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Summary 

Marine sedimentation from the Adélie Land continental margin of East Antarctica 

provides unique high resolution records of Holocene environmental change.  The sub-

annually resolved sediment cores MD03-2601 (66°03.07’S, 138°33.43’E) and IODP-

318-U1357B (66°24.7990′S, 140°25.5705′E) from the Dumont d’Urville Trough, 

Adélie Land, document atmospheric and oceanic processes impacting on biogenic 

sedimentation on the Adélie Land continental shelf during the Holocene.   

 

Resin embedded, continuous polished thin sections from each core were analysed for 

diatom content and sediment microfabric using scanning electron microscope back-

scattered electron imagery.  The sediments contained repeating sequences of seasonal 

diatom-rich laminae which enabled multi-taper method time series analysis.  Time 

series analysis shows that in the Hypsithermal there appears to have been an external 

(solar) control on interannual sedimentation as well as internal controls (e.g. the 

southern annular mode, SAM, and El Nino-southern Oscillation, ENSO); whilst in the 

Neoglacial internal climatic modes exerted a much stronger control.  Quasi-biennial (2 – 

3 year) peaks commonly occurred in analysis of both Hypsitherml and Neoglacial 

sequences.  The distribution of resting spore-rich laminae in these sections suggests that 

a multidecadal (>50-years) variation between phasing of the SAM and ENSO systems 

may exert an important control on interannual environmental variability in the sections 

analysed. 

 

The distribution of diatom-derived biomarker proxies, namely C25 highly branched 

isoprenoid (HBI) alkenes, was compared to the diatom lamina-based record in core 

MD03-2601.  At the Holocene scale, HBI diene and triene molecules have a positive 

association to sea ice associated diatom-rich laminae, with greater abundances of both 

HBI molecules and sea ice associated diatom laminae in the Neoglacial interval.  

However, at a sub-annual resolution there is no strong association between lamina type 

and HBI concentrations.  This is attributed to a combination of: (i) the HBI alkenes 

recording a different signal to that of the diatom-rich laminae; (ii) interannual variation 

in HBI export that is greater than inter-seasonal variation, for which there is little 

modern data for comparison; (iii) possible diagenetic alteration of the HBI signal.  
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Chapter 1. Introduction 

This thesis investigates interannual environmental variability in Adélie Land, East 

Antarctica, during the Holocene by examining sections of seasonally laminated marine 

sediment cores.  Time series of lamina thicknesses are constructed from continuously 

laminated sections of cores that occur during: (i) the warm Hypsithermal climatic 

interval (ca. 8 – 3.9 ka), (ii) the cool Neoglacial climatic interval (ca. 3.9 ka – present), 

and (iii) the transition between these intervals (ca. 3.9 ka).  Furthermore, diatom-derived 

highly branched isoprenoid (HBI) biomarkers are tested as a geochemical proxy of sea 

ice cover versus annually resolved diatom records. 

1.1 Antarctic seasonally laminated sediments 

Laminated diatomaceous sediments accumulate in many inner shelf basins around the 

Antarctic margin and can provide ultra-high-resolution records of palaeoclimatic 

variability at different times since the last deglaciation (Leventer et al., 2002; Bahk et 

al., 2003; Stickley et al., 2005; Maddison et al., 2005; Stickley et al., 2006; Denis et al., 

2006; Maddison et al., 2006; Maddison et al., 2012).  Mean sedimentation rates in these 

sequences may be up to 46 mm/year (Denis et al., 2006), and individual laminae 

representing discrete seasonal flux events up to 75 mm thick have been reported from 

deglacial sediments (Stickley et al., 2005).  These high sedimentation rates, combined 

with the often excellent preservation of diatom frustules, provide an insight into past 

climatic processes from sub-annual to millennial timescales (Maddison et al., 2005; 

Denis et al., 2009; Maddison et al., 2006). 

 

Where seasonally laminated sediments are preserved they represent a valuable climate 

archive that can be used to investigate changes in diatom productivity related to 

seasonal and interannual changes in sea ice concentration, wind stress and temperature 

during different climatic states, as well as changes in regional glacial activity inferred 

from the relative terrigenous content of the laminae (Denis et al., 2006; Pike et al., 

2009).  Previous studies using laminated sediments from the Dumont d’Urville Trough, 

Adélie Land, East Antarctica, have: (i) provided snapshots of seasonal variability during 

the Holocene Hypsithermal (30 cm of laminated sediments) and Neoglacial (30 cm of 

laminated sediments) (Denis et al., 2006); and (ii) highlighted changes in seasonal 
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deposition throughout the Neoglacial period related to changes in the timing of the 

spring ice retreat and autumnal ice advance (Maddison et al., 2012).  Despite these 

studies, little is currently known about the magnitude of interannual variability recorded 

in these sediments under the evolving climatic regimes of the Holocene and notably the 

transition from the warm Hypsithermal to the cool Neoglacial has not been investigated 

with interannual resolution.  This thesis provides the first annually resolved 

multidecadal records obtained from selected sections of continuously laminated marine 

sediments from the Antarctic margin, and presents evidence for changes in interannual 

productivity related to changing sea ice and meteorological conditions in the different 

climatic phases of the Holocene.   

1.2 Aims of the thesis 

This thesis aims to address the following research questions: 

 

1) Can the influence of oscillatory climate modes (e.g. Southern Annular Mode, 

SAM, and El Niño-Southern Oscillation, ENSO) be detected in the seasonally 

laminated Adélie Land sediment records during the Holocene? 

2) If so, is this relationship similar under different climate states during the 

Holocene? 

 

This will be achieved by reconstructing ultra-high-resolution records of diatom species 

succession during the Holocene by using scanning electron microscope (SEM) back 

scattered electron imagery (BSEI) analysis of resin embedded thin sections of selected 

sediments from cores MD03-2601 and IODP-318-U1357B.  The SEM-derived 

descriptions of lamina types will be complimented by the calculation of diatom 

concentrations and assemblages to complement in order to produce a seasonal model of 

lamina deposition.  The seasonal deposition model will be used to reconstruct 

multidecadal time series from each core, which will be subjected to multi-taper method 

spectral analysis to determine any significant periodicities occurring within the records.  

This will permit assessment of the likely forcing mechanisms controlling diatom 

productivity in Adélie Land during the Holocene.  Finally, the diatom lamina thickness 

data will be compared to the records of HBI biomarker concentration from core MD03-
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2601 and investigate the potential utility of this technique to reconstruct past sea ice 

conditions at ultra-high-resolution.   

1.3 Thesis structure 

This thesis has seven chapters and 5 appendices, composed of: 

Introductory chapters: Chapter 1 provides an outline of the thesis.  Chapter 2 details 

the geological, oceanographic and glaciological history of the Antarctic 

continent and Southern Ocean and provides information on the major climatic 

modes of interannual variability of interest.  A regression analysis of satellite-

derived sea ice concentration compared to the Southern Annular Mode and 

Southern Oscillation Index is presented (upon which several research hypotheses 

for diatom lamina distribution are proposed for testing in Chapter 5) along with 

other relevant modern environmental data for the region.  Chapter 3 introduces 

the use of diatoms and highly branched isoprenoids as proxies for sea ice and 

climatic variability on the Antarctic margin and discusses their modern 

environmental distributions.  The known environmental associations of HBIs are 

used to provide hypotheses for HBI distribution that are tested in Chapter 6.  

Chapter 4 presents the details of core collection and the methodologies used in 

this thesis. 

Results and discussion:  Chapters 5 – 6 address the thesis research questions outlined 

in Section 1.2.  Chapter 5 presents and discusses the results of sediment lamina 

and diatom analysis of cores MD03-2601 and IODP-318-U1357B.  Chapter 6 

presents the results of highly branched isoprenoid analyses of three core sections 

from MD03-2601 and compares them to the diatom record presented in Chapter 

5. 

Synthesis:  Chapter 7 presents the key conclusions of this thesis, addresses the 

hypotheses outlined in Chapters 3 and 4, and suggests the potential future work. 

Appendices: Appendix 1 contains plates of key diatom taxa recorded in this study, 

Appendices 2 and 3 contain the data that was analysed in Chapters 5, Appendix 

4 contains additional wavelet analyses that were conducted, but not presented in 

Chapter 5 and Appendix 5 contains the data presented in Chapter 6.   
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2. The Southern Ocean, Sea Ice, and 
Teleconnections 

This chapter outlines the role of the Southern Ocean in the global climate and the 

importance of the annual expansion and retreat of sea ice around the Antarctic margin.  

The influence of large-scale climatic modes (namely the El Niño-Southern Oscillation,  

ENSO, and the Southern Annular Mode, SAM) on sea ice in the Adélie Land region are 

discussed.  The statistical relationship between the available published indices of these 

climate modes and the seasonal variations in sea ice as derived from satellite 

observations is presented.  Additionally, the modern environmental setting is outlined 

for the Adélie Land region, including local bathymetry and oceanography, of which 

both have a large impact on sediment accumulation at the core sites used within this 

study. 

2.1 The geological history of Antarctica 

Antarctica is a landmass of ~14.2 million km
2
 and consists of two distinct continental 

blocks separated by the Transantarctic Mountains (Figure 2.01). West Antarctica is an 

archipelago formed of several microplates composed of different Mesozoic – Cenozoic 

aged volcanic and metamorphic terranes. In contrast, East Antarctica consists of a large 

stable continental craton of principally Precambrian metamorphic basement rocks and 

granitic igneous intrusions formed between the Archaean and the early Cambrian, 

unconformably overlain by sedimentary successions (Anderson, 1999).  East Antarctica 

was formerly located in the centre of the supercontinent Gondwana (Figure 2.02), 

connected to what would become Africa, India and Australia. Significant break-up of 

Gondwana began during the Jurassic, with Africa separating from East Antarctica 

between 200 and 130 Ma; India between 130 and 118 Ma; and Australia detaching by 

80 Ma, with the accretion of West Antarctica onto East Antarctica also occurring during 

this time (Lawver et al., 1992; Anderson, 1999).  This gradual rifting and break-up of 

Gondwana resulted in the formation of the Southern Ocean and the isolation of the 

Antarctic continent in its modern position.  The Wilkes Land/Adélie Land margin of 

Antarctica was formed during the rifting of Australia from Antarctica (Veevers, 1986; 

Scotese, 1991), forming a basement that transitions from oceanic crust off the shelf  
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Figure 2.01. Antarctic major continental blocks, topography and bathymetry. East 

Antarctic terranes are: Dronning Maud Land (DML); Lützom-Holm Bay (LHB); Raynor 

Terrane (RAY) and the remaining undivided East Antarctica (EANT). Major West 

Antarctic terranes are: Antarctic Peninsula (AP) (including Eastern-Western-Central 

domains: ED-CD-WD); Thurston Island (TI); Filchner Block (FB); Marie Byrd Land 

(MBL); Haag (HG); and Ellsworth-Whitmore Mountains (EWM). Northern Victoria 

Land (NVL), in East Antarctica, comprises of three terranes grouped together. ROSS = 

extended continental crust between MBL and EANT; TAM = Transantarctic Mountains. 

(Source: Torsvik et al., 2008).  Black square in EANT represents approximate location of 

core sites for this study. 

 

 

Figure 2.02. Location of Antarctica within the supercontinent of Gondwana. Figure shows 

position of continents during break up at ~120 Ma (Source: Jamieson and Sugden, 2008). 
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break, across a transitional region of rifted rocks with many igneous intrusions, to the 

continental rocks of Wilkes Land (Figure 2.03) (Eittreim, 1994; Miller et al., 2002; De 

Santis et al., 2010).  The rift basins along the Wilkes Land margin form significant sites 

of sediment accumulation, with maximum sedimentary thicknesses up to 8 km (Escutia 

et al., 2005). 

2.2 The glacial history of the Antarctic ice sheets 

2.2.1 Cenozoic history of Antarctic glaciation 

The first appearance of significant permanent ice sheets on Antarctica occurred at the 

Eocene/Oligocene boundary (~34 Ma), coincident with the transition from global 

greenhouse to icehouse conditions (Kennett and Shackleton, 1976; Zachos, 1996).  This 

transition was associated with a ~2.5°C sea surface temperature (SST) decrease in the 

tropics (Lear et al., 2008), a ~5°C SST drop in the polar regions (Liu et al., 2009) and an 

estimated maximum ice volume increase of 25 x 10
6
 km

3
 (Miller et al., 2008).  

Evidence for this transition comes from many marine and terrestrial records, including 

deep sea benthic foraminiferal δ
18

O records (e.g. Kennett and Shackleton, 1976; Miller 

et al., 1991; Zachos, 1996; Coxall et al., 2005; Coxall and Wilson, 2011), changes in the 

Mg/Ca ratio (a palaeotemperature indicator) in benthic foraminifera tests (Lear et al., 

2004; Lear et al., 2008), glacial sediments deposited on the Antarctic continental margin 

(Ivany et al., 2006), and terrestrial remains of fossil plants (Francis et al., 2008; Francis 

and Poole, 2002).  The trigger mechanism for the transition from greenhouse to 

icehouse conditions remains controversial.  It occurred during a period of summer 

cooling related to orbital cycles (Coxall et al., 2005; DeConto and Pollard, 2003) and 

has been linked to: (1) the thermal isolation of Antarctica following the tectonic opening 

of Southern Ocean gateways and the formation of the Antarctic Circumpolar Current 

(Kennett and Shackleton, 1976); and (2) declining global atmospheric CO2 (DeConto 

and Pollard, 2003).  Recent modelling studies (Haywood et al., 2010) have suggested 

that the strength of the ACC was not sufficient at the opening of the Drake Passage to 

produce a thermal isolation of Antarctica, and only played a later secondary role in 

glaciation once the passage had deepened to >500 m.  Instead, models broadly support a 

decline in atmospheric CO2 coupled with orbitally driven changes in seasonality as a 

major factor driving the onset of glaciation (Haywood et al., 2010; DeConto and 

Pollard, 2003).  Direct evidence for declining atmospheric CO2 prior to the growth of an  
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Figure 2.03.  Schematic section of the Indian Ocean sector between Antarctica and 

Australia showing ages of sea floor rocks and the continental/oceanic crust boundary 

(COB).  The Dumont d’Urville Trough is located by the black star.  Adapted from De 

Santis et al. (2010); ages, COB and Australian Late Cretaceous rift location are from 

Miller et al. (2002). 
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Antarctic ice sheet comes from changes in boron isotopes within foraminifera tests in 

Tanzanian sediment cores (Pearson et al., 2009) and stable 
13

C from a suite of marine 

sediment cores (Pagani et al., 2005).  Regardless, it is clear that as ice on Antarctica 

grew, it became a significant driver of global climate and has also been linked to 

changes in ocean circulation and chemistry (Kennett and Shackleton, 1976; Miller et al., 

2008). 

 

Between 34 and ~26 Ma a permanent East Antarctic Ice Sheet (EAIS) existed (Zachos, 

1996); however, a warming trend between 26 and ~15 Ma reduced Antarctic and global 

ice volume, although there were brief periods of glacial re-advance during this interval 

(Zachos, 1996; Wright and Miller, 1993).  Major growth of the EAIS commenced 

around 14 Ma and it has remained a significant feature of the Antarctic continent since 

this time (Flower and Kennett, 1994, 1995).  In contrast, the West Antarctic Ice Sheet 

(WAIS) consisted of isolated ice caps between ~34 and 14 Ma, which linked up at ~11 

Ma and has shown oscillations in extent from 11 to 0.1 Ma (Anderson and Shipp, 2001).  

In the Wilkes Land region, the first significant glaciation occurred around 33 – 30 Ma, 

with the ice sheet remaining ephemeral until ~ 14 Ma.  Between 14 and 10 Ma, a 

permanent ice sheet was established at the Wilkes Land coast which remains until the 

present day with oscillations in overall extent (Escutia et al., 2005). 

 

2.2.2 Last Glacial Maximum to Holocene glacial history 

The Last Glacial Maximum (LGM), around 23-19 ka BP (Mix et al., 2001), represents 

the interval during which the global ice sheets reached their maximum volume. The 

exact spatial extent of the Antarctic ice sheet at the LGM is not presently well 

constrained, however, there is evidence for a lack of synchroneity in behaviour and 

extent of the WAIS and the EAIS (Mix et al., 2001; Anderson et al., 2002).  The WAIS 

in the Antarctic Peninsula region is believed to have reached the shelf edge during the 

LGM (Sugden et al., 2006; Heroy and Anderson, 2005) whilst diamictons deposited on 

shelves around East Antarctica suggest a similar expansion, although some regions 

demonstrate little evidence for expansion beyond the current ice edge location (e.g. 

eastern Queen Maud Land, Anderson et al., 2002).  The pan-Antarctic timing of the 

deglacial onset of retreat also differs, with deglaciation beginning as early as 22 ka BP 

in Prydz Bay, East Antarctica (Domack et al., 1998), and between 18 ka BP in the 
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western Antarctic Peninsula, lasting until ca. 9 ka BP (Heroy and Anderson, 2007). The 

timing of deglaciation across the EAIS is also diachronous (Berkman et al., 1998), and 

may have occurred prior to the LGM in some areas (Anderson et al., 2002).   

 

During the last glacial, evidence from glacial marine deposits (Domack, 1982), side 

scan sonar observations (Barnes, 1987) and seismic straigraphy (Eittreim et al., 1995) 

indicate that the ice sheet edge in the Wilkes Land/Adélie Land region advanced to the 

continental shelf edge, grounding at approximately the modern 500 m isobath.  

Furthermore, modelling studies suggest that the Law Ice Dome (western Wilkes Land) 

expanded to the continental shelf edge (~65 km north of its present location; Goodwin 

and Zweck, 2000) and air content measurements from a Law Dome ice core provide an 

estimated elevation approximately 135 – 345 m higher than present (Delmotte et al., 

1999).  The minimum age of deglaciation of the Wilkes Land region is indicated from 

the onset of post-glacial marine sedimentation at around 10.5 ka BP in the Windmill 

Islands, west of Adélie Land (Verleyen et al., 2011; Hodgson et al., 2003) and prior to 

13,267 
14

C years BP (uncalibrated) in the Mertz-Ninnis Trough, east of Adélie Land 

(Maddison et al., 2006).  In the Dumont d’Urville Trough, glacial diamicts are overlain 

by a transitional sand and silt-bearing diatom ooze (IODP Expedition 318 Scientists, 

2010) that indicates the deglaciation started from ca. 11 – 12 ka BP (R. Dunbar, pers 

comm., 2011) or ca. 11 ka BP (Crosta et al., 2007).  This sand and silt bearing ooze is, 

in turn, overlain by Holocene (<11 ka BP) diatomaceous oozes (Crosta et al., 2007; 

IODP Expedition 318 Scientists, 2010). 

 

2.2.3 The modern Antarctic ice sheet 

The present ice sheet on Antarctica is estimated to contain 25.4 million km
3
 of ice 

(Lythe and Vaughan, 2001) which represents up to 90% of freshwater on Earth 

(Vaughan and Spouge, 2002). The EAIS is seated on a high plateau and is considered to 

be relatively stable in comparison to the WAIS that rests on land that is below sea level 

and has faster outlet glaciers.  As such, the WAIS is considered a greater contributor to 

contemporary sea level changes than the EAIS (Vaughan and Spouge, 2002; Lythe and 

Vaughan, 2001).  
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2.3 The Southern Ocean 

The circum-Antarctic Southern Ocean is bounded to the south by the Antarctic 

continent and is unrestricted by landmasses to the north, apart from southernmost 

Australasia and South America.  One of the most significant features of the Southern 

Ocean is the eastwards flowing Antarctic Circumpolar Current (ACC), which is the only 

current to encircle the globe and serves to thermally isolate the Antarctic continent 

(Tchernia, 1980; Orsi et al., 1995). 

 

2.3.1 Broad features of the Southern Ocean 

The Southern Ocean may be separated into two regions, the Antarctic region closer to 

the continent and the sub-Antarctic region further north (Figure 2.04). These regions are 

separated by the Polar Frontal Zone (PFZ, formerly called the Antarctic Convergence) 

which is a broad band of mixing that forms the fastest flowing part of the ACC (Carter 

et al., 2009; Cunningham, 2005). The modern PFZ is located at approximately 50°S in 

the Atlantic and Indian Oceans and 60°S in the Pacific Ocean, its southern boundary is 

the Polar Front and its northern boundary is the Sub-Antarctic Front (Figure 2.04). The 

Antarctic region contains relatively cooler and lower salinity surface waters than the 

sub-Antarctic region (Cunningham, 2005). The Antarctic region extends southwards to 

the Antarctic Divergence where it is bound by the westward flowing Antarctic Coastal 

Current, whilst the sub-Antarctic region extends northwards to the Sub-Tropical 

Convergence (Figure 4; Open University Course Team, 2001; Anderson, 1999; 

Cunningham, 2005). 

 

2.3.2 The Antarctic region and continental margin 

The ACC is the longest and largest oceanic current in the world, encompassing the 

entire Antarctic margin and connecting to all of the world’s major oceans (Figure 2.05) 

with an estimated volume of 137 – 147 Sverdrups (1Sv = x10
6
 m

3
 s

-1
) (Carter et al., 

2009).  The eastward flow of the ACC is largely driven by the direct effect of wind 

stress on the ocean surface (Carter et al., 2009) with a northward component resulting 

from the effects of the Coriolis force (Figure 2.04) (Open University Course Team, 

2001; Cunningham, 2005).  At the edge of the Antarctic continent flows the Antarctic 

Coastal Current (AcoastC; also known as the East Wind Drift), a broadly  
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Figure 2.04. Schematic block diagram showing water masses and currents in the Southern 

Ocean southwards of 45°S. Fronts are: STC - Sub-Tropical Convergence; SAF - sub-

Antarctic Front; PF - Polar Front. Abbreviated water masses are: AAIW - Antarctic 

Intermediate Water; AABW - Antarctic Bottom Water; AcoastC - Antarctic coastal 

current.  Adapted from Cunningham (2005) and Anderson (1999). 

 

westward flowing current that follows the coastline and is strongest towards the coast 

(Anderson, 1999). Waters within the AcoastC may be re-circulated within regions south 

of the ACC by several large cyclonic gyres (Figure 2.05) that form major features of the 

circulation at the continental margin (Orsi et al., 1995; Carter et al., 2009).  

 

The volumetrically largest water mass within the ACC is the Circumpolar Deep Water 

(CDW; Figure 2.04), which is a relatively warm and saline water mass that upwells 

towards the continent (Sievers and Nowlin Jr, 1984; Orsi et al., 1995).  The CDW forms 

from a mixture of Antarctic waters and Warm Deep Water (WDW) that enters from the 

Atlantic, Pacific and Indian Oceans, and within the ACC is divided into two distinct 

components.  Upper CDW is characterised by low oxygen and high nutrient levels, 

whilst Lower CDW is characterised by high salinities (Orsi et al., 1995).  Modified  
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Figure 2.05. Flow of the Antarctic Circumpolar Current (ACC), major Deep Western 

Boundary Currents (DWBC) and circulation of major atmospheric gyres around 

Antarctica. (Source: Carter et al., 2009) 

 

CDW (MCDW) forms from the vertical mixing of CDW at the shelf edge and is often 

found upwelling over the Antarctic continental shelf (Bindoff et al., 2000; Dinniman et 

al., 2011; Prézelin et al., 2000).  Upwelled MCDW mixes with high salinity shelf waters 

(formed by brine rejection during sea ice formation) and upwelled WDW to form the 

dense down-slope flowing Antarctic Bottom Water (AABW; Orsi et al., 1995; Jacobs et 

al., 1970).  Significant brine production occurs in coastal polynyas, with sea ice 

production up to 10 times faster than surrounding regions (Cavalieri, 1985; Zwally et 

al., 1985; Rintoul, 1998; Massom et al., 1998) and regions of high brine production are 

linked to significant AABW production (Orsi et al., 1995).  AABW plays a significant 

role in global thermohaline circulation, ventilating the deepest regions of the Atlantic, 
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Indian and Pacific Oceans (Orsi et al., 1999).  AABW formation occurs within the 

Weddell Sea (e.g. Fofonoff, 1957; Deacon, 1937), the Ross Sea (Jacobs et al., 1970; 

Jacobs, 2004; Bindoff et al., 2000) and along the Wilkes Land margin (Rintoul, 1998; 

Orsi et al., 1999; Gordon and Tchernia, 1972; Bindoff et al., 2000; Williams et al., 

2008).  

 

2.3.3 The sub-Antarctic region 

North of the PFZ, the sub-Antarctic region of the ACC incorporates waters from both 

the sub-tropics and from the Antarctic region. The upper 500 m of the water column 

consists of Sub-Antarctic Mode Water (SAMW; Figure 2.04) which has a northward 

surface flow and a slightly deeper southward flow (Anderson, 1999). Below this, 

sinking of Antarctic region waters in the PFZ forms the northward flowing Antarctic 

Intermediate Water ( AAIW; Figure 2.04) which flows northwards at depths up to 1000 

m (Cunningham, 2005). 

2.4 Sea ice and the Southern Ocean   

Sea ice forms one of the most significant features of Antarctica, effectively doubling the 

size of the continental area during the winter season, reaching a maximum sea ice extent 

of 19 x 10
6
 km

2
 in September before retreating to 3 x 10

6
 km

2
 by March (Budd, 1991; 

Gloersen et al., 1992). Unlike the extent of Arctic sea ice which has shown a dramatic 

recent decline of 7.8 ± 0.6% per decade since the 1970s related to anthropogenic 

warming (Cavalieri et al., 2003; Stroeve et al., 2007; Comiso, 2006), the sea ice extent 

around the majority of the Antarctic margin appears to be relatively stable, with a minor 

increase in the annual sea ice extent of 0.4% ± 0.5% per decade (NSIDC, 2009).  

However, recent investigations have shown that the summer sea ice concentrations in 

the Bellingshausen and Amundsen seas have declined over recent decades (Jacobs and 

Comiso, 1993; Ozsoy-Cicek et al., 2009; Cavalieri and Parkinson, 2008) suggesting that 

the apparent stability of the sea ice system may be declining. 

 

2.4.1 The annual sea ice cycle 

Annual variation in solar insolation is the primary driver of the seasonal advance and 

retreat of the sea ice edge.  At high latitudes seasonal changes in insolation are 
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particularly significant due to high variation between the winter months (June-July-

August) during which insolation is minimal, and the summer months (December-

January-February) when insolation reaches its maximum.  In the Antarctic region there 

is no northern constraint on sea ice production by landmasses, and therefore the autumn 

and winter advance of sea ice is relatively unrestricted.  The position of the winter sea 

ice limit mainly depends upon the interplay between northward advection of newly 

formed ice by winds and melting of the ice edge in warmer waters (Pezza et al., 2012).  

In spring sea ice retreats from its maximum extent (55°S in the Atlantic and Indian 

Oceans, 60°S in the Pacific Ocean) to the coast of Antarctica in the majority of areas, 

with little perennial ice being present around the continent (Ackley, 1981; Comiso, 

1999, updated 2008).  The winter expansion of southern hemisphere sea ice is therefore 

of great importance for global oceanographic circulation due to associated seasonal 

variations in salinity.  It is also important for regional atmospheric processes as it 

effectively doubles the surface area of Antarctic ice that interacts with the atmosphere 

and limits heat exchange from the ocean to the atmosphere (Tchernia, 1980).  

Interannual variability in the timing and extent of the sea ice edge is largely controlled 

by changes in atmospheric processes such as the Southern Annular Mode and the El 

Niño-Southern Oscillation (Section 2.5). 

 

Important controls on the formation of sea ice include seasonal insolation, sea surface 

temperature (which must be colder than around -1.86°C for sea ice to form), and surface 

wind speed, which controls ice advection away from the site of formation (PolarGroup, 

1980; Pezza et al., 2012).  On a hemispheric scale, the presence of sea ice is important 

as it provides an insulation layer that effectively prevents exchange of heat from the 

ocean to the atmosphere (Bentley, 1984; Nihashi et al., 2011), and the high albedo of ice 

and snow relative to sea water reflects up to 70% of incoming solar radiation 

(PolarGroup, 1980; Marshall and Plumb, 2008).  Sea ice conditions also play a role in 

determining regional climatic and weather systems.  For instance, in the southern 

hemisphere sea ice has been shown to exert control on the frequency of cyclogenesis 

(the formation or enhancement of cyclonic, or low pressure, weather systems), with the 

most significant correlations being observed in the Antarctic Peninsula region where 

increased sea ice extent is positively correlated with an increased formation rate of 

cyclones (Godfred-Spenning and Simmonds, 1996).  Due to this role in modulating 

regional and global climate, the relationships between the atmosphere and the 
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cryosphere are increasingly being studied.  However, the majority of studies upon sea 

ice are limited to the use of instrumental era records and shipping records, with the best 

data being available from the comparatively short period of satellite observations.   

 

2.4.2 Sea ice and CO2 

At the glacial-interglacial time scale increases/decreases in sea ice are considered to 

provide an important climatic feedback mechanism by limiting/increasing the 

ventilation of the Southern Ocean during glacials/interglacials (e.g. Sigman and Boyle, 

2000; Moore et al., 2000; Sigman et al., 2010; Keeling and Stephens, 2001; Toggweiler, 

1999).  The increased ventillation effect is further enhanced by greater aeolian 

deposition of iron to the surface ocean during glacial periods which increased the export 

efficiency (i.e. the rate at which it is removed from the water column and preserved in 

sediments) of phytoplankton productivity within the seasonal ice zone, increasing 

biological CO2 sequestration (Moore et al., 2000; Martin, 1990; Bopp et al., 2003; 

Kohfeld et al., 2005).  In the modern Southern Ocean, the waters of the seasonal ice 

zone contribute to the outgassing of CO2 to the atmosphere as CO2 builds up under 

winter ice to concentrations greater than atmospheric levels.  This occurs as a result of 

respiration under the ice and ventilation of deep waters (Takahashi et al., 2009).  

Conversely, continental shelf waters also contribute significantly to the drawdown of 

CO2 from the atmosphere during the spring and summer due to high biological 

productivity (Takahashi et al., 1997; Nicol et al., 2000; Ishii et al., 2002; Arrigo et al., 

2008b).  As a consequence of these seasonal processes, the net annual flux of CO2 

between the atmosphere and oceans is virtually zero for most regions (Takahashi et al., 

2002).  Recent estimates of CO2 drawdown in Ross Sea shelf waters by Arrigo et al. 

(2008a) suggest this region may provide a particularly strong sink for anthropogenic 

CO2 due in part to the high biological productivity and high formation rates of Ross Sea 

Bottom Water.  It is estimated that the Ross Sea alone may account for 27% of the 

recent estimates for CO2 drawdown in the entire Southern Ocean (Takahashi et al., 

2009).   
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2.5 Major modes of interannual climatic variability in the 

southern hemisphere   

Large-scale atmospheric processes cause secondary variations in the seasonal pattern of 

sea ice advance and retreat that is primarily dictated by the annual cycle of solar 

insolation.  In the southern hemisphere, the two principal modes of atmospheric 

variability are the Southern Annular Mode (SAM; also known as the Antarctic 

Oscillation), and the El Niño-Southern Oscillation (ENSO).  Studies of the influence of 

ENSO and SAM on interannual variability in the extent of sea ice around Antarctica are 

mostly limited to the relatively short instrumental period (~34 years, e.g. Simmonds and 

Jacka, 1995; Carleton, 1988; Yuan and Martinson, 2000; Kwok and Comiso, 2002; 

Stammerjohn et al., 2008; Yuan and Li, 2008), although this can be extended back to 

just over 100 years ago by use of qualitative shipboard and shore observations (see 

Mayewski et al., 2004).  Recent studies have also indicated that there is a link between 

southern hemisphere atmospheric variations (Roscoe and Haigh, 2007; Labitzke, 2004), 

oceanic variability (Hibbert et al., 2010) and the quasi-biennial oscillation (QBO) in the 

tropical stratosphere. 

 

2.5.1 The Southern Annular Mode 

The SAM is a measure of the pressure difference between the mid and high latitudes of 

the southern hemisphere (Figure 2.06a and b), with positive phases equating to 

relatively low pressure over Antarctica, compared to the mid latitudes, and negative 

phases the opposite (Marshall, 2003).  The SAM is the principal mode of atmospheric 

variability in the southern hemisphere (Thompson and Wallace, 2000).  During positive 

phases of the SAM the westerly circumpolar winds that flow around Antarctica are 

strengthened, and during negative phases they are weakened (Marshall, 2003; Liu et al., 

2004).  Antarctic sea ice extent is consequently impacted by the strengthening 

(weakening) of westerly winds during positive (negative) phases, which increases 

(decreases) via coriolis force, northerly drift of sea ice, and consequently increases 

(decreases) sea ice extent (Figure 2.06d) (Hall and Visbeck, 2010; Pezza et al., 2012).  

Positive (negative) SAM further influences the Antarctic region by decreasing 

(increasing) poleward heat flux (Figure 2.06c) (Yuan and Yonekura, 2011; Hall and 

Visbeck, 2010).  A link also exists between the SAM and the Antarctic Dipole, the 

dominant interannual variance structure in the sea ice edge, which is organized as a  
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Figure 2.06. Atmospheric signature of the SAM and associated sea ice and surface air 

temperature anomalies. (a) Regression between atmospheric air pressure and the SAM 

index 1980 – 1999 in Pa for months April-May-June using reanalysis of NCEP-NCAR data 

showing difference in air pressure between the mid- and high latitudes; (b) same as for (a) 

but for July-August-September; (c) regression between surface air temperature and the 

SAM index; (d) regression between % sea ice concentration and the SAM index. Adapted 

from Goosse et al. (2010). Original data for (a – c) from Kalnay et al. (1996); original data 

for (d) from Rayner et al. (2003). 

 

quasi‐stationary wave in each of the basins ice fields (Yuan and Martinson, 2001). This 

variance results in anti-phase temperature and sea ice extent anomalies between the 

Ross Sea and Bellingshausen/northern Weddell Sea regions (Figure 2.06d) of ~3 – 7% 

cover and ~0.5 – 2°C respectively.  This occurs due to the development of anomalously 

strong cyclonic circulation in the southeast Pacific Ocean during positive phases of the 

SAM causing an equatorward displacement of heat due to northward shifting of jet 

streams in the Ross Sea region that promotes sea ice growth.  At the same time, there is 

a poleward flux of heat in the Bellingshausen/Weddell Sea region that serves to inhibit 

sea ice growth (Liu et al., 2004; Yuan, 2004; Yuan and Li, 2008). 
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Figure 2.07. Annual mean SAM index values 1955-2011 (blue bars) and linear regression 

of SAM index (red line, r = 0.47, y = 0.0197x - 0.5949). Data from Marshall (2003). 

 

Variations in surface pressures due to the SAM occur on a variety of timescales from 

low frequency (interdecadal - Kidson, 1999) to very high frequency (daily - Baldwin, 

2001).  A multidecadal trend towards positive values in the SAM index (SAMI), a 

measure of the mean normalised sea level pressure data between the mid- and high-

southern latitudes, has been observed in modern sea level pressure (SLP) records 

(Figure 2.07)(Marshall, 2003).  Analysis of this trend suggests that it is largely 

attributable to ozone-depletion over Antarctica as a consequence of anthropogenic 

production of ozone-depleting aerosols (Thompson and Solomon, 2002; Roscoe and 

Haigh, 2007) and partly to anthropogenic warming due to increased greenhouse gas 

emissions (Marshall et al., 2004).  Seasonally, this long term trend is most apparent in 

the austral summer, with slightly smaller trends in autumn and winter data, and no trend 

in spring values (Marshall, 2003).  Shorter-period variations in the SAM have been 

associated with combined quasi-biennial oscillation-solar forcing (Roscoe and Haigh, 

2007; Labitzke, 2004).  Variations in the SAMI are statistically linked to seasonal 

variations in sea ice concentration in Adélie Land (section 2.6.3). 

 

2.5.2 The El Niño-Southern Oscillation 

The Southern Oscillation is a major see-saw of air pressure and rainfall patterns (Walker 

circulation, Figure 2.08) over the Pacific Ocean (Philander, 1983), and results from the 

pressure difference measured between Darwin, Australia, and Tahiti, French Polynesia 

(King and Turner, 1997).  Strong links exist between the Southern Oscillation and El 

Niño, an oceanic phenomenon that consists of aperiodic warming across the central and 

eastern Pacific Ocean and the two are referred to as a combined phenomena, the El  
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Figure 2.08. Schematic diagram of the Pacific Ocean under (a) La Niña conditions; (b) 

normal conditions; (c) El Niño conditions.  The colour gradient indicates relative sea 

surface temperatures (SSTs), with red equating to warmest SSTs and blue coolest SSTs.  

Adapted from (McPhaden, accessed 2010). 
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Figure 2.09. Wavelet analysis of the Niño 3 time series demonstrating the non-stationarity 

(irregularity) of the ENSO phenomenon and observed periods of 2 – 7 years.  Recreated 

from Torrence and Compo (1998). 

 

Niño-Southern Oscillation (Trenberth, 1991).  The El Niño-Southern Oscillation 

(ENSO) is an irregular climatic phenomenon in the tropical-subtropical Pacific and 

Indian Oceans, which occurs with an average periodicity of 2 – 7 years (Figure 2.09), 

and is internally modulated over decadal timescales (Timmermann and Jin, 2002; 

Torrence and Compo, 1998; Kirtman and Schopf, 1998).  ENSO events alternate 

between two extremes, warm El Niño (Figure 2.08c) and cool La Niña events (Figure 

2.08a), with each event in modern records lasting for an average of 18-24 months 

(Allan, 2000) and warm-ENSO events usually of a greater intensity than cool-ENSO 

events (An and Jin, 2004).   

 

Under normal conditions in the Pacific Ocean (Figure 2.08b), atmospheric pressure is 

higher in the east (by South America) than the west (Indonesia) resulting in strong 

westerly trade winds and a westward flow of ocean surface currents at the equator (King 

and Turner, 1997).  This typically results in wetter conditions in the western Pacific due 

to higher evaporation and dryer conditions in the eastern Pacific.  Warm-ENSO events 

occur when there is a weakening of the Walker circulation and a consequent reduction 

in the east-west pressure gradient of the Pacific Ocean resulting in warming of the 
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central and eastern Pacific Ocean, eastwards redistribution of rainfall and reduced 

upwelling of deep nutrient-rich waters in the eastern Pacific due to deepening of the 

thermocline (Figure 2.08c) (King and Turner, 1997).  Cool-ENSO events (Figure 2.08a) 

are essentially extreme normal conditions, with warmer conditions and higher rainfall in 

the western Pacific Ocean.  Whilst strongly enhanced by an extreme SO (high pressure 

in Darwin, low in Tahiti), El Niño oceanic events may occur independently of the SO, 

although they are a restricted phenomenon along the coast of South America (Trenberth, 

1991). 

 

Correlations between ENSO indices and the Antarctic sea ice edge show that 

approximately 34% of the southern hemisphere variation in sea ice concentration 

observed from satellites can be attributed to a teleconnection with ENSO, with the 

strongest connections being present in the regions of the Bellingshausen, Amundsen and 

Ross Seas via the Antarctic Dipole (Yuan and Martinson, 2000; Kwok and Comiso, 

2002), although the changes in sea ice distribution differ regionally. During warm-

ENSO events, an anomalously high pressure centre develops over the Amundsen Sea 

region which causes opposite sign temperature and sea ice anomalies in the Ross Sea 

and the Antarctic Peninsula (Figure 2.10) (Kwok and Comiso, 2002; Yuan, 2004; 

Bertler et al., 2006).  In the Adélie Land region it can be seen that a statistical link 

between cool-ENSO and increased spring sea ice extent exists (section 2.6.3). 

 

2.5.3 The quasi-biennial oscillation 

The quasi-biennial oscillation (QBO) is the dominant mode of equatorial stratospheric 

variability (~16 – 50 km altitude).  The QBO occurs as downward propagating easterly 

and westerly wind regimes within the stratosphere, with an average periodicity of 

approximately 2.3 years (Baldwin et al., 2001).  Although it is a tropical stratospheric 

phenomenon, the effects of the QBO are transmitted to the troposphere and the 

mesosphere, and have an influence on polar regions by modulation of extratropical 

planetary (Rossby) waves (Baldwin et al., 2001).  Modulation of the QBO by ENSO has 

been shown to increase the rate of downward propagation of QBO winds during warm-

ENSO events, resulting in a shorter QBO period of 2.1 years, and to slow the 

propagation of QBO winds during cool-ENSO events, resulting in a longer QBO period 

of 2.7 years (Taguchi, 2010). 



22 

 

 

Figure 2.10. Size and position of the Amundsen Sea Low (LAS) and wind strength (red arrows = 

warm air, blue arrows = cooler air) during cool-ENSO (La Niña) and warm-ENSO (El Niño) 

events. Cooling (warming) of the Ross and Amundsen Sea for cool (warm) events is indicated in the 

lower images. Grey arrows indicate katabatic wind flow (Bertler et al., 2006).  Black square in top 

left map indicates approximate location of Adélie Land core site. 

 

Evidence exists for a link between the QBO and November conditions in the polar 

vortex of the southern hemisphere stratosphere (Baldwin and Dunkerton, 1998; 

Garfinkel and Hartmann, 2007). During the winter, a strong polar vortex inhibits 

influence of the QBO on the southern polar stratosphere as a strong circumpolar wind-

flow inhibits the activity of planetary waves. However, during the late winter/early 

spring (particularly during November) the polar vortex breaks down and a downward 

propagating pressure anomaly occurs in the polar stratospheric pressure fields 

(Thompson et al., 2005; Thompson and Solomon, 2002; Baldwin and Dunkerton, 1998).  

Anomalies in polar stratospheric pressure are subsequently transmitted to the 

troposphere (Thompson et al., 2005).  On an interannual time scale, it has been shown 

that QBO forcing of southern hemisphere climate may occur if a coupled QBO-solar 

index is considered (Labitzke, 2004; Roscoe and Haigh, 2007).  Recently it has been 

shown that QBO-related changes in Southern Ocean sea level may occur due to altered 

surface wind patterns as stratospheric anomalies propagate into the troposphere (Hibbert 

et al., 2010); however, little work has been done on the regional identification of QBO 

forcing in meteorological and oceanographic datasets outside of the Antarctic Peninsula 

region. 
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2.6 Adélie Land environmental setting 

The Adélie Land margin (136°E to 142°E) is located between Wilkes Land (100°E to 

136°E) and George V Land (142°E to 153°E) sectors of the East Antarctic continental 

shelf, in the eastern Indian Ocean sector of the Southern Ocean, and is influenced by 

local glaciers, the largest of which are the Zélée, Astrolabe and Français glaciers (Figure 

2.11) as well as some of the strongest Antarctic katabatic winds (Periard and Pettre, 

1993).  A strong seasonal cycle of sea ice formation and retreat promotes high diatom 

productivity due to high nutrient levels in a stratified water column during the spring 

period (Arrigo and van Dijken, 2003; Arrigo et al., 2008c).  Strong seasonality in 

surface water salinity and temperature combined with high productivity produces a high 

export production rate (Berger and Wefer, 1990), and the exported material is focussed 

 

 

Figure 2.11. Map of the Adélie Land region showing location of cores MD03-2601 and 

IODP-318-U1357B; location of glaciers mentioned in text (Massom et al., 1998; Escutia et 

al., 2003); summer and winter sea ice limits (Schweitzer, 1995) and major oceanographic 

features of the region (Harris and Beaman, 2003). MCDW = Modified Circumpolar Deep 

Water; AcoastC = Antarctic coastal current; HSSW = High salinity shelf water. Adapted 

from Denis et al. (2006). 
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into deep troughs (IODP Expedition 318 Scientists, 2010) which leads to the ultra-high 

sedimentation rates of the sediments used in this study. 

 

2.6.1 Bathymetry 

The Adélie Land shelf is approximately 130 km wide and, as is common for Antarctic 

shelves, deepens landwards as a result of glacial erosion and loading of grounded ice.  

Large banks on the mid to outer shelf range between 200 to 400 m water depth, whereas 

large troughs produced by ice stream erosion during the last glacial interval reach 

depths >1000 m on the inner shelf (Ten Brink and Cooper, 1992; Domack, 1982; 

Eittreim et al., 1995).  The Dumont d’Urville Trough trends obliquely across the Adélie 

Land shelf, reaching a maximum depth of 1300 m, and is flanked to the northeast by the 

Adélie Bank (Figure 2.12) (Eittreim et al., 1995; Beaman et al., 2010). 

 

2.6.2 Adélie Land oceanography 

Ocean circulation in the Adélie Land region is largely dominated by upwelling 

Modified Circumpolar Deep Water (MCDW), northwards flowing High Salinity Shelf 

Water (HSSW) and the westward flowing Antarctic Coastal Current (ACoastC; Figure 

2.11) (Harris and Beaman, 2003).  MCDW upwells onto the shelf via the deep glacial 

troughs, mixes with HSSW and very cold ice shelf water (a relatively low salinity, cold 

water formed during late spring melting) to form a descending northward flowing 

current that contributes to the formation of Adélie Land Bottom Water (ALBW; Harris 

and Beaman, 2003; Rintoul, 1998; Williams et al., 2008). ALBW is an important 

component of AABW, with approximately 30% of AABW formation occurring in the 

Wilkes Land region, although there is no direct evidence for formation of ALBW in the 

Dumont d’Urville Trough (Carter et al., 2009; Jacobs, 2004).  The influence of katabatic 

winds is particularly important in the generation of the Mertz Polynya, situated over the 

George V Basin (Massom et al., 1998; Tamura et al., 2008), which is a significant 

source of HSSW and varies seasonally in areal extent. Seasonal variations in the salinity 

and temperature of ALBW have also been recorded, and since 1969 ALBW has shown 

a trend towards decreased salinity unrelated to seasonal changes, and most likely 

associated with increased glacial melting at 140°E (Aoki et al., 2005). 
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Figure 2.12. Detailed bathymetry of the Adélie Land region. (a) Mercator projection of 

bathymetry showing location of cores; (b) 3D oblique view of the Adélie Basin facing east, 

core MD03-2601 (not shown) lies slightly further west (bottom edge of b). Adapted from 

Beaman et al. (2010).  

 

2.6.3 Sea ice cover 

Interannual variations in the extent and concentration of sea ice are an important control 

on the environments of the Adélie Land coast and, subsequently, exert an important 

control on variations in phytoplankton biomass and composition (e.g. Riaux-Gobin et 
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al., 2003; Riaux-Gobin et al., 2011; Beans et al., 2008).  In this section, the satellite-

derived sea ice concentration data (November 1978 – December 2008; Comiso, 1999, 

updated 2008) are analysed for seasonal and interannual trends that may be helpful in 

the interpretation of lamina and HBI records produced from cores MD03-2601 and 

IODP-318-U1357B (Chapters 5 and 6).  These data show that sea ice covers the 

Dumont d’Urville Trough for most of the year, with two to three months of open water 

Typically, sea ice retreats between November and December, with open water in 

January and February.  A rapid advance of sea ice occurs during March and in the 

majority of years the trough experiences >80% sea ice concentration from April to 

October (Table 2.01).  The open water period (defined as <20% sea ice concentration) is 

extremely variable, ranging between zero and four months (Table 2.02).  The greatest 

interannual variability in sea ice cover observed in the satellite record occurs during the 

spring ice break-up period, whilst the lowest interannual variability occurs during the 

sea ice formation and winter periods (Comiso, 1999, updated 2008). 

 

There is strong statistical evidence for links between ENSO, the SAM and the 

extent/concentration of Antarctic sea ice from cross comparison of satellite-derived sea 

ice data and climatological indices (Simmonds and Jacka, 1995; Yuan, 2004; Yuan and 

Martinson, 2000; Yuan and Li, 2008; Kwok and Comiso, 2002; Stammerjohn et al., 

2008).  The Southern Oscillation Index (SOI) provides an estimate of the strength of the 

SO and is computed from fluctuations in the surface air pressure difference between 

Tahiti and Darwin, Australia (John, 2004).  Comparing the lead periods between 

changes in the SOI and SAM with changes in sea ice concentration in the Adélie Land 

region demonstrates differences in the significance of each index and differences in the  

Table 2.01.  Number of years in satellite record (November 1978 – December 2008; 

Comiso, 1999, updated 2008) in which sea ice parameters first occur for a given month. 

Month of sea ice first 

occurrence in satellite 

record 

<80% sea ice 

concentration 

<20% sea ice 

concentration 

>80% sea ice 

concentration 

Doesn’t occur - 3 - 

November 8 - - 

December 8 4 - 

January 9 11 - 

February 2 10 - 

March 1 - - 

April - - 23 

May - - 5 
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Table 2.02.  Number of years in satellite record (November 1978 – December 2008; 

Comiso, 1999, updated 2008) in which sea ice concentrations are <20% for a given number 

of months. 

Number of months <20% sea ice 

concentration 

Number of occurrences in satellite record 

0 3 

1 6 

2 13 

3 4 

4 2 

 

seasons which they influence.  The SOI data (Figure 2.13a) demonstrates a negative 

correlation (r = -0.3, p < 0.1, n = 31) between the SOI and sea ice concentration in the 

spring period (Figure 2.13a), with a 10-15 month lead in the SOI.  The SAMI 

correlation with Adélie Land sea ice concentration exists in the autumn interval and is 

stronger than that of the SOI (r = 0.37, p < 0.05, n = 30; Figure 2.13b).  The SAMI data 

demonstrates a short period response of 0-5 months in the spring and autumn sea ice 

concentration as well as a longer response of autumn sea ice ~11-16 months after 

observed changes in the SAMI.  Considering a combined SOI – SAMI (achieved by 

subtracting SAM values from SOI values; Figure 2.13c) provides further useful insight 

as the two are known to reinforce each other when in phase (negative SAM and positive 

SOI, and vice versa), strengthening the impact of ENSO events on the Antarctic region 

(Stammerjohn et al., 2008; Fogt and Bromwich, 2006). This approach demonstrates a 

significant (95% confidence) negative correlation (r = -0.368, n = 30) between the SOI - 

SAMI and sea ice concentration (i.e. negative SAM and positive SOI values correlate to 

 

Table 2.03.  Table summarising the statistical analysis presented in this chapter 

demonstrating the influence of phasing in the SAM and ENSO climatological indices and 

changes in satellite-derived sea ice concentration in Adélie Land. 

 Increased sea ice concentration 

Season SAM phase ENSO phase 

Spring (S-O-N-D) +ve 

(r = 0.368, p < 0.05, n = 31) 

-ve (El Niño) 

(r = -0.3, p < 0.1, n = 31) 

Autumn (M-A-M) +ve 

(r = 0.368, p < 0.05, n = 30)  

N/A 

Winter (J-J-A) +ve 

(r = 0.368, p < 0.05, n = 30) 

N/A 
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Figure 2.13. Correlation of lead periods in climatological indices with a 3-month running 

mean for a given month against sea ice concentration in the Adélie Land region (Figure 

2.14) for the period November 1978 – December 2007. (a) The Southern Oscillation Index 

(90% confidence limits = 0.3 and -0.3); (b) the Southern Annular Mode Index (95% 

confidence limits = 0.395 and -0.368; 90% confidence limits = 0.313 and -0.329); (c) the 

Southern Oscillation Index - the Southern Annular Mode Index (95% confidence limits = 

0.395 and -0.368; 90% confidence limits = 0.320 and -0.317). SOI data available from 

http://iridl.ldeo.columbia.edu/docfind/databrief/ cat-index.html. SAM index data available 

from http://www.antarctica.ac.uk/met/gjma/sam.html (Marshall, 2003). Raw satellite sea 

ice data from Comiso (1999, updated 2008), processed by Ian Thomas. 
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Figure 2.14. Sampling region and distribution of sampling points within satellite data used 

in Figure 2.13. Figure produced by Ian Thomas. 

 

reduced sea ice); which is particularly evident within the winter and spring period.  This 

relationship has been demonstrated at a broad scale in southern hemisphere satellite-

derived sea ice records (Stammerjohn et al., 2008) and multidecadal modulation of the 

signal is governed by phase changes in the SAM (Fogt and Bromwich, 2006). 

2.6.3.1 Hypotheses for diatom lamina distribution 

Given the demonstrated statistical relationship between seasonal sea ice concentration 

and SAM and ENSO indices presented above, and the known sensitivity of diatoms to 

changes in sea ice (see also Chapter 3), several hypotheses are proposed here for testing 

in Chapter 5.  The working hypotheses for the distribution of lamina that are rich in 

particular genera/species in cores MD03-2601 and IODP-318-U1357B are: 

1) The distribution of spring laminae should be sensitive to ENSO forcing, based 

on the negative correlation between modern spring sea ice concentration and 

ENSO. 

2) The distribution of autumn laminae should be sensitive to SAM forcing, and 

possibly combined SAM-ENSO forcing, based on the positive correlation 

between modern autumn sea ice concentration and SAM, and a combined 

SAM-ENSO index. 

3) As a response to both the increased sea ice (Crosta et al., 2007) and ENSO 

intensity that occurred during the late Holocene (Moy et al., 2002; Donders et 



30 

 

al., 2008) ENSO-frequencies should be observed more strongly in the lamina-

time series records during the Neoglacial compared to the Hypsithermal. 

2.5 Summary 

This chapter has introduced the geological and oceanographic history of Antarctica to 

explain the presence of the cryosphere and its importance within global cycles in 

oceanography and climate. In particular, the importance of the strongly seasonal sea ice 

cycle has been presented along with its impacts on biological productivity, 

sedimentation and nutrient cycling, as well as producing high salinity bottom waters, a 

major feature of global thermohaline circulation. The connectivity between sea ice and 

global atmospheric/climatic processes has also been demonstrated, highlighting the 

statistical connection between ENSO and spring sea ice concentrations in Adélie Land 

and the SAM and autumnal/spring sea ice concentrations.  Based on this data, and 

known changes in the ENSO system, three hypotheses have been proposed and will be 

tested in Chapter 5. 
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Chapter 3 – Proxies used in this study 

This chapter introduces Antarctic marine diatoms describing their distribution, ecology, 

preservation and uses in palaeoenvironmental reconstruction.  Similarly, background 

information on the distribution, formation, preservation and palaeoenvironmental uses 

of highly branched isoprenoids (HBIs) are presented, along with a revised analysis of 

previously published data for core MD03-2601 (Denis et al., 2010).  The latter is 

included in order to highlight the association between HBI di- and tri-unsaturated 

molecules and the presence of sea ice-associated diatoms in core MD03-2601. 

3.1 Diatoms of the Southern Ocean 

Diatoms are unicellular microscopic (typically ~2 – 200 µm, although some genera such 

as Thalassiothrix may reach lengths of up to 2 mm) algae (classes Diatomophyceae and 

Bacillariophyceae) which occur individually or in colonies, have a cell wall (frustule) 

composed of silica and exhibit a wide range of forms (Round et al., 1990).  Colonies are 

held together by interlocking spines, ridges, mucilage pads or chitinous threads, and 

aggregation of colonies leads to sedimentation of large (several mm) particles that 

contribute to marine snow (Priddle, 1990).  Diatoms are the dominant primary 

producers in the Southern Ocean, accounting for up to 75% of primary production in 

this region and are consequently of great importance in the marine and global silicic 

acid and carbon cycles (Treguer et al., 1995). 

 

Sedimentary deposition of diatomaceous ooze around Antarctica occurs in a broad 

continuous belt which is located between the Polar Front and the winter sea ice edge 

(Hays, 1965; Burckle and Cirilli, 1987).  To the south of this belt occurs a mix of 

diatomaceous and silty sediments, and to the north more carbonate-rich sediments 

(Burckle and Cirilli, 1987).  Diatomaceous ooze also forms more sporadically at sites of 

high deposition rates closer to the coast such as Adélie Land (e.g. Leventer et al., 2001; 

Crosta et al., 2005a; IODP Expedition 318 Scientists, 2010; Maddison et al., 2012), the 

Mertz-Ninnis Trough (Harris and Beaman, 2003), Prydz Bay (Taylor et al., 1997), the 

Ross Sea (Leventer et al., 1993) and the Antarctic Peninsula (Leventer et al., 2002; 

Bahk et al., 2003) among others.  The elevated sedimentation rates at these coastal sites 



32 

 

(up to 75 mm in a single season; Stickley et al., 2005) often allow for ultra-high 

resolution (seasonal to sub-seasonal) reconstructions of palaeoenvironments. 

 

3.1.1 The ecology of Southern Ocean diatoms 

The distribution of diatoms in the surface waters of the Southern Ocean is controlled by 

a variety of environmental factors.  Light intensity, salinity, sea surface temperature, 

nutrient availability, water column stability and sea ice concentration have all been 

shown to exert control on the distribution of diatoms (Holm-Hansen and El-Sayed, 

1975; Neori and Holm-Hansen, 1982; Jacques, 1983; Burckle et al., 1987; Leventer, 

1991; Cunningham and Leventer, 1998; Beans et al., 2008; Riaux-Gobin et al., 2011).  

Sea ice in particular exerts an important control on diatom productivity and export, 

suppressing productivity when present (Hart, 1942; Whitaker, 1982) and enhancing 

diatom productivity as it retreats (Arrigo et al., 2010).  Here the ecology of diatoms is 

considered in two groups: (i) sea ice associated diatom species that are confined to 

south of the Polar Front (Table 3.01) (Tréguer and Jacques, 1992; Armand et al., 2005) 

which are dominant in the sea ice zone and marginal ice zone towards the Antarctic 

continent (Figure 3.01); and (ii) open ocean diatom species (Table 3.02) (Crosta et al., 

2005b) which are more common in the open ocean zone beyond the winter ice limit and 

are of high abundance in the Polar Frontal Zone (PFZ). 

 

3.1.1.1 Sea ice associated diatoms 

Sea ice has a variety of habitats for diatoms due to highly variable temperature and 

salinity characteristics and also providing a stable platform with adequate irradiance to 

promote microalgal growth within the ice and/or attached below (Arrigo et al., 2010).  

Land-fast ice (Figure 3.02a), which may account for only 10% of Antarctic sea ice 

(Lizotte and Sullivan, 1991), is formed of a layer of vertically grown columnar ice and 

may have a bottom layer of highly porous (approx. 20% ice and 80% sea water) platelet 

ice which often contains high microalgal biomasses (Arrigo et al., 2010).  In contrast, 

pack ice (Figure 3.02b) forms from a series of processes operating on the water column.  

Initially dense concentrations of frazil ice crystals form in the water column and float to 

the surface where they form grease, nilas and pancake ice (Ackley and Sullivan, 1994).   
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Figure 3.01.  Schematic representation of the oceanic zones referred to in the text. 

 

During this process, frazil ice crystals scavenge particles, including diatoms, from the 

water column and concentrate them in the lower layers of forming sea ice (Garrison et 

al., 1990) up to 50-times relative to the underlying sea water (Arrigo et al., 2010).  

Following consolidation of frazil ice, ice growth occurs vertically to form columnar ice, 

the lowest layer of which (the skeletal layer) is highly porous permitting infiltration of 

sea water and the growth of microalgal communities in the bottom 20 cm of this layer 

(Arrigo and Sullivan, 1992).  Microalgae may also be found growing within pack ice, 

particularly during the late winter and early spring seasons when the ice may provide 

stable access to solar irradiance (Lizotte and Sullivan, 1991) and protect microalgae 

from grazers.  They are typically associated with the upper frazil ice layer (Figure 

3.02b), particularly when heavy snow layers induce flooding-freezing of the pack ice 

surface (Kattner et al., 2004).  Incorporation of diatoms into sea ice during the autumn 

requires the species to be able to switch from a planktonic life mode to a “kryohaline” 

life mode (Eicken, 1992) and several studies have recorded a reduction from >100 

species incorporated in new ice to <20 species remaining during ice melting (Krebs et 

al., 1987; Gleitz et al., 1996; Gleitz et al., 1998) indicating that relatively few species 

are able to adapt to living within the sea ice. 

 

Land fast ice communities are commonly dominated by pennate diatom species such as 

Amphiprora spp., Navicula spp. and Nitzschia spp. that do not contribute significantly 

to phytoplankton standing stock and are rarely recorded in the fossil record  



34 

 

 

Figure 3.02.  Highly idealised schematic illustration of (a) pack ice and (b) land-fast ice 

ecosystems in the Antarctic showing the location of major ice algal communities.  Adapted 

from Arrigo et al. (2010). 

 

(Riaux-Gobin et al., 2003).  Species of Fragilariopsis, notably F. curta and F. 

cylindrus, may be common in fast ice communities as well as adjacent water (e.g. 

Smetacek et al., 1992; Grossmann et al., 1996; Gunther and Dieckmann, 2001; Thomas 

et al., 2001; Riaux-Gobin et al., 2003).  In contrast, the more prevalent pack ice contains 

diatom assemblages that are more similar to the surrounding water column (Garrison et 

al., 1987).  Pack ice may be solely dominated by F. curta (Scott et al., 1994) but also 

commonly contains other cryophilic diatoms, such as various Fragilariopsis spp. and 

Thalassiosira antarctica (summarised in Table 3.01) that are associated with both pack 

ice and the water column in the marginal ice zone.  For many of these species it has 

been hypothesised that they are directly seeded into the water column from the sea ice 

(e.g. Horner, 1985; Garrison et al., 1987; Krebs et al., 1987; Garrison and Buck, 1989; 

Gleitz et al., 1996; Riaux-Gobin et al., 2011).   

 

Significant phytoplankton productivity within the coastal Southern Ocean is restricted 

to the ice-free austral summer months, with up to 95% of annual biogenic export 

occurring between December and January (Wefer et al., 1988; Abelmann and Gersonde, 

1991; Langone et al., 2000; Leventer, 2003).  High phytoplankton biomass and export 

occurs at the retreating ice edge in the marginal ice zone (MIZ), due to the formation of 

a stable meltwater lens at the ice edge which benefits from high irradiance relative to 

sub-sea ice waters (Smith and Nelson, 1986).  High surface water nutrient loads result 

from upwelling waters and release of important minerals, principally iron, from sea ice 

and snow cover (Fischer et al., 2002; Lannuzel et al., 2007).  It has been estimated that  
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Table 3.01 (next three pages). Summary of ecological information from sea ice, water and 

surface sediment samples for common sea ice associated species observed in this study.  

Plates of key diatom taxa are presented in Appendix 1. 

Species Ecological information 

Hyalochaeate 

Chaetoceros 

resting spores 

(CRS) 

Vegetative cells often observed as sub-dominant within pack ice (Gleitz et 

al., 1998) and broadly distributed in Adélie Land surface waters (Beans et 

al., 2008).  Resting spore formation occurs as a response to depleted 

nitrogen or iron levels, or reducing light during vertical mixing of the water 

column or as a result of reduced seasonal insolation during the autumn 

(Crosta et al., 1997). 

 Sedimentary distribution of CRS is associated with high nutrient levels and 

strong spring stratification (Leventer, 1991; Crosta et al., 1997).  Highest 

sedimentary abundances occur in the Antarctic Peninsula with ~7 

months/year sea ice cover, although elsewhere they occupy a broad range of 

seasonal sea ice cover and appear to peak in areas with relatively icy 

summer conditions (Armand et al., 2005). 

Eucampia 

antarctica var 

recta 

(Castracane) 

Mangin 

Highest abundances in coastal zones near to ice and found in high 

abundance proximal to melting ice in more open ocean areas (Burckle, 

1984). 

Often dominant in glacial sediments and most common sedimentary 

occurrences are towards the Antarctic coast (Burckle, 1984). 

Fragilariopsis 

curta (van 

Huerck) Hustedt 

Commonly reported in coastal areas and may be dominant or common 

within sea ice communities and waters proximal to a melting ice edge 

(Garrison and Buck, 1989; Tanimura et al., 1990; Smetacek et al., 1992; 

Kang and Fryxell, 1993; Scott et al., 1994; Gleitz et al., 1996; Leventer and 

Dunbar, 1996; Goffart et al., 2000; Lizotte, 2001; Riaux-Gobin et al., 2003; 

Riaux-Gobin et al., 2011).  

 Sedimentary distribution confined to areas south of the winter sea ice edge, 

peaking in regions with 9 – 11 months per year of sea ice cover (Armand et 

al., 2005). 

F. cylindrus 

(Grunow) 

Krieger 

Dominant in sea ice meltpools/crackpools in the Weddell Sea  and 

commonly found within pack ice (Gleitz et al., 1996). May be present 

within platelet ice but also does well in open ocean conditions after ice 

melting (Lizotte, 2001; Mangoni et al., 2009; Riaux-Gobin et al., 2011) and 

dominant relative to F. curta in water (Burckle et al., 1987) and has been 

considered an indicator of cold coastal waters (von Quillfeldt, 2004).  One 

of the most common diatoms found in the Adélie Land MIZ (Kang and 
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Species Ecological information 

Fryxell, 1992; Riaux-Gobin et al., 2011).   

 Peak sedimentary abundance in regions with winter sea ice concentrations 

of >70 – 90%, with >7.5 months per year sea ice cover (Tanimura et al., 

1990; Armand et al., 2005).  May be less well preserved in sediments than 

F. curta due to smaller size resulting in preferential dissolution and greater 

winnowing (Leventer, 1998). 

F. obliquecostata 

(van Huerck) 

Heiden 

Common beneath pack ice and found in areas where winter sea ice 

concentrations are 65 – 90%, with >7 months per year sea ice cover.   

Sedimentary occurrences appear to be confined to regions south of the 

maximum summer sea ice extent in the South Atlantic (Gersonde and 

Zielinski, 2000).  Confined to sediments beneath the winter sea ice limit 

(Armand et al., 2005). 

F. rhombica 

(O’Meara) 

Hustedt 

Observed in fast and pack ice samples (Garrison et al., 1983; Krebs et al., 

1987; Garrison and Buck, 1989). 

Occur in sediments near the coast or ice shelves (Taylor et al., 1997; 

Zielinski and Gersonde, 1997; Cunningham and Leventer, 1998), maximum 

sedimentary occurrence beneath winter sea ice concentrations 65 – 90% in 

areas with 7-9 months of sea ice per year.  Optimum February temperature 

range of -1°C to 1°C (Armand et al., 2005). 

F. ritscheri 

Hustedt 

Observed in fast ice and pack ice samples (Garrison and Buck, 1989; 

Tanimura et al., 1990), but occurs at higher abundances in water column 

next to sea ice than in the sea ice itself (Garrison et al., 1983; Garrison et 

al., 1987). 

 Greatest sedimentary abundances in areas beneath winter ice conditions 

>70%, and an optimum of 9 months/year sea ice cover, but found from 2 to 

10.5 months/year. Optimum sea surface temperature 0 - 3°C (Armand et al., 

2005). 

F. separanda 

Hustedt 

Higher abundances at slightly offshore locations rather than inshore 

(Leventer, 1992; Taylor et al., 1997; Cunningham and Leventer, 1998), but 

may be confined to south of the Polar Front (Zielinski and Gersonde, 1997). 

 Maximum sedimentary abundances in areas with 4.5 – 9 months/year sea 

ice cover and a temperature range of -1 to 8°C.  Distribution may be linked 

to transportation of frustules (Armand et al., 2005). 

F. sublinearis 

(van Huerck) 

Reported in fast ice samples (Garrison et al., 1983; Garrison and Buck, 

1989; Tanimura et al., 1990).  
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Species Ecological information 

Heiden Similar sedimentary distributions to F. obliquecostata and F. ritscheri 

(Zielinski and Gersonde, 1997; Armand et al., 2005).  Sedimentary 

occurrences highest where February SSTs are -1.3 to 2.5°C and with highest 

February sea ice concentrations (Armand et al., 2005). 

Porosira 

glacialis 

(Grunow) 

Jörgensen 

Found in sea ice samples (Krebs et al., 1987) and extremely coastal waters 

with high ice concentrations (Hasle, 1976). 

Found in sediments that have >7.5 months/year sea ice cover, sea ice <30% 

during the summer and with winter ice concentrations of 65 – 85%.  

Maximum sedimentary abundances occur linked to February SST of 0 – 

0.5°C (Armand et al., 2005; Pike et al., 2009). 

Stellarima 

microtrias 

(Ehrenberg) 

Hasle and Sims 

Found at high abundances in sea ice (Garrison et al., 1987; Krebs et al., 

1987; Tanimura et al., 1990). 

Found in sediments that have >7.5 months/year sea ice cover, sea ice <30% 

during the summer and with winter ice concentrations of >65%.  Maximum 

sedimentary abundances occur linked to February SST of -0.5 – 0.5°C 

(Armand et al., 2005). 

Thalassiosira 

antarctica 

Comber 

Dominant in meltpools/crackpools and in platelet ice communities 

underlying drift ice in the Weddell Sea (Smetacek et al., 1992; Gleitz et al., 

1996) and seeded from sea ice (Gleitz et al., 1996).  Commonly linked to 

low SST and sea surface salinity associated with the presence of sea ice 

(Villareal and Fryxell, 1983), but requires open waters to bloom (Barcena et 

al., 1998) and may be a major phytoplankton component in poorly- or non-

stratified waters (Cremer et al., 2005). 

 Maximum sedimentary abundances in regions with >6 months per year sea 

ice cover, winter sea ice >70% concentration and February SSTs of 0 to 

0.5°C (Armand et al., 2005). 
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Table 3.02.  Summary of ecological information from sea ice, water and surface sediment 

samples for common open ocean diatom species observed in this study.  Plates of key 

diatom taxa are presented in Appendix 1. 

 Species Ecological information 

Corethron 

pennatum 

(Grunow) 

Ostenfeld in van 

Heurck 

Commonly found in the PFZ associated with mixed surface waters and is 

able to migrate vertically within a mixed water column to take advantage of 

light near the surface and deeper nutrients (Fryxell et al., 1971; Crawford et 

al., 1997; Beans et al., 2008).  Periods of sexual reproduction in surface 

waters are associated with rapid sedimentation of C. pennatum (Crawford, 

1995). 

 Sedimentary occurrences are typically associated with late spring mixing of 

surface waters (Fryxell et al., 1971; Bahk et al., 2003; Stickley et al., 2005; 

Maddison et al., 2006; Denis et al., 2010; Maddison et al., 2012). 

Fragilariopsis 

kerguelensis 

(O’Meara) 

Hustedt 

Dominates assemblages of the open ocean zone south of the Polar Front  

(Froneman et al., 1995), with its northern oceanic boundary occurring at the 

Sub-Tropical Front (Hasle, 1976). 

Maximum sedimentary occurrence is in the circum-Antarctic diatom ooze 

belt, where it may be the main component.  Occurs in sediments in regions 

where February surface waters are 1 – 8°C and in sea ice-influenced areas 

that experience open water (<20% ice cover) conditions during the summer 

(Crosta et al., 2005b). 

Phaeoceros 

Chaetoceros 

dichaeta 

Ehrenberg 

Most common in the PFZ but also found in coastal wind mixed surface 

waters during the summer (Assmy et al., 2008; Beans et al., 2008). 

Increased sedimentary abundance in Adélie Land during the Holocene 

linked to increased wind strength (Denis et al., 2010). 

Rhizosolenia 

antennata 

(Ehrenberg) 

Brown 

Reported from waters in the sea ice zone through to the sub-Antarctic zone, 

with maximum occurrences in the cool open ocean waters of the PFZ 

(Fenner et al., 1976; Froneman et al., 1995). 

Maximum sedimentary occurrences north of the winter sea ice edge (Crosta 

et al., 2005b), with isolated occurrences in the sea ice zone (Maddison et al., 

2006). 

Thalassiosira 

gracilis (Karsten) 

Hustedt 

Common in open ocean samples in the Weddell Sea, absent beneath sea ice 

or in crack pools (Gleitz et al., 1996). 

Widely distributed in sediments from the Antarctic coast northwards, with 

traces found north of the Polar Front.  Maximum occurrences between the 

winter sea ice edge and the Antarctic coast, with a preference for open 

ocean conditions in the summer (Zielinski and Gersonde, 1997; Crosta et 
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 Species Ecological information 

al., 2005b) and maximum February temperatures of 1 – 2°C (Crosta et al., 

2005b). 

T. lentiginosa 

(Janisch) Fryxell 

Common occurrences in the Southern Ocean south of the Polar Front 

(Johansen and Fryxell, 1985; Theriot and Fryxell, 1985; Priddle et al., 1986; 

Kopczyńska et al., 1998). 

 Most commonly reported from sediments of the permanently open ocean 

zone and PFZ (Crosta et al., 2005b and references therein).  Maximum 

sedimentary occurrences between the winter sea ice edge and the Sub-

Antarctic Front, with a preference for 0 – 4 months per year sea ice cover 

and a notably similar distribution to F. kerguelensis (Crosta et al., 2005b).  

Has been found in high concentrations in sediments from the George Vth 

Coast (Leventer, 1992). 

 

50 – 60% of total Southern Ocean productivity occurs in the MIZ (Smith and Nelson, 

1986; Legendre et al., 1992); 4 – 5 times greater than that which occurs under sea ice 

(Burckle et al., 1987).  When there is a strong influence of sea ice melting during the 

spring, high phytoplankton biomass characterised by high abundances of Fragilariopsis 

curta, F. cylindrus or Hyalochaete Chaetoceros occurs (Kang and Fryxell, 1992; 

Dunbar et al., 1998; Beans et al., 2008; Riaux-Gobin et al., 2011).  In coastal areas, 

diatoms species typically associated with sea ice may be replaced during the summer by 

assemblages characterised by species most abundant in open ocean conditions (Crosta et 

al., 2005b; Crosta et al., 2008). 

 

3.1.1.2 Open ocean diatoms 

In contrast to the high diatom primary productivity of the sea ice influenced MIZ, the 

open ocean zone is characterised by relatively low phytoplankton productivity due to 

low levels of iron (Martin, 1990; Priddle et al., 1998) and high grazing pressure by 

zooplankton (Smetacek et al., 1997).  This region is characterised by open ocean taxa 

including large centric diatoms and various species of Rhizosolenia, Thalassiothrix and 

Pseudonitzschia (Froneman et al., 1995; Selph et al., 2001; Crosta et al., 2005b).  

Seasonally higher primary productivity occurs north of the open ocean zone in the PFZ 

due to eddy-induced mixing of the surface waters which enhances the supply of 

nutrients (De Baar et al., 1995; Abbott et al., 2000).  Spring blooms are triggered within 
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the PFZ by a combination of increasing irradiance and increased stratification (Abbott et 

al., 2000; Moore and Abbott, 2000) and have been observed to include monospecific 

blooms of Fragilariopsis kerguelensis (De Baar et al., 1995; Smetacek et al., 1997), 

Corethron pennatum and C. inerme (Smetacek et al., 1997).  Other common diatoms 

observed in the PFZ include Thalassiothrix antarctica, Thalassiosira lentiginosa, 

Phaeoceros Chaetoceros spp. and Hyalochaete Chaetoceros spp. (Assmy et al., 2008).  

Ecological information for common open ocean diatom species in this study is 

presented in Table 3.02. 

 

3.1.2 Diatom preservational biases 

The use of diatoms as palaeoenvironmental indicators in the Antarctic region may be 

hindered by several environmental and taphonomic factors.  Firstly, only a fraction of 

valves formed in the euphotic zone actually reach the sediment (potentially <1%, 

although it may be up to 30% on high latitude continental shelves; Ragueneau et al., 

2000); further account must be taken of preferential dissolution between taxa, lateral 

transport of diatom tests by currents and the impact of grazers within the water column 

and in sediments (Leventer, 1998).  Frustule size and degree of silicification also 

provide controls on the sedimentary distribution of diatoms.  Smaller species such as 

Fragilariopsis cylindrus may be lost from sediments due to increased winnowing during 

periods with stronger bottom currents (Harris and Beaman, 2003), whereas lightly 

silicified diatoms are more prone to dissolution than those with heavier frustules, which 

have a higher sinking velocity and are buried more readily (Gersonde and Wefer, 1987).  

Large diatoms and diatom mats may also become entrained in the upper layers of the 

water column, increasing the time for which they are exposed to dissolution processes 

(Leventer, 1998) or to zooplankton grazing (Gersonde and Wefer, 1987).  The presence 

of dissolution susceptible species such as Corethron pennatum, F. cylindrus and 

Porosira glacialis within sediments may be used to identify minimal differential 

preservation as a result of dissolution (Pichon et al., 1992). 

 

Diatom species that typically occur in, or attached to, sea ice may also undergo 

preferential dissolution (e.g. Amphipora spp., Nitzschia spp., Pinnularia spp. and 

Pleurosigma spp.), resulting in few individuals reaching the sediment and rendering 

them unsuitable as palaeo-sea ice indicators (Riaux-Gobin et al., 2011).  However, sea 
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ice associated species such as F. curta and F. cylindrus, and open ocean diatoms such as 

Thalassiosira antarctica and F. kerguelensis display better preservational tendencies 

and are typically considered more suitable for palaeo-reconstructions (Leventer, 1998).   

Despite these preservational problems, a suite of studies has demonstrated that diatom 

sedimentary abundances are well related to surface water hydrology (e.g. Jouse et al., 

1962; Truesdale and Kellogg, 1979; Gersonde, 1986; Leventer, 1992; Pichon et al., 

1992; Leventer and Dunbar, 1996; Zielinski and Gersonde, 1997; Cunningham and 

Leventer, 1998; Pike et al., 2008). 

3.2 Highly Branched Isoprenoids 

Highly branched isoprenoid (HBI) alkenes are common in many modern marine settings 

(Belt et al., 2000a).  C25 HBIs (Figure 3.03) have been associated with diatoms in both 

the natural environment and laboratory cultures (Wraige et al., 1997; Belt et al., 2001; 

Grossi et al., 2004).  C25 HBIs produced by the diatom Haslea ostrearia have between 

zero and five double bonds in the HBI structure (Wraige et al., 1997).  The degree of 

unsaturation of HBIs produced by the species Haslea ostrearia is temperature, not 

salinity, dependent, with higher levels of unsaturation (more double bonds) occurring at 

relatively higher temperatures (Wraige et al., 1997; Rowland et al., 2001).  This 

temperature dependence makes HBIs potentially useful proxy indicators of 

palaeotemperature. 

 

3.2.1 Sea ice and HBIs 

Brown et al. (2011) have recently reported the occurrence of an HBI monoene (IP25 ; 

Figure 3.03a) and diene in sea ice samples from the Arctic Ocean, whilst Massé et al. 

(2011) report the occurrence of an HBI diene (Figure 3.03b) in Antarctic sea ice 

samples and an HBI triene (Figure 3.03c) from Antarctic MIZ phytoplankton.  The high 

δ
13

C signature (-5.7 to -8.5‰) of the HBI diene is consistent with its formation under 

the low CO2 concentrations found within sea ice (Gibson et al., 1999; Kennedy et al., 

2002; Belt et al., 2008), which contrasts with the lower δ
13

C values of the triene 

(typically -38 to -41 ‰) (Massé et al., 2011).  Trace amounts of C25:3 trienes have been 

reported from sea ice communities (Nichols et al., 1993) and are similarly associated 

with diatoms, although the source species/genera are unknown.  Hayakawa et al. (1996) 

have also reported C25:1 and C25:3 alkenes from sediment traps in Breid Bay (Queen 
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Figure 3.03.  Structures of HBI hydrocarbons with 25 carbon atoms (C25). (a) HBI 

monoene IP25 (Belt et al., 2007); (b) HBI diene (C25:2), this study; (c) HBI triene (C25:3), this 

study. 

 

Maud Land) which are associated with a diatom source, noting high abundances of 

Thalassiosira antarctica in the sediment traps.  Although it is uncertain as to the 

specific producer of HBIs in Antarctic sediments, the sea ice associated diatom 

Fragilariopsis cylindrus has been demonstrated by Damsté et al. (2004) not to be a 

producer of the molecules, and a similar lack of HBI production has been assumed for 

other Fragilariopsis species such as F. curta and F. kerguelensis (Massé et al., 2011). 

 

3.2.2 HBIs as an indicator of palaeo-sea ice extent 

Recently, a variety of studies have highlighted the potential of HBIs as a proxy for 

palaeo-sea ice extent in the Arctic (Belt et al., 2007; Massé et al., 2007; Masse et al., 
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2008; Müller et al., 2009; Vare et al., 2009) and the Antarctic (Barbara et al., 2010; 

Denis et al., 2010; Collins et al., submitted manuscript).  Initially, an HBI monoene 

(namely IP25) was reported from sediment in samples in the Arctic (Belt et al., 2007) 

and has subsequently been found to be exclusively in sea ice and absent from 

phytoplankton samples (Brown et al., 2011).  Together with a high δ
13

C signature, 

consistent with formation under the low CO2 concentrations found within sea ice 

(Gibson et al., 1999; Kennedy et al., 2002; Belt et al., 2008), and sedimentary 

concentrations that show a good correlation with historical records of sea ice extent 

(Masse et al., 2008), the IP25 monoene has been demonstrated as providing a reliable 

indicator of palaeo-sea ice extent on timescales ranging back to the last glacial 

maximum (e.g. Müller et al., 2009).   

 

Unfortunately, the IP25 molecule to date has not been recorded in Antarctic sediments.  

However, a variety of C25 HBIs have been reported from Antarctic estuarine and coastal 

sediments, including an HBI diene which has been consistently associated with a sea ice 

diatom origin (Venkatesan, 1988; Nichols et al., 1989; 1993; Johns et al., 1999; Damsté 

et al., 2004; Massé et al., 2011) and an HBI triene found exclusively in phytoplankton.  

The diene is not exclusive to the Antarctic region, having been produced in laboratory 

cultures of the temperate diatom Haslea ostrearia (Johns et al., 1999) and noted in 

Arctic sediments (Massé et al., 2011).  It has been demonstrated that the occurrence of 

HBI diene in Icelandic sediments reported by Massé et al. (2011) correlates very well 

with occurrences of IP25 in the same sediments, indicating a likely sea ice origin of the 

molecule.  Given the occurrence of HBI diene in sea ice samples and triene in 

phytoplankton samples, it has been suggested that the ratio of diene to triene in 

sediments may provide an indicator of changes in sea ice versus open water over 

multimillenial (Holocene) timescales (Massé et al., 2011).  

 

Denis et al. (2010) analysed changes in the diene/triene ratio throughout the Holocene 

from a suite of marine sediment cores collected in Adélie Land and Prydz Bay, East 

Antarctica, as a potential proxy for the relative input of sea ice and phytoplankton 

productivity to sediments.  For the Prydz Bay region, a clear positive relationship 

between sea ice-associated diatoms (i.e. commonly preserved diatoms that are 

associated with the presence of sea ice, but do not necessarily live within it) and the 

ratio of diene/triene was observed, with both demonstrating an increase since ca. 4 cal.  
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Figure 3.04.  Holocene distribution of normalised relative abundances of (a) HBI diene, (b) 

HBI triene, (c) the ratio diene/triene and (d) the relative abundance of sea ice associated 

diatoms in core MD03-2601.   Sea ice diatom group and Ratio D/T from Denis et al. (2010). 

 

ka coincident with the onset of the Neoglacial.  However, in Adélie Land the 

relationship between the ratio of HBIs and increases in sea ice associated diatoms is less 

clear (Figure 3.04).  While the sea ice-associated diatoms sharply increase in abundance 

at ca. 4 cal. ka (driven by a threshold response of F. curta at 4 ka, the most abundant 

diatom within the group) the diene/triene ratio increase only slightly at ca. 4 cal. ka, and 

have a much more pronounced increase at ca. 1.5 cal. ka (Denis et al., 2010).  Despite 
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the large step-wise increase in the sea ice associated diatom group, analysis of all three 

HBI parameters (diene, triene and the ratio D/T) demonstrates that a significant 

correlation exists between them and the relative abundance of sea ice associated diatoms 

(SIDG; Figure 3.04).  It can be seen that the HBI triene increases slightly around 7 ka 

and increases continually from ca. 4 ka until present.  In comparison, the HBI diene 

increases slightly at around 4 ka, followed by a more dramatic increase ca. 1.5 ka 

(which drives the ratio D/T; Figure 3.04).  The increase in HBI diene and triene, and sea 

ice associated diatoms at 4 ka suggests that the sedimentary records of these molecules 

is linked to increases in sea ice concentrations and this can be used to infer that the ratio 

D/T is not recording changes in the relative contributions of sea ice diatoms versus 

planktonic diatoms, as suggested previously (Barbara et al., 2010; Denis et al., 2010; 

Massé et al., 2011).  The different nature of the increases in the proxies at the mid-

Holocene transition (a sharp, pronounced increase in the diatom record compared to 

subtler increases in HBI concentration) suggests that whilst they may both record 

changes in seasonal sea ice presence, the HBIs are recording an aspect of the sea ice 

environment (e.g. fast ice) that is not recorded by commonly preserved diatoms. 

 

3.2.3 Stability of HBIs 

Polyunsaturated HBI molecules may be unstable in sedimentary systems, particularly in 

the presence of sulphur species that react with the double bonds (Belt et al., 2000b; 

Sinninghe Damste et al., 2007).  Monoene and diene molecules may be more stable in 

sediments compared to more unsaturated HBIs, with double bond migration and 

isomerisation (reorganisation of the structure but not composition of the molecule) of 

dienes observed by Belt et al. (2000b).  Belt et al. (2000b) note that the presence of 

clays in sediments may act as a catalyst for isomerisation and found that although some 

trienes may experience both isomerisation and cyclisation (restructuring of the molecule 

to produce a ringed structure), the triene molecule used in this study does not experience 

this.  A lack of sulphur molecules and HBI sulphides (c.f. Sinninghe Damste et al., 

2007) in analyses of the sediments from MD03-2601 (G. Massé, pers comm., 2012) 

indicates that sulphurisation of HBIs is not a problem in this study.  Furthermore, the 

study of Sinninghe Damsté et al. (2007) which suggests that sulphurisation of HBI 

molecules may provide a significant diagenetic control on their distribution is from an 
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anoxic fjordal environment, which is a strong contrast to the open ocean conditions of 

core site MD03-2601. 

3.2.4 Hypotheses for HBI distribution in core MD03-2601 

Given the known association between the HBI diene molecule and sea ice, the HBI 

triene molecule and MIZ conditions and the potential of these molecules as a palaeo-

proxy of these outlined above, the working hypotheses for HBI distributions are: 

1) Elevated HBI diene concentrations should correspond to the occurrence of 

spring laminae. 

2) Elevated HBI triene concentrations should correspond to the occurrence of late 

spring/summer laminae. 

3.3 Summary 

This chapter has described the principal proxies used in this study.  Key diatom species 

and their ecological associations have been introduced, as well as their use as a 

sedimentary proxy of past sea ice extent.  The use of diatom-derived HBI biomarkers as 

a sedimentary proxy for sea ice occurrence in both hemispheres has also been 

introduced.  Analysis of the data available from low-resolution observations of MD03-

2601 demonstrates the significant correlation between HBI polyenes and sea ice 

associated diatoms over the Holocene, indicating that the sedimentary distribution of 

both molecules is linked to changes in the sea ice environment. 
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Chapter 4. Materials and methods 

This chapter presents the location, description and core collection/storage details of 

marine sediment cores MD03-2601 and IODP Site 318-U1357B.  The previously 

published age model for MD03-2601 (Crosta et al., 2007; Denis et al., 2009b) is 

presented here recalibrated using the 
14

C calibration curves (Reimer et al., 2009) and the 

age model for IODP-318-U1357B is presented using the same calibration.  The 

scanning electron microscope (SEM) methods used for sediment microfabric and 

qualitative diatom abundance analysis; the optical microscope methods used for 

quantitative diatom assemblage analysis, the gas chromatography-mass spectrometry 

(GC-MS) methods used for highly branched isoprenoid analyses; and the statistical 

analysis methods applied to these datasets are also presented in this chapter. 

4.1 Core MD03-2601 

Giant piston core MD03-2601 was recovered from the Dumont d’Urville Trough, East 

Antarctic margin (66°03.070’S, 138°33.430’E, 746 m water depth, 40.24 m long) 

during R.V. Marion Dufresne II IMAGES cruise number MD130 X- Coring of Adélie 

Diatom Oozes (X-CADO) in February 2003 (Crosta et al., 2005).  MD03-2601 was 

subsampled using metal trays 1 cm deep, 7 cm wide and 155 cm long and archived at 

Université Bordeaux I.  Trays were wrapped in cling film and stored at <4°C in order to 

prevent desiccation and inhibit microbial action/mould growth.  Core sections with 

well-preserved laminae were selected for thin section analysis using positive X-ray 

images of trays created using the SCOPIX image-processing tool (Figure 4.02; Migeon 

et al., 1999; Denis et al., 2006).  Intervals from previously identified contrasting 

climatic periods of the Holocene and the transition between them were selected for 

sampling (Fig. 2; Crosta et al., 2007; Pike et al., 2009).  Sections XVII (2250 – 2400 cm 

core depth; 6.4 – 6.8 cal. ka) and IX (1200 – 1350 cm core depth; 4.8 – 5.1 cal. ka) 

sample the relatively warm Hypsithermal phase, which is characterised by high relative 

abundances of Fragilariopsis kerguelensis and low relative abundances of cryophilic 

species, in particular F. curta.  This is exemplified by the ratio of F. curta : F. 

kerguelensis relative abundances (Figure 4.01; Crosta et al., 2007) that increases in core 

section VIII (1050 – 1200 cm; 4.4 – 4.8 cal. ka) and marks the initial transition between 

warm Hypsithermal and cool Neoglacial conditions.  Core section III (300 – 450 cm; 
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1.5 – 1.8 cal. ka) is representative of the cooler Neoglacial phase as indicated by high 

ratios of F. curta : F. kerguelensis and high ratios of Porosira glacialis RS : 

Thalassiosira antarctica RS (Figure 4.01; Pike et al., 2009), in which values >0.1 are 

indicative of sea ice cover for >7.5 months per year.  The ratio of P. glacialis RS : T. 

antarctica RS increases slightly later that the F. curta : F. kerguelensis ratio due to the 

preference of vegetative P. glacialis for slightly icier spring surface water conditions 

than F. curta (Armand et al., 2005; Pike et al., 2009).  

 

 

 

Figure 4.01.  Selection of core sections (grey boxes) relative to the Hypsithermal and 

Neoglacial climatic intervals in, as indicated by changes in core MD03-2601 of (a) the ratio 

of Fragilariopsis curta to F. kerguelensis relative abundances (Crosta et al., 2007); (b) the 

ratio of Porosira glacialis RS to Thalassiosira antarctica RS (Pike et al., 2009). 
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Figure 4.02.  Positive X-ray images of MD03-2601 core sections used in this study.  Section 

III (300 – 450 cm; the Neoglacial), Section VIII (1050 – 1200 cm; the mid-Holocene 

transition), Section IX (1200 – 1350 cm; the Hypsithermal) and Section XVII (2250 – 2400 

cm; the Hypsithermal). 
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4.1.1 Core MD03-2601 sedimentary description 

Core MD03-2601 is composed entirely of Holocene diatomaceous ooze (Crosta et al., 

2007). Although homogenous to the naked eye, the sediments are observed to alternate 

between laminated and massive facies when viewed using positive X-ray imagery 

(Denis et al., 2006). Occasional macroscopic bioturbation structures are also observable 

in X-ray images. 

 

4.1.2 Age model for core MD03-2601 

The age model for core MD03-2601 (Figure 4.03) is based on nine radiocarbon ages on 

the humic acid fraction of bulk organic matter and was originally presented in Crosta et 

al. (2007).  A variety of marine reservoir age corrections exist for Antarctic marine 

sediments (Ingolfsson et al., 1998 and references therein) which are commonly derived 

from the dating of intact moluscan shells.  In order to overcome differences in age 

models between studies, early studies suggested using a correction age of 1300 years 

based upon comprehensive review of the available data (Berkman et al., 1998; 

Ingolfsson et al., 1998).  Although slightly higher than the recently reported mean 

circum-Antarctic reservoir age of 1144 ± 120 years for sediments <6000 years old (Hall 

et al., 2010), the 1300 years 
14

C reservoir correction is still widely applied to organic 

matter-rich Holocene sediments from the Adélie Land margin and the adjacent George 

V coast (e.g. Pudsey and Evans, 2001; Presti et al., 2003; Crosta et al., 2007).  

Maddison et al. (2012) applied a 1200 year correction to carbonate samples and 1600 

year correction to organic matter samples in Adélie Land cores.  The nine ages from 

core MD03-2601 (Figure 4.02) have been re-calibrated using the Marine 09 calibration 

curve (Reimer et al., 2009) and clam 2.1 age modelling scripts (Blaauw, 2010) in the 

statistical software package R 2.15.0 and assuming a total reservoir age correction of 

1300 years, consistent with previous studies (Ingolfsson et al., 1998; Berkman et al., 

1998).  In comparison to the previously published age models for MD03-2601 (Crosta 

et al., 2007; Denis et al., 2010; Denis et al., 2009b), the revised age model produced in 

this study provides broadly similar values to those of Denis et al. (2009b, 2010) that are 

slightly older than those of Crosta et al. (2007) due to the up-to-date calibration curve 

employed here (Table 4.02). 
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Figure 4.03.  Calibrated age model for core MD03-2601 (D. Hodgson, pers. comm., 2012) 

showing 9 ages obtained from humic fraction of organic carbon (blue squares).  Blue error 

bars indicate the 2 σ age range (Table 4.01).  Grey envelope indicates the estimated 

modelled error for the interpolation between data points.  Core sections sampled in this 

study are indicated by white boxes. 

4.2 Core IODP-318-U1357B 

Core IODP-318-U1357B was recovered from the Adélie Basin located on the Antarctic 

continental shelf off the Wilkes Land margin (66°24.7990′S, 140°25.5705′E, 1028 m 

water depth, total length 170.7 m) in February 2010 by IODP Wilkes Land Expedition 

318 scientists (IODP Expedition 318 Scientists, 2010).  The core was split in Victoria, 

Table 4.01 Uncalibrated radiocarbon ages (Crosta et al., 2007) of sediment samples from 

core MD03-2601.  Raw radiocarbon ages were calibrated using clam 2.1 (Blaauw, 2010) 

using the Marine 09 calibration curve (Reimer et al., 2009) and a total reservoir correction 

of 1300 years.   

Depth 

(cmbsf) 

Sample type Raw age (
14

C  

BP) 

+/- 

(years) 

2σ range 

(years) 

Mean age (cal. 

years BP) 

2 Organic carbon 2350 70 856 – 1170 1013 
498 Organic carbon 3235 30 1864 – 2048 1945 

998 Organic carbon 5175 60 4215 – 4558 4386.5 

1498 Organic carbon 6135 35 5513 – 5690 5601.5 

1998 Organic carbon 6310 100 5577 – 5986 5781.5 

2498 Organic carbon 7450 40 6495 – 7186 6840.5 

2998 Organic carbon 8775 40 7417 – 7557 7487 

3498 Organic carbon 9570 50 9219 – 9462 9340.5 

3998 Organic carbon 10855 45 10721 – 11099 10910 
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Table 4.02.  Comparison of age models for core MD03-2601 between this study and 

previously published age models of  Crosta et al. (2007) and Denis et al. (2009a). 

Depth (cmbsf) Raw age (
14

C 

years BP) 
Crosta et al. 

(2007) 
(cal. years BP) 

Denis et al. 

(2009a) (cal. 

years BP) 

This study (cal. 

years BP) 

2 2350 916 1002 1013 

498 3235 1871 1951 1945 

998 5175 4314 4388 4386.5 

1498 6135 5496 5598 5601.5 

1998 6310 5703 5782 5781.5 

2498 7450 6984 7069 6840.5 

2998 7885 8369 8344 7487 

3498 9570 9208 9348 9340.5 

3998 10855 10742 10923 10910 

 

Canada, on board the drill ship JOIDES Resolution, in July 2010 and subsampled, using 

the sediment slab cutter technique outlined in Section 4.3, to produce sediment slabs 

with approximate dimensions of 15 x 4 x 1 cm.  The youngest material that was 

consolidated enough for use with the sediment slab cutter was selected for thin section 

analysis.  The resulting sediment slabs were wrapped in cling film to prevent 

desiccation, then shipped to, and stored in refrigeration, Cardiff University at <4°C in 

order to prevent desiccation and inhibit microbial action/mould growth.   

4.2.1 Core IODP-318-U1357B sedimentary description 

There is no sedimentary log description of core IODP-318-U1357B currently available; 

however, a parallel core (IODP-318-U1357A totalling 186.6 mbsf) collected 50 m to 

the west of U1357B was described on the ship immediately after recovery.  Core 

U1357A consists of three distinct lithological units.  Unit III (185 – 186.6 mbsf) 

consists of ~1.6 m of glacial diamict; a gravelly siltstone with a carbonate cement.  Unit 

II (170 – 185 mbsf) comprises ~15 m of sand- and silt-bearing diatom ooze.  Unit I (0 – 

170 mbsf) consists of continuously laminated diatom ooze of Holocene age.  Unit I 

diatom ooze is principally composed of Antarctic diatoms, although silicoflagellates, 
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Figure 4.04.  Core photographs of sections IODP-318-U1357B -4H-5-A (27.09 – 28.49 

mbsf), -4H-6-A (28.49 – 29.88 mbsf) and -4H-7-A (29.88- 30.72 mbsf). 
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radiolaria and foraminifera are also present, as well as 44 discrete layers of fish bones 

(IODP Expedition 318 Scientists, 2010).  Sediment sections sampled for this study 

(U1357B-4H-5, U1357B-4H-6 and U1357B-4H-7 from 27.5 – 31.4 mbsf) are composed 

of continuously laminated diatomaceous ooze (Figure 4.04) with alternating bands of 

brown-green and black sediments and are from Unit I observed in core U1357A. 

 

4.2.2 Age model for core IODP-318-U1357B 

A total of 29 radiocarbon ages are available for core IODP-318-U1357B (Figure 4.05) 

obtained from an acid only treatment of organic carbon (R. Dunbar, pers. comm. 2010; 

see section 4.2.2 for details on reservoir age and calibration).  The majority of these (28 

dates) fall within the deglacial to Holocene period (ca. 12 ka to present), with one value 

of ca. 39 ka recorded at 170.59 mbsf, presumably from Unit III.  The age of 39 ka in  

 

 

 

Figure 4.05.  Calibrated age model for IODP-318-U1357B (black line) showing 28 

radiocarbon ages (blue squares) of deglacial and Holocene data points (D. Hodgson, pers. 

comm., 2012).  The age model was calculated using the Marine 09 calibration curve 

(Reimer et al., 2009) and excludes the sample dated to 40283.5 years BP (Table 4.03) that 

is interpreted as representing older glacial sediments.  Two data points that represent 

small age inversions (red points) were also excluded from the age mdoel.  Blue error bars 

indicate the 2 σ age range (Table 4.03).  Grey envelope indicates the estimated modelled 

error for the interpolation between data points. 
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Unit III represents older glacial material that is not contiguous with the deglacial and 

Holocene sediments, suggestive of a hiatus or reduced glacial deposition at the site; 

hence it is excluded from the age model.  Two Holocene dates (see Table 4.03 and 

Figure 4.05) were excluded from the age model as they represent small age inversions 

that may have resulted from sample contamination during sampling (R. Dunbar, pers. 

comm. 2012).  The age vs. depth relationship was calculated from the remaining 26  

 

Table 4.03.  Uncorrected radiocarbon ages (R. Dunbar, pers. comm. 2010) and calibrated 

calendar ages for core IODP-318-U1357B.  Raw radio carbon ages were calibrated against 

the Marine 09 calibration curve (Reimer et al., 2009) using clam 2.1 (Blaauw, 2010) with a 

total reservoir correction of 1300 years.  Italicised mean calibrated ages were excluded 

from the age model (see text). 

Top 

(mbsf) 

Raw age (
14

C years BP) ± (years) 2σ range Mean age (cal. 

years BP) 

2 1575 35 262 – 414 320.5 

6.02 1890 35 517 – 638 578 

10.9 2085 30 659 – 791 725 

14.8 2525 30 1107 – 1266 1186.5 

19.67 2805 30 1363 – 1529 1449.5 

24.69 2795 30 1354 – 1520 1441.5 

29.93 3080 30 1691 – 1860 1775.5 

36.55 3410 30 2091 – 2292 2191.5 

41.8 4180 30 3002 – 3228 3125 

48.82 4180 35 2993 – 3237 3115 

53.25 5100 30 4186 – 4400 4293 

59.57 5610 35 4836 – 5037 4936.5 

70.22 5845 30 5209 – 5419 5314 

79.4 6430 30 5848 – 5991 5919.5 

86.76 6535 40 5928 – 6159 6043.5 

88.76 7010 30 6448 – 6630 6539 

94.67 7080 45 6493 – 6731 6612 

101.12 7300 35 6772 – 6980 6876 

106.43 7495 30 7013 – 7216 7114.5 

112.76 7835 30 7382 – 7512 7447 

119.96 8705 35 8182 – 8352 8276.5 

128.99 8860 30 8354 – 8503 8411 

136.21 9315 30 8946 – 9118 9032 

142.85 9650 30 9358 – 9501 9429.5 

148.3 9845 30 9516 – 9693 9604.5 

155.18 10170 30 9997 – 10200 10136.5 

161.87 11125 40 11145 – 11276 11204 

167.63 11535 35 11827 – 12098 11962.5 

170.59 36620 1040 37891 – 42154 40283.5 
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ages using clam 2.1 (Blaauw, 2010) and the mean calibrated age range for the sediments 

sampled here is 1609 – 1759 cal. years BP. 

4.3 Laboratory methods 

4.3.1 Thin section preparation and microfabric data collection 

Core MD03-2601 was sampled for polished thin section production by cutting 11 cm 

strips of sediment, 1 cm wide, perpendicular to the laminated sediment fabric along the 

length of each core section (sampled by TRG in full).  Strips were taken with a 1 cm 

overlap relative to each other in order to provide a continuous record along the entire  

1.5 m section (Figure 4.06a).  Core IODP-318-U1357B was sampled using a sediment 

slab cutter (Schimmelmann et al., 1990) to minimise any disturbance of the sedimentary 

fabric (sampled by C. Riesselman and R. Dunbar).  Samples were taken every 15 cm 

with a 1 cm overlap to allow for continuity along the sections (Figure 4.06b).  The 

 

 

Figure 4.06.  Schematic diagram of the sampling strategy for (a) producing polished thin 

sections and sediment samples for HBI analysis from 1 cm deep metal trays taken from 

core MD03-2601; (b) producing polished thin sections by sampling a half core section with 

a sediment slab cutter on core 318-U1357B.  Images are not to scale.  
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sediment strips from both cores were sub-divided (by TRG) into overlapping sections 

3.5 – 4 cm long (Figure 4.07) and wrapped in perforated aluminium foil in order to 

preserve their structure and allow penetration of acetone and resin into the sediment 

during fluid displacive embedding (Pike and Kemp, 1996; Pearce et al., 1998; Jim, 

1985).  During sampling of core MD03-2601, half of the core section was kept covered 

with cling film, and protective gloves were worn in order to prevent contamination of 

the sediments that remained for HBI analysis.  The fluid displacive embedding 

technique allows production of highly polished thin sections that preserve the original 

structure of the sediment for studying with an SEM.  In this study, the published 

technique (Pike and Kemp, 1996) was altered to include the use of TAAB
®

 Low 

Viscosity Resin as an alternative to the toxic Spurr resin used in previous studies.  

Initially, samples were soaked in laboratory grade acetone which was exchanged three 

times per day for a total of nine exchanges.  Next, the samples were soaked in analytical 

grade acetone which was exchanged three times a day for a total of six exchanges.  This 

technique allows dehydration of the samples without causing desiccation, as water in 

the pore spaces of the sediment is replaced by acetone.  Following pore fluid 

replacement by acetone, the sediment samples were soaked in TAAB
®
 Low Viscosity 

Resin which was exchanged at 12 hour intervals for a total of ten exchanges.  In initial 

exchanges, the resin was diluted with acetone but this was gradually reduced so that the 

final three exchanges were with pure resin (Table 4.04).  After the final exchange, the 

samples were left to stand for three – four weeks prior to curing.  The samples were 

cured at higher temperatures than those suggested in published methods for Spurr resin, 

allowing for 24 hours at each of 45°C, 60°C, 75°C and 90°C, allowing an eight hour 

cooling period between each temperature step. Finally, highly polished thin sections 

were produced by fixing cured samples to glass slides with araldite and cutting on a 

diamond saw so that ~0.5mm was attached to the slide.  The section is then given a 

coarse polish for 2 minutes each at 250 rpm on 320, 800 and 1200 European grade 

polishing papers.  Thin sections are then polished on a 6 μm diamond polishing paper 

for 30 minutes, then 15 minutes on 3 μm and 15 minutes on 1 μm diamond polishing 

papers. 

 

Polished thin sections were examined with back scattered electron imagery (BSEI) 

using a Cambridge Instruments S360 SEM.  A series of overlapping images were taken 

at a low magnification (x20) to produce a photomosaic, which served as a map of each  
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Figure 4.07.  Summary of sampling methods and analysis techniques, adapted from Dean 

et al. (1999) and Maddison (2005). 

 

thin section with brighter (high backscatter) images produced by laminae that contain 

relatively more terrigenous material and dark (low backscatter) images produced by 

organic-rich laminae (Figure 4.08).  A qualitative analysis of visually-conspicuous 

diatoms was carried out using a combination of the photomosaics and higher 

magnification images (x100 – x850), allowing for sedimentary fabric analysis and 
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Table 4.04.  Schedule of exchanges and ratios of chemical components for producing 

TAAB
®
 Low Viscosity Resin embedded sediment blocks.  The indicated resin components 

are TAAB
®
 LV Resin monomer (resin), TAAB

®
 Hardener VH2 (hardener) and TAAB

®
 

Low Viscosity Resin Accelerator (accelerator). 

Resin mixture (resin: 

hardener : accelerator) 

Resin : acetone Exchange number 

0.47 : 0.51 : 0.02 0.6 : 0.4 1-3 

0.47 : 0.51 : 0.02 0.73 : 0.27 4-5 

0.47 : 0.51 : 0.02 0.87 :0.13 6-7 

0.47 : 0.51 : 0.02 1 : 0 8-10 

 

identification of lamina types based upon diatom assemblage (Pike and Kemp, 1996; 

Maddison et al., 2006).  An average of five thickness measurements per lamina 

(Appendix 2; mean standard error of measurements = ±0.05 mm per lamina) were taken 

from the thin section maps and corrected for expansion of the sediments that occurred 

during the resin embedding.  Expansion was calculated for each thin section by 

 

 

Figure 4.08.  Examples of (a) X-ray image of sediment slab taken from core MD03-2601 

(scale bar = 3 cm).  (b) Low magnification BSEI photomosaic (scale bar = 3 mm) 

demonstrating alternating dark (biogenic) and light bands (higher terrigenous material). 
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measuring the length of the thin section before and after the resin embedding process in 

order to calculate the percentage by which the length of the section had changed.  The 

measured embedded lamina thickness was then corrected back to the original lamina 

thickness by dividing by this mean percentage. 

 

4.3.2 Quantitative diatom analysis 

To provide a quantitative control on lamina diatom assemblages and concentrations, 

discrete samples were collected from each lamina type identified using BSEI analysis.  

A minimum of four samples per lamina type were prepared for assemblage analysis 

using the method of Scherer (1994) and fixed with Norland Optical Adhesive (refractive 

index 1.56).  Samples were counted at x1000 magnification with an Olympus BX40 

microscope using phase contrast.  For core MD03-2601, at least 500 diatom valves were 

counted per sample.  For core IODP 318-U1357B, which contained higher abundances 

of Hyalochaeate Chaetoceros resting spores (CRS), at least 500 valves were counted 

including CRS and a minimum of 250 valves were counted excluding CRS.  This 

counting method is commonly applied in CRS-rich diatom samples from the Antarctic 

margin and allows ecologically important, but less abundant, species to be assessed 

(Leventer and Dunbar, 1996; Allen et al., 2005).  Relative abundances of diatoms were 

calculated from MD03-2601 as a percentage of the total diatom assemblage, and for 

IODP 318-U1357B as a percentage of CRS-free counts.  Diatom concentrations 

(valves/gramme dry sediment) were calculated as: 

 

T = (NB/AF)/M 



where 

T = number of diatom valves per gramme dry sediment 

N = total number of diatom valves counted 

B = area of bottom of beaker (mm
2
) 

A = area per field of view (mm
2
) 

F = number of fields of view counted 

M = dry mass of sample (g) 
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Diatom taxonomy followed Hasle and Syvetsen (1997) with additional references for 

the genera Rhizosolenia (Armand and Zielinski, 2001), Thalassiosira (Johansen and 

Fryxell, 1985) and Fragilariopsis (Cefarelli et al., 2010).  Fragmented valves were 

included in counts following Zielinski (1993) and the criteria employed in this study are 

illustrated in Figure 4.09. 

 

4.3.3 Highly Branched Isoprenoid analysis 

Sediment samples 1cm
3
 were collected by TRG every 1cm along core sections III, VIII 

and XVII of core MD03-2601, parallel to thin section samples (Figure 4.06).  Further 

sample preparation and analysis was conducted by TRG in the LOCEAN laboratory at 

Université Pierre et Marie Curie, Paris, with assistance from Vincent Klein.  Samples 

were freeze dried, weighed and then crushed using a mortar and pestle.  Two internal 

standards (7-hexylnonadecane (7-HND) and 9-octylheptadec-8-ene (9-OHD); 0.1µg per 

standard) were added to the freeze-dried and crushed sediment in order to allow 

quantification of HBI isomers using gas chromatography-mass spectrometry (GC-MS).  

Lipids were extracted three times using a total of 10 ml per sample of a CH2Cl2/CH4OH 

 

Figure 4.09.  Counting method for fragmented diatom valves, adapted from Maddison 

(2005).  Shaded area represents observed portion of diatom under microscope for (a) 

centric diatoms, e.g. Thalassiosira spp., Porosira glacialis; (b) Phaeoceros Chaetoceros 

vegetative cells and Eucampia antarctica (vegetative cells and resting spores); (c) needle-

like diatoms, e.g. Pseudonitschia spp., Thalassiothrix antarctica; (d) pennate diatoms, e.g. 

Fragilariopsis spp.; (e) solenoidal diatoms, e.g. Rhizosolenia spp. 
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Figure 4.10.  Sampling steps for HBI analysis.  (1) – (6) extraction of organic material 

from sediment with a CH2Cl2/CH4OH (2 : 1) mixture; (7) – (8) open column 

chromatography purification of TOE to obtain hydrocarbon fraction; (9) – (11) transfer of 

hydrocarbon fraction to GC-MS vials and analysis by GC-MS; (12) Structure of HBI 

diene; (13) Structure of HBI triene. 

 

 (2:1) mixture (Bligh and Dyer, 1959).  Extracts were purified using open column 

chromatography (SiO2) with 6 ml of hexane (Belt et al., 2007; Belt et al., 2012) (Figure 

4.10).  GC-MS analysis was performed on the hydrocarbon fraction using a Hewlett-

Packard 5890 Series II gas chromatograph (GC) fitted with a 30 m fused silica HP-1 

column (0.25 mm internal diameter, 0.25 mm film) and coupled to a 5970 Series mass 

selective detector (Massé et al., 2011).  Identification of HBI isomers was by 
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comparison of their respective GC retention indices to previously published mass 

spectra of Antarctic HBIs (Johns et al., 1999; Massé et al., 2011).  The structure of HBI 

diene and triene isomers used in this study is shown in Figure 4.10 (12) and (13) 

respectively. 

4.4 Statistical analyses 

4.4.1 Mann-Whitney U test 

HBI concentrations and annual combined lamina thicknesses in continuous sediment 

sequences were compared using a Mann-Whitney U test, performed using the 

Paleontological Statistics Software Package (PAST; Hammer et al., 2001), to determine 

if variations in observed mean values were statistically significant.   

4.4.2 Principal Component Analysis 

The relative abundance of the diatom assemblages was analysed by principal 

component analysis (PCA) using the software PAST (Hammer et al., 2001).  Cells of 

Phaecoeros Chaetoceros (>95% Chaetoceros dichaeta), and Rhizosolenia spp. (>95% 

R. antennata) have been grouped at the generic level for statistical analysis (Pike et al., 

2008).  Rare diatom taxa (those which are not >2% in any one sample) have been 

excluded from the PCA (Taylor et al., 1997 and references therein).  Due to the large 

number of zero values in some samples the data have not been transformed prior to 

carrying out PCA (Dale and Dale, 2002).  Diatom concentrations from core MD03-2601 

have been analysed including CRS, whilst those from IODP-318-U1357B have been 

analysed using CRS-free counts due to the extremely high abundances of CRS in some 

samples that may mask changes in the abundance of ecologically important diatom 

species. 

4.4.3 Time series analysis 

Annual thicknesses from continuous sediment sequences were analysed using multi-

taper method (MTM) single spectrum time series analysis and continuous morlet 

wavelet transform.  MTM analysis provides a useful tool for resolving harmonic 

(periodic) and quasi-periodic spectral peaks from climatic (Mann and Lees, 1996) and 

palaeoclimatic time series data (Davies et al., 2011; Costa et al., 2007).  Singular-

spectrum analysis was conducted using the Singular Spectrum Analysis - MultiTaper 

Method (SSA-MTM) Toolkit (Ghil et al., 2002).  This software uses the algorithms of 
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Thompson (1982) for multi-tapered spectral estimates and harmonic analysis.  

Resolution within the software was set to two, with three tapers which provides a 

suitable trade-off between frequency resolution and spectral leakage in MTM analysis 

of climatic time series (Mann and Lees, 1996) and is commonly applied to 

palaeoclimatic time series (e.g. Costa et al., 2007; Davies et al., 2011).  The spectral 

bandwidth for each MTM analysis was calculated as the Rayleigh frequency multiplied 

by the number of tapers (Weedon, 2003).  The Rayleigh frequency (RF) is calculated 

by: 

 

RF = 1/N x SI 

where: 

N = number of data points 

SI = sampling interval 

 

Wavelet analysis provides a useful tool for identifying non-stationarity of spectral 

signals in a climatic time series (Wang and Wang, 1996; Debret et al., 2007; Debret et 

al., 2009) and was conducted following the methods of Torrence and Compo (1998).  

For each analysis, a cone of influence (COI) was produced that indicates the region in 

which results are not influenced by edge effects (such as attenuation of lower 

frequencies due to zero padding of the dataset, Torrence and Compo, 1998).  For both 

wavelet and SSA-MTM analysis the significance levels relative to the estimated noise 

background were calculated using a red noise model.  A red noise model should be used 

in analysis of climatic time series because the system under investigation always 

contains longer time scales than those that are being investigated.  When discriminating 

against a white noise model, this results in greater power at lower frequencies and may 

produce significant low frequency spectral peaks in the absence of a genuine signal 

(Ghil et al., 2002; Mann and Lees, 1996).  In both instances, the red noise model is an 

AR(1) model (auto-regressive) that is calculated directly from the dataset (Ghil et al., 

2002; Torrence and Compo, 1998). 
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Chapter 5. Diatom analysis of 
laminated sediments 

This chapter presents the results of backscatter electron imagery (BSEI) analysis of thin 

sections produced from cores MD03-2601 and IODP-318-U1357B and quantitative 

diatom counts.  These were both used to identify the characteristics of different lamina 

types.  Lamina types for each core are presented first, followed by an interpretation of 

them with respect to seasonal fluxes in order to deduce the annual depositional cycle.  

Once the seasonal signal has been established for each core, the interannual record is 

presented by time period (the relatively warm Hypsithermal, the transition and the 

relatively cool Neoglacial) as the two records provide complementary data that allow a 

more complete understanding of Holocene interannual deposition in these time periods 

in the Adélie Land basin. 

5.1 Lamina types and distributions in core MD03-2601 

Laminae in core MD03-2601 have been classified using the diatom taxa that were 

visually resolved in BSEI of thin sections (Figure 5.01) and their relative position 

within a repeating sequence of laminae (Figure 5.02).  Core MD03-2601 encompasses 

the warm Hypsithermal interval, cool Neoglacial interval and the transition between the 

two.  Two categories of lamina are recorded based upon their presence in either the 

Hypsithermal (core sections XVII and IX – Type 1) or the Neoglacial (core section III – 

Type 2) with 5 sub-categories per lamina Type being recognised (categories A – E, see 

Table 5.01).  Core section VIII contains the transition from the Hypsithermal to the 

Neoglacial, marked by the loss of A1 laminae in the late Hypsithermal which are 

replaced by A2 laminae in the early Neoglacial. Although frequently present in the early 

Neoglacial sediments of section VIII, B1 and E1 laminae are included as Hypsithermal 

Figure 5.01 (next page).  Identification of key diatom taxa and terrigenous clasts (yellow 

arrows i - ix) using SEM BSEI observation of highly polished thin sections.  (i) CRS; (ii) 

Fragilariopsis spp.; (iii) C. pennatum; (iv) Rhizosolenia spp.; (v) Thalassiosira spp.; (vi) 

terrigenous clasts; (vii) P. glacialis RS; (viii) F. kerguelensis; (ix) T. antarctica RS.  Lamina 

types shown are (a) A1 - CRS and Fragilariopsis spp.; (b) A2 - Fragilariopsis spp.; (c) B 

type lamina - C. pennatum; (d) C type lamina - Rhizosolenia spp.; (e) D1 - terrigenous 

material and mixed diatom assemblage (MDA); (f) D2 - terrigenous material and MDA 

with P. glacialis RS; (g) E1 - T. antarctica RS; (h) E2 - P. glacialis RS.  Scale bars (a) and 

(b) 100 µm, (c) - (h) 200 µm. 
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Table 5.01 (next two pages).  A classification of laminae and their distribution in core 

MD03-2601.  Full diatom assemblage data is presented in Appendix 3. 

Lamina type/ 

characteristic 

diatom taxa using 

BSEI 

Number of occurrences in 

each core section (mean 

thickness; range) 

Quantitative diatom assemblage 

description and diatom 

concentrations (number of diatom 

valves/gram of dry sediment 

[v/gds]) 

A1 – small 

Fragilariopsis spp. ± 

CRS 

Section III: No occurrences 

Section VIII: 19  (5.9 mm; 1.2 

– 28.9 mm) 
Section IX: 74 (4.0 mm; 0.4 – 

15.6 mm) 

Section XVII: 107 (3.8 mm; 
0.4 – 18.3 mm) 

High relative abundances of CRS 

(42.5%) and small Fragilariopsis 

spp., in particular F. rhombica 
(9.4%).  Additional common but 

variabile species in these laminae are 

F. curta and F. kerguelensis 
(between 6-18% each) and F. 

ritscheri (3-6%).Thalassiosira 

antarctica resting spores (RS) occur 

as 2% of valves.  9.46 x 10
7
 v/gds. 

A2 – small 

Fragilariopsis spp. 

Section III: 28 (6.5 mm; 1.8 – 

18.0 mm) 

Section VIII: 19 (3.5 mm; 0.8 
– 11.1 mm) 

Section IX: No occurrences 

Section XVII: No occurrences 

High relative abundances of F. curta 

(41%), and much lower CRS (15.5%) 

compared to other lamina types.  
Additional common diatoms in this 

lamina are F. rhombica (4.8%), F. 

cylindrus (4.1%) and F. 

obliquecostata (4%).  6.06 x 10
7
 

v/gds. 

B1 – Corethron 

pennatum and CRS 

Section III: No occurrences 

Section VIII: 38 (5.1 mm; 0.9 
– 24.0 mm) 

Section IX: 7 (6.8 mm; 3.8 – 

8.4 mm) 

Section XVII: 2 (4.0 mm; 3.6 
– 4.2 mm) 

High abundances of CRS (49.8%), 

and relatively high F. rhombica 
(9.6%).  Fragilariopsis curta and  F. 

kerguelensis are also common (8.5-

11.5% each).  T. antarctica RS make 

up 2.3% and Corethron pennatum  
make up 1.8% of diatom valves.  

8.38 x 10
7
 v/gds. 

B2 – Corethron 
pennatum and small 

Fragilariopsis spp. 

Section III: 18 (6.1 mm; 1.7 – 
26.1 mm) 

Section VIII: No occurrences 

Section IX: No occurrences 

Section XVII: No occurrences 

Characterised by relatively low CRS 
(25.4%) and relatively high F. curta 

(20.7%), whilst Fragilariopsis spp. 

(without F.curta and F. cylindrus) 

account for 31.2% within these 
samples.  Phaeoceros Chaetoceros 

spp. make up 7.1%, F. cylindrus 

3.3% and C. pennatum 2.3%.  6.83 x 
10

7
 v/gds. 

C1 – Rhizosolenia 

spp., small 

Fragilariopsis spp. 
and CRS (CRS > 

Fragilariopsis spp.) 

Section III: No occurrences 

Section VIII: 10 (5.1 mm; 0.6 

– 14.4 mm) 
Section XVII: 21 (3.7 mm; 0.7 

– 8.5 mm) 

Dominated by CRS (33.8%) and 

Fragilariopsis spp. (49.4%), 

principally F. kerguelensis (10.9%), 
F. curta (7.5%) and F. rhombica 

(7.1%).  Phaeoceros Chaetoceros 

spp. (5.5%) and T. antarctica RS 
(3%) are additional common species.  

Lamina type C1 have slightly higher 

abundances of Rhizosolenia spp. 
(1.3%), principally R. antennata var. 

semispina, relative to other lamina 

types.  9.42 x 10
7
 v/gds. 
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Lamina type/ 

characteristic 

diatom taxa using 

BSEI 

Number of occurrences in 

each core section (mean 

thickness; range) 

Quantitative diatom assemblage 

description and diatom 

concentrations (number of diatom 

valves/gram of dry sediment 

[v/gds]) 

C2 – Rhizosolenia 

spp., small 

Fragilariopsis spp. 
and CRS 

(Fragilariopsis spp. 

> CRS) 

Section III: 11 (4.9 mm; 1.5 – 

17.0 mm) 

Section VIII: 11 (6.0 mm, 1.5 
– 15.2 mm) 

Section IX: No occurences 

Section XVII: No occurrences 

Dominated by CRS (36.6%) and 

Fragilariopsis spp. (50.5%), 

principally F. curta (26.4%).  Sub-
dominant Fragilariopsis spp. are F. 

rhombica (9.9%) and F. kerguelensis 

(6.1%).   Phaeoceros Chaetoceros 
spp. (3.4%), Rhizosolenia (1.2%) and 

C. pennatum (0.9%) are also present.  

5.18 x 10
7
 v/gds 

D1 – mixed diatoms 
and terriegnous 

material.  Diatoms 

include T. antarctica 
RS and F. 

kerguelensis 

Section III:  No occurrences 
Section VIII: 78 (7.9 mm; 1.1 

– 23.7 mm) 

Section IX: 88 (7.9 mm; 0.7 – 
30.2 mm) 

Section XVII: 123 (5.8 mm; 

0.7 – 22.2 mm) 

High relative abundances of CRS 
(39.4%) and F. kerguelensis (13.7%).  

F. curta, F. rhombica, F. ritscheri 

and F. seperanda are more variable 
but common species, ranging 

between 5 and 10%.  Less abundant 

diatoms are T. antarctica RS, T. 
lentiginosa, T. gracilis var. gracilis 

and T. trifulta which range between 1 

and 6%.  8.39 x 10
7 
v/gds. 

D2 – mixed diatoms 
and terrigenous 

material.  Diatoms 

include P. glacialis 
RS 

Section III: 48 (8.8 mm; 1.3 – 
29.9 mm) 

Section VIII: No occurrences 

Section IX: No occurrences 
Section: XVII: No occurrences 

Moderately high relative abundances 
of CRS (33.6%) and F. curta 

(15.4%).  F. kerguelensis, F. 

obliquecostata and F. rhombica are 
common but variable, ranging 

between 4 and 12% in each sample.  

Porosira glacialis (1.6%) and T. 

gracilis var. gracilis (1.5%) are 
commonly occurring less abundant 

diatoms.  5.71 x 10
7
v/gds. 

E1 – T. antarctica 
RS 

Section III: No occurrences 
Section VII: 10 (3.8 mm; 0.6 – 

13.2 mm) 

Section IX: 6 (1.3; 0.6 – 2.9 

mm) 
Section XVII: 12 (2.7 mm; 0.4 

– 9.3 mm) 

Dominated by CRS (41.4%) whilst 
additional common species are F. 

kerguelensis (13.3%), F. curta 

(9.1%) and T. antarctica RS (8.8%).  

Fragilariopsis rhombica, F. ritscheri 
and F. seperanda are additional 

common diatoms, ranging from 4-7% 

per sample.  8.99 x 10
7
 v/gds.. 

E2 – P. glacialis RS Section III: 4 (2.8 mm; 1.9 – 

3.3 mm) 

Section VII: No occurrences 

Section IX: No occurrences 
Section XVII: No occurrences 

Dominated by high abundances of 

CRS (39.2%), with relatively high F. 

curta (13.9%), F. kerguelensis 

(9.1%) and F. obliquecostata (7.8%).  
The lamina are characterised by high 

relative abundances of P. glacialis 

(4.6%), and also have relatively high 
Phaeoceros (3.5%).  5.34 x 10

7
 

v/gds. 
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laminae due to their presence in core sections IX and XVII and absence from core 

section III (Table 5.01), and therefore are classified with the warmer climatic interval 

not the cooler.  The seasonal interpretation of these lamina types is based upon the 

visually resolved species observed using BSEI and informed by the results of 

quantitative assemblage counts (Table 5.01) and PCA performed upon these counts ( 

Figure 5.03).  The majority of variability within the assemblage data can be explained 

by the first two principal component axes (PC axis 1 = 71% of variance, PC axis 2 = 

11.5% of variance; see  Figure 5.03).  Broadly, Hyalochaete Chaetoceros resting spores 

(CRS) and F. rhombica plot together with positive values on PC axis 1 and negative 

values on PC axis 2, whilst Phaeoceros Chaetoceros spp., Fragilariopsis cylindrus and 

F. obliquecostata plot opposed to this with negative values on PC axis 1 and positive 

values on PC axis 2.  Fragilariopsis curta plot orthogonally to these diatoms, with 

positive values on both axes, opposed to F. kerguelensis, F. ritscheri and Thalassiosira 

antarctica resting spores (RS).  Additional species with influence on the distribution of 

samples within the PCA plot are indicated in Figure 5.03c.  Hypsithermal samples have 

negative loadings on PC axis 1 and plot from -12 to 12 on PC axis 2 (high F.  

 

 

Figure 5.02. Schematic model of the annual sequence of deposition of laminae recorded in 

Table 5.01.  Shading indicates biogenic laminae, unshaded areas indicate laminae with 

relatively high terrigenous material.  The distribution of diatoms in each laminae is 

indicated in  Figure 5.03. 
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Figure 5.03.  Principal component analysis of diatom lamination samples.  (a) Distribution 

of statistically significant (Table 5.02) diatom samples on principal component axes one 

and two.  (b) Distribution of diatom species on principal component axes one and two.  (c) 

Detail of central area highlighted by square in (b).  Diatoms indicated are (i) CRS; (ii) 

Fragilariopsis curta; (iii) F. kerguelensis; (iv) F. separanda; (v) F. ritscheri; (vi) 

Thalassiosira antarctica RS; (vii) F. sublinearis; (viii) Phaeoceros Chaetoceros spp.; (ix) F. 

cylindrus; (x) T. gracilis; (xi) Thalassiothrix antarctica; (xii) F. sublinearis; (xiii) 

Thalassiosira lentiginosa. 

 

 

 

Table 5.02.  Pearson’s correlation coefficients between species analysed in the PCA of 

diatom assemblage data from core MD03-2601 (Figure 5.03) and eigenvalues of PC axes 1 

and 2.  Values in bold are statistically significant (p < 0.05). 

Species PC axis 1 PC axis 2 

Hyalochaete Chaetoceros -0.08 0.00 

Phaeoceros Chaetoceros 0.30 -0.11 

Chaetoceros resting spores -0.91 0.40 

Corethron pennatum 0.07 0.27 

Fragilariopsis curta 0.95 0.29 

F. cylindrus 0.56 -0.12 

F. kerguelensis -0.47 -0.40 

F. obliquecostata 0.31 -0.14 

F. rhombica -0.20 0.14 

F. ritscheri -0.27 -0.54 

F. seperanda -0.01 -0.66 

F. sublinearis 0.34 0.25 

Porosira glacialis rs 0.14 0.05 

Proboscia inermis 0.44 0.03 

Pseudonitzschia sp. 0.04 -0.23 

Rhizosolenia spp. 0.10 0.03 

Thalassiosira antarctica rs -0.37 -0.37 

T. gracilis 0.05 -0.54 

T. lentiginosa -0.37 0.01 

T. trifulta -0.27 -0.25 

Thalassiothrix antarctica -0.10 -0.34 
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kerguelensis and T. antarctica RS), whilst Neoglacial samples plot from -8 to 32 on PC 

axis 1 and -8 to 14 on PC axis 2 (high  F. curta; lower F. kerguelensis and T. antarctica 

RS). 

 

5.1.1 Hypsithermal spring laminae: Lamina types A1, B1 and C1 

A1 laminae were characterised in BSEI by the co-dominance of CRS and Fragilariopsis 

spp.  In the PCA, A1 laminae form a group between -14 and -8 on PC axis 1, and from 6 

to 10 on PC axis 2 (high CRS and F. rhombica;  Figure 5.03).  In assemblage counts, 

CRS were much more abundant than the cryophilic Fragilariopsis species (F. curta, F. 

cylindrus, F. rhombica, F. obliquecostata, F. ritscheri; see Armand et al., 2005) (Table 

5.01).  The presence of CRS within Antarctic sediments is commonly associated with 

stratification resulting from early spring melting of sea ice (Leventer, 1991; Crosta et 

al., 1997).  Fragilariopsis curta and F. rhombica prefer stratified waters that are more 

ice-proximal than those preferred by vegetative Hyalochaete Chaetoceros cells (Beans 

et al., 2008) and are also common in A1 laminae, indicating the presence of sea ice 

associated with spring conditions.  Fragilariopsis rhombica occurs in greatest 

abundances in A1 laminae (Table 5.01), and is typically found in sediments that lie 

beneath 7 – 9 months per year sea ice cover (Armand et al., 2005).  Hence, A1 laminae 

are interpreted here as representing a relatively warm and early spring with an early sea 

ice melt-induced bloom of CRS and Fragilariopsis spp., and warmer surface waters due 

to a longer sea ice free period. 

 

B1 laminae are characterised with BSEI by visually resolved Corethron pennatum and 

CRS.  B1 laminae form a group from -17 to -10 on PC axis 1 and -1 to 3 on PC axis 2 

(high CRS;  Figure 5.03) and assemblage counts that have the highest abundances of 

CRS observed in core MD03-2601 (Table 5.01).  C. pennatum is frequently found in 

water and sediment samples in Antarctic coastal environments and is commonly 

associated with late spring/early summer conditions when reported from laminated 

sediments (Bahk et al., 2003; Stickley et al., 2005; Maddison et al., 2006; Beans et al., 

2008; Denis et al., 2010; Maddison et al., 2012).  The ability of C. pennatum to migrate 

vertically within the water column allows it to take advantage of higher light levels near 

the surface and to acquire nutrients at a greater depth in a mixed water column (Beans et 

al., 2008) and the increased abundance of C. pennatum in the late Holocene of Adélie 
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Land sediments has been associated with increased spring wind strengths (Denis et al., 

2009).   Co-occurrences of CRS and C. pennatum have also been reported from late 

Holocene sediments in McMurdo Sound, East Antarctica and are associated with early 

spring sea ice retreat (Leventer et al., 1993).  Hence, B1 laminae are interpreted here as 

representing early ice melting with stronger winds promoting a deep wind mixed layer 

during the spring. 

 

C1 laminae are characterised with BSEI by visually resolved Rhizosolenia spp. (Table 

5.01).  In the PCA ( Figure 5.03), C1 laminae form a group with D1 and E1 laminae 

between -14 to -1 on PC axis 1 and -12 to -2 on PC axis 2 (high T. antarctica RS, F. 

kerguelensis, F. ritscheri and F. separanda).  They are distinguished from D1 and E1 

laminae in assemblage counts by higher abundances of Phaeoceros Chaetoceros spp. 

and Rhizosolenia spp. (principally R. antennata forma semispina).  Rhizosolenia spp. in 

Adélie Land have a preference for wind mixed surface waters (Assmy et al., 2008; 

Beans et al., 2008; Crosta et al., 2005), whilst F. kerguelensis and Phaeoceros 

Chaetoceros spp. are commonly found in the permanently open ocean conditions of the 

Polar Frontal Zone (PFZ), although they are also found in lower abundances in coastal 

areas which are free of sea ice during the summer.  Laminae containing high 

abundances of Rhizosolenia spp. are commonly associated with oligotrophic late spring 

conditions that have a stable pycnocline (Stickley et al., 2005; Maddison et al., 2006), 

but the high abundances of Phaeoceros Chaetoceros spp. and F. kerguelensis, lower 

abundances of cryophilic Fragilariopsis spp. observed here and the modern preference 

of Rhizosolenia spp. for wind mixed surface waters in Adélie Land (Beans et al., 2008), 

suggest that lamina type C1 are indicative of a deeper mixed layer during the spring 

period, rather than stratification. 

 

5.1.2 Hypsithermal summer and autumn: D1 and E1 lamiane 

D1 laminae have the lowest mean diatom concentrations of Hypsithermal laminae 

(Table 5.01) and contain a visually high proportion of terrigenous material under BSEI 

observation (bright images relative to other Hypsithermal lamina types) and a mixed 

diatom assemblage (Table 5.01).  D1 laminae are grouped with C1 and E1 laminae in 

the PCA (Figure 5.03), but are distinguished by lower absolute abundances of diatoms, 

lower abundances of Phaeoceros Chaetoceros spp. than C1 laminae and lower 
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abundances of Thalassiosira antarctica RS than E1 laminae (Table 5.01). The high 

concentrations of terrigenous material within these laminae likely results from the 

reduced dilution by diatoms after the spring bloom (Stickley et al., 2005; Denis et al., 

2006; Maddison et al., 2006) and a greater lateral advection of clay particles from more 

coastal areas closer to glaciers following sea ice retreat (Dunbar et al., 1985; Presti et 

al., 2003; Maddison et al., 2012).  Furthermore, the open ocean Fragilariopsis 

kerguelensis is at greatest abundance in D1 laminae and, hence, D1 laminae are 

interpreted here as representing relatively warm prolonged open water conditions during 

the summer. 

 

E1 laminae are characterised by visually resolved Thalassiosira antarctica RS in BSEI 

and plot with C1 and D1 laminae in the PCA ( Figure 5.03).  E1 laminae are 

distinguished from this group by higher abundances of T. antarctica RS in quantitative 

counts (Table 5.01).  Thalassiosira antaractica are found in sediments south of the 

winter sea ice edge and show a strong preference for >6 months per year of sea ice 

(Armand et al., 2005).  Although a large vegetative standing stock of T. antarctica can 

also be associated with icy spring conditions as the sea ice acts as an innoculum (Krebs 

et al., 1987), blooms of T. antarctica are more commonly associated with open water 

conditions and low stratification (Cremer et al., 2005; Barcena et al., 1998).  Formation 

of T. antarctica RS is associated with autumnal ice growth (Cunningham and Leventer, 

1998) and blooms of vegetative T. antarctica have been observed occurring with 

turbulent conditions and frazil ice formation in the upper water column during the late 

summer season (Gleitz et al., 1998).  Laminae rich in T. antarctica RS are usually 

interpreted as a resting spore formation event due to autumnal ice growth, and the 

distribution of laminae with high abundances of T. antarctica RS from around the East 

Antarctic margin is associated with an annual persistence of sea ice cover of ~7.5 

months (Denis et al., 2006; Pike et al., 2009).   E1 laminae are interpreted here as 

indicating years in which there is an early sea ice advance in the autumn. 

 

5.1.3 Neoglacial spring: A2, B2 and C2 laminae 

A2 laminae are characterised by the dominance of Fragilariopsis spp. when observed 

with BSEI.  They form a distinct group in the PCA ( Figure 5.03) from 24 to 48 on PC 

axis 1 and -4 to 6 on PC axis 2 (very high F. curta) and assemblages are dominated by 
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high abundances of F. curta, as well as high abundances of F. cylindrus and F. 

obliquecostata (Table 5.01).  Fragilariopsis curta is recorded in a variety of Antarctic 

coastal environments and may be common or dominant within sea ice related 

communities (Tanimura et al., 1990; Leventer and Dunbar, 1996; Riaux-Gobin et al., 

2003) and in stable stratified waters proximal to a melting ice edge (Tanimura et al., 

1990; Kang and Fryxell, 1993; Goffart et al., 2000; Riaux-Gobin et al., 2003; Riaux-

Gobin et al., 2011; Beans et al., 2008).  Fragilariopsis curta appears to be confined to 

locations south of the winter ice edge and occurs at greatest sedimentary abundances in 

regions with 9 – 11 months per year sea ice cover (Armand et al., 2005), whilst F. 

cylindrus and F. obliquecosta are often found beneath fast and pack ice, and F. 

cylindrus is one of the most common diatoms found in the Adélie Land marginal ice 

zone (Armand et al., 2005; Riaux-Gobin et al., 2011; Tanimura et al., 1990).  

Fragilariopsis cylindrus and F. curta have also been observed in high abundances in 

sea ice influenced waters (greater than 37.5% sea ice cover) in a transect from New 

Zealand to the Ross Ice Shelf, with F. curta increasing southward with increased sea ice 

concentration (Burckle et al., 1987).  Large blooms dominated by F. curta occur 

seasonally in the south western Ross Sea, and appear to be closely linked to weak winds 

during the early spring period that allow for a shallow wind mixed layer and late 

melting of sea ice during the annual December peak in insolation.  This is in contrast to 

the central Ross Sea region where typically stronger spring winds force an earlier 

opening of the Ross Sea polynya, and a deeper mixed layer with a more diverse 

phytoplankton assemblage occurs (Dunbar et al., 1998).  A2 laminae are interpreted 

here as representing cold spring conditions, with low average wind speeds, a high 

concentration of sea ice and later melting of sea ice, possibly during December or 

January. 

 

B2 laminae are characterised by high abundances of Corethron pennatum using BSEI.  

They form a distinct group in the PCA from 8 to 16 on PC axis 1 and -8 to 2 on PC axis 

2 (high F. curta, Phaeoceros spp., F. cylindrus;  Figure 5.03).  They are dominated by 

Fragilariopsis curta in assemblage counts, but also have relatively high abundances of 

Corethron pennatum, Phaeoceros Chaetoceros spp. and F. cylindrus (Table 5.01).    As 

discussed above, C. pennatum have a preference for ice-free waters and are able to 

thrive in locations of strong wind-induced mixing.  Phaeoceros Chaetoceros spp. are 

commonly found in open ocean waters (Kang and Fryxell, 1993; Smetacek et al., 2002; 
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Beans et al., 2008) and Chaeoceros dichaeta, which represents >95% of Phaeoceros 

Chaetoceros spp. in this study, is particularly abundant at the PFZ where high nutrient 

levels occur due to the upwelling of deeper waters (Assmy et al., 2008).  Both 

Phaeoceros Chaetoceros spp. and C. pennatum increase in abundance in Adélie Land 

from ca. 4.5 ka to present, associated with increased wind-induced mixing during the 

spring period (Denis et al., 2009; 2010).  Despite the presence of these species, the high 

abundances of F. curta and F. cylindrus indicate a proximal sea ice edge.  Hence, B2 

laminae are interpreted here as representing spring conditions with interplay between 

strong wind-induced mixing and melting of sea ice.  

 

C2 laminae are characterised using BSEI by visually resolved Rhizosolenia spp.  In the 

PCA, C2 laminae form a distinct group from 4 to 16 on PC axis 1 and 2 to 14 on PC 

axis 2 (high F. curta, moderate CRS;  Figure 5.03).  They contain the highest 

abundances of CRS of the Neoglacial spring laminae, lowest (yet still high relative to 

Hypsithermal lamina types) abundances of Fragilariopsis curta and lowest F. cylindrus 

(Table 5.01).  High abundances of F. curta in C2 laminae indicate colder conditions 

than in Hypsithermal samples; however, the relatively high CRS abundances suggests 

warmer conditions relative to A1 and B1 laminae due to an early sea ice retreat.  High 

abundances of Phaeoceros Chaetoceros spp. and Rhizosolenia spp. in C2 laminae are 

consistent with a deeper mixed layer related to stronger winds (Beans et al., 2008).  

Hence, C2 laminae are interpreted here as spring conditions with an early sea ice retreat 

that occurs due to relatively warm and windy conditions. 

  

5.1.4 Neoglacial summer and autumn: D2 and E2 laminae 

D2 laminae exhibit a relatively high proportion of terrigenous grains when observed 

using BSEI and have a mixed diatom assemblage which includes P. glacialis RS (Table 

5.01).  D2 and E2 laminae form a group in the centre of the PCA plot from -8 to 6 on 

PC axis 1 and -2 to 5 on PC axis 2 (F. curta higher than F. kerguelensis; high Porosira 

glacialis rs; low Thalassiosira antarctica RS;  Figure 5.03), with an outlying D2 sample 

at 8 on PC axis 1 and -6 on PC axis 2.  D2 laminae have lower total diatom abundances 

and lower P. glacialis RS relative abundances than E2 laminae (Table 5.01).  Diatom 

assemblages from D2 laminae have higher abundances of Fragilariopsis curta, F. 

obliquecostata and Porosira glacialis rs than D1 laminae, all of which have a 
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preference for years with icier spring/summer conditions (Armand et al., 2005).  High 

abundances (compared to other Neoglacial samples) of F. kerguelensis indicates the 

intrusion of oceanic waters into the region during the summer (Crosta et al., 2005), as 

does the presence of P. glacialis RS which, although it is a diatom associated with the 

sea ice environment, is commonly found in sediments where summer conditions have 

<30% sea ice concentration (Armand et al., 2005).  D2 laminae are interpreted here as 

representing colder summer conditions than D1 laminae. 

 

E2 laminae are characterised using BSEI by visually dominant P. glacialis RS and 

contain high abundances of P. glacialis RS in assemblage counts (Table 5.01).  

Porosira glacialis is ecologically similar to Thalassiosira antarctica and, although it is 

rarely found living within sea ice, its maximum occurrence is south of the winter sea ice 

limit, and both are common components of the summer diatom stock in areas that are 

icy during the spring (Armand et al., 2005; Pike et al., 2009; Krebs et al., 1987).  It is 

not clear what induces resting spore formation in P. glacialis; however, the occurrence 

of P. glacialis RS in Holocene sediments around East Antarctica appears to be linked to 

regions that experience >7.5 months per year of sea ice cover (Pike et al., 2009).  

Hence, E2 laminae are interpreted here as occurring in years with both cold springs and 

autumns, with a later sea ice break up relative to years with E1 laminae. 

 

5.1.5 Annual sequences in core MD03-2601 

A complete annual succession of laminae (Figure 5.02) would contain an initial 

biogenic lamina that is high in CRS and/or Fragilariopsis spp. followed by a biogenic 

lamina visually dominated by Corethron pennatum or Rhizosolenia spp.  These are 

succeeded by laminae that contain mixed diatom assemblages and a relative increase in 

terrigenous grains (Table 5.01).  Terrigenous-rich laminae exhibit an up-lamina increase 

in Thalassiosira antarctica RS (D1 laminae; Hypsithermal) or Porosira glacialis RS 

(D2 laminae; Neoglacial).  A final lamina visually dominated by either T. antarctica RS 

(E1; Hypsithermal) or P. glacialis RS (E2; Neoglacial) occurs at the end of the 

sequence (Figure 5.02).  This complete annual sequence is rare in core MD03-2601.  

More commonly sequences have an initial biogenic lamina (dark under BSEI) with high 

CRS (A1 and B1 laminae) or high Fragilariopsis spp. (A2, B2 and C2 laminae) 

followed by a terrigenous (light under BSEI) D1 or D2 lamina, which may have a final 
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E1 or E2 lamina.  The upper boundary of the final lamina is abrupt, representing a 

winter hiatus in deposition (Denis et al., 2006), whereas the visual boundary between 

dark and light (under BSEI) lamina in a sequence is gradual.  Repeating sequences 

observed in BSEI are commonly interpreted as representing discrete annual deposits due 

to the floral succession observed within the sediments (Maddison et al., 2012; Maddison 

et al., 2005; Maddison et al., 2006; Stickley et al., 2005) and this interpretation is 

applied to core MD03-2601.   

 

Short, non-laminated intervals, which often contain small-scale bioturbation structures 

(Pike et al., 2001) are also recognised.  These non-laminated intervals increase in 

frequency and total thickness up-core, with 24.8 cm total in core section XVII, 49.8 cm 

total in core section IX, 35.0 cm total in core section VIII and 72.0 cm total in core 

section III.   

 

The oldest Hypsithermal core section (section XVII) has the lowest occurrences of non-

laminated intervals and the greatest number of preserved annual sequences (118 years; 

mean thickness = 10.6 mm, σ = 6.0 mm, Figure 5.04).  The majority of the years (86%) 

are composed of an A1 lamina followed by a combination of B1, C1, D1 and E1 lamina.  

The remaining 14 % of years have no A1 lamina, but instead have a B1 or C1 lamina.   

The younger Hypsithermal section (section IX) has more non-laminated intervals (Table 

5.01; Figure 5.05) and a total of 82 annual sequences (mean thickness = 12.6 mm; σ = 

7.3 mm). Similarly to section XVII, 89% of annual sequences in core section IX have 

an initial A1 lamina, with the remaining 11% having initial B1 or C1 laminae. 

 

Annual sequences from the transitional core section (section VIII) are considered in two 

intervals based upon the first occurrences of Neoglacial spring laminae; the late 

Hypsithermal (1200 – 1128 cm core depth) and the early Neoglacial (1128 – 1050 cm).  

In total, 74 years (mean thickness = 14.8 mm, σ = 8.0 mm) are recorded in core section 

VIII, which has several large unlaminated/bioturbated intervals (Figure 5.06).  The late 

Hypsithermal interval has a total of 26 years (mean thickness = 19.1 mm, σ = 9.6 mm), 

of which 15 (58%) have an initial A1 lamina, whilst the remaining 11 have a mixture of 

B1 and C1 laminae at their base.  The early Neoglacial interval has 48 complete years 

(mean thickness = 12.4 mm, σ = 6.0 mm) of which 38% have an initial A2 lamina, 35% 

an initial B1 lamina, 23% a C2 lamina and 4% a C1 lamina.  The observed reduction in 
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mean annual thickness between the late Hypsithermal and the early Neoglacial sub-

sections is statistically significant (n late Hypsithermal = 26, n early Neoglacial = 48, 

Mann-Whitney U = 352, p < 0.05).   

 

 

 

  
Figure 5.04.  (a – e) Sedimentary thicknesses of each lamina type and (f) annual combined 

lamina thicknesses from all years in core MD03-2601 section XVII (Hypsithermal).  

Laminae/years highlighted in green contribute to the time series used in the spectral 

analysis in Section 6.3.  The 50 and 57-year record discussed in section 6.3 are indicated on 

the annual time series plot (f).  The time interval for bioturbation was calculated by 

dividing the thickness of the bioturbated intervals (mm) by the mean annual thickness 

(mm) from core section XVII. 
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Figure 5.05.  (a – e) Sedimentary thicknesses of each lamina type and (f) annual combined 

lamina thicknesses from all years in core MD03-2601 section IX (Hypsithermal).  The time 

interval for bioturbation was calculated by dividing the thickness of the bioturbated 

intervals (mm) by the mean annual thickness (mm) from the core section IX. 
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Figure 5.06.  (a – e) Sedimentary thicknesses of each lamina type and (f) annual combined 

lamina thicknesses from all years in core MD03-2601 section VIII (transitional).  

Laminae/years highlighted in green contribute to the time series used in thespectral 

analysis in Section 6.3.  The time interval for bioturbation was calculated by dividing the 

thickness of the bioturbated intervals (mm) by the mean annual thickness (mm) from core 

section VIII. 
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The Neoglacial section (section III; Figure 5.07) has much higher levels of bioturbation 

than the Hypsithermal and transitional sections of core MD03-2601.  Consequently only 

48 complete years of diatom succession are identified (mean thickness = 16.8 mm, σ = 

18.5 mm), with the longest undisrupted sequence being 11 years.  The majority of these 

years (44/48) consist of only two distinct laminae, whilst the remaining four also 

include a D1 lamina at the end of the sequence.  The biogenic spring layer is most 

 

 

Figure 5.07. (a – e) Sedimentary thicknesses of each lamina type and (f) annual combined 

lamina thicknesses from all years in core MD03-2601 section III (Neoglacial).  The time 

interval for bioturbation was calculated by dividing the thickness of the bioturbated 

intervals (mm) by the mean annual thickness (mm) from core section III. 
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commonly represented by A2 laminae (48%), but B2 laminae (29%) and C2 laminae 

(23%) also occur at the start of sequences, whilst the terrigenous summer layer is 

represented in all instances by D2 laminae.   

5.2 Lamina types and distributions in core IODP-318-U1357B 

Laminae in the Neoglacial sediments of core IODP-318-U1357B sections 4H-5-W, 4H-

6-W and 4H-7-W (hereafter collectively referred to as “core IODP-318-U1357B”) have 

been classified using the diatom taxa that were visually resolved in BSEI of thin 

sections (Figure 5.08) and their relative position within a repeating sequence of laminae 

(Figure 5.09; section 5.2.4).  In total, five lamina categories have been identified which 

are broadly comparable to those from MD03-2601.  However, as they have been 

subjected to different counting techniques (see Chapter 4, page 58) and have visual 

differences to their counterparts in MD03-2601 (e.g. more apparent Phaeoceros 

Chaetoceros dichaeta, see Table 5.02) they are subsequently classified as laminae A3 – 

E3 (Table 5.03).  The seasonal interpretations of laminae A3 – E3 is based upon the 

visually resolved diatom species observed using BSEI and informed by the results of 

CRS-free quantitative assemblage counts (Table 5.03, Figure 5.11 and Figure 5.10), and 

PCA performed upon these counts  (Figure 5.11).   Broadly, Fragilariopsis spp. 

(excluding F. kerguelensis) have highest relative abundances within A3 laminae and 

lowest within E3 lamina (Figure 5.10a).  Phaeoceros Chaetoceros spp. typically occur 

at ~10% relative abundance, but are much higher within B3 laminae (~25% mean 

relative abundance; Figure 5.10b), whilst solenoidal diatoms (Figure 5.10c) have higher 

relative abundances in B3, C3 and E3 laminae compared to A3 and D3 laminae.  

Fragilariopsis kerguelensis are found in highest relative abundances in C3 and D3 

laminae (higher in D3 at ~15% of diatom assemblages; Figure 5.10d).  Porosira 

glacialis rs (Figure 5.10e) and Thalassiosira antarctica rs (Figure 5.10f) have a broadly 

similar distribution by lamina type, with low relative abundances in A3, B3 and C3 

laminae, slightly higher relative abundances in D3 laminae and maximum mean relative 

abundances in E3 laminae.   
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Table 5.03.  A classification of laminae and their distribution in core IODP-318-U1357B.  

Full diatom assemblage data is presented in Appendix 3. 

Lamina type/ 

characteristic 

diatom taxa 

using BSEI 

Number of occurrences 

in recorded interval 

(mean thickness; range) 

Mean quantitative CRS-free diatom 

assemblage description and CRS-free 

diatom concentrations given in number 

of diatom valves/gramme of dry sediment 

(v/gds) 

A3 – 

Fragilariopsis 

spp. ± CRS 

64 (10.6 mm; 0.8 – 51.4 

mm) 

Very high cryophilic Fragilariopsis spp. 

(69.2%), in particular F. curta (33.5%) and 

F. rhombica (16.3%).  Phaeoceros 
Chaetoceros spp. (10.2%) are also 

common.  5.07 x 10
7
 v/gds. 

B3 – Phaeoceros 

Chaetoceros 

dichaeta, C. 

pennatum 

15 (5.7 mm; 0.7 – 14.5 
mm) 

Moderate abundances of cryophilic 
Fragilariopsis spp. (53.6%), in particular F. 

curta (26.3%).  Phaeoceros Chaetoceros 

spp. are at highest abundances (25.5%), as 

are the solenoidal diatom group (4.9%).  
5.49 x 10

7
 v/gds. 

C3 – biogenic 
mixed diatom 

assemblages, 

common 

solenoidal 
diatoms 

56 (11.9 mm; 1.0 – 60.4 
mm) 

Very high cryophilic Fragilariopsis spp. 
(60.6%), in particular F. curta (28.3%) and 

F. rhombica (16.5%).  Phaeoceros 

Chaetoceros spp. (9.1%) and the solenoidal 

diatom group (4.5%) are also common.  
4.30 x 10

7
 v/gds. 

D3 – mixed 

diatoms and 
terrigenous 

material 

70 (14.1 mm; 1.7 – 53.3 

mm) 

Moderate abundances of cryophilic 

Fragilariopsis spp. (51.2%).  High 
abundances of F. kerguelensis (13.9%) and 

F. rhombica (15.9%).  Porosira glacialis rs 

(4.4%) are common.  3.61 x 10
7
 v/gds. 

E3 – P. glacialis 
RS 

25 (4.3 mm; 0.9 – 20.2 
mm) 

40.0% cryophilic Fragilariopsis spp., high 
abundances of P. glacialis rs (21.0%) and 

the highest abundances of T. antarctica rs 

(2.8%).  Phaeoceros Chaetoceros spp. 
(8.4%) are common, and F. curta occur in 

relatively low abundances (14.5%).  4.18 x 

10
7
 v/gds. 

 

Within the PCA, the majority of variability within the assemblage data for core IODP-

318-U1357B is explained by the first two PC axes (PC axis 1 = 43.9%, PC axis 2 = 

21.8%).  Broadly, Phaeoceros Chaetoceros spp. plot alone with moderate positive 

values on PC axis 1 and negative values on PC axis 2, whilst Fragilariopsis 

kerguelensis, F. separanda and Thalassiosira antarctica RS plot opposite to 

Phaeoceros Chaetoceros spp. with negative values on PC axis 1 and positive values on 

PC axis 2.  Fragilariopsis curta and F. rhombica plot orthogonally to these diatoms 

with positive values on both axes, whilst Porosira glacialis RS are opposite to F. curta 

with near zero values on PC axis 1 and negative values on PC axis 2 (Figure 5.11).  

Additional species with influence on the distribution of samples in the PCA 
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Figure 5.08.  Identification of key diatom taxa and terrigenous grains (i - vii) using SEM 

BSEI observation of highly polished thin sections.  (i) CRS; (ii) Fragilariopsis spp.; (iii) C. 

pennatum; (iv) Rhizosolenia spp.; (v) Phaeoceros Chaetoceros spp.; (vi) P. glacialis RS; (vii) 

terrigenous clast; Lamina types shown are (a) A3 – CRS and Fragilariopsis spp.; (b) B3 – 

C. pennatum; (c) C3 Phaeoceros Chaetoceros and solenoidal diatoms; (d) D3 – mixed 

diatom assemblage and terrigenous material; (e) E3 – P. glacialis RS.   

 

are shown in Figure 5.11c.  The solenoidal diatom group (consisting of Rhizosolenia 

spp., Proboscia spp. and Corethron pennatum which commonly occur together in 

laminae observed using BSEI) is used for lamina description purposes and species are 

not grouped in the PCA. 
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Figure 5.09. Schematic model of the annual sequence of lamina types recorded in Table 2.  

Shading indicates biogenic laminae, unshaded areas indicate laminae with relatively high 

terrigenous material.  The distribution of diatoms in each lamina type is indicated in 

Figure 5.11, Figure 5.10 and Figure 5.12. 

 

5.2.1 Distribution of CRS 

Hyalochaete Chaetoceros resting spores (CRS) occur at higher relative abundances 

(21.9 – 81.0%, n = 27) and higher valve concentrations (2.87 x 10
11

 – 3.29 x 10
11 

CRS 

valves/g
-1

) in core IODP-318-U1357B than MD03-2601 (5.1 – 52.5% and 7.01 x 10
9
 – 

1.08 x 10
11

 CRS valves/g
-1

 respectively, n = 45) and their distribution by lamina in core 

IODP-318-U1357B is highly variable.  CRS concentrations are high, but variable in A3 

laminae, with consistently lower CRS concentrations in B3 and C3 laminae.  D3 and E3 

 

 

Figure 5.10.  Mean relative abundance of key diatom species groups within quantitative 

assemblage counts by lamina type (n A3 = 7; B3 = 5; C3 = 6; D3 = 5; E3 = 4).  Error bars 

indicate standard error for each data point. 
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Figure 5.11: Principal component analysis of diatom lamination samples and distribution 

of diatom species groups that are statistically significant (see Table 5.04).  (a) Distribution 

of diatom samples versus components one and two of the PCA.  (b) Significance of diatom 

species versus components one and two of the PCA.  (c) Detail of central area highlighted 

by square in (b).  Diatoms indicated are (i) Phaeoceros Chaetoceros spp.; (ii) F. curta; (iii) 

F. rhombica; (iv) F. kerguelensis; (v) P. glacialis rs; (vi) F. ritscheri; (vii) F. separanda; 

(viii) T. antarctica rs; (ix) F. cylindrus; (x) P. inermis; (xi) C. pennatum. 

 

laminae demonstrate the greatest variability in CRS concentrations, but have a similar 

mean value to A3 laminae (Figure 5.12b).  The relative abundance of CRS within 

assemblages apparently increases from B3 to E3 laminae (Figure 5.12d) when 

considered in sequence (Figure 5.12d; see also section 6.2.4 and Figure 5.09), 

corresponding to a decrease in CRS-free diatom valves/gramme
-1

 of dry sediment 

(Figure 5.12a). 

 

Chaetoceros spp. are broadly distributed in the modern surface waters of Adélie Land 

(Beans et al., 2008) and the occurrence of CRS in sediment traps from the Antarctic 

margin indicates that blooms are linked to seasonal sea ice retreat and surface water 

stratification (Crosta et al., 1997; Leventer, 1991), with Hyalochaete Chaetoceros being 

a common component of pack ice algal assemblages (Gleitz et al., 1998).  Resting spore 

formation occurs due to depleted nitrogen levels or reducing light during vertical 

mixing of the water column or during the polar winter (Crosta et al., 1997 and 

references therein).  The sedimentary occurrence of CRS is commonly associated with 

high nutrient levels and strong spring stratification and consequently resting spores may 

be found in high sedimentary abundances around the Antarctic margin (Crosta et al., 

1997; Leventer, 1991).  Generally high absolute abundances of CRS in A3 laminae 

(Figure 5.12b) is consistent with resting spore formation as a result of depleted nutrients  
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Table 5.04.  Pearson’s correlation coefficients between species analysed in the PCA of 

CRS-free diatom assemblage data from core IODP-318-U1357B (Figure 5.11) and 

eigenvalues of PC axes 1 and 2.  Values in bold are statistically significant (p < 0.05). 

Species PC axis 1 PC axis 2 

Phaeoceros Chaetoceros 0.38 -0.88 

Corethron pennatum 0.24 -0.02 

Eucampia antarctica -0.37 0.07 

Fragilariopsis cylindrus -0.01 -0.07 

F. curta 0.86 0.21 

F. kerguelensis -0.06 0.45 

F. obliquecostata -0.14 0.06 

F. rhombica 0.20 0.64 

F. ritscheri 0.21 0.19 

F. seperanda -0.44 0.30 

F. sublinearis -0.03 0.21 

Porosira glacialis RS -0.90 0.00 

Proboscia inermis -0.01 -0.34 

Rhizosolenia semispina 0.02 0.06 

Thalassiosira antarctica RS -0.63 0.10 

T. gracilis -0.12 0.27 

T. lentiginosa -0.03 0.10 

 

at the end of the spring period (Denis et al., 2006); whilst sporadically higher 

abundances in the summer and autumn may be indicative of mixing events (i.e. strong 

winds/storms) or resting spore formation in response to reducing insolation in the 

autumn (Crosta et al., 1997).  Analysing CRS-free diatom assemblages also reveals 

important ecological information from other species that may be overwhelmed by the 

CRS signal (Leventer and Dunbar, 1996) and this approach is subsequently applied to 

the interpretation of laminae A3-E3. 

 

5.2.2 Spring laminae: A3, B3 and C3 laminae 

A3 laminae are characterised by the dominance of Fragilariopsis spp. with varying 

abundances of CRS when observed using BSEI.  PCA shows that A3 laminae plot in a 

group with C3 laminae between 2 and 12 on PC axis 1, and between -1 and 12 on PC 

axis 2 (high F. curta).  CRS-free assemblage counts are dominated by cryophilic 

Fragilariopsis spp. (69.2%), of which F. curta is the most abundant species (33.5% of 

total diatom valves).  A3 laminae have lower abundances of solenoidal diatoms in CRS-

free counts than C3 laminae (Figure 5.10).  The preference of F. curta for a proximal 

ice edge (Beans et al., 2008; Riaux-Gobin et al., 2011; Riaux-Gobin et al., 2003) and  
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Figure 5.12.  Distribution of diatom valves by lamina.  (a) mean concentration of CRS-free 

diatom valves by lamina; (b) mean concentration of CRS valves by lamina; (c) total (CRS 

+ other diatom species) diatom valve concentration per lamina; (d) mean relative 

abundance of CRS by lamina.  Error bars indicated standard error of the mean (n A3 = 7; 

B3 = 5; C3 = 5; D3 = 6; E3 = 4).  

 

peak sedimentary occurrences beneath 9-11 months/year sea ice cover (Armand et al., 

2005) indicates that A3 laminae are associated with icy spring conditions.   

 

B3 laminae are characterised by visually resolved Phaeoceros Chaetoceros spp. and 

solenoidal diatoms (in particular Corethron pennatum) when observed using BSEI.  B3 

laminae form a group from – 2 to 12 on PC axis 1 and -8 to -16 on PC axis 2 (high 

Phaeoceros Chaetoceros spp.).  CRS-free assemblage counts are dominated by 

cryophilic Fragilariopsis spp. (53.6%) and B3 laminae have the highest abundances of 

Phaeoceros Chaetoceros spp. (25.5%) observed in this study.  Phaeoceros Chaetoceros 

spp. thrive in open ocean waters (Kang and Fryxell, 1993; Smetacek et al., 2002), and 

their increased abundance in Adélie Land sediments since ca. 4.5 ka has been linked to 

increased wind-induced mixing of surface waters during the spring (Denis et al., 2010).  

Corethron pennatum in Adélie Land have a preference for ice free, wind-mixed surface 
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waters (Beans et al., 2008), and have also increased in sedimentary abundance since ca. 

4.5 ka, linked to increased wind-induced mixing of surface waters (Denis et al., 2010). 

 

C3 laminae are characterised by visually dominant Fragilariopsis spp. with centric and 

solenoidal diatoms also common when observed using BSEI.  C3 laminae form a group 

with A3 laminae in the PCA, but tend to have lower values on PC axis 1 (slightly lower 

F. curta).  When occurring at the end of a spring layer, C3 laminae exhibit a gradual 

increase in terrigenous matter, solenoidal diatoms and centric diatoms upcore, with a 

decrease in Fragilariopsis spp. in BSEI observations.  Assemblages are similar to those 

of A3 laminae, with high abundances of cryophilic Fragilariopsis spp. (60.6%; F. curta 

28.3%), but contain higher abundances of the solenoidal diatom group (4.5%).  C3 

laminae are interpreted here as representing high productivity associated with spring sea 

ice retreat, with a greater influence of oceanic waters than A3 laminae and weaker 

winds compared to B3 laminae.  

 

5.2.3 Summer/autumn laminae: D3 and E3 laminae 

D3 laminae are characterised using BSEI as having a mixed diatom assemblage and a 

relatively high proportion of terrigenous material.  D3 laminae have the highest 

abundances of Fragilariopsis kerguelensis (13.9%) observed from laminae in IODP-

318-U1357B, the lowest CRS-free diatom concentrations (Figure 5.12), relatively high 

abundances of P. glacialis RS (4.4%, Table 2) and do not form a distinct group in the 

PCA (Figure 5.11).  Relatively high abundances of cryophilic Fragilariopsis spp. 

(51.2%) in D3 laminae are consistent with icy conditions, but the higher abundance of 

F. kerguelensis indicates a stronger influence of open oceanic waters (Crosta et al., 

2005).  Similarly, P. glacialis RS are found preferentially in sediments in regions where 

summer sea ice concentrations are <30% (Armand et al., 2005).  The high 

concentrations of terrigenous material observed using BSEI indicates reduced dilution 

by diatoms following the spring bloom, and lateral advection of clay particles from 

more coastal areas following sea ice retreat (Denis et al., 2006; Dunbar et al., 1985; 

Presti et al., 2003; Maddison et al., 2012).  D3 laminae are interpreted here as 

representing cool summer conditions with varying sea ice and meteorological 

conditions playing an important role in determining diatom composition. 
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E3 laminae are characterised by visually dominant Porosira glacialis RS with common 

Stellarima microtrias when observed using BSEI.  E3 laminae form a distinct group in 

the PCA from -7 to -35 on PC axis 1 and -5 to 4 on PC axis 2 (high P. glacialis RS).  

CRS-free assemblage counts contain the lowest abundances of cryophilic Fragilariopsis 

species observed in core IODP-318-U1357B (40.0%), very high P. glacialis RS 

(21.0%) and high T. antarctica rs (2.8%).  The presence of P. glacialis RS and T. 

antarctica RS in sediments is associated with a pulsed resting spore formation event due 

to autumnal ice growth in regions with >7.5 months/year sea ice cover (Pike et al., 

2009).  The greater abundances of P. glacialis RS relative to T. antarctica RS is 

consistent with the presence of P. glacialis RS laminae in the Neoglacial sediments of 

MD03-2601, and E3 laminae are interpreted here as representing years with both cold 

springs and autumns. 

 

5.2.4 Annual sequences in core IODP-318-U1357B 

A complete succession of repeating laminae in core IODP-318-U1357B contains an 

initial biogenic lamina (dark under BSEI) visually dominated by Fragilariopsis spp. ± 

CRS (A3 laminae), followed by a layer in which there is an increase in larger diatoms 

such as Phaeoceros Chaetoceros spp. and Corethron pennatum (B3 and C3 laminae), as 

well as an increase in centric diatoms.  C3 laminae often show an increase in terrigenous 

material towards the upper boundary and are succeeded by a lamina with relatively high 

terrigenous material (light under BSEI), mixed diatom assemblage and reduced 

concentrations of Fragilariopsis spp. (D3 lamina).  A final lamina which is visually 

dominated by Porosira glacialis RS (E3) occurs at the end of the sequence (Figure 

5.09).  There are commonly 3 – 5 lamina types per complete annual sequence; however, 

repetition of lamina types within the spring layer is common and up to 14 discrete 

laminae may be present in one year (Figure 5.13).  The end of an annual sequence is 

defined by a sharp transition from either a mixed assemblage with relatively high P. 

glacialis RS and terrigenous material (D3), or a biogenic layer rich in P. glacialis RS 

(E3), to a lamina with much higher concentrations of Fragilariopsis spp. (A3).  As with 

annual sequences in MD03-2601 (section), the contact between the final lamina of one 

year and the initial lamina of the following year is sharp.  Repeated lamina sequences 

within the spring layer, in which there are no sharp transitions in floral succession, are  
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Figure 5.13. Histogram showing variations in the frequency of discrete laminae per year. 

 

interpreted as representing single spring seasons in which there may be repeated lateral 

fluxes of diatoms or terrigenous material to the core site. 

 

In total, 73 annual sequences (mean thickness = 35.0 mm, σ = 19.6 mm; Figure 5.14) 

are recorded in the core IODP-318-U1357B study interval, the majority of which (82%) 

have an initial A3 lamina, whilst the remaining 18% have an initial B3 or C3 lamina.  

This is in contrast to the Neoglacial section of core MD03-2601 which has greater 

variability in both the thickness (MD03-2601 has a lower mean annual thickness, but a 

standard deviation [σ] of ~ 110% of the mean, whereas IODP-318-U1357B σ = ~55% 

of the mean) and initial lamina type of annual sequences (48% of MD03-2601 have an 

initial A2 lamina, in comparison to the 82% of IODP-318-U1357B with an initial A3 

lamina).  The difference in the degree of variability is potentially due to preservational 

biases between the two cores that may reflect changes in oxidation.  Multi-annual 

sequences in section III of MD03-2601 are limited to short snapshots disrupted by 

bioturbation (indicating short periods of anoxia that permits preservation of lamina), 

whereas the Neoglacial sediments of IODP-318-U1357B show a multidecadal, 

continuously laminated sequence with minimal sediment fabric disruption (suggesting a 

more continuously anoxic environment).   
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Figure 5.14.  (a – e) Sedimentary thicknesses of laminae and (f) annual thicknesses from all 

years in sections examined from core IODP-318-U1357B (Neoglacial, ca. 1.8 – 1.6 cal ka 

BP). 

5.3 Interannual variability 

Changes in the interannual variability of diatom productivity can be compared between 

the investigated sections of cores MD03-2601 and IODP-318-U1357B.  Sections from 

core MD03-2601 provide snapshots of continuously laminated, multidecadal records 

from the warm Hypsithermal (core section XVII and IX; 6.8 – 6.4 cal. ka BP and 5.2 – 

4.8 cal. ka BP, respectively) and the mid-Holocene transition (core section VIII).  

MD03-2601 core section III provides snapshots of the interannual variability in the cool 

Neoglacial, whilst the sections analysed from core IODP-318-U1357B provides a 73-
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year snapshot of a continuously laminated multidecadal record that is comparable in 

length to the multidecadal Hypsithermal and transitional records of MD03-2601.  

 

Multi-taper method (MTM; Chapter 4) spectral analysis of the annual thickness and 

lamina type thickness time series from core section XVII and VIII of MD03-2601, and 

the record from IODP-318-U1357B has been used to statistically evaluate these records 

for significant cyclicities.  The results of MTM are subsequently grouped into three 

categories related to climatic phenomena that have an influence on meteorology and 

climatology in the Antarctic (Chapter 2).  Following previous work, the bands of 

cyclicities discussed here are quasi-biennial (QB; 2 - 3 years; Wang and Wang, 1996), 3 

– 7 years (typical El Niño-Southern Oscillation [ENSO] spectra; Torrence and Compo, 

1998) and longer periodicities which may be indicative of the SAM (Thompson and 

Wallace, 2000) or solar variability (Roscoe and Haigh, 2007). Although a quasi-biennial 

signal exists in ENSO time series (Allan, 2000) evidence exists for a link between the 

westerly phase of the quasi-biennial oscillation (QBO) and November conditions in the 

stratospheric southern hemisphere polar vortex (Baldwin and Dunkerton, 1998; 

Garfinkel and Hartmann, 2007).  Conditions in the southern hemisphere stratosphere are 

transmitted to the Antarctic troposphere (Thompson et al., 2005) and consequently the 

Southern Ocean (Hibbert et al., 2010).  QB-spectra have also been detected in re-

analysis of satellite-derived sea ice concentrations (Gloersen and Huang, 2003). 

Increasing evidence for a complex ENSO-QBO inter-relationship (Taguchi, 2010) has 

also been used to argue for separation of QB and ENSO-band spectral signals in 

annually laminated polar sediments (Davies et al., 2011).  Comparison with wavelet 

analyses of continuous time series that demonstrate ENSO-band peaks in the MTM 

analysis is used to demonstrate the non-stationarity (irregularity) of the observed 3 – 7 

year frequencies, which is a characteristic of ENSO frequencies in wavelet analysis 

(Torrence and Compo, 1998).  The wavelet analyses performed badly on the less 

regularly occurring lamina types (i.e. E-type laminae), and these wavelet analyses are 

presented in Appendix 4. 

 

5.3.1 The Hypsithermal – core MD03-2601 

Multidecadal records of interannual variability during the Hypsithermal have been 

developed from core sections IX (ca. 5.2 – 4.8 cal. ka BP) and XVII (ca. 6.8 – 6.4 cal. 
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ka BP).  Relatively low variability is observed in both the composition and thickness of 

annual deposits in the Hypsithermal climatic interval (section 5.1.5).  The majority of 

years (86%) have an initial A1 lamina indicative of earlier sea ice retreat earlier during 

the Hypsithermal relative to the Neoglacial, consistent with previous studies in the 

Dumont d’Urville Trough (Crosta et al., 2007; Denis et al., 2006).  The occurrence of 

C1 laminae at the start of the remaining 14% of years is interpreted as representing 

warm spring conditions in which sea ice clears rapidly followed by an abrupt 

breakdown of stratification, inhibiting the formation of the ice edge proximal laminae 

A1 and B1.  The relatively infrequent occurrence of E1 laminae (10% of years in core 

section XVII; 7% of years in core section IX) and the preference of T. antarctica for 

~7.5 months per year sea ice cover (Pike et al., 2009) is consistent with an early sea ice 

retreat and prolonged open water period.  At a broader scale, both Hypsithermal core 

sections are consistent with multidecadally resolved Holocene trends in diatom 

abundance (Chapter 4, Figure 4.01) that indicate reduced spring sea ice during the 

Hypsithermal (Crosta et al., 2007). 

 

Two continuously laminated records from core section XVII (50 and 57 years long) 

reveal insights into multidecadal and interannual variability during the Hypsithermal 

climatic interval.  The shorter 50-year record differs slightly from the 57-year record as 

it has more frequent occurrences of E1 laminae, less frequent occurrences of C1 laminae 

and a slightly lower mean annual thickness (Table 5.05).  Furthermore, the 57-year 

record contains a sequence of 51 years in which there are no occurrences of E1 laminae.  

The association of E1 laminae with relatively icier Hypsithermal spring/autumn 

conditions and C1 laminae with relatively warmer Hypsithermal spring conditions 

indicates that the 50-year record of MD03-2601 core section XVII represents relatively 

cooler conditions compared to the 57-year record.  This suggests that there were 

multidecadal (>50 year) variations between periods of relatively more/less sea ice and  

Table 5.05. Comparison of sedimentary features between the 50 (2377 – 2322 cmbsf) and 

57 year (2322 -2257 cmbsf) record in MD03-2601 core section XVII (Figure 5.04). 

Feature 50-year record 57-year record 

Mean annual thickness 8.25mm, σ = 5.03 mm 10.78 mm, σ = 6.83 mm 

Years with C1 laminae 6 (12% of total) 11 (19% of total) 

Years with E1 laminae 7 (14% of total) 2 (3.5% of total) 
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slightly cooler/warmer spring conditions occurring during this period of the 

Hypsithermal.  A comparable long term change has been observed in the modern SAM 

record (Marshall, 2003), which demonstrates a trend from more negative to more 

positive values over several decades related to stratospheric warming resulting from 

ozone depletion (Thompson and Solomon, 2002) and anthropogenic warming (Marshall 

et al., 2004). These observations have been confirmed by modelling studies (Roscoe and 

Haigh, 2007; Arblaster and Meehl, 2006) demonstrating that the SAM may be forced by 

multidecadal climatic changes.  The SAM influences East Antarctic sea ice extent in 

modern records by strengthening (weakening) westerly winds during positive (negative) 

phases, increasing (decreasing) northerly drift of sea ice, and subsequently increasing 

(decreasing) sea ice extent (i.e. positive phases of the SAM result in increased sea ice 

extent and vice versa).  Additionally, during positive SAM phases, poleward heat flux 

decreases in the circumpolar region (Yuan and Yonekura, 2011; Hall and Visbeck, 

2010).  It was demonstrated in Chapter 2 that a correlation exists between positive SAM 

index and increased autumnal sea ice concentrations in Adélie Land; consequently the 

multidecadal changes in the distribution of E1 laminae (which are sensitive to autumnal 

sea ice formation) provides evidence for multidecadal phase changes in the SAM during 

the Hypsithermal.  Accordingly, the relatively cooler 50-year record is interpreted as 

representing a prolonged period of more positive values in the SAM, whilst the 

relatively warmer 57-year record a prolonged period of more negative values in the 

SAM. 

 

MTM analysis of the multidecadal records from core section XVII (Figure 5.15 and 

Figure 5.16) demonstrates that significant (>95%) longer period spectral peaks (>8 

years; Table 5.06) occur in the annual thicknesses (26-year peak, 99% confidence) and 

A1 lamina thicknesses (22-year peak, 95% confidence) time series from the 57-year 

record (Figure 5.16 and Table 5.06).  Although these periodicities should be treated 

cautiously, as only two full cycles can be fully expressed within the record, they may 

reflect control by the 22-year solar cycle, a multiple of the 11 year Schwabe cycle, 

which is observed in the geochemical record of the last 2000 years in the Adélie Drift  

(Costa et al., 2007).  A QBO modulated 11-year solar cycle has been linked to increased 

late winter adiabatic warming of the southern polar stratosphere during solar 

maxima/westerly phases of the QBO (Labitzke, 2004; Roscoe and Haigh, 2007), from 

which anomalies are transmitted to the troposphere (Thompson et al., 2005).  This 
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Figure 5.15. Multi-taper method (MTM) time series analyses (a) annual thicknesses and (b 

– f) lamina type thicknesses from a continuously laminated 50-year record (n = 50) in the 

MD03-2601 core section XVII (Hypsithermal ca. 6.8 – 6.4 cal. ka BP). Significant (>95% 

confidence) frequencies in years are indicated above spectral peaks, bandwidth (BW) = 

0.06 cycles per year. 

 

results in more negative conditions in the SAM during solar maxima/westerly QBO and 

positive SAM during solar minima/easterly QBO conditions.  Eleven-year solar cycle 

periodicities linked to solar activity are present in methanesulphonic acid (MSA) 

concentrations from the Law Dome (Wilkes Land) ice core over the past 150 years 

(Curran et al., 2003).  MSA is produced as a result of phytoplankton productivity in the 

ocean, is strongly influenced by the presence of sea ice (Curran et al., 2003; Foster et 

al., 2006) and provides evidence for a link between phytoplankton productivity and 

solar activity in recent records.  It has also been shown that the solar influence on  
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Figure 5.16. MTM time series analyses of (a) annual thickness and (b – f) lamina type 

thickness time series from a continuously laminated 57 year record (n = 57) in the MD03-

2601 core section XVII (Hypsithermal). Significant (>95% confidence) frequencies in 

years are indicated above spectral peaks, bandwidth (BW) = 0.054 cycles per year. 

 

Antarctic sea ice is stronger during the Hypsithermal climatic interval (Debret et al., 

2009) and, hence, multiples of the11-year cycle may be well-expressed in Hypsithermal 

sea ice records (Crosta et al., 2007).  Indeed, it has been suggested that a connection 

between longer period (centennial to millennial) solar activity and sea ice seasonality 

may exist in Holocene sedimentary records of the Antarctic Peninsula (Leventer et al., 

1996) and the Dumont d’Urville Trough (Crosta et al., 2007).  The 22-year periodicity 

in A1 lamina thickness may, therefore, be explained by an influence of solar variability  
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Table 5.06. Summary of the results of MTM spectral analyses conducted on all laminae 

from sequences >40 years long. Spectral peaks are significant to 95% (regular) and 99% 

(italic), those followed by an (h) are harmonic signals.  Spectral bands are divided into QB 

(2.1 – 2-9 years; Wang and Wang, 1996), ENSO (3 – 8 years; Torrence and Compo, 1998) 

and longer period spectral peaks. 

Interval 

(core/record 

length) 

Time 

series 

QB spectral 

peaks (2.1 – 2.9 

years) 

ENSO spectral 

peaks (3 – 8 

years) 

Longer period 

spectral peaks 

1.6 ka (IODP/73 

years) 

Annual  4.5  

A3 laminae  4, 3.2  

B3 laminae 2 – 2.3   

C3 laminae    

D3 laminae 2.4 5.6  

E3 laminae  3.7 100 

4.5 ka (MD/43 
years) 

Annual    

A2 laminae    

B1 laminae    

C1 laminae    

C2 laminae    

D1 laminae  5.3 – 6 (h)  

E1 laminae    

6.8 ka (MD/57 
years) 

Annual 2.4  26 

A1 laminae 2.4  22 

B1 laminae    

C1 laminae 2.1   

D1 laminae    

E1 laminae    

6.8 ka (MD/50 

years) 

Annual 2.4 – 2.6    

A1 laminae    

B1 laminae    

C1 laminae    

D1 laminae 2.6 – 2.8    

E1 laminae  3.8, 3.6, 3.2, 3  

 

on spring sea ice concentrations (i.e. warmer springs corresponding to reduced 

deposition of the spring sea ice associated lamina type A1). 

 

Significant sub-decadal frequencies in annual layer and lamina type thicknesses are also 

present within both the 50- and 57 year records (Figure 5.15, Figure 5.16 and Table 

5.06).  Within both records QB spectral peaks are the most commonly observed and are 

the only sub-decadal spectral peaks observed in the 57-year record (Figure 5.16).  

Within the57-year record, QB spectra peaks occur within the A1, C1 and combined 

annual lamina thickness records (Figure 5.16), whilst within the 50-year record QB 

spectra peaks occur within the D1 and combined annual lamina thickness records 

(Figure 5.15).  ENSO-band peaks are observed within the E1 lamina (3 – 3.8 year 



99 

 

periodicities) time series of the 50-year record (Figure 5.15 and Table 5.06).  E1 

laminae (along with A1 laminae) show the strongest sea ice association of the 

Hypsithermal laminae in this study and it has been shown in Chapter 2 that a good 

correlation exists between spring sea ice concentrations in Adélie Land and a SAM-

reinforced southern oscillation index.  It is, therefore, reasonable to expect to see 

ENSO-associated spectral peaks within these laminae, particularly within the cooler 50-

year record which indicates more positive phasing of the SAM. 

 

5.3.2 The mid-Holocene transition – core MD03-2601 

The interannual record of the late Hypsithermal in core section VIII is broadly 

comparable to the record of Hypsithermal core section IX (Figure 5.05), dominated by 

warm spring conditions with occasionally stronger spring winds indicated by the 

presence of B1 laminae.  The continued presence of B1 laminae in the early Neoglacial 

is consistent with the observations of Maddison et al. (2012), and indicates that warm 

and windy springs were common for multi-year periods at this time; however, they are 

frequently interspersed by years with colder springs indicated by the presence of A2 and 

C2 laminae (Figure 5.05).  Summer laminae throughout core section VIII are 

Hypsithermal in nature, with the presence of T. antarctica RS and absence of P. 

glacialis RS (Table 5.01).  This is consistent with the 10 kyr long record of T. 

antarctica RS and P. glacialis RS from MD03-2601 which demonstrates an increase in 

absolute abundance of P. glacialis RS above section VIII at ~1000 cm core depth (3.7 

cal. ka BP) and agrees with the distribution of E1 and E2 laminae.  The increase in P. 

glacialis RS is associated with a transition to >7.5 months sea ice cover per year (Pike 

et al., 2009), suggesting that this boundary was not crossed during the initial transition 

into the Neoglacial.  E1 laminae occur more frequently during the early Neoglacial 

interval (in 17% of years), indicating a shortening of the growing season.   

 

The only significant spectral peak in MTM analysis of the continuous 43-year time 

series from core section VIII (Figure 5.17) is a 5.3 – 6 year harmonic (continuous or 

near-continuous oscillations in the data) spectral peak in MTM analysis of the D1 

laminae (Figure 5.17 and Table 5.06).  The apparent 5.3 – 6 year harmonic peak may be 

an artefact of the short time series considered here as harmonic signals are rare in 

climatic data which are commonly driven by red noise rather than white noise (which  
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Figure 5.17. Multi-taper method (MTM) time series analyses of (a) annual thickness and 

(b – f) lamina type thickness time series from a continuously laminated 43-year record (n = 

43) (Figure 5.06) in the MD03-2601 core section VIII (Transitional). Significant (>95% 

confidence) frequencies in years are indicated above spectral peaks.  The black box in (f) 

indicates a broad harmonic signal (>99% confidence) identified by the MTM analysis, 

bandwidth (BW) = 0.069 cycles per year. 



101 

 

would be more likely to produce harmonic signals) processes (Ghil et al., 2002).  Figure 

5.18 demonstrates that the signal is not truly harmonic, occurring in two regions of the 

record but not throughout.  Were the signal harmonic, a continuous band of significant 

(>95% that the periodicity is not produced by red noise processes) periodicity would 

occur across the whole time series, as opposed to the isolated peaks that occur at 5 – 10 

years and (very weakly at) 30 – 35 years in the wavelet analysis of the time series.  

Furthermore, the spectral peak identified at 5 – 10 years in Figure 5.18 occurs largely 

outside the cone of influence.  Periodicities outside of the cone of influence may suffer 

from attenuation of the signal due edge effects of the dataset and are unlikely to be 

statistically valid.  Although not truly a harmonic signal as it is not continuous 

throughout the dataset, the ~5 – 6 year periodicity is consistently (although weakly) 

identified in both the MTM and wavelet analysis, suggesting that it may be a legitimate 

signal.  These periodicities are within the ENSO band (Torrence and Compo, 1998) and 

may reflect a response of the D1 laminae to spring sea ice changes related to ENSO that 

are not recorded by the sporadic distributions of spring laminae A2, B1 and C2. 

 

 

 

Figure 5.18.  Wavelet time series analysis against a red noise model of D1 lamina thickness 

from the 43-year record in core section VIII.  Solid lines indicate periodicities that are 

>95% confidence, cross hatching indicates the cone of influence, outside of which 

attenuation of the signal may occur due to edge effects of the data. 
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5.3.3 The Neoglacial 

Cores MD03-2601 and IODP-318-U1357B have sharply contrasting preservation in the 

Neoglacial sediments examined here, but equally provide insight into longer period 

climatic processes during this interval.  The sedimentary record of core section III from 

MD03-2601 has substantially higher degrees of bioturbation relative to the analysed 

sediments of IODP-318-U1357B, preserving brief snapshots (up to 11-year records) of 

Neoglacial interannual variability in sedimentation.  Core IODP-318-U1357B provides 

a continuously laminated 73-year record of sedimentation.  Both records, combined 

with the previously discussed Hypsithermal and transitional sections from MD03-2601, 

contribute to the understanding of interannual variability in Adélie Land during the 

Holocene. 

 

5.3.3.1 Core MD03-2601 

Increased bioturbation in core section III of MD03-2601 (Figure 5.07) makes it difficult 

to determine significant multi-annual trends in diatom productivity.  It is possible, 

however, to gain some insights into the nature of interannual variability in 

meteorological conditions affecting sea ice break-up and diatom productivity in this 

climatic phase.  The dominance of Fragilariopsis curta in all Neoglacial spring laminae 

indicates considerably icier spring conditions relative to Hypsithermal and early 

Neoglacial times.  In particular, A2 laminae have very high abundances of F. curta and 

form 48% of spring laminae within the Neoglacial, suggesting that approximately half 

of the years in this climatic interval are characterised by low spring winds and a late sea 

ice melt.  The remaining springs are characterised by higher relative abundances of CRS 

and open ocean species relative to A2 laminae; the presence of CRS suggests earlier sea 

ice retreat than A2 laminae.  The higher abundances of Corethron pennatum and 

Phaeoceros Chaetoceros spp. in B2 laminae indicate that strong wind mixing during ice 

break up is important in these years.  This strong contrast in interannual variability of 

meteorological conditions during the spring explains the high variability observed in 

multidecadal-resolution proxy records constructed from laminated sediments (e.g. 

Crosta et al., 2007).   

 

Neoglacial summer laminae (D2) demonstrate the lowest consistency of diatom 

assemblages in core MD03-2601 (Table 5.01;  Figure 5.03) most likely due to the high 
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variability of preceding spring conditions, as well as interannual changes in the 

concentration of sea ice during the summer.  The common occurrence of P. glacialis RS 

in Neoglacial summer laminae likely reflects icier spring conditions relative to 

Hypsithermal summer laminae (Crosta et al., 2008).  Particularly, P. glacialis RS 

laminae (E2) only occur following an A2 and D2 lamina, consistent with the 

interpretation of A2 laminae representing the coldest springs, with high sea ice 

concentrations that allow for a larger vegetative population of P. glacialis during the 

summer (Armand et al., 2005; Crosta et al., 2008; Pike et al., 2009).  Years in which P. 

glacialis RS laminae form probably represent an early ice advance during the autumn 

(Maddison et al., 2012; Pike et al., 2009) and are rare within the MD03-2601 record, 

indicating that years in which both springs and autumns have high concentrations of sea 

ice were not common, consistent with modelling that suggests a later ice advance in the 

Neoglacial (Pike et al., 2009; Renssen et al., 2005). 

 

The presence of well-preserved short sequences (~ten years; Figure 5.07) in core section 

III of MD03-2601 suggests that multi-decadal variations in preservation occurred at this 

core site during the Neoglacial.  A similar late Holocene increase in bioturbation is 

observed in the Mertz Drift deposit on the George V margin (Presti et al., 2003) where 

sediments younger than 3 ka are characterised by high levels of bioturbation.  This has 

been associated with increased oxygenation/ventilation of Adélie Land Bottom Water 

(ALBW) due to stronger brine formation in the cooler Neoglacial interval and reduced 

fluxes of organic matter to the sediment, consistent with the observations in core 

MD03-2601.  Multi-decadal changes in the salinity of high salinity shelf water (HSSW 

– a precursor to ALBW) in the Ross Sea are correlated to multi-decadal changes 

observed in the SAM (Jacobs and Giulivi, 2010), which exerts an important control on 

Antarctic sea ice and oceanographic conditions at interannual to decadal periods (Hall 

and Visbeck, 2010; Stammerjohn et al., 2008; Yuan and Yonekura, 2011).  Changes in 

preservation in core MD03-2601 may therefore be linked to long term changes in the 

salinity of HSSW forced by the SAM. 
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Figure 5.19.  Multi-taper method (MTM) time series analyses of (a) annual thickness and 

(b – f) lamina type thickness time series from a continuously laminated 73-year record (n = 

73) in the core sections from IODP-318-U1357B (Neoglacial). Significant (>95% 

confidence) frequencies in years are indicated above spectral peaks, bandwidth (BW) = 

0.042 cycles per year. 

 

5.3.3.2 Core IODP-318-U1357B 

Core IODP-318-U1357B contains a 73-year record of continuous laminations, with a 

complex interannual variability in the total thickness and distribution of laminae.  The 

majority of spring layers (91%) contain one or more A3 laminae, indicative of late sea 

ice break up during the Neoglacial and persistently icy springs.  C3 laminae occur 

commonly in spring layers of IODP-318-U1357B (80% of spring layers), whilst B3 
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laminae occur less frequently (in 21% of springs).  These further support the conclusion 

of persistent spring sea ice in the Neoglacial, whilst B3 laminae (with high abundances 

of Phaeoceros Chaetoceros spp.) indicate periods of stronger spring winds and more 

open conditions.  

 

With the exception of E3 laminae, which demonstrate a 100-year spectral peak that 

cannot be considered valid from a 73-year time series, time series from IODP-318-

U1357B do not display significant longer period spectral peaks from MTM analysis 

(Figure 5.19 and Table 5.06).  Low frequency (3 – 4 year) ENSO band peaks occur 

within the A3 and E3 lamina time series whilst a slightly longer 5.6 year peak is 

observed in the D3 lamina time series.  As with the occurrence of ENSO-band 

frequencies in E1 lamina time series identified at ca. 6.8 ka, the A3 and E3 laminae in 

core IODP-318-U1357B are those interpreted as having the strongest sea ice association 

(in particular, relatively high spring sea ice concentrations).  ENSO-band frequencies in 

D3 laminae may result from changes summer sea ice (although this is not supported by 

the statistical analysis presented in Chapter 2) or in spring sea ice conditions altering the 

summer phytoplankton composition.  The occurrence of these frequencies in resting 

spore-rich laminae in both the cooler Hypsithermal record and the Neoglacial record 

suggests that for longer records these species (Thalassiosira antarctica and Porosira 

glacialis) may provide useful information on changes in the ENSO-sensitivity of Adélie 

Land sea ice.  Again, QB peaks have the strongest signal in MTM analysis at 99% 

confidence in the D3 lamina time series and are also observed in the B3 lamina time 

series at 95% confidence (Figure 5.19 and Table 5.06).  Although the records presented 

here present only multidecadal snapshots of the whole Holocene, the common 

occurrence of QB peaks suggests that these may be a feature of both climatic intervals 

and is a hypothesis which requires further testing. 

5.4 Summary 

The results and interpretations presented here form the most detailed analysis of 

interannual sedimentary changes on the Antarctic margin to date and demonstrate a 

number of statistically significant relationships between the diatom composition and 

thickness of laminae in Adélie Land to external and internal forcings during the 

Holocene. In particular, the results demonstrate changes in the sensitivity of interannual 



106 

 

variations in sea ice (as indicated by A- and E- laminae) to internal climatic forcing 

during prolonged positive phases of the SAM and a reduced sensitivity during 

prolonged negative phases.   

 

Analysis of the longer continuously-laminated (>40-years) time series by MTM for 

shorter period variations (see Table 5.06 for summary) demonstrates that in the warmer 

of the Hypsithermal records (the 57-year record ca. 6.8 ka) significant spectral peaks of 

22 and 26 years, considered indicative of solar variability, occur in the A1 lamina and 

annual record, respectively. Given the modern connection between ice core MSA 

records and sea ice associated phytoplankton productivity (Curran et al., 2003; Foster et 

al., 2006) and evidence from around the Antarctic margin for a strong solar control on 

climate prior to ca. 4.5 ka (Debret et al., 2009), it is unsurprising that spectral peaks 

similar to the 22-year Schwabe cycle are observed in the 57-year record from ca. 6.8 ka 

(Table 5.06).  The absence of these peaks from the 4.8 – 4.4 ka and 1.8 – 1.6 ka records 

the stronger influences of other factors on internal variability. 

 

Quasi-biennial band peaks are the most commonly observed statistically significant 

spectral peaks throughout the sequences presented here, occurring in both the 

Hypsithermal and Neoglacial sections (Table 5.06).  Recent observations of QB spectral 

peaks in in the coherent ocean mode (an oceanic equivalent to the SAM) of the 

Southern Ocean (Hibbert et al., 2010) demonstrates that this is a phenomena with the 

potential to influence polar regions.  The QB band spectral peaks observed here have 

not previously been reported from Antarctic sediments are consistently around the 2.3 – 

2.4 year mean for the phenomena (Baldwin et al., 2001).   This suggests that there is no 

substantial change in the relationship between the QBO and biogenic sedimentation in 

Adélie Land during the selected Holocene periods analysed here. 

 

5.4.1 RS-rich laminae, ENSO and SAM 

The modern correlation between the SAM and autumnal sea ice (Chapter 2; 

Stammerjohn et al., 2008) and the known association of resting spore-rich sediments 

with autumnal sea ice formation (Pike et al., 2009; Maddison et al., 2012; Maddison et 

al., 2006; Denis et al., 2006) indicates that we should expect more frequent RS-rich 

laminae to be deposited during periods of positively phased SAM.  This is demonstrated 
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by comparison of the two Hypsithermal multidecadal sequences in MD03-2601core 

section XVII and the 73-year sequence from core IODP-318-U1357B where it can be 

seen that such variations in RS-rich laminae exist and vary on multidecadal time scales 

greater than the records presented here (i.e. >50 years).  A multidecadal change from 

negative to positive phasing of the SAM is broadly comparable to modern changes in 

SAM phasing (Figure 5.20).  Although it must be bourne in mind that the modern 

record is forced to some extent by anthropogenic changes in ozone-depleting chemicals 

and greenhouse gases (Marshall et al., 2004; Thompson and Solomon, 2002), it 

demonstrates the sensitivity of the SAM to forcing by changes in the mean climatic 

state and we can reasonably speculate that such changes may be recorded in the 

sedimentary record.  Furthermore, a connection between ENSO and SAM during the 

Holocene exists in the mid-latitude Pacific Ocean, alternating at a millennial scale 

between phases in which the reinforcing of the two climatic modes on one another is 

stronger or weaker (Gomez et al., 2012).  The interpretations presented in this study 

suggest that there may be a multidecadal to centennial variability in this connection that 

exists in both Hypsithermal and Neoglacial periods in the records. 

 

The distribution of E1 (Thalassiosira antarctica RS) laminae in core section XVII of 

MD03-2601, wherein there are only two occurrences of resting spore laminae in the 57-

year record, but seven within the 50-year record demonstrates these potentially long 

term phases of cooler and warmer autumns.  It can also be seen in the distribution of E3 

laminae within IODP-318-U1357B that the first 23 years of the record contain only two 

occurrences of E3 laminae, whilst the later 50 years have frequent occurrences of E3 

laminae (Figure 5.20), again suggesting multidecadal changes in RS-sedimentation.  

The sedimentary distribution of T. antarctica RS and Porosira glacialis RS is highly 

sensitive to subtle variations in the annual persistence and concentration of sea ice (Pike 

et al., 2009) and RS-rich laminae form (E1 and E3) as a consequence of autumnal ice 

formation (Pike et al., 2009; Maddison et al., 2012; Denis et al., 2006).  In the modern 

record (Figure 5.20b – d) there is a strong association between positive values in the 

SAM and increased autumnal (March-April-May) sea ice concentration in Adélie Land 

(see also Chapter 2).  Given that it is known that RS-rich laminae are sensitive to 

changes in autumnal sea ice, and that autumnal sea ice in the modern record is closely 

linked to the SAM, it can reasonably be assumed that RS-rich lamina distribution in 

Adélie Land may therefore be linked to multi-decadal phase changes in the SAM, with  
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Figure 5.20. Comparison of (a) E3 lamina distribution in core IODP-318-U1357B (ca. 1.2 

ka) and (b) annual mean values of the SAM 1955 – 2011; (c) cross comparison of monthly 

mean sea ice concentration (Comiso, 1999, updated 2008) versus lead time in the SAM 

Index with a 3 month running mean (Chapter 2; Marshall, 2003), 95% confidence limits 

are r = 0.368 and r = -0.372 (shown on legend); (d) the trend in autumnal (March-April-

May) sea ice concentrations versus mean values for the period 1979 – 2007, derived from 

satellite data (Comiso, 1999, updated 2008) and plotted on a comparable scale to (b). Note 

that the axis on (a) has been inverted relative to the occurrence of the same data on Figure 

5.14e for easier comparison to modern data. 

 

RS-rich laminae occurring more frequently during positive phases of the SAM (i.e. 

during periods of higher autumnal sea ice; Figure 5.20a).  Wavelet analysis of the more 

complete (A3 and D3 laminae; Figure 5.21) time series demonstrates that the ENSO-

band frequencies occur more frequently in the latter half of the two records, coincident 

with cooler conditions as indicated by the distribution of E3 laminae (Figure 5.20) and 

as would be expected for changes in productivity related to increased sea ice during 

warm ENSO events reinforced by positive mode SAM.  It was similarly shown (Section 

5.3.1) that the occurrence on ENSO-band frequencies in the analysed Hypsithermal 

sediments (ca. 6.8 – 6.4 ka) was in the E1 lamina record interpreted as representing a 

positive phase of the SAM.  These preliminary observations and interpretations provide 
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the hypothesis that phasing between the influence of ENSO and SAM on Adélie Land 

sea ice may occur at multidecadal to centennial timescales and would be testable on 

longer sequences of continuously-laminated Adélie Land sediments. 

 

 

 

Figure 5.21. Wavelet time series analyses of sedimentary thicknesses from the 

continuously laminated 73 year record in core IODP-318-U1357B (Neoglacial) relative to a 

red noise model.  (a) A3 lamina time series; (b) D3 lamina time series.  Solid lines indicate 

>95% confidence limits and cross hatching indicates areas outside the cone of influence in 

which edge effects of the dataset may become important. SAM modes from Figure 5.20a. 
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Chapter 6. HBI analysis of sediments 

Results from analysis of highly branched isoprenoid (HBI) alkenes in sediments from 

core MD03-2601 are presented.  Attempts to directly target individual laminae for HBI 

analysis were ultimately unsuccessful, due to the difficulty of sampling the often very 

thin laminae from sediments in which obvious colour changes had been lost due to 

oxidation.  Consequently, these lamina-scale results are not discussed further but are 

contained in Appendix 5.  HBI analysis of the lower resolution sampling, of continuous 

1 cm samples from core sections III, VIII and XVII, are discussed in detail below.  The 

results are considered in two ways.  First, trends in HBI distribution are investigated in 

selected sediment sections, with a focus on the mid-Holocene transition, which provides 

the strongest contrast in diatom lamina type distribution (Chapter 5).  Second, the 

distribution of HBIs from the continuous 1 cm samples relative to lamina distribution in 

each core section is considered, in order to determine if a quasi-seasonal signal can be 

detected in the HBI record. 

6.1 Holocene trends in HBI concentrations 

The concentration of both HBI diene and triene shows an increase from the 

Hypsithermal (core section XVII) to the Neoglacial (core section III), as does the ratio 

of diene/triene (D/T; Figure 6.01).  The HBI diene is only present in three of 141 

samples from core section XVII; it occurs in low relative abundances between 1200 and 

1110 cm (mean relative abundance = 0.4) and with increased frequency and 

concentrations between 1110 and 1050 cm (mean relative abundance = 1.5; Table 6.01) 

in core section VIII, a statistically significant increase (Mann-Whitney U = 693, n 1200 

– 1110 cm = 86, n 1110 – 1050 cm = 57, p < 0.001).  Higher, although variable, diene 

concentrations are observed in the majority of samples from core section III (mean 

relative abundance = 3.8; Table 6.01).  In contrast, HBI triene was present in most of 

the samples analysed.  HBI triene occurs in relatively low concentrations in core section 

XVII (mean relative abundance = 13.6; Table 6.01), slightly (yet statistically 

significant) higher concentrations in core section VIII (mean relative abundance = 18.3; 

Mann-Whitney U = 6084, section XVII n = 141, section VIII n = 143, p < 0.001) and 

highest concentrations in core section III (mean relative abundance = 51.9).  The ratio 

of D/T is dominated by the presence, absence and relative concentrations of HBI diene 
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versus the more stable values of HBI triene within the sediments of core MD03-2601 

(Figure 6.01). 

 

 

 

Figure 6.01. Holocene trends in relative abundances of HBI diene, HBI triene and the ratio 

D/T in core MD03-2601. 
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Table 6.01.  Mean relative abundance data of HBI diene and triene in all core sections. 

Core section (sample 

depths) 

Number of 

samples 

measured 

Mean diene relative 

abundance (1σ 

standard deviation) 

Mean triene relative 

abundance (1σ 

standard deviation) 

III (300 – 450 cm) 143 3.79 (3.96) 51.94 (25.40) 

VIII (1050 – 1110 cm) 56 1.51 (1.18) 18.26 (7.23) 

VIII (1110 – 1200 cm) 87 0.39 (0.43) 18.31 (6.09) 

VIII (all data) 143 0.83 (0.98) 18.28 (6.79) 

XVII (2250 – 2400 cm) 141 0.20 (1.74) 13.60 (6.09) 

 

Pearson correlation coefficients between all of the HBI diene and all of the HBI triene 

data presented here suggests that there is a moderately strong correlation between the 

two at the millennial time scale (r = 0.463, p < 0.001, n = 429).  However, Figure 6.02 

shows that no consistent relationship between HBI diene and triene concentrations 

exists at shorter timescales (i.e. when considered within an individual core section).  It 

should be noted that comparisons in core section XVII are compromised due to an 

absence of HBI diene from the majority of samples. 

 

 

Figure 6.02.  Pearson correlation between relative abundances of HBI diene and triene 

values in (a) all samples shown in Figure 6.01; (b) all samples from core section XVII; (c) 

all samples from core section VIII; (d) all samples from core section III.    
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The statistically significant increase in HBI diene across the mid-Holocene transition 

(Table 6.01; Figure 6.03) is broadly consistent with the changes in diatom lamina 

distribution (Chapter 5).  A large increase in HBI diene at 1110 cm occurs ~20 cm 

above the mid-Holocene transition identified from the first occurrences of Neoglacial 

spring laminae (Chapter 5).  However, the diatom lamina record of this study 

demonstrates that the early Neoglacial interval contains many Hypsithermal-like 

laminae and is gradual in nature, therefore a sharp increase in HBI biomarkers may not 

occur coincident with the threshold required to produce the initial Neoglacial spring 

laminae.  This reflects that HBI diene is produced by diatoms that exclusively live 

within sea ice and are poorly preserved in the sedimentary record (Belt et al., 2008; 

Brown et al., 2011), in contrast to those diatom species widely employed by 

micropalaeontologists to infer the presence of sea ice, that are commonly found in open 

waters as well as within sea ice (e.g. von Quillfeldt, 2004; Beans et al., 2008; Riaux-

Gobin et al., 2011).  Given this, it is not too surprising that the HBI concentrations do 

not exactly follow the lamina-derived record of seasonal changes in sea ice presented 

here.   

 

Unfortunately, the intermittent presence of bioturbated sediments (section 6.2.2 and 

Chapter 5) across the Hypsithermal – Neoglacial boundary prevents us from estimating 

the relative timing of changes in diatom lamina type and HBI concentrations.  However, 

the HBI diene demonstrates a good similarity to the sea ice associated diatom group 

record (Figure 6.03) (Fragilariopsis curta, F. cylindrus, F. sublinearis, F. 

obliquecostata, F. vanheurkii, Porosira glacialis; Denis et al., 2009), which increases 

from ~12% at 1136 cm to >25% above 1120 cm.  In contrast, relative abundances of 

CRS and F. kerguelensis decrease above the 1128 cm boundary.  CRS form following 

nutrient depletion at the end of a sea ice melt-induced bloom and are indicative of 

relatively earlier sea ice melt in the Hypsithermal compared to the Neoglacial (Chapter 

5).  Fragilariopsis kerguelensis is an open ocean species that may enter coastal areas 

during the summer when sea ice cover has reduced and its sedimentary Holocene 

distribution is generally inverse to sea ice duration (Crosta et al., 2008).  The reduction 

of both these taxa above 1128 cm (Figure 6.03) potentially supports later spring melting 

of sea ice, which would permit a longer growing period for the sea ice taxa that produce 

the elevated sedimentary HBI diene concentrations.   
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Due to the occurrence of HBI diene exclusively within sea ice and the presence of HBI 

triene in phytoplankton samples (Massé et al., 2011) it has been suggested that the use 

of the D/T ratio in sedimentary records provides an indication of the relative 

contribution of sea ice and open water productivity (Barbara et al., 2010; Denis et al., 

2010; Massé et al., 2011).  The definition of open water conditions often varies widely 

between studies (e.g. Barbara et al., 2010; Denis et al., 2010; Massé et al., 2011) hence 

the relationship between triene and open water production is not clear, however, 

comparison of the individual diene and triene trends may provide information about 

changes in the sea ice and marginal ice zone environments (i.e. seasonal sea ice duration 

and concentrations) (Collins et al., submitted manuscript).  The reasonable correlation 

between the two HBI alkenes at lower temporal resolution recorded in core MD03-2601 

(r = 0.463, p < 0.001, n = 429) suggests that they both reflect similar elements of the sea 

ice environment and therefore increases in their concentrations may provide a good 

proxy for increased duration of sea ice on millennial timescales (i.e. between distinct 

climatic phases).  If this is the case then changes in the D/T ratio may not clearly reflect 

changes in the relative input of sea ice versus open water biomass to sedimentation as 

has been previously suggested (Barbara et al., 2010; Denis et al., 2010; Massé et al., 

2011).  At higher resolution (annual to sub-annual) the poor correlation between the 

HBI diene and triene (Figure 6.02) shows that the longer time scale relationship 

 

 

Figure 6.03.  The mid-Holocene transition in core MD03-2601 section VIII as indicated by 

HBIs, low resolution diatom counts of the sea ice diatom group (Si-DG; Denis et al., 2009), 

relative abundances of CRS and Fragilariopsis kerguelensis (Crosta et al., 2007) and 

summarised seasonal changes in temperature and sea ice cover (Chapter 5, this study).  

The grey line indicates the mid-Holocene transition as defined in Chapter 5 by the first 

occurrence of Neoglacial-type spring laminae. 



115 

 

between the two breaks down; potentially due to their different concentrations in 

individual laminae.   

6.2 High resolution analysis of HBIs 

The 1 cm resolution HBI record (Figure 6.01) demonstrates a large degree of high 

frequency variability and here these data are considered in comparison to the diatom-

lamina data presented in Chapter 5 (Figure 6.04 – 6.05).   

6.2.1 Core section XVII (the Hypsithermal) 

Section XVII of core MD03-2601 is dated at ca. 6.8 – 6.4 ka BP and records warm 

conditions with reduced annual sea ice presence during this part of the Holocene 

climatic optimum (Chapter 5).  The HBI triene occurs in all samples from core section 

XVII with many peaks apparently coincident with samples that contain A1 laminae or 

A1 laminae mixed with other lamina types (e.g. at 2306 and 2296 cm).  However, this is 

not consistent throughout the core section and not all A1 laminae are associated with 

high triene relative abundances (e.g. at 2291 and 2320 cm core depth there are large A1 

laminae but low relative abundances of triene).  Comparison of the mean relative 

abundance of triene between the intervals identified by lamination analysis (Chapter 5) 

as slightly cooler (earlier autumnal ice advance, lower annual deposition; 2377 – 2332 

cm, n = 43) and slightly warmer (later autumnal ice advance, higher annual deposition, 

more frequent warm springs; 2322 – 2257 cm, n = 64) reveals that there is no significant 

variation in triene relative abundances across core section XVII (Mann-Whitney U = 

1247, n 2377 – 2332 cm = 43, n 2322 – 2257 cm = 64, p = 0.41).  This may indicate a 

lack of sensitivity of the HBI triene proxy to subtle interannual variations in marginal 

ice zone (MIZ) conditions during warmer periods due to an overall reduced duration of 

the MIZ.  Only two HBI diene peaks are observed in core MD03-2601 section XVII 

indicating that the HBI diene is not common in climatic intervals with relatively warm 

spring conditions. 
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Figure 6.04 (next three pages).  Relative abundances of diene, triene and the ratio D/T at a 

1 cm resolution in core section XVII, compared to stratigraphic log of lamina distribution.  

Note, particularly thin C1 laminae are represented by grey bars rather than a symbol (see 

key, p 119). 
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6.2.2 Core section VIII (the mid-Holocene transition) 

Core section VIII can be divided into two sub-sections based upon the last occurrence 

of A1 laminae and increased frequency of A2 laminae; the late Hypsithermal and the 

early Neoglacial (Chapter 5).  The early Neoglacial sediments between 1137 cm and 

1050 cm core depth contain frequent Hypsithermal type laminae and indicate a gradual 

transition into the Neoglacial.  Similarly to the triene distribution in core section XVII, 

there is a lack of consistency between lamina distribution and the sedimentary relative 

abundance of HBI diene.  However, higher mean abundances of HBI diene occur 

between 1137 and 1064 cm (mean diene relative abundance = 1.0, n = 70; see Figure 

6.05 and Table 6.02) than in the latest Hypsithermal sediments between 1200 and 1137 

cm (mean diene relative abundance = 0.4, n = 61; see Figure 6.05 and Table 6.02).  This 

is a statistically significant increase (Mann-Whitney U = 1331, n 1137 – 1064 cm = 70, 

n 1200 – 1137 cm = 61, p < 0.01) that is broadly coincident with the spring cooling 

(identified using BSEI lamina analysis; Chapter 5) associated with the transition.  A 

further significant increase in HBI diene relative abundances occurs within the heavily 

bioturbated section at the top of core section VIII (1064 – 1050 cm core depth; mean 

diene relative abundance = 2.2, n = 12) compared to mean HBI diene abundances 

between 1137 and 1164 cm (Mann-Whitney U = 180.5, n 1064 – 1050 cm = 12, n 1137 

– 1164 cm = 70, p < 0.001; see Table 6.02).  This could suggest that there is a link 

between HBI diene concentrations and bioturbated intervals in the early Neoglacial that 

may result from better oxygenation of sea floor sediments during cooler periods due to a 

strengthened sinking of high salinity shelf waters (Chapter 5).  However, the gradually 

increasing HBI diene concentrations in the early Neoglacial also supports the 

interpretation of the diatom laminae that the transition from Hypsithermal to Neoglacial 

conditions is more gradual than the large step-wise change suggested by previously 

reported relative abundances of sea ice associated diatoms (Crosta et al., 2007; Denis et  
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Table 6.02.  Summary of Mann-Whitney U tests conducted on mean relative diene 

abundances in core section VIII. 

 1050 – 1064 cm 

(mean = 2.2; n = 12) 

1137 – 1200 cm 

(mean = 0.4; n = 61) 

1064 – 1137  

(mean = 1. 0; n = 70) 

U = 180.5; p < 0.001 U = 1331; p < 0.001 

 

al., 2009).  The increased HBI diene concentrations may, therefore, be recording 

gradually cooling ocean surface conditions that are coincidental with bioturbated 

sediments at the top of core section VIII (see also Section 6.2.3). 

 

The HBI triene is present in all samples of core section VIII and again shows no 

consistent distribution relative to laminae (Figure 6.05).  Comparing the relative 

abundance of triene above and below the transition (taken as 1137 cm core depth) 

reveals no significant difference in mean values (Mann-Whitney U = 2496, n above 

=82, n below = 61, p = 0.99).  It can be seen in Figure 6.05 that there is no increase in 

triene abundances in the bioturbated interval that would be comparable with the 

observed increased diene abundances. 

 

 

 

 

 

 

 

Figure 6.05 (next three page).  Relative abundances of diene, triene and the ratio D/T at a 

1 cm resolution in core section VIII, compared to stratigraphic log of lamina distribution.   
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6.2.3 Core section III (the Neoglacial) 

Both HBI alkenes are present in high abundances in the majority of samples in MD03-

2601 core section III (Figure 6.01), deposited during the Neoglacial (ca. 1.6 ka BP).  As 

with core sections XVII and VIII, there is no clear association between the significant 

HBI concentration peaks and lamina type, even with the larger mean lamina thickness in 

core section III (Figure 6.06).  Unlike that observed at the top of core section VIII, there 

is no apparent association between high diene concentrations and bioturbated intervals 

(e.g. in the bioturbated interval at ca. 390 cm core depth there are very low HBI diene 

abundances, whilst in the bioturbated interval ca, 365 cm core depth there are high HBI 

diene abundances; Figure 6.06).  This suggests that the association between HBI diene 

and bioturbated sediments in core section VIII is a spurious and supports the 

interpretation of gradually increasing HBI diene abundances associated with the onset 

of the Neoglacial. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.06.  Relative abundances of diene, triene and the ratio D/T at a 1 cm resolution in 

core section III, compared to stratigraphic log of lamina distribution. 
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6.3 The distribution of HBIs in core MD03-2601 

The HBI data presented in this chapter provides equivocal results about the nature of 

HBI distribution in laminated sediments.  HBIs, in particular HBI diene, may potentially 

provide a proxy of changes in the sea ice environment at longer timescales (section 6.1); 

however, when compared to the lamina reconstructions presented in Chapter 5, there is 

no obvious coeval pattern in HBI distribution (section 6.2) at these fine scales.  The 

demonstrated inconsistency of HBI distribution with regards to a given lamina type 

suggests that it is not an issue of sampling resolution.  Consequently, three alternative 

hypotheses are considered in this section (1 – 3 below), with particular focus on the HBI 

diene, which has the stronger modern environmental association (being produced only 

within sea ice rather than in waters proximal to melting sea ice which may display a 

range of hydrographic conditions, Massé et al., 2011): 

1) HBI diene and triene abundances are not responding to the same environmental 

forcing as recorded by the changing lamina types identified by diatom 

assemblages; 

2) interannual variability in HBI production is greater than the interseasonal 

variability of a given year; 

3) alteration of the HBI signal may occur during sedimentary and early diagenetic 

processes. 

Hypothesis (1) must be taken into account when comparing the record of HBI alkenes 

to diatom distributions, particularly when considering changes in the relative abundance 

of HBI diene.  As the HBI diene is synthesised by sea ice biota (Belt et al., 2008; Brown 

et al., 2011; Massé et al., 2011) it is recording a signal that is not commonly preserved 

in sedimentary diatom assemblages, as sea ice diatoms are highly susceptible to 

dissolution processes and are only infrequently observed in the sedimentary record 

(Matsuda et al., 1990).  Diatom-based inferences of the presence of sea ice are made by 

particular comparison to the Fragilariopsis genus (in particular F. curta and F. 

cylindrus which are associated with the presence of sea ice, but do not necessarily form 

high biomass within it), of which F. curta has been shown not to synthesise HBIs 

(Damsté et al., 2004) and the same is likely for other members of the genus (Massé et 

al., 2011).  Cryophilic Fragilariopsis species are indicators of the presence of sea ice or 

cold water, but are not indicators of primary production within sea ice itself (von 
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Quillfeldt, 2004; Beans et al., 2008; Riaux-Gobin et al., 2011).  In an ultra-high-

resolution analysis of a sediment water interface core, Massé et al. (2011) showed that 

peaks in HBI concentrations were offset (HBI slightly lagged) from peaks in sea ice 

associated diatoms. 

 

Currently there is little information available about interannual variations in HBI 

production within the ocean surface and sea ice (Hypothesis [2]) and subsequent export 

from the water column.  Given that there is substantial variation in the total extent and 

timing of the break-up of sea ice cover in the modern environment (Chapter 2; Comiso, 

1999, updated 2008) there is the potential for large interannual variability in primary 

production related to sea ice, hence delivery of HBIs to sediments.  Additionally, the 

exact species make-up of a sea ice community is influenced by a large variety of factors 

including time of ice formation, type of sea ice, duration of sea ice and snow cover 

(Arrigo et al., 2010), all of which may vary year-on-year.  This combined with the lack 

of an identified genus/species of diatoms that is producing HBIs within Antarctic sea ice 

and the MIZ makes it difficult to assess production rates of HBIs within the modern 

environment. 

 

Processes controlling the flux rate of HBIs to the sediment and subsequent sedimentary 

distribution are also poorly constrained (Hypothesis [3]).  Given that it is presumed that 

Antarctic HBIs are produced from a sea ice diatom source that is rarely preserved itself 

(Denis et al., 2010; Barbara et al., 2010; Massé et al., 2011) we cannot assume that 

HBIs (or, indeed, any geochemical proxy) within a given horizon have followed the 

same sedimentary pathway as the preserved diatoms, despite high sedimentation rates 

(Rosell-Melé and McClymont, 2007; Zonneveld et al., 2010).  At present, very little 

work has been conducted on assessing the biological pathways through which HBIs 

may enter the sedimentary environment, although Brown et al. (2011) have observed 

high concentrations of the IP25 HBI biomarker within Arctic macrofauna, demonstrating 

the potential for a non-direct (i.e. HBIs may not rain out from the ocean surface directly 

to sediments) transport route.  Massé et al. (2011) have presented data from a 

seawater/sediment interface core that is tentatively interpreted as spanning the latter half 

of the 2001/2002 summer season and the first half of the 2002/2003 summer season that 

suggests that at very high accumulation rates (>10 cm per year sedimentation) peaks in 

HBI diene may occur associated with spring biogenic sedimentation.  However, little is 
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known about the effects of early diagenesis (Chapter 3) and diffusion of the HBI 

molecules within the sediment.  Whilst the HBI signal for core MD03-2601 has not 

been altered by sulfuristation (a degradational problem for HBIs in certain 

environments; G. Massé pers. comm., 2012), there is still little understanding of the 

mobility of HBIs within the sediment (i.e. whether or not they enter “bound” to other 

molecules, or if they become bound to a horizon shortly after sedimentation).  Certainly, 

the data presented here indicate that a seasonal signal in the HBI proxy is not preserved 

in the sediments of MD03-2601, regardless of the underlying cause(s) of the loss of this 

signal. 

6.4 Summary 

When considered over selected intervals in the Holocene, HBI diene and triene are 

reasonably correlated with each other in the data presented here from core MD03-2601 

(r = 0.437, p < 0.001, p = 429; Figure 6.02) and well correlated (r = 0.73, p < 0.001, n = 

125) in the MD03-2601 data from Denis et al. (2010; see Chapter 3).  This demonstrates 

that at longer timescales (i.e. between relatively warm and cool climatic intervals) the 

record of the two alkenes may be recording two linked aspects of the sea ice system (i.e. 

sea ice productivity and MIZ productivity; Massé et al., 2011).  However, when 

considered within each core section independently (Figure 6.02) it has been 

demonstrated that the relationship between HBI diene and triene is not present at annual 

to sub-annual timescales.  HBI diene appears to be more closely related to changes in 

sea ice cover inferred from the diatom records, showing a small, yet significant (n above 

= 61, n below = 82, Mann-Whitney U = 1331, p < 0.001), increase in relative 

abundance at the mid-Holocene transition.  This slow increase in HBI diene in the early 

Neoglacial of core section VIII supports the interpretation of the diatom lamina data that 

the transition from Hypsithermal to Neoglacial conditions is slow in nature.  In the data 

presented here, there is a lack of consistency between HBI abundances and lamina 

distribution that is not linked to sampling resolution (i.e. one may pick a lamina type 

and find instances of both high and low HBI abundances corresponding with it).  This 

lack of consistency at a high- temporal resolution may be linked to differences in what 

the two proxies are recording, large interannual variations in the production of HBIs, or 

diagenetic processes affecting their distribution in sediments. 
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Chapter 7 – Conclusions 

This thesis has presented the most detailed analysis of interannual sedimentary changes 

in diatoms and HBIs on the Antarctic margin to date.  It has demonstrated changes in 

the sensitivity of diatom productivity to internal and external forcing during the 

Holocene (section 7.1) and has compared high resolution analysis of highly branched 

isoprenoid (HBI) alkenes against diatom lamina-derived time series (section 7.2).  

Furthermore, this research has successfully addressed all of the hypotheses posed in 

section 1.3 as discussed in sections 7.1.1 and 7.2.1 below.  This chapter concludes by 

suggesting further avenues of research (section 7.3). 

7.1 Lamina-based reconstructions 

Ultra-high resolution analysis of Antarctic diatom-rich laminated sediments provides 

insight into the processes that have exerted an influence on Adélie Land sea ice 

dynamics during the different climatic intervals of the Holocene.  A typical repeating 

sequence of diatom-rich laminae has been identified which is interpreted as representing 

the seasonal diatom succession, an increase of terrigenous material later in the year and 

a sharp winter hiatus.  The complete sequence, when observed using backscatter 

electron imagery (BSEI), has an initial lamina rich in Hyalochaete Chaetoceros resting 

spores (CRS) and/or cryophilic Fragilariopsis spp. which is indicative of high diatom 

productivity in nutrient-rich waters following the spring sea ice retreat.  This is followed 

by a lamina that is visually dominated by Corethron pennatum, Rhizosolenia spp. or 

Phaeoceros Chaetoceros spp and indicates late spring nutrient depletion and mixing of 

the surface water.  In turn, these laminae are followed by a lamina with a mixed diatom 

assemblage and relatively high terrigenous content indicative of summer input of 

sediments from nearer the coast.  Finally, a layer visually dominated by Thalassiosira 

antarctica resting spores (rs) or Porosira glacialis rs completes the sequences and 

indicates autumnal sea ice formation. 

 

The identification of this annual cycle has allowed the first compilation of annually-

resolved multi-decadal records from the sedimentary sections analysed in different 

Holocene climatic intervals.  Two continuously laminated sequences of 50- and 57-

years are identified in core MD03 2601 core section XVII (Hypsithermal, ca. 6.8 – 6.4 
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ka BP) and are interpreted as representing relatively cooler and warmer conditions, 

respectively.  This interpretation is based upon the greater frequency of T. antarctica 

RS-rich laminae (cooler autumns) and lower frequency of Rhizosolenia spp. laminae 

(warmer springs) in the 50-year record.  Given the sensitivity of RS-rich laminae to 

autumn ice formation and the statistical association of Southern Annular Mode (SAM) 

indices with satellite-derived sea ice concentrations, the cooler 50-year record is 

interpreted as responding to a positive phase of the SAM (which strengthens the 

westerlies around Antarctica and enhances sea ice production), whilst the warmer 57-

year record is interpreted as representing a negative phase of the SAM.  The data 

suggests that multidecadal (>50-year) trends in the SAM were a feature of the southern 

hemisphere atmospheric circulation during this phase of the Hypsithermal.  Multi-taper 

method (MTM) analysis of lamina thickness time series reveals a 22-year frequency in 

the 57-year record spring A1 type lamina thickness (Hypsithermal spring) and is 

consistent with a stronger solar influence on the climate during the Hypsithermal 

climatic interval (Debret et al., 2007).  El Nino – Southern Oscillation (ENSO)-band 

frequencies in the E1 lamina (Hypsithermal autumn) thickness time series of the 50-year 

record (see section 7.1.1) and Quasi-biennial Oscillation (QBO)-band frequencies in 

both the 50- and 57-year records were also found. 

 

A continuously laminated 43-year record from the early Neoglacial (core MD03 2601, 

section VIII, ca. 4.8 – 4.4 ka BP) indicates highly variable spring conditions during this 

interval, with multiannual periods in which warm and windy conditions prevailed, 

alternating with multiannual periods in which relatively icier spring conditions 

prevailed.  MTM analysis of lamina thicknesses reveals a 5.3 – 6 year frequency in the 

D1 lamina thickness (Hypsithermal summer laminae which continue into the early 

Neoglacial) time series that may indicate a possible ENSO-influence on summer diatom 

assemblage composition from a delayed start to the summer season due to increased 

spring sea ice concentrations.  However, a similar frequency is not present in the spring 

laminae of this interval and longer sequences are needed to test this hypothesis. 

 

Neoglacial (ca. 1.8 – 1.6 ka) sediments from core MD03 2601 section III are disrupted 

by significant bioturbation.  The observed upcore increase in bioturbation is interpreted 

as being due to increased oxygenation of bottom waters, resulting from more vigorous 

brine production in the cooler Neoglacial.  Despite this, the presence of ~10-year 
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continuously laminated sequences in this core section suggests that there is a 

multidecadal variation in oxygenation resulting from brine formation and that there 

may, therefore, be multidecadal variations in the formation of high salinity shelf waters 

(HSSW).  Multidecadal variations in HSSW production in the modern Ross Sea have 

been linked to multidecadal variations in the SAM (Jacobs and Giulivi, 2010) and the 

data presented here indicates that a similar process may be recorded in the sediments of 

MD03 2601.  In contrast, the Neoglacial sediments of core IODP-318-U1357B (ca. 1.8 

– 1.6 ka) benefit from better preservation related to the position of the core site at the 

centre of the Dumont d’Urville Trough, where sedimentation rates are higher.  This 

thesis has demonstrated for the first time the seasonal nature of the laminae in core 

IODP-318-U1357B, from which a 73-year continuously-laminated record has been 

obtained.  In contrast to the Hypsithermal, no lamina thickness time series contained 

solar frequencies in MTM analysis, interpreted as a stronger internal forcing of Adélie 

Land climate during the Neoglacial.  ENSO-band frequencies were observed in the A3 

(spring), D3 (summer) and E3 (autumn) lamina thickness time series, indicating the 

potential sensitivity of sediments from this core to changes in the ENSO system.  As 

with the Hypsithermal sediments analysed from core MD03-2601, QB-band frequencies 

were the most commonly observed in core IODP-318-U1357B, indicating a potential 

connection between the QBO and Adélie Land sedimentation during the Holocene that 

has not previously been observed.  A multidecadal (>50-years) trend in the distribution 

of E3 laminae (Porosira glacialis RS, Neoglacial autumn laminae; see Section 5.4, 

Figure 5.20) is comparable to the trends observed in the distribution of Hypsithermal 

RS-rich laminae from core MD03 2601 (Section 5.3.1, Table 5.03).  From these 

observations, and the known association between SAM and modern autumnal sea ice 

concentrations, it is proposed that multidecadal (>50-year) changes in phasing were a 

feature of the SAM during the Neoglacial and Hypsithermal intervals analysed here.   
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7.1.1 Hypotheses 

Hypothesis 1:  The distribution of spring laminae should be sensitive to ENSO 

forcing, based on the negative correlation between modern sea ice 

concentration and ENSO. 

MTM time series analysis of spring lamina type A3 thickness in the sediments analysed 

from core IODP-318-U1357B revealed ENSO-band frequencies that are not present in 

spring laminae from the analysed Hypsithermal sections of core MD03-2601.  

Hypothesis 1 for lamina-based reconstructions is, therefore, valid for the Neoglacial 

climatic interval but not the Hypsithermal climatic interval.  This difference reflects the 

greater sensitivity to ENSO of spring sea ice conditions in the Neoglacial relative to the 

Hypsithermal climatic intervals. 

 

Hypothesis 2:  The distribution of autumn laminae should be sensitive to SAM 

forcing, and possibly combined SAM-ENSO forcing, based on the positive 

correlation between modern autumn sea ice concentration and SAM, and a 

combined SAM-ENSO index. 

The distribution of lamina types E1 (core MD03 2601 core section XVII) and E3 

(sediments from core IODP-318-U1357B), which are sensitive to autumnal ice 

formation, demonstrate multidecadal variations in their presence/absence.  Furthermore, 

a statistically valid positive association can be demonstrated between a multidecadal 

increase in the modern SAM index and satellite-derived sea ice concentrations 

(Chapters 2 and 5).  This suggests that longer term (>50 years) increases and decreases 

in sea ice have occurred throughout the Holocene in relation to phase changes in the 

SAM.  Furthermore, lamina types E1 and E3 also display ENSO-band frequencies in 

MTM time series analysis, which occur in periods of the record interpreted from the 

distribution of different laminae (Section 5.3.1, Table 5.03) as representing more 

positive SAM values, indicating a coupling between the SAM and ENSO.  The 

evidence indicates that Hypothesis 2 for lamina-based reconstructions is valid. 
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Hypothesis 3:  As a response to both the increased sea ice and ENSO intensity 

that occurred during the late Holocene, ENSO-frequencies should be observed 

more strongly in the lamina-time series records during the Neoglacial 

compared to the Hypsithermal. 

ENSO-frequencies of 3 – 4 years are recorded in the Hypsithermal E1 laminae (autumn) 

and Neoglacial A3 (spring) and E3 (autumn) laminae, whilst slightly longer ENSO-

band frequencies of 5 – 6 years are recorded in the early Neoglacial (ca. 3.9 ka; core 

MD03 2601 section VIII) D1 laminae and later Neoglacial (ca. 1.2 ka; sediments from 

IODP-318-U1357B) D3 laminae.  The data does not suggest a change in ENSO 

intensity (i.e. there is no change in the signal to noise ratio, with ENSO-band 

frequencies being significant at 95% in both intervals) or periodicity between the 

Hypsithermal and Neoglacial.  Thus from the results of this research hypothesis 3 for 

lamina-based reconstructions is falsified. 

7.2 HBI biomarker distribution in laminated sediments 

At the Holocene scale, this research has demonstrated that both HBI diene and triene are 

positively correlated to long term increases in sea ice concentration interpreted from the 

distribution of diatom lamina types, consistent with the lower resolution HBI 

reconstructions of Denis et al. (2010).  This provides good evidence for the two 

molecules being linked to the presence of sea ice and supports their use as a proxy for 

changes in the sea ice and marginal ice zones during the Holocene period.  There was 

no evidence that the diene/triene (D/T) ratio provided an indication of sea ice (diene) 

versus open water productivity (triene) (Massé et al., 2011).  Rather, it is more likely 

that diatoms producing the triene molecule (e.g. Rhizosolenia spp.) benefit from the 

stratification that occurs at a retreating sea ice edge, consequently more HBI diene and 

triene are deposited when there is a greater concentration of sea ice during the spring.  

However, there was no correlation between the diene and triene at annual to sub-annual 

resolution, suggesting potentially different factors affect their production, export and 

preservation at an inter-annual resolution, such as the influence of temperature, light and 

nutrient availability that have not previously been considered.  From the data presented 

here, HBIs do not provide a proxy for past annual variations in sea ice cover and surface 

oceanography that is comparable to the diatom lamina-derived record. 
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7.2.1 Hypotheses 

Hypothesis 1:  Elevated HBI diene concentrations should correspond to the 

occurrence of spring laminae. 

Due to the origin of HBI diene within sea ice it was hypothesised that HBI diene 

concentrations should be highest in spring associated laminae, which have the strongest 

sea ice association.  However, this trend is not evident in the data presented here, with a 

notable lack of consistency in lamina type versus HBI diene concentration.  This most 

likely results from a combination of sedimentary biases (i.e. interannual variations in 

HBI export and possible diagenetic effects) and the contrast between the processes that 

produce HBIs and laminations.  HBI diene is exclusively produced by diatoms living 

within sea ice, whilst the diatom-rich sea ice-related laminae are typically composed of 

an assemblage of diatoms that may be living within the sea ice but also blooming in 

cold open water conditions at the ice edge and, subsequently, laminae are amalgamating 

signals from different parts of the environment.  HBI hypothesis 1 is, therefore, rejected. 

 

Hypothesis 2:  Elevated HBI triene concentrations should correspond to the 

occurrence of late spring/summer laminae. 

Due to the phytoplankton origin of HBI triene it was hypothesised that HBI triene 

concentrations should be highest in late spring/summer laminae which have the 

strongest phytoplankton/open water association.  As with HBI diene, there is a lack of 

consistency between lamina type and HBI triene concentration, suggesting that HBIs do 

not provide a useful proxy for understanding annual variability in palaeoclimate 

reconstructions.  Again, this may be due to substantial interannual variability in HBI 

triene export linked to changes in diatom community composition in a given year, 

diagenetic alteration of the recorded signal, or HBIs being forced by other factors than 

solely sea ice (e.g. temperature or light availability).  HBI hypothesis 2 is, therefore, 

rejected. 
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7.3 Future work 

7.3.1 Time series analysis of laminated sediments 

This thesis presents selected multidecadal annually resolved records from Adélie Land 

sediments.  These results and analysis are particularly relevant to guide future research 

using core IODP-318-U1357B.  Potentially, the seasonal banding which is visible to the 

eye may be used to construct additional long (multidecadal to centennial) records using 

other microfossil and geochemical palaeoclimate proxies.  New records will shed 

further light on natural phase changes in the SAM and their impact of the coastal East 

Antarctic environment. They will also facilitate further testing of the phasing observed 

in this study between ENSO and SAM at multidecadal to centennial timescales, 

allowing us to test the impact of these large climatic modes on sea ice fields throughout 

the Holocene.  In particular, the data presented here has also highlighted the potential 

use of laminae rich in Thalassiosira antarctica RS and Porosira glacialis RS to record 

long term changes in the SAM.  This can be further tested by quantitative counts that 

can be directly sampled from the annual layering observed here and would provide a 

quantitative dataset for further time series analyses.  Lower resolution multi-proxy 

studies on IODP-318-U1357B may also demonstrate millennial phase changes in the 

SAM and the influence of the SAM on Adélie Land sea ice distribution and 

oceanography (e.g. increases or decreases in bottom water production) throughout the 

Holocene. 

 

7.3.2 Understanding the distribution of HBIs 

The HBI data from core MD03-2601 indicates a complicated relationship between the 

HBI diene and triene molecules and environmental conditions at different time scales 

(i.e. they are poorly correlated with each other and diatom inferred changes at a near 

annual timescale, but well correlated at millennial time scales).  This thesis has shown 

that, at both timescales, HBIs are recording aspects of the sea ice environment that 

differs from the record of the diatom lamina-based reconstructions.  This highlights a 

significant gap in our understanding of HBIs in terms of their source species/genera, 

their function and activity within the cell, their response to environmental variables and 

biases in their sedimentation/deposition and taphonomy.   Our understanding of the 

distribution of HBIs in sediments may be enhanced by further high resolution 
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comparison of HBIs to quantitative proxies (i.e. diatom assemblage counts) that were 

beyond the scope of this study.  In particular, Rhizosolenia antennata and R. hebetata 

(L. Collins, unpublished data; L. Barabara, unpublished data) may show a good 

association with HBI triene concentrations in lower resolution studies (G. Massé, pers 

comm.) and ultra-high resolution laminated sediments provide an excellent opportunity 

to test this against a seasonally constrained timescale.  The study of sea floor sediment-

water interface cores with well constrained chronologies will also help provide 

constraints on the interannual variations in HBI export in the modern environment 

versus long term instrumental data and biological monitoring programmes (e.g. Long 

Term Ecological Research; LTER).  Additionally, multiannual interface cores have the 

potential to demonstrate whether the large variations in HBI concentration over a short 

sedimentary interval (1 – 2 cm) observed in this study are due to interannual variability 

in HBI export from the water column, rather than diagenetic changes within ancient 

sediments. 
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Appendix 1.  Diatom plates 

This appendix contains plates presenting light microscope and SEM photographs of key 

diatom taxa from this study.   
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Appendix 2.  Lamina thicknesses 

This appendix presents lamina thickness data for all laminae from cores MD03-2601 and 

IODP-318-U1367B.  Lamina numbers were arbitrarily prescribed during data collection and 

reflect the thin section the lamina occurs on.  Year number for each initial lamina within a 

given sequence is also indicated.  The data is presented in five tables: A2.01 – A2.04 contain 

the data for MD03-2601; A2.05 contains the lamina data for IODP-318-U1357B. 
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Table A2.01.  Lamina thickness measurements (T1 – T5) and mean values for all laminae 

recorded in core MDO3-2601 section III. 

   

Lamina thickness (mm) 

Lamina 

number 

Year in 

sequence 

Lamina 

type T1 T2 T3 T4 T5 Mean 

1305-0 

 

E2 1.83 2.58 3.33 3.87 4.51 3.22 

1305-1 

 

D2 4.40 4.51 4.51 4.51 4.72 4.53 

1305-2 4 A2 3.65 3.33 3.22 3.01 2.90 3.22 

1305-3 

 

D2 6.12 6.23 6.12 6.44 6.66 6.31 

1305-4 3 A2 3.01 3.11 3.22 2.68 2.47 2.90 

1305-5 

 

D2 3.01 2.47 2.36 2.79 3.76 2.88 

1305-6 2 A2 3.76 3.87 3.87 3.76 2.79 3.61 

1305-7 

 

D2 4.29 4.29 4.40 4.51 4.40 4.38 

1305-8 1 B2 8.16 8.05 7.84 7.73 7.62 7.88 

1337-0 

Bioturbated 

Bio 95.51 96.30 96.69 97.44 97.34 96.65 

1337-1 D2 17.62 17.62 17.40 16.84 18.74 17.64 

1338-0 Bio 37.76 37.77 38.82 39.61 37.79 38.35 

1351-0 A2 12.28 10.17 9.63 8.15 8.08 9.66 

1352-0 Bio 38.26 41.13 42.92 45.24 45.27 42.56 

1352-1 C2 16.04 16.55 17.15 17.66 17.76 17.03 

1352-2 

 

D2 1.51 1.51 2.22 2.12 2.22 1.92 

1354-0 1 C2 11.71 11.65 10.75 10.66 10.17 10.99 

1361-0 

Bioturbated 

Bio 62.43 62.49 61.68 59.07 58.89 60.91 

1361-1 B2 10.34 11.68 12.68 14.12 14.12 12.59 

1362-0 Bio 28.08 27.89 27.97 28.61 29.02 28.31 

1362-2 A2 10.58 9.69 9.20 8.41 8.60 9.30 

1321-0 

 

D2 24.37 24.46 25.14 23.67 22.78 24.08 

1321-1 5 C2 1.96 1.96 2.05 2.15 2.84 2.19 

1321-2 

 

D2 1.17 1.47 0.98 1.56 1.56 1.35 

1321-3 4 B2 4.99 5.09 5.38 4.79 4.79 5.01 

1322-0 

 

D2 13.33 12.71 13.11 13.77 14.03 13.39 

1322-1 3 B2 3.08 3.24 3.48 3.81 4.05 3.53 

1322-2 

 

D2 3.57 3.57 3.81 3.81 3.81 3.71 

1327-0 2 B2 26.35 25.95 26.19 26.01 25.92 26.08 

1327-1 

 

D2 5.18 5.37 5.75 5.46 4.90 5.33 

1327-2 1 A2 15.35 14.98 14.88 15.63 14.60 15.09 

1328-0 Bioturbated Bio 21.43 21.25 20.33 20.37 22.52 21.18 

1328-2 

 

D2 12.61 12.29 12.40 12.29 12.50 12.42 

1328-3 11 A2 1.27 1.48 1.91 2.23 1.91 1.76 

1309-0 

 

D2 6.10 5.75 5.10 4.45 4.12 5.10 

1309-1 10 A2 9.06 9.62 10.29 10.18 9.96 9.82 

1309-2 

 

D2 2.68 2.57 2.46 2.80 3.24 2.75 

1309-3 9 B2 11.30 10.96 10.74 10.85 11.07 10.98 

1309-5 

 

D2 1.90 1.90 2.01 2.01 2.13 1.99 

1309-6 8 A2 7.27 7.16 6.71 6.04 5.70 6.58 

1310-0 

 

D2 10.13 10.05 9.68 8.27 8.27 9.28 
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Lamina thickness (mm) 

Lamina 

number 

Year in 

sequence 

Lamina 

type T1 T2 T3 T4 T5 Mean 

1310-1 7 A2 1.77 1.58 2.36 1.77 1.97 1.89 

1310-2 

 

D2 2.56 2.56 1.97 3.84 3.15 2.82 

1310-3 6 A2 3.65 3.94 4.53 4.93 5.71 4.55 

1310-4 

 

D2 2.56 2.86 3.05 3.05 3.45 3.00 

1310-5 5 C2 4.93 4.34 3.84 3.55 3.05 3.94 

1310-6 

 

D2 2.66 2.86 3.05 3.05 3.45 3.01 

1310-7 4 B2 2.27 1.97 1.77 1.58 1.08 1.73 

1319-0 

 

D2 7.73 8.75 9.87 9.84 10.23 9.28 

1319-1 

 

B2 4.98 4.30 3.85 4.30 3.74 4.24 

1319-2 3 A2 6.46 5.78 4.76 3.63 3.40 4.80 

1319-3 

 

D2 8.84 7.36 10.65 10.42 9.97 9.45 

1319-4 2 B2 3.85 3.63 2.49 2.61 2.83 3.08 

1320-0 

 

D2 11.52 13.25 13.93 14.73 15.42 13.77 

1320-1 1 B2 5.58 4.10 3.58 3.16 3.05 3.89 

1323-0 Bioturbated Bio 27.43 27.20 26.91 26.87 26.82 27.04 

1323-1 

 

E2 3.79 3.60 3.42 2.96 2.96 3.34 

1323-2 

 

D2 4.25 4.80 4.99 5.36 5.08 4.90 

1323-3 4 A2 3.88 3.42 2.96 2.96 4.25 3.49 

1323-4 

 

D2 2.40 2.77 3.51 4.16 3.79 3.33 

1323-5 3 C2 1.16 1.53 2.27 2.92 2.55 2.09 

1324-0 

 

D2 18.53 18.05 17.97 17.79 17.06 17.88 

1324-1 2 B2 3.18 3.59 3.79 3.79 3.59 3.59 

1339-0 

 

D2 24.23 24.22 23.79 23.56 23.76 23.91 

1339-1 1 B2 5.52 5.63 5.73 5.84 6.37 5.82 

1339-2 

Bioturbated 

Bio 26.12 26.66 27.08 27.61 27.82 27.06 

1340-0 C2 2.32 1.42 2.27 2.11 2.77 2.18 

1340-1 D2 7.43 6.89 6.71 6.71 6.98 6.94 

1340-2 9 B2 1.54 1.81 1.81 1.99 2.18 1.87 

1340-3 

 

D2 11.11 11.59 9.97 8.43 7.93 9.81 

1340-4 8 B2 1.94 1.64 1.54 1.99 1.59 1.74 

1333-0 

 

D2 7.99 7.88 7.74 7.69 7.06 14.84 

1333-1 7 A2 6.74 8.69 10.63 10.73 13.18 9.99 

1333-2 

 

D2 9.50 7.15 4.80 3.27 2.35 5.42 

1333-3 6 A2 6.74 8.69 10.53 11.75 13.18 10.18 

1333-4 

 

D2 5.12 7.06 8.80 9.72 7.88 7.72 

1333-5 5 C2 2.19 4.14 5.87 6.79 4.95 4.79 

1334-0 

 

E2 3.19 3.19 2.59 2.30 2.61 2.77 

1334-1 

 

D2 5.88 6.27 6.47 6.67 6.96 6.45 

1334-2 4 A2 8.04 7.35 6.86 6.47 6.37 7.02 

1334-3 

 

D2 15.00 14.70 15.29 15.29 15.00 15.06 

1334-4 3 C2 2.45 2.84 2.45 2.55 2.84 2.63 

1334-5 

 

D2 5.01 4.89 4.76 3.90 2.91 4.30 

1329-0 2 A2 6.89 6.78 6.65 5.78 4.80 6.18 
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Lamina thickness (mm) 

Lamina 

number 

Year in 

sequence 

Lamina 

type T1 T2 T3 T4 T5 Mean 

1329-1 

 

E2 1.80 1.80 1.72 1.96 2.29 1.91 

1330-0 

 

D2 12.82 12.48 12.28 11.81 11.94 12.27 

1330-1 1 A2 3.62 3.62 4.30 4.75 4.98 4.26 

1330-2 Bioturbated Bio 27.62 28.07 28.07 28.52 28.75 28.21 

1303-0 8 D2 9.87 11.70 11.91 11.62 11.80 11.38 

1303-1 

 

C2 3.57 2.02 2.12 2.31 2.22 2.45 

1303-2 

 

D2 2.12 2.12 2.02 1.93 2.02 2.04 

1303-3 7 C2 1.45 1.83 1.35 1.35 1.54 1.50 

1303-4 

 

D2 4.82 4.63 4.53 4.43 4.43 4.57 

1303-5 6 C2 4.63 4.43 4.34 4.24 3.95 4.32 

1303-6 

 

D2 8.09 8.58 8.96 9.15 6.65 8.29 

1303-7 5 B2 5.01 4.43 3.66 3.18 3.08 3.87 

1304-0 

 

D2 8.94 9.44 10.62 11.33 11.92 10.45 

1304-1 4 A2 4.30 4.41 4.41 3.69 3.18 4.00 

1304-2 

 

D2 7.89 7.48 7.17 7.27 8.09 7.58 

1304-3 3 A2 4.00 4.10 4.30 4.41 4.41 4.24 

1365-0 

 

D2 10.60 10.70 11.81 13.43 13.83 12.08 

1365-2 2 A2 10.66 10.46 10.36 9.24 9.34 10.01 

1365-3 

 

D2 9.85 9.55 8.73 7.62 6.81 8.51 

1365-4 1 B2 3.76 4.16 5.08 5.89 5.99 4.98 

1347-0 Bioturbated Bio 75.87 69.33 68.58 68.79 68.82 70.28 

1347-1 

 

D2 5.93 6.33 6.43 6.63 6.43 6.35 

1347-2 4 B2 2.67 2.67 2.57 2.18 1.98 2.41 

1347-3 

 

D2 1.58 0.89 0.30 0.00 0.00 0.55 

1348-0 3 B2 0.00 0.00 0.54 1.29 2.04 0.77 

1348-1 

 

D2 8.36 8.25 7.61 7.08 6.54 7.57 

1348-2 2 A2 4.50 4.93 5.68 6.22 6.75 5.62 

1348-3 

 

D2 5.25 6.86 6.75 6.00 6.22 6.22 

1348-4 1 A2 5.47 2.68 2.14 3.97 4.07 3.67 

1395-0 

Bioturbated 

Bio 43.59 43.52 42.81 42.42 42.38 42.95 

1395-1 A2 2.53 2.33 2.14 1.85 1.36 2.04 

1307-0 Bio 68.83 69.67 70.71 71.85 73.44 70.90 

1308-0 A2 16.77 17.06 18.25 19.28 18.46 17.96 

1301-0 

 

D2 31.76 31.04 29.53 28.51 28.82 29.93 

1301-1 2 A2 4.69 4.88 4.88 6.35 6.72 5.50 

1302-0 

 

D2 22.14 21.71 21.38 17.54 15.72 19.70 

1302-1 1 A2 11.33 10.77 10.66 12.68 13.24 11.74 

1376-0 Bioturbated Bio 77.36 78.22 79.51 80.53 80.40 79.20 

1393-0 

 

D2 7.41 7.86 7.16 7.48 7.07 7.39 

1393-1 1 A2 4.07 3.09 2.39 2.21 2.48 2.85 

1394-0 

Bioturbated 

Bio 45.39 45.92 45.97 46.58 46.79 46.13 

1392-0 A2 8.04 7.50 6.03 5.49 5.23 6.46 

1392-1 Bio 15.14 15.48 16.48 16.75 16.75 16.12 
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Table A2.02.  Lamina thickness measurements (T1 – T5) and mean values for all laminae 

recorded in core MDO3-2601 section VIII. 

   

Lamina thickness (mm) 

Lamina 

number 

Year in 

sequence 

Lamina 

type T1 T2 T3 T4 T5 Mean 

326-0 

Bioturbated 

Bio 44.21 44.00 43.79 44.13 45.34 44.29 

326-1 B1 1.42 1.09 1.53 1.20 0.76 1.20 

356-0 Bio 33.60 34.47 34.17 33.59 33.54 33.87 

356-1 B1 0.69 0.30 1.29 1.49 1.59 1.07 

373-0 Bio 60.88 60.73 59.49 59.40 58.76 59.85 

373-1 A2 0.50 0.70 0.70 0.90 1.20 0.80 

373-2 

 

D1 4.60 4.60 4.70 4.60 3.80 4.46 

373-3 43 A2 2.60 2.90 3.20 3.50 3.40 3.12 

373-4 

 

D1 1.60 1.20 1.10 1.10 1.10 1.22 

373-5 42 B1 7.10 7.20 7.20 7.30 7.40 7.24 

373-6 

 

D1 4.10 4.10 4.10 4.00 3.90 4.04 

373-7 41 B1 1.70 1.50 1.50 1.30 0.90 1.38 

373-8 

 

D1 4.40 5.20 5.40 5.50 6.10 5.32 

374-0 40 B1 6.56 6.26 5.94 5.41 5.80 5.99 

374-1 

 

D1 6.10 5.48 5.68 5.68 4.44 5.48 

374-2 39 B1 1.76 1.65 1.65 1.14 1.76 1.59 

374-3 

 

D1 6.20 6.92 7.34 7.75 7.34 7.11 

374-4 38 C2 2.48 2.38 2.17 1.96 1.45 2.09 

385-0 

 

D1 18.45 17.64 17.54 17.55 17.95 17.83 

385-1 37 B1 3.73 4.01 4.01 3.92 3.64 3.86 

385-2 

 

D1 3.68 3.96 3.96 3.86 3.58 3.81 

385-3 

 

B1 5.27 5.55 5.55 5.46 5.18 5.40 

385-4 36 A2 3.71 3.71 3.62 3.62 3.62 3.66 

386-0 

 

D1 7.06 7.08 6.46 5.69 6.06 6.47 

386-1 

 

B1 1.49 2.33 3.35 3.26 2.97 2.68 

386-2 35 A2 0.57 0.69 0.91 1.60 0.91 0.94 

386-3 

 

E1 7.20 6.97 6.40 6.74 4.80 6.42 

386-4 

 

D1 4.68 4.91 5.03 4.80 4.80 4.84 

386-5 34 A1 1.60 1.37 1.48 1.60 1.48 1.51 

386-6 

 

D1 9.14 8.79 7.88 7.42 6.85 8.02 

386-7 33 A2 0.91 1.03 1.37 1.71 2.40 1.48 

386-8 

 

D1 10.74 11.42 12.11 12.22 12.33 11.76 

341-0 32 A2 4.62 7.26 8.07 8.85 9.44 7.65 

341-1 

 

D1 8.31 8.45 8.45 8.60 8.60 8.48 

341-2 31 B1 2.48 2.33 2.19 1.89 2.19 2.21 

341-3 

 

D1 1.75 2.48 2.91 3.35 3.64 2.83 

341-4 

 

B1 4.08 3.50 3.64 3.64 3.50 3.67 

341-5 30 C1 5.97 6.56 7.58 7.87 7.72 7.14 

341-6 

 

D1 7.72 7.29 6.12 5.97 6.12 6.64 

341-7 

 

E1 5.10 4.81 4.37 3.93 3.64 4.37 

342-1 29 B1 4.78 4.46 4.13 4.24 4.24 4.37 
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Lamina thickness (mm) 

Lamina 

number 

Year in 

sequence 

Lamina 

type T1 T2 T3 T4 T5 Mean 

342-2 

 

D1 4.24 4.35 4.78 4.89 4.35 4.52 

342-3 28 C2 13.48 13.48 13.37 12.94 12.61 13.18 

387-0 

 

D1 15.99 17.33 18.92 19.83 19.83 18.38 

387-1 

 

B1 1.04 1.27 1.04 1.50 2.42 1.45 

387-2 27 A2 3.45 3.45 3.57 3.22 2.42 3.22 

387-3 

 

D1 1.15 0.81 0.69 0.69 0.58 0.78 

387-4 26 B1 8.52 9.10 9.33 9.44 9.79 9.24 

387-5 

 

D1 2.19 2.30 2.42 2.42 2.42 2.35 

387-6 25 C2 1.84 1.84 1.84 1.96 1.84 1.87 

387-7 

 

D1 1.27 0.92 0.92 0.92 1.27 1.06 

387-8 24 A2 2.19 1.96 1.84 1.84 1.61 1.89 

387-9 

 

D1 4.84 4.84 4.61 4.49 4.26 4.61 

387-10 23 C2 1.61 1.61 1.61 1.50 1.73 1.61 

387-11 

 

D1 2.65 2.30 2.07 2.19 1.84 2.21 

387-12 22 B1 1.27 1.38 1.61 1.04 2.30 1.52 

388-0 

 

D1 11.87 11.15 8.98 7.93 5.25 9.04 

388-1 

 

C2 2.84 2.52 0.74 0.74 0.53 1.47 

388-2 21 A2 1.89 0.95 3.05 1.58 1.47 1.79 

388-3 

 

D1 5.57 7.04 6.93 7.77 8.61 7.18 

388-4 20 A2 2.42 2.52 4.20 2.21 2.31 2.73 

388-5 

 

D1 7.98 6.62 6.09 7.98 8.19 7.37 

388-6 19 B1 3.26 4.73 4.31 4.41 5.57 4.45 

388-7 

 

D1 4.52 4.83 5.99 6.20 4.62 5.23 

307-1 18 A2 6.44 5.88 5.69 5.88 6.44 6.07 

307-2 

 

D1 11.18 10.99 11.37 11.75 10.90 11.24 

308-0 17 C2 8.92 8.97 8.53 7.98 8.26 8.53 

308-1 

 

D1 7.63 7.85 7.74 7.96 8.50 7.94 

308-2 

 

B1 10.47 10.90 11.01 11.12 11.12 10.92 

308-3 16 C2 6.43 5.67 6.00 6.00 5.67 5.95 

308-4 

 

D1 1.16 0.72 1.05 3.67 4.86 2.29 

308-5 15 C1 0.24 -0.20 0.13 2.75 3.95 1.37 

308-6 

 

E1 2.94 3.82 3.16 1.31 0.65 2.38 

308-7 

 

D1 1.09 1.64 2.83 2.40 2.29 2.05 

308-8 14 A2 0.76 2.07 1.20 0.76 0.98 1.16 

379-0 

 

D1 4.44 2.06 3.69 2.94 2.73 3.17 

379-1 13 B1 1.50 1.29 1.40 2.16 1.52 1.57 

379-2 

 

D1 7.13 5.39 6.70 6.17 6.06 6.29 

379-3 

 

C2 2.36 2.58 3.22 3.76 4.08 3.20 

379-4 12 B1 3.76 3.98 4.19 3.98 3.76 3.93 

349-5 

 

D1 5.05 4.41 3.87 4.30 3.87 4.30 

379-6 

 

E1 1.40 1.72 2.36 2.26 2.36 2.02 

379-7 

 

D1 4.84 5.05 5.16 5.37 6.23 5.33 

379-8 11 B1 2.04 1.93 1.93 1.83 1.72 1.89 
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Lamina thickness (mm) 

Lamina 

number 

Year in 

sequence 

Lamina 

type T1 T2 T3 T4 T5 Mean 

380-0 

 

D1 8.75 8.75 9.07 8.32 8.75 8.73 

380-1 10 B1 2.38 2.59 2.70 2.81 2.92 2.68 

380-2 

 

D1 5.08 4.75 4.32 3.89 3.35 4.28 

380-3 9 B1 7.56 7.56 7.56 7.56 8.10 7.67 

380-4 

 

D1 3.57 3.35 3.35 3.24 2.59 3.22 

380-5 8 B1 4.65 4.65 4.65 4.75 4.75 4.69 

380-6 

 

D1 5.08 5.19 4.97 5.08 4.54 4.97 

311-0 7 B1 2.59 2.38 2.48 3.11 4.68 3.05 

311-1 

 

D1 2.42 3.05 3.68 2.94 1.47 2.71 

311-2 

 

E1 0.53 0.42 0.53 0.95 1.16 0.71 

311-3 

 

D1 11.03 10.72 11.45 12.08 12.19 11.49 

311-4 6 B1 1.37 1.37 1.05 0.95 1.26 1.20 

311-5 

 

D1 15.65 15.55 15.55 15.23 14.92 15.38 

312-0 

 

C2 6.01 6.33 6.87 7.09 7.00 6.66 

312-1 

 

D1 3.09 3.94 3.73 2.66 1.38 2.96 

312-2 5 A1 2.87 1.81 1.81 2.45 4.15 2.62 

312-3 

 

D1 9.26 9.15 8.94 8.73 8.09 8.83 

312-4 

 

B1 3.73 3.94 4.15 4.36 5.11 4.26 

312-5 4 A2 2.77 2.77 2.66 2.13 1.49 2.36 

393-0 

 

D1 5.91 6.54 7.38 9.38 10.86 8.02 

393-1 3 B1 9.99 10.10 8.84 7.47 6.63 8.60 

393-2 

 

D1 6.63 6.63 6.52 6.21 6.31 6.46 

393-3 2 A2 0.74 0.84 0.95 0.95 1.05 0.90 

393-4 

 

D1 8.52 8.42 8.21 7.68 6.63 7.89 

393-5 1 A2 3.05 2.95 2.95 2.95 3.47 3.07 

394-0 
Bioturbated 

Bio 27.95 28.04 28.34 28.55 28.65 28.31 

381-0 B1 15.32 16.50 17.04 18.31 19.15 17.26 

381-1 

 

D1 6.16 6.47 7.72 7.52 7.83 7.14 

381-2 7 A2 11.38 11.27 10.86 10.86 10.96 11.07 

382-0 

 

D1 9.87 8.71 9.24 8.61 7.98 8.88 

382-1 6 A2 6.85 6.32 6.32 6.74 7.69 6.79 

382-2 

 

D1 10.22 10.75 10.85 10.33 9.80 10.39 

313-0 5 C2 16.77 15.72 14.38 14.44 14.48 15.16 

313-1 

 

D1 3.98 3.88 4.79 5.96 6.32 4.99 

313-2 

 

C2 6.78 6.69 6.23 5.51 5.24 6.09 

313-3 4 A2 4.97 5.15 5.51 5.24 4.43 5.06 

313-4 

 

D1 7.77 7.77 7.59 7.41 7.50 7.61 

313-5 3 A2 2.26 2.17 1.99 2.44 3.16 2.40 

313-6 

 

D1 2.08 2.44 2.71 2.35 2.71 2.46 

314-0 2 C1 7.84 7.90 7.32 5.77 5.57 6.88 

314-1 

 

D1 10.04 10.26 10.69 10.69 11.02 10.54 

314-2 1 C1 6.59 6.80 6.80 6.91 7.45 6.91 

370-0 Bioturbated Bio 54.58 54.51 55.27 54.99 54.12 54.69 
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Lamina thickness (mm) 

Lamina 

number 

Year in 

sequence 

Lamina 

type T1 T2 T3 T4 T5 Mean 

370-1 

 

D1 3.97 3.63 3.51 3.40 3.29 3.56 

370-2 15 A1 1.36 1.36 1.70 2.04 2.04 1.70 

370-3 

 

D1 7.03 7.25 7.25 7.25 7.37 7.23 

370-4 14 C1 2.95 2.61 2.27 2.27 2.04 2.43 

370-5 

 

D1 5.78 6.23 6.57 6.01 6.12 6.14 

370-6 

 

B1 9.29 9.07 9.18 9.52 9.63 9.34 

370-7 

 

A1 2.04 2.15 2.04 2.27 2.27 2.15 

331-0 13 B1 3.86 3.97 4.08 4.49 4.69 4.22 

331-1 

 

D1 8.99 8.36 7.73 6.69 5.23 7.40 

332-0 12 B1 24.26 23.55 23.55 24.06 24.37 23.96 

332-1 

 

D1 8.10 8.10 8.10 8.20 8.41 8.18 

332-2 

 

C1 2.97 3.18 2.87 2.77 2.56 2.87 

332-3 11 A1 7.89 8.30 8.82 9.43 9.33 8.75 

332-4 

 

D1 6.25 6.56 6.77 6.36 5.84 6.36 

371-0 10 A1 4.61 4.77 4.77 5.41 6.34 5.18 

371-1 

 

D1 16.87 16.65 16.19 14.84 14.04 15.72 

371-2 9 A1 5.78 5.55 5.32 5.89 7.25 5.96 

372-0 

 

D1 14.84 14.84 15.52 16.34 14.32 15.17 

372-1 

 

C1 0.23 2.66 3.82 3.82 3.82 2.87 

371-2 8 A1 3.13 3.36 3.47 3.36 3.36 3.33 

371-3 

 

D1 10.68 10.80 10.68 10.80 10.91 10.77 

371-4 7 B1 3.35 3.46 3.35 3.46 3.58 3.44 

371-5 

 

E1 13.66 13.43 13.08 12.85 12.85 13.17 

377-1 

 

D1 11.63 11.72 11.72 10.87 10.21 11.23 

377-2 

 

A1 2.93 3.03 3.03 3.50 3.12 3.12 

377-3 

 

D1 1.23 1.13 1.42 1.70 1.80 1.46 

377-4 6 C1 0.57 0.57 0.66 0.66 0.76 0.64 

378-0 

 

D1 17.99 18.45 16.22 16.55 16.84 17.21 

378-1 5 A1 28.85 29.39 29.39 28.42 28.31 28.87 

392-1 

 

D1 24.62 24.51 24.05 22.90 22.32 23.68 

391-0 4 A1 4.40 3.87 3.90 4.37 5.18 4.34 

391-1 

 

D1 3.00 2.90 2.90 2.80 2.90 2.90 

391-2 3 B1 14.19 13.79 13.69 13.79 13.49 13.79 

391-3 

 

D1 8.70 9.40 9.79 9.79 9.79 9.50 

391-4 2 A1 2.60 1.90 1.40 1.00 0.90 1.56 

391-5 

 

E1 1.30 1.30 1.50 1.40 1.30 1.36 

391-6 

 

D1 6.50 7.20 7.90 7.90 8.10 7.52 

343-0 1 A1 2.84 2.52 2.94 4.87 6.31 3.89 

343-1 

Bioturbated 

Bio 26.47 27.10 27.00 27.21 26.47 26.85 

343-2 A1 2.31 2.63 2.84 3.57 3.36 2.94 

359-0 Bio 36.77 40.72 40.38 39.83 38.79 39.30 

359-1 A1 3.91 3.62 4.40 5.18 6.75 4.77 

359-2 

 

D1 7.04 6.06 4.89 4.40 4.50 5.38 
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Lamina thickness (mm) 

Lamina 

number 

Year in 

sequence 

Lamina 

type T1 T2 T3 T4 T5 Mean 

359-3 3 A1 2.25 2.25 2.84 2.54 2.93 2.56 

359-4 

 

D1 14.87 15.06 15.45 15.84 15.75 15.39 

360-0 2 A1 3.32 3.56 4.24 2.40 2.99 3.30 

360-1 

 

D1 8.93 9.02 9.64 8.49 8.22 8.86 

360-2 1 A1 6.45 6.45 6.37 6.45 6.72 6.49 

318-0 Bioturbated Bio 58.86 60.79 62.30 64.45 66.22 62.52 

318-1 

 

D1 7.79 7.20 6.91 6.52 6.04 6.89 

318-2 

 

E1 0.58 0.68 0.78 0.58 0.58 0.64 

383-0 

 

D1 11.89 12.06 11.51 13.79 14.20 12.69 

383-1 6 A1 11.87 11.75 11.64 11.17 10.81 11.45 

383-2 

 

D1 3.41 3.76 3.88 4.47 5.29 4.16 

384-0 

 

C1 14.45 14.04 14.61 14.71 14.51 14.46 

384-1 5 A1 11.23 10.46 9.48 9.26 9.37 9.96 

315-0 

 

D1 22.27 23.17 23.55 23.36 22.83 23.03 

315-1 4 C1 5.19 5.46 5.86 5.79 5.39 5.54 

316-0 

 

D1 10.19 11.74 11.67 11.65 11.43 11.34 

316-1 3 B1 8.00 6.15 5.64 4.46 4.38 5.73 

316-2 

 

D1 10.45 9.94 10.19 11.20 11.29 10.61 

316-3 2 B1 4.30 3.79 3.62 3.45 3.03 3.64 

350-0 

 

D1 7.55 6.86 6.50 6.49 6.74 6.83 

350-1 

 

B1 1.06 0.98 0.98 0.90 0.73 0.93 

350-2 1 A1 2.04 1.71 1.31 0.73 0.41 1.24 

350-3 

 

D1 21.38 22.28 22.19 23.09 23.09 22.41 
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Table A2.03.  Lamina thickness measurements (T1 – T5) and mean values for all laminae 

recorded in core MDO3-2601 section IX. 

   

Lamina thickness (mm) 

Lamina 

number 

Year in 

sequence 

Lamina 

type T1 T2 T3 T4 T5 Mean 

1345-1 

 

D1 3.23 3.74 4.14 4.54 4.75 4.08 

1345-2 6 A1 2.22 2.32 2.32 2.52 2.52 2.38 

1345-3 

 

D1 3.33 3.23 3.03 2.63 2.93 3.03 

1345-4 5 A1 1.51 1.62 1.92 2.32 2.52 1.98 

1345-5 

 

D1 7.88 7.88 7.98 7.98 7.37 7.82 

1345-6 4 A1 5.15 4.85 4.85 4.95 5.35 5.03 

1345-7 

 

D1 5.05 5.25 5.25 5.15 4.75 5.09 

1345-8 3 A1 1.11 1.11 1.01 0.91 1.01 1.03 

1345-9 

 

D1 6.97 7.07 6.97 6.87 6.67 6.91 

1346-0 2 A1 6.91 5.69 5.28 6.91 6.09 6.18 

1346-1 

 

D1 9.85 10.66 11.48 10.06 11.07 10.62 

1346-2 1 A1 4.77 4.88 4.77 4.98 5.18 4.92 

1385-0 Bioturbated Bio 44.05 44.90 45.22 44.58 43.51 44.45 

1385-1 

 

D1 5.35 6.09 6.41 6.09 5.88 5.97 

1385-2 4 A1 1.67 1.67 1.36 1.15 1.36 1.44 

1386-1 

 

D1 16.60 16.39 15.97 15.14 14.61 15.74 

1386-2 3 A1 6.58 6.05 6.05 6.37 6.47 6.31 

1386-3 

 

D1 4.07 4.07 3.76 3.76 3.97 3.93 

1386-4 2 A1 0.63 0.73 0.84 1.04 1.25 0.90 

1379-0 

 

D1 27.54 28.84 30.04 31.06 31.62 29.82 

1379-1 1 A1 2.41 2.32 2.50 3.34 3.52 2.82 

1325-0 
Bioturbated 

Bio 85.77 86.69 87.18 87.43 86.88 86.79 

1325-1 A1 2.23 2.23 1.88 3.06 3.53 2.59 

1325-2 

 

D1 1.29 1.18 1.53 0.82 1.41 1.25 

1325-3 

 

E1 0.82 0.71 0.47 0.59 0.35 0.59 

1325-4 8 A1 3.53 3.88 4.00 3.88 3.53 3.76 

1325-5 

 

D1 3.53 4.23 4.82 4.94 5.76 4.66 

1326-0 7 A1 7.30 5.73 4.88 4.89 4.36 5.43 

1326-0a 

 

D1 3.54 3.64 3.64 3.75 3.32 3.58 

1326-1 6 A1 3.14 3.14 3.14 3.14 3.14 3.14 

1326-2 

 

D1 2.15 1.83 2.47 3.01 3.23 2.54 

1326-3 5 A1 2.90 3.01 2.37 3.12 2.80 2.84 

1326-4 

 

D1 3.77 3.98 3.98 3.12 2.69 3.51 

1326-5 4 A1 2.58 2.15 1.72 1.72 1.83 2.00 

1326-6 

 

D1 3.98 5.06 5.92 6.35 8.07 5.87 

1326-7 3 A1 4.30 4.41 6.02 5.16 5.16 5.01 

1326-8 

 

D1 7.21 6.67 6.02 4.52 4.30 5.75 

1326-9 2 A1 3.12 2.58 2.47 1.61 1.51 2.26 

1356-0 

 

D1 7.63 8.30 8.40 9.37 9.75 8.69 

1356-1 

 

B1 8.11 7.92 7.82 8.30 9.17 8.26 

1356-2 

 

D1 0.87 1.26 1.45 1.35 1.16 1.22 
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Lamina thickness (mm) 

Lamina 

number 

Year in 

sequence 

Lamina 

type T1 T2 T3 T4 T5 Mean 

1356-3 1 B1 4.92 5.21 5.31 5.41 5.60 5.29 

1355-0 Bioturbated Bio 39.14 39.03 39.03 38.37 37.59 38.63 

1355-1 

 

D1 7.12 6.56 5.89 5.45 5.00 6.01 

1315-0 15 A1 3.87 3.87 4.19 4.29 3.65 3.97 

1315-1 

 

D1 5.37 5.15 4.94 4.19 4.40 4.81 

1315-2 

 

E1 3.01 3.11 3.11 2.90 2.15 2.86 

1315-3 14 A1 2.58 2.58 2.36 2.25 1.93 2.34 

1315-4 

 

D1 8.80 8.80 9.13 9.66 9.88 9.26 

1315-5 13 A1 1.61 1.50 1.50 1.93 2.47 1.80 

1315-6 

 

D1 6.55 6.33 6.23 6.12 5.26 6.10 

1316-0 12 A1 10.42 10.71 10.90 11.28 11.76 11.01 

1316-1 

 

D1 3.92 3.82 3.82 3.82 3.54 3.79 

1316-2 11 A1 2.39 2.20 2.20 2.10 1.82 2.14 

1316-3 

 

D1 2.10 2.10 1.82 2.20 2.39 2.12 

1316-4 10 A1 0.76 0.76 0.67 0.29 0.29 0.55 

1316-5 

 

D1 7.74 7.46 7.55 7.84 7.65 7.65 

1316-6 9 A1 1.24 2.01 2.01 1.72 1.53 1.70 

1316-7 

 

D1 2.20 2.01 2.29 2.68 2.96 2.43 

1316-8 8 A1 0.57 0.48 0.48 0.67 0.76 0.59 

1316-9 

 

D1 2.96 2.58 2.39 2.01 1.53 2.29 

1316-10 7 A1 0.96 1.63 1.53 1.05 1.15 1.26 

1371-0 

 

D1 7.11 8.99 8.89 9.27 9.92 8.84 

1371-1 6 A1 1.31 1.50 1.50 1.40 1.03 1.35 

1371-2 

 

D1 1.12 1.03 0.84 0.84 1.03 0.97 

1371-3 

 

A1 1.97 2.53 2.90 2.90 2.81 2.62 

1371-4 

 

D1 0.75 0.75 0.56 0.66 0.66 0.67 

1371-5 5 A1 0.84 0.66 0.75 0.84 0.66 0.75 

1371-6 

 

D1 5.43 4.96 4.40 4.21 4.59 4.72 

1371-7 4 A1 4.68 4.87 5.62 5.71 5.15 5.20 

1371-8 

 

D1 5.99 5.80 5.52 5.52 6.18 5.80 

1371-9 

 

E1 1.31 1.31 1.31 1.31 1.31 1.31 

1372-0 

 

D1 11.30 10.80 10.21 6.44 6.05 8.96 

1372-1 3 A1 6.05 6.74 7.14 7.63 7.83 7.08 

1372-2 

 

D1 2.18 2.38 2.58 2.87 2.97 2.60 

1372-3 2 A1 1.09 1.09 1.09 1.19 1.19 1.13 

1372-4 

 

D1 6.64 6.24 5.95 5.95 5.95 6.15 

1372-5 1 A1 0.79 1.49 1.98 1.78 1.19 1.45 

1349-0 Bioturbated Bio 62.93 62.43 62.50 63.04 63.67 62.91 

1367-0 

 

D1 13.68 13.99 13.99 14.29 15.22 14.23 

1367-1 11 A1 2.88 3.08 2.88 2.57 2.98 2.88 

1367-2 

 

D1 7.10 6.99 7.30 7.51 7.30 7.24 

1367-3 10 B1 8.33 8.33 8.33 8.43 8.74 8.43 

1367-4 

 

D1 5.55 5.66 5.55 5.55 4.83 5.43 
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Lamina thickness (mm) 

Lamina 

number 

Year in 

sequence 

Lamina 

type T1 T2 T3 T4 T5 Mean 

1367-5 9 A1 4.11 3.91 4.42 5.14 5.24 4.57 

1368-0 

 

D1 2.92 2.83 2.83 2.50 2.50 2.72 

1368-1 8 A1 0.33 0.33 0.33 0.42 0.50 0.38 

1368-2 

 

D1 6.09 5.75 5.34 4.92 4.50 5.32 

1368-3 7 C1 3.92 4.09 4.42 4.84 5.00 4.45 

1368-4 

 

D1 6.00 6.00 6.00 5.92 5.75 5.94 

1368-5 6 A1 0.58 0.50 0.67 0.42 0.50 0.53 

1368-6 

 

D1 3.17 3.25 3.25 3.59 3.67 3.39 

1357-0 5 A1 15.85 15.63 15.63 15.51 15.74 15.67 

1357-1 

 

D1 10.42 9.74 9.17 8.72 8.49 9.31 

1357-2 4 A1 4.42 4.64 5.21 5.66 6.23 5.23 

1357-3 

 

D1 8.04 8.72 8.49 8.15 7.70 8.22 

1358-0 3 A1 4.14 3.50 3.29 3.72 5.41 4.01 

1358-1 

 

D1 18.58 18.15 17.84 17.41 15.50 17.50 

1358-2 2 A1 6.26 6.26 6.48 6.69 6.90 6.52 

1313-0 

 

D1 16.88 17.53 16.88 16.77 16.99 17.01 

1313-1 1 A1 8.06 7.84 7.08 6.32 5.88 7.03 

1390-0 

Bioturbated 

Bio 98.37 99.22 99.54 101.49 101.69 100.06 

1389-0 C1 10.97 8.84 8.02 7.31 7.11 8.45 

1377-0 Bio 42.39 42.72 43.92 45.12 45.56 43.94 

1377-1 A1 11.80 11.58 11.36 10.93 10.71 11.27 

1378-0 Bio 46.76 46.43 45.12 45.23 45.01 45.71 

1335-0 

 

D1 18.26 18.46 19.15 19.25 19.15 18.85 

1335-1 30 A1 2.58 2.58 2.48 2.28 2.48 2.48 

1335-2 

 

D1 10.32 11.21 11.31 11.51 11.61 11.19 

1335-3 29 A1 1.49 1.79 1.89 1.59 0.99 1.55 

1335-4 

 

D1 7.58 7.47 7.35 7.13 7.24 7.35 

1336-1 28 A1 9.84 9.95 10.29 10.52 10.97 10.32 

1336-2 

 

D1 3.28 2.94 2.26 2.38 2.94 2.76 

1336-3 27 A1 0.90 1.24 1.24 1.36 0.90 1.13 

1336-4 

 

D1 5.66 5.66 5.54 4.64 3.85 5.07 

1336-5 

 

A1 2.26 2.15 2.83 3.17 3.05 2.69 

1336-6 

 

D1 1.47 1.81 1.36 1.24 1.81 1.54 

1336-7 26 A1 0.68 1.02 0.68 0.90 0.68 0.79 

1336-8 

 

E1 0.68 0.45 0.90 0.90 0.90 0.77 

1336-9 

 

D1 0.90 1.02 1.13 1.13 1.36 1.11 

1311-0 25 A1 8.06 8.56 8.31 8.43 8.18 8.31 

1311-1 

 

D1 0.74 0.62 1.49 2.11 2.36 1.46 

1311-2 24 A1 2.60 2.73 2.11 1.86 1.98 2.26 

1311-3 

 

D1 2.23 2.23 2.23 2.48 2.85 2.41 

1311-4 23 A1 3.10 3.10 2.73 2.60 2.85 2.88 

1311-5 

 

D1 3.60 4.71 5.33 4.96 4.46 4.61 

1311-6 22 A1 4.22 2.85 2.36 2.48 2.48 2.88 
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Lamina thickness (mm) 

Lamina 

number 

Year in 

sequence 

Lamina 

type T1 T2 T3 T4 T5 Mean 

1311-7 

 

D1 15.50 15.13 15.00 15.25 15.25 15.23 

1311-9 21 A1 0.99 0.87 0.99 0.99 0.87 0.94 

1311-10 

 

D1 0.74 0.74 0.87 0.99 0.87 0.84 

1312-0 20 A1 12.36 13.66 14.46 14.76 14.46 13.94 

1312-1 

 

D1 2.99 3.19 3.29 3.49 3.49 3.29 

1312-2 19 A1 3.69 3.39 2.99 2.79 2.99 3.17 

1312-3 

 

D1 1.99 2.19 2.59 2.69 2.29 2.35 

1312-4 18 A1 2.69 2.69 2.59 2.39 3.09 2.69 

1312-5 

 

D1 2.89 2.89 2.89 2.99 2.09 2.75 

1312-6 17 A1 0.70 0.70 0.70 1.00 0.40 0.70 

1312-7 

 

D1 12.66 12.55 12.09 11.63 12.32 12.25 

1381-1 16 A1 5.47 5.59 5.59 5.59 5.47 5.54 

1381-2 

 

D1 10.72 10.26 10.26 10.38 10.38 10.40 

1381-3 15 A1 2.40 2.40 2.51 2.62 2.62 2.51 

1381-4 

 

D1 9.69 9.47 9.24 8.90 8.55 9.17 

1382-0 14 A1 5.18 5.07 4.86 4.97 5.39 5.09 

1382-1 

 

D1 5.39 5.49 5.49 5.60 5.49 5.49 

1382-3 13 A1 4.02 4.12 4.12 3.80 3.38 3.89 

1382-3 

 

D1 3.06 2.96 2.54 2.75 3.06 2.87 

1382-4 12 A1 2.01 2.11 2.22 2.22 1.90 2.09 

1359-0 

 

D1 18.22 18.05 18.57 18.91 19.08 18.57 

1359-1 11 B1 6.27 6.45 6.53 6.62 6.62 6.50 

1359-2 

 

D1 5.59 6.10 6.36 6.45 6.45 6.19 

1359-3 

 

E1 1.12 1.20 1.12 1.29 1.80 1.31 

1359-4 

 

D1 6.19 6.62 6.27 5.50 4.90 5.90 

1359-5 10 A1 3.60 3.50 3.89 4.67 5.16 4.16 

1360-2 

 

D1 12.45 12.26 12.06 11.77 11.38 11.98 

1360-3 9 A1 3.89 3.79 3.99 3.70 3.40 3.75 

1360-4 

 

D1 5.93 5.84 5.45 6.03 6.61 5.97 

1387-0 8 A1 4.94 6.29 5.81 4.84 4.26 5.23 

1387-1 

 

D1 13.26 13.75 14.23 14.81 16.07 14.43 

1387-2 7 B1 3.58 3.87 4.07 4.07 3.29 3.78 

1388-0 

 

D1 14.45 17.55 17.04 16.86 16.78 16.54 

1388-1 6 A1 2.93 3.01 3.10 3.10 3.27 3.08 

1388-2 

 

D1 7.40 7.92 8.17 8.26 8.17 7.98 

1388-3 5 A1 3.87 3.61 3.53 3.61 3.70 3.67 

1388-4 

 

D1 11.03 11.36 11.69 12.13 12.13 11.67 

1369-1 4 A1 5.57 5.57 5.35 5.35 5.35 5.44 

1369-2 

 

D1 10.93 10.60 10.82 10.71 10.60 10.73 

1369-3 3 A1 1.53 1.20 1.20 1.20 1.64 1.35 

1369-4 

 

D1 1.53 2.73 3.28 3.71 3.82 3.02 

1369-5 2 A1 2.40 2.19 1.97 2.08 2.08 2.14 

1369-6 

 

D1 5.46 5.90 6.45 6.56 6.34 6.14 
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Lamina thickness (mm) 

Lamina 

number 

Year in 

sequence 

Lamina 

type T1 T2 T3 T4 T5 Mean 

1370-0 1 A1 6.20 6.11 5.29 5.02 5.29 5.58 

1370-1 Bioturbated Bio 29.27 29.00 29.27 29.64 29.82 29.40 

1331-0 3 A1 3.28 3.28 3.28 3.47 3.93 3.45 

1331-1 

 

D1 6.93 6.65 6.37 6.18 5.43 6.31 

1331-2 2 A1 4.78 4.31 4.21 4.12 4.50 4.38 

1331-3 

 

D1 8.62 8.90 8.99 8.90 8.99 8.88 

1331-4 

 

E1 0.94 1.22 1.31 1.40 1.22 1.22 

1331-5 

 

D1 2.53 2.53 2.24 2.04 1.85 2.24 

1332-0 1 C1 10.50 10.31 9.92 9.34 10.21 10.06 

1332-1 
Bioturbated 

Bio 22.76 22.95 23.73 24.60 23.53 23.51 

1383-0 B1 8.74 7.37 7.37 8.22 7.90 7.92 

1383-2 

 

D1 26.44 27.60 27.39 26.97 26.44 26.97 

1383-3 2 A1 1.58 1.58 1.69 3.37 3.16 2.28 

1384-0 

 

D1 7.55 7.64 7.55 7.21 7.47 7.48 

1384-1 1 A1 9.87 8.67 8.24 7.98 7.55 8.46 

1384-2 Bioturbated Bio 19.23 19.31 19.31 19.31 19.48 19.33 

1343-2 3 A1 4.53 5.13 5.13 5.30 5.21 5.06 

1344-0 

 

D1 14.55 14.46 14.12 14.55 15.24 14.58 

1344-1 2 A1 14.72 15.06 15.58 16.10 16.79 15.65 

1373-0 

 

D1 19.42 19.14 19.14 19.21 19.28 19.24 

1373-1 1 C1 5.77 5.63 5.42 5.35 5.35 5.50 

1373-2 Bioturbated Bio 10.77 10.77 10.91 10.77 10.70 10.78 
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Table A2.04.  Lamina thickness measurements (T1 – T5) and mean values for all laminae 

recorded in core MDO3-2601 section XVII. 

  

Lamina thickness (mm) 

Lamina 

number 

Year in 

sequence 

Lamina 

type T1 T2 T3 T4 T5 Mean 

319-0 
Bioturbated 

Bio 22.36 22.36 22.36 21.84 21.63 22.11 

319-1 A1 1.45 0.93 0.72 0.72 0.72 0.91 

319-2 

 

D1 8.28 8.49 8.80 9.11 9.00 8.74 

319-3 2 A1 1.66 1.76 1.76 1.76 1.66 1.72 

320-0 

 

D1 9.86 9.34 9.72 9.49 9.03 9.49 

320-1 1 A1 3.05 3.17 2.56 2.93 3.66 3.08 

365-0 
Bioturbated 

Bio 41.90 41.42 40.56 39.41 38.03 40.27 

365-1 C1 0.84 0.84 0.84 0.95 1.05 0.90 

365-2 

 

D1 4.00 3.79 3.26 2.31 1.79 3.03 

365-3 57 A1 10.20 10.41 10.73 11.36 11.78 10.89 

365-4 

 

E1 1.05 1.16 1.26 1.37 1.37 1.24 

366-0 

 

D1 19.07 19.18 18.99 18.98 19.20 19.08 

366-1 56 A1 4.44 4.44 4.14 4.34 4.44 4.36 

366-2 

 

D1 18.68 18.28 19.39 19.19 18.99 18.90 

321-0 55 A1 1.98 1.56 2.35 3.76 5.28 2.99 

321-1 

 

D1 6.27 6.06 5.54 5.01 8.15 6.21 

321-2 

 

C1 1.36 1.36 1.36 1.15 1.04 1.25 

321-3 

 

D1 1.57 1.78 1.88 1.88 2.09 1.84 

321-4 54 A1 7.31 7.00 6.48 6.27 6.06 6.62 

321-5 

 

D2 7.02 7.23 7.75 7.96 8.38 7.67 

321-6 53 A2 2.76 2.97 3.49 3.70 4.12 3.41 

322-0 

 

E1 12.98 13.29 13.40 13.41 12.59 13.14 

322-1 

 

D1 7.75 7.13 7.03 6.72 6.51 7.03 

322-2 52 A1 7.75 7.75 8.47 9.51 10.23 8.74 

395-0 

 

D1 23.52 23.81 22.41 21.86 19.55 22.23 

395-1 51 A1 3.14 3.14 3.47 3.59 3.92 3.45 

395-2 

 

D1 2.35 2.24 1.91 1.68 1.68 1.97 

395-3 50 A1 1.35 1.35 1.68 1.91 2.13 1.68 

395-4 

 

D1 6.39 6.50 6.17 5.72 5.38 6.03 

395-5 49 A1 2.13 2.24 2.35 2.47 2.47 2.33 

395-6 

 

D1 6.39 6.28 6.05 5.83 5.72 6.05 

396-0 48 A1 7.69 7.70 7.95 7.60 7.53 7.69 

396-1 

 

D1 1.83 2.02 2.41 2.41 2.41 2.22 

396-2 47 C1 1.64 1.35 1.16 1.45 1.64 1.45 

396-3 

 

D1 4.53 4.53 4.53 4.53 4.63 4.55 

396-4 

 

A1 5.40 5.40 5.40 5.30 5.11 5.32 

396-5 

 

C1 3.18 3.28 3.47 3.37 3.47 3.35 

396-6 46 A1 1.93 1.35 1.54 1.73 1.83 1.68 

396-7 

 

D1 3.08 3.95 3.76 3.47 3.37 3.53 

396-8 45 A1 4.72 5.20 5.69 5.88 6.75 5.65 

396-9 

 

D1 3.20 3.07 2.04 2.79 1.93 2.60 
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Lamina thickness (mm) 

Lamina 

number 

Year in 

sequence 

Lamina 

type T1 T2 T3 T4 T5 Mean 

396-10 44 A1 5.05 4.09 3.98 3.52 2.42 3.81 

636-0 

 

D1 8.96 8.96 8.96 8.42 7.88 8.64 

363-1 43 A1 4.54 4.00 2.92 3.02 3.56 3.61 

363-2 

 

D1 10.58 11.23 12.31 12.85 13.07 12.01 

363-3 42 A1 0.86 0.76 0.76 1.19 0.97 0.91 

364-0 

 

D1 8.17 8.27 8.61 8.05 7.93 8.21 

364-1 41 A1 5.77 5.47 5.28 5.08 4.89 5.30 

364-2 

 

D1 2.93 3.13 3.13 3.03 2.35 2.91 

364-3 40 A1 1.37 0.98 0.88 1.08 2.64 1.39 

364-4 

 

D1 2.15 2.74 3.23 3.23 2.64 2.80 

364-5 39 A1 2.74 2.25 1.86 1.17 0.98 1.80 

364-6 

 

C1 5.77 5.57 5.47 5.38 4.99 5.44 

364-7 

 

D1 0.98 1.17 1.17 1.17 1.17 1.13 

303-0 38 A1 12.16 11.77 12.16 12.74 13.02 12.37 

303-1 

 

D1 10.62 10.41 10.41 10.73 11.27 10.69 

303-2 37 A1 1.52 1.63 1.73 1.63 1.84 1.67 

303-3 

 

D1 6.72 6.72 6.72 6.18 5.74 6.42 

303-4 36 A1 2.82 3.79 4.55 5.09 5.20 4.29 

303-x 

 

D1 14.48 13.85 13.76 14.09 14.02 14.04 

304-0 35 A1 3.42 2.79 2.70 3.03 2.95 2.98 

304-1 

 

D1 8.82 8.92 8.72 8.41 8.41 8.65 

304-2 34 A1 4.51 2.67 1.95 1.64 2.05 2.56 

351-0 

 

D1 7.10 7.32 7.29 6.98 6.56 7.05 

351-1 33 A1 5.35 5.68 5.85 6.10 6.18 5.83 

351-2 

 

D1 1.59 1.50 1.75 1.59 1.59 1.60 

351-3 

 

C1 8.52 8.35 7.77 7.77 8.10 8.10 

351-4 32 B1 3.67 3.67 3.67 3.76 3.67 3.69 

351-5 

 

D1 0.67 0.67 0.67 0.84 0.67 0.70 

351-6 31 C1 2.67 2.42 2.09 1.67 1.42 2.05 

351-7 

 

D1 2.26 2.76 2.92 2.92 2.42 2.66 

352-1 

 

C1 6.89 7.08 7.14 7.56 7.72 7.28 

352-2 30 A1 2.12 2.12 2.12 2.12 2.01 2.10 

352-3 

 

D1 2.12 2.12 2.01 2.01 2.01 2.06 

352-4 29 A1 2.24 2.24 2.24 2.12 2.12 2.19 

352-5 

 

D1 3.58 3.46 3.69 3.91 4.02 3.73 

352-6 28 A1 5.70 5.81 5.92 5.70 5.36 5.70 

352-7 

 

D1 5.81 5.48 5.25 5.14 5.14 5.36 

352-8 27 A1 2.24 3.13 4.47 5.03 5.25 4.02 

329-0 

 

D1 10.31 10.09 9.33 8.75 8.90 9.48 

329-1 26 A1 5.23 4.92 4.61 4.20 4.00 4.59 

329-2 

 

D1 2.97 3.38 3.69 4.10 4.20 3.67 

329-3 25 A1 2.97 2.25 2.05 2.05 2.25 2.32 

329-4 

 

D1 3.28 3.89 4.10 4.10 4.00 3.87 
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Lamina thickness (mm) 

Lamina 

number 

Year in 

sequence 

Lamina 

type T1 T2 T3 T4 T5 Mean 

330-0 24 A1 8.85 7.45 7.45 7.11 6.99 7.57 

330-1 

 

D1 3.96 4.51 4.73 5.50 5.83 4.91 

330-2 23 A1 0.33 0.55 0.55 0.66 0.66 0.55 

330-3 

 

D1 3.63 2.86 2.31 2.42 3.19 2.88 

330-4 22 A1 1.98 2.53 2.86 2.53 1.32 2.24 

330-5 

 

D1 3.63 3.85 3.96 3.74 4.07 3.85 

330-6 21 A1 1.21 0.88 0.66 1.10 1.54 1.08 

330-7 

 

D1 3.85 3.63 3.63 3.63 3.96 3.74 

330-8 20 A1 1.76 1.43 1.10 0.99 0.88 1.23 

330-9 

 

D1 0.99 1.10 1.43 1.76 1.43 1.34 

330-10 19 A1 3.52 3.63 3.19 2.31 1.65 2.86 

330-11 

 

D1 4.95 4.62 4.95 4.95 4.62 4.82 

330-12 18 A1 2.09 2.31 2.09 2.20 2.53 2.24 

330-13 

 

D1 2.20 2.86 3.74 4.29 4.62 3.54 

337-0 17 A1 3.06 2.11 1.48 0.85 0.00 1.50 

337-1 

 

D1 5.15 5.78 6.31 6.20 4.94 5.68 

337-2 16 A1 2.84 2.10 1.47 1.68 2.63 2.15 

337-3 

 

D1 1.68 1.68 1.79 2.00 1.89 1.81 

337-4 15 A1 1.47 1.79 1.89 1.79 1.68 1.72 

337-5 

 

C1 3.16 2.73 2.42 2.10 2.21 2.52 

337-6 

 

D1 1.79 2.21 0.21 2.21 2.21 1.72 

337-7 14 A1 1.68 1.37 1.16 1.16 1.79 1.43 

337-8 

 

D1 1.16 1.16 1.37 1.58 0.84 1.22 

337-9 13 A1 0.63 0.53 0.42 0.32 0.32 0.44 

337-10 

 

D1 2.42 2.52 2.73 2.94 3.16 2.76 

338-0 12 A1 16.12 17.59 18.22 19.59 20.01 18.31 

338-1 

 

D1 1.59 1.59 1.69 1.37 1.37 1.52 

338-3 11 A1 5.28 5.28 5.49 6.02 6.02 5.62 

338-4 

 

D1 4.23 4.54 4.54 4.02 3.59 4.18 

338-5 10 A1 11.31 11.10 11.10 11.20 11.94 11.33 

338-6 

 

D1 2.85 4.23 4.54 4.54 4.33 4.10 

354-0 9 A1 7.09 6.25 5.83 5.72 5.83 6.14 

354-1 

 

D1 6.98 6.66 6.55 6.44 6.55 6.64 

354-2 8 A1 3.44 3.87 4.19 4.08 4.08 3.93 

354-3 

 

D1 7.95 8.16 8.05 8.27 8.37 8.16 

353-0 7 A1 18.13 18.73 18.91 18.22 17.50 18.30 

353-1 

 

D1 4.54 5.36 5.83 5.94 5.94 5.52 

353-2 6 A1 8.16 8.51 8.39 7.81 7.81 8.13 

353-3 

 

D1 13.40 13.40 13.63 14.45 14.92 13.96 

347-0 5 A1 6.09 6.65 6.74 7.31 6.94 6.75 

347-1 

 

D1 5.79 5.43 4.34 3.98 3.62 4.63 

347-2 4 A1 1.81 1.93 1.81 1.33 0.84 1.54 

347-4 

 

D1 10.73 11.09 12.30 13.26 13.75 12.23 
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Lamina thickness (mm) 

Lamina 

number 

Year in 

sequence 

Lamina 

type T1 T2 T3 T4 T5 Mean 

347-5 

 

C1 3.01 3.38 3.38 3.62 3.62 3.40 

347-6 3 A1 8.20 7.48 6.51 5.31 4.58 6.41 

348-0 

 

D1 11.41 12.33 13.46 14.18 14.64 13.21 

348-1 2 C1 8.33 8.43 8.54 8.54 8.64 8.49 

348-2 

 

D1 6.96 6.74 6.53 6.43 6.11 6.55 

348-3 1 C1 2.00 1.90 2.00 1.58 1.79 1.85 

309-0 
Bioturbated 

Bio 95.23 96.03 96.05 96.66 97.05 96.20 

309-1 A1 3.06 2.95 2.74 2.63 2.53 2.78 

309-2 

 

D1 3.16 3.16 2.74 2.63 2.63 2.87 

310-0 50 A1 8.12 8.14 8.39 7.91 7.34 7.98 

310-1 

 

D1 3.17 2.97 2.68 2.68 2.48 2.80 

310-2 49 A1 3.07 2.97 2.68 2.58 2.68 2.80 

310-3 

 

D1 1.98 2.18 2.58 2.58 2.28 2.32 

310-4 

 

E1 0.59 0.50 0.30 0.30 0.40 0.42 

310-5 

 

D1 8.42 8.92 9.02 8.72 8.42 8.70 

310-6 48 A1 1.19 1.19 1.49 2.18 2.38 1.68 

310-7 

 

E1 4.36 4.26 3.96 3.96 4.16 4.14 

310-8 

 

D1 3.96 3.27 2.48 1.59 1.09 2.48 

310-9 47 C1 0.99 1.19 0.99 0.50 0.69 0.87 

310-10 

 

D1 7.43 8.52 9.52 10.80 11.30 9.52 

335-0 46 A1 1.50 0.90 1.31 2.33 2.72 1.75 

335-1 

 

D1 7.02 7.63 6.61 4.78 4.27 6.06 

335-2 45 A1 4.37 3.76 4.37 5.19 5.39 4.62 

335-3 

 

E1 4.98 5.09 4.78 4.37 4.07 4.66 

335-4 

 

D1 1.02 0.92 1.02 1.22 1.02 1.04 

335-5 44 A1 3.25 3.46 3.66 3.25 3.25 3.38 

335-6 

 

E1 2.64 2.34 2.14 2.95 3.05 2.62 

336-0 

 

D1 10.45 10.34 10.24 9.69 7.97 9.74 

336-1 43 A1 6.33 5.75 5.64 5.75 6.10 5.91 

336-2 

 

D1 4.60 4.49 4.14 3.80 3.34 4.07 

336-3 42 A1 4.49 4.72 4.49 4.37 4.95 4.60 

363-4 

 

D1 3.95 5.10 4.76 3.95 3.26 4.21 

363-5 41 C1 3.27 4.42 4.08 3.27 2.58 3.53 

357-0 

 

D1 15.86 14.78 14.85 16.09 16.62 15.64 

357-1 

 

A1 1.07 1.43 1.07 0.48 0.95 1.00 

357-2 40 C1 3.94 3.46 3.10 3.46 4.06 3.60 

357-3 

 

D1 0.84 1.91 2.27 1.31 0.48 1.36 

357-4 39 A1 1.79 2.51 3.10 4.65 4.77 3.36 

357-5 

 

D1 2.62 2.62 2.39 1.31 1.31 2.05 

357-6 38 A1 1.19 1.31 0.95 1.79 1.79 1.41 

357-7 

 

D1 5.97 5.73 6.20 6.68 6.68 6.25 

357-8 37 A1 2.03 2.27 2.15 2.27 2.51 2.24 

357-9 

 

D1 6.44 6.56 6.68 6.20 5.49 6.28 
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Lamina thickness (mm) 

Lamina 

number 

Year in 

sequence 

Lamina 

type T1 T2 T3 T4 T5 Mean 

357-10 36 C1 0.84 1.07 1.19 1.19 1.67 1.19 

358-0 

 

D1 8.52 8.27 8.01 8.46 8.94 8.44 

358-2 35 A1 4.58 4.88 4.98 4.88 4.48 4.76 

358-3 

 

D1 14.44 15.05 15.16 15.46 15.36 15.09 

358-4 34 A1 0.51 0.51 0.41 0.51 0.81 0.55 

361-0 

 

D1 11.57 12.47 12.88 12.68 12.68 12.46 

361-1 

 

E1 1.69 1.69 1.79 1.58 1.26 1.60 

361-2 

 

D1 2.53 2.63 2.11 2.00 2.11 2.28 

361-3 33 A1 1.37 1.58 1.69 1.58 1.37 1.52 

361-4 

 

D1 7.59 6.74 6.53 6.43 5.90 6.64 

361-5 32 A1 1.16 1.26 0.95 0.74 0.84 0.99 

361-6 

 

D1 3.48 3.69 4.22 4.64 4.85 4.17 

361-7 31 A1 3.27 3.37 3.27 3.16 3.16 3.25 

361-8 

 

D1 5.27 5.48 5.69 5.90 6.32 5.73 

361-9 30 A1 1.26 1.26 1.26 1.48 1.58 1.37 

361-10 

 

D1 1.05 1.16 1.16 1.05 0.95 1.07 

362-0 29 A1 2.57 2.64 1.54 0.55 0.33 1.53 

362-1 

 

D1 2.91 3.01 3.86 4.70 4.59 3.81 

362-2 28 A1 2.75 2.64 2.64 2.41 2.41 2.57 

362-3 

 

D1 1.91 2.35 2.69 3.14 3.36 2.69 

362-4 27 A1 2.35 1.46 1.57 1.68 1.35 1.68 

362-5 

 

D1 5.16 5.60 5.04 4.71 5.04 5.11 

362-6 26 A1 3.40 2.95 2.73 2.84 2.95 2.97 

362-7 

 

D1 1.23 1.46 1.57 1.57 2.02 1.57 

362-8 25 A1 2.69 2.69 2.35 2.13 1.68 2.31 

362-9 

 

C1 2.02 1.68 1.68 2.02 1.91 1.86 

362-10 

 

D1 2.13 2.24 2.13 2.02 1.91 2.08 

362-11 24 A1 1.91 1.68 1.79 1.35 1.68 1.68 

362-12 

 

D1 1.79 2.24 2.47 2.69 2.24 2.29 

362-13 23 A1 1.23 1.01 0.90 1.12 1.23 1.10 

362-14 

 

D1 3.14 3.25 3.14 3.14 3.03 3.14 

339-0 22 A1 4.59 3.71 3.39 2.67 2.22 3.32 

339-1 

 

D1 0.45 1.08 1.37 1.37 1.78 1.21 

339-2 21 A1 0.63 0.63 0.74 1.30 2.16 1.09 

339-3 

 

D1 1.90 2.08 2.35 2.08 1.72 2.02 

339-4 20 A1 0.81 0.72 0.81 0.81 0.81 0.80 

339-5 

 

D1 2.26 2.62 2.71 2.71 2.71 2.60 

339-6 19 A1 3.88 3.52 2.80 2.53 2.89 3.13 

339-7 

 

D1 5.78 5.96 6.59 7.14 6.78 6.45 

340-0 18 A1 3.78 3.77 3.66 3.17 3.23 3.52 

340-1 

 

D1 1.56 1.35 1.25 1.15 0.83 1.23 

340-2 

 

E1 0.83 0.94 0.94 0.94 0.94 0.92 

340-3 

 

D1 1.35 1.15 1.04 1.56 1.88 1.40 
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Lamina thickness (mm) 

Lamina 

number 

Year in 

sequence 

Lamina 

type T1 T2 T3 T4 T5 Mean 

340-4 17 A1 6.98 6.98 6.56 6.36 6.56 6.69 

340-5 

 

D1 3.23 3.33 3.33 3.44 4.69 3.61 

340-6 16 A1 1.56 1.67 1.98 1.98 1.88 1.81 

340-7 

 

D1 2.40 2.29 2.08 1.77 1.56 2.02 

340-9 15 A1 2.81 2.81 2.81 2.81 3.33 2.92 

340-10 

 

D1 4.58 5.00 5.73 6.15 6.25 5.54 

340-11 

 

E1 2.29 2.19 1.88 1.88 1.98 2.04 

340-12 

 

D1 5.31 5.94 6.25 6.36 5.83 5.94 

305-0 14 A1 4.35 3.30 3.12 2.29 2.60 3.13 

305-1 

 

D1 1.54 1.42 2.01 2.79 2.80 2.11 

305-2 13 C1 9.48 9.00 8.05 7.34 7.58 8.29 

305-3 

 

D1 9.83 10.30 10.90 11.84 10.78 10.73 

305-4 12 A1 6.16 4.62 3.79 3.43 3.79 4.36 

305-5 

 

D1 5.09 6.04 6.51 6.16 4.86 5.73 

305-6 11 A1 0.83 0.95 1.07 1.18 1.42 1.09 

306-0 

 

D1 8.75 10.20 11.67 12.76 13.44 11.36 

306-1 10 A1 5.76 4.51 4.03 3.55 3.75 4.32 

301-0 

 

D1 17.20 18.47 18.96 18.47 18.92 18.40 

301-1 9 A1 1.64 0.62 0.62 0.72 0.62 0.84 

301-2 

 

D1 9.54 10.05 9.54 9.33 9.84 9.66 

301-3 8 A1 6.05 5.84 5.95 6.05 6.05 5.99 

301-4 

 

D1 11.59 10.87 10.66 10.36 10.46 10.79 

302-0 7 A1 2.69 4.63 5.85 6.87 7.69 5.55 

302-1 

 

D1 6.22 5.68 5.03 4.28 3.42 4.93 

302-2 6 A1 2.94 2.40 1.76 1.01 0.15 1.65 

302-3 

 

E1 0.64 0.75 0.75 0.54 0.54 0.64 

302-4 

 

D1 2.36 2.04 1.72 1.72 1.83 1.93 

302-5 5 B1 4.19 4.19 4.30 4.40 4.30 4.27 

302-6 

 

D1 7.19 7.52 7.62 7.41 7.30 7.41 

302-7 4 A1 0.75 0.86 0.75 0.54 1.07 0.79 

302-8 

 

D1 1.50 1.18 0.97 0.64 1.07 1.07 

302-9 3 A1 3.97 4.08 4.19 4.40 5.05 4.34 

302-10 

 

E1 1.18 1.07 1.18 1.40 0.86 1.14 

302-11 

 

D1 0.97 2.79 2.15 1.72 1.93 1.91 

333-1 2 A1 10.23 11.12 11.08 11.24 11.15 10.96 

333-2 

 

E1 1.29 0.99 0.99 0.99 1.09 1.07 

333-3 

 

D1 3.96 3.86 3.57 2.97 2.28 3.33 

333-4 1 A1 4.26 3.96 3.76 3.57 3.17 3.74 

334-0 
Bioturbated 

Bio 41.85 42.34 39.77 40.56 42.05 41.31 

334-1 C1 2.44 2.55 2.34 2.14 2.65 2.42 

345-0 

 

D1 13.88 15.19 16.80 16.46 15.09 15.48 

345-1 8 C1 6.79 6.58 6.58 6.58 6.68 6.64 

345-2 

 

E1 4.14 3.61 3.18 2.76 3.08 3.35 
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Lamina thickness (mm) 

Lamina 

number 

Year in 

sequence 

Lamina 

type T1 T2 T3 T4 T5 Mean 

345-3 

 

D1 9.12 9.86 10.50 11.14 11.35 10.39 

345-4 7 A1 4.67 4.18 3.37 2.86 3.18 3.65 

346-1 

 

D1 2.81 3.17 2.92 3.39 3.29 3.12 

346-2 6 A1 0.90 0.90 2.10 3.19 3.02 2.02 

346-3 

 

D1 3.26 3.47 3.68 3.75 3.75 3.58 

346-4 5 A1 1.18 1.87 1.94 1.81 1.94 1.75 

375-0 

 

D1 13.89 13.33 13.51 14.28 13.95 13.79 

375-1 4 A1 5.40 5.31 5.31 5.40 6.24 5.53 

375-2 

 

D1 7.93 7.84 7.67 7.42 6.41 7.45 

375-3 3 A1 2.45 2.36 2.19 1.86 1.77 2.12 

375-4 

 

D1 6.66 6.75 7.17 7.50 7.76 7.17 

375-5 2 A1 0.93 0.84 0.84 0.67 0.59 0.78 

376-0 

 

D1 0.83 0.93 1.69 2.36 3.20 1.80 

376-1 1 C1 1.81 1.56 0.25 0.00 0.00 0.72 

376-3 Bioturbated Bio 20.45 20.78 21.11 21.03 20.20 20.71 

323-0 

 

D1 9.40 8.16 6.78 5.63 3.52 6.70 

323-1 1 A1 9.07 8.88 8.79 8.98 9.45 9.03 

323-2 Bioturbated Bio 20.05 20.34 20.72 21.58 21.39 20.82 
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Table A2.05.  Lamina thickness measurements (T1 – T5) and mean values for all laminae 

recorded in sediments from core IODP-318-U1357B sections -4H, -5H and -6H. 

   

Lamina thickness (mm) 

Lamina 

number 

Year in 

sequence 

Lamina 

type T1 T2 T3 T4 T5 Mean 

77-1 

 

A3 1.93 2.04 2.14 1.93 1.82 1.97 

77-2 Year end D3 17.46 17.25 17.36 17.57 17.79 17.49 

77-3 

 

C3 5.25 5.57 5.57 5.68 5.79 5.57 

77-4 

 

B3 3.32 3.11 2.79 2.57 2.14 2.79 

77-5 73 A3 4.07 4.07 4.39 4.18 4.29 4.20 

77-6 

 

E3 1.71 1.61 1.50 1.61 1.50 1.59 

78-0 

 

D3 9.97 10.02 10.55 10.69 11.19 10.48 

78-1 72 C3 3.69 3.69 3.60 3.60 3.69 3.65 

78-2 

 

D3 10.15 10.52 10.61 10.52 10.33 10.43 

78-3 

 

C3 1.75 1.85 1.85 2.03 1.85 1.86 

78-4 

 

D3 1.75 1.75 1.66 1.38 1.66 1.64 

78-6 

 

C3 7.01 7.10 7.38 7.38 7.47 7.27 

133-0 71 A3 9.83 9.64 9.29 8.16 7.25 8.83 

133-1 

 

D3 1.84 2.01 2.26 2.51 2.76 2.28 

133-2 

 

C3 3.01 2.85 2.93 2.85 2.76 2.88 

133-3 

 

A3 2.01 1.76 1.51 1.42 2.09 1.76 

133-4 

 

C3 6.86 6.95 7.20 7.20 7.03 7.05 

134-0 70 A3 12.06 12.33 12.63 13.26 13.43 12.74 

134-1 

 

E3 2.72 2.81 2.72 2.16 2.06 2.49 

134-2 

 

D3 19.22 18.75 18.56 17.91 18.19 18.53 

134-3 69 A3 0.84 0.84 0.66 0.75 1.03 0.83 

69-1 

 

D3 4.50 4.82 5.57 5.36 4.93 5.04 

69-2 

 

C3 7.39 7.50 6.96 7.07 7.39 7.26 

69-3 

 

A3 3.11 2.89 2.57 2.36 2.36 2.66 

69-4 

 

C3 3.00 2.68 2.57 2.68 3.00 2.79 

69-5 68 A3 12.43 12.54 12.32 11.57 11.04 11.98 

70-0 

 

E3 9.11 9.78 10.45 11.71 11.92 10.59 

70-1 

 

D3 14.90 16.06 16.55 16.65 16.65 16.16 

70-2 

 

C3 3.39 3.19 3.10 3.19 3.29 3.23 

70-3 

 

B3 5.90 6.10 6.19 6.29 6.29 6.15 

70-4 67 A3 1.74 1.55 1.55 1.55 1.55 1.59 

70-5 

 

D3 2.42 2.52 2.42 2.32 2.23 2.38 

73-1 66 A3 18.49 17.83 17.83 18.19 18.20 18.11 

73-2 

 

C3 1.19 1.37 1.46 1.65 1.65 1.46 

73-3 

 

D3 2.19 2.01 1.83 1.74 1.65 1.88 

73-4 

 

A3 1.10 0.91 0.82 0.64 0.91 0.88 

73-5 

 

D3 7.22 7.31 7.68 7.86 7.77 7.57 

73-6 65 A3 3.47 3.38 3.20 3.02 2.93 3.20 

74-0 

 

D3 5.85 6.87 6.81 6.87 6.45 6.57 

74-1 

 

E3 2.61 3.12 3.02 2.51 2.31 2.72 

74-2 

 

D3 10.76 10.26 10.66 10.96 10.96 10.72 
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Lamina thickness (mm) 

Lamina 

number 

Year in 

sequence 

Lamina 

type T1 T2 T3 T4 T5 Mean 

74-3 

 

C3 4.32 4.53 4.43 4.73 5.33 4.67 

74-4 64 A3 6.64 7.14 7.24 7.74 7.84 7.32 

45-1 

 

E3 21.09 21.73 21.73 20.91 17.82 20.65 

46-0 

 

D3 13.56 13.39 11.91 11.69 13.66 12.84 

67-0 63 A3 35.78 37.38 39.75 41.31 42.34 39.31 

67-1 

 

D3 19.73 19.53 18.91 18.09 17.58 18.77 

68-0 

 

A3 14.55 14.23 13.82 13.72 12.89 13.84 

68-1 

 

D3 4.28 5.54 5.74 5.25 4.76 5.11 

68-2 

 

A3 2.53 2.33 2.53 2.33 2.24 2.39 

68-3 

 

D3 2.04 2.04 2.14 2.92 3.79 2.59 

68-4 

 

A3 5.54 4.86 4.38 4.28 4.86 4.78 

68-5 

 

D3 3.21 3.50 4.28 4.38 3.60 3.79 

41-0 

 

A3 14.95 16.12 15.65 14.58 15.85 15.43 

41-1 

 

C3 9.58 9.85 9.76 9.85 9.58 9.72 

41-2 62 A3 5.23 5.15 4.88 4.88 5.23 5.07 

41-3 

 

E3 2.31 2.75 3.10 3.19 2.84 2.84 

42-0 

 

D3 7.05 6.02 6.18 5.59 5.62 6.09 

42-1 

 

B3 0.66 0.66 0.66 0.66 0.99 0.73 

42-2 

 

D3 2.98 2.90 2.73 2.90 2.56 2.81 

42-3 

 

C3 19.69 20.35 20.76 20.85 21.01 20.53 

43-0 

 

A3 4.63 5.33 5.82 6.04 5.94 5.55 

43-2 

 

C3 5.81 5.91 5.91 6.11 5.71 5.89 

43-5 61 A3 11.01 11.11 11.01 11.21 11.21 11.11 

43-6 

 

E3 5.61 5.50 5.61 5.71 5.91 5.67 

44-0 

 

D3 15.36 15.15 14.95 14.93 14.91 15.06 

44-1 

 

C3 3.91 4.00 4.00 4.10 4.19 4.04 

44-2 60 A3 1.14 1.24 1.43 1.81 1.91 1.51 

44-3 

 

D3 2.38 2.29 2.10 1.72 1.52 2.00 

44-4 

 

A3 4.38 4.38 4.38 4.57 4.67 4.48 

44-5 

 

D3 3.81 3.72 3.72 3.62 3.33 3.64 

44-7 59 A3 5.43 5.43 5.72 6.10 6.48 5.83 

375-0 

 

D3 15.46 16.21 16.39 16.20 15.27 15.91 

375-1 

 

A3 1.86 1.86 1.33 1.15 1.24 1.49 

375-2 

 

C3 0.80 0.97 1.24 1.06 1.15 1.04 

375-3 

 

A3 3.62 3.89 3.98 3.98 3.71 3.84 

375-4 

 

D3 0.80 0.80 0.71 0.80 0.62 0.74 

375-5 

 

A3 3.18 3.54 3.27 3.54 3.89 3.48 

375-6 

 

D3 0.35 0.53 0.80 0.71 0.62 0.60 

375-7 58 A3 1.50 1.77 1.68 2.30 2.65 1.98 

6-0 

 

D3 51.97 51.33 50.34 50.23 50.02 50.78 

23-1 

 

C3 18.35 18.63 18.55 18.59 18.99 18.62 

23-2 

 

D3 2.48 2.55 2.55 2.18 1.95 2.34 

23-3 

 

C3 2.10 2.18 2.25 2.25 2.10 2.18 
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Lamina thickness (mm) 

Lamina 

number 

Year in 

sequence 

Lamina 

type T1 T2 T3 T4 T5 Mean 

23-4 57 A3 0.67 0.90 0.75 0.75 0.75 0.76 

23-5 

 

E3 3.68 3.15 3.08 3.38 3.83 3.42 

23-6 

 

D3 4.88 4.88 4.95 4.88 4.65 4.85 

24-0 

 

C3 8.58 8.50 8.19 7.89 7.74 8.18 

24-1 

 

B3 0.89 0.82 0.97 1.26 1.64 1.12 

332-0 

 

C3 18.33 18.09 17.94 18.03 18.58 18.19 

332-1 

 

A3 2.55 2.39 2.23 2.31 2.39 2.37 

332-2 

 

E3 0.88 0.95 1.03 1.03 0.88 0.95 

332-3 

 

C3 1.11 0.95 1.03 1.11 1.11 1.07 

332-4 56 A3 1.83 2.94 3.10 2.71 2.39 2.59 

332-5 

 

E3 5.25 5.17 5.17 4.93 6.45 5.40 

331-0 

 

D3 5.97 4.94 4.72 4.90 8.83 5.87 

331-1 

 

C3 4.21 5.04 5.12 5.12 4.79 4.85 

331-2 

 

A3 0.66 0.50 0.41 0.50 0.74 0.56 

331-3 

 

D3 0.50 0.50 0.50 0.58 0.58 0.53 

331-4 

 

C3 3.22 2.97 2.81 2.48 2.31 2.76 

331-5 55 A3 0.74 0.74 0.83 0.99 1.07 0.87 

331-6 

 

D3 6.03 6.44 6.85 6.85 6.85 6.60 

331-7 

 

C3 1.16 1.24 1.16 1.40 1.73 1.34 

331-8 

 

D3 1.16 1.16 0.99 0.91 0.91 1.02 

331-9 54 A3 1.24 1.16 1.16 1.07 1.16 1.16 

336-0 

 

E3 9.99 8.34 8.10 8.07 7.87 8.47 

336-1 

 

D3 14.91 15.79 17.28 17.01 16.58 16.31 

336-3 

 

C3 11.49 10.79 10.44 10.35 10.35 10.68 

335-0 53 A3 3.16 3.26 3.26 3.71 3.72 3.42 

335-1 

 

D3 3.82 3.55 3.27 3.09 3.00 3.35 

335-2 

 

A3 3.18 3.18 3.27 3.36 3.55 3.31 

335-3 

 

D3 10.09 9.91 9.45 9.82 10.27 9.91 

374-1 

 

C3 13.32 14.37 15.45 15.98 16.91 15.21 

374-2 52 A3 1.58 1.27 1.08 1.20 1.46 1.32 

374-3 

 

D3 3.36 3.48 3.55 3.42 3.10 3.38 

374-4 

 

B3 0.76 0.76 0.70 0.63 0.63 0.70 

374-5 

 

D3 7.79 7.85 7.92 7.60 7.35 7.70 

326-1 51 A3 1.14 1.45 1.24 0.93 1.24 1.20 

326-2 

 

D3 9.21 9.31 10.03 11.17 12.00 10.34 

326-3 

 

C3 1.34 1.34 1.24 1.24 1.03 1.24 

326-4 

 

D3 3.83 4.03 4.14 4.34 4.45 4.16 

326-5 

 

B3 1.76 1.66 1.55 1.55 1.45 1.59 

326-6 

 

C3 3.41 3.62 3.83 3.83 4.14 3.77 

325-0 50 A3 16.88 15.52 14.69 13.86 11.51 14.49 

325-2 

 

D3 4.59 4.18 4.01 3.93 3.60 4.06 

325-3 

 

A3 0.49 0.82 0.82 0.66 0.98 0.75 

325-4 

 

D3 6.31 5.81 5.08 4.67 4.42 5.26 
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Lamina thickness (mm) 

Lamina 

number 

Year in 

sequence 

Lamina 

type T1 T2 T3 T4 T5 Mean 

325-5 

 

C3 1.80 1.64 1.97 2.29 1.72 1.88 

325-6 

 

D3 0.90 0.90 0.90 1.06 0.82 0.92 

325-7 

 

C3 3.19 3.85 3.85 3.68 4.09 3.73 

325-8 

 

A3 0.90 0.74 0.74 0.66 0.74 0.75 

325-9 

 

D3 0.49 0.49 0.41 0.49 0.66 0.51 

325-10 

 

C3 3.03 3.11 3.52 3.85 4.01 3.50 

328-0 49 A3 10.97 11.13 11.20 12.48 12.63 11.68 

328-1 

 

E3 4.53 4.44 4.09 4.18 4.53 4.36 

328-2 

 

D3 6.97 7.75 7.84 7.84 7.58 7.60 

328-3 

 

C3 1.66 0.87 0.87 1.39 1.74 1.31 

328-4 

 

A3 3.05 3.05 3.05 2.53 2.35 2.81 

327-0 

 

C3 13.21 13.41 14.01 14.88 15.77 14.25 

327-1 48 A3 1.16 1.26 1.45 1.55 1.65 1.41 

327-2 

 

D3 3.97 3.68 3.29 2.90 2.52 3.27 

327-3 

 

C3 6.68 7.26 8.03 8.81 9.48 8.05 

327-4 

 

A3 3.10 2.71 2.52 2.32 2.52 2.63 

327-5 

 

C3 0.97 1.45 1.74 1.94 1.74 1.57 

327-6 

 

D3 7.16 6.58 5.71 5.52 5.13 6.02 

314-1 

 

A3 0.93 0.65 0.56 1.02 1.86 1.01 

314-2 

 

D3 3.63 3.72 3.72 3.63 3.44 3.63 

314-3 

 

C3 10.42 10.61 10.42 9.86 9.21 10.11 

314-4 47 A3 4.19 3.91 3.91 4.00 4.28 4.06 

314-5 

 

D3 2.70 2.79 2.88 3.07 3.44 2.98 

314-6 

 

E3 3.16 3.26 3.26 3.26 2.88 3.16 

313-0 

 

D3 5.66 5.70 6.09 5.97 6.21 5.93 

313-1 

 

C3 5.28 5.11 4.77 4.94 5.20 5.06 

313-2 

 

B3 5.71 5.54 5.20 4.85 4.51 5.16 

313-3 

 

C3 1.96 2.04 2.21 2.47 2.64 2.27 

313-4 46 A3 2.64 2.55 2.38 2.47 2.55 2.52 

313-5 

 

E3 2.47 2.64 2.81 2.64 2.55 2.62 

313-6 

 

D3 2.81 3.07 3.07 3.49 3.49 3.19 

313-7 

 

A3 0.43 0.60 0.51 0.43 0.43 0.48 

316-0 

 

D3 7.25 7.87 7.65 7.93 8.44 7.83 

316-1 

 

A3 0.88 0.68 0.97 0.78 0.97 0.86 

316-2 

 

D3 8.94 8.94 8.65 8.56 8.75 8.77 

316-3 

 

A3 1.17 1.17 0.97 0.88 0.68 0.97 

316-4 

 

D3 4.96 5.54 5.93 5.74 5.44 5.52 

316-5 

 

C3 6.81 6.51 6.51 7.10 7.97 6.98 

316-6 

 

D3 0.39 0.39 0.49 0.39 0.39 0.41 

316-7 

 

B3 2.04 1.75 1.65 1.56 1.36 1.67 

316-8 

 

D3 0.58 0.68 0.68 0.68 0.88 0.70 

316-9 45 A3 0.88 1.17 1.17 1.17 1.26 1.13 

316-10 

 

E3 0.97 0.88 0.78 0.78 0.88 0.86 
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Lamina thickness (mm) 

Lamina 

number 

Year in 

sequence 

Lamina 

type T1 T2 T3 T4 T5 Mean 

316-11 

 

D3 4.18 4.47 4.76 4.67 3.89 4.39 

315-0 

 

C3 4.23 3.75 4.07 3.11 3.12 3.66 

315-1 

 

D3 1.61 1.61 1.51 1.51 1.61 1.57 

315-2 

 

B3 1.61 1.51 1.81 2.01 2.31 1.85 

315-3 

 

C3 2.82 2.51 2.92 3.32 3.62 3.04 

315-4 

 

B3 4.12 4.53 4.43 3.82 3.32 4.04 

315-5 

 

C3 6.03 5.43 5.43 5.63 5.73 5.65 

315-6 44 B3 4.12 3.72 2.61 2.61 2.72 3.16 

315-7 

 

D3 3.12 3.22 3.92 3.92 3.32 3.50 

315-8 

 

C3 1.21 1.21 1.21 1.31 1.31 1.25 

315-9 

 

D3 2.61 2.92 3.12 3.32 3.72 3.14 

371-0 43 A3 11.78 13.29 12.78 12.58 12.89 12.66 

371-1 

 

D3 9.78 9.78 10.08 10.59 10.99 10.25 

371-2 

 

C3 12.50 12.71 12.71 12.61 12.61 12.63 

306-0 42 A3 9.52 9.27 9.36 9.73 8.36 9.25 

306-1 

 

C3 3.06 2.91 2.83 2.69 2.69 2.83 

306-2 

 

E3 2.09 1.79 1.49 1.27 1.04 1.54 

306-3 

 

D3 5.59 5.37 5.52 5.22 5.07 5.36 

306-4 

 

C3 5.07 5.67 5.97 6.12 6.19 5.80 

306-5 

 

A3 1.49 1.57 1.42 1.19 1.19 1.37 

305-0 

 

C3 4.83 4.27 3.94 3.40 3.85 4.06 

305-1 41 A3 1.22 1.54 1.62 1.38 0.97 1.35 

305-2 

 

D3 5.28 5.36 5.52 5.60 5.93 5.54 

305-3 

 

C3 1.70 1.38 1.38 1.46 1.62 1.51 

305-4 

 

A3 1.62 1.62 1.46 1.54 1.46 1.54 

305-5 

 

E3 4.14 4.55 4.87 4.87 4.79 4.64 

312-0 

 

D3 13.07 14.60 12.81 12.87 12.87 13.25 

312-1 

 

C3 3.88 3.88 3.88 3.96 4.11 3.94 

312-2 40 B3 2.89 2.74 2.74 2.51 2.36 2.65 

312-3 

 

D3 5.48 5.33 5.41 5.56 5.79 5.51 

311-0 

 

C3 11.44 11.45 11.62 10.87 11.22 11.32 

311-2 39 A3 4.89 4.74 4.74 5.05 4.66 4.82 

311-3 

 

E3 4.97 5.05 4.89 4.89 4.89 4.94 

311-4 

 

C3 8.45 8.29 8.53 8.68 8.68 8.53 

370-1 

 

A3 2.06 1.96 2.48 2.37 2.37 2.25 

370-2 

 

C3 8.77 8.87 7.94 7.73 7.73 8.21 

370-3 

 

D3 2.27 2.27 2.17 1.96 1.96 2.12 

370-4 

 

C3 6.60 6.70 7.01 7.12 7.32 6.95 

370-5 38 A3 1.65 1.75 2.17 2.58 2.68 2.17 

369-0 

 

D3 15.02 13.99 13.37 12.54 12.23 13.43 

369-1 

 

C3 10.36 10.87 11.18 11.38 11.38 11.03 

372-0 

 

A3 40.68 40.86 41.35 41.73 42.11 41.35 

372-1 

 

C3 1.84 1.84 1.94 1.84 1.65 1.82 
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Lamina thickness (mm) 

Lamina 

number 

Year in 

sequence 

Lamina 

type T1 T2 T3 T4 T5 Mean 

372-2 37 A3 2.23 2.13 2.13 2.13 2.52 2.23 

506-0 

 

D3 20.59 20.83 20.71 20.97 20.69 20.76 

506-1 

 

C3 5.84 5.77 5.77 5.77 5.84 5.80 

506-2 36 A3 3.06 3.06 3.21 3.14 3.06 3.11 

359-1 

 

D3 5.87 5.97 5.68 5.87 5.87 5.85 

359-2 

 

C3 5.01 5.58 5.97 6.06 5.97 5.72 

368-0 

 

A3 3.31 2.99 3.68 3.75 3.91 3.53 

368-1 

 

D3 4.41 4.15 3.71 3.71 3.71 3.94 

368-2 

 

C3 2.21 2.12 2.38 2.65 2.82 2.44 

368-3 35 A3 3.00 3.88 4.24 4.32 4.32 3.95 

368-4 

 

D3 10.59 10.50 10.32 9.97 9.97 10.27 

368-6 34 A3 7.32 7.32 7.15 7.15 7.41 7.27 

367-0 

 

D3 12.35 12.24 11.97 12.20 11.99 12.15 

350-0 

 

A3 26.19 25.61 25.48 25.32 24.13 25.35 

350-2 33 C3 13.68 10.29 10.29 9.70 9.82 10.75 

350-3 

 

D3 3.74 4.32 6.55 6.19 5.14 5.19 

350-4 

 

E3 8.88 9.00 9.35 9.82 8.42 9.09 

350-5 

 

D3 6.43 6.43 6.43 6.08 5.73 6.22 

355-1 

 

A3 0.91 1.37 1.46 1.82 2.37 1.59 

355-2 

 

D3 19.34 19.25 19.62 19.98 19.98 19.64 

355-3 32 A3 5.84 5.75 5.57 5.57 6.39 5.82 

356-0 

 

D3 11.82 10.31 11.46 11.96 11.62 11.44 

356-3 

 

A3 2.38 1.99 2.08 1.89 2.28 2.12 

356-4 

 

D3 10.22 9.93 9.63 9.13 8.64 9.51 

356-5 31 C3 6.35 6.45 6.65 7.44 8.34 7.05 

356-6 

 

E3 1.79 1.89 1.99 1.69 1.19 1.71 

360-0 

 

D3 16.29 16.97 17.89 17.74 16.69 17.12 

360-1 

 

C3 5.14 4.22 3.65 4.11 5.25 4.47 

360-2 30 A3 6.28 6.16 6.16 6.05 6.16 6.16 

360-3 

 

E3 0.80 0.91 0.91 1.03 1.14 0.96 

346-0 

 

D3 11.64 11.92 12.24 12.55 12.44 12.16 

346-1 

 

C3 16.68 16.77 17.20 17.37 19.17 17.44 

345-0 29 A3 6.98 6.77 6.27 5.38 5.50 6.18 

345-1 

 

D3 10.59 10.31 11.04 12.23 12.60 11.35 

345-2 

 

C3 4.11 4.20 3.56 2.10 1.83 3.16 

345-3 

 

A3 8.76 9.13 9.58 9.58 9.31 9.27 

345-4 

 

C3 5.29 4.56 4.75 4.75 5.20 4.91 

349-3 28 A3 19.52 19.43 19.26 19.35 19.77 19.47 

511-1 

 

D3 1.68 1.76 1.91 1.99 0.23 1.51 

523-0 

 

E3 3.35 2.60 2.38 2.86 2.57 2.75 

523-1 

 

D3 14.20 14.44 14.28 13.88 14.12 14.19 

523-2 27 A3 8.27 8.35 8.91 9.63 10.67 9.16 

389-1 

 

D3 26.75 27.82 28.77 29.52 29.52 28.47 



192 

 

   

Lamina thickness (mm) 

Lamina 

number 

Year in 

sequence 

Lamina 

type T1 T2 T3 T4 T5 Mean 

390-1 26 A3 9.70 10.29 8.46 7.55 8.23 8.85 

390-2 

 

E3 2.32 2.42 2.52 2.42 2.32 2.40 

390-3 

 

D3 7.65 6.87 7.35 7.16 6.97 7.20 

390-4 25 C3 6.68 6.97 6.97 7.16 7.35 7.03 

344-0 

 

D3 24.97 24.68 24.97 25.35 25.26 25.05 

344-1 

 

C3 11.61 11.81 11.90 12.29 12.58 12.04 

344-2 24 A3 3.29 3.29 3.29 3.48 3.39 3.35 

344-3 

 

E3 4.35 4.65 4.45 4.16 3.97 4.32 

343-0 

 

D3 6.57 6.52 6.66 5.92 5.86 6.30 

343-1 

 

C3 3.65 3.95 3.65 3.14 2.94 3.47 

385-1 

 

D3 0.51 0.41 0.61 0.61 0.41 0.51 

385-2 

 

A3 0.51 0.61 0.71 0.71 0.82 0.67 

385-3 

 

D3 1.43 1.43 1.22 1.12 0.82 1.20 

385-4 

 

C3 8.16 8.06 8.06 8.16 8.36 8.16 

385-5 

 

A3 1.53 1.53 1.73 1.84 2.04 1.73 

385-7 

 

C3 11.93 12.34 12.75 12.85 13.26 12.63 

385-8 

 

A3 3.26 3.16 3.37 3.77 3.98 3.51 

388-2 

 

C3 15.11 16.58 16.96 16.64 17.48 16.55 

388-3 

 

A3 1.05 1.05 1.37 1.37 1.21 1.21 

387-0 

 

C3 33.25 34.17 34.36 34.13 34.06 34.00 

387-1 23 A3 16.20 16.20 16.03 15.94 15.86 16.05 

381-1 

 

D3 6.27 5.36 4.45 4.91 4.36 5.07 

381-2 

 

A3 4.00 3.73 3.36 3.36 3.18 3.53 

381-3 

 

D3 5.91 6.27 6.91 7.55 8.64 7.05 

381-4 

 

B3 10.73 10.45 10.09 9.55 9.18 10.00 

381-5 22 C3 2.45 1.91 2.27 3.00 3.45 2.62 

384-0 

 

D3 16.52 16.98 17.34 17.29 17.43 17.11 

384-1 21 C3 7.48 7.48 7.59 7.91 8.12 7.72 

348-2 

 

D3 6.32 6.32 6.32 6.22 6.11 6.26 

384-3 

 

C3 5.06 5.48 4.74 4.53 4.64 4.89 

383-0 

 

B3 14.83 14.89 14.84 14.48 14.40 14.69 

383-1 20 A3 1.88 1.79 1.88 1.69 1.79 1.81 

383-2 

 

E3 2.07 2.07 2.16 1.98 1.79 2.01 

383-3 

 

D3 3.10 3.01 2.63 2.16 2.07 2.60 

383-4 

 

A3 1.22 1.22 1.32 1.98 1.88 1.52 

383-5 

 

D3 4.42 4.52 4.52 4.23 4.05 4.35 

383-6 19 A3 6.02 6.02 5.83 5.74 6.21 5.97 

383-7 

 

C3 3.29 3.29 3.86 4.14 3.58 3.63 

386-0 

 

D3 2.54 3.04 3.51 4.19 4.39 3.54 

386-1 18 B3 9.86 9.92 9.07 8.12 8.02 9.00 

386-2 

 

D3 3.08 2.97 2.86 2.86 2.97 2.95 

386-z 

 

Ash 1.10 1.43 1.76 2.09 2.64 1.80 

386-3 

 

C3 3.74 3.63 3.63 3.74 3.41 3.63 
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Lamina thickness (mm) 

Lamina 

number 

Year in 

sequence 

Lamina 

type T1 T2 T3 T4 T5 Mean 

386-5 17 A3 10.11 10.11 9.56 9.23 8.79 9.56 

386-6 

 

D3 4.73 4.62 4.62 4.62 4.18 4.55 

401-2 16 A3 20.77 21.12 20.65 21.67 23.27 21.50 

401-3 

 

D3 9.77 9.43 9.17 8.82 7.44 8.93 

380-0 

 

C3 5.94 6.29 6.37 5.68 4.99 5.86 

380-1 

 

A3 4.73 4.90 5.08 5.42 5.85 5.20 

380-2 

 

D3 3.87 4.90 5.51 6.11 5.59 5.20 

380-3 

 

C3 8.26 8.17 8.09 8.00 8.26 8.15 

380-4 15 A3 1.20 1.20 1.12 1.46 1.20 1.24 

379-0 

 

D3 25.57 26.49 27.27 28.06 28.54 27.18 

379-1 14 C3 7.57 6.41 8.20 8.62 8.62 7.88 

379-2 

 

D3 12.62 12.41 12.09 7.46 6.20 10.16 

382-2 13 A3 14.40 14.40 15.14 16.08 16.40 15.28 

382-3 

 

D3 15.87 16.19 16.29 16.19 16.08 16.12 

382-4 

 

A3 1.05 0.95 0.74 0.84 0.84 0.88 

405-4 

 

C3 25.14 25.72 26.02 25.72 25.82 25.68 

404-0 

 

A3 1.90 2.30 2.69 1.85 2.57 2.26 

404-2 

 

C3 9.67 8.77 9.89 10.48 9.52 9.67 

404-3 

 

A3 3.42 3.49 2.75 2.83 3.64 3.23 

404-5 

 

C3 10.26 10.19 9.89 9.52 9.82 9.93 

403-0 

 

A3 4.12 4.19 4.36 4.65 4.76 4.42 

403-2 

 

C3 11.68 11.41 11.23 11.41 11.59 11.46 

403-3 

 

D3 0.45 0.45 0.53 0.62 0.98 0.61 

403-4 12 C3 4.19 4.37 4.28 3.92 3.74 4.10 

403-5 

 

D3 2.50 2.50 2.58 2.67 2.41 2.53 

403-6 

 

C3 1.60 1.52 1.60 1.52 1.60 1.57 

403-7 

 

A3 3.03 3.12 2.50 2.58 2.76 2.80 

403-8 

 

D3 6.60 7.04 7.13 7.04 6.60 6.88 

402-1 

 

C3 8.45 8.91 9.38 9.32 9.67 9.15 

402-2 

 

D3 0.84 1.13 1.13 1.13 1.03 1.05 

409-0 11 C3 40.56 40.86 40.86 42.37 41.52 41.24 

409-1 

 

D3 11.11 11.31 11.82 11.82 10.80 11.37 

408-0 

 

A3 10.97 10.94 11.75 12.58 12.78 11.80 

408-1 

 

C3 1.76 1.76 1.67 1.48 1.39 1.61 

408-2 

 

A3 4.17 4.17 4.26 4.26 4.54 4.28 

408-3 

 

C3 12.41 11.94 11.57 11.20 10.83 11.59 

407-1 

 

A3 13.95 15.09 15.70 15.96 15.24 15.19 

407-2 

 

C3 10.26 10.46 10.86 11.36 9.76 10.54 

407-3 10 A3 3.92 3.52 3.12 3.52 4.02 3.62 

407-4 

 

D3 8.55 8.75 9.05 9.25 9.15 8.95 

407-5 

 

B3 3.42 3.02 3.02 2.92 2.92 3.06 

407-6 

 

A3 1.31 1.31 1.11 1.01 0.91 1.13 

406-0 

 

D3 5.39 6.06 6.21 6.89 7.25 6.36 
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Lamina thickness (mm) 

Lamina 

number 

Year in 

sequence 

Lamina 

type T1 T2 T3 T4 T5 Mean 

406-1 

 

B3 5.40 5.62 4.86 4.43 5.73 5.21 

406-2 

 

D3 3.56 3.89 3.56 3.35 2.38 3.35 

413-0 9 A3 24.01 27.75 27.49 28.29 28.18 27.14 

413-1 

 

D3 3.28 3.08 2.88 2.75 2.62 2.92 

413-2 

 

C3 11.93 12.98 13.31 13.57 13.77 13.11 

413-4 

 

A3 2.36 2.23 2.16 2.23 2.16 2.23 

412-0 

 

B3 3.57 3.38 3.45 2.56 3.84 3.36 

412-1 

 

A3 2.76 3.06 3.16 3.06 3.16 3.04 

412-2 8 B3 1.09 0.79 0.79 0.69 0.49 0.77 

412-3 

 

D3 19.24 19.24 19.24 18.85 18.45 19.01 

412-4 

 

C3 0.89 0.59 0.79 0.79 1.48 0.91 

412-5 

 

D3 4.74 4.44 4.14 4.14 3.55 4.20 

411-0 

 

C3 9.29 9.57 10.14 9.24 10.51 9.75 

411-1 7 A3 2.34 2.06 1.97 1.78 1.69 1.97 

411-2 

 

D3 16.88 17.44 17.44 17.63 17.34 17.34 

410-0 6 A3 10.59 10.13 11.67 10.75 11.87 11.00 

410-1 

 

D3 0.00 0.54 1.18 1.94 2.26 1.18 

410-z 

 

Ash 2.26 2.37 1.94 0.97 1.08 1.72 

410-3 

 

D3 3.45 3.66 4.31 5.38 5.38 4.44 

410-4 

 

C3 6.14 6.46 6.78 7.22 6.78 6.68 

410-5 5 A3 3.12 3.66 3.34 2.37 2.15 2.93 

410-6 

 

D3 3.55 2.91 2.91 2.80 2.58 2.95 

410-7 

 

C3 6.46 6.03 5.60 5.92 6.57 6.12 

410-9 4 A3 4.74 4.52 4.42 4.20 3.98 4.37 

416-0 

 

D3 11.62 12.29 12.45 12.05 12.09 12.10 

416-1 

 

C3 12.72 13.08 13.17 13.35 13.35 13.13 

415-0 3 A3 7.99 6.99 6.43 5.84 5.49 6.55 

415-1 

 

D3 3.74 3.82 3.82 3.50 3.50 3.68 

415-2 

 

C3 3.98 3.98 4.30 4.46 4.38 4.22 

415-3 

 

A3 2.94 2.47 2.07 1.91 1.91 2.26 

415-5 

 

C3 8.91 9.71 10.03 10.19 10.19 9.80 

415-6 2 A3 1.27 1.27 1.35 1.75 2.23 1.58 

415-7 

 

E3 1.03 1.27 1.11 1.03 1.03 1.10 

415-8 

 

D3 5.57 4.93 4.62 4.54 4.14 4.76 

415-9 

 

A3 0.72 0.80 0.80 0.56 0.40 0.65 

414-0 

 

D3 6.00 6.10 6.36 6.53 7.03 6.40 

414-1 

 

C3 9.26 9.35 9.43 9.51 9.60 9.43 

414-2 

 

A3 3.81 3.47 3.31 3.14 3.14 3.38 

414-3 

 

C3 5.21 5.29 5.38 5.29 5.13 5.26 

414-4 1 A3 4.80 4.38 3.97 3.56 3.31 4.00 

414-5 

 

D3 1.65 1.99 2.23 1.90 2.15 1.99 
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Appendix 3.  Quantitative diatom 
counts 

This appendix presents the results of quantitative diatom assemblage counts from cores 

MD03-2601 (Table A3.01) and IODP-318-U1357B (Table A3.02). 
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Table A3.01.  Table showing the distribution by sample of all diatom species in core MD03-2601 

from discrete samples of laminae described using BSEI.  Diatom species abundances are given 

as % of total assemblage, and those included in PCA are in bold.  The area of the settling 

beaker is 7854 mm
2
 and the area of the field of view is 0.00018 mm

2
.  Abbreviations used in 

species list are: rs – resting spores; veg. – vegetative cells. 

Species Depth 

(cmbsf) 

2367.7 2369.1 2376.6 2389.5 2397.5 423.5 431.2 349 323 318 1196.8 1143.5 

Lamina A1 A1 A1 A1 A1 A2 A2 A2 A2 A2 B1 B1 

Total 

valves 

519 508 519 516 511 508 516 503 505 509 505 504 

Fields of 

view 

45 108 45 76 87 52 153 66 80 86 44 60 

Dry mass 

(g) 

0.0027 0.0017 0.0021 0.0025 0.0012 0.0031 0.0013 0.0031 0.0027 0.0025 0.0027 0.0027 

Actinocylus actinochilus  0.2 0.4 0.0 0.0 0.2 0.2 0.0 0.4 0.4 0.2 0.2 0.0 

Asterompahlus parvulus  0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Actinocyclus curvatulus  0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 

Asteromphalus hookeri  0.0 0.0 0.0 0.0 0.0 0.4 0.2 0.2 0.6 0.2 0.2 0.0 

Asteromphalus hyalinus  0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.2 

Asteromphalus spp.  0.0 0.0 0.2 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Azpeitia tabularis  1.1 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Hyalochaete Chaetoceros spp.  0.0 0.0 2.1 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Phaeoceros Chaetoceros spp.  1.2 0.0 1.5 1.0 0.4 6.7 3.3 1.8 2.8 1.8 1.0 4.8 

Chaetoceros rs  41.6 41.3 45.1 42.4 42.1 5.1 17.6 21.9 18.6 14.3 52.5 46.8 

Cocconeis spp. large  0.0 0.0 0.0 0.0 0.0 0.2 0.2 0.6 0.0 0.2 0.2 0.0 

Cocconeis spp. small  0.9 0.0 1.0 0.0 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Corethron pennatum  0.0 0.0 0.0 0.6 0.0 0.4 0.2 0.6 0.4 0.0 1.6 2.2 

Coscinodiscus bouvet  0.0 0.2 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Coscinodiscus radiatus  0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Coscinodiscus spp.  1.1 0.0 0.2 0.2 0.6 0.0 0.2 0.0 0.0 0.2 0.2 0.2 

Eucampia antarctica rs  0.2 0.2 0.0 0.2 0.0 0.2 1.0 0.4 0.2 1.0 1.0 0.0 

Eucampia antarctica veg.  0.5 0.0 1.0 0.6 0.2 0.0 0.2 0.2 0.2 0.4 0.2 0.2 

Fragilariopsis curta  8.5 10.6 6.6 7.0 7.0 53.1 32.9 40.2 39.4 39.1 9.5 11.1 

Fragilariopsis cylindrus  0.7 0.2 6.0 0.2 1.6 6.1 4.1 5.0 1.0 4.1 0.0 0.6 

Fragilariopsis kerguelensis  11.8 12.8 6.4 18.0 9.6 4.7 8.1 7.4 11.1 11.0 10.1 11.5 

Fragilariopsis obliquecostata  1.1 1.4 1.3 2.3 1.4 3.3 2.7 3.4 5.5 4.9 2.0 0.4 

Fragilariopsis pseudonana  0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.2 

Fragilariopsis rhombica  11.3 13.2 4.2 10.5 8.0 2.8 7.0 4.0 3.8 6.3 9.5 11.3 

Fragilariopsis ritscheri  5.5 4.1 3.1 3.9 6.5 5.3 2.5 2.8 1.8 2.0 2.8 3.0 

Fragilariopsis separanda  2.3 3.7 3.9 2.9 1.8 2.6 7.6 2.8 5.1 6.1 1.6 1.2 

Fragilariopsis spp.  0.9 0.0 0.2 0.4 0.4 0.0 1.0 1.0 0.0 0.0 0.0 0.0 

Fragilariopsis sublinearis  0.4 0.2 0.4 0.6 0.4 0.8 0.2 0.8 0.6 0.0 0.6 0.4 

Fragilariopsis vanheurckii  0.0 0.0 0.4 0.0 0.0 0.6 0.4 0.4 0.2 0.0 0.0 0.0 

Licmophora spp.  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Navicula spp.  0.2 0.0 0.4 0.0 0.6 0.2 0.8 0.8 0.6 1.2 0.0 0.0 

Nitzschia spp.  0.2 0.0 0.8 0.2 0.2 0.0 0.0 0.0 0.2 0.0 0.0 0.0 

Odontella litigiosa  0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 

Porosira glacialis rs  0.2 0.0 0.0 0.0 0.2 0.2 1.4 1.2 1.4 1.2 0.0 0.0 

Porosira pseudodenticula  0.0 0.2 0.0 0.0 0.4 0.0 0.2 0.0 0.0 0.0 0.0 0.0 

Proboscia inermis  0.0 0.0 0.2 0.0 0.0 0.6 0.8 0.4 0.6 0.8 0.2 0.2 

Proboscia truncata  0.0 0.0 0.0 0.2 0.0 0.6 0.4 0.2 0.2 0.2 0.0 0.0 

Pseudonitzschia spp.  0.4 0.0 1.5 0.0 1.4 0.4 0.2 0.2 0.6 1.0 0.0 0.0 

Rhizosolenia antennata f. 

antennata 

 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Rhizosolenia antennata f. 

semispina 

 0.4 0.2 0.2 0.0 0.8 0.2 1.4 0.4 0.6 0.2 0.4 0.2 

Rhizosolenia simplex  0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.2 0.0 0.0 0.2 0.0 

Stellarima microtrias  0.0 0.2 0.2 0.0 0.2 0.0 0.0 0.0 0.2 0.0 0.0 0.2 

Thalassionema nitzschioides  0.0 0.0 3.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Thalassiosira ambigua  0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 

Thalassiosira antarctica rs 

(cold) 

 2.3 3.0 1.7 1.6 2.0 1.0 1.2 0.4 0.8 0.8 3.4 1.6 

Thalassiosira antarctica rs 

warm) 

 0.4 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Thalassiosira antarctica veg.  0.5 0.0 1.3 0.0 0.2 0.0 0.0 0.0 0.0 0.2 0.0 0.0 

Thalassiosira gracilis v. expecta  0.4 0.0 0.2 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Thalassiosira gracilis v. gracilis  1.6 1.4 0.6 1.4 2.0 2.2 1.0 0.8 0.8 1.4 0.2 0.6 

Thalassiosira lentiginosa  0.4 3.0 0.6 3.3 1.6 0.6 0.4 0.0 0.6 0.6 1.6 1.0 

Thalassiosira oestrupii  0.2 0.4 0.2 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 

Thalassiosira oliveriana  0.2 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Thalassiosira ritscheria  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Thalassiosira spp.  0.9 0.8 1.9 0.4 3.9 0.0 0.6 0.2 0.6 0.0 0.0 0.0 

Thalassiosira tealata  0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 

Thalassiosira trifulta  0.0 1.0 1.0 0.8 2.3 0.2 0.6 0.8 0.0 0.0 0.6 0.0 

Thalassiosira tumida  0.2 0.4 0.2 0.0 0.0 0.2 0.4 0.0 0.2 0.4 0.4 1.8 

Thalassiothrix antarctica  0.5 0.0 0.8 0.4 0.4 0.2 0.2 0.2 0.2 0.2 0.0 0.0 

Thalassiothrix/nema/toxon  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Trichotoxon reinboldii  0.5 0.0 0.2 0.4 0.2 0.4 0.4 0.4 0.6 0.2 0.0 0.0 

Unidentified centrics  1.1 0.4 1.0 0.6 1.6 0.0 0.0 0.2 0.0 0.0 0.0 0.0 

Unidentified pennates  0.2 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
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Table A3.01 continued. 

Species Depth (cmbsf) 1142 1140 315.6 345.7 355.6 395 2276.2 2297.6 2332.6 2386.8 2069.6 341.4 

Lamina B1 B1 B2 B2 B2 B2 C1 C1 C1 C1 C2 C2 

Valves 

counted 

510 503 502 507 506 500 502 513 510 511 508 504 

Fields of view 56 113 68 108 85 118 44 57 75 55 76 95 

Dry mass (g) 0.0022 0.0016 0.003 0.002 0.002 0.0011 0.0022 0.0025 0.0021 0.0025 0.0025 0.0021 

Actinocylus actinochilus  0.0 0.0 0.0 0.0 0.0 0.2 0.2 0.0 0.0 0.2 0.2 0.0 

Asterompahlus parvulus  0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.0 

Actinocyclus curvatulus  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 

Asteromphalus hookeri  0.0 0.2 0.6 0.0 0.0 0.4 0.2 0.0 0.0 0.0 0.0 0.2 

Asteromphalus hyalinus  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 

Asteromphalus spp.  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 

Azpeitia tabularis  0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 1.0 0.6 0.0 0.0 

Hyalochaete Chaetoceros spp. 0.0 0.0 0.0 0.6 0.4 0.0 0.6 0.2 0.0 0.0 0.0 0.2 

Phaeoceros Chaetoceros spp.  2.2 3.2 2.4 4.5 16.0 5.4 10.0 3.1 2.2 6.8 4.1 1.4 

Chaetoceros rs  49.8 50.1 23.7 25.6 22.1 30.0 31.1 38.0 30.2 36.0 35.8 35.3 

Cocconeis spp. large  0.2 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Cocconeis spp. small  0.0 0.0 0.6 0.6 0.0 0.0 0.0 0.0 0.6 0.8 0.0 0.0 

Corethron pennatum  1.4 2.0 0.2 3.2 2.0 3.8 0.2 1.0 0.2 0.2 0.8 1.0 

Coscinodiscus bouvet  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 

Coscinodiscus radiatus  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.2 0.0 0.0 

Coscinodiscus spp.  0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.6 0.0 0.2 

Eucampia antarctica rs  0.8 0.6 0.8 0.4 0.4 0.2 0.2 1.0 0.4 0.2 0.2 0.4 

Eucampia antarctica veg  0.4 0.2 0.2 0.2 1.0 0.2 0.2 0.0 0.2 0.8 0.2 0.8 

Fragilariopsis curta  10.4 8.5 24.9 18.3 17.8 21.6 10.0 7.4 6.5 6.1 34.1 23.2 

Fragilariopsis cylindrus  0.2 0.6 4.8 1.2 3.2 4.0 1.0 1.2 3.9 1.2 0.8 0.6 

Fragilariopsis kerguelensis  11.0 8.9 10.8 8.9 5.3 5.0 8.8 15.3 10.2 9.4 3.5 8.9 

Fragilariopsis obliquecostata  1.8 1.2 6.0 11.4 10.1 4.0 0.2 2.3 2.2 1.6 2.2 1.8 

Fragilariopsis pseudonana  0.0 0.0 0.0 0.0 0.4 0.4 0.0 0.0 0.0 0.0 0.0 0.0 

Fragilariopsis rhombica  10.0 7.6 4.6 6.3 7.1 11.6 6.2 8.8 5.7 7.4 7.7 9.5 

Fragilariopsis ritscheri  3.1 4.2 4.8 2.8 1.2 2.2 8.8 4.1 6.3 4.3 1.8 3.6 

Fragilariopsis separanda  2.2 3.4 4.6 3.6 2.6 2.2 4.2 6.8 5.3 6.3 1.2 0.8 

Fragilariopsis spp.  0.2 0.0 0.6 1.0 0.2 0.2 0.8 0.0 0.8 1.8 0.2 0.4 

Fragilariopsis sublinearis  0.4 0.0 0.8 3.0 0.8 1.4 0.0 0.2 0.4 0.0 2.0 1.0 

Fragilariopsis vanheurckii  0.2 0.0 0.8 0.2 0.0 0.2 0.2 0.0 0.2 0.0 0.0 0.0 

Licmophora spp.  0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 

Navicula spp.  0.0 0.0 0.4 0.4 0.4 1.2 0.4 0.6 0.4 0.8 0.2 0.0 

Nitzschia spp.  0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.8 0.2 0.2 0.0 

Odontella litigiosa  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Porosira glacialis rs  0.0 0.0 0.8 1.2 1.2 0.4 0.0 0.0 0.0 0.2 0.2 1.4 

Porosira pseudodenticula  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.4 0.4 0.2 0.4 

Proboscia inermis  0.4 0.8 0.6 0.2 0.6 1.2 0.2 0.0 0.6 0.4 0.4 1.0 

Proboscia truncata  0.0 0.4 0.2 0.0 1.0 0.0 0.2 0.2 0.2 0.0 0.0 1.0 

Pseudonitzschia spp.  0.0 0.4 1.0 0.8 1.4 0.2 0.0 1.0 1.0 1.4 0.0 0.0 

Rhizosolenia antennata f. 

antennata 

0.2 0.0 0.2 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Rhizosolenia antennata f. 

semispina 

1.0 1.4 1.4 0.2 0.0 0.8 2.6 0.4 0.4 0.8 0.8 1.2 

Rhizosolenia simplex  0.0 0.2 0.6 0.2 0.0 0.0 0.2 0.0 0.2 0.6 0.0 0.4 

Stellarima microtrias  0.0 0.0 0.0 0.0 0.0 0.2 0.4 0.0 0.4 0.0 0.0 0.0 

Thalassionema nitzschioides  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 

Thalassiosira ambigua  0.2 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 

Thalassiosira antarctica rs (cold) 2.0 2.4 0.8 1.6 1.0 0.4 2.6 1.2 4.3 4.1 1.2 1.0 

Thalassiosira antarctica rs (warm) 0.0 0.2 0.0 0.0 0.0 0.0 1.8 0.0 0.4 0.2 0.0 0.0 

Thalassiosira antarctica veg.  0.0 0.0 0.0 0.0 0.2 0.0 0.4 0.2 0.8 0.0 0.0 0.0 

Thalassiosira gracilis v. expecta 0.0 0.2 0.0 0.0 0.0 0.0 0.4 0.0 0.2 0.2 0.0 0.2 

Thalassiosira gracilis v. gracilis 0.4 0.8 1.2 1.2 1.6 0.6 0.6 2.0 2.0 1.6 0.2 0.8 

Thalassiosira lentiginosa  0.6 1.2 0.4 0.8 0.6 0.6 1.0 1.8 1.4 0.2 1.8 2.0 

Thalassiosira oestrupii  0.0 0.0 0.0 0.2 0.0 0.0 0.6 0.6 1.0 0.0 0.0 0.0 

Thalassiosira oliveriana  0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 

Thalassiosira ritscheria  0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Thalassiosira spp.  0.0 0.0 0.0 0.2 0.0 0.0 0.2 1.4 2.2 2.0 0.0 0.0 

Thalassiosira tealata  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Thalassiosira trifulta  0.4 0.2 0.2 0.2 0.2 0.2 0.4 0.4 3.7 0.0 0.0 0.4 

Thalassiosira tumida  0.0 0.0 0.4 0.6 0.6 0.4 0.2 0.4 0.8 0.4 0.0 0.6 

Thalassiothrix antarctica  0.2 0.4 0.4 0.2 0.2 0.4 3.0 0.0 0.4 0.2 0.0 0.4 

Thalassiothrix/nema/toxon  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Trichotoxon reinboldii  0.2 0.2 0.0 0.0 0.0 0.2 0.6 0.2 0.4 0.2 0.0 0.0 

Unidentified centrics  0.0 0.0 0.2 0.0 0.6 0.0 0.2 0.0 0.8 1.2 0.0 0.0 

Unidentified pennates  0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.2 0.4 0.0 0.0 
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Table A3.01 continued. 

Species Depth 

(cmbsf) 

357.9 385.8 394.6 2380.9 2390.8 2373 2354.1 2376.5 C330 337 340 354.2 

Lamina C2 C2 C2 D1 D1 D1 D1 D1 D2 D2 D2 D2 

Valves 

counted 

509 516 519 505 535 512 525 513 504 509 506 505 

Fields of 

view 

57 67 90 52 49 64 44 109 92 58 101 87 

Dry mass (g) 0.0033 0.0033 0.0027 0.0029 0.0025 0.0021 0.0032 0.0018 0.0027 0.0024 0.002 0.0033 

Actinocylus actinochilus  0.0 0.0 0.2 0.1 0.2 0.6 0.2 0.2 0.0 0.8 0.0 0.0 

Asterompahlus parvulus  0.0 0.0 0.0 0.2 0.0 0.4 0.2 0.2 0.0 0.0 0.0 0.0 

Actinocyclus curvatulus  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 

Asteromphalus hookeri  0.4 0.0 0.4 0.0 0.2 0.0 0.2 0.0 0.4 0.0 0.0 0.0 

Asteromphalus hyalinus  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 

Asteromphalus spp.  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.2 0.0 0.0 

Azpeitia tabularis  0.0 0.0 0.0 0.0 0.4 0.0 0.0 1.0 0.0 0.0 0.0 0.0 

Hyalochaete Chaetoceros spp. 0.6 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 

Phaeoceros Chaetoceros spp.  5.9 3.1 2.7 0.3 0.2 0.0 0.8 2.7 2.2 4.5 1.6 8.1 

Chaetoceros rs  35.4 45.3 31.0 42.9 41.9 35.4 49.5 29.8 31.9 43.2 35.4 34.5 

Cocconeis spp. large  0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.2 0.0 0.0 0.2 0.2 

Cocconeis spp. small  0.0 0.0 0.0 0.0 0.4 0.2 0.6 0.0 0.2 0.2 0.2 0.0 

Corethron pennatum  0.6 0.2 1.7 0.1 0.0 0.2 0.0 0.0 0.6 1.8 0.8 0.2 

Coscinodiscus bouvet  0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 

Coscinodiscus radiatus  0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 

Coscinodiscus spp.  0.0 0.0 0.0 0.0 0.8 0.6 1.0 0.2 0.2 0.8 0.0 0.0 

Eucampia antarctica rs  0.0 0.6 0.2 0.3 0.2 1.2 0.4 1.0 0.4 0.0 0.2 1.0 

Eucampia antarctica veg  0.8 0.0 0.2 0.1 0.4 0.4 0.2 0.6 0.2 0.8 0.6 0.2 

Fragilariopsis curta  29.5 17.0 28.5 6.3 6.2 8.0 5.5 7.8 17.9 12.6 16.4 13.5 

Fragilariopsis cylindrus  1.0 0.0 0.6 0.7 0.4 0.6 1.0 1.2 1.8 4.1 1.2 1.4 

Fragilariopsis kerguelensis  4.3 8.7 5.2 15.1 10.8 15.4 10.9 11.9 6.2 6.7 9.1 8.9 

Fragilariopsis obliquecostata  3.1 2.7 2.7 0.9 1.5 1.8 1.9 2.5 11.5 8.6 9.7 9.5 

Fragilariopsis pseudonana  0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 

Fragilariopsis rhombica  7.9 10.0 14.5 2.8 5.8 6.6 5.0 7.0 8.3 4.1 6.3 5.0 

Fragilariopsis ritscheri  2.4 1.5 2.3 4.7 8.1 7.4 5.5 9.7 4.0 1.2 2.8 2.2 

Fragilariopsis separanda  0.4 1.5 2.3 9.6 5.8 5.9 5.7 7.4 3.0 2.0 4.3 4.8 

Fragilariopsis spp.  0.0 0.2 0.2 0.9 1.9 1.8 1.0 2.7 0.0 0.0 0.6 0.2 

Fragilariopsis sublinearis  1.8 0.8 1.4 0.1 0.0 0.2 0.0 0.4 0.8 1.0 1.0 0.8 

Fragilariopsis vanheurckii  0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.2 

Licmophora spp.  0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Navicula spp.  0.0 0.2 0.2 0.1 0.0 0.2 0.2 0.0 0.0 0.6 0.0 0.4 

Nitzschia spp.  0.0 0.0 0.0 0.1 0.0 0.0 0.2 0.0 0.6 0.2 0.0 0.0 

Odontella litigiosa  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Porosira glacialis rs  0.6 1.2 0.4 0.0 0.2 0.0 0.0 0.0 2.6 0.6 1.6 2.0 

Porosira pseudodenticula  0.0 0.2 0.0 0.1 0.4 0.0 0.2 0.0 0.2 0.2 0.2 0.0 

Proboscia inermis  0.4 0.2 0.6 0.4 0.4 0.4 0.2 0.0 0.0 0.2 0.2 0.2 

Proboscia truncata  0.4 0.6 0.6 0.1 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.2 

Pseudonitzschia spp.  0.0 0.0 0.0 0.0 0.4 0.2 1.0 0.4 0.0 2.4 0.4 0.4 

Rhizosolenia antennata f. 

antennata 

 0.0 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Rhizosolenia antennata f. 

semispina 

 1.2 0.0 1.4 0.2 0.2 0.6 0.0 0.6 0.2 0.2 0.4 0.4 

Rhizosolenia simplex  0.0 0.0 0.2 0.3 0.2 0.0 0.0 0.2 0.6 0.0 0.2 0.6 

Stellarima microtrias  0.0 0.0 0.0 0.1 0.2 0.4 0.0 0.0 0.0 0.0 0.0 0.0 

Thalassionema nitzschioides  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Thalassiosira ambigua  0.2 0.2 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Thalassiosira antarctica rs (cold) 1.4 1.0 0.4 7.0 0.8 2.3 0.6 2.9 1.6 1.4 1.4 0.8 

Thalassiosira antarctica rs (warm) 0.0 0.0 0.0 0.8 0.0 0.0 0.0 0.6 0.0 0.0 0.0 0.0 

Thalassiosira antarctica veg.  0.0 0.0 0.0 0.5 0.4 0.2 0.2 0.0 0.0 0.0 0.0 0.0 

Thalassiosira gracilis v. expecta 0.0 0.2 0.0 0.2 0.2 0.0 0.2 0.2 0.0 0.0 0.0 0.0 

Thalassiosira gracilis v. gracilis 0.8 0.8 0.2 1.2 1.2 1.6 1.7 1.8 2.4 0.4 2.4 0.8 

Thalassiosira lentiginosa  0.6 0.6 1.2 1.6 0.8 0.8 1.9 0.2 1.6 0.4 0.8 0.8 

Thalassiosira oestrupii  0.0 0.4 0.0 0.1 0.0 0.6 0.2 0.4 0.0 0.0 0.0 0.0 

Thalassiosira oliveriana  0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.2 0.0 0.0 0.0 0.0 

Thalassiosira ritscheria  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Thalassiosira spp.  0.0 0.0 0.0 0.1 4.0 1.2 2.3 0.8 0.0 0.2 1.0 0.0 

Thalassiosira tealata  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Thalassiosira trifulta  0.2 0.4 0.0 0.1 3.1 4.1 1.1 0.6 0.0 0.0 0.2 0.8 

Thalassiosira tumida  0.4 0.6 0.4 0.4 0.0 0.2 0.0 0.8 0.0 0.2 0.4 0.4 

Thalassiothrix antarctica  0.0 0.4 0.0 1.0 0.4 0.4 0.4 1.2 0.2 0.0 0.4 0.0 

Thalassiothrix/nema/toxon  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Trichotoxon reinboldii  0.0 0.2 0.0 0.4 0.4 0.0 0.0 0.2 0.4 0.2 0.2 0.4 

Unidentified centrics  0.0 0.4 0.0 0.1 1.5 0.2 0.2 0.8 0.0 0.0 0.0 0.8 

Unidentified pennates  0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
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Table A3.01 continued. 

Species Depth 

(cmbsf) 

398.5 2336.3 2340.8 2363.8 2387.5 300.3 370 383.5 388.6 

Lamina D2 E1 E1 E1 E1 E2 E2 E2 E2 

Valves 

counted 

504 521 524 540 543 502 508 505 512 

Fields of 

view 

91 68 104 66 59 71 80 83 72 

Dry mass 0.0025 0.0015 0.0018 0.0024 0.0023 0.0029 0.0028 0.003 0.003 

Actinocylus actinochilus  0.4 0.0 0.2 0.0 0.4 0.2 0.4 0.2 0.0 

Asterompahlus parvulus  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Actinocyclus curvatulus  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Asteromphalus hookeri  0.0 0.0 0.2 0.0 0.2 0.4 0.2 0.4 0.2 

Asteromphalus hyalinus  0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Asteromphalus spp.  0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 

Azpeitia tabularis  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Hyalochaete Chaetoceros spp.  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 

Phaeoceros Chaetoceros spp.  2.6 0.0 2.5 0.7 1.8 4.4 2.2 3.0 4.3 

Chaetoceros rs  23.2 40.5 38.2 30.4 37.6 40.8 37.0 40.0 39.1 

Cocconeis spp. large  0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.2 0.0 

Cocconeis spp. small  0.0 0.0 0.8 0.0 0.6 0.2 0.0 0.0 0.0 

Corethron pennatum  0.4 0.0 0.2 0.2 0.6 0.0 0.6 0.0 0.2 

Coscinodiscus bouvet  0.0 0.0 0.0 0.4 0.0 0.0 0.2 0.2 0.0 

Coscinodiscus radiatus  0.0 0.0 0.0 0.6 0.2 0.0 0.0 0.0 0.0 

Coscinodiscus spp.  0.4 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Eucampia antarctica rs  0.6 0.4 0.4 0.6 0.4 0.4 0.2 0.0 0.2 

Eucampia antarctica veg  0.0 0.0 0.6 0.6 0.2 0.2 0.2 0.4 0.2 

Fragilariopsis curta  16.9 6.5 6.5 12.4 7.9 11.8 17.5 14.5 12.1 

Fragilariopsis cylindrus  1.0 0.6 1.1 0.7 0.4 1.0 0.2 0.8 2.1 

Fragilariopsis kerguelensis  8.3 12.7 13.5 14.4 12.3 11.2 8.3 9.3 7.8 

Fragilariopsis obliquecostata  9.1 1.2 0.8 4.3 1.1 7.2 10.0 6.9 7.2 

Fragilariopsis pseudonana  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 

Fragilariopsis rhombica  14.3 8.1 5.9 7.6 5.7 2.2 2.4 3.6 3.9 

Fragilariopsis ritscheri  3.4 6.1 5.7 6.3 5.3 0.6 3.0 1.2 2.1 

Fragilariopsis separanda  8.7 7.1 4.4 4.4 5.7 5.0 6.1 6.7 5.3 

Fragilariopsis spp.  0.8 0.6 0.6 0.0 0.9 0.0 0.4 0.6 0.0 

Fragilariopsis sublinearis  0.4 0.0 0.4 1.9 0.2 0.6 1.0 0.6 0.8 

Fragilariopsis vanheurckii  0.0 0.0 1.0 0.2 0.2 0.0 0.0 0.2 0.0 

Licmophora spp.  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Navicula spp.  0.6 0.0 0.4 0.2 0.4 0.0 0.4 0.2 0.4 

Nitzschia spp.  0.0 0.0 0.0 0.0 0.0 0.4 0.4 0.0 0.2 

Odontella litigiosa  0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 

Porosira glacialis rs  1.2 0.6 0.2 0.4 0.6 5.0 3.1 4.8 5.5 

Porosira pseudodenticula  0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.2 

Proboscia inermis  0.6 0.6 0.4 0.0 0.7 0.0 0.0 0.0 0.4 

Proboscia truncata  0.6 0.0 0.2 0.4 0.0 0.0 0.2 0.0 0.4 

Pseudonitzschia spp.  1.0 0.0 0.0 0.2 0.0 0.6 0.0 0.6 0.6 

Rhizosolenia antennata f. 

antennata 

 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 

Rhizosolenia antennata f. 

semispina 

 0.4 0.6 0.2 0.4 0.4 0.4 0.8 0.4 0.6 

Rhizosolenia simplex  0.0 0.0 0.2 0.2 0.2 0.2 0.0 0.8 0.4 

Stellarima microtrias  0.0 0.0 0.4 0.0 0.2 0.8 0.2 0.0 0.2 

Thalassionema nitzschioides  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Thalassiosira ambigua  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Thalassiosira antarctica rs (cold)  0.6 9.8 7.1 8.5 9.9 2.2 2.0 1.4 2.0 

Thalassiosira antarctica rs warm)  0.0 0.2 0.2 0.2 0.0 0.0 0.0 0.0 0.0 

Thalassiosira antarctica veg.  0.0 1.0 0.4 0.0 0.7 0.0 0.0 0.0 0.0 

Thalassiosira gracilis v. expecta  0.0 0.0 0.2 0.0 0.2 0.0 0.0 0.0 0.0 

Thalassiosira gracilis v. gracilis  1.6 0.2 1.9 1.3 1.5 1.6 0.6 1.4 1.4 

Thalassiosira lentiginosa  0.8 0.4 1.7 0.4 1.7 1.0 1.2 0.6 1.0 

Thalassiosira oestrupii  0.0 0.4 0.0 0.2 0.0 0.0 0.0 0.0 0.0 

Thalassiosira oliveriana  0.0 0.0 0.0 0.4 0.0 0.2 0.2 0.0 0.2 

Thalassiosira ritscheria  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Thalassiosira spp.  0.4 0.4 1.7 0.9 0.4 0.2 0.0 0.0 0.4 

Thalassiosira tealata  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Thalassiosira trifulta  0.0 0.2 0.0 0.0 0.0 0.2 0.4 0.2 0.4 

Thalassiosira tumida  0.4 0.6 0.2 0.4 0.4 0.6 0.4 0.4 0.2 

Thalassiothrix antarctica  0.6 0.2 0.8 0.0 0.4 0.2 0.2 0.2 0.2 

Thalassiothrix/nema/toxon  0.0 0.0 0.2 0.0 0.2 0.0 0.0 0.0 0.0 

Trichotoxon reinboldii  0.6 0.2 0.6 0.2 0.2 0.4 0.2 0.0 0.0 

Unidentified centrics  0.0 0.6 0.0 0.0 0.2 0.0 0.0 0.0 0.0 

Unidentified pennates  0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 
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Table A3.02.  Table showing the distribution by sample of all diatom species in core IODP-318-

U1357B from discrete samples of laminae described using BSEI.  Diatom species abundances 

are given as % of CRS-free total assemblage, and those included in PCA are in bold.  The area 

of the settling beaker is 7854 mm
2
 and the area of the field of view is 0.00018 mm

2
.  

Abbreviations used in species list are: rs – resting spores; veg. – vegetative cells. 

CRS-free species 
abundance 

Core section 5H 5H 5H 5H 5H 5H 6H 5H 5H 

Depth in 

section (cm) 

45 57 121.5 134.5 113.7 126 56 44.3 133 

Lamina type A3 A3 A3 A3 A3 A3 A3 B3 B3 

FOV 69 42 65 57 50 36 28 50 62 

Dry mass (g) 0.0029 0.0024 0.0026 0.003 0.0029 0.003 0.0029 0.0025 0.0024 

No. valves total 510 739 508 501 500 515 612 501 517 

CRS valves 193 486 245 201 228 118 358 171 113 

% CRS 37.84 65.76 48.22 40.11 45.6 22.91 58.49 34.13 21.85 

Actinocylus actinochilus 0.32 0.00 0.00 0.00 0.00 0.00 0.00 0.30 0.00 
Asteromphalus heptactis 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Asteromphalus hookeri 0.32 0.00 0.38 0.00 0.00 0.00 0.00 0.61 0.50 

Asteromphalus hyalinus 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Asteromphalus parvulus 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Azpeitia tabularis 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.25 

Chaetoceros - Hyalochaete 2.21 3.56 0.00 0.67 0.74 0.50 0.39 4.55 1.49 

Chaetoceros - Phaeoceros 13.56 8.70 6.84 11.67 8.46 18.14 3.94 25.45 23.51 

Cocconeis spp. Large 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Corethron pennatum 0.00 1.19 1.14 0.33 2.57 1.26 1.57 1.21 5.45 

Coscinodiscus bouvet 0.32 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Eucampia antarctica rs 0.32 0.00 0.38 0.00 0.00 0.50 0.00 0.61 0.50 

Eucampia antarctica veg 0.63 1.19 1.14 0.33 0.37 1.01 1.18 0.61 0.74 

Fragilariopsis curta 37.54 30.04 29.66 29.67 29.41 34.26 43.70 27.88 28.47 

Fragilariopsis cylindrus 11.99 10.67 3.42 19.33 16.91 5.04 13.39 8.18 5.69 

Fragilariopsis kerguelensis 3.47 9.09 9.13 6.67 6.25 3.78 7.87 4.55 4.95 

Fragilariopsis obliquecostata 1.89 2.37 3.80 1.33 1.47 0.25 1.18 0.30 2.97 

Fragilariopsis pseudonana 0.32 0.00 0.00 0.00 0.00 0.00 0.00 0.30 0.25 

Fragilariopsis rhombica 9.15 11.46 23.57 16.00 15.81 25.19 12.60 8.79 13.61 

Fragilariopsis ritscheri 2.52 1.98 2.66 3.33 1.84 2.02 0.79 1.52 0.50 

Fragilariopsis separanda 0.63 0.00 1.52 0.33 0.74 0.76 0.00 0.00 0.25 

Fragilariopsis spp. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Fragilariopsis sublinearis 4.10 3.56 3.80 2.33 4.04 2.02 2.76 3.64 2.72 

Fragilariopsis vanheurckii 0.00 0.79 0.00 0.33 0.00 0.00 0.00 0.00 0.00 

Haslea spp. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Licmophora spp. 0.63 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Navicula spp. 0.63 1.58 1.90 1.00 1.84 0.00 0.39 0.30 0.00 

Nitzschia spp. 0.32 0.00 0.38 0.00 0.00 0.00 0.00 0.30 0.00 

Porosira glacialis  rs 1.89 0.40 2.66 0.33 2.21 0.76 0.79 1.52 1.73 

Porosira pseudodenticula 0.32 0.00 0.38 0.00 0.00 0.00 0.00 0.00 0.00 

Proboscia inermis 0.95 0.40 0.38 0.33 0.37 0.25 0.00 0.30 1.98 

Proboscia truncata 0.32 0.00 0.38 1.00 0.00 0.76 0.79 0.91 0.50 
Pseudonitzschia spp. 1.26 8.70 1.14 1.00 2.57 1.76 5.51 5.76 1.24 

Rhizosolenia  simplex 0.32 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Rhizosolenia antennata f. semispina 0.95 0.00 0.00 0.67 0.00 0.00 0.00 0.91 0.50 

Rhizosolenia antennata f. antennata 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Stellarima microtrias 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.25 

Thalassiosira ambigua 0.32 0.40 0.38 0.00 1.10 0.00 0.79 0.00 0.50 

Thalassiosira antarctica rs (cold) 0.95 0.40 1.90 1.33 0.37 0.25 1.18 0.30 0.25 

Thalassiosira antarctica rs (warm) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Thalassiosira antarctica veg. 0.00 0.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Thalassiosira frenguellii 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.30 0.00 

Thalassiosira gracilis v. expecta 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Thalassiosira gracilis v. gracilis 0.63 0.00 0.76 0.67 1.10 0.50 0.00 0.00 0.25 

Thalassiosira lentiginosa 0.63 0.00 1.52 1.00 0.74 0.00 0.79 0.91 0.25 

Thalassiosira lineata 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Thalassiosira longissima 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Thalassiosira oestrupii 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Thalassiosira oliveriana 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Thalassiosira perpusilla 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Thalassiosira ritscheria 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Thalassiosira spp. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Thalassiosira trifulata 0.00 0.00 0.00 0.33 0.37 0.00 0.00 0.00 0.25 

Thalassiosira tumida 0.00 0.00 0.00 0.00 0.37 1.01 0.39 0.00 0.25 

Thalassiothrix antarctica 0.32 0.40 0.38 0.00 0.00 0.00 0.00 0.00 0.00 
Trichotoxon reinboldii 0.00 0.00 0.38 0.00 0.00 0.00 0.00 0.00 0.25 

Unidentified centrics 0.32 0.00 0.00 0.00 0.37 0.00 0.00 0.00 0.00 
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Table A3.02 continued. 

CRS-free species 
abundance 

Core section 5H 5H 7H 5H 5H 5H 6H 6H 5H 

Depth in section 
(cm) 

136.5 142.8 1.5 40 59.5 112.5 1.5 118 53.7 

Lamina type B3 B3 B3 C3 C3 C3 C3 C3 D3 

FOV 59 30 41 59 40 70 65 82 52 

Dry mass (g) 0.0029 0.0029 0.003 0.0025 0.003 0.0027 0.0026 0.003 0.003 

No. valves total 520 512 508 537 525 500 550 531 601 

CRS valves 195 316 145 281 166 185 288 162 348 

% CRS 37.5 61.71 28.54 52.32 31.61 37 52.36 30.50 57.90 

Actinocylus actinochilus 0.31 0.00 0.00 0.39 0.00 0.00 0.00 0.54 0.40 

Asteromphalus heptactis 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Asteromphalus hookeri 0.00 1.02 0.00 0.39 0.00 0.32 0.00 0.54 0.79 

Asteromphalus hyalinus 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Asteromphalus parvulus 0.00 0.00 0.00 0.39 0.00 0.00 0.38 0.00 0.00 

Azpeitia tabularis 0.00 0.00 0.00 0.00 0.00 0.00 0.38 0.00 0.00 

Chaetoceros - Hyalochaete 1.23 3.57 1.65 5.08 0.56 0.32 0.00 1.90 2.37 

Chaetoceros - Phaeoceros 23.69 25.51 29.48 11.33 11.70 8.25 12.98 12.20 9.88 

Cocconeis spp. Large 0.00 0.00 0.00 0.00 0.28 0.00 0.00 0.00 0.00 

Corethron pennatum 1.54 2.04 0.83 0.78 0.28 5.08 0.38 0.00 0.00 

Coscinodiscus bouvet 0.31 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Eucampia antarctica rs 0.00 0.51 0.00 1.17 0.56 0.00 0.76 0.00 0.79 

Eucampia antarctica veg 0.00 1.02 0.00 0.00 0.56 1.27 1.15 1.36 0.40 

Fragilariopsis curta 17.23 34.18 23.97 30.86 37.33 32.06 27.86 24.39 27.27 

Fragilariopsis cylindrus 6.77 8.67 11.29 5.47 1.11 11.43 4.20 8.67 2.77 

Fragilariopsis kerguelensis 7.38 4.08 1.93 5.86 13.09 8.89 12.98 8.94 15.81 

Fragilariopsis obliquecostata 1.23 1.02 0.83 0.78 1.11 1.27 0.76 0.00 2.77 

Fragilariopsis pseudonana 0.62 0.00 1.38 0.00 0.00 0.00 0.38 0.27 0.00 

Fragilariopsis rhombica 20.00 4.08 12.67 11.33 19.50 18.73 12.21 16.53 17.39 

Fragilariopsis ritscheri 3.38 1.53 1.10 3.13 0.56 0.95 6.11 2.44 3.16 

Fragilariopsis separanda 0.92 0.00 0.55 0.00 0.84 0.95 0.38 3.25 0.40 

Fragilariopsis spp. 0.00 0.00 0.55 0.00 0.00 0.00 0.00 0.00 0.00 

Fragilariopsis sublinearis 4.00 3.57 1.38 3.91 2.51 3.81 4.58 4.34 2.37 

Fragilariopsis vanheurckii 0.31 1.02 0.83 0.39 0.00 0.00 1.15 0.54 0.00 

Haslea spp. 0.00 0.00 0.00 0.00 0.56 0.00 0.00 0.00 0.00 

Licmophora spp. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Navicula spp. 0.62 0.51 0.55 0.00 0.84 0.63 0.76 1.36 0.79 

Nitzschia spp. 0.00 0.00 0.00 1.17 0.00 0.00 0.00 0.00 0.00 

Porosira glacialis rs 4.00 0.00 0.55 4.69 1.11 0.32 1.15 0.00 5.53 

Porosira pseudodenticula 0.62 0.00 0.00 0.39 0.00 0.32 0.00 0.27 0.40 

Proboscia inermis 0.92 1.02 3.31 1.17 0.84 0.32 0.38 1.36 0.40 

Proboscia truncata 0.00 0.00 1.65 0.00 0.84 0.00 0.38 1.36 0.00 

Pseudonitzschia spp. 1.54 2.55 3.31 5.86 1.39 1.59 2.29 4.34 2.77 

Rhizosolenia  simplex 0.00 0.00 0.55 0.00 0.00 0.00 0.00 0.00 0.00 

Rhizosolenia antennata f. semispina 0.31 0.00 0.55 0.78 0.56 0.63 2.67 1.08 0.00 

Rhizosolenia antennata f. antennata 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Stellarima microtrias 0.00 0.00 0.00 0.39 0.00 0.00 0.00 0.00 0.00 
Thalassiosira ambigua 0.00 0.00 0.00 0.39 0.28 0.00 0.76 0.00 0.40 

Thalassiosira antarctica rs (cold) 0.31 1.53 0.00 0.39 0.28 0.63 0.76 1.36 1.19 

Thalassiosira antarctica rs (warm) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.27 0.00 
Thalassiosira antarctica veg. 0.00 0.00 0.00 0.78 0.00 0.00 0.00 0.00 0.00 

Thalassiosira frenguellii 0.00 0.00 0.00 0.00 0.56 0.00 0.38 0.00 0.00 

Thalassiosira gracilis v. expecta 0.00 0.00 0.00 0.00 0.28 0.00 0.00 0.00 0.00 

Thalassiosira gracilis v. gracilis 1.23 1.02 0.00 0.78 0.84 0.63 0.76 1.36 1.19 

Thalassiosira lentiginosa 0.62 0.51 0.00 0.39 0.28 0.32 1.15 0.54 0.00 

Thalassiosira lineata 0.00 0.00 0.28 0.00 0.00 0.00 0.00 0.00 0.00 
Thalassiosira longissima 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Thalassiosira oestrupii 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Thalassiosira oliveriana 0.00 0.00 0.00 0.00 0.00 0.00 0.76 0.00 0.00 
Thalassiosira perpusilla 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Thalassiosira ritscheria 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Thalassiosira spp. 0.00 0.00 0.55 0.39 0.00 0.00 0.00 0.00 0.40 
Thalassiosira trifulata 0.31 0.51 0.00 0.00 0.28 0.32 0.38 0.54 0.00 

Thalassiosira tumida 0.00 0.00 0.00 0.78 0.28 0.32 0.00 0.00 0.00 

Thalassiothrix antarctica 0.31 0.51 0.28 0.00 0.28 0.32 0.38 0.00 0.00 
Trichotoxon reinboldii 0.31 0.00 0.00 0.39 0.56 0.32 0.38 0.27 0.40 

Unidentified centrics 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
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Table A3.02 continued. 

CRS-free species 
abundance 

Core section 5H 5H 5H 5H 5H 5H 5H 5H 5H 

Depth in section 
(cm) 

60 70 81 99.5 135.6 52.5 64 85.5 106.6 

Lamina type D3 D3 D3 D3 D3 E3 E3 E3 E3 

FOV 41 63 49 43 68 66 55 56 53 

Dry mass (g) 0.0029 0.0026 0.0023 0.003 0.0029 0.0026 0.0026 0.0026 0.0027 

No. valves total 508 1147 550 568 515 1009 596 500 1334 

CRS valves 257 895 297 314 263 759 345 230 1080 

% CRS 50.59 78.03 54 55.28 51.07 75.22 57.89 46.00 80.96 

Actinocylus actinochilus 0.00 0.00 0.40 0.00 0.79 0.00 0.00 0.37 0.79 

Asteromphalus heptactis 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Asteromphalus hookeri 0.80 0.00 0.40 0.79 0.40 0.00 0.40 0.00 0.00 

Asteromphalus hyalinus 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.39 

Asteromphalus parvulus 0.00 0.00 0.00 0.00 0.40 0.40 0.00 0.74 0.00 
Azpeitia tabularis 0.40 0.40 0.00 0.00 0.00 0.00 0.00 0.74 0.00 

Chaetoceros - Hyalochaete 2.39 0.79 0.40 1.18 0.79 2.00 4.38 0.00 2.36 

Chaetoceros - Phaeoceros 7.97 17.06 6.72 6.30 9.52 6.80 9.56 3.70 11.02 

Cocconeis spp. Large 0.00 0.00 0.40 0.00 0.00 0.00 0.00 0.00 0.00 

Corethron pennatum 0.40 0.00 0.40 1.57 1.98 0.80 0.80 0.37 1.18 

Coscinodiscus bouvet 0.40 0.40 0.00 0.00 0.00 0.00 0.00 0.00 0.39 

Eucampia antarctica rs 0.00 0.40 0.00 0.79 0.00 0.00 0.00 0.74 0.00 

Eucampia antarctica veg 3.19 2.78 0.79 2.76 1.59 1.60 1.20 1.11 4.33 

Fragilariopsis curta 15.54 17.86 30.43 15.35 10.71 14.40 15.14 13.70 14.57 

Fragilariopsis cylindrus 10.36 5.56 5.14 2.36 12.70 7.60 8.76 4.07 9.06 

Fragilariopsis kerguelensis 15.94 14.29 9.09 14.17 9.52 6.40 6.37 5.19 8.27 

Fragilariopsis obliquecostata 5.58 3.97 2.37 1.18 1.59 2.00 0.80 2.96 0.39 

Fragilariopsis pseudonana 0.00 0.40 1.19 0.79 0.00 0.00 0.00 0.00 0.00 

Fragilariopsis rhombica 13.55 7.94 14.62 22.83 24.60 12.40 8.76 9.26 6.69 

Fragilariopsis ritscheri 1.99 1.19 1.98 2.76 2.78 1.60 0.00 0.74 1.97 

Fragilariopsis separanda 1.20 0.40 1.19 3.15 0.79 0.80 0.80 2.22 2.36 

Fragilariopsis spp. 0.00 0.00 0.00 0.00 1.19 0.00 0.00 0.74 0.00 

Fragilariopsis sublinearis 3.59 1.59 7.51 3.94 3.57 4.80 3.19 1.11 5.91 

Fragilariopsis vanheurckii 0.00 0.00 0.40 0.79 0.00 0.80 0.00 0.74 0.00 

Haslea spp. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Licmophora spp. 0.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Navicula spp. 1.20 0.79 0.79 0.00 0.00 0.80 0.80 0.00 1.18 

Nitzschia spp. 0.00 0.40 0.40 0.39 0.79 0.00 0.80 0.00 0.79 

Porosira glacialis rs 3.98 2.78 2.77 3.54 5.16 18.80 23.51 39.26 13.39 

Porosira pseudodenticula 0.40 0.40 0.00 0.79 1.19 0.40 1.20 0.00 0.00 

Proboscia inermis 0.00 1.19 3.16 1.57 0.40 1.60 0.40 0.00 1.97 

Proboscia truncata 0.40 0.79 1.19 0.39 0.00 0.40 0.40 0.00 0.79 

Pseudonitzschia spp. 2.39 7.94 1.58 6.69 4.37 8.00 6.77 1.48 5.12 

Rhizosolenia  simplex 0.00 0.00 0.00 0.00 0.00 0.80 0.00 0.00 0.00 

Rhizosolenia antennata f. semispina 0.80 0.79 3.16 1.18 0.00 0.80 0.80 0.00 0.39 

Rhizosolenia antennata f. antennata 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.79 

Stellarima microtrias 0.00 0.40 0.00 0.00 0.00 0.40 0.40 1.11 0.79 
Thalassiosira ambigua 0.00 0.40 0.00 0.00 1.19 0.00 0.00 0.37 0.39 

Thalassiosira antarctica rs (cold) 2.39 2.38 0.79 1.18 1.59 3.20 1.20 3.33 3.54 

Thalassiosira antarctica rs (warm) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Thalassiosira antarctica veg. 0.00 0.00 0.00 0.39 0.00 0.40 0.00 0.37 0.39 

Thalassiosira frenguellii 0.00 0.00 0.40 0.00 0.40 0.00 0.00 1.85 0.00 

Thalassiosira gracilis v. expecta 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Thalassiosira gracilis v. gracilis 2.39 0.79 1.19 0.79 0.40 0.00 1.59 1.11 0.00 

Thalassiosira lentiginosa 0.40 3.57 0.00 1.97 1.19 0.40 0.80 0.00 0.00 

Thalassiosira lineata 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Thalassiosira longissima 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Thalassiosira oestrupii 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Thalassiosira oliveriana 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Thalassiosira perpusilla 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Thalassiosira ritscheria 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Thalassiosira spp. 0.40 0.00 0.00 0.00 0.00 0.00 0.00 1.48 0.00 
Thalassiosira trifulata 0.80 0.79 0.79 0.39 0.00 0.40 0.40 0.00 0.00 

Thalassiosira tumida 0.40 1.19 0.00 0.00 0.00 0.40 0.00 0.00 0.00 

Thalassiothrix antarctica 0.40 0.00 0.00 0.00 0.00 0.40 0.40 0.00 0.79 
Trichotoxon reinboldii 0.00 0.40 0.00 0.00 0.40 0.40 0.40 0.00 0.00 

Unidentified centrics 0.00 0.00 0.40 0.00 0.00 0.00 0.00 1.11 0.00 
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Appendix 4.  Wavelet analyses of lamina 
based time series. 

This appendix presents additional wavelet analyses of lamina- and annual-time series that 

were not presented in the main text.  The wavelet analysis was found to typically perform 

badly on the relatively short time series presented in this study and produces spectral power 

bands that, despite statistical significance in the wavelet analysis, may not present a realistic 

assessment of the data, particularly for the datasets in which there are a large number of zero 

values.  For instance, in Figure A4.04 (a) and (b) an approximately 11-year cyclicity is 

evident at >95% significance; however, both of these can be seen in both instances to result 

from two large peaks in the data that are ~11-years apart and do not represent an actual trend 

in the data. 
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Figure A4.01.  Wavelet time series analysis of the continuously laminated 50-year record in core 

MD03-2601 section XVII (Hypsithermal) relative to a red noise model.  (a) A1 lamina time 

series; (b) B1 lamina time series; (c) C1 lamina time series; (d) D1 lamina time series; (e) E1 

lamina time series (next page).  Cross hatching indicates regions outside the cone of influence 

(COI), outside of which attenuation of the signal may occur due to edge effects of the dataset.  

Black lines indicate spectral power >95% confidence, red dashed line indicates spectral power 

>90% confidence. 
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Figure A4.01 continued. 
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Figure A4.02.  Wavelet time series analysis of the continuously laminated 57-year record in core 

MD03-2601 section XVII (Hypsithermal) relative to a red noise model.  (a) A1 lamina time 

series; (b) B1 lamina time series; (c) C1 lamina time series; (d) D1 lamina time series; (e) E1 

lamina time series (next page).  Cross hatching indicates regions outside the cone of influence 

(COI), outside of which attenuation of the signal may occur due to edge effects of the dataset.  

Black lines indicate spectral power >95% confidence, red dashed line indicates spectral power 

>90% confidence. 
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Figure A4.02 continued. 
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Figure A4.03.  Wavelet time series analysis of the continuously laminated 43-year record in core 

MD03-2601 section VIII (early Neoglacial interval) relative to a red noise model.  (a) A2 lamina 

time series; (b) B1 lamina time series; (c) C1 lamina time series; (d) C2 lamina time series; (e) 

E1 lamina time series (next page).  Cross hatching indicates regions outside the cone of influence 

(COI), outside of which attenuation of the signal may occur due to edge effects of the dataset.  

Black lines indicate spectral power >95% confidence. 
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Figure A4.03 continued. 
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Figure A4.04.  Wavelet time series analysis of the continuously laminated 73-year record in core 

IODP-318-U1357B (Neoglacial) relative to a red noise model.  (a) B3 laminae time series; (b) C3 

lamina time series; (c) E3 lamina time series.  Cross hatching indicates regions outside the cone 

of influence (COI), outside of which attenuation of the signal may occur due to edge effects of 

the dataset.  Black lines indicate spectral power >95% confidence. 
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Appendix 5.  HBI data 

This appendix contains the primary HBI concentration data presented in Chapter 6 (section 

A5.1), data from attempts at lamina-scale analysis (section A5.2) and measurements of the 

offset between continuously sampled HBI data and lamina position used for producing the 

graphic logs presented in Chapter 6. 
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A5.1 HBI data from continuous 1 cm resolution sampling 

Table A5.01.  HBI concentrations in all samples from MD03-2601 core section III.  Blank values 

indicate samples which were processed but failed to run properly on the GC-MS. 

End depth 

(cmbsf) 

HBI diene 

concentration 

HBI triene 

concentration 

300 0.0 49.5 

301 5.2 112.7 

302 8.6 153.7 

303 5.2 145.3 

304 0.0 103.4 

305 0.0 0.0 

306 0.0 74.6 

307 0.0 54.5 

308 4.5 57.8 

309 3.0 38.2 

310 4.0 32.8 

311 0.0 47.5 

312 0.0 59.8 

313 2.3 54.6 

314 3.2 58.2 

315 0.0 49.4 

316 

  317 5.5 65.9 

318 4.9 73.1 

319 5.0 30.2 

320 0.0 80.3 

321 4.4 64.1 

322 

  323 0.0 52.0 

324 5.9 26.8 

325 0.0 52.6 

326 0.0 57.2 

327 5.4 51.6 

328 5.9 77.2 

329 2.8 43.5 

330 4.1 42.6 

331 4.6 51.3 

332 2.5 38.0 

333 4.3 51.6 

334 1.6 38.5 

335 0.0 32.6 

336 5.7 37.6 

337 0.0 45.3 

338 

  339 4.3 29.0 



213 

 

End depth 

(cmbsf) 

HBI diene 

concentration 

HBI triene 

concentration 

340 5.2 50.9 

341 2.6 21.8 

342 3.5 30.0 

343 0.0 38.8 

344 0.0 27.4 

345 5.9 44.1 

346 4.8 27.9 

347 7.4 30.4 

348 

  349 3.6 20.6 

350 0.0 58.7 

351 0.0 42.5 

352 0.0 68.9 

353 3.7 58.9 

354 2.9 48.4 

355 6.0 71.0 

356 5.4 83.2 

357 0.0 68.7 

358 0.0 79.5 

359 0.0 53.2 

360 0.0 55.4 

361 20.0 48.6 

362 20.4 67.4 

363 20.0 48.0 

364 0.0 49.0 

365 0.0 41.8 

366 3.1 45.0 

367 3.0 36.0 

368 0.0 47.1 

369 0.0 60.1 

370 0.0 61.1 

371 4.9 46.8 

372 6.6 37.2 

373 3.4 39.8 

374 4.0 37.2 

375 3.4 49.5 

376 0.0 44.5 

377 1.7 23.0 

378 4.2 53.6 

379 0.0 49.0 

380 4.2 41.6 

381 3.8 42.8 

382 4.2 64.2 

383 4.5 41.3 
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End depth 

(cmbsf) 

HBI diene 

concentration 

HBI triene 

concentration 

384 3.5 46.4 

385 0.0 40.7 

386 0.0 38.1 

387 0.0 39.4 

388 2.5 60.4 

389 0.0 70.1 

390 0.0 71.3 

391 0.0 58.3 

392 3.1 51.5 

393 3.9 69.3 

394 6.2 85.6 

395 7.9 59.2 

396 7.7 34.1 

397 13.2 26.5 

398 6.0 20.1 

399 7.4 41.0 

400 14.7 64.8 

401 11.5 71.6 

402 3.7 31.9 

403 0.0 27.4 

404 0.0 32.7 

405 5.4 69.2 

406 9.4 69.7 

407 10.5 89.5 

408 5.9 99.9 

409 5.7 143.3 

410 2.8 88.8 

411 5.2 52.0 

412 7.7 31.6 

413 4.4 26.3 

414 7.0 47.6 

415 6.9 35.7 

416 3.1 51.1 

417 2.6 38.9 

418 0.0 36.6 

419 3.9 38.5 

420 0.0 33.9 

421 2.1 50.2 

422 5.1 47.9 

423 4.5 56.5 

424 10.9 42.9 

425 6.2 39.6 

426 5.7 44.1 

427 3.2 36.5 
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End depth 

(cmbsf) 

HBI diene 

concentration 

HBI triene 

concentration 

428 7.2 53.7 

429 0.0 48.1 

430 7.2 61.6 

431 5.3 58.8 

432 0.0 43.3 

433 0.0 39.5 

434 9.9 184.1 

435 0.0 0.0 

436 0.0 54.9 

437 4.0 48.7 

438 1.7 13.8 

439 

  440 7.5 45.8 

441 5.5 42.2 

442 0.0 46.6 

443 0.0 51.6 

444 1.5 34.4 

445 5.1 35.8 

446 2.8 37.1 

447 9.9 28.6 
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Table A5.02.   HBI concentrations in all samples from MD03-2601 core section VIII.  Blank 

values indicate samples which were processed but failed to run properly on the GC-MS. 

End depth 

(cmbsf) 

HBI diene 

concentration 

HBI triene 

concentration 

1050 2.1 10.6 

1051 3.4 20.0 

1052 0.0 25.9 

1053 3.0 19.3 

1054 1.8 14.5 

1055 2.5 21.7 

1056 2.8 20.9 

1057 2.9 13.5 

1058 

  1059 2.6 14.3 

1060 2.9 11.3 

1061 1.9 8.7 

1062 

  1063 0.2 16.9 

1064 0.8 14.2 

1065 0.0 25.7 

1066 1.9 33.4 

1067 0.6 35.3 

1068 2.3 27.2 

1069 0.8 21.0 

1070 1.0 18.9 

1071 1.8 17.9 

1072 2.1 17.3 

1073 1.0 7.4 

1074 1.1 23.4 

1075 0.4 9.1 

1076 0.9 14.0 

1077 0.3 16.5 

1078 0.5 19.0 

1079 0.4 21.1 

1080 0.5 18.4 

1081 0.5 17.3 

1082 0.4 33.1 

1083 1.8 19.0 

1084 3.6 26.7 

1085 2.5 13.6 

1086 

  1087 0.6 19.2 

1088 1.2 15.6 

1089 1.9 16.4 

1090 3.5 16.8 

1091 1.9 17.8 
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End depth 

(cmbsf) 

HBI diene 

concentration 

HBI triene 

concentration 

1092 0.5 9.5 

1093 1.9 27.8 

1094 1.0 12.5 

1095 0.7 19.4 

1096 0.9 17.4 

1097 0.3 21.4 

1098 0.6 21.3 

1099 1.0 16.5 

1100 0.8 10.8 

1101 0.5 13.3 

1102 1.3 26.2 

1103 1.1 16.8 

1104 3.1 20.8 

1105 2.2 11.9 

1106 6.2 16.7 

1107 1.5 16.1 

1108 0.4 14.3 

1109 0.9 26.2 

1110 0.6 21.5 

1111 0.3 12.2 

1112 0.4 34.4 

1113 0.4 30.4 

1114 0.1 20.0 

1115 0.0 18.2 

1116 0.2 16.5 

1117 0.3 13.3 

1118 0.4 29.1 

1119 0.6 21.4 

1120 0.0 8.9 

1121 0.0 10.8 

1122 0.5 16.0 

1123 0.0 16.7 

1124 0.0 19.9 

1125 0.0 16.7 

1126 0.3 14.2 

1127 

  1128 0.0 11.2 

1129 2.0 19.6 

1130 0.6 8.8 

1131 0.5 12.8 

1132 0.0 15.0 

1133 0.1 20.0 

1134 0.5 12.6 

1135 0.1 10.7 
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End depth 

(cmbsf) 

HBI diene 

concentration 

HBI triene 

concentration 

1136 

  1137 0.3 6.4 

1138 0.3 20.9 

1139 0.0 32.0 

1140 0.0 28.8 

1141 1.3 30.7 

1142 0.4 33.2 

1143 0.3 31.7 

1144 2.3 17.6 

1145 0.5 22.6 

1146 0.8 33.4 

1147 0.8 28.2 

1148 0.0 13.8 

1149 0.1 10.6 

1150 0.0 19.1 

1151 0.5 14.4 

1152 0.3 16.8 

1153 0.5 11.3 

1154 1.4 18.5 

1155 0.2 14.6 

1156 0.7 16.6 

1157 0.5 14.4 

1158 0.0 12.8 

1159 0.0 16.7 

1160 0.6 13.5 

1161 0.8 21.2 

1162 0.4 16.1 

1163 0.8 10.4 

1164 0.0 14.6 

1165 0.6 9.8 

1166 0.8 12.1 

1167 0.7 16.6 

1168 0.4 13.9 

1169 0.2 8.9 

1170 0.0 10.8 

1171 0.2 11.0 

1172 0.2 20.6 

1173 0.3 11.4 

1174 0.0 22.7 

1175 0.2 18.6 

1176 0.1 15.3 

1177 0.0 22.2 

1178 0.3 23.8 

1179 
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End depth 

(cmbsf) 

HBI diene 

concentration 

HBI triene 

concentration 

1180 0.0 14.2 

1181 0.2 11.4 

1182 0.3 21.0 

1183 0.1 15.2 

1184 0.2 15.3 

1185 1.5 26.0 

1186 0.5 11.0 

1187 0.3 8.7 

1188 0.5 18.6 

1189 0.3 18.8 

1190 0.0 19.9 

1191 0.3 12.2 

1192 0.5 26.1 

1193 0.1 18.2 

1194 0.0 21.0 

1195 0.0 43.4 

1196 0.9 30.0 

1197 1.1 26.4 

1198 0.5 15.3 
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Table A5.03.  HBI concentrations in all samples from MD03-2601 core section XVII.  Blank 

values indicate samples which were processed but failed to run properly on the GC-MS. 

End depth 

(cmbsf) 

HBI diene 

concentration 

HBI triene 

concentration 

2250 0.0 15.1 

2251 0.0 17.2 

2252 0.0 3.2 

2253 0.0 22.2 

2254 0.0 6.8 

2255 0.0 16.0 

2256 0.0 18.7 

2257 0.0 15.9 

2258 0.0 15.9 

2259 0.0 28.6 

2260 0.0 4.2 

2261 0.0 16.7 

2262 0.0 11.7 

2263 0.0 16.2 

2264 0.0 14.0 

2265 0.0 9.6 

2266 0.0 11.7 

2267 0.0 20.8 

2268 0.0 13.0 

2269 0.0 12.8 

2270 0.0 19.8 

2271 0.0 26.1 

2272 0.0 26.5 

2273 0.0 8.7 

2274 0.0 13.8 

2275 0.0 24.5 

2276 0.0 23.7 

2277 0.0 24.5 

2278 0.0 13.4 

2279 0.0 12.5 

2280 0.0 17.6 

2281 0.0 13.3 

2282 0.0 6.2 

2283 0.0 11.3 

2284 0.0 22.9 

2285 0.0 8.7 

2286 0.0 11.1 

2287 0.0 6.7 

2288 0.0 11.7 

2289 0.0 7.0 

2290 0.0 9.0 

2291 0.0 16.6 



221 

 

End depth 

(cmbsf) 

HBI diene 

concentration 

HBI triene 

concentration 

2292 

  2293 0.0 23.1 

2294 0.0 26.6 

2295 0.0 24.7 

2296 0.0 1.5 

2297 0.0 4.1 

2298 0.0 18.0 

2299 0.0 14.8 

2300 0.0 13.6 

2301 0.0 16.3 

2302 0.0 12.4 

2303 0.0 3.5 

2304 0.0 33.8 

2305 0.0 24.2 

2306 0.0 10.5 

2307 0.0 9.2 

2308 0.0 13.3 

2309 0.0 17.3 

2310 0.0 4.8 

2311 0.0 21.0 

2312 0.0 11.4 

2313 

  2314 0.0 12.2 

2315 0.0 10.4 

2316 0.0 8.6 

2317 0.0 9.6 

2318 0.0 2.8 

2319 0.0 13.3 

2320 0.0 11.3 

2321 0.0 16.2 

2322 0.0 16.7 

2323 0.0 7.4 

2324 0.0 10.3 

2325 0.0 14.3 

2326 0.0 10.4 

2327 0.0 8.1 

2328 0.0 12.6 

2329 0.0 8.7 

2330 0.0 8.7 

2331 0.0 10.0 

2332 0.0 15.2 

2333 0.0 15.2 

2334 0.0 11.3 

2335 0.0 15.3 
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End depth 

(cmbsf) 

HBI diene 

concentration 

HBI triene 

concentration 

2336 0.0 16.3 

2337 0.0 22.8 

2338 0.0 17.4 

2339 0.0 11.4 

2340 0.0 8.5 

2341 

  2342 0.0 13.5 

2343 0.0 2.2 

2344 0.0 14.2 

2345 0.0 12.2 

2346 0.0 10.8 

2347 0.0 16.7 

2348 0.0 8.9 

2349 

  2350 0.0 4.8 

2351 0.0 6.2 

2352 0.0 7.7 

2353 0.0 12.9 

2354 2.0 10.1 

2355 0.0 17.1 

2356 0.0 14.1 

2357 0.0 25.3 

2358 0.0 21.0 

2359 0.0 16.9 

2360 0.0 12.3 

2361 0.0 16.6 

2362 0.0 19.6 

2363 0.0 21.2 

2364 0.0 19.3 

2365 0.0 18.0 

2366 0.0 10.7 

2367 0.0 11.1 

2368 0.0 13.0 

2369 0.0 16.5 

2370 0.0 12.2 

2371 0.0 8.6 

2372 0.0 6.0 

2373 0.0 9.0 

2374 0.0 10.6 

2375 0.0 2.0 

2376 

  2377 0.0 9.0 

2378 0.0 12.5 

2379 0.0 19.9 
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End depth 

(cmbsf) 

HBI diene 

concentration 

HBI triene 

concentration 

2380 0.0 12.2 

2381 0.0 10.6 

2382 0.0 13.4 

2383 

  2384 0.0 20.0 

2385 0.0 18.7 

2386 0.0 22.1 

2387 0.0 12.9 

2388 0.0 14.0 

2389 0.0 17.9 

2390 0.0 3.5 

2391 0.0 8.2 

2392 0.0 10.5 

2393 0.0 10.7 

2394 0.0 13.5 

2395 19.1 2.1 

2396 7.6 10.0 
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A5.2 Lamina scale HBI data 

Table A5.04.  HBI diene and triene relative abdundances in lamina targeted samples from 

MD03-2601 core section III.  Corresponding lamina types are indicated in Figure A5.01 to 

Figure A5.03. 

Start depth 

(cmbsf) 

End depth 

(cmbsf) 

HBI diene 

concentration 

HBI triene 

concentration 

346.4 344.4 0.1 2.9 

348.4 346.4 0.1 2.9 

349.4 348.4 0.8 13.7 

350 349.4 0.6 14.4 

352.2 350 0.5 11.3 

352.5 352.2 0.4 6.4 

353.5 352.5 0.4 8.2 

354.5 353.5 1.3 17.8 

355.5 354.5 0.8 9.4 

356.5 355.5 0.8 8.7 

357 356.5 1.0 7.9 

358 357 0.9 6.6 

382.5 380 0.4 6.1 

384 382.5 0.5 8.0 

384.5 384 0.3 5.4 

385.5 384.5 0.7 9.8 

386 385.5 0.4 5.9 

386.5 386 0.2 11.4 

387.5 386.5 0.2 6.8 

393.5 392 1.4 16.9 

394 393.5 0.9 4.8 

394.5 394 2.7 8.5 

395 394.5 1.7 6.7 

395.5 395 0.9 9.8 

396.5 395.5 0.6 7.3 

397.5 396.5 0.8 7.8 

398 397.5 1.2 10.7 

399.5 398 0.6 5.0 

400 399.5 1.5 10.8 

400.5 400 1.8 6.8 

401 400.5 0.8 9.2 

402 401 0.9 11.4 
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Figure A5.01.  HBI diene and triene relative abundances and the ratio D/T between 345 and 358 

cm, compared to lamina distribution. 

 

Figure A5.02.  HBI diene and triene relative abundances and the ratio D/T between 380 and 

387.5 cm, compared to lamina distribution. 
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Figure A5.03.  HBI diene and triene relative abundances and the ratio D/T between 392 and 402 

cm, compared to lamina distribution. 
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Table A5.05.  HBI diene and triene relative abdundances in lamina targeted samples from 

MD03-2601 core section VIII.  Corresponding lamina types are indicated in Figure A5.04 to 

Figure A5.07. 

Start depth 

(cmbsf) 

End depth 

(cmbsf) 

HBI diene 

concentration 

HBI triene 

concentration 

1068.2 1067.7 0.2 4.3 

1069.7 1068.2 0.2 4.9 

1070 1069.7 0.2 3.8 

1071 1070 0.6 5.5 

1072 1071 0.3 4.2 

1073 1072 1.2 3.9 

1075 1073 0.2 4.2 

1077 1075 0.2 3.6 

1078.7 1077 0.1 6.8 

1079.7 1078.7 0.1 6.7 

1080 1079.7 0.3 8.9 

1081 1080 0.2 6.2 

1081.5 1081 0.7 19.8 

1082 1081.5 0.1 3.4 

1083 1082 0.6 4.6 

1084 1083 1.9 6.7 

1085 1084 0.2 4.9 

1086 1085 0.65 6.8 

1087 1086 0.1 1.7 

1111.5 1110.8 0 7.8 

1111.8 1111.5 0 10.1 

1113.3 1111.8 0.1 2.9 

1114.8 1113.3 0.1 6.113733 

1116.5 1114.8 <0.1 3.0 

1117.2 1116.5 0 7.3 

1118.2 1117.2 0 6.4 

1119 1118.2 1.0 6.2 

1120 1119 0 4.8 

1129.5 1128.5 0 5.3 

1131 1129.5 0.1 4.5 

1133.5 1131 0.2 4.0 

1135 1133.5 0.1 3.5 

1136.5 1135 0.069467 3.0 

1137.5 1136.5 0 5.5 

1138 1137.5 0 3.2 

1139 1138 0 8.7 

1140 1139 0 11.8 

1141 1140 0.2 14.1 

1186.9 1184.9 0 2.5 

1188.9 1186.9 0.1 5.7 

1189.1 1188.9 <0.1 5.3 
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Start depth 

(cmbsf) 

End depth 

(cmbsf) 

HBI diene 

concentration 

HBI triene 

concentration 

1190.9 1189.1 0.1 4.8 

1192.9 1190.9 0.1 5.8 

1194.9 1192.9 0.1 7.5 

1195.3 1194.9 0 3.2 

1196.3 1195.3 0.1 9.0 
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Figure A5.04.  HBI diene and triene relative abundances and the ratio D/T between 1067 and 

1085 cm, compared to lamina distribution. 



230 

 

 

Figure A5.05.  HBI diene and triene relative abundances and the ratio D/T between 1111 and 

1120 cm, compared to lamina distribution. 
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Figure A5.06.  HBI diene and triene relative abundances and the ratio D/T between 1128 and 

1141 cm, compared to lamina distribution. 
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Figure A5.07.  HBI diene and triene relative abundances and the ratio D/T between 1185 and 

1196 cm, compared to lamina distribution. 
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Table A5.06.  HBI diene and triene relative abdundances in lamina targeted samples from 

MD03-2601 core section VIII.  Corresponding lamina types are indicated in Figure A5.08 to 

Figure A5.13. 

Start depth 

(cmbsf) 

End depth 

(cmbsf) 

HBI diene 

concentration 

HBI triene 

concentration 

2279 2278 0.0 3.1 

2280 2279 0.0 3.9 

2281 2280 0.0 1.4 

2282 2281 0.0 2.9 

2283 2282 0.1 2.4 

2306 2305.5 0.0 3.0 

2306b 2306 0.0 2.0 

2308 2306.5 0.0 2.9 

2308.5 2308 0.0 0.4 

2340 2339 0.1 0.2 

2340.5 2340b 0.0 0.7 

2341 2340.5 0.0 0.9 

2341.5 2341 0.0 4.5 

2347 2346.5 0.1 0.0 

2348 2347 0.1 1.2 

2349 2348 0.0 0.1 

2350 2349 0.0 0.4 

2353.5 2353 0.0 0.2 

2354 2353.5 0.0 1.0 

2354.5 2354 0.0 1.6 

2355 2354.5 0.0 0.1 

2355.5 2355 0.0 0.8 

2385 2384.5 0.0 1.0 

2385.5 2385 0.0 5.1 

2386 2385.5 0.0 3.6 

2386.5 2386 0.0 2.9 

2387 2386.5 0.0 0.8 

2387.5 2387 0.0 2.4 

2388 2387.5 0.1 1.3 

2398 2388 0.0 1.2 

2399 2398 0.1 0.9 
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Figure A5.08.  HBI diene and triene relative abundances and the ratio D/T between 2278 and 

2283 cm, compared to lamina distribution. 

 

Figure A5.09.  HBI diene and triene relative abundances and the ratio D/T between 2306 and 

2309 cm, compared to lamina distribution. 

 

Figure A5.10.  HBI diene and triene relative abundances and the ratio D/T between 2339 and 

2342 cm, compared to lamina distribution. 
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Figure A5.11.  HBI diene and triene relative abundances and the ratio D/T between 2346 and 

2350 cm, compared to lamina distribution. 

 

Figure A5.12.  HBI diene and triene relative abundances and the ratio D/T between 2353 and 

2356 cm, compared to lamina distribution. 

 

Figure A5.13.  HBI diene and triene relative abundances and the ratio D/T between 2384 and 

2390 cm, compared to lamina distribution. 
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A5.3 Lamina versus HBI offset data 

As the laminae in core MD03-2601 are not horizontally aligned an offset exists between the 

depth below sea floor at which the lamina thicknesses have been measured and the depth at 

which corresponding HBI samples were taken for the continuously sampled data presented in 

Chapter 6 (Figure A5.14).  To compensate for this, a mean of ten measurements (Table 

A5.07) of the offset between the mean sampling track for thin section sampling and the mean 

sampling track for HBI sampling was taken for each core section.  This difference was then 

added to the sample depth before plotting the graphic logs in Chapter 6. 

 

 

Figure A5.14.  Examples of how offsets between the mean sampling track for HBI analysis and 

mean sampling track for thin section production were calculated from positive X-ray images of 

core MD03-2601. 
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Table A5.07.  Measured offsets between laminae and HBI samples. 

 

Section III 

Section 

VIII 

Section 

XVII 

Measured 

offset 

(mm) 

13 6 9 

17 8 8 

13 8 11 

18 10 9 

17 11 12 

23 8 10 

18 9 7 

5 10 8 

24 11 10 

16 8 8 

Mean 

(mm) 16.4 8.9 9.2 

 


