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Thesis Summary 

Epithelial mesenchymal transdifferentiation (EMT) has been shown to contribute to 

renal disease and tissue fibrosis and is known to be mediated by transforming growth 

factor-β (TGF-β). EMT involves loss of an epithelial phenotype and acquisition of a 

mesenchymal or myofibroblastic phenotype shown by up-regulation of α-smooth 

muscle actin (α-SMA). Assembly of hyaluronan (HA) has an important role in 

extracellular matrix formation and in maintaining the phenotype of different cells. HA 

has been shown to organize into cable structures or peri-cellular coats. Cable HA 

binds to inflammatory proteins and prevents their cell surface interaction and has anti-

inflammatory properties, while peri-cellular coats make cells migratory. HA assembly 

is influenced by its interaction with hyaladherins and this study investigated the role 

of tumour necrosis factor-α stimulated gene (TSG)-6, one of the hyaladherins by 

assessing its interaction with HA, HABP and CD44 in proximal tubular cells (PTC) 

EMT.  

TSG-6 has an important role as an anti-inflammatory protein and is upregulated when 

stimulated with interleukin-1β (IL-1β) and TGF-β. In the presence of TGF-β, PTCs 

were demonstrated to be less migratory, with reduced E-cadherin and increased α-

SMA expression suggesting TSG-6 may have important role in EMT. Both IL-1β and 

TGF-β induce increased expression of hyaluronan synthase (HAS) 2  and HA receptor, 

CD44. This also leads to loss of HA cables and increased assembly of an HA coat.  

Knockdown of TSG-6 gene in PTC leads to loss of HA cables and the peri-cellular 

assembly of HA coat was loose and scattered. These TSG-6 knockdown PTCs 

maintained its epithelial phenotype and TGF-β-mediated phenotypic transition was 

blocked. There was increased expression of CD44 and HAS2 in these TSG-6 

knockdown cells and in subsequent experiments where CD44 was silenced with 

transfection, HAS2 expression was inhibited. This suggests that HAS2 expression 

was dependent on CD44 in the absence of TSG-6.  

These results collectively show that TSG-6 has an important role in EMT in PTCs.  
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1.1 The Kidney 

1.1.1 Anatomy and Physiology  

The prime function of the kidney is to maintain homeostasis by the selective retention 

or elimination of water, electrolytes and other solutes. This is achieved by 1) filtration 

of circulating blood in the glomerulus to form an ultrafiltrate of plasma in Bowman’s 

space 2) selective reabsorption across the renal tubule and 3) selective secretion of 

metabolic waste products.  

There are nearly one million nephrons in each kidney. The nephrons are of three types, 

superficial, midcortical and juxtamedullary depending on locations. They can be short 

or long looped nephrons depending on the length of the tubules dipping into the 

cortex and deep medulla. Nephrons are the functional unit of kidneys consisting of 

glomerulus and tubules. The glomerulus is the tuft of capillaries supplied and drained 

by the afferent and efferent arterioles, respectively. It consists of capillary 

endothelium, the capillary basement membrane and the visceral epithelial cell layer, 

called podocytes, and is encased by Bowman’s capsule. Mesangial cells are present 

between basal lamina and endothelium, they are contractile in nature and are capable 

of altering the capillary surface area available for filtration. Mesangial cells are 

similar to pericytes found in the wall of capillaries else where in the body. The 

tubules have 3 parts, proximal and distal tubules that are connected by the loop of 

Henle and collecting ducts.  

The tubular transport mechanism in the nephron involves active and passive transport. 

Active transport is energy mediated against a concentration gradient of a solute 

requiring ATP production and hydrolysis within the cells, like Na+, K+ ATPase, H+ 

ATPase and Ca+ ATPase. Passive transport involves simple diffusion, facilitated 

diffusion and diffusion through membrane channel (1-3). 
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1.1.2 Tubulointerstitium and Proximal Tubular Cells 

Tubulointerstitial space is composed of tubules of nephron and compromises the 

extravascular and intertubular spaces of renal parenchyma along with the cells and 

extracellular substances. This makes up to 80% of the renal volume. It has cortical 

and medullary interstitium, the space has peritubular, periarterial and extra and 

intraglomerular mesangium.  The elements of interstitium constitutes of cells 

including fibroblasts, interstitial cells, pericytes and macrophages and the 

extracellular components including fibrillar structures and ground substances made of 

proteoglycans, glycoproteins and interstitial fluid (3). The interstitial compartment 

provides structural support for the individual nephrons and also functions in all 

exchanges among the tubular and vascular elements of the renal parenchyma (3). The 

collagen fibers of interstitium are types I, III and VI. The basement membrane is 

composed of types IV and V collagens, laminin, nidogen entactin, fibronectin, 

heparan sulphate proteoglycans, as well as other glycoproteins (4). The interstitial 

fluid glycosaminoglycans (GAG) are responsible for the gelatinous character of the 

matrix. The GAG includes hyaluronic acid, heparin, dermatan sulphate, chondroitin 

sulphate and heparan sulphate.  

The renal tubule has single layer of epithelial cells anchored to basement membrane. 

The epithelial cells are flat or cuboidal interconnected by tight junction (zonula 

occludens - ZO) proteins mainly at apex of the cells. These junctions prevents 

molecules leaking through the walls of the epithelial cells. ZO has proteins claudins, 

occludins cadherin and integrin, which mediates anchoring of the cells across the 

membrane.  This helps in the transport of the water and solute across the epithelium 

depends on the transcellular pathway across the cytoplasm or via paracellular pathway 

and maintains polarity. Various specific channels, carriers and transporters at the apex 

and basolateral membrane determine the transcellular pathway. The tight junctions 

determine the paracellular transport.  

The proximal tubular cells (PTC) reabsorb the majority of the filtered water and 

solutes. The epithelial cells have prominent brush border increasing the surface area 

towards the lumen. The basolateral interdigitation between the cells increases the tight 

junction belt (Figure 1.1) (1). 
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Figure 1.1. Tubular Epithelia. In the cells, the transportation occurs across the 
luminal and basolateral membranes; and paracellular region through the tight 
junctions and intercellular space. Adapted from Feehaly’s Comprehensive clinical 
nephrology textbook (1). 

These cells are densely packed with mitochondria along the basolateral membrane, 

where Na+-K+ ATPase is located and helps in water reabsorption along with Na+-H+ 

exchanger, aquaporin-1 and a prominent lysosomal apparatus to absorb  

macromolecules, including polypeptides and albumin. These are responsible for the 

bulk absorption of Na+, K+. Cl-, and HCO3
-, amino acids and low molecular weight 

proteins that have been filtered. The walls of the epithelial cells are highly permeable 

to water and a osmotic gradient can be established, with nearly 65% of water 

reabsorbed. Also, nearly 60% of calcium, 80% of phosphate and 50% of urea is 

reabsorbed (1).  

PTCs are professional antigen-presenting cells by internalising the antigen by 

endocytosis and presents fragments of antigen to MHC-2 and express several key 

immune surface molecules known to assist in the presentation of antigens and to 

coordinate the T-cell response to infection. Embryologically, PTCs are derived from 

the same compartment as bone marrow cells, which give rise to the body’s blood and 

immune system. Circulating bone marrow stem cells have been shown to differentiate 

into renal tubular cells in animal models of acute renal failure (5).  

PTCs are known to acquire a myofibroblastic phenotype during kidney disease and 

injury. Transforming growth factor-β (TGF-β) is found to play an important role in 

this process. This part of the PTC is discussed later in the chapter. 
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1.2 Chronic Kidney Disease 

Chronic kidney disease is described as progressive loss of renal function over months 

to years. The measurement is based on estimated Glomerular Filtration Rate (GFR)  

and divided into 5 stages. The staging includes eGFR measurement and or renal 

structure, commonly associated with co-existing conditions like cardiovascular 

disease, diabetes and renal disease. It is defined as kidney damage or GFR less that 

60mls/min/1.73m2. In Kidney Disease Outcomes Quality Initiative (K/DOQI) 

guidelines, chronic kidney disease is classified into 5 stages as shown in Figure 1.2 

(6).   

In the United States, there is an estimated 11% of population have some form of 

chronic kidney disease (7).  In the United Kingdom, there are 100 new patients per 

million population per year treated with renal replacement therapy (8). In a study 

carried out in 2004, among 23,964 individuals aged between 40-79 years the 

prevalence of microalbuminuria and macroalbuminuria was 11.8% and 0.9%, 

respectively (9). This is the reflection of the prevalence of CKD. The cost of treating 

patients with CKD and end stage renal disease is substantial and affects provision of 

care. By 2010, over 2 million individuals worldwide will be treated with renal 

replacement therapy at a cost of $1 trillion (10). 

Classification of CKD based on GFR as proposed by the Kidney Disease Outcomes 
Quality Initiative (K/DOQI) guidelines 

CKD Stage Description 

1 

Normal GFR: some evidence of kidney 
damage reflected by 
microalbuminiuria/proteinuria, hematuria 
or histologic changes 

2 Mild decrease in GFR (89-60 
ml/min/1.73m2) 

3 Moderate decrease in GFR (59-30 
ml/min/1.73m2) 

4 Severe decrease in GFR (29-15 
ml/min/1.73m2) 

5 

GFR < 15 ml/min/1.73m2, when renal 
replacement therapy in the form of 
dialysis or transplantation has to be 
considered to sustain life. 

 

Figure 1.2. Classification of Chronic Kidney Disease. This is based on the 
Glomerular Filtration Rate (GFR) Adapted from Feehaly’s Comprehensive clinical 
nephrology textbook (1). 



	
   6	
  

The factors affecting initiation and progression are various. They include genetic 

factors, racial factors, maternal-foetal factors, age and sex. Genetic studies have 

suggested possible links between CKD and various polymorphisms of genes coding 

for putative mediators, including the Renin Angiotensin System (RAS), nitric oxide 

synthase (NOS), cytokines including interleukin-1β (IL-1β), tumour necrosis factor-α 

(TNF-α), growth factors including TGF-β, platelet derived growth factors (PDGF), 

plasminogen activator inhibitor-1, complement factors and immunoglobulin (1).  

Hypertension, dyslipidaemia, diabetes, obesity and smoking are risk factors in the 

general population for the development of proteinuria and CKD (11). The non-

modifiable risk factors in the progression of CKD include age, where elderly patients 

affected by glomerulonephritis are at risk of faster decline in the GFR. Males are 

associated with more rapid decline in GFR than females. The modifiable risk factors 

include management of hypertension and proteinuria, diabetes and dyslipidemia 

control, obesity and exercise and cessation of smoking.  

Regardless of the etiology of the glomerular disease, the progression of CKD involves 

progression of glomerulosclerosis and tubulointerstitial fibrosis (12). 

Glomerulosclerosis, can be initiated by injury or damage to glomerular cell lines 

including endothelial, mesangial or epithelial cells and podocytes (Figure 1.3) (1). 

Other cells, like platelet activation and stimulating the coagulation cascade causing 

mesangial cells activation and sclerosis, can also initiate the mechanisms of 

glomerulosclerosis (Figure 1.3) (1).  

Over the recent years, the pathogenesis of the tubulointerstitial disease and fibrosis 

has also received increased attention (12). Vascular sclerosis is an integral feature of 

the renal fibrosis. Renal artery halitosis is present at an early stage of CKD. The 

vascular thickening and halitosis occurs in various disease process, like in diabetes, 

hypertension, glomerulonephritis and other conditions. These vascular lesions lead to 

further interstitial damage by ischemia and fibrosis (13). Tubulointerstitial fibrosis is 

the best prognostic indicator of progression to end-stage renal disease and hence there 

is focus on glomerular injury and vascular injury. 
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Figure 1.3. The stages of glomerulosclerosis Adapted form Feehaly’s Comprehensive 

clinical Nephrology textbook. 

 

1.3 Tubulointerstitial Disease and Fibrosis  

1.3.1 Proximal Tubular Cell Injury 

PTCs have a pivotal role in kidney disease. Tubulointerstitial fibrosis involves the 

expansion of stromal elements disrupting the kidney architecture and impairing fluid 

and electrolyte balance. This progressive expansion of the tubulointerstitial space and 

subsequent fibrosis is the pathological process associated with progression of CKD 

and establishment of end stage renal disease. The expansion of the interstitial volume 

is the result of the proliferation of fibroblasts within the interstitium, infiltration of 

monocytes and inflammatory cells and increased quantity of matrix deposition in the 

interstitum by the above cells and the PTCs.  PTCs and interstitial fibroblasts have 
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been found to have important roles in the pathological interstitial changes leading to 

tubulointerstitial disease and fibrotic response. 

PTC may be damaged directly by toxins, antibiotics like gentamicin, myoglobin, light 

chain injury as in myeloma, or by sepsis or hypovolumia causing ischemic injury (14). 

PTCs are shown to be involved in the direct damage from diabetes mellitus, immune-

complex disease, glomerular disease, mesangial disease, nephritis and many other 

conditions leading to proteinuria (15). Idiosyncrasy occurs during acute interstitial 

nephritis associated with nonsteroidial anti-inflammatory agents (NSAIDs), the nature 

of the disease can be determined by the pre-existing renal diseases or extrarenal 

factors, such as liver disease which might effect the renal dosage of the medications 

(16).  Proteinuria, increased ammoniogenesis, tubular crystal deposition, or increased 

filtered urinary proteins, which includes chemoattractants, complement proteins and 

cytokines, are also implicated in PTCs and interstitial injury (17).  

Once PTCs are injured, they are capable of producing various cytokines and growth 

factors on response to injuries and stimuli. These include IL-6, IL-8, TGF-β, TNF-α, 

PDGF-B and MCP-1(18-22). They also express receptors as well as these cytokines 

(23).  This process is crucial in leading to progressive renal dysfunction as described 

in the later section of this chapter.  

Regardless of the nature or the etiology of injury to the PTCs or to the interstitium, 

progressive fibrosis involves infiltration of mononuclear cells in the interstitium. They 

subsequently migrate, by a process involving rolling, activation and firm adhesion to 

the endothelial cells, followed by transmigration into the underlying tissue. This is a 

regulated and coordinated process involving activation of adhesion molecules and 

their ligands on both endothelial cells and leucocytes following stimulation by 

cytokines (24, 25). Several pro-mitogenic and pro-fibrotic growth factors are involved 

in the process of proliferation of PTCs, including epidermal growth factor (EGF), 

insulin-like growth factor (ILGF), hepatocyte growth factor (HGF) and fibroblast 

growth factor (FGF) (26-28). Most of the inflammatory cells are as a result of 

migration into the interstitium, as discussed above, but the resident interstitial 

macrophages also proliferate in the event of injury or disease contribute to 

macrophage accumulation during the progression of the renal disease (29, 30). The 

macrophage activation is also induced by various cytokines. 
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Apart from the above mechanisms leading to renal fibrosis, the acquisition of the 

interstitial my fibroblasts is also an important step in the renal and interstitial fibrosis 

(31). This could be as a result of resident interstitial fibroblast acquiring a 

myofibroflast phenotype (32) or from the epithelial mesenchymal transdifferentiation 

(EMT). The process of EMT is discussed in detail later in this chapter.  

Studies have shown that incomplete recovery from ischemic injuries in animal models 

was followed by deterioration of renal function, with the morphology demonstrating 

widespread tubulointerstitial disease (33).  

1.3.2 Other Mechanism of Tubulointerstitial Disease 

The glomerular proteinuria leading to overload of protein in the tubular lumen results 

in the excretion of physiologically important proteins.  The excessive protein in the 

tubular fluid, leads to discrete biological activities causing tubular injury, interstitial 

inflammation, fibrosis and eventually renal scarring (34-37). The overload proteinuria 

causes upregulation of renal cytokines and growth factors promoting tubulointerstitial 

injury (35). 

Complement has an important role in the proteinuria-induced tubular injury (38, 39). 

At the apex of the PTCs, the brush border activates the alternate complement system 

and triggers the formation of membrane attack complex (complements C5-9) and 

significant reductions in C3 (40). C6 complement is demonstrated to be responsible 

for progressive activation of membrane attack complex and hence, chronic 

tubulointerstitial damage (41). 

The C3 is activated further in the renal disease by increased concentrations of 

ammonia. As its excretion is reduced, there is increased production of ammonia in the 

presence of acidosis and leads to tubulointerstitial injury. As increased ammonium 

production and reduced excretion leads to C3 activation and subsequently formation 

of membrane attack complex and increased synthesis of C6. C6 causes increased 

chemotaxis and cytolysis leading to tubulointerstitial injury (37, 42). This leads to the 

augmentation of chemotactic and cytolytic complement components and subsequently, 

to tubulointerstitial disease (36).  Also of note, is the protective effect of urea in 

preventing complement induced PTC injury, as it inhibits the activation of C3. But, in 
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tubulointerstitial injury, there is imbalance in the concentration of urea leading to 

further activation of complement (43). Though complement proteins are 

predominantly synthesized in the liver, there is evidence to show complement 

components including C2, C3, C4 and factor B, are expressed in normal PTCs and 

there is significant increase of these components in disease conditions, including 

glomerulonephritis (44), tubulointerstitial disease (45) and immune-complex disease 

(46). The progression of the glomerular and tubular diseases leading to proteinuria 

thus causes acquired pro-inflammatory and fibrogenic phenotype, leading to the 

transformation of the interstitial cells into myofibroblasts.  

Other mechanisms where proteinuria causes tubular injury are, a) transferrin reacts 

with ferric ions causing toxic oxygen radicals and it also leads to iron accumulation b) 

increased endothelin-1 and angiotensin-2 production and activation of renin-

angiotensin system leading to vasoconstriction and ischemic damage to the tubules 

(47) c) and activates immune reaction by chemoattraction by increase release of 

MCP-1, cytokines release, complement activation, increase ammonium all leading to 

tubular damage (35). The tubular cells when comes in contact with proteins activates 

nuclear factor-kappa B (NF-κB) which leads to  

transcriptional activation of chemokine genes and leads to interstitial inflammation 

and subsequently fibrosis (48). There is evidence that growth factor including TGF-β, 

IGF may be filtered with proteinuria which stimulates fibrotic response by the tubular 

cells (49) 

Other than proteinuria, lipids, glucose and growth factors injure PTCs by producing 

pro-inflammatory cytokines and chemokines, such as MCP-1, RANTES and 

interleukins (19).  

Obstructive uropathy caused by either ureteric or bladder obstruction either by renal 

stone disease or prostate hypertrophy or pelvic malignancy, plays an important role in 

tubular atrophy and kidney disease. There is marked activation of the renin 

angiotensin system leading to afferent vasoconstriction and reduced renal perfusion 

and tubular atrophy (47). TGF-β expression is markedly increased in the proximal 

tubular cells in experimental models with ureteric obstruction (50). These growth 

factors are associated with deposition of collagen and development of tubular and 
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interstitial fibrosis and atrophy. The epithelial cells de-differentiatiate into 

myofibroblastic cells expressing α-smooth muscle actin and collagen-I (51).  

1.3.3 Epithelial Mesenchymal Transdifferentiation 

Renal injury and ischemia results in acute tubular necrosis, which leads to 

tubulointerstitial disease and kidney disease. After the injury, restoration of the 

basement membrane integrity and wound healing is dependent on PTC proliferation, 

followed by cell migration along the modified tubular basement membrane, 

differentiation and extracellular matrix re-modeling (52). EMT are of 3 types, type 1is 

involved in embryo formation, organ development and generate different cell types 

during embryogenesis. Type 2 EMT is associated with wound healing and tissue 

regeneration, generation of fibroblasts and subsequently tissue fibrosis. Unabated 

form of wound healing from persistent inflammation in essence causes tissue fibrosis. 

Type 3 EMT occurs in neoplastic process following mutation in oncogenes and 

tumour suppression genes (53). Markers of epithelial and mesenchymal cells, which 

helps in identifying the cell types, are as shown in Table 1.1. 

Epithelial cells markers Mesenchymal cell markers 
E-cadherin 
Cytokeratin 
Zona Occludens-1 
Laminin-1 
Entacin 
Syndecan 
α1 (type IV) collagen 

Fibroblast specific protein-1 
Vimentin 
Fibronectin 
β-catenin 
α-smooth muscle actin 
Collagen 1 
Desmin 

Table 1.1. Markers of epithelial and mesenchymal cells 

E-cadherin in embryo are responsible for epitheliogenesis. It was demonstrated to 

maintain structural integrity and polarity of the epithelial cells. It is linked to actin 

family network by catenins and helps in cytoskeleton structure. E-cadherin is widely 

studied in the EMT process in various cells lines. Catenins are intracellular adhesion 

junction proteins. E-cadherin is one of the most important molecules in cell-cell 

adhesion in epithelial tissues (54). When PTCs were treated with TGF-β, E-cadherin 

and β-catenin association was lost and there was translocation of β-catenin into peri-

nuclear area and nucleus. This process leads to loss of cell-cell contact by 

disassembly of adherens junction (55).  
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Various pro-mitogenic growth factors are responsible as mediators for this early 

cellular regeneration, including TGF-β, epidermal growth factor (EGF), insulin 

growth factor (IGF), hepatocyte growth factor  (HGF), and fibroblast growth factor 

(FGF) (26, 27, 56).  

TGF-β has been shown to be produced by autocrine or paracrine mechanisms and 

implicated in early tissue regeneration after renal injury (57). PTCs under the 

influence of pro-fibrotic TGF-β may acquire a myofibroblastic phenotype as de novo 

expression of α-smooth muscle actin is induced. α-SMA is a marker of myofibroblast 

phenotype, which is expressed by PTC on stimulation by TGF-β and is associated 

with tubular epithelial to myofibroblast transition involving key stages, loss of 

epithelial cells adhesion by early loss of E-cadherin, de novo acquisition of 

fibroblastic markers and reorganization of the actin cytoskeleton, disruption of the 

tubular basement membrane and marked alteration of PTC phenotype (58). TGF-β 

stimulates MMP2, which cleaves collagen IV and laminin in tubular basement 

membrane. This leads to migration of PTCs into ECM across the modified tubular 

basement membrane. These leads to differentiates into myofibroblasts which has the 

properties of fibroblasts and smooth muscle cells as they produce collagen II, IV and 

fibronectin and retain α-smooth muscle expression (59). The fibroblasts source in 

renal fibrosis in one study has demonstrated that nearly 12% are derived from bone 

marrow, 30% are derived via EMT and about 35% of fibroblasts are derived via 

endothelial mesenchymal transdifferentiation and recent studies have shown 

significant contribution by pericytes as source of fibroblasts (53, 60). During 

inflammatory injury to the mouse kidney there was recruitment of macrophages and 

activated resident fibroblasts triggering EMT via release of growth factors, such as 

TGF-β, PDGF, EGF and FGF-2. These macrophages and activated fibroblasts also 

released chemokines and MMPs, notably MMP-2, MMP-3 and MMP-9. These 

growth factors and signaling molecules influence the epithelial cells and along with 

the activated fibroblasts and macrophages they damage basement membrane and 

cause focal degradation of collagen IV and laminin  and triggers EMT by epithelial 

cell migration to interstitium (61). This leads to excessive collagen deposition in the 

tissue and is a marker of tissue fibrosis. Hence, TGF-β facilitates renal fibrosis 

through a process of transdifferentiation, which contributes to increase the numbers of 

fibroblasts positive for vimentin and Fibroblast-specific proteins (62).  
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In our experiments at the Institute of Nephrology, we have demonstrated that treating 

PTCs with TGF-β leads to the induction of type IV collagen mRNA, stimulation of 

collagen synthesis and subsequent incorporation into the extracellular matrix (63). We 

have shown TGF-β inhibits PTC cell migration and repair of the monolayer after 

mechanical injury (64). This is related to increased strength of interaction of the cells 

with the underlying extracellular matrix on stimulation with TGF-β. Addition of TGF-

β to PTC results in re-organisation of the actin cytoskeleton and an increase in both 

focal adhesion number and size and integrins coupling to increased matrix deposition 

(63). Integrins are trans-membrane receptors mediating cell adhesion and 

strengthening of extracellular matric and cytoskeleton. The mechanism of integrins 

role in EMT is described in TGB-β section of this chapter. The decreased motility and 

migration following addition of TGF-β was associated with increased cell surface 

expression of β3 integrins and its matrix ligand fibronectin (64). In PTCs 

accumulation of collagen type IV and fibronectin by altering the degradative pathway 

of the basement membrane and hence, accumulation of the matrix component has 

been shown when exposed to increased concentration of 25d-Glucose. There was 

associated increase tissue inhibitor of metalloproteinases (TIMP1 and TIMP2) and no 

associated gene transcription seen (65).  Mesenchymal cells, fibroblasts, macrophages 

and tubular epithelial cells synthesize TIMP. TIMP inhibit matrix metalloproteinases, 

apoptosis and angiogenesis (66).  

In our laboratory, we have demonstrated that hyaluronan (HA) stimulates PTC 

migration through CD44-mediated activation of mitogen-activated protein (MAP 

kinase) (67). The loss of cell-cell junctions is the early stage of TGF-β induced EMT 

(68). β-catenin plays an important role in the cell contact and TGF-β activation of the 

α-SMA promoter and protein expression (53). This disruption of the cell contact also 

activates myocardin-related transcription factor which initiates EMT (69). PTCs when 

stimulated with TGF-β, lose the expression of epithelial markers and express the 

mesenchymal cell markers such as α-SMA and fibrillary collagens (55). Recent data 

suggests that HA facilitates TGF-β-dependent fibroblast proliferation by promoting 

interacting between CD44 and EGF receptor (EGFR) (70). We have shown that EMT 

is associated with accumulation of a HA peri-cellular coat.  
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The role of HA was examined in PTC migration in a previous study at our laboratory, 

which demonstrated that exogenous HA accelerated re-epithelialisation and 

stimulated PTC migration through CD44 activation of MAPK pathway (67). 

HA will be discussed in detail later in this chapter, briefly it is a ubiquitous 

connective tissue glycosaminoglycan, which has an important role in maintaining 

extracellular matrix integrity, tissue hydration, as well as playing an important role in 

the regulation of cell-cell adhesion, migration, differentiation and proliferation and 

hence, has a significant role in wound healing and tissue fibrosis.  

 

1.4 Growth Factors and Cytokines in Tubulointerstitial 

Disease 

In tubulointerstitial cells, as a result of cellular events, a series of molecules are 

elaborated and express their receptors leading to matrix expansion and accumulation 

along the tubular basement membrane. These includes growth factors like, TGF-β, 

connective tissue growth factor (CTGF) (71), PDGF (72), FGF (73) and cytokines 

like IL-1β, TNF-α (74), angiotensin II(68) and others. 

1.4.1 Growth Factors 

Organ size and cell mass depend on the cell number and size of the cells, which in 

turn is determined by the cell growth, cell division and cell death. Growth factors are 

the extracellular signal molecules that play an important role in cell growth, 

proliferation and differentiation, by promoting the synthesis of the proteins and other 

macromolecules, and by inhibiting their degradation. There are numerous growth 

factors and cytokines involved in renal disease.  

PDGF plays an important role in angiogenesis; and uncontrolled expression of PDGF 

is implicated in cancer. There are five PDGF isoforms (AA, BB, AB, CC and DD) 

and two PDGF receptors (αα and ββ). Both the PDGF receptors are expressed in the 

kidney. PDGF has been shown to have potent mitogenic effect on mesangial cells by 

inducing proliferation and mesangial matrix accumulation. PDGF was also shown to 
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increase tubulointerstitial matrix in experimental models of ureteric obstruction (75). 

Experiments previously conducted PDGF administration led to mesangial cell 

proliferation and increased expression of α-smooth muscle actin (76).  

IGF-1 has roles in the promotion of cell proliferation and the inhibition or controlling 

of cell death. Studies have shown that IGF-1 is associated with an anti-fibrotic effect, 

with significant reduction of interstitial collagen accumulation in neonatal rats in 

obstructive uropathy. While in different setting it may promote fibrotic activity, it is 

hence implicated in chronic kidney disease because of growth hormone resistance (77, 

78). 

FGF (1-24 subtypes) are associated with the cell proliferation of various cell types 

and act in the signaling mechanisms at the developmental stage. Basic FGF leads to 

podocyte injury when administrated in diabetic rats, however, it did not show 

progression of diabetic nephropathy(70). When PTCs are stimulated by TGF-β, our 

laboratory has shown the release pre-formed basic FGF, further potentiating the pro-

fibrotic process (79). FGF-23 was found to be associated with progression of renal 

disease. Its main physiological function is the enhancement of renal phosphate 

excretion and levels are inversely related with the renal function, hence, its role is 

implicated in CKD (80). 

HGF is a multifunctional cytokine on different cell types. It has been implicated in 

cell proliferation and differentiation, as well as in cell migration and tumorigenesis. 

HGF has been detected in increasing levels in the rejecting renal transplant and shown 

to inhibit progression of tubulointerstitial fibrosis and kidney dysfunction. HGF was 

shown to be secreted by mesangial cells and it  stimulates endothelial cell growth, but 

this effect is negatively modulated modulated by TGF-β and angiotensin-II, which 

may play an important role in the renal pathogenesis and is anti-fibrotic (27, 81). In 

one study, HGF was shown to block Smad2/3 pathway nuclear translocation and 

upregulates Smad transcriptional co-repressor TGIF (Transcription Factor-Interacting 

Factor) via protein stabilization in mesangial cells (82).  
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1.4.2  Transforming Growth Factor β 

TGF-β has 3 isoforms, β1,β2 and β3. They are synthesized as large preproproteins. C-

terminal is the active biological residue in all the isoforms and there is 60-80% 

conservation of the 112 amino acids in C-terminal. There is 100% conservation of the 

nine cysteine residues in C-terminal in all the isoforms (83). In kidneys TGF-β1is 

shown to be expressed in glomeruli, tubular cells and mesangium as well as 

interstitial fibroblasts. TGF-β2 mRNA and protein was found in glomeruli and tubular 

cells and TGF-β3 expression was located in larger extent at the tubular cells and to 

lesser extent in glomeruli (84). Studies have shown that all 3 isoforms of TGF-β are 

up-regulated in most renal fibrotic diseases (85, 86). All the 3 TGF-β isoforms can 

contribute to pathologic matrix accumulation in renal fibrosis, although TGF-β1 may 

be the main mediator. Studies have shown specific antibodies to either of the 3 TGF-β 

isoforms will result in less fibrotic response but combined blockade of all the 

isoforms had maximal effect on reducing the fibrotic response (87). 

TGF-β elicits signaling mainly via 3 cell-receptors: type I (RI), type II (RII), and type 

III (RIII). RI and RII are seriene/threonine kinases that form heteromeric complexes 

and are necessary for TGF-β signaling initiation. TGF-β1 and TGF-β3 transduces the 

signal with type II TGF-β receptor and subsequently activates type I receptor and 

signaling proceeds.  In contrast TGF-β2 needs type III TGF-β receptor which 

combines with type II receptor for signalling. Ligand binding induces assembly of the 

heteromeric complex; the Smad pathway is activated and initiates transcriptional 

activation of target genes. TGF-β signaling is pleotrophic via Smad, Smad-2 and 

Smad-3 are phosphorylated by activated TGF-β receptor complex. Smad 2/3 forms 

stable complex with Smad 4; this complex enables translocation into nucleus and 

regulates transcription (88). There are other signaling pathway known to be activated 

by TGF-β, like small GTPase and RhoA (89) and N-terminal kinase (JNK), a member 

of MAP kinase pathway (90) and Wnt pathway (91). The Wnt pathway of signaling 

for the loss of cell-cell count is demonstrated to be a regulator of target genes in the 

cell nucleus (92).  

TGF-β1 has been shown to have important roles in the pathogenesis of progressive 

renal fibrosis and is involved as the end result of various renal diseases. PTCs are one 

of the potential sources of profibrotic growth factors, such as TGF-β, either induced 
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by ischemia, hypoxia, D-glucose or other injuries (93-95). TGF-β is recognized as a 

mediator of wound healing and its aberrant expression has also been implicated in 

tissue fibrosis (96, 97). 

TGF-β is a 25-kD di-sulphide bonded dimeric polypeptide growth factor with wide 

range of biological functions and is an important pro-fibrotic polypeptide. TGF-β is 

expressed in its precursor form which is bound to latency-associated protein and is 

called small latent complex (SLC). The inactive large latent complex (LLC) present in 

the cells is constituted by SLC bound to latent TGF-β binding protein (LTBP). The 

LLC is secreted to the extracellular matrix, this remains in ECM as inactive complex. 

The inactive form of TGF-β is activated by various factors including MMPs, protease, 

extremes of pH, by reactive oxygen species, by thrombospondin-1 and integrins.  

Elevated glucose exposure in PTCs causes cellular stress and causes gene induction 

by multiple signaling pathways, including MAP kinases (98, 99), protein kinase C 

(100) and p38 (101)pathways.  

Hypoxic (102) and ischemic injuries (103) have been shown to induce TGF-β1 pre-

dominantly in PTCs. TGF-β has been shown to be involved in apoptosis regulation in 

PTCs (104). The TGF-β induced by these injuries may be involved in the post-mitotic 

remodeling phase of recovery. It has been hypothesized that endogenous renal TGF-β 

promotes tissue regeneration, following acute injury via autocrine and paracrine 

mechanism (103).  

The cell-cell disassembly mediated by TGF-β is linked to the TGF-β type II 

receptor/Smad pathway and alterations in β-catenin/E-cadherin phosphorylation. 

There was also decreased E-cadherin expression (55). E-cadherin and α-catenin 

complex are linked to the actin cytoskeleton by direct association between α-catenin 

and α-actinin (105). TGF-β stimulation of PTCs causes dissociation of both E-

cadherin and α-catenin and also increases β-catenin levels by altering the 

phosphorylation, β-catenin re-localises within the cell from the membrane to 

cytoplasm and eventually into nucleus (106, 107). This is mediated  by TGF-β type II 

receptor/Smad pathway (108). The combination of events induced by TGF-β, 

including altered cytoskeletal reorganization, increased expression of focal adhesions, 
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and integrins, coupled to increased matrix deposition, leads to the alteration of 

relationship between cells and the extracellular matrix.  

TGF-β has a central role and directly linked to the pathogenesis of diabetic 

nephropathy (109, 110), although elevated glucose induced TGF-β mRNA in PTCs, 

there was no resulting increase in the protein level. PTCs exposed to 25 nM D-

glucose and subsequently stimulated by IL-1β however showed increased TGF-β 

protein expression, as a result of the glucose-induced transcription. This effect was 

not apparent in TNF-α stimulated PTCs (93). PDGF has similar effects on TGF-β 

expression in the presence of glucose. PDGF enhances this effect on the basolateral 

aspect of PTCs and also leads to increased expression of α-SMA. This is dependent 

on the activity of the GLUT-1 transporter at the basolateral cell surface (111, 112). 

Basic FGF is a mitogen for many cells including PTCs (113) and mesangial (114) 

cells; and is chemoattractant and a mediator of cellular differentiation (115).  PTCs 

are potential sources of TGF-β and bFGF which are profibrotic (116). TGF-β 

stimulates bFGF generation by PTCs by releasing the preformed bFGF in the cells. 

Both are profibrotic cytokines associated with renal fibrosis (117).  

EGF enhances pro-fibrotic effects of TGF-β. Experiments in fibroblasts done at 

Institute of Nephrology has shown senescence fibroblasts loses its TGF-β driven 

differentiation as these cells is associated with loss of EGF receptors (EGFR). EGFR 

was found to be important for signal transduction through MAPK/ERK pathway 

which is important in cell differentiation (70).  

1.4.3 Interleukin-1β 

Cytokines are small cell-signalling proteins that are secreted by numerous cells and 

are implicated extensively in inter-cellular communication. They have been 

6classified as interleukins, lymphokines and chemokines. The term interleukins was 

initially used to describe those cytokines which principally target leukocytes where 

chemokines refers to these cytokines that mediates chemotaxis.   

The family of interleukins in humans are numerous, between interleukin (IL) 1 – 35. 

IL-1 has been known to be associated with pleotrophic effects like regulation of 

immune responses, pro-inflammatory reactions and haematopoiesis. IL-1 has two sub 
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types IL-1α and IL-1β. IL-1α and IL-1β have 26% identity in amino acid sequence, 

but they bind to the same receptors on the cell surface to elicit their effects.  

IL-1β is a member of  the IL-1 cytokine family. It is produced mainly by activated 

macrophages and monocytes as a pro-protein, which is proteolytically processed to its 

active form by caspase-1(CASP1/ICE). Other cells like monocytes, dendritic cells 

also produce IL-1β (118). It is 17.5 kDa in molecular weight. IL-1β is an important 

pro-inflammatory cytokine and is involved in cell proliferation, differentiation and 

apoptosis. Increased IL-1β production has been reported in patients with various 

infections, inflammation, trauma (surgery), ischemic diseases, tumors, intravascular 

coagulation, autoimmune disorders, UV radiation, graft-versus-host disease, 

transplant rejection; and in healthy subjects after strenuous exercise (119). It interacts 

with IL-1 receptor expressed at low levels on most cells, including epithelial cells, 

endothelial cells and fibroblasts (118).  

IL-1β promotes fibroblast proliferation and in fibroblasts derived from diseased 

kidneys, demonstrates greater IL-1β responsiveness than those from normal kidneys 

(120, 121). Macrophage infiltration in most renal and tubulointerstitial diseases 

suggest that IL-1β may play a role in the disease process (122). IL-1β has been shown 

in increased levels in many glomerulonephritis and immunocomplex diseases. In 

experimental models, induction with IL-1β have shown to cause proteinuria, which is 

a marker of renal diseases (123, 124). Up-regulation of IL-1β in glomerular cells and 

tubular epithelial cells in rat anti-GBM disease plays an important role in 

tubulointersitial injury (21).  

There are two IL-1 receptors isolated in humans and mouse in the transmembrane 

region and are soluble forms, termed type I (80 kDa) and type II receptors (60 kDa) 

(125).  Most of the IL-1 signalling is transmitted through type 1 IL-1 receptor (IL-1R) 

whether type II receptor may act as a suppressor of IL-1 biological activities by 

competing for binding with type I receptors on the cell surface. Both the receptors are 

mapped on the same chromosomal location 2q12-22. IL-1β leads to tissue fibrosis by 

several mechanism as discussed down below. The type I receptor mediates it effects 

through nuclear factor-κB (NF-κB) activation (126). NF-κB is a transcription 

regulatory factor and activates PKC which helps in fibronectin synthesis and is pro-

fibrogenic in proximal tubular epithelial cells (127). NF-κB is known to induce nitric 
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oxide synthase (NOS) which has pro-fibrotic effect (128). It stimulates the cells to 

produce TGF-β by autocrine function of the inflamed cells. IL-1β stimulation also 

increases the release of PDGF which similar to TGF-β has pro-fibrotic effect. Also in 

certain studies, IL-1β has been demonstrated to induction of MMPs  by tyrosine 

phosphorylation of  MAPK which contributes to progressive disease process like in 

arthritis (129). Chronic IL-1β stimulation of rat tubular epithelial cells were shown to 

produce fibrosis by EMT process through a TGF-β mediated mechanism (130). The 

other proposed mechanism of IL-1β stimulated tissue fibrosis as demonstrated in 

murine lung was inducing of Smads-dependent pathway of TGF-β (131). 

IL-1β has a numerous roles leading to fibrosis, including promotion of leukocyte 

infiltration, inducing pro-inflammatory mediators and inducing production of TGF-β, 

which is a key profibrotic growth factor (127, 130).  

In our laboratory, we have demonstrated elevated glucose and IL-1β stimulation of 

PTCs shows up-regulation of TGF-β mRNA and protein expression (93). IL-1β was 

shown to induce hyaluronan synthase (HAS2), which is implicated in HA peri-

cellular coat assembly and found to enhance the migratory phenotype of PTCs and 

hence leads to renal fibrosis and chronic kidney disease (132). When PTCs were 

incubated with IL-1β or D-glucose, there was a significant increase in HA 

concentration, in contrast to the stimulation by TGF-β and other growth factors. There 

was up-regulation of HAS2 and HAS3 mRNA in PTCs on stimulation with IL-1β. 

The HA synthesis was abrogated by inhibition of NF-κB which mediates IL-1β cell 

signaling as well as glucose signaling (133). IL-1β was also shown to increase the 

expression of CD44, the HA receptor and this was associated with internalization of 

HA, meaning increased functional forms of these receptors facilitate this process 

(134). HA has been shown to dictate the cell response to TGF-β and is an important 

component of the regulation of fibroblast phenotype and its dysregulation may 

causally relate to failure of differentiation from fibroblast to myfibroblasts, which can 

be compared similarly in the PTC trans-differentiation into myofibroblasts, where HA 

have to assemble as peri-cellular coat (135). With these findings regarding the 

importance of HA assembly and its involvement in wound healing and PTC migration 

as discussed above, I will discuss in detail about HA and matrix homeostasis.  
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1.5 Hyaluronan 

1.5.1 Structure and Biology 

HA is a polysaccharide first discovered in 1934 in the vitreous humour. It is widely 

distributed in the body and mostly seen in the connective tissues (136). In the past, 

HA had been used for therapeutic purposes in ophthalmic surgery and ocular trauma 

(137) and for arthritis in animals (138, 139). HA regulates cellular function through 

its cell-surface receptors, for example CD44, RHAMM and LYVE1, in association 

with HA binding proteins (140, 141).  

The chemical structure of HA is shown in the Figure 1.4. It is the uronic acid and 

aminosugar in the disaccharide forming D-glucuronic acid and N-acetyl-D-

glucosamine, linked together through alternating β-1,4 and β-1,3 glycosidic bonds 

(Figure 1.4). Each of the HAS enzyme catalyses HA production by adding HA 

disaccharide unit to the HA chain using the substrates uridine diphosphate glucoronic 

acid (UDP-GlcA) and uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) 

(142).  

 

Figure 1.4. Repeating disaccharide of hyaluronan, D-glucoronic acid-β-1,3-N-
acetylglucosamine-β-1,4. Adapted from Glycoforum (143). 

HAS synthesises large, linear polymers of the repeating disaccharide structure of HA 

by alternate addition of D-glucoronic acid and N-acetylglucosamine to the growing 

chain, using their activated nucleotide sugars as substrates. Each disaccharide is ≈400 

Daltons and each HA molecule may can reach to a molecular weight of ≈4 million 

Daltons (143). HA belongs to the glycosaminoglycans (GAG) family, but it is unusual 

as it is not sulphated or covalently linked to a core protein over all its length. The 
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polysaccharide chains of all the GAGs, except HA, are relatively short between 15-20 

kDa. HA is the only non-proteoglycan GAG (144, 145).  

HA plays an important role as a matrix scaffold as space-filling hydrating molecule 

and lubricant as in the joints, in maintaining homeostasis, as well as in tissue repair 

and regeneration. It is shown to accumulate in the corticointerstitium following acute 

inflammatory injury and in chronic fibrotic diseases, but its expression in normal 

renal cortex is very minimal (146-149).  

1.5.2 HA Distribution  

HA is present in all vertebrates and is the major constituent of extracellular matrix 

and certain tissues like vitreous of human eye, synovial joint fluid and in the matrix of 

the cumulus cells around the oocyte. The largest concentrations of HA are present in 

the skin dermis and epidermis. HA is an essential ingredient in hyaline cartilage and it 

retains aggrecan molecules in its matrix. In normal kidney, HA was shown to be 

expressed in the interstitium of the renal papilla only.  

1.5.3 HA Biosynthesis 

HA are synthesized by integral membrane proteins on the inner surface of the plasma 

membrane (150). It is synthesized by the membrane bound protein termed as 

hyaluronan synthases or HAS. There are four types of HAS in vertebrates, HAS1, 

HAS2, and HAS3, which in turn has two isoforms (145, 151-153).  

The size of HA synthesized by HAS1 and 3 (2 x 105 to 2 x 106) is relatively smaller 

than that by HAS2 (more that 2 x 106) (154). HAS1 is not expressed in proximal 

tubular cells of human kidneys.  

1.5.4 HA Turnover and Degradation 

HA is metabolically active rather than an inert element in the extracellular matrix as 

discussed later in this section. Its half-life varies in each tissue. The half-life of the 

polymer in skin and joints is about 12 hours, in anterior eye chamber it is 1 – 1.5 

hours, in the vitreous body it is about 70 days and in the circulation, it has a half-life 

of 3 to 5 minutes (155-157). Nearly 1/3rd of total body HA is metabolically removed 
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and replaced in an average day (158). The HA turnover happens partly by lymphatic 

removal and subsequent degradation in the lymph nodes and liver sinusoids (159); the 

endothelial scavenger receptors in the liver are partly responsible for HA degradation 

(160). 

HA degradation may also occur by oxygen free radicals, UV irradiation and by 

hyaluronidase (HYAL) enzymes (161, 162). Six hyaluronidase genes have been 

isolated in humans, HYAL1, 2 and 3 are located on 3p21.3 chromosome and HYAL4, 

HYALP1 and SPAM1 (sperm adhesion molecule 1) are located on chromosome 

7q31.3 (163). 

HYAL1 and 2 constitute the major hyaluronidase enzymes, HYAL2 cleaves high 

molecular weight HA into smaller fragments of 20 kDa and is bound to the plasma 

membrane by a Glycophosphatidylinositol (GPI)-anchor (164). HYAL2 interacts with 

CD44, the HA receptor, on the cell surface and with Na+-H+ exchanger, NHE1, 

forming acidic environment to activate the HYAL enzyme (165). HA with lower 

molecular mass is generated by HYAL2, these fragments are internalized, delivered to 

lysosomes where HYAL1 degrades 20 kDa HA into further small disaccharides (145, 

166). These smaller fragments are further degraded by β-glucoronidase and β-N-

acetyl glucosaminidase to yield glucoronic acid and N-acetylglucosamine (167). HA 

degradation products are involved in scar formation (168). The high molecular weight 

HA promotes cell integrity and quiescence, whilst HA fragments are inflammatory 

and angiogenic (169). HYAL3 has strongest activity in testes and bone marrow and 

there function may be augmented by HYAL1. 

1.5.5 HA Receptors 

HA interacts with cells mainly through three main classes of receptors, CD44 (cluster 

of differentiation 44), RHAMM (receptor of HA mediated mobility), LYVE1 

(lymphatic vessel endothelial HA receptor 1) are predominantly found on lymphatic 

endothelial cells, HARE (HA receptor for endocytosis also called stabilin-2); and 

intracellular adhesion molecule-1 (ICAM-1) (170-172). The signaling of HA is 

mediated by various receptors.  
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Generally, epithelial cells express CD44, which is the main HA receptor (134). 

Epithelial cells also expresses RHAMM (CD68) receptors as mainly seen in bronchial 

epithelial cells (173). Interaction of HA:CD44 interaction makes HA function as 

cellular signaling molecule and is internalized into the cells by CD44. Tis interaction 

triggers inflammatory activity and processes such as aggregation, proliferation, 

migration and angiogenesis (174-176). CD44 receptor, via its GAG chains, is 

proposed to present selected cytokines to the neighbouring cells. This leads to 

activation of vascular endothelial cells and tumour cells. The further role of CD44 and 

its interaction with HA is described later in the chapter in the HA-binding protein 

section. 

HA:RHAMM interaction activates the signaling cascades probably as a co-receptor 

for integral membrane proteins. They are associated with kinases (177, 178), 

calmodulin (179) and intracellularly may play an important role in cytoskeleton 

formation (180). RHAMM is required for migration of B-lymphocytes and 

endothelial cells and activation of intracellular kinase pathways (181, 182). 

Intracellular HA has been reported, and recently found in the cytoplasm of vascular 

smooth muscle cells (183). There are HA receptors isolated intracellularly, including 

RHAMM and HA binding proteins, supporting the intracellular presence of HA (179, 

184). 

1.5.6 HA Size and its Role in Matrix Formation and Inflammatory Properties 

HA has an important role in homeostasis in the peri-cellular matrix. It plays a major 

role in cell-cell adhesion (185), migration (186), differentiation and proliferation 

(187-190). 

The molecular weight and size of HA has implications for its biological and 

physiological functions The extracellular HA of high molecular weight are space 

filling molecules, hydrating tissues and are anti-angiogenic (191). Hence, they make 

the blood vessels unable to penetrate the matrix structures. They act as anti-

inflammatory (192) and immunosuppressive (193). This was explained by the access 

of ligand to the cell surface receptors by the space-filling polymers. High molecular 

mass HA interacts with TGF-β and facilitates its cell proliferation effect (65, 194). 
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HA of 20 kDa molecular weight, which are the fragments of HYAL-2 cleavage are 

highly angiogenic (195) and lead to inflammatory cytokine synthesis (196). These HA 

fragments prime endothelium to recognize injuries by inducing transcription of matrix 

metalloproteinases and inhibit bioactivity of TGF-β (197, 198). 

HA oligomers, with molecular mass between 6-20 kDa, induce inflammatory gene 

expression in dendritic cells (199). These fragments are angiogenic, pro-inflammatory 

and immune-stimulatory. HA-oligosaccharides may stimulate gene expression and 

protein synthesis of chemokines and interstitial collagens (200, 201). The low 

molecular weight also enhances CD44 cleavage by tumour cells and cause increased 

motility of the tumour cells and resulting in metastases of cancer (202). LMW HA 

also are found to enhance MMPs expression especially MMP-9 and MMP-13 in lung 

cancer cells (197). HA oligomers also induces the expression of monocyte 

chemoattractant protein-1 (MCP-1), ICAM-1 and VCAM-1 in murine tubular 

epithelial cells and thus promotes inflammation by these mediators (203, 204). 

The extracellular matrix is formed by mainly 2 main classes of macromolecules, 1) 

GAG polysaccharide chains, usually covalently linked to protein in the form of 

proteoglycans; and 2) fibrous proteins, such as collagen. The proteoglycan is a highly 

hydrated, gel-like substances in which the fibrous proteins are embedded. The 

polysaccharide gel resists the compressive forces on the matrix and hence, maintains 

the cytoskeleton stability and it is also known to permit diffusion of nutrients, 

metabolites and hormones across the cells. The fibrous protein, elastin maintains the 

resilience of the extracellular matrix.  

The GAGs in the extracellular matrix, are of four groups, HA, chondroitin sulphate, 

dermatan sulphate, heparan sulphate and keratan sulphate. HA in contrast to other 

GAGs, have no sulphated sugars and its structure is as described above. HA 

synthesized locally from the basal side of the epithelium can deform the epithelium by 

creating a cell-free space beneath it and subsequently, migrates over the basement 

membrane. The excess HA after migration is degraded by HYALs (205). 

When HA is present in high molecular weight in the matrix, it is anti-inflammatory 

and anti-angiogenic. Its persistence at the sites of tissue injury, is associated with 

progressive fibrosis and scarring in many organs, including kidney (196). The 
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accumulation of HA in the matrix leads to irreversible scarring and differentiates the 

cells to myofibroblastic phenotype. The HYALs present in the ECM that are released 

by the myofibroblasts may lack the capacity to degrade HA and consequently leads to 

its accumulation. The HYAL may have the function of HA-binding proteins and are 

internalized along with HA (206). 

Our recent laboratory data, has demonstrated that exogenous HA facilitates TGF-β-

dependent fibroblast proliferation by promoting interacting between CD44 and 

epidermal growth factor receptor (EGFR) (70).  

1.5.7 Hyaluronan Assembly in the Kidney 

Over last three decades, HA has been shown to be expressed increasingly in diseased 

kidneys. Studies have demonstrated increased HA expression in diabetic rats and 

mesangial hypercellularity (207, 208). It has been associated with various other 

kidney diseases, including transplant rejection, ischemic injury and tubulointerstitial 

nephritis (146-148). There is a established correlation between increased HA 

deposition in the interstitium and decline in renal function and proteinuria (149). HA 

is present as a high molecular weight component in the ECM. In addition to its 

viscoelastic properties, HA regulates cellular function through its interaction with cell 

surface receptors, CD44 and RHAMM; and in association with HA binding proteins 

(140, 141).  

Several cell types, in vitro surround themselves with HA in an organized peri-cellular 

matrix or “coat” (209, 210), in which the HA may be anchored to the cell-surface by 

its receptor, CD44 (211). 

In previous work from our laboratory, we have shown that PTCs, when exposed to 

increased D-glucose or stimulated with IL-1β, causes stimulation of HA synthesis by 

upregulating HAS2 by transcription activation (133). HA:CD44 regulate HA-PTC 

interaction and increase binding and internalization resulting from post-translational 

modification of CD44 by O-glycosylation (134). We have shown that organization of 

HA into peri-cellular coats by PTC is associated with enhanced migration. Epithelial 

cell migration is a crucial step in epithelial-fibroblast transdifferentiation (EMT) (58), 
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thus suggesting enhanced coat formation may be an important component of this 

process. 

In addition, HA is found to be deposited in the peri-cellular matrix as “cable”-like 

structures. The cable HA binds to the mononuclear leukocytes via their cell surface 

receptors, CD44 (212). Binding of monocytes to the CD44 receptors on cable HA 

attenuates monocyte-dependent PTC generation of the pro-fibrotic cytokine TGF-β1 

(213). HA cable generation is a regulated process. BMP-7 (bone morphogenic 

protein-7) is a member of the TGF-β superfamily, which is down-regulated in renal 

disease. It triggers cable HA formation (214). Possibly, under normal circumstances, 

HA cables prevent leukocyte initiated tissue injury, while loss of the cables associated 

with acute or chronic renal injury removes this protective mechanism and allows 

monocytes to interact directly with the cell-surface triggering a cascade of events 

leading to progressive fibrosis. On the contrary, peri-cellular HA accumulation was 

seen in all stages of diabetic change in the kidney, but was not predictive of 

progression from the study done at the Institute of Nephrology (215).  

In our previous work at the Institute of Nephrology, we have shown that IL-1β is a 

potent stimulus of HA production. IL-1β, the pro-inflammatory cytokine, markedly 

decreased cable formation (214, 216) and increased coat accumulation around the 

PTCs. When PTCs were treated with IL-1β, the expression of HAS2 mRNA (133) 

and also TSG-6 mRNA (217) increased. In addition there was an increase in 

functionally active CD44, as a result of increase in post-translational O-glycosylation 

of CD44. This is thought to be due to changes mediated by the carbohydrates which 

might restrict the cell surface mobility of CD44 (134). 

Inter-α-trypsin inhibitor (IαI) has been shown to be an important component of HA 

cable formation. Though IαI is predominantly produced by hepatocytes, we have 

demonstrated that PTCs generate the PαI variant of IαI family (217). In PTCs over-

expressing HAS2, the heavy chain (HC3) expression was decreased (132), while its 

expression remained unchanged or slightly increased in the HAS-3 transfected cells 

(PhD Thesis - Selbi.W). When IαI antibody is added to PTC it results in severe 

truncation of the HA cable and reduces the monocyte adhesion to HA (218).   
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In the most recent studies done in our laboratory on fibroblasts, HA was shown to 

facilitate TGF-β-dependent proliferation through interaction between CD44 and 

EGFR (70). The concentration of HA influences the effect of TGF-β-mediated 

proliferation. In early disease, the presence of minimal HA induces anti-proliferative 

effect and hence tumour suppression. In HA abundance states, as seen in advanced 

disease, there is cell proliferation which facilitates tumour progression (219). In aged 

fibroblasts, there is an inability to have phenotypic transformation of differentiation to 

myofibroblasts, despite increased peri-cellular HA coat formation, suggesting HA 

itself is not sufficient for this phenotypic change (220). 

In the ECM, HA assembly is determined by its interaction with its receptors and HA 

binding proteins. The hyaladherins maintain the equilibrium that regulates the 

assembly of the peri-cellular coats. These include TSG-6, IαI, versican and also 

includes the HA receptor, CD44 (171, 218). HA is thought to influence the biological 

actions in part through the formation of HA peri-cellular coat. This has been shown in 

several cells to be associated with cell proliferation and migration; and prominent 

during inflammation, wound healing and tumour invasion. Data from the Institute of 

Nephrology showed that HA peri-cellular coat assembly is facilitated by TGF-β and 

seen in PTCs (221) and dermal fibroblasts, but not in oral fibroblasts, hence 

suggesting that regulation of peri-cellular HA assembly is an important step in coat 

formation (219). HA binding proteins are found to have an important roles in the 

assembly of peri-cellular HA coat and this is demonstrated by the work done in our 

laboratory, that increased peri-cellular HA coat formation alone is not enough to 

trigger myofibroblast phenotype, but requires coordinated induction of TSG-6 and 

HAS2 (135).  

 

1.6 Hyaluronan Binding Proteins 

HA exists in the ECM in the soluble form. It binds covalently to various HA binding 

proteins to influence the functions of these proteins. The different HA binding 

proteins include the receptors CD44, RHAMM, LYVE1, HARE, TSG-6, SHAP 

(serum-derived-HA-associated protein) which involves the IαI family, brevican, 

versican, neurocan and many others.  
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1.6.1 CD44 

CD44 is transmembrane glycoprotein and the principle receptor for HA, which has 

multiple isoforms as a result of alternative RNA splicing and differences in post-

translational modification. CD44 is multistructural and multifunctional cell surface 

adhesion molecules, involved in cell-cell and cell-matrix interactions. It was first 

described in 1980 as brain-granulocyte-T-lymphocyte antigen (222). It is encoded by 

single gene on the short arm of chromosome 11 in humans (223).  

Twenty exons are involved in the genomic organization of CD44. The 10 exons in the 

middle are subject to alternative splicing. Because of splicing, there are at-least 20 

isoforms of CD44 known of varying molecular weight (85-230kDa) (224). They are 

expressed on various cells, including haemotopoietic and non-haematopoietic cells. 

The CD44 expressed on epithelial cells are CD44E, which has last 3 exons of the 

variable region (CD44V8-10) (225). There are at-least 45 alternatively splicing 

variants existing (226). The common form of CD44 (CD44H) is found on 

hematopoietic, has exons 2-5 plus 16 and 17 code for extracellular domain, while 

exon 18 codes for transmembrane segment plus 3 amino acids from the cytoplasmic 

region; and exons 19 or 20 codes for the cytoplasmic tail (227, 228). There are 

various cells in humans expressing CD44, including T cells, B cells, monocytes, 

fibroblasts and keratinocytes (229, 230), vascular endothelial cells (231), columnar 

epithelial cells of the GI tract and urinary tract transistional epithelial cells (232), NK 

cells (233), granulocytes (234, 235), macrophages and type II pneumocystis (236), 

osteocytes and chondroblasts (237), chondrocytes (238); and neutrophils (239). 

Soluble CD44 has been detected in both human synovial fluid and serum (240, 241), 

as both the proteolytic processing and alternative splicing can generate soluble forms 

(242). There are multiple CD44 ligands, including osteopontin (243), fibronectin 

(244), collagen I and IV and HA (234, 245). HA binding is possibly present on all the 

CD44 isoforms (246). Binding to fibronectin is reported to be limited to chondroitin 

sulphate expressing CD44. For successful binding of HA to CD44, it requires 

combination of exons expressed, distinctive cytoplasmic tail, glycosylation patterns 

and the activity state of the cell is important (247-252).  
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HA is the important ligand of CD44, other ligands include ECM components, 

collagen, fibronectin, laminin and chondroitin sulphate. CD44 is also involved in 

other functions, including cell-trafficking, presentation of chemokines and growth 

factors to the cells; and transmission of growth signals. It mediates signals for 

apoptosis and hematopoiesis. CD44 has been shown to effect the migration of 

leukocytes to the inflammatory sites (253).  

CD44 has a major function as an anchoring protein for HA-rich matrix and is crucial 

in the maintenance of local HA homeostasis. Its interaction with HA leads to various 

cellular functions, including cell-cell aggregation, retention of peri-cellular matrix, 

cell-matrix signaling, cell migration and proliferation (170, 254). CD44 is important 

in the integrity of the actin cytoskeleton (255, 256), as it interacts with the 

cytoskeleton via ankyrin (176) and cortactin (257) cytoskeletal proteins. It aids 

internalization of HA. It is linked to inflammation, phagocytosis (258), malignancy 

(259) and metastases (260, 261). HA:CD44 interaction has been implicated in arthritis, 

atherosclerosis, pneumonitis and dermatitis (262-264).  

CD44, is weakly expressed in the normal kidney. However, its expression amplifies in 

pathologic kidneys, including during lupus nephritis and ischemic injuries (148, 265). 

In our laboratory, we have demonstrated that increased HA synthesis is associated 

with increased HA binding to hyaladherins and internalization as a result of post-

translational modification of CD44 by O-glycosylation (134).  

1.6.2 Tumour Necrosis Factor α Stimulated Gene-6 (TSG-6) 

TSG-6 was first reported as the secreted protein product of TNF-α. It is up-regulated 

in many diseases and also in physiological events. It plays an important role in 

inflammation and tissue remodeling (266). Since its discovery, it has been implicated 

in various physiological roles including ovulation and cervical ripening during 

parturition. It has anti-inflammatory action and has seen to be expressed in various 

physiological and pathological processes. 

It was originally discovered in the in human fibroblasts after stimulation with TNF-α, 

which was identified as cDNA of 35 kDa (267). It has been mapped to chromosome 
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2q23.3 (268, 269). Other that in humans, it has also been isolated from lamprey (270), 

mouse (271) and rabbit (272). 

1.6.2.1 TSG-6 Structure 

TSG-6 is a 35 kDa protein, constituted mainly of contiguous link and CUB modules. 

The Link module is defined by residues 37-128 and CUB (complement 

subcomponents C1r/C1s, urchin embryonic growth factor and bone morphogenetic 

protein-1) module by residues 129-250 pre-proteins (269, 273). As Link module 

interacts with HA, it is an important component of the ECM (274). It is also known to 

bind to chondroitin 4-sulphate (275) and aggrecan (276). The Link module is shown 

to comprise two triple-stranded antiparallel β-sheets and two α-helices arranged 

around a large hydrophobic core, as shown in the Figure 1.5 (273). 

 
Figure 1.5. Structure of human TSG-6. A modular structure of the mature TSG-6 
with amino acid positions indicated on the basis of preprotein sequence (277). 
Adapted from Milner and Day AJ (278). 
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The Link module is conserved among members of hyaladherin family. Hyaladherins 

are the HA binding proteins, which is of two domains, Link module superfamily and 

Non-Link module hyaladherins. The Link module is essential for binding of HA (273, 

275, 279), chondroitin4-sulphate(227), aggrecan, heparin (280), IαI (281, 282), 

versican, TSP1(thrombospondin-1) (283) and PTX3 (pentraxin-3) (284). In vitro 

studies the Link module has frequently been found to elicit biological responses 

comparable with those of full-length TSG-6, suggesting Link_TSG-6 is a useful 

model for the intact protein (280, 285, 286).  

The CUB module is highly conserved between the species and is shown to be 

important for some activities of TSG-6. This module appears in many proteins 

involved in fertilization and development (287), in spermadhesins ((269, 288), tolloid 

metalloproteinases (289), and complement serine proteinases (290). The CUB module 

has been modeled based on 3 spermadhesins resembling jellyroll folds, comprises a 

single CUB module (207). It has been recently shown to mediate binding of TSG-6 to 

fibronectin, which is shown to have high affinity during inflammation (291). 

1.6.2.2 Expression of TSG-6 

In normal human tissue, TSG-6 has little constitutive expression in epidermis (285) 

and bone marrow (292). TSG-6 is pro-inflammatory and its expression is induced by 

pro-inflammatory cytokines, TNF-α and IL-1β (267, 277). Studies have demonstrated 

high levels of TSG-6 in infection and in inflammatory conditions, like sepsis, lupus 

(266), inflammatory bowel diseases (293) and arthritis (294). TSG-6 has also shown 

to be increasingly expressing in physiological processes like ovulation (278, 279, 295, 

296) and in cervical ripening by TNF-α and prostaglandin E2 (297), which can be 

classified as inflammation.  

During inflammatory state, TSG-6 is expressed in wide number of cells in humans in 

vitro and in vivo, including fibroblasts (267, 268, 298), monocytes, neutrophils (299, 

300)macrophages (301), dendritic cells(213), PTCs (217), vascular endothelial cells 

(302, 303) chondrocytes(217), synoviocytes (304), smooth muscle cells (297); and in 

ovarian cancer cells (305). 
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Other than TNF-α and IL-1β, various other factors including growth factors and 

mechanical stress have been shown to increase TSG-6 expression in various cells 

(306). The growth factors include TGF-β, PDGF, EGF and FGF (267, 268, 277). IL-6, 

LPS (lipopolysaccharide), D-glucose (217) and γ-irradiation (307) are the other 

stimulants known to cause TSG-6 release in tissues and cells (301). 

1.6.2.3 Role of TSG-6 as a Regulator of Inflammation  

The first discovery of TSG-6 upon stimulation of fibroblasts with TNF-α, isolated a 

120 kDa stable covalent complex comprising TSG-6 and a serum protein which was 

latter identified as IαI, one of the serine protease inhibitors (308). The HC1 

(heavychain-1) of IαI was replaced by TSG-6 in a trans-esterification reaction, thus 

forming a complex of TSG-6, heavy chain 2 (HC2) and Bikunin. This TSG-6–IαI has 

been shown to occur in vivo in arthritis (309). The complex of TSG-6 with IαI has 

also been seen in ovulation with TSG-6, HC1 and HC2 with no Bikunin (295). As it is 

known that HA and IαI are highly expressed in inflamed tissue; and the ability of 

TSG-6 to interact with both of these, suggests that it influences in HA:IαI complex 

and thus ECM matrix assembly (278). TSG-6 is shown to form covalent complexes 

with HC1 and HC2 and forms a non-covalent complex with IαI. The non-covalent 

complex potentiates the anti-plasmin activity of IαI and affects the protease network 

and hence ECM remodeling (278). It also inhibits matrix metalloproteinases (MMP) 

(310, 311), which are mainly activated by proteases.  

TSG-6-mediated HC transfer to HA is an important step in many physiological and 

pathological events. The transfer occurs as a two sequential trans-esterification 

reactions is shown in Figure 1.6. TSG-6 interacts with IαI and forms a TSG-6:HC 

complex linked as an ester bond, before transferring the HC to HA to form HC:HA. 

Mg2+ and Mn+ are required for the reactions and are derived from the CUB module of 

TSG-6 (312, 313). 

In experimental models, the Link module has been shown to have anti-inflammatory 

activity, for example, the mouse air pouch model stimulation with IL-1, it produced 

synovitis and significantly reduced neutrophil migration. The inhibition of neutrophil 

migration by TSG-6 was thought to be due to the TSG-6:IαI interaction and 

modulation of the protease network (282). 
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Figure 1.6. Catalyst of HC:HA formation by TSG-6 (314). Illustration the transfer 
of HC to HA.  

TSG-6 can alter the HA binding function of CD44-positive cells and enhance rolling 

of T-lymphocytes on the endothelial substrate (286). TSG-6 also up-regulates various 

molecules that have important roles in inflammation, like COX-2 (cyclooxygenase-2) 

(315). In other studies, when mouse mesenchymal stem cells were stimulated by 

zymosan, it induced peritonitis and led to NF-κB mediated secretion of TNF-α. TNF-

α induced TSG-6 secretion and this interacted with CD44, the TSG-6:CD44 

interaction lead to negative feedback on these mesenchymal stem cells to reduced 

zymosan:toll-like receptor-2 (TLR-2) interaction and reduced the NF-κB stimulation 

and hence shown the role of TSG-6 as an anti-inflammatory protein (316). In 

experimental rat models with corneal burn injuries, when injected with TSG-6 led to 

reduce cytokine production and MMP9 secretion, reduced neutrophils infiltration and 

chemotaxis and these led to limitation of damage to the cornea which signifies the 

role of TSG-6 as anti-inflammatory process (317). Amniotic membrane has high 

concentration of HA:HC complexes and studies have shown amniotic membrane 
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transplantation to ocular surface has led to healing of keratitis, scleritis, and 

pterygium improvement. HA:HC complex acts as an anti-inflammatory by 

suppressing TGF-β signaling at transcriptional level of fibroblasts and acts as anti-

scarring complex and also maintains the epithelial phenotype and prevents 

myofibroblasts differentiation. Hence amniotic membrane transplantation has shown 

to be promoter of wound healing by facilitating re-epithelialisation while suppressing 

stromal inflammation, angiogenesis and scarring (318, 319).  

In previous work from our laboratory, we have shown that TSG-6 is involved in the 

formation of peri-cellular HA coat by transferring HC of IαI/PαI to HA. Subsequent 

experiments have also shown that TSG-6 was not an important factor in HA cable 

formation (132, 218). 

The summary of mechanism of TSG-6 induced anti-inflammatory activity as shown 
in Figure 1.7 below  
Mechanism of anti-inflammatory action of TSG-6 

Down-regulates protease and plasmin activity. 

MMP activity is reduced by down-regulating plasmin. 

Inhibits neutrophil migration by firmly adhering to endothelium. 

TSG-6:Heparin interaction potentiates anti-plasmin activity of IαI. 

Pentraxin-3 and thrombospondin-1 enhances HA binding to TSG-6 and 

facilitates HA:HC trans-esterification. 

HC:HA interaction is anti-inflammatory, anti-angiogenic and anti-scarring. 

 

1.6.3 Inter-α-Trypsin-Inhibitor (IαI) and Serum-Derived HA Associated Protein 

(SHAP) 

HA is the major GAG in the ECM. Its expression is increased in inflamed tissues. In 

1990, a protein of 85kDa was found firmly associated with HA in the ECM of 

cultured dermal fibroblasts; it was designated as SHAP, which was later identified as 
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the HCs of IαI family molecules forming complexes with HA (320, 321). SHAP-HA 

complex were also isolated from synovial fluid and preovulatory follicular fluid (322). 

Mass spectrometry found these SHAP-HA complexes have ester bonds between HA 

at the C-terminal and to ester bonds of HC to chondroitin sulphate in IαI (287,288). 

Several SHAPs are linked to one HA molecule, the SHAP-HA complex is a second 

PG covalent complex, as shown in the Figure 1.8.  

 

Figure 1.8. A model for the structure and function relation of a 
proteoglycoprotein complex. The IαI family molecules are synthesized in 
hepatocytes, where one or two HCs are linked to the chondroitin sulphate chain of 
bikunin in the Golgi apparatus. Upon stimulus, the molecules are recruited to 
extravascular sites, where the HCs are transferred to the locally synthesized HA to 
form the SHAP-HA complexes (trans-esterification), which play roles in construction 
of extracellular matrices by aggregating into a “cable-like structure” containing the 
complexes and in interaction of the matrices with inflammatory cells (323, 324). 

SHAP-HA complexes are demonstrated in various inflammatory diseases, such as 

rheumatoid arthritis, inflammatory bowel disease and osteoarthritis (325, 326). TSG-6 

is shown to be essential for the trans-esterification of HCs from IαI to HA and for 

providing stabilization of the matrix during ovulation (327). TSG-6 is up-regulated in 

the preovulatory follicle in the cumulus cells, thus further potentiating the theory of 
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TSG-6 presence in the SHAP-HA complex (295). TSG-6 interacts with both HA and 

IαI and is essential for covalently transferring HC on to HA (313, 327).  

IαI was first described as trypsin inhibitor activity in 1909. There were on-going 

efforts to identify a relation between urinary infection and serum protein and this led 

to the identification of IαI in the 1970s. When this protein was treated with proteases, 

such as plasmin, trypsin and elastase, or incubated with inflammatory cells like 

neutrophils or cancer cells, it liberated smaller components with inhibitor activity 

(328-331). They are encoded by 5 genes, ITIH1-4 for 4 heavy chains (HCs) and 

AMBP for the light chain the core protein of Bikunin (332). IαI is a multi-peptide 

structure, in which the polypeptide subunits are covalently linked together via a 

chondroitin sulphate chain (333). The components released from IαI after treatment 

with above agents, showed HCs and Bikunin (334, 335). Bikunin is linked by 

chondroitin sulphate (CS) chain and HCs are linked via C-6 hydroxy groups in the CS 

by ester bonds (333, 336).  

The HCs on IαI are species related and in humans, IαI contains HC 1 and 2 (334). On 

the other hand, PαI has a single HC where HC3 (337). There are degraded forms of 

IαI found in human serum, which have low levels of HC2/bikunin and known as 

inter-α-like trypsin inhibitor (IαLI) (336).  The HCs undergo several proteolytic steps 

during biosynthesis, hence the HC assembly has two likely coordinated steps: a 

cleavage of the Asp-Pro bond and then the formation of the ester bond (338).  

IαI are expressed in various tissues in the humans, but are principally produced by the 

liver. They are expressed in adrenal glands, brain, kidneys and lungs as well as the 

liver (339). Bikunin exhibits weak inhibitory activity against proteases including 

trypsin, chymotrypsin, neutrophil elastase and plasmin (340). Bikunin is shown to 

inhibit proteases on the surface of malignant cells which may relate to its anti-

metastatic effect (341). 

Work in our Institute has shown that PαI is generated by PTCs (217). IαI has been 

identified as an important member of HA cable formation, which has been shown to 

limit inflammation, by preventing interactions of inflammatory cells and the cell-

surface (212). BMP-7 stimulation of PTCs and HAS3-overexpressing PTCs are 

demonstrated to form HA cables; while IαI HC:HA interaction is also important in 
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cable formation. When IαI antibody is added, it results in severe truncation of the HA 

cable and reduces the monocyte adhesion to HA (218).  

1.6.4 Versican 

Versican is a GAG, which contains members  of the chondroitin sulphate (GAG) 

family. It is also known as chondroitin sulphate proteoglycan 2 (CSPG2). This 

proteoglycan is designated as versican in recognition of its versatile modular 

structures (342). It is a HA-binding protein. Other common GAGs include heparin, 

heparan sulphate and keratin sulphate.  

Versican is present in the ECM of variety of tissues and organs. Its gene is localized 

to chromosome 5 in human genomes (343). Versican, consist of an N-terminal G1 

domain, a C-terminal G3 domain and chondroitin sulphate chain binding regions 

between G1 and G3. The G1 domain contains an immunoglobulin-like motif, 

followed by two proteoglycan tandem repeats that are known as HA-binding repeats. 

The G3 domain of versican consist of two epidermal growth factor (EGF)-like repeats, 

a carbohydrate recognition C-type lectin domain and a complement binding protein 

domain-like motif. There are at-least 4 isoforms of versican which depend on the 

alternative splicing of mRNA encoding the GAG chain binding regions generating V0, 

V1, V2 and V3, with molecular weights of  the core proteins about 370 kDa, 262 kDa, 

180 kDa and 74 kDa, respectively. The GAGs to each of them have different lengths 

of GAG binding regions, with a varying lengths of attached GAG chains. The 

molecular weight is usually more than 106 Da (344).  

Versican GAG chains are long, repeating disaccharides of uronic acid, in the form of 

either glucuronic acid or iduronic acid; and N-acetylgalactosamine, with 3 possible 

sulphation sites leading up-to five specific chondroitin sulphate subtypes. GAG chains 

are composed of at-least 40 repeating units(329). Versican has a complex structure. 

Both in vivo and in vitro, it has been shown to be involved in variety of diverse cell 

functions, such as cell adhesion (346, 347), proliferation in various tissues leading to 

proliferation (348, 349), migration (350) and ECM assembly and apoptosis. Versican 

is found to play a central role in ECM assembly by interacting with various ECM 

molecules like HA(351), tenascin R, fibulin 1 and 2, and elastin (352, 353). It is 

induced by PDGF and TGF-β.  
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Figure 1.9. Structure of versican isoforms. SP, signal peptide; Ig, immunoglobulin-
like; TR, tandem repeat; EGF, epidermal growth factor; CS, chondroitin sulfate; CRD, 
carbohydrate recognition domain; CBP, complement binding protein (345). 

Versican has been found co-localised with HA, CD44 and tenascin in the peri-cellular 

matrix of cultured fibroblasts and keratinocytes (347). Studies have suggested that 

versican might enhance tumour behavior and aggressiveness, through interaction with 

HA and activation of CD44, or by direct interaction with CD44 (354). Versican is 

also shown to bind to the glycoprotein, tenascin, which creates a local physical barrier, 

preventing other cell infiltration in the microenvironment; and aids in neural cell 

adhesion and migration and structural organisation of ECM (355). It has been also 

shown interacting with various other proteins which are involved in ECM formation 

and stabilization, like fibulins, fibrillin, fibronectin and collagen I. 
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The GAG chain of versican also binds to CD44 and a competitive inhibition assays 

showed that versican, HA and GAG chains all bind to the link module of CD44 and 

binding of versican:CD44 is independent of HA (354).  

From previous work in our laboratory, it has been shown that versican may have a 

role in HA cable assembly in the ECM (218) as it was co-localised with extracellular 

HA.  

 

1.7 Project Aims 

Hyaluronan assembly around PTCs has been shown in our previous work to play a 

crucial role in EMT. This change in the phenotype is influenced by various factors, 

including cytokines, growth factors, HA receptors and binding proteins. This thesis 

examines the specific role and interactions of HA with various HA-binding proteins, 

especially TSG-6. 

My specific objectives were: 

1) To assess the roles of IL-1β and TGF-β on the HA expression and its effect on 

the HA binding proteins and subsequent effect on PTC phenotype. 

2) To characterize the role of CD44, TSG-6 and other HABPs in HA assembly 

and PTC phenotype. 
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2.1 Tissue Culture      
2.1.1 Selection of a Proximal Tubule Cell Line 

The experiments in this project was done on proximal tubular epithelial cells (PTCs). 

As primary human PTCs have a relatively short half-life in vitro, the need for 

repeated isolation and confirmation of uniformity are major limiting factors for not 

using primary cells in these experiments. 

HK-2 cells are the transformed human PTCs which been derived by transduction with 

human papilloma virus 16 E6/E7 genes. Features of the HK-2 cells are identical to 

human proximal tubular cells including, 1) sodium-dependent and phlorizin-sensitive 

sugar transport; 2) adenylate cyclase responsiveness to parathyroid hormone; 3) 

positive for alkaline phosphatase, γ-glutamyl-transpeptidase, leucine aminopeptidase, 

acid phosphatase, cytokeratin, alpha-3-β-1 integrin and fibronectin, negative for 

Factor VIII-related antigen, 6.19 antigen and CALLA endopeptidase, which are the 

markers of distal tubular cells. 

The response of HK-2 cells, in comparison to primary proximal tubular cells, has not 

revealed any differences in innate behavior through extensive comparison. These 

include migration and proliferation and there were neither any changes in responses 

noted to cytokine stimulation. 

2.1.2 HK-2 Cell Culture Conditions 

HK-2 cells (American Type Culture Collection, Manassas, USA) were cultured in 1:1 

mix of Dulbecco’s Modified Eagle’s Medium, D-MEM and Ham’s F12 medium 

(Invitrogen, Paisley, UK), 20mM HEPES buffer (Invitrogen), 2mM L-glutamine 

(Invitrogen), 5µg/ml bovine insulin (Sigma-Aldrich, Poole, UK), 5µg/ml human apo-

transferrin (Sigma-Aldrich), 5ng/ml sodium selenite (Sigma-Aldrich) and 0.4µgml 

hydrocortisone (Sigma-Aldrich). Cells were kept in a humidified incubator (Cell 

House 170, Holton, Derby, UK) at 37oC in 5% CO2. The cells were maintained in 

fresh medium: phosphate buffered saline (PBS) (1:10) and the growth medium was 

replaced every 3 days until cells they were confluent. The HK-2 cells were used in 

confluent or sub-confluent monolayers as required for each particular experiment. 
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Prior to each individual experiment, they were growth arrested for 48 hours, in serum 

deprived medium. 

2.1.3 Sub-culturing HK-2 Cells  

Confluent HK-2 cells were sub-cultured by treatment with Trypsin:EDTA 

(Invitrogen) diluted 1:10 with PBS (Invitrogen). After 5 minutes, cells were gently 

agitated to detach from the flask. The detached cells were treated with equal volume 

of foetal calf serum (FCS) to neutralize protease activity. The cells were collected by 

centrifugation at 1500 rpm for 7 minutes at 20oC. The cells were re-suspended in 

culture medium and 10% FCS and seeded into fresh tissue culture flasks (Falcon, 

Becton Dickinson, Oxford, UK). 

 

2.2 Assessment of Cell Count and Viability 
2.2.1 Cell Count Using Haemocytometer 

HK-2 cells were trypsinised, as described above; and re-suspended in culture medium. 

Trypan blue dye was added to a sample of the cell suspension (final concentration 

0.2%) and incubated for 5 minutes at room temperature before pipetting a 10µl of 

sample into both chambers of a haemocytometer Neubauer slide (Weber Scientific 

Ltd, Teddington, UK). Trypan blue has a selective uptake in dead cells or tissues and 

not taken up by the cells in intact membranes. Hence it is used to estimate viable cells. 

The chambers were left to be filled by capillary action. Trypan blue dye is a vital stain 

recommended for use in estimating the proportion of viable cells in a population. 

Trypan blue contains two chromophores and they are negatively charged and these 

chromophores don’t react with the cells until the cell membrane is damaged. Thus, 

viable HK-2 cells with intact membrane will not take up the dye. Cells were counted, 

in 10 big squares, for accuracy of the counting, the cells touching square borders (top 

or right borders) were counted while cells touching the bottom or left borders were 

not counted. The viable and non-viable counts were done separately.  

The formula used to calculate cell number was (cells/ml) = (mean cell count/square) x 
(dilution factor)x104. 



	
   44	
  

The formula for calculating cell viability (%) = total viable/total viable and non-viable 
x100. 

2.2.2 Alamar Blue Assay 

Alamar Blue assay is designed to measure cell proliferation quantitatively. Alamar 

blue is a oxidation-reduction indicator. The assay incorporates an oxidation-reduction 

indicator (REDOX) that both fluoresces and changes colour in response to chemical 

reduction of the growth medium resulting from cell growth. The REDOX indicator is 

demonstrated to be minimally toxic to living cells, thus it is suitable for repeated use 

to establish a growth curve and to assess the cytotoxic effect of some compounds and 

cytokines. The fluorescence was measured at 544nm excitation wavelength and 

590nm emission wavelength, using Fluostar Optima plate readers (BMG Lab 

Technologies Ltd, Aylesbury, UK).  

A linear relationship between cell number and Alamar Blue fluorescence was 

established in HK-2 cells. The supernatant from the cells grown in the 24-well plate 

was aspirated and replaced with 10% Alamar Blue (1xAlamar Blue:10 serum-free 

medium). Cells were harvested by trypisinisation and re-suspended in serum-free 

medium. The culture medium volume was standardized in all wells and Alamar Blue 

reagent was added to make up 10% of the final volume. The plate was incubated for 

60 minutes at 37oC. 100µl aliquots of medium were transferred into a black 96-well 

plate (Thermo Lab Systems, USA) and fluorescence was measured. Cells were 

counted using a haemocytometer.  

 

2.3 RNA Extraction and Analysis  

2.3.1 Cell Lysis and RNA Extraction 

The HK-2 cells grown in 24-well plates, 500µl of TriReagent (Sigma-Aldrich) was 

added for each well and incubated at room temperature for 1 minute. TriReagent is 

guanidinium thiocyanate phenol. It denatures protein and RNAse and separate rRNA 

ribosomes. This allowed dissociation of RNA from the protein. 0.2 ml of Chloroform 

(Sigma-Aldrich) was added and incubated on ice for 5 minutes and later centrifuged 
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at 16000xg, for 20 minutes at 4oC. Chloroform separated the solution into two phases, 

upper aqueous phase with nucleic acid and lower organic phase with protein and 

lipids. RNA distributes in the superficial aqueous layer, this was collected and 

incubated along with 100µl of isopropanol (Sigma-Aldrich) and incubated overnight 

at -70oC, to precipitate RNA. The supernatants were removed and discarded. Two 

washes were performed with 1ml of 70% ethanol and repeat centrifugation performed 

at 16000xg for 20 minutes. After repeating the above step twice, the supernatant was 

removed and the pellets were air-dried for 10 minutes before dissolving in 11µl of 

sterile water. 

2.3.2 Measurement of RNA Quality and Quantification 

Beckman DU64 Single Beam Spectrophotometer (Beckman Instruments, High 

Wycombe, UK) was used to measure RNA absorbance at 260 nm (A260) and 

A280 ,using RNAse-free quartz cuvettes. The value of A260/A280 was calculated and the 

range in between 1.8 to 2.0 was considered significant for pure quality of RNA. The 

RNA samples were diluted 1:50 in sterile water. To calculate 1µg of RNA, the 

following formula was used, 

RNA (µg/ml) = Extinction coefficient (40) x dilution factor 50µl x A260 

2.3.3 Reverse Transcription 

Random hexameric (hexadeoxyribonucleotides) primers were used to initiate cDNA 

synthesis from internal sites within the mRNA molecules, which do not possess a 

poly (A)+ tail.  

The reaction mixture contained:  
1µl purified RNA (1µg/µl). 
1µl of random hexamers (100µM, Pharmacia Biosystems, Milton Keynes, UK). 
5µl of dNTP (2.5mM, Invitrogen) (mixed nucleotides – dATP, dCTP, dGTP and 
dTTP). 
2 µl of dithiothreitol (100mM). 
4µl of PCR buffer (Applied Biosystems, Beaconsfield, UK) (1/5 of the reaction 
volume). 
Total volume of the reaction was 20µl. Sterile water was added to complete the 
reaction volume to 20µl. 
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The first phase of the transcription reaction was done using a GeneAmp PCR System 

9700 Thermocycler (Applied Biosystems). The reaction was incubated for 5 minutes 

at 95oC, followed by cooling to 4oC for 2 minute. Then, 1µl of Superscript Reverse 

Transcriptase (200U/µl) and 1µl RNAsin (40U/µl, Promega, USA) were added to 

each reaction. For the second phase of the transcription using the Thermocycler, the 

samples containing RNA were annealed with random hexamers primers at 20oC for 

10 minutes, followed extension of the primers by using reverse transcriptase in the 

presence of four 4NTPs, to generate cDNA at 42oC for 60 minutes and finally 

denaturation at  95oC for 5 minutes; wherein separation occurs between hybridized 

complexes consisting of the RNA template and the newly synthesized cDNA; and 

deactivation of reverse transcriptase occurs. The single-stranded complementary DNA 

(cDNA) was stored at  -20oC until PCR was performed.  

2.3.4 Quantitative Polymerase Chain Reaction 

Q-PCR was carried out in a final volume of 20µl per reaction, containing 1µl of 

cDNA, 10 µl of Taqman Fast Universal master mix (20X) (Applied Biosystems), 8µl 

of sterile water and 1µl of Taqman gene expression assay primer and probe mix 

(Applied Biosystems). Ribosomal RNA (Applied Biostystems), an endogenous gene, 

was used as a reference gene and PCR was performed. A negative control (-PCR) was 

prepared with water substituted for the cDNA. 

Quantitative PCR was performed using 7900HT Fast Real-Time PCT System from 

Applied Biosciences, using Taqman Universal PCR Master Mix (Applied 

Biosystems), following manufacturer’s instructions.  

The comparative CT (Threshold cycle where amplification is in the linear range of the 

amplification curve) method was used for relative expression quantification of gene 

expression. The CT for the standard reference gene (ribosomal RNA) was subtracted 

from the target gene CT to obtain the delta CT (dCT) and mean value was calculated. 

Table 1 shows the Taqman gene expression assay. 

The target gene expression was calculated as a relative expression in comparison to 

the control samples using the following formula  = 2-(dct(1)-dct(2)). 
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dCT(1) is mean dCT of the experimental samples and dCT(2) is mean dCT calculated 

for the control samples. 

Table 1. Taqman gene expression assays (Applied Biosystems). 

Primer Catalogue Number 

TSG-6 Hs_00200180_m1 

HAS2 Hs_00193435_m1 

HAS3 Hs_00193436_m1 

HC3 (PαI) Hs_00746751_s1 

α-SMA Hs_00426835_g1 

E-cadherin Hs_01013958_m1 

Versican (CSPG4) Hs_00426982_g1 

ICAM-1 Hs_00164932_m1 

CD44 Ha_01075861_m1 

 

2.4 Transfection of HK-2 Cells 

The use of RNA interference (RNAi) has emerged as a powerful tool for the study of 

gene function in mammalian cells. The mechanism of RNAi is based on the sequence-

specific degradation of host mRNA through the cytoplasmic delivery of double-

stranded RNA (dsRNA) identical to the target sequence. The RNAi (RNA 

interference) initiated by DICER enzyme (endoribonuclease I  RNA-polymerase III). 

DICER cleaves dsRNA and facilitates formation of RNA-induced silencing complex 

(RISC). RNA-induced silencing complex (RISC) is used to degrade the target gene 

expression through an endogenous enzymatic pathway. One strand of the siRNA 

duplex (the guide strand) is loaded into the RISC with the assistance of argonuate 

proteins and double-stranded RNA-binding proteins by DICER. The RISC identifies 

the complementary mRNA sequence for the guide strand and is subsequently cleaved 

by argonuate near the middle of the hybrid. The cleaved RNA is digested by the 

endogenous nucleases and prevents translation. 

In siRNA transfection, chemically synthesized small interfering RNA 

oligonucleotides (usually 21 nucleotides) are transfected directly into the cytosol. 
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In shRNA, short hairpin RNA transfection involves the synthesis of shRNA 

synthesized within the cell by DNA vector-mediated production. shRNA is 

transfected as plasmid vectors or through infection of the cells. In these experiments, 

plasmid vector transfection was used. These vectors aids to insert siRNA into cells. 

This is mediated by RNA polymerase III (Pol-III). Pol-III uses U6 and H1 promoters. 

The tight hairpin turn of shRNA in nucleus is transcribed by Pol-III. shRNA causes 

DNA integration and consists of 2 complementary 19-22 bp RNA sequences linked 

by a short loop of 4-11nT similar to the hairpin as found in naturally occurring 

miRNA. Following transcription of shRNA, they are exported to the cytosol where it 

is processed into siRNA by Dicer, which is an endogenous enzyme. This 

endogenously produced siRNA than binds to target mRNA and is incorporated into 

RISC complex and targets the target-specific mRNA (356).  

2.4.1 Small Interfering RNA Transfection 

Transient transfection of HK-2 cells was performed with specific siRNA nucleotides 

(Ambion, US) targeting TSG-6(TNFAIP6), HAS2, HAS3, CD44, ITIH3, Bikunin and 

versican (CSPG2). The siRNA sequence consisted of 21 nucleotides. 

With TSG-6 siRNA and ITIH3 siRNA, transfection was performed with 3 different 

sequences to optimize the experiments. 

Lipofectamine 2000 transfection reagent (Invitrogen) was used according to the 

manufacturer’s protocol. 2µl transfection reagent was diluted in 98µl of Opti-MEM 

reduced growth medium (Invitrogen) and incubated at room temperature for 5 

minutes. A concentration of 20µM was obtained by diluting the siRNA oligos into 

100µl OptiMEM  reduced growth medium. The mix of transfection reagent and 

siRNA were combined and incubated for 10 minutes at room temperature. The 200µl 

of the transfection reagent mix was added to the 24-well plate or permanox (50µl) 

chamber slides (Lab-Tek Chamber Slide System, Nunc, Rochester, USA) and cell 

concentrations of 1x105 cell per ml were calculated, using the haemocytometer, as 

described above, and pipetted into the wells from the side of the well wall. The 

transfected cells were incubated at 24 hours with 5% CO2 at 37oC. A scrambled 

siRNA sequence (Ambion), that bears no human gene analogy, was simultaneously 

transfected into HK-2 cells and acted as negative control.  
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The following are the siRNA ID for the targeted genes (Table 2). 

Table 2. Silencer Select pre-designed siRNA. 

Gene Sequence (5’->3’) siRNA ID 

TSG-6 (1) GCUAAGGCGGUGUGUGAAUtt 139707 

TSG-6 (2) GCACGGUCUGGCAAAUACAtt 139705 

TSG-6 (3) GCUCACCUACGCAGAAGCUtt 139706 

CD44 CGUGGAGAAAAAUGGUCGCtt 114068 

HAS3 CCUUCUCGUGCAUCAUGCAtt 119476 
(CSPG2) 
(Versican) CGAUGCCUACUUUGCCACCtt 146419 

AMBP (Bikunin) GCAGGUAUUUCUAUAAUGGtt 121327 

ITIH3 (HC3) (1) GGAAGACUAUCUGAAUUUCtt 11293 

ITIH3 (2) GGUCUACAGUACCAAAAUCtt 11112 

ITIH3 (3) GGAGGUUUCCUUUGAUGUGtt 11205 

 

To obtain highest knockdown and to balance cell viability, the experiment was 

optimized at the following points: 

• Concentration of siRNA between 10nM to 100nM was used to obtain highest 

level of gene knockdown. 

• Changing the confluency of the cells, between 40-90%. 

• Varying the length of transfection from 12 hours – 72 hours (Figure 2.1). 

• Used HK-2 cells with lower passage (passage 20) to get better knockdown. 

• Changing the transfection agent to that from a different company. 

• Changing the siRNA scramble to 3 different nucleotide sequences (Ambion). 

• Done siRNA transfection in HK-2 cells with different genes including HAS2, 

HAS3, CD44 and versican at different concentrations (Figure 2.4-2.6). 
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(A)  

(B)  

(C)  

Figure 2.1. TSG-6 siRNA. HK-2 cells transfected with siRNA for TSG-6 at 33nM. 3 
different TSG-6 siRNAs were used at different time points, 24 hours, (A) 48 hours 
(B) and 72 hours (C). The transfection and Q-PCR was performed as discussed 
previously. The concentration of siRNA used in this experiment was 30nM. 
Untx=untransfected HK-2 cells. The relative expression of TSG-6 was analysed to 
assess its knockdown. N=3 experiments with triplicates in each experiment, statistical 
analysis was done by paired t test. *=P<0.05 in comarison to scramble control. 
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Figure 2.2. siRNA TSG-6 at 100nM and 3 different scrambled sequence as 
control. HK-2 cells transfected with siRNA TSG-6 at 100nM for 24 hours (A). 3 
different scrambled siRNA were transfected into HK-2 cells (B). The transfection and 
Q-PCR was performed, as discussed previously. 30nM scrambled siRNA 
concentration was used (B). Untx=untransfected HK-2 cells. The relative expression 
of TSG-6 was analysed to assess its knockdown. N=3, statistical analysis was done by 
mean±SEM. 

 

 

Figure 2.3. siRNA transfection of CD44, HAS2 and HAS3. HK-2 cells were 
transfected with CD44 (A), HAS2 (B) and HAS3 (3) siRNA for 24 hours with 30nM 
siRNA. Transfection was done as described previously. Q-PCR was performed to 
analyse the relative expression and knockdown of respective genes. N=3. Statistical 
analysis was performed by paired t test. *=P<0.05 in comarison to scramble control. 
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Figure 2.4. Versican siRNA transfection. HK-2 cells were transfected with versican 
siRNA at 24 hours (A), 48 hours (B) and 72 hours (C). Two different concentration 
were used, 30nM and 100nM as shown on the graphs. The transfection and Q-PCR 
was performed as discussed previously. Untx=untransfected HK-2 cells. The relative 
expression of Versican was analysed to assess its knockdown. N=3, statistical 
analysis was performed by paired t test. *=P<0.05 in comarison to scramble control. 
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2.4.2 Short Hairpin RNA Transfection 

 

2.4.2.1 Preparation of YT Plates and YT Broth 

YT plates and YT broth (2x) was used for growing the colonies. It is a nutritionally-

rich growth medium designed for growth of recombinant strains of E.coli on agar 

plates. The medium contains nitrogen and growth factors and enables bacteriophage 

production. 

The ingredients used for YT plates are 16 g bacto-tryptone, 10g yeast extract, 5 g 

sodium chloride and 20g agar made up to 1 litre with distilled water. This was 

autoclaved to sterilise and then cool to 65oc, this was followed by addition of 

ampicillin (100µg/ml) and poured into petri dishes. 

The YT broth (2X was prepared  from 16g bacto-tryptone, 10g yeast extract and 5g 

sodium chloride) and made up-to 1 litre with distilled water.  

2.4.2.2 Oligo Dilution and Annealing 

The oligo nucleotide sequence for TSG-6 transfection was from the TSG-6 (1) siRNA 

sequence which was GCUAAGGCGGUGUGUGAAUtt. This nucleotide sequence 

was sent to Dundee University for sequencing into 2 DNA oligos as sense and anti-

sense, labeled as oligo A and oligo B respectively.  

These oligo sequences were annealed after forming  a concentration of 1µg/ml; and 

heated to 90oC for a minute and rapidly transferred to a 37oC water bath and 

incubated for 15 minutes. 

2.4.2.3 Ligation of Hairpin Insert into the psiSTRIKE Vectors 

This step involved ligating the annealed oligos into the psiSTRIKE vectors (Promega, 

USA), using T4 DNA ligase and 2X rapid ligation buffer, as per protocol, at room 

temperature for one hour. This incorporates the oligos into the vector giving a hairpin 

structure.  
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2.4.2.4 Transformation reaction 

For the transformation reaction, Bioline (London, UK) gold efficiency α-select 

competent cells 109 cfu/µg (BIO-85027) were used. The reaction was performed 

according to the protocol of the Company. Briefly this involved thawing the 

competent cells, followed by adding 5µl of DNA vector into 50µl of competent cells 

and incubating on ice for 30 minutes. This was then transferred to 42oC water bath for 

exactly 45 seconds to heat-shock the competent cells and replace on ice for 2 minutes. 

Subsequently, 950µl of super optimal broth with catabolite repression with added 

glucose (SOC) was added to sample. The SOC medium is nutrient-rich growth 

medium generally for E.coli. It is made up of 2% w/v bacto-tryptone, 0.5% w/v yeast 

extract, 10mM NaCl, 10mM glucose, 2.5mM of potassium chloride, 10mM 

magnesium chloride and 10mM magnesium sulphate. This is centrifuged at 200rpm 

for one hour at 37oC.  This was followed by plating 50-100µl of cells onto YT plates 

and incubated at 37oC inverted overnight. Colonies formed, Midiprep were prepared 

using 5ml YT broth and by adding 100µg/ml of ampicillin.  

Single colony was picked and placed in the liquid medium and incubated at 37oC 

overnight in an orbital shaker at 200rpm. A 1µl aliquiot of colony formed was 

incubated with larger volumes of YT broth at 370C overnight and were subsequently 

ready for Midiprep.  

2.4.2.5 Preparation of Midiprep 

Qiagen HISPEED (California, USA) Plasmid Purification Kit was used for Midiprep, 

according to the protocol. This procedure allows isolation of ultrapure, supercoiled 

DNA plasmids. Midiprep occurs by plasmid DNA binding to anion-exchange resin 

and RNA, proteins, dyes and impurities are removed.  

2.4.2.6 Screening of Inserts Using Pst I Digestion 

In this procedure, the restriction enzyme digests the Pst I site to yield 2 DNA 

fragments, one of 3047 bp and other of 1379 bp (Figure 2.5). The reaction was 

achieved according to the Promega psiSTRIKE Puromycin Vector protocol. Briefly, it 

involves using 10X buffer, 10X BSA, 1 µg of DNA, 1µl of Pst I restriction enzyme 
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and incubating the reaction at 37oC for 4 hours. This was followed by agarose gel 

electrophoresis, showing TSG-6 DNA (Figure 2.6).  

Figure 2.5. psiSTRIKE puromycin vector     Figure 2.6. Agarose gel showing 

       TSG-6 DNA.  

2.4.2.7 Stable Transfection 

The vector with shTSG6 and shRNA was transfected into HK-2 cells using 

Lipofectamine LTX and Plus Reagent (Invitrogen, USA) in 12-well plates. Cells were 

serum-deprived for 4-6 hours, prior to the transfection to prevent the ineffectiveness 

of the puromycin. The puromycin kill curve was optimised to HK-2 cells by previous 

work at the Institute of Nephrology (357).  

The transfected cells were incubated at 37oC with 5% CO2 and the culture medium 

replaced every 72 hours with puromycin supplements. The cells were transferred to 

T75 flasks as they became more confluent. After they were in the transfection 

medium for 21 days, cells were grown in 96-well plates to isolate single lines. Six 

single line were identified and grown to confluent monolayers in T75 flasks. These 

were checked for TSG-6 expression by performing Q-PCR with the results shown in 

Figure 2.9. The cells lines were labelled alphabetically, the cell line clone labelled ‘L’ 

was choosen for all the future experiments, as it displayed the maximum gene 

silencing of TSG-6.  

     shTSG-6        shScr 
      -          +        -        +       PstI 
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Figure 2.9. Relative expression of TSG-6. HK-2 cells were stably transfected with 
shRNA; single cell line clones were grown to confluent monolayers and Q-PCR 
performed. The experiment was done in N=3 experiments. The single cell line clones 
were labelled alphabetically and 6 clones were randomly choosen. The cell clone 
labelled L had a significant TSG-6 knockdown effect.  

Reasons not to pursue siRNA transfection 

As described in siRNA section of this Chapter, despite various optimisation 

procedures adapted for siRNA transfection, there was disruption in the cell 

morphology and cell viability and increasing cell death was noticed. Though there 

was significant downregulation of scramble siRNA because of the cell death and 

toxicity, I had to look for other methods of gene silencing TSG-6.  

 

2.5 Hyaluronan Measurement and Molecular Weight 
Analysis 

2.5.1 Determination of HA Concentration 

Enzyme linked immunosorbent assay (ELISA) technique was used to analyse the HA 

concentration. This was assessed by using a commerical available kit (Coregenix Inc., 

Colorado, USA). The assay uses a naturally occuring hyaluronan binding protein 

(HABP) to specifically capture HA and an enzyme-conjugated (horseradish 

peroxidase, HRP) version of the HABP to detect and measure the HA captured from 

the sample. The intensity of the colour after the final step is measured in a 

spectrophotometer at 450 nm. HA levels in experimental and control samples were 
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determined against a reference curve prepared from the reagent blank (0ng/ml) and 

the HA reference solutions provided with the kit (50, 100, 200, 500 and 800ng/ml). 

The assay has no cross-reactivity to other glycosaminoglycans. The assay is sensititve 

to 10ng/ml. To ensure that equal cell numbers were studied in these experiments, 

alamar blue readings were taken for all the samples and there was no significant 

difference between them. All the measurements were done using the same amount of 

medium and HA results were expressed as an absolute concentration of HA. Briefly, 

diluted sample and HA reference solutions were incubated in HABP-coated 

microwells allowing binding of the HA in the samples to the HABP. The wells were 

then washed and HABP conjugated with HRP added to the wells, forming complexes 

with bound HA. When chromogenic substrate was added a coloured reaction occured. 

Stopping solution was added to all wells and the intensity of the resulting colour 

measured in spectrophotometer.  

2.5.2 Analysis of 3H-Radiolabelled Hyaluronan 

The HK-2 cells were grown to confluence in serum-deprived medium for 48 hours 

and stimulated with either IL-1β or TGF-β for a further 24 hours. Following  this, 

metabolic labelling with 20µCi/ml 3H-glucosamine (Amersham Biosciences, UK) was 

done for 24 hours. The supernatant was removed and the cells were washed with PBS, 

the volume of the supernatant and the wash were combined to form conditioned 

medium (CM) extracts. Equal volume of 200µg/ml pronase  in 100mM Tris-HCl, pH 

8.0, 0.05% sodium azide was added to each CM for 24 hours. The remaining cell 

monolayers were incubated with 10µg/ml trypsin (Sigma-Aldrich) in PBS for 10 

minutes at room temperature to remove peri-cellular protein bound 3H-hyaluronan 

and these were the trypsin extract (TE). An equal volume of 200µg/ml pronase in 2X 

pronase buffer was added to the extract for 24 hours at 37oC. Subsequently, to the cell 

layer, 100µg/ml pronase in 1X pronase buffer was added and the solution was 

centrifuged, the cells were incubated for 24 hours at 37oC to solubilise the remaining 

cell-associated 3H-hyaluronan, termed the cell extracts (CE). 

Each of the samples were passed over DEAE-Sephacel ion exchange columns 

(Amersham Biosciences, UK), equilibriated with 8M urea in 20nM BisTris buffer, pH 

6.0 containing 0.2% Triton-X100. This step removed any low molecular weight 

peptides and unincorporated radiolabel. HA was eluted in 8M urea buffer, containing 
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0.3M NaCl, until the radioactivity returned to background. Each sample was split into 

two and the HA was precipitated with three volumes of 1% potassium acetate in 95% 

ethanol, in the presence of 50µg/ml of each HA, heparin (Sigma-Aldrich) and 

chondroitin sulphate (Sigma-Aldrich) as co-precipitants at 4oC overnight. The 

precipitated HA was collected by spinning at 1500rpm for 10 minutes and washed 

twice with 95% ethanol, before leaving the precipitate to dry at room temperature for 

30 minutes. 

The first half of each sample was resuspended in 500µl of 4M guanidium buffer and 

analysed on a Sephacryl S-500 (Amersham Biosciences) column calibrated with 4M 

guanidium buffer. To confirm that the chromatography profile generated was the 

result of radiolabelled HA, the second half of each sample was digested at 37oC 

overnight with 1 unit of Streptomyces hyalurolyticus (ICN Pharmaceuticals, 

Basingstoke, UK) in 200µl of hyaluronidase buffer (20nM sodium acetate containing 

0.05% sodium azide and 0.15 M sodium chloride) at 37oC for 24 hours, prior to 

addition of equal volume of 4M guanidium chloride buffer. The samples were run 

through a dissociating Sephacryl S-500 column and collected using a fraction 

collector (Pharmacia Biotech, NJ, USA, pump speed =2.4 ml/hour, 0.6 ml/fraction) 

prior to quantification of radioactivity using a β counter (Packard Tri-Carb 1900 

Liquid Scintillation Analyser, USA). For β counting, an equal volume of 70% ethanol 

was added to each tube in addition to 4ml of scintillation liquid (InstaGel Plus, Perkin 

Elmer Life and Analytical Science, MA, USA). The column was calibrated with 3H-

glucosamine hydrochloride, Mr 215 Da; 35S-chondroitin sulphate, Mr 24x103 Da; 35S-

decorin, Mr 10x104 Da; and 35S-versican, Mr 1.3x106 Da.  

Since Streptococcal hyaluronidase will not degrade other GAG, the value of the 

hyaluronidase-treated portion substracted from the non-hyaluronidase-treated protion 

was taken as hyaluronan-associated radioactivity.  

 

2.6 Immunohistochemistry 

Imunohistochemistry experiments were performed using 8-well chamber slides 

(Nunc, Thermo Fisher Scientific, Essex, UK), and analysed by UV-light microscope 
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on a Leica Dialux 20 Fluoroscence Microscope (Leica Microsystems UK Ltd, Milton 

Keynes, UK). HK-2 cells were serum-deprived to 48 hours and were treated with 

transfection or stimulated with cytokines, as required for each experiment. Cells were 

fixed using 100% ice-cold methanol. Methanol denatures and fixes the samples. 

Methanol-fixed samples were shown to preserve their antibody binding sites, as 

epitopes are not covalently modified. After fixation, cells were incubated with serum-

free medium for 60 minutes at room temperature. Biotinylated HABP (β-HABP) 

5µg/ml was the primary antibody used to stain HA, which was of bovine source 

(Seikagaku, Tokyo, Japan), was added to the cells and incubated at 4oC overnight. 

Following which cells were washed with PBS three times and incubated with 

fluorescein-conjugated avidin-D 20µg/ml (Vecor Labs, California, USA) for 60 

minutes at room temperature. The cells were then washed with PBS (x3) and mounted 

with Vectashield Mounting Medium (Vector Laboratories, Peterborough, UK) with 

DAPI.  

 

2.7 Cell Migration Studies 

Confluent monolayers of HK-2 cells were grown to confluency and growth-arrested 

for 48 hours in 24-well plates (Falcon). Following this a perpendicular scratch wound 

was formed using a 1 ml large tip, the supernatant was removed and cell debris. The 

cell monolayer was washed with PBS and treated with TGF-β (5ng/ml) or IL-1β 

(1ng/ml) for 24 hours. Migration of HK-2 cells into the denuded area was monitored 

using Axiovert 100M Inverted Microscope fitted with a digital camera (ORCA-1394, 

Hamamatsu Photonics, Japan) and images of the denuded areas were taken every hour 

for 72 hours. The rate of cell motility was calculated by the cells entering the denuded 

area as pixels covered, or reduced from the previous time point. A positive control 

was included in all experiments and it was composed of standard culture medium with 

2% FCS. 5-BrdU (5-bromo-2’-deoxyuridine) labelling was used to assess cell 

proliferation in the scratch-wound experiments, as performed previously in our 

laboratory (358). 
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2.8 Particle Exclusion Assay 

HA-dependent peri-cellular matrix was visualised by the particle exclusion assay, in 

which formalised horse erythrocytes (TCS Biosciences Ltd, Claydon, UK) were 

excluded from the cell membrane, due to the size of the coat and the negative charge 

of HA. The HK-2 cells were grown to sub-confluent monolayers in 35mm petri dishes 

and growth-arrested for 48 hours. They were stimulated with IL-1β (1ng/ml) or TGF-

β (5ng/ml) for 24 hours and washed with PBS twice. Formalised horse erythrocytes 

were initially washed in PBS and centrifuged at 1000xg for 7 minutes at 4oC. This 

step was repeated twice to remove any traces of sodium azide. The pellet was 

resuspended in serum-free medium at 108 cells/ml. 500µl of erythrocytes suspension 

was added to each 35mm dish, swirled gently and incubated at 37oC for 15 minutes, 

to allow the erythrocytes to settle around the cell layer. An Axiovert 100M Inverted 

Microscope with digital camera (ORCA-1394, Japan) was used to capture images. 

 

2.9 Statistical Analysis 

All experiments were done at least in triplicates. Analysis of variance (ANOVA) was 

used to assess the statistics in a group experiment, followed by paired and unpaired 

tests for sub-analysis of the samples within the group. In the whole group analysis, 

Friedman test was used for matched analysis as in time-point experiments with 

cytokine stimulation, followed by paired non-parametric analysis within the sub-

group with Wilcoxon signed-rank test. In experiments involving transfection unpaired 

non-parametric tests were used, which involved an ANOVA Kruskal-Wallis test 

across the group and sub-group analysis was done by the Mann-Whitney test. In cell 

migration experiments, paired t test were used as the values was assumed to be within 

Guassian curve distribution.  
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Chapter 3 

Effect of IL-1β and TGF-β on HA and 

HA Binding Proteins 
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3.1 Introduction 

In renal disease or any other solid organ disease, leading to end stage renal disease 

(ESRD), fibrosis is the ultimate outcome. Fibrosis is the result of excessive 

accumulation of ECM, leading to disruption of normal tissue architecture and 

function. Myofibroblasts are the cells that synthesize this expanded ECM and hence, 

determine progression of the disease (359). Myofibroblasts have a contractile 

phenotype and express α-smooth muscle actin (α-SMA) as a characteristic phenotypic 

marker and their presence is one of the earliest markers of poor prognosis in a range 

of fibrotic diseases (96).  

In CKD, irrespective of the aetiology, progression is related to tubulointerstitial 

disease and the appearance of myofibroblasts (32, 360) in the interstitium. 

Myofibroblasts are atypical fibroblasts with features of a fibroblast and as smooth 

muscle cell, they are responsible for the synthesis and accumulation of interstitial 

ECM components, such as type I and III collagen and fibronectin, which leads to 

formation of the fibrotic lesion (361). They are contractile cells expressing features of 

smooth muscle cells and express α-SMA. Numerous growth factors, cytokines and 

hormones have been implicated as the mediators of fibrosis, including TGF-β, IL-1, 

TNF-α, angiotensin-II, FGF and PDGF. EMT is observed in PTCs in CKD and has 

been suggested as a major source of myofibroblasts (362-365). PTCs lose their 

polarity during disease process and undergo morphological changes acquiring actin 

and migrating along the tubular basement membrane (366). This is accompanied by 

the down-regulation of epithelial cells marker, like E-cadherin; and up-regulation of 

the mesenchymal cell markers, like vimentin (362), fibroblast specific protein1 

(FSP1) and α-SMA (367, 368).  

HA has been shown to play an important role in the formation of ECM and in 

defining the phenotype of PTCs. HA is not normally expressed in healthy tissues, but 

its presence increases in acute and chronic kidney diseases (146, 215). The increase in 

HA correlates with increased proteinuria and progressive renal impairment (146). HA 

is synthesized by hyaluronan synthase (HAS) enzymes and HAS2 and HAS3 have 

been shown to be expressed in the kidney (152, 153). HA exerts its signaling effect 

via binding to its receptors, CD44, RHAMM and LYVE-1. CD44 has a HA binding 
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domain of 160 amino acids containing a Link module. The HA binding sites in TSG-6 

and CD44 have similar locations on the Link module, suggesting this site is conserved 

across the superfamily (369).  

The distribution of HA around PTC has been demonstrated to occur in two patterns, 

‘coats’ and ‘cables’. The HA coat is highly hydrated and facilitates proliferation and 

migration (209). Previous work at the Institute of Nephrology has demonstrated that 

overexpression of HAS2 in PTCs induces a migratory and pro-fibrotic phenotype and 

the accumulation of HA peri-cellular coat. In contrast, overexpression of HAS3 in 

PTCs has no effect on the phenotype, but leads to accumulation of HA peri-cellular 

cables (132, 218). HA cables may be formed in the presence of serum in most cells, 

but have been shown to be produced in the absence of serum in PTCs (213). HA 

binding proteins (HABP) have an important role in the reorganization of peri-cellular 

HA, when it is released from the cells; and assembles into peri-cellular and 

extracellular matrices (370). TSG-6 has been shown to play a major role in cross-

linking of HA:HC (heavy chain) by covalent binding, where HC is  a component of 

inter-α-inhibitor (IαI) and pre-α-inhibitor (PαI). This interaction is crucial in the 

stabilisation of the ECM around the PTCs (314). TSG-6 interacts with pentraxin-3 

(PTX3) and thrombospondin-1 (TSP1), which aids in its interaction with HA and 

helps transfer of HC to HA, respectively (284, 371). HA cables bind to monocytes via 

CD44 receptors, facilitated by versican (372). It is possible that cable HA and 

monocyte interaction prevents leukocyte activation by preventing interaction with 

ICAM-1 (intercellular adhesion molecule-1) on the cell surface (212).  

The activity and phenotype of PTCs are altered by cytokines. The major cytokines 

studied previously are interleukin-1β (IL-1β) and transforming growth factor-β (TGF-

β) as mediators of pro-inflammatory or fibrotic changes, respectively. 

IL-1β is a pro-inflammatory cytokine which has been shown to mediate increased HA 

generation. IL-1β has been linked with endoplasmic reticulum (ER) stress, as it is 

linked with excess nitric oxide (NO) production by NF-κB signaling pathway (373). 

HA fragments are shown to elicit the expression of pro-inflammatory cytokines and 

also activate iNOS and MMPs through HA:CD44 interaction (374). CD44 stimulation 

by HA binding also activates the PKC family members (375) which then activate NF-

κB, responsible for the expression of IL-1β and TNF-α, which are responsible for the 
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degradation of the ECM as described in Chapter 1 (376). In arthritis, IL-1β plays a 

crucial role in the induction of degradative metabolic events in articular cartilage. 

This degradation leads to the production of a substantial number of small HA 

fragments that contribute greatly to the amplification of the inflammatory process 

(374, 377).  

In our previous studies, we have shown that IL-1β increases the expression of HA in 

PTCs, associated with NF-κB activated transcription of HAS2. The NF-κB pathway 

regulates the cellular responses to a variety of stimuli, including cytokines, D-glucose, 

bacterial and viral infections; and activation of cellular stress pathways (133). IL-1β 

increases the expression of ICAM-1 and VCAM-1 in many cells including glomerular 

endothelial cells, PTCs and fibroblasts (378). The up-regulation of ICAM-1 enhances 

monocyte binding to HA to induce inflammation. HA cables were lost on stimulation 

of PTC treated with IL-1β, thus increasing binding of monocytes to ICAM-1 on cell 

surface and induce inflammation (218). When PTC is co-cultured with monocytes, 

there is activation of NF-κB signaling and induction of ICAM-1 expression in PTCs, 

thus promoting the contact between monocytes and PTCs and hence, leading to EMT 

(379). 

TGF-β is the principal growth factor implicated in the PTC phenotype transition of 

EMT and in the progressive disease (55, 367, 380).  Masszi et al proposed a two-hit 

model as a requirement for EMT, the first was an initial injury phase and the second 

involved TGF-β. Disruption of cell-cell contact in the injury phase and initiator of 

EMT (68). TGF-β-dependent phenotypic changes in PTCs are associated with the 

accumulation of HA and this relation is also demonstrated in fibroblasts and their 

enhanced migration (221, 381). At the Institute of Nephrology, we have shown that 

EMT occurs in PTCs when stimulated with TGF-β, leading to disruption of epithelial 

phenotype and expression of mesenchymal cell markers (380). Stimulating PTCs with 

TGF-β leads to a sustained decrease in E-cadherin expression which is a marker of 

epithelial cell, and associated loss of cell-cell contact (362). There is disassembly of 

adheren junctional protein complexes, with the release of β-catenin from the complex, 

along with the loss of cell contact in the PTCs when stimulated with TGF-β (55). 

Thus, the up-regulation of β-catenin influences the binding of E-cadherin to it 

intracellularly and eventually leading to loss of cell-cell contact.  
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We know that both IL-1β and TGF-β have an effect on HA, but we have never 

compared the two with respect to HABPs.  

The work outlined in this chapter aimed to establish the role of TGF-β and IL-1β on 

HA and HA mediated changes in PTCs. As HA assembly is crucial in the ECM and 

maintaining cell phenotype, there has been significant role of HABP. This chapter 

investigates how HABPs alter with stimulation with IL-1β and TGF-β and affects the 

cell phenotype.  

 

3.2 Results 
3.2.1 Effect of TGF-β and IL-1β on Proximal Tubular Epithelial Migration 

 

HK-2 cells were grown to confluence and serum-deprived for 48 hours in 12-well 

plates. The cells were treated with IL-1β (1ng/ml) and TGF-β (5ng/ml) and 

simultaneously the monolayers were scratch-wounded. The time-lapse microscope 

was used to monitor migration into the denuded area. In the previous experiments 

performed in our laboratory, it was shown the cells remain viable in a non-

proliferating state and this was examined by staining the cells with BrdU. The cells at 

the wound edge did not show uptake of BrdU stain, but there was uptake of the stain 

away from the wound edge (64, 132). In the present study, as shown (Figures 3.1 

A&B), PTCs stimulated with IL-1β migrated at a significantly faster rate, compared 

to control cells and those treated with TGF-β. In contrast, TGF-β stimulated PTCs 

showed a slower pace of migration, in comparison to control cells.  

                                                                                                                                                                           



	
   66	
  

 

 
Figure 3.1. HK-2 cells migration in response to IL-1β and TGF-β stimulation. 
HK-2 cells were grown to confluent monolayer and growth arrested in serum-free 
media for 48 hours. The cell layer was scratched as described in Chapter two. The 
supernatant media was washed to remove any detached cells and subsequently these 
cells were treated with IL-1β (1ng/ml) and TGFβ (5ng/ml). The rate of cell migration 
was observed at different time points by time-lapse microscopy, as described in the 
Methods section. The data is expressed as (A) area of denuded surface covered by the 
migrating cells in a representative experiment and was measured in percentage of 
pixels closure per hour and (B) gradient of pixels closure/hour of the denuded area. 
N=5 experiments. Statistical analysis was performed by paired t test: *, p<0.05 was 
considered significant, ***, p<0.001.  
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3.2.2 Analysis of E-Cadherin and α-Smooth Muscle Actin Expression 

E-cadherin is the marker of epithelial cell phenotype and α-SMA is a marker of 

myofibroblasts. The HK2 cells were serum-deprived for 48 hours, the supernatant was 

removed and the cells washed with PBS and replaced with either IL-1β (1ng/ml) or 

TGF-β (5ng/ml). As shown in Figure 3.2 cells were stimulated to different time points 

between 0 to 72 hours. Q-PCR was performed and E-cadherin and α-SMA mRNA 

were quantified.  

Following stimulation of HK2 cells with Il-1β, there was a reduction in E-cadherin 

mRNA levels from the 8 hours time-point and reached its lowest level at 24 hours,  

but this was not statistically significant (Figure 3.2A). However, mRNA expression 

for α-SMA initially increased by nearly 1.5 fold and the levels gradually reduced to a 

significantly low level at 72 hours (Figure 3.3A). PTCs stimulated by TGF-β, when 

analysed by Q-PCR, showed there was gradual decline the E-cadherin mRNA levels 

which was significantly reduced to nearly 50% by 48 hours and remained low beyond 

that time-point (Figure 3.2B). In the parallel experiments, the expression of α-SMA 

mRNA levels raised to a significant level by nearly 2 fold at 48 hours and remained 

high (Figure 3.3B).   
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Figure 3.2. A & B. HK-2 cells were grown to confluence and were incubated in 
serum-free medium for 48 hours. Cells were treated with IL-1β (1ng/ml) (Figure 
3.2A) and incubated at 37oC for different time points. A parallel experiment was done 
in similar conditions and cells were treated with TGFβ (5ng/ml) (Figure 3.2B). The 
cells were extracted by trypsinisation as described in the methods chapter; and mRNA 
extracted and cDNA prepared. The experiments were done in N=5. RT-QPCR was 
performed as in the protocol and the cT values of E-cadherin was compared for 
relative expression with ribosomal RNA acting as an endogenous gene. Statistics 
were analysed by repeated ANOVA Friedman test and paired non-parametric test 
Wilcox matched-pairs signed rank test for between time-points analysis, p<0.05 was 
considered as significant, * denotes P<0.05. 
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Figure 3.3 A & B. HK-2 cells were grown to confluence and were incubated in 
serum-free medium for 48 hours. These cells were treated with IL-1β (1ng/ml) 
(Figure 3.3 A) and TGFβ (5ng/ml) (Fig 3.3 B). The cells were extracted by 
trypsinisation, as described in the Methods chapter, mRNA extracted and cDNA were 
prepared. The experiments were performed in triplicate. RT-QPCR was performed as 
in the protocol and the cT values of α-SMA were compared for relative expression 
with ribosomal RNA acting as an endogenous gene. Statistics were analysed by 
repeated ANOVA Friedman test and paired non-parametric test Wilcox matched-pairs 
signed rank test for between time points analysis, * p<0.05 was considered as 
significant. 
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3.2.3 Visualisation of Peri-cellular Assembly of HA Cable and Coat 

UV light florescence microscopy was used to examine the organization of HA in the 

peri-cellular and extracellular areas around the HK-2 cells. HA was identified by 

staining the cells with biotinylated-HABP and with secondary stain fluorescent-

conjugated avidin-D. Cell nuclei were stained with DAPI and visualized as red 

structures.  

 

HA distribution was assessed in HK-2 cells grown to sub-confluence monolayers and 

were serum-deprived for 48 hours, these cells demonstrated HA cables which were 

seen as wire-like structures arising from the cell surface, spanning several cell lengths 

(Figures 3.4 A&B).  

 

When HK-2 cells were stimulated with IL-1β (1ng/ml), HA cables were abolished and 

were peri-cellular HA coat assembly was identified as diffuse distribution of HA 

around the cells, with varying thickness depending on the treatment time. The current 

study demonstrated that with longer exposure of HK-2 cells to IL-1β, there was 

increased thickness of peri-cellular coat noted as shown in Figures 3.4 C-F. 

 

HK-2 cells treated with TGF-β, demonstrated similar effects as in IL-1β treated cells, 

with regards to HA cables and their removal. However, the peri-cellular HA coat was 

not found to be as thick as in the IL-1β stimulated cells and there was no time-related 

changes noted in the thickness of the HA coat (Figure 3.5 A-D).  

 

HA cables structure were found to be arising from the cytoplasmic and peri-nuclear 

area, when visualized by confocal microscopy and was also demonstrated in our 

previous experiments (218).  

 

Particle exclusion assays were performed using formalized erythrocytes to assess 

peri-cellular HA distribution. Peri-cellular HA coats were noted to be an important 

finding in the EMT and myofibroblast phenotypic transformation in our previous 

experiments. In this experiment the erythrocytes were excluded from the cell 

membrane of the PTCs because of the repulsion from the negatively charged HA and 

its large molecular weight. This was seen as a clear zone around the HK-2 cells and 
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this was in parallel to the HA coat visualized in the UV microscopy, as described 

above. The cells that were incubated with the IL-1β formed a thick peri-cellular coat, 

which was visualized in the particle exclusion assay as a ‘halo’ around the HK-2 cells 

(Figure 3.6B).  

In contrast, the TGF-β stimulated PTC did not demonstrate the exclusion area (Figure 

3.6C). The control cells which were serum-deprived showed no HA coat (Figure 

3.6A). This analysis confirms the above finding form fluorescence microscopy that 

PTC stimulated with IL-1β form a thick peri-cellular HA coat assembly and that 

increase in size with the time.  
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A B   

C D  

E F  

Figure 3.4 (A-F). HK-2 were grown to monolayers of confluent cells and growth 
arrested for 48 hours. They were treated with IL-1β (1ng/ml) over different time 
points. The slides were fixed with 100% methanol and stained with DAPI, as 
described in chapter two.  
 
A and B x100 magnification are the HK-2 cells growth-arrested and used as 

control demonstrating peri-cellular HA cable.  
C  HK-2 cells x100 magnification stimulated with IL-1β at 12 hours.  
D  x250 magnification at 12 hours 
E  x250 magnifications at 24 hours and at 48 hours  
F  x250 magnification at 48 hours  
The peri-cellular cable was abolished when the PTC were treated with IL-1β and 
showed HA coat assembly with increasing thickness with the later time-points. 
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A B      
   

C D  
Figure 3.5 (A-D). HK-2 were grown to monolayers of confluent cells and growth-
arrested for 48 hours. They were treated with TGF-β (5ng/ml) over different time 
points. The slides were fixed with 100% methanol and stained with DAPI as 
described in chapter two. They were visualized by UV fluorescence microscopy.  
Ax100 magnification, B, C & Dx250 magnification.  
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Fig 3.6 (A-C). HK-2 cells were grown to sub-confluent monolayers and growth-
arrested for 48 hours. (A) were growth arrested HK-2 cells acting as control. These 
cells were incubated with either IL-1β (1ng/ml) (B) or TGF-β (5ng/ml) (C) for 24 
hours at 37oC.  These cells were further incubated with formalized horse erythrocytes 
in 500µl suspension for 15 minutes at 37oC. After this, the erythrocytes were 
excluded from the peri-cellular HA coat. Erythrocyte exclusion is confirmed on the 
inverted microscope which appears like ‘halo’ around the HK-2 cells as shown by 
arrows seen in IL-1β incubated cells.  
 
 
 

 

 

 

A B 

C 



	
   75	
  

3.2.4 Analysis of HA Molecular Weight by Gel Exclusion Chromatography 

Characterization of HA synthesised and their molecular weight were analysed by gel 

filtrate chromatography by labeling the HK-2 cells with (382)-glucosamine for 24 

hours. The  cells were stimulated with either IL-1β (1ng/ml) or TGF-β (5ng/ml). This 

lead to the formation of (382)-glucosamine-bound HA after incubation for 24 hours. 

Analysis were performed on a Sephacryl S-500 column for the HA synthesizing 

between control cells and those stimulated by IL-1β or TGF-β.  

In all the three extracts, conditioned medium, trypsin extracts and cell-associated 

extracts, HA appeared at the initial fractions suggesting high molecular weight HA, as 

optimized by previous laboratory experiments (206). Analysis of HA by size 

exclusion chromatography indicated that there was at-least 3.5 times more HA present 

in the conditioned medium in IL-1β stimulated HK-2 cells when compared to control 

cells (Figure 3.7A). The HA was seen mostly distributed in the conditioned medium 

(≈40%), in comparison to trypsin extracts (≈25%) of the total HA (Figure 3.7B) and 

cell-associated extract (≈35%). The HA produced by the IL-1β stimulated cells across 

all the three compartments were predominantly high molecular mass HA 

(MW>1x106) Da. 

In contrast, the TGF-β-treated cells had a reduced level of HA in comparison to 

control cells. In comparison to the IL-1β stimulated cells, the total HA was nearly 4 

times less (Figure 3.7 A-C). The HA was mostly high molecular weight mass and 

most of them were in the conditioned medium (Figure 3.7A).  

In the control cells, the cell extract demonstrated a small peak of rise in medium 

molecular weight HA, which was similar to the finding observed in the previous 

experiments in our laboratory that may suggest small rise in fragmented HA. 
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           (A) IL-1β+      TGF-β+ 

         HMW        MMW      LMW          

    

     

      

   Figure 3.7. (A-C). HK-2 cells were grown to confluence and growth-arrested for 48 
hours. They were treated with either IL-1β (1ng/ml) or TGF-β (5ng/ml) for 24 hours. 
Subsequently, they were extracted in three phases.  (A) The supernatant was collected 
and equal volumes of pronase (200µg/ml) in x2 pronase buffer added and stored at 
37oC for 24 hours. (B) The activated cells were incubated with 10µg/ml of trypsin in 
PBS for 10 minute at room temperature, to analyse peri-cellular HA, these are trypsin 
extracts (TE). (C) Finally, cells were extracted by incubating in 100µg/ml of pronase 
for 24 hours at 37oC to assess the cell soluble HA. HA was precipitated through 
Sephacryl S-500 columns and the fractions are collected, as mentioned in chapter 2. 
The HA is quantified by β counting of radioactive HA. The HA is analysed depending 
on the molecular weight, >106Da is high molecular weight (HMW), <106 – 104 Da is 
medium molecular weight and < 104 Da is low molecular weight HA. 
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Figure 3.8. (A & B) Growth-arrested HK-2 cells incubated with IL-1β (1ng/ml) or 
TGF-β (5ng/ml). The sample were extracted as conditioned medium (CM), trypsin 
extracts (TE) and cell extracts (CE) as described in chapter 2. The sample is 
precipitated in Sephacryl S-500 columns for size exclusion. Subsequently, samples 
were incubated with glucosamine, chondroitin sulphate, decorin and versican. The 
background radioactive HA is identified by β-counting and molecular weights 
determined as, heavy MW (>106 Da), medium MW (104-106 Da) and low MW (<104 
Da). The data obtained by totaling all the HA fractions. 1= control, 2 = IL-1β 
stimulated and 3 = TGFβ stimulated.  
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3.2.5 Quantification of Peri-cellular HA 

The concentration of HA generated was analysed by extracting the supernatant from 

the HK-2 cells, treated with either IL-1β or TGF-β. Following the growth arrest of 

HK-2 cells for 48 hours, the cells were incubated with either IL-1β (1ng/ml) or TGF-β 

(5ng/ml) for a further 24 hours. HA was quantified using ELISA and expressed in 

relation to the control cells. This showed there was significant increase in the 

extracellular HA in IL-1β treated cells, in comparison to the control HK-2 cells and 

TGF-β-treated cells. This confirms the results from the previous section where the 

majority of HA were associated with the conditioned medium.  

 

Figure 3.9. The HK-2 cells  were grown to confluence and growth-arrested for 48 
hours. The experiment was done with n=5. The cells were incubated in IL-1β 
(1ng/ml) or TGF-β (5ng/ml) for 24 hours. The supernatant were collected to measure 
the quantity of HA in the extracellular space. ELISA did the quantification. This assay 
uses HABP and enzyme-conjugated horseradish peroxidase HABP to measure HA. 
Triplicate samples were used in the experiment and the HA was measured by 
comparing the colour formed with the reference curve from the reagent blank. The 
Alamar Blue technique was used to correct the HA to cell number. Statistics were 
analysed by repeated ANOVA Friedman test and paired non-parametric test Wilcox 
matched-pairs signed rank test for between time points analysis, p<0.05 was 
considered as significant. * is the comparison between cells grown in serum to IL-1β 
treated cells. 

 

serum serum-free IL-1! TGF-!
0

200

400

600

800

*

P=0.03

NS

P=0.03

Friedman Test P<0.0001

ng
/m

l o
f H

A



	
   79	
  

3.2.6 Expression of Various HA Binding Proteins And Hyaluronan Synthases in 

Proximal Tubular Cells 

This section demonstrate that the expression of various HABP in HK-2 cells treated 

with either IL-1β or TGF-β. The cells were grown in serum-deprived medium for 48 

hours and incubated with IL-1β (1ng/ml) or TGF-β (5ng/ml) for further 72 hours. The 

cells were trypsinised and RNA extracted at different time points between 0 to 72 

hours. A parallel experiment was performed where PTCs were grown in serum-free 

medium and these acted as control cells at respective time points.  

Q-PCR was performed to analyse the expression of HABPs. 

Figure 3.10A shows that on incubation of HK-2 cells with IL-1β, there was 

significant increase in the expression of TSG-6 mRNA and the levels started to 

increase by 10 folds at 2 hours; and peaked at nearly 100 fold by 72 hours. There was 

significant increase in the TSG-6 mRNA levels when compared to the un-stimulated 

control cells at the respective time-points. In comparison, the TGF-β stimulated cells 

(Figure 3.10B) showed doubling up of TSG-6 mRNA expression at 2 hours and 

consistently increasing and peaked the TSG-6 mRNA expression at 12 hours at 

approximately 15 folds and after 24 hours, the levels gradually decreased and reached 

basal levels by 72 hours. 

HAS2 mRNA expression raised to significant levels at 2 hours after incubation with 

IL-1β (Figure 3.11A) and further raised to a maximal levels by 8-10 fold by 4 hours 

and plateaued at that level of expression till 24 hours, before reducing to half the level 

of peak by 48 hours. PTC stimulation with TGF-β (Figure 3.11B) demonstrated a 

peak of HAS2 expression to nearly 5 fold by 8 hours and plateaued at this level till 72 

hours and was found to significantly elevated, in comparison to the control cells, at 

the respective time-points. 

The relative expression of HAS3 mRNA in PTCs stimulated by IL-1β (Figure 3.12A) 

peaked by the 4 hours, to nearly 7 fold and remained at that level till the 72 hours; and 

was statistically significant from the zero hours as well at the respective time-points. 

In contrast, the TGF-β (Figure 3.12B) stimulated PTCs showed no effect on HAS3 

expression. 
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HC3 binds to bikunin to form PαI, which was shown to be expressed in human PTCs. 

Its expression decrease when stimulated with IL-1β (Figure 3.13A) with the lowest 

level of expression seen at 72 hours. However this was not significant when compared 

with the control cell expression. There were significant reductions in HC3 expression 

at 72 hours, when stimulated by TGF-β (Figure 3.13B). 

Neither IL-1β nor TGF-β had significant effects on the expression on versican mRNA 

levels in PTCs (Figures 3.14 A&B). 

As described in the previous experiments, IL-1β stimulation (Figure 3.15A) of PTCs 

showed significant levels of CD44 mRNA increase at 4 hours and peaked expression 

was observed at 24 hours by nearly 20 folds. No significant change in CD44 

expression was seen with TGF-β treatment, however, there was increase in levels at 

24 hours in comparison to the control at the same time point was seen and gradual 

decreases were noted thereafter (Figure 3.15B).  
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Figure 3.10. Expression of TSG-6 following IL-1β and TGF-β stimulation. HK-2 
cells were grown to confluence, growth-arrested in serum-free media for 48 hours. 
They were incubated with (A) IL-1β (1ng/ml) and (B) TGF β (5ng/ml). Control cells 
were grown in serum-free medium. Dark dotted columns represents control cells, 
oblique lined columns IL-1β treated cells; and squared column represent cells treated 
with TGF-β. At different time-points between 0 to 72 hours, total cellular RNA was 
extracted by trypsinising of cells and cDNA prepared, as described in the Methods 
chapter. mRNA expression for TSG-6 was assessed by RT-QPCR, ribosomal RNA 
was used as an endogenous control. The comparative CT method was used for relative 
quantification of gene. N=7 experiments. Statistical analysis was performed using the 
Friedman test, followed by Wilcoxon signed – rank test between samples at different 
time-points. The statistical significance was taken as p<0.05. * represents p<0.05 
between control and stimulated cells at the respective time-points. 
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Figure 3.11. Expression of HAS2 following IL-1β and TGF-β stimulation. HK-2 
cells were grown to confluency and growth-arrested for 48 hours at 37oC. 
Subsequently, they were treated with (A) IL-1β (1ng/ml) and (B) TGFβ (5ng/ml). 
N=5. Dark dotted columns represents control cells, oblique lined columns IL-1β 
treated cells; and squared column represent cells treated with TGF-β. Statistical 
analysis was performed using the Friedman test, followed by Wilcoxon signed – rank 
test between samples at different time-points. The statistical significance was taken as 
p < 0.05. * Represents p<0.05 at time-points 2 hours to 72 hours in Figure 3.11 A and 
from 8 hours–72 hours in 3.11B, in comparison to the control cells at respective time-
points. 
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Figure 3.12. Expression of HAS3 following IL-1β and TGF-β stimulation. HK-2 
cells were grown to confluency and growth-arrested for 48 hours at 37oC. 
Subsequently, they were treated with (A) IL-1β (1ng/ml) and (B) TGFβ (5ng/ml). 
N=5. Dark dotted columns represents control cells, oblique lined columns IL-1β 
treated cells; and squared column represent cells treated with TGF-β. Statistical 
analysis was performed using the Friedman test, followed by Wilcoxon signed – rank 
test between samples at different time-points. The statistical significance was taken as 
p<0.05. * Represents p<0.05 in between control and stimulated cells at the respective 
time-points. 
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Figure 3.13. Expression of IαI HC3 following IL-1β and TGF-β stimulation. HK-
2 cells were grown to confluency and growth-arrested for 48 hours at 37oC. 
Subsequently, they were treated with (A) IL-1β (1ng/ml) and (B) TGFβ (5ng/ml). 
N=5. Dark dotted columns represents control cells, oblique lined columns IL-1β-
treated cells; and squared column represent cells treated with TGF-β. Statistical 
analysis was performed using the Friedman test, followed by Wilcoxon signed – rank 
test between samples at different time-points. The statistical significance was taken as 
p<0.05. * Represents p<0.05 between control and stimulated cells at the respective 
time-points. 

 

 

0 
0.5 

1 
1.5 

2 
2.5 

3 
3.5 

0 2 4 8 12 24 48 72 

R
el

at
iv

e 
ex

pr
es

si
on

 Iα
I H

C
3 

hours 

control IL-1β (A) 

Friedman Test P=0.1385 

P=0.04 

0 

0.5 

1 

1.5 

2 

2.5 

3 

3.5 

0 2 4 8 12 24 48 72 

R
el

at
iv

e 
ex

pr
es

si
on

 Iα
I H

C
3 

hours 

control TGF-β 

Friedman Test P=0.0003 

NS 

(B) 

*	
  



	
   85	
  

Figure 3.14. Expression of versican following IL-1β and TGF-β stimulation. HK-
2 cells were grown to confluency in monolayers and growth-arrested for 48 hours at 
37oC. Subsequently, they were treated with (A) IL-1β (1ng/ml) and (B) TGFβ 
(5ng/ml). The experiment was done with N=4. Dark dotted columns represents 
control cells, oblique lined columns IL-1β-treated cells; and squared column represent 
cells treated with TGF-β. The cT values of versican was compared to the cT values of 
ribosomal RNA and which was endogenous control to obtain relative expression. 
Statistical analysis was performed using the Friedman test, followed by Wilcoxon 
signed–rank test between samples at different time-points. The statistical significance 
was taken as p < 0.05.        
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Figure 3.15. Expression of CD44 mRNA following IL-1β and TGF-β stimulation. 
HK-2 cells were grown to confluency and growth-arrested for 48 hours at 37oC. 
Subsequently they were treated with (A) IL-1β (1ng/ml) and (B) TGFβ (5ng/ml). 
Dark dotted columns represents control cells, oblique lined columns IL-1β treated 
cells; and squared column represent cells treated with TGF-β. Statistical analysis was 
performed using the Friedman test, followed by Wilcoxon signed–rank test between 
samples at different time-points. The statistical significance was taken as p<0.05. * 
Represents p<0.05 between the un-stimulated control and treated HK-2 cells for the 
respective time-points.    
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3.3 Discussion 

The results from this chapter are summarised in Figure 3.16. In our previous 

experiments at Institute of Nephrology, we have demonstrated that HA is distributed 

as cables or a peri-cellular coat. The HA coat is anchored onto the cell surface by the 

receptor, CD44; and is associated with a migratory phenotype. HA cables arise as 

long strings of HA from the intracellular area of PTCs and have been shown to 

modulate PTC-mononuclear leukocyte interactions. It has been shown by 

immunohistochemical analysis in that there were IαI family members and versican on 

the cable structures. Addition of IαI antibodies inhibit cable formation (218).  

This chapter has demonstrated the loss of HA cables when PTC were treated with IL-

1β and increase in peri-cellular HA coat deposited. The thickness of the coat 

increased with time the HK-2 cells were incubated with IL-1β. The data was also 

confirmed on red cell particle exclusion assay, where there was clear area of 

exclusion because of repulsion of erythrocytes from the negative charge of HA in 

cells treated with IL-1β. In contrast, in TGF-β-stimulated cells, there were no HA 

cables visualized and as IL-1β-treated cells, there was peri-cellular HA coat formation. 

However, the TGF-β stimulated PTCs did not show an increased thickness of coat 

with longer incubation and on particle exclusion assay, there was no exclusion area 

demonstrated. 

The above results correspond with our finding of increased HA concentration in the 

extracellular space by ELISA. The HK-2 cells stimulated with IL-1β showed a 

significant increase (≈5 fold) in the HA concentration compared to serum-deprived 

control cells. Most of the HA generated by PTCs was found in the conditioned 

medium, which corresponded to extracellular HA and on size gel chromatography, 

HA was mostly of high molecular weight. The mechanisms involved in IL-1β leading 

to increased HAS2 mRNA expression has been shown to be mediated by ERK and 

p38 MAPK pathways in human mesenchymal cells of jejunum (383). TGF-β 

upregulates HAS2 mRNA expression by its Smad pathway especially Smad2, Smad3 

and Smad4 and inhibited by Smad7 as shown in corneal epithelium cells (384). 
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TGF-β did not induce HA production when analysed by ELISA and there was 

reduced total HA in these HK-2 cells, which was mostly distributed in the 

extracellular space and predominantly of high molecular weight. This difference in 

HA concentration between IL-1β and TGF-β-treated PTCs HA could be because of 

IL-1β treatment leads to cleavage of HA at the cell surface and release into the 

surrounding environment, as HYAL expression was unaffected and as it up-regulated 

HAS2 (132, 133). Also, TGF-β has been shown to have inhibitory effect on HYAL1 

and HYAL2(385), which may allow the HA to be internalized into cells via CD44.  

The data from this chapter confirmed the findings form previous experiments, that IL-

1β-stimulated HK-2 cells have pro-migratory responses in comparison to control cells 

and TGF-β-treated cells. TGF-β-stimulated HK-2 cells were anti-migratory and most 

of the cells at the end of the 96 hours assay had not migrated to cover the denuded 

area of the wound surface. The analysis of E-cadherin expression in TGF-β-

stimulated cells showed reduced levels after 48-72 hours of exposure, which confirms 

one of the crucial stages of phenotypic change in epithelial cells by losing cell-cell 

contact(380). Simultaneously, there was significantly increased levels of α-SMA 

demonstrated, suggestive of EMT. In contrast, IL-1β had no significant effect on the 

expression on E-cadherin and α-SMA.  

As shown in Figure 3.16, IL-1β stimulation of PTCs increased the expression TSG-6, 

which is one of the HA binding proteins but few change was observed in the 

expression of other HABP like versican and IαI. With regards to HAS genes, IL-1β 

led to significant increases in the expression HAS2 than HAS3. This result confirms 

the data shown in PTCs in the past (133) and this may facilitate increased peri-cellular 

HA coat assembly and enhanced migration. The previous study also showed the PTC 

migration associated with HA peri-cellular coat was abrogated by TSG-6 or IαI, 

suggesting HA assembly was disrupted in the blocking the function of these 

hyaladherins(132). This may be explained by lack of TSG-6, which is required to 

facilitate the covalent transfer of HC of IαI to HA, to form a stable HA matrix. The 

expression of CD44 was increased to significant levels suggesting that this could be 

part of cells, signaling because of increased HA associated with IL-1β treatment. The 

actions of HA are dependent on the HA receptors, mainly CD44 and also HABP. 
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HA:CD44 interactions have been shown to be important in leukocyte homing and 

recruitment, which elicit expression of pro-inflammatory cytokines. CD44 stimulates 

activity of NF-κB, which in turn acts as inflammatory mediator for IL-1β, TNF-α and 

induces the activity of iNOS and MMPs (358).  

TGF-β treated HK-2 cells demonstrated increased levels of TSG-6 and there was 

reduced HC3 expression, but TGFβ had no effect on the other HABP, versican. The 

expression of HAS2 increased significantly, with little effect on HAS3. For the HA 

receptor, CD44, there was increased in response to TGF-β treatment. Though IL-1β 

and TGF-β induce HAS2 by different pathways, the raised HAS2 expression induced 

HA synthesis are opposing in their migration effect. This could be explained by loss 

of E-cadherin expression in TGF-β treated cells and hence cells invade the basement 

membrane and becomes anti-proliferative and anti-migratory. Il-1β stimulated HK-2 

cells shows no change in E-cadherin expression. 

HA is an important part of the ECM and accumulates during inflammation and tissue 

injury. HA has been demonstrated in excess in many diseases, including arthritis, 

glomerulonephritis, renal lupus, lung fibrosis and asthma, brain ischemia, 

atheromatous plaques, malignancy and active arthritis (374). It regulates cytokines 

and other inflammatory products and inflammatory processes, like leukocyte 

recruitment and chemotaxis. IL-1β has been shown to degrade tissues in arthritis, by 

leading to increased amounts of small HA fragments, which in turn facilitates iNOS 

and MMP action to amplify inflammation (386).   

The role of TSG-6 has been examined in many previous experiments examining anti-

inflammatory activities. In articular chondrocytes, IL-1β and TGF-β have shown to 

increase the expression of TSG-6 and been implicated in experimental arthritis(303).  

TSG-6 has been found to be up-regulated in many diseases and its expression has 

been shown to increase with cytokines and TGF-β; and as shown in this chapter, in 

PTCs as well. TSG-6 have been found in high levels in ovulation, sepsis, 

inflammatory bowel disease and arthritis, and have been expressed in various cell 

lines in response to cytokine and TGF-β stimulation. In acute ischemic cerebral stroke, 

there was increased levels of TSG-6 expressed in inflammatory monocytes of the 

infracted area of stroke and also been demonstrated in TSG-6 in peripheral blood 
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monocytes from patients with primary biliary cholangitis and liver cirrhosis(296, 314, 

387-389). As discussed earlier in Chapter 1, TSG-6 plays an important role in ECM 

assembly along with IαI heavy chains (296). 

HA deposition and organization is found to have crucial roles in disease progression 

and metastasis of carcinoma. High levels of HA are observed in many cancer tissues 

and have been associated with strong independent prognostic indicators in breast, 

gastric, ovarian and colorectal cancers (ref).  There is increased HAS expression 

demonstrated in breast malignancy along with HA receptors, CD44 and RHAMM 

(390, 391). This is similar to the findings with increased HA distribution and raised 

CD44 levels seen in many inflammatory conditions. The data in this chapter supports 

the above findings, as stimulation of PTCs with IL-1β increases HA peri-cellular coat 

with increased expression of HAS and CD44, along with TSG-6. High MW HA 

present in the ECM is increased in quantity when cells were exposed to hypoxia, 

tissue injury or exposure to D-glucose or cytokines. This leads to increased HYAL 

expression leading to fragmentation of HA to low molecular weight HA. The low 

molecular weight HA activates CD44 and recruits and homes leukocytes and propels 

wounds into inflammatory phase of repair (386, 391).  

In our recent laboratory data, we have shown that in vitro aging fibroblast lose their 

ability to undergo phenotype alteration to myofibroblasts when stimulated by TGF-β, 

which is important for tissue fibrosis. Further, this study demonstrated that these aged 

fibroblasts are resistant to HAS2 induction, on stimulation with TGF-β. In contrast, 

over-expressing HAS2 produced HA peri-cellular coat, but had no effect on 

phenotype transformation in these senescence fibroblasts (220). In PTCs, over-

expression of HAS2 was shown to induce a migratory phenotype (64) and as shown 

earlier in this chapter, stimulation of HK-2 cells with TGF-β increased HAS2 and 

TSG-6 expression; and also a rise in α-SMA and loss of E-cadherin, suggesting EMT 

process. Knockdown of TSG-6 in aged fibroblasts led to an inhibition of the TGF-β-

mediated increases in α-SMA, suggesting there needs to be a coordinated effect of 

HAS2 and TSG-6 in the formation of peri-cellular coat assembly and to allow TGF-β 

to phenotypically activate fibroblasts (208). Similar effects were also shown in the 

above experiment, as the fibroblasts with CD44 knockdown prevent TGF-β mediated 

phenotype conversion (70).  



	
   91	
  

Hence, the hyaladherins have an important role to play in ECM assembly, which in 

turn plays a major role in disease processes, including inflammation and tumour 

metastases. HA and its assembly which is influenced by its receptor, CD44 and 

HABP, is crucial. Hence, in the next chapter, I will look into the role of TSG-6 in 

PTC phenotyping and ECM assembly. 

With the information we have so far, work has been done with regards to the role of 

HC and IαI in ECM assembly and shown they plays an important role by forming 

HA:HC complex and stabilizing the HA matrix. IαI is a serine protease inhibitor 

constituting of bikunin and heavy chains (HC1 and HC2); and similarly, PαI which 

are expressed in kidney is formed by bikunin and HC3. We have shown in the past, 

that HC3 is important in the HA assembly and adding specific IαI antibody lead to 

the loss of HA cable formation (218). As TSG-6 is crucial for the action of IαI in 

transfer to HC to HA, I focused my research on the role of TSG-6 in ECM and HA 

assembly. Also, the results from this chapter did not show significant difference in the 

expression of HC3 and versican when stimulated with IL-1β or TGF-β. Hence, I 

wanted to further evaluate and establish the role TSG-6 has in ECM and PTC 

phenotype.  
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Figure 3.16 Summary of the expression of HA binding proteins and HAS in HK-2 cells treated with IL-1β and TGF-β. 

HABP IL-1β Significance (P 
value) TGF-β Significance (P 

value) Comments 

TSG-6 Increases  * Increases * 
IL-1β stimulation leads to a persistent and significant rise in TSG-6 
expression. 
TGF-β leads to a peak in expression at 12-24 hours. 

HAS2 Increases * Increases * 
IL-1β causes a significant increase at 4 hours and peaks at 24 hours ≈ 
15 fold. 
TGF-β increases the expression by ≈ 5 fold, peaking at 24 hours.  

HAS3 Increases * Decreases NS 

HAS3 expression increases significantly at 4 hours and plateaus with 
peak expression ≈ 10 fold with IL-1β at 4 hours. 
There is decrease in the level of HAS3 expression on stimulation with 
TGF-β between time-points, but this was found not to be significant. 

HC 3 
(PαI) Increases NS Decreases  * 

TGF-β decreases HC3 expression, but there was no significant 
difference found in between time-points. IL-1β has no role in HC3 
activity when HK-2 cells were stimulated. 

Versican No 
effect NS No effect NS There was no change in the expression found with the stimulation. 

CD44 Increases * Increases * 

Significant increase in expression was found with IL-1β stimulation 
with peak value of ≈ 25 fold at 24 hours. 
With TGF-β treatment there was increase in CD44 expression to 
≈8folds at 24 hours time-point. 

*p<0.05 

NS= not significant 
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4.1  Introduction 

The previous chapter identified TSG-6, CD44 and HAS2 as up-regulated by IL-1β 

and TGF-β; and HAS3 increased by IL-1β in the HK-2 cells. These are important 

because they are the proteins that govern the macromolecular structure of HA.  

Hyaladherins, which are the HABP include TSG-6, IαI, and versican, amongst many 

others as discussed in the previous chapter. TSG-6 is of particular importance for the 

formation and remodeling of HA-rich peri-cellular coats, as shown in our laboratory 

(132, 135). Versican plays an important role in the formation of HA cables, as 

described in our previous work where it was co-localising on the cable HA suggesting 

it may have a role in its formation (218). TSG-6 is expressed at a very low level in 

normal tissues, including in the kidney (285). However, increased expression is seen 

in various inflammatory processes in response to the stimulation by pro-inflammatory 

mediators and growth factors (282, 389). It is also implicated in physiological 

inflammation, like ovulation (295).  

TSG-6 is composed of two contiguous domains, a Link module and a CUB module 

(273, 278). TSG-6 is an important HA binding protein (370). Studies have been 

performed to look at the function of the Link module, which has been shown to be 

essential for the binding of HA (282, 392). TSG-6 binds to various GAGs other than 

HA, including chondroitin-4-sulphate, dermatan sulphate, heparin/heparan sulphate, 

proteoglycans like versican and aggrecan; and also other plasma proteins, including 

IαI, pentraxin-3 and TSP-1, as described in detail in Chapter 1. TSG-6 was also 

shown to bind to fibronectin, which is a prominent ECM protein and has a wide 

variety of cellular activities, via direct interactions with cell surface integrins and 

proteoglycan receptors (291). 

The role of TSG-6 in HA:CD44 interaction has been studied in the past, which 

showed HA:CD44 interaction is via the Link-module and that they are weakly bound. 

There has been no direct binding shown so far between TSG-6 and CD44. However, 

as they bind through the Link-module, TSG-6 binds to HA through the Link-module 

with high affinity and effectively acts a competitive inhibitor for CD44 binding to HA. 



	
   95	
  

As both TSG-6 and CD44 expression goes up with inflammation, does gene silencing 

of TSG-6 in PTCs have an effect on CD44 expression? (286). 

TSG-6 has important role in transferring HC to HA by covalent binding. In disease 

processes, this mechanism has been shown to be up-regulated significantly and 

increased TSG-6 is observed in rheumatoid arthritis, ischemic stroke and asthma (278, 

388, 393).  Recent studies have shown that TSG-6 plays an important role in 

counteracting the transcription and activation of MMPs, particularly MMP-1 

(collagenase). Studies have shown that TSG-6 knock-down with siRNA in mice 

corneal fibroblasts significantly increase the levels of MMP-1 and MMP-3 

(stromelysin-1) (394). In Corneal fibroblasts transfected with TSG-6, siRNA 

demonstrated higher apoptosis (394).  

Mice with TSG-6 knock-down showed severely impaired cumulus cell-oocyte 

complex, which are essential for matrix expansion and hence, female fertility was 

defective and they did not expand. Addition of recombinant TSG-6 was able to 

catalyse the covalent transfer of HC to HA facilitating expansion of cumulus cell-

oocyte complex (327). In a different experiment, TSG-6 knockdown in mice showed 

early and extensive infiltration of neutrophils in the synovium with accompanied 

increase in IL-6 and amyloid-A (395). There was significant increase in the levels of 

plasmin, myeloperoxidase and neutrophil elastase in the joints of these mice. TSG6-

deficient mice lead to extensive inflammation and this effect was dramatically 

suppressed when these mice were injected with recombinant TSG-6 (395). Hence, 

these studies further supports the role TSG-6 as a multifunctional anti-inflammatory 

protein. This group hence postulated the effect of CD44/HA/TSG-6 interaction as a 

potential blocking mechanism for neutrophil infiltration into the inflamed area, as the 

mechanism of its anti-inflammatory effect (395). In the past, TSG-6 has been 

demonstrated to have anti-inflammatory activity in suppressing MMP-9 (gelatinase) 

and thus a protective effect on corneal tissue (317, 327). In transgenic mice, cartilage-

specific and constitutive expression of TSG-6 there was significant chondroprotective 

effect against antigen-induced arthritis and significant suppression of most MMPs. 

The investigators postulated this was mediated by the serine protease inhibitor effect 

of TSG-6-IαI acting on plasmin-dependent activation of MMPs (311).  
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HAS2 is linked to increased HA peri-cellular coat and increased cell migration in HK-

2 cells (132). HAS2 is induced by stimulation with cytokines and TGF-β as 

demonstrated in Chapter 3. There are no studies to date directly analysing the effect of 

TSG-6 on HAS2 expression. In previous experiments at the Institute of Nephrology, 

peri-cellular coat induced by HAS2 after treatment with TGF-β was not sufficient to 

induce phenotype transformation of fibroblast to myofibroblast on its own. TSG-6 

knockdown inhibited TGF-β-induced α-SMA and suggesting synchronous regulation 

and induction of HAS2 and TSG-6 genes was required to facilitate wound healing 

(220).  

This chapter looks at TSG-6 knockdown and its interaction with HABP and HAS and 

its effect on HA assembly and HA related proteins to gain further information. 

The aims of this chapter are:  

1) To establish reliable and consistent knockdown of TSG-6 in HK-2 cells. 

2) To investigate the expression of HAS genes, HA synthesis and assembly, and HK-2 

phenotype in TSG-6 knockdown cells. 
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4.2  Results 

4.2.1 Confirmation of TSG-6 Gene Down-regulation by Transfection in HK-2 

Cells 

HK-2 cells were transfected to knockdown the expression of TSG-6. I initially carried 

out this experiment by using small interfering TSG-6 RNA (siRNA), but because of 

the non-specific effect of  the scrambled siRNA sequence and failure to optimize the 

experiment (chapter 2), short hairpin (shRNA) stable transfection was performed. U6 

siSTRIKE vector was used to transfect HK-2 cells with TSG-6 shRNA, as described 

in the Methods chapter 2. After nearly 4 weeks of transfection and sub-culturing the 

cells, the cells were grown as single cell lines. Eight different cell lines were initially 

screened for the efficiency of TSG-6 knock-down by analyzing the expression of the 

TSG-6 mRNA by Q-PCR (Figure 4.1). A cell line which showed greater than 97% 

down-regulation was identified and  selected for future experiments. 

The specificity of the stable TSG-6 knockdown was examined by comparing the 

expression of TSG-6 with HK-2 cells transfected with short hairpin scramble and a 

parallel experiment with growth-arrested HK-2 cells (Figure 4.1). 

Prior to each experiment, the transfected cells were checked for reduced expression of 

TSG-6 by RT-QPCR and this was found to be consistent. 

In this chapter, a 24 hours time-point was used for analysis in all the experiments, as 

there were significant changes in the expression of various HA related proteins 

between 12-48 hours at this time-point as demonstrated in Chapter 3. 
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Figure 4.1. HK-2 cells transfected with short hairpin TSG-6 RNA to down-regulated 

the expression of TSG-6. The experiment was carried out as described in the Methods 

chapter 2. A single cell line with maximum knockdown was selected. The cells were 

grown to confluence and RNA was extracted after trypsinisation of the cells and 

cDNA prepared, as described in Chapter 2. The mRNA expression of TSG-6 was 

assessed by RT-QPCR, ribosomal RNA was used as an endogenous control. The 

comparative CT method was used for relative quantification of gene expression. The 

figure shows the untransfected HK-2 cells growth-arrested in dark closed box (HK-2 

cells control), the pale grey closed box is the short hairpin scramble RNA (shRNA as 

scramble control) and the vacant box is the cells transfected with short hairpin TSG-6 

RNA (shTSG-6). N=7 experiments. Statistical analysis were performed by using 

Friedman test for global comparison of different groups followed by the Wilcoxon 

Signed-Rank Test for sub-group analysis. p<0.05 was considered significant.  
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4.2.2 Analysis of TSG-6 Knockdown on HK-2 Cells Migration 

The shRNA scramble transfected HK-2 cells (control) were grown to confluence 

along with shTSG-6 transfected cells. Cells were serum-deprived and growth-arrested 

for 48 hours in 12-well plates and then treated with IL-1β (1ng/ml) and TGF-β 

(5ng/ml). Then, the cell monolayer was scratch wounded and time-lapse microscopy 

at different time-points monitored the denuded surface. In the previous experiments 

performed in our laboratory, it has been shown the cells remain viable in a non-

proliferating state and this was examined by staining the cells with BrdU. The cells at 

the wound edge did not show uptake of BrdU stain, but in contrary, there was uptake 

of the stain away from the wound edge(64, 132). The cells moved as monolayer on 

the denuded surface.  

 

The cells transfected with shRNA TSG-6 showed reduced migration and there was a 

significant difference, in comparison to the control cells (Figures 4.2A&B). In TSG-6 

knockdown cells stimulation with IL-1β and TGF-β had no effect on the migration, in 

comparison to the control cells. In contrast, as described in Chapter 3, the 

untransfected HK-2 cells stimulated with IL-1β acquired a migratory phenotype while 

TSG-6 knockdown HK-2 cells with IL-1β stimulation did not migrate. The efficiency 

of the knockdown of TSG-6 by shRNA TSG-6 was examined by Q-PCR in the same 

experiment and was confirmed to have <95% knockdown, in comparison to scramble 

shRNA. 
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Figure 4.2. The HK-2 cells transfected with scrambled shRNA (control) and TSG6 
(TSG6-) were grown to confluence and growth-arrested in serum-free media for 48 
hours. The cell layer was scratched, as described in Chapter 2. The cells were washed 
to remove any detached debris and subsequently treated with IL-1β (1ng/ml) and 
TGFβ (5ng/ml). The rate of cell migration was observed at different time points under 
time-lapse microscopy, as described in Chapter 2. The data is expressed as (A) area of 
denuded surface covered by the migrating cells and was measured in percentage of 
pixels closure per hour (B) where the open box is shRNA (control) and TSG6- (TSG6 
knockdown HK-2 cells) cells shown as closed dotted boxes are gradient of pixels 
closure/hour of the denuded area. N=5 experiments. Statistical analysis was 
performed using Kruskal Wallis test for the whole group analysis and for subgroup 
analysis by Mann Whitney Test,  *, p<0.05, **, p<0.01 compared to scrambled 
control. 
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4.2.3 Effect of TSG-6 Knockdown on E-Cadherin and	
 α-Smooth Muscle Actin 

In chapter 3, stimulation of HK-2 cells with TGF-β, lowered expression of E-cadherin, 

which is a epithelial cell marker; and increased expression of α-SMA which is a 

marker of myofibroblast phenotype. TGF-β is known to promote EMT in PTCs (380). 

In this experiment, HK-2 cells with TSG-6 knockdown was grown in serum-deprived 

medium and subsequently stimulated with TGF-β (Figure 4.3A). TSG-6 knockdown 

in HK-2 cells increased the expression of E-cadherin significantly compared to 

controls. E-cadherin expression further increased when TSG-6 transfected HK-2 cells 

were stimulated with TGF-β, but was not statistically significant in comparison to the 

same cells with no TGF-β. In control cells, as shown in Chapter 3, TGF-β decreased 

expression of E-cadherin, as shown in this Figure with control scrambled cells 

following TGF-β stimulation.  

In a parallel experiment, similar conditions were used to analyse the expression of α-

SMA in control and TSG-6 knockdown HK-2 cells (Figure 4.3B). In the control 

scrambled cells, there was increased expression of α-SMA on stimulation with TGF-β, 

which was consistent with the results from the previous chapter. However, by 

knocking out TSG-6 expression, there was an increase in the expression of α-SMA. 

However, no significant change in the expression were observed upon stimulation of 

the TSG-6 knockdown cells with TGF-β. 

 
Figure 4.3. The HK-2 cells transfected with scrambled shRNA shown as open box 
and shTSG-6 cells shown as closed dotted boxes, were grown to confluency, growth-
arrested for 48 hours and treated with TGFβ (5ng/ml) and incubated for 24 hours. RT-
QPCR was performed for relative expression of gene. Statistics was performed using 
Kruskal Wallis test for the whole group analysis and subgroup analysis was done by 
Mann Whitney test, p<0.05 was considered as significant. 
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4.2.4 Analysis of TSG-6 Knockdown on HA Assembly 

UV florescence microscope was used to visualize peri-cellular HA assembly. HA was 

identified by staining with biotinylated-HABP and then staining with secondary 

fluorescence-conjugated Avidin-D. In untransfected HK-2 cells, HA was distributed 

as cable structures when grown in serum containing medium. There was similar to 

when cells were growth-arrested, as shown in the experiments done in our laboratory 

in the past (218) and as demonstrated in Chapter 3. HK-2 cells were transfected with 

shRNA scramble as a control. The cells transfected with shRNA scramble retained the 

phenotype of the untransfected HK2 cells, as demonstrated by the HA cables (Figures 

4.4 A&B).  

HK-2 cells transfected with shTSG-6 to knockdown TSG-6, there were no HA cables. 

There was however, increase in the accumulation of the peri-cellular coat. In contrast 

to the peri-cellular coat assembly demonstrated in the previous experiments in 

Chapter 3, the peri-cellular coat assembly in the TSG-6 knockdown cells were loosely 

formed with an open appearance (Figure 4.4 C-F). The HA coat was not as thick as 

that observed in the cells treated with IL-1β. Further when these cells were treated 

with IL-1β, did demonstrate an increase in the thickness of the peri-cellular HA, but 

the HA coat still appeared very loosely formed (Figure 4.5). TGF-β stimulation of 

TSG-6 knockdown of HK-2 cells had similar results, with loose HA assembly around 

the cell (Figure 4.6). There was loss of cable structures in the TSG-6 knockdown cell, 

and incubation with IL-1β and TGF-β failed to restore HA cables. 

The visualization of the peri-cellular coat by the red cell exclusion assay, did not 

demonstrate a peri-cellular coat around the HK-2 cells, either in control cells or in 

shTSG-6 transfected cells, with or without IL-1β or TGF-β stimulation (Figure 4.7). 
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A B   

C D  

E F  
Figure 4.4. HK-2 cells were transfected with shRNA scramble as control. These cells 
were growth-arrested for 48 hours and were fixed with 100% methanol and HA were 
detected by staining with biotinylated-HABP. The cells were visulalised by UV 
fluorescence microscopy. The peri-cellular coat were demonstrated by white arrows 
and cable as yellow arrows. The cells were magnified at x100 and x250 times. 
A&B - scramble transfected cells (control) 
C - TSG-6 transfected cells x100 magnification 
D,E&F- TSG-6 transfected cells x250 magnification. 
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A B  

C D  
Figure 4.5. HK-2 cells were transfected with TSG-6 shRNA. These cells were 
growth-arrested for 48 hours. These cells were then incubated with IL-1β (1ng/ml) for 
24 hours and were fixed with 100% methanol and HA were detected by staining with 
biotinylated-HABP. The cells were visulalised by UV fluorescence microscopy. The 
peri-cellular coat were demonstrated by white arrows and cable as yellow arrows.  
A&B - shRNA TSG-6 transfected cells x250 magnification 
C&D - shRNA TSG-6 transfected cells x400 magnification. 
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A B  

C  
Figure 4.6. HK-2 cells were transfected with TSG-6 shRNA. These cells were 
growth-arrested for 48 hours. These cells were then incubated with TGF-β (5ng/ml) 
for 24 hours and were fixed with 100% methanol and HA were detected by staining 
with biotinylated-HABP. The cells were visulalised by UV fluorescence microscopy. 
The peri-cellular coat are demonstrated by white arrows and cable as yellow arrows.  
A&B - shRNA TSG-6 transfected cells x250 magnification, 
C - shRNA TSG-6 transfected cells x400 magnification. 
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A B  

C D               
Figure 4.7. HK-2 cells was transfected with scrambled shRNA (control) and TSG-6 
shRNA and growth arrested for 48 hours. Red cell exclusion assay was performed as 
described in Chapter 2. 
A Sub-confluent scramble control HK-2 cells 
B TSG-6 knockdown cells were serum-deprived for 48 hours and visualized by 

the particle exclusion assay, as described in Chapter 2.  
C HK-2 cells with TSG-6 knockdown and treated with IL-1β 
D HK-2 cells with TSG-6 knockdown and treated with TGF-β. 
 
There was no zone of exclusion of ‘halo’ appearance demonstrated around the cells 
(magnification x100) 
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4.2.5 Analysis of HA Molecular Weight 

HA generation by TSG-6 knockdown HK-2 cells was examined by (382)-

glucosamine labeling of HA and gel filtration chromatography. Confluent monolayers 

of shTSG-6 transfected HK-2 cells were growth-arrested for 48 hours. The cells were 

subsequently incubated with either IL-1β (1ng/ml) or TSG-β (5ng/ml) for a further 24 

hours.  

Analysis of Sephacryl S-500 of the 3H-glucosamine-labelled HA samples from both 

the shTSG-6 transfected cell line and scrambled control cells, demonstrated cells with 

TSG-6 knockdown showed a slight increase in the amount HA, but this was not 

significant. However there was an increase in the high molecular weight HA 

identified in the conditioned medium (CM) from the shTSG-6 transfected cells. 

HK-2 cells with TSG-6 knockdown stimulated with IL-1β, showed a significant 

increase in the quantity of HA (≈ 3 folds) compared to the scramble control. The 

biggest difference in HA in the shTSG-6 transfected cells compared to scramble 

controls was demonstrated in CM and they were predominantly high molecular 

weight HA. The HA distribution in the CM and TE (trypsin extracts) were 

predominantly of high molecular weight HA, as they appeared near the void volume.  

In contrast shTSG-6 transfected HK-2 cells treated with TGF-β demonstrated an 

increased intracellular HA, as found in TE, in comparison to un-stimulated cells. Most 

of the HA was quantified as having a high molecular weight. There was also slight 

increase in the low molecular weight HA, but this was not significant. 
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Figure 4.8.  HK-2 cells transfected with shTSG-6 were grown to confluence and growth-
arrested for 48 hours, along with scrambled control. TSG-6 transfected cells were 
stimulated with IL-1β (1ng/ml) or TGF-β (5ng/ml) for further 24 hours. Subsequently, 
conditioned medium (CM), trypsin extract (TE) and cell extract (CE) HA fractions were 
prepared and analysed, as described in Chapter 2. The HA eluted between fractions 26 to 
51 were considered to be high molecular mass (>106 Da), those between fractions 52 to 
76 were medium molecular weight HA (105 to 106 Da); and the fractions beyond fraction 
76 fractions were low molecular weight HA (<105 Da).  
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Figure 4.9 A & B. 

A HA distribution in CM, TE and CE. 

B Analysis of HA molecular mass. 

Control   = shRNA scramble control 
TSG6-    = shRNA TSG-6 transfected HK2 cells 
TSG6-/IL-1β+  = shTSG-6 transfected cells stimulated with IL-1β 
TSG6-/TGFβ+  = shTSG-6 transfected cells stimulated with TGF-β 
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4.2.6 HA Quantification in TSG-6 Knockdown Cells 

HA generation by the cells with TSG-6 knockdown was compared to the HK-2 cells 

transfected with scrambled shRNA, as control cells. The cells were grown to 

confluence and growth-arrested for 48 hours and stimulated by IL-1β (1ng/ml) and 

TGF-β (5ng/ml) for further 24 hours. The supernatant from the cells was collected 

and HA quantified by ELISA.  

TSG-6 knockdown cells demonstrated a significant decrease in the amount of soluble 

HA in comparison to the controls. IL-1β induced a significant increase in HA 

production by TSG-6 knockdown cells. TGF-β also increased HA in the CM of TSG-

6 knockdown cells compared to untreated knockdown cells.  

 

Figure 4.10. Serum-deprived HK-2 cells were stimulated with IL-1β (1ng/ml) or 
TGF-β (5ng/ml) and analysed for HA by ELISA. Open box is scramble control, 
striped vertical lines are scrambled shRNA transfected cells and dark dotted boxes are 
the shTSG-6 RNA transfected cells. Data represented N=4 experiments. Statistical 
analysis was performed by Kruskal Wallis test for the whole group analysis and 
Mann-Whitney Test for subgroup analysis, * p≤0.05 in comparison to scrambled 
control. 
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4.2.7 Effect of TSG-6 Down-regulation on HABP 

HK-2 cells with TSG-6 knockdown were analysed for expression of the HA receptor, 

CD44, HA binding proteins, IαI HC3, HAS2 and ICAM-1. Confluence TSG-6 

knockdown HK-2 cells were serum-deprived for 48 hours and stimulated with IL-1β 

(1ng/ml) or TGF-β (5ng/ml) for a further 24 hours. Q-PCR was performed to analyse 

the expression of the various proteins associated with HA.  

TSG-6 knockdown cells were stimulated with IL-1β or TGF-β and Q-PCR performed 

to assess the relative expression of TSG-6 mRNA, which confirmed significant 

knockdown achievement of greater than 95%. IL-1β or TGF-β showed a slight 

increase in TSG-6 expression, but this was insignificant (Figure 4.11).  

CD44 mRNA expression increased significantly to nearly 3 fold HK-2 cells with 

TSG-6 knockdown. Stimulation with IL-1β increased the level of CD44 to nearly 15 

fold, but in comparison to untransfected cells, CD44 expression was blunted and there 

was nearly 4 fold decrease in CD44 levels. Hence this suggests that knockdown of 

TSG-6 significantly increases the CD44 expression, but induction by IL-1β was 

reduced by the knockdown. There was no significant change in the expression of  

CD44 levels after treatment with TGF-β (Figure 4.12). 

The expression of HAS2 mRNA was significantly increased with TSG-6 knockdown 

The TSG-6 knockdown cells when treated with IL-1β further increases HAS2 levels, 

in comparison to untransfected control cells and also untreated TSG-6 transfected 

cells. However, in TSG-6 knockdown cells with TGF-β treatment, there was no 

increase in HAS2 levels when compared to untreated TSG-6 transfected cells (Figure 

4.13).  

Expression of HC3 mRNA was increased significantly by nearly 8 fold in the TSG-6 

knockdown HK-2 cells. Treatment with IL-1β or TGF-β to the TSG-6 transfected 

cells reduced the HC3 mRNA expression in comparison to the untreated cells. 

However, there was no significant change in the expression of HC3 when scrambled 

cells were treated with either IL-1β or TGF-β. z(Figure 4.14). 
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In TSG-6 knockdown HK-2 cells there was no effect on ICAM-1 mRNA expression. 

However, stimulation with IL-1β showed a nearly 2.5-fold increase in ICAM-1 levels 

compared to untransfected un-stimulated HK-2 cells, but in comparison to the 

untransfected cells stimulated with IL-1β, there was no difference in ICAM-1 

expression. TGF-β stimulation in the TSG-6 knockdown cells, led to significantly 

lower expression and this was also lower than with the untransfected PTCs stimulated 

with TGF-β (Figure 4.15). 

The summary of the above changes in HA-related proteins in TSG-6 knockdown HK-

2 cells is summarized in Figure 4.16.  

   

Figure 4.11. TSG-6 expression. HK-2 cells transfected with TSG-6 shRNA were 
grown to confluence and growth-arrested for 48 hours and incubated with IL-1β 
(1ng/ml) or TGF-β (5ng/ml) for a further 24 hours. RNA was extracted after 
trypsinisation of the cells and cDNA prepared, as described in Chapter 2. TSG-6 
mRNA expression was assessed by RT-qPCR, ribosomal RNA was used as an 
endogenous control. The comparative CT method was used for relative quantification 
of gene. The Figure shows the growth-arrested scrambled shRNA (scr) transfected 
cells in open box and shTSG-6 (TSG6-) transfected cells in dotted box. N=7 
experiments. Statistical analysis were performed by using Kruskal Wallis test for 
global comparison of different groups, followed by the Mann Whitney Test for sub 
group analysis. p<0.05 was considered significant.  
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Figure 4.12. CD44 expression. HK-2 cells transfected with TSG-6 shRNA, RT-
qPCR performed to quantify CD44 expression.  

 

 

Figure 4.13. HK-2 cells transfected with TSG-6. HK-2 cells were grown to 
confluence and growth-arrested for 48 hours and incubated with IL-1β (1ng/ml) or 
TGF-β (5ng/ml) for a further 24 hours. The Figures shows scrambled shRNA (scr) as 
control in open box and TSG-6 shRNA (TSG6-) in dotted box. N=5 experiments. RT-
qPCR was performed to analyse the relative expression of HAS2. Statistical analysis 
was performed by using Kruskal Wallis test for global comparison of different groups, 
followed by the Mann Whitney Test for sub-group analysis. p<0.05 was considered 
significant.  
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Figure 4.14. HC3 expression. HK-2 cells transfected with TSG-6 shRNA, RT-qPCR 
performed to quantify PαI HC3 expression.  

 

Figure 4.15. HK-2 cells transfected with TSG-6. HK-2 cells were grown to 
confluence and growth-arrested for 48 hours and incubated with IL-1β (1ng/ml) or 
TGF-β (5ng/ml) for a further 24 hours. The Figures shows scrambled shRNA (scr) as 
control in open box and TSG-6 shRNA (TSG6-) in dotted box. N=5 experiments. RT-
qPCR was performed to analyse the relative expression of ICAM-1. Statistical 
analysis was performed by using Kruskal Wallis test for global comparison of 
different groups, followed by the Mann Whitney Test for sub-group analysis. p<0.05 
was considered significant.  
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 Scramble shRNA 

transfected HK-2 cells 

TSG-6 knockdown HK-2 cells 

IL-1β  TGF-β  Un-

stimulated 
IL-1β  TGF-β  

TSG-6 ⇑⇑* ⇑⇑∗ ⇓⇓∗ NS NS 

CD44 ⇑⇑ ⇑* ⇑* ⇑* ⇒ 
HAS2 ⇑⇑* ⇑⇑* ⇑⇑* ⇑* ⇒ 
HC3 (PαI) ⇒ ⇒ ⇑ ⇒ ⇓∞ 
ICAM-1 ⇑⇑* ⇑⇑* ⇒ ⇑⇑* ⇓∞ 

Figure 4.16. Expression of HA-related proteins in TSG-6 knockdown HK-2 cells 

treated with IL-1β  or TGF-β . 

* = p<0.05 compared to untransfected un-stimulated. 

∞ = p<0.05 compared to TSG-6 knocked down HK-2 cells. 

4.3  Discussion 

The results of TSG-6 gene silencing in the past have demonstrated the importance of 

this gene as an anti-inflammatory protein and in matrix cumulus formation, in 

physiological and pathological processes (295). As discussed, TSG-6 knockdown 

mice are infertile and show severe neutrophil infiltration into joint space leading to 

arthritis (327, 395). TSG-6 knockdown has also been performed in different cell lines 

in vitro. In corneal fibroblasts, TSG-6 knockdown has shown to activate the 

transcription of metalloproteinase (MMP1 and 3), causing degradation of corneal 

tissue and hastening apoptosis. This process was aggravated by the presence of IL-1β 

and TNF-α and suggesting that TSG-6 may have a role in counteracting the 

transcription of MMP-1 in particular (317). A transgenic mouse experiment, in which 

TSG-6 was constitutively expressed in the cartilage, demonstrated this to be 

protective and preventive in antigen-induced arthritis. This was postulated to be due 

to inhibitory activity of TSG-6:IαI on plasmin activity, which is critically involved in 

MMP activation (311).  
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TSG-6 has an important role in ECM assembly. There are a number of mechanisms 

by which it acts in HA binding and matrix formation 1) TSG-6 acting as co-factor to 

transfer of HC from IαI or PαI to HA by trans-esterification reaction (218, 296); 2) it 

forms complexes with pentraxin-3 (PTX3) to link up to 20 HA chains (396); and 3) 

forms a di-sulphide linked homodimer of 150kDa with TSP-1, by interacting with the 

Link-module probably through the N-terminal (371). This interaction brings together 

3 HA chains. All the above mechanisms contributing to ECM assembly are observed 

in different conditions involving sepsis, viral infections, ER stress and diabetes (278, 

397).  

The gene silencing of TSG-6 in HK-2 cells demonstrated how important the assembly 

of HA around the cells is for the control of cell phenotype. Knockdown of TSG-6 to a 

significant increases in the expression of CD44 and HAS2 mRNA levels. There were 

further increases in the expression of both these genes on stimulation with IL-1β. 

However, stimulation with TGF-β did not show further increase in CD44 or HAS2 

levels from the basal levels, as compared to the TSG-6 knockdown cells.  

The expression of HC3 (PαI) significantly increased in response to TSG-6 gene 

silencing nearly 4 fold. The expression of ICAM-1 mRNA was also increased in 

TSG-6 knockdown cells. However, as shown previously, in untransfected cells, there 

was increased expression of ICAM-1 in response to stimulation with IL-1β or TGF-β. 

Similar results were seen in this study, showing in the scrambled shRNA transfected 

cells there was a significant increase in the expression of ICAM-1 to approximately 

2.5 fold, with both IL-1β and TGF-β treatment. However in TSG-6 shRNA 

transfected cells there was down-regulation of ICAM-1 in response to TGF-β 

stimulation. 

TSG-6 knockdown in HK-2 cells showed increased expression of E-cadherin 

suggesting the epithelial phenotype actually was reinforced. This is in contrast to 

untransfected cells where E-cadherin expression reduced suggesting a loss of cell-cell 

contact and initiation of the EMT process. There was further increases in E-cadherin 

levels in these transfected cells on stimulation with TGF-β. Knockdown of TSG-6 

lead to an increase in the expression of α-SMA expression and there was no 
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significant change, compared to the TSG-6 shRNA transfected HK-2 cells treated 

with TGF-β.  

TSG-6 knockdown in HK-2 cells inhibited migration, with no increased migration 

seen with stimulation either with IL-1β or TGF-β.  Studies at the Institute of 

Nephrology have shown high molecular weight HA is involved in cell migration (67). 

In vitro experiments with increased exogenous HA has enhanced migration in PTCs, 

through interaction of CD44 and activation of the MAPK/ERK cascade (358). 

Similarly, in other disease processes and in malignancy, as shown in melanoma cells 

and mesothelioma, keratinocytes synthesize increased amount of endogenous HA and 

shows increased migration (398, 399). Studies have also shown  a role for versican in 

cell proliferation and migration by forming a rich HA-versican matrix in vascular 

smooth muscle cells (209, 306). Experiments in different cell types including in 

vascular smooth muscle cells have shown that inducing TSG-6, by over-expressing 

TSG-6 induces migration (306). This current study is the first to demonstrate that 

TSG-6 knockdown in PTCs promotes anti-migratory phenotype confirming the 

findings with other cells types (400). Our laboratory have demonstrated when HAS2 

was over-expressed in PTC it was pro-migratory and there was reduced CD44 

expression, suggesting RHAMM HA receptor might be involved in the migration in 

these cells. When Link_TSG-6 was added to these cells, there was further enhanced 

migration, complementing the earlier findings of the pro-migratory effects of TSG-6 

(132).  

Analysis of the HA distribution, showed that there was loss of HA cables in PTCs 

with TSG-6 gene-silencing, in comparison with stable scrambled shRNA transfected 

cells, which showed HA cables similar to untransfected HK-2 cells grown in serum-

free medium. In the TSG-6 knockdown PTCs, there was deposition of HA in the peri-

cellular region which was loosely formed, scattered, and appeared ‘fluffy’. On 

stimulation of TSG-6 down-regulated cells with IL-1β, the appearance of the peri-

cellular HA coat was thicker and more spread-out, but still appeared ‘fluffy and 

scattered’. Treatment with TGF-β had no marked effect on HA assembly and 

thickness in TSG-6 knockdown cells. Erythrocyte particle exclusion did not 

demonstrate exclusion in the peri-cellular area of PTCs.  
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Upon analysis of HA quantity by ELISA, there was a significant decrease in HA 

concentration in the supernatant of TSG-6 knockdown cells. Stimulation of TSG-6 

knockdown cells with IL-1β or TGF-β did, however, increase the HA concentration 

significantly. There was nearly a 6-fold increase in HA in IL-1β-treated cells and a 2-

fold increase in TGF-β treated cells. The assessments of total HA by gel 

chromatography showed there was reduced total HA in transfected cells and this were 

mostly present in the conditioned medium. HA distribution was similar in the 

knockdown cells stimulated with IL-1β. HA was mainly high molecular weight in 

TSG-6 down-regulated cells and in those stimulated with IL-1β and TGF-β. However, 

in TGF-β treated knockdown cells, HA was mainly intracellular or cell-associated.  

Taking the above results in context, it can be speculated that because of the reduced 

amount of total HA synthesized by PTCs with TSG-6 gene-silencing, as shown by 

ELISA and size chromatography analysis, these cells lack the formation of a proper 

peri-cellular HA matrix. In previous studies with PTCs and other cell lines, as 

described above (in page 124), it was shown that increased peri-cellular HA was 

required to facilitate cell migration. Hence, less peri-cellular HA along with 

dysregulated matrix assembly in TSG-6 knockdown cells may be responsible for their 

anti-migration phenotype. For the same reason, the effect of TGF-β on TSG-6 shRNA 

knockdown PTCs may be attenuated, as in the past and recent experiments at Institute 

of Nephrology. It was shown that in PTCs and fibroblasts, the phenotypic 

differentiation induced by TGF-β depends on HA synthesis and peri-cellular 

organization. The level of HA generated by fibroblasts and the ability to form a peri-

cellular coat facilitates the phenotypic transdifferentiation  to myofibroblasts by TGF-

β driven, Smad activation (401). In PTCs, in the presence of HA, there was decrease 

collagen synthesis and decreased nuclear translocation of Smad4, in response to TGF-

β stimulation. In addition, HA also inhibited the anti-migration effect of TGF-β, this 

process was via a non-Smad dependent pathway mediated by activation of RhoA, 

which was CD44 mediated (64, 221). An other reason for the attenuated TGF-β effect 

on these cells could be because HA was mainly high molecular weight, which in our 

previous studies have shown to antagonize the effects of TGF-β (221).  

In the TSG-6 knockdown PTC, stimulation with TGF-β minimally affected the 

epithelial cell phenotype. This was supported by lack of down-regulation of E-
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cadherin and no significant change in the expression of α-SMA with TGF-β and 

hence may prevent the change in epithelial phenotype. This suggests that HA 

synthesis and its assembly into an organized peri-cellular coat, was necessary for the 

initiation of PTC phenotype change and EMT. 

The most recent published work from the Institute of Nephrology, has demonstrated 

that TGF-β effects are attenuated in fibroblasts with low peri-cellular HA, compared 

to higher levels of HA and HAS2, as seen in dermal fibroblasts. Hence cells with low 

HA presence resist the effects of TGF-β to induce phenotypic change (401). This may 

be the reason, that in TSG-6 knockdown produce less HA (as shown with ELISA) 

there was no significant effect of TGF-β. The myofibroblast phenotype is associated 

with the persistence of high HA, facilitating TGF-β activity. Addition of 4-flurouracil 

(4-FU), which is an inhibitor of HA synthesis, in fibroblasts leads to the loss of 

myofibroblast phenotype and also reduces the expression of α-SMA (401). This was 

further emphasized by knockdown of HAS2 in myofibroblasts, which led to reduced 

HA generation and inhibition of TGF-β induced transformation. As discussed before, 

cells which lose their ability to respond to TGF-β phenotype activation have reduced 

HA in the peri-cellular matrix, while increasing HA by over-expressing HAS2 

increases peri-cellular HA but does not facilitate TGF-β mediated phenotype 

activation. Cells resistant to TGF-β phenotypic transformation have been shown to 

have lost their EGF receptors (EGFR) (135). EGFR are important for CD44, with 

MAPK/ERK signal transduction.  EGFR CD44 interaction was found to be important 

for TGF-β stimulation, along with a rich HA-matrix for phenotype activation and 

proliferation of fibroblasts. TGF-β also mediates it effects through the MAPK/ERK 

pathway. The interaction of HA:CD44 promotes CD44:EGF activity through EGFR. 

This subsequently promotes signal transduction through MAPK/ERK pathway and 

results in cell proliferation. Thus, the proposal was for the TGF-β phenotypic 

differentiation to myofibroblast, there was a requirement for the presence of a HA-

rich matrix, as well as the functional CD44, EGF and EGFR (70). 

In summary, work described in this chapter demonstrates that TSG-6 has an important 

role in the assembly of peri-cellular HA and extracellular matrix formation. It has a 

major role in HA assembly into cables and peri-cellular HA coats by facilitating HC 
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transfer to HA. This is emphasized by the loss of cable HA and the formation of loose 

and ‘fluffy’ HA peri-cellular coat on silencing  of the TSG-6 gene in PTCs. 

Extrapolating the data from our fibroblast studies (70, 220), PTCs require similar 

coordination of HA, its generation by HAS2, its assembly by HA binding proteins, 

TSG-6 and IαI/PαI; and its receptor CD44 for TGF-β-mediated EMT. It is now 

recognized from our recent work at the Institute of Nephrology, that TGF-β-mediated 

phenotype transdifferentiation is regulated by TGF-β:EGF:EGFR and CD44:EGFR 

activity, which are mediated by the MAPK/ERK pathway (70).  

HA and CD44 are responsible for promoting the pro-fibrotic actions of TGF-β. This 

was demonstrated by CD44 siRNA in fibroblasts when stimulated with TGF-β. The 

presence of both HA and CD44 were required for TGF-β-driven proliferation, 

suggesting their interaction was crucial (135).  

In TSG-6 knockdown PTCs, there was an induction of CD44 mRNA that further 

increased significantly with IL-1β and TGF-β stimulation. This could be because of 

the disassembled peri-cellular HA coat, leading to a lack of HA:CD44 interaction, 

creating a positive feedback mechanism for further CD44 up-regulation. CD44 plays 

an important role in initiating intracellular signals, following binding to HA. To 

further elaborate the roles of CD44 in the TSG-6 knockdown cells and to analyse 

whether increased expression of CD44 in TSG-6 knockdown was a response of cell 

trying to maintain CD44-mediated interactions with peri-cellular HA, I did further 

work in HK-2 cells by transfecting them with CD44 siRNA.  
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Chapter 5 

Role of CD44 in Peri-cellular HA 

Assembly 
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5.1 Introduction 

CD44 is the principal HA receptor and has important roles in various physiological 

functions, including cell-cell adhesion, cell-substrate interaction, monocyte 

recruitment, as well as pathological processes, such as chronic inflammation and 

metastases of malignant cells (391). CD44 has an important role to play in the 

formation of HA and peri-cellular assembly (402), it plays a critical role in the 

retention of HA-proteoglycan aggregates to the cell surface, as shown in chondrocytes 

(403), aids in the internalization of HA and its associated mediation of HA induced 

signals (404). It has been shown in human chondrocytes that the removal of HA leads 

to the increased turnover of CD44 receptors from the cell surface (405). This suggests 

that the amount of HA determines the turnover and upregulation of CD44.  

Intracellularly CD44 has been shown to be associated with actin filaments through 

interaction with ankyrin, filamin and cortactin. Thus, HA:CD44 interaction could 

affect actin filament alignment and hence cell shape; and can be postulated to control 

the distribution of HA receptors (165, 176, 257). The clustering of CD44 would 

strengthen the extracellular HA interaction with the cell surface; and may contribute 

to HA-ECM assembly and stability (406). 

In Chapter 3, it was shown when HK-2 cells (PTCs) were incubated with IL-1β, the 

expression of CD44 increased significantly (≈25 folds). Our previous work has shown 

that Il-1β increases the expression of HA in PTCs and increases binding of CD44 with 

endogenous HA (134, 407). CD44 was up-regulated in TSG-6 knockdown PTCs, as 

shown in Chapter 4. To investigate further if it was the cell response to increased 

CD44 expression in TSG-6 knockdown cells to maintain the cell surface interaction 

with extracellular HA, a double knockdown was performed on PTCs. The stably 

transfected TSG-6 knockdown HK-2 cells were transiently transfected with CD44 

siRNA. 

HAS2 has been shown to have a major role in HA peri-cellular coat formation, as 

demonstrated in HAS2-overexpressed PTCs and fibroblasts (132, 135). It was noted 

in the previous chapter that TSG-6 knockdown increased HAS2 expression. This 

raises question whether HAS2 upregulation in the TSG-6 knockdown PTCs 
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represents the response by the cell to increased synthesis and assembly of peri-cellular 

HA? Or was HAS2 expression was driven by CD44?  

The increased peri-cellular coat formation may mask the effects of intercellular 

adhesion molecule-1 (ICAM-1) an other HA cell receptor interacting with monocytes 

and promoting inflammation (132).  

ICAM-1 is a member of the immunoglobulin superfamily, a type-1 transmembrane 

protein with a molecular weight 80-114 kDa. Its roles include the trans-endothelial 

migration of leukocytes to the sites of inflammation, as well as interactions between 

antigen-presenting cells and T-cells. It is expressed in PTCs at the basolateral aspect 

in renal disease, confirming its interaction on interstitial cells and PTCs (408). 

Signaling pathways NF-κB and MAPK pathways regulate the expression of ICAM-1. 

Our previous experiments at Institute of Nephrology have shown that ICAM-1 

interaction with monocytes induces TGF-β synthesis, which is pro-fibrotic; and this 

may lead to tubulointerstitial disease. Bone morphogenic protein – 7 (BMP-7), which 

is a member of TGF-β superfamily, is shown to be an important regulator of binding 

between monocytes and PTCs. This is explained by the lack of interaction of the 

monocytes to the cell surface CD18 (ICAM-1 receptor) as they bind to BMP-7 

stimulated HA cable structures (212, 214, 409). In the presence of an HA peri-cellular 

coats, ICAM-1 may be masked in the matrix, hence its interaction with inflammatory 

monocytes is prevented (410).  

As described in the previous chapter, TSG-6 has an important role in HA assembly; 

and downregulation of TSG-6 in PTCs leads to a loose assembly of HA that is 

scattered and ‘fluffy’. TSG-6 is important for the trans-esterification reaction to 

transfer HC to HA and stabilize the ECM. TSG-6 down-regulation also leads to a 

significant increased expression of CD44 mRNA. Thus, the role of TSG-6 was 

emphasized, where despite the presence of increased HA receptors, HC and HAS 

enzymes, HA assembly was disrupted signifying its crucial role in matrix assembly.  

In this chapter, I aim to identify whether the CD44 receptor is still signaling as a 

result of HA binding, even when HA assembly is altered by TSG-6 knockdown.  
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5.2 Results  

5.2.1 Confirmation of CD44 Knockdown in the Proximal Tubular Epithelial Cells 

The HK-2 cells were grown to confluence and growth-arrested in serum-free medium 

for 48 hours. The cells were transfected with small interfering CD44 (siCD44) and 

scrambled RNA (siRNA) as control and incubated in serum-free medium at 37oc for 

24 hours. Cells were trypsinised after this period and RNA extracted and the relative 

expression of CD44 mRNA was analysed by RT-qPCR. In a parallel experiments, the 

stably transfected scrambled shRNA HK-2 cells were also transfected with siRNA to 

CD44and siTSG-6 to optimise the experiment and conduct future studies (Figure 5.1).  

Transfection of CD44 siRNA confirmed that there was more than 80% knockdown of 

CD44 mRNA expression in both the HK-2 cells without prior scrambled shRNA and 

shRNA (scramble) transfected cells (Figure 5.1). The results were analysed by RT-

qPCR, by comparing the relative expression of the cells with different treatments to 

the shRNA, calibrated versus the control. Ribosomal RNA was used as	
    a 

housekeeping gene in the RT-qPCR analysis. 

 

Figure 5.1. Confirmation of CD44 knockdown by siRNA transfection. HK-2 cells 
that are untransfected and scrambled shRNA transfected cells were grown in serum-
free medium for 48 hours and transfected with CD44 siRNA and scramble siRNA for 
24 hours. The cells were subsequently trypsinised and RNA extracted and cDNA 
prepared, as described in Chapter 2. Q-PCR was performed to analyse the relative 
expression of CD44 mRNA. The untransfected HK-2 cells (black dotted column) 
were transfected in parallel to the scrambled shRNA transfected cells (checked 
columns). The experiments were performed in N=5 experiments. Kruskal Wallis Test 
was performed for across the whole group and sub-group analysis was done by Mann-
Whitney Test. *, p<0.05.  
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5.2.2 Effect of CD44 and TSG-6 Knockdown on HA Assembly 

UV florescence microscopy was used to visualize peri-cellular HA assembly. HA was 

identified by staining with biotinylated-HABP and staining with fluorescent 

conjugated Avidin-D. In untransfected HK-2 cells, HA was distributed as cable 

structures when grown in the serum-containing medium. This was similar appearance 

to when cells were growth-arrested, as shown in the experiments done in our 

laboratory in the past and as demonstrated in Chapter 3.  

HK-2 cells were grown as sub-confluent monolayers, growth-arrested and transfected 

with small interfering RNA for CD44 (siCD44) for 24 hours, as described in Chapter 

2. 

The stably expressing scrambled shRNA cells retained the phenotype of the 

untransfected HK2 cells, by demonstrating HA cable peri-cellularly (Figure 5.2 A). In 

the parallel experiments, the dual scrambled transfected HK-2 cells (siRNA transient 

transfection in cells with shRNA scramble stable transfection) showed preservation of 

HA distribution and cable structure (Figure 5.2 B), similar to that of untransfected 

HK-2 cells (Figure 5.1).  

As described in Chapter 4 (section 4.2.4), when TSG-6 was down-regulated by stable 

shTSG-6 transfection, the cable structure and peri-cellular HA assembly were 

disrupted. In addition, HA appeared loosely formed, with a scattered peri-cellular HA 

assembly (as described in Chapter 4 and Figures 5.3 A&B). In a parallel experiment, 

Q-PCR was performed to assess TSG-6 mRNA expression on stimulation with IL-1β 

for 24 hours. TSG-6 knockdown was more that 99% at the mRNA level, while further 

knocking down of CD44 expression with siRNA had no effect on TSG-6 expression. 

In dual transfected (TSG6-/CD44-) HK-2 cells stimulation with IL-1β had no effect 

on increasing TSG-6 mRNA levels (Figure 5.4). 

When untransfected HK-2 cells were subjected to transient CD44 siRNA transfection, 

the HA distribution was significantly altered with no cable HA visualized and the 

peri-cellular coat HA were staining lightly with little or no HA seen around cells 

(Figures 5.5 A and B). In a parallel experiment, untransfected HK-2 cells with CD44 
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knockdown stimulated with IL-1β for 24 hours showed that there was re-appearance 

of the peri-cellular HA coat (Figure 5.5 C). 

In a parallel experiment, HK-2 cells that had TSG-6 knockdown by shTSG-6 stable 

transfection were transfected transiently with CD44 siRNA to knockdown CD44 

expression. These dual transfected PTCs, when visualized under UV microscopy, 

demonstrated there was restoration of peri-cellular coat HA formation, however no 

cable HA was seen (Figure 5.5 A and B).  

When the dual transfected HK-2 cells with knockdown of TSG-6 and CD44 were 

incubated with IL-1β for 24 hours, there was no significant change in the HA 

assembly, visualized in comparison to cells with no IL-1β stimulation (Figures 5.6 C 

and D).  

Dual knockdown (TSG6-/CD44-) HK-2 cells stimulated with IL-1β or TGF-β showed 

no significant variation in CD44 mRNA. However, as shown in the previous Chapter, 

downregulation of TSG-6 in HK-2 cells significantly increased CD44 mRNA (≈ 2.5 

folds) while stimulation with IL-1β increased CD44 levels by nearly 10 fold, 

compared to scrambled control transfected cells. TSG-6 knockdown induced a 

significant decrease in CD44 levels, in comparison to scrambled controls stimulated 

with IL-1β (Figure 5.7). TGF-β stimulation had no major effect on in CD44 

expression in TSG6-knockdown HK-2 cells.  

As described in Chapter 4, the increased expression of HAS2 mRNA seen with TSG-

6 knockdown and IL-1β stimulation is significantly reduced and blunted (≈ 2.5 fold) 

by dual knockdown of both TSG-6 and CD44 in HK-2 cells. However, the dual 

knockdown cells showed increased HAS2 expression when stimulated by TGF-β (≈ 2 

folds), when compared to TSG-6 knockdown cells (Figure 5.8).  There was a 

significant increase in the relative expression of ICAM-1 in dual transfected cells 

(Figure 5.9) and stimulation with IL-1β and TGF-β further up-regulated ICAM-1 

expression.  
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A B  

Figure 5.1. A & B. Immunohistochemistry analysis of HA in HK-2 cells grown in 
serum-free medium. HK2 cells were grown in serum-free medium for 48 hours. 
They were stained with biotinylated-HABP. The cells were visulalised in UV 
fluorescence microscope, as described in Chapter 2. The peri-cellular cable HA were 
demonstrated as long wire-like structures with yellow arrows.  

A B  

Figure 5.2. Immunohistochemistry analysis of HA in scramble transfected HK-2 
cells.  

A Cells transfected with short hairpin scramble (shRNA) 

B Dual scramble transfected HK-2 cells (scrambled shRNA and small interfering 
scramble siRNA) control  
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A B  

Figure 5.3. A&B. Effect of TSG-6 knockdown on PTC on immunohistochemistry. 
HK-2 cells were stably transfected with short hairpin TSG-6 RNA, stained with 
biotinylated-HABP and visualized under UV microscope. They were growth-arrested 
for 48 hours, prior to staining fixing the slides with 100% methanol. The white arrows 
demonstrate the peri-cellular HA coat distribution. These results were described in 
Chapter 4. 

 

Figure 5.4. Effect of TSG6 and CD44siRNA  knockdown (TSG6-/CD44-) on 
TSG-6 expression, with and without IL-1β stimulation. PTCs were stable 
transfected with short hairpin TSG-6 RNA (TSG6-) and subsequently transient 
transfection was done with small interfering CD44 RNA (TSG6-/CD44-); and the 
expression of TSG-6 assessed by Q-PCR. The control and transfected cells were 
further stimulated with IL-1β (1ng/ml); as seen in checked column and un-stimulated 
cells in the dotted column. PTCs transfected with short-hairpin scramble RNA 
(scramble) was used as control. The scramble stimulated with IL-1β column was 
blunted to appreciate the relative expression of other treatments, with data table 
provided at the bottom of the figure. Mann-Whitney test was performed for sub-
group analysis with scramble control, **, p<0.01. 
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A B  

C  

Figure 5.5. Immunohistochemistry analysis of CD44 downregulation of PTCs 
and subsequent stimulation by IL-1β. HK-2 cells were grown in serum-free 
medium for 48 hours to sub-confluent monolayers and transiently transfected with 
siRNA CD44 for 24 hours, as described in Chapter 2.  

A&B The HA distribution with CD44 knockdown in HK-2 cells were observed in 
the UV microscopy and the HA identified by staining with biotinylated-HABP, 
with avidin-D as secondary stain. 

C In a parallel experiment, HK-2 cells with CD44 knockdown were stimulated 
with IL-1β (1ng/ml) and stained with biotinylated-HABP, there appeared to be 
restoration of HA peri-cellular coat.  
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A B  

C D  

Figure 5.6. Effect of dual knockdown (TSG6-/CD44-) on HA. HK-2 cells were 
grown in serum-free medium for 48 hours. These cells were stably transfected with 
shTSG-6 and TSG-6 was knocked down. The cells were transiently transfected with 
CD44 siRNA. The effect of dual transfection and knockdown was analysed by the 
parallel experiment where Q-PCR was performed to confirm dual transfection 
knockdown.  

A The dual transfected cells were stained with biotinylated-HABP and observed 
under UV microscope  

B is the parallel experiment with dual transfection at 48 hours time without IL-
1β stimulation. 

C&D Effect of IL-1β, the dual transfected (TSG6-/CD44-) cells were stimulated 
with IL-1β (1ng/ml) for further 24 hours and fixed with 100% methanol and 
stained with biotinylated-HABP  
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Figure 5.7. Effect of TSG-6 (TSG6-) and TSG-6/CD44 (TSG6-/CD44-) 
knockdown on CD44 expression in HK-2 cells, stimulated with IL-1β and TGF-β. 
HK-2 cells were transfected with shTSG-6 (TSG6-) was transiently transfected with 
CD44 siRNA, as described in Chapter 2. The dual transfected (TSG6-/CD44-) cells 
were stimulated with IL-1β (1ng/ml) or TGF-β (5ng/ml) for 24 hours and RT-qPCR 
was performed to analyse the relative expression of CD44 mRNA. The un-stimulated 
cells are represented by dark dotted column, IL-1β stimulated are squared column and 
TGF-β stimulated in the white dotted column. N=3. *P<0.05 compared to 
untransfected un-stimulated HK-2 cells. 

	
   

Figure 5.8. Effect of TSG-6 (TSG6-) and TSG-6/CD44 (TSG6-/CD44-) 
knockdown on HAS 2 expression in HK-2 cells, stimulated by IL-1β and TGF-β. 
HK-2 cells were transfected with TSG-6 shRNA (TSG6-) was dual transfected with 
CD44 siRNA, as described in Chapter 2. The dual transfected (TSG6-/CD44-) cells 
were stimulated with IL-1β (1ng/ml) or TGF-β (5ng/ml) for 24 hours and RT-qPCR 
was performed to analyse the relative expression of HAS 2 mRNA. The un-stimulated 
cells were represented by dark dotted column, IL-1β stimulated were squared column 
and TGF-β stimulated were white dotted column. N=3. Mann-Whitney test was 
performed for sub-group analysis with scramble control, *, p<0.05. **p<0.01. 
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Figure 5.9. Effect of TSG-6 (TSG6-) and TSG-6/CD44 (TSG6-/CD44-) 
knockdown on ICAM-1 expression in HK-2 cells, stimulated by IL-1β and TGF-
β. PTCs transfected with TSG-6 short hairpin RNA (TSG6-) was transiently 
transfected with CD44 siRNA, as described in Chapter 2. The dual transfected 
(TSG6-/CD44-) PTCs were stimulated with IL-1β (1ng/ml) or TGF-β (5ng/ml) for 24 
hours and Q-PCR was performed to analyse the relative expression of ICAM-1. Un-
stimulated cells was represented by dark dotted column, IL-1β stimulated were 
squared column and TGF-β stimulated by white dotted column. N=3. 

 

5.3 Discussion 

In Chapter 4, I have shown that knocking down TSG-6 in PTCs leads to an increase in 

CD44 expression in these cells that was further increased by IL-1β stimulation, but 

not by TGF-β. To investigate further whether the increase in the CD44 expression 

following TSG-6 knockdown was a response of PTCs to try to maintain CD44-

dependent interactions with peri-cellular HA, I knocked down CD44 by transient 

transfection. HAS2 levels were significantly increased in the un-stimulated and IL-1β 

and TGF-β stimulated HK-2 cells. However, with double knockdown and loss of 

CD44, there was a significant reduction in HAS2 expression. 

These results show CD44 was able to signal during the TSG-6 knockdown of PTCs 

and that part of its role was to increase HAS2 expression. The PTCs with double 

knockdown also showed a significant loss of HA assembly including cable and peri-

cellular coat. The re-instatement of HA peri-cellular coat in the cells with CD44 
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other mechanisms of HA generation for example via HAS3 or as a result of 

upregulation of ICAM-1 in these cells. As CD44 knocked-down in these cells, the 

formation of peri-cellular HA coat after stimulated with IL-1β, may be due to 

preferential activation of RHAMM (411).   

CD44 siRNA knockdown in vascular endothelial cells, led to re-arrangement of the 

actin cytoskeleton and the cells appeared elongated. There was an absence of HA and 

this prevented oligosaccharide-HA-induced actin stress fibers and was explained by 

lack of phosphorylation of PKC signaling pathways, suggesting a crucial role for 

CD44 in these cells to maintain angiogenesis and cell structure (412). In colon 

carcinoma cells, CD44 siRNA demonstrated it to be a receptor for fibrin and P-

selectin:CD44 binding was affected. This binding is important for facilitating platelet 

adhesion of P-selectin and metastasis of the tumour (413). In mesenchymal stem cells 

derived from CD44-/- mice, CD44 was shown to play an important role in HA:CD44 

peri-cellular assembly in renal injury by recruiting exogenous mesenchymal stem 

cells for renal regeneration (414). In glycerol-induced mouse model of acute renal 

failure, in-vitro studies shows when the mesenchymal stem cells (MSC) were treated 

with anti-CD44 antibody inhibited the migratory effect induced by HA.  CD44 

antibody also inhibited the localization of MSC to the injured kidney site. On addition 

of cDNA of wild-type CD44, there was recruitment of these stem cells into the 

injured site and hence they suggested CD44 and HA interaction plays important role 

in recruiting MSC and enhance renal regeneration (415). 

Hence, the results of double knockdown of TSG-6 and CD44 in PTCs, may lead to 

significant impairment of tissue repair and anti-inflammatory activity of these genes. 

There was a loss of the HA peri-cellular matrix coat and of HAS2 expression, which 

is one of the major enzymes responsible for HA synthesise in PTCs. The results from 

this Chapter further reinforces the data known from the past about the central role that 

CD44 plays in HA assembly by its interaction with HA:CD44. Our recent laboratory 

data has showed that the E-cadherin expression was intact in these dual knockdown 

HK-2 cells when stimulated with TGF-β (416), confirming the role of each of these 

HA-related proteins (CD44, TSG-6, HAS2) in phenotypic transformation. In these 

dual knockdown PTCs, HA concentration was reduced significantly (416).  

 



	
   134	
  

 

 

 

Chapter 6 
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The organization of HA in the ECM has an important role in the maintaining cell 

phenotype (196). HA was initially considered as inert viscoelastic structure involved 

in soft tissue hydration (143). There has been a significant change in perception since 

it was first discovered. HA has a wider range of biological events in both normal and 

disease states. The data presented in this thesis has shown the role of HA binding 

proteins and its interaction with HA and the effect on ECM formation and assembly 

of HA. This Thesis highlights the role of IL-1β and TGF-β on HA assembly and how 

it influences various hyaladherins during disease state.  

Our previous work at the Institute of Nephrology, has shown that HA assembly in 

PTCs is mainly as cables and peri-cellular coat (132, 218). There has been a lot of 

interest recently in the organization of peri-cellular HA coat assembly and its role in 

disease in different tissues and its role in different cell functions (144, 374, 376, 417, 

418).  The function of HA has been shown to be dependent on its molecular weight. 

High molecular weight HA is mainly responsible for the organization of HA peri-

cellular matrix; inhibits the bioactivity of TGF-β; and, stimulates secretion of Tissue 

Inhibitors of Metalloproteinases (TIMPs). HA with low molecular weight induces an 

inflammatory responses. HA oligosaccharides were responsible for angiogenesis and 

endothelial proliferation, which are not seen with high molecular weight HA (195).  

The HA peri-cellular matrix is known to be involved in ECM assembly, by serving as 

scaffold for interaction with peri-cellular matrix constituents, such as collagen and 

fibronectin (419). The cable HA formed is considered as anti-inflammatory in 

proximal tubular cells (PTCs) as it facilitates CD44-mediated binding of 

inflammatory monocytes preventing cell surface contact and activation of 

inflammatory cascade, via interaction with ICAM-1 (218). 

HA assembly is largely determined by its interaction with HA binding proteins and its 

cell receptors. Recent data from our laboratory have shown that there has to be a 

coordinated activity between HAS, TSG-6 expression and HA:CD44 interaction for 

the fibroblasts to undergo TGF-β phenotypic transdifferentiation to myofibroblasts 

(135). The peri-cellular concentration of HA concentration has an important role to 

play in TGF-β-induced phenotypic differentiation and maintenance of the 

myofibroblast phenotype (401).  
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In Chapter 3, the results show in response to a inflammatory cytokine IL-1β which 

leads to the loss of HA cables but a thickened peri-cellular HA coat matrix is formed. 

The increased HA coat may be a direct result of up-regulation of HAS2 and HAS3, 

which may have contributed to HA synthesis. The CD44 up-regulation by 

inflammatory cytokines would aid in binding HA to the cell surface. The induced 

TSG-6 helps in transferring the HC of IαI/PαI to HA by the trans-esterification 

reaction and stabilises the HA assembly. These cells have a migratory phenotype and 

maintain their phenotype, as shown by persistent expression of E-cadherin and with 

no significant change in α-SMA. The increased expression of TSG-6 against the 

insignificant expression seen with other hyaladherins when stimulated with IL-1β, 

suggests TSG-6 has a major role for this protein in migration and hence anti-

inflammation. Studies have shown with an increases in the peri-cellular matrix HA 

coat, ICAM-1 are submerged in this structures and attenuating interaction of the 

receptors with inflammatory cells and thus HA peri-cellular coat may have an anti-

inflammatory role (132). This was also emphasized by our recent work on fibroblasts, 

where removal of HA peri-cellular coat by dissolving with hyaluronidases (HYAL) 

enhanced the ICAM-1 expression and monocyte binding and promotes inflammation 

(Milne J et al, RA 2011 Poster presentation).  

TGF-β stimulation of the PTCs induces EMT. This was examined again in this Thesis, 

and as shown in the fibroblast phenotypic transdifferentiation, it can be postulated in 

PTCs that coordination of HAS2-induced increased HA, TSG-6-induced matrix 

formation with transfer of HC to HA and CD44:HA interaction is required for the 

phenotype change induced by TGF-β. PTCs stimulated with TGF-β lose E-cadherin 

expression and increase α-SMA, levels as marker of the EMT process.  

As shown in Chapter 4, when TSG-6 gene is silenced in PTC by shRNA stable 

knockdown, there was a dramatic difference in peri-cellular coat formation. Though a 

HA coat was formed, it looked deformed and was very loosely assembled and 

appeared ’fluffy’, differing in appearance to the HA coat seen with IL-1β or TGF-β 

stimulation. In TSG-6 knockdown cells the CD44 and ICAM-1 mRNA expression 

was up-regulated possibly as a result of reduced HA resulting in a compensatory 

mechanism in which the cell attempt to maintain signaling via these pathways to 

induce HAS2-dependent HA matrix formation. The cells preserved their epithelial 
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phenotype as shown by persistent E-cadherin expression with no change in α-SMA 

expression; and exhibited no response to TGF-β-mediated phenotypic transformation. 

The reason for the TSG-6 knockdown cells resisting phenotype changes facilitated by 

TGF-β could be because these changes requires coordination between the binding 

proteins, HA and CD44. Furthermore, as the extracellular HA is very low, these cells 

are resistant to TGF-β induced changes as it has been shown that a HA-rich matrix is 

required to induce and maintain, the myofibroblastic transdifferentiation (401). 

Another reason that TSG-6 knockdown PTCs retain the epithelial phenotype is 

because the reduced HA peri-cellular matrix which inhibits the HA:CD44 interaction, 

that is important for EGFR activation as TGF-β signals via the same pathway. Hence, 

the lack of HA:CD44 interaction may inhibit the signaling of TGF-β. This concept 

was derived by extrapolating the data from the recent work on fibroblasts at the 

Institute of Nephrology (70). Hence, TSG-6 plays an important role as an anti-

inflammatory protein in that it has a significant impact on the formation of HA coat 

which induces a migratory phenotype. The coordinated action of TSG-6 in the 

presence of HAS2, HA-rich matrix, CD44:HA interaction suggests it is important in 

TGF-β-mediated tissue re-modeling in injuries and disease. Many studies have been 

done to evaluate the therapeutic benefits of TSG-6 in various animal models (317, 

420-424). It has an important role in inhibiting MMP transcription and this role is 

accentuated by its interaction with IαI interaction, which is a important inhibitor of 

plasmin and protease activity (317, 394). 

In Chapter 5, the results show that CD44 plays a crucial role in the interaction with 

HA and is up-regulated in TSG-6 knockdown PTCs. This in turn may be responsible 

for the upregulation of HAS2 to synthesise HA and form the HA peri-cellular coats. 

This was demonstrated by transient transfection of TSG-6 knockdown with CD44 

siRNA, which showed downregulation of HAS2 expression and a blunted response to 

stimulation with IL-1β or TGF-β. There was a complete loss of HA cables and peri-

cellular coat in these double knockdown PTCs, signifying the important role played 

by these molecules in maintaining HA assembly. 

Hence, the results of double knockdown of TSG-6 and CD44 in PTCs, may lead to 

significant impairment of tissue repair and anti-inflammatory activity of these genes. 

There was a loss of the HA peri-cellular matrix coat and of HAS2 expression, which 
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is one of the major enzymes responsible for HA synthesise in PTCs. The results from 

this Chapter further reinforces the data known from the past about the central role that 

CD44 plays in HA assembly by its interaction with HA:CD44. Our recent laboratory 

data has showed that the E-cadherin expression was intact in these dual knockdown 

HK-2 cells when stimulated with TGF-β (416), confirming the role of each of these 

HA-related proteins (CD44, TSG-6, HAS2) in phenotypic transformation. In these 

dual knockdown PTCs, HA concentration was reduced significantly (416).  

In summary, the data generated in this thesis further emphasizes the role of TSG-6 as 

a potent anti-inflammatory protein and facilitating the HA coat formation and 

crucially regulating the ECM. It shows its importance in phenotypic transformation in 

response to TGF-β stimulation. This data can be taken further to evaluate direct 

interaction between TSG-6 and CD44 as both of these molecules possess 

Link_module. This may be a crucial information as it has been shown in senescent 

fibroblasts there is reduced expression of HAS2 which may in turn lead to reduced 

HA and affect the repair mechanism induced by TGF-β. If there is a role established 

between TSG-6 and CD44 which are the important proteins related to HA, 

manipulation could be done in senescent cells to bypass the role of HAS2 and retain 

the phenotypic transformation with TGF-β stimulation.  

Future work 

As demonstrated in fibroblasts, it would be interested to see if the synchronous action 

of TSG-6, HAS2 and CD44 are required for EMT in PTCs as well. I would like to 

take this work further by HAS2 knockdown in PTCs and look at how it effects the 

HA assembly and EMT. Would down-regulation of HAS2 cause increase in HA cable 

formation and hence act as anti-inflammatory by binding to infiltrating monocytes. In 

the HAS2 knock down cells, if TSG-6 is overexpressed could it form the peri-cellular 

HA by other mechanisms such as induction of HAS3. As we have demonstrated in 

HK-2 cells in the past, that HAS2 over-expression causes enhanced migration, 

increased HA coat and inhibition of HA cables (132). Hence it would be interesting to 

know the effect of HAS2 knockdown and TSG-6 over-expression in PTCs, would it 

cause increased HA cables which prevents monocyte binding to PTC and prevent 

inflammation. Does HAS3 take over the function of HA synthesis in these cells? 
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As described in this thesis, in the absence of TSG-6 it was shown that CD44 might 

have a role in increased HAS2 expression. Dual knockdown of TSG-6 and CD44 led 

to reduced expression of HAS2 in comparison to TSG-6 only knockdown in PTC. It 

would be useful to get information about the effect of dual knockdown (TSG6-

/CD44-) PTCs and its role in HA assembly and turnover and effect on EMT and 

migration. As epithelial phenotype is preserved in TSG-6 knockdown and dual 

knockdown (TSG6-/CD44-) PTCs, would it be right to speculate that these PTCs 

would prevent the effect of TGF-β and EMT is prevented. In these PTCs with dual 

knockdown (TSG6-/CD44-) there was peri-cellular HA restoration which raises the 

question about the role of other HA receptors such as ICAM-1.  

Thus a balanced up-regulation of TSG-6 and down-regulation of HAS2 in PTCs could 

prevent the effect of fibrotic growth factors and cytokines and hence EMT, is a 

interesting speculation but hard to achieve. Further studies with above experiments 

many help to provide more information.  
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