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Abstract

The Eurasian otter, Lutra lutra, hosts several parasites with zoonotic potential. As this semiaquatic mammal has large ranges
across terrestrial, freshwater and marine habitats, it has the capacity for wide dispersion of pathogens. Despite this, parasites
of otters have received relatively little attention. Here, we examine their ectoparasite load and assess whether this is
influenced by abiotic or biotic variables. Climatic phenomena such as the North Atlantic Oscillation (NAO) affect weather
conditions in northern Europe. Consequently parasite distributions, particularly species with life stages exposed to the
external environment, can be affected. We assessed the extent to which inter-annual variations in large-scale weather
patterns (specifically the NAO and Central England (CE) temperatures) and host characteristics influenced tick prevalence
and intensity. Ectoparasites consisted of a single species, the nidiculous tick Ixodes hexagonus (prevalence = 24.3%; mean
intensity = 7.2; range = 1–122; on n = 820 otter hosts). The prevalence, but not intensity of infestation, was associated with
high CE temperatures, while both prevalence and intensity were associated with positive phases of the NAO. Such
associations indicate that I. hexagonus are most abundant when weather conditions are warmer and wetter. Ticks were
more prevalent on juvenile than sub-adult or adult otters, which probably reflects the length of time the hosts spend in the
holt where these ticks quest. High tick number was associated with poor host condition, so either poor condition hosts are
more susceptible to ticks, or tick infestations negatively impact on host condition. Otters are clearly an important and
common host for I. hexagonus, which has implications for vector-borne diseases. This work is the first to consider the
impacts of long-term weather patterns on I. hexagonus and uses wild-animal cadavers to illustrate the importance of abiotic
and biotic pressures impacting parasitic populations.
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Introduction

Current change in climate (the long-term average meteorolog-

ical conditions of a region [1]) is associated with increases in

temperature and precipitation, especially in Northern temperate

zones [1]. This influences parasite distributions both directly [2,3]

and indirectly, for example via impacts on host range [4,5].

Weather (short-term variation in meteorological conditions) can

cause variations in parasite distributions whilst synchronously

influencing host abundance [6] but will affect specific host-parasite

interactions differently [4,7–9]. Weather patterns are influenced

by climatic phenomena such as the North Atlantic Oscillation

(NAO). The NAO affects European climate such that, when in

positive phases, northern Europe experiences warmer and wetter

conditions [10,11]. Identifying associations between climate and

the distribution of vectors over time (e.g. [12,13]) is an essential

pre-requisite to understanding public and wildlife health risks

resulting from vector-borne infection.

Ixodid ticks are vectors for a range of pathogens causing diseases

including Lyme disease, Boutonneuse fever, Q fever, tick-borne

fever and tick-borne encephalitis [14]. Ixodes hexagonus is an efficient

vector of Borrelia burgdorferi, the causative agent of Lyme disease

[15] but in the UK, I. ricinus has received most attention because of

its ubiquitous nature and association with transmission of

pathogens to humans and livestock [14]. The distribution of I.

ricinus is influenced by weather [16,17] and the presence of suitable

hosts and habitat [18]. Temperature increases are associated with

increasing population density and geographic range of I. ricinus, a

European tick [17,19], and other tick species such as the North

American species I. scapularis. [20]. The majority of ixodid ticks

require .80% relative humidity for survival off the host [21–23]

and as such, positive phases of the NAO may benefit ixodid ticks

by creating suitably humid weather. Landscape, habitat use and

local weather conditions have been associated with tick distribu-

tions previously [16,17,19,20,24,25]. The impact of such environ-

mental variables on host-parasite interactions is, however, highly

variable [26]. Mustelids have been associated with the nidiculous

(burrow or nest dwelling) tick I. hexagonus [24] but the relationship

between I. hexagonus and weather conditions has not been

examined previously.

The Eurasian otter, Lutra lutra, is a top predator in the UK and a

sentinel of freshwater health [27]. Otters are wide ranging
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opportunistic predators that feed in terrestrial, freshwater and

marine habitats [28]. They are therefore potentially exposed to a

wide diversity of pathogens and a great deal can be learned about

the distribution of parasites in UK ecosystems by screening such a

generalist host. Here, we identified the tick species that use otters

as a host. Next, we investigated how weather patterns and host

characteristics are associated with tick infestations of otters in

England and Wales. Specifically, we hypothesised that tick

occurrence (prevalence and intensity) would be positively corre-

lated with temporal variation in: i) the NAO (associated with

warmer and wetter weather in the UK), and; ii) higher Central

England (CE) temperatures (a long-term record of temperature in

central England, see Materials and Methods). Based on these

findings we hypothesised that spatial variation in tick counts

among meteorologically distinct regions of the UK would correlate

positively with rainfall and temperature.

Results

Tick species
Tick (Ixodes hexagonus) prevalence on Eurasian otters, between

2004 and 2010, was 24.3% (199 out of 820) (Figure 1). On some

hosts, all post-hatch tick life stages (larva, nymph and adults) were

recovered (18 cases), but almost 40% of hosts had only one life

stage present at collection (Larvae = 13 cases, Nymph = 40 cases,

Adult = 26 cases) (Table 1). Infested otters were widespread across

England and Wales (Figure 1) with no evidence of clustering of

infestation within the otter distribution (Ripley’s K analysis at the

95% confidence level using radii ranging from 1 km-130 km).

Abiotic factors
Tick prevalence on otters was associated with higher Central

England (CE) temperatures for the 12 month period preceding

host death (GLM: t = 2.594, df = 569, p,0.01), and more positive

phases of the North Atlantic Oscillation (NAO) over the 12 month

period preceding host death (GLM: t = 2.099, df = 569, p,0.05)

(Figure 2). Tick intensity was not significantly associated with CE

temperatures over any period preceding host death (GAM:

t = 1.445, df = 155, p = 0.15). Tick intensity was, however,

positively associated with the NAO at month of host death

(GAM: t = 2.670, df = 155, p,0.05) (Figure 3).

The South Wales and Southwest England region (Figure 1) had

significantly higher tick counts on otters than all other regions,

while East and Northeast England had significantly lower tick

counts than all other regions; these two regions contributed most

strongly to the statistically significant difference in counts between

regions (x2 = 302.169, df = 5, p,0.001). Mean intensities for each

region did not, however, correlate with maximum or minimum

temperature, or mean rainfall for the long-term yearly average

(1971–2000) regional data (Correlations, all p.0.1) (Figure 4).

There were no seasonal associations between larval, nymph or

adult stage ticks on otters (GLM, p.0.1).

Biotic factors
More juvenile otters were infested than older age-classes (GLM:

p.0.01; Figure 2). The mean host condition ‘K’ for the sampled

population was 1.0286. Tick intensity was inversely related to otter

condition so that as otter condition increased, tick intensity

decreased (GAM: t = 3.137, df = 155, p.0.01) (Figure 5).

Discussion

Ixodes hexagonus is the only tick species reported from the

Eurasian otter ([29], current study). Ixodes hexagonus can complete

its life cycle on the European hedgehog [24], fox [30] and

American Mink [31]. As all three post-hatch tick life stages were

found on the otter in the current study, it appears that I. hexagonus

can also potentially complete its life cycle on this mammal. The

prevalence of I. hexagonus on otters (24.3%) is lower than that

reported on European hedgehogs, which are the preferred host for

this tick [24,32] (53.3% prevalence on hedgehogs from Western

Europe, [32]). I. hexagonus is encountered by domestic dogs and

cats in urban areas [33] illustrating the close proximity of this

particular tick to human populations. The prevalence of I.

hexagonus on otters is, however, high in comparison to its

prevalence on the domestic dog in the UK (5.6%, n = 3534

[34]). Further, the mean intensity (the total number of parasites of

a particular species found in a sample divided by the number of

infested hosts [35]) of ticks is higher on otters (7.2 per host) than on

hedgehogs (3.8 [36]) despite examination of cadavers in the

current study and live hosts in the hedgehog study. This suggests

that otters are a noteworthy host for I. hexagonus. The association

between otters and I. hexagonus populations may be important for

pathogen transmission, particularly if otters act as either reservoir

or amplifier hosts, or reduce pathogen abundance through the

dilution effect [37]. Further, otters have large home ranges [28,38]

indicating that this host has the potential to transfer ticks between

habitat islands. The nocturnal and aquatic nature of otters may

deter other tick species from utilising such a resource, explaining

the absence of diversity in tick species.

Positive phases of the North Atlantic Oscillation (NAO) were

associated with increased prevalence and intensity in tick

populations on otters. Strong positive phases of the NAO are

linked with above average temperature and precipitation across

northern Europe. Together with the elevated humidity produced,

such weather conditions may lead to increased abundance of I.

hexagonus, as reported for I. ricinus and I. scapularis [17,19,20]. This

may be related to the weather conditions causing changes in the

behaviour of either the parasite or the host thereby altering

infestation rates (see [39]). No previous literature was found

Table 1. Summary of Ixodes hexagonus on otters.

Parasite stage Prevalence (%) Count (/820 hosts) Mean Intensity (95% CI) Range

Any stage 24.3 199 7.2 (5.5–9.2) 1–122

Larva 9.3 76 7.7 (4.7–11.7) 1–112

Nymph 15.1 124 4.0 (2.9–5.2) 1–44

Adult 11.8 97 2.7 (2.1–3.5) 1–26

Ixodes hexagonus infestations of Lutra lutra in England and Wales between 2004 and 2009 (n = 820); showing prevalence, parasite count, mean intensity with upper and
lower 95% bootstrap confidence interval (10000 iterations), and maximum intensity for each tick life stage.
doi:10.1371/journal.pone.0047131.t001
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relating NAO to I. hexagonus. In I. ricinus however, the NAO did not

correlate with intensity of tick infestation but negative winter NAO

phases (associated with warmer and wetter winters) corresponded

to increased Borreliae infections [40]. Further investigation into

the underlying pathogenic infections of otters would be useful to

examine whether this association holds for I. hexagonus.

Both NAO and CE temperatures are indices that can be used to

describe temporal variation in weather; they do not provide

spatially explicit weather data within the UK. The significant

relationships found in the current study therefore describe an

association between otter ticks (prevalence and intensity) and

temporal variation in weather. We tested subsequently whether

warmer and wetter regions were associated with higher tick

infestations of otters, and found significantly more ticks in South

Wales and Southwest England – a region associated with higher

rainfall [41]. Overall, however, at the regional scale we identified

no significant correlations between the mean intensity of ticks and

either temperature or rainfall. This may be because at the regional

scale temperature and rainfall are negatively correlated, so a more

detailed analysis of local weather is necessary to clarify their

interaction. Other factors such as the distribution of non-otter

hosts, and variation in habitat type, may also heavily influence

spatial variation in tick abundance. In preliminary investigations

we explored the impact of local weather, alternative hosts, and

habitat on I. hexagonus distribution, but subsequently removed these

from our analyses because: i) Restricted availability of data meant

that inclusion of both spatial and temporal variation in weather

reduced the size of the dataset considerably, rendering conclusions

less robust; ii) Information on the reported distribution of

alternative hosts (hedgehog and fox) and of I. hexagonus were

obtained from the National Biodiversity Network (NBN). Hedge-

hogs and foxes are both widespread and abundant in the UK and

therefore availability of alternative hosts seems unlikely to limit I.

hexagonus distribution at the regional scale. Further, I. hexagonus

records from the NBN are concentrated in the London area of

South East England, but because this database relies heavily on

records submitted by members of the public this is likely to

represent bias due to distribution of the human population. The

NBN records map presence only (and not absence on screened

hosts), so it was not possible to test for clustering within the host

distribution as we did for I. hexagonus on otters. Comparisons were

therefore uninformative; iii) Data on land use (arable, broadleaf

and coniferous woodland, improved and semi-natural grassland,

and upland habitat) were obtained from the Countryside

Information System (CIS version 8, available online). ArcMap

GIS (version 9.2) was used to interrogate these data and to assign

percentage cover of each land-use within a 20 km radius of each

otter. Significant negative associations were revealed (between tick

prevalence and arable land, improved grassland, and conifer

woodland), but interpretation is questionable because of the

heterogenous and patchy nature of habitat data, the relatively

large areas examined which may not accurately reflect the nature

of real otter ranges (these tend to be linear along water courses,

and vary considerably in length from a few to 40km [28]), and the

difficulty in defining where, within this unknown range, an otter

may have become infested.

Tick prevalence, but not intensity on otters, was associated with

CE temperature. As far as we are aware, there are no previous

records of temperature effects on I. hexagonus and the only long-

term study on population dynamics of I. hexagonus indicates little

seasonal variation and low-level abundance (on hedgehogs [36]).

In general, however; temperature has a key role in driving tick

development rates [17,19] and so affects population dynamics

[16,17]. Additionally, temperature tends to be associated with

length of diapause, larval activity and adult interactions [42].

Particularly strong associations are found between I. ricinus and

temperature [17]. Stochastic temperature variations across the

year are predicted to alter population dynamics of I. ricinus with

subsequent impacts on the transmission of vector borne diseases

[17]. The contrasting impact of temperatures on I. hexagonus and I.

ricinus may be attributable to the ecological differences between the

two species. The most important of these is likely to be habitat

choice. I. hexagonus is nest dwelling, and so to some extent insulated

from changes in ambient temperatures. In contrast, I. ricinus uses

Figure 1. Tick distributions across the UK. Distribution of Ixodes hexagonus infested (dark circles) and uninfested (clear circles) otters in England
and Wales. Meteorologically distinct regions (East and Northeast England, East Anglia, Southeast England and Central South, Northwest England and
North Wales, South Wales and Southwest England, and Midlands) defined by the Meteorological Office UK Climate Impacts Programme (data
available online).
doi:10.1371/journal.pone.0047131.g001

Figure 2. Abiotic impact on tick prevalence. Probability plot for a
model of the association between tick prevalence and the explanatory
variables A) Central England Temperature for the 12 month period
preceding host death, B) North Atlantic Oscillation for the 12 month
period preceding death for each host age class: Dotted line = juvenile
hosts; Solid line = Adult hosts; Dashed line = Sub-adult hosts.
doi:10.1371/journal.pone.0047131.g002

Figure 3. The North Atlantic Oscillation impacts tick counts on
otters. Relationship of tick count to mean North Atlantic Oscillation at
month of host death. Standard error bars shown.
doi:10.1371/journal.pone.0047131.g003
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open areas for questing [14], so is likely to be exposed to wider

fluctuations in air temperature.

Juvenile otters were more frequently infested with I. hexagonus

than adult hosts. Host age, in general, influences the intensity of

infestations, but can also affect parasite-induced mortality, and the

distribution of the parasite among host individuals [43]. Several

hypotheses [43,44] predict that juveniles will carry heavier

infestations than older hosts, either because: i) adult hosts develop

immunity and/or behavioural adaptations to avoid or remove

parasites; and/or ii) heavily infested juveniles die before adulthood

(selection hypothesis [44]) although this is very unlikely as a direct

cause of death. Grooming is a learned activity in otters [28] and

may contribute to lower tick numbers on older otters [28].

Additionally, young otters spend the majority of their time in holts,

the resting place of otters [28], so are disproportionately exposed

to such parasites. Effects may be underestimated here, however,

because road killed samples tend to reflect the healthier section of

the population [45].

Finally, we found a relationship between host condition and tick

intensity such that a better host condition is associated with

decreased intensity. This is not a reflection of the elevated

infestations on juvenile hosts because the host condition index used

here [46] controls for size and therefore age, in addition to sexual

dimorphism. This positive relationship could imply that otters in

better condition are more efficient at grooming and thereby rid

themselves of ticks, or that ticks have a negative impact on otter

condition.

We acknowledge that data from road-killed hosts are likely to

underestimate tick counts and recognise that road-kill samples are

a stochastic sub-sample of a population and may lead to bias in

terms of the proportion of the host population examined. For

protected species, however, road-kill samples remain the only way

to obtain large sample sizes for analysis. The absence of tick

species other than I. hexagonus, in concordance with the only other

report of otter tick infestations [29], could reflect differences in

emigration patterns when abandoning a dead host, while tick

emigration rates from dead hosts may interact with local

microclimate. Our analysis of recently killed versus decomposed

otters (see Materials and Methods), however, reveals no significant

difference in infestation levels or species diversity, suggesting that

observed associations are robust. Such data can therefore

successfully illustrate associations between inter-annual variations

in weather patterns, host characteristics and I. hexagonus popula-

tions.

To our knowledge this work is the first to consider the impacts

of weather on I. hexagonus, and reveals that inter-annual variations

in large-scale weather patterns, together with host characteristics,

combine to affect the distribution, prevalence and intensity of I.

hexagonus on Eurasian otters. Associations were identified between

positive NAO phases, CE temperatures and tick prevalence,

suggesting that the predicted change in climate in northern

temperate zones may cause an increase in I. hexagonus populations.

Although the associations highlighted here may not necessarily

parallel what is observed on other hosts for this tick, I. hexagonus is

common on domestic cats and dogs [33] and we suggest that tick

research should, perhaps, target species other than I. ricinus in the

future. This study illustrates how surveys of wild-animal cadavers

can be hugely informative about parasitic populations.

Materials and Methods

The host
The Cardiff University Otter Project receives dead otters, Lutra

lutra, from across England and Wales. Most (86% of the current

study) have been killed by road traffic and are stored subsequently

at 220uC. The location (British National Grid Reference) and

date of death (month and year), sex, age-class (juvenile (n = 25),

sub-adult (238) and adult (312) and size (weight (kg) and length (m))

were recorded for each otter collected between 2004 and 2010. A

condition index K was calculated controlling for the dimorphism

of otter sexes, following [46]. Such that:

K~weight= a x length�n½ �

where a = 5.02 and n = 2.33 for females, and a = 5.87 and

n = 2.39 for males [46]. Seasons were defined as winter:

December-February, spring: March-May, summer: June-August,

and autumn: September-November. Very decomposed otters were

excluded from the analysis. Remaining otters included in model

(and excluding those with missing data; n = 575) were distributed

Figure 4. Abiotic impact on tick intensity. Mean tick intensity (grey
bars) in each meteorologically distinct region (East and Northeast
England, East Anglia, Southeast England and Central South, Northwest
England and North Wales, South Wales and Southwest England, and
Midlands) and corresponding 30 year average (1971–2000) summed
mean rainfall (mm) (upper Y-axis), maximum (triangle) and minimum
(cross) 30 year (1971–2000) average temperature (uC) for each region
(lower Y-axis). Standard error marks for rainfall, maximum and minimum
temperature correspond to variability in monthly averages.
doi:10.1371/journal.pone.0047131.g004

Figure 5. Biotic impact on tick count. Relationship of tick intensity
to host condition (K). Standard error bars shown.
doi:10.1371/journal.pone.0047131.g005
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across seasons and years as follows: spring = 137; summer = 83;

autumn = 179; and winter = 176; 2004 = 12; 2005 = 48;

2006 = 70; 2007 = 122; 2008 = 146; 2009 = 116; and 2010 = 61.

Parasite identification
Ticks were removed (via pelt searching and fur combing) and

stored in 90% molecular grade ethanol prior to immersion in 0.1%

saline solution for microscopic examination (x30 magnification)

using a Nikon dissecting microscope with fibre optic illumination,

and identified to species using morphological features [14,47].

Ixodes hexagonus was the only tick species present and species

identification of 15 specimens (5 adults, 5 nymph and 5 larvae) was

confirmed by the Natural History Museum. Occasionally, damage

or desiccation prevented morphological identification so for these

specimens we sought confirmation using mitochondrial DNA

cytochrome oxidase sub-unit 1 (COX1) analysis as follows.

DNA was extracted from 13 specimens, three adults, three

nymphs and seven larvae, from four geographically separate hosts.

Ethanol was evaporated fully from each sample. Extractions were

conducted using a QIAGEN kit as per the manufacturer’s protocol

(QIAGEN DNeasy Blood and Tissue Handbook 2006) with the

additional step of manually crushing each tick body with a sterile

pipette tip at the start of the process. PCR followed standard

procedures (QIAGEN DNeasy Blood and Tissue Handbook

2006). Novel primers (IHEXCO1F: 59- TCATAAAGA-

CATTGGGACT-39, IHEXCO1R: 59- TGGTAAA-

GAATGGGGTCT-39) were designed by alignment of COX1

mtDNA from 8 reference tick species (GenBank: Dermacentor

reticulatus AF132829, Haemaphysalis punctata FN394339.1, Hyalomma

aegyptium AF132821, Ixodes uriae NC006078, I. hexagonus

AF081828.1, I. lividus GU124743, I. ricinus FN394342 and

Rhipicephalus sanguineus NC002074). These primers are specific to

I. hexagonus. The PCR reaction conditions were carried out in a

50 ml final volume, with 10x PCR buffer II (Applied Biosystems,

UK), 50 mM MgCl (Applied Biosystems, UK), 2.5 mM of each

dNTP, 10pmol/m l of each primer, 0.5 U Taq DNA polymerase

(Invitrogen) for each 10 ml DNA template. PCR conditions

(GenAmp PCR System 9700, Applied Biosystems, UK) were:

95uC for 5 min, followed by 35 cycles of 94uC for 30 sec, 53uC for

1 min and 72uC for 1 min, with a final extension of 72uC for

10 min. PCR products produced identical sized bands for all tick

samples on a 1.5% agarose gel. Four larvae, one nymph and one

adult were sequenced (QIAGEN, Genomic Services, Germany)

using both forward and reverse primers. All 592 bp sequences

from the current study were identical and showed 99% similarity

to the corresponding region of GenBank I. hexagonus AF081828.1.

This reference sequence, AF081828.1, was obtained from

laboratory maintained ticks over ten years ago [48], perhaps

explaining the 3 bp discrepancy (at position 130 transition T to C,

and at positions 172 and 188 transversions A to C). The next

closest sequence match was 82% with Ixodes asanumai Kitaoka 1973

(GenBank: AB231674.1).

Data preparation
Temporal variation in weather was quantified using mean

monthly temperatures (uC) for Central England (CE temperature)

[49] and North Atlantic Oscillation (NAO) phases (http://www.

cpc.ncep.noaa.gov/products/precip/CWlink/pna/nao.shtml, da-

ta provided by the Climate Prediction Centre of the U.S. National

Oceanographic and Atmospheric Administration website). The

mean of each was calculated for: i) the month of host death; ii) the

sixth month period preceding host death; and iii) the year

preceding host death, for each otter. These time periods were

selected based on literature indicating that populations may be

influenced by conditions during the previous season or year

[16,50].

Spatial variation in climate was quantified using long-term

averages, which are a useful tool to describe the state of the climate

in a particular region [41]. Long-term yearly average (1971–2000)

temperature (maximum and minimum, uC) and rainfall (mm)

measures for meteorologically distinct regions of England and

Wales were collated [41]. These regions are defined as East and

Northeast England, East Anglia, Southeast England and Central

South, Northwest England and North Wales, South Wales and

Southwest England, and Midlands (Figure 1) and are used by the

Meteorological Office UK Climate Impacts Programme (UKCIP)

to summarise weather patterns in the UK (http://www.metoffice.

gov.uk/climate/uk/averages/19712000/). To determine the abi-

otic conditions for each sampled carcass, otters were assigned the

regional average for climate data depending on their geographic

location at time of death. Associations between these measures of

climate and tick prevalence (the number of hosts infested with

specific parasitic species, in the current study ticks, divided by the

total number of hosts examined [35]), intensity (the number of

individuals of a particular parasite species on a single infested host

[35]) and tick count (the total number of ticks within a population)

were examined from otters found between 2004 and 2010.

Data analysis
Ectoparasites are thought to abandon dead hosts [51]. We

tested initially, therefore, whether there was a difference in tick

abundance between fresh (collected within 24 h of death, n = 610)

and not fresh (otters characterised as slightly or moderately

decomposed, n = 210) otters. We found no significant difference in

tick presence/absence (x2 = 0.515, n = 820, df = 1, P = 0.473) or

median intensity (Kruskal-Wallis H = 0.35, n = 195, df = 1,

P = 0.556) and subsequently pooled all data for further analyses.

The NAO and CE temperatures, for each time period

examined, and host factors (sex, age, condition, season and year

of death) were combined in a general linear model fitted to the tick

presence/absence data with a binomial error distribution (n = 575

hosts, individuals were omitted where data was missing). A

generalised additive model incorporating these explanatory

variables was fitted to the tick intensity data (tick counts per otter

excluding zero counts) with negative binomial error distribution.

Relationships between explanatory variables and tick intensity

were non-linear. A generalised additive model (GAM) was applied

therefore with splines fitted appropriately. Final models were

selected using Akaike Information Criterion (AIC).

Tick counts were compared between the meteorologically

distinct regions of England and Wales (described above) by

calculating regional mean tick intensities and testing for a

correlation with the long-term yearly average maximum and

minimum temperature (uC) and total rainfall (mm) in each region.

The spatial distribution of infested otter carcasses (n = 199) was

examined to look for clustering within the host distribution

(n = 820) by calculating a modified Ripley’s K statistic, K[i.](r),

using Ripley’s isotropic edge correction [52] with a simplified

border of England and Wales as a boundary (for further details of

methodology [53]). All statistical analyses were conducted using R

version 2.12 [54].
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36. Pfäffle M, Petney T, Skuballa T, Taraschewski H (2011) Comparative

population dynamics of a generalist (Ixodes ricinus) and specialist tick (I. hexagonus)
species from European hedgehogs. Exp Appl Acarol 54: 151–164.

37. Schmidt KA, Ostfeld RS (2001) Biodiversity and the dilution effect in disease

ecology. Ecology 82: 609–619.
38. Green J, Green R, Jefferies DJ (1984) A radio-tracking survey of otters Lutra lutra

on a Perthshire river system. Lutra 27: 85–145.
39. Kerr GD, Bull CM (2006) Interactions between climate, host refuge use, and tick

population dynamics. Parasitol Res 99: 214–222.

40. Hubalek Z, Halouzka J, Juricova Z (2003) Longitudinal surveillance of the tick
Ixodes ricinus for borreliae. Med Vet Entomol 17: 46–51.

41. Perry M, Hollis D (2005) The development of a new set of long-term climate
averages for the UK. Int J Climatol 25: 1023–1039.

42. Randolph SE (2004) Tick ecology: processes and patterns behind the
epidemiological risk posed by ixodid ticks as vectors. Int J Parasitol 129: S37–

S65.

43. Hawlena H, Abramsky Z, Krasnov BR (2006) Ectoparasites and age-dependent
survival in a desert rodent. Oecologia 148: 30–39.

44. Sol D, Jovani R, Torres J (2003) Parasite mediated mortality and host immune
response explain age-related differences in blood parasitism in birds. Oecologia

135: 542–547.

45. Nusser SM, Clark WR, Otis DL, Huang L (2008) Sampling considerations for
disease surveillance in wildlife populations. J Wildl Manage 72: 52–60.

46. Kruuk H, Conroy JWH, Moorhouse A (1987) Seasonal reproduction, mortality
and food of otters Lutra lutra L. in Shetland. Syrup. Zool Soc Lond 58: 263–278.

47. Snow KR (1979) Identification of Larval Ticks Found on Small Mammals in

Britain. Reading, UK: Mammal Society.
48. Black WC, Roehrdanz RL (1998) Mitochondrial gene order in not conserved in

Arthropods: Prostriate and metastriate tick mitochondrial genomes. Mol Biol
Evol 15: 1772–1785.

49. Parker DE, Legg TP, Follan CK (1992) A new daily Central England
Temperature Series, 1772-1991. Int J Climatol 12: 317–342.

50. Ruiz-Fons F, Gilbert L (2010) The role of deer as vehicles to move ticks, Ixodes

ricinus, between contrasting habitats. Int J Parasitol 40: 1013–1020.
51. Nelder MP, Reeves WK (2004) Ectoparasites of road-killed vertebrates in

northwestern South Carolina, USA. Vet Parasitol 129: 313–322.
52. Ripley BDA (1988) Statistical Inference for Spatial Processes. Cambridge

University Press, Cambridge, UK.

53. Sherrard-Smith E, Cable J, Chadwick EA (2009) Distribution of Eurasian otter
biliary parasites, Pseudamphistomum truncatum and Metorchis albidus (Family

Opisthorchiidae), in England and Wales. Parasitol 136: 1015–1022.
54. R Development Core Team (2008) R: A Language and Environment for

Statistical Computing. R Foundation for Statistical Computing. Vienna, Austria.

Abiotic and Biotic Factors Impact Tick Dynamics

PLOS ONE | www.plosone.org 7 October 2012 | Volume 7 | Issue 10 | e47131


