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Abstract: A simple dynamic model of a hybrid manufacturing / remanufacturing system is 
investigated. In particular we study an infinite horizon, continuous time, APIOBPCS (Automatic 
Pipeline Inventory and Order Based Production Control System) model. We specifically highlight the 
effect of remanufacturing lead-time and the return rate on the inventory variance and bullwhip 
produced by the ordering policy.  Our results clearly show that a larger return rate leads to less 
bullwhip and less inventory variance, thus returns can be used to absorb demand fluctuations to some 
extent. Longer remanufacturing lead-times have less impact at reducing inventory variance and 
bullwhip than shorter lead-times. We conclude, within our specified system, that  inventory variance 
and bullwhip is always less in supply chain with returns than without returns. 
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1. Introduction 
 
Around the world, sustainability has become focal point of many economic development strategies. 
Leading companies may even use sustainability as a means of gaining competitive advantage, as the 
growing environmental awareness of customers is changing the marketplace, Mahadevan, Pyke, 
Fleischmann (2003).  From a production viewpoint sustainability covers aspects of environmental 
production; green manufacturing, use of natural resources, recycling, material re-use and re-
manufacturing. However, managing a reverse supply chain involves coping with many uncertainties, 
especially those concerned with the quantity, quality and timing of the returned products, Seitz, 
Disney and Naim (2003).  In a number of recent papers, many issues have been raised, such as how 
to design a product so that it is easy to be disassembled and reused (Knodo et al, 2003), or how to 
make decisions on product recovery (van der Laan & Saloman 1999, Teunter & Vlachos 2002), for 
example reselling, recovery, or disposal. The recovery option may also include repair, refurbishing, 
remanufacturing, cannibalization and recycling, Thierry et al. (1995). 
 
We focus on re-manufacturing here. In particular we look at the consequences of integrating the re-
manufacturing process with the traditional supply chain concerned with the production of new 
products. We consider the scenario where “used” products are pushed through a remanufacturing 
process as soon as they are returned from the “customer” (or marketplace). There is a lead-time 
associated with the time to remanufacture a product and also a lead-time associated with the time that 
a product is “in use” by the customer.   For convenience, we will join these two lead-times together 
and called it Tr, the Time to Remanufacture.  Furthermore, we assume this remanufacturing lead-time 
is a stationary stochastic variable drawn from an exponential distribution.  Only a fraction, 0<k<1 of 
demand is returned from the marketplace, the rest we assume is either unusable or is lost to a landfill.   
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We also assume the remanufactured products are “as good as new” and thus form part of the 
serviceable stock.  Serviceable stock is the finished goods from which customer demand is satisfied. 
In this study the terms net stock/inventory/serviceable stock are used interchangeably. We assume 
here that the customer demand is a stationary, independently and identically distributed (i.i.d) random 
process.  Our analysis is independent of the actual distribution of the stochastic customer demand. 
That is, the demand distribution could be a normal, log normal, exponential or a gamma distribution 
for example.   The manufacture of new products is controlled by a continuous time variant of the 
Order-Up-To policy, Dejonckheere, Disney, Lambrecht and Towill (2003). Figure 1 illustrates the 
material flow in this manufacturing / remanufacturing supply chain. We note that this system is 
different to the push/pull system of van der Laan & Saloman (1999). 
 
 

 
 

Figure 1.   Material flow in a simple manufacturing / remanufacturing system 
 
Much of the literature on reverse logistics has addressed inventory management. Fleischmann et al. 
(1997) provide a review of quantitative models in reverse logistics.  Guide (2000) identifies and 
describes seven complicating characteristics of production planning and control activities for 
remanufacturing firms; uncertainty in the timing and the quantity of returns, balancing returns with 
demands, disassembly, uncertainty in materials recovered, reverse logistics, materials matching 
requirements, routing uncertainty and processing time uncertainty. Guide (2000) claims these special 
features require significant changes in production planning and control activities. It is this research 
opportunity we explore here.  
 
Inderfurth and van der Laan (2001) study a simple four-parameter control rule for an inventory model 
with remanufacturing. There, the remanufacturing lead-time is treated as a decision variable to 
improve the performance of the policy. Kiesmüller and van der Laan (2001) investigate an inventory 
model with dependent product demands and returns. In this specific case, they conclude that 
neglecting the dependency between demands and returns of products may cause bad performance 
from the total average relevant costs viewpoint. Fleischmann and Kuik (2003) investigate an 
independent stochastic item returns scenario. Kleber et al. (2002) provide a continuous time 
inventory model to decide when returns should be used and when returns should be kept in inventory 
and not be remanufactured or disposed of immediately. Van der Laan (2003) analyze the economic 
consequences in a stochastic inventory system joint with manufacturing and remanufacturing from 
average cost and net present value point of view.  Kiesmüller (2003) offers a new approach for a 
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control problem with different lead-times for production and remanufacturing to decide the quantities 
and time of manufacturing and remanufacturing respectively. However, almost all quantitative 
literature is based upon a specified cost function; few papers study dynamic performance.  Our aim 
here is to contribute to this field by using control theory as a medium for analysis by highlighting 
how the inventory variance and bullwhip phenomenon in a reverse logistics scenario.  
 
The inventory variance determines stock levels required to meet a given target customer service 
levels. The higher the variance of inventory variance, the more stock will be needed to maintain 
customer service at the target level, Dejonckheere et al. (2002). The bullwhip effect relates to the 
order we place to maintain inventory level after the production rates. Both of inventory variance and 
bullwhip directly affect the economics of the situation, Disney and Grubbström (2003). Normally, 
inventory variance and bullwhip are conflicting phenomenon, that is, when inventory variance 
increases, the bullwhip often decreases. This leads to a trade-off analysis. 
 
Our paper is organized as follows. First, we give a formal definition of our model and derive the 
corresponding continuous time, Laplace domain transfer function of the remanufacturing supply 
chain. Section 3 presents a general process for deriving variance ratio analytical expressions. This 
method is also powerful as it can be used on complex systems. Section 4 analyzes the variance of the 
serviceable stock levels. We then compare the inventory variance performance of the 
remanufacturing supply chain with the performance of traditional supply chain and draw out some 
managerial implications. Section 5 addresses bullwhip phenomena in the system. Again we also 
compare it with traditional supply chain. Here, we find that there is a trade-off to be made between 
the variance of serviceable stock and bullwhip. In section 6, we study the optimal conditions in our 
model that minimizes the sum of serviceable stock and order variance in the production of new 
products.  Section 7 concludes.  
 
2. Model description 
 
In our analysis we assume that time passes continuously and consequently we exploit the Laplace 
transform in our analysis.  The manufacturers’ replenishment order is placed to produce new product 
based on a forecast of future demand, the serviceable inventory and the current work in progress in 
the original equipment factory.  The ordering policy that we study here is based upon the APIOBPCS 
model. APIOBPCS is an acronym for Automatic Pipeline Inventory and Order Based Production 
Control System (John et al 1994). The policy can be expressed as; “let the production targets be 
equal to the sum of mean demand, plus a fraction (1/Ti) of the inventory error, plus a fraction (1/Tw) 
of the WIP error”.  
 
However, the remanufacturing scenario requires a slight modification to the classical APIOBPCS 
policy as shown in Figure 2. Here a fraction (k) of the demand is returned, brought to a good as new 
condition and added to the net stock of serviceable inventory after a random delay.  This random 
delay is drawn from an exponential distribution with an average of Tr time units. Recall that we are 
assuming the demand is stationary i.i.d. This means the minimum mean squared error forecast of all 
future demands is given by the long-term expected value of demand, the mean.  Furthermore, as we 
are considering a linear system, we may assume the mean demand is zero without loss of generality.    
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Figure 2.  Block diagram of our re-manufacturing system 
 
We may rearrange Figure 2 using standard techniques (see Nise 1994 for an introduction) to obtain 
the net stock/inventory and order rate transfer function,  
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All of the constants in the system may be assumed to be larger than zero, so we have 0Ti , 0Tp , 

0Tw  0Tr  and 10  k . 
 
3. The method of deriving variance ratio 
 
Disney and Towill (2003) have explored the relationship between “long-run” variance ratio measures 
and the system’s transfer function.  We adopt their definition for variance amplification as 
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Furthermore, we assume without loss of generality that 12 input  throughout the paper. It can be 

shown that the integral of the square of the systems unit impulse response is equal to the variance of 
the systems output divided by the variance of the systems input, Newton, Gould and Kaiser (1957), 
see (4).  We have sketched this mathematical proof in Appendix A for the reader. Here it is sufficient 
to present a realisation of the methodology to calculate the variance ratio.  
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where ))((1 sGL is the inverse Laplace transform of )(sG , denoted by g(t). 
 
As our system is linear time invariant, its Laplace transform is a rational expression. However the 
integral of I is often difficult to obtain, thus we may exploit Parseval’s Relation. What we wish to 
know is the area, denoted by I, beneath the product of two time functions )(1 tg  and )(2 tg  over the 
infinite interval of time from   to  . Obviously when g1 =g2, I  will be directly equivalent to the 
variance ratio. 
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Interchanging the order of (7) in order to integrate with respect to time first, we have, 
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By the direct Fourier transform we know that 
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Thus the integral with respect to time on the right side of (8) may be evaluated as 
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This is the desired expression for the integral. Furthermore, when )(1 tg  is equal to )(2 tg , the 
integral, I , becomes 
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This result is known as Parseval’s relation (Newton, Gould and Kaiser (1957)).  In summary we have 
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Note that the integral in time domain ]0,(   is zero. So, we only have to integrate between 

),0[  .  As )(sG  is a rational function, the integral-square transform function will appear in the 
form 
 

ds
sAsA

sBsB

j

j

j
input

output 


 



)()(

)()(

2

1
2

2




,         (12) 

 
 where A and B are polynomials with real coefficients 
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The integral (11) will always exist (but may not always be easy to obtain) if the zeros of the 
polynomial, A(s), do not have positive real components.  Note that the polynomial B(s) must be at 
least one degree less than the polynomial A(s) in order to guarantee that the Laplace transform G(s) is 
rational. On the basis of Parseval’s theorem, Åström (1970) evaluated the integrals I  in terms of the 
coefficients appearing in the polynomials.  
 
We will now exploit Åström’s approach to solving the integral square of signals. We will focus on 
the application of the method and refer interested readers to Åström (1970) for the rigorous 
mathematical proof.  Expressing the transfer function as two polynomials is A(s) and B(s), with real 
coefficients we have, 
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The first step of Åström’s method is to build two new polynomials, )(sAk and )(sBk  with a lower 

order than n of A(s) in (13).  This is done with 
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The polynomials 1kA and 1kB can only be defined if 01 ka .  Åström (1970) shows these new 

coefficients may be obtained by the following table. 
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After having obtained the values k  and k , the value of the integral I is then given by 
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Because of its recursive nature, Åström’s method is very easy implement in computer software 
packages. Let us highlight Åström’s method explicitly here. Rearranging the net stock transfer 
function (1), we have 
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Because the denominator is a third order polynomial, table (18) then has three rows, 
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where; 
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Step 2; Using (16) and (17) translate 3
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Step 3; Repeat Step 1 to find 2  and 2 , 
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Step 4; Using (16) and (17) translate 2
21 toa  into 1

10 toa  and 2
2b  into 1
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Step 5; Repeat Step 1 to find α1 and β1 
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Step 6; Finally we may use (19) to reveal the integral I as,  
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(27) is our desired closed form expression for the inventory variance. This has been further verified 
via simulation in the Matlab software package. As we assume the demand rate is drawn from an 
arbitrary i.i.d distribution we may select a number of typical i.i.d. inputs in this example. We have 
chosen the Normal distribution and the Exponential distribution. We have also compared our 
simulation results with the exact analytical expressions of (27). Our results are shown in Table 1, for 
various combinations of the parameters in the solution space. 
 

Ti Tw Tp Tr k 
Normal distribution

Exponential 
distribution 

Analytical 
expression (19) 

2
NS  Error (%) 2

NS  Error (%) 2
NS  

4 4 8 4 0.3 4.55 0.22 4.37 4.17 4.56 
4 8 8 4 0.3 4.05 2.27 3.88 2.02 3.96 
8 8 8 8 0.3 6.81 1.93 6.53 2.39 6.69 
8 16 16 8 0.6 5.65 7.01 5.39 2.08 5.28 
16 16 16 32 0.6 12.25 0.74 11.73 3.54 12.16 
16 32 16 32 0.6 12.19 3.92 11.52 1.79 11.73 
32 32 4 16 0.9 6.85 5.71 6.50 0.31 6.48 
32 4 4 16 0.9 7.14 2.15 6.86 1.86 6.99 

Average error 2.99% 2.27% 0 
 

Table 1. The inventory variance in continuous time when input is i.i.d. 
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4. Analysis of the inventory variance 
 
The inventory variance had been derived in (27). As it is quite complex, let us first review some 
special cases. By setting k=0, we may determine the inventory variance in a traditional supply chain.   
This is shown in (28).  Recall, Ti and Tw are control parameters that we may used to tune the 
dynamic response of the system and Tp is the lead-time associated with the manufacture of new 
product. 
 

 
 TwTpTw

TwTpTiTpTw
kNS 


 2

22
2

0,          (28) 

 
We notice that Ti only occurs in the numerator. This means that reducing Ti will reduce inventory 
variance. An important subset of the control parameters occurs when Tw=Ti.  It allows further 
simplification to (27) and (28) as shown in (29) and (30) respectively. 
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In (29), we find that the order of Ti and Tp is numerator higher than in denominator, so both Tp and 
Ti should be reduced in order to dampen inventory variance.  This result is more obvious in (30), a 
supply chain with no returns, as subtracting (29) from (30) results in (31). 
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Here we can see that when Tw=Ti, that is, when the two feedback gains are equal, then inventory 
variance in a remanufacturing supply chain will always be less than in a traditional supply chain.  
This is because we assume 10  k , thus (31) is always negative.    
 
When all of the products are returned from the marketplace (after the stochastic exponential delay), 
k=1.   Here (27) reduces to, 
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Again, compared to inventory variance in a traditional supply chain, we have 
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where we can clearly see the smoothing effect of the returns is reduced.  Returning now to the 
general case of (27).  We may factor this into the following, 
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In (34) the first term on the RHS is the inventory variance generated by a traditional supply chain.   
The second and third terms are always negative as 10  k .   This result reveals that the inventory 
variance with returns, in our specified model, is always less than without returns. 
 
Returning again to (27).   Differentiating (27) with respect to k and Tr yields  
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(35) is monotone and always negative (or zero when k=1) in the return rate, k.  (36) is monotone and 
positive in the remanufacturing lead-time, Tr. 
  
The relationship of inventory variance between return rate k and manufacturing lead-times can be 
illustrated in Figure 3 where we have set Tp=3, Ti = 4, and Tw = 8. 
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Figure 3.  The effect of return rate and lead-time on inventory variance 

when Tp=Tr=3 and Tw=Ti 
 
5.  Bullwhip in the remanufacturing supply chain 
 
“Bullwhip” is the phenomenon where the orders at the supplier level tend to have a larger variance 
than sales to the buyer (that is the demand gets distorted), and the distortion propagates upstream in 
an amplified form (i.e. variance amplification), Dejonckheere et al (2002). Carlsson and Fullér 
(2000) have summarized the negative impact of bullwhip problem as follows; excessive inventory 
investments throughout out the supply chain to cope with the increased demand variability, reduced 
customer service due to the inertia of the production/distribution system, lost revenues due to 
shortages, reduced productivity of capital investment, increased investment in capacity, inefficient 
use of transport capacity and increased missed production schedules. Thus, avoiding or reducing 
bullwhip has a real and important impact on the performance of a commercial company.  
 
A mathematical definition of bullwhip, that we will adopt here, has been proposed by Chen, Drezner, 
Ryan and Simchi-Levi (2000) as, 
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From (37), we can see that bullwhip is also a variance ratio problem. We therefore can employ the 
same methods as used in Section 3 to acquire the bullwhip analytical expression as:  
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Zhou, Disney, Lalwani, Wu (2004) have also derived (38) using Parsevel’s Relation. Again we start 
by setting k=0 to determine the bullwhip in a traditional supply chain as shown in (39).   
 

 
 TwTpTi

TpTiTw
Bullwhipk 
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2
         (39) 

 
(39) shows that in a supply chain with no returns, the bullwhip decreases as Ti increases and the lead-
time, Tp, should be reduced in order to smooth production and reduce the associated capacity on-
costs.  Again, in the subset of Tw=Ti, then (38) and (39) are further simplified as (40) and (41) 
respectively. 
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       (40) 
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1
,0            (41) 

 
Here we can see that when Tw=Ti, then bullwhip in a remanufacturing supply chain will always be 
less than in a traditional supply chain due to the return rate 10  k , thus the last term of (40) is 
always negative.   (40) and (41) show that when Tw=Ti, the Tp drops out of the bullwhip expression. 
 
When all of the products are returned from the marketplace (after the stochastic exponential delay), 
k=1.   Here (38) reduces to, 
 

 TrTiTi
Bullwhip TiTwk 
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1
,1 ,         (42) 

 
where we can clearly see that; bullwhip in a remanufacturing supply chain is always less than in a 
traditional supply chain, but this smoothing effect is reduced with longer remanufacturing lead-times, 
Tr.  Returning now to the general case of (38).  We may factor this into the following, 
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In (43) the first term on the RHS is the bullwhip generated by a traditional supply chain.   The second 
term is always negative as 10  k .   Interestingly, the third term is; zero when Tr=Tp and Tr=-Tp, 
negative when Tr<Tp and positive when Tr>Tp.  The sum of the last two terms is always negative 
for positive remanufacturing lead-times, Tr, which is obviously true.  This leads us to investigate 
bullwhip when the remanufacturing lead-time (this also includes the time the product is in the hands 
of the user) is the same as the manufacturing lead-time.  When Tr=Tp, (38) becomes, 
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(44) is always less than (38).  Returning again to (38), differentiating (38) with respect to k and Tr 
yields;  
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(45) is monotone and always negative (or zero when k=1) in the return rate, k.  (46) is monotone and 
positive (or zero when k=1) in the remanufacturing lead-time, Tr. 
  
The relationship of bullwhip between return rate k and manufacturing lead-times, Tr, can be 
illustrated in Figure 4 when we set Tp=3, Ti = 4, and Tw = 8. 
 

 
 

Figure 4.  The effect of return rate and lead-time on bullwhip 
when Tp=Tr=3 and Tw=Ti 

 
Our analysis broadly supports the results of Wang (2002) who has adapted the beer game (Sterman, 
1989) to include a reverse logistics scenario.  Initial results from Wang (2002) also suggest that 
remanufacturing reduces bullwhip in a supply chain.  We also find that in a remanufacturing supply 
chain, the inventory variance and bullwhip experienced by the manufacturer of new products is 
reduced when compared to a traditional supply chain. This means that returns can be used to smooth 
inventory variance and bullwhip. The higher the return rate and the shorter the remanufacturing lead-
time, the smoother the order and inventory patterns are. However, we also notice that the parameter 
Ti, has a different impact on the inventory variance and than that on bullwhip. When Ti increases the 
inventory variance increases whilst bullwhip decreases. This leads us to the next section where we 
investigate the trade-off between inventory variance and bullwhip.  
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6. The Optimal Ti 
 
Setting the objective function (OF) in our trade-off as 
 

BullwhipOF NS  2 , 

 
yields, after some manipulation,  
 

OF=
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Theoretically, the optimal Ti can be derived by solving for zero gradients of (47). However, as (47) is 
quite complex. So, in order to clarify our exposition we will study the simplified case of Tr=Tp and 
Tw=Ti. There (47) simplifies to (48). 
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Taking the partial derivative we have, 
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Obviously, the optimal Ti should be the function of Tp and k. However, (49) is a high order function 
of Ti and it is hard to get an analytical solution. But for the special cases; k=0 and k=1, we have 
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We further illustrate the more general case when k varies from zero to one. Figure 5 reveals that 
bullwhip and inventory variance (and their sum) is larger for small k.  It verifies our conclusion that 
the returns can smooth both inventory and order variance. Table 2 provides some numerical results in 
each case. We notice that with increasing returns, it takes a larger Ti to minimize the sum of 
variances. Thus greater returns allow smoother production rates to be achieved without unduly 
increasing inventory requirements. 
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Fig 5. The optimal sum of variance ratios when Tp=Tr=3 and Tw=Ti 
 

 

k *
iT  2

NSσ  Bullwhip 
Sum of 

variances 
0.0 0.78358 2.20244 0.63810 2.84054 
0.2 0.91202 1.85687 0.50223 2.35909 
0.4 1.08774 1.58095 0.38139 1.96234 
0.6 1.33731 1.37959 0.27705 1.65663 
0.8 1.68504 1.26006 0.19428 1.45433 
1.0 1.94631 1.22411 0.15581 1.37992 

 
Table 2. The optimal *

iT  that minimizes the sum of bullwhip and inventory variance when  

Tp=Tr=3 and Tw=Ti 
 

7. Conclusions 
 
We have studied a stylized manufacturing / remanufacturing supply chain that reclaims product to as 
good as new, as soon as they are available and tops up serviceable inventory by production of new 
products.   We have achieved this using block diagrams, Laplace transforms and Åström’s method of 
calculating the integral square of a signal.  Our findings are summarized in Table 3. It shows that the 
returned product can be used to reduce the inventory variance and bullwhip experienced by the 
manufacturer of original equipment compared to a manufacturer in a supply chain without 
remanufacturing or reverse logistics. This means that reverse flows can be used to improve the 
efficiency of supply chains. This is in contrast to intuition and Seitz, Disney and Naim (2003) and 
Fleischmann et al. (1997) for example.  Thus product recovery not only benefits the environment but 
may also have positive commercial effects. However, longer remanufacturing lead-times have less 
impact at reducing bullwhip than shorter remanufacturing lead-times.  
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Case SC type Inventory variance Bullwhip 

Tw≠Ti 

Traditional 
Reducing Ti will reduce 
inventory variance. 

Increasing Ti will reduce 
bullwhip.  

Remanufacturing 
Higher return rates and shorter 
lead-times reduce inventory 
variance. 

The bullwhip with returns is 
always less than without returns. 
Higher return rates and shorter 
lead-times smooth the order 
rates. 

Tw=Ti 

Traditional  
Both Tp and Ti should be 
reduced in order to dampen 
inventory variance. 

Tp has no impact on the 
bullwhip. 

Remanufacturing 
Higher return rates and shorter 
lead-times reduce inventory 
variance. 

The bullwhip with returns is 
always less than without returns. 
The higher k and the shorter Tr, 
the smoother the order rate.  
Tp has no impact on bullwhip. 

 
Table 3. Summary managerial insights 

 
Appendix A     
 
Theorem: If the customer demand is drawn from an independently and identically distributed (i.i.d) 
random distribution, then the following equation holds. 
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where g(t) is  the time domain response and G(s) is its Laplace transform in the complex frequency 
domain. L-1G(s)=g(t). y is output, x input (customer demand) 
 
Proof: From the definition of Bullwhip, we have 
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The definition of 2  is well known to be 
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where )]([ tyE and )]([ txE  are the mean values of a process’s output and input respectively, denoted as 
µ(y) and µ(x). So 
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Suppose that the system is linear and the demand is a stationary process thus µ(y)=µ(x). (A1) can 
therefore be expressed by 
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We know that 



 dttxtgty )()()(  where  denotes convolution, then equation (A5) becomes 
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Furthermore, we notice that  


0
0)( dttg .  This result shows that 
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This completes our proof.  
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