold and final cone threshold were 

determined by fitting a single exponential function (Equation 2a), on a least squares basis, 

to all threshold recovery data using Microsoft Excel (2003). 

 

The repeatability of the four methods was assessed by evaluating the data from each of the 

sessions using established statistical techniques (Bland & Altman, 1986), including by 

calculating the coefficient of repeatability (CoR). Paired t-tests were completed to 

determine any significant differences between cone τ between visit one and two, which 

may be indicative of a learning effect. A repeated measures analysis of variance (ANOVA) 

was carried out to look for significant order effects. A repeated measures ANOVA was 

then used to compare the mean cone τ, initial cone threshold and final cone threshold 

obtained using the four psychophysical methods, and a posthoc analysis (including 

Bonferroni correction) was used to determine which techniques differed significantly from 

each other. 

 

2.2.4. Results 

Cone dark adaptation data were recorded from all 31 participants, on both occasions, using 

each of the methods described. The dark adaptation data recorded from a typical 

participant (JF) at the first visit are shown in Figure 2.7, with the best fitting exponential 

model for each method. Threshold estimates were obtained approximately every 15 

seconds using the hybrid adaptive procedure, approximately every 10 seconds using the 

Goldmann-Weekers adaptometer and 10-alternative forced choice procedures and 

approximately every 7 seconds using the modified staircase procedure. 
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Figure 2.7. Cone dark adaptation data and best fitting exponential model for JF, recorded 

at visit 1 using the Goldmann-Weekers adaptometer (a), the hybrid adaptive procedure (b), 

the modified staircase procedure (c) and a novel 10-alternative forced choice procedure 

(d). All shown with the time constant of cone recovery (τ) in minutes. 

 

The mean (+/- standard deviation) cone τ, initial cone threshold and final cone threshold 

for each of the psychophysical methods, are shown in Table 2.4. There were no statistically 

significant differences in mean cone τ between the four methods of dark adaptation 

measurement (p = 0.488). However, there was a statistically significant difference in the 

initial threshold estimates generated by the four methods (p < 0.005). Post-hoc analysis 

showed that the initial threshold given by the Goldmann-Weekers adaptometer was 

significantly lower than those given by the computer based techniques. There was also a 

significant difference in the final cone threshold measured by the four methods (p < 0.005). 

More specifically, post-hoc analysis showed that the final cone threshold given by the 
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Goldmann-Weekers adaptometer was significantly higher than the final threshold obtained 

using the hybrid adaptive and 10-alternative forced choice methods. 

 

Table 2.4. Mean cone τ, initial cone threshold and final cone threshold for all participants 

at visit 1 and visit 2 for the four psychophysical methods of dark adaptation measurement. 

 Goldmann-

Weekers 

adaptometer 

Hybrid 

adaptive 

procedure 

Modified 

staircase 

procedure 

10-AFC 

procedure 

p-value 

Cone τ 

(minutes) 

2.11 (0.45) 2.05 (0.48) 1.99 (0.42) 2.09 (0.60) = 0.488 

Initial threshold 

(cd/m²) 

0.67 (0.12) 0.89 (0.21) 0.82 (0.16) 0.80 (0.15) < 0.0005 

Final threshold 

(cd/m²) 

-1.81 (0.21) -2.13 (0.33) -2.05 (0.62) -2.20 (0.33) < 0.0005 
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a. Goldmann-Weekers adaptometer b. Hybrid adaptive procedure

c. Modified staircase procedure d. 10-alternative forced choice

CoR = 1.18 +/- 0.22

CoR = 1.26 +/- 0.25 CoR = 1.32 +/- 0.26

CoR = 1.56 +/- 0.30

Figure 2.8. Bland-Altman plots for cone τ measured using the Goldmann-Weekers 

adaptometer (a), the hybrid adaptive procedure (b), the modified staircase procedure (c) 

and a novel 10-alternative forced choice procedure (d), with the CoR for each technique 

displayed in minutes. The solid line represents the bias and the dashed lines indicate the 

95% limits of agreement. 
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The difference in cone τ recorded at the first and second visit is plotted as a function of the 

mean cone τ for each psychophysical method in the Bland and Altman plot shown in 

Figure 2.8. Similar plots for initial cone threshold and final cone threshold are presented in 

Figure 2.9 and 2.10. In each plot, the solid horizontal line represents the bias i.e. the mean 

difference observed between visits, and the dashed horizontal lines indicate the limits of 

agreement i.e. the mean difference +/- the coefficient of repeatability (CoR). The data from 

one participant was excluded from all analyses as the mean cone τ obtained for this 

participant using the hybrid adaptive procedure fell beyond three standard deviations from 

the mean difference for that psychophysical method. The four psychophysical methods 

demonstrated a similar level of intersession repeatability for measurement of cone τ and 

final cone threshold, with overlapping 95% confidence intervals for the CoR. However, 

with regard to initial cone threshold, the hybrid adaptive procedure was the least repeatable 

method for the measurement of this parameter. 
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Figure 2.9. Bland-Altman plots for initial cone threshold measured using the Goldmann-

Weekers adaptometer (a), the hybrid adaptive procedure (b), the modified staircase 

procedure (c) and a novel 10-alternative forced choice procedure (d), with the CoR for 

each technique displayed in minutes. The solid line represents the bias and the dashed lines 

indicate the 95% limits of agreement. 
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There were no statistically significant differences in mean cone τ recorded at the first and 

second visit for any of the psychophysical methods studied (p > 0.05). Similarly, an 

assessment of the order in which each psychophysical technique was used within a single 

recording session showed no statistically significant differences in mean cone τ for test 

order (p > 0.05). This analysis indicates that there were no learning, fatigue or bleach 

carry-over effects within the dataset. 

 

Figure 2.10. Bland-Altman plots for final cone threshold measured using the Goldmann-

Weekers adaptometer (a), the hybrid adaptive procedure (b), the modified staircase 

procedure (c) and a novel 10-alternative forced choice procedure (d), with the CoR for 

each technique displayed in minutes. The solid line represents the bias and the dashed lines 

indicate the 95% limits of agreement 

 

2.2.5. Discussion 

The major challenge encountered when monitoring cone dark adaptation is that of 

obtaining robust visual threshold estimations in the limited timeframe imposed by the rate 

at which cone threshold changes. All four of the techniques used in this study were capable 

of monitoring the rapid changes in visual threshold that occurred during cone dark 

adaptation. As predicted, there were no significant differences between cone τ obtained 

using the different methods. This is reassuring as the parameters of dark adaptation are 
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determined by the physiology of the visual system and therefore should be independent of 

the measurement technique. 

 

As discussed (Section 2.1.5, Page 78) the CoR indicates the smallest change in a parameter 

such as cone τ that may be considered clinically significant. For the methods evaluated 

here, a change of more than 1.18-1.56 minutes in cone τ between visits can be considered 

clinically meaningful. The CoR can only really be interpreted in the context of previous 

experimental data. When a similar computer based technique was used to compare cone τ 

within the central retina between participants with early AMD and healthy controls, 

differences of 2.85-8.01 minutes in mean cone τ between the groups were reported (See 

Chapter 4 and Gaffney et al., 2011b). These differences are clearly greater than the CoRs 

reported here, suggesting that the psychophysical methods are capable of producing results 

which can reliably distinguish individuals with early AMD from healthy controls. 

 

The CoR obtained for cone τ measured using the Goldmann-Weekers adaptometer (1.18 

+/- 0.22 minutes) is consistent with that obtained in the preceding section of the study 

(1.32 +/- 0.25 minutes) (Section 2.1.4; Gaffney et al., 2011a). Contrary to expectations, the 

repeatability of the Goldmann-Weekers adaptometer was equivalent to the computer based 

methods. This occurred despite differences in the way in which the stimuli were presented: 

unlike the computer based methods, the stimuli presented by the Goldmann-Weekers 

adaptometer were controlled by an operator. It is important to acknowledge that the 

investigator was highly trained in the operation of the Goldmann-Weekers adaptometer 

and therefore the CoR reported here was based on data obtained under optimal recording 

conditions. Consequently, the repeatability of the device may be poorer when under the 

control of a less experienced operator. 

 

As expected, the lowest estimates of final cone threshold were generated by the hybrid 

adaptive and 10-alternative forced choice methods. The hybrid adaptive procedure was 

developed in order to provide a fully automated method of dark adaptation measurement 

aimed at minimising the effects of subjective bias on the data (Friedburg et al., 1998). 

When it was first described, the technique was shown to produce lower final threshold 

estimates than the ascending staircase procedure employed by the Goldmann-Weekers 

adaptometer (Friedburg et al., 1998), a finding that was replicated in the current dataset. 

This may be explained by the way in which the procedure computes estimates of threshold 
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using the psychometric frequency of seeing curve. After the data is collected, threshold is 

estimated as the target luminance that corresponds to a 50% detection rate. This is likely to 

be lower than when traditional staircase procedures are used, because the subjective 

decision criterion erroneously raises threshold.  

 

With regard to the repeatability of cone τ, the hybrid adaptive procedure had no advantage 

over the other techniques. In fact, the repeatability was actually the lowest of all of the 

methods (CoR = 1.56 +/- 0.30). In addition, this technique also exhibited the poorest 

repeatability for the measurement of initial cone threshold (CoR = 0.64 +/- 0.12). This is 

likely to result from the complex ‘decision criteria’ used to determine threshold, which 

meant that the procedure only recoded a threshold approximately every 15 seconds, the 

least frequently of all of the methods. This implies that a more accurate and reliable 

description of the changes in threshold that occur during cone dark adaptation may be 

obtained using methods that are capable of producing more frequent threshold estimates, 

such as the staircase procedure. The hybrid adaptive procedure may be more appropriate 

for measurement of rod dark adaptation, in which changes in visual threshold occur more 

slowly. 

 

Forced choice methods have been shown to consistently produce lower and more accurate 

threshold estimations compared to unforced subjective procedures because the 

measurements are criterion free (Sekuler & Blake, 2006). As predicted, the 10-alternative 

forced choice method produced a significantly lower mean final threshold relative to that 

attained with the Goldmann-Weekers adaptometer, although it was not significantly 

different to the other computer based methods. However, it is inappropriate to compare this 

technique directly to the to the other methods as the 10-alternative forced choice procedure 

employed numeric stimuli, which was arguably a more demanding recognition task than 

the identification of the spot stimuli used by the other methods. 

 

The initial cone threshold measured by the Goldmann-Weekers adaptometer was 

significantly lower than those generated by the computer based techniques. This may be 

explained by differences in the available luminance range between the adaptometer and the 

computer. The Goldmann-Weekers adaptometer presented a maximum stimulus intensity 

of 0.4 log cd/m², compared to the maximum stimulus intensity of 0.8 log cd/m² presented 
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by the computer. Consequently, the computer based methods were able to collect a greater 

number of data points during the earliest stages of dark adaptation to anchor the 

exponential model fit. Removal of these early data points generated by the computer based 

methods reduces the difference in the initial threshold between the techniques. 

 

In summary, the performance of the Goldmann-Weekers adaptometer was compared to 

three automated computer methods of measuring cone dark adaptation and the mean cone τ 

and CoR for each were reported. Contrary to our initial expectations, there were no 

significant differences in the repeatability between the techniques. As expected, the time 

constant of cone dark adaptation was also not significantly different between techniques. 

Despite the theoretical advantages of the criterion free forced choice and hybrid adaptive 

procedures, these results indicate that any of these psychophysical techniques may be used 

to measure cone dark adaptation in clinical practice. As our future investigations are 

primarily concerned with the changes in cone dark adaptation that occur in early AMD, we 

will continue to use the staircase procedure to collect data, as its simple algorithm 

facilitates rapid threshold measurement: a necessity for the assessment of cone dark 

adaptation. 
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3. The effect of age on cone dark adaptation in 

healthy eyes 

 

 

Age-related macular degeneration may be considered a pathological extension of the 

normal ageing process (Zarbin, 2004). Many features of the ageing retina are present to an 

elevated extent in eyes with AMD, for example, the thickening of Bruchs membrane, 

accumulation of lipofuscin in the RPE and photoreceptor loss. This suggests that ageing 

changes contribute, but do not inevitably lead, to AMD. Consequently, prior to considering 

the way in which dark adaptation is affected by AMD, it is important to examine the 

relationship between dark adaptation and age in a population of healthy eyes. 

 

3.1. Introduction 

Globally, the average age of the population is forecast to increase during the coming 

decades (United Nations, 2009). The UK is no exception, with a 32% increase in the 

population of state pension age predicted by 2033 and a doubling of the population aged 

over 85 years expected in the same period (Office for National Statistics, 2009). This will, 

in turn, increase the demand for healthcare services. In order to ensure that the provision of 

services is sufficient to meet this increased demand, it is important to understand how our 

biological systems are affected by the ageing process. Furthermore, in the development of 

clinical tests for AMD, it is important to characterise the effect of normal ageing on visual 

function, in order to identify disease-specific changes to these parameters. 

 

Age-related changes are evident in many ocular structures (Weale, 1963; Salvi et al., 

2006). These include changes in corneal curvature (Topuz et al., 2004; Asano et al., 2005), 

pupillary miosis (Birren et al., 1950), nuclear sclerosis of the crystalline lens (Bron et al., 

2000), liquefaction of the vitreous (Le Goff & Bishop, 2008) and retinal changes (Zarbin, 

2004), including reduced choriocapillary density and blood flow, and thickening and 

increased deposition of Bruch’s membrane (Ramrattan et al., 1994; Stefánsson et al., 

2011). Correspondingly, changes in many aspects of visual function have been reported 

with increasing age, for example, a reduction in visual acuity (Klein et al., 1996; West et 

al., 1997; van der Pols et al., 2000), contrast sensitivity (Nomura  et al., 2003; Hohberger et 
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al., 2007) and photopic and scotopic sensitivity (Robertson & Yudkin, 1944; Steven 1946; 

Birren et al., 1948; Birren & Shock 1950; Eisner et al., 1987b; Sturr et al., 1997; Jackson et 

al., 1998), as well as changes in colour vision (Mantyjarvi, 2001), stereopsis (Salvi et al., 

2006) and dark adaptation (Coile & Baker, 1992; Jackson et al., 1999). 

 

Visual difficulties in low illumination are often reported by elderly adults in the absence of 

ocular pathology (Kline et al., 1992; McGregor & Chaparro, 2005) and have been 

identified as a cause of trips and falls in these individuals (McMurdo & Gaskell, 1991). 

These visual problems are associated with a reduction in photopic and scotopic sensitivity 

(Robertson & Yudkin, 1944; Steven 1946; Birren et al., 1948; Birren & Shock 1950; 

Eisner et al., 1987b; Sturr et al., 1997; Jackson et al., 1998). In part, this may be attributed 

to age-related changes to the pre-retinal ocular structures, which restrict the amount of light 

reaching the retina (Birren et al., 1950; Bron et al., 2000). Age-related pupillary miosis 

causes a reduction in the amount of light entering the eye (Birren et al., 1950), while an 

increase in the density of the ocular media causes an increase in pre-retinal light absorption 

(Bron et al., 2000). However, the retinal changes that occur with age, for example the loss 

of RPE and rod photoreceptor cells, are also likely to contribute to diminishing visual 

sensitivity (Dorey et al., 1989; Gao & Hollyfield, 1992; Curcio et al., 1993). 

 

In addition to the decline in photopic and scotopic sensitivity with increasing age, 

contemporary investigations have demonstrated an age-related decline in the rates of rod 

dark adaptation (Holopigian et al., 1997; Jackson et al., 1999; Jackson et al., 2006a). 

However, data regarding the relationship between age and cone dark adaptation is sparse. 

Prolonged photostress or ‘glare recovery’ with increasing age has been reported (Collins 

1989; Elliott & Whitaker 1991; Margrain & Thomson 2002; Bartlett et al., 2004; Newsome 

& Negreiro 2009; Wood et al., 2011b). However, only three studies have specifically 

examined the changes in cone adaptation dynamics that occur with increasing age (Birren 

& Shock, 1950; Eisner et al., 1987b; Coile & Baker; 1992). Eisner et al. (1987b), found the 

rate of dark adaptation, measured using a two-channel Maxwellian view device, to be 

independent of age in 122 participants aged between 60 and 90 years. This finding was 

supported by earlier work, using the Hecht-Shlaer adaptometer, in 91 male participants 

aged between 40 and 83 years (Birren & Shock, 1950). In contrast, Coile and Baker (1992) 

demonstrated a reduction in the rate of cone dark adaptation with increasing age in a cohort 

of 58 participants aged between 10 and 78 years, using a modified retinal densitometer. 
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The data presented in this chapter have been accepted for publication in a peer-reviewed 

journal (see Gaffney et al., 2012 in Appendix III). 

 

3.2. Aims 

In light of the limited and apparently contradictory evidence regarding the relationship 

between age and the dynamics of cone dark adaptation, this study aimed to re-evaluate the 

effect of age on cone dark adaptation in a cohort of healthy adults. 

 

3.3. Methods 

Participants 

Forty-one healthy adults, aged 20-83 years, were recruited to the study from the staff, 

students and patients at the School of Optometry and Vision Sciences, Cardiff University. 

All participants had a corrected visual acuity of 6/6 or better in the test eye, clear ocular 

media (≤ Grade 3, LOCS-III) (Chylack et al., 1993), a normal retinal appearance and no 

history of ocular or systemic disease known to affect visual function. The study was 

approved by the South East Wales Research Ethics Committee and all procedures adhered 

to the tenets of the Declaration of Helsinki. Informed written consent was obtained from all 

participants prior to participation. 

 

All stimuli were presented on a calibrated, high resolution computer monitor (Iiyama LS 

902UT) driven by an 8-bit graphics board (nVIDIA Geforce 9) under software control 

(Matlab, R2009a, The MathWorks Inc.).  As described in Chapter 2 (Section 2.2.3, Page 

81) the luminance output of the monitor was γ-corrected (Metha et al., 1993; Brainard et al. 

2001) and modified using a 1.2 log ND filter mounted on the screen to expose the full 

range of cone recovery. Dark adaptation was monitored using a modified staircase 

psychophysical procedure previously implemented by Jackson et al. (1999) (see Section 

2.2.3, Page 81). 

 

Experimental procedure 

Patient history and baseline data were obtained at the start of the examination. These 

included Snellen visual acuity, media opacity grading (Chylack et al., 1993) and a 

binocular indirect fundus examination. Prior to dark adaptation, participants’ pupils were 

dilated with one drop of 1.0% Tropicamide in each eye. A short familiarisation trial was 
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undertaken until the investigator considered the participant to be competent in the use of 

the dark adaptation program. Dark adaptation was monitored in the right eye of all 

participants (the left eye was occluded) and refractive correction was worn as required for 

a viewing distance of 55cm. 

 

A 95% bleach (5.78 log phot.Td for 60s) of cone photopigment (Hollins & Alpern, 1973) 

was delivered to the central 43.6º of the test eye using a Maxwellian view optical system. 

Upon cessation of the bleach, participants placed their chin on the rest in front of the 

computer screen and recording commenced immediately. Cone dark adaptation was 

monitored continuously by the computer program for 5 minutes. Thresholds were recorded 

in response to a 4º diameter achromatic spot presented to the fovea for a duration of 0.2 

seconds. Participants were instructed to fixate the centre of the computer monitor, marked 

by a fixation cross and to indicate perception of the stimulus using the computer keyboard. 

 

Statistical analysis 

The time constant of cone recovery (τ) was determined by fitting a single exponential 

function (Equation 2a, Section 2.1.3), on a least squares basis, to the threshold recovery 

data recorded from each participant, using Microsoft Excel (2003). Initial and final cone 

thresholds were also determined from the parameters of the best fitting model. Linear 

regression analysis was performed to assess the relationship between age and the 

parameters of cone dark adaptation (Altman, 1991). 

 

3.4. Results 

Cone dark adaptation data were recorded from all 41 participants. The cone τ, initial cone 

threshold and final cone threshold given by the best fitting exponential model are shown in 

Table 3.1 for each participant. Figure 3.1 illustrates the dark adaptation data obtained from 

four typical participants, aged 23, 45, 65 and 83 years. Although thresholds remained 

relatively stable, a general trend towards slower dark adaptation with increasing age was 

evident. 
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Table 3.1. Cone τ, initial cone threshold and final cone threshold for all participants 

Age (years) Cone τ 

(seconds) 

Initial threshold 

(log cd/m²) 

Final threshold 

(log cd/m²) 

20 117.07 0.73 -2.29 

21 79.43 1.01 -2.13 

21 72.95 0.89 -1.95 

23 98.88 1.06 -2.21 

30 84.51 0.82 -2.03 

31 45.76 1.51 -1.95 

32 77.68 0.97 -2.03 

33 85.09 0.77 -2.10 

33 125.64 0.82 -2.03 

36 91.98 0.80 -2.02 

39 55.08 1.33 -1.89 

42 128.77 0.75 -2.26 

43 122.72 0.86 -2.2 

43 60.22 0.76 -1.87 

44 106.34 0.72 -2.13 

45 99.99 1.01 -2.06 

45 100.96 1.00 -2.18 

45 90.30 1.19 -1.72 

46 112.24 1.11 -2.11 

47 108.55 0.83 -2.22 

47 91.51 1.22 -2.08 

50 130.13 0.86 -2.17 

53 92.21 0.81 -2.05 

53 127.26 1.04 -2.16 

54 77.87 0.76 -1.97 

55 97.34 1.13 -2.09 

55 125.68 1.03 -2.04 

61 136.85 0.67 -2.35 

63 163.51 0.69 -2.20 

65 135.12 1.00 -2.20 

65 128.29 0.99 -1.98 

66 153.00 0.80 -2.61 

67 127.33 0.92 -2.19 

71 108.42 0.88 -2.04 

71 202.27 1.00 -2.42 

73 210.66 1.04 -2.41 

75 234.53 0.98 -1.87 

76 121.24 1.11 -1.92 

76 152.02 1.14 -1.05 

77 170.70 0.43 -2.33 

83 153.43 1.10 -2.30 
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Figure 3.1. Cone dark adaptation data for typical participants aged 23 (a), 45 (b), 65 (c), 

and 83 (d) years. Each plot is shown with the time constant of cone recovery (τ), initial 

cone threshold (I) and final cone threshold (F). 

 

A linear regression analysis was used to assess the change in the parameters of cone dark 

adaptation with increasing age (Figure 3.2). Cone τ increased by 16.35 seconds/decade of 

life, indicating a progressive slowing of dark adaptation with advancing age (Figure 3.2c). 

This change in cone τ with increasing age was significant (p < 0.0005). There was, 

however, no significant relationship between increasing age and initial threshold (p = 0.84) 

or final threshold (p = 0.82). Remarkably, these data suggest that approximately half of the 

variation in cone τ may be explained by age alone (R² = 0.50).  
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Figure 3.2. Cone dark adaptation as a function of age for initial threshold (a), final 

threshold (b) and cone τ (c). In each case the solid line is the regression line and the dashed 

lines indicate the 95% confidence interval for the regression line. The equation for the 

regression line is displayed on each plot. 
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3.5. Discussion 

These results demonstrate that cone dark adaptation kinetics become progressively slower 

throughout adulthood. An approximate doubling of cone τ occurred between the ages of 20 

and 80 years, which indicates that older adults require substantially more time to adjust to 

darkness than younger adults. These findings suggest that the performance of older 

individuals may be impaired during routine visual tasks, particularly those in which a rapid 

recovery of visual sensitivity is desirable, for example, the recovery of vision following 

exposure to oncoming headlights when driving at night.  

 

The increase in cone τ of 16.35 seconds/decade of life reported here is comparable to the 

12.6 seconds/decade increase reported by Coile & Baker (1992) for cone τ measured using 

a foveal stimulus in participants aged between 10 and 78 years. The differences between 

these results and those of earlier work, in which no association between cone dark 

adaptation and age was reported (Birren & Shock, 1950; Eisner et al. 1987b), are likely to 

result from methodological differences. The key methodological differences between these 

studies are shown in Table 3.2. Notably, Eisner et al. (1987) measured cone dark 

adaptation after exposure to a pre-adapting light of markedly lower intensity than that used 

by the other investigators, which may have contributed to the variability in their data. 

Although the use of a relatively modest bleach should not influence the measured 

exponential time constant, it does reduce the extent to which threshold is raised initially, 

which may make modelling of an individual’s recovery data more challenging (Hollins & 

Alpern, 1973). In addition, the effects of low intensity pre-adapting lights on the fraction of 

pigment bleached are more dependent on media changes than more substantial ones. For 

example, early media changes that reduce the retinal illuminance by a factor of 2 from 

20,000 to 10,000 phot.td would reduce the percentage of photopigment bleached from 37% 

to just 22%, a 15% reduction. In contrast, in this study the same media change would have 

reduced the percentage of photopigment bleach from 95% to 91%, a 4% reduction. Perhaps 

just as importantly, Eisner et al (1987) only studied older adults with a limited age range. 

That is, of the 122 subjects studied all but 5 were in their 60s and 70s. Therefore, it is 

possible that over the limited age range studied, any effects of age were masked by 

variability in the dataset. 
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Table 3.2. Summary of the methodology of previous studies that have examined the 

relationship between cone dark adaptation and age in healthy participants. The final 

column shows the characteristics of the methodology employed in the current study. 

Parameter Birren & 

Shock (1950) 

Eisner at al. 

(1987) 

Coile & Baker 

(1992) 

Gaffney et al. 

(2012) 

Participants 91 122 58 41 

Age range 40-83 years 60-90 years 10-78 years 20-83 years 

Bleach intensity 5.5 log.Td 3.4 log.Td 5.8 log.Td 5.78 log.Td 

Bleach duration 3 mins 3 mins 1 min 1 min 

Stimulus size 3º Ø 3º Ø 1º Ø 4º Ø 

Stimulus 

location 

7.5º nasal to 

fixation 

Fovea Fovea Fovea 

Stimulus λ < 460 nm 660 nm 589 nm White 

Psychophysical 

equipment 

Hecht-Shlaer 

adaptometer 

Two channel 

Maxwellian 

view 

Modified 

photon counting 

retinal 

densitometer 

Maxwellian 

view 

Psychophysical 

method 

Method of 

limits 

Method of 

limits 

Method of 

adjustment 

Modified 

staircase 

Threshold 

interval 

1 min for initial 

10 mins & 2 

mins thereafter 

Variable 10 secs for 

initial 4 mins & 

1 min thereafter 

Variable (~ 

every 10 secs) 

 

The violet (λ < 460nm) stimulus used to measure dark adaptation by Birren & Shock 

(1950) makes it possible that visual sensitivity during cone dark adaptation would have 

been mediated by the S-cones. The data presented in Figure 1 of Birren & Shock (1950) 

show that no distinct cone plateau occurs before the rods begin to mediate threshold 

approximately 10 minutes after the bleach offset. This suggests that S-cones dark adapt 

more slowly than other cone types. The effect of age on S-cone adaptation is unknown, and 

may differ from that of L- and M-cones. In addition, the participants did not undergo 

screening for ocular pathologies or general health problems. The lack of standardisation of 

these characteristics is likely to have increased variability in the results obtained. 
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There was no evidence of a relationship between age and final cone threshold. This 

contrasts with previous work in which modest changes in absolute cone threshold with 

increasing age (0.09-0.37 log cd/m²/decade) have been reported (Birren & Shock., 1950; 

Eisner et al., 1987b; Coile & Baker; 1992). However, unlike the current study, in which 

only participants classified as having ‘clear’ ocular media (grade 3 or lower, LOCS-III, 

Chylack et al., 1993) were included in the sample, these studies did not use such criteria. 

Consequently, the changes in visual threshold reported previously may be attributed to 

age-related changes in the density of the ocular media that lead to increased pre-retinal 

light absorption (Bron et al., 2000). Histological evidence has shown that there is a 

reduction in rod photoreceptor density throughout life (Curcio et al., 1993), and a 

corresponding reduction in scotopic sensitivity has previously been reported (Jackson et 

al., 1998). In contrast, foveal cone density remains relatively stable throughout life (Curcio 

et al., 1993) and consequently there is no histological premise for a change in cone 

thresholds with advancing age. 

 

The methodology employed in this study minimised the impact of pre-retinal factors on the 

results. In addition to all participants having clear ocular media in order to minimise pre-

retinal light absorption, pupillary dilation and a Maxwellian view optical system were used 

to reduce the effect of age-related pupillary miosis on light transmission. Refractive 

correction was worn if required by the participant to avoid optical blur and ensure that 

accurate thresholds were obtained. Consequently, the change in the kinetics of cone dark 

adaptation that occurred with age may be attributed to retinal factors and associated 

structures alone. Reduced density of the choriocapillaris and reduced choroidal perfusion 

(Stefánsson et al., 2011), thickening and a reduction in hydraulic conductivity of Bruch’s 

membrane (Feeneyburns and Ellersieck, 1985; Bird, 1992; Moore et al., 1995), RPE cell 

loss (Dorey et al., 1989; Gao & Hollyfield, 1992), photoreceptor cell loss (Curcio et al., 

1993) and the accumulation of lipofuscin in the RPE (Roth et al., 2004) have been reported 

to occur with increasing age. These changes are likely to impair photopigment regeneration 

and will therefore contribute to delays in cone dark adaptation. 

 

Knowledge about the relationship between cone dark adaptation and age is clinically 

important because cone τ is a potential biomarker for early macular disease (Phipps et al., 

2003; Dimitrov et al., 2008; 2011). Our observation that approximately half of the variance 

in cone τ may be attributed to age alone (R² = 0.50) suggests that the sensitivity and 
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specificity of this biomarker could be improved by taking into account the significant age-

related decline. 

 

In conclusion, this study has examined the relationship between age and the time course of 

cone dark adaptation in healthy adults. The results provide compelling evidence in support 

of an age-related slowing of cone dark adaptation in adults who are free from ocular 

disease. Therefore we propose that the sensitivity and specificity of cone τ as a biomarker 

for early age-related macular disease could be improved by taking into account the 

significant age-related decline in this parameter. 
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4. The effect of retinal eccentricity on dark 

adaptation in healthy eyes and eyes with early AMD 

 

 

Despite widespread agreement that dark adaptation is abnormal in early AMD (Brown et 

al., 1986a; Collins & Brown, 1989; Steinmetz et al., 1993; Midena et al., 1997; Owsley et 

al., 2001; Phipps et al., 2003; Binns & Margrain, 2007; Owsley et al., 2007; Dimitrov et 

al., 2008; 2011), the optimal retinal location for detection of this deficit is unclear. Before 

examining the changes in dark adaptation that occur across the retina in a disease such as 

AMD, it is necessary to consider the way in which dark adaptation alters as a function of 

retinal eccentricity in the healthy retina. Previous investigators have summarised the 

continuous change in threshold that occurs during cone and rod dark adaptation using 

several mathematical expressions (models). Therefore, this chapter begins by considering 

the most appropriate model for characterising experimental dark adaptation data in cones 

and rods. 

 

 

4.1. A comparison of models of cone and rod dark adaptation in healthy 

eyes 

 

4.1.1. Introduction 

Originally, visual threshold during dark adaptation was thought to be directly related to the 

concentration of unbleached photopigment (Hecht et al., 1937). However, this theory was 

later rejected on the basis of retinal densitometry data that showed that threshold remained 

significantly elevated after over 90% of photopigment had regenerated. Subsequently, 

following work in the albino rat (Dowling, 1960) and a rod monochromat (Rushton, 1961), 

the Dowling-Rushton relationship was adopted as a comprehensive explanation of 

threshold elevation during rod dark adaptation (Equation 1a, Page 38). This proposed that 

the logarithm of the visual threshold during dark adaptation was proportional to the 

concentration of bleached rhodopsin (Figure 4.1). For a comprehensive overview of 

theories regarding the relationship between visual threshold during dark adaptation and the 

retinoid cycle, the reader is referred to Section 1.3.4 (Page 37). 
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Figure 4.1. Dark adaptation data obtained from an albino rat (Dowling, 1960). The 

logarithm of visual threshold and the concentration of bleached rhodopsin follow the same 

exponential time course. 

 

At high adapting intensities, the dark adaptation function is biphasic (Hecht et al., 1937). 

The rapid recovery of threshold that occurs initially is mediated by the cone photoreceptors 

and the slower recovery of threshold that follows is mediated by the rod photoreceptors. 

Dark adaptation data have previously been described using a range of mathematical models 

based on the physiology of the visual cycle. If photopigment regeneration is considered a 

‘first-order’ process, in which recovery of threshold is proportional to the concentration of 

particular photochemical, it is appropriate to summarise dark adaptation data using an 

exponential function. Alternatively, should photopigment regeneration be ‘rate-limited’, 

that is limited by the availability of a particular photochemical or by the presence of a 

photoproduct of bleaching, a linear model is more applicable. 

 

Models of cone dark adaptation 

The Dowling-Rushton relation was shown to provide an appropriate description of the 

regeneration of cone photopigment (Hollins & Alpern, 1973). Consequently, cone 

photopigment regeneration was initially thought to proceed as a first-order process and has 

typically been described using an exponential model (Rushton & Henry, 1968; Hollins & 

Alpen, 1973; Coile & Baker, 1992), such as the single exponential function given in 

Equation 4a. However, more recently the exponential time constant of cone recovery (τ) 

has been shown to vary with bleaching intensity and duration (Paupoo et al., 2000; Mahroo 
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& Lamb, 2004). This behaviour is inconsistent with a first-order process. Therefore, 

Mahroo & Lamb (2004) have suggested that the delivery of 11-cis retinal to the 

photoreceptor outer segment is a rate-limiting step during dark adaptation, and 

consequently threshold recovery is better described by a rate-limited function (Equation 

4b). 

 

Equation 4a.  T(t) = a + (b.exp
(-t/τ)

)  

 

where T is the threshold at time t after the bleach, a is the final cone threshold, b is the 

change in cone threshold from t = 0 and τ is the time constant of cone recovery (McGwin 

et al., 1999). The pre-bleach threshold may be calculated by adding together the final cone 

threshold and the change in cone threshold. 

 

Equation 4b.  T(t) = a [1 - Km.W {B/Km.exp
(B/Km)

.exp
(-r(1+Km)/Km

.t}] 

 

where T is the threshold at time t after the bleach, a is the pre-bleach threshold, Km is the 

Michaelis constant, W is the ‘Lambert W function’, B is the initial bleach and r is the 

maximum rate of recovery (Paupoo et al., 2000; Mahroo & Lamb, 2004; Binns & 

Margrain, 2005). 

 

Models of rod dark adaptation 

Traditionally, in accordance with the Dowling-Rushton relation, rod dark adaptation data 

have been described using exponential models. Equation 4c shows a typical double 

exponential function, in which the initial exponential component describes the reduction in 

threshold attributed to cones and the second exponential component describes the rod 

threshold recovery data. 

 

Equation 4c.  T(t) =[ ac + (bc.exp
(-t/τc)

)] + [min(0, ar + (br.exp
(-t/τr)

)] 

 

where T is the threshold at time t after the bleach, ac is the final dark adapted cone 

threshold, bc is the change in cone threshold from t = 0, τc is the time constant of cone 

recovery, min is a logic statement ar is the final dark adapted rod threshold, br is the change 

in rod threshold from t = 0, and τr is the time constant of cone recovery (McGwin et al., 

1999). 
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However, the Dowling-Rushton relation was subsequently shown to apply only to rod 

photopigment regeneration following a near-total bleach of rhodopsin (Pugh, 1975; Lamb, 

1981). A linear relationship between elevation of rod threshold and intermediary 

‘photoproducts’ produced by the bleach has been proposed as a more appropriate model 

for a range of bleach intensities (Lamb, 1981). Consequently, rod recovery may be more 

accurately described by a rate-limited model consisting of several separate components 

with different rates of recovery (Lamb, 1981), such as that given by the second and third 

parts of Equation 4d (the initial exponential component of the equation models cone 

recovery only). 

 

Equation 4d.  T(t) = [a + (b.exp
(-t/τ)

)] + [c.(max(t – rcb,0))] + [d.(max(t – rrb,0))] 

 

where T is the threshold (log cd/m²) at time t after cessation of the bleach, a is the final 

cone threshold, b is the change in cone threshold from t = 0, τ is the time constant of cone 

recovery, c is the slope of the second component of rod recovery, max is a logic statement,  

rcb denotes the time from bleach offset to the RCB, d is the slope of the final component 

of rod recovery and rrb denotes the time from bleach offset to the transition between the 

second and final components of rod recovery (McGwin et al., 1999). 

 

4.1.2. Aims 

Given the range of models proposed to describe cone and rod recovery data after a 

photopigment bleach, the first aim of the study was to compare exponential and rate-

limited models of cone and rod recovery in a small group of healthy observers. The ability 

of the respective models to describe cone and rod threshold recovery data were evaluated 

in order to determine whether the additional parameters included in the rate-limited model 

are justified by a better fit to the threshold recovery data. 

 

4.1.3. Methods 

Participants 

Three experienced observers (AB, AG and TM) participated in the study. All participants 

had a corrected visual acuity of 6/6 or better in the test eye, clear ocular media (≤ Grade 3, 

LOCS-III) (Chylack et al., 1993), normal retinal appearance and no history of ocular or 

systemic disease known to affect visual function. The participants provided their informed 
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written consent prior to participation and all procedures adhered to the tenets of the 

Declaration of Helsinki. 

 

Apparatus 

All stimuli were presented on a calibrated, high resolution CRT monitor (Iiyama LS 

902UT) driven by an 8-bit graphics board (nVIDIA Geforce 9) under software control 

(Matlab, R2009a, The MathWorks Inc).  As described in Chapter 2 (Section 2.2.3) the 

luminance output of the monitor was γ-corrected (Metha et al., 1993; Brainard et al. 2001) 

and modified by neutral density filters mounted on the screen to expose the full range of 

retinal recovery. Dark adaptation was monitored using a modified staircase psychophysical 

method based on a procedure previously implemented by Jackson et al. (1999) (Section 

2.2.3). The Matlab code for this procedure is shown in Appendix II (‘retinal eccentricity 

procedure’). 

 

Experimental procedure 

Prior to dark adaptation, participants were dilated with one drop of 1.0% Tropicamide in 

each eye. The right eye was tested in all participants and the left eye was occluded. 

Refractive correction was worn if required. 

 

On each dark adaptation trial, a Maxwellian view optical system was used to bleach 95% 

of cone photopigment (5.78 log phot.Td for 60s) (Hollins & Alpern, 1973) in the central 

43.6º of the test eye. Upon cessation of the bleach, participants placed their chin on the rest 

in front of the computer screen and the dark adaptation program commenced immediately. 

Participants stared at the centre of the screen, indicated by a fixation cross and signalled 

perception of the stimulus via the computer keyboard. Dark adaptation was monitored 

continuously for 25 minutes for each stimulus with the exception of the smallest, when 

recovery was monitored for 10 minutes. 

 

Thresholds were recorded in response to a foveal spot (radius 0.5º) and four achromatic 

annuli (1, 2, 4 and 8º in radius), all 0.5º wide, centred on the fovea (Figure 4.2). Data were 

obtained three times with each stimulus. Consequently, each participant completed a total 

of 12 dark adaptation trials spread over four occasions within a one month period. When 

more than one dark adaptation measurement was completed in a single session, a washout 

period of an hour was interleaved between successive bleaches. 
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Figure 4.2. Diagrammatic representation of the spot stimulus and the four annular stimuli, 

superimposed on the macula of a healthy participant. In order of increasing size, the radii 

of the stimuli were 0.5, 1, 2, 4 and 8º. Each annulus was 0.5º wide. 

 

Models of cone dark adaptation 

All cone threshold recovery data were modelled with a single exponential function 

(Equation 4a), and with a rate-limited function based on Michaelis-Menton kinetics 

(Equation 4b), on a least-squares basis, using the solver function in Microsoft Excel 

(2003). 

 

Models of rod dark adaptation 

Subsequently, to compare models of rod dark adaptation, all threshold recovery data were 

modelled using a double exponential function (Equation 4c) and with a single exponential - 

two linear function (Equation 4d), on a least-squares basis, using the solver function in 

Microsoft Excel (2003). The initial exponential component of each model, which described 

the reduction in threshold attributed to cones, was identical. The second component of the 

model (exponential or linear) was fitted to the rod threshold recovery data. This approach 

was used to ensure objective identification of the RCB. Given that the cone data were 
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modelled in the same way for each dataset, any differences in the accuracy of the overall 

model fit could be attributed to the rod component. 

 

Statistical analysis 

The fit of each model was evaluated at each of the five retinal locations tested. The root 

mean square error (RMS error) was first calculated as a measure of the ‘goodness-of-fit’ 

the models. A lower RMS error indicated a better model fit to the data. The Akaike 

criterion (AIC) (Equation 4e) was then calculated in order to determine if the greater 

number of parameters in the rate-limited models was warranted based on their ability to 

improve the description of the data. The most appropriate model has the lowest AIC value 

(Akaike, 1974). Minimising the number of free parameters is desirable to ensure the lowest 

possible variance during model fitting. 

 

Equation 4e.  AIC = [n.Ln(SSr)] + [2.p] 

 

where n is the number of data points, SSr is the residual sum of squares adjusted for the 

measurement error and p is the number of free parameters. 

 

4.1.4. Results 

Cone dark adaptation data recorded from participant AB at 0.5, 1, 2, 4 and 8º from fixation 

are shown in Figure 4.3, with the best fitting exponential and rate-limited models of 

recovery at each retinal location. On visual inspection, both the exponential and the rate-

limited models provided a good fit to the data at all retinal locations and the two models 

were virtually superimposable. The two models of cone recovery also described the dark 

adaptation data obtained from the other two participants equally well. Figure 4.4 shows the 

rod dark adaptation data from the same individual, assessed 1, 2, 4 and 8º from fixation, 

with the best fitting exponential and rate-limited models. The two models looked 

extremely similar and both described the data equally well. This was also the case for the 

rod data collected from the other two participants. 
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Figure 4.3. Cone dark adaptation curves recorded from AB, at the first visit, at 0.5 (a), 1 

(b), 2 (c), 4 (d) and 8º (e) from fixation. For each retinal location the best fitting 

exponential model is shown by the black line and the best fitting rate-limited model is 

shown by the red line. These two lines are almost identical and therefore overlap 

considerably. The time constant of cone recovery (τ) and the maximum rate of cone 

recovery (r) given by the models are also shown. 
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Figure 4.4. Dark adaptation curves recorded from AB, at the first visit, at 1 (a), 2 (b), 4 (c) 

and 8º (d) from fixation. For each retinal location the cone data is fitted using an 

exponential model. The rod data is shown with the best fitting exponential model (black 

line) and the best fitting rate-limited model (red line). There is marked overlap of these two 

lines as the two models provide extremely similar descriptions of the rod dark adaptation 

data. The exponential time constant of rod recovery (τ) and the slope of the second 

component of rod recovery (c) given by the models are also shown. 

 

Table 4.1 shows the mean RMS error for each model of cone dark adaptation at each 

retinal location. The RMS errors of the exponential and rate-limited models were almost 

identical at most of the retinal locations tested. Table 4.2 shows the mean AIC values for 

the two models at the five retinal locations. The lowest AIC value indicates the most 

appropriate model for the data. The exponential model had a marginally lower AIC value 

compared to the rate-limited model at three of the five retinal locations. However, these 

differences in AIC values between the models were very small. 
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Table 4.1. Mean RMS error (+/- standard deviation) of the exponential and rate-limited 

models of cone dark adaptation for the five retinal locations. (Dark adaptation was 

monitored three times at each retinal location in all three participants). 

 RMSE (log cd/m²) 

 Exponential Rate-limited 

0.5º 0.109 (0.025) 0.109 (0.025) 

1º 0.102 (0.023) 0.101 (0.023) 

2º 0.097 (0.019) 0.096 (0.020) 

4º 0.095 (0.024) 0.096 (0.023) 

8º 0.078 (0.028) 0.086 (0.014) 

Mean 0.096 (0.012) 0.098 (0.008) 

 

Table 4.2. Mean AIC value (+/- standard deviation) of the exponential and rate-limited 

models of cone dark adaptation for the five retinal locations. 

 AIC 

 Exponential Rate-limited 

0.5º 451.82 (57.86) 453.81 (57.86) 

1º 456.96 (69.53) 456.85 (70.21) 

2º 447.87 (50.54) 456.66 (50.60) 

4º 2438.28 (2897.37) 2447.53 (2908.78) 

8º 2512.84 (2932.00) 2519.11 (2929.23) 

Mean 1261.56 (1108.55) 1266.79 (1110.82) 

 

Table 4.3 shows the mean RMS error at each retinal location for the two models of rod 

dark adaptation. The exponential-linear model yielded an RMS error that was almost 

identical to the double exponential model at all four retinal locations. The mean AIC 

values for the two models are shown in Table 4.4 for the four retinal locations tested. For 

the dark adaptation data obtained 1º and 2º from fixation the double exponential had lower 

AIC values, whereas at the more eccentric retinal locations tested (4º and 8º) the 

exponential-linear model had lower AIC values. 
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Table 4.3. Mean RMS error (+/- standard deviation) of the exponential-linear and double 

exponential models of dark adaptation for the four retinal locations. 

 RMSE (log cd/m²) 

 Exponential – two linear Double exponential 

1º 0.119 (0.020) 0.115 (0.016) 

2º 0.104 (0.024) 0.102 (0.019) 

4º 0.093 (0.017) 0.103 (0.017) 

8º 0.086 (0.013) 0.095 (0.013) 

Mean 0.101 (0.014) 0.104 (0.008) 

 

Table 4.4. Mean AIC value (+/- standard deviation) of the exponential-linear and double 

exponential models of dark adaptation for the four retinal locations. 

 AIC 

 Exponential – two linear Double exponential 

1º 1268.41 (133.12) 1258.29 (119.63) 

2º 1222.95 (134.82) 1202.21 (107.17) 

4º 1407.49 (259.82) 1440.82 (226.52) 

8º 1378.67 (173.65) 1414.92 (197.63) 

Mean 1319.38 (87.89) 1329.06 (116.85) 

 

4.1.5. Discussion 

This section of the study aimed to compare ‘first order’ and ‘rate-limited’ models for 

describing cone and rod threshold recovery data after a photopigment bleach. In general, 

the RMS error for all of the models used to describe the cone and rod recovery data was 

extremely small (< 0.14 log cd/m
2
). This showed that all four models provided a good 

description of the threshold recovery data. 

 

There were no conclusive differences in the RMS error or AIC values between the 

exponential and rate-limited models of cone recovery. This indicates that no additional 

benefit is gained by using the rate-limited model of cone recovery, which has a greater 

number of free parameters, over a conventional exponential or ‘first-order’ model of 
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threshold recovery. An average cone τ of 1-2 minutes was recorded at all retinal locations 

in all three participants. This is consistent with previous studies in which data were 

obtained following a near-total bleach of photopigment (Hollins & Alpern, 1973; Coile & 

Baker, 1992). However, more recently it has been shown that although cone threshold 

recovery data are well described by an exponential model after a high intensity bleach, a 

rate-limited model provides a more appropriate description of recovery after bleaches of a 

lower intensity (Paupoo et al., 2000; Pianta & Kalloniatis, 2000; Mahroo & Lamb, 2004). 

Therefore, the similarity in the fit of the exponential and rate-limited models in this study 

may be a function of the high intensity bleach used. Mahroo & Lamb (2004) propose that a 

limiting step in cone photopigment regeneration arises from the resistance encountered by 

11-cis retinal as it diffuses into the photoreceptor outer segments. 

 

Small differences in the ‘goodness of fit’ of the exponential and rate-limited models of rod 

dark adaptation were evident at 4 and 8º from fixation. At these locations the rate-limited 

model had a slightly smaller RMS error and AIC value than the exponential model. This 

indicates that the rate-limited model provides a more accurate representation of the 

threshold recovery data at these retinal locations. The differences in the fit of the two 

models at these retinal eccentricities compared to the more central retinal locations tested 

may, in part, be attributed to the greater exposure of the rod limb of the dark adaptation 

curve that occurs with increasingly peripheral retinal locations. 

 

The rate-limited model of rod dark adaptation is widely accepted as a good description of 

the underlying biology of photopigment regeneration (McGwin et al., 1999) and in recent 

years has been used in many studies of conditions with abnormal dark adaptation 

parameters, for example AMD (Owsley et al., 2001; Owsley et al., 2007). This consistency 

in data modelling is extremely valuable as it facilitates meaningful comparison of results 

between studies. 

 

In conclusion, at high bleaching intensities, there is insufficient evidence to accept the rate-

limited model of cone recovery in preference to the conventional exponential model. 

However, the RMS errors suggest that the rate-limited model of rod recovery provides a 

more accurate description of dark adaptation data than the exponential model. The use of 

an ‘exponential-linear’ model at high bleaching intensities will generate a comprehensive 
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description of cone and rod threshold recovery data, and will be used to model dark 

adaptation data during the experiments described within the remainder of this thesis. 

 

 

4.2. The topography of cone and rod dark adaptation in healthy eyes 

 

4.2.1. Introduction 

Only a limited number of studies have documented the effect of retinal location on the 

kinetics of dark adaptation in the healthy retina (Hecht et al., 1935; Wolf & Zigler, 1950; 

Dimitrov et al., 2008). These have consistently shown that when dark adaptation is 

monitored at increasingly eccentric retinal locations, the RCB occurs earlier, the rod 

branch appears more pronounced and a lower final threshold is attained (see left panel of 

Figure 1.13, Page 32). 

 

Hecht et al. (1935) obtained identical dark adaptation curves for spot stimuli of enlarging 

diameter centred on the fovea and small, fixed diameter stimuli, presented at an equivalent 

retinal location to the edge of the central stimulus, for example a 20º diameter centrally 

located spot and a 2º diameter spot located 10º from the fovea. This implies that threshold 

during dark adaptation is determined by the most eccentric retinal location stimulated, 

rather than the size of the stimulus. The likely cause of this variation in dark adaptation 

with retinal eccentricity is the corresponding variation in photoreceptor density and 

receptive field size. 

 

The properties of the retinal mosaic vary with retinal location (see Figure 4.11, Page 119). 

Human cone photoreceptor density peaks at the fovea (200,000cells/mm²) and decreases 

rapidly with increasing retinal  eccentricity, whereas rod photoreceptors first appear in the 

parafovea and increase to a maximum density of 150,000cells/mm² at 12-18º from fixation 

(Curcio et al., 1990). Correspondingly, cone photopigment density is highest at the fovea 

(Tornow et al., 1997; Bone et al., 2007) and rod photopigment density is maximal 

approximately 11º from fixation (Tornow et al., 1997; Tornow & Stilling, 1998). 

 

Approximately 50% of retinal ganglion cells are located in the central 16º of the retina and 

at the fovea there is a favourable ratio of 2-3 ganglion cells to every cone photoreceptor 
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(Curcio & Allen, 1990). Ganglion cell density peaks 1.5-7º from fixation and declines 

rapidly at increasingly eccentric retinal locations. Correspondingly, the dendritic field size, 

and therefore receptive field size, of human retinal ganglion cells increases with increasing 

eccentricity (Dacey & Petersen, 1992). This leads to an increase in spatial summation with 

increasing distance from the fovea.  

 

Generally, the density of other types of retinal cells decreases with increasing eccentricity. 

For example, RPE cell density is maximal at the fovea and declines with increasing 

eccentricity (Panda-Jonas et al., 1996; Harman et al., 1997). Similarly, Müller cell density 

decreases when moving from the fovea to the peripheral retina (Nishikawa & Tamai, 

2001). This may also have an effect on the rate of adaptation across the retina. 

 

4.2.2. Aims 

In light of the heterogeneity of the retinal mosaic, dark adaptation may be expected to vary 

as a function of retinal location. Consequently, the second aim of this study was to assess 

the dynamics of dark adaptation as a function of retinal eccentricity in a small group of 

healthy participants. 

 

4.2.3. Methods 

The dark adaptation data obtained in Section 4.1.3 from three experienced observers, at 

five retinal locations: 0.5, 1, 2, 4 and 8º from fixation, after a 95% bleach of cone 

photopigment (5.78 log phot.Td for 60s) (Hollins & Alpern, 1973) were used for all 

analyses. 

 

Statistical analysis 

On the basis of the modelling analysis presented previously (section 4.1), all threshold 

recovery data were fitted with an exponential-two linear model of dark adaptation 

(Equation 4d, Section 4.1.1) (McGwin et al., 1999). This was implemented, on a least 

squares basis, using the solver function in Microsoft Excel (2003). Cone threshold 

recovery was summarised by the exponential component and rod threshold recovery by the 

linear components. 

 

The parameters of interest were cone τ, final cone threshold, time to RCB, rate of the 

second component of rod recovery and rod threshold at 25 minutes (taken as the mean of 
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the final three data points). The mean (+/- standard deviation) was calculated for each 

parameter in order to make comparisons between the five retinal locations tested. 

 

4.2.4. Results 

Typical recovery data obtained from the three experienced observers at 0.5, 1, 2, 4 and 8º 

from fixation are shown in Figure 4.5. In all participants, as the eccentricity of the stimulus 

increased, cone adaptation proceeded more rapidly, the rod branch of the dark adaptation 

curve became increasingly prominent and a lower final rod threshold was attained. 

 

Figure 4.5. Examples of dark adaptation curves recorded from the first trial of all three 

participants (AB, AG and TM) in response to all five stimulus sizes: 0.5º (yellow), 1º 

(blue), 2º (red), 4º (green) and 8º (black). For each stimulus size the raw data are shown 

with the best fitting model of dark adaptation given by equation 4d. 
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Figure 4.6 shows mean cone τ data for all participants, plotted as a function of retinal 

eccentricity. As the distance from the fovea increased, cone τ decreased. This indicates that 

recovery of visual sensitivity was slowest at the fovea. In addition, inspection of Figure 4.7 

shows that cone final threshold was higher in at the fovea compared to more eccentric 

retinal locations. 
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Figure 4.6. Mean cone τ at each retinal eccentricity for AB, AG and TM, shown with 95% 

confidence intervals. 
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Figure 4.7. Mean cone final threshold at each retinal eccentricity for AB, AG and TM, 

shown with 95% confidence intervals. 

 

A marked increase in the rate of the second component of rod recovery with increased 

eccentricity is demonstrated in Figure 4.8. This was accompanied by progressively lower 

rod thresholds (at 25 minutes) with increasing eccentricity (Figure 4.9). In contrast, no 

systematic variation in the time to RCB occurred as a function of retinal eccentricity 

(Figure 4.10). 
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Figure 4.8. Mean rate of 2
nd

 component of rod recovery at 1, 2, 4 and 8º from fixation for 

AB, AG and TM, shown with 95% confidence intervals. 
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Figure 4.9. Mean 25 minute rod thresholds at 1, 2, 4 and 8º from fixation for AB, AG and 

TM, shown with 95% confidence intervals. 
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Figure 4.10. Mean time to RCB at 1, 2, 4 and 8º from fixation for AB, AG and TM, shown 

with 95% confidence intervals. 
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A summary of the mean dark adaptation parameters (+/- standard deviation) for the group 

of participants is displayed in Table 4.5. This demonstrates that both rod and cone dark 

adaptation occurred more rapidly as the retinal eccentricity of the stimulus increased.   

 

Table 4.5. Mean (+/- standard deviation) dark adaptation parameters at five retinal 

locations tested in all participants. 

 0.5º 1º 2º 4º 8º 

Cone tau (mins) 1.77 (0.18) 1.69 (0.20) 1.55 (0.14) 1.46 (0.12) 1.40 (0.13) 

Cone FT (log 

cd/m²) 

-1.69 (0.31) -1.85 (0.27) -2.06 (0.22) -1.97 (0.30) -1.90 (0.24) 

Time to RCB 

(mins) 

- 11.39 

(1.88) 

11.17 

(1.10) 

11.02 

(1.15) 

11.04 (1.12) 

Rate of 2
nd

 comp 

(decades/min) 

- 0.03 (0.02) 0.13 (0.07) 0.19 (0.03) 0.24 (0.03) 

Rod FT (log 

cd/m²) 

- -2.29 (0.27) -2.82 (0.14) -3.21 (0.35) -3.56 (0.11) 

 

4.2.5. Discussion 

The dark adaptation data collated from the highly experienced observers in this study 

provides an insight into the relationship between retinal eccentricity and the dynamics of 

dark adaptation in the healthy retina. Significantly, this is the first study to quantify the 

parameters of dark adaptation as a function of retinal eccentricity. In agreement with 

previous work (Hecht et al., 1935; Wolf & Zigler, 1950; Dimitrov et al., 2008), the results 

showed that as the eccentricity of the stimulus increased, a progressive acceleration of 

recovery was observed, which resulted in a faster and more prominent second phase of rod 

recovery. However, in contrast with these previous studies, we did not find a systematic 

change in the time to RCB with increasing retinal eccentricity. 

 

Cone dark adaptation was slowest at the fovea. This corresponds to the locus of peak cone 

photoreceptor density (200,000 cells/mm²) (Curcio et al., 1990) (Figure 4.11) and peak 

cone photopigment density (Tornow et al., 1997; Bone et al., 2007). Competition for the 

finite supply of available 11-cis retinal is therefore greatest at the fovea and this may 

explain the relatively slow cone recovery observed at this retinal location. Cone 
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photoreceptor density declines by almost 75% between the fovea and 0.7º from fixation 

(Figure 4.11). This leads to a marked reduction in the demand for 11-cis retinal and 

expedites threshold recovery. Although overall (rod and cone) photoreceptor density 

gradually increases again to about 150,000cells/mm² approximately 14º from fixation, this 

clearly remains less than the high cone density at the fovea and therefore competition for 

11-cis retinal is always lower than at the fovea. 

 

Figure 4.11. Human photoreceptor density in the temporal retina (After Curcio et al., 

1990) 

 

A significant increase in the rate of rod recovery with increasing retinal eccentricity was 

observed between 1 and 8º from fixation. This may initially seem unexpected given the 

increase in rod density from the rod free fovea to in excess of 110,000 cells/mm² at 8º from 

fixation (Curcio et al., 1990), which will correspondingly increase competition for 11-cis 

retinal. However, the increased rate of rod recovery with increased eccentricity was 

accompanied by the significant lowering of the rod threshold at 25 minutes in all three 

participants. This is likely to be linked to the increase in receptive field size and spatial 

summation that occurs between the central and peripheral retina (Dacey & Petersen, 1992). 

This is exemplified in Figure 4.12, which illustrates the predicted threshold recovery for 

one, five and ten rods, described by a rate-limited function. Clearly, a reduction in final 

threshold is closely linked to an apparent increase in the rate of rod recovery. When the rod 

data of the three observers are re-modelled using an exponential function, the time constant 
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of rod recovery (τ) is independent of the 25 minute rod threshold and also of eccentricity. 

This implies that it is the effect of spatial summation on final threshold that influences the 

measured rate of rod recovery described using a rate-limited function. That is, the 

peripheral rods are not recovering any more rapidly than the central ones, they are just 

working together to provide a lower final threshold. 

 

Figure 4.12. The predicted threshold recovery of 1, 5 and 10 rods, described by the rate-

limited model. The ‘1 rod’ data was recorded from AB at 8º from fixation. These data were 

multiplied by the number of rods to obtain the predicted recovery of 5 and 10 rods. 

 

In summary, this study of healthy observers has confirmed that cone dark adaptation 

occurs more rapidly at increasingly peripheral retinal locations, but while rod dark 

adaption appears to proceed at an increased rate with increasing eccentricity, this is likely 

to be due to changes in final threshold. Knowledge of the way in which dark adaptation is 

affected by retinal eccentricity in the healthy retina is useful when considering the 

topography of  changes to dark adaptation that occur in a disease such as AMD. 

 

 

4.3. The topography of cone dark adaptation deficits in early AMD 

 

4.3.1. Introduction 

Although many studies have reported dark adaptation deficits in individuals with early 

AMD, there are inconsistencies within the literature. Delays in rod mediated dark 
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adaptation have been widely reported (Brown & Lovie-Kitchin, 1983; Brown et al., 1986a, 

Steinmetz et al., 1993; Owsley et al., 2001; Owsley et al., 2007; Dimitrov et al., 2008; 

2011). However, evidence for abnormal cone dark adaptation is equivocal (Brown et al., 

1986b; Phipps et al., 2003; Binns & Margrain, 2007; Owsley et al., 2007; Dimitrov et al., 

2008; 2011). For example, while Dimitrov et al. (2008) reported significant delays in cone-

mediated dark adaptation in people with early AMD, Owsley et al. (2007) found no 

evidence of changes to cone-mediated dark adaptation in patients with early, intermediate 

or advanced AMD.  

 

One explanation for the conflicting evidence regarding cone-mediated dark adaptation in 

early AMD is that the cone dark adaptation deficit in early AMD is dependent on retinal 

location. The observation that delays in cone adaptation have been reported for stimuli 

centred on the fovea (Phipps et al., 2003; Binns & Margrain, 2007; Dimitrov et al., 2008; 

2011) but not for small spot stimuli presented at more eccentric retinal locations (Owsley 

et al., 2007) implies that cone dark adaptation deficits in early AMD are greatest for 

centrally presented stimuli. 

 

The effect of retinal location on rod and cone thresholds in AMD has been examined 

previously (Brown et al., 1986a; Brown et al., 1986b; Steinmetz et al., 1993 Owsley et al., 

2000). These studies have shown elevation of rod and cone thresholds in AMD, most 

markedly within the macular region. However, only one study has systematically described 

the topographical variation in dark adaptation kinetics in participants with AMD (Brown et 

al., 1986b). This study compared cone dark adaptation at four locations within the central 

40º of visual field, in six patients with geographic atrophy and six healthy controls. In 

agreement with previous studies, cone threshold was elevated at all retinal locations in all 

of the participants with geographic atrophy. However, there were no significant differences 

in the time course of cone dark adaptation between participants with geographic atrophy 

and healthy controls at any of the locations studied. It should be noted that the participants 

in this study all had advanced dry AMD. 

 

4.3.2. Aims 

Clearly, there is ambiguity surrounding the extent to which cone dark adaptation is affected 

by early AMD and the effect, if any, of retinal location on dark adaptation. Consequently, 

the final part of the study aimed to quantify any differences in cone dark adaptation 
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between people with early AMD and healthy controls at different retinal locations. The 

study also sought to determine the diagnostic potential of cone dark adaptation and the 

time to RCB (the aspect of rod recovery that can be obtained most rapidly in the clinic) at 

each retinal location. The data presented in this section have been published in a peer-

reviewed journal (see Gaffney et al., 2011b in Appendix III). 

 

4.3.3. Methods 

Participants 

Approximately one hundred people, both those with early AMD and healthy controls, were 

recruited from the Eye Unit at the University Hospital of Wales, Cardiff, and the Eye 

Clinic at Cardiff University. These individuals were registered in a secure database from 

which participants were selected for all of the investigations contained within this thesis. 

Where possible, new participants were recruited from the database for each of the studies 

described in the following chapters. However, due to factors such as participant 

availability, some individuals participated in more than one of the studies. 

 

The power of a study may be defined as the probability that the study will detect a real 

difference of a given magnitude as statistically significant. A power of 80-90% is generally 

considered necessary for the results of a study to be considered reliable (Altman, 1991). A 

nomogram may be used to calculate the sample size required for a study to attain a 

particular power by considering a measure known as the ‘standardised difference’, which 

is obtained by dividing the smallest difference of interest for a test by the standard 

deviation (Altman, 1991). Based on the data presented in Table 2 of Dimitrov et al. (2008), 

which reported large differences in mean rod and cone recovery parameters between 

participants with early AMD and healthy controls, the sample size must be sufficient to 

detect a standardized difference of 2.27-3.42. For this study 20 participants (10 individuals 

with early AMD and 10 healthy controls) were recruited from the database, allowing us to 

detect a standardized difference of 1.2 with 80% power at a 5% significance level, hence 

this sample size should be sufficient to detect the expected differences between groups. All 

participants were aged at least 55 years, had a corrected visual acuity of 6/9 or better in the 

test eye, no history of systemic disease or medication known to affect visual function and 

no significant media opacity (≤ Grade 3, LOCS-III) (Chylack et al., 1993). 
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The assessment of fundus status was based on 37º fundus photographs (Canon CR-DGi 

Camera) obtained at the baseline examination. Participants with AMD were classified 

according to the Age-Related Eye Disease Study severity scale i.e. early AMD = steps 2-6, 

intermediate AMD = steps 7-9 and advanced AMD = steps 10 –11 (Davis et al., 2005), in 

the absence of any co-existing ocular or fundus abnormality. The control group comprised 

only participants whose fundus appearance was classified as indicative of normal retinal 

ageing i.e. step 1 of the AREDS scale (Davis et al., 2005). 

 

All participants provided informed written consent prior to participation. The study was 

approved by the South East Wales Research Ethics Committee and all procedures adhered 

to the tenets of the Declaration of Helsinki. 

 

Apparatus 

All computer equipment and psychophysical methods used were identical to those 

described in the earlier sections of the study (Section 4.1.3, Page 107). 

 

Experimental procedure 

Participants attended the laboratory on two days. Baseline examinations were completed at 

the start of the first visit. These included patient history, logMAR visual acuity (ETDRS), 

central visual field screening (C-40, Humphrey Field Analyser), stereoscopic fundus 

examination, fundus photography (Canon CR-DGi Camera) and media opacity grading 

(Chylack et al., 1993). 

 

Participants were dilated with one drop of 1.0% Tropicamide in each eye prior to dark 

adaptation. The eye selected for testing was the eye with early AMD, or the eye with the 

better visual acuity in bilateral AMD or control participants. The right eye was tested as a 

default if there was no difference in visual acuity between the two eyes. The contralateral 

eye was occluded and refractive correction was worn if required. 

 

All participants received instruction on the use of the dark adaptation program, before 

participating in a 5 minute practice recording session. This was repeated until the 

participant produced consistent thresholds and the investigator considered the participant to 

be fully competent with the procedure. 
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Figure 4.13. Diagrammatic representation of the spot stimulus and the three annular 

stimuli superimposed on the macula of a healthy participant. In order of increasing size, the 

radii of the stimuli were 0.5, 2, 7 and 12º from fixation. Each annulus was 0.5º wide. 

 

Thresholds were recorded in response to a foveal spot (radius 0.5º) and three achromatic 

annuli (2, 7 and 12º in radius), all 0.5º wide, centred on the fovea (Figure 4.13). On each 

dark adaptation trial, a Maxwellian view optical system was used to bleach 81% of cone 

photopigment (5.1 log phot.Td for 120s) (Hollins & Alpern, 1973) in the central 43.6º of 

the test eye. The dark adaptation program commenced immediately after the bleaching 

light was extinguished. Participants placed their chin on the rest in front of the computer, 

stared at the centre of the screen, which was indicated by a fixation cross, and signalled 

perception of the stimulus via the computer keyboard. Dark adaptation was monitored in 

response to one of the four stimuli, selected at random, until the RCB occurred or for a 

maximum of 25 minutes. The investigator deemed the RCB to have occurred when 

threshold fell by at least 1 log unit below the cone plateau. Recovery was only recorded for 

10 minutes when the 0.5º stimulus was used, as no rod recovery was expected for this 

small stimulus. This procedure was repeated for each of the remaining stimuli (the order of 

which was randomised). Generally, two stimulus sizes were completed at each session, 

with a washout period of an hour between bleaches. The long duration (120 seconds) 

adapting light was sufficient to attain an equilibrium bleach, which would ensure that a 
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consistent level of photopigment was bleached regardless of any small differences in 

baseline adaptational status. 

 

Statistical analysis 

The dynamics of cone recovery and the time to RCB were determined by fitting an 

exponential-linear model of dark adaptation (McGwin et al. 1999) to the data, on a least 

squares basis, using Microsoft Excel (2003) (Equation 4f). Cone recovery was described 

by the exponential component and rod recovery by the linear component. Although the 

RCB was the only aspect of rod recovery assessed during the analysis, the second 

component of rod recovery was retained within the model in order to identify the time to 

RCB. 

 

Equation 4f.  T(t) = [a + (b.exp
(-t/τ)

)] + [c.(max(t – rcb,0))] 

 

where T is the threshold (log cd/m²) at time t after cessation of the bleach, a is the final 

cone threshold, b is the change in cone threshold from t = 0, τ is the time constant of cone 

recovery, c is the slope of the second component of rod recovery, max is a logic statement,  

and rcb denotes the time from bleach offset to the RCB, (McGwin et al., 1999). 

 

The parameters of interest were cone τ, final cone threshold and time to RCB. The mean 

(+/- standard deviation) was calculated for each parameter and independent sample t-tests 

were used to make comparisons between early AMD and control groups. Receiver 

operating characteristic (ROC) curves were constructed using statistical software (SPSS, 

Version 16.0) to assess the diagnostic potential of the parameters that showed a statistically 

significant difference between groups. A repeated measures ANOVA was completed to 

determine the effect of test order on the analysis. 

 

4.3.4. Results 

The clinical characteristics of the early AMD group are displayed in Table 4.6. Fifty 

percent of participants in the early AMD group had early AMD in their fellow eye and the 

remaining 50% had exudative changes in the non-study eye. There were no significant 

differences in age between early AMD (mean age = 68.3 +/- 7.3 SD years) and control 

(mean age = 70.0 +/- 4.7 SD years) groups (p = 0.54). Similarly, there were no significant 

differences in logMAR acuity between the test eyes of early AMD and control groups 
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(mean acuity = 0.09 +/- 0.11 SD logMAR for participants with early AMD and -0.002 +/- 

0.10 SD logMAR for control participants; p = 0.11). 

 

Table 4.6. Visual acuity and fundus appearance in the early AMD group. AMD status is 

given according to the Age-Related Eye Disease Study severity scale (Davis et al., 2005) 

where: normal retinal ageing = step 1, early AMD = steps 2– 6, intermediate AMD = steps 

7–9, and advanced AMD = steps 10 –11. 

 Test eye Fellow eye 

Participa

nt 

Ag

e 

Gender Eye logMAR 

VA 

AMD 

status 

Eye logMAR 

VA 

AMD 

status 

1 80 M L 0.12 Early R 0.02 Early 

2 65 F R 0.02 Early L 0.18 Advanced 

3 65 F L 0.0 Intermed. R 0.2 Advanced 

4 68 F L 0.0 Early R 0.02 Early 

5 73 M L 0.24 Early R 0.26 Advanced 

6 67 F R -0.1 Intermed. L 0.06 Advanced 

7 57 M L 0.0 Early R 0.0 Early 

8 59 M L 0.1 Early R 0.02 Early 

9 75 M R 0.2 Early L 0.54 Advanced 

10 74 F R 0.2 Early L 0.04 Early 

 

Table 4.7 shows the cone τ, final cone threshold and time to RCB given by the best fitting 

exponential-linear model for each participant, at each retinal location. The time course of 

dark adaptation at each of the four retinal locations is shown in Figure 4.14a for a typical 

control participant. An example of the dark adaptation curves for a participant with early 

AMD is shown in Figure 4.14b. This participant with early AMD had prolonged cone 

adaptation and only displayed an RCB within 25 minutes for the largest (12º) stimulus. 
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Table 4.7. Cone τ, final cone threshold and time to RCB given by the best fitting exponential-linear model for all participants, at each retinal 

location. (* where there was no RCB within the recording time, 25 minutes was given as the time to RCB). 

Participant Cone τ (minutes) Cone final threshold (log cd/m²) Time to RCB (minutes)* 

 0.5° 2° 7° 12° 0.5° 2° 7° 12° 2° 7° 12° 

AMD            

1 4.32 5.64 3.20 6.80 -1.02 -1.24 -0.78 -1.34 25.00 25.00 25.00 

2 8.74 8.23 9.10 1.93 -2.07 -1.60 -2.20 -1.73 25.00 25.00 25.00 

3 6.37 10.36 4.74 5.07 -1.71 -2.50 -2.15 -1.95 25.00 11.73 15.94 

4 2.42 0.49 1.85 1.09 -1.94 -2.06 -2.18 -2.07 11.35 12.74 11.26 

5 53.57 12.50 3.03 3.07 -2.08 -1.49 -1.75 -1.70 25.00 25.00 15.56 

6 11.77 14.98 9.03 5.69 -2.64 -2.97 -2.04 -1.93 25.00 25.00 25.00 

7 2.09 1.69 1.00 2.67 -1.63 -2.32 -2.27 -2.76 15.17 12.91 12.49 

8 1.95 1.47 1.49 1.60 -2.13 -2.30 -2.40 -2.36 14.59 13.95 13.04 

9 6.60 5.25 8.05 5.16 -1.22 -1.42 -2.22 -1.71 12.76 25.00 16.6 

10 3.11 3.75 3.24 1.77 -1.28 -1.48 -1.62 -1.64 25.00 25.00 16.87 

Control            

11 1.99 1.83 1.33 0.70 -1.41 -2.29 -2.38 -2.49 11.22 15.47 7.01 

12 1.46 1.57 0.82 0.36 -1.29 -2.05 -1.98 -1.94 14.57 12.51 8.42 

13 1.29 3.21 1.88 0.88 -0.98 -2.06 -1.99 -1.72 25 14.11 11.46 

14 1.97 1.41 1.17 0.77 -1.56 -1.52 -1.80 -1.81 9.51 13.80 13.30 

15 1.94 2.37 1.16 0.20 -1.44 -1.89 -1.84 -1.66 15.93 13.36 7.52 

16 0.42 1.48 0.25 1.38 -1.37 -1.44 -1.37 -1.61 25.00 10.98 8.23 

17 3.86 3.66 3.01 0.98 -1.86 -2.27 -2.30 -1.97 25.00 21.67 10.32 

18 1.64 1.66 1.59 0.18 -1.4 -2.00 -2.16 -1.82 13.92 11.67 6.38 

19 1.41 1.20 0.53 0.46 -1.95 -2.21 -1.82 -1.67 12.99 12.22 8.88 

20 4.79 2.26 1.06 0.50 -1.44 -1.43 -1.64 -1.33 16.85 14.53 8.99 
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Figure 4.14. Dark adaptation curves recorded for a typical control participant (a) and a 

participant with early AMD (b) in response to all four stimulus sizes: 0.5º (yellow), 2º 

(blue), 7º (red) and 12º (black). For each stimulus size the raw data are shown with the best 

fitting model of dark adaptation given by equation 4f. The 12º data are correctly placed 

with respect to the y-axis. All other data are displaced upwards by an additional 0.3 log 

units from the previous (larger) stimulus to aid visualisation. 

 

The mean dark adaptation parameters for the two groups are given in Table 4.8. Where 

there was no RCB within the 25 minute recording period, it was given as 25 minutes. This 

means that a conservative estimate of the delay in rod adaptation was included in all 

statistics. Significant differences in the cone time constant of recovery (τ) between groups 

were evident for stimuli located 2º, 7º and 12º from fixation (all p < 0.05). In addition, 

there was a significant difference in the time to RCB at 12º (p < 0.001). The mean τ, final 

cone threshold and time to RCB at each retinal location for control and early AMD groups 

are summarized in Figure 4.15. Although the greatest absolute difference in cone recovery 

time (Figure 4.15a) between those with early AMD and healthy controls was observed for 

the central stimulus, this difference failed to reach significance because of the variability in 

the data obtained at this location. Instead, the most significant difference between groups 

was observed for the stimulus located at 12º where the variability in the data set was 

minimal. There were no significant differences in final cone threshold between control and 

early AMD groups for any of the locations studied (Figure 4.15b). 

 

 

-3.5

-2.5

-1.5

-0.5

0.5

1.5

0 5 10 15 20 25

T
h
re

s
h
o

ld
 (

lo
g

 c
d

/m
²)

Time (minutes)

a.

-3.5

-2.5

-1.5

-0.5

0.5

1.5

0 5 10 15 20 25
T
h
re

s
h
o

ld
 (

lo
g

 c
d

/m
²)

Time (minutes)

b.

-3.5

-2.5

-1.5

-0.5

0.5

1.5

0 5 10 15 20 25

T
h
re

s
h
o

ld
 (

lo
g

 c
d

/m
²)

Time (minutes)

b.

0.5 degrees 2 degrees 7 degrees 12 degrees



Chapter 4 

131 

 

Table 4.8. Comparison of mean (+/- standard deviation) dark adaptation parameters in 

control and early AMD groups. (* where there was no RCB within the recording time, 25 

minutes was given as the time to RCB). 

  Control AMD Univariate 

comparison 

Cone τ (mins) 

 

0.5º 

2º 

7º 

12º 

2.08 (1.29) 

2.07 (0.81) 

1.28 (0.77) 

0.64 (0.38) 

10.09 (15.61) 

6.44 (4.95) 

4.47 (3.13) 

3.49 (2.02) 

p = 0.123 

p = 0.021 

p = 0.011 

p = 0.002 

Final cone 

threshold (log 

cd/m²) 

 

0.5º 

2º 

7º 

12º 

-1.47 (0.28) 

-1.92 (0.34) 

-1.93 (0.30) 

-1.78 (0.30) 

-1.77 (0.50) 

-1.94 (0.57) 

-1.96 (0.48) 

-1.92 (0.40) 

p = 0.111 

p = 0.918 

p = 0.856 

p = 0.400 

Time to RCB (mins) 

* 

 

2º 

7º 

12º 

16.99 (5.91) 

14.03 (3.01) 

9.05 (2.11) 

20.39 (6.04) 

18.76 (6.62) 

17.68 (5.37) 

p = 0.221 

p = 0.061 

p = 0.001 

 

 

Figure 4.15. Summary of mean cone τ (a), cone final threshold (b) and time to RCB (c) at 

each retinal eccentricity, shown with 95% confidence intervals. Filled symbols represent 

the early AMD group and open symbols the control group. * indicates the parameters that 

demonstrate a significant difference between groups (all p < 0.05). 

 

Receiver operating characteristic curves for all the parameters that differed significantly 

between groups on univariate analysis are shown in Figure 4.16. The area under the curve 

(AUC) is used to express the diagnostic capacity of each parameter. An AUC of 1 indicates 

100% sensitivity and specificity, whilst and AUC of 0.5 suggests that the parameter is no 
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better than chance alone at discriminating between healthy and affected participants 

(Altman & Bland, 1994). The 12º annulus was the best stimulus for discriminating 

participants with early AMD from healthy controls, yielding an AUC of 0.99 +/- 0.02 for 

cone τ and 0.96 +/- 0.04 for time to RCB. This equates to 100% sensitivity and 90% 

specificity for a τ of 1.04 minutes and 90% sensitivity and 90% specificity for a RCB of 

11.98 minutes. There was a statistically significant difference in the AUC between cone τ 

at 12º and at 2º (z = 2.15), however there were no statistically significant differences in the 

AUC of cone τ at 12º and cone τ at 7º or time to RCB at 12º (z < 1.96) (Hanley & McNeil, 

1982; 1983). 

 

Figure 4.16. ROC curves for cone τ at 2º (a), 7º (b) and 12º (c), and time to RCB at 12º (d) 

Each plot shows the sensitivity of the parameter to early AMD against the false detection 

rate (1 – specificity) for all 10 control and 10 early AMD participants. 

 

A separate analysis was undertaken to assess the effect of test order on the dark adaptation 

results (Table 4.9). There were no significant differences in dark adaptation parameters 
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recorded for the first and second bleaches within a single session. This indicates that no 

learning, fatigue or bleach carry-over effects exist within the dataset. 

 

Table 4.9. Comparison of mean (+/- standard deviation) dark adaptation parameters 

obtained during the first and second test within a single recording session. 

  1
st
 test 2

nd
 test Univariate 

comparison 

Cone τ (mins) 

 

0.5º 

2º 

7º 

12º 

7.64 (16.23) 

3.99 (4.55) 

2.63 (2.61) 

2.47 (2.40) 

4.54 (3.48) 

4.51 (3.86) 

3.13 (3.02) 

1.65 (1.60) 

p = 0.586 

p = 0.734 

p = 0.733 

p = 0.350 

Final cone threshold 

(log cd/m²) 

 

0.5º 

2º 

7º 

12º 

-1.48 (0.35) 

-2.03 (0.49) 

-1.97 (0.34) 

-1.76 (0.40) 

-1.76 (0.45) 

-1.82 (0.42) 

-1.92 (0.45) 

-1.94 (0.29) 

p = 0.065 

p = 0.367 

p = 0.814 

p = 0.329 

Time to RCB 

(mins) * 

 

2º 

7º 

12º 

17.82 (6.40) 

16.54 (5.30) 

14.37 (6.77) 

19.57 (5.93) 

17.62 (6.38) 

12.36 (5.15) 

p = 0.174 

p = 0.745 

p = 0.286 

 

4.3.5. Discussion 

The results show that cone τ and time to RCB are highly diagnostic for early AMD for 

annular stimuli located 12º from the fovea. At this location, cone τ was able to distinguish 

participants with early AMD from healthy controls with 100% sensitivity and 90% 

specificity. To a lesser extent, cone τ was also diagnostic for early AMD for stimuli located 

at 2º and 7º. The greatest absolute difference in mean cone τ between early AMD and 

control groups was observed at the fovea. This is consistent with previous reports of 

changes in foveal cone τ in early AMD (Phipps et al., 2003; Dimitrov et al., 2008; 2011). 

However, this difference failed to reach significance as a result of the variability of the data 

at this retinal location (illustrated by the large 95% CI in Figure 4.15a). Therefore, with 

regards to diagnostic potential, the functional deficit 12º from fixation provides the best 

separation between the two groups. 

 

Although impaired dark adaptation has previously been reported at 12º in AMD (Owsley et 

al., 2007), it was thought to affect rods exclusively. In contrast, this study has shown that 
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cone dark adaptation is also highly abnormal at 12º in early AMD. This has significant 

clinical implications because in the clinic ‘time is of the essence’ and cone dark adaptation 

may generally be assessed in less time than rod adaptation. An alternative protocol has 

been described in which rod dark adaptation may be assessed in as little as 20 minutes 

(Jackson & Edwards, 2008). However, the results presented here show that cone τ may be 

quantified in as little as 10 minutes and is also highly diagnostic for early AMD. 

 

There are three potential explanations for the discrepancies between the results presented 

here and those of previous studies, which failed to find a significant effect of early AMD 

on cone adaptation (Brown et al., 1986b; Owsley et al., 2007). These related explanations 

are based on the well established rate-limiting step in dark adaptation: the local availability 

of 11-cis retinal (Lamb & Pugh, 2004). 

 

The initial explanation stems from the bleaching method used (photoflash vs. steady state 

bleach) and its effect on the rate of cone dark adaptation in people with early AMD. Rods 

and cones both need 11-cis retinal to regenerate visual pigment. Although rods can only 

obtain that supply from the RPE, there is a body of evidence to suggest that cones have 

access to a secondary supply, via a pathway that involves the retinal Müller cells (Das et 

al., 1992; Mata et al., 2002; Wang, & Kefalov, 2009; 2011). Evidence for this secondary 

pathway was initially obtained from the cone-dominated retina of ground-squirrel and 

chicken (Das et al., 1992; Mata et al., 2002). More recently, this additional pathway was 

also shown to exist in the rod-dominated retina of the mouse, primate and human (Wang & 

Kevlov; 2009). The Müller cells contain all-trans-retinol isomerase and 11-cis-retinyl-ester 

synthase; catalytic enzymes that enable the Müller cells to take up all-trans retinol and 

convert it to 11-cis retinol, which is then released into the surrounding media and taken up 

by the cones (Mata et al., 2002). A third enzyme, 11-cis-retinol dehydrogenase, present in 

cones but not rods, facilitates the final stages of photopigment regeneration. While rods 

and cones must compete for RPE derived 11-cis retinal, this additional pathway provides 

cones with an exclusive secondary source that helps them regenerate photopigment much 

more rapidly than rods. 

 

Unlike photoflashes, a long duration (‘steady state’) bleach, such as that used in the current 

study, involves sustained phototransduction and activation of the visual cycle. If this 

sustained metabolic activity were to adversely affect the alternative retinoid recycling 
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pathway, cone photopigment regeneration following a long duration bleach would be 

relatively more dependent on RPE derived 11-cis retinal. Any impairment to cone-

mediated dark adaptation would therefore be more likely to manifest under the bleaching 

conditions used in the current study than following the 11ms photoflash used previously 

(Owsley et al., 2007). 

 

This leads logically to the second explanation for the cone dark adaptation deficit at 12º. 

As described, after a long duration adapting light, the rods and cones may become equally 

reliant on the RPE for regeneration of 11-cis retinal. It therefore follows that any 

disturbance to RPE function or the local supply of retinoid will affect both rod and cone 

dark adaptation. Rod adaptation is known to be significantly impaired 12º from the fovea 

(Owsley et al., 2001; Owsley et al., 2007). This is also the retinal eccentricity at which 

human rod photoreceptor density approaches a peak of approximately 150,000 cells/mm² 

(Curcio et al., 1990), so direct competition between the rods and cones for the same finite 

supply of retinoid is great at this location. In circumstances where the cones’ intraretinal 

supply of 11-cis retinal may be deficient, such as after a long duration bleach, cone 

recovery at this location would also be expected to be abnormal. Therefore, the important 

topographical parameter affecting dark adaptation in AMD is the local availability of 11-

cis retinal, upon which rods and cones are dependent. 

 

Cone dark adaptation was particularly slow at the fovea in participants with early AMD, 

which might be expected given that cone density peaks at this location (200,000 cells/mm²) 

(Curcio et al., 1990), so competition for 11-cis retinal will be high. The fact that this 

difference failed to reach statistical significance due to high variability may be explained 

by stimulus size. The small spot stimulus used at the fovea sampled a precise retinal 

location. AMD is a heterogeneous disease characterised by localised retinal abnormalities, 

so the results obtained using small spots are influenced by chance, that is, the chance that 

the stimulus is located on a healthy or unhealthy area of retina. In contrast, thresholds 

obtained in response to large annuli will be determined by the most healthy functional area 

of the retina, because small areas of abnormality will not contribute to the threshold 

measured. Therefore, large annuli might be expected to produce relatively consistent 

results based on the functional ability of the retina at a particular eccentricity and the data 

obtained using spot stimuli are likely to be more variable based on their ‘hit or miss’ 

sampling of heterogeneous retina. 
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The effect of stimulus size on the variability of the data is evident in Table 4.8, in which 

the standard deviations reported for the early AMD group become smaller as the annuli 

increase in size. When the largest annulus was used to sample the retina at 12º the standard 

deviation was only 0.57 times the size of the mean recovery time. This contrasts starkly 

with the data reported by Owsley et al. (2007) who sampled the retina at the same 

eccentricity (12º in the inferior field) but used a spot stimulus. The standard deviations 

reported when this stimulus was used were more than twice the value of the mean cone τ 

for their ‘intermediate’ AMD group.  

 

The heterogeneity hypothesis appears to explain the relatively increased variability 

observed for the 0.5º data reported in the current study, as well as providing a rationale for 

the variability observed in previous studies that used relatively small spot stimuli (Owsley 

et al., 2001; Owsley et al., 2007). It may also explain why Dimitrov et al. (2008) found 

cone dark adaptation to be highly diagnostic for early AMD (AUC = 0.98) using a 4º 

diameter spot stimulus centred on the fovea and reported relatively little variability in their 

dataset (the standard deviation of their recovery rate was only 0.35 of the mean value). The 

large area of the stimulus (12.6 deg²) would have been relatively unaffected by focal 

abnormalities. When considered in conjunction with the current findings, this suggests that 

the size of the stimulus may be equally important as its retinal location, because larger 

stimuli are associated with reduced variability and hence better diagnostic ability. 

 

The only previous study that measured cone dark adaptation at more than one retinal 

location reported no differences in the dynamics of cone dark adaptation within the central 

40º of visual field between control participants and those with geographic atrophy (Brown 

et al., 1986b). However, that patient group had end stage AMD and were very different to 

those included in the current study. 

 

Eight of the participants with early AMD failed to reach the RCB within the 25 minute 

recording period for one or more of the experimental stimuli. All five of the participants 

with a diagnosis of exudative disease in their contralateral eye fell within this group. A 

higher incidence of choroidal neovascularisation in the fellow eye of patients with 

unilateral exudative AMD has been widely reported (Klaver el al., 2001; Mitchell et al., 

2002; Klein et al., 2007). Therefore, the results support evidence to suggest that dark 
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adaptation is more severely impaired in eyes with an increased risk of exudative changes 

(Eisner et al., 1991; Sandberg et al., 1998). 

 

The primary interest of this study was to distinguish those with early AMD from healthy 

controls i.e. to detect clinically significant differences, rather than to identify small 

differences in mean values. Although the sample size was relatively modest (n = 20), there 

was a marked separation of participants with early AMD and control participants in both 

the cone recovery and RCB data. 

  

In conclusion, this study has demonstrated the diagnostic potential of cone dark adaptation 

in the detection of early AMD and the marked effect of the retinal location at which dark 

adaptation is measured. The results provide compelling evidence in support of the use of 

cone dark adaptation and the use of large annular stimuli at 12º in the diagnosis of early 

AMD.
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5. The effect of pre-adapting intensity on dark 

adaptation in early AMD 

 

 

In order to fully utilise the diagnostic potential of dark adaptation in the detection of early 

AMD, it is necessary to identify the characteristics of both the stimulus and the pre-

adapting ‘bleaching’ light that provide maximal discrimination between the healthy retina 

and a retina with early AMD. In the previous chapter, an annulus of 12º radius, centred on 

the fovea, was identified as the optimal stimulus for assessment of dark adaptation in early 

AMD. In order to further refine the dark adaptation protocol, this chapter will examine 

dark adaptation in early AMD as a function of the pre-adapting light intensity. 

 

5.1. Introduction 

The time course of sensitivity recovery during dark adaptation is determined by the 

intensity and duration of the pre-adapting light exposure (Winsor & Clark, 1936; Hecht et 

al., 1937; Wald & Clark, 1937; Haig, 1941; Mote & Ripoelle, 1950; Wolf & Zigler, 1954). 

The familiar biphasic dark adaptation function only occurs at high pre-adapting light 

intensities. As the intensity of the adapting light decreases, a lower proportion of 

photopigment is bleached. Consequently, the resultant cone component is less prominent 

(see Figure 1.12, Page 31) and the entire dark adaptation function undergoes a lateral shift 

towards the y-axis. This means that any given visual threshold is attained more rapidly at 

lower pre-adapting intensities. 

 

The implementation of a low pre-adapting intensity for measurement of dark adaptation is 

attractive clinically as it would help to expedite data collection. However, it is vital that 

any reduction in the intensity of the adapting light, and subsequent recording time, does not 

compromise the diagnostic capacity of the threshold recovery data. Sufficient recovery 

data must be obtained to allow an accurate model fit, furthermore the ‘demand’ placed on 

the retina, RPE and choroid must be sufficient to ensure a distinct separation in the 

recovery parameters between participants with early AMD and healthy controls. Although 

the relationship between the pre-adapting light exposure and dark adaptation is well 

established in healthy individuals (Winsor & Clark, 1936; Hecht et al., 1937; Wald & 
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Clark, 1937; Haig, 1941; Mote & Ripoelle, 1950; Wolf & Zigler, 1954; Dimitrov et al., 

2008), there is currently no published data regarding the effect of the pre-adapting light 

intensity on dark adaptation in participants with early AMD. 

 

5.2. Aims 

This study aimed to quantify the differences in cone dark adaptation between people with 

early AMD and healthy controls at a range of pre-adapting light intensities. The diagnostic 

potential of cone dark adaptation and time to RCB were determined as a function of pre-

adapting light intensity. 

 

5.3. Methods 

Participants 

Ten participants with early AMD were recruited from the database. All of these 

participants had a diagnosis of early or intermediate AMD in at least one eye, according to 

the Age-Related Eye Disease Study severity scale (Davis et al., 2005), in the absence of 

any co-existing ocular or fundus abnormality. The diagnosis was confirmed using 37º 

fundus photographs (Canon CR-DGi Camera) obtained at the baseline examination. Ten 

age-matched control participants, with a normal retinal appearance in both eyes, were also 

recruited from the database. All participants were aged 55 years and over, with a corrected 

visual acuity of 6/9 or better in the test eye, no significant media opacity (≤ Grade 3, 

LOCS-III) (Chylack et al., 1993), and no history of systemic disease or medication known 

to affect visual function. 

 

All participants provided informed written consent prior to participation. The study was 

approved by the South East Wales Research Ethics Committee and all procedures adhered 

to the tenets of the Declaration of Helsinki. 

 

Apparatus 

Thresholds were recorded in response to a 12º radius amber annulus (λ = 595nm), 0.5º 

wide, 200 msec duration, centred on the fovea. An amber stimulus and adapting light were 

selected in order to generate similar percentage bleach of cone and rod photopigments 

across a range of pre-adapting light intensities (Wyszecki & Stiles, 1982) and to minimise 

the effects of pre-retinal light absorption and scatter. The stimulus was presented on a 

calibrated, high resolution CRT monitor (Iiyama LS 902UT) driven by an 8-bit graphics 
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board (nVIDIA Geforce 9) under software control (Matlab, R2009a, The MathWorks Inc.).  

As described in Chapter 2 (Section 2.2.3) the luminance output of the monitor was γ-

corrected (Metha et al., 1993; Brainard et al. 2001) and modified by neutral density filters 

mounted on the screen to expose the full range of retinal recovery. Dark adaptation was 

monitored using a psychophysical method based on the modified staircase procedure 

previously described in Section 2.2.3. The Matlab code for this procedure is shown in 

Appendix II. 

 

A Maxwellian view optical system, incorporating an amber filter (LEE filters HT 015 

‘deep straw’), was used to deliver all photopigment bleaches to the central 43.6º of the test 

eye (Figure 5.1). Table 5.1 describes the retinal illuminance and proportion of rod and cone 

photopigment bleached with the 120 second exposure used in this investigation. The 

system was calibrated at the highest intensity and additional 0.3 ND filters were placed in 

front of the adapting light source to attenuate the luminance sufficiently in order to attain 

the two lower adapting intensities. 

 

Table 5.1. Percentages of cone photopigment (Hollins & Alpern, 1973) and rhodopsin 

(Thomas & Lamb, 1999) bleached at the three adapting intensities. 

Exposure Retinal Illuminance 

(log phot.Td) 

% cone 

photopigment bleach 

% rhodopsin bleach 

1 4.90 71 51 

2 5.20 84 74 

3 5.50 91 90 

 

Experimental procedure 

Participants attended the laboratory on two days. Baseline examinations were completed at 

the start of the first visit. These included patient history, logMAR visual acuity (ETDRS), 

central visual field screening (C-40, Humphrey Field Analyser), stereoscopic fundus 

examination, fundus photography (Canon CR-DGi Camera) and media opacity grading 

(Chylack et al., 1993). 

 

Participants were dilated with one drop of 1.0% Tropicamide in each eye prior to dark 

adaptation. The eye selected for testing was the eye with early AMD, or the eye with the 

better visual acuity in bilateral AMD or control participants. The right eye was tested as a 

default if there was no difference in visual acuity between the two eyes. The contralateral 
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eye was occluded and refractive correction was worn if required for a viewing distance of 

55cm. 

 

All participants were instructed how to use the dark adaptation program, before 

participating in a 5 minute practice recording session. This was extended at the examiner’s 

discretion, until the participant produced consistent thresholds and was considered 

competent with the procedure. 

 

Figure 5.1. Viewing aperture of the Maxwellian view optical system during photopigment 

bleaching. The fovea was spared from photopigment bleaching by the spot in the centre of 

the crosshair. 

 

Dark adaptation was monitored for 30 minutes after a photopigment bleach at one of the 

three pre-adapting intensities, selected at random (Figure 5.1). After cessation of the 

bleach, the participant placed their chin on the rest in front of the computer and the dark 

adaptation program commenced immediately. Participants were instructed to fixate the 

cross at the centre of the screen and to indicate perception of the stimulus using the 

computer keyboard. At the second visit, the two remaining adapting intensities were 

completed, following the same procedure and separated by a washout period of an hour. 

The equilibrium bleach produced by the long duration adapting light (Hollins & Alpern, 

1973) ensured that all participants reached the same level of photopigment bleach 

regardless of any small differences in pre-bleach adaptational status. 

 

Statistical analysis 

The dynamics of cone recovery and the time to RCB were determined by fitting an 

exponential model of dark adaptation to the cone threshold recovery data and a two linear 
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model to any rod threshold recovery data (McGwin et al. 1999), on a least squares basis, 

using the solver function in Microsoft Excel (2003) (Equation 4d, Section 4.1.1). Although 

the RCB was the only aspect of rod recovery assessed during the analysis, rod recovery 

was modelled in order to identify the time to RCB. 

 

The parameters of interest were cone τ, final cone threshold and time to RCB. The mean 

(+/- standard deviation) was calculated for each parameter and independent sample t-tests 

were used to make comparisons between early AMD and control groups. Receiver 

operating characteristic (ROC) curves were constructed using statistical software (SPSS, 

Version 16.0) to assess the diagnostic potential of the parameters that showed a statistically 

significant difference between groups. 

 

5.4. Results 
 

Table 5.2. Visual acuity and fundus appearance in the early AMD group. AMD status is 

given according to the Age-Related Eye Disease Study severity scale (Davis et al., 2005) 

where: normal retinal aging = step 1, early AMD = steps 2– 6, intermediate AMD = steps 

7–9, and advanced AMD = steps 10 –11. 

 Test eye Fellow eye 

Participa

nt 

Ag

e 

Gender Eye logMAR 

VA 

AMD 

status 

Eye logMAR 

VA 

AMD 

status 

1 76 F L 0.2 Intermed. R 0.7 Advanced 

2 72 F R -0.1 Early L 1.0 Advanced 

3 66 F R 0.06 Early L 0.12 Advanced 

4 79 M R 0.1 Early L 0.1 Advanced 

5 65 M L 0.1 Early R 0.8 Advanced 

6 76 M R 0.1 Early L 0.6 Advanced 

7 87 M L -0.1 Early R 0.1 Advanced 

8 66 F L 0.12 Intermed. R 0.1 Advanced 

9 75 F R 0.1 Early L 0.3 Early 

10 68 F L 0.04 Early R 0.04 Early 

 

The clinical characteristics of the early AMD group are shown in Table 5.2. There were no 

significant differences in age between early AMD (mean age = 73.0 +/- 7.01 SD years) and 
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control (mean age = 73.3 +/- 4.11 SD years) groups (p = 0.908). Similarly, there were no 

significant differences in logMAR acuity between the test eyes of early AMD and control 

groups (mean acuity = 0.06 +/- 0.09 SD logMAR for early AMD participants and 0.03 +/- 

0.11 SD logMAR for control participants; p = 0.506). 

 

Table 5.3 shows the cone τ, final cone threshold and time to RCB given by the best fitting 

exponential-linear model for each participant, at each pre-adapting intensity. Figure 5.2a 

shows the time course of dark adaptation for a typical control participant, recorded after a 

71, 84 and 91% cone photopigment bleach. As anticipated, the RCB occurred 

progressively later as the intensity of the adapting light increased. Equivalent dark 

adaptation curves for a typical participant with early AMD are shown in Figure 5.2b. In 

comparison to the control data, this participant with early AMD had prolonged cone 

adaptation, and only displayed a clear RCB within the 30 minute recording period after 

exposure to the pre-adapting light at the lowest intensity (71% cone photopigment bleach). 
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71% 84% 91%Figure 5.2. Dark adaptation curves recorded for a typical control participant (a) and a 

participant with early AMD (b) at the three pre-adapting light intensities: 71% (black), 

84% (red) and 91% (blue) cone photopigment bleach. For each pre-adapting light intensity 

the raw data are shown with the best fitting model of dark adaptation given by equation 5a. 

The 71% data are correctly placed with respect to the y-axis. All other data are displaced 

upwards by an additional 0.5 log units from the previous (lower intensity bleach) data to 

aid visualisation. 
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Table 5.3. Cone τ, final cone threshold and time to RCB given by the best fitting exponential-linear model for all participants, at each pre-

adapting light intensity. (* where there was no RCB within the recording time for an individual, 30 minutes was attributed as the time to RCB) 

Participant   Cone τ (minutes) Cone final threshold (log cd/m²) Time to RCB (minutes)* 

 71% 84% 91% 71% 84% 91% 71% 84% 91% 

AMD          

1 1.85 3.00 4.49 -2.11 -1.85 -2.69 10.67 30.00 30.00 

2 5.20 5.30 6.17 -2.97 -2.74 -2.95 21.64 27.83 30.00 

3 5.75 6.83 8.27 -2.69 -2.73 -2.99 30.00 30.00 30.00 

4 0.70 7.37 4.39 -2.63 -3.06 -3.02 8.46 16.76 19.66 

5 0.52 2.62 3.32 -2.55 -2.55 -2.42 26.07 30.00 30.00 

6 8.00 8.13 10.17 -2.98 -2.99 -2.96 30.00 30.00 30.00 

7 3.27 7.57 10.00 -2.54 -2.78 -2.91 30.00 30.00 30.00 

8 1.40 3.35 11.05 -2.77 -2.34 -3.26 12.51 14.03 25.83 

9 0.93 1.08 1.09 -2.74 -2.58 -2.72 6.80 7.45 9.41 

10 1.84 4.26 2.84 -2.16 -2.24 -2.16 11.66 20.50 30.00 

Control          

11 0.56 1.29 1.54 -2.89 -3.02 -2.91 10.11 9.41 14.91 

12 0.30 0.97 1.94 -2.55 -2.51 -2.85 6.95 7.37 10.53 

13 0.88 1.61 2.63 -2.82 -2.94 -3.10 5.91 11.80 14.37 

14 1.94 2.78 2.94 -2.55 -2.76 -2.64 9.76 9.95 17.67 

15 0.82 1.67 1.39 -2.34 -2.53 -2.34 3.22 13.85 13.36 

16 0.19 1.84 2.15 -2.41 -2.66 -2.65 0.91 10.90 13.35 

17 0.18 0.83 0.52 -2.21 -2.63 -2.14 1.10 5.84 7.42 

18 0.35 0.96 0.70 -2.71 -2.72 -2.47 4.32 11.61 14.67 

19 0.22 0.74 0.82 -2.34 -2.66 -2.47 1.31 4.18 6.46 

20 0.88 2.97 1.39 -2.20 -2.77 -2.56 7.76 8.94 10.81 
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Table 5.4. Comparison of mean (+/- standard deviation) dark adaptation parameters in 

control and early AMD groups. (* where there was no RCB within the recording time for 

an individual, 30 minutes was attributed as the time to RCB) 

  Control AMD Univariate 

comparison 

Cone τ (mins) 

 

71% 

84% 

91% 

0.63 (0.54) 

1.57 (0.79) 

1.60 (0.81) 

2.95 (2.55) 

4.95 (2.44) 

6.18 (3.49) 

p = 0.019 

p = 0.002 

p = 0.002 

Final cone 

threshold (log 

cd/m²) 

71% 

84% 

91%º 

-2.50 (0.24) 

-2.72 (0.16) 

-2.61 (0.28) 

-2.61 (0.29) 

-2.59 (0.36) 

-2.81 (0.32) 

p = 0.366 

p = 0.302 

p = 0.167 

Time to RCB 

(mins) * 

 

71% 

84% 

91% 

5.14 (3.50) 

9.39 (2.93) 

12.36 (3.51) 

18.78 (9.69) 

23.66 (8.38) 

26.49 (6.87) 

p = 0.001 

p < 0.001 

p < 0.001 

 

The mean dark adaptation parameters obtained from participants with early AMD and 

healthy controls are summarised in Table 5.4. Where there was no RCB within the 30 

minute recording period, it was given as 30 minutes. Consequently, a conservative estimate 

of the delay in rod adaptation was included in all statistics. There were significant 

differences in cone τ (all p < 0.05) and time to RCB (all p < 0.005) between groups at all 

adapting intensities. This distinct separation in mean cone τ and time to RCB between 

control and early AMD participants is illustrated in Figure 5.3. There were no significant 

differences in cone final threshold between the two groups at any of the adapting 

intensities (Table 5.3 and Figure 5.3). 
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Figure 5.3. Summary of mean cone τ (a), cone final threshold (b) and time to RCB (c) at 

each bleaching intensity, shown with 95% confidence intervals. Filled symbols represent 

the early AMD group and open symbols the control group. * indicates those parameters 

that demonstrate a significant difference between groups. 
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Figure 5.4. ROC curves for cone τ after cone photopigment bleaches of 71% (a), 84% (b) 

and 91% (c), and time to RCB after 71% (d), 84% (e) and 91% (f). Each plot shows the 

sensitivity of the parameter to early AMD against the false detection rate (1 – specificity) 

for all 10 control and 10 early AMD participants. 

 

Figure 5.4 shows ROC curves for all of the dark adaptation parameters that differed 

significantly between groups on univariate analysis. The area under the curve (AUC) is 

given to describe the diagnostic capacity of each parameter. At the two higher pre-adapting 

intensities, 84 and 91% cone photopigment bleach, cone τ was equally capable of 
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discriminating participants with early AMD from healthy controls, with an AUC of 0.92 

+/- 0.07 in both conditions. This was marginally superior to the AUC of 0.87 +/- 0.08 for 

cone τ after a 71% cone photopigment bleach. The ROC analysis showed that the time to 

RCB had a high diagnostic capacity for early AMD at all adapting intensities. There were 

no statistically significant differences in the AUC obtained for cone τ or time to RCB at 

any of the bleaching intensities (z < 1.96) (Hanley & McNeil, 1982; 1983).  In addition, 

sensitivity and specificity values of between 80 and 100% were obtained for optimal cut-

off values of cone τ and time to RCB for all pre-adapting intensities, further illustrating 

their diagnostic potential (Table 5.5). 

 

Table 5.5. Sensitivity and specificity of the dark adaptation parameters that differed 

significantly on univariate analysis, calculated according to the optimal cut-off value given 

by the ROC curve. 

  Optimal cut-off 

value (mins) 

Sensitivity (%) Specificity (%) 

Cone τ 

 

71% 

84% 

91% 

0.91 

2.23 

2.74 

80 

90 

90 

90 

80 

90 

Time to RCB 

 

71% 

84% 

91% 

8.11 

13.94 

18.67 

90 

90 

90 

80 

100 

100 

 

5.5. Discussion 

The results show that cone τ and time to RCB are highly diagnostic for early AMD at 

bleaching intensities between 71% and 91% of cone photopigment. An AUC in excess of 

0.87 was obtained at all pre-adapting intensities, and participants with early AMD were 

discriminated from healthy controls with between 80 and 90% sensitivity and 80 and 100% 

specificity. Consequently, the two lower pre-adapting intensities, providing 71 and 84% 

cone photopigment bleach (equivalent to 51 and 74% rhodopsin bleach), may be used to 

expedite the measurement of dark adaptation in the clinic without compromising the 

diagnostic value of the data obtained. However, given the speed with which threshold 

changes during early cone dark adaptation, immediately after bleach offset, the use of an 

84% cone photopigment bleach may be considered preferable to the lower pre-adapting 



Chapter 5 

148 

 

intensity, because at higher intensities a greater number of early data points are obtained 

with which to anchor the exponential model fit. 

 

With the exception of the lowest pre-adapting intensity, cone τ exhibited a similar 

diagnostic ability to the time to RCB. This has useful clinical implications as cone dark 

adaptation may generally be assessed in as little as 10 minutes, thus further expediting data 

collection. These results provide additional support for the data presented in chapter 4, in 

which we demonstrated prolonged cone dark adaptation, 12º from fixation, in an 

independent cohort with early AMD, and reported an area under the ROC curve which was 

greater than 0.9 (see also Gaffney et al., 2011b). 

 

The relationship between the pre-adapting light exposure and dark adaptation has been 

extensively explored in healthy individuals (Winsor & Clark, 1936; Hecht et al., 1937; 

Wald & Clark, 1937; Haig, 1941; Mote & Ripoelle, 1950; Wolf & Zigler, 1954). In a 

recent study, Dimitrov et al. (2008) assessed dark adaptation in a healthy participant at six 

pre-adapting intensities between 3 and 96% rhodopsin bleach. This formed the basis for a 

recording protocol in which dark adaptation was measured in participants with early AMD 

after a 30% rhodopsin bleach. However, this is the first time that the diagnostic power of 

dark adaptation has been examined at a range of pre-adapting intensities in a cohort with 

early AMD. 

 

Of the seven participants with early AMD who failed to reach a RCB within the 30 minute 

recording period during one or more of the experimental conditions, six had a diagnosis of 

exudative disease in their contralateral eye. An increased incidence of choroidal 

neovascularisation has previously been reported in this particular patient group (Klaver el 

al., 2001; Mitchell et al., 2002; Klein et al., 2007) and our findings provide further 

evidence of an association between impaired dark adaptation and a heightened risk of 

exudative changes (Eisner et al., 1991; Sandberg et al., 1998). 

 

In conclusion, this study has reinforced the potential importance of rod and cone dark 

adaptation as a biomarker for early AMD and as a method of monitoring treatment 

outcomes. Dark adaptation was shown to be diagnostic for early AMD at a range of pre-

adapting intensities. Therefore we recommend the use of a pre-adapting bleaching intensity 
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of 84% of cone photopigment to facilitate the assessment of dark adaptation within a 

clinically viable timeframe. 
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6. The development of the focal rod ERG photostress 

test (PST) 

 

 

Although psychophysical methods have been widely used to assess dark adaptation, the 

data are based on the subjective responses of the participant and may therefore be degraded 

by human inconsistencies, such as expectation and habituation errors (Treutwein, 1995). In 

contrast, electroretinography provides an objective means of assessing retinal function and 

so has potential as an alternative technique for evaluating dark adaptation. However, there 

is currently no ‘gold standard’ electrophysiological technique for the investigation of 

retinal dysfunction in AMD (Gerth, 2009). Indeed, there are very few standardised 

protocols for the assessment of dark adaptation at the macula using the ERG. Previous 

publications have demonstrated that the focal cone ERG may be used to assess cone 

recovery after a photopigment bleach (Binns & Margrain 2005; Binns & Margrain 2007; 

Wood et al., 2011b) and that delayed recovery of the ERG amplitude is diagnostic for early 

AMD (Binns & Margrain 2007). This chapter investigates the use of the full field and focal 

rod ERG (Binns & Margrain 2006) for the assessment of rod adaptation after a 

photopigment bleach. 

 

 

6.1. The development and validation of the full field rod ERG PST 

 

6.1.1. Introduction 

The a- and b-waves of the scotopic ERG are initially completely extinguished after a near 

total bleach of visual pigment, before gradually returning to the pre-bleach amplitude 

during 35-40 minutes in darkness (Thomas & Lamb, 1999; Cameron et al., 2006; Cameron 

et al., 2008). By contrast, full recovery of the a-wave of the photopic ERG after a near total 

photopigment bleach has been shown to occur within 6 minutes (Paupoo et al., 2000). 

These data were obtained from electrophysiological studies in which ERG data from 

repeated bleaches were collated over a prolonged recording period. Therefore, although the 

data illustrate that ERG techniques can be used to monitor dark adaptation, the lengthy 

protocols clearly render the techniques unsuitable for use in clinical practice. 
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A procedure in which the ERG is used to monitor cone dark adaptation clinically has 

previously been described (Binns & Margrain, 2005; 2007). The focal cone ERG PST was 

developed as an objective technique for the assessment of outer retinal function (Binns & 

Margrain, 2005). The technique monitors the recovery of the amplitude of the first 

harmonic of the 41Hz focal cone ERG after a photopigment bleach. The 41Hz focal cone 

ERG was considered an accurate representation of outer retinal function as it is dominated 

by bipolar cell activity, which, in turn, is dependent on levels of cone photopigment (Bush 

& Sieving, 1996; Kondo & Sieving, 2002). Pre-bleach ERGs are recorded as a baseline 

measure, before post-bleach ERGs are recorded every 20 seconds for 5 minutes. The 

amplitude of the first harmonic is then plotted as a function of time after the bleach and an 

exponential model is fitted to the data to generate a time constant of cone recovery. The 

recovery time constant of the focal cone ERG PST was shown to be significantly longer in 

participants with early AMD and was able to differentiate participants with early AMD 

from healthy control participants with high sensitivity and specificity (AUC = 0.74) (Binns 

& Margrain, 2007). However, there is currently no equivalent technique for the objective 

assessment of rod dark adaptation. 

 

6.1.2. Aims 

In order to expand the range of objective techniques available for dark adaptation 

measurement the initial aim of this study was to develop a full field ERG technique for the 

assessment of rod dark adaptation within a clinically viable timeframe. 

 

6.1.3. General ERG methods 

A Medelec Synergy evoked potential monitoring system (Oxford Instruments PLC, Old 

Woking, Surrey, UK) and miniature Ganzfeld LED (light emitting diode) stimulator (CH 

electronics, Kent, UK) (Figure 6.1) were used to record ERGs throughout all 

electrophysiological investigations included in this thesis. The stimulator comprised an 

array of LEDs housed in a 5cm diameter tube, which could be adapted for full field and 

focal ERG recording. In order to record full field ERGs the stimulator was fitted with a 

diffuser and held at the eye. In contrast, for focal ERG recordings, the stimulator was 

positioned within a desensitizing peripheral surround (Figure 6.2) to allow selective 

stimulation of the central 20° of retina, whilst minimising any response of the peripheral 

retina to scattered light. 
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Medelec 

Synergy

Miniature 

Ganzfeld LED 

stimulator

Figure 6.1. Medelec Synergy evoked potential monitoring system (Oxford Instruments 

PLC, Old Woking, Surrey, UK) and miniature Ganzfeld LED stimulator. 

 

Prior to ERG recording, the participant’s pupils were dilated with one drop of 1.0% 

Tropicamide in each eye. Following skin preparation using an abrasive gel (Nuprep), a 

silver-silver chloride skin electrode filled with electrolyte gel (TECA) was applied to the 

mid-frontal position using surgical tape (Blenderm). DTL fibre active and contralateral 

reference electrodes (Unimed electrode supplies, Surrey, UK) were positioned in the lower 

fornices. Electroretinograms were recorded monocularly (the contralateral eye was 

occluded). All ERG responses were digitally averaged and bandpass filtered from 1-100Hz 

using the Medelec Synergy system. An artefact reject setting was applied to exclude any 

traces contaminated by blinks or eye movements. 

 

Figure 6.2. Miniature ganzfeld LED stimulator positioned within a desensitizing 

peripheral surround for recording focal cone (left panel) and rod (right panel) ERGs. 
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All procedures adhered to the tenets of the Declaration of Helsinki and to the ISCEV 

guidelines for ERG recording procedures (Marmor et al., 2009). Each participant provided 

informed written consent prior to their participation. 

 

6.1.4. Methods 

Participants 

Two experienced observers, AB (34 years) and AG (26 years), participated in the 

preliminary studies. Both participants had a corrected visual acuity of 6/6 or better in the 

test eye, clear ocular media (≤ Grade 3, LOCS-III) (Chylack et al., 1993), a normal retinal 

appearance and no history of ocular or systemic disease known to affect visual function. 

 

Experimental procedure 

After pupil dilation and electrode application (see Section 6.1.3), dark adaptation was 

monitored in the left eye of both participants, using the full field rod ERG PST. Rod ERGs 

were recorded in response to a full field blue flash stimulus (454nm, half height bandwidth 

67nm), duration 5ms, presented at a temporal frequency of 0.5Hz. A stimulus intensity of 5 

scot.td.s was used in order to adhere to ISCEV guidelines for recording of isolated rod 

responses (Marmor et al., 2009).  Participants underwent a 2 minute exposure to a 

Ganzfeld adapting background (7.04 log phot.Td) to produce a near total bleach of 

photopigment (99% rhodopsin and cone photopigment). On cessation of the bleach, 

participants directed their gaze to the centre of the test stimulus and recording commenced 

within 10 seconds. Full field rod ERGs were recorded in the dark every 2 minutes for 35 

minutes. Thirty responses were averaged per trace. 

 

Statistical analysis 

A drift correction was applied to all ERG responses and Fourier analysis (Stroud, 1986) 

was used to isolate the first nine harmonics of the signal and to remove high frequency 

noise (>45Hz) (Figure 6.3). The locations of the a- and b-waves were determined 

objectively by Microsoft Excel (2003) as the maxima and minima within a given timescale 

and confirmed using visual inspection. The amplitude of the b-wave was measured from a-

wave trough to b-wave peak and plotted as a function of time after the bleach. 
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Figure 6.3. Raw full field rod ERG waveform for a healthy participant (left panel) and the 

Fourier analysed waveform (right panel). 

 

The time constant of recovery (τ) for cones and rods was determined by fitting a single 

exponential function (Equation 6a) (Thomas & Lamb, 1999), on a least squares basis, to all 

recovery data, using Microsoft Excel (2003). 

 

Equation 6a.  amax(t) = amax(∞) / (1 +ca.e
(-t/τ)

) 

 

where amax is the amplitude at time t after the bleach, amax(∞) is the dark adapted 

sensitivity, ca is the reduction in sensitivity immediately after the bleach and τ is the time 

constant of recovery. The root mean square error (RMS error) was calculated as a measure 

of ‘goodness-of-fit’ of the model to each dataset. A lower RMS error indicated a better 

model fit to the data.  

 

6.1.5. Results 

The b-wave of the full field rod ERG was extinguished for several minutes immediately 

after the photopigment bleach in participant AB (Figure 6.4). The amplitude of the b-wave 

then increased over time, rapidly at first and subsequently more slowly, to recover fully 

within 35 minutes in darkness, yielding a rod τ of 2.47 minutes. In AG there was a less 

complete elimination of the b-wave, but the subsequent amplitude recovery followed a 

slightly slower time course and the resultant rod τ was 4.48 minutes. In both cases the 

recovery was well described by the exponential model: RMS error = 4.23 for AB and RMS 

error = 9.13 for AG. 
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Figure 6.4. Recovery of the b-wave of the full field rod mediated ERG for participants AB 

and AG. Panel A shows the ERG traces recorded every 2 minutes. The amplitude recovery 

data are shown in panel B, together with the best fitting exponential function. 

 

6.1.6. Discussion 

The aim of this phase of the study was to develop a full field ERG technique for the 

assessment of rod dark adaptation. The data demonstrate that the full field ERG can be 

used as a simple, objective means of monitoring rod adaptation. The exponential model, 

based on the decay of an equivalent background (Thomas & Lamb, 1999), described all 

threshold recovery data well. 

 

Although rod dominated ERGs are included in the ISCEV clinical protocol guidelines 

(Marmor et al., 2009), this is the first report of a rod dominated ERG being used in a 

clinically viable protocol to assess dark adaptation. The b-wave of the scotopic ERG was 
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initially markedly reduced by the photopigment bleach, before gradually returning to the 

pre-bleach amplitude during the time in the dark. When the b-wave amplitude was plotted 

as a function of time after the bleach, an S-shaped recovery curve emerged. This was 

consistent with previous studies in which the b-wave of the scotopic ERG was recorded at 

fixed intervals after a bleach (Cameron et al., 2006). The recovery of the scotopic a-wave 

after a near total bleach of photopigment has been shown to progress in a similar manner 

(Thomas & Lamb, 1999). This S-shaped recovery curve has been documented after 

photopigment bleaches of 40% or greater (Thomas & Lamb, 1999). 

 

These previous electrophysiological studies of rod dark adaptation collated data from 

repeated bleaches (Thomas & Lamb, 1999; Cameron et al., 2006). In contrast, the protocol 

used in the current study has shown that the ERG can be used to assess dark adaptation in 

rods and cones within a clinically viable timeframe. 

 

 

6.2. The development of the focal rod ERG PST 

 

6.2.1. Introduction 

In the previous section, the full field ERG was used successfully to monitor rod dark 

adaptation. However, in AMD, photoreceptor loss and dysfunction is localised to the 

central retina (Curcio et al., 1996; Curcio, 2001). Correspondingly, functional loss 

associated with the disease has frequently been reported within the central 25º of the retina 

(Brown et al., 1986a; Owsley et al, 2000, Owsley et al., 2001, Haimovici et al., 2002; 

Phipps et al., 2003, Binns & Margrain, 2007; Owsley et al., 2007; Dimitrov et al., 2008, 

2011). It has been estimated that 96% of rod photoreceptors are located beyond the 

macular region (Curcio et al., 1990). As the full field rod ERG is a summed response from 

rods throughout the whole retina, it remains relatively unaffected by the focal 

abnormalities that occur in early AMD (Sunness et al., 1985; Holopigian et al., 1997; 

Jackson et al., 2004). Therefore, although the full field rod ERG is a clinically viable 

method for the assessment of dark adaptation, it will not necessarily yield clinically useful 

information in macular disease, as the localised adaptational dysfunction that occurs in 

early AMD may be masked by the peripheral rod response. 
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The focal rod ERG 

The recording of focal rod responses is complicated by stimulation of the peripheral retina 

by scattered light. Although the Stiles Crawford effect applies to cones (Stiles & Crawford, 

1933), rods lack this same directional sensitivity (Pirene, 1962). Consequently, rod 

photoreceptors are prone to stimulation by scattered light, which causes the formation of a 

double b-wave when recording the focal rod ERG (Fry & Bartley, 1935; Sandberg et al., 

1996; Hood et al., 1998; Binns & Margrain, 2006). The second b-wave is a slower, larger 

response generated by the rods located in the peripheral retina, in response to the lower 

intensity scattered light (Sandberg et al., 1996), and makes the focal rod response difficult 

to interpret. Several approaches have previously been used to eliminate this scattered light 

response. 

 

The subtraction technique proposes that the amplitude of the second b-wave of the focal 

rod ERG may be matched by the amplitude of a full field ERG generated by a stimulus of 

lower intensity (Sandberg et al., 1996). Subtraction of this matching full field signal from 

the focal response will eliminate the scattered light component and thereby isolate the focal 

rod response. However, identification of the appropriate full field stimulus intensity can be 

time consuming (Binns & Margrain, 2006). 

 

Alternatively, a background adaptation technique has been used to isolate multifocal rod 

ERGs (Hood et al., 1998) and focal rod ERGs (Binns & Margrain., 2006). That is, the 

stimulus is positioned within an adapting background to suppress the peripheral rod 

response to scattered light. As the intensity of the surround increases, the stray light 

response decreases until it is completely extinguished. The intensity of the surround 

required to eliminate the stray light response varies between participants (Hood et al., 

1998). A protocol has been described for recording focal rod ERGs using this approach 

(Binns & Margrain, 2006). The focal rod ERG is recorded after 30 minutes of dark 

adaptation, in response to a 20° diameter blue flash stimulus, presented within a 

desensitizing surround of 1.67 log.scot.td.s. 

 

An additional method of eliminating the scattered light response is to use a small dim 

stimulus. The stray light response was demonstrated to be negligible when a 5º diameter 

stimulus, of low intensity is used (Horiguchi et al., 1991; Choshi et al., 2003). However, 

the resultant ERG amplitude is extremely small, which leads to a poor signal to noise ratio, 
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thus rendering the technique insensitive to small changes in retinal function (Binns & 

Margrain, 2006). 

 

When compared directly, the background adaptation technique proved a more reliable 

method for obtaining a focal rod ERG response with a measurable a-wave, as well as being 

less time consuming, than the subtraction technique (Binns & Margrain, 2006). The 

background adaptation technique may therefore be considered the most clinically 

applicable technique for eliminating the scattered light response when recording focal rod 

ERGs. A surround of 1.67 log.scot.td.s has been shown to be effective in most participants 

(Binns & Margrain, 2006). 

 

6.2.2. Aims 

The aim of this second study was to develop an ERG technique for the assessment of rod 

dark adaptation at the macula using the focal rod ERG. As focal ERG signals are small, 

they are subject to significant degradation by noise. The effect will be magnified at early 

times post-bleach, when the signal is substantially reduced in amplitude. Consequently, the 

initial aim of the study was to evaluate the effect of stimulus frequency and stimulus 

intensity on signal quality in order to maximise the response amplitude. On establishing an 

optimal protocol, the second aim of the study was to validate the focal rod PST technique 

in participants with and without early AMD. 

 

6.2.3. Determination of the optimal stimulus frequency 

 

6.2.3.1. Background/Aims 

In scotopic conditions, rod photoreceptors are insensitive to frequencies above 10-15Hz 

(Conner, 1982). ISCEV standards recommend the use of a stimulus frequency of 

approximately 0.5Hz for the recording of rod-isolated ERGs to prevent adaptational effects 

(Marmor et al., 2009). However, at this low stimulus frequency, data collection is slow. In 

order to improve the SNR of small ERG signals, averaging a large number of responses is 

beneficial, but during dark adaptation, threshold is constantly changing and there is 

therefore a limited timeframe in which these averages may be obtained. The use of higher 

stimulus frequencies facilitates greater averaging within a given time interval. The aim of 

this phase of the study was to determine the highest stimulus frequency that can be used to 
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record the dark adapted focal rod ERG without causing significant attenuation of the b-

wave. 

 

6.2.3.2. Methods 

Participants 

Two experienced observers, AB (34 years) and AG (26 years), participated in the study. 

Both participants had a corrected visual acuity of 6/6 or better in the test eye, clear ocular 

media (≤ Grade 3, LOCS-III) (Chylack et al., 1993), a normal retinal appearance and no 

history of ocular or systemic disease known to affect visual function. 

 

Experimental procedure 

After pupil dilation and electrode application (see Section 6.1.3), participants were dark 

adapted for 30 minutes. A series of full field rod ERGs were recorded from each 

participant, in response to a blue flash stimulus (454nm, half height bandwidth 67nm, 

intensity 5 scot.td.s), at range of frequencies: 0.5, 1, 2, 5 and 10Hz. The timebase was 

500ms, with the exception of the 5Hz and 10Hz stimuli when a 200ms timebase was used 

in order to display one response cycle. Twenty-five responses were averaged at each 

stimulus frequency. The locations of the a- and b-waves were determined objectively by 

Microsoft Excel (2003) and the amplitude of the b-wave was measured from a-wave 

trough to b-wave peak. The optimal stimulus frequency was identified as the highest 

frequency that did not cause significant attenuation of the b-wave. 

 

Focal rod ERGs were then recorded at two stimulus frequencies: 0.5Hz and the highest 

stimulus frequency shown by the full field results to cause no significant attenuation of the 

b-wave. Participants were instructed to fixate the centre of the 20º diameter blue flash 

stimulus (454nm, half height bandwidth 67nm, intensity 5 scot.td.s), positioned within a 

desensitizing surround of 1.67 log.scot.td.s. As the signal was much smaller when this 

focal stimulus was used, 150 responses were averaged at each stimulus frequency. The a- 

and b-waves were then identified and the b-wave amplitude measured. 

 

6.2.3.3. Results 

The ERG traces showing the effect of stimulus frequency on the b-wave of the dark 

adapted full field rod ERG are shown in Figure 6.5, for both participants. The b-wave 

amplitude was similar at 0.5, 1 and 2Hz, however at 5 and 10Hz a marked reduction in 
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amplitude was evident. Figure 6.6 shows that the b-wave amplitudes recorded between 0.5 

and 2Hz fell within a 20µV range for AB and a 30µV range for AG. However the b-wave 

amplitude obtained at 5Hz was almost 50% smaller than that obtained at 0.5Hz. 

 

Figure 6.5. Dark adapted full field ERG responses recorded from participants AB and AG 

in response to a 5 scot.td.s blue flash of increasing frequency: 0.5-10Hz. Twenty-five 

responses were averaged at each frequency. 

 

Figure 6.6. The amplitude of the full field, dark adapted ERG b-wave plotted as a function 

of stimulus frequency for AB (black circles) and AG (red squares). 
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As 2Hz was the highest stimulus frequency at which there was no marked attenuation of 

the b-wave of the full field rod ERG, responses at this frequency were compared with those 

at 0.5Hz for the focal ERG recordings. As expected, at both 0.5 and 2Hz the dark adapted 

focal ERG b-wave amplitudes were markedly smaller than the equivalent full field b-wave 

amplitudes (Figure 6.7). There was, however, a negligible difference between the b-wave 

amplitudes recorded at the two frequencies for each participant. 

 

Figure 6.7. Dark adapted focal ERG responses recorded from participants AB and AG in 

response to a 5 scot.td.s blue flash at 0.5 and 2Hz, presented within a desensitizing 

surround. One hundred and fifty responses were averaged at each frequency. 

 

6.2.3.4. Discussion 

The significant reduction in the b-wave amplitude of the dark adapted focal rod ERG 

compared to the dark adapted full field ERG emphasises the pressing need to optimise the 

recording protocol in order to maximise the signal obtained when recording focal rod 

ERGs. At increased stimulus frequencies, a greater number of averages may be obtained 

within a given time interval. This results in a strengthening of the resultant signal, but is 

accompanied by the attenuation of the ERG b-wave at high stimulus frequencies. When 

full field rod ERGs were recorded, 2Hz was the highest frequency at which there was no 

significant attenuation of the b-wave. This was therefore selected for further investigation 

in the recording of the focal rod ERG. The focal recordings revealed a negligible 

difference in the dark adapted b-wave amplitude at 0.5 and 2Hz. A 2Hz stimulus allows 

four times as many averages to be recorded in a given time period compared to a 0.5Hz 

stimulus. Although higher frequencies would increase averaging further, the accompanying 

b-wave attenuation renders these stimuli impractical for focal recordings. Therefore, a 

stimulus frequency of 2Hz was selected for all future focal rod ERG recordings. 
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6.2.4. Determination of the optimal stimulus intensity 

 

6.2.4.1. Background/Aims 

The use of relatively high stimulus intensities when recording rod dominated ERGs 

provides a more accurate estimate of rod photoreceptor activity than the moderate intensity 

flashes recommended by ISCEV (Marmor et al., 2009), due to the increased amplitude of 

the response and an improved SNR. However, high intensity stimuli will evoke a response 

from both the cone and rod pathways (Hood & Birch, 2006). The aim of this phase of the 

study was to determine the highest stimulus intensity that can be used to record the dark 

adapted focal rod ERG without cone intrusion, in order to maximise the amplitude of the 

response obtained. 

 

6.2.4.2. Methods 

Participants 

The same experienced observers participated in this study. Both participants had a 

corrected visual acuity of 6/6 or better in the test eye, clear ocular media, a normal retinal 

appearance and no history of ocular or systemic disease known to affect visual function. 

 

Experimental procedure 

After pupil dilation and electrode application (see Section 6.1.3), participants were dark 

adapted for 30 minutes. A series of full field rod ERGs were recorded from each 

participant in response to a blue flash stimulus (454nm, half height bandwidth 67nm), 

presented at a temporal frequency of 2Hz (identified as optimal in the preceding section of 

the study). In order to identify the stimulus intensity that would elicit a maximal rod 

response without significant cone intrusion, an approach was used based on a protocol 

previously advocated by Hood & Birch (1996; 2006). That is, after dark adaptation, full 

field ERGs were recorded at a range of stimulus intensities: 2.5, 5, 10, 20, 30, 40 and 50 

scot.td.s. The same stimuli were then presented against a steady green background 

(525nm) of 30cd/m² (approximately 3.54 log scot.td.s). An adapting background of this 

intensity eliminates the rod response, but leave the cone response relatively unaffected 

(Hood & Birch, 1996; 2006). Sixty responses were averaged at each stimulus intensity. 

The locations of the a- and b-waves were determined as the minima and maxima within a 

specified time window (20-70msec post-bleach), and the amplitude of the b-wave was 

measured from a-wave trough to b-wave peak. The optimal recording intensity for the full 
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field rod ERG was identified as the highest intensity at which no significant cone response 

was detected. 

 

Focal rod ERGs were then recorded at the three highest stimulus intensities shown by the 

full field results to cause minimal cone stimulation, first with and then without the adapting 

background. Participants were instructed to fixate the centre of the 20º diameter blue flash 

stimulus (454nm, half height bandwidth 67nm), positioned within a desensitizing surround 

of 1.67 log.scot.td.s. As the signal was much smaller when this focal stimulus was used, 

800 responses were averaged at each stimulus intensity. The a- and b-waves were then 

identified and the b-wave amplitude recorded. 

 

6.2.4.3. Results 

The ERG traces showing the isolated cone contribution to the dark adapted full field ERG 

response to blue flashes of varying intensity (2.5-50 scot.td.s) are shown in Figure 6.8, for 

both participants. There was no evidence of a repeatable response recorded from either 

participant at the lowest two stimulus intensities: 2.5 and 5 scot.td.s. At 10 scot.td.s, AB 

continued to show no evidence of a repeatable b-wave, however an extremely small b-

wave was exhibited by AG (amplitude = 1.6µV). As the intensity of the stimulus increased 

further, the ERG response became larger and more clearly visible in both participants. 

 

Figure 6.8. Cone contribution to dark adapted full field ERG responses recorded from 

participants AB and AG in response to a blue flash of increasing intensity: 2.5-50 scot.td.s, 

presented on a steady field of 30 cd/m².  
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Having shown a minimal full field cone response at stimulus intensities up to about 20 

scot.td.s, the next step was to evaluate focal responses at these intensities. Figure 6.9 shows 

the dark adapted focal ERG response at 5, 10 and 20 scot.td.s together with the isolated 

cone response at these intensities. At 5 scot.td.s neither of the participants exhibited a 

measurable cone contribution to the b-wave. When the stimulus intensity increased to 10 

scot.td.s a cone contribution was recorded from AG only. A further increase in the stimulus 

intensity to 20 scot.td.s evoked a cone contribution from both participants. 

 

Figure 6.9. Cone contribution to dark adapted focal ERG responses (top panel) recorded 

from participants AB and AG in response to a blue flash at 5, 10 and 20 scot.td.s, presented 

on a steady green background of 30 cd/m². The lower panel shows the dark adapted focal 

ERG responses recorded without the rod saturating background i.e. the combined rod and 

cone response. 

 

6.2.4.4. Discussion 

Although the use of a high intensity stimulus when recording the focal rod ERG ensures 

that the signal obtained is maximised, there is an increased risk of cone stimulation at these 

intensities. The full field ERGs recorded here indicate that the cone contribution in 

response to a flash intensity of 2.5 or 5 scot.td.s is negligible. However, these low 

intensities are not optimal for recording focal ERGs as many averages are required to 

obtain a favourable SNR. At 10 scot.td.s a cone contribution was recorded from one 
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participant only (AG), whilst higher stimulus luminances evoked a cone response from 

both participants. 

 

Similarly, when focal ERGs were recorded at a stimulus intensity of 20 scot.td.s, the signal 

comprised a marked cone component in both participants. This intensity was therefore 

considered too high for the recording of focal rod ERGs. In contrast, at 10 scot.td.s there 

was no measurable cone response from one participant and only an extremely small cone 

response from the other participant. Consequently, this stimulus intensity was selected for 

future focal rod ERG recordings to maximise the amplitude of the signal without inducing 

a significant cone contribution to the rod data. This stimulus intensity also falls within 

ISCEV guidelines for recording of isolated rod responses (Marmor et al., 2009). 

 

6.2.5. Development and validation of a recording protocol for the focal rod ERG PST 

 

6.2.5.1. Background/Aims 

The preceding investigations in this section have explored the parameters of the stimulus 

used for recording focal rod ERGs, in order to optimise the resultant ERG signal. A blue 

flash stimulus presented at a temporal frequency of 2Hz and an intensity of 10 scot.td.s 

was selected as the ideal stimulus for recording focal rod ERGs during dark adaptation. 

These parameters ensure that the amplitude of the signal is maximised, so that a sufficient 

number of responses may be averaged in a limited timeframe and that the resultant signal 

is free from any significant cone component. The aim of this phase of the study was to 

describe a protocol for recording the focal rod ERG PST based on these optimal stimulus 

parameters, and then to validate the protocol in participants with early AMD and age-

matched control participants. 

 

6.2.5.2. Methods 

Participants 

Two experienced observers (AB, 34 years and AG, 26 years), participated in the 

preliminary testing of the focal rod ERG PST protocol. In order to validate the focal rod 

ERG PST, three participants with early AMD and three age-matched control participants 

were recruited from the database. These participants were aged 55 years and over, with a 

corrected visual acuity of 6/9 or better in the test eye, no significant media opacity (≤ 

Grade 3, LOCS-III) (Chylack et al., 1993), and no history of systemic disease or 
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medication known to affect visual function. Those participants with early AMD all had a 

diagnosis of early or intermediate AMD in at least one eye, according to the Age-Related 

Eye Disease Study severity scale (Davis et al., 2005), in the absence of any co-existing 

ocular or fundus abnormality. The diagnosis was confirmed using 37º fundus photographs 

(Canon CR-DGi Camera) obtained at the baseline examination. 

 

All participants provided informed written consent prior to participation. The study was 

approved by the South East Wales Research Ethics Committee and all procedures adhered 

to the tenets of the Declaration of Helsinki. 

 

Experimental procedure 

Focal rod ERGs were recorded in response to a 20º diameter blue flash stimulus (454nm, 

half height bandwidth 67nm), intensity 10 scot.td.s, duration 5ms, presented at a temporal 

frequency of 2Hz. The stimulus was positioned within a desensitizing surround of 1.67 

log.scot.td.s. 

 

In order to assess the effect of adaptation to the stimulus on the amplitude of the b-wave of 

the focal rod ERG during the 36 minute period over which dark adaptation was measured, 

a dataset was first recorded from experienced observers AB and AG in the absence of a 

photopigment bleach. After 30 minutes of dark adaptation, focal rod ERGs were recorded 

every 3 minutes, for 36 minutes. One hundred responses were averaged on each trace. 

 

The focal rod ERG PST was initially recorded from the two experienced observers. It was 

then repeated for the three participants with early AMD and the three age-matched control 

participants. After pupil dilation and electrode application (section 6.1.3), a Maxwellian 

view optical system was used to bleach 95% of rhodopsin (5.78 log phot.Td for 120s) 

(Hollins & Alpern, 1973) in the central 43.6º of the test eye. On cessation of the bleach, 

participants turned to fixate the centre of the test stimulus and recording commenced 

immediately. Focal rod responses were recorded in the dark, every 3 minutes for 36 

minutes. One hundred responses were averaged on each trace, which took approximately 2 

minutes, leaving one minute for the patient to relax before the next recording. 

 

All responses were Fourier analysed (Microsoft Excel 2003) and high frequency noise 

(>45Hz) removed (Stroud, 1986). The locations of the a- and b-waves were determined 
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objectively by Microsoft Excel (2003) and confirmed using visual inspection. The 

amplitude of the b-wave was measured from a-wave trough to b-wave peak and plotted as 

a function of time after the bleach. 

 

Statistical analysis 

The time constant of recovery (τ) was determined by fitting a single exponential function 

(Equation 6a) (Thomas & Lamb, 1999), on a least squares basis, to all recovery data, using 

Microsoft Excel (2003). 

 

6.2.5.3. Results 

The effect of stimulus adaptation on the focal rod ERG PST 

Figure 6.10 shows the amplitude of the b-wave of the dark adapted focal rod ERG as a 

function of time, recorded in response to a 10 scot.td.s blue flash, presented at a temporal 

frequency of 2Hz, in the absence of a photopigment bleach. The b-wave amplitude 

fluctuated within a 2µV range for each participant, although AB typically produced larger 

b-wave amplitudes than AG. There was no progressive increase or decrease in the 

amplitude of the b-wave over time and correspondingly, both datasets were well described 

by a straight line with a gradient of approximately zero. 

 

Figure 6.10. The amplitude of the b-wave of the focal rod ERG b-wave plotted as a 

function of time, recorded in response to a 10 scot.td.s blue flash presented at a temporal 

frequency of 2Hz, recorded in the absence of a photopigment bleach. 

 

Focal rod ERG PST data from experienced observers 

In both experienced observers, the amplitude of the b-wave of the focal rod ERG was 

markedly reduced immediately after cessation of the photopigment bleach (Figure 6.11). 
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The amplitude of the b-wave then increased over time, rapidly at first and subsequently 

more slowly, to recover fully within 36 minutes in darkness. The time constant of rod 

recovery (τ) for AB was 5.51 minutes and 5.00 minutes for AG. The amplitude recovery in 

both cases was well described by the exponential model: RMS error = 0.54 for AB and 

RMS error = 0.35 for AG. 
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Figure 6.11. Recovery of the b-wave of the focal rod ERG for participants AB and AG. 

The amplitude recovery data is shown, together with the best fitting exponential function. 

 

Focal rod ERG PST data from participants with early AMD and control participants 

 

Table 6.1. Characteristics of the ‘ERG naive’ participants 

Participant Age (years) Gender logMAR VA 

Control 1 74 Female 0.0 

Control 2 77 Male -0.08 

Control 3 72 Male 0.02 

AMD 1 76 Female 0.2 

AMD 2 79 Male 0.1 

AMD 3 69 Female 0.0 

 

The characteristics of the ‘ERG naive’ participants are shown in Table 6.1 for the early 

AMD and control groups. These participants were all aged between 69 and 79 years (mean 

= 74.5 +/- 3.3 years).  
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Figure 6.12. Amplitude of the b-wave of the focal rod ERG, plotted as a function of time 

after a photopigment bleach for six ERG naïve participants. Control data are shown in the 

left panel and early AMD data in the right panel. 

 

The amplitude recovery data for the b-wave of the focal rod ERG is plotted as a function of 

time after the photopigment bleach in Figure 6.12, for all six observers. Focal ERG 

recording was more time consuming in these participants, compared to the experienced 
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observers, due to numerous responses being rejected by the system as contaminated by 

artefacts, and consequently, ERG responses were only recorded every 4 minutes in these 

participants. In addition, for the same reason, the maximum number of averages that could 

be obtained on each trace ranged from 35 to 80, rather than the full 100 averages proposed 

in the protocol. Unlike the amplitude recovery data recorded from the experienced 

observers, these ‘ERG naïve’ participants showed no evidence of a systematic change in 

the b-wave amplitude over time in the dark (Figure 6.12). Consequently, when the 

exponential model was applied to these dataset it failed to generate a meaningful recovery 

curve for any of the participants. 

 

6.2.5.4. Discussion 

In this section of the study a protocol for recording the focal rod ERG PST was described, 

based on the optimal stimulus parameters identified during the preliminary investigations. 

The initial data obtained using this technique in two experienced observers suggested that 

the focal rod ERG PST may be used as an objective means of monitoring rod dark 

adaptation at the macula. The amplitude of the b-wave of the focal rod ERG was markedly 

reduced after a near total bleach of rhodopsin and gradually recovered during the 36 

minute recording period. The recovery data were well described by an exponential model 

and the S-shaped recovery curve was consistent with reports of full field scotopic b-wave 

recovery after a near total bleach of photopigment (Cameron et al., 2006). In addition, 

there was no progressive reduction in the b-wave amplitude elicited by the focal stimulus 

during the time in the dark, in the absence of a photopigment bleach. This indicated that 

neither observer was experiencing any progressive adaptation to the stimulus that would 

affect the ERG recordings obtained during the focal rod ERG PST. 

 

Although these early results obtained using the focal rod ERG PST were promising, when 

the same protocol was implemented in an older cohort of participants with and without 

early AMD, no meaningful recovery of the b-wave in the dark could be observed. As 

discussed in Chapter 3 (Section 3.1, Page 93), there is an increase in the density of the 

crystalline lens with increasing age (Bron et al., 2000), which causes an increase in pre-

retinal light absorption, particularly at short wavelengths. The reduction in the amount of 

light reaching the retina results in a diminished ERG signal and therefore a greater number 

of averages are required to achieve a favourable SNR. Furthermore, the elderly participants 

struggled with the prolonged recording period, and were prone to blinking and making eye 
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movements. This generated electrical artefacts, which resulted in automatic rejection of the 

affected responses. As a result of this, a longer recording period was required to obtain the 

desired 100 responses averaged on each trace. This degree of averaging is feasible during 

ERG recordings to assess steady-state retinal functions. However, during dark adaptation 

the visual threshold is constantly changing, which means that the number of averages that 

can be obtained is limited by rigorous time constraints. 

 

In summary, the focal rod ERG may be used to assess dark adaptation in young, ‘ERG 

experienced’ participants but is an ineffective technique for monitoring dark adaptation in 

older participants, in whom the SNR is reduced and blinking artefacts are common. 

Although the full field rod ERG can be used to assess dark adaptation, it was not possible 

to develop a clinically viable focal protocol for use in elderly patients. Consequently, 

psychophysical techniques currently remain a more favourable option for monitoring the 

changes to rod dark adaptation that occur in early AMD. 
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7. A comparison of psychophysical and 

electrophysiological techniques for the detection of 

early AMD 

 

 

The ERG is a valuable but underused resource for the evaluation of retinal function in 

early AMD. As discussed in chapter 6, this is most likely due to the absence of a 

standardised protocol for the investigation of macular function using the ERG (Gerth, 

2009). However, the preceding chapters and previous publications (Binns & Margrain, 

2005; 2007) have demonstrated that by optimising the methodology, both psychophysical 

and electrophysiological techniques can be used to assess the changes in cone dark 

adaptation that occur in early AMD. Given the respective advantages and disadvantages of 

psychophysical and electrophysiological methods of dark adaptation measurement, this 

chapter will directly compare the diagnostic potential of the optimal computer based 

psychophysical procedure for measurement of cone dark adaptation to the focal cone ERG 

PST (Binns & Margrain, 2007). 

 

7.1. Introduction 

Although psychophysical methods have been widely used to assess dark adaptation, the 

data are based on the subjective responses of the participant and may therefore be degraded 

by human inconsistencies, such as expectation and habituation errors (Treutwein, 1995). In 

contrast, ERGs can be used to assess dark adaptation objectively, but require specialist 

equipment and can be time consuming to set up and record. In addition, focal ERG 

methods, such as those used to assess macular function are susceptible to the effects of 

noise because of the relatively small signal obtained (Gerth, 2009). 

 

Psychophysical and electrophysiological dark adaptation data have previously only been 

compared in healthy participants (Karpe & Tansley, 1948; Fulton & Rushton, 1978). When 

the recovery of the ERG b-wave amplitude and psychophysical visual threshold were 

measured simultaneously in a single participant after a photopigment bleach, extremely 

similar dark adaptation curves were obtained (Karpe & Tansley, 1948). In addition, further 

evidence showed that the recovery of the ERG b-wave and psychophysical visual threshold 
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both follow an exponential time course after exposure to an adapting light (Fulton & 

Rushton, 1978). However, despite the strong resemblance between the ERG and 

psychophysical dark adaptation curves, quantitative data about the agreement between the 

two methods has not been published. 

 

7.2. Aims 

As both psychophysical and electrophysiological techniques may be used to assess cone 

dark adaptation in early AMD, the aim of this study was to compare the diagnostic 

potential of the optimal psychophysical protocol, developed in Chapters 2, 4 and 5, to the 

focal cone ERG PST, recorded from participants with and without early AMD. 

 

7.3. Methods 

Participants 

Ten participants with early AMD and ten healthy control participants were recruited from 

the database. All participants were aged 55 years and over, with a corrected visual acuity 

of 6/9 or better in the test eye, no significant media opacity (≤ Grade 3, LOCS-III) 

(Chylack et al., 1993), and no history of systemic disease or medication known to affect 

visual function. Those participants with early AMD had a diagnosis of early or 

intermediate AMD in at least one eye, according to the Age-Related Eye Disease Study 

severity scale (Davis et al., 2005), in the absence of any co-existing ocular or fundus 

abnormality. The diagnosis was confirmed using 37º fundus photographs (Canon CR-DGi 

Camera) obtained at the baseline examination. 

 

All participants provided informed written consent prior to participation. The study was 

approved by the South East Wales Research Ethics Committee and all procedures adhered 

to the tenets of the Declaration of Helsinki. 

 

Apparatus 

All psychophysical stimuli were presented on a calibrated, high resolution CRT monitor 

(Iiyama LS 902UT) driven by an 8-bit graphics board (nVIDIA Geforce 9) under software 

control (Matlab, R2009a, The MathWorks Inc.).  As described in Chapter 2 (Section 2.2.3) 

the luminance output of the monitor was γ-corrected (Metha et al., 1993; Brainard et al. 

2001) and modified by neutral density filters mounted on the screen to expose the full 

range of retinal recovery. 
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ERGs were recorded using a Medelec Synergy evoked potential monitoring system 

(Oxford Instruments PLC, Old Woking, Surrey, UK) and miniature Ganzfeld LED 

stimulator (CH electronics, Kent, UK) positioned within a desensitizing peripheral 

surround, as described previously (Section 6.1.3). 

 

Experimental procedure 

Participants attended the laboratory on two days. Baseline examinations were completed at 

the start of the first visit. These included patient history, logMAR visual acuity (ETDRS), 

central visual field screening (C-40, Humphrey Field Analyser), stereoscopic fundus 

examination, fundus photography (Canon CR-DGi Camera) and media opacity grading 

(Chylack et al., 1993). 

 

Participants were dilated with one drop of 1.0% Tropicamide in each eye prior to dark 

adaptation. The eye selected for testing was the eye with early AMD, or the eye with the 

better visual acuity in bilateral AMD or control participants (the right eye was selected as a 

default when visual acuity was equal in both eyes). The contralateral eye was occluded and 

refractive correction was worn during psychophysical testing if required. 

 

Prior to dark adaptation, a Maxwellian view optical system, incorporating an amber filter 

(LEE filters HT 015 ‘deep straw’), was used to bleach 84% of cone photopigment (5.20 

log phot.Td for 120s) (Hollins & Alpern, 1973) in the central 43.6º of the test eye. On 

cessation of the bleach, dark adaptation recording commenced immediately. At the first 

session, dark adaptation was monitored for 30 minutes using the optimal psychophysical 

procedure identified by Chapters 2, 4 and 5, and at the second session, cone dark 

adaptation was assessed using the focal cone ERG PST. 

 

Psychophysical procedure 

During psychophysical assessment of dark adaptation, thresholds were recorded in 

response to a 12º radius amber annulus (λ = 595nm), 0.5º wide, 200 msec duration, centred 

on the fovea. On cessation of the bleach, participants were instructed to fixate the cross at 

the centre of the computer screen and to indicate perception of the stimulus using the 

computer keyboard. Dark adaptation was monitored using a modified staircase 

psychophysical method based on a procedure previously implemented by Jackson et al. 
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(1999) (Section 2.2.3) and the visual threshold was plotted as a function of time after the 

bleach. The Matlab code for this procedure is shown in Appendix II (‘bleaching intensity 

procedure’). 

 

The focal cone ERG PST 

At the second session, cone dark adaptation was monitored using the focal cone ERG PST 

(Binns & Margrain, 2005). Cone flicker ERGs were recorded in response to an amber 

(peak output 595nm, half height bandwidth 17nm) square wave stimulus, diameter 20º,  

presented at a temporal frequency of 41Hz (50% duty cycle, flash duration 12ms), with a 

time-averaged luminance of 30cd/m². This was set within a white surround which also had 

a luminance of 30cd/m² (See Figure 6.2, Page 151) A 50msec timebase was used for all 

cone ERGs and 100 sweeps (each consisting of 2 response cycles) were averaged per trace. 

 

Prior to recording, participants were exposed to the flickering stimulus for 5 minutes to 

eliminate the effects of flicker adaptation from the subsequent recording period. Eight pre-

bleach cone ERGs were recorded to determine the baseline amplitude of the response. The 

photopigment bleach was then administered to the test eye using the Maxwellian view 

optical system. On cessation of the bleach, the participant was given 10 seconds to align 

their gaze to the centre of the test stimulus before recording commenced. Focal cone ERGs 

were then recorded at 20 second intervals for 5 minutes. Each trace took approximately 5 

seconds to record, which allowed 10 to 15 seconds for the participant to relax and blink 

between successive recordings. 

 

Figure 7.1. Raw full field 41Hz ERG waveform for a healthy participant (left panel) and 

the Fourier analysed waveform (right panel). 

 

 

-5

0

5

10

15

20

0 10 20 30 40 50

V
o
lt
a
g
e

Time (ms)

-5

0

5

10

15

20

0 10 20 30 40 50

V
o
lt
a
g
e

Time (ms)



Chapter 7 

176 

 

The amplitude of the first harmonic of each trace was determined by Fourier analysis and 

plotted as a function of time after the bleach (Figure 7.1). 

 

Statistical analysis 

The dynamics of cone recovery were determined by fitting an exponential model of dark 

adaptation to the ERG amplitude recovery data, on a least squares basis, using Microsoft 

Excel (2003) (Equation 7a). 

 

Equation 7a.  T(t) = a + (b.exp
(-t/τ)

) 

 

where T is the amplitude (µV) of the 41Hz ERG at time t after cessation of the bleach, a is 

the final amplitude, b is the change in amplitude from t = 0, and τ is the time constant of 

cone recovery. 

 

The psychophysical threshold recovery data were also fitted with an exponential model. 

Where there was evidence of rod recovery within the recording period, a two linear model 

(McGwin et al., 1999) was fitted to the rod data (Equation 4d, Page 104). Although the 

time to RCB was the only aspect of rod recovery assessed during the analysis, rod recovery 

was modelled in order to objectively identify the RCB, which also allowed identification of 

the cone-only portion of the data and so facilitated the fitting of the exponential model of 

cone recovery. The diagnostic potential of the time to RCB was also assessed as a 

comparative measure reflecting rod recovery 

 

The mean (+/- standard deviation) cone τ was calculated for psychophysical and ERG 

methods of dark adaptation assessment and independent sample t-tests were used to make 

comparisons between early AMD and control groups. Receiver operating characteristic 

(ROC) curves were constructed using statistical software (SPSS, Version 16.0) to assess 

the diagnostic potential of the techniques. 

 

7.4. Results 

The clinical characteristics of the participants with early AMD are summarised in Table 

7.1. There were no significant differences in age between early AMD(mean age = 72.1 +/- 

8.56 SD years) and control (mean age = 72.6 +/- 4.17 SD years) groups (p = 0.871). 

Similarly, there were no significant differences in logMAR acuity between the test eyes of 
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early AMD and control groups (mean acuity = 0.02 +/- 0.11 SD logMAR for early AMD 

participants and 0.2 +/- 0.09 SD logMAR for control participants; p = 0.949). 

 

Table 7.1. Visual acuity and fundus appearance in the early AMD group. AMD status is 

given according to the Age-Related Eye Disease Study severity scale (Davis et al., 2005) 

where: normal retinal ageing = step 1, early AMD = steps 2– 6, intermediate AMD = steps 

7–9, and advanced AMD = steps 10 –11. 

 Test eye Fellow eye 

Participant Age Gender Eye logMAR 

VA 

AMD 

status 

Eye logMAR 

VA 

AMD 

status 

1 79 M R 0.12 Early L 0.1 Advanced 

2 66 F L -0.01 Intermed R 0.2 Advanced 

3 76 M R 0.12 Early L 0.5 Advanced 

4 58 M L -0.18 Early R -0.1 Early 

5 88 M L -0.1 Early R 0.1 Advanced 

6 76 F L 0.2 Intermed R 0.8 Advanced 

7 69 F L 0.0 Early R 0.06 Early 

8 65 M L 0.02 Early R 0.6 Advanced 

9 76 M R 0.06 Early L 0.1 Early 

10 68 F R -0.06 Intermed L 0.9 Advanced 

 

Table 7.2 shows the recovery data for the focal cone ERG PST (pre-bleach ERG amplitude 

and cone τ) and psychophysical recovery data (cone τ and time to RCB) for each 

participant. Figure 7.2a illustrates the time course of dark adaptation for a typical control 

participant, measured using the optimised psychophysical method. The psychophysical 

dark adaptation data for a typical participant with early AMD are shown in Figure 7.2b. 

Consistent with dark adaptation data collated in earlier chapters, this participant with early 

AMD had prolonged cone adaptation in comparison to the control participant, and failed to 

reach a RCB within the 30 minute recording period. Figures 7.2c & d show the cone dark 

adaptation data recorded from the same two participants using the focal cone ERG PST. 

Once again, cone adaptation proceeded more slowly in the participant with AMD. 
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Table 7.2. Dark adaptation data measured using the focal cone ERG PST and a 

psychophysical method, for all participants. . (* where there was no evidence of cone 

recovery using during the 5 minute recording period of the focal cone ERG PST, the cone τ 

was given as 15 minutes. + where there was no RCB within the recording time for an 

individual, 30 minutes was attributed as the time to RCB) 

Participant Focal cone ERG PST Psychophysics 

 Pre-bleach 

ERG 

amplitude (µV) 

Cone τ 

(minutes)* 

Cone τ 

(minutes) 

Time to RCB 

(minutes)+ 

AMD     

1 1.59 5.38 3.00 30.00 

2 0.64 2.02 3.35 14.03 

3 1.47 15.00 8.13 30.00 

4 3.95 1.08 0.78 8.62 

5 1.78 15.00 7.57 30.00 

6 2.12 15.00 2.62 30.00 

7 3.09 1.44 1.08 7.45 

8 1.17 15.00 7.37 16.76 

9 1.15 3.90 1.14 21.34 

10 1.98 9.55 6.47 30.00 

Control     

11 1.66 2.82 0.97 7.37 

12 1.31 2.28 2.97 8.94 

13 1.95 2.26 1.61 11.80 

14 3.09 3.78 1.84 10.90 

15 1.46 2.99 0.83 5.84 

16 3.35 1.75 2.17 13.07 

17 2.90 2.11 0.86 4.18 

18 3.58 1.99 1.06 7.96 

19 1.81 2.47 0.54 2.37 

20 1.83 2.30 1.29 9.41 

 

The mean dark adaptation parameters for early AMD and control groups are summarised 

in Table 7.3. Where there was no RCB within the 30 minute recording period, it was given 
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as 30 minutes. Consequently, a conservative estimate of the delay in rod adaptation was 

included in all statistics. Recordable pre-bleach focal cone ERGs were obtained from all 

participants and there were no significant differences in baseline ERG amplitude between 

early AMD and control groups. There were significant differences in cone τ between 

groups when dark adaptation was assessed psychophysically (p = 0.017) and using the 

focal cone ERG PST (p = 0.017). In addition there were significant differences in the time 

to RCB (p = 0.001) between groups. 
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Figure 7.2. Dark adaptation data for a typical control participant (left panel) and a 

participant with early AMD (right panel), recorded using the optimal psychophysical 

protocol (a & b) and the focal cone ERG PST (c & d). The broken line on the lower two 

plots shows the pre-bleach focal cone ERG amplitude. 
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Table 7.3. Comparison of mean (+/- standard deviation) dark adaptation parameters in 

control and early AMD groups assessed using the optimal psychophysical protocol and the 

focal cone ERG PST. (* where there was no RCB within the recording time for an 

individual, 30 minutes was attributed as the time to RCB). 

  Control Early AMD Univariate 

comparison 

Pre-bleach ERG amplitude (µV) 2.29 (0.84) 1.89 (0.98) p = 0.341 

Focal cone ERG PST: cone τ (mins) 2.78 (1.26) 8.68 (6.70) p = 0.017 

Psychophysics: cone τ (mins) 1.41 (0.74) 4.15 (2.93) p = 0.017 

Psychophysics: time to RCB (mins)* 8.18 (3.37) 21.82 (9.44) p = 0.001 
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Figure 7.3. ROC curves for: cone τ measured using the focal cone ERG photostress test 

(a), psychophysical cone τ (b) and psychophysical time to RCB (c) after an 84% cone 

photopigment bleach. Each plot shows the sensitivity of the parameter to early AMD 

against the false detection rate (1 – specificity) for all 10 control and 10 early AMD 

participants. 
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Receiver operating characteristic curves for cone τ obtained using the focal cone ERG 

photostress test, psychophysical cone τ and psychophysical time to RCB are shown in 

Figure 7.3. The diagnostic capacity of each parameter is described by the area under the 

curve (AUC). Cone τ was highly diagnostic for early AMD using both techniques, yielding 

an area under the curve (AUC) of 0.80 +/- 0.11 for the psychophysical method and 0.72 +/- 

0.14 for the focal cone ERG photostress test. The time to RCB, measured 

psychophysically, was also highly diagnostic for early AMD. There were no statistically 

significant differences in the AUC of the cone τ measured using the focal cone ERG PST 

and psychophysical cone τ and time to RCB (z < 1.96) (Hanley & McNeil, 1982; 1983). 

 

7.5. Discussion 

These results show that cone dark adaptation was significantly impaired in participants 

with early AMD. This is consistent with the results presented in the preceding chapters of 

this thesis (Chapters 4 and 5) and reports of delayed cone adaptation in early AMD in the 

literature (Phipps et al., 2003; Binns & Margrain, 2007; Dimitrov et al., 2008; 2011). Cone 

τ was highly diagnostic for early AMD when measured using the focal rod ERG 

photostress test and the psychophysical method, and both techniques yielded an AUC in 

excess of 0.72. In addition, the time to RCB, assessed psychophysically, was also highly 

diagnostic for early AMD (AUC = 0.89 +/- 0.08). There was no significant difference in 

the AUC for cone τ measured using the electrophysiological and psychophysical 

techniques. Consequently, although electrophysiological methods are more objective than 

psychophysical methods of dark adaptation measurement, both of the techniques can be 

used to identify patients with early AMD with similar sensitivity and specificity. 

 

There are very few studies in the literature that have used both psychophysical and 

electrophysiological techniques to assess visual function in AMD. Most notably, Sandberg 

et al. (1998) evaluated a range of clinical tests, including visual acuity, macular visual field 

testing, psychophysical photostress recovery and the foveal ERG, in terms of their ability 

to predict the development of CNVM in the fellow eye of patients with unilateral 

neovascular AMD. Psychophysical photostress recovery and ERG implicit time both 

emerged as significant independent predictors for the development of CNVM. More 

recently, the multifocal ERG was compared to visual acuity and contrast sensitivity 

measurements as predictors of the outcome of photodynamic therapy in patients with 
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neovascular AMD (Mackay et al., 2008). A strong association was demonstrated between 

PDT outcome, contrast sensitivity and both the amplitude and latency of the multifocal 

ERG. 

 

This is the first time that the focal cone ERG PST has been compared to a psychophysical 

method for the assessment of cone dark adaptation. Although the ERG technique was 

objective, its diagnostic ability was not superior to the psychophysical method. ERGs 

require specialist equipment and can be time consuming to set up and record, whereas 

computer controlled psychophysical methods require little input from the investigator. 

Consequently, psychophysical methods of cone dark adaptation measurement may be more 

clinically applicable for the assessment of cone dark adaptation in optometric practice. It is 

therefore reassuring that the diagnostic potential of that of the psychophysical technique is 

comparable to the focal cone ERG PST. 

 

The diagnostic potential of the focal cone ERG PST in early AMD reported in this study 

was similar to the AUC of 0.74 obtained in a previous report that assessed cone dark 

adaptation using the focal cone ERG PST in a cohort of 31 participants with early AMD 

and 27 age-matched control participants (Binns & Margrain, 2007). The visual evoked 

potential (VEP) has also been used as an objective measure of photostress recovery, by 

monitoring the recovery of the amplitude of the PI component of the pattern VEP response 

after photopigment bleaching (Lovasik, 1983; Parisi & Bucci, 1992; Parisi et al., 1994; 

1998; 2002). In the protocols described, full recovery of the VEP was shown to occur 

within one minute in healthy individuals (Lovasik, 1983; Parisi & Bucci, 1992). However, 

although recovery of the VEP has been shown to be prolonged in outer retinal disease 

(Paris et al., 2002), a similar effect has been documented in diseases of the retinal nerve 

fibres, such as multiple sclerosis (Parisi et al., 1998) and glaucoma (Parisi & Bucci, 1992). 

Consequently, the use of VEP recovery may be less specific for the detection of diseases 

like early AMD, which affect outer retinal function. 

 

An additional advantage of using a psychophysical technique such as the one used in this 

study is that the RCB may also be used in the diagnosis of early AMD. This parameter was 

shown to be highly diagnostic for early AMD, yielding an AUC of 0.89 +/- 0.08. This is 

consistent with previous literature that reported delayed RCB in participants with early 
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AMD compared to control participants (Owsley et al., 2001; 2007; Dimitrov et al., 2008; 

2011). 

 

In conclusion, this study has emphasised the potential value of cone dark adaptation as a 

biomarker for early AMD. Although electrophysiological methods are more objective than 

psychophysical methods of dark adaptation measurement, the diagnostic potential of cone 

dark adaptation in early AMD was similar for both methods. Therefore we recommend the 

use of psychophysical methods for the assessment of dark adaptation in the clinic as they 

may be implemented with relative ease. This chapter has reinforced evidence from earlier 

chapters showing that cone dark adaptation is abnormal in early AMD. There is now an 

urgent need for longitudinal studies to clarify the value of dark adaptation as a biomarker 

for early AMD. 
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8. General discussion, conclusions and future 

directions 

 

 

This thesis has demonstrated that delayed dark adaptation is highly diagnostic for early 

AMD. Assessment of parafoveal cone adaptation, using either electrophysiological or 

psychophysical techniques, allows rapid identification of those individuals at the earliest 

stages of disease presentation, with high sensitivity (70-100%) and specificity (90-100%). 

 

 

8.1. Discussion 

Age-related macular degeneration is the leading cause of visual impairment in the UK 

(Bunce and Wormald, 2008) and the developed world (Resnikoff et al., 2004). Until 

recently, treatment options for AMD were extremely limited, however, in the last two 

decades therapies have advanced extremely rapidly. The licensing of Ranibizumab for the 

treatment of wet AMD in the UK in 2008 (National Institute for Health and Clinical 

Excellence, 2008) was ground breaking as this antiVEGF agent was the first treatment to 

generate a clinically significant improvement in VA in patients with wet AMD (Brown et 

al., 2006; Rosenfeld et al., 2006; Brown et al., 2009). However, the average age of the 

population is forecast to increase in the UK and globally during the coming decades 

(Office for National Statistics, 2009; United Nations, 2009). Consequently, there is an 

urgent need for new treatments suitable for those with dry AMD, as well as wet, and for 

interventions that target the early stage of the disease, before sight loss has occurred. This 

necessitates the parallel development of tests that are sensitive to early visual dysfunction, 

in order to identify patients that are at an increased risk of developing AMD, to identify 

patients that are suitable for treatment, to assess the outcomes of that treatment and to 

evaluate emerging treatment strategies. 

 

Dark adaptation is the gradual increase in visual sensitivity that occurs over time in the 

dark, following exposure to a bright adapting light source (Lamb & Pugh, 2004). As 

discussed in chapter 1, there is a body of evidence to suggest that dark adaptation is a 

sensitive functional biomarker for early AMD (Brown et al., 1983; Eisner et al., 1987a, 
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Eisner et al., 1991; Owsley et al., 2001; Phipps et al., 2003; Binns & Margrain, 2007; 

Owsley et al., 2007; Dimitrov et al., 2008; 2011). When measured alongside other visual 

functions, such as colour vision (Eisner et al., 1991) and flicker sensitivity (Phipps et al., 

2003), dark adaptation abnormalities have emerged as the most sensitive marker for early 

AMD. Cone dark adaptation is particularly attractive to clinicians because of its ability to 

identify patients with early AMD in a relatively short recording period (Phipps et al., 2003, 

Dimitrov et al., 2008; 2011). 

 

The primary aim of this thesis was to develop psychophysical and electrophysiological 

techniques for the assessment of dark adaptation in early AMD, with a particular emphasis 

on cone dark adaptation, in order to optimise their diagnostic potential. 

 

Although psychophysical techniques have been used to quantify dark adaptation for many 

decades, there is little published literature regarding the most robust psychophysical 

procedure for monitoring the change in visual threshold over time in the dark. 

Consequently, the repeatability of a range of psychophysical methods of monitoring cone 

dark adaptation, including the Goldmann-Weekers adaptometer, was explored in Chapter 

2. The Goldmann-Weekers adaptometer was once a commercially available instrument that 

was considered to be the ‘gold standard’ method for the measurement of dark adaptation. 

As new adaptometers are developed, it is useful to be able to compare their reliability to 

that of the current standard; therefore we assessed the Goldmann-Weekers to provide a 

benchmark for future technology. When the repeatability of the device was assessed in 31 

healthy adults, it was capable of monitoring the rapid changes in visual threshold that 

occur during cone dark adaptation. A CoR of 1.32 +/- 0.25 minutes was obtained, which 

indicated that the adaptometer was insensitive to small changes in cone dark adaptation 

dynamics. 

 

As discussed (Section 2.2.1, Page 76), adaptive psychophysical procedures may have 

advantages over the classical method of limits employed by the Goldmann-Weekers 

adaptometer. Consequently, in the second part of Chapter 2, the repeatability of the 

Goldmann-Weekers adaptometer was compared to three computer based methods of 

monitoring cone dark adaptation in a new cohort of 31 healthy adults. The computer based 

methods were, a hybrid adaptive stimulus presentation combined with a maximum 

likelihood calculation (Friedburg et al., 1998), a modified staircase procedure based on a 
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method previously used with the Humphrey Visual Field Analyser (Jackson et al., 1999) 

and a novel 10-alternative forced choice procedure. Contrary to expectations, the 

repeatability of the four methods was similar, with CoRs ranging between 1.18 +/- 0.22 

minutes and 1.56 +/- 0.30 minutes, and therefore any of these techniques may be used to 

monitor cone dark adaptation in clinical practice. The modified staircase procedure was 

selected for use in the remaining investigations, as its simple algorithm facilitates rapid 

threshold measurement: a necessity for the assessment of cone dark adaptation. 

 

Age-related macular degeneration is a disease of the ageing retina (Zarbin, 2004). 

Consequently, prior to examining the changes to dark adaptation that occur in AMD, it is 

important to consider the relationship between dark adaptation and age in the healthy eye. 

In Chapter 3, cone dark adaptation was assessed using a 4º diameter stimulus, centred on 

the fovea, in 41 healthy adults aged between 20 and 83 years. An increase in cone τ of 

16.35 seconds/decade of life was recorded, which indicated a progressive slowing of cone 

dark adaptation kinetics throughout adulthood. Clearly, the sensitivity and specificity of 

cone dark adaptation as a biomarker for AMD may be improved by taking into account this 

significant age-related decline. 

 

Chapter 4 began by comparing exponential and linear models as descriptions of cone and 

rod dark adaptation data. Traditionally, photopigment regeneration has been considered a 

‘first-order’ process and threshold recovery data have therefore been summarised using an 

exponential function (Dowling, 1960; Rushton, 1961; Hollins & Alpern; 1973). More 

recently it has been proposed that threshold recovery during dark adaptation is ‘rate-

limited’ and that a linear model would provide a more appropriate description of the data 

(Lamb, 1981; McGwin et al., 1999; Paupoo et al., 2000; Mahroo & Lamb, 2004). When 

exponential and linear models were applied to cone and rod threshold recovery data 

obtained from three highly experienced observers, at 5 retinal locations, the fit of the two 

models to the cone data was remarkably similar. There were no conclusive differences in 

RMS error or AIC values between the two models of cone recovery and therefore the 

exponential model, which contained fewer free parameters, was considered sufficient to 

describe the cone recovery data. In contrast, the linear model was shown to provide a 

marginally superior description of the rod recovery data. Consequently, an ‘exponential-

linear’ model was applied to all psychophysical threshold recovery data in the 

investigations that followed. 
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As very few investigations have documented the effect of retinal location on the kinetics of 

dark adaptation in the healthy retina (Hecht et al., 1935; Wolf & Zigler, 1950; Dimitrov et 

al., 2008), the second aim of Chapter 4 was to quantify the dynamics of dark adaptation as 

a function of retinal location in three highly experienced observers. As the retinal 

eccentricity of the stimulus increased, a progressive acceleration of threshold recovery 

occurred, most markedly for rod-mediated dark adaptation. However, with respect to the 

rods, this was shown to be a function of the relationship between the rate of a linear model 

and reducing absolute threshold; rather than reflecting an actual increase in the rate of rod 

photopigment regeneration. Knowledge of this normal variation in dark adaptation 

parameters across the healthy retina is important when considering the changes to dark 

adaptation that occur in a disease such as AMD. 

 

Although rod-mediated dark adaptation is widely agreed to be abnormal in early AMD 

(Brown & Lovie-Kitchin, 1983; Brown et al., 1986a, Steinmetz et al., 1993; Owsley et al., 

2001; Owsley et al., 2007; Dimitrov et al., 2008; 2011), the evidence regarding changes to 

cone-mediated dark adaptation is equivocal (Brown et al., 1986b; Phipps et al., 2003; 

Binns & Margrain, 2007; Owsley et al., 2007; Dimitrov et al., 2008; 2011). One 

explanation for this conflicting evidence is that the cone dark adaptation deficit in early 

AMD is dependent on retinal location. Therefore, in the final part of Chapter 4 the 

diagnostic potential of cone dark adaptation and the time to RCB were assessed at four 

retinal locations: 0.5, 2, 7 and 12º from fixation in 10 participants with early AMD and 10 

age-matched control participants. Cone τ and time to RCB were most diagnostic for early 

AMD at 12º from the fovea (the AUC was 0.99 +/- 0.02 for cone τ and 0.96 +/- 0.04 for 

time to RCB). This contradicted previous evidence to suggest that the dark adaptation 

deficit at this retinal location affected rods only (Owsley et al., 2007). Three related 

explanations, based on the well established rate-limiting step in dark adaptation: the local 

availability of 11-cis retinal (Lamb & Pugh, 2004), were proposed to explain the 

discrepancy between these results and those of previous studies. 

 

Following the identification of the optimal retinal location for the detection of adaptational 

anomalies in early AMD, Chapter 5 assessed the diagnostic ability of cone dark adaptation 

and the time to RCB in early AMD as a function of the pre-adapting light intensity. Dark 

adaptation was measured in 10 participants with early AMD and 10 age-matched control 
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participants following exposure to three pre-adapting light intensities: 71%, 84% and 91% 

cone photopigment bleach. Cone τ and time to RCB emerged as highly diagnostic for early 

AMD at all of these pre-adapting intensities. Implementation of a low pre-adapting 

intensity for measurement of dark adaptation is attractive clinically as it expedites data 

collection. However, it is important that sufficient threshold recovery data are obtained to 

facilitate an accurate model fit, especially during the early stages of cone dark adaptation 

when threshold is changing most rapidly. Therefore, a pre-adapting intensity of 84% was 

considered optimal for the assessment of dark adaptation. 

 

Although psychophysical methods have been widely used to assess dark adaptation, the 

data are highly subjective and may be considered unreliable in some participants. 

Consequently, objective methods for the assessment of retinal function, such as 

electroretinography, may be preferable. However, there are very few standardised 

protocols for the assessment of dark adaptation at the macula using the ERG. The focal 

cone ERG PST was developed previously to assess cone dark adaptation at the macula and 

has been shown to distinguish between patients with early AMD and healthy controls 

(Binns & Margrain, 2005; 2007; Wood et al., 2011a). The primary aim of Chapter 6 was to 

develop an equivalent technique for the assessment of rod dark adaptation, i.e. a focal rod 

ERG photostress test. The protocol was initially developed using a full field stimulus and 

was used to monitor dark adaptation in two highly experienced observers. After further 

optimisation of the stimulus parameters, a protocol using a focal stimulus was tested in two 

young experienced observers, followed by six older ‘ERG naïve’ participants: three 

participants with early AMD and three age-matched controls. Although the data obtained 

from the young experienced observers were reasonable, when the protocol was 

implemented in the older ‘ERG naïve’ participants, there was no meaningful recovery of 

ERG amplitude during the time in the dark, most likely due to intraocular light scatter 

leading to unfavourable SNR and high level of rejection of traces. Therefore, 

psychophysical methods appear to be a more reliable option for monitoring the changes in 

rod dark adaptation that occur at the macula in patients with early AMD. 

 

Given the respective advantages and disadvantages of psychophysical and 

electrophysiological methods of cone dark adaptation assessment, Chapter 7 compared the 

diagnostic potential of the optimal computer based psychophysical procedure, developed in 

the preceding chapters, to the focal cone ERG PST in 10 participants with early AMD and 
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10 age-matched control participants. As expected, mean cone τ was significantly longer in 

the early AMD group when measured psychophysically and using the focal cone ERG 

PST. Both techniques were highly diagnostic for early AMD (the AUC was 0.80 +/- 0.11 

for the psychophysical test and 0.72 +/- 0.14 for the focal cone ERG PST) and, with this 

sample size at least, no significant differences in the diagnostic potential of the two 

methods were observed. Therefore, despite the theoretical advantages of using an objective 

technique such as the focal cone ERG PST to assess cone dark adaptation in early AMD, 

the psychophysical method produced comparable results. 

 

In summary, the main conclusions of this thesis are: 

- A range of psychophysical methods may be used to monitor the rapid changes in 

threshold that occur during cone dark adaptation. 

- Cone dark adaptation is a sensitive functional biomarker for early AMD. 

- Consideration of the age-related changes in the dynamics of cone dark adaptation 

will improve the sensitivity and specificity of this parameter in early AMD. 

- An annulus at 12º from fixation is the optimal psychophysical stimulus for the 

assessment cone dark adaptation in early AMD. 

- A pre-adapting intensity of 84% cone photopigment allows cone dark adaptation 

data to be obtained in the shortest timeframe, without compromising the integrity of 

the data obtained. 

- The time limitations imposed by the rapid rate at which threshold changes during 

dark adaptation rendered the protocol for recording the ‘focal rod ERG photostress’ 

test unsuitable for use in ‘ERG naïve’ participants. 

- The optimal psychophysical method and the focal cone ERG PST are similarly 

diagnostic for early AMD despite the theoretical advantages of the objective ERG 

technique. 

 

 

8.2. Future directions 

The primary outcome of this thesis was the optimisation of cone dark adaptation protocols 

for the diagnosis of early AMD. However, cross-sectional studies are unable to determine 

the true diagnostic potential of a biomarker. In this study, individuals were classified as 

‘early AMD’ or ‘control’ based on fundus appearance alone. Histological studies suggest 
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that changes to Bruch’s membrane, such as basal laminar and linear deposition, occur 

before clinically visible signs present (Sarks, 1976, Sarks et al., 1999). On this basis, it is 

highly possible that some of the ‘controls’ were actually at a pre-clinical stage of early 

AMD. A longitudinal study, following up participants for months/years after baseline data 

collection, would allow a more comprehensive assessment of:  

i) the diagnostic potential of cone dark adaptation for early AMD and 

ii) the predictive value of the test in identifying those whose disease status is likely to 

progress. 

 

There is currently a lack of comprehensive longitudinal data in the literature regarding the 

diagnostic and predictive power of cone dark adaptation and other functional biomarkers 

for the progression to late AMD (Hogg & Chakravarthy, 2006). Consequently there is an 

urgent need for follow up investigations to explore the long term potential of cone dark 

adaptation and other visual functions as biomarkers for the progression of AMD. The 

following sections describe several potential investigations. 

 

8.2.1. Risk profiling for the development of wet AMD 

As discussed, the average age of the UK population is forecast to increase during the next 

two decades (Office for National Statistics, 2009) and therefore the incidence of AMD will 

also increase. Although Ranibizumab injections can improve VA in patients with wet 

AMD (Brown et al., 2006; Rosenfeld et al., 2006; Brown et al., 2009), monthly follow up 

appointments are required to assess the need for retreatment. This places a huge pressure 

on limited healthcare resources, for example the estimated cost of Lucentis injections for a 

single patient is between £5,350 and £9,150 per year (National Institute for Health and 

Clinical Excellence, 2008). In addition, a recent meta-analysis of 4263 eyes with unilateral 

wet AMD showed that 26.8% of fellow eyes developed wet AMD within four years (Wong 

et al., 2008). The identification of biomarkers which are predictive of the occurrence and 

recurrence of neovascular events in patients with AMD would help to streamline the 

provision of these services in order to relieve the practical and economic burdens on the 

NHS, for example by structuring follow up intervals on the basis of the risk profile of the 

patient. 
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Aims: To identify biomarkers which are predictive of onset and recurrence of wet AMD by 

assessing the fellow eye of patients with unilateral wet AMD, in order to develop a ‘risk 

profile’ for: 

1) the recurrence of wet AMD in an eye treated with Lucentis 

2) the development of wet AMD in the fellow eye of an eye treated with Lucentis. 

 

Preliminary design: The recruitment for this study would take place within hospital 

ophthalmology clinics, for example participants with unilateral wet AMD would be invited 

to take part in the study after receiving the third Ranibizumab injection, i.e. at the end of 

the loading phase. On enrolment into this study, each participant would undergo a 

‘biomarker assessment’, including assessment of lifestyle factors (e.g. smoking, diet and 

body mass index (BMI), genetic and inflammatory markers, fundus appearance and visual 

functions (including VA, contrast sensitivity, dark adaptation, colour vision and visual 

field defects). Disease outcomes may be documented by consulting the medical records of 

the participants at the end of the study. 

 

8.2.2. Investigation of risk factors for the development of early AMD 

Treatment options for wet AMD have advanced rapidly during the last two decades and are 

constantly improving. However, the incidence of the development of early AMD in the 

general population has been estimated at 5.7-8.2% over 5 years (Klein et al., 1995) and the 

conversion from dry AMD to wet AMD between 7.1% and 14.5% over the same period 

(Klein et al., 1995; Smiddy & Fine, 1984). This means that substantial resources are 

currently being invested in the development of treatments for earlier stages of the disease 

(Pinilla et al., 2006; Lu et al., 2009; Miller 2010; Bull & Martin, 2011; Couch et al., 2011; 

Wang et al., 2011). As new therapies are developed for earlier stages of the disease, it 

becomes increasingly important to be able to identify those individuals that have a high 

risk of disease progression, to identify those individuals that may be suitable for treatment 

and to monitor the outcomes of that treatment. The identification of predictive biomarkers 

would be extremely valuable in these situations, to assess progression from ‘normal’ to 

early AMD, and early AMD to late AMD. Consequently, a longitudinal study of risk 

factors for the development and progression of AMD is required. This study would be 

based in optometric practices over approximately 5 years, examining similar biomarkers to 

the risk profiling study for wet AMD described above (Section 8.2.1). The cohort would 
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comprise two groups of participants: a group of participants with early AMD (unilateral or 

bilateral) and a group of age-matched control participants. 

 

8.2.3. Development of a portable dark adaptometer 

With the exception of the Goldmann-Weekers adaptometer, all of the psychophysical 

methods used to monitor dark adaptation during this thesis were implemented using a 

computer system. The pre-adapting ‘bleaching’ light was administered using a Maxwellian 

view optical system. Although these techniques demonstrated that psychophysical methods 

can be used to assess cone dark adaptation in AMD, they are not overly ‘user-friendly’. It 

has been suggested that one of the main barriers to the use of dark adaptation or 

photostress recovery by clinicians is the absence of a standardized recording protocol and 

the lack of normative data (Margrain & Thomson, 2002). The development of a portable 

dark adaptometer that is suitable for use in optometric practice is therefore fundamental to 

promoting the use of dark adaptation as a diagnostic tool in early AMD. During the first 

part of this study, a single unit comprising an integrated pre-adapting light and test 

stimulus would be developed, based on the findings of this thesis regarding the optimal 

parameters for assessment of early AMD. The second stage of the study would involve 

collection of data from an extensive cohort of healthy control participants using the device, 

in order to establish a normative database. Finally, the diagnostic ability of cone dark 

adaptation in early AMD measured using the device would be established in a cohort of 

participants with early AMD and a group of age-matched control participants. 
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Appendix I. Calibration of the Goldmann-Weekers 

adaptometer 

 

 

Luminance of the stimulus presented by the Goldmann-Weekers adaptometer calibrated 

using a photometer (LS-110; Konica Minolta, Osaka, Japan) 

Luminance Measured luminance (average of 3) 

(log microapostilbs) (cd/m²) (log cd/m²) 

6.80 1.762 0.24 

6.62 1.202 0.08 

6.47 0.893 -0.05 

6.34 0.682 -0.17 

6.19 0.494 -0.31 

6.00 0.327 -0.48 

5.81 0.211 -0.68 

5.57 0.128 -0.89 

5.40 0.091 -1.04 

5.19 0.059 -1.22 

5.02 0.040 -1.40 

4.86 0.029 -1.54 

4.71 0.021 -1.68 

4.51 0.014 -1.85 

4.36 0.010 -2.00 

4.14 0.006 -1.19 

4.00 0.005 -2.33 
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Measured luminance of the stimulus presented by the Goldmann-Weekers adaptometer 

(log cd/m²) plotted as a function of presented luminance (log microapostilbs). 
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Appendix II. Matlab code for psychophysical dark 

adaptation programs 

 

 

Hybrid adaptive procedure 

 

clearall 

KbName('UnifyKeyNames'); 

%The Try, Catch, End commands will respond to bugs / problems 

try 

%First set up all the parameters 

whichScreen = 0; 

window = Screen(whichScreen, 'OpenWindow'); 

white = WhiteIndex(window); % pixel value for white 

black = BlackIndex(window); % pixel value for black 

gray = (white+black)/2; 

inc = white-gray; 

 

% And, set the parameters of the spot 

offsetCenteredspotRect = [569  441  711  583]; %size and position of spot 

SurroundRectInner = [498 370 782 654]; % size and position of annulus 

SurroundRectOuter = [496 368 784 656]; 

 

% Set up the sounds for correct and incorrect responses 

correctSound = sin(2*pi*100*[0:0.00125:2.0]); 

incorrectSound = sin(2*pi*40*[0:0.00125:2.0]); 

NewFilterSound = sin (2*pi*200*[0:0.00125:10.0]); 

 

% Set up various flags  

response = 0; 

responseCounter = 0; 

reversalCounter = 1;% counts reversals (reset after each threshold) 

DarkAdptCounter = 0; % counts number of thresholds recorded 

presentationCounter = 0; 

dataCounter=1;% counts ALL reversals 

AdjustmentFilter1 = 1.2;% optical density of first ND filter 

AdjustmentFilter2 = 0;% optical density of second ND filter 

 

% Clear arrays that contain data 

SecondNDFIlterFlag = 0; % flag to stop luminance being raised if the spot 

luminance hits it's lowest level a second time after 2nd filter added) 

BreakFlag = 0; 

resultTime = 1; 

resultThreshold = 1; 

resultSeenOrNot = 1; 

resultsDetails = [0 00]; 

 

% Set keys up. 

rightKey = KbName('RightArrow'); 

leftKey = KbName('LeftArrow'); 

escapeKey = KbName('ESCAPE'); 

 

% This screen can be used to write instructions 

Screen(window, 'FillRect', 0); 

Screen('DrawText', window, 'DARK ADAPTATION VERSION 30/09/10', 300, 200, white); 

Screen('DrawText', window, 'Hit any key to start experiment', 300, 400, white); 

Screen(window, 'Flip'); 

Kbwait;% duration of instruction presentation 

 

% Set up the timer. 
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startTime = now; 

durationInSeconds = 300; 

durationEachThreshold = 1; 

numberOfSecondsRemaining = durationInSeconds;  

SecondsRemaining = durationEachThreshold; 

 

%Calibration variables 

MinScreenLum = 0.12; % Kept contrast = 100 & brightness = 63 

GammaFunc = 2.15; 

MaxScreenLum = 122.5; 

 

% Now start the experiment loop. 

fprintf('Experiment started'), 

StartExptSecs = GetSecs; % this times the whole experiment 

 

whileGetSecs - StartExptSecs<durationInSeconds% Keep experiment running  

 

% Set up flags etc to re enter the threshold loop 

stopRule = 1;%keeps loop running till stop rules met, then =0 

stopRuleCounter1 = 0;% reset threshold loop depending on presentations  

stopRuleCounter2 = 0;% reset threshold loop depending on reversals 

lastFlag = 0; %used to determine if a reversal was present 

thisFlag = 0; 

 

whilestopRule> 0 % Keep experiment running 

stopRuleCounter1 = stopRuleCounter1 + 1;%for stopRule 1   

 

GammaCorrectSpotLum = 255*(((10^SpotLuminance)-

MinScreenLum)/MaxScreenLum)^(1/GammaFunc) 

 

Screen('DrawText', window, ['GammaCorr: ' num2str(GammaCorrectSpotLum,4)], 1020, 

1000, [0,0,40]); 

 

% Present stimulus 

Screen('DrawLine', window, [white], 640, 335, 640, 689,18); 

Screen('DrawLine', window, [white], 463, 512, 817, 512,18); 

Screen('FillOval', window, [0 00], SurroundRectInner);   

Screen('FillOval', window, 

[GammaCorrectSpotLumGammaCorrectSpotLumGammaCorrectSpotLum], 

offsetCenteredspotRect); 

Screen(window, 'Flip'); 

WaitSecs (0.2); % presentation time 

 

%Remove stimulus 

Screen('DrawLine', window, [white], 640, 335, 640, 689,18); 

Screen('DrawLine', window, [white], 463, 512, 817, 512,18); 

Screen('FillOval', window, [0 00], SurroundRectInner); 

Screen('DrawText', window, ['GammaCorr: ' num2str(GammaCorrectSpotLum,4)], 1020, 

1000, [0,0,40]); 

Screen(window, 'Flip'); 

ResponseSecs = GetSecs; 

 

% Wait for a response 

while 1 

[ keyIsDown, timeSecs, keyCode ] = KbCheck; 

ifkeyIsDown 

 

ifkeyCode(escapeKey)% exit loop 

BreakFlag=1; 

break 

end 

if (timeSecs - ResponseSecs)<0.6; 

response = 1; % correct response 

responseCounter = responseCounter + 1; 

else 

response = -1; % incorrect response(too slow) 

responseCounter = responseCounter - 1; 



Appendix II 

 

247 

 

sound (incorrectSound) 

break 

end 

 

whileKbCheck; end% this avoids KbCheck reporting multiple events 

break 

end 

 

% Now, if no button push + long wait, time is up! 

SecsNow = GetSecs; 

timeSincePresentation = (SecsNow - ResponseSecs); 

iftimeSincePresentation > 1+rand(1); 

response = -1; % incorrect response (missed) 

responseCounter = responseCounter - 1; 

break 

end 

end 

 

ifBreakFlag==1 % exit loop 

break 

end 

 

%Now adjust next stimulus increment on the basis of the response 

if response > 0;% correct 

sound(correctSound) 

thisFlag = 1;% flag for reversal checking 

ifresponseCounter> 1; % correct twice 

incrementStep = incrementStep*2; 

end 

WaitSecs (0.5 + rand(1)) 

end 

 

if response < 0;% incorrect 

thisFlag = 0;% flag for reversal checking 

ifresponseCounter< -1; % incorrect twice 

incrementStep = incrementStep*2; 

 

%Now limit max step size 

ifincrementStep>0.5 

incrementStep =0.5; 

end 

end 

end 

 

%Now record each presentation. 

presentationCounter = presentationCounter + 1; 

presentationTime(presentationCounter)= (GetSecs - StartExptSecs); 

presentationThreshold(presentationCounter)=SpotLuminance-AdjustmentFilter1-

AdjustmentFilter2; 

 

%Now check if the last response was a reversal 

iflastFlag == thisFlag; %this was not a reversal 

 

else % this must have been a reversal 

resultTime (reversalCounter) = (GetSecs - StartExptSecs); 

resultThreshold (reversalCounter) = SpotLuminance-AdjustmentFilter1-

AdjustmentFilter2; 

resultSeenOrNot (reversalCounter) = thisFlag; 

reversalCounter = reversalCounter + 1; 

 

%Now log all the reversals 

reversalThreshold(dataCounter) = SpotLuminance-AdjustmentFilter1-

AdjustmentFilter2; 

reversalTime(dataCounter)=(GetSecs - StartExptSecs); 

dataCounter = dataCounter+1; 

incrementStep = incrementStep * 0.6; 

ifincrementStep<0.07 
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incrementStep=0.07; 

end 

 

response = 0; % reset response flag 

responseCounter = 0; %reset response counter 

stopRuleCounter2 = stopRuleCounter2 +1; 

 

end 

 

% Now alter stimulus for next presentation 

ifthisFlag == 1; 

SpotLuminance =SpotLuminance - incrementStep; 

End 

 

ifthisFlag == 0; 

SpotLuminance = SpotLuminance + incrementStep;  

%Now limit max spot luminance 

ifSpotLuminance > 2.0 

SpotLuminance = 2.0; %limits maximum spot luminance 

end 

end 

 

% Now reset the stimulus intensity when the minimum luminance is reached 

ifSpotLuminance < -0.9;  

sound (NewFilterSound) % insert new filter 

                   AdjustmentFilter2 = 2.1; 

LineThickness = 10; 

ifSecondNDFIlterFlag < 1 

WaitSecs (5.0) 

SpotLuminance = 1.1; % resets stimulus intensity to the maximum brightness 

SecondNDFIlterFlag = 2; 

end 

end 

 

lastFlag = thisFlag; 

 

% Now see if stopRule needs to be envoked 

if stopRuleCounter1 >12 

stopRule = 0;%this will stop the threshold loop 

end 

if stopRuleCounter2 >5 

stopRule = 0; 

end 

 

end% this ends the search for a threshold 

beep 

 

ifBreakFlag==1 % exit loop 

break 

end 

 

% Now display the results 

resultTime = resultTime(:);% changes format to column vectors 

resultThreshold = resultThreshold(:); 

resultSeenOrNot = resultSeenOrNot(:); 

plot(resultTime, resultThreshold,':ko') 

hold on 

plot(presentationTime, presentationThreshold,'b*') 

xlabel('Time(s)') 

ylabel('Log Threshold') 

AXIS ([0 300 -1.5 2.5])    

 

% Now, together with the function 'myfit' fits a FOC curve. 

DarkAdptCounter = DarkAdptCounter + 1; 

thresholdEstimate = 10.^(mean (resultThreshold));% this estimates threshold 

Starting = [thresholdEstimate,27];  

options=optimset('Display','off');% if set 'off' to 'iter' will see iterations 



Appendix II 

 

249 

 

resultThresholdNotLog = 10.^(resultThreshold); 

        

Estimates=fminsearch(@myfitWeibull,Starting,options,resultThresholdNotLog,resultS

eenOrNot); 

alpha(DarkAdptCounter) = Estimates(1); 

beta(DarkAdptCounter) = Estimates(2); 

% Now determine threshold at 50% probability 

FOCThresholdNotLog(DarkAdptCounter) = 

log(2).^(1./beta(DarkAdptCounter))*alpha(DarkAdptCounter); 

DarkAdptTime(DarkAdptCounter) = (GetSecs - StartExptSecs); 

plot(DarkAdptTime, log10(FOCThresholdNotLog),'ro','MarkerFaceColor','r') 

 

% Clear resultThreshold,resultSeenOrNot arrays in preparation for next loop 

resultTime = 1; 

resultThreshold = 1; 

resultSeenOrNot = 1; 

resultsDetails = [0 00]; 

reversalCounter = 1; 

 

% Now adjust spot parameters for next threshold measurement 

incrementStep = incrementStep * 2.5; 

SpotLuminance = SpotLuminance * 0.8; 

end% Now go back and collect data for the next threshold point 

 

%Now fit the final exponential curve 

 Starting = [1.2,5,40];  

options=optimset('Display','off');% if set 'off' to 'iter' will see iterations 

logFOCThreshold=log10(FOCThresholdNotLog); 

Estimates=fminsearch(@myfitExp,Starting,options,DarkAdptTime,logFOCThreshold); 

fT = Estimates(1) 

iT = Estimates(2) 

Tau = Estimates(3) 

% Now plot this curve 

ExpFitTime = 0:2.0:300;% now create some x-axis data at 1.0 steps 

ExpFitThreshold = Estimates(1)+((Estimates(2)-Estimates(1))*exp(-

ExpFitTime./Estimates(3))); 

plot(ExpFitTime, ExpFitThreshold,'r-','LineWidth',2) 

 

Screen('CloseAll'); 

 

%Now output all the data to Excel spreadsheet 

presentationTime = presentationTime(:); 

presentationThreshold = presentationThreshold(:); 

presentationData = [presentationTime, presentationThreshold] 

reversalTime = reversalTime(:); 

reversalThreshold = reversalThreshold(:); 

reversalData = [reversalTime, reversalThreshold] 

logFOCThreshold = log10(FOCThresholdNotLog); 

logFOCThreshold = logFOCThreshold(:); 

DarkAdptTime = DarkAdptTime(:); 

FOCData = [DarkAdptTime, logFOCThreshold] 

ExpFitTime = ExpFitTime(:); 

ExpFitThreshold = ExpFitThreshold(:); 

curveFit = [ExpFitTime, ExpFitThreshold] 

xlswrite('d:\Repeatability\Data\Results\TopographyDAresults.xls', 

presentationData,'Model','A14'); 

xlswrite('d:\Repeatability\Data\Results\TopographyDAresults.xls', 

reversalData,'Model','D14'); 

xlswrite('d:\Repeatability\Data\Results\TopographyDAresults.xls', 

FOCData,'Model','K14'); 

catch 

Screen('CloseAll'); 

rethrow(lasterror); 

psychrethrow(psychlasterror); 

end 
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Modified staircase procedure 

 

clearall 

KbName('UnifyKeyNames'); 

%The Try, Catch, End commands will respond to bugs / problems 

try 

%First set up all the parameters 

whichScreen = 0; 

window = Screen(whichScreen, 'OpenWindow'); 

white = WhiteIndex(window); % pixel value for white 

black = BlackIndex(window); % pixel value for black 

gray = (white+black)/2; 

inc = white-gray; 

 

% And, set the parameters of the spot 

offsetCenteredspotRect = [569  441  711  583]; %size and position of spot 

SurroundRectInner = [498 370 782 654]; % size and position of annulus 

SurroundRectOuter = [496 368 784 656]; 

 

% Set up the sounds for correct and incorrect responses 

correctSound = sin(2*pi*100*[0:0.00125:2.0]); 

incorrectSound = sin(2*pi*40*[0:0.00125:2.0]); 

NewFilterSound = sin (2*pi*200*[0:0.00125:10.0]); 

 

% Set up various flags  

response = 0; 

responseCounter = 0; 

reversalCounter = 1;% counts reversals (reset after each threshold) 

DarkAdptCounter = 0; % counts the number thresholds recorded 

presentationCounter = 1; % counts all presentations 

dataCounter=1;% counts ALL reversals 

thresholdCounter = 1;% counts the no. of threshold points 

AdjustmentFilter1 = 1.2;% optical density of first ND filter 

AdjustmentFilter2 = 0;% optical density of second ND filter 

 

% Clear arrays that contain data 

SecondNDFIlterFlag = 0; % flag to stop luminance being raised if the spot 

luminance hits it's  

lowest level a second time (after the 2nd filter added) 

resultTime = 1; 

resultThreshold = 1; 

BreakFlag = 0; 

 

% Set keys up. 

rightKey = KbName('RightArrow'); 

leftKey = KbName('LeftArrow'); 

escapeKey = KbName('ESCAPE'); 

 

% This screen can be used to write instructions 

Screen(window, 'FillRect', 0); 

Screen('DrawText', window, 'DARK ADAPTATION VERSION 30/09/10', 300, 200, white); 

Screen('DrawText', window, 'Hit any key to start experiment', 300, 400, white); 

Screen(window, 'Flip'); 

Kbwait;% duration of instruction presentation 

 

% Set up the timer. 

startTime = now; 

durationInSeconds = 300; 

durationEachThreshold = 1; 

numberOfSecondsRemaining = durationInSeconds;  

SecondsRemaining = durationEachThreshold; 

 

%Calibration variables 

MinScreenLum = 0.12; % Kept contrast = 100 & brightness = 63 

GammaFunc = 2.15; 

MaxScreenLum = 122.5; 
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% Now start the experiment loop. 

fprintf('Experiment started'), 

StartExptSecs = GetSecs; % this times the whole experiment 

 

whileGetSecs - StartExptSecs<durationInSeconds% Keep experiment running  

 

% Set up flags etc to re enter the threshold loop 

stopRule = 1;%keeps loop running till stop rules met, then = 0 

 

whilestopRule > 0 % Keep looking for threshold 

 

GammaCorrectSpotLum = 255*(((10^SpotLuminance)-

MinScreenLum)/MaxScreenLum)^(1/GammaFunc) 

%This calculates the grey scale required for desired luminance 

 

Screen('DrawText', window, ['GammaCorr: ' num2str(GammaCorrectSpotLum,4)], 1020, 

1000, [0,0,40]); 

 

%Present stimulus 

Screen('DrawLine', window, [white], 640, 335, 640, 689,18); 

Screen('DrawLine', window, [white], 463, 512, 817, 512,18); 

Screen('FillOval', window, [0 00], SurroundRectInner); 

Screen('FillOval', window, [GammaCorrectSpotLumGammaCorrectSpotLum 

GammaCorrectSpotLum], offsetCenteredspotRect); 

Screen(window, 'Flip'); 

WaitSecs (0.2); % presentation time 

 

%Remove stimulus 

Screen('DrawLine', window, [white], 640, 335, 640, 689,18); 

Screen('DrawLine', window, [white], 463, 512, 817, 512,18); 

Screen('FillOval', window, [0 00], SurroundRectInner); 

Screen('DrawText', window, ['GammaCorr: ' num2str(GammaCorrectSpotLum,4)], 1020, 

1000, [0,0,40]); 

Screen(window, 'Flip'); 

ResponseSecs = GetSecs; 

 

% Wait for a response 

while 1 

[ keyIsDown, timeSecs, keyCode ] = KbCheck; 

ifkeyIsDown 

 

ifkeyCode(escapeKey)% exit loop 

BreakFlag=1; 

break 

end 

 

if (timeSecs - ResponseSecs)<0.6; 

response = 1; % correct response 

sound(correctSound) 

else 

response = -1; % incorrect response (too slow) 

sound (incorrectSound) 

break 

end 

 

whileKbCheck; end% avoids KbCheck noting mutile events 

break 

end 

 

% Now, if no button push + long wait, time is up! 

SecsNow = GetSecs; 

timeSincePresentation = (SecsNow - ResponseSecs); 

iftimeSincePresentation> 1+rand(1); 

response = -1; % incorrect response (missed) 

break 

end 
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end 

 

ifBreakFlag==1% exit loop 

break 

end 

 

%Now record each presentation. 

presentationTime(presentationCounter)= (GetSecs - StartExptSecs); 

presentationThreshold(presentationCounter)= SpotLuminance-AdjustmentFilter1-

AdjustmentFilter2; 

presentationCounter = presentationCounter + 1; 

 

%Now adjust next stimulus increment on the basis of the response 

if response > 0;% correct 

 

ifincrementStep > 0.0; % luminance increased = threshold 

resultTime (thresholdCounter) = (GetSecs - StartExptSecs); 

resultThreshold (thresholdCounter) = SpotLuminance-AdjustmentFilter1-

AdjustmentFilter2; 

thresholdCounter = thresholdCounter + 1; 

stopRule = -1; 

end 

 

incrementStep = -0.3;% next increment = 0.3 log unit decrease 

WaitSecs (0.5 + rand(1.5)) 

end 

 

if response < 0;% incorrect 

incrementStep = 0.1; 

WaitSecs (rand(1.0)) 

end 

 

% Now alter stimulus for next presentation 

SpotLuminance = SpotLuminance + incrementStep; 

ifSpotLuminance > 2 

SpotLuminance = 2; 

end 

 

% Now reset stimulus intensity when minimum luminance reached 

ifSpotLuminance < -0.9;  

sound (NewFilterSound) % insert a new filter 

AdjustmentFilter2 = 2.1; 

LineThickness = 10; 

ifSecondNDFIlterFlag < 1 

WaitSecs (5.0) 

SpotLuminance = 1.1; % intensity reset to maximum brightness 

SecondNDFIlterFlag = 2; 

end 

end 

 

 

end% ends search for a threshold 

beep 

 

ifBreakFlag==1 % exit loop 

break 

end 

 

end% Returns to collect data for the next threshold point 

 

% Now display the results 

presentationTime = presentationTime (:);% converts row to column 

presentationThreshold = presentationThreshold (:); %converts to column 

plot(presentationTime, presentationThreshold,'b*')%plots every presentation 

xlabel('Time(s)') 

ylabel('Log Threshold') 

AXIS ([0 300 -1.5 2.5]) 
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hold on 

 

resultTime = resultTime(:);% changes format to column vectors 

resultThreshold = resultThreshold(:); 

plot(resultTime, resultThreshold,':ko')% plots the thresholds 

 

%Now fit the final exponential curve 

Starting = [1.2,5,40];  

options=optimset('Display','off');% if set 'off' to 'iter' will see iterations 

Estimates=fminsearch(@myfitExp,Starting,options,resultTime,resultThreshold); 

fT = Estimates(1) 

iT = Estimates(2) 

Tau = Estimates(3) 

% Now plot this curve 

ExpFitTime = 0:2.0:300;% now create some x-axis data at 1.0 steps 

ExpFitThreshold = Estimates(1)+((Estimates(2)-

Estimates(1))*exp(ExpFitTime./Estimates(3))); 

plot(ExpFitTime, ExpFitThreshold,'r-','LineWidth',2) 

 

Screen('CloseAll'); 

 

%Now output all the data to Excel spreadsheet 

presentationData = [presentationTime, presentationThreshold] 

thresholdData = [resultTime, resultThreshold] 

ExpFitTime = ExpFitTime(:); 

ExpFitThreshold = ExpFitThreshold(:); 

curveFit = [ExpFitTime, ExpFitThreshold] 

xlswrite('d:\Repeatability\Data\Results\TopographyDAresults.xls', 

presentationData,'Model','A14'); 

xlswrite('d:\Repeatability\Data\Results\TopographyDAresults.xls', 

thresholdData,'Model','D14'); 

catch 

Screen('CloseAll'); 

rethrow(lasterror); 

psychrethrow(psychlasterror); 

end 

 

 

10-alternative forced choice procedure 

 

clearall 

KbName('UnifyKeyNames'); 

 

try%The Try, Catch, End commands will respond to bugs / problems 

%First set up all the parameters 

whichScreen = 0; 

window = Screen(whichScreen, 'OpenWindow'); 

white = WhiteIndex(window); % pixel value for white 

black = BlackIndex(window); % pixel value for black 

gray = (white+black)/2; 

inc = white-gray; 

 

% And, set the parameters of the spot 

offsetCenteredspotRect = [569  441  711  583]; %size and position of  

SurroundRectInner = [498 370 782 654]; % size and position of annulus 

SurroundRectOuter = [496 368 784 656]; 

 

% Set up the sounds for correct and incorrect responses 

correctSound = sin(2*pi*70*[0:0.00125:2.0]); 

incorrectSound = sin(2*pi*30*[0:0.00125:2.0]); 

presentationSound = sin(2*pi*50*[0:0.00125:3.0]); 

NewFilterSound = sin (2*pi*200*[0:0.00125:10.0]); 

 

% Set up various flags  

response = 0; 
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responseCounter = 0; 

reversalCounter = 1;% counts reversals (reset after each threshold) 

DarkAdptCounter = 0; % counts the number of thresholds recorded. 

presentationCounter=1; %counts all presentations 

dataCounter = 1;% counts ALL reversals 

thresholdCounter = 1;% counts the no. of threshold points 

AdjustmentFilter1 = 1.2;% optical density of first ND filter 

AdjustmentFilter2 = 0;% optical density of second ND filter 

 

% Clear arrays that contain data 

SecondNDFIlterFlag = 0; % flag to stop luminance being raised if the spot 

luminance hits it's lowest level a second time (after the 2nd ND filter added) 

resultTime = 1; 

resultThreshold = 1; 

BreakFlag = 0; 

 

% Set keys up. 

rightKey = KbName('RightArrow'); 

leftKey = KbName('LeftArrow'); 

escapeKey = KbName('ESCAPE'); 

 

% This screen can be used to write instructions 

Screen(window, 'FillRect', 0); 

Screen('DrawText', window, 'DARK ADAPTATION VERSION 30/09/10', 300, 200, white); 

Screen('DrawText', window, 'Hit any key to start experiment', 300, 400, white); 

Screen(window, 'Flip'); 

Kbwait;% duration of instruction presentation 

 

% Set up the timer. 

startTime = now; 

durationInSeconds = 300; 

durationEachThreshold = 1; 

numberOfSecondsRemaining = durationInSeconds;  

SecondsRemaining = durationEachThreshold; 

 

%Calibration variables 

MinScreenLum = 0.12; % Kept contrast = 100 & brightness = 63 

GammaFunc = 2.15; 

MaxScreenLum = 122.5; 

 

% Now start the experiment loop. 

fprintf('Experiment started'), 

StartExptSecs = GetSecs; % this times the whole experiment 

WaitSecs (0.5); 

 

whileGetSecs - StartExptSecs<durationInSeconds% Keep experiment running  

 

stopRule = 1;%keeps loop running till stop rules met, then =0 

 

RandomNumber = 9*rand; % random number 0 to 1 

PresentationNumber = round(RandomNumber); % returns integer between 1-10 

sound(presentationSound) 

WaitSecs (0.2); % allow 200ms before presentation 

 

GammaCorrectSpotLum = 255*(((10^SpotLuminance)-

MinScreenLum)/MaxScreenLum)^(1/GammaFunc); 

 

Screen('DrawText', window, ['GammaCorr: ' num2str(GammaCorrectSpotLum,4)], 1020, 

1000, [0,0,40]); 

 

% Present stimulus 

Screen('TextFont',window, 'Ariel'); 

Screen('TextSize', window, 156);  

Screen('DrawLine', window, [white], 640, 335, 640, 689,18); 

Screen('DrawLine', window, [white], 463, 512, 817, 512,18); 

Screen('FillOval', window, [0 00], SurroundRectInner); 
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Screen('DrawText', window, num2str(PresentationNumber),580, 395, 

[GammaCorrectSpotLumGammaCorrectSpotLumGammaCorrectSpotLum]); 

Screen(window, 'Flip'); 

WaitSecs (0.2); % presentation time 

 

%Remove stimulus 

Screen('DrawLine', window, [white], 640, 335, 640, 689,18); 

Screen('DrawLine', window, [white], 463, 512, 817, 512,18); 

Screen('FillOval', window, [0 00], SurroundRectInner); 

Screen('DrawText', window, ['GammaCorr: ' num2str(GammaCorrectSpotLum,4)], 1020, 

1000, [0,0,40]); 

Screen(window, 'Flip'); 

ResponseSecs = GetSecs; 

 

% record time of presentation 

presentationTime(presentationCounter)= (GetSecs - StartExptSecs); 

presentationThreshold(presentationCounter)= SpotLuminance-AdjustmentFilter1-

AdjustmentFilter2; 

 

% Wait for a response from keyboard 

escapeKey = KbName('ESCAPE'); 

whileKbCheck; end% Wait until all keys are released. 

 

while 1 

% Check the state of the keyboard. 

[ keyIsDown, seconds, keyCode ] = KbCheck; 

% If key is pressed, display its code number and name. 

ifkeyIsDown 

 

ifkeyCode(escapeKey)% exit loop 

BreakFlag = 1; 

break 

end 

 

whileKbCheck; end 

break 

end 

end 

 

UserResponse = find(keyCode);% 'keyCode’ is a big array, the 'find' command gets 

the keys number e.g. 1=49 

ifPresentationNumber==(UserResponse-48) % i.e. correct response 

sound(correctSound) 

response = 1; % correct response 

incrementStep = -0.3; 

%next lines record a 'threshold' 

resultTime (thresholdCounter) = presentationTime(presentationCounter); 

resultThreshold (thresholdCounter) = SpotLuminance-AdjustmentFilter1-

AdjustmentFilter2;; 

thresholdCounter = thresholdCounter + 1; 

else 

sound (incorrectSound) 

response = -1; % incorrect response 

incrementStep = 0.1; 

end 

 

presentationCounter = presentationCounter + 1; 

 

% Now alter stimulus for next presentation 

SpotLuminance = SpotLuminance + incrementStep;  

ifSpotLuminance > 2 

SpotLuminance = 2; 

end 

 

% Now reset stimulus intensity when minimumluminance reached 

ifSpotLuminance < -0.9;  

sound (NewFilterSound) % insert a new filter 
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AdjustmentFilter2 = 2.1; 

LineThickness = 10; 

ifSecondNDFIlterFlag < 1 

WaitSecs (5.0) 

SpotLuminance = 1.1; % intensity reset to maximum brightness 

SecondNDFIlterFlag = 2; 

end 

end 

 

WaitSecs (1); 

 

ifBreakFlag==1 % exit loop 

break 

end 

 

 

end% Returns to collect data for the next threshold point 

 

% Now display the results 

presentationTime = presentationTime (:);% converts row to column 

presentationThreshold = presentationThreshold (:); %converts row to column 

plot(presentationTime, presentationThreshold,'b*')% plots every presentation 

xlabel('Time(s)') 

ylabel('Log Threshold') 

AXIS ([0 300 -1.5 2.5]) 

Hold on 

 

resultTime = resultTime(:);% changes format to column vectors 

resultThreshold = resultThreshold(:); 

plot(resultTime, resultThreshold,':ko')% plots the thresholds 

 

%Now fit the final exponential curve 

Starting = [1.2,5,40];  

options=optimset('Display','off');% if set 'off' to 'iter' will see iterations 

Estimates=fminsearch(@myfitExp,Starting,options,resultTime,resultThreshold); 

fT = Estimates(1) 

iT = Estimates(2) 

Tau = Estimates(3) 

% Now plot this curve 

ExpFitTime = 0:2.0:300;% now create some x-axis data at 1.0 steps 

ExpFitThreshold = Estimates(1)+((Estimates(2)-Estimates(1))*exp(-

ExpFitTime./Estimates(3))); 

plot(ExpFitTime, ExpFitThreshold,'r-','LineWidth',2) 

 

Screen('CloseAll'); 

 

%Now output all the data to Excel spreadsheet 

presentationData = [presentationTime, presentationThreshold] 

thresholdData = [resultTime, resultThreshold] 

ExpFitTime = ExpFitTime(:); 

ExpFitThreshold = ExpFitThreshold(:); 

curveFit = [ExpFitTime, ExpFitThreshold] 

xlswrite('d:\Repeatability\Data\Results\TopographyDAresults.xls', 

presentationData,'Model','A14'); 

xlswrite('d:\Repeatability\Data\Results\TopographyDAresults.xls', 

thresholdData,'Model','D14'); 

catch 

Screen('CloseAll'); 

rethrow(lasterror); 

psychrethrow(psychlasterror); 

end 
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Retinal eccentricity procedure 

 

clearall 

 

% Input co ordinates and sizes for cross and spot 

HorizontalLocation = input('Horizontal location in degrees? '); 

VerticalLocation = input('Vertical location in degrees? '); 

SpotSize = input('Spot size in degrees?')*17.5; % size of spot in pixels 

ifSpotSize < 9*17.5; OutsideLineSize=100; InsideLineSize=40; end 

ifSpotSize > 9*17.5; OutsideLineSize=0; InsideLineSize=175; end 

LineThickness = 4; % thickness of the fixation cross 

LineSize = SpotSize+OutsideLineSize; % length of the cross in pixels 

InnerLineSize = SpotSize-InsideLineSize; 

% NOTE assumes a 55 cm viewing distance! 

 

KbName('UnifyKeyNames'); 

% The Try, Catch, End commands will respond to bugs / problems 

try 

% First set up all the parameters 

whichScreen = 0; 

window = Screen(whichScreen, 'OpenWindow'); 

white = WhiteIndex(window); % pixel value for white 

black = BlackIndex(window); % pixel value for black 

gray = (white+black)/2; 

inc = white-gray; 

 

% And, set the parameters of the spot 

offsetCenteredspotRect = [640-SpotSize 512-SpotSize 640+SpotSize 512+SpotSize]; 

offsetCenteredspotRect2 = [640-SpotSize+17.5 512-SpotSize+17.5 640+SpotSize-17.5 

512+SpotSize-17.5]; 

SurroundRectInner = [640-SpotSize-10 512-SpotSize-10 640+SpotSize+10 

512+SpotSize+10]; % size and position of anulus 

SurroundRectOuter = [496 368 784 656]; 

 

% Set up the sounds for correct/incorrect responses and to indicate that new ND 

filter is required 

correctSound = sin(2*pi*100*[0:0.00125:2.0]); 

incorrectSound = sin(2*pi*40*[0:0.00125:2.0]); 

NewFilterSound = sin (2*pi*200*[0:0.00125:10.0]); 

 

% Set up various flags  

response = 0; 

responseCounter = 0; 

reversalCounter = 1;% counts reversals (reset after each threshold) 

DarkAdptCounter = 0; % counts the number of thresholds recorded 

presentationCounter = 1; % counts all presentations 

dataCounter = 1;% counts ALL reversals 

thresholdCounter = 1;% counts no. of threshold points 

AdjustmentFilter1 = 1.2;% optical density of first ND filter 

AdjustmentFilter2 = 0;% optical density of second ND filter 

 

% Clear arrays that contain data 

SecondNDFIlterFlag = 0; % flag to stop luminance being raised if spot luminance 

hits it's lowest level a second time (after ND filterhas been added) 

resultTime = 1; 

resultThreshold = 1; 

BreakFlag = 0; 

 

% Set keys up. 

rightKey = KbName('RightArrow'); 

leftKey = KbName('LeftArrow'); 

escapeKey = KbName('ESCAPE'); 

 

% This screen can be used to write instructions 

Screen(window, 'FillRect', 0);     

Screen('DrawText', window, 'DARK ADAPTATION VERSION 6/5/10', 300, 200, white); 



Appendix II 

 

258 

 

Screen('DrawText', window, 'Hit any key to start experiment', 300, 400, white); 

Screen(window, 'Flip'); 

Kbwait;% duration of instruction presentation 

 

% Set up the timer. 

startTime = now; 

durationInSeconds = 1500; 

durationEachThreshold = 1; 

numberOfSecondsRemaining = durationInSeconds;  

SecondsRemaining = durationEachThreshold; 

 

% Calibration variables 

MinScreenLum = 0.12; % Keep: contrast = 100 & brightness = 63 

GammaFunc = 2.15; 

MaxScreenLum = 122.5; 

 

% Now start the experiment loop. 

fprintf('Experiment started'), 

StartExptSecs = GetSecs; % this times the whole experiment 

 

whileGetSecs - StartExptSecs<durationInSeconds% Keep experiment running  

 

% Set up flags etc to re enter the threshold loop 

stopRule = 1;%keeps loop running till stop rules met, then =0 

 

whilestopRule > 0 % Keep looking for threshold i.e. experiment running. 

 

GammaCorrectSpotLum = 255*(((10^SpotLuminance)-

MinScreenLum)/MaxScreenLum)^(1/GammaFunc) 

 

Screen('DrawText', window, ['GammaCorr: ' num2str(SpotLuminance,4)], 970, 940, 

[0,0,240]); 

ifInnerLineSize < 0 % invoked if small spot presented to avoid interference with 

cross 

InnerLineSize = 0; 

End 

  

% Present stimulus 

Screen('DrawLine', window, [white], 640+(HorizontalLocation*35), 512 

(VerticalLocation*35)-LineSize, 640+(HorizontalLocation*35), 512-

(VerticalLocation*35)+LineSize,LineThickness); % presents peripheral fixation 

markers 

Screen('DrawLine', window, [white], 640+(HorizontalLocation*35)-LineSize, 512-

(VerticalLocation*35), 640+(HorizontalLocation*35)+LineSize, 512-

(VerticalLocation*35),LineThickness); 

Screen('FillOval', window, [0 00], SurroundRectInner); 

Screen('FillOval', window, 

[GammaCorrectSpotLumGammaCorrectSpotLumGammaCorrectSpotLum], 

offsetCenteredspotRect); 

Screen('FillOval', window, [0 00], offsetCenteredspotRect2); % draws black spot 

Screen('DrawLine', window, [white], 640+(HorizontalLocation*35), 512-

(VerticalLocation*35)-InnerLineSize, 640+(HorizontalLocation*35), 512-

(VerticalLocation*35)+InnerLineSize,LineThickness); % presents peripheral 

fixation markers 

Screen('DrawLine', window, [white], 640+(HorizontalLocation*35)-InnerLineSize, 

512-(VerticalLocation*35), 640+(HorizontalLocation*35)+InnerLineSize, 512-

(VerticalLocation*35),LineThickness); 

Screen(window, 'Flip'); 

WaitSecs (0.2); % presentation time 

 

%Remove stimulus 

Screen('DrawText', window, ['GammaCorr: ' num2str(SpotLuminance,4)], 970, 940, 

[0,0,240]); 

Screen('DrawLine', window, [white], 640+(HorizontalLocation*35), 512-

(VerticalLocation*35)-LineSize, 640+(HorizontalLocation*35), 512-

(VerticalLocation*35)+LineSize,LineThickness); 
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Screen('DrawLine', window, [white], 640+(HorizontalLocation*35)-LineSize, 512-

(VerticalLocation*35), 640+(HorizontalLocation*35)+LineSize, 512-

(VerticalLocation*35),LineThickness); 

Screen('FillOval', window, [0 00], SurroundRectInner); 

Screen('DrawLine', window, [white], 640+(HorizontalLocation*35), 512-

(VerticalLocation*35)-InnerLineSize, 640+(HorizontalLocation*35), 512-

(VerticalLocation*35)+InnerLineSize,LineThickness); % presents peripheral 

fixation markers 

Screen('DrawLine', window, [white], 640+(HorizontalLocation*35)-InnerLineSize, 

512-(VerticalLocation*35), 640+(HorizontalLocation*35)+InnerLineSize, 512-

(VerticalLocation*35),LineThickness); 

Screen(window, 'Flip'); 

ResponseSecs = GetSecs; 

 

% Wait for a response 

while 1 

[ keyIsDown, timeSecs, keyCode ] = KbCheck; 

ifkeyIsDown 

 

ifkeyCode(escapeKey)% exit loop 

BreakFlag=1; 

break 

end 

 

if (timeSecs - ResponseSecs)<0.6; 

response = 1; % correct response 

sound(correctSound) 

else 

response = -1; % incorrect response (too slow) 

sound (incorrectSound) 

break 

end 

 

whileKbCheck; end% this avoids KbCheck reporting multiple events 

break 

end 

 

% Now, if no button push + long wait, time is up! 

SecsNow = GetSecs; 

timeSincePresentation = (SecsNow - ResponseSecs); 

iftimeSincePresentation> 1; 

response = -1; % incorrect response (missed) 

break 

end 

end 

 

ifBreakFlag==1% exit loop 

break 

end 

 

%Now record each presentation. 

presentationTime(presentationCounter)= (GetSecs - StartExptSecs); 

presentationThreshold(presentationCounter)= SpotLuminance-AdjustmentFilter1-

AdjustmentFilter2; 

presentationCounter = presentationCounter + 1; 

 

%Now adjust next stimulus increment on the basis of the response 

if response > 0; % correct response 

 

ifincrementStep> 0.0; % intensity increased on last step so this must be a 

threshold 

resultTime (thresholdCounter) = (GetSecs - StartExptSecs); 

resultThreshold (thresholdCounter) = SpotLuminance-AdjustmentFilter1-

AdjustmentFilter2; 

thresholdCounter = thresholdCounter + 1; 

stopRule = -1; % notes that a threshold has been recorded 

end 
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incrementStep = -0.3;% next presentation = 0.3 log units decrease 

WaitSecs (0.5 + rand(1.5)) 

end 

 

if response < 0;% incorrect response 

incrementStep = 0.1; 

WaitSecs (rand(1.0)) 

end 

 

% Now alter stimulus for next presentation 

SpotLuminance = SpotLuminance + incrementStep;   

ifSpotLuminance > 2 

SpotLuminance = 2; 

end 

 

% Now reset the stimulus intensity when the minimum luminance is reached 

ifSpotLuminance < -0.9; 

SecondNDFIlterFlag = SecondNDFIlterFlag + 1; %This counter determines adjustments 

that are made for ND filter put on the screen 

sound (NewFilterSound) % insert a new filter 

ifSecondNDFIlterFlag == 1 % 1st loop i.e. 1st time the subject reaches -1log 

cd/m2 

                        AdjustmentFilter2 = 2.1; 

LineThickness = 10; 

WaitSecs (5.0) 

SpotLuminance = 1.1; % resets stimulus intensity to maximum brightness 

end 

ifSecondNDFIlterFlag == 2 % 2nd loop i.e. 2nd time the subject reaches -1log 

cd/m2 

                      AdjustmentFilter2 = 3.0; 

WaitSecs (5.0) 

SpotLuminance = -0.1; % resets stimulus intensity to maximum brightness 

end 

end 

 

end% this ends the search for a threshold 

beep 

 

ifBreakFlag==1 % exit loop 

break 

end 

 

end% Now go back and collect data for the next threshold point 

 

% Now display the results 

presentationTime = presentationTime (:);% converts row to column 

presentationThreshold = presentationThreshold (:); %converts row to column 

plot(presentationTime, presentationThreshold,'b*')% plots every presentation 

xlabel('Time(s)') 

ylabel('Log Threshold') 

AXIS ([0 300 -1.5 2.5]) 

Hold on 

 

resultTime = resultTime(:);% changes format to column vectors 

resultThreshold = resultThreshold(:); 

plot(resultTime, resultThreshold,':ko')% plots thresholds 

 

% Now fit the final exponential curve 

Starting = [1.2,5,40];  

Options = optimset('Display','off');% if set 'off' to 'iter' will see iterations 

Estimates = fminsearch(@myfitExp,Starting,options,resultTime,resultThreshold); 

fT = Estimates(1) 

iT = Estimates(2) 

Tau = Estimates(3) 

% Now plot this curve 

ExpFitTime = 0:2.0:300;% now create some x-axis data at 1.0 steps 



Appendix II 

 

261 

 

ExpFitThreshold = Estimates(1)+((Estimates(2)-Estimates(1))*exp(-

ExpFitTime./Estimates(3))); 

plot(ExpFitTime, ExpFitThreshold,'r-','LineWidth',2) 

 

 

Screen('CloseAll'); 

 

%Now output all the data to Excel spreadsheet 

presentationData = [presentationTime, presentationThreshold] 

thresholdData = [resultTime, resultThreshold] 

ExpFitTime = ExpFitTime(:); 

ExpFitThreshold = ExpFitThreshold(:); 

curveFit = [ExpFitTime, ExpFitThreshold] 

xlswrite('c:\Data\Results\TopographyDAresults.xls', 

presentationData,'Model','A14'); 

xlswrite('c:\Data\Results\TopographyDAresults.xls', thresholdData,'Model','D14'); 

catch 

Screen('CloseAll'); 

rethrow(lasterror); 

psychrethrow(psychlasterror); 

end 

 

 

Bleaching intensity procedure 

  

clear all 

  

% Input co ordinates and sizes for cross and spot 

HorizontalLocation = input('Horizontal location in degrees? '); 

VerticalLocation = input('Vertical location in degrees? '); 

SpotSize = input('Spot size in degrees?')*17.5; % size of spot in pixels 

if SpotSize < 9*17.5; OutsideLineSize=100; InsideLineSize=40; end 

if SpotSize == 24*17.5; OutsideLineSize=0; InsideLineSize=350; end 

LineThickness = 5; % this it the thickness of the fixation cross 

LineSize = SpotSize+OutsideLineSize; % this is the length of the cross line in 

pixels 

InnerLineSize = SpotSize-InsideLineSize; 

% NOTE assumes a 55 cm viewing distance! 

LineColour = 1; %this is the colour of the cross at the start of the program 

    

KbName('UnifyKeyNames'); 

% The Try, Catch, End commands will respond to bugs / problems 

try 

% First set up all the parameters 

whichScreen = 0; 

window = Screen(whichScreen, 'OpenWindow'); 

white = WhiteIndex(window); % pixel value for white 

black = BlackIndex(window); % pixel value for black 

gray = (white+black)/2; 

inc = white-gray; 

    

% And, set the parameters of the spot, 1st and 3rd numbers give the horizontal 

position 

% the 2nd and 4th give the vertical, the spot is streched inbetween. 

% SpotSize = 35/2; % This is the size of the spot in pixels 

offsetCenteredspotRect = [640-SpotSize 512-SpotSize 640+SpotSize 512+SpotSize]; % 

size and position of spot on screen 

offsetCenteredspotRect2 = [640-SpotSize+17.5 512-SpotSize+17.5 640+SpotSize-17.5  

512+SpotSize-17.5]; 

SurroundRectInner = [640-SpotSize-10512-SpotSize-10 640+SpotSize+10 

512+SpotSize+10]; % size and position of anulus 

SurroundRectOuter = [496 368 784 656]; 

     

% Set up the sounds for correct and incorrect responses and to indicate 

% that a new neutral density filter is required 
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correctSound = sin(2*pi*100*[0:0.00125:2.0]); 

incorrectSound = sin(2*pi*40*[0:0.00125:2.0]); 

NewFilterSound = sin (2*pi*200*[0:0.00125:10.0]); 

     

% Set up various flags  

response = 0; 

responseCounter = 0; 

reversalCounter = 1;%this counts reversals but is reset after each threshold 

DarkAdptCounter = 0; % counts the number of times a dark adptn threshold is 

recorded. 

presentationCounter=1; %counts all presentations, used in Humphrey version 

dataCounter=1;%this is the reversal counter, it counts all reversals 

thresholdCounter = 1;% this counter is for the Humphrey version i.e. it counts 

the no. of threshold points 

AdjustmentFilter1 = 2.1;% this is the optical density of the first ND filter 

AdjustmentFilter2 = 0;% this is the optical density of the secondt ND filter - 

which is not yet in place!!! 

% Clear arrays that contain data 

SecondNDFIlterFlag = 0; % this line is used as a flag to stop the luminance being 

raised if the spot luminance hits it's lowest level a second time i.e. after the 

2.1 ND filter has been added 

resultTime = 1; 

resultThreshold = 1; 

BreakFlag = 0; 

     

% Set keys up. 

rightKey = KbName('RightArrow'); 

leftKey = KbName('LeftArrow'); 

escapeKey = KbName('ESCAPE'); 

     

% This screen can be used to write instructions 

Screen(window, 'FillRect', 0);     

Screen('DrawText', window, 'DARK ADAPTATION VERSION 6/5/10', 300, 200, white); 

Screen('DrawText', window, 'Hit any key to start experiment', 300, 400, white); 

Screen(window, 'Flip'); 

Kbwait;% duration of instruction presentation 

     

% Set up the timer. 

startTime = now; 

durationInSeconds = 1800; 

durationEachThreshold = 1; 

numberOfSecondsRemaining = durationInSeconds;  

SecondsRemaining = durationEachThreshold; 

     

% Calibration variables 

MinScreenLum = 0.12; % Keep: contrast = 100 & brightness = 63 

GammaFunc = 2.15; 

MaxScreenLum = 122.5; 

  

% Now start the experiment loop. 

fprintf('Experiment started'), 

StartExptSecs = GetSecs; % this times the whole dark adaptation expt 

     

while GetSecs - StartExptSecs < durationInSeconds% Keep experiment running  

                

% Set up flags etc to re enter the threshold loop 

stopRule = 1;%keeps loop running till stop rules met, then =0 

  

while stopRule > 0 % Keep looking for threshold i.e. expt running. 

  

GammaCorrectSpotLum = 255*(((10^SpotLuminance)-

MinScreenLum)/MaxScreenLum)^(1/GammaFunc) 

%This calculates the grey scale required for desired luminance 

%SpotLuminance raised to power of 10 to 'un-log' the number 
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Screen('DrawText', window, ['GammaCorr: ' num2str(SpotLuminance,4)], 970, 940, 

[0,0,240]); 

if InnerLineSize < 0 % this line stops the central cross going ' funny' if we are 

presenting a small spot. 

InnerLineSize = 0; 

end 

if LineColour == 1 

LineSpectrum = [256 256 0]; % this is the colour of the cross line at the start 

of the program i.e. blue gun off 

end 

if LineColour > 1 

LineSpectrum = [white]; % this is the colour of the cross line when the filter 

comes down, i.e. white 

end 

Screen('DrawLine', window, [LineSpectrum], 640+(HorizontalLocation*35), 512-

(VerticalLocation*35)-LineSize, 640+(HorizontalLocation*35), 512-

(VerticalLocation*35)+LineSize,LineThickness); % presents peripheral fixation 

markers 

Screen('DrawLine', window, [LineSpectrum], 640+(HorizontalLocation*35)-LineSize, 

512-(VerticalLocation*35), 640+(HorizontalLocation*35)+LineSize, 512-

(VerticalLocation*35),LineThickness); 

Screen('FillOval', window, [0 0 0], SurroundRectInner); % draws invisible spot 

i.e. surround 

Screen('FillOval', window, [GammaCorrectSpotLum GammaCorrectSpotLum 0], 

offsetCenteredspotRect); % draws white spot 

Screen('FillOval', window, [0 0 0], offsetCenteredspotRect2); % draws black spot 

Screen('DrawLine', window, [LineSpectrum], 640+(HorizontalLocation*35), 512-

(VerticalLocation*35)-InnerLineSize, 640+(HorizontalLocation*35), 512-

(VerticalLocation*35)+InnerLineSize,LineThickness); % presents peripheral 

fixation markers 

 Screen('DrawLine', window, [LineSpectrum], 640+(HorizontalLocation*35)-

InnerLineSize, 512-(VerticalLocation*35), 

640+(HorizontalLocation*35)+InnerLineSize, 512-

(VerticalLocation*35),LineThickness); 

Screen(window, 'Flip'); % presents test 

WaitSecs (0.2); % presentation time 

                   

%Remove stimulus 

%Screen('DrawText', window, sprintf('%i seconds remaining...', 

numberOfSecondsRemaining), 20, 60, white); 

Screen('DrawText', window, ['GammaCorr: ' num2str(SpotLuminance,4)], 970, 940, 

[0,0,240]); 

Screen('DrawLine', window, [LineSpectrum], 640+(HorizontalLocation*35), 512-

(VerticalLocation*35)-LineSize, 640+(HorizontalLocation*35), 512-

(VerticalLocation*35)+LineSize,LineThickness); 

Screen('DrawLine', window, [LineSpectrum], 640+(HorizontalLocation*35)-LineSize, 

512-(VerticalLocation*35), 640+(HorizontalLocation*35)+LineSize, 512-

(VerticalLocation*35),LineThickness); 

Screen('FillOval', window, [0 0 0], SurroundRectInner); % draws large spot i.e. 

surround 

Screen('DrawLine', window, [LineSpectrum], 640+(HorizontalLocation*35), 512-

(VerticalLocation*35)-InnerLineSize, 640+(HorizontalLocation*35), 512 

(VerticalLocation*35)+InnerLineSize,LineThickness); % presents peripheral 

fixation markers 

Screen('DrawLine', window, [LineSpectrum], 640+(HorizontalLocation*35)-

InnerLineSize, 512-(VerticalLocation*35), 

640+(HorizontalLocation*35)+InnerLineSize, 512-

(VerticalLocation*35),LineThickness); 

 Screen(window, 'Flip'); % blanks out test 

 ResponseSecs = GetSecs;% gets the time the stimulus was flipped out 

             

 % Wait for a response 

while 1 

[ keyIsDown, timeSecs, keyCode ] = KbCheck; 

if keyIsDown 
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if keyCode(escapeKey)% this small loop helps stop the programme after the ESC key 

is pushed. 

BreakFlag=1; 

break 

end 

%fprintf('"%s" typed at time %.3f seconds\n', KbName(keyCode), timeSecs - 

ResponseSecs); 

if (timeSecs - ResponseSecs)<0.6; 

    response = 1; %this means the response was correct 

    sound(correctSound) 

else 

    response = -1; %this means the response was incorrect (in this case too slow) 

    sound (incorrectSound) 

    break 

end 

         

while KbCheck; end % this avoids KbCheck reporting multiple events 

break 

end 

  

% Now, if no button push + long wait, time is up! 

SecsNow = GetSecs; 

timeSincePresentation = (SecsNow - ResponseSecs); 

if timeSincePresentation > 1; 

response = -1; %this means the response was incorrect (in this case completely 

missed) 

break 

end 

end % waiting for repsonse or time up 

  

if BreakFlag==1% this small loop helps stop the programme after the ESC key is 

pushed. 

break 

end 

             

%Now record each presentation. 

presentationTime(presentationCounter)= (GetSecs - StartExptSecs); 

presentationThreshold(presentationCounter)= SpotLuminance-AdjustmentFilter1-

AdjustmentFilter2; 

presentationCounter = presentationCounter + 1; 

             

%Now adjust next stimulus increment on the basis of the response 

if response > 0;% that is, correct 

if incrementStep > 0.0; % that is, threshold was raised up on the last step, this 

must be a threshold 

resultTime (thresholdCounter) = (GetSecs - StartExptSecs); 

resultThreshold (thresholdCounter) = SpotLuminance-AdjustmentFilter1-

AdjustmentFilter2; 

thresholdCounter = thresholdCounter + 1; 

 stopRule = -1; % this should make the programme realise that a threshold has 

been recorded 

end 

                  

incrementStep = -0.3;% now ensure that the next step is down 0.3 log units 

WaitSecs (0.5 + rand(1.5)) 

end 

             

if response < 0;% that is, incorrect 

incrementStep = 0.1; 

WaitSecs (rand(1.0)) 

end 

             

% Now alter stimulus for next presentation 

 SpotLuminance = SpotLuminance + incrementStep;   

if SpotLuminance > 2 

SpotLuminance = 2; 

end 
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% Now reset the stimulus intensity when the minimum luminance is reached 

if SpotLuminance < -0.6; 

SecondNDFIlterFlag = SecondNDFIlterFlag + 1; %This is the counter that determines 

which adjustments are made for a ND filter put on the screen 

sound (NewFilterSound) % makes a beep to tell the investigator to insert a new 

filter 

if SecondNDFIlterFlag == 1 % This is the 1st loop i.e. the 1st time the subject 

reaches -1log cd/m2 

AdjustmentFilter2 = 2.1; 

LineThickness = 10; 

LineColour = LineColour + 1; % resets the colour of the cross to white 

WaitSecs (5.0) 

SpotLuminance = SpotLuminance + AdjustmentFilter2; % resets the stimulus 

intensity to the maximum brightness 

end 

if SecondNDFIlterFlag == 2 % This is the 2nd loop i.e. the 2nd time the subject 

reaches -1log cd/m2 

AdjustmentFilter2 = 3.0; 

WaitSecs (5.0) 

SpotLuminance = SpotLuminance + AdjustmentFilter2; % resets the stimulus 

intensity to the maximum brightness 

end    

end 

               

end % this ends the search for a threshold 

beep 

      

if BreakFlag==1 % this small loop helps stop the programme after the ESC key is 

pushed. 

break 

end    

       

end % Now go back and collect data for the next threshold point 

  

% Now display the results 

presentationTime = presentationTime (:);% converts row of presentation time into 

column 

presentationThreshold = presentationThreshold (:); %converts row of presentation 

threshold to column 

plot(presentationTime, presentationThreshold,'b*')%this should plot every 

presentation 

xlabel('Time(s)') 

ylabel('Log Threshold') 

AXIS ([0 300 -1.5 2.5]) 

hold on 

         

resultTime = resultTime(:);% This changes format to column vectors 

resultThreshold = resultThreshold(:); 

plot(resultTime, resultThreshold,':ko')% this should plot the thresholds 

         

% Now fit the final exponential curve 

Starting = [1.2,5,40];  

Options = optimset('Display','off');% if set 'off' to 'iter' will see iterations 

Estimates=fminsearch(@myfitExp,Starting,options,resultTime,resultThreshold); 

fT = Estimates(1) 

iT = Estimates(2) 

Tau = Estimates(3) 

% Now plot this curve 

 ExpFitTime = 0:2.0:300;% now create some x-axis data at 1.0 steps 

ExpFitThreshold = Estimates(1)+((Estimates(2)-Estimates(1))*exp(-

ExpFitTime./Estimates(3))); 

plot(ExpFitTime, ExpFitThreshold,'r-','LineWidth',2) 

   

Screen('CloseAll'); 

     

%Now output all the data to Excel spreadsheet 
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presentationData = [presentationTime, presentationThreshold] 

thresholdData = [resultTime, resultThreshold] 

ExpFitTime = ExpFitTime(:); 

ExpFitThreshold = ExpFitThreshold(:); 

curveFit = [ExpFitTime, ExpFitThreshold] 

xlswrite('c:\Data\Results\TopographyDAresults.xls', 

presentationData,'Model','A14'); 

xlswrite('c:\Data\Results\TopographyDAresults.xls', thresholdData,'Model','D14'); 

catch 

Screen('CloseAll'); 

rethrow(lasterror); 

psychrethrow(psychlasterror); 

end
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Appendix III. Peer reviewed papers and supporting 

publications 

 

 

Peer reviewed papers 

 

Page 263: Gaffney A J, Binns A M, and Margrain T H (2011a) The repeatability of the 

Goldmann-Weekers adaptometer for measuring cone adaptation. Documenta 

Ophthalmologica 122: 71-75. 

 

Page 268: Gaffney A J, Binns A M, and Margrain T H (2011b) The topography of cone 

dark adaptation deficits in age-related maculopathy. Optometry and Vision Science 88: 

1080-1087. 

 

Page 276: Gaffney A J, Binns A M, and Margrain T H (2012) Aging and cone dark 

adaptation. Optometry and Vision Science In Press. 

 

 

Conference abstracts 

 

Page 282: Gaffney A J, Binns A M, and Margrain T H (September 2009) A comparison of 

objective and subjective measures of dark adaptation. BriSCEV, Sheffield. 

 

Page 284: Gaffney A J, Margrain T H, and Binns A M (April 2010) A comparison of four 

psychophysical methods of monitoring dark adaptation. Optometry Tomorrow, College of 

Optometrists, York. 

 

Page 286: Gaffney A J, Margrain T H, and Binns A M (March 2012 and May 2011) The 

topography of cone-mediated dark adaptation in AMD. Optometry Tomorrow, College of 

Optometrists, Liverpool and ARVO annual meeting, Fort Lauderdale, Florida. 
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Page 288: Gaffney A J, Margrain T H, and Binns A M (March 2012 and May 2012) A 

comparison of psychophysical and electrophysiological methods of assessing cone dark 

adaptation in ARM. Optometry Tomorrow, College of Optometrists, Brighton and ARVO 

annual meeting, Fort Lauderdale, Florida. 
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A comparison of the parameters of objective and subjective measures of dark 

adaptation 

Gaffney A J, Margrain T H, and Binns A M 

British Society for Clinical Electrophysiology of Vision, Sheffield: September 2009 

 

Purpose 

Current methods of monitoring dark adaptation are primarily based around subjective 

psychophysical procedures. A comparison of the parameters of photostress recovery using 

psychophysical and electrophysiological techniques will demonstrate the viability of 

objective methods as an alternative measure of dark adaptation.  

 

Method 

Photostress recovery after a 99% bleach of rod and cone photopigment was monitored in 

two normal subjects (AB and AG) using two electrophysiological and one psychophysical 

method. All electrophysiological stimuli were generated by a light emitting diode (LED) 

miniature ganzfeld stimulator held at the eye. Signals were amplified, bandpass filtered (1-

100Hz) and averaged using a Medelec Synergy EP system. 

 

Full field cone flicker electroretinograms (ERGs) were recorded in response to an amber 

(λmax = 595nm, half-height bandwidth = 17nm) square wave flickering (41Hz) stimulus, 

with a time-averaged illuminance of 1500phot.td. Four pre-bleach ERGs were recorded as 

a baseline measure. Post-bleach ERGs were recorded every 20 secs for 5 mins, with 100 

responses averaged on each trace. The amplitude of the first harmonic was plotted as a 

function of time after the bleach. 

  

Full field rod ERGs were recorded in response to a blue (λmax = 454nm, half-height 

bandwidth = 67nm) 5scot.td.s flash, duration 5ms, at a temporal frequency of 0.5Hz. Post-

bleach ERGs were recorded at 2 minute intervals for 35 mins. 30 responses were averaged 

on each trace and b-wave amplitude was plotted as a function of time after the bleach, after 

removal of high frequency noise (>45Hz). 
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Finally, the Goldmann-Weekers adaptometer was used to measure dark adaptation 

psychophysically using a method of ascending limits. The stimulus subtended 6.6° at the 

eye and was located at 11.8° in the inferior field. 

 

Recovery data was fitted, using a least squares paradigm, with an exponential model and 

the time to half recovery assessed. 

 

Results 

An exponential model provided a good fit to the rod and cone ERG and psychophysical 

recovery data. The times to half recovery (given for subjects AB and AG) for photopic 

ERG amplitudes were 1.22 and 0.96 mins, and for scotopic ERG amplitudes were 19 and 

10 mins. For the Goldmann-Weekers adaptometer, times to half recovery for the cone 

branch were 1.46 and 1.12 mins, and for the rod branch were 14.45 and 13.1 mins. 

 

Conclusion 

The ERG can be used as a simple objective measure of rod and cone dark adaptation. An 

exponential model provided a good fit to all recovery data. The times to half recovery were 

comparable to those obtained using a psychophysical technique. This indicates that the 

ERG provides a potential clinical means of assessing dark adaptation, which avoids the 

problems inherent in subjective psychophysical strategies. 
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A comparison of four psychophysical methods of monitoring dark adaptation 

Gaffney A J, Binns A M, and Margrain T H 

Optometry Tomorrow, York: April 2010 

 

Purpose 

Dark adaptometry has an important role in the detection of early age-related macular 

degeneration (AMD). However, measuring threshold with robust, criteria free, 

psychophysical techniques is problematic due to the speed with which threshold changes. 

To identify the most robust, clinically applicable technique we assessed the repeatability 

and agreement of four different psychophysical methods of dark adaptation measurement. 

 

Methods 

The methods used were: a) the Goldmann-Weekers adaptometer, b) a hybrid adaptive 

threshold procedure based on a series of decision criteria (Friedburg et al., 1998), c) a 

computerised 3-down 1-up modified staircase procedure (Jackson et al., 1999) and d) a 

novel method based on a 10-alternative forced choice procedure. With the exception of the 

Goldmann-Weekers method, all stimuli were presented on a calibrated, high resolution 

cathode ray tube (CRT) monitor (Iiyama LS902UT) driven by an 8-bit (nVIDIA Geforce9) 

graphics board under software control (Matlab). 

 

Data were obtained from 31 adults on two occasions. At each visit pupils were dilated with 

tropicamide (1%) and 98% of cone photopigment was bleached using a Maxwellian view 

optical system, before threshold was monitored in the dark using one of the four 

techniques, chosen at random. This procedure was repeated for each of the remaining 

methods. A 5 minute ‘wash out’ period was interleaved between successive dark 

adaptation measurements. 

 

Results 

The time constant of recovery (τ) was determined by fitting a single exponential function, 

on a least squares basis, to the threshold recovery data. The methods described by Bland 

and Altman (1986) were used to establish the repeatability and agreement of the methods.  

For all subjects and methods, the time constant of recovery ranged from 25 to 86 seconds. 

The coefficient of repeatability was typically 39 seconds but varied between methods. 
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Conclusions 

All four techniques were clinically viable and capable of following the rapid changes in 

threshold observed during cone dark adaptation. We identify the most repeatable, clinically 

applicable method and highlight the ability of a novel 10-alternative forced choice 

technique that can measure dark adaptation whilst avoiding the potentially distorting 

effects of subjective ‘criteria’. 



Appendix III 

 

292 

 

The topography of cone-mediated dark adaptation deficits in age-related 

maculopathy 

Gaffney A J, Binns A M, and Margrain T H 

Optometry Tomorrow, Liverpool: March 2011; and ARVO annual meeting, Fort 

Lauderdale: May 2011 

 

Purpose 

Despite widespread agreement that dark adaptation is abnormal in age-related maculopathy 

(ARM), the optimal retinal location for detection of this deficit is unclear. The purpose of 

this study was to evaluate the effect of retinal location on the diagnostic potential of cone 

dark adaptation parameters. The time to the rod-cone-break (RCB) was also assessed as an 

indicator of rod adaptation kinetics. 

 

Methods 

Cone dark adaptation was monitored in 10 subjects with ARM and 10 age-matched 

controls, using four achromatic annuli (1, 4, 14 and 24º diameter) centred on the fovea. 

 

Following pupil dilation (tropicamide 1%), 80% of cone photopigment was bleached using 

a Maxwellian view optical system. Subsequently, threshold was monitored in the dark, 

using one of the stimuli, selected at random, until the RCB occurred, or for a maximum of 

25 minutes. This procedure was repeated for each of the four stimuli. A 15 minute ‘wash 

out’ period was interleaved between successive trials. 

 

Threshold recovery data were modelled and the time constant of cone recovery (τ), final 

cone threshold and time to RCB determined. Diagnostic potential was evaluated by 

constructing receiver operating characteristic (ROC) curves for these parameters. 

 

Results 

Cone τ was significantly longer for the ARM group at 2, 7 and 12º. The greatest difference 

between groups was observed at 12º from fixation. At this location, the mean τ was 3.49 

(+/-2.02) and 0.64 (+/-0.38) minutes for ARM and control subjects respectively (p=0.002) 

and time to RCB was 17.68 (+/-5.37) minutes for ARM subjects and 9.05 (+/-2.11) 

minutes for control subjects (p=0.001). Correspondingly, ROC curves showed that the 
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diagnostic potential of dark adaptometry is greatest for stimuli presented 12º from fixation; 

for cone τ the area under the curve (AUC)=0.99+/-0.02 and for time to RCB AUC=0.96+/-

0.04. 

 

Conclusions 

This study has shown cone-mediated dark adaptation to be significantly impaired in ARM. 

The diagnostic potential of dark adaptation may be enhanced by measuring thresholds at an 

eccentricity of 12º. The observation that cone τ is highly diagnostic at this eccentricity is 

clinically significant, because this parameter may be quantified in as little as 10 minutes. 
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A comparison of psychophysical & electrophysiological methods for assessment of 

cone dark adaptation in ARM 

Gaffney A J, Margrain T H, and Binns A M 

Optometry Tomorrow, Brighton: March 2012; and ARVO annual meeting, Fort 

Lauderdale, Florida: May 2012 

 

Purpose 

Dark adaptation is an important clinical tool for the diagnosis of age-related maculopathy 

(ARM). Cone dark adaptation is particularly attractive because it can identify people with 

ARM in a relatively short recording period. We compared the diagnostic potential of 

established electrophysiological & psychophysical techniques for measuring cone dark 

adaptation in ARM. 

 

Methods 

Cone dark adaptation was measured in 10 subjects with ARM & 10 age-matched controls 

on two days. Prior to dark adaptation, subjects’ pupils were dilated (1.0% tropicamide) & 

an 84% cone photopigment bleach (5.20 log phot.td for 120secs) administered to the test 

eye. 

 

At the first visit, threshold was monitored continuously for 30mins using an automated 

psychophysical method of limits. The stimulus was a 12º diameter achromatic annulus, 

centred on the fovea. 

 

At the second visit, cone dark adaptation was assessed using the focal cone 

electroretinogram (ERG) photostress test. Focal cone ERGs were recorded using a central 

20º diameter, amber (λmax = 595nm, half-height bandwidth = 17nm), square wave 41Hz 

stimulus, with a time-averaged illuminance of 1500 phot.td). Eight pre-bleach ERGs were 

recorded as a baseline. Post-bleach ERGs were recorded every 20secs for 5mins. 

 

Recovery data (psychophysical thresholds & first harmonic of ERG responses) were 

plotted as a function of time after the bleach & modelled using an exponential function. 

Receiver operating characteristic (ROC) curves were used to compare the diagnostic 

potential of the time constant of cone recovery (τ). 
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Results 

Cone τ was significantly longer in the ARM group for psychophysical & 

electrophysiological (p<0.02) methods. Both techniques were highly diagnostic for ARM: 

area under the curve (AUC) = 0.80 +/- 0.11 for the psychophysical test & 0.72 +/- 0.14 for 

the focal cone ERG photostress test. There was no statistically significant difference in the 

AUC of the two techniques. 

 

Conclusions 

Consistent with previous reports, cone dark adaptation was significantly impaired in ARM. 

Although electrophysiological methods are more objective than psychophysical methods of 

dark adaptation measurement, the diagnostic potential of cone dark adaptation in ARM 

was similar for both methods. There is now an urgent need for longitudinal studies to 

clarify the value of dark adaptation as a biomarker for ARM. 

 


