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Abstract 

Osteoarthritis (OA) is a highly prevalent, debilitating disease affecting many joints 
including the knee. Despite the involvement of several tissues, it is believed that the 
articular cartilage is the primary site of pathogenesis in humans.  

Within this study, a new scoring system of OA was devised, incorporating the articular 
cartilage and underlying bone, aimed at providing a more comprehensive means of grading 
the severity of tissue damage. We examined changes progressively from mild to severe 
and were able to deduce from the scoring system that bone changes may precede those of 
the overlying cartilage.  

Immunohistochemistry was used to assess stem cell marker expression, proliferation and 
progressive changes within the extracellular matrix of sectioned osteochondral plugs, 
however no distinct pattern of change could be extrapolated, highlighting the variable 
nature of this taxing disease. 

Previous studies have demonstrated the presence of a sub-population of chondroprogenitor 
cells present in normal hyaline cartilage. We demonstrated in this study that a similar 
group of cells reside in osteoarthritic articular cartilage. We were able to isolate and 
expand clonally derived primary cell lines to beyond 50 population doublings whilst 
maintaining a chondrogenic phenotype, and demonstrated the tri-lineage potential of these 
cells. That said, a significant amount of variation was observed and it was, therefore, 
postulated that there may be a smaller cohort of viable cells within this sub-population 
isolated from osteoarthritic cartilage.  

A preliminary study was also carried out comparing chondroprogenitors from normal 
articular cartilage to those isolated from OA tissue. Heterogeneity was again encountered, 
suggesting that there was a group of OA chondroprogenitors with similar characteristics to 
the normal cells, which differed from the other less metabolically active cells. This finding 
was agreeable with the aforementioned postulation. Data from our preliminary integration 
study was promising as we demonstrated the potential for using these chondroprogenitor 
cells in combination with other cells whilst achieving successful integration. However, 
further work is necessary to distinguish between the cell lines with the potential for 
integration from those that lacked this ability, thereby eliminating the heterogeneity.  

The presence of viable chondroprogenitor cells in OA tissue challenges the dogma that the 
tissue is irrecoverable, and opens the scope for regenerative medicine using resident 
progenitor cells. This is an exciting prospect that could significantly contribute to articular 
cartilage repair.  
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1.1. Joints  

 

A joint refers to the structural arrangement at the union between two or more parts of the 

skeleton. There are several different bases of classification of joints including structural 

classification and functional classification (figure 1.1) (Tortora and Anagnostakos, 1990). 

Synovial joints (otherwise known as diarthroses) are the most evolved and consequently 

the most mobile type of joint in the vertebrate. They comprise a joint cavity enclosed by a 

fibrous capsule linking skeletal elements including bone, ligament, meniscus and 

synovium. Within the capsule, a synovial membrane lines the surface and secretes a vital, 

lubricating fluid known as the synovial fluid. A thin layer of hyaline cartilage covers the 

surface of the articulating bones and this is commonly referred to as the articular cartilage. 

The structure of normal synovial joints enables high tensile strengths to be absorbed whilst 

providing a surface with low levels of friction permitting smooth, pain free movement. 

Synovial joints can withstand loads of up to ten times the body weight with a very low 

friction coefficient (Ratcliffe and Mow, 1996).   

 

 
 

Figure 1.1. Diagrammatic presentation of joint classifications.  

Synovial joints fall under the structural classification of joints. 
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Figure 1.2. Diagram of a synovial joint.  

Articular cartilage covers the opposing surfaces of the skeletal elements. (Figure kindly 
donated by Dr. Kirsty Richardson). 
 

 

1.2. Development of cartilage 

 

The development of the skeleton is a crucial process beginning early in embryogenesis, 

initiated by the formation of cartilage. Undifferentiated mesenchymal cells from the 

paraxial mesoderm give rise to somites; short segments of bead-like elevations that appear 

along the dorsolateral surface of the embryo and later differentiate into the axial and 

appendicular skeleton (Moore and Persaud, 2003). Cartilage develops from cells within the 

limb bud condensing to form a cartilaginous model of bone through a sequence of 

synchronised steps. This involves commitment and proliferation of cells into 

chondrogenesis, followed by the acquisition of a chondrogenic phenotype; events which 

are not only controlled by the chondrocytes themselves, but also by the local environment. 

An important transcription factor involved during chondrogenic condensation is Sox9, 

which is known to precede the expression of early cartilage marker collagen type IIa 

(Akiyama et al., 2002). 
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The process by which the cartilage anlagen develops into skeletally mature bone is called 

endochondral ossification. This process involves chondrocyte proliferation, chondrocyte 

hypertrophy and matrix production, followed by the invasion of blood vessels. Apoptosis 

or transdifferentiation of hypertrophic chondrocytes into osteoprogenitor cells occurs 

which leads to the establishment of primary ossification centres in the diaphyses. At these 

sites mineralisation occurs, through which the cartilaginous anlagen is replaced by bone. In 

humans at birth, secondary ossification centres are established at either ends of diaphyseal 

shafts. Between the secondary centres and the developing diaphyseal bone is an area 

known as the epiphyseal growth plate (Stevens et al., 1992). Many similarities exist 

between chondrocytes of the growth plate, articular cartilage and permanent cartilage 

including metabolism and markers such as collagens, however there also many 

biochemical and physiological differences due to local surroundings. Understanding the 

different mechanisms involved in chondrocyte fate remains to be fully elucidated. 

 

1.3. Development of synovial joints 

 

Synovial joints arise from mesenchymal condensations at specified sites through a process 

mediated by cell adhesion molecules and matrix receptors. Following the early stages of 

development in which the condensations chondrify, there is a secondary phase of 

remodelling. During this phase a region of cells at the presumptive joint flatten and 

become non-chondrogenic; at which point the region is known as the interzone (Archer et 

al., 2003, Craig et al., 1987). It is believed that the joint tissues are derived and develop 

from the cells of the interzone (Mitrovic, 1977), which in humans is seen as a thin layer of 

two to three flattened cells (Edwards et al., 1994).  

 

There is a plethora of data to suggest a defined pattern is involved in specification of 

developing joints. Positioning and patterning of limbs involve cellular interactions 

between the mesenchymal cells that form the core of the limb bud and surrounding 

ectoderm (Khan et al., 2007). This process is controlled by three main signalling centres, 

which drive patterned limb growth along each of the three axes of the limb; namely 

proximal-distal, anterior-posterior and dorsal-ventral (Niswander, 2002). During the initial 

phases of joint specification, Noggin and Chordin, secreted bone morphogenetic protein 

(BMP) antagonists are expressed throughout the mesenchymal condensation and 
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presumptive joint space, and are crucial during joint development (Brunet et al., 1998). 

Growth and differentiation factor (GDF) -5, a member of transforming growth factor-β 

(TGF-β) superfamily is known to be heavily involved in the formation of the joint 

interzone, despite being from a chondrogenesis-promoting family (Archer et al., 2003, 

Storm et al., 1994). It is believed that GDF-5 was the first recognised gene marker in the 

developing joint and, therefore, much work has been focused on analysing its role during 

joint specification (Archer et al., 2003). Mutations to the GDF-5 gene disrupts normal 

skeletal development and results in abnormal joint development (Francis-West et al., 1999, 

Storm and Kingsley, 1999). 

 

Despite its involvement in joint development, it has been found that GDF-5 is not directly 

involved in specifying joint type and it is believed that synovial joints are specified and 

controlled by an upstream activator of GDF-5 from the Wnt family of genes (Hartmann 

and Tabin, 2001). Wnt14 specifically has been identified as a key factor in the 

development of synovial joints, and localised production of Wnt14 induces the expression 

of GDF-5 (Khan et al., 2007). Convincing data by Hartmann and Tabin (2001) 

demonstrate how Wnt14 is sufficient to direct joint development in the chick, based on its 

ability to induce and/or maintain relevant gene markers for joint development including 

chordin, CD44 and GDF-5.  

 

Several studies have also focussed on Hox genes, homeodomain-containing transcription 

factors which have been shown to be critical for the specification and patterning of 

vertebrate embryo (Nowicki and Burke, 2000). Having stated that, the extent to which 

these genes are in fact critical for joint patterning and determination is unknown as little 

work has been followed up to confirm and/or extend from the initial proposals (Pacifici et 

al., 2005).  

 

The next phase of development is joint cavitation at which point there is a significant 

reduction of chondrogenic marker expression, namely sox9 and collagen type II. As 

described by Khan et al., 2007, ‘the process of cavitation involves the generation of a 

cavity between two cartilaginous elements that are growing against each other through 

forces largely generated by hypertrophy and matrix secretion’. This process is achieved 

through upregulation of mechanically induced hyaluronan (HA) synthesis by cells of the 
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interzone, articular surface and synovium. There are several other factors which have been 

postulated to be involved in the formation of the synovial cavity including cell death, 

enzymatic degradation, differential matrix synthesis and mechanical stimulation. 

 

1.4. Articular cartilage 

 

Articular cartilage is a thin layer of hyaline cartilage that covers the surface of bones at 

large articulating diarthrodial joints. It is renowned for being avascular and aneural, and 

for being a tissue with a poor reparative capacity. The function of articular cartilage is to 

provide a wear-resistant surface with low frictional properties, whilst having the ability to 

bear high tensile strengths; withstanding compression and shear (Benjamin, 1999).   

 

The characteristic properties of articular cartilage are achieved through its highly 

structured organisation. Its uniquely dense extracellular matrix (ECM) is produced and 

maintained by a single specialised cell; the chondrocyte, whose relative numbers are low 

and make up less than 5% of the tissues total volume (Bora and Miller, 1987) . The ECM 

is abundant in collagens (10-30% of wet weight) that provide a network in which 

proteoglycans (5-10% of wet weight) and other molecules can embed. The negatively 

charged proteoglycans are responsible for a high osmotic swelling pressure, resulting in a 

large proportion of water within the tissue (65-80% of wet weight) (Buckwalter and 

Mankin, 1998). It is through the interactions between collagens, proteoglycans and water, 

that hyaline cartilage becomes a resilient tissue capable of lasting a lifetime. 

 

The gross appearance of articular cartilage is smooth and iridescently white; however the 

thickness, cell density, matrix composition and mechanical properties are variable even 

within a joint. Due to the avascular nature of the tissue, the chondrocytes are sustained by 

the diffusion of nutrients and gases. Compared to other tissues like muscles and bone, 

articular cartilage has a low level of metabolic activity. Despite its low metabolic activity 

and ‘unimpressive appearance’, articular cartilage is an elaborate, and highly ordered 

structure in which complex interactions between chondrocytes and surrounding matrix 

actively maintain the tissue (Buckwalter and Hunziker, 1999). 
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Figure 1.3. Normal human hyaline cartilage on tibia and femur.  

Normal fibrocartilagenous meniscus between the articulating surfaces can also be seen. 
Photograph taken by Professor John Fairclough during arthroscopic surgery.  
 

 

1.4.1. Development of articular cartilage 

 

The pathways involved in the development of articular cartilage have been an area of 

interest within many groups for decades, as a result of the inherent lack of understanding. 

The questions that are commonly raised are a) how do articular chondrocytes develop at 

the extremities of developing long bones early in embryogenesis and become distinguished 

from surrounding tissues and structures, and b) how do the articular cells avoid entering 

the endochondral ossification route through which the majority of the chondrocytes form 

skeletal elements (Pacifici, 1995). 

 

Extensive work by Pacifici (1995) has provided strong evidence to suggest that tenascin-C 

(an ECM macromolecule) and syndecan-3 (a cell surface receptor) have roles in not only 

developing synovial joints, but also articular cartilage specifically. Chiquet and 

Fambrough (1984) initially identified tenascin-C as a factor involved in joint development 

as it had been found to be rich at boundaries between different adjacent tissues and 

structures. In the case of the synovial joint, the formation of this boundary; the interzone, 

is what leads to the creation of distinct skeletal elements. Tenascin-C was also found to 

maintain cells in a round configuration which is characteristic of chondrocytes that give 
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rise to articular cartilage and unlike growth plate chondrocytes which are flat and 

irregularly shaped (Chiquet-Ehrismann et al., 1988, Howlett, 1979, Lutfi, 1974). It was 

also found that tenascin-C has the ability to interact with a variety of cell surface receptors, 

including syndecan-3; a component that had previously been shown to be expressed by 

limb prechondrogenic condensations (Gould et al., 1992, Salmivirta et al., 1991). Based on 

these findings, several authors pursued this work with the aim to develop a greater 

understanding of the roles and involvement of these macromolecules in joint development 

(Koyama et al., 1995, Pacifici, 1995, Pacifici et al., 1993). Experiments in chick embryo 

unveiled that at day 6-6.5 of embryogenesis, syndecan-3 gene expression was strongly 

expressed by perichondral cells around the border of the diaphysis. Tenascin-C gene 

expression was weaker than that of syndecan-3, and particularly evident in the inner layer 

of the diaphyseal perichondrium (Pacifici et al., 1999). Throughout development as 

separation of the skeletal elements occurs, there is a gradual increase of tenascin-C at the 

epiphyses with levels reducing at the diaphyses. At later stages, when articular and growth 

plate chondrocytes emerge at the epiphyses (day 18 in chick embryogenesis) tenascin-C 

becomes extremely abundant but confined to articular chondrocytes, precisely delineating 

boundaries between structures. At this same stage, syndecan-3 is absent from articular 

chondrocytes, yet evident in the region of proliferating chondrocytes in the top zone of the 

growth plate (Pacifici, 1995, Pacifici et al., 1993, Savarese et al., 1996). As previously 

mentioned tenascin-C maintains chondrocytes in their stable round configuration allowing 

for the preservation of a normal phenotype throughout postnatal life (Pacifici et al., 1999).   

 

There is no doubt a pattern of organisation throughout the growth and development of 

articular cartilage; the uncertainty lies in what triggers these mechanisms. In the late 

embryo, articular chondrocytes are rounded, randomly dispersed throughout the tissue, 

display low mitotic activity and are separated by a relatively low amount of extracellular 

matrix (ECM) (Howlett, 1979, Lutfi, 1974). Mature articular cartilage on the other hand 

has a distinct, structured organisation and a relatively high matrix-to-cell ratio. It is also 

well documented that when cartilage matures, tissue thickness and overall cell density also 

decrease (Stockwell, 1979). The spatial and temporal patterns of matrix components have 

also been studied. As such there is a distinct shift from an immature isotropic structure to a 

highly anisotropic mature articular cartilage (Archer et al., 1996, Morrison et al., 1996).  
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Collagen expression is not overly dynamic throughout the development of articular 

cartilage. Type I collagen is initially detected throughout the presumptive articular 

cartilage, however it is not detected in later stages following maturation of the tissue. Type 

II collagen is ubiquitous throughout the cartilage matrix. Type V collagen is seen 

pericellularly together with type III collagen during cavitation, and then within the 

articular cartilage following cavitation resulting in the suggestion that the chondrogenous 

cells of the interzone give rise to the articular cartilage (Archer et al., 2003). The gross 

collagenous structure of collagens within the tissue also changes as it develops, going from 

an arrangement that runs generally parallel to the articular surface, to the arrangement of 

the Benninghof ‘arcade’ pattern in which the fibre orientation develops perpendicularly 

from the basal region and arches over to run parallel to the articular surface (Benninghof, 

1925). The presence of proteoglycans during the development of articular cartilage is 

highly varied depending on age, joint or species. 

 

Despite the wealth of information above, the underlying question of how does the structure 

of articular cartilage develop, remains to be answered. Work by Mankin (1962) 

demonstrated how articular cartilage grew by a combination of appositional and interstitial 

growth following experiments on immature rabbit knees. Tritiated thymidine was 

incorporated as a marker for chondrocyte proliferation, showing the two bands of 

proliferative activity. The first lies just inferior to the articular surface and the second 

superior to the resident hypertrophic chondrocytes. Studies by Archer et al., (1994) 

confirmed that in the marsupial Monodelphis domestica, once a secondary centre of 

ossification begins to develop, growth of the presumptive articular cartilage does indeed 

become increasingly appositional. The tissue, with the exception of the articular surface, is 

renewed at or near the articular surface and is resorbed at the base through endochondral 

ossification during the establishment of the subchondral bone. This process is similar to 

the process that occurs at the epiphyseal growth plate; however it suggests the existence of 

an articular cartilage progenitor, or ‘stem’ cell residing within the articular surface (Archer 

and Francis-West, 1999). 

 

Studies by Hayes et al., (2001) confirmed this notion of appositional growth in the 

development of articular cartilage. Monodelphis domestica knee joints were injected with 

bromodeoxyuridine (BrDU) which blocks chondrocyte proliferation after incorporation 
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into the DNA at S-phase. It was found that the transitional layer of cells usually present 

following normal development was absent, and that the cartilage comprised superficial and 

basal layers only. In addition to this, the expression of many growth factors and receptors 

present at the articular surface suggests the possibility that it represents an important 

signalling centre (Archer, 1994, Hayes et al., 2001). Members of the Notch receptor 

family; a group of cell surface signalling receptors which have the ability to regulate cell 

fate decisions, have been found to reside in the surface of bovine articular cartilage 

(Dowthwaite et al., 2004). This family of receptors is involved in a complex signalling 

pathway that regulates the elongation of the growth plate and ossification. Dowthwaite et 

al., (2004) demonstrated that there is a subpopulation of chondrocytes in the articular 

surface that expresses Notch-1, and that these cells may contain a progenitor population. 

Their work goes on to suggest that Notch-1 signalling functions to control proliferation in 

cartilage, based on work which shows that blocking Notch-1 signalling inhibits the 

formation of colonies by cartilage progenitor cells. The precise mechanisms involved in 

the Notch signalling pathway are yet to be fully established, and further work in this area 

would be fruitful in further understanding the development of articular cartilage.  

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4. Diagram summarising hypothetical cell lineage of articular cartilage.  
 

Progenitor cells in the articular surface divide to give two daughter cells, one being another 
progenitor cell and the second being a transit-amplifying unit cell within the transitional zone. The 
transit-amplifying cell can then undergo further cell divisions along the chondrocyte differentiation 
pathway. [Image and figure legend adapted from Hayes et al., (2001)]. 
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1.4.2. Articular cartilage morphology 

 

The structure of articular cartilage varies with the depth from the surface in terms of 

matrix composition, organisation and mechanical properties, as well as cell morphology 

and function (Buckwalter et al., 1990). This organised structure however can be affected 

and altered by age and pathology. 

 

Articular cartilage has four distinct zones, the size and appearance of which varies between 

species, and in different joints within the same species (Hendren and Beeson, 2009). These 

zones are the superficial tangential zone (approximately 10 – 20% of the cartilage 

thickness), the middle zone (60% of the cartilage thickness), the deep zone (30% of the 

cartilage thickness) and the calcified cartilage zone. The shape and orientation of 

chondrocytes differ within these four regions, as does the content and organisation of 

collagen and other macromolecules. In the superficial zone, the chondrocytes are flattened 

and the collagen content is relatively high; tightly organised in a tangential manner so that 

they are parallel to the joint surface. In the middle and deep zones, the chondrocytes have a 

more spherical appearance, and the collagen content decreases with increasing tissue 

depth. There are no distinct boundaries between the upper three zones with the 

morphological changes occurring gradually and through development. 

 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.5. Normal human articular knee cartilage stained with safranin O/fast green. 

Note the smooth surface, small and flat cells in the tangential zone; intermediate and radial 
zone cells are arranged in columns. The tidemark is intact. [Image and figure legend 
adapted from Lorenz and Richter et al., (2006)]. 
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Superficial zone 

 

The superficial zone is possibly the most important region in articular cartilage and it has 

sparked the most interest within researchers. Studies have shown that the superficial zone 

is centrally involved in the regulation of tissue development and growth and that this 

region plays a major role in the morphogenesis of the synovial joint as a whole (Ward et 

al., 1999). Expression of many growth factors and their receptors in this region suggests 

that the articular surface represents an important signalling centre (Archer et al., 1994, 

Hayes et al., 2001). 

 

Despite the superficial zone being the thinnest zone, the structure and composition gives 

this region specialised mechanical and biological properties. It consists of two layers; an 

acellular layer and a deeper cellular layer of flattened, discoid shaped chondrocytes in a 

collagenous matrix. The chondrocytes arrange themselves so that their major axes are 

parallel to the articular surface. The matrix synthesised by these chondrocytes has a high 

collagen concentration and a low proteoglycan concentration when compared to other 

cartilage matrix zones. There is also an increased fibronectin content in this zone, which 

together with surface zone protein (SZP) and hyaluronic acid (HA), may have a role in 

joint lubrication and protection (Nishida et al., 1995). 

 

The parallel arrangement of collagen fibrils in the superficial zone helps to determine the 

tissues mechanical properties as it provides the region with greater tensile stiffness and 

strength, and provides resistance to shear forces generated through movement and loading. 

The dense collagen network also functions to regulate the movement of molecules in and 

out of the cartilage. Removal of the superficial zone increases tissue permeability and 

increases loading of the deeper zones of the structural framework during compression 

(Setton et al., 1993). As such, it is thought that disruptions and/or alterations in this zone 

may contribute to the development of osteoarthritis (OA) by altering the mechanical 

behaviour of the tissue (Guilak et al., 1994). 
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Middle zone 

 

The middle zone of articular cartilage is sometimes known as the transitional zone as the 

morphology and matrix composition of this region is intermediate between the superficial 

and deep zones. As previously mentioned it comprises approximately 60% of the cartilage 

thickness. The chondrocytes residing in this zone are spheroidal in shape and contain a 

higher concentration of synthetic organelles, endoplasmic reticulum and Golgi complex 

membranes when compared to the superficial zone chondrocytes. There is a higher 

proteoglycan content in this region but lower concentrations of water and collagen when 

compared to the superficial zone matrix. The collagen fibrils in the middle zone have a 

larger diameter relative to the fibrils of the superficial zone (Buckwalter and Hunziker, 

1999).  

 

Deep zone 

 

The deep zone of articular cartilage is a progression from the middle zone, whereby the 

collagen fibril diameter is larger, the proteoglycan content in the ECM is higher and the 

water concentration is at its lowest. The cells remain spheroidal in shape, however they 

tend to arrange themselves into columns perpendicular to the joint surface (figure 1.6). The 

collagen bundles of this zone pass through the tidemark and provide and anchoring system 

between the non-calcified and calcified cartilage regions (Buckwalter and Hunziker, 

1999). 

 

The tidemark is a thin basophilic line that corresponds with the boundary between non 

calcified and calcified cartilage. It behaves as a mineralisation watermark demonstrating 

the advancement of the calcified layer to the articular surface (Havelka and Horn, 1999). 

The nature of this interface remains uncertain however it is of interest as it can be 

duplicated during osteoarthritis, suggesting the involvement of this region in the pathology 

of the disease.   
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Calcified cartilage zone 

 

The calcified cartilage zone is a thin region that separates the non-calcified cartilage from 

the subchondral bone. Within this region the chondrocytes are smaller and rounded, and 

contain lesser amounts of endoplasmic reticulum and Golgi complex membranes, 

indicating a low metabolic state (Morris et al., 2002). The calcified cartilage/subchondral 

bone interface is known as the osteochondral junction.  

 

 

 
Figure 1.6. Diagram showing zonal variation in articular cartilage. 

Articular cartilage is composed of four distinct zones: surface (superficial), middle, 
deep and calcified zones. (Image kindly donated by Dr. Kirsty Richardson). 
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1.4.3. Matrix regions 

 

There are three major compartments through which the ECM can be organised. These are 

the pericellular, the territorial and the interterritorial matrix regions which were first 

described by Meachim and Roy (1967) and Meachim and Stockwell (1973). Together, the 

pericellular and territorial matrices provide protection to the chondrocytes from damage 

during loading and deformation of the tissue by binding the cell membranes to the matrix 

macromolecules. They also have a role in transmitting mechanical signals to the 

chondrocytes following loading. The function of the interterritorial matrix is to provide 

mechanical properties to the tissue (Buckwalter and Hunziker, 1999). 

 

Pericellular matrix 

 

The pericellular compartment is the region of variable width surrounding each 

chondrocyte. It is an area that is rich in proteoglycans synthesised by the chondrocytes 

themselves. The pericellular matrix is free of fibrillar collagens but contains non-

collagenous matrix proteins and non-fibrillar collagens including collagens type VI and IX 

that form a fine meshwork of fibres (Hagiwara et al., 1993, Poole et al., 1992, Wotton et 

al., 1991). The cells membrane is attached to a thin rim of pericellular matrix, and 

cytoplasmic extensions from the cells project into and through this matrix to the territorial 

matrix (Buckwalter and Hunziker, 1999). A word that is commonly used is the ‘chondron’ 

which refers to the chondrocyte with its pericellular matrix, bounded by a capsule of fine 

fibrous material. The chondron forms a functional unit with the ability to absorb loads and 

provide protection for the chondrocyte (Poole et al., 1987). The pericellular matrix is 

adjacent to the territorial domain. 

 

Territorial matrix 

 

The territorial matrix contains a basket like arrangement of collagen fibrils that envelopes 

individual, pairs or even clusters of chondrocytes and their pericellular matrices, making 

them distinct morphologic entities. Thin collagen fibrils of the territorial matrix that are 

adjacent to cells adhere to the pericellular matrix, giving this basket like arrangement. The 

function of this matrix is similar to the pericellular matrix in that it serves as further 
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protection to the chondrocytes. The territorial matrix gives way to the interterritorial 

compartment. A distinct increase in collagen fibril diameter and a transition from the 

basket-like like orientation of collagen fibrils to a more parallel arrangement marks the 

conversion between the territorial and interterritorial matrices (Buckwalter and Hunziker, 

1999).   

 

Interterritorial matrix 

 

This region constitutes the bulk of the extracellular space and can be characterised by a 

marked increase in fibril diameter. In this region, the collagen fibrils are not organised to 

surround the chondrocyte; instead the interterritorial matrix contains two populations, 

namely fibrils and fibril bundles, which are either arranged parallel to the surface forming 

arcade-like structures, or randomly oriented fibres (Buckwalter and Hunziker, 1999). The 

general orientation also varies depending on the location within the articular cartilage. In 

the superficial zone, fibril diameters are smaller and the fibrils generally lie parallel to the 

articular surface. In the transition from the middle to the deep zones, the fibrils convert 

from an oblique orientation (relative to the articular surface) to lying in bundles 

perpendicular to the articular surface. This arrangement of collagen fibres is known as the 

‘Benninghoff arcades’ and was originally described by Benninghoff (1925). 
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Figure 1.7. Diagram showing organisation of the fibrillar components within articular 
cartilage.  

The territorial matrix contains a basketlike arrangement of collagen fibrils and organises 
chondrons into distinct morphological entities. The interterritorial matrix forms the bulk of 
the tissue. (Buckwalter and Hunziker, 1999). 
 

 

1.4.4. Articular cartilage components 

 

The chondrocyte 

 

Chondrocytes are the sole constituent cell residing within normal articular cartilage. As 

such, they are responsible for synthesising major structural components including type II 

collagen, large aggregating proteoglycans and other less abundant proteins. They are also 

accountable for the highly organised ECM in which they are surrounded. Intracellularly, 

chondrocytes demonstrate typical features of a metabolically active cell, and comprise 

organelles such as endoplasmic reticulum and Golgi complexes. Chondrocytes may also 

possess short processes or microvilli; extending from the cell into the matrix, and playing a 

role in sensing mechanical changes in the ECM (Buckwalter and Hunziker, 1999). 



18 

 

Chondrocytes differ morphologically based on their orientation within the tissue. Cells 

reside singly at the articular surface, and appear flattened or discoid (Archer and Francis-

West, 2003) when compared to cells in the middle zone which appear more spherical. In 

the deep region near the subchondral bone, chondrocytes are generally organised into 

columns which run perpendicular to the articular surface. As articular cartilage is not 

vascularised, chondrocytes rely on diffusion for nutrient and metabolic exchange. As such, 

this system leaves the chondrocytes with a low oxygen concentration (ranging from 10% 

at the surface to less than 1% in the deep layers) relative to other tissues and, therefore, the 

chondrocytes primarily rely on anaerobic metabolism (Archer and Francis-West, 2003). 

Consequently, chondrocytes usually have relatively low numbers of mitochondria and 

most of the cells energy requirements come from glycolysis (Buckwalter and Hunziker, 

1999).  

 

Despite the low metabolic activity of the chondrocyte, the cells must remain active as 

maintaining the articular surface requires turnover of matrix macromolecules. Joint use 

and biomechanical loading also influence the alteration in the matrix macromolecular 

framework. 

 

Chondrocyte activity and function varies as articular cartilage matures. In immature 

articular cartilage, chondrocytes proliferate rapidly and there is a high cell density as the 

cells produce new tissue to expand and remodel the articular surface. With skeletal 

maturation, the cartilage thickness largely remains unchanged and instead, the 

chondrocytes work to maintain and/or replace degraded matrix macromolecules including 

the collagens, proteoglycans and non-collagenous proteins (Buckwalter, 1995a). 

 

Cell distribution within mature articular cartilage is not uniform, and zoned differences are 

detectable and will be summarised later. One interesting hypothesis which was proposed 

by Stockwell (1975) was that there is a large proportion of chondrocytes at the articular 

surface and within the superficial zone, due to the proximity of the synovial fluid and its 

nutrients.  
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Extra-cellular matrix 

 

The ECM of articular cartilage comprises two main components namely a framework of 

structural macromolecules and mobile, interstitial fluid. Together, these give rise to the 

tissue stability which account for the mechanical properties of the tissue as a whole 

(Buckwalter and Mow, 1992).   

 

Interstitial tissue fluid 

 

The fluid phase of the ECM consists of water and inorganic salts, and makes up between 

70 and 80 % of the tissue wet weight. High concentrations of cations within the fluid 

interact with matrix macromolecules and balance out the negatively charged 

proteoglycans. This interaction is essential in maintaining mechanical properties of 

stiffness and resilience within articular cartilage (Buckwalter and Mow, 1992). There is a 

certain degree of mobility of fluid within the tissue which supplies nutrients to the 

chondrocytes and also aids joint lubrication (Buckwalter et al., 1990).  

 

1.4.5. Structural macromolecules 

 

Within articular cartilage the three classes of macromolecules; namely collagens, 

proteoglycans and non-collagenous proteins, together contribute to 20 to 40% of the 

overall tissue wet weight (Buckwalter et al., 1990). These are synthesised by chondrocytes 

from amino acids and sugar. The collagens provide a fibrillar frame in which the 

proteoglycans and non-collagenous proteins bind; and the interstitial fluid fills the 

molecular framework. The concentration of the macromolecules differs throughout the 

cartilage, as does their contribution to the tissue properties.  

 

1.4.5.1. Collagens 

 

The collagen network gives cartilage its form and tensile strength (Buckwalter and Mow, 

1992), and accounts for approximately two-thirds of the dry weight of mature articular 

cartilage. Specifically, the collagens found in articular cartilage include types I, II, III, V, 

VI, IX, X, XI, XII and XIV, however the ratios of these macromolecules shift as the 
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cartilage develops. In mature cartilage, type II is the most abundant and accounts for 90% 

of the total collagen (Eyre et al., 1987). 

 

Type I collagen 

 

Type I collagen, a heterotrimer comprising two α1(I) chains and an α2(I) chain (Benya et 

al., 1978), is a fibrillar collagen that is present at the onset of chondrogenesis early in 

development (von der Mark et al., 1976). It is also present at the articular surface during 

development and in repair tissues. At the growth plate during endochondral ossification, 

type II collagen is replaced by type I collagen, which is secreted within the lacunae of 

hypertrophic chondrocytes (Leboy et al., 1988). In bone, type I collagen is reinforced with 

calcium hydroxyapatite providing tensile strength (Ayad et al., 1998).  

 

Type II collagen 

 

As mentioned, type II collagen is the principal articular cartilage collagen. It is a fibril 

forming collagen synthesised as a homotrimer; consisting of 3 identical polypeptide α1(II) 

chains that exists in two variants, IIA and IIB due to differential splicing (Ryan and 

Sandell, 1990). The two variants show differential distributions during development; with 

type IIA mRNA being expressed by perichondral cells and prechondrocytes, and type IIB 

mRNA expression in overt chondrocytes (Sandell et al., 1991). The type II collagen α 

chains are synthesised as procollagens, with non collagenous N- and C- propeptides. 

Through extracellular processing, proteinases cleave these terminal extensions and 

produce mature triple helices. Striated fibrils are assembled as a result of quarter 

staggering of individual molecules (Eyre, 1991). Type II collagen supports chondrocyte 

adhesion by binding through its helical domain with specific cell surface integrins 

(Holmvall et al., 1995). Integrins mediate the attachment of chondrocytes to the 

surrounding ECM macromolecules increasing the tissue integrity (Ruoslahti, 1991). 

 

Type III collagen 

 

Type III collagen, another fibrillar collagen is a minor collagenous component of articular 

cartilage. It is primarily associated with type I collagen, and the interaction between these 
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two collagens are thought to regulate fibril formation and fibril growth (Duance et al., 

1999). Cross linking studies have also revealed that type III collagen co-localises with type 

II collagen as a minor, but regular component. The exact function of type III collagen in 

cartilage remains unknown; however there is speculation that it is synthesised by 

chondrocytes in response to matrix damage, perhaps as part of a remodelling process (Eyre 

et al., 2006).  

 

Type V collagen 

 

The importance of type V collagen in articular cartilage has not been extensively studied, 

however it is thought to be synthesised in small amounts. There is a high homology 

between type V and type XI collagen and, as such, there is evidence to suggest that there 

hybrid molecules exist (Duance et al., 1999). In several tissues, type V collagen appears to 

co-polymerise with type I collagen, where it may act to control fibril diameter (Birk et al., 

1988). As type V collagen is also found in the meniscus, joint capsule and subchondral 

bone, it has been suggested that this collagen may have significant involvement on the 

normal functioning of the joint (Duance et al., 1999). 

 

Type VI collagen  

 

Type VI collagen is a microfibrillar collagen synthesised as a heterotrimer of three distinct 

chains (Timpl and Engel, 1987). Type VI collagen is preferentially located to the 

pericellular chondron of chondrocytes, where the microfibrils are stabilised by interaction 

with hyaluronan (Kielty et al., 1992). This collagen has also been shown to bind to the 

surface of many cells including chondrocytes (Marcelino and McDevitt, 1995). In 

osteoarthritis, increased type VI collagen expression has led to suggestions that it may 

have an involvement in tissue repair (Arican et al., 1996, Chang and Poole, 1996).  

 

Type IX collagen 

 

Type IX collagen is a cartilage specific fibril-associated collagen with an interrupted triple 

helix (FACIT). It is a heterotrimeric molecule comprised three different chains [α1(IX) 

α2(IX) α3(IX)], each consisting of three collagenous triple-helical domains (COL1-3) 
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separated by four non-collagenous domains (NC1-4) (figure 1.8). Unlike the fibrillar 

collagens, type IX collagen undergoes no processing before depositing into the ECM. In 

some cases, the α2(IX) chain contains an attachment site for chondroitin-sulphate at the 

non-collagenous region NC3 domain. As a result, type IX collagen is often described as 

both a collagen and a proteoglycan (Eyre et al., 1987, van der Rest and Mayne, 1988). 

Type IX collagen is always found in co-existence with type II collagen through covalent 

links, and it has been shown to modulate fibril formation by preventing close parallel 

alignment of the collagen type II fibrils (Wotton et al., 1988). The type IX collagen chains 

contain intermolecular cross-linking sites between type IX and type II collagen, or simply 

between type IX molecules (Eyre et al., 2004). The linkages formed contribute to the 

overall stability of the fibril network and help to resist the swelling pressure of the 

proteoglycans. In mammalian articular cartilage, amounts of type IX collagen decrease in 

relation to type II collagen with increasing cartilage maturity. It makes up approximately 

10% of the collagenous content of foetal mammalian articular cartilage, and 1% in adults 

(Eyre, 1991). This has lead to postulations that type IX collagen contributes to the growth 

and fibre diameter of type II collagen.  

 

Type X collagen 

 

Type X collagen is a short-chain non-fibrillar homotrimer consisting of three α1(X) chains, 

with a short non-helical amino terminus, a single triple-helical domain and a globular C-

terminal domain (Eyre, 1991). It is a cartilage specific collagen that is involved in 

localised regulation; the protein is highly restricted to ECM in the hypertrophic zone 

following synthesis by terminally differentiating chondrocytes (Schmid and Linsenmayer, 

1985). It is thought that the function of type X collagen is to facilitate the process of 

calcification possibly through changes in the matrix organisation (Kwan et al., 1991).Due 

to the localised production of type X collagen in the matrix of hypertrophic chondrocytes 

at the growth plate, it is believed that it is of major importance in endochondral 

ossification. In mature hypertrophic chondrocytes, type X collagen constitutes 45% of the 

total collagen and is therefore often used as a marker for this type of cell (reviewed by 

Shen, 2005). 
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Type XI collagen 

 

This collagen type, together with collagen type II and IX, forms a heteropolymer by 

covalent interactions that result in a fibrillar matrix that gives rise to mechanical stability 

(Mendler et al., 1989). Collagen type XI itself is synthesised as a heterotrimeric 

procollagen comprising three distinct proα1-3(XI) chains. It contains two collagenous 

domains (COL1-2) and three non-collagenous domains (NC1-3). Glycosylation of the 

triple helix creates a bulkier molecule that alters intermolecular spacing in the fibril. 

Alternative splicing of the N-terminal domains may influence interactions between other 

matrix molecules, resulting in fibrils to be stabilised at certain diameters (Duance et al., 

1999). Type XI collagen also interacts with proteoglycans and the chondrocytes 

themselves, suggesting a direct involvement in cell-matrix interactions (Vaughan-Thomas 

et al., 2001).  

 

Type XII and type XIV collagens 

 

These collagens are members of the FACIT family, and are minor collagenous 

components of articular cartilage. Their functions are unknown, however both molecules 

form close associations with type I collagen. Despite being unable to form fibrils and do 

not affect fibril diameter, it has been suggested that they may “bridge adjacent fibrils or be 

involved in mediating matrix deformability through interaction of their NC3 domains with 

other tissue components (Duance et al., 1999). 
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Figure 1.8. Schematic representation of the major collagen types present in articular 
cartilage. 

A). Heterotypic fibril consisting of types: II, IX and XI collagen. B). Type IX collagen. C). 
Type XI collagen. (Image taken from Duance et al., (1999)]. 
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1.4.5.2. Proteoglycans 

 

Proteoglycans are ubiquitous components of the ECM, and are integral, key components 

underlying many interactions within the cartilage matrix. They are a diverse family of 

molecules comprising a core protein component to which one or more glycosaminoglycans 

(GAGs) covalently attach, giving them an extremely high negative charge. The anionic 

proteoglycans form domains with high osmotic pressure which have the ability to take in 

large amounts of water creating a high swelling pressure. Tension is created by collagen 

fibres resisting this swelling, and application of any load to the tissue simply leads to 

temporary minor deformations (Heinegard and Oldberg, 2002). GAGs are unbranched 

polysaccharide chains, with repeating disaccharide units containing a hexuronic acid and a 

hexosamine that is usually sulphated. It is through the negative charge on the carboxyl and 

sulphate groups that the GAGs gain their poly-anionic properties (Heinegard and Oldberg, 

2002). The GAGs found within articular cartilage are hyaluronon (HA), chondroitin 

sulphate (CS), keratan sulphate (KS), dermatan sulphate (DS) and heparan sulphate (HS).  

 

There are two major classes of proteoglycans within articular cartilage; namely large 

aggregating proteoglycans such as aggrecan and versican, and small, non-aggregating 

proteoglycans such as decorin and biglycan. The large aggregating proteoglycans have a 

high affinity for other matrix components leading to the formation of stable structures. The 

small proteoglycans can exist independently within the ECM.   

 

Hyaluronic acid (HA) 

 

Hyaluronic acid is a nonsulphated GAG that is composed of repeating disaccharide units 

of D-glucuronic acid linked to N-acetly-D-glucosamine which form large, negatively 

charged molecules (Rapport et al., 1951). It is an integral component of articular cartilage 

ECM and forms very large molecular aggregates due to its interactions with aggrecan and 

link protein. Cellular interactions between chondrocytes and HA also play an important 

role in organising the tissue and retaining the matrix PG-aggregants within the articular 

cartilage (Ishida et al., 1997). Early in development, HA plays a role in joint cavitation at 

diarthrodial joints, at the site of initial separation whilst also maintaining a regulatory role 

of movement (Pitsillides, 1999).  
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CD44 is a family of surface molecules expressed on many cell types including 

chondrocytes and it is the principal receptor for HA, implicated in many cellular functions 

such as mediating cell migration. Synthesis of HA is in part regulated by the TGF-β family 

of polypeptide growth factors and mis-regulation of CD44 can contribute to a number of 

disease pathologies (Isacke, 1994, Ishida et al., 1997).  

 

Large aggregating proteoglycans 

 

Aggrecan 

 

Aggrecan is one of the major structural proteins of articular cartilage. It has a protein core 

of approximately 250kD and has between 100-150 CS chains and 60 KS chains (Kreis and 

Vale, 1999). The molecule is important due to its interaction with HA and link protein, 

which allow the formation of large, charged aggregates required for normal cartilage 

function (Holmes et al., 1988). It is believed that chondrocytes actively metabolise 

aggrecan throughout the lifetime of the tissue (Hascall et al., 1999). 

 

Figure 1.9. Schematic representation of aggrecan aggregate. 

Diagram of proteoglycan aggregate comprising aggrecan, HA and link protein. (Image 
kindly donated by Dr. Kirsty Richardson). 
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Versican 

 

Versican is another member of the large aggregating proteoglycans which is found 

transitorily within prechondrogenic condensations. As the cartilage develops, versican is 

removed and substituted with aggrecan (Hall and Miyake, 1995). 

 

Small proteoglycans 

 

Biglycan and decorin 

 

Biglycan and decorin are members of the small leucine-rich proteoglycan family (SLRPs) 

consisting of a small 38kD leucine-rich protein core containing CS or DS chains. They 

account for only a small percentage of the ECM of articular cartilage. Biglycan contains 

two extended CS or DS chains whereas decorin has only a single CS or DS chain (Kreis 

and Vale, 1999). The functioning of the molecules is dependent on both the core protein 

and the GAG chains. The core proteins allow the molecules to interact with fibrillar 

collagens and in doing so, help to regulate fibril formation and ECM interactions. It is also 

evident that these SLRPs limit the access of collagenases to their cleavage sites on 

collagen molecules, protecting the fibrils from proteolytic damage. Biglycan and decorin 

have also been reported to interact with other macromolecules in modulating chondrocyte 

metabolism and regulation (Roughley, 2006). 

 

Surface zone protein 

 

Surface zone protein (SZP) is a proteoglycan that has been identified more recently to have 

an involvement in articular cartilage (Schumacher et al., 1994). It has been shown that SZP 

is widely distributed during development, however in the adult it is only synthesised by 

chondrocytes residing in the surface zone of articular cartilage (Flannery et al., 1999a). 

SZP has been classified as a unique proteoglycan based on its distinctive biochemical 

properties. It is thought that SZP is not retained in the ECM as it is also present in the 

synovial fluid. This has led to suggestions that it may be secreted by the superficial zone 

chondrocytes into the synovial fluid rather than being retained in the ECM like other 

proteoglycans. Another interesting factor is that its molecular weight is not altered 
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substantially following the removal of its GAG chains, indicating that it may only have 

few GAG chains on its core protein (Jay et al., 2001). Although the precise function of 

SZP is unknown, the structural composition of the protein allows for cell proliferation, 

cytoprotection and self-aggregation; attributes that are crucial for maintaining the articular 

surface during joint articulation (Flannery et al., 1999a). Furthermore, SZP is known to 

share sequence homology with lubricin, a proteoglycan involved in protecting the articular 

surface and aid in lubrication of the joint further suggesting its role in maintaining articular 

cartilage integrity during movement (Rhee et al., 2005).  

 

Non-collagenous proteins and glycoproteins 

 

In addition to collagens and proteoglycans, articular cartilage also contains a range of non-

collagenous matrix proteins, some of which are specific for the tissue and some with a 

more ubiquitous distribution among connective tissues (Heinegard and Oldberg, 1989). As 

a whole, they consist primarily of protein, and have a few monosaccharides and 

oligosaccharides attached (Heinegard et al., 1995). Specific functions of these matrix 

macromolecules have been poorly studied, however it is believed that they are involved in 

matrix organisation, maintenance and cell-matrix interactions (Neame et al., 1999). 

 

Fibronectin 

 

Fibronectin is a glycoprotein of the ECM that binds to integrins and other matrix 

components. The protein has a major role in cell adhesion and is also involved in cell 

attachment, migration during embryonic development and wound healing, and the 

regulation of cell growth, differentiation and homeostasis (Pierschbacher and Ruoslahti, 

1984). Fibronectin is also involved in cell signalling pathways via α5β1 integrin-mediated 

pathways (Burton-Wurster et al., 1997, Homandberg et al., 2002). In articular cartilage, 

fibronectin is synthesised by chondrocytes as a very minor constituent of the ECM 

(Heinegard and Oldberg, 1989), however it is also present in the synovial fluid at low 

concentrations. During disease, production of fibronectin is elevated by both chondrocytes 

and synoviocytes (Burton-Wurster et al., 1997). 
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Tenascin 

 

Tenascin comprises a family of large ECM glycoproteins including tenascin-C, -X and –R. 

Tenascin-C contains a series of structural domains homologous to those of other proteins 

including fibronectin, however unlike fibronectin, tenascin-C possesses anti-adhesion and 

anti-spreading properties as well as the pro-adhesive effects (Chiquet-Ehrismann et al., 

1988, Spring et al., 1989). Tenascin-C is involved in embryonic development where it is 

present in mesenchymal condensations, cartilage and bone (Erickson and Bourdon, 1989). 

Studies by Mackie et al., (1987) found that as mesenchymal cells differentiate, tenascin-C 

becomes detectable only in the perichondrium and undifferentiated chondrocytes. They 

also found that tenascin-C stimulated chondrogenic cell differentiation, probably via its 

ability to inhibit cell attachment and favouring a round cell shape. Further studies by other 

authors have revealed that tenascin-C resides within the pericellular matrix of cartilage 

where it functions by interacting with integrins and cell surface receptors such as 

syndecans (Salmivirta et al., 1991). In adult articular cartilage, tenascin-C expression is 

low and is confined to the surface zone and perichondrium (Chevalier et al., 1994, Salter, 

1993). This is interesting as tenascin-C is not present in non-articular hyaline cartilage, 

leading to speculation that this glycoprotein may be involved in the load bearing properties 

of articular cartilage (Archer et al., 1990). Similar to fibronectin, expression of tenascin-C 

is elevated in diseased or damaged joints, yet the mechanisms of it involvement in disease 

remain to be fully elucidated (Salter, 1993).  

 

Cartilage oligomeric matrix protein (COMP) 

 

COMP is a cartilage specific acidic protein that is concentrated primarily within the 

chondrocyte territorial matrix. Although its functions are not fully understood, it is thought 

to be involved in cell adhesion via chondrocyte-matrix attachments (Hedbom et al., 1992). 

There has also been a suggestion that COMP may have a value as a marker of cartilage 

turnover and of the progression of cartilage degeneration in patients with osteoarthritis 

(Lohmander et al., 1994, Saxne and Heinegard, 1992, Sharif et al., 1995b). 

 

 

 



30 

 

1.4.6. Cartilage matrix turnover 

 

Chondrocytes are ultimately the sole cell type responsible for the tissue homeostasis of 

normal articular cartilage. In the words of Hascall et al., (1999) “a chondrocyte in a normal 

matrix operates to maintain its matrix”. This includes synthetic and catabolic events of 

matrix components as well as the incorporation and organisation of these components into 

the matrix.  

 

1.4.6.1. Proteoglycans 

 

Aggrecan, as previously outlined, is the major proteoglycan in the cartilage matrix that is 

metabolised throughout the lifetime of the tissue (Hascall et al., 1999). Its synthesis 

involves transcription and translation of mRNA, resulting in a protein core to which GAG 

chains are substituted post translationally. These molecules are released into the ECM 

where they form aggregates with HA (stabilised by the link protein). The HA is 

synthesised separately at the plasma membrane. Through a phenomenon known as delayed 

aggregation, secreted proteoglycans are able to first move away from the chondrocyte 

before forming aggregates. This occurs due to the G1 domain of the proteoglycan not 

being fully functional on secretion, and allows for the highly organised structure to be 

ordered appropriately (Bayliss and Roughley, 1985).  

 

The catabolic mechanisms of aggrecan differ from that of the smaller proteoglycans; 

reflecting the distinctly different organisations of the two classes of proteoglycans. Having 

stated that, the key family of enzymes involved in the breakdown of proteoglycans are 

proteinases that are synthesised by the chondrocytes themselves. Matrix 

metalloproteinases (MMPs) are considered to be the main enzymes responsible for 

degradation of aggrecan (and collagens) in cartilage. The mechanisms of proteoglycan 

degradation are finely orchestrated in order to retain a precise balance between synthesis 

and degradation, as elevated levels of MMPs and increased degradation are factors which 

are thought to be instrumental in the development of pathology, including osteoarthritis 

(OA) and rheumatoid arthritis (RA) (Tetlow et al., 2001). 
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Ratcliffe et al., (1988) demonstrated that the major proteolytic cleavage site on aggrecan is 

between the G1 and G2 domains at the Glu373-Ala374 bond, by aggrecanases. Since the 

discovery, aggrecanase-1 and -2 have been designated as ADAMTS-4 and -5 respectively 

as they fall into the family of zinc metalloproteinases whose structure is homologous to the 

ADAMTS (a disintegrin and metalloproteinase domain with thrombospondin motifs) gene 

family (Tang, 2001). It has been shown that ADAMTS-1 also exhibits aggrecanase activity 

in cartilage (Flannery et al., 1999b). 

 

In order to regulate the fine balance of matrix degradation, tissue inhibitors of 

metalloproteinases (TIMP) are also produced locally by the chondrocytes to inhibit MMP 

activity. Specifically, TIMP-3 is a potent inhibitor of ADAMTS-4 and ADAMTS-5 and is 

therefore beneficial for protecting cartilage from degradation (Hashimoto et al., 2001, 

Kashiwagi et al., 2001).  

 

1.4.6.2. Collagen 

 

The family of collagens to date is comprised of 28 distinct molecular types produced by 

one or more genes. They are synthesised by transcription of specific mRNA’s and then 

translated into α chains containing signal peptides, collagenous and non-collagenous 

domains. There are modifications of the procollagen polypeptide in the endoplasmic 

reticulum, including hydroxylation, glycosylation and disulphide bond formation. 

Interchain disulphide bonds between the carboxyl terminal propeptides align the chains 

and initiate the formation of the triple helix. The procollagen molecules then pass into the 

Golgi complex and are then secreted into the ECM in their proforms where they are 

processed by enzymes outside of the cell. The collagen molecules then aggregate into 

collagen fibrils through the formation of covalent cross links. The precise sequence 

ensures the incorporation of the collagens in the ECM in quarter staggered arrays. The 

aggregation of collagen fibrils through intrafibrillar crosslinks is known as fibrillogenesis 

(Alberts et al., 2002). 
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Figure 1.10. Schematic presentation of intra- and extracellular events in the formation of a 
collagen fibril. 

(A) Collagen fibrils are shown assembling in the extracellular space contained within a 
large infolding in the plasma membrane. Here they are shown further assembling into large 
collagen fibres in the extracellular space. Covalent cross-links that stabilize the 
extracellular assemblies are not shown. (B) Electron micrograph of a negatively stained 
collagen fibril reveals its typical striated appearance. [Image and figure legend taken from 
Alberts et al., (2002)].  

 

In adult tissue the turnover of collagen is controlled at a very slow rate (a process that can 

be dramatically accelerated following injury). Observations based on the synthetic rate of 

hydroxyproline have led to an estimated turnover time of 400 years for human femoral 

head cartilage (Maroudas, 1979), however, it has also been suggested that there is a 

possibility that a subfraction of the collagenous matrix is remodelled more rapidly in 

response to mechanical and molecular signals (Eyre, 2002). 

 

In terms of degradation, collagens have a higher resistance when compared to the 

proteoglycans due to their tightly arranged fibrils and their interactions with glycoproteins. 
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According to Eyre et al, (2002) “the classical concept of collagen fibril degradation is 

through an initial cleavage of the collagen (type I, II or III) by collagenase into three-

quarter and one-quarter length fragments”. Collagenase -3 (MMP13), expressed by the 

chondrocytes, is the most active in cleaving type II collagen (Dahlberg et al., 2000). 

Having stated that an essential role for collagenases in all forms of collagen breakdown 

and turnover has become less certain following experiments using genetically engineered 

mice lacking a functional cleavage sequence, in which no abnormal phenotype was evident 

at birth and only mild skin and uterine abnormalities developed after birth (Krane et al., 

1996). 

 

1.4.7. Chondrocyte-matrix interactions 

 

The reciprocal relationship and interdependence of chondrocytes and the ECM ensures 

that the articular cartilage is maintained throughout life. The chondrocytes synthesise the 

matrix which in return provides protection to the chondrocytes from mechanical damage 

during joint use. “Nutrients, substrates for synthesis of matrix molecules, newly 

synthesised molecules, degraded matrix molecules, metabolic waste products and 

molecules that help regulate cell function, like cytokines and growth factors, all pass 

through the matrix, and in some instances may be stored in the matrix” (Buckwalter and 

Mankin, 1998). 

 

The cells are able to bind to the matrix macromolecules through specialised cell surface 

receptors including integrins, providing a means of transmitting signals between the two 

(Loeser, 2000). The exact mechanisms involved in controlling the activities between the 

chondrocytes and the ECM have not been fully elucidated, however it is thought that 

cytokines play important roles (Lotz et al., 1995). A few examples include i) interleukin-1 

(IL-1) as it induces the expression of MMPs resulting in degradation of matrix molecules, 

ii) transforming growth factor-β (tgf-β) that opposes these catabolic activities by 

stimulating matrix synthesis and iii) basic fibroblast growth factor (bFGF) which acts as a 

powerful mitogen. It is thought that the anabolic activities are responses to certain 

structural needs of the matrix, whereas the catabolic activities are the result of “complex 

cascades that includes the activation or inhibition of IL-1, stromelysin, aggrecanase, 

plasmin and collagenase” by several macromolecules (Buckwalter and Mankin, 1998). 
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The ECM also acts as a mechanical signal transducer for the chondrocytes acting through a 

positive feedback mechanism. The matrix can transmit signals that result from mechanical 

loading to the chondrocytes, which as a result, respond to these signals by altering the 

matrix. Studies have demonstrated cyclic loading of the articular surface induces matrix 

synthesis whilst static loading causes matrix degradation (Quinn et al., 1998). Similarly, 

persistent abnormal decreases in joint loading decreases the proteoglycan content in 

articular cartilage consequently altering the mechanical properties of the cartilage 

(Buckwalter, 1995a). Following on from these studies it was found that resumption of 

normal joint use restored the composition and mechanical properties of the matrix, leading 

to the conclusion that “articular cartilage requires a minimum level of loading and motion 

of the joint”(Buckwalter, 1995b). 

 

Upon mechanical loading, the resultant deformation of the matrix triggers physiochemical, 

mechanical and electrical signals that subsequently have roles in stimulating chondrocytic 

responses, whilst also altering or accelerating the flow of nutrients and metabolites 

throughout the ECM. As summarised by Buckwalter and Mankin (1998), “loading may 

also cause persistent changes in the molecular organisation of the matrix, altering the 

response of the chondrocytes to subsequent loading. Thus, the matrix may not only 

transduce and transmit signals, it may record the loading history of the tissue and alter the 

response of the cells on the basis of the loading history.” 

 

1.4.8. Integrins and receptors in cartilage matrix 

 

Integrins are heterodimeric transmembrane glycoproteins that consist of α and β subunits, 

that act as cell surface receptors when attached to specific ECM components. Integrins 

have unique specificities that arise due to varying combinations of α and β subunits. There 

are over 20 known specific receptor combinations although the potential for further 

combinations are great. Integrins are widely distributed throughout the ECM, and are 

essential for many functions including cell adhesion, migration, signal transduction, 

mechanotransduction and matrix assembly. Through these cellular actions, integrins are 

involved in many biological responses including cell differentiation and proliferation, 

tissue organisation and immune response (Hynes, 1992). They recognise and bind their 

ligands by specialised cell attachment sites. Although many integrins have been reported 
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in articular cartilage (including α1β1, α3β1, α5β1, α10β1, αvβ3, and αvβ5) (Ostergaard et 

al., 1998, Salter et al., 1992), the expression of the α5β1 integrin has been found to be 

relatively high in relation to the others (Durr et al., 1993, Salter et al., 1995). This integrin 

functions largely as a fibronectin receptor involved in the adhesion and spreading of 

chondrocytes, as well as a major mechanoreceptor in the articular chondrocytes (Enomoto-

Iwamoto et al., 1997, Ramage et al., 2009).  

 

Annexin V, from the annexin family of matrix binding proteins has also been identified on 

the surface of chondrocytes (Mollenhauer et al., 1999). In cartilage it is believed to bind 

chondrocytes to type II and type X collagen by binding phospholipids in a calcium 

dependent manner (von der Mark and Mollenhauer, 1997). More recently, it has also been 

suggested that annexin V may also have a role in regulating chondrocyte metabolism (Reid 

et al., 2000). 

 

CD44 is a transmembrane protein expressed by chondrocytes that serves as a hyaluronan 

receptor in articular cartilage. Binding of CD44 to hyaluronan regulates matrix assembly 

and retains proteoglycan aggregates in the chondrocyte pericellular matrix (Knudson, 

1993). CD44 exists in a number of molecular weight isoforms; the extracellular domain 

and can be glycosylated or have CS or HS chains attached (Naot et al., 1997), whilst the 

cytoplasmic domain is involved in the regulation of ligand binding affinity (Isacke, 1994). 

 

1.5. Degradation of articular cartilage  

 

In healthy articular cartilage, despite the relatively low metabolic rate as a result of low 

cell density, there is a tightly regulated balance between synthesis and degradation. If 

disturbed however, the tissue lacks the ability to actively respond to damage, and is 

therefore hindered by its limited repair response (Bora and Miller, 1987). In 1743, Hunter 

stated that “an ulcerated cartilage is universally allowed to be a very troublesome disease 

and when destroyed, it is never recovered” (Hunter, 1743). Since then, despite numerous 

studies and strategies developed to combat the problem, this paradigm has not yet been 

disproved.  
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Damaged articular cartilage results either from trauma or injury, or from degeneration due 

to osteoarthritis; a degenerative disease of the joint which affects the cartilage, bone and 

surrounding tissues. These, however, are not isolated cases as cartilage damaged by trauma 

will quite often display early onset of osteoarthritis (OA). 

 

Lesions as a result of injury can occur in people of all ages and can be classified into focal 

or large lesions; depending on size, or depth of the defects. However, ultimately, 

regardless of the size of the defect there is evidence clinically to suggest that when left 

untreated, lesions may develop into symptomatic joint degeneration (Buckwalter and 

Lohmander, 1994). Partial thickness defects are incapable of healing spontaneously and it 

has been suggested this is because they do not penetrate to the subchondral bone and, 

therefore, do not have access to progenitor cells within the bone marrow space (Redman et 

al., 2005). In full-thickness defects, the lesion passes through the tidemark to the calcified 

cartilage and penetrates the subchondral bone, allowing access to the bone marrow 

constituents. Compared with the partial-thickness defects, there is a more extensive repair 

response triggered by this type of defect, commonly resulting in the formation of a 

fibrocartilagenous tissue that does not integrate well with the native tissue, and that forms 

a poor substitute for the original hyaline cartilage (Shapiro et al., 1993). Despite the poor 

reparative response, the knowledge that there appears to be some repair mechanism has 

resulted in the development of many operative procedures based on this idea (Redman et 

al., 2005).  

 

1.6. Osteoarthritis 

 

Osteoarthritis is a multifactoral joint disease through which progressive remodelling and 

degeneration occurs in articular cartilage and surrounding tissues (Wieland et al., 2005). It 

is the most common form of arthritis in the elderly and a major cause of pain, disability 

and dependence due to joint contractures, muscle atrophy and limb deformity (Buckwalter 

and Mankin, 1997). It was believed for many years the changes seen early in OA were age 

related, however it is now accepted that age is not the sole contributor to the development 

of the disease. Onset of OA may occur as a result of trauma or injury to the joint, 

subsequent to infection, as a result of aging or genetic disposition (Mobasheri et al., 2009). 
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According to Martel-Pelletier (2010), the joints most commonly affected by OA are in the 

thumb and fingers, hips, and knees; although the neck and the lower back are also affected.  

 

OA is commonly characterised by the loss of articular cartilage, accompanied by 

attempted repair of articular cartilage, remodelling and sclerosis of the subchondral bone, 

and osteophyte formation (Buckwalter and Martin, 2006), however the disease is more 

widespread and also affects the meniscus and synovial membrane. It results from a 

breakdown in homeostasis due to “mechanical, biological, biochemical, molecular and 

enzymatic feedback loops” (Martel-Pelletier and Pelletier, 2010). The exact etiology of the 

disease is yet to be fully understood due to the nature of the disease, and as such, the 

progressive course of joint degeneration remains to be understood. In order to achieve a 

greater understanding, studies have been carried out on patients with OA however these 

studies are inherently hindered from the start for several reasons; a) once a patient seeks 

medical attention, the disease has passed the early stages and therefore doctors are often 

faced with late stage OA and early changes cannot be assessed, b) patients have different 

pain thresholds and so present to the doctor at different stages of the disease, and c) the 

course of the disease is not consistent between patients. As a result, many animal models 

have been developed in order to elucidate the course of OA, especially in the early stages. 

However, as with many animal models the findings are not always directly transferrable to 

the course of OA in humans (reviewed by Lorenz and Richter, 2006) .  

 

1.6.1. Morphological and clinical signs of OA 

 

Morphologically, articular cartilage displays discolouration and softening as it transforms 

from a firm, shiny white healthy cartilage to a dull, irregular off-white colour in OA 

(Matyas et al., 1999). The extent of damage is highly variable between patients, joints and 

even within a joint, due to different loading conditions within distinct regions.  

 

Clinical signs of OA include joint space narrowing, the formation of osteophytes, changes 

to the subchondral bone including sclerosis and fibrillation of the cartilage. These are 

detected through x-rays, magnetic resonance imaging (MRI) and arthroscopically.    
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1.6.2. Pathophysiology of OA 

 

As chondrocytes are the sole cellular component of articular cartilage, research often 

focuses on the role of the chondrocyte and changes in the cartilaginous compartment of the 

joint when looking into the pathogenesis of OA. As a result, much more is known about 

the changes that occur in the cartilage compared to the changes in the surrounding tissues. 

 

1.6.3. Cartilage changes in OA 

 

Progressive loss of the structure and function of articular cartilage is one of the typical 

features of OA. The progression of the disease can be divided into three overlapping 

stages. At the beginning, an imbalance between anabolic and catabolic processes leads to 

the overexpression of matrix degrading enzymes, consequentially resulting in a loss of 

collagen and proteoglycans from the matrix. This stage is also coupled with an increase in 

water content due to an increase in permeability, resulting in a reduction to the stiffness of 

the ECM (Martin and Buckwalter, 2002). In the second stage, chondrocytes proliferate and 

synthesise augmented levels of matrix molecules in an attempt to compensate for the 

damage, however enzymes and cytokines capable of degrading matrix macromolecules are 

also produced; further increasing the overall degradation. Cell clusters are formed as a 

result of chondrocyte proliferation, and a repair tissue of newly formed matrix is 

sometimes apparent. In the third stage, the reparative attempts are outweighed by 

degradation and the tissue lacks the ability to restore itself. There is a decline in 

chondrocytic anabolic and proliferative responses, concurrent with a progressive loss of 

articular cartilage (Lorenz and Richter, 2006). The end stage of the disease is reached 

when there is a complete loss of articular cartilage, and the joint consists of articulating 

surfaces of thickened subchondral bone.   

 

1.6.4. Histological changes in OA 

 

A recent review by Lorenz and Richter (2006) has outlined the histological changes in OA 

as summarised below. 
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In the early stages of OA changes to the cartilage surface are usually seen, as it changes 

from a smooth surface to an irregular one as a result of mild fibrillations in the superficial 

zone (McDevitt et al., 1977). As the disease progresses, cellular structure is altered and a 

loss of proteoglycans is evident (Fernandes et al., 1998). The discoid cells of the 

superficial zone become round and hypertrophic, before disappearing from the tissue and 

chondrocyte clusters with large nuclei become evident in the tangential zone.  

 

In more advanced stages of OA, the cartilage surface is broken by large fissures which 

sometimes extend into the calcified zone (Pfander et al., 1999). Chondrocyte clusters are 

especially apparent around fissures and the organisation of the cartilage becomes 

completely disordered. The hyaline cartilage is replaced by a repair tissue resembling 

fibrocartilage, with fibroblast like cells (Miosge et al., 2004); and in some cases pannus 

overlays the cartilage (Shibakawa et al., 2003). Proteoglycan loss extends into the deep 

zone if not lost completely and the tissue shows signs of complete breakdown, where the 

bone becomes totally denuded of cartilage.  

 

1.6.5. Molecular changes in OA 

 

Changes can be assessed by various methods including immunohistochemical analysis, 

biochemical analysis as well as gene expression analysis; all of which help in gaining a 

greater understanding of the progressive changes seen in OA. Having said that the patterns 

seen through the different methods are similar and agreeable to one another. 

 

1.6.6. Collagen changes in OA 

 

During OA when cartilage metabolism is increased, type II collagen expression is 

increased in the deep zone and decreased in the upper cartilage regions (Pfander et al., 

1999, Young et al., 2005). As OA progresses, type II collagen staining becomes apparent 

in the region of chondrocyte clusters, fibrillations and clefts (Miosge et al., 2004, Pfander 

et al., 1999). Collagen type I expression is known to be upregulated in OA, especially in 

the superficial zone where collagen type II is reduced (Pfander et al., 1999). Osteophytes, a 

common feature of OA also mainly consist of collagen type I, with an outer layer of 

collagen type III (Nerlich et al., 1993). Immunohistological labelling for collagen type VI 



40 

 

revealed an increase in the middle, mildly damaged cartilage regions, whilst the upper, 

more affected regions showed a loss of collagen type VI staining, concurrent with the 

reduced proteoglycan labelling (Hambach et al., 1998). Collagen type X expression is also 

altered in OA, as irregular distributions indicate a shift towards a hypertrophic phenotype. 

Type X collagen is seen predominantly around chondrocyte clusters, and in the deep 

regions of osteoarthritic cartilage (Boos et al., 1999, von der Mark et al., 1992). 

Disruptions to the minor collagens IX and XI that function to stabilise the collagen-fibril 

meshwork also lead to the weaker matrix seen in OA cartilage (Muir, 1986). Interestingly, 

the overall content of collagen remains unchanged (Appleyard et al., 2003), however, the 

ratios of collagens changes highlighting the altered balance between synthesis and 

degradation. A table summarising these changes through immunohistochemistry can be 

seen in table 1.1, adapted from Lorenz and Richter (2006).  

 

 

 

Table 1.1. Immunohistological analysis of arthritic cartilage in relation to normal 

cartilage. [Adapted from Lorenz and Richter, (2006)]. 
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1.6.7. Matrix metalloproteinases and aggrecanases in OA 

 

As a result of the increased cartilage metabolism, there is an enhanced production of 

degradative proteinase genes which is associated with the gradual loss of proteoglycans 

and type II collagen degradation. These include MMP -1, MMP-2, MMP-3, MMP-8, 

MMP-9, MMP-13 and MMP-14, together with the aggrecanases ADAMTS-4, ADAMTS-

5 and ADAMTS-9 (Mohtai et al., 1993, Murphy and Nagase, 2008). In unison, these are 

responsible for the degradation of the cartilage matrix macromolecules. Despite the 

collagenases (MMP-1, -8 and -13) collectively acting upon collagen fibrils, they are 

specific to certain collagens and as such, they also have specific topographical locations, 

indicating that perhaps there is a selective process during OA. There is speculation that 

MMP-9 could be responsible for progressive cartilage changes in OA, as it is selectively 

expressed in the fibrillated cartilage (Aigner et al., 2003).  

 

1.6.8. Other proteins & OA 

 

There is also increased expression in regulatory proteins such as IL-1 and TNF-a; IL-Iβ is 

a major inflammatory cytokine that is capable of inducing chondrocytes to synthesise 

MMPs in OA joints (Pelletier et al., 2001). Expression of stress and apoptotic markers 

(including caspases 3 and 9), and transcription factors (including Sox9 and Runx2) are also 

elevated during the course of OA (Goldring and Marcu, 2009, Goldring et al., 2008). 

 

COMP, one of the structural proteins in the ECM undergoes degradation during normal 

cartilage turnover, and fragments are released into the synovial fluid. An increase in these 

fragments in the synovial fluid has been linked to the early stages of OA (Lohmander et 

al., 1994). Similarly, other structural proteins including; cartilage matrix protein (CMP) 

and cartilage intermediate-layer protein (CILP) expression is increased in osteoarthritic 

cartilage (Okimura et al., 1997, Lorenzo et al., 2004). Fibronectin is also greatly increased 

in osteoarthritic cartilage (Brown and Jones, 1990). Through the words of Roughley 

(2001) “is it interesting that fibronectin fragments, resulting from proteolytic degradation, 

are able to propagate degradation of aggrecan at the same sites as expected for the action 

of aggrecanase (Homandberg et al., 1997). It has been suggested that the fibronectin 
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fragments that accumulate in the joint may stimulate the local production of inflammatory 

cytokines, such as IL-1, that upregulate aggrecanase expression.”  

 

1.6.9. TGF-β & OA 

 

TGF-β has both pro- and anti-inflammatory properties, and although it is crucial in 

regulating vital cellular activities, active TGF-β is also markedly increased in the 

osteoarthritic joint. It is pivotal in the formation of osteophytes, and has the ability to 

stimulate MMP expression contributing to the degradation seen in diseased cartilage 

(Bertrand et al., 2010, Scharstuhl et al., 2002). In terms of pathways, the protective role of 

TGF-β acts via the ALK5 receptor and downstream signalling pathway SMAD2/3 

resulting in increased TIMP, counteraction of IL-1 and overall prevention of hypertrophy. 

The destructive role of TGF-β occurs when it interacts with the ALK-1 receptor which 

signals to SMAD1,5,8 inducing MMP-13 and other degradative enzymes. As such, 

Davidson et al., (2009) recently demonstrated that in OA, there is a shift in receptor usage 

from ALK5 to ALK-1 emphasising the pathogenic role of TGF-β. 

 

1.6.10. Syndecan-4 & OA 

 

More recently, the transmembrane heparan sulphate proteoglycan syndecan-4 has been 

shown to be of pivotal importance for chondrocyte mediated cartilage breakdown in OA 

(Echtermeyer et al., 2009). Through the GAG chains, syndecan-4 interacts with ECM 

molecules including collagens, fibronectin and tenascin amongst others. It also acts as a 

receptor for integrins and for a number of growth factor receptors (Molteni et al., 1999, 

Tkachenko et al., 2005). Whilst other syndecans have also been detected in chondrocytes 

and in OA, syndecan-4 is of particular interest as it regulates mesenchymal cell function 

during tissue repair (Echtermeyer et al., 2001, Lim et al., 2003). A review by Bertrand et 

al., (2010) raises the question of whether syndecan-4 is functionally involved in the 

cartilage remodelling process during OA, as studies by the author have revealed that it is 

expressed in hypertrophic chondrocytes in OA, and that its inhibition by specific 

antibodies results in decreased activation of ADAMTS-5 (Echtermeyer et al., 2009). In 

summary, “syndecan-4 is a key player in cartilage degradation during OA, by regulating 

on the one hand, the expression of matrix degrading enzymes (MMP-3) by mediating IL-1 
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signalling and on the other hand, by directly binding ADAMTS-5 and thereby 

participating directly in cartilage degradation” (Bertrand et al., 2010). 

 

1.6.11. Hypoxia inducible factor-2α (HIF-2α) & OA 

 

New targets for therapeutic strategies are constantly being sought, and recent studies have 

identified transcription factor HIF-2α as a central mediator of OA development; induced 

by IL-1β and other pro-inflammatory cytokines. In vivo experiments have shown that 

ectopic expression of HIF-2α in mouse knee joints resulted in severe cartilage destruction, 

conversely mice in which HIF-2α was knocked down were found to resist degradation 

usually found in OA induction models (Yang et al., 2010). In OA patients, it was found 

that HIF-2α levels were elevated in damaged regions compared with undamaged regions. 

Parallel to this finding Saito et al., (2010) identified HIF-2α whilst screening for factors 

that induce collagen type X expression. Proinflammatory cytokines as well as nuclear 

factor kB (NF-kB) are upstream regulators of HIF-2α, and it is thought that mechanical 

stress might trigger OA by inducing the NF-kB signalling and therefore HIF-2α expression 

in joint cartilage (Flemming, 2010).  

 

1.6.12. Mechanisms 

 

Despite the breadth of knowledge regarding OA, mechanisms and pathways involved in 

the disease process have yet to be fully understood. It is often suggested that many of the 

changes occurring in the osteoarthritic process recapitulate changes which are seen early in 

development; including cell proliferation and differentiation. As such, many of the 

signalling pathways involved in cartilage development are now linked to OA process, 

including those induced by FGF, Wnt, BMP, TGF-β and hedgehog signalling (Chia et al., 

2009, Dell'Accio et al., 2006, Lin et al., 2009, Lories and Luyten, 2005, van den Berg, 

1995). 
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1.7. OA: a disease involving other tissues 

 

1.7.1. Subchondral bone 

 

There has been a recent surge in the number of articles relating to subchondral bone 

changes associated with osteoarthritis, challenging the previous concept that degeneration 

and erosion of articular cartilage is the primary pathological mechanism of OA. The 

subchondral bone is an active element during OA as it provides catabolic factors to the 

neighbouring cartilage; promoting abnormal cartilage metabolism. A study by Petersson et 

al., in 1998 demonstrated through biochemical investigation that the serum levels of 

factors released from cartilage and bone during the early stages of OA in humans 

suggested that the pathological processes in cartilage and bone did coincide. Evidence 

from other human and animal models have also shown not only that the subchondral bone 

and cartilage should be seen as an interdependent unit, but also that in certain cases, 

changes to the subchondral bone may precede the cartilage degeneration (Buckland-

Wright, 2004, Johnson, 1962, Radin and Rose, 1986).  

 

In support of an altered metabolism early in the OA process in the subchondral bone is that 

osteocalcin (a common marker of bone formation) and osteopontin (a bone specific matrix 

protein) levels in synovial fluid and serum respectively were significantly higher in 

patients with knee OA (Sharif et al., 1995a). As levels of serum osteopontin rise quickly 

following trauma, this implies that alterations in bone cell activity may occur quite early in 

the disease (Lajeunesse et al., 2003). 

 

The alterations in the subchondral bone which are evident in OA include subchondral 

sclerosis (thickening), changes in the architecture of the trabecular bone, the formation of 

new bone at joint margins, known as osteophytes and the development of subchondral 

cysts. Histologically, there is also evidence of tidemark advancements and duplications 

associated with vascular invasions of the calcified cartilage from the subchondral bone 

(Martel-Pelletier and Pelletier, 2010, Petersson et al., 1998).  

 

With regards to subchondral bone sclerosis, it is interesting to note that it is not 

accompanied by an increase in mineral density. The scleroses result from increased 
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stiffness and an increase in material density, but not bone mineral density. As such, 

subchondral bone demonstrates an increased osteoid collagen matrix and abnormal 

mineralisation patterns during OA resulting in overall hypomineralisation (Grynpas et al., 

1991). There is speculation that abnormal collagen type I content, as a result of elevated 

TGF-β levels, is a major contributing factor leading to abnormal mineralisation 

(Couchourel et al., 2009). Type I collagen, a heterotrimer of α1 and α2 chains, is elevated 

in OA. The average ratio of alpha chains in normal bone is 2.4:1; however studies have 

shown that in OA this ratio varied between 4:1 and 17:1 (Bailey et al., 2002). As 

summarised by Lajeunesse et al., (2003) “a reduction in α2 chains may lead to a tighter 

packing of collagen fibrils and, coupled with the reduction in cross-links observed in bone 

tissue (Mansell and Bailey, 1998) and the overhydroxylation of lysine in collagen fibrils 

(Bailey et al., 2002), may explain the reduction in bone mineralisation.” 

 

1.7.2. Synovial membrane 

 

Through enzymatic feedback loops, the synovial membrane and surrounding tissues 

maintain an equilibrium to ensure normal homeostasis is achieved. In OA, this equilibrium 

is disrupted and pro-inflammatory cytokines are activated in an attempt to counteract the 

destructive changes in the neighbouring cartilage. This in turn results in an increased 

response by the synovial membrane and as such, a vicious circle is created.  

 

 IL-1β and TNF-α production by the synovial membrane are key perpetrators in the 

development of OA (Smith et al., 1997). IL-1β stimulates proteolytic and catabolic 

pathways of ECM degradation whilst also suppressing the anabolic pathways. As such, IL-

1β can either decrease the synthesis of essential matrix macromolecules including collagen 

type II, or increase collagens which are not usually associated with normal articular 

cartilage; contributing to the loss of strength seen in diseased cartilage (Goldring et al., 

1988). Other pro-inflammatory cytokines such as IL-6 as well as some chemokines such as 

IL-8 are also considered to be potential contributing factors in the pathogenesis of OA; 

however the precise roles in the process have yet to be established (Martel-Pelletier and 

Pelletier, 2010).  
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Histologically changes can also be seen in the synovial membrane from patients with all 

grades of OA. These include thickening of the lining layer, increased vascularity coupled 

with inflammatory cell infiltration (Smith et al., 1997). 

 

1.7.3. Meniscus 

 

An integral part of the biomechanical system of the knee joint is the meniscus. It is not 

only essential for the distribution of axial forces but also for the absorption of shock. 

Meniscal extrusion and menisectomy both modify the pattern of load distribution, leading 

to compartmental instability (Thompson et al., 1991). Meniscal extrusion is frequently 

associated with established knee OA (Berthiaume et al., 2005) and consequently, the 

femoral and tibial bone surfaces are faced with increased susceptibility of OA during 

dynamic movements of the knee. 

 

1.8. Repair 

 

Achieving successful repair of articular cartilage is an ongoing battle that has faced 

scientists and surgeons for decades. As the tissue is avascular, aneural and alymphatic it 

lacks the ability to actively respond to damage, and is therefore hindered by its limited 

repair response (Bora and Miller, 1987). Hunter, in 1743 claimed that articular cartilage 

‘once destroyed, is not repaired’, and this observation directed many of the early 

treatments aimed to alleviate pain and discomfort, and allow greater movement as opposed 

to repairing the cartilage itself. More recent treatments involve surgical interventions 

aimed at inducing repair (Hunziker, 2001). 

 

1.8.1. Surgical interventions 

 

Strategies have developed from basic surgical techniques into technical methods which 

combine current knowledge of chondrogenesis and pathogenesis together with advances in 

tissue engineering. 

 

 

 



47 

 

1.8.2. Conservative strategies 

 

Arthroscopic repair procedures represent more conservative and less invasive treatments 

for damaged cartilage; at the expense of effectiveness. Lavage and debridement are 

common methods used to alleviate pain, however are not known to biologically repair 

damaged tissue (Jackson and Dieterichs, 2003). Lavage involves irrigation of the joint 

(Livesley et al., 1991) and it is suggested that this irrigation process washes away active 

pain-signalling or pain mediating molecules, as well as removing proteoglycans from the 

superficial cartilage matrix (Hunziker and Kapfinger, 1998). There is still little evidence to 

show that this method does in fact initiate a repair response in damaged cartilage, and there 

is no evidence to suggest that lavage has symptom improving benefit. Debridement and 

shaving are also arthroscopic techniques, popularised by Magnuson in 1946 which aim to 

remove diseased or damaged tissue, allowing for a smoother surface and the consequent 

reduced friction at the joint interface (Chang et al., 1993). Apart from being a temporary 

method of pain relief, it is similar to lavage in that biologically it does not aid cartilage 

repair. 

 

Other arthroscopic procedures involve bone marrow stimulation techniques, which require 

penetration of the subchondral bone (Gilbert, 1998). These techniques, namely abrasion 

arthroplasty, Pridie drilling and microfracture mimic full-thickness defects; potentially 

allowing for repair responses to be triggered within the damaged areas. It is believed that 

the underlying bone provides access to pools of various stem cells and growth factors 

which aid the reparative process (Shapiro et al., 1993, Rodan, 1992). Having stated that, 

these methods were used mainly for patients with painful conditions with the aim of 

bringing symptomatic relief and as such, the procedures are palliative, not curative, and the 

outcome is variable (Hunziker, 2001, Beris et al., 2005, Steadman et al., 2003). 

 

1.8.3. More invasive strategies 

 

Osteotomies are surgical procedures whereby the bone is cut in order to shorten, lengthen 

or change the alignment. This intervention is most frequently adopted to relieve pain, and 

to reduce or prevent the progression of osteoarthritis. Improving the joint alignment alters 

the biomechanics, inducing a change in contact areas. The aim is to alter the forces so that 
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weight is transferred through an area of healthy cartilage, resulting in less pain following 

joint movement (Arnoldi et al., 1971). Another important aspect of osteotomies are that 

they induce focal bleeding, which is followed by a localised healing response and a change 

in the pattern of vascular supply to the joint. It is also common for surgeons to combine 

osteotomies with other surgical procedures such as debridement, or Pridie drilling in an 

attempt to trigger a more extensive repair mechanism. In fact, there have been reports that 

osteotomies lead to the formation of a new articular surface however results are variable 

among patients (Buckwalter, 1999). 

 

1.8.4. Surgical interventions: introducing materials 

 

1.8.4.1. Autologous tissue grafts 

 

Perichondrial and periosteal grafts involve transplantation techniques where tissue is 

grafted into full-thickness articular cartilage defects. This procedure began in the 1970’s as 

a method of inducing repair of damaged articular cartilage. The underlying principle 

behind this technique was based on the knowledge that the cambial layer of periosteum 

and perichondrium exhibits continuous chondrogenic activity attributed to its chondrocyte 

precursor cells (Cohen and Lacroix, 1955). It is believed that when a graft is laid on a full 

depth articular cartilage defect, these precursor cells that reside in the germinative cambial 

layer are capable of reactivation; and proliferative and differentiation activities trigger the 

cartilage repair response (Hunziker, 2001, O'Driscoll, 1999). As periosteum is more 

obtainable it is used more frequently than perichondrium (Beris et al., 2005). In human 

patients, clinical results have not been totally successful mainly due to poor integration 

observed at the interface between the graft and the native tissue, and the low proliferative 

activity of repair cells; thus failing to restore the hyaline articular cartilage. Graft 

calcification is also a frequent occurrence contributing to the numbers of unsuccessful 

treatment attempts (Minas et al., 2009). Surgical procedures have been modified to try to 

combat the practical problem of graft detachment using sutures or glue, however, results 

have varied and have been inconclusive. 
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1.8.4.2. Osteochondral transfer 

 

Autogenic and allogenic transfer of osteochondral plugs forms the basis of this procedure. 

Autogenic osteochondral transplantation, commonly known as mosaicplasty is employed 

mainly for smaller sized cartilage defects (Jakob et al., 2002). The process involves 

removal of cylindrical plugs from non-weight-bearing regions, and their transplantation 

into the debrided full depth cartilage (Hangody et al., 1997). Frightfully little research 

went into investigating this procedure and its effectiveness and destructiveness before it 

was applied clinically in human patients (Hunziker, 2001). Results have suggested short 

term benefits, including decreased pain and increased joint function, however, there are 

also many problems and questions raised regarding this intervention (Jakob et al., 2002). 

 

Allogenic transfers use tissue derived from cadavers in an attempt to repair large 

osteochondral defects, on the basis that large volumes of tissue can be retrieved. This 

approach aims to simply provide a substitute for damaged or lost articular cartilage, and 

does not aim to induce a repair response. 

 

1.8.4.3. Repair of articular cartilage using tissue engineering 

 

Tissue engineering, as described by Hunziker (2001) can be defined as the art of 

reconstituting mammalian tissues both structurally and functionally. Usually, there are 

three main components which form the basis of tissue engineering; a matrix scaffold that 

provides a suitable surrounding, appropriate cells, and the addition of signalling molecules, 

such as cytokines and/or growth factors (Kuo et al., 2006). 

 

One of the most commonly recognised methods of cartilage repair using tissue engineering 

is the autologous chondrocyte transplantation method which was introduced in the 1970’s 

by Bentley et al., (1971) using partial-thickness defects of a rabbit model, and was 

transferred into human clinical practice in 1994 (Brittberg et al., 1994). The procedure 

initially involves the excision of healthy articular cartilage from a non-weight-bearing 

region of the joint, which is subsequently enzymatically digested in order to release 

chondrocytes from the extracellular matrix. The cells are then expanded in culture until 

there is a sufficient concentration of cells to fill the defect. A second surgical procedure is 
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then carried out which involves debriding the lesion back to the point of healthy cartilage, 

and taking a periosteal graft from a nearby location. The graft is then sutured over the 

defect, creating a flap under which cells can be securely injected. Fibrin glue is also added 

to seal the graft and further prevent cells from floating away (Brittberg, 1999). 

 

Results from this treatment have been fairly consistent and there is a general acceptance 

that reduced pain and improved joint function are achieved. Histological analysis has 

shown, however, that there are variations in the efficiency of inducing repair with hyaline 

like cartilage at different locations (Breinan et al., 1997). Other varying results suggest 

there may be a difference in the short term but no significant improvements in the long 

term. Overall, the effectiveness of this technique has been justifiably questioned, and 

results have been varied and inconclusive. Additionally, there is not one consistent 

technique but rather variations of a common theme, making comparisons and conclusions 

often hard to draw. Even though autologous chondrocyte transplantation (ACT) is a widely 

used technique for repairing cartilage there are major factors that need to be given 

consideration. These include donor site morbidity, chondrocyte de-differentiation in vitro, 

and fibrocartilage formation as opposed to hyaline cartilage repair (Csaki et al., 2008). 
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Figure 1.11. Schematic diagram showing the different stages involved in the process of 
autologous chondrocyte transplantation. [Adapted from Redman et al., (2006)] 
 

 

 

1.8.4.4. Scaffolds 

 

Since the introduction of the conventional ACT, there have been many developments that 

have aimed to improve the effectiveness of the technique, in order to achieve successful 

repair of articular cartilage, using biocompatible structurally and mechanically stable 

scaffolds. The scaffolds create a three dimensional environment, in which chondrocytes 

can be loaded before being re-implanted in the defect and must, therefore, be reabsorbable 

and non-toxic for the cells (Tuli et al., 2003). There are natural as well as synthetic 

substances that are suitable for scaffolds used in cartilage engineering. Among the most 

common natural materials are collagen- and hyaluronan based matrices as they constitute 

native articular cartilage. Results have been encouraging, as preliminary clinical studies 

using Hyalograft C, a hyaluronan based scaffold, demonstrated 96.7% of the repair tissue 

formed to be similar to hyaline cartilage (Pavesio et al., 2003). The advantage of synthetic 

scaffolds is that the problem of possible immune reactions is eliminated. 
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1.8.5. Stem cells for cartilage repair 

 

It is evident that despite extensive efforts to achieve successful repair of articular cartilage, 

there appears to be a missing ingredient hindering the process. Stem cells provide an 

alternative cell source with the potential for successfully regenerating cartilage, and have 

largely become the focus of many studies in cartilage repair. 

 

Whilst the term ‘stem cell’ is used loosely, often it encompasses progenitor cells that have 

limited replicative capacity and restricted differentiation potential to certain lineages. True 

stem cells are undifferentiated cells with endless self-renewal capacity, and the potential 

for multilineage differentiation. They are also easily obtainable and expandable in vitro 

making them promising candidates as the necessary vehicle for cartilage repair (Caplan 

and Goldberg, 1999). Stem cells reside in various ‘niches’ in the embryo, foetus and 

adults, and can be recruited to repair and replenish dying or damaged tissue, without the 

immunological responses that often accompany allogenic grafts (Fuchs et al., 2004).  

 

Stem cell plasticity has been confirmed in bone-marrow-derived MSCs, which have been 

successfully differentiated into various specific cell lineages such as cartilage, bone, 

tendon, adipose tissue and muscle (Caplan, 1991, Barry, 2003, Csaki et al., 2007, Minguell 

et al., 2001, Pittenger et al., 1999, Short et al., 2003). MSCs have also been isolated from 

other sources including umbilical cord blood, adipose tissue and peripheral blood (Zuk et 

al., 2002, Bieback et al., 2004, Huss et al., 2000). Once in vitro MSCs have the capability 

to retain their differentiation potential for several passages (Pittenger et al., 1999). The 

cells are characteristically fibroblast-like in morphology, and express several adhesion 

molecules and receptors; allowing them to bind to adhesive proteins on the plastic under 

culture conditions (Conget and Minguell, 1999). 

 

Undifferentiated progenitor cells have also been identified in articular cartilage itself, 

presenting a very promising source for the regeneration of cartilage. Dowthwaite et al., 

(2004) demonstrated successful isolation of a specific articular cartilage progenitor cell 

from bovine tissue, using a differential adhesion assay described by Jones and Watt in 

1993.  
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1.8.5.1. Chondrogenic differentiation of MSCs 

 

Stem cells reside in what is known as a niche, a microenvironment encapsulating the cells 

and providing local and systemic signals for their regulation and maintenance. Scadden 

(2006) defines a niche as a specific anatomical location that regulates how stem cells 

participate in tissue generation, maintenance and repair, whilst saving the cells from 

depletion and protecting the host from over-exuberant stem cell proliferation. Elements of 

the stem cell niche include cellular components such as cell–cell interactions, acellular 

elements such as ECM components, growth factors and membrane bound molecules, as 

well as the physiochemical nature of the environment. The interplay between stem cells 

and their niche creates the dynamic system necessary for sustaining tissues, and for the 

ultimate design of stem-cell therapeutics (Scadden, 2006). 

 

Adult stem cells remain in an undifferentiated state, and therefore, it is necessary to induce 

chondrogenic differentiation in culture conditions to achieve chondrogenic cells, using the 

knowledge of stem cell–niche interactions, chondrogenic development and cartilage 

homeostasis and function (Mobasheri et al., 2009). Chondrogenic differentiation, as 

described by Johnstone et al., (1998) requires a 3D environment, and the addition of 

various combinations of growth factors. Of the various cytokines and growth factors used 

to induce chondrogenesis, isoforms of the TGF-β family are the most common (Johnstone 

et al., 1998). Others include specific bone morphogenetic proteins (BMPs), fibroblastic 

growth factor-2 (FGF-2), IGF-1, as well as synthetic dexamethasone (Pittenger et al., 

1999, Johnstone et al., 1998, Awad et al., 2003, Grigoriadis et al., 1988, Nixon et al., 2000, 

Shea et al., 2003, Tsutsumi et al., 2001, Zhou et al., 2004). The pathways and mechanisms 

of action behind these signalling molecules are yet to be fully understood. The addition of 

FGF-2 into MSC culture conditions is also believed to stimulate chondrogenesis, as it has 

been demonstrated that more cartilage-specific proteoglycans are produced with the FGF-2 

supplement (Solchaga et al., 2005). Dexamethasone has been shown to be a powerful 

supplement, inducing chondrogenesis via the glucocorticoid receptor by enhancing 

stimulation of the TGF-β superfamily, and consequent collagen II and cartilage-specific 

proteoglycan production (Derfoul et al., 2006). 
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1.8.5.2. Applications of MSCs for cartilage repair 

 

There are many ongoing studies that aim to elucidate the most effective application of 

MSCs for the repair or regeneration of articular cartilage. Of these, several aim to develop 

previous theories and several propose new ideas. Perhaps the simplest technique is intra-

articular injection, whereby MSCs are isolated and injected into the joint space providing a 

pool of cells to aid the repair of damaged tissues. MSCs have also been combined with 

hyaluronic acid for intraarticular injections (Murphy et al., 2003). Lee et al., (2007) 

postulate that hyaluronic acid facilitates the migration and adherence of MSCs to the 

defect, and demonstrated how this treatment was effective in inducing a repair response in 

a porcine model. This method, however, does not anchor the cells to the region and may 

result in cell migration into the marrow cavity. Consequently, the intra-articular injection 

may only provide very short-term responses. The use of a scaffold or periosteal flap (used 

in ACT) aims to eliminate this issue, and retain the cells at the site of the defect. Using the 

concept of conventional ACT analogous MSCs have been isolated and expanded in vitro 

before being implanted back into a defect. Long-term results have been conflicting as 

some studies report the formation of new cartilage and others report tissue degradation 

(Murphy et al., 2003, Im et al., 2001). This is possibly because the implanted cells rely on 

local and systemic signals to integrate and differentiate into reparative tissue. Foreign, 

undirected MSCs may, therefore, have little influence on the repair or regeneration of 

cartilage and this may be the reason for the ambiguous results.  

 

The logical progression, as carried out by Jiang et al., (2003) focused on inducing 

chondrogenesis of MSCs in vitro and implanting these directed cells back into the defect. 

The data from this study however was also unsatisfactory due to inconsistent results. 

Matrix-assisted MSC therapies using scaffolds to provide a suitable environment, are 

being studied extensively as in theory they could provide suitable mechanical and 

biochemical properties in which MSCs can be seeded. A review by Noth et al., (2008) has 

summarised an ideal scaffold, which should be biocompatible and biodegradable upon 

tissue healing, porous (to permit cell penetration), permeable (to allow nutrient delivery 

and gas exchange), adaptable to the mechanical environment, conducive to cell attachment 

and migration, and allow appropriate ECM formation and transmission of signalling 

molecules. However, to date, there are no scaffolds that fulfil all these requirements whilst 
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achieving integrated hyaline-like repair of tissue (Mouw et al., 2005). In many studies, 

there have been reports of hyaline-like cartilage formation together with fibro-cartilage 

formation; this is not the ultimate goal in terms of producing a totally viable repair tissue 

and, therefore, further developments are being sought. There is also the recurring problem 

of integration between the repair tissue and the native cartilage. A greater understanding of 

the underlying mechanisms of cartilage repair is needed in order to eradicate this problem. 

 

Despite encouraging results, the methods described above present a few common 

problems. As MSCs and progenitor cells are isolated in small numbers, in order for any of 

the techniques to be effective there needs to be sufficient number of cells and these must, 

therefore, be expanded in vitro before being placed back in the defect. This raises issues of 

cell de-differentiation, genetic stability and pathogen transmission. 

 

In terms of articular cartilage progenitor cells, several research groups have been able to 

identify a potential population of cells within both normal and osteoarthritic human 

articular cartilage (Dowthwaite et al., 2004, Alsalameh et al., 2004, Fickert et al., 2004, 

Williams et al., 2010) presenting a source of native cells with the potential to restore 

damaged cartilage. If and when the cells and mechanisms of activation are fully 

understood, the prospects of regenerative processes are high. This may either be in vitro, 

by means of expanding and inducing the cells into a chondrogenic repair response and then 

implanting the cells back using an appropriate biodegradable scaffold, cell suspension, or 

in vivo. Once a deeper understanding is achieved, it is possible that these native progenitor 

cells may by induced or triggered in vivo using minimally invasive methods of delivery.    
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1.9. Aims of the thesis 

 

There is clinical evidence to suggest that under permissive conditions, hyaline cartilage 

has the capacity for recovery. That said, there is a longstanding view that osteoarthritic 

cartilage is deemed irreparable. This study therefore tests the hypothesis that the joint 

surface deemed clinically irrecoverable contains a sub-population of viable cartilage stem 

cells, which have the potential to regenerate.  

 

The overall aim of this study was to investigate progressive changes during the 

osteoarthritic process whilst also investigating the presence and potential of 

chondroprogenitor cells within osteoarthritic articular cartilage.  

 

This thesis therefore aims to: 

 

1) Describe a new scoring system to assess osteoarthritis severity.  

2) Map out histologically the progressive changes that occur throughout progression 

of the disease.  

3) Correlate disease severity to expression of putative stem cell markers. 

4) Determine whether chondroprogenitor cells previously documented in normal 

hyaline cartilage also reside in osteoarthritic tissue. 

5) Isolate, clone and extensively cultivate osteoarthritic chondroprogenitor cells. 

6) Assess whether clonally derived osteoarthritic chondroprogenitor cells have the 

capability to undergo tri-lineage differentiation in vitro. 

7) Compare chondroprogenitor cells isolated from normal and osteoarthritic tissue. 

8) Assess the integration potential of chondroprogenitor cells in a 3-d environment.  

 

 

 

 

NOTE 

This Chapter forms the basis of a review article published in Expert Opinion on Biological 

Therapy. See page 316. 
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Chapter 2: 

A novel scoring system for osteoarthritis of the knee 
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2.1. Introduction  

 

The preconceived notion, which is still widely accepted, is that OA is primarily a disorder 

of the articular hyaline cartilage. The onset of the disease however, is still a topic of much 

discussion. Many believe that OA is a result of a ‘wear and tear’ process, which causes the 

cartilage to degenerate whilst denuding the joint surfaces (Radin, 1976). Others believe 

that it is triggered as a result of abnormal loading to joints and that the cartilage changes 

result from altered joint biomechanics (Englund, 2010). There is also the view that 

structural changes in the matrix, together with intrinsic and extrinsic growth factors, 

cytokines and other signalling factors mediate the response to the cartilage (Goldring and 

Marcu, 2009). As chondrocytes are the sole cellular component of articular cartilage, 

research is often focussed on their role in the pathogenesis of OA. However, it is important 

to remember that within the joint the articular cartilage is in direct contact with the 

subchondral bone, the synovial fluid and the synovium. It is widely accepted and well 

documented that during the course of OA, changes occur in these surrounding tissues 

(Martel-Pelletier and Pelletier, 2010), and the question is often raised regarding the pre-

eminence of the disease; does OA initially affect the articular cartilage or are there changes 

within other tissues that precede these? This is a challenging question as clinical signs are 

not always evident at the earliest stages of the disease and so initial changes are 

overlooked. Similarly, investigative studies often focus on changes in the later stages of 

the disease; unveiling little information about early changes and capping the potential for 

understanding the initial responses.  

 

Of the neighbouring tissues, changes to the subchondral bone have triggered great interest 

within many research groups (Karsdal et al., 2008, Lajeunesse and Reboul, 2003, Li and 

Zhang, 2009, Mansell et al., 1997, Westacott et al., 1997). A review by Lajeunesse et al., 

(Lajeunesse et al., 2003) summarises how some bone parameters such as abnormal bone 

mineral density, osteoid volume, and bone mechanical parameters may be indicators of 

bone turnover relating to OA patients, and addresses the question relating to whether 

growth factors, degradative enzymes and cytokines from the subchondral bone may seep 

through channels in the tidemark and affect the overlying cartilage. As such, there is 

evidence to suggest that thickening of the subchondral bone precedes fibrillation of the 

cartilage within some animal models, as a result of increased resistance of the bone to 
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compression (Bailey and Mansell, 1997). Aside from the question of whether increased 

bone metabolism is a primary event triggering a cascade response resulting in cartilage 

destruction or vice versa, the role of the subchondral bone throughout the pathogenesis of 

OA is also a topic of great interest within many research groups.  

 

Assessing the severity of OA 

 

In order to assess the severity of the disease, clinicians and scientists have devised many 

scoring systems, each focussing on different combinations of pathological features 

characteristic of OA. Clinically-based scoring systems have evolved using techniques 

including magnetic resonance imaging (MRI), X-rays and arthroscopic evaluation in 

attempts to assess disease progression. These systems look specifically at joint space 

narrowing, prevalence of osteophytes and, more recently, detection of glycosaminoglycan 

(GAG) levels within the articular cartilage using MRI analysis (Ling et al., 2008). 

Research-based scoring systems focus on histological and histochemical parameters when 

assessing OA severity. Early work by Collins et al., (Collins and Mc, 1960) and Mankin et 

al., (Mankin et al., 1971) led to a system for pathological grading of cartilage changes in 

relation to OA. Since then, many systems for grading cartilage have been devised to assess 

not only OA severity, but also in vivo cartilage repair and in vitro tissue engineering 

studies. The most commonly used system in assessing OA severity remains the Mankin 

scoring system, often referred to as the Histological-Histochemical Grading System 

(HHGS). This system was originally designed for grading OA in human hip articular 

cartilage, scoring the structure, cells, safranin O staining as well as the tidemark integrity 

(Mankin et al., 1971). Several other similar systems have stemmed from the HHGS and 

are commonly known as ‘modified Mankin’ systems, which tend to be adaptations for 

individual studies. The HHGS together with its modifications have been used extensively 

in human studies as well as in animal models (Ghosh et al., 1995, Goodman et al., 1991, 

Kim et al., 1991). In terms of cartilage repair, the O’Driscoll, Oswestry and ICRS scoring 

systems are amongst the most frequently used (Mainil-Varlet et al., 2003, O'Driscoll et al., 

1988, Roberts et al., 2003).  

 

More recently, the OARSI Osteoarthritis Cartilage Histopathology Assessment system was 

devised with the aim to provide a more useful method of assessment through ‘grading’ and 
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‘staging’ articular cartilage. The severity and extent of cartilage surface involvement in the 

local osteoarthritic process is assessed and categorised from ‘normal’ through to ‘severe’ 

and from ‘no OA activity seen’ through to >50% of articular surface affected’(Pritzker et 

al., 2006).  

 

Subchondral bone and articular cartilage as a unit 

 

Despite the abundance in the literature linking changes of the subchondral bone to the 

degenerative overlying cartilage, when it comes to assessing the severity of OA by means 

of a histopathological scoring system these correlations are often overlooked. As 

aforementioned, the predominant parameters focus largely on the articular cartilage, 

however, being in direct contact with the underlying bone, it is likely that messages or 

signals have an uninterrupted pathway of communication.  

 

The primary aim of this chapter was to devise a scoring system to assess the severity of 

OA, which incorporates changes of the subchondral bone. We hoped to confirm that the 

overall score obtained through the new scoring system was indicative of the degenerative 

state of the tissue as a unit, including the cartilage and subchondral bone.  

 

The second aim was to correlate changes to the subchondral bone with changes in the 

cartilage-based parameters, in order to establish relationships between the two tissues and 

obtain a greater understanding of changes that occur throughout OA.  

 

The rationale behind including the subchondral bone into a histological scoring system 

was not only to grade the unit as a whole without isolating one factor from the other, but 

also as a potential tool to be used and translated clinically. By correlating changes of the 

subchondral bone to the overlying cartilage, it may be possible to establish the pattern of 

change that occurs within the bone throughout the progression of the disease. Clinically, 

this could provide a basis for a tool for early diagnosis of OA, in a minimally invasive way 

using bone as a sole component for grading.  

 

The third aim of this chapter was to assess the reproducibility of the scoring system by 

testing inter- and intra-observer variability. 
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2.2. Materials  
 

 
 
Table 2.1. Materials and suppliers. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Material Catalogue 
number 

Supplier 

 
DPX mounting medium 

 
RAYLLAMB/DPX 

 
Raymond A Lamb 
Medical Supplies, 
Eastbourne, UK 
 

 
10 % Formalin solution, neutral 
buffered 
Phosphate buffered saline 
Ethylenediaminetetraacetic acid 
disodium salt dihydrate 
 

 
HT501128 
 
P4417 
E4884 

 
Sigma Aldrich, UK 

Paraffin wax pastilles  298682F VWR – Jencons, 
Leicestershire, UK 

Polysine adhesion glass slides MNJ-800-010F Thermo Fisher 
Scientific, UK 
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2.3. Methods 

 

2.3.1. Source of material 

 

Tibial plateaux (TPs) were obtained from OA patients who underwent partial 

(unicondylar) or total (bicondylar) knee replacement. OA was diagnosed following 

physical, radiographic and biochemical examination. Tibial plateaux from male and female 

patients ranging from 45 to 85 years of age were used in this study. South East Wales 

Research Ethics Committee safety and ethical guidelines were followed. Written informed 

consent was obtained from each patient and extensive precautions were taken to preserve 

the privacy of the participants donating tissue. Following surgery, tissue was immediately 

transported from the hospital to the laboratory in sterile saline solution. Only tissue from 

the tibial plateaux were used for this study; cartilage and bone obtained from the femoral 

head were omitted in order to maintain consistency. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.1. Labelled photograph of a tibial plateau excised from a total knee replacement. 
Scale bar = 2cm. 
 

2.3.2. Fixation and decalcification 

 

The tibial plateaux were fixed overnight in 10% neutral buffered formalin. Following 

fixation, they were washed in PBS (three changes of 10 minutes). Subsequently, they were 

decalcified in 12% ethylenediaminetetraacetic acid (EDTA) disodium salt dihydrate 
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solution at pH 7.5 for up to four weeks at 37°C. Every fifth day, the EDTA was discarded 

and replenished. Following decalcification, samples were washed in PBS. 

 

2.3.3. Excision and paraffin embedding of osteochondral plugs 

 

The tibial plateaux were assessed based on their topography; mapped and classified into 

regions of varying cartilage integrity (figure 2.2). These were then dissected using a sharp 

scalpel into osteochondral plugs (OCPs). The size of the plugs varied slightly in 

accordance to the size of the mapped region. From one tibial plateau approximately 4 

osteochondral plugs were excised. However, this varied depending on the nature of the 

cartilage observed within each individual TP. The osteochondral plugs were then 

dehydrated in graded alcohols (70%, 95% and 100% x3) with changes of 60 minutes each 

before being cleared in xylene (two changes of thirty minutes), infiltrated with three 

changes of paraffin wax at 56°C and embedded in paraffin wax.   

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 

 
Figure 2.2. Photograph of a tibial plateau. Labelled red boxes demonstrate examples of 
mapped osteochondral plugs. Scale bar = 2cm. 
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2.3.4. Sectioning 

 

Following embedding, serial sections were cut at 8µm on a Leitz 1512 microtome. 

Sections were floated on a heated water bath (45°C) before being mounted on polysine 

coated slides. The slides were air-dried for approximately 30 minutes on a heated rack and 

then dried overnight in an incubator heated to 45°C. 

 

2.3.5. Staining of sections 

 

Sections were dewaxed using xylene (two changes of 2 minutes) and rehydrated through a 

series of graded alcohols (two changes of 2 minutes in 100%, followed by one change of 2 

minutes in 95% and 70%). The sections were then washed in running water for a further 2 

minutes before being stained with Masson’s trichrome (appendix). Following staining the 

sections were dehydrated through graded alcohols, cleared in xylene (two changes of 2 

minutes) prior to being mounted under coverslips using DPX. 

 

2.3.6. Microscopy and imaging 

 

Slides were viewed using a Leica DMRB light microscope and imaged using a Moticam 

2000 camera. Image processing was carried out using Adobe Photoshop (version 6.0.1).  

 

2.3.7. Scoring the osteochondral plugs 

 

A new scoring system was devised through which cartilage thickness, percentage of total 

bone area, tidemark integrity, cartilage surface integrity and cartilage morphology were 

assessed. Cartilage thickness and percentage of total bone area were assessed 

quantitatively using the method described below. This combination of features allows for a 

semi-quantitative assessment of the overlying cartilage together with the underlying bone. 

A criteria summary table for the qualitative factors can be seen in table 2.2.  
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2.3.7.1. Cartilage thickness 

 

In order to determine the cartilage thickness, slides were imaged at the lowest possible 

magnification (x4). Three equally spaced points along the width of the section were 

measured in order to obtain an average thickness throughout the section. The measurement 

was taken from the surface of the cartilage horizontally down to the tidemark at the three 

locations (refer to figure 2.3). Calculating an average of the 3 measurements generates a 

value of cartilage thickness that can be used quantitatively. 

 

 

Figure 2.3. Cartilage thickness measurements were taken from three equally spaces points 
along the width of the section in order to obtain an average. Scale bar = 1.5mm. 
 

 

2.3.7.2. Bone area 

 

Percentage of total bone area of the imaged sections was assessed using Adobe Photoshop 

(version 6.0.1). By bone area, we refer to the region below the tidemark, including the 

bone matrix, whether mineralized or not, and osteoid. This was calculated as a percentage 

of the total area which includes bone marrow and other soft tissues. The bone area 

measurement was consistently observed from the tidemark to a depth of 2mm.  
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2.3.7.2.1. Method of area calculation 

 

Using Adobe Photoshop, a line was drawn over the tidemark as a marker to delineate the 

region to be calculated. Under the ‘Image Size’ setting, the resolution was changed so that 

it was consistently 300 pixels per inch. The ‘Magic Wand’ tool (which allows for selection 

of part of an image based on its colour) was then used to select the area of stained bone 

within the 2mm region (figure 2.4). Using the Image> Histogram function, it is possible to 

obtain the total number of pixels in the selected region (a pixel is the smallest addressable 

screen element). In order to calculate the total number of pixels in the whole region 

including the spaces where the bone marrow and soft tissues would reside, a line was 

drawn around the borders so that the whole area to be calculated is defined. The ‘Magnetic 

Lasso’ tool (which automatically clings to edges of contrast objects) was then used to 

select the entire region so that the total number of pixels could be obtained. An area 

percentage was then calculated in order to ascertain a quantitative value of bone area per 

section. 

 

 

 

 

 

 

 

 

 

 

Figure 2.4. The area of bone in the subchondral region to a depth of 2mm. Scale bar = 
1mm. 
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2.3.7.3. Tidemark integrity, cartilage surface integrity and cartilage morphology 

 

Tidemark integrity, cartilage surface integrity and cartilage morphology was scored based 

on the scoring criteria (refer to table 2.2). Lower scores were indicative of a more normal 

state, whereas higher scores suggest a more diseased state of tissue. Tidemark integrity 

was scored between 0 and 4; 0 being ‘normal’ an 4 indicating a lack of tidemark due to the 

absence of cartilage. Similarly, cartilage surface integrity was also scored between 0 and 4 

(4 indicating no cartilage surface integrity due to a complete lack of cartilage). Cartilage 

morphology was scored between 0 and 3; again, where 0 represents a ‘normal’ state and 3 

indicating an absence of cartilage.  

 

2.3.7.4. Overall scoring  

 

Using the criteria described for scoring the qualitative parameters it is possible to obtain a 

total score between 0 and 11 for each scored slide. In order to incorporate the cartilage 

thickness and percentage of bone in the subchondral region into the overall scoring, they 

were categorised based on the following boundaries:  

 

 

 

 

 

 

 

 

 

This approach enables an overall sum of scores between 0 and 17 to be calculated, where 

the more ‘normal’ the sample, the lower the score.  

 

In this study, we have used both the categorical scores and the continuous data in order to 

analyse quantitative data used in the scoring system. 

 

 

Bone area 

Percentage (%) Score 

10.0 – 29.9 0 

30.0 – 49.9 1 

50.0 – 69.9 2 

70.0 – 89.9 3 

Cartilage thickness 

Millimetres (mm) Score 

0.00 – 0.49 3 

0.50 – 1.49 2 

1.50 – 2.49 1 

2.5 + 0 
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2.3.8. Inter- and intra-observer variability 

 

In order to assess the validity and reproducibility of the scores obtained, 10 slides were 

randomly picked as a sample set to be scored. These slides were graded by 5 separate 

individuals who had no previous connection with the scoring system.   

 

This same sample set was also graded on 3 separate occasions by myself in order to 

determine the intra-observer variability.  

 

2.3.9. Analysis 

 

Data were analysed in several stages. Initially the mean sum of OCPs excised per patient 

was analysed with regards to age, sex and anatomical location. Secondly, the data were 

graphed in order to delineate the impact of the cartilaginous and boney parameters on the 

overall scores, looking into whether or not their addition resulted in significant differences 

or not. Thirdly, correlations between histological parameters were analysed. Fourthly, the 

system was tested to see whether or not the overall score could be used to differentiate 

between milder and more severe changes within specific tissue parameters. Lastly, inter- 

and intra-observer variability was assessed.  

 

2.3.9.1. Statistical analysis 

 

Statistical analysis was carried out using Minitab 16, SPSS 16.0 and Microsoft Office 

Excel (2003). Data were examined for normality using the Anderson-Darling statistic. 

Pearson’s and Spearman’s Rank correlation coefficients were calculated for parametric 

and non-parametric variables respectively. Student t-tests were used when comparing two 

sets of normally distributed data; otherwise the Mann Whitney test was used. One-way 

ANOVAs were carried out in order to assess the significance of the variability results.  

 

 

 

 



  
Table 2.2. Criteria for the scoring of individual parameters namely tidemark integrity, cartilage surface integrity and cartilage morphology. 
 

Score Tidemark integrity: Cartilage surface integrity: Cartilage morphology: 

0 
 
Tidemark normal 

 
Smooth surface 
: Superficial layer intact 

 
Normal morphology 
: Organised chondrocyte arrangement 
  

1 

 
Tidemark intact 
: Linear 
: Evidence of cellular invasions 

 
Uneven surface 
: Mild surface irregularity 

 
Altered morphology 
= Includes 1 or more of the following 
: Irregular cell organisation 
: Cell clusters 
 

2 

 
Moderate tidemark disruption 
: Cellular invasions 
: Evidence of vascular invasions 
: Evidence of tidemark duplication  

 
Fibrillated surface 
: Moderate fibrillation 

 
Abnormal morphology 
: Exceptional difference in cellularity 

-Highly cellular/ acellular 
: Cellular organisation highly varied 
 

3 

 
Complete tidemark disruption 
: Non-linear 
: Greater cellular invasions 
: Numerous vascular invasions 
 
 
 
 
 
 
 
 
 
 
 

 
Fissured surface with excessive fibrillation 
: Fissure extends further than surface zone 

 
No cartilage 
: Denuded 

4 
 
No tidemark 
: No cartilage 
 

 
No cartilage 
: Denuded 

 



 

      Table 2.3.  Scores and overall sum of scores for each osteochondral plug.  

   OCP # 
Medial/ 
Lateral 

Cartilage 
thickness Bone density Tidemark  

Surface 
Integrity 

Cart.  
Morphology Sum 

Mean 
sum 

Patient # Age Sex   mm (0-3) % (0-3) (0-4) (0-4) (0-3) (0-17) (0-17) 
 

1 
 

59 
 

Female 
1 Medial 0.11 3 70.07 3 2 2 1 11  

6.00 2 Lateral 2.41 1 27.63 0 0 0 1 2 
3 Medial 1.67 1 57.61 2 1 2 0 6 
4 Lateral 3.36 0 35.61 1 1 2 1 5 

 
2 

 
73 

 
Male 

5 Lateral 0 3 66.02 2 4 4 3 16  
13.75 6 Lateral 0 3 62.99 2 4 4 3 16 

7 Lateral 0 3 73.16 3 4 4 3 17 
8 Medial 1.69 1 51.81 2 1 1 1 6 

 
3 
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Male 

9 Medial 0.62 2 47.73 1 3 0 2 8  
8.33 10 Medial 1.41 2 66.89 2 3 1 2 10 

11 Medial 3.5 0 45.29 1 1 3 2 7 
 

4 
 

85 
 

Female 
12 Lateral 2.03 1 28.62 0 0 1 0 2  

9.25 13 Medial 1.92 1 39.34 1 1 1 0 4 
14 Medial 0 3 64.13 2 4 4 3 16 
15 Medial 0 3 32.53 1 4 4 3 15 

 
5 

 
72 

 
Male 

16 Medial 0 3 59.03 2 4 4 3 16  
9.17 17 Lateral 2.32 1 30.88 1 2 0 2 6 

18 Medial 0.44 3 74.32 3 1 1 0 8 
19 Medial 0 3 75.36 3 4 4 3 17 
20 Medial 1.25 2 66.95 2 0 1 1 6 
21 Lateral 3.32 0 48.44 1 0 1 0 2 

 
6 

 
45 

 
Female 

22 Lateral 1.87 1 31.52 1 0 0 0 2  
4.33 23 Lateral 3 0 48.3 1 0 1 1 3 

24 Medial 1.99 1 50.96 2 1 3 1 8 
 

7 
 

67 
 

Female 
25 Medial 1.44 2 56.6 2 0 2 1 7  

9.00 26 Medial 0.12 3 82.05 3 4 4 3 17 
27 Lateral 1.88 1 27.47 0 1 2 1 5 
28 Medial 0.81 2 21.13 0 2 1 2 7 

 
8 

 
62 

 
Female 

29 Lateral 2.65 0 50.25 2 1 2 1 6  
7.67 30 Medial 1.08 2 52.16 2 1 1 1 7 

31 Medial 0.61 2 55.6 2 2 3 1 10 
 

9 
 

67 
 

Male 
32 Medial 0.36 3 67.73 2 0 3 1 9  

6.00 33 Lateral 1.85 1 34.81 1 2 0 1 5 
34 Medial 1.9 1 51.51 2 1 2 1 7 
35 Lateral 3.3 0 53.96 2 0 1 0 3 

 
10 

 
69 

 
Male 

36 Medial 1.71 1 22.01 0 2 2 1 6  
7.50 37 Medial 2.25 1 48.78 1 0 1 0 3 

38 Lateral 2.06 1 40.7 1 1 2 0 5 
39 Lateral 0 3 50.04 2 4 4 3 16 



71 
 

2.4. Results 

 

Based on the criteria mentioned previously the five parameters were scored and an overall 

sum of scores between 0 and 17 was generated for each osteochondral plug. In this study 

the overall scores obtained ranged between 2 and 17. Table 2.3 summarises all of the 

scores obtained for individual parameters together with the sum of scores for each 

osteochondral plug.   

 

2.4.1. Scoring of the histological sections from the osteochondral plugs 

 

Figures 2.5 to 2.17 show representative OCP’s from each score obtained. As previously 

outlined, a lower score suggests a more normal state of tissue. Figure 2.5 demonstrates the 

lowest score obtained (score=2) when analysing the OCP’s. There is a relatively thick 

layering of articular cartilage (cartilage thickness (CT)= 2.41mm) which falls within the 

range of normal articular cartilage. The OCP represents mild, initial changes that occur in 

osteoarthritis. The characteristic distribution of chondrocytes within the tissue can be seen; 

there is a flattened layer of cells in the superficial zone, accompanied by the rounded 

isolated cells in the mid-zone. The columns of cells which are typically seen in the deep 

zone are also evident. Early signs of OA include the small groups or clusters of cells. 

Tidemark duplication can also be observed. The articular surface, tidemark and 

subchondral bone are comparable to normal articular cartilage.  

 

Figure 2.6 represents an OCP with an overall score of 3. This OCP shows close 

resemblance to the OCP of score 2. When comparing the two, it is apparent that the 

cartilage thickness is reduced (by approximately 6 percent) and that mild surface 

irregularities are developing. It could be argued that there is an increase in the number of 

cell clusters seen throughout the tissue, however, as a whole, scores 2 and 3 appear to be 

very similar histologically.  

 

Following on from score 3 are scores 4-6, which can be seen in figures 2.7 to 2.9. These 

appear to show the next level in the progression of the disease. Despite the adequate 

cartilage thickness, it can be seen collectively that surface integrity is compromised in 

these OCP’s. Fissuring of the surface is evident, combined with evidence of clustered cells 
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lining the fissured surfaces. In figure 2.7C, a collection of cells within a fibrous pocket 

appears to reside within the SZ. These do not present the typical chondrocytic features and 

so it could be suggested that they are a different cell type. Throughout the tissue, the 

chondrocyte organisation does appear to follow a general trend. However, this trend does 

not appear to correlate with the increasing scores. The trend is that there is an increase in 

cell clusters; however, as mentioned this increase varies between samples. Another 

observation is that the vertical columns of chondrocytes that are usually restricted to the 

deep zone appear to extend beyond this deep zone and into the mid-zone. The tidemark 

between scores 4 and 6 also show great similarities in that they are linear, with moderate 

cellular and vascular invasions threatening the area. Figure 2.8D illustrates a breach of the 

tidemark where cells from the subchondral bone, accompanied by vasculature, are 

migrating into the deep zone of the articular cartilage.  

 

Progressively, scores 7 and 8 depict the next stages in the advancement of the disease. At a 

glance it can be seen that there is still cartilage covering the underlying bone, however the 

quality of the cartilage is severely compromised. The OCP representing score 7 (figure 

2.10) shows excessive fibrillation, comprising deep fissures throughout the articular 

surface. A higher power view of what would be named the superficial zone shows a 

cellular lining throughout the fissured surface. This population appears to be a mixture of 

chondrocyte-like and non chondrocyte-like cells. Examining the tidemark in figure 2.10A 

and D, it can be seen that there are numerous tidemark breaches into the deep zone. 

Interestingly, in the specific case, on the right side of figure 2.10A (higher power can be 

seen in figure 2.10E), an unusual structural arrangement can be seen. There appears to be a 

pocket which is enclosed by a circular fibrous ring (outlined by the X’s) which appears to 

be partly detached from the surroundings. Within this ring is a combination of cells and 

what appears to be vascular vessels anchored into a thick fibrous sheet. This is not only 

interesting because it is atypical, but is also suggests a phenomenon which questions the 

structure of cartilage; as cartilage is renowned for its aneural and avascular composition.   

 

The OCP which represents score 8 depicts another case whereby a cartilaginous layer is 

apparent; however this layer does not appear to represent the usual structure of cartilage. 

In figure 2.11, it can be seen that the cartilage and subchondral bone show little 

resemblance to what would be seen in a normal articular unit other than the two tissues 
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being in proximity to one another. The overlying cartilage resembles fibrocartilage rather 

than hyaline cartilage and this seems to cover the whole surface (as indicated by the white 

star in figure 2.11B). The red stars in figures 2.11B and C pinpoint small regions in what 

would be classified the deep zone where the organisation resembles remaining hyaline 

cartilage; it appears that this region is engulfed by the fibrocartilagenous covering. The 

tidemark is also an interesting factor as it is difficult to delineate. The chondro-osseo 

interface in this OCP is a mesh with several large passages interconnecting the two. The 

black arrows in figures 2.11B and C draw attention to regions within the cartilage where 

vascularisation is occurring, similar to what was seen in the OCP of score 7. The vascular 

regions in figure 2.11B look as though they have resulted from the flow of cells that have 

breached what would have been the tidemark. As a whole, it is interesting to note however 

that the articular surface looks smooth and it would not be fair to say that there is any 

fibrillation present, despite the overall state of the tissue.    

 

Scores 9 and 10 (figures 2.12 and 2.13) represent OCPs illustrating the progression into the 

latter stages of cartilage degradation involved in OA. The cartilaginous layering does not 

cover the entire surface; there are areas where degradation has extended down to the 

subchondral bone. In what remains of the cartilage, fissuring and fibrillation extend 

beyond the surface. The chondrocytes reside largely in clusters and there is only a small 

proportion of isolated cells. Looking at the tidemark, it is evident that established vascular 

canals have been formed. In figure 2.13B an accumulation of cells are located below a 

deep fissure, extending to the tidemark. It is difficult to say whether these cells have 

extended from the surface down, or if they have emerged from the subchondral bone and 

are moving upwards. Looking at figure 2.12D it can be seen that there are multiple 

tidemarks below the original one. A marked difference between scores 9 and 10 is the 

bone thickness. It can be seen that there are far fewer marrow cavities in score 10 and, 

therefore, a higher bone density.  

 

From score 11 to 17, the remaining tissue comprises predominantly of bone. The OCP 

representing score 11 (figure 2.14) has a small region with a very thin (approximately 

200µm) covering of cartilage, however the other OCPs up to score 17 have no cartilage at 

all. A closer look at figure 2.14B shows that despite only a thin layer of cartilage, there are 

still tidemark breaches and, in this case, it can be seen that the breach is an extension of a 
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bone marrow cavity. Interestingly in figure 2.14C, a pocket of soft tissue is outlined by X’s 

and extends from the surface and into the bone. The cells within this region appear to be 

within lacunae, similar to what would be seen in hyaline cartilage. Surrounding this pocket 

are large marrow cavities, suggesting remodelling of some sort.  

 

In this study, no OCPs achieved a score of 12, 13 or 14. This indicates that once the 

degradation has reached a certain point, there are fewer intermediate points; once there is 

no cartilage the bone adapts to the new conditions and there are no in-between stages. 

Having said that, in this study, the difference between OCPs from scores 15 to 17 are that 

the higher the score the greater the bone density. It can be seen in figure 2.15, that there 

are marrow cavities filling up a large proportion of the bone, whereas in figure 2.17, the 

area occupied by marrow cavities is remarkably smaller. The articulating surface of the 

OCP from score 17 appears to be eburnated bone.  
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Score 2: 
 
 

 
 
 
Figure 2.5. A representative osteochondral plug from tibial plateau with an overall score of 2.  
 
Figure A. Low power view of a Masson’s stained OCP with an overall score of 2. The articular 
cartilage (AC) is separated from the underlying subchondral bone (SCB) by the tidemark (TM). 
Scale bar = 1.5mm. 
Figure B. The superficial zone (SZ) of the OCP with a score of 2. The arrows indicate clusters of 
cells forming in the superficial-mid zone. The top arrow indicates a group of cells in a horizontal 
columnar arrangement. Scale bar = 200 µm.  
Figure C. The deep zone (DZ) of the OCP with a score of 2. The top left arrow indicates the 
characteristic vertical column as seen in normal hyaline cartilage. The bottom arrow indicates 
tidemark duplication. Scale bar = 200 µm.  
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Score 3: 
 
 

 
Figure 2.6. A representative osteochondral plug from tibial plateau with an overall score of 3.  
 
Figure A. Low power view of a Masson’s stained OCP with an overall score of 3. The linear 
tidemark (TM) separates the cartilage from the underlying subchondral bone. The fissure seen is a 
processing artefact. Scale bar = 1.5mm. 
Figure B. The superficial zone (SZ) of the OCP with a score of 3. Top arrow highlights slight 
fibrillation of the surface. There is also evidence of cells clusters forming in the superficial zone as 
indicated through the lower arrow. Scale bar = 200 µm.  
Figure C. The mid-zone (MZ) of the OCP with a score of 3. There are relatively low numbers of 
the characteristic isolated, rounded chondrocyte usually found in normal articular cartilage (top 
arrow). The lower arrows indicate the abundance of cell clusters. Scale bar = 200 µm. 
Figure D. The deep zone (DZ) of the OCP with a score of 3. There is a continued presence of 
clusters of chondrocytes within the deep zone. Although there are columns of cells, it does not 
appear to be the predominant chondrocyte organisation within this region. There is evidence of 
cellular migration towards the linear tidemark. Scale bar = 200 µm. 
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Score 4: 
 

 
 
Figure 2.7. A representative osteochondral plug from tibial plateau with an overall score of 4.  
 
Figure A. Low power view of a Masson’s stained OCP with an overall score of 4. The tidemark 
(TM) separates the cartilage from the underlying subchondral bone. Scale bar = 1.5mm. 
Figures B & C. The superficial zone (SZ) of the OCP with a score of 4. Arrow in Figure B 
highlights increased surface fibrillation. Characteristic flattened surface chondrocytes are absent. 
Top arrow in figure C indicates a highly cellular region in the superficial zone. Chondrocyte 
clustering is evident in both figures B and C. Scale bar = 200 µm.  
Figure D. The mid-zone (MZ) of the OCP with a score of 4. The arrow indicates presence of 
chondrocyte clusters in this region. Scale bar = 200 µm. 
Figure E. The deep zone (DZ) of the OCP with a score of 4. The top two arrows highlight the 
presence of clusters as well as columns. Clusters appear to be more numerous when compared to 
the deep zone of OCPs with lower overall scores. Lower arrows highlight the presence of tidemark 
breeches. Tidemark duplication is also evident. Scale bar = 200 µm. 
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Score 5: 
 

 
Figure 2.8. A representative osteochondral plug from tibial plateau with an overall score of 5.  
 
Figure A. Low power view of a Masson’s stained OCP with an overall score of 5. The tidemark 
(TM) separates the cartilage from the underlying subchondral bone. Overall reduction in cartilage 
thickness is apparent. Scale bar = 1.5mm. 
Figure B. The superficial zone (SZ) of the OCP with a score of 5. The top arrow indicates greater 
surface fibrillation relative to the lower scores. Lower arrow indicates a characteristic flattened 
surface zone chondrocyte. Cell clusters are apparent yet sparse. Scale bar = 200 µm.  
Figure C. The mid-zone (MZ) of the OCP with a score of 5. The arrow indicates vertical columns 
normally seen in the deep zone of articular cartilage. Scale bar = 200 µm. 
Figure D. The deep zone (DZ) of the OCP with a score of 5. Top arrow highlights the presence of 
typical vertical columns. Lower arrows highlight the presence of cellular and vascular tidemark 
breeches. Scale bar = 200 µm. 
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Score 6: 

 
Figure 2.9. A representative osteochondral plug from tibial plateau with an overall score of 6.  
 
Figure A. Low power view of a Masson’s stained OCP with an overall score of 6. The linear 
tidemark (TM) separates the cartilage from the underlying subchondral bone. Bone thickening is 
apparent. Scale bar = 1.5mm. 
Figure B. The superficial zone (SZ) of the OCP with a score of 6. Moderate fibrillation can be 
seen in superficial zone. Cell clusters as indicated by the arrows are evident near the fissured 
surfaces. There is an absence of cells in the transitional region between the surface and the mid 
zone. Scale bar = 200 µm.  
Figure C. The mid-zone (MZ) of the OCP with a score of 6. The arrows highlight the presence of 
chondrocyte clusters as well as vertical columns in the mid-zone. There are few rounded isolated 
cells as would be seen in the normal articular cartilage. Scale bar = 200 µm. 
Figure D. The deep zone (DZ) of the OCP with a score of 6. Top arrow highlights the presence of 
columns that appear at a tangent rather than vertical. Lower arrows indicate the cellular migration 
towards the tidemark as well as the cellular and vascular breaches of the tidemark. Scale bar = 200 
µm. 
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Score 7: 

 
Figure 2.10. A representative osteochondral plug from tibial plateau with an overall score of 7.  
 
Figure A. Low power view of a Masson’s stained OCP with an overall score of 7. The linear 
tidemark (TM) separates the cartilage from the underlying subchondral bone. Bone thickening is 
excessive and surface fibrillation apparent. Scale bar = 1.5mm. 
Figure B. The superficial zone (SZ) of the OCP with a score of 7. Fibrillation extending deeper 
than the surface zone is evident. Fissured surfaces appear to be highly cellular as indicated by the 
arrow. Scale bar = 200 µm.  
Figure C. The mid-zone (MZ) of the OCP with a score of 7. The arrow indicates the presence of 
cell clusters. Scale bar = 200 µm. 
Figure D. The deep zone (DZ) of the OCP with a score of 7. The top arrows highlight the presence 
of characteristic vertical chondrocyte columns. The lower arrow exemplifies the cellular breaches 
of the tidemark. Scale bar = 200 µm. 
Figure E. Part of the mid zone (MZ). An abnormal pocket is evident as outlined by the X’s. There 
appears to be a circular fibrous covering surrounding the abnormal region containing vascular 
vessels. Scale bar = 400 µm.  
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Score 8: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.11. An osteochondral plug from tibial plateau with an overall score of 8.  
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Figure 2.11. An osteochondral plug from tibial plateau with an overall score of 8.  
 
Figure A. Low power view of a Masson’s stained OCP with an overall score of 8. The reduced 
thickness of the articular cartilage is apparent. The tidemark is barely recognisable as there are 
numerous extensive breeches. There is no distinction between the zones of articular cartilage. Scale 
bar = 1.5mm. 
Figure B. The region highlighted by the left red box in figure A. Tissue appears highly cellular 
with a fibrous organisation (indicated by the white star). Black arrows point toward a major breech 
from the subchondral bone, where vascularisation is evident. The red star indicates a different 
region which appears to be hyaline cartilage-like, with chondrocytes located within lacunae. Scale 
bar = 200 µm.  
Figure C. The region highlighted by the right red box in figure A. Black arrows indicate 
vascularisation within the cartilaginous region, surrounded by the fibrous covering. The red star 
indicates a hyaline-like region encapsulated by the thick fibrous covering. Scale bar = 200 µm. 
Figure D. A panoramic view of the articulating surface. Cellular organisation is not representative 
of hyaline cartilage and there is extensive tidemark disruption. The surface does not appear to be 
fissured. Red stars correlate to those in figures B and C. Scale bar = 400 µm. 
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Score 9: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.12. A representative osteochondral plug from tibial plateau with overall score of 9.  
 
Figure A. Low power view of a Masson’s stained OCP with an overall score of 9. The linear 
tidemark (TM) separates the cartilage from the underlying subchondral bone. Regression in 
cartilage thickness is evident, together with fissuring throughout the whole surface. Bone 
thickening below the tidemark is apparent. Scale bar = 1.5mm. 
Figures B & C. The superficial zone (SZ) of the OCP with a score of 9. Cell clusters are 
predominant. However, there are few remaining single cells as indicated by the arrow in figure B. 
Figure C demonstrates the excessive surface fissuring, with the surrounding clusters of cells. Scale 
bar = 200 µm.  
Figures D & E. The deep zone (DZ) of the OCP with a score of 9. Through figure D it can be seen 
that the majority of the chondrocytes in this region are located within clusters. In figure E, as well 
as clusters, there are a greater proportion of cells orientated in the typical columnar arrangement 
(indicated by the arrows). Vascular and cellular invasions are also apparent, together with great 
tidemark duplication as indicated by the red star in figure D. Scale bar = 200 µm. 
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Score 10: 

 
 
Figure 2.13. A representative osteochondral plug from tibial plateau with an overall score of 10.  
 
Figure A. Low power view of a Masson’s stained OCP with an overall score of 10. The residual 
overlying cartilage is minimal. The subchondral bone is thick and contains blood vessels and bone 
marrow cavities. Scale bar = 1.5mm. 
Figures B & C. The remaining cartilage and tidemark from the OCP with a score of 10. 
Chondrocytes are all located within clusters as indicated by the arrows. The articular surface is 
highly fissured. Figure B shows an accumulation of cells located below a deep fissure. Scale bar = 
200 µm.  
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Score 11: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.14. A representative osteochondral plug from tibial plateau with an overall score of 11.  
 
Figure A. Low power view of a Masson’s stained OCP with an overall score of 11. There is a very 
thin covering of cartilage over two thirds of the OCP. The subchondral bone has numerous blood 
vessels near the articular surface. There is an abnormal pocket of cells (imaged in figure C). Scale 
bar = 1.5mm. 
Figure B. The remaining articular cartilage from the OCP with a score of 11. The surface is 
fissured. Multiple tidemarks are illustrated by the red star. There is evidence of vascularisation and 
cellular breeches at the tidemark as indicated by the arrow. Scale bar = 200 µm.  
Figure C. An abnormal pocket is evident as outlined by the X’s. There appears to be a highly 
cellular region extending from the surface into the bone or vice versa. Large regions of marrow 
cavity surround the abnormal pocket. Arrow indicates tidemark duplication. Scale bar = 200 µm.  
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Score 15: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.15. A representative osteochondral plug from tibial plateau with an overall score of 15.  
 
Figure A. Low power view of a Masson’s stained OCP with an overall score of 15. There is no 
overlying articular cartilage. Large marrow cavities reside within the subchondral bone. Scale bar 
= 1.5mm. 
Figure B. A cellular pocket extending from the surface into the bone. Cells located within lacunae 
are characteristic of chondrocytes. Vascular channels can be seen within the bone. Scale bar = 200 
µm.  
Figure C. A highly cellular region of a marrow cavity extending towards the surface of the 
articulating bone is indicated by the red star. A vascular channel can also be seen between the 
surface of the bone and the highly cellular cavity. Scale bar = 200 µm.  
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Score 16: 

Figure 2.16. A representative osteochondral plug from tibial plateau with an overall score of 16.  
 
Figure A. Low power view of a Masson’s stained OCP with an overall score of 16. There is no 
overlying articular cartilage. The bone area is more dense than in the lower score as a result of 
smaller marrow cavities. Scale bar = 1.5mm. 
Figure B. A vascular/marrow cavity within the bone. Arrows are indicative of vascular channels. 
A cellular region sits within the bone cavity. Scale bar = 200 µm.  
 
 
 
Score 17: 

 
Figure 2.17. A representative osteochondral plug from tibial plateau with an overall score of 17.  
 
Figure A. Low power view of a Masson’s stained OCP with an overall score of 17. There is no 
overlying articular cartilage and the bone is very dense. Scale bar = 1.5mm. 
Figure B. A higher power image of the bone. Vascular channels are indicated by the arrows. The 
size of the cavity is smaller in relation to the lower scores. Scale bar = 200 µm.  
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2.4.2. Scoring of osteochondral plugs 

 

Having assembled all of the scores for the OCPs (table 2.3) it was possible to examine data 

between parameters. For each patient, several OCPs were excised representing the 

topographically different regions within the medial and lateral compartments. Using the 

overall scores obtained from each OCP, a mean sum of overall scores was calculated for 

each patient in order to give an indication of the severity of the tibial plateau as a whole. 

Figure 2.18 demonstrates the relationship between patient age and the mean sum of overall 

scores obtained for the patient. The blue line indicates the positive regression line which 

suggests that as age increases, the severity of OA also increases. Pearson’s correlation test 

showed a significant correlation between the two parameters (p<0.05).  

 

Using the mean sum of scores, differences in sex were examined in order to ascertain 

whether or not sex is a variable factor affecting the severity of OA. The mean sum of 

scores in the females ranged from 4.3 to 9.3. In the males this was slightly higher ranging 

from 6 to 13.75, however this difference was not statistically significant when tested using 

a student t-test (figure 2.19).  

 

Figure 2.20 is a box plot comparing scores obtained from medial and lateral OCPs. It can 

be seen that despite the range of scores being similar, the median in the medial side is 8, 

which is higher than the median in the lateral side which is 5. This suggests that as a 

whole, the medial side is more severely affected than the lateral side. Using the Mann-

Whitney test statistical significance was confirmed (p<0.02).  
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Figure 2.18. A scatter-plot illustrating the relationship between the patient age and the mean sum 
of scores obtained through the scoring system (n=10). Blue line indicates the trendline. Pearson’s 
correlation test confirmed that there is a significant relationship between the parameters (p<0.05). 
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Figure 2.19. A box-plot showing the distribution of mean overall scores obtained from OCP’s 
between female (n=5) and male (n=5) patients. The midline of the box-plot is representative of the 
median value (f=7.67, m=8.33), the second and third quartiles are displayed as a box and the first 
and third quartiles as whiskers. Student t-test confirmed that there were no statistical differences 
between these two groups (p>0.05).  
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Figure 2.20. A box-plot comparing the differences in overall scores of OCPs excised from the 
medial (n=23) and lateral (n=16) tibial condyles. The midline of the box-plot is representative of 
the median value (l=5, m=8), the second and third quartiles are displayed as a box and the first and 
third quartiles as whiskers. Mann Whitney test was used to confirm that the differences between 
the two groups was significant (p<0.02). 
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Moving on more specifically to the parameters used for scoring the OCPs, figures 2.21 and 

2.22 are scatter graphs showing the relationship of scores obtained when looking solely at 

the cartilage parameters, or solely at the bone parameters, in relation to the score obtained 

when combining both the cartilage and bone. In these graphs the adjusted score represents 

the score as a percent of the maximum possible score. This was calculated in order to keep 

constant the overall score; without a percentage of the total it would be unfair to compare a 

score out of 17 to a score out of 10 as it is for the cartilage parameters alone. Figure 2.21 

shows the relationship between scores obtained with and without bone factors. The blue 

line indicates the trend line which suggests that as the combined cartilage and bone score 

increases, the cartilage parameters alone also increase at a similar rate. These findings 

were confirmed using Spearman’s rank correlation coefficient where p<0.01. This 

suggests that by including the bone based parameters does not significantly alter the score 

which would have otherwise been achieved using solely the cartilage based parameters. 

Figure 2.22 is a similar scatter graph which shows the relationship between scores 

obtained with and without cartilage parameters. Again, a positive relationship can be seen 

between the two which was confirmed by Spearman’s rank correlation coefficient p<0.01. 

Studying this graph it can be concluded that including the cartilage parameters does not 

alter the score trend which would have otherwise been obtained from only the bone based 

scores. It can also be noted from the graph that the progression in bone scores occurs in 

line with the progression achieved when scoring the unit as a whole. In this way it can be 

said that the bone changes are just as significant and happen together with the changes 

observed in the cartilage.  
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Figure 2.21. A scatter-plot demonstrating the relationship of scores (n=39) when comparing those 
obtained using only the cartilage parameters to the scores obtained using both the cartilage and the 
bone parameters. Blue line is indicative of the trendline. Spearman’s rank correlation coefficient 
confirmed that the two variables showed a significant correlation (p<0.01). 
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Figure 2.22. A scatter-plot demonstrating the relationship of scores (n=39) when comparing those 
obtained using only the bone parameters to the scores obtained using both the bone and the 
cartilage parameters. Blue line is indicative of the trendline. Spearman’s rank correlation 
coefficient confirmed that the two variables showed a significant correlation (p<0.01). 
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2.4.3. Correlations between histological parameters 

 

Using the whole data set correlation coefficients were produced. Cartilage thickness was 

significantly and negatively correlated with percentage bone area, tidemark integrity, 

surface integrity and cartilage morphology (p<0.05). The cartilage thickness and tidemark 

integrity showed the greatest correlation coefficient (results not shown). 

 

Bone area was also significantly correlated with all parameters. The percentage of bone 

correlated negatively with the cartilage thickness and demonstrated positive correlations 

with the tidemark, surface and morphology parameters. Pearson’s and Spearman’s rank 

correlation coefficients in all cases produced a significant p<0.05 value. Figure 2.23 

illustrates the negative regression line produced when correlating the percentage of bone to 

the cartilage thickness.  

 

The bar charts seen in figures 2.24 to 2.26 demonstrate frequencies of the categorical 

parameters in relation to the categorical bone scores. Looking specifically at figure 2.24 it 

is evident that with increasing bone score there is an increasing number of samples that 

had a tidemark score of 4 (highest score). The low tidemark scores (scores 0 and 1) are 

abundant in the lower bone score categories. It is also possible to suggest that the bone 

scores appear to become higher (suggesting a more diseased state) prior to the changes to 

the tidemark. In other words, with the increasing bone scores, there remains an abundance 

of lower tidemark scores whilst also seeing an increase in the numbers of higher tidemark 

scores. It is only when the state of the bone appears at its worst (score 3) that the lower 

tidemark scores reduce. As mentioned, this may indicate that changes to the subchondral 

bone precede the tidemark changes. Interestingly, there is a lack of tidemark score 3 in the 

highest bone score category. A possible reason for this may be that once changes do begin 

to occur in the tidemark, it then deteriorates rapidly and, as a consequence, falls into the 

highest scoring category rather than score 3. Data were computed using the crosstabulation 

method on SPSS, showing statistical significance when analysed using Spearman’s rank 

correlation for ordinal variables (p<0.01). 

 

Figures 2.25 and 2.26 show similar trends when compared to figure 2.24. When the bone 

achieves the highest score (score 3), the most frequent score obtained for the surface 
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integrity and cartilage morphology is also the highest score. In figure 2.25, the low surface 

integrity scores are restricted to the low bone scores. As the state of the bone progresses, it 

seems that the changes to the surface are variable in that there are samples whose surface 

integrity deteriorates at what seems to be a relatively similar rate to the bone. However, 

there are also many samples whose bone scores are high but whose surface scores remain 

low. It is important to note however, that data in figure 2.26 did not generate a significant 

correlation despite following the general trend (p>0.05).  
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Figure 2.23. A scatter-plot showing the correlation between the amount of bone (%) and 
the cartilage thickness (mm) within the whole data set (n=39). Blue line is indicative of the 
trendline. Pearson’s and Spearman’s correlation tests demonstrate a significant difference 
between the parameters (p<0.01). 
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Figure 2.24. Frequency bar charts showing tidemark integrity scores obtained relative to 
the bone scores within the whole data set (n=39). Lower scores are indicative of a more 
normal state. Spearman’s rank correlation for ordinal variables suggest a significant trend 
(p<0.05). 
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Frequency chart for bone area vs surface integrity scores
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Figure 2.25. Frequency bar charts showing surface integrity scores obtained relative to the 
bone scores within the whole data set (n=39). Lower scores are indicative of a more 
normal state. Spearman’s rank correlation for ordinal variables suggest a significant trend 
(p<0.01). 
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Figure 2.26. Frequency bar charts showing cartilage morphology scores obtained relative 
to the bone scores within the whole data set (n=39). Lower scores are indicative of a more 
normal state. Spearman’s rank correlation for ordinal variables did not suggest a 
significant trend (p>0.05). 
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2.4.4. Using the scoring system to distinguish ‘mild’ and ‘severe’ samples of OA 

 

Obtaining a score between 0 and 17 represents the overall state of tissue, as the more 

‘normal’ the sample, the lower the score. The system was tested to see whether or not 

these overall scores could be used to distinguish between ‘mild’ from ‘severe’ OA 

samples. Within the data set, as previously mentioned, the overall scores ranged from 2 to 

17, and the mean of all scores was 8.26. Based on this observation, the overall scores were 

used to group the milder cases from the more severe cases of OA. Scores between 0 and 8 

were categorised under ‘mild OA’ and scores between 9 and 17 were categorised under 

‘severe OA’. Figure 2.27 illustrates the difference between the two groups. It can be seen 

that in the mild category, the median score is 6 where as in the severe category the median 

is 16. The difference between the two groups was shown to be statistically significant 

(p<0.01) when analysed using a Mann-Whitney test for non-parametric data.  

 
Using these two separate groups, the individual parameters were analysed to see whether 

the overall sum was accurate in distinguishing mild from severe OA groups. Table 2.4 

shows the breakdown of frequencies within the individual categorical parameters, enabling 

us to assess whether scores obtained through the scoring system was representative of 

individual parameters (figures 2.28 – 2.32). 

 
For cartilage thickness and bone area, the continuous data was used rather than the 

categorical data (figures 2.28 and 2.29). The median cartilage thickness in the mild group 

was 1.91mm, whereas in the severe group the majority of the samples were denuded 

resulting in a thickness of 0mm. This demonstrates a great difference between the two 

groups which was statistically confirmed using a Mann-Whitney test (p<0.01). This result 

confirms that the overall scores obtained from the scoring system can be used to 

distinguish 2 significantly different groups (mild and severe); in this case within the 

cartilage thickness parameter. Similarly, figure 2.29 illustrates the bone area box-plot. The 

median bone area within the mild group was 48 percent, compared to the median within 

the severe OA group which was 66 percent. Student t-tests confirmed that the two groups 

were significantly different (p<0.01).   

 

The categorical parameters are represented in figures 2.30 to 2.32. Figure 2.30 shows the 

tidemark integrity scores within the mild OA and the severe OA groups. The mode in the 
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mild group is 1, whereas the mode in the severe group is 4. This pattern of results is 

consistent within the other parameters namely, surface integrity and cartilage morphology 

as shown in figures 2.31 and 2.32. Mann Whitney tests carried out on all sets of data 

confirmed that the mild and severe OA groups could be classed as two significantly 

different groups based on the scores obtained (p<0.01). 
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Figure 2.27. A box-plot showing the differences in overall scores for the mild OA group 
compared to the severe OA group. The midline of the box-plot is representative of the 
median value (m=6, s=16), the second and third quartiles are displayed as a box and the 
first and third quartiles as whiskers. Mann Whitney test shows that the difference between 
these two groups is significant (p<0.01).    
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Table 2.4. Frequency table summarising the distribution of scores within each parameter, 
between the ‘mild OA’ and the ‘severe OA’ groups. 
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Figure 2.28. A box-plot showing the differences in cartilage thickness (mm) between the 
mild and severe OA groups. The median in the mild group is 1.91 mm and in the severe 
group is 0.00mm. Mann Whitney test shows that the difference between these two groups 
is significant (p<0.01). Suspected outliers are represented by an asterix (*). 
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Figure 2.29. A box-plot showing the differences in bone area (%) between the mild OA 
group compared to the severe OA group. The median in the mild group is 48.02 and 66.02 
in the severe group. Student t-test shows that the difference between these two groups is 
significant (p<0.01).    
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Figure 2.30. A box-plot showing the differences in tidemark integrity (TI) in the mild OA 
group compared to the severe OA group. The median in the mild group is 1 and 4 in the 
severe group. Mann Whitney test shows that the difference between these two groups is 
significant (p<0.01).    
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Figure 2.31. A box-plot showing the differences in surface integrity (SI) in the mild OA 
group compared to the severe OA group. The median in the mild group is 1 and 4 in the 
severe group. Mann Whitney test shows that the difference between these two groups is 
significant (p<0.01).    
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Figure 2.32. A box-plot showing the differences in cartilage morphology (CM) in the mild 
OA group compared to the severe OA group. The median in the mild group is 1 and 3 in 
the severe group. Mann Whitney test shows that the difference between these two groups 
is significant (p<0.01).    
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2.4.5. Variability 

 

Inter- and intra-observer variability was examined in order to assess the validity and 

reproducibility of the results. Studying the inter-observer results, figure 2.33 illustrates the 

sum of scores of the 10 OCPs. It can be seen that the combined scores range between 64 

and 71. The standard deviation for individual OCPs should not be regarded as relevant 

information as this is based on the varying scores of the different plugs. What should be 

observed, however, is how the standard deviation varies between OCPs as this is what 

gives the indication on how much variation there was between the OCPs. This information 

is also summarised in table 2.5. One way ANOVAs confirmed that there was no 

significant variation between observers.  

 

Figure 2.34 shows the mean scores of OCPs scored by the different observers, ranked in 

order of severity. In this case, the error bars demonstrating standard deviations are 

indicative of the variation that each OCP obtained. It is evident through looking at this 

chart that there was greatest variation in the lowest score (SD=1.13), and that with 

increasing scores and, therefore, more diseased tissue. There was no variation between 

observer scores (indicated by the fact that SD=0).  

 

Intra-observer variability results show very similar trends when compared to the 

inter-observer results. Relating to figure 2.35 which illustrates the combined sum of scores 

achieved on the 3 separate occasions, it can be seen that there is a smaller range of scores 

(64-67). The range of standard deviation is also smaller indicating that intra-observer 

scoring demonstrate more reproducibility than the inter-observer scoring.  

 

Similar to figure 2.34, figure 2.36 shows that within the intra-variability scores, there is 

greater variability in the lowest scores OCP, and that the highest scores show no variation 

(SD=0). In 60 percent of the OCPs, there was no variation in the overall score obtained on 

the 3 separate occasions.  
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2.4.5.1. Inter-observer  
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Figure 2.33. A Bar chart illustrating the combined overall scores obtained between 
observers. The combined scores ranged between 64 and 71 when grading 10 OCPs. Error 
bars are indicative of standard deviation. One way ANOVA confirmed that there was no 
significant difference between observer scores (p=0.99). 
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Figure 2.34. A bar chart showing the mean scores of OCPs scored on 7 occasions by 
different people, ranked in order of severity. The error bar shows the standard deviation 
(SD) of scores, indicating the level of variability between observers for each OCP. OCPs 
G-H show no error bars as the SD was 0. 
 
 
 



104 
 

 
 
 

OCP Observer MEAN SD 
  1 2 3 4 5 6 7     

A 0 1 2 2 0 2 3 1.43 1.13 
B 2 3 3 3 2 2 4 2.71 0.76 
C 3 3 3 1 3 3 3 2.71 0.76 
D 4 3 3 3 3 4 4 3.43 0.53 
E 5 5 5 6 6 6 7 5.71 0.76 
F 6 7 7 5 7 7 6 6.43 0.79 
G 11 11 11 11 11 11 11 11.00 0.00 
H 11 11 11 11 11 11 11 11.00 0.00 
I 11 11 11 11 11 11 11 11.00 0.00 
J 11 11 11 11 11 11 11 11.00 0.00 

TOTAL 64 66 67 64 65 68 71   
SD 4.27 4.09 3.95 4.20 4.33 3.94 3.57   
 
Table 2.5. Summary of inter-observer scores for 10 OCPs. The mean score for each OCP 
is shown, as well as the total combined score achieved from each observer. SD = standard 
deviation.  
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2.4.5.2. Intra-observer 
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Figure 2.35. A Bar chart illustrating the combined overall scores obtained on three 
separate occasions by the same observer. The combined scores ranged between 64 and 67 
when grading 10 OCPs. Error bars are indicative of standard deviation. One way ANOVA 
confirmed that there was no significant difference between observer scores (p=0.99). 
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Figure 2.36. A bar chart showing the mean scores of OCPs scored on 3 occasions by 
myself, ranked in order of severity. The error bar shows the standard deviation (SD) of 
scores, indicating the level of variability between scores obtained throughout the 3 
occasions. OCPs C, E and G-J show no error bars as the SD was 0.  
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OCP Occasion  MEAN SD 
  1 2 3     
A 0 1 2 1.0 1.0 
B 2 3 3 2.7 0.6 
C 3 3 3 3.0 0.0 
D 4 3 3 3.3 0.6 
E 5 5 5 5.0 0.0 
F 6 7 7 6.7 0.6 
G 11 11 11 11.0 0.0 
H 11 11 11 11.0 0.0 
I 11 11 11 11.0 0.0 
J 11 11 11 11.0 0.0 

TOTAL 64 66 67   
SD 4.27 4.09 3.95   

 
Table 2.6. Summary of intra-observer scores for 10 OCPs. The mean score for each OCP 
is shown, as well as the total combined score achieved from each observer. SD = standard 
deviation.  
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2.5. Discussion 

 

The relationship between the overlying cartilage and the subchondral bone has been 

observed for decades. Radin et al., (1986) stated that “the health and integrity of the 

overlying articular cartilage depends on the mechanical properties of its bony bed, and that 

alterations of the bony bed occur before the cartilage changes”. Despite this heavily sited 

article and the abundance in literature emphasising the involvement of the subchondral 

bone in and throughout the course of OA, the articular cartilage remains in the spotlight 

when assessing the severity of diseased tissue. The cartilage is not only isolated from all 

other tissues to be used as the sole tool for judgement, but the cartilage is also stripped 

from its core; the subchondral bone, to which it is directly anchored. The process of 

detaching the cartilage from the bone has been questioned by many; a recent study by 

Amin et al., (2009) addressed this issue and went on to suggest that the condition of the 

underlying bone significantly influenced chondrocyte survival in the overlying cartilage. 

So the question to be raised is ‘why is the subchondral bone overlooked when its 

involvement is so widely accepted?’.  

 

A new scoring system: a histological view 

 

The purpose of this new scoring system was not only to incorporate the subchondral bone, 

but also to obtain overall scores for the graded tissue that was indicative of the diseased 

state. Figures 2.5 to 2.17 demonstrate the increasing scores, mapping out stages in the 

progression of OA. The range of possible scores obtained from this scoring system is 0-17, 

however within these data sets the lowest obtained score was 2. As the patients who 

underwent total knee replacement surgery were diagnosed with OA, it would be surprising 

to find normal (score=0) OCPs, as this would suggest that the tissue was unaffected by the 

disease and surgery would, therefore, be unnecessary. Relating once again to the range of 

scores, another interesting point to note was that within the OCPs, scores 12-14 were 

absent. As briefly discussed in the results section, this could indicate that once the 

degradation has reached a certain point, the changes occur at a much quicker rate and so 

there are fewer intermediate points. 

 

Addressing specifically the changes within the cartilage morphology, it appears that in 
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general, cell clustering was a feature throughout all stages of the disease where cartilage 

was present, varying between OCPs but not following any general trend. It could be said 

that clusters were larger and/or more abundant in more severe OCPs but this was not 

always the case. It is widely discussed in the literature that clustering of chondrocytes is 

indicative of mitotic activity resulting in cell proliferation, however it has also been 

proposed that clustering may be a result of cellular migration (Kouri et al., 1996, Morales, 

2007). It would be interesting to know whether the chondrocyte clusters resulted from cell 

migration, or cell proliferation as this would give an indication of the mechanisms 

involved in the changes that occur. The typical structured organisation of cartilage was 

also ambiguous as there were some severe cases where there was evidence of an organised 

matrix, as well as some milder cases with little structural organisation. Based on this 

finding, it could be argued that the overall cartilage morphology does not necessarily 

represent the overall state of disease within OCPs. This theory however, challenges many 

of the current scoring systems as they are heavily weighted on the cartilage structure and 

morphology (Collins and Mc, 1960, Mankin et al., 1971).  

 

The cartilage surface integrity as well as the tidemark integrity do appear to follow a 

general trend based on the histological sections, in that the higher scores show more severe 

changes. Having said that, duplication of the tidemark and/or multiple tidemarks do not 

seem to represent the severity as a whole, as they were seen sporadically throughout the 

OCPs. 

 

The OCP of score 7 (figure 2.10) showed in interesting feature within the articular 

cartilage which can be seen outlined by X’s. As aforementioned, there is a region which 

appears to be encapsulated by a circular fibrous covering, containing an unfamiliar variety 

of components. Further analysis confirmed that within this pocket vascular channels had 

accumulated in this area. This is intriguing as articular cartilage is renowned for its 

avascular structure. The question to be raised is ‘where did this accumulation originate 

from’? It could be a result of down-migration from the synovial fluid, or it could be up-

migration from the subchondral bone via invasions through the tidemark. The fibrous 

covering also appears to be partly detached from the surrounding tissues suggesting that it 

is a separate unit residing within the articular cartilage. The assumption that could be made 

is that a repair response is occurring within the tissue, however, the problem that this raises 
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relates to the process that occurs in endochondral ossification. Following vascularisation, 

mineralisation occurs leading to collagen type X production and eventual terminal 

differentiation and ossification. This would be detrimental to the cartilage whose structure 

and function is aimed to enable low-friction movement. 

 

The OCP of score 8 (figure 2.11) could be referred to as an anomaly. Despite a relatively 

smooth articular covering, the characteristics of the tissue are hugely altered when 

compared to the normal composition of articular cartilage. Clinically, this could be 

misleading as the articular surface is often examined prior to TKRs by arthroscopy, and 

the surface of this OCP is relatively smooth with no fissures or fibrillation. Within the 

cartilage, there are regions (which are indicated by the red stars), which resemble hyaline 

cartilage, representing a very small portion of the tissue as a whole. In saying so, it appears 

that another cell type has taken over the tissue and the hyaline-like areas are the ‘last 

standing’ areas. A question to ask, is ‘given time would those remaining regions also have 

been displaced’? The invading fibrous connective tissue appears to be the result of a repair 

response, and there is evidence of cellular infiltration totally destructing the tidemark. It 

could be hypothesised that the invading cells are mesenchymal stem cells (MSC’s) which 

are being triggered into producing a repair tissue. As well as the cellular influx, 

vascularisation was also apparent, and this could follow on as a consequence of the MSCs 

entering the area. The non-characteristic cartilage and vascularisation brings to mind the 

thought that the repair tissue being formed may be a ‘pannus-like’ tissue. Pannus is an 

inflammatory response normally seen in rheumatoid arthritis, however, a pannus-like 

tissue has previously been reported in OA (Shibakawa et al., 2003). This is important to 

note as it may signify cross-relations between rheumatoid and osteoarthritis, and also 

supports reports which state that OA does in fact have an inflammatory response.  

 

With regards to the ‘pannus-like’ tissue, there were other OCPs with small, highly cellular, 

fibrous regions (scores 4, 7, and 10; refer to figures 2.7C , 2.10B and 2.13B respectively). 

Although these regions are insignificant in comparison to the OCP in score 8 (figure 2.11), 

they may be indicative of an early stage in the process. In the figures mentioned, the 

regions in question were indicated with a black arrow.  

 

Moving through the scores to the more severe cases, it could be suggested that within the 
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scoring system, scores 9-10 represent the time frame in which the last of the cartilage 

remains. That said, the cartilage is highly fissured, and the tissues possess few of the 

characteristics that normal articular cartilage should. The subchondral bone appears to 

have thickened, and at this point one could assume that the cartilage was doing little in 

terms of transmitting the high compressive/tensile forces which would be imposed on the 

weight bearing joint. Scores 11 through to 17 are representatives of the remaining 

underlying bone. The increasing scores show the progression from a relatively porous 

bony area with pockets extending to the surface, to a more compact structure with few 

marrow cavities.  

 

Analysing the differences in patient data 

 

OA is a degenerative joint disease commonly characterised by progressive erosion of the 

articular cartilage. The correlation between increasing age and prevalence of OA has been 

heavily documented (Aigner et al., 2007) and there has been evidence to show that age-

related changes in the function of chondrocytes may contribute to the development and 

progression of OA (Buckwalter and Mankin, 1997). In saying that, results from these data 

sets adhere to this general trend. It is important to note however, that the scatter graph in 

figure 2.18 represents the age at which the patient underwent TKR, and this does not 

indicate the initial age at which the patient was diagnosed with OA. In terms of gender 

differences in OA, there is mixed information in the literature as some authors have found 

no differences (Davis et al., 1988), whereas others have described a 1.5-4 times higher risk 

in women than in men (Tsai and Liu, 1992). The data sets used in the present study (figure 

2.19) showed no significant gender differences; this could, however, be verified by 

increasing the patient number in the study. 

 

In relation to compartmental differences, there was significant evidence in this study to 

suggest that the medial compartment is more severely affected than the lateral 

compartment. This is in line with previous findings by Ledingham et al., (1993) who found 

that the medial compartment disease was 4 times more common than the lateral.  
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Relevance of bony parameters as components in OA scoring 

 

Scoring systems to date focus largely on the state of the hyaline cartilage when assessing 

the severity of OA. In this scoring system, the subchondral bone and tidemark integrity 

were added as components to assess the articular unit as a whole. In doing so, scatter 

graphs were produced so that it was possible to see the impact of the bone based scores 

when they were added to the cartilage scores. Similarly, we tested to see whether or not 

adding the cartilage based scores to the bone scores made a difference to the overall output 

(figures 2.21 and 2.22). In both cases, it was found that there was a significant correlation 

between the two scores. This not only suggests that the changes to the bony parameters are 

happening congruent to the cartilaginous changes, but potentially, suggests that the bony 

parameters alone may be sufficient to assess the severity of OA, as the score obtained 

when grading only with the bone parameters correlated to the score obtained when 

assessing the unit as a whole. This could open a pathway for clinicians in assessing the 

severity of changes in OA prior to TKRs, as a less invasive method of examination using 

imaging techniques such as MRI.  

 

Correlating the histological parameters 

 

Correlating the histological parameters established that the bone area was a parameter that 

serves as an indicator as well as any of the other parameters, the difference being that the 

bone area can be assessed quantitatively. The bone area correlated negatively with the 

cartilage thickness, and positively with the tidemark and surface integrity parameters. This 

ties in with the hypothesis of the subchondral bone involvement in OA, as the changes 

occur parallel, or possibly even prior, to the changes in the other parameters, based on the 

finding that while the bone scores appeared to be high, there were still high frequencies of 

low-scoring cartilage parameters (refer to figure 2.25). Interestingly, there was not a 

significant trend found when comparing the bone score to the cartilage morphology score. 

This was not surprising as, histologically, it was shown that there were large variations in 

the cartilage at all levels of severity. However, it does challenge the current scoring 

systems which rely largely on the assessment of the cartilage morphology. 
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Using the scoring system to distinguish between ‘mild’ and ‘severe’ OA 

 

Using the mean as the midpoint to distinguish between the milder and the more severe OA 

samples, the overall sum was successful in generating two significantly different states of 

severity. This was further confirmed by studying individual parameters. The difference 

between the cartilage thickness was more apparent than the difference between the bone 

area within the two groups. However, the mechanisms involved differ between the two 

and, therefore, it is not possible to conclude that the cartilage is being affected to a greater 

extent. The important point to note is that the changes within the bone parameter were 

significant and that these differences did correlate with the mild/severe group as 

categorised through the overall sum.  

 

The qualitative parameters which include the tidemark, the articular surface and the whole 

cartilage morphology, as previously mentioned, showed similar trends in that there was a 

significant difference in the distribution of scores obtained in the mild versus the severe 

samples. This re-established the point that the scores assigned when assessing the tissue as 

a whole do indeed match up with scores from the individual qualitative parameters, and 

that the scoring system can successfully separate the milder cases from the more severe 

cases.  

 

On a separate note, the parameters were assigned based on the fact they are not influenced 

by the fixation and staining process. Most current scoring systems incorporate matrix 

staining as a variable to be assessed, based on the level of proteoglycan staining achieved. 

It is well documented however, that proteoglycan leaching is often associated with fixation 

methods and so the reliability of the staining is questionable (Pousty et al., 1975). In 

addition, matrix staining is not consistent throughout the articular cartilage; the distribution 

differs between the surface and deep layers and so the question of staining intensity 

becomes subjective. For these reasons we have chosen to omit matrix staining from our 

new scoring system.  
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Variability 

 

Inter- and intra-observer variability was tested, indicating the precision of the 

measurements and also the reproducibility of the results. The results showed that there was 

greater consistency within intra-observer scores when compared to inter-observer scores, 

however the scores as a whole did not reveal great variation. The trend that was observed 

in both the inter- and intra-observer variabilities was that the lowest overall scores (i.e. the 

milder cases which may be verging on normal) demonstrated the most variation. The 

severe cases were less sensitive as there was no variation in the inter- and intra-observer 

scores. A reason for this may be due to the ambiguous nature of the initiation and early 

progression of the disease.   

 

Conclusion and clinical relevance 

 

The involvement of subchondral bone in OA has been a topic of much discussion in the 

past decades, however it has been greatly ignored in scoring systems. Here we have 

incorporated this ‘bystander’ into the assessment process and have shown that there are 

significant correlations between changes to this parameter compared to other more 

commonly used parameters. Inter- and intra-observer variability confirmed that this 

scoring system provides a promising new devise for the histopathological assessment of 

OA.   

 

In order for the devised scoring system to be more widely accepted it should undergo a 

validation process. As such, it would be interesting to score the same tissue samples using 

the Mankin scoring system to establish whether the results obtained through this scoring 

system differ from what would be achieved through currently validated scoring systems. It 

would be of interest to show that despite the different parameters, the result is not radically 

different from what would have otherwise been obtained. One may then ask ‘why bother 

going to the effort when the end result is no different?’. The answer to this question is that 

this scoring system highlights changes in the bone that occur congruent to the more widely 

recognised changes in surrounding tissues, and by validating this scoring and showing the 

progressive bone changes, a diagnostic tool may be developed providing a more robust 

method for earlier identification of the disease process.  



114 
 

Within this study, the location of the OCPs excised was based on the topography, where 

the tibial plateaux were mapped and classified into regions of varying cartilage integrity. It 

would be of interest to carry out a similar study limiting the analysis to specific anatomical 

sites within the joint, as this would provide further insight into the locations of the 

observed progressive disease changes. As a means of further enhancing the scoring 

system, it would also be beneficial to include the use of molecular targets such as 

denatured type II collagen epitopes. Hollander et al., (1994) developed an immunoassay to 

detect denatured type II collagen in osteoarthritis and demonstrated its significant increase 

particularly in the superficial zone of OA cartilage. As such, it would be interesting to 

incorporate this technique into the new scoring system to add greater value and further 

distinguish it from previous methods. 

 

Confirming the relationship between the subchondral bone changes with the overlying 

hyaline cartilage changes is an exciting prospect as it opens doors for clinical translation. 

We can hypothesise that quantifying subchondral bone will give the clinician an indication 

of hyaline cartilage degradation. This will ultimately assist the clinician in identifying 

cartilage damage or deterioration, thereby facilitating the early diagnosis and the ability to 

monitor OA in a minimally invasive way. 
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Chapter 3: 

Correlating disease severity with expression of matrix markers, 
proliferation and stem cell markers in osteoarthritic tissue 
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3.1. Introduction 

 

As previously outlined, OA is a disease characterised by a loss of articular cartilage 

components, accompanied by remodelling and a repair attempt carried out by the resident 

cells. Despite the array of knowledge which has been elucidated from studies throughout 

the decades, studies commonly focus on the comparative differences between normal or 

early stage OA and end stage diseased specimens giving little insight into the progressive 

changes that occur as the disease develops (Ostergaard et al., 1999, Ostergaard et al., 

1997).  

 

3.1.1. Matrix markers 

 

Early in development, the cartilage anlagen is predominantly made up of collagen type I, 

and together with the process of chondrogenic differentiation, there is a gradual transition 

from type I to type II collagen synthesis (von der Mark, 1980). As such, type I collagen is 

often referred to as a developmental marker within articular cartilage.  

 

In osteoarthritic cartilage, type I collagen is re-expressed and it is, therefore, regarded as a 

factor involved in the pathogenesis of the disease (Goldwasser et al., 1982, Nerlich et al., 

1993, Miosge et al., 2004). Type I collagen is also associated with fibrocartilage which is 

referred to as a form of repair tissue following disease or injury within hyaline cartilage 

(Miosge et al., 1998).  

 

Collagen type IIA is temporarily expressed early in chondrogenesis as a procollagen prior 

to collagen type II synthesis, and it is thought to have roles other than purely structural 

(Nah and Upholt, 1991, Oganesian et al., 1997, Sandell et al., 1991). Expression of this 

protein in later stages of cartilage maturation and under pathological conditions have been 

observed by several authors, however the expression in these stages aren’t clearly 

understood. In osteoarthritic cartilage, the expression of type IIA procollagen has led to the 

assumption that OA chondrocytes reverse their phenotype towards a chondroprogenitor 

phenotype whilst undergoing hypertrophic changes (Aigner et al., 1999, Nah et al., 2001). 

Despite the acceptance of collagen type IIA in osteoarthritic cartilage, human studies 

predominantly compare end-stage of the disease to normal specimens and, as such, 
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information regarding the progressive expression of collagen type IIA throughout the 

progression of the disease is not known.  

 

Together with the detection of collagen type IIA in osteoarthritic cartilage is the detection 

of collagen type X, a marker for terminally differentiated hypertrophic chondrocytes. A 

study by Nah et al., (2001) demonstrated that in the same upper zone of osteoarthritic 

cartilage where type IIA labelling is evident, collagen type X was also detected. Both 

collagens type IIA and X were absent from the corresponding regions in normal, mature 

articular cartilage. There are several other studies which have shown the presence of type 

X collagen in diseased cartilage (Girkontaite et al., 1996, Walker et al., 1995); however, 

Rucklidge et al., (1996) detected collagen type X labelling in the surface of normal, human 

articular cartilage and it is therefore difficult to draw any solid conclusions from the 

literature. Type X collagen is more commonly renowned for its presence in the deep zone 

and the zone of calcified cartilage in normal articular cartilage where the cells may become 

involved in mineralisation; and this labelling has been shown to be consistent in 

osteoarthritic cartilage (Nah et al., 2001, Rucklidge et al., 1996, von der Mark et al., 1992).  

 

3.1.2. Proliferation marker: Proliferation cell nuclear antigen 

 

Proliferation cell nuclear antigen (PCNA) is an essential component for eukaryotic 

chromosomal DNA replication, and is, therefore, often used as a marker for cell 

proliferation (Paunesku et al., 2001). Chondrocytes in normal articular cartilage have a 

stable phenotype when compared to immature or growth plate cartilage; however, as 

Pfander et al., (2001) describes; “the possible expression of proteins which are normally 

produced by chondrocytes during various stages of differentiation in growth plate 

cartilage, by chondrocytes in OA cartilage could lead to the altered functional activities 

and loss of their ability to maintain a functional articular cartilage matrix.” As such, PCNA 

which is undetectable in normal human articular cartilage, has been shown to be present in 

moderately affected OA cartilage, as well as in clusters (chondrones) in severely affected 

OA cartilage (Pfander et al., 2001).  
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3.1.3. Stem cell markers 

 

Stem cells in synovial joints are mesodermal by origin, and, as such, are referred to as 

mesenchymal stem cells (MSCs). Unlike hematopoietic stem cells however, there is no 

single marker for MSCs at present and thus combinations of cell surface molecules are 

often employed to identify the cells. According to the International Society for Cellular 

Therapy (ISCT), MSCs are characterised by their adhesion potential in monolayer culture, 

their tripotent differentiation potential in vitro, and the expression of surface markers 

CD73, CD90 and CD105 (Dominici et al., 2006). The ISCT have also defined certain 

surface markers, including CD45 and CD 34 which MSCs should lack. In addition to the 

cell surface markers listed, many other publications have employed other surface markers 

to identify progenitor cells in in vitro and in vivo studies including CD44, CD90, CD166; 

as well as Stro-1 and Notch-1 (Artavanis-Tsakonas et al., 1999, Baron, 2003, Dennis et al., 

2002, Diaz-Romero et al., 2005, Simmons and Torok-Storb, 1991).  

 

Stro-1 is a cell surface protein most widely known for its expression by bone marrow 

stromal cells (Simmons and Torok-Storb, 1991). Work by Dennis et al., (2002) 

demonstrated that a subset of Stro-1 positive cells were capable of differentiating into 

multiple mesenchymal lineages. As such, Stro-1 is regarded as a valuable marker for the 

identification of human bone marrow stromal precursors, and more generally, a 

mesenchymal progenitor cell marker. A recent study by Grogan et al., (2009) identified 

Stro-1 positive cells within normal and increased activation in OA cartilage. Karlsson and 

Lindahl (2009) have hypothesised that the increased activation of certain cell surface 

markers, including Stro-1, in OA cartilage could indicate signalling from a regenerative 

response, and a sign of activated progenitor cells.  

 

Notch-1 

 

The notch signalling pathway plays a crucial role during cell fate assignment, cell 

differentiation and proliferation, and also in maintaining a stem cell population in many 

tissues throughout life. Notch receptors are 300-kDa transmembrane proteins with a large 

extracellular domain containing epidermal growth factor repeats essential for ligand-

receptor interactions. In mammals, there are four Notch homologues (Notch 1-4) that 
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interact with ligands of the Notch receptor, namely Jagged 1 & 2, and Delta 1,3 & 4 (Sassi 

et al., 2011).  

 

The Notch activation cascade is initiated by cleavage of the receptor in the trans-Golgi 

network. Through cell-cell contact, the active Notch receptor can then bind with one of its 

ligands (Gering and Patient, 2010). The canonical pathway consists of a series of 

cleavages which lead to the release of the intracellular domain of the receptor, which then 

interacts in the nucleus with the transcription factor CSL (CBF1, Su [H], Lag-1) to 

regulate the expression of downstream target genes including HES and HERP (Iso et al., 

2003, Schweisguth, 2004). Other studies including Matrinez Arias et al., (2002) however, 

have also suggested that CSL-dependent signalling does not mediate all functions of 

Notch, and that there is also a CSL-independent signalling pathway. 

 

Extensive research has implicated the Notch pathway in numerous cell fate decisions 

throughout development; and in particular its role in limb development and 

chondrogenesis (Artavanis-Tsakonas et al., 1999, Austin et al., 1995, Conlon et al., 1995, 

Jiang et al., 1998, Williams et al., 2009). Prior to birth, data suggest that the presence of 

Notch is required for cell differentiation and proliferation, whilst during the late stages of 

development and post-birth, the expression of Notch instead allows the terminal 

differentiation and maturation of chondrocytes; favouring the process of endochondral 

ossification. As summarised by Sassi et al., (2011); “One of the most relevant hypotheses 

is that Notch may act as an on/off switch, either enabling maturation of the articular 

cartilage by promoting cell proliferation or acting as a terminal differentiation potential 

leading to bone formation.” 

 

More recent studies have demonstrated that the Notch signalling pathway also promotes 

the maintenance of a progenitor cell phenotype; a hypothesis supported by Dowthwaite et 

al., (2004), who showed that Notch was expressed on the surface of articular cartilage of a 

7-day-old calf by a progenitor cell population. The authors describe how these cells exhibit 

increased colony forming efficiencies compared with chondrocytes not expressing Notch, 

suggesting a primordial role for the receptor in controlling the clonality of the surface zone 

chondrocytes. Studies by McCarthy et al., (2011) have also confirmed similar findings in 

chondroprogenitors isolated from equine cartilage. 
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In relation to human cartilage, studies have demonstrated the presence of chondrocytes in 

the surface zone of the articular cartilage which positively label for Notch-1 in healthy and 

OA specimens, which has raised the issue of involvement of the Notch signalling pathway 

in the pathogenesis of OA, especially with regards to the changes that the chondrocytes 

undergo during the process (Grogan et al., 2009, Karlsson et al., 2008, Ustunel et al., 2008, 

Williams et al., 2010).  

 

It was, therefore, the aim of this study to correlate disease severity with the expression of 

various matrix, stem cell and proliferation markers in order to determine patterns of 

change that occur as the OA progresses. The scoring system devised in the previous 

chapter was used to identify specimens at varying stages of disease progression. 
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3.2. Materials 

Material Catalogue 
number 

Supplier 

 
Procollagen type IIA (003-02) 
antibody 
 

 
Ab17771 

 
Abcam, UK 

 
Dako pen 
Mouse immunoglobulins 
PCNA (PC-10) antibody  
 

 
S2002 
X0931 
M0879 

 
Dako, UK 

 
Aggrecan (5C5) antibody 
 

 
ALX-803-311-
R100 
 

 
Enzo Life Sciences, UK 

 
DPX mounting medium 
Haemalum (Mayer) 
Methylated spirit industrial 0.89 
S.G. 74 O.P. 
Polysine adhesion glass slides 
Xylene 
 

LAMB/DPX 
LAMB/170-D 
M/4450/17 
 
MNJ-800-010F 
X/0200/17 

 
Thermo Fisher Scientific, 
UK 

 
Type X collagen antibody 
 

Gift 
 
Klaus von der Mark 
 

 
Stro-1 antibody 
 

 
MAB1038 

 
R & D Systems Europe Ltd, 
UK 
 

 
Notch-1 (M-20) antibody 
 

 
SC-6015 

 
Santa Cruz Biotechnology, 
Inc, USA 
 

 
Chondroitinase ABC from Proteus 
vulgaris 
Hyaluronidase from Streptomyces 
hyalurolyticus 
Hydrogen peroxide, 30% (w/w) 
Phosphate buffered saline  
Proteinase K from Tritirachium 
album 
Toluidine blue 
Tween® 20 
Type I collagen (COL-1) antibody 

 
C2905 
 
H1136 
 
H1009 
P4417 
P6556 
 
89640 
P1379 
C2456 
 

 
Sigma Aldrich, UK 
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Table 3.1. Materials and suppliers. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Antigen unmasking solutions 
R.T.U Vectastain Universal Quick 
Kit 
DAB Peroxidase Substrate Kit,  
3,3’-diaminobenzidine 
 

 
H-3300 
PK-7800 
 
SK4100 
 

 
Vector Laboratories, UK 

 
Safranine O Gurr 'Certistain' 
 

 
343122N 

 
VWR – Jencons, 
Leicestershire, UK 
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3.3. Methods 

 

3.3.1. Source of material 

 

Osteochondral plugs (OCPs) from tibial plateaux were excised and processed as described 

in Chapter 2.3.2 – 2.3.4. This included fixation and decalcification of the tissue prior to 

wax embedding and sectioning at 8μm. 

 

3.3.2. Scoring  

 

The OCPs were scored using the scoring system that was outlined in Chapter 2 

incorporating the articular cartilage and the subchondral bone. A possible score between 0 

and 17 was obtained, indicating the degree of change seen within the tissue -higher scores 

represent more severe changes. The tissue sections were then ranked according to overall 

score. 

 

The scores of the OCPs ranged from 2-17; in order to see progressive changes in the tissue 

sections, representatives from score 2, 4, 6, 8, 10, 11, 16 and 17 were analysed. As there 

were no OCPs scored between 12 and 15 it was not possible to include them. For this 

reason it was decided that ‘score 11’ should be presented. Score 17 is important as it is the 

highest possible score. 

 

3.3.3. Immunohistochemistry: peroxidase labelling  

 

Tissue sections were dewaxed and rehydrated as above. Indirect immuno-histochemistry 

was then performed in a light-proof, humidified chamber. Using a ‘DAKO’ pen, a 

hydrophobic ring was drawn around the tissue sections in order to retain solutions on the 

slide. Sections were subsequently rinsed in 0.1M PBS containing 0.01% Tween 20 (PBS-

T), a wetting agent used to increase penetration and permeability of the antibody. For 

subsequent washes PBS-T was used. At this point, certain primary antibodies required 

antigen retrieval techniques. Where required these are outlined in table 3.2. Sections that 

did not require pre-treatment were maintained in PBS until required. Endogenous 

peroxidise activity was blocked with 0.3% hydrogen peroxide in distilled H20 for 5 
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minutes. Sections were then rinsed. The following steps utilised the R.T.U Vectastain 

Universal Quick Kit in which reagents (excluding primary antibodies) are contained and 

instructions outlined. Briefly, tissue sections were incubated in prediluted normal horse 

serum for 20 minutes. This step is species-specific; appropriate to the species in which the 

secondary antibody was raised in order to block any non-specific binding to epitopes on 

the secondary antibody. Following incubation, excess serum was tipped off and primary 

antibodies diluted in PBS-T were directly applied and incubated; either at room 

temperature for one hour, or at 4°C overnight. Sections were subsequently washed in PBS 

(three changes of 5 minutes) and then incubated for 15 minutes in prediluted biotinylated 

pan-specific universal secondary antibody at room temperature. Following further washes, 

sections were incubated in a streptavidin/peroxidase complex for 5 minutes. Sections were 

washed again and developed using a 3,3’Diaminobenzidine (DAB) substrate kit, for 2 to 3 

minutes. Subsequently, slides were rinsed in distilled H20 and immersed in filtered 

Mayer’s haematoxylin for 90 seconds and then washed under running water. The slides 

were then dehydrated in graded alcohols, cleared in xylene and mounted in DPX. Specific 

antibodies, incubation times, concentrations and temperatures are summarised in table 3.2.  

 

 

3.3.3.1. Controls 

 

Negative controls 

Primary antibody was omitted and:  

- replaced with isotype specific immunoglobulins to demonstrate that the secondary 

antibody is binding specifically to the primary antibody.  

- replaced with PBS to confirm that the secondary antibody is not binding 

non-specifically to the tissue.  

 

Where possible positive controls were also used to demonstrate that the antibodies were 

reactive and specific to their antigens.  

 

 

 

 



125 
 

3.3.3.2. Primary antibody concentration 

 

It was essential that the primary antibodies were optimised by antibody titration so that the 

best possible results could be obtained.  

 

3.3.4. Microscopy 

 

Labelling was viewed using a Leitz DMRB Leica (Leitz, Wetzlar, Germany) light 

microscope and images were captured using a moticam 2000 (Motic China Group Co. 

Ltd.) and subsequently processed using Adobe Photoshop. 

 

3.3.5. Quantification of immunolabelling 

 

Determining the percentage of immunolabelled cells involved systematic counting of 

positive and negative cells in three 400 x 530µm grids (20x field), starting from the 

cartilage surface down. The average of the three counts was used for statistical analysis. 

Comparisons between different scores were made via one-way analysis of variance 

(ANOVA) followed by Fishers A Priori and Student t-tests to test between individual 

means (Minitab16). P values less that 0.05 were considered significant. 
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Table 3.2. Primary antibodies including antigen retrieval methods used and dilution 
factors. M – Monoclonal, P – Polyclonal. 
 

 

Primary 
antibody P/M Detects Antigen retrieval IgG Incuba-

tion time 

Optimal 
working 
dilution/ 
concent-
ration 

       

Type I M Collagen 
type I 

Chondroitinase 
(0.25U/ml) & 
hyaluronidase 
(2U/ml). 1h30min 
@ 37°C 
 

Mouse  1 hour 1:800 

Procollagen 
type IIA M Procollagen 

type IIA 

Chondroitinase 
(0.25U/ml) & 
hyaluronidase 
(2U/ml). 1h30min 
@ 37°C 
 

Mouse 1 hour 1:300 
3.3μg/ml 

Type X M Type X 
collagen 

Proteinase K 
(2μg/ml) 1h @ 
37°C followed by 
Chondroitinase 
(0.25U/ml) & 
hyaluronidase 
(2U/ml). 30min 
@ 37°C 
 

Mouse 1 hour 1:3 
dilution 

5C5 M Aggrecan 

Hyaluronidase 
(2U/ml) 1hr30 @ 
37°C 
 

Mouse 1 hour 1:100 

M-20 P Notch-1 None Goat Overnight 
 
10μg/ml 
 

PC-10 M 
Proliferating 
cell nuclear 
antigen 

Antigen 
unmasking 
solution (1:100). 
Bring to boil and 
put over sections 
for 1 min. Rinse 
in cold water 
 

Mouse Overnight 5μg/ml 

STRO-1 M Human Stro-
1 None Mouse Overnight 1:50 

10μg/ml 
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3.4. Results 

 

3.4.1. Collagen type I  

 

Collagen type I was detected in all OCPs to varying degrees of intensity. Regionally, there 

was a trend observed in which the extracellular matrix protein was mostly restricted to the 

superior aspects of the OCPs; emerging from the surface zone and extending into the 

middle zone. In figure 3.1A illustrating an OCP of score 2, type I collagen labelling is 

detected predominantly in the surface zone, accompanied by regions of hypercellularity, 

and the intensity of the label is gradually reduced inferiorly. As such it appears that a 

reparative process has been activated through which chondrocytes are altering the ECM. 

Looking at the detectable labelling in scores 2 and 4 compared to scores 6 & 8, it appears 

that collagen I is more widespread in the lower scores. In the OCP of score 6 (figure 3.1C) 

there is clear delineation approximately 300µm below the articular surface where type I 

collagen labelling diminishes. Similarly, in the OCP of score 8 (figure 3.1D), within the 

deep fissures type I collagen labelling in the interterritorial matrix is more sparse. Having 

said that, it can be seen in figure 3.1D that despite the reduction of ECM labelling, there is 

evidence of cellular up-regulation within individual cells as well as cell clusters. In most 

cases, there was no apparent labelling in the deep zones of the various OCPs as 

demonstrated through figure 3.1H. The ‘anomalous’ OCP is described below. 

 

Figures 3.1E and F show collagen type I label in an OCP which achieved score 10. Within 

this OCP, an abundance of collagen type I was seen throughout the entire tissue. Mid-zone 

chondrocytes labelled positively and deep zone labelling surrounds the pericellular matrix. 

The fibrous orientation of the fibres within this OCP is also highlighted through the 

collagen type I labelling, particularly in the surface zone. There appears to be a lack of 

cellular presence in the surface zone of this OCP as demonstrated by the empty lacunae in 

the surface zone. Associated with subchondral remodelling is the increased synthesis of 

type I collagen which can be seen surrounding cell clusters in regions which may have 

originated from the bone marrow spaces.  
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Through figure 3.1G (score 11) it can be seen that inferior to the tidemark in the region of 

calcified cartilage, there is collagen type I labelling which appears reduced in the 

neighbouring bone.  

 

3.4.2. Procollagen type IIA 

 

The overall distribution of procollagen type IIA labelling throughout OCPs of varying 

scores was comparable to that seen when labelling for collagen type I. In the OCPs of 

scores 2 through to 6 (figures 3.2A-C), the surface zones labelled positively throughout the 

ECM, whereas the middle and deep zones elicited no signs of detectable procollagen type 

IIA synthesis. There was evidence of cellular labelling as demonstrated in figure 3.2C in 

some but not all chondrocytes, regardless of whether they were in clusters. Figure 3.2D 

demonstrates the fissured surface containing many chondrocyte clusters in an OCP 

achieving score 8. Upon procollagen type IIA labelling, it could be said that there was a 

lack of definitive cellular and extracellular labelling found.  

 

Figures 3.2E to H highlight the major features seen in the ‘anomalous’ OCP of score 10 

labelled for procollagen type IIA. The surface and middle zones can be seen in figure 3.2E. 

Figure 3.2F illustrates a higher power image of the cells in the mid-zone through which it 

can be seen that there is a high percentage of positively labelled cells. It appears that the 

surface zone cells comprise large lacunae, which are absent in the population of cells in the 

middle zone perhaps suggesting that there may be a heterogeneous population of cells 

within the OCP. Similar to the images seen in figure 3.1, the fibrous orientation of the 

cartilage is highlighted through the procollagen type IIA label. Figure 3.2G is a low power 

image demonstrating the changes in procollagen type IIA distribution between the 

different regions. There is an arched delineating line that spans through the middle zone, 

inferiorly towards the deep zone on the left of the image. Superior to this line, the ECM 

has labelled positively, and inferiorly there is a reduction in labelling. Having said that, 

through the central aspect of the non-labelled region there is a zone of cells which appear 

to be approaching from the subchondral region, showing more positive labelling than the 

surrounding matrices. This region is shown at a higher power in figure 3.2H. A distinct 

change in cellular morphology was also observed, as chondrocytes surrounding this region 

appear to be larger and rounder than the cells within the unidentified region of cells.  
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Figure 3.2I portrays an OCP of score 11 showing procollagen type IIA labelling within the 

thin region of remaining articular cartilage.  

 

3.4.3. Aggrecan 

 

Aggrecan labelling is a distinctive feature of articular cartilage as it is typically highly 

abundant in the ECM. Indeed, in this study it was widely distributed throughout the OCPs 

of varying scores. Figures 3.3A to C show aggrecan labelling detected in and OCP of score 

2. Figures 3.3A and B are images of separate regions along the surface, highlighting the 

presence of atypical regions within low scoring tissue. It can be seen in figure 3.3B that 

there is a surface pocket lacking aggrecan, suggesting reduced tissue integrity. Figure 3.3C 

confirms the presence of aggrecan in the middle and deep zones.  

 

With scores increasing between 2 and 8, the pattern of labelling is continued. Aggrecan 

was detectable throughout all regions in OCPs of scores 4 and 6 as shown in figures 3.3D 

to H. One notable observation however, was that the labelling shifted from predominantly 

extracellular, as seen in figures 3.3A - C to both cellular and extracellular in the higher 

scores. Between scores 6 and 8 it was noted that there were various regions in which 

aggrecan labelling diminished; particularly on the surface of the fissures in the OCP of 

score 8 as seen in figure 3.3I.  

 

Figures 3.3K to P demonstrate the results of aggrecan labelling in the OCP which achieved 

score 10; previously described for its unusual collagen I and collagen type IIA labelling. A 

low power image can be seen in figure 3.3K where remarkable changes in aggrecan 

distribution throughout the tissue was observed. Superiorly in the surface region, aggrecan 

labelling is reduced when compared to the intensity of label seen in the neighbouring 

middle region, as illustrated in figures 3.3M and N. However, similar to the procollagen 

type IIA labelling previously described, there is an imaginary line spanning through the 

middle zone and progressing inferiorly delineating the regions of positive and negative 

ECM labelling. The chute-like structure which was previously mentioned for apparent 

procollagen type IIA label also appears to have heavily labelled for aggrecan as seen in 

figure 3.3P. The region inferior to the middle zone shows a distinct lack of extracellular 

aggrecan labelling, despite eliciting cellular labelling as illustrated in figure 3.3O.  
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3.4.4. Collagen type X 

 

In articular cartilage, collagen type X is usually restricted to the deep zones and the zone 

of calcified cartilage where terminal differentiation occurs. In the OCPs examined, 

between scores 2 and 8 there were no unusual differences observed and results are shown 

in figures 3.4A to C. Figure 3.4D portraying an OCP of score 10 demonstrates evidence of 

increased label extending into the middle zone. It is also apparent in this image that the 

tidemark is not linear and has been breached by cell clusters arising from the subchondral 

bone, a possible contributing factor to the altered type X collagen expression.  

 

Figures 3.4E to I demonstrates the anomalous type X labelling which was detected in the 

OCP of score 10, highlighting the extent of remodelling and terminal differentiation 

occurring within this OCP. The distinguishable zones observed previously were 

maintained; type X collagen synthesis was noticeably up-regulated in the region spanning 

between the middle zone and the subchondral bone; diminishing to the left of the image. 

As such, the region which lacked aggrecan labelled positively for type X collagen. 

Interestingly, however, the chute-like structure previously observed was not apparent when 

labelling for type X collagen. Higher power views of specific areas are shown in figures 

3.4F to I. Within figure 3.4F, a region lacking type X collagen can be seen neighbouring a 

region with extensive labelling. A population of invading cells can be seen in the right side 

of the image, shown in higher power in figure 3.4H. Figure 3.4G shows the surface region 

lacking type X collagen expression. An interesting observation was that at the presumptive 

tidemark, the overlying tissue appears to have detached from the bone on which it sits, and 

this detachment can be seen throughout the majority of the OCP when looking at figure 

3.4E. In addition, looking at the left side of figure 3.4I where there is no apparent 

detachment, it appears instead that cells are arising from the bone and spreading through 

the overlying tissue in a fan-like manner.  

 

3.4.5. PCNA 

 

Figures 3.5A to D demonstrate the presence of proliferating cells in OCPs of varying 

scores. It can be seen that the labelled cells vary from individual cells to cell clusters, 

predominantly at the surface and surrounding fissure edges. Interestingly, however, no 
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PCNA labelling was evident in the lowest scoring OCP. As a general trend, middle and 

deep zones showed no PCNA labelling within chondrocytes, other than in the anomalous 

OCP of score 10 (figures 3.5C and D). Through the low power image, it can be seen that 

the demarcation of labelled regions follows a similar pattern to what was seen previously 

with the procollagen type IIA and aggrecan labelling. As such, whether in the surface, 

middle or deep zones, a great proportion of the cells have labelled positively for PCNA, 

whereas the counterpart elicits virtually no positive labelling.  

 

Figure 3.6 shows the percentage of total cells in the surface zone that labelled positively 

for PCNA, as an average of 3 random snapshots. What is clear initially by looking at the 

histogram is that the lower score (score 4) has a significantly reduced proportion of 

labelled cells when compared to the higher scores, and this was confirmed using one way 

ANOVA and Student t-tests. Between scores 6 and 10 there was no significant difference 

between the proportion of labelled cells as they all ranged between 55 and 65 percent. 

Another interesting point to note is that the error bars are the greatest at score 6, suggesting 

the greatest variation. With increasing severity, the error appears to reduce in size 

suggesting that the high proportion of labelled cells is more consistent throughout the 

surface of the tissue. 

 

In line with the increased proportion of labelled cells in the surface zone was a general 

trend that became apparent, in that there was also a general increase in the sheer number of 

cells with increasing scores. This ties in with the finding that there is increased PCNA 

labelling in OCPs of higher scores.  

 

3.4.6. Stro-1 and Notch-1 

 

Similar to the pattern seen in PCNA labelling, Stro-1 and Notch-1 was localised in OCPs 

of varying scores as shown in figures 3.7 and 3.9 respectively. Individual cells and cell 

clusters were shown to have labelled positively. In these OCPs, Stro-1 labelling was 

restricted to a region approximately 200µm from the surface (figure 3.7C), whereas Notch-

1 labelling extended further, into the middle zone (figures 3.9B to D). There was no label 

detected for either Stro-1 or Notch-1 in the OCP with the lowest score (score 2).  
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Figures 3.7D to G illustrate the Stro-1 labelling detected in the anomalous OCP of score 

10. In this particular case, the area containing positively labelled cells extends beyond the 

surface zone. It can be seen in figure 3.7G that the Stro-1 labelled region corresponds with 

the previous findings, spanning throughout the width of the tissue. Again there is a clear 

demarcation between the non-labelled and the labelled regions as shown in figure 3.7E. 

Interestingly, it was observed that upon Stro-1 labelling, dendritic-like cells with long 

‘tails’ could be seen particularly in the middle zone (figure 3.7D). Cellular invasions 

highlighted in figure 3.7F also labelled extensively for Stro-1.  

 

Notch-1 labelling in the anomalous OCP of score 10 showed a similar pattern to the Stro-1 

labelling however, the transition between the labelled and non labelled regions was not as 

clearly defined. As such, the cells in the ‘non-labelled’ region in the Stro-1 did show signs 

of Notch-1 labelling albeit to a lesser extent (figure 3.9D).  

 

Figures 3.8 and 3.10, similar to figure 3.6 show the percentage of total cells in the surface 

zone that labelled for Stro-1 and Notch-1 respectively, as averages of 3 random snapshots. 

Looking specifically at figure 3.8, the histogram relating to Stro-1 it can be seen that there 

is no apparent trend in the proportion of cells labelled between the varying scores, and this 

observation was confirmed statistically using the one way ANOVA test. The proportion of 

labelled cells in the surface zone as a whole ranged between 67 and 81 percent, with 

varying degrees of standard error in accordance to the variability seen. On the other hand, 

Notch-1 labelling in the surface zone did show significant difference between the varying 

scores, as confirmed using one way ANOVAs and Student t-tests (figure 3.10). Score 4 

showed a significantly reduced proportion of labelled cells (approximately 48 percent) 

when compared to higher scores, and score 6 elicited the highest proportion of labelled 

cells, at 97 percent. The higher scores (8 and 10) also comprised a large proportion of 

labelled cells when compared to score 4, at approximately 85 percent. Notably, the greatest 

variation seen in Notch-1 labelling was in the score 10, where the error levels are over 

double those from the other scores.  
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Figure 3.1. Type I collagen labelling in OCPs of varying scores. 
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Figure 3.1. Type I collagen labelling in OCPs of varying scores.  
 
Figure A. Surface region of OCP with score 2. Collagen type I labelling throughout the 
ECM, with more intense labelling superficially. No cellular label apparent. 
Hypercellularity in the surface zone is indicative of a repair process. Scale bar = 100µm. 
 
Figure B. Surface region of OCP with score 4. Collagen type I label evenly distributed 
throughout imaged area. There is evidence of cellular labelling in the superficial cells. 
Scale bar = 100µm.  
 
Figure C. Surface region of OCP with score 6. Collagen type I label in the surface only. A 
visible reduction can be seen on entering the mid zone. A lack of cellular and pericellular 
labelling was observed. Scale bar = 100µm. 
 
Figure D. Surface region of OCP with score 8. Weak collagen type I labelling can be seen 
in the interterritorial matrix. Evidence of cellular labelling in individual cells as well as 
cell clusters. Scale bar = 100µm. 
 
Figures E & F. Type I collagen labelling in an OCP of score 10. Figure E illustrates the 
surface zone extending into the mid zone, whilst figure F demonstrates the deep zone with 
evidence of subchondral bone remodelling. ECM labelling is apparent throughout the 
regions. Cellular labelling is restricted to the mid and deep zones. Scale bar = 100µm. 
 
Figure G. Type I collagen labelling in an OCP of score 11. A thin layer of articular 
cartilage covering the subchondral bone labelled positively for collagen type I. Label is 
also apparent in the calcified cartilage and bone regions. Scale bar = 100µm.  
 
Figure H. The deep zone of an OCP demonstrating an absence of type I collagen labelling 
in this region. Multiple tidemarks can be seen. Scale bar = 100µm. 
 
Figure I. Negative control showing no non specific labelling of type I collagen in the 
surface region. Scale bar = 100µm.  
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Figure 3.2. Procollagen type IIA labelling in OCPs of varying scores.  
 
 
Figure A. Procollagen type IIA labelling in an OCP of score 2. Label apparent throughout 
the matrix. Increased label intensity is apparent in the surface zone and in the pericellular 
matrix region. Scale bar = 100µm. 
 
Figure B. Procollagen type IIA labelling in an OCP of score 4. Labelling can be seen in 
the ECM of the surface zone extending into the mid zone. Evidence of cellular labelling in 
the surface zone chondrocytes. Scale bar = 100µm. 
 
Figure C. High power view of procollagen type IIA labelling in the surface zone of an 
OCP of score 6. Cellular labelling evident in some but not all cells. Interterritorial matrix 
labelling observed in the most superficial regions. Scale bar = 50µm. 
 
Figure D. Fissured surface of an OCP with score 8 labelled for procollagen type IIA. 
There is an absence of labelling in the superficial region. Very weak labelling was detected 
in the mid zone. Cellular labelling was apparently absent. Scale bar = 100µm. 
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Figures 3.2. E – H. Procollagen type IIA labelling in an OCP of score 10.  
 
Figure E. Demonstrates the surface and mid zones where label was detected in the matrix 
regions. Cellular labelling is evident in the middle zone chondrocytes, and was largely 
undetectable from the surface zone. The fibrous nature of this tissue sample can also be 
seen. Unlabelled cells appear to have large surrounding lacunae which are absent from the 
labelled cells. Scale bar = 200µm. 
 
Figure F. High power image of the cells in the mid zone as seen in Figure E. Cellular and 
territorial matrix labelling apparent in some cells. Scale bar = 50µm.  
 
Figure G. Low power image demonstrating the overall distribution of detectable 
procollagen type IIA labelling. There is a line delineating a region of positive labelling 
seen in the mid/surface zones, which extends through to the deep zones on the left. Within 
the deep zone there is also a region of positively labelled cells forming a chute-like 
structure coming from the subchondral region. Scale bar = 400µm.  
 
Figure H. High power image demonstrating the chute-like feature highlighted in Figure G. 
Weak labelling is apparent and there is evidence of cellular labelling. Cells in this region 
appear to be different in shape and size. Scale bar = 100µm. 
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Figure 3.2. Procollagen type IIA labelling in OCPs of varying scores.  
 
Figure I. Procollagen type IIA labelling in an OCP of score 11. Positive labelling is 
evident within a thin region of remaining articular cartilage. Labelling is also evident in 
the calcified cartilage and bone regions. Scale bar = 100µm. 
 
Figure J. Demonstrates the absence of procollagen type IIA labelling in the middle/deep 
zones. Scale bar = 100µm. 
 
Figure K. Negative control showing no non specific labelling of procollagen type IIA in 
the surface region. Scale bar = 100µm. 
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Figure 3.3. Aggrecan labelling in OCPs of varying scores. 
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Figure 3.3. Aggrecan labelling in OCPs of varying scores. 
 
Figures A – C. Aggrecan labelling in an OCP of score 2. The surface zone is 
demonstrated in Figures A & B. Figure A shows the typical distribution of labelling (scale 
bar = 100µm) and figure B shows an atypical region where pockets in the surface show a 
distinct lack of labelling (scale bar = 50µm). Figure C confirms the presence of aggrecan 
labelling in the mid-deep zones (scale bar = 200µm). 
 
Figures D-F. Aggrecan labelling in an OCP of score 4. The surface zone shoes positive 
cellular and extra cellular labelling as seen in figures D and E. Territorial labelling was 
evident in chondrocytes from the middle zone as seen in Figure D. Positive labelling also 
evident in the deep zone as seen in figure F. Scale bar (figures D & F) = 200µm. Scale bar 
(figure E) = 50µm. 
 
Figures G & H. Aggrecan labelling in an OCP of score 6. Figure G illustrates the 
superficial and mid zones and figure H the deep zones. Labelling in the interterritorial 
matrix appears reduced throughout, with exception of the surface zone. However, there 
also appears to be increased production of aggrecan as seen by the intense label 
immediately surrounding the chondrocytes. Scale bar = 200µm.  
 
Figures I & J. Aggrecan labelling in an OCP of score 8. Figure I illustrates the superficial 
and mid zones and figure J the deep zones. Matrix breakdown resulting in fissures 
extending into the mid zone is confirmed by a marked reduction of aggrecan labelling in 
the superficial zone. Inferiorly, aggrecan labelling was observed in the deep regions and 
surrounding the chondrocytes. Scale bar = 200µm. 
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Figure 3.3. K. A low power image of aggrecan labelling in an OCP of score 10. An 
unusual distribution of aggrecan spans the OCP as a result of marrow invasions and 
subchondral remodelling. High power images on following page. Scale bar = 400µm.  
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Figures 3.3. L – P. Higher power images of figure 3.3 K, an OCP of score 10 labelled for 
aggrecan. 
 
Figure L. A region extending from the surface to the mid zone illustrating. There is reduced 
labelling in the articular surface accompanied inferiorly by a region of more pronounced labelling. 
The deep region elicits a lack of extracellular labelling, despite evidence of cellular and pericellular 
labelling. Scale bar = 200µm. 
 
Figure M. The surface zone of an OCP of score 10 demonstrating chondrocytes with large 
lacunae. Aggrecan label is detectable in the extracellular label. Scale bar = 50µm. 
 
Figure N. Mid zone of an OCP of score 10 highlighting the increased intensity of labelling 
compared to the surface zone (figure M). The chondrocytes appear to be immersed between a thick 
fibrous matrix, and lack the typical lacunae as seen in figure M. Scale bar = 50µm. 
 
Figure O. A region where the deep zone appears to be terminally differentiating and remodelling, 
forming a part of the subchondral bone as a result of endochondral ossification. Scale bar = 50µm. 
 
Figure P. A highly labelled region spreading from the subchondral bone through the deep zone 
and towards the middle zone. The cells within this region appear to be smaller than the cells from 
the surface and middle zones. Scale bar = 100µm.   
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Figure 3.4. Type X collagen labelling in OCPs of varying scores.  
 
Figure A. Tidemark and calcified cartilage in an OCP with score of 2. A number of type X 
positive cells in the calcified cartilage region. Scale bar = 100µm. 
 
Figure B. Superior to the tidemark, territorial labelling of type X collagen was detected 
surrounding individual cells and cell clusters in an OCP of score 4. Inferior to the 
tidemark, positively labelled cells are also evident. Multiple tidemarks can also be 
observed. Scale bar = 100µm. 
 
Figure C. Territorial labelling of type X collagen extends further into the deep zone in an 
OCP of score 6. Multiple tidemarks observed with increased type X labelling in this 
region. Scale bar = 100µm.  
 
Figure D. Heightened type X collagen labelling in the deep zone of an OCP of score 10. 
Non-linear tidemark is observed together with cellular invasions emerging from the 
subchondral region and breaching the tidemark. Scale bar = 100µm.  
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Figures 3.4. E – I. Type X collagen labelling in the corresponding OCP of score 10. 
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Figures 3.4. E – I. Type X collagen labelling in the corresponding OCP of score 10. 
 
Figure E. A low power image of type X collagen labelling in the corresponding OCP of 
score 10. An inverse relationship with the pattern of aggrecan labelling was observed. A 
region of extensive remodelling below the surface zone can be seen. Cellular and vascular 
invasions from the underlying bone are prominent. There is a clear boundary in the mid 
zone where the type X collagen labelling terminates. Scale bar = 400µm.  
 
Figure F. The transition between the region with no type X labelling and the region of 
extensive type X labelling. Cellular invasions on the left side of the image are 
accompanied by regions of no collagen type X (figure H). The fibrous nature of the ECM 
is highlighted by the type X labelling. Scale bar = 100µm.  
 
Figure G. A high power image of the surface region demonstrating the lack of detectable 
type X collagen. Scale bar = 100µm.  
 
Figure H. A high power image of figure F highlighting the transition zone where bone 
formation has proceeded following type X collagen formation in the presumptive deep 
zone of articular cartilage. The cellular invasions can be seen protruding further into the 
deep zone. Scale bar = 50µm.  
 
Figure I. A high power image of the deep zone. Extensive remodelling in the cartilage 
resulting in the total detachment of the cartilage from the underlying bone. Marrow 
invasions breaching through the cartilage appear to fan out in an organised arrangement, 
presumably attempting to repair the damaged cartilage. Scale bar = 100µm.  
 
Figure J. Demonstrates the presence of type X collagen in the underlying bone of 
confirming the continued remodelling in the latter stages of the disease. Scale bar = 
200µm.  
 
Figure K. Negative control showing no non-specific binding of type X collagen in the 
deep regions. Scale bar = 100µm.  
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Figure 3.5. PCNA labelling in OCPs of varying scores.  
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Figure 3.5. PCNA labelling in OCPs of varying scores. 
 
Figure A. Individual cells and cell clusters in the surface of articular cartilage in an OCP 
of score 6. Within the cluster there are positively and negatively labelled cells. Scale bar = 
50µm. 
 
Figure B. A high number of chondrocyte clusters on the fissured articular surface labelling 
positively for PCNA, accompanied by a small number of cells that exhibit no labelling. 
Scale bar = 100µm.  
 
Figure C. PCNA labelling in an OCP of score 10. The distribution of positively labelled 
cells can be spanning the surface zone of the articular cartilage. Inferiorly there is a lack of 
detectable PCNA. Scale bar = 200µm. 
 
Figure D. A low power image of PCNA labelling in the corresponding OCP of score 10. 
Positively labelled cells are located in the regions lacking collagen type X and eliciting 
positive aggrecan labelling. On the right side of the image, this region is restricted 
superiorly, and spans through the mid zone and into the deep zone on the left side of the 
image. Scale bar = 400µm. 
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PCNA  
 

Score No. positive Total no. % positive Standard Error 
4 5.33 32.33 16.94 1.08 
6 10.00 22.00 57.15 17.61 
8 26.00 42.33 64.56 10.78 
10 59.67 98.33 62.33 6.07 

 
 
Figure 3.6. Histogram and corresponding table showing the percentage of total cells that 
labelled positive for PCNA in the superficial zone of OCPs of varying scores. 
 
Data are expressed as the mean (n=3) ± SE of the percentage of total cells which show 
cell-associated labelling. Score 4 showed a significantly reduced proportion of labelled 
cells when compared to the higher scores as confirmed by one way ANOVA and Student 
t-tests (p<0.05).   
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Figure 3.7. Stro-1 labelling in OCPs of varying scores. 
 
Figures A & B. Stro-1 labelling in an OCP of score 4. Figure A is a high power image of 
chondrocyte clusters in the surface of articular cartilage demonstrating positive cytoplasmic 
labelling for Stro-1. Scale bar = 50µm. Figure B demonstrates the transition from the positively 
labelled surface zone cells to the negatively labelled middle zone cells. The cells in the mid zone 
are individuals or pairs where as in the surface there is a balance between individual cells and cell 
clusters. Scale bar = 100µm.  
 
Figure C. Stro-1 labelling in an OCP of score 6. A similar pattern of labelling is seen whereby the 
surface layer of cells show detectable PCNA. The middle and deep zones lack detectable PCNA. 
Scale bar = 200µm. 
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Figure 3.7. Stro-1 labelling in an OCP of score 10. 
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Figure 3.7. D – G. Stro-1 labelling in an OCP of score 10. 
 
 
Figure D. Stro-1 labelling in the surface and middle regions of the corresponding OCP of 
score 10. Abundant Stro-1 labelling can be seen in the majority of the cells. Dentritic-like 
cells are evident. Scale bar = 100µm. 
 
Figure E. Demonstrates the distribution of positively labelled cells and the distinct 
transition in the mid zone to non Stro-1 expressing cells. The presence of dentritic-like 
cells is further emphasised in this image. Scale bar = 200µm. 
 
Figure F. Cellular invasion protruding from the underlying bone presents positively for 
Stro-1 label. Blood vessels are also evident in this frame. Scale bar = 200µm.  
 
Figure G. A low power image of Stro-1 labelling in the corresponding OCP of score 10. 
The distribution is comparable to that seen in the PCNA labelling (figure 3.5D). Scale bar 
= 400µm.  
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Stro-1 
 

Score No. positive Total no. % positive Standard Error 
4 16.33 20.67 79.13 4.02 
6 11.33 17.33 67.41 9.21 
8 28.67 36.00 80.85 3.51 
10 91.00 117.33 76.46 9.53 

 
 
Figure 3.8. Histogram and corresponding table showing the percentage of total cells that 
labelled positive for Stro-1 in the superficial zone of OCPs of varying scores. 
 
Data are expressed as the mean (n=3) ± SE of the percentage of total cells which show 
cell-associated labelling. One way ANOVAs and Student t-tests suggested that there was 
no significant difference in the proportion of labelled cells between the varying scores 
(p>0.05).   
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Figure 3.9. Notch 1 labelling in OCPs of varying scores.  
 
Figure A. High power of a cluster of cells in the articular surface showing cytoplasmic 
labelling of varying degrees. Scale bar = 50µm.  
 
Figure B. Distribution of Notch 1 labelling across the articular surface. Cells are 
negatively and positively labelled regardless of whether they are in clusters. Scale bar = 
100µm. 
 
Figure C. Notch 1 labelling in an OCP of score 8 illustrating the abundance of positively 
labelled cells and cell clusters. Notch 1 labelled cells extend beyond the surface zone into 
the middle zone. Scale bar = 200µm. 
 
Figure D. Notch 1 labelling in the corresponding OCP of score 10 elicits similar labelling 
to that seen in figure 3.7 of Stro-1, however the transition between the labelled and non 
labelled zones was not as clearly defined. Labelling extends inferiorly to the lower aspect 
of the image. Dendritic-like cells evident. Scale bar = 200µm. 
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Notch 1 
 

Score No. positive Total no. % positive Standard Error 
4 9.33 19.33 47.61 1.32 
6 18.67 19.00 97.44 2.56 
8 24.00 28.00 84.54 3.06 
10 55.67 66.33 84.75 6.84 

 
 
Figure 3.10. Histogram and corresponding table showing the percentage of total cells that 
labelled positive for Notch-1 in the superficial zone of OCPs of varying scores. 
 
Data are expressed as the mean (n=3) ± SE of the percentage of total cells which show 
cell-associated labelling. Score 4 showed a significantly reduced proportion of labelled 
cells when compared to the higher scores as confirmed by one way ANOVA and Student 
t-tests (p<0.05). Score 6 showed a significantly greater proportion of labelled cells when 
compared to scores 4 & 8 as confirmed by one way ANOVA and student t-tests (p<0.05).  
 
 



154 
 

3.5. Discussion 

 

The purpose of this study was to map out changes in ECM components relative to disease 

severity in osteochondral plugs excised from tibial plateaux. Research into osteoarthritis 

often focuses on end stages and the differences between the state of tissue ‘before’ and 

‘after’ the disease, however, there is little insight into the progressive changes that occur as 

the disease develops. Is there one common factor that precedes the changes that follow? 

There are several studies that do look into relative changes in gene expression between 

normal and/or early stage OA compared to late stage OA (Brew et al., 2010, Martin et al., 

2001, Young et al., 2005), however, gene expression does not necessarily relate directly to 

protein synthesis; just because a gene is present or even up-regulated it does not signify 

that it is activated.  

 

As such, using the scoring system devised in the previous chapter, a range of different 

scores were assessed using antibodies to localise synthesis of major ECM proteins, stem 

cell and proliferation markers. The aim was to reveal changes and identify trends within 

the shifting tissue, giving an insight into the mechanisms behind the changes that occur 

throughout this mysterious disease. Whilst displaying the results the choice was made not 

to omit the ‘anomalous’ OCP which achieved an overall score of 10. The reason for this 

was because despite it being an anomalous result within the small study which was carried 

out, it may indeed be representative of processes that occur more widely and are not 

recognised or distinguished from the usual changes which are more commonly reported. It 

is, therefore, imperative that a similar study is carried out on a larger scale so that one can 

verify whether or not an ‘anomalous result’ is indeed anomalous on a greater scale. 

Similarly, many of the trends observed throughout this study would be more heavily 

supported in a study of greater magnitude, as inevitably variation and inconsistencies are 

two of the common hindrances encountered when doing osteoarthritic studies on human 

patients.  

 

Collagen type I production was evident in all of the OCPs to varying degrees of intensity. 

In OCPs of lower grade (lesser extent of severity), where the surface zone often remained, 

labelling was restricted to this region. This is concurrent with previous reports which 

suggest that collagen type I labelling is evident as an independent layer residing in the 
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superficial region of normal articular cartilage (Pfander et al., 1999, Teshima et al., 2004). 

As such, it is not uncommon to find collagen type I labelling in normal articular cartilage, 

supporting the case that lower grade OCPs from this study resemble normal, un-diseased 

hyaline cartilage.  

 

Interestingly, collagen type I labelling in the surface zone was often accompanied by 

regions of hypercellularity in the form of cell clusters, in low scoring OCPs. This could, 

therefore, be indicative of cellular changes preceding ECM changes in the early phases of 

cartilage degradation in OA.  

 

Converse to the general consensus, in this study the trend lent towards a reduction in type I 

collagen in the ECM, with increasing severity of the tissue. Previous reports have 

suggested that a thicker band of type I collagen is seen in OA cartilage (Pfander et al., 

1999), and there is great ongoing speculation regarding the presence of type I collagen 

formation in cartilage repair tissue. The question addresses the issue of whether the type I 

collagen-rich tissue is the end-product of the repair mechanism; producing a 

fibrocartilagenous tissue in place of the original hyaline cartilage, or if the presence of type 

I collagen is merely a moment captured in time, of a long process that recapitulates early 

cartilage development.  

 

This question fails to be answered as the integrity of the tissue as a whole diminishes, 

resulting in further erosion and degradation. If the type I collagen is indeed a precursor to 

type II collagen formation, it may be a case of a ‘race against time’ in that the process of 

maturation from a type-I rich tissue to a type-II rich tissue is not given enough time, and 

the degradative process occur at a more rapid rate overriding the repair process before it 

has had the chance to impact the tissue integrity. The slow rate of collagen synthesis, 

particularly in adult articular cartilage is well documented (Maroudas, 1980). 

 

As mentioned, in this study no marked increase in type I collagen was found in the ECM 

of OCPs of increasing severity. However, it was observed that there was cellular 

up-regulation in individual cells as well as cell clusters. As such, it may be that the 

changes to the ECM were not yet apparent despite the well documented mechanism of 

collagen type I activation being switched on.  
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Aside from the trend of little type I collagen which has been discussed, the OCP of score 

ten which has been termed the ‘anomalous’ OCP reared very different results when 

immunohistologically labelled for collagen type I. In this OCP, an abundance of collagen 

type I was seen throughout the entire tissue, spreading from the surface through the mid- 

and into the deep zone. The distinct fibrous features suggest a well established 

fibrocartilagenous tissue (Roberts et al., 2001). In this instance, large clusters of cells 

appear to be localised at and around the presumptive tidemark region. It may be that a 

mass infiltration of cells pierced through the tidemark as a result of subchondral 

remodelling resulting in the highly cellular type I positive tissue.  

 

Type II collagen is synthesised by chondrocytes as a procollagen which is cleaved before 

being incorporated into the forming fibril and, as such, can be used as a more direct 

measure of type II collagen synthesis (Lee et al., 1996). It was found that procollagen type 

IIA labelling in this study correlated to the regions of type I collagen synthesis. In OCPs of 

lower scores the surface zone labelled positively, yet middle and deep regions elicited no 

positive label. Cellular and extracellular procollagen type IIA therefore suggests an active 

metabolic state within the osteoarthritic tissue, particularly in earlier stages of disease 

progression. Aigner et al., (1999) proposed that procollagen type IIA could be used as a 

marker of OA as its presence is congruent with the apparent onset of the disease. 

Similarly, other studies have accrued similar results; Khan et al., (2008) demonstrated the 

presence of procollagen type IIA in bovine articular cartilage in mild lesions of OA tissue, 

whilst commenting on the reduction of labelling in overtly fibrillated tissue. These reports 

are in accordance with the findings of this study; whereby OCPs of scores higher than 8 

lacked procollagen type IIA labelling.  

 

Relating these findings to those of the collagen type I results, it would appear that the 

matched labelling is indeed indicative of the developmental state being recapitulated. If the 

type I collagen rich tissue was the end state of the repair tissue, one could assume that 

procollagen type IIA collagen would not be present. As the type II collagen precursor is 

present, the conclusion may be drawn that type I rich fibrocartilage is not the intended 

end-state of the tissue. It could instead be more a case of the equilibrium between 

degradation and synthesis being disturbed, resulting in a quicker rate of degradation and 
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thus capping the potential for the newly formed tissue to reach the desired composition and 

integrity.  

 

Procollagen type IIA labelling in the ‘anomalous OCP’ does not directly correlate to the 

collagen type I results. A demarcation between labelled and non-labelled regions was 

evident dividing the mid-zone, with a positively labelled chute-like structure extending 

from the subchondral bone. By the stature of the structure it appears as though it is an 

invasion of cells from the subchondral region; more specifically an invasion of stromal 

cells from the marrow regions. As such, these undifferentiated BMSCs have the capacity 

to differentiate into articular cartilage in vivo (Han et al., 2008), and so an unknown 

mechanism may have been activated in this case to trigger the onset of new articular 

cartilage formation in this region. It could be hypothesised therefore, that within this OCP 

two different repair mechanisms are occurring; one at the surface where the surface zone 

cells are responding like the other OCPs by recapitulating the developmental phase in a 

repair attempt, and the second mechanism is through the vast infiltration of BMSCs from 

the subchondral region.  

 

The presence of aggrecan in articular cartilage ECM endows the tissue with its 

characteristic water imbibing properties and as such, is a distinctive feature of the tissue 

(Bayliss et al., 2000). It was, therefore, expected that aggrecan would be present 

throughout the OCPs, particularly in the lower scoring specimens. Indeed, it was found 

this component was widely present throughout the matrix of the OCPs assessed. 

 

 Within the low scoring OCPs, atypical pockets along the surface of the tissue lacked 

aggrecan and cellular presence. As such, it could be hypothesised that these pockets are 

areas of weaknesses which develop into fibrillated surfaces as the disease progresses. It is 

well renowned, however, that chondrocyte clusters are a histological hallmark of OA (Lotz 

et al., 2010), particularly localised around fissured surfaces in the upper regions of the 

cartilage. Through this study, it was seen that aggrecan labelling in pockets along the 

surface occur prior to chondrocyte cluster formation and as such, it can by hypothesised 

that tissue integrity is initially compromised through aggrecan degradation, and the 

formation of chondrocyte clusters is a secondary effect. 
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Cellular labelling of aggrecan was detected in some OCPs of higher scores, which 

suggested anabolic mechanisms resulting in renewed synthesis of the macromolecule prior 

to its exportation out of the cell. This, however, was not seen in all of the OCPs of higher 

scores, and this may in part be due to OCPs being excised from patients of different ages; 

it is known that the rate of aggrecan synthesis is dependent on the age of the specimen 

from which the tissue was obtained (Bayliss et al., 1999). In the OCP of score 8, where 

large fissures extend into the mid-zone, a marked reduction of aggrecan was observed 

accompanied by typical chondrocyte clusters. This finding supports the hypothesis that 

aggrecan loss occurs initially, followed by tissue degradation prior to the formation of cell 

clusters which attempt to repair and relay new matrix (Lotz et al., 2010).  

 

In the anomalous OCP, intriguingly, substantial labelling was evident alongside regions 

that clearly lacked positive labelling in the ECM. Concurrent with the other OCPs, the 

surface zone lacked aggrecan; which became more abundant in the middle region. 

However, in this OCP, a clear separation exists between regions of the mid-zone. Inferior 

to the line, aggrecan labelling is absent in the ECM however cellular labelling was 

observed. Superior to the line the tissue was rich in aggrecan throughout the ECM. This 

discrepancy very clearly highlights the altered composition of the tissue which would 

ordinarily contain aggrecan throughout the depth of the tissue. It appears that the non-

labelling, chute-containing deep region may not be of a cartilaginous nature, and may be 

indicative of a region in which endochondral bone formation is occurring. This finding 

reinforces the well known dogma that unknown mechanisms occur throughout the 

progression of OA. Again, it is important to elucidate whether this is a unique case or if 

this is common on a grander scale. It is important to understand the difference between 

what is occurring in this case compared to ‘traditional’ OA, as it also highlights the issue 

that perhaps patients are being misdiagnosed; perhaps this is a different disease which has 

not been detected and thus categorised as OA.  

 

The chute-like structure seen in this OCP which labelled positively for collagen type I and 

procollagen type IIA also demonstrated substantial aggrecan labelling. This again 

reinforces the view that infiltrating cells emerged from the subchondral region in an 

attempt to produce a hyaline-like repair tissue in response to the tissue damage.  
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Despite literature reporting the increased presence of type X collagen in OA cartilage 

(Walker et al., 1995), as whole OCPs between scores 2 and 8 showed no distinctive pattern 

or difference. This highlights the issue that, in many cases, the patterns of change that 

evolve in articular cartilage as a result of OA, are not always consistent with one another 

and vary from patient to patient. These inconsistencies, in part, are why assessing the 

severity of OA has become a subjective issue.  

 

With regards to inconsistencies, the ‘anomalous’ OCP of score 10 did indeed present with 

remarkable type X labelling extending beyond the zone of calcified cartilage and deep 

regions of the tissue. Having said that, concomitant with the findings with regard to this 

OCP, a distinct line can be seen separating the labelled and non-labelled regions. This 

further amplifies the evidence to suggest that within this OCP, hyaline cartilage has been 

replaced by a region in which endochondral bone formation is occurring. As type X 

collagen is a marker of hypertrophic chondrocytes which form prior to angiogenesis and 

subsequent mineralisation (Kronenberg, 2003), it fits the hypothesis that this region is no 

longer a region of hyaline, articular cartilage.   

 

Upon further examination using CD34 to identify endothelial cells of blood vessels, it was 

observed that indeed, on the right aspect, the noted cellular invasions were accompanied 

by blood vessels, further supporting the suggested theory.  

 

Upon type X collagen labelling in this OCP, the chute-like region which was previously 

distinguishable, could not be seen. It was previously suggested that these cells may have 

originated as BMSC from the bone marrow region. Studies have demonstrated that 

BMSCs, when chondrogenically induced in vitro, present with type X collagen (McCarthy 

et al., 2011) and as such, it is understandable that this previously identifiable region does 

not stand out under these conditions. 

 

Typically, chondrocytes in mature articular cartilage have low mitotic activity when 

compared to other cell types, and an increase in proliferative cells may be suggestive of a 

reparative attempt (Pfander et al., 2001). Concurrent to this, in our study, it was shown that 

in the lowest scoring OCP no mitotic activity in the form of PCNA labelling was detected. 

OCPs of score 4 plus did show evidence of PCNA labelling, agreeing with other studies 
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that report of increased mitotic activity in OA specimens (Hellio Le Graverand et al., 

2001, Pfander et al., 2001).  

 

Quantitative investigation (figure 3.6) suggested that there was a marked increase in 

PCNA in OCPs achieving a score of 6 or more, although no obvious trend between these 

higher scores (6 to 10) in relation to relative numbers of labelled cells was noted. More 

specifically, between the scores of 6 and 10, the proportion of labelled cells in the surface 

of the tissue ranged between 55 and 65 percent. Interestingly, error bars were greatest at 

score 6, suggesting the greatest level of variation at this score. With increasing severity, 

error levels reduced in size suggesting that the high proportion of labelled cells was more 

consistent throughout the surface of more severely diseased tissues.  

 

A review by Lotz et al., (2010) also confirmed the consensus that PCNA labelling, and 

more generally, cell proliferation is increased with OA. Unfortunately, however, within 

this study there was no progressive trend that was observed, in that PCNA labelling did not 

steadily increase with increasing severity and, as such, it is difficult to use this information 

to further decipher mechanisms of disease progression.  

 

Relating back to the ‘anomalous’ OCP, cells which labelled positively for PCNA were 

present throughout the hyaline-cartilage like tissue yet absent in the inferior region 

demonstrating endochondral bone characteristics. As such, hypercellularity throughout 

certain regions of the tissue is accounted for due to the actively proliferating cells; 

however, the phenomenon which segregates the two congruent regions of tissue is not 

explained. Migratory cells have been reported in OA cartilage (Khan et al., 2009, Koelling 

et al., 2009) which may have played a role in creating this divide between the tissue but 

again it is difficult to elucidate the mechanisms behind this change.  

 

The labelling of stem cell markers Stro-1 and Notch-1 was examined qualitatively and 

quantitatively. Qualitative data confirm previous findings of increased synthesis of the two 

putative stem cell markers within OA (Grogan et al., 2009), however particularly within 

Stro-1, no pattern was observed between increasing severity of disease within tissue and 

Stro-1 positive cells. In addition, the volume of labelled cells within the surface zone was 

significant in that over 65 percent of cells demonstrated positive (Stro-1) label. These were 
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not only individual cells, but also cell clusters, and interestingly, within clusters it was 

seen that there were, at times, a mixture of labelled and unlabelled cells. Numerically, the 

proportion of labelled cells is remarkably high which brings into question the reliability of 

Stro-1 as a marker for stem/progenitor cells. Studies by Giurea et al., (2006) have shown 

that alongside the articular cartilage, Stro-1 positive cells are also significantly increased in 

the neighbouring synovium and this may have a cascade effect onto the exposed fibrillated 

surface of the articular cartilage. Concurrent with this, Grogan et al., (2009) agree that 

despite demonstrating clear involvement in the process of OA, Stro-1 should not be used 

as a sole representative indicator of stem cells within human articular cartilage. 

 

Notch-1 has been shown to promote the maintenance of a progenitor cell phenotype in 

normal articular cartilage (Dowthwaite et al., 2004). However, in diseased articular 

cartilage, its reliability as a stem cell marker has also been questioned (Grogan et al., 

2009). Within this study, the lack of Notch-1 labelling in the lowest scoring OCPs was 

accompanied by an increase in labelling in OCPs of score 4, suggesting that there is a 

progressive correlation between severity of disease and Notch-1. Having said that, within 

OCPs of scores 6 and above, no distinct trend was detected; once OCPs reached a 

‘threshold’ level, Notch-1 labelling was notably elevated in relation to OCPs of low 

scores. With over 80 percent of the surface/mid zone cells of OCPs with severe OA 

labelling positively for Notch-1, it again brings to light the issue of whether or not Notch-1 

can be used generally as a sole marker for stem cells within articular cartilage. These 

results do, however, confirm that Notch-1 signalling is dysregulated in OA, although we 

have been unable to make any direct correlations between severity of OA and Notch-1 

labelling due to variability seen within the results.  

 

As a whole, the aim of this study was to map out progressive changes in OCPs of varying 

scores. As such, no obvious trend or direct correlation was found. This reinforces the fact 

that there are clearly many unknown mechanisms involved in OA which may interact at 

varying degrees not only within different people but also within different joints of one 

particular person. It is important to remember that OA is a disease that not only affects the 

articular cartilage, and that mechanisms of disease progression may be intricately 

intertwined between contributing factors from the surrounding environment.      
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Oxygen tension is one environmental factor that several authors have shown to have an 

effect on cartilage homeostasis. More specifically, studies have demonstrated that 

chondrocytes favour hypoxic conditions when compared to normoxic (≈20%) conditions 

(Buckley et al., 2010), and so a vicious cycle may generate when a fibrillated surface 

begins to form in the early stages of OA. The increased surface area results in increased 

exposure to the joint capsule and its constituents. The detrimental effects of the increased 

oxygen levels may be due to the fact that chondrocytes are not usually exposed to high 

levels of oxygen being an avascular tissue, and as a result the change/increase in oxygen 

alters the metabolism of the cells. Similarly, molecular oxygen is required for the 

production of nitric oxide and other reactive oxygen species (ROS) which also have been 

shown to be involved in the pathogenesis of OA (Khan et al., 2008, Pelletier et al., 2000, 

Yudoh et al., 2005, Ziskoven et al., 2010). Furthermore, a study by Altindag et al., (2007) 

suggested that decreased collagen metabolism may also be related to oxidative stress, 

which would further enhance the degradative cycle resulting in compromised tissue 

integrity alongside deranged cells.  

 

Previous studies have demonstrated the presence of cytokines and MMPs in the 

neighbouring subchondral bone and synovial fluid, which not only further contribute to the 

web of mechanisms leading to the progression of OA, but also are indicative of the pro-

inflammatory condition of OA pathology (Hulejova et al., 2007, Scanzello et al., 2009). 

This is of importance as it was evident in this study that the ‘anomalous’ OCP of score 10 

could perhaps be a case of a misdiagnosed specimen. Indeed many of the features seen 

within this OCP could be linked to rheumatoid arthritis (RA), a chronic, systemic 

inflammatory disorder (Allard et al., 1988). Within RA, a typical feature is pannus; a 

‘cloth-like’ soft tissue which appears as an invasive granulation tissue covering the 

articular cartilage, and tissue described in the OCP of score 10 did indeed bear great 

resemblance to this archetypal pannus. Several reports in the literature do report of a 

pannus-like tissue evident in OA cartilage (Shibakawa et al., 2003, Yuan et al., 2004); 

however, its occurrence is not heavily documented. A more recent article by Furuzawa-

Carballeda et al., (2008) linked the similarities between pannus in OA and RA by 

describing similar metabolic characteristics and pro-inflammatory cytokine responses. As 

such, these similarities highlight issues that clinicians face when diagnosing a patient and 

prescribing relevant treatments, in that many diseases present in comparable ways. 
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Similarly, as each case is unique and symptoms of the disease vary between patients, the 

need for a deeper understanding of OA is further emphasized. Misdiagnosing patients as a 

result of similarities between diseases could be of further detriment and as such it is 

imperative that mechanisms are understood in order to be able to improve on diagnostic 

tools.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



164 
 

 

 

Chapter 4: 

Isolation and characterisation of chondroprogenitor cells in 
osteoarthritic articular cartilage 
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4.1. Introduction 
 

Chondroprogenitor cells are cartilage derived stem cells that originate from pluripotent 

MSCs. They have a limited replicative capacity and restricted differentiation potential to 

certain lineages. The terms progenitor cell and stem cell are often used interchangeably 

however and it is important that their differences are recognised. True stem cells 

(introduced in Chapter 1) are undifferentiated cells with endless self-renewal capacity and 

the potential for multi lineage differentiation. According to the International Society for 

Cellular Therapy (ISCT), MSCs are further characterised by their adhesion potential in 

monolayer culture and their differentiation potential into chondrocytes, osteocytes and 

adipocytes in vitro (Dominici et al., 2006). The ISCT has also listed several markers that 

MSCs should exhibit or lack. Markers that MSCs should exhibit include CD105, CD73 

and CD90, whereas CD45 and CD34 are amongst the markers that MSCs should lack.  

 

As outlined in Chapter 1, surgeons have begun to implement cell therapies for articular 

cartilage repair using chondrocytes and/or MSCs as these are natural and logical choices 

for repair applications. However, chondrocytes pose problems due to the limited capacity 

of donor sites to provide the necessary quantities for ACT (Andriamanalijaona, 2010), as 

well as donor site morbidity, chondrocyte dedifferentiation in vitro and other major 

impediments that have been encountered from this treatment (Csaki et al., 2008). 

Treatments using MSCs offered a promising progression, following their use with a 

variety of techniques including intra-articular injections and matrix assisted therapies. 

However, it has come to light that foreign, undirected MSCs may have little influence on 

the repair or regeneration of cartilage leading to ambiguous results (Murphy et al., 2003, 

Im et al., 2001, Jiang et al., 2003). Furthermore, evidence of fibrocartilage formation has 

superseded hyaline cartilage formation in several cases, and integration problems have also 

been apparent, suggesting that there is room in the market for an improved technique. An 

added challenge that has been raised with regards to MSCs is their tendency to 

demonstrate type X collagen expression during in vitro chondrogenesis (Barry et al., 

2001). While type X collagen is usually used as a marker for hypertrophic chondrocytes, 

Pelttari et al., (2006) revealed that upregulation of type X collagen during in vitro 

chondrogenesis leads to strong matrix calcification accompanied by vascular invasion –a 

process similar to that occurring during endochondral ossification which ultimately leads 



166 
 

to the development of new bone. Therefore, the predisposition of MSCs towards 

osteogenesis and matrix calcification is an unfavourable aspect of using MSCs to produce 

a hyaline like repair tissue in articular cartilage defects (Andriamanalijaona, 2010). 

 

More recent advancements in cell therapies for articular cartilage repair have moved onto 

investigating the potential of using a population of native cells to repair defective cartilage. 

These cells may offer a source of cells that would not be accompanied by ‘baggage’ in the 

form of problems that surgeons currently face when treating damaged or diseased hyaline 

cartilage: donor site morbidity, genetic instability and poor integration. As such, if and 

when the native cells and methods of activation are fully understood, the prospects of 

regenerative processes are high. 

 

In view of using a native cell source, work in our laboratory demonstrated the presence of 

a stem/progenitor cell population in bovine articular cartilage in 2004 (Dowthwaite et al., 

2004b). Successful isolation of these chondroprogenitors was achieved using a differential 

adhesion assay described by Jones and Watt in 1993 involving rapid adhesion to 

fibronectin (Jones and Watt, 1993). Fibronectin plays a major role in regulating many 

cellular processes including adhesion and migration, regulation of cell growth, 

differentiation and homeostasis (Pierschbacher and Ruoslahti, 1984). In their original 

article, Jones and Watt showed that a subpopulation of human epidermal keratinocytes 

were epidermal stem cells; distinguishable by their adhesive properties and high levels of 

α5β1 integrins, and these cells correlated to the cells with the highest colony forming 

efficiencies (CFEs). The fibronectin adhesion assay outlined by Jones and Watt was 

pursued by Dowthwaite et al., (2004) who enzymatically digested cartilage to release the 

resident chondrocytes and investigated the adhesion and CFEs using a bovine model. The 

authors investigated relative differences in chondrocytes from different zones and found 

that the chondroprogenitor cell population was localised to the surface zone where the 

cells not only exhibited significantly higher CFEs but the mean number of cells per colony 

was also significantly increased in the cohort. 

 

Progressing from the work carried out by Dowthwaite et al., (2004), Williams et al., 

(2010) and McCarthy et al., (2011) investigated the possibility that a sub-population of 

chondroprogenitor cells may reside within normal human and equine articular cartilages 



167 
 

respectively. Williams et al., (2010) demonstrated that it was possible to isolate and 

expand clonal cell lines using determined growth medium to supplement the cells in vitro. 

This cohort of cells elicited a restricted differential potential during chondrogenic 

induction in a 3D pellet culture system as well as demonstrating further multipotent 

differentiation capacity. 

 

These results are of major interest due to the potential for therapy and implications to 

clinical practise. Traditionally, chondrocytes that are enzymatically released and cultured 

in monolayer at low densities undergo phenotypic modulation, whereby synthesis of 

cartilage specific macromolecules are down-regulated and the cells acquire a fibroblast-

like morphology. Given the right conditions and a chondrogenically permissive 

environment; chondrocytes are able to retain their chondrogenic potential (and 

redifferentiate or re-establish the original phenotype) up to 7 population doublings and 

sometimes beyond depending on medium additives. Due to the relatively low numbers of 

resident chondrocytes in articular cartilage, this tends to pose a problem when large 

numbers of cells are required to fill an articular defect. As a result, several research groups 

have focussed on the use of growth factors and 3D culture systems to maintain 

chondrogenic potential of cells (Benya and Shaffer, 1982, Jakob et al., 2001, Li et al., 

2004, Wolf et al., 2008). As Williams et al., 2010 summarises “Although these 

modifications, to some extent, have proved successful they would be unsuitable as a 

method of expanding cells for use in cell-based repair therapies and as such, monolayer 

culture is a limiting factor for chondrocyte efficacy. Additionally, when chondrocytes are 

used in cell based tissue engineering, the resulting repair tissue is unpredictable and often 

fibrocartilagenous.” A way to overcome this cell source limitation is to use a cell type that 

maintains its inherent proliferative capacity and possesses the ‘developmental repertoire’ 

of the native tissue. As such, the identification and characterisation of this cartilage 

progenitor population resident in normal human cartilage of varying ages presents a 

potential cohort of cells suitable for advancing cell based tissue repair therapies for 

cartilage defects.  

 

In support of data presented by Dowthwaite et al., (2004), Williams et al., (2010) and 

McCarthy et al., (2011) not only demonstrated the presence of a congruent 

chondroprogenitor population resident in equine articular cartilage; but also compared the 
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chondroprogenitor cells to bone marrow-derived stromal cells (BMSCs) as potential cell 

sources for cartilage repair in the horse. Results were promising as data from this paper 

suggested that the chondroprogenitor cells may be considered superior to BMSCs in 

producing a functional repair tissue. The article demonstrated that following 3D 

chondrogenic induction, collagen type X labelling was not detected in the progenitor cell 

pellets whereas distinct labelling was evident in the BSMC pellets. This study reiterates 

the problem highlighted earlier regarding the tendency of MSCs to undergo terminal 

differentiation with an endochondral phenotype, potentially limiting the cartilage repair 

processes; and conversely presents the articular cartilage progenitor cells as a more viable 

cell source.  

 

Work highlighted thus far focuses on progenitor cells within normal articular cartilage. 

However, with repair and regeneration in mind several research groups have directed their 

work towards looking into progenitor cells within osteoarthritic cartilage. As described in 

Chapter 1, there are many conservative and invasive surgical methods that are currently 

used which may either be palliative, or result in inconsistent results; and as such, no single 

treatment has been established as truly successful one. Total joint replacements are often 

used in patients where the tissue is deemed irrecoverable, however, this procedure does not 

rectify the problem; it provides an alternative solution through an invasive procedure that 

does not last a life-time and incurs many other implications. A native source of progenitor 

cells within diseased articular cartilage, therefore, presents with high prospects of 

regenerative processes; however this requires a deeper understanding of said cells and 

mechanisms of activation.  

 

Alsalameh et al., (2004) was the first to describe the presence of a mesenchymal 

progenitor cell population in human osteoarthritic cartilage, using flow cytometry to 

demonstrate a significant increase in CD105+/CD166+ cells compared to the primary cell 

cultures from normal cartilage. Fickert et al., (2004) published an article shortly after 

Alsalameh et al., which was agreeable despite using a different selection of CD markers 

(CD9+, CD90+ and CD166+) to conclude that within human osteoarthritic cartilage, there 

are cells with mesenchymal progenitor cell characteristics. More recently, Koelling et al., 

(2009) has described the presence of migratory chondrogenic progenitor cells within 

human osteoarthritic cartilage which are believed to be migrating in response to 
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chemoctactic signals. A review by Khan et al., (2009) suggests that despite being present, 

these cells fail to receive local differentiation cues and thus, retain their native phenotypic 

state within OA cartilage instead of differentiating into fully committed chondrocytes.  

 

The purpose of this study was to elucidate whether or not it is possible to isolate progenitor 

cells from human OA cartilage using the established Jones & Watt/Dowthwaite method of 

isolation and to examine whether these clonally derived populations had the potential for 

chondrogenic induction. Further investigations were carried out in order to establish the in 

vitro expansion potential of these cells and to determine their plasticity potentials into 

osteogenic and adipogenic lineages. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

4.2. Materials 

Material Catalogue 
number 

Supplier 

 
anti-CD105 FITC Conjugate 
anti-CD166 R-PE Conjugate 
 

 
326-040 
393-050 
 

 
Ancell, USA 
 

 
40µm mesh cell strainer 
 

 
352340 

 
BD Falcon™, UK 

 
CellTrics 30 µm filters 

 
04-004-2326 

 
Partec, UK 
 

 
Dulbecco’s modified eagles medium 
Dulbecco’s modified eagles medium 
F12 + glutamax 
Fetal calf serum  
Gentamicin 
L-glutamine 200mM 
Hepes buffer 
Insulin transferrin selenium 
Rabbit serum 
Trypsin-EDTA 0.05% 
 

 
41965-062 
31331-093 
 
10106-169 
15750-045 
25030-024 
15630-056 
41400-045 
16120107 
25300-062 

 
Gibco, UK 

 
SafeView Nucleic Acid Stain 

 
NBS-SV1 

 
 NBS Biologicals Ltd, UK 
 

 
Low Molecular Weight DNA 
Ladder 
Quick-Load 1 kb DNA Ladder 
 

 
N3233S 
 
N0468 

 
New England Biolabs, UK 
 

 
Human FGF - basic 
Human TGF - β2 
 

 
100 - 18B 
100 – 35B 

 
Peprotech, UK 

 
Agarose 
GoTaq® Flexi DNA Polymerase 
M-MLV Reverse Transcriptase, 
RNase H Minus 
Random primers 
Recombinant RNasin Ribonuclease 
Inhibitor 
Set of dATP, dCTP, dGTP, dTTP 
TBE Buffer 
 
 
 

 
V3125 
M8301 
M5301 
 
C1181 
N2511 
 
U1240 
V4251 

 
Promega, USA 
 



 

 
Table 4.1. Materials and suppliers. 
 

 

 

 
Pronase from Streptomyces griseus 
 

 
11 459 643 001 

 
Roche, UK 

 
Accutase 
Albumin from bovine serum 
L-Ascorbic acid 2-phosphate 
Cloning rings 
Collagenase from clostridium 
histolyticum 
Dexamethasone 
Dimethyl sulfoxide  
Fibronectin from bovine plasma 
Formalin solution, neutral buffered, 
10% 
D-(+)-Glucose  
β-Glycerophosphate disodium salt 
hydrate 
Indomethacin 
Insulin solution, human 
3-Isobutyl-1-methylxanthine 
Β-Mercaptoethanol  
Oil Red O 
Paraformaldehyde 
Phosphate buffered saline 
Silver nitrate 
Sodium carbonate 
Sodium thiosulfate pentahydrate 
Water (RNase free) 
 

 
A6964 
A8022 
A8960 
C7983 
C0130 
 
D8893 
D5879 
F1141  
HT501320 
 
G6152 
G9422 
 
I7378 
I9278 
I7018 
M3148 
O9755 
P6148 
P4417 
S6506 
S2127 
S7143 
W4502 

 
Sigma Aldrich, UK 
 

 
Ethanol 
Propan-2-ol 
Sodium hydroxide 
 

 
E/0650DF/17 
P/7500/15 
S/4920/60 

 
Thermo Fisher Scientific, 
UK 
 

 
Paraffin wax 

 
298682F 

 
VWR – Jencons, 
Leicestershire, UK 
 

 
RNase-free DNase set 
RNeasy Mini Kit 
Qiashredder 
 

 
79254 
74104 
79654 

 
Qiagen, UK 
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4.3. Methods 

 

4.3.1. Tissue digestion & chondrocyte isolation 
 

Following TKRs, tibial plateaux (TPs) were immediately transported in saline solution to 

the laboratory. Under sterile conditions, cartilage was excised from the TPs by fine 

dissection using a scalpel, ensuring where possible, that no other tissues (meniscus, 

ligament or osteophyte) were included in the digestion process. The cartilage was collected 

in a sterile 50ml tube and the chondrocytes were released from their matrix by sequential 

enzyme digestion using 70U ml-1 pronase in supplemented Dulbecco’s Modified Eagles 

Medium F12 (DMEM/F12) plus Glutamax, [DMEM/F12 + Glutamax with 100mg ml-1 

Gentamicin, 50µg ml-1 L-ascorbic acid 2-phosphate, 1mg ml-1 glucose, 2mM L-glutamine 

and 5% foetal calf serum (FCS)], for 30 minutes at 37˚C on a roller. Subsequently, the 

pronase was removed and replaced with 300U ml-1 collagenase (type I) in supplemented 

media for 3 hours at 37˚C on a roller. Following digestion, the chondrocytes were passed 

through a 40µm mesh cell strainer to ensure that any undigested tissue was eliminated, and 

the remaining cell suspension was centrifuged at 2000 rpm x g for 5 minutes. The 

supernatant was then removed and the pellet was re-suspended in supplemented 

DMEM/F12 without FCS and counted using a haemocytometer.  

 

4.3.2. Fibronectin adhesion assay to isolate cartilage progenitor cells 
 

Studies by Jones and Watt in 1993 demonstrated a method to identify epidermal stem cells 

using differential adhesion to fibronectin in vitro. Since then, Dowthwaite et al., 2004 

expanded on this method and utilised fibronectin in an in vitro adhesion assay to identify 

bovine articular cartilage progenitor cells. This method is now an accepted method to 

isolate articular cartilage progenitor cells, and Williams et al., in 2010 described the 

presence of these cells within human articular cartilage. In this chapter, the fibronectin 

adhesion assay was utilised to see whether cartilage progenitor cells were evident in 

diseased articular cartilage. 
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Chondrocytes were re-suspended at a concentration of 4000 cells ml-1 in supplemented 

DMEM/F12 and seeded onto 6-well plates that had been pre-treated with fibronectin 

(10µg ml-1 in PBS containing 1mM MgCl2 and 1mM CaCl2) for 24 hours at 4˚C. Cells 

were incubated for 20 minutes at 37˚C, after which the media and non-adherent cells were 

removed. Fresh media (DMEM/F12 + 10% FCS) was then added to the dish and the cells 

were incubated and maintained in culture in a humidified chamber containing 5% CO2 at 

37˚C. Twenty four hours later, the media was changed once again to ensure that any 

non-binding cells were removed.  

 

4.3.3. Colony isolation 
 

Colonies consisted of clusters of 32 plus cells derived from an initial cell adhering as a 

result of the fibronectin assay. The bottom of the tissue culture plastic was marked in order 

to locate the colonies and allow for colony isolation. Subsequently, the media was 

removed and dishes were washed with serum-free media. Sterile polystyrene cloning rings 

were then dipped into Vaseline using sterile forceps and placed over the marked colony. 

One hundred microlitres of trypsin-EDTA was then added to the cloning ring, and the dish 

was placed at 37˚C for 3-5 minutes until the cells had rounded. The cells were then lifted 

by gentle pipetting and added to 1ml supplemented DMEM/F12 + 10% FCS containing 

1ng ml-1 TGF-β2 and 5ng ml-1 FGF-2 in a fresh 24-well plate. 

 

4.3.4. Expansion in monolayer culture 
 

The cultures were maintained in a humidified CO2 incubator at 37˚C, and supplemented 

media (DMEM/F12 + 10% FCS containing 1ng ml-1 TGF-β2 and 5ng ml-1 FGF-2) was 

changed 3 times a week. Once the cells reached confluence, they were washed in serum-

free media and incubated in trypsin-EDTA for 6-8 minutes at 37˚C. The lifted cells in 

trypsin were then transferred to a 50ml centrifuge tube and an equal volume of 

DMEM/F12 + 10% FCS was added to the tube in order to deactivate the trypsin. The cell 

suspension was then centrifuged at 2000 rpm x g for 5 minutes. The supernatant was 

removed and the pellet was re-suspended and counted so that population doublings (PDs) 

could be monitored, using the following formula: 

 

PD =  [log (N) – log (N0)] / 0.301 
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Where N is the number of cells recovered at the end of the passage and N0 is the number 

of cells initially plated. Day 1 was considered the day in which the cells were initially 

plated and the initial number of cells was 1. PDs were analysed using Microsoft Excel.  

 

If there was a surplus of cells, they were frozen down in 100µl dimethyl sulfoxide 

(DMSO) and FCS making the total volume up to 1ml in a sterile microcentrifuge tube, and 

stored at -80˚C until necessary. 

 

4.3.5. Pellet cultures  
 

In order to establish the chondrogenic potential of the cells 3D pellet cultures were 

generated. Confluent flasks were washed in serum-free media before being trypsinised for 

6-8 minutes at 37˚C. The cell suspension was then transferred to a centrifuge tube and 

equal volumes of DMEM/F12 + 10% FCS added. The cell suspension was centrifuged at 

2000 rpm x g for 5 minutes, the supernatant removed and the pellet re-suspended and 

counted. Half a million cells were added to a sterile 1.5ml Eppendorf tube containing 

chondrogenic media (DMEM/F12 + Glutamax with 2% FCS, 100mg ml-1 Gentamicin, 

50µg ml-1 ascorbic acid, 1mg ml-1 L-glucose, 2mM L-glutamine, 1% hepes, and 

supplemented with 1% insulin transferring selenium (ITS), 0.1µM dexamethasone and 5ng 

ml-1 TGF-β2). The Eppendorf tube containing cells was then centrifuged at 2000 rpm x g 

for 5 minutes and incubated at 37˚C. Pellets were fed every second day for either 3 weeks 

or 6 weeks after which they were processed for analysis.  

 

4.3.6. Processing pellets for paraffin wax embedding 
 

Following the incubation period, the pellets were washed in PBS and then fixed in 4% 

paraformaldehyde or 70% ethanol for 20 minutes. The pellets were dehydrated in graded 

alcohols (70%, 95% and 100% x 2) with changes of 20 minutes each before being cleared 

in xylene (one change of 20 minutes), infiltrated with paraffin wax at 56˚C for one hour 

and finally embedded in paraffin wax. Following embedding, the pellets were sectioned as 

outlined in Chapter 2.3.4. 
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4.3.7. Pellets for RNA extractions 
 

Following the incubation period the pellets were washed in sterile PBS. Three hundred and 

fifty microlitres of Buffer RLT containing 10µl ml-1 β-mercaptoethanol from the Qiagen 

RNeasy Mini Kit was then added to the Eppendorf tube and the pellet was disrupted by 

gentle pipetting. The lysed pellet was then either immediately used or was stored at -80˚C 

until needed.  

4.3.8. Phenotypic plasticity  
 

Osteogenic differentiation 

 

Pellet cultures were established as described above. Osteogenic differentiation medium 

comprised DMEM + 10% FCS, 10mM β-glycerophosphate, 10nM dexamethasone and 

0.1mM L-ascorbic-acid-2-phosphate, 500mg ml-1 Gentamicin and 1% Hepes. Pellets were 

incubated at 37˚C and 5% CO2 and media was changed every second day for either 3 or 6 

weeks, after which they were processed as above.  

 

von Kossa staining for calcium mineral deposits 

 

Once pellets were embedded and sectioned, they were dewaxed using xylene (2 changes of 

2 minutes) and rehydrated through the graded alcohols (see Chapter 2.3.5). The sections 

were washed for a further 2 minutes in order for the von Kossa silver impregnation 

technique to be carried out. The sections were stained with fresh 5% aqueous silver nitrate 

for 30 minutes under bright light, and then rinsed 3 times in distilled water. Subsequently, 

the stain was developed using 5% sodium carbonate in 10% neutral buffered formalin 

solution (NBFS) for 5 minutes. Sections were then rinsed in distilled water again before 

being fixed in 5% sodium thiosulphate for 2 minutes. Examination and images were 

recorded using the Leitz DMRB light microscope.  

 

Adipogenic differentiation 

 

Adipogenic differentiation was induced in monolayer cultures using a modified protocol 

described by Koch et al., (2007). In brief, cells were seeded in 6-well plates at 5 x 104 per 
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well and cultured until sub-confluent, at which point they were treated with DMEM + 10% 

FCS containing 10µg ml-1 insulin, 1µM dexamethasone, 100µM indomethacin, 500µM 3-

isobutyl-1-methyl xanthine (IBMX) and 15% normal rabbit serum. The medium was 

changed every 48 hours for 6 days after which the cells were either fixed for 10 minutes 

with 10% NBFS and stained with Oil red-O for the presence of lipid droplets, or washed in 

PBS and lifted using Buffer RLT using the method described above, for RNA extraction. 

 

Oil red-O staining for adipogenic differentiation  

 

Following fixation in 10% NBFS, the cells were rinsed and maintained in PBS whilst fresh 

Oil red-O was prepared (0.3% Oil red-O in 60% isopropanol) immediately prior to 

staining. (A stock solution of 0.5% Oil red-O was made up in 100% isopropanol and then 

diluted in distilled water). The stain was added to the plates for 1 hour at room temperature 

before being washed thoroughly in distilled water, examined using a Nikon Eclipse TS100 

microscope and imaged using a Nikon E4500 camera.  

 

4.3.9. Histological stains 
 

Sections were dewaxed using xylene (two changes of 2 minutes) and rehydrated through a 

series of graded alcohols (two changes of 2 minutes in 100%, followed by one change of 2 

minutes in 95% and 70%). The sections were then washed in running water for a further 2 

minutes before being stained with either safranin O (2 mins) or toluidine blue (1 min). 

Following staining, sections were washed in running water for 2 minutes (or until water 

was clear). Toluidine blue stained sections were air-dried overnight and mounted under 

coverslips using DPX the following day. Safranin O stained sections were dehydrated in 

graded alcohols (one change of 1 minute in 70% and 95%, followed by two changes of 2 

minutes in 100%), cleared in xylene (two changes of 2 minutes) and mounted under 

coverslips using DPX.  
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4.3.10. Immunohistochemistry 
 

Immunoperoxidase labelling was carried out as described in Chapter 3 using antibodies 

against collagens type I, II and X, and aggrecan. A summary table of antibodies and 

concentrations is shown in table 3.2.  

 

4.3.11. Total RNA extraction using the RNeasy Mini Kit (Qiagen) 
 

The protocol used for extracting RNA was from the RNeasy Mini Handbook supplied 

within the RNeasy Mini Kit (materials supplied). 

  

A simple outline of the protocol that was used is described below.  

 

Initially, the cells were lysed in 350µl of Buffer RLT containing 10µl ml-1 

β-mercaptoethanol. The lysate was then transferred onto a QIAshredder spin column in a 

2ml collection tube and centrifuged for 2 minutes at maximum speed (13,000 rpm x g). 

Three hundred and fifty microlitres of 70% ethanol was then added to the homogenized 

lysate, and mixed well by pipetting. Seven hundred microlitres were transferred into an 

RNeasy spin column placed in a 2ml collection tube and centrifuged at 10,000 rpm x g for 

15 seconds. To eliminate genomic DNA contamination, additional On-column DNase 

digestion steps were carried out. Three hundred and fifty microlitres of Buffer RW1 was 

added to the spin column and centrifuged for 15 seconds at 10,000 rpm x g. Ten 

microlitres of DNase I stock solution was added to 70µl Buffer RDD and placed directly 

on the RNeasy spin column membrane and left for 15 minutes at room temperature. 

Subsequently, 350µl Buffer RW1 was added to the spin column and centrifuged for 15 

seconds at 10,000 rpm x g. Five hundred microlitres of Buffer RPE were then placed onto 

the RNeasy column and centrifuged for 15 seconds at 10,000 rpm x g. Another 500µl of 

Buffer RPE was added to the RNeasy column and centrifuged for a further 2 minutes at 

10,000 rpm x g. After every step, the flow-through was discarded. To elute the total RNA, 

the RNeasy column was transferred to a new 1.5ml collection tube, and 30µl of RNase-

free water was placed onto the RNeasy silica-gel membrane and centrifuged for 1 minute 

at 10,000 rpm x g. The total RNA was stored at -80°C. 
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4.3.12. Estimation of RNA concentration and purity 
 

Total RNA was quantified by measuring the absorbance at 260nm and 280nm in a 

NanoDrop ND-100 Spectrophotometer associated with Nano-Drop 3.0.1 software 

(NanoDrop Technologies, UK) against a blank of molecular biology grade water. The ratio 

of absorbance provides an indication of the purity of the RNA with respect to 

contaminants that absorb in the UV spectrum such as proteins. Pure RNA has an A260/A280 

ratio of ~2.0. 

 

4.3.13. Complimentary DNA synthesis 
 

Total RNA was reverse transcribed to prepare complimentary DNA (cDNA). The mass of 

RNA used was kept constant where possible at 100ng. Reverse transcription was carried 

out in a 50µl volume and reagents were from Promega, UK. Total RNA was mixed with 

10µl 5x M-MLV RT buffer, 1µl random hexamers, 1µl deoxyribonucleotide triphosphate 

(dNTPs) (at 20mM), 1µl rRNasin RNase inhibitor and 0.5µl M-MLV reverse transcriptase. 

RNase free water was added to make the reaction volume up to 50µl. The mixtures were 

placed in RNA-free dome cap tubes and incubated for 10 minutes at 25˚C, 60 minutes at 

48˚C and a further 10 minutes at 95˚C on a Techne TC-3000 thermal cycler (Techne, 

Cambridge, UK). Samples were then held at 4˚C before being stored at -20˚C until the 

cDNA was required. 

 
4.3.14. Reverse transcriptase polymerase chain reaction (RT-PCR) 
 

Standard PCR amplification of cDNAs of interest was carried out in a reaction containing 

2.5mM MgCl2, 200nM of each forward and reverse primer, GoTaq Flexi buffer, pH8.5 and 

1 unit of GoTaq Flexi DNA polymerase in the presence of 200µM dNTPs (reagents from 

Promega, UK). Reaction volumes were scaled to a 12.5µl with the following quantities. 
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Table 4.2. Reaction volumes for reverse transcriptase polymerase chain reaction 

(RT-PCR). 

 

Samples were initially denatured at 95˚C for 3 minutes and then amplified for 40 cycles at 

95˚C for 30 seconds, primer specific annealing temperature (Tm) for 30 seconds, and the 

extension phase was held for 30 seconds at 72˚C (refer to table 4.3 for annealing 

temperatures). A final extension was held at 72˚C for 10 minutes. Samples were then 

stored at 4˚C prior to the analysis of products by agarose gel electrophoresis.  

 

4.3.15. Agarose gel electrophoresis 
 

Nucleic acid was resolved on 2% (w/v) agarose gels containing SafeView nucleic acid 

stain at 5µl 100ml-1 prepared in 1x Tris Borate EDTA (TBE) buffer. DNA ladders were 

run alongside the products. Gels were visualised and documented using a transilluminator 

on a Bio-Rad Gel Doc 2000.  

 

 

 

 

 

 

Reagent Volume (µl) 

5x GoTaq buffer 2.50 

MgCl2 (25mM) 1.25 

Forward primer (10µM) 0.25 

Reverse primer (10µM) 0.25 

dNTPs (10mM each) 0.25 

GoTaq Polymerase 0.06 

dH2O/cDNA 7.94 

TOTAL 12.50 
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Gene of 

interest 
Primers (5’-3’) 

Annealing 

temp 

(˚C) 

Product 

size 

(bp) 

18S 

Ribosomal 

RNA 

Fwd - GCA ATT ATT CCC CAT GAA CG 

Rev – GGC CTC ACT AAA CCA TCC AA 
60 125 

 

Sox 9 

 

Fwd - AAT CTC CTG GAC CCC TTC AT  

Rev – GTC CTC CTC GCT CTC CTT CT 
62 198 

 

Notch-1 

 

Fwd - GAG GCG TGG CAG ACT ATG C 

Rev - CTT GTA CTC CGT CAG CGT GA 
60 117 

Lipoprotein 

lipase 

(LPL)  

Fwd - AGG AGC ATT ACC CAG TGT CC 

Rev - CCA AGG CTG TAT CCC AAG AG 
60 130 

 

Osteonectin 

 

Fwd - AAA TAC ATC CCC CCT TGC CT (Exon 

6/7) 

Rev - CCA GGA CGT TCT TGA GCC AG 

(Exon 7) 

60 78 

 

Osteocalcin 

 

Fwd - GGC AGC  GAG GTA GTG AAG AG 

(Exon 3) 

Rev - GAT CCG GGT AGG GGA CTG (Exon 4)  

60 73 

 

Table 4.3. Summary table of primer sequences for specific genes used for generating PCR 
products. Annealing temperature and product size also included in table.   
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4.4. Results 

 
4.4.1. Chondroprogenitor cell isolation and expansion 

 
4.4.1.1. Morphology 
 

Chondroprogenitor cells were successfully isolated from osteoarthritic tibial plateaux and 

cultured until clonally derived primary cell lines were established. The number of days 

required for colonies to form ranged from 8 days up to 14 days; after which they were 

disregarded. The morphological appearance of the colonies formed showed a large degree 

of variation. Figures 4.1 A-H demonstrates the differences in these variations. Differences 

seen related to the size of the colony (figure 4.1A compared to H), how condensed the 

cells within the colonies were (figure 4.1C compared to E), and also to the size and shape 

of the cells within the colonies. It was observed that larger cells often correlated with the 

looser colonies and smaller cells with the tighter ones. The cell shape typically seen was 

fibroblast-like, however flatter cells with numerous protrusions were also identified, as 

were spindle-like cells.  

 

Using cloning rings, colonies were isolated to enable clonal cell lines to be expanded 

independently. Figures 4.2 A-C are representatives showing the typical appearance of the 

expanded chondroprogenitor cell lines isolated from osteoarthritic tissue. Figure 4.2A 

demonstrates the cells at sub-confluence and Figure 4.2B is a representative photograph of 

the cells at confluence. These images are from cells at population doubling (PD) 28-30. 

Figure 4.2C illustrates a clonal cell line at over 60PDs and it can be seen that the cells 

retain a similar morphology at this late stage. It was generally observed that the cells had a 

tendency to increase in size with longer culture periods.  

 

Crucially, it was noted that many cell lines would initially proliferate and pass the point of 

colony formation, after which mitotic activity was curbed and proliferation ceased. 

Morphological changes in the cells were apparent at this stage and representatives of 

unsuccessful cell lines are shown in figures 4.3 A & B.  
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4.4.1.2. Population doublings 
 

Growth kinetics of the clonally derived chondroprogenitor cells lines from 9 tibial plateaux 

were investigated (figure 4.4). It was observed that there was a large amount of 

heterogeneity between the different cell lines from the different patients; however, 

different cell lines from the same patient appeared to adopt similar proliferation rates. A 

large number of cell lines did not survive past the initial phase of exponential growth (up 

to 20 PDs), which in certain cases resulted in limited cell lines being analysed per patient. 

From the chart (figure 4.4) it can be seen that after the initial surge, the tendency was for 

proliferation rates to slow. In some cases this reduction eventually plateaued, however, in 

other cases, following the initial reduction in growth rate, a second surge was apparent 

where proliferation rates increased again. The furthest that any of the cell lines were 

expanded to was to 67.4 PDs and this was achieved in 157 days.  

 

As previously mentioned, many of the chondroprogenitor cell lines that initially appeared 

to be proliferating normally showed a sudden arrest in their proliferation. Based on the 

number of cell lines initially cultured passed 20PDs, a substantial 48% of these failed to 

reach 30PDs (figure 4.5). As such, of the initial clonally derived chondroprogenitor cell 

lines originally cultured, only 14 successfully reached 30 PDs from 6 different patients 

(figure 4.6). The time taken to reach 30 PDs ranged between 34 and 75 days and this 

significant difference highlights the heterogeneity in cells isolated and cultured in the same 

way, from different patients. Interestingly, the clonal variation (variation between clones 

from the same patient) was less pronounced and no statistical significance was found 

between these cells.  

 

Seven cell lines from 4 different patients were successfully cultured to 40 PDs and the 

time taken to reach this stage ranged between 50 and 98 days; as such, the retarded cell 

lines were slower by 2-fold (figure 4.7) highlighting again that there is a distinct difference 

in cell behaviour and proliferation rates under the same conditions. The diminishing 

numbers and lack of consistency again highlights the heterogeneity throughout the 

chondroprogenitor cell lines isolated from osteoarthritic tibial plateaux.  
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Comparisons of PDs per day can be seen in figures 4.8 and 4.9. PDs per day allows for a 

direct measure of proliferation rate within a defined amount of time. Using the cell lines 

that reached 40 PDs, PDs per day up to 30 PDs and up to 40 PDs were investigated in 

order to establish whether or not the rate of proliferation slowed in the latter stages of 

culture. Figure 4.8 allows for a direct comparison between the two time points to be 

visualised and it can be seen that in most cases (6 out of 8) the PDs per day up to 30 PDs 

were slightly greater than those up to 40, this trend suggesting that the cell proliferation 

slows after extended periods in culture. There were 2 anomalies noted however; in one 

case the PDs per day increased after 30 PDs, and in the second instance, PDs per day did 

not appear to change after 30 PDs were reached. The PDs per day up to 30 PDs ranged 

from 0.42 to 0.88, and the PDs per day up to 40 PDs ranged from 0.41 to 0.79. For both of 

those data sets however, the initial phase of exponential growth was included and as such, 

this phase is likely to have the greatest impact on PDs per day. Consequently, figure 4.9 

illustrates the PDs per day for the duration between 30 and 40 PDs thus eliminating the 

early phase so that a comparison can be made to how the rates really differ in the former 

and latter stages of culture. Between 30 and 40PDs, the rate of PDs per day ranged 

between 0.29 and 0.81. Statistically, there was no significant difference observed due to 

the varied behaviours of the different cell lines - some cell lines showed a reduction in 

proliferation whereas others demonstrated an increase in proliferation. As such, no 

definitive conclusion can be drawn as to whether the proliferation rates slow in later stages 

of culture; more so each cell line has its own behavioural pattern.  

 

A linear regression line was plotted in order to establish whether or not there was a 

relationship between proliferation rates (PDs per day) and patient age. This dot plot was 

based on the cell lines that surpassed 30 PDs and the dots represent cell lines rather than 

individual patients. Interestingly it was found that proliferation rates were higher in cell 

lines of older patients (P<0.05 using Pearsons correlation test), however a low R2 value 

brings to question the significance of the regression line.   

 

4.4.2. Chondrogenic 3D pellet formation 
 

Chondroprogenitor cells were chondrogenically induced into 3D pellets containing 5x105 

cells (figures 4.11 A-E). These pellets were smooth and iridescent, resembling a typical 
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hyaline cartilage surface. The pellets formed varied in size between clonal cell lines and 

between patients but were typically between 600µm and 1.0mm. Figures 4.11 A-C 

illustrate pellets from clonal cell lines from 3 separate patients, expanded to 24-26 PDs. 

Despite varying slightly in size their physical appearance is comparable. Figure 4.11 D 

illustrates a pellet formed following expansion in culture to 60PDs. Again the difference 

observed was in size (500µm) however it cannot be assumed that this difference is due to 

the long culturing period. When forming the pellets for each clonal cell line, a minimum of 

3 replicates were maintained. As such, it was apparent that within one particular cell line, 

the resultant pellets were homologous to one another (figure 4.11 E). The size and gross 

appearance of the pellets were consistent within the clonal cell lines. In terms of gross 

morphology, it was noted on several occasions that outgrowths sporadically formed off the 

main pellet. Although not featured in figure 4.11 they are apparent in several of the 

sectioned pellets for histology and immunohistochemistry.  

 

4.4.2.1. General histology 
 

The ECM present in pellets was visualised by safranin O and toluidine blue staining 

(figure 4.12 & 4.13 respectively). Four pellets were imaged to illustrate the variation 

between clonal cell lines from different patients after culturing the cells in monolayer for 

24-26 population doublings (A – D). Figure 4.12/13 E represents a pellet formed after 

culturing in monolayer for 35 PDs and figure F illustrates a pellet formed following 

extended culture in monolayer, furthering 60 PDs. In all cases GAG deposition was 

evident, to greater or lesser extents. In the PD24-26 pellets, safranin O was most abundant 

in pellet A and, incidentally, the pellet also appears to be more intact; a coherent pellet 

with a retained structure when removed for analysis. In pellet C it can be seen that there 

are areas that lack GAG deposition particularly around the centre of the pellet, and 

similarly this pellet appears to have the least amounts of integrity. The pellets from PD 35 

and 60 (E & F) demonstrated GAG deposition again, to differing degrees.  

 

Toluidine blue staining (figure 4.13) demonstrated very similar results however it appears 

to have been a more sensitive stain as there are regions that elicit positive toluidine blue 

stain that apparently lacked GAG deposition when looking at the safranin O results. 
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Having said that, pellet C maintained its apparently poor ECM, as was found with the 

safranin O.  

 

In all cases, safranin O and toluidine blue staining for sulphated GAGs was most abundant 

around the periphery of the pellet, where an apparently more fibrous outer coating appears 

to surround the pellet. 

  

4.4.2.2. Immunohistochemistry 
 

The sectioned pellets were labelled with a panel of antibodies to ECM components. These 

were carried out on pellets formed from cells expanded to PD 24-26, 35 & 60 and cultured 

in 3D for 21 days. To see whether time influenced expression of ECM components, pellets 

were cultured for 21 and 41 days respectively. These pellets originated from cells 

expanded to 24-26 PDs.  

 

All pellets labelled for collagen type II (figure 4.14). Although it is not possible to quantify 

labelling, it is apparent that labelling is more continuous in pellets A and C, compared with 

E and G, and this also correlates with the integrity of the pellets assessed. Pellets I and K, 

formed from later PDs do not show any marked difference in the level of collagen type II 

labelling. Looking at the pellets that were cultured for different lengths of time (M-S), no 

distinct differences were detected in the first pellet (M/O) however the longer culture 

period did appear to yield more collagen type II in the second pellet (Q/S). As such, 

culturing the pellets for longer periods of time did not elicit a distinct response on the 

resultant tissue.   

 

Aggrecan labelling was not consistent throughout the pellets (figure 4.15). In certain 

pellets, labelling was evident throughout the tissue and, in particular, around the periphery 

(pellet A). However, in other pellets (pellet C) despite having a sound histological 

appearance, very little aggrecan was detectable. Pellets with less integrity demonstrated 

lower levels of aggrecan particularly in the core of the pellet (E and G). No major 

difference was found in pellets cultured from cells at later PDs; the trend that was 

generally observed was that the more aggrecan detected, the more intact the pellet, 

regardless of PDs at the point of pellet formation. Similar to the collagen type II result, the 
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effect of incubation time on aggrecan expression appeared to be cell-line specific as in one 

instance the 6 week incubation time made no difference and in the other pellet an increase 

in aggrecan expression was observed (figure 4.15 M-S). 

 

Collagen type I expression was evident in the ECM of all the pellets (figure 4.16). In some 

pellets it was more prominent in the core when compared to the periphery (pellets A and 

G). No distinct pattern, however, was observed in relation to the distribution of type I 

collagen and there more no marked difference in expression between the 3 and 6 week 

cultures.  

 

Labelling for type X collagen demonstrated the greatest variation between the pellets 

(figure 4.17). Some demonstrated a distinct lack of type X collagen, whereas in other 

pellets from different clonal cell lines, the ECM component was detected (pellet A). This 

is interesting as it demonstrates clear heterogeneity between the pellets. Pellet G represents 

the pellet cultured from cells expanded to 60 PDs and it is evident that in that particular 

case extended culturing did not increase the propensity of type X collagen expression. 

Pellets I to O demonstrate no marked effect of 3 versus 6 week incubation times whilst in 

pellet culture.   

 

4.4.3. Plasticity  
 

Following adipogenic induction, the cells adopted different morphologies in that they 

developed projections and resembled a more dendritic phenotype when compared to the 

controls (figures 4.18 and 4.19). Histological examination using oil red O revealed the 

presence of numerous lipid vacuoles surrounding the cells. This was consistent between all 

the clonal cell lines (figure 4.18 A-C). No lipid vacuoles formed in the corresponding 

controls (figure 4.19). Real-time reverse transcriptase polymerase chain reaction (RT-

PCR) analysis of the expression of mRNA for lipoprotein lipase (LPL), a member of the 

lipase gene family found in adipose tissue, in cultures exposed to adipogenic treatment 

verified the histological observation seen within the clonal cultures. Figure 4.23 B 

illustrates the absence of LPL in the chondroprogenitor cultures (C) compared to the 

positive bands seen in the adipogenic cultures (A). 
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Osteogenic differentiation was induced in a similar 3D pellet culture system used for 

chondrogenic induction. Gross morphology of the osteogenic pellets after 3 weeks closely 

resembled that of the chondrogenic pellet. The smooth, white structures are pictured in 

figure 4.20. Sectioned pellets were stained using the von Kossa technique to demonstrate 

deposits of calcium, indicative of a mineral rich matrix. Results were cell-line specific as 

varying levels of deposits were apparent after the 3 week incubation time (figure 4.21). 

Pellet A showed abundant staining throughout the pellet, pellet B showed signs of mineral 

deposits particularly in the core region of the pellet; and pellet C apparently lacked any 

calcium deposits after 3 weeks. Pellet D however is the same clonal cell line as pellet C, 

cultured under the same conditions for 6 weeks rather than 3, and here it was evident that 

after 6 weeks the mineral deposits formed and were abundant throughout. No positive stain 

was detected in any of the corresponding controls (figure 4.22). RT-PCR was carried out 

in order to demonstrate gene expression of osteogenic markers, however no particular gene 

was found to be exclusive to the osteogenic pellets whilst being absent from the 

chondrogenic pellets.  
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Figure 4.1. Comparative morphology of chondroprogenitor cell colonies isolated from 
osteoarthritic cartilage.  

Pictured colonies were cultured between 8 – 14 days in conditioned medium. Cells 
displayed a typical fibroblast-like phenotype of dedifferentiated chondrocytes. Colonies 
varied both in size and density. Scale bars: A-B = 200µm; C-E = 400µm, F-G = 500µm, H 
= 700µm. 
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Figure 4.2. Representative images of chondroprogenitor cells expanded in monolayer 
culture at sub-confluent stages (A) and at confluence (B).  

Cells cultured passed 60PDs retained they typical fibroblast-like morphology (C) 
throughout the extended culture period.  
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Figure 4.3. Representative images of chondroprogenitor cell lines that failed to continue 
proliferating.  

Cell morphology became altered; they adopted either a long thin appearance (A) or an 
irregular, straggly appearance (B). In all cases, these ‘unsuccessful’ cells showed a greater 
affinity to each other; clustering together forming networks of non-proliferating cells.  
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Figure 4.4. Chart to illustrate population doublings of clonally derived primary chondroprogenitor cell lines isolated from human osteoarthritic knee 
cartilage. 



192 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.5. Pie chart displaying the proportion of cell lines that were successfully 
expanded passed 30 PDs.  
 

Fifty-two percent of the total number (n=27) successfully reached 30PDs.  
 

 

Figure 4.6. Dot plot representing the range of number of days in culture before clonally 
derived chondroprogenitor cell lines reached 30 population doublings.  
 

One-way ANOVAs confirmed that there was a statistical significance (P<0.001) between 
days taken to reach 30PDs in different patients. No significance was found between clones 
of the same patient, however this does not consider the cell lines that failed to reach 
30PDs.  
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Figure 4.7. Dot plot representing the range of number of days in culture before clonally 
derived chondroprogenitor cell lines reached 40 population doublings.  
 

One way ANOVAs confirmed a significant difference (P≤0.001) between days taken to 
reach 40PDs in different patients. 

 

 

Figure 4.8. Dot plot demonstrating the rate of population doublings per day up to 30 
(blue) and 40 (red) PDs in clonally derived chondroprogenitor cell lines reaching this 
proliferative stage. 
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Figure 4.9. Dot plot demonstrating the rate of population doublings specifically between 
30 and 40PDs in clonally derived chondroprogenitor cell lines.  
 

A paired t-test was used to establish whether or not there was a difference between 
proliferation rates at 0-30 PDs and 30-40PDs; as such no difference was found (p>0.05). 
 

 

Figure 4.10. Dot plot demonstrating the correlation between population doublings per day 
in relation to patient age in clonal cell lines that reached 30 PDs.  
 

Pearson’s correlation test demonstrated a positive relationship (p<0.05).  

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 

PD
s p

er
 d

ay
 

Chondroprogenitor cell lines 

PDs per day between 30 & 40PDs 

K1 

K2 

K3 

K19 

0.00 

0.10 

0.20 

0.30 

0.40 

0.50 

0.60 

0.70 

0.80 

0.90 

1.00 

40 45 50 55 60 65 70 75 80 

PD
s 

pe
r d

ay
 

Patient age 

PDs per day vs patient age 



195 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11. Photomicrographs of the gross morphology of chondrogenic pellets.  

Cell lines from different patients were used (A-C) displaying consistent characteristics. 
The major difference observed was size related. After long term expansion (beyond 
60PDs) cells maintained the capacity to form pellets (D). Replicates within cell lines 
demonstrated consistency in pellet size (E).  
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Figure 4.12. Photomicrographs of chondrogenic pellets stained with Safranin O for GAGs. 

Varying amounts of GAG was observed in pellets from clonal cell lines derived from 
different patients at PD 24-26 (A-D). Detectable GAG was particularly evident around the 
periphery of the pellet. GAG was also evident in pellets formed after longer culture 
periods; at PD 35 (E) and PD 60 (F). Scale bars: A-C, E-F = 50µm (insert = 100µm), D 
=100µm (insert = 200µm).  
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Figure 4.13. Photomicrographs of chondrogenic pellets stained with toluidine blue.  

Varying amounts of GAG was observed in pellets from clonal cell lines derived from 
different patients at PD 24-26 (A-D). Detectable GAG was particularly evident around the 
periphery of the pellet. GAG was also evident in pellets formed after longer culture 
periods; at PD 35 (E) and PD 60 (F). Scale bars: A-F = 50µm (insert = 100µm). 
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Figure 4.14. Collagen type II expression in chondrogenic pellets formed from 
chondroprogenitor cells isolated from osteoarthritic tibial plateaux.  
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Figure 4.14. Collagen type II expression in chondrogenic pellets formed from 
chondroprogenitor cells isolated from osteoarthritic tibial plateaux. 

A-H: Pellets from cells expanded to PD 24-26. I-J: Pellets from cells expanded to PD 35. 
K-L: Pellets from cells expanded beyond 60PDs. Collagen type II labelling was evident 
throughout the sectioned tissue. 

M-R: Pellets incubated for 3 (M+ P) or 6 (O+R) weeks. Collagen type II labelling evident 
in pellets at both time periods. In P/R there is an increase in intensity of the stain in the 6 
week pellet.  

Control pellets displayed on the right side (B, D, F, H, J, L, N, and Q). 
Scale bars: A-D = 150µm (insert = 300µm). E, G, I-K = 100µm (insert = 200µm). F, H, L 
= 200µm.  
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Figure 4.14. Collagen type II expression in chondrogenic pellets formed from 
chondroprogenitor cells isolated from osteoarthritic tibial plateaux. 
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Figure 4.15. Aggrecan (5C5) expression in chondrogenic pellets formed from 
chondroprogenitor cells isolated from osteoarthritic tibial plateaux. 
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Figure 4.15. Aggrecan (5C5) expression in chondrogenic pellets formed from 
chondroprogenitor cells isolated from osteoarthritic tibial plateaux. 

A-H: Pellets from cells expanded to PD 24-26. I-J: Pellets from cells expanded to PD 35. 
K-L: Pellets from cells expanded beyond 60PDs. Aggrecan labelling was evident 
throughout the sectioned pellets. 

M-T: Pellets incubated for 3 (M+ Q) or 6 (O+S) weeks. Aggrecan was detected in pellets 
at both time periods. No consistent pattern relating to expression in relation to incubation 
time was observed. 

Corresponding control pellets displayed on the right side (B, D, F, H, J, L, N, P, R and T). 
Scale bars: A-L = 100µm (insert = 200µm). M-T = 150µm (insert = 300µm). 
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Figure 4.15. Aggrecan (5C5) expression in chondrogenic pellets formed from 
chondroprogenitor cells isolated from osteoarthritic tibial plateaux. 
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Figure 4.16. Collagen type I expression in chondrogenic pellets formed from 
chondroprogenitor cells isolated from osteoarthritic tibial plateaux. 
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Figure 4.16. Collagen type I expression in chondrogenic pellets formed from 
chondroprogenitor cells isolated from osteoarthritic tibial plateaux. 

A-H: Pellets from cells expanded to PD 24-26. I-J: Pellets from cells expanded to PD 35. 
K-L: Pellets from cells expanded beyond 60PDs. Collagen type I labelling was detected in 
all pellets.  

M-S: Pellets incubated for 3 (M+ P) or 6 (O+R) weeks. Collagen type I labelling evident 
in pellets at both time periods. 

Control pellets displayed on the right side (B, D, F, H, J, L, N, Q and S). 
Scale bars: A-D, I-L = 100µm (insert = 200µm). E-H, M-S =150µm (insert = 300µm).  
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Figure 4.16. Collagen type I expression in chondrogenic pellets formed from 
chondroprogenitor cells isolated from osteoarthritic tibial plateaux. 
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Figure 4.17. Collagen type X expression in chondrogenic pellets formed from 
chondroprogenitor cells isolated from osteoarthritic tibial plateaux. 
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Figure 4.17. Collagen type X expression in chondrogenic pellets formed from 
chondroprogenitor cells isolated from osteoarthritic tibial plateaux. 
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Figure 4.17. Collagen type X expression in chondrogenic pellets formed from 
chondroprogenitor cells isolated from osteoarthritic tibial plateaux. 

A-F: Pellets from cells expanded to PD 24-26. G-H: Pellets from cells expanded beyond 
60PDs. Collagen type X labelling was not consistent between pellets. Pellet A displays 
positive labelling whereas no detectable collagen type X is seen in pellet E. No collagen 
type X was observed in the pellets formed following extended expansion (60+ PDs) in 
monolayer (G).  

I-P: Pellets incubated for 3 (I + M) or 6 (K + O) weeks. No marked difference in collagen 
type X expression was observed between the different incubation times.  

Control pellets displayed on the right side (B, D, F, H, J, L, N, and P). 
Scale bars: A – H, O - P =100µm (insert = 200µm). I - N =150µm (insert = 300µm).  
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Figure 4.18. Photomicrographs of monolayer cultures following adipogenic induction in 
clonally-derived cell lines from several patients.  

Cells were stained using oil red-O to highlight lipid vacuole formation.  
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Figure 4.19. Photomicrograph of monolayer culture demonstrating comparative control 
following adipogenic induction.  

Lipid formation is absent in chondroprogenitors when treated with oil red-O. 
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Figure 4.20. Photomicrograph of osteogenic pellets from clonally derived cell lines from 
different patients (A-C).  

Gross morphology of the pellets showed a smooth white surface similar to chondrogenic 
pellets previously displayed. Variation was found in pellet size from different clonal cell 
lines and patients however, consistency in size was seen within replicates from a particular 
cell line (C). 
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Figure 4.21. Photomicrographs of sectioned osteogenic pellets stained using the von 
Kossa technique for mineral deposits.  

Great variation was found between pellets from different cell lines; in certain pellets 
(represented by A) strong positive labelling was detected throughout the pellet, in other 
pellets (B) evidence of mineral deposits were detected particularly in the core of the pellet; 
and there was a third category of pellets which demonstrated no sign of mineral deposition 
(C), following a 3-week incubation period. The experiment was repeated where pellets 
were incubated for 6 weeks to test whether changes observed were time dependent. Image 
D is from the same cell line as image C- after 3 weeks no mineral deposition was detected, 
however, after 6 weeks mineral deposition was abundant. This result however was not 
consistent and in some cases no difference in deposition could be detected. Scale bars: A 
& D = 150µm (insert = 300µm), B-C = 100µm (insert = 200µm).  
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Figure 4.22. Photomicrograph of a sectioned pellet representing a comparative control 
following von Kossa staining.  

No positive labelling was detected signifying no detectable mineral deposits in control 
pellets. Scale bar: 150µm (insert = 300µm). 
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Figure 4.23. Expression of sox 9, notch 1, LPL and 18S genes were investigated by RT-
PCR following multi-lineage induction of chondroprogenitor cells. 

Chondrogenic pellets expressed sox 9 and notch 1 genes (A) and adipogenic cultures 
expressed LPL (B). A = adipogenic cultures & C = comparative controls.  
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4.5. Discussion 
 

The presence of articular cartilage stem/progenitor cells is now a concept that has become 

increasingly accepted with various research groups reporting on their occurrence 

(Alsalameh et al., 2004a, Dowthwaite et al., 2004a, Khan et al., 2009a, Koelling et al., 

2009a, McCarthy et al., 2011a, Pretzel et al., 2011, Williams et al., 2010a). Previous work 

from our laboratory has demonstrated in normal bovine, equine and human tissue that 

these cells can be isolated and expanded in culture whilst retaining their cartilage-specific 

characteristics in vitro in permissive conditions. Other research groups have identified 

tissue-specific progenitor cells using other methods of identification including CD markers 

and migratory capacities; and using these, investigators have also demonstrated the 

existence of progenitor cells in normal and diseased, osteoarthritic tissue.  

 

Within this study we have demonstrated for the first time the presence of a progenitor cell 

population isolated from human osteoarthritic cartilage using the Jones & 

Watt/Dowthwaite method that relies specifically on α5β1 integrin interactions within a 

twenty minute timeframe.  

 

Colonies of cells formed from single cells. However, there was great variation seen in the 

time taken for the colonies to appear, in the density of colonies and in the morphology of 

the cells within the colonies. The reason for these discrepancies remains unknown and it 

was not possible to assess whether or not these early differences had implications on the 

cultures at later stages of expansion. Of the initially seeded cells that formed colonies of 

over 32 cells, three different categories were observed. There was i) a group which initially 

surpassed 32 cells and then almost immediately stopped proliferating, ii) a cohort of cells 

that reached the region of 25-30 population doublings, and iii) a group which could be 

cultured beyond 30 population doublings; in one case reaching up to 60 population 

doublings. Colonies selected for expansion were picked at random and therefore, it is 

possible that disparities in results could stem back to these early differences in colony 

morphology and it would be interesting to pursue this finding further as it may have major 

implications on the potential of the cells used for regenerative purposes. In a recent paper 

by Pevsner-Fischer et al., (2011), the author discusses the possibility that “long-term 

culture of MSCs leads to the selection of specific clones overtaking the culture. Since 
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MSCs may be a priori heterogeneous, functionally divergent MSC cultures could simply 

be an outcome of specific culture conditions that select particular type of MSCs”. This is a 

view that raises the point of certain cells taking over others within long term culture, a 

reasonable rationale, however the differences in this case were not a result of culture 

conditions as all cells were isolated and expanded in culture in the exact same conditions.   

 

Only 52% of the cell lines cultured reached 30 PDs, a substantial figure implying that 

approximately half of the chondroprogenitors isolated have the capacity to be cultured 

long term. It was also interesting to observe the varied proliferation rates following the 

initial exponential phase. Some cell lines slowed down, some remained constant, and 

intriguingly others sped-up upon reaching the 30 PD mark. Again these differences 

highlight a discrepancy in the cells isolated suggesting that despite the constant α5β1 

integrin interactions, there is heterogeneity within this cell population.   

 

Understanding the proliferation mechanisms of chondroprogenitors is an issue that has 

been addressed by Martin et al., (2005) who state that optimal proliferation rates of 

chondroprogenitor cells are achieved in the presence of 40% fetal bovine serum. However, 

this high percentage of serum results in a high level of ‘unknown’ combinations of 

substances acting on the cells; an issue that would be raised if this method was taken into 

clinical trials. Despite the acceptance of an issue in understanding the proliferation 

mechanisms, this paper does not address the issue of ‘failed cell lines’ which was 

encountered within this particular study. 

 

As a result of the differences in proliferation rates, the number of days taken for the cells 

to reach 30 (and 40) PDs varied significantly between patients. Due to the fact that the 

number of successful cell lines cultured could not be pre-determined, it was not possible to 

analyse clonal variation within patients. Evidently there were patients in which only one 

cell line reached 30 PDs and in a different patient four clonal cell lines reached 30 PDs. It 

is difficult to state at this point whether the difference was based on the patient and the 

viability of the cells within patients, or if it was a case of random selection that led to more 

viable cells being picked by coincidence and vice-versa. The trend that was observed 

however (which does not take into consideration the ‘failed’ cell lines) is that clonal cell 

lines from the same patient appear to proliferate at similar rates. An explanation for this 
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could be that there are different cohorts of cells within osteoarthritic tissue, and as such the 

‘high proliferating’ cohort behave in a similar way to each other, yet differently to the 

cohort of cells which are less viable. Understanding the differences between these cohorts 

of cells is essential as it will highly impact cell selection criteria when using them for 

reparative purposes.   

 

Indeed, heterogeneity of resident cells in articular cartilage has been documented; Kouri et 

al., (1996) described three different cell types inhabiting osteoarthritic cartilage 

specifically. Using ultra-structural studies, the authors identified i) type 1 cells which are 

single or clustered chondrocyte-like cells, ii) elongated secretory cells termed type 2 cells 

and iii) type 3 cells which are irregularly shaped cells undergoing degeneration. It is 

important at this stage to highlight that results from Dowthwaite et al, (1994), Williams et 

al., (2010) and McCarthy et al., (2011) papers specifically targeted progenitor cells 

residing in the surface zone of articular cartilage in the respective different species. As 

such, it is likely that the digested cells used in those studies contained a more uniform, 

homogeneous population of cells. In the osteoarthritic tissue used for this study, the 

topographical morphology of the tibial plateaux was so varied; certain regions were eroded 

to the bone, others were extensively fibrillated and other areas appeared morphologically 

‘normal’. As such, the typical surface zone seen in healthy articular cartilage was 

predominantly absent and as a result, any/all of the remaining cartilage was used in the 

tissue digestion for cell isolation. Undoubtedly, this ‘mixed bag’ of heterogeneic cells 

contributed to the inconsistent outcomes encountered throughout this study.  

 

Pellet cultures were established using the clonally derived cell lines isolated and expanded 

from osteoarthritic tibial plateaux. Morphologically, the pellets were consistent in terms of 

outer appearance; displaying a smooth, iridescently white surface. The size of pellets from 

different cell lines was variable. Histologically, the cells within the 3D pellets displayed a 

more rounded phenotype, characteristic of articular cartilage in situ. This is positive 

following de-differentiation that occurs when culturing cells in monolayer (Schnabel et al., 

2002). The pellets consistently formed an outer fibrous layer with fibres running parallel to 

the pellet periphery. This region bears great resemblance to capsule-like perichondrium 

which is usually devoid in articular cartilage due to the presence of the protective synovial 

membrane. Perichondrium is typically a region containing flat and tangentially aligned 
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chondrocytes, with a higher cell density than deeper regions that is actively involved in 

developmental stages (Morris, 2002). As such, as these cells have been extracted from 

their original protected niche, it is understandable that the pellets form this protective outer 

layer.   

 

The extent to which the cells have the capacity to recapitulate normal articular cartilage 

was investigated using immunohistochemistry to detect protein expression of specific 

cartilage ECM components, as well as general stains to demonstrate the level of sulphated 

GAG production within the matrix. Safranin O and toluidine blue staining demonstrated 

the presence of sulphated GAGs, particularly around the outer fibrous region of the pellets 

which, as stated, is congruous to the higher cell densities in this area. Within the central 

cores of the pellets, there was great variability between the level of GAG deposition of 

pellets processed at the same PDs, which again highlights inter-population heterogeneity. 

Both stains were highly detected in the pellets which where chondrogenically induced past 

60 PDs. This was an interesting result as it has been suggested in the literature that long 

term expansion of MSCs in culture results in a decreased ability to differentiate into 

mesodermal lineages (Digirolamo et al., 1999). 

 

The presence of sulphated GAG alone however, is not enough to state that cells are 

producing a cartilaginous matrix and as such it is imperative to refer to the 

immunohistochemistry results. Collagen type II and aggrecan (5C5) labelling was evident 

in all the chondrogenic pellets regardless of the stage at which the pellet was formed. 

Having said that, in some pellets the staining was more sparse than in others and as such, 

variability was present regardless of time in culture or point of pellet formation. This 

finding again emphasises the heterogeneity which was encountered throughout this study. 

Combined, these results supply evidence that chondroprogenitor cells excised from 

osteoarthritic tissue do have the potential to produce a cartilage-like, hyaline matrix rich in 

GAGs, aggrecan and collagen type II. However, it is also apparent that within the cohort of 

cells selected using the fibronectin adhesion assay, there are certain cells which respond 

more positively than others.  

 

Collagen type I was also detected in all of the pellets assessed. In some cases the labelling 

was restricted to the core, in other instances labelling was heightened around the periphery 
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and in other pellets, labelling was uniform throughout; demonstrating the inconsistent 

nature of the labelling observed. Interestingly, there are two approaches which could be 

seen with regards to collagen type I expression. During growth of the musculoskeletal 

system, type I collagen expression precedes collagen type II expression at the growth plate 

during endochondral ossification (Leboy et al., 1988) and so the presence of type I 

collagen may represent the anlagen phase of the mature tissue. Conversely, type I collagen 

is present in fibrocartilagenous repair tissues which provide a surface insufficient for 

weight bearing (Roberts et al., 2009). It is difficult at this point to elucidate which of the 

two scenarios is occurring as collagen type II was also present deploying a hyaline like 

resemblance, however, in the 6 week pellet cultures there was no marked reduction in type 

I collagen synthesis suggesting its continued production, rather than an initiator of type II 

collagen synthesis.   

 

The ambiguous nature of type X collagen expression found in the pellets further reinforces 

the heterogeneous nature of the tissue in question. The presence of type X collagen is 

suggestive of differentiation into terminally differentiated chondrocytes and, in some 

cases, the formation of a hypertrophic cartilage. This is a renowned phase of endochondral 

ossification in which the cartilaginous anlagen is transformed into bone (reviewed by 

Shen, 2005). It is a common phenomenon, as demonstrated by McCarthy et al., (2011) that 

bone marrow derived stromal cells have the tendency to not only produce a matrix rich in 

cartilaginous macromolecules following chondrogenic induction; but to also display 

consistent type X collagen labelling within the matrix; ultimately resulting in the 

resounding possibility that the tissue may have the tendency to terminally differentiate and 

calcify. McCarthy et al., (2011) suggested that chondroprogenitors isolated using the 

fibronectin adhesion assay (as per Dowthwaite et al., (2004)) were superior to 

conventional bone marrow derived stromal cells due to their lack of type X collagen 

expression in pellet cultures and therefore their reinstated hyaline cartilage phenotype. It is 

important to note, however, as previously mentioned that this study used only surface zone 

cells and therefore, the population of cells initially digested from the tissue was more 

homogeneous when compared to the range of cells residing in any remaining osteoarthritic 

cartilage on diseased tibial plateaux. This difference may explain the discrepancy between 

the solid findings observed in the McCarthy et al., (2011) study compared to the current 

study. As such, in accordance with McCarthy et al., (2011) it may therefore be suggested 
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that within the osteoarthritic tibial plateau, there are chondroprogenitor cells with the 

capacity to regenerate hyaline whilst being devoid of the endochondral fate of terminal 

differentiation. 

 

Heterogeneity of MSCs is an issue that has been raised many times, and a recent review by 

Pevsner-Fischer et al., (2011) considers many of the issues surrounding the topic. 

Questions that are broached in this review include “(1) Does the in vitro observed 

variability reflect the existence of MSC subsets in vivo? (2) What is the molecular basis of 

the in vitro observed heterogeneity? and (3) What is the biological significance of this 

variability?”. All of these questions are directly relevant to the results of this chapter in 

establishing at what point the heterogeneity occurred and what the significance is to this 

particular population of cells with regards to reparative strategies.  

 

The ability for the chondroprogenitors to produce multi-lineage progeny was examined as 

the cells were induced into adipogenic and osteogenic lineages. Despite the variation seen 

in the chondrogenic pellets, results were promising as all cell lines tested produced lipid 

vacuoles in monolayer cultures, and LPL gene expression was positive following 

adipogenic induction. Osteogenic progeny was however less affirmative and more 

variable. Upon von Kossa staining, evidence of mineralisation was heavily detected in 

some pellets, and absent in other pellets. It was apparent that in certain cases time was a 

factor as in one particular cell line, no mineralisation was detected after 3 weeks, however, 

deposits were abundant after 6 weeks. As such, the variable results may be a result of 

several reasons; a) particular cell lines could (or could not) be osteogenically induced and 

b) particular cell lines may have the ability to mineralise however the process may be 

delayed compared to the rate in other cell lines. Again, the fact that some cell lines were 

able to produce a positive von Kossa stain and others weren’t, highlights the heterogeneity 

within the cells obtained from osteoarthritic tissue; suggesting that there may be some 

chondroprogenitors which are more ‘viable’ than others when assessing their MSC 

characteristics. Indeed, Pittenger et al., (1999) reported heterogeneity within multi-lineage 

capacities of expanded colonies of cells isolated from bone marrow, which led to the 

distinction between mesenchymal stem cells and progenitor cells. The former had the 

capacity for tri-lineage differentiation whereas the latter displayed limited differentiation 

potentials. As such, it is possible that further classification of cells isolated using the 
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fibronectin adhesion assay is necessary to allow the most appropriate cohort of cells to be 

expanded for use within regenerative medicine.  

 

Interestingly, Pevsner-Fischer et al., (2011) discuss in their review that generally calling 

mesenchymal stem cells ‘multipotent stem cells’ does not actually reflect their true nature, 

in that there are not only inter-population heterogeneities, but also intra-population 

heterogeneities; both of which were observed in this study. A study carried out by 

Digirolamo et al., (1999) led to the suggestion that “even when derived from a single cell, 

the progeny of MSCs can be conditioned to behave differently”. Differences observed in 

this study may stem back to the point at which colonies were forming as seeding densities 

can affect cell morphologies and, to date, it is not known how these differences relate to 

cell functions and what they may signify. As such, the initial growth rates of the colonies 

and thus their proximity to other cells may therefore have been an influencing factor 

leading to heterogeneity within the expanded cell lines.  

 

As briefly mentioned previously, heterogeneity within the chondroprogenitors isolated 

from osteoarthritic tibial plateaux may be a secondary result of extended ex vivo culturing 

in monolayer, due to in vivo heterogeneity of variable phenotypes reflecting the natural 

repertoire of MSCs, or due to the detachment of the cells from their in vivo niche (Pevsner-

Fischer et al., 2011), which can result in partial differentiation consequently harvesting a 

heterogeneous mixture of cells (Wagner et al., 2010). Within diseased tissue particularly, 

as a result of tissue degradation and inflammation, it is possible that progenitor cells are 

actively involved in different functions and/or aspects of maintenance and repair and 

therefore heterogeneity of cells within the tissue may allow for appropriate selection of 

specific cell ‘types’ for different functions. “By contrast, homogeneous and rigid 

populations could be counterproductive under strong demand for tissue repair and 

immunomodulation” (Pevsner-Fischer et al., 2011). As such, it was proposed that the 

mixed populations may reflect the varied functions necessary to regulate tissue 

homeostasis and drive tissue repair, providing a possible explanation to the variation seen 

in results within this study. 

 

Methods used in this chapter relied heavily on surface markers as a means of identification 

to distinguish between chondroprogenitor cells and mature chondrocytes. It is important to 
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mention the stability of these markers following the digestion process. Unpublished work 

from our laboratory has demonstrated that cells isolated from bovine cartilage display 

altered characteristics depending on how long after the digestion process they are used. It 

would therefore also be interesting to investigate whether or not a time dependent 

difference could be observed following the digestion process in chondroprogenitors 

isolated from OA cartilage.  

 

Despite the heterogeneity and variation observed, the method of chondroprogenitor cell 

isolation used in this study in relation to other methods currently used, provides a cohort of 

cells that are specifically targeted based on their integrin receptor interactions. Therefore, 

despite a distinctive selection process occurring, varying cohorts of cells remain in which 

there may be one or more cell types that develop into the progenitor phenotype. 

Conversely, other methods of progenitor cell isolation used, for example, the Koelling 

method relies purely on cells migrating from explants cultured in vitro (Koelling et al., 

2009a). This phenomenon is not only a common occurrence in many different tissues and 

so should arguably be treated cautiously as a mechanism for isolating ‘progenitor’ cells, 

but also inevitably contains a greater selection of various cells with unknown, undisclosed 

phenotypes. 

  

The method used by Alsalameh et al., to identify progenitor cells relies on the presence of 

CD105+/166+ cells (Alsalameh et al., 2004a). However, as previously mentioned there has 

been contradicting data published with regard to these markers in normal and osteoarthritic 

cartilage, suggesting that further work would need to be carried out before this method 

became widely accepted (Grogan et al., 2009). 

 

 As such, with the rapid advancements and developments in this area of study, the need for 

a single and accepted method of isolation is essential to allow for further consistency and 

comparability to results across the board, enabling the issue of heterogeneity to be 

addressed. Indeed it would be beneficial to decipher the differences between the clonal cell 

lines and gain a greater understanding in the heterogeneity so that a sound understanding 

in the mechanisms of cells interactions are known before they are used for reparative 

techniques.  
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To further the work described in this chapter, it would be valuable to compare the same 

tissue used for scoring to the in vitro chondroprogenitor cell analysis. This would provide 

an insight into the reparative potential of OA tissue at specific stages of disease severity. 

This could provide an indication of whether the cells that adhere to the fibronectin during 

the adhesion assay all reside in less severely affected tissue, or whether these cells are 

equally or in fact more abundant in regions of tissue that are more highly affected by the 

disease. The limiting factor here however is cell numbers, as it may not be possible to 

digest sufficient cells for in vitro culturing from small sections of OA tissue. 

 

Looking forward, it would also be beneficial to seek quantitative molecular approaches to 

establish any correlations between OA severity and the chondroprogenitor cell profile. 

These could include quantitative PCR or more simply western blotting, as a means of 

providing more weight to the qualitative results obtained in this chapter.  

 

As a result of the limitations of the cohort size, differences in age and sex of the patient 

from which tissue was excised was only briefly touched upon. It would be interesting, 

given a larger cohort to further investigate the effects of age, sex and anatomical location 

on the characterisation of chondroprogenitors. Similarly, it would be useful to correlate 

factors such as pain levels and history of disease progression to see whether these are also 

contributing factors.  

 

Despite work having previously been carried out in normal human and bovine tissue 

looking into the differences between chondrocytes and chondroprogenitor cells 

(Dowthwaite et al., 2004 and Williams et al., 2010), given more time it would have been 

valuable to conclusively demonstrate that these differences remain in osteoarthritic tissue. 

Williams et al., 2010 demonstrated that chondrocytes from full depth cartilage had the 

ability to replicate the characteristics of chondroprogenitor cells up until a certain point, 

after which they were not able to be further expanded in culture or be differentiated into 

the chondrogenic pathway. Initial work of a similar tangent was carried out within this 

study, and preliminary results demonstrated that chondrocytes failed to proliferate beyond 

2 passages, however a more extensive and conclusive comparison would reiterate and 

reinforce the superiority of the chondroprogenitor cells in OA tissue compared to 

chondrocytes. 
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Chapter 5:  

A preliminary study comparing chondroprogenitor cells from normal 
and osteoarthritic tissue and an investigation of their integration 

potentials  
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5.1. Introduction 

 

One of the persisting problems with regards to cartilage repair is the issue of integration, 

principally due to the avascular nature of articular cartilage. As quoted by Khan et al. 

(2008) in a recent review, “one characteristic shared by intrinsic reparative processes and 

the new surgical therapies is an apparent lack of lateral integration of repair or graft tissue 

with the host cartilage that can lead to poor prognosis”. There are many factors that are 

known to directly and indirectly affect the process of tissue integration (figure 5.1), 

however to what extent these variables impede cartilage fusion varies and the mechanisms 

involved are yet to be fully understood. 

 

The developmental origin of the cell source is believed to be a key factor involved in 

determining the potential for tissue integration. Indeed, in early development cell sorting 

occurs as a result of differential cell affinity owing to adhesion molecules present on cell 

surfaces (Gilbert, 2000). Differences in these molecules and selective affinities allow cells 

of different embryonic germ layers to repel one another or conversely adhere to ‘like’ cells 

(Townes and Holtfreter, 1955). Throughout development, the cell surface adhesion 

molecules are dynamic and change in type, number and distribution thus allowing for the 

intricate processes of differentiation and maturation to occur (Fyfe and Hall, 1979).  

 

Experiments directed at the integrative capacities of cartilage from different embryonic 

regions date back as early as 1957, where Chiakulas et al., looked into the specificity and 

fusion of cartilage derived from mesodermal origin (using cartilage from the appendicular 

skeleton) and ectodermal neural-crest origin (using Meckel’s cartilage) in larval spotted 

salamanders. Results of this experiment demonstrated heterogeneity based on 

embryological origin, whereby two cartilages derived from the same place resulted in 

fusion, and cartilage from different embryological origins –namely femur cartilage against 

Meckel’s cartilage demonstrated a lack of fusion. Later experiments carried out by Fyfe 

and Hall reinforced this finding by showing that avian tibial chondrocytes failed to fuse 

with Meckel’s cartilage over a period of ten days, resulting in the authors conclusion that 

avian embryonic chondrocytes are not all equivalent.  
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Isogai et al., (2006) used an in-vitro culture model to compare differences in chondrocytes 

excised from bovine articular, nasoseptal, auricular and costal cartilages, looking 

specifically at neocartilage formation in cell-seeded scaffolds implanted into athymic 

mice. Results from this experiment again highlighted metabolic differences between the 

different chondrocytes and concluded that “each chondrocyte type establishes or maintains 

its particular developmental characteristics, and this observation is critical in the design 

and elaboration of any tissue-engineered cartilage model”.  

 

In support of these data, previous experiments from our lab (unpublished data) have 

demonstrated a lack of integration using skeletally mature bovine nasal and articular 

cartilages in an aggregation study. As previously mentioned however, these cartilages are 

derived from different embryonic origins, thus, using knowledge acquired from previous 

data, the hypothesis that integration would fail was proven.  

 

As such, the overall purpose of all of these cartilage-to-cartilage integration studies are to 

potentially find a cell source to be used as a tool for repair and treatment of articular 

cartilage defects. Many of the current strategies (as summarised in Chapter 1) involve the 

removal of cells from the joint periphery and culturing these in-vitro until sufficient 

numbers are achieved. These cells are viable candidates as developmentally they are 

derived from the correct lineage, however there are many problems including donor site 

morbidity and expansion potentials of these cells in-vitro. BMSCs are another pool of cells 

which have been and continue to be targeted extensively as a source of cells which are 

easily excised and originate from the same embryonic origin as articular cartilage –the 

mesoderm; however, as highlighted in the previous chapter this cell source is not optimum 

due to its tendency to terminally differentiate. 

 

In the previous chapter, progenitor cells from OA cartilage were isolated and expanded 

presenting with the potential to be targeted as a candidate for repair therapies in diseased 

articular cartilage. The purpose of this chapter was to preliminarily examine the integration 

potential of this novel cell source native to osteoarthritic cartilage. Per se, the benefits of 

these cells are that they are derived from the correct embryonic lineage, they reside within 

the tissue itself and, therefore, could be targeted for in situ regenerative techniques, and 
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they are not as ‘multipotent’ as BMSCs and therefore mechanisms of interactions with 

mature chondrocytes may be more easily channelled.  

 

In this chapter, chondroprogenitor cells from osteoarthritic cartilage are compared to 

chondroprogenitor cells isolated from normal cartilage using the fibronectin adhesion 

assay outlined in the previous chapter, in order to provide a direct comparison and 

elucidate similarities and differences between the two cell types. Integration potentials 

were examined using the clonally derived populations to see how well the two cell types 

integrate between and also within ‘like’ populations. Determining their integration 

potentials will help to understand whether or not the chondroprogenitor cells present in 

OA cartilage are similar to the population present in healthy cartilage and whether or not 

they are able to interact together to produce a tissue targetable for the development of 

future therapies for cartilage repair.  

 

 

  

 

Figure 5.1. Factors that directly or indirectly affect cartilage integration. Figure adapted 
from Khan et al., (2008). 
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5.2. Materials 

Table 5.1. Materials and suppliers. 

Material Catalogue 
number 

Supplier 

 
Glutaraldehyde (25%) 
 

 
R1012 

 
Agar Scientific, UK 

 
G3G4 anti-BrdU antibody 

 
G3G4- 
(AntiBrdUrd) 

 
Developmental Studies 
Hybridoma Bank, USA 
 

 
Penicillin-Streptomycin 
Sodium pyruvate 
 

 
15140-122 
11360-039 

 
Gibco, UK 

 
CellTracker™ Green CMFDA 
CellTracker™ Red CMTPX 
Quant-iT™ PicoGreen® dsDNA 
Assay Kit 
 

 
C7025 
C34552 
P7589 

 
Invitrogen, UK 
 

 
5-Bromo-4-Chloro-3-Indolyl β-D-
Galactopyranoside (X-Gal) 
 

 
B1690 

 
Molecular Probes, USA 

 
Iodoacetamide 
5-Bromo-2′-deoxyuridine (BrdU) 
Chondroitin sulfate sodium salt from 
shark cartilage 
Citric acid monohydrate 
N,N-Dimethylformamide 
1,9-Dimethyl-Methylene Blue 
DL-Dithiothreitol (DTT) 
Formaldehyde solution 
Formic acid 
Magnesium chloride 
Papain from papaya latex 
Potassium ferricyanide 
Potassium ferrocyanide 
Sodium phosphate monobasic 
Trypan Blue solution 
 

 
A3221 
B5002 
C4384 
 
C1909 
D4551 
341088 
43817 
F8775 
F0507 
M2393 
P3125 
P3667 
P9387 
S3139 
T8154 

 
Sigma Aldrich, UK 
 

 
Hydrochloric acid 
Sodium chloride 

 
H/1150/PB17 
S/3160/53 

 
Thermo Fisher Scientific, 
UK 
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5.3. Methods 

 

5.3.1. Tissue acquisition & cell culture 

 

Osteoarthritic cartilage was obtained from TKRs as outlined in Chapter 2.3.1. Cartilage 

was excised, digested and cultured using the methods described in Chapter 4.3.1. Normal 

cartilage was obtained from patients who underwent knee surgery and institutional safety 

and ethical guidelines were followed.  

 

For both tissue types, the fibronectin adhesion assay was used to isolate the 

chondroprogenitors. Normal chondroprogenitors were cultured in optimised media 

(DMEM containing penicillin 10000 µg ml−1/ streptomycin 10000 U ml−1, 0.1 mM 

l-ascorbic acid 2-phosphate, 0.5 mg ml−1 L-glucose, 100 mM hepes, 1 mM sodium 

pyruvate, 10% FCS, 1ng ml-1 TGF-β2 and 5ng ml-1 FGF-2).  

 

As a comparison, whole population of cells (chondroprogenitors and non-binders) were 

seeded into flasks at a density of 30,000 cells per cm2. Cells from OA tissue were cultured 

in OA media and cells from normal tissue were cultured in the media described above. 

PDs were monitored as outlined in the previous chapter.  

 

5.3.2. Colony forming efficiencies (CFEs) 

 

Twenty-four hours after plating cells by fibronectin adhesion assay, the number of adhered 

cells was counted in both OA and normal cultures. Between 8 and 14 days after the initial 

seeding day, clusters of more than 32 cells (defined as a colony) were counted, as this 

number represents a population of cells derived from more than 5 population doublings of 

a single cell, thereby discounting a transient amplifying cell cohort. Colony forming 

efficiencies were then calculated based on a) the initial seeding density and the number of 

colonies formed and b) the number of cells that initially adhered and the number of 

colonies formed.  
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5.3.3. Bromodeoxyuridine (BrdU) labelling of cells 

 

BrdU incorporation into cellular DNA occurs during cell proliferation in place of 

thymidine. As such, a BrdU assay was carried out in order to elucidate the extent of 

proliferation within the monoclonal cell lines from normal and osteoarthritic cartilage. 

Briefly, cells were seeded at 1.0 x 105 in 12 well plates and incubated for 24 hours at 37˚C 

in 5% CO2. At this point, 10µM BrdU was added to each well and incubated for a further 

24 hours. The cells were then washed several times in PBS prior to being fixed in 

pre-cooled 70% ethanol for 30 minutes. Subsequent immunodetection of BrdU using a 

specific G3G4 anti-BrdU mouse monoclonal antibody (at 3µg ml-1 for 1 hour at room 

temperature) allowed for labelling of cells in S-phase of the cell cycle. After several 

washes in PBS-T, cells were incubated in 3% H2O2 diluted in distilled water for 5 minutes. 

Following this procedure, cells were incubated in 4M HCl for 10 minutes. Reagents from 

the R.T.U Vectastain kit were used to carry out the remaining steps following the protocol 

as described in Chapter 3.3.4. DAB substrate was used to visualise the staining. Dishes 

were washed in distilled water before being imaged using a Nikon E4500 camera attached 

to an inverted Nikon Eclipse TS100 light microscope.  

 

5.3.4. Senescence associated β-Galactosidase (β-Gal) staining 

 

Cells were initially washed in PBS prior to being fixed in fixation solution (2% 

formaldehyde and 0.2% glutaraldehyde diluted in PBS) for 5 minutes at room temperature. 

Following fixation, cells were washed in PBS. Fresh β-Gal stain solution was made 

immediately before use and consisted of 1mg ml-1 5-Bromo-4-Chloro-3-Indolyl β-D-

Galactopyranoside (X-Gal) dissolved in N, N-dimethylformamidine. This was added to 

40mM citric acid/ sodium phosphate at pH 6.0, 5mM potassium ferricyanide, 5mM 

potassium ferrocyanide, 150mM sodium chloride and 2mM magnesium chloride dissolved 

in distilled water. Cells were incubated with β-Gal solution for 16-24 hours at 37˚C after 

which they were washed in distilled water and imaged using a Nikon E4500 camera 

attached to an inverted Nikon Eclipse TS100 light microscope. The assay produces a blue 

precipitate in cells expressing the senescence marker SA-β-Gal. 
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5.3.5. Analysis of BrdU and β-Gal staining 

 

Three photographs were taken at random (using x20 objective) in 3 wells per cell line. The 

numbers of positively stained and unstained cells were counted. The data were used to 

determine the proportion of proliferating and/ or senescent cells in each cell line. Statistical 

analysis was carried out using a Students t-test to confirm data significance.  

 

5.3.6. Biochemical analysis of pellets 

 

Three-D pellet cultures were set up using chondroprogenitors from normal cartilage and 

osteoarthritic cartilage and maintained in culture for three weeks, following the method 

described in Chapter 4.3.5. After the incubation period, pellets were maintained at -80˚C 

until required. 

 

5.3.6.1. Digestion using papain 

 

Pellets were lysed by adding 0.5ml of papain digestion buffer consisting of 300µg ml-1 

papain, 20mM sodium phosphate at pH6.8, 1mM EDTA and 2mM DL-Dithiothreitol 

(DTT) to each pellet-containing Eppendorf tube. These were placed on a hot block at 60˚C 

for one hour or until the pellet had fully lysed, after which 5µl of idoacetamide (at 100µg 

µl-1) was added to each Eppendorf tube to prevent further action of the digestion buffer. 

Aliquots of this digest were assayed for DNA and GAG content. Samples were either 

taken directly for analysis or frozen at -20˚C until required.  

 

5.3.6.2. DNA quantification using PICOGREEN 

 

A PICOGREEN kit was used to analyse the quantity of DNA extracted from each sample. 

Briefly, 1 x TE buffer was made up from the stock supplied within the kit. The reagent 

was made up by adding 5µl ml-1 Quant-IT PICOGREEN to TE buffer. Once prepared, the 

reagent was kept in the dark as it is light-sensitive. A standard curve was created using 

DNA component supplied within the kit. Standards were made at 0ng ml-1, 1ng ml-1, 10ng 

ml-1, 100ng ml-1 and 1000ng ml-1. To carry out the sample analysis, a total of 100µl of 

sample or standard (sample diluted to 1 in 5 in DNA free water) was added to each well of 

http://www.sigmaaldrich.com/catalog/ProductDetail.do?D7=0&N5=SEARCH_CONCAT_PNO%7CBRAND_KEY&N4=D0632%7CSIAL&N25=0&QS=ON&F=SPEC
http://www.sigmaaldrich.com/catalog/ProductDetail.do?D7=0&N5=SEARCH_CONCAT_PNO%7CBRAND_KEY&N4=D0632%7CSIAL&N25=0&QS=ON&F=SPEC
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a 96-well plate. Equal volumes (100µl) of prepared Quant-IT PICOGREEN were then 

added to each well. Plates were covered in foil and incubated at room temperature for 5 

minutes. The plates were read on a FLUOstar OPTIMA (BMG Labtech, USA) plate reader 

with excitation at 480nm and emission at 520nm using OPTIMA software version 2.00R3.  

 

The value for the concentration of DNA in each sample was divided by two as the total 

volume used was half the volume of the standard, and then multiplied by the dilution 

factor of five in order to give the actual concentration of DNA. 

 

5.3.6.3. GAG quantification 

 

A dimethylmethylene blue (DMMB) assay was used for the quantification of GAGs within 

the digest. Standards were prepared using stock chondroitin-6-sulphate (CS) at 0µg ml-1, 

10µg ml-1, 20µg ml-1, 30µg ml-1, 40µg ml-1 and 50µg ml-1 so that a standard curve could be 

plotted. DMMB reagent contained 16mg L-1 DMMB dissolved in 1 litre dH2O containing 

10ml ethanol, 29ml of 1M sodium hydroxide and 3.5ml formic acid (98%). Forty 

microlitres of standard or samples were pipetted in duplicate onto a 96-well plate, and 

200µl of DMMB was added to each well. The absorbances of the samples were read 

immediately at 525nm on a FLUOstar OPTIMA plate reader using the OPTIMA software 

specified previously.  

 

5.3.7. Integration study 

 

Chondroprogenitor cells from normal and osteoarthritic tissue were isolated and cultured 

using the methods previously described. The separate populations of cells were 

independently labelled using cell-tracker probes prior to being combined to form 

aggregates or pellets in order to determine whether patterns of cellular organisation and/or 

integration could be observed.  

 

5.3.7.1. Fluorescent cell labelling using CellTracker™ probes 

 

Cells were grown in monolayer in supplemented media as described in Chapter 4. Once 

expanded until the desired number of cells had been achieved, cells were lifted using 
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trypsin and centrifuged at 2000 rpm x g for 5 minutes. Supernatant was removed and the 

pellet was resuspended in supplemented serum-free media so that a concentration of 

1.0x106 cells per ml was achieved. Pre-warmed fluorescent cell trackers CMTPX (red) or 

CMFDA (green) were added to the suspensions at a working concentration of 5µM and 

tubes were incubated in the dark at 37˚C on a roller for 45 minutes. After this time, an 

equal volume of serum containing media was added to the tubes to inactivate the dyes. The 

tubes were then centrifuged at 2000 rpm x g for 5 minutes and washed with fresh serum 

containing media. This step was repeated once more to ensure any excess dye was 

removed. Finally, cells were resuspended into desired volumes to be split into cultures. 

Labelled cells were always kept out of direct light to protect the cell tracker dyes from 

decay.  

 

5.3.7.2. Trypan blue exclusion test of cell viability  

 

This test was used to determine whether either of the fluorescent dyes affected cell 

viability. Following cell labelling using the method described above, cells were re-plated 

in monolayer and cultured for 5 days at 37˚C in 5% CO2. The cells were then lifted using 

trypsin, centrifuged at 2000 rpm x g for 5 minutes and resuspended in serum-free media. 

Fifty microlitres of cell suspension was mixed with equal volumes of 0.4% trypan blue and 

the mixture was left to incubate for 3 minutes at room temperature. A haemocytometer 

was used to count the unstained (viable) and stained (non-viable) cells so that an overall 

percentage of viable cells could be calculated. One way ANOVAs were used to calculate 

any statistical significance between groups.  

 

5.3.7.3. Aggregate assembly for integration study 

 

Following fluorescent labelling of chondroprogenitors from OA and normal cartilage, 

mixed population aggregates were formed by combining 5 x 104 cells from each cell line 

into 15ml centrifuge tubes containing supplemented DMEM/F12 + 10% FCS containing 

1ng ml-1 TGF-β2 and 5ng ml-1 FGF-2. The tubes were placed on a roller and incubated at 

37˚C for 72 hours in the dark. Following the incubation period, aggregates were washed in 

PBS prior to being fixed in 10% NBFS for 20 minutes. Aggregates were then mounted 

under raised cover-slips using DAPI to create a concave microscope slide effect. 
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Aggregate types included i) chondroprogenitors from OA mixed with chondroprogenitors 

from normal tissue, ii) two different OA chondroprogenitor cell lines pooled together, 

termed OA polyclonal aggregates, and iii) two different normal chondroprogenitor cell 

lines combined, termed normal polyclonal aggregates. All ratios were one to one. 

Aggregates were imaged on a confocal microscope as outlined below.   

 

5.3.7.4. Pellet cultures for integration study 

 

Pellet cultures as described in Chapter 4.3.5 were established following fluorescent 

labelling of chondroprogenitors from OA and normal cartilage. Briefly, following the 

tracker labelling, pellets were formed by combining 2.5 x 105 cells from each cell line in a 

sterile 1.5ml Eppendorf tube containing supplemented DMEM/F12 + 2% FCS as well as 

1% ITS, 0.1µM dexamethasone and 5ng ml-1 TGF-β2. Eppendorf tubes were centrifuged 

at 2000 rpm x g for 5 minutes and incubated for 21 days at 37˚C with a media change 

every second day. On completion, pellets were fixed in 70% ethanol for 20 minutes and 

processed for paraffin wax embedded using the method described in Chapter 4.3.6. The 

pellets were then sectioned using a microtome as outlined in Chapter 2.3.4, and imaged 

using a confocal microscope. Pellets were set up as in the aggregate study, with combined 

OA and normal chondroprogenitor populations, OA polyclonal and normal polyclonal 

chondroprogenitor populations.  

 

5.3.7.5. Confocal microscopy and imaging  

 

Confocal microscopy was carried out on a Leica TCS SP2 AOBS Confocal Laser 

Scanning microscope (Leica, Germany) using appropriate excitation and emission settings 

for simultaneous detection of CMFDA (ex. max: 492nm; em. max: 517nm) and CMTPX 

(ex. max: 577nm; em. max: 602nm) ‘CellTracker’ probes. Cell aggregates were scanned 

through their entire depth using a x20 objective lens employing a z-step of typically 

between 3 and 5µm to produce a stack of digitised 'optical sections'. Pellet sections were 

imaged under the confocal microscope using identical settings. 'Maximum intensity'-type 

projections were then created from the z-stacks using Leica Confocal Software and 

presented as red-green overlays with a scale bar expressed in microns. 
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5.4. Results 

 

5.4.1. Colony forming efficiencies 

 

In this preliminary study, comparing chondroprogenitors obtained from osteoarthritic and 

normal articular cartilage, colony forming efficiencies were calculated based on the initial 

seeding density (figure 5.2) and on the number of cells which initially adhered (figure 5.3). 

In the OA samples, CFEs based on the initial seeding densities were consistently below 0.1 

(no significant difference within OA group), ranging from 0.04 to 0.09 percent. In the 

normal samples, CFEs varied significantly (p<0.05), ranging between 0.04 to 0.5 percent. 

Despite the apparent range, T–tests using the averages of samples confirmed that there was 

no significant difference between CFEs of chondroprogenitors obtained from osteoarthritic 

and normal specimens, when calculated using the original method based on the initial 

seeding density. 

 

The number of colonies formed in relation to the number of cells that initially adhered is 

demonstrated in figure 5.3. The pattern of results is similar to figure 5.2 in that the OA cell 

lines produced consistently smaller CFEs and the normal cell lines varied significantly 

(p<0.05). T-tests confirmed that there was no significant difference in average CFEs 

between the two groups. In the OA cell lines, the CFEs ranged from 0.5 to 0.88 percent 

whereas the normal cell lines ranged from 0.23 to 4.93 percent. These results in both the 

OA and normal cell lines, are approximately a ten-fold increase, when compared to CFEs 

obtained using the initial seeding densities.  

 

Initial adhesion to fibronectin was mildly higher in the chondroprogenitors from OA 

articular cartilage compared to normal counterpart, however this trend was not confirmed 

statistically (p>0.05). In the OA cultures, adhesion ranged between 10.7 and 15.4 percent, 

and ANOVAs confirmed there was no significant variation within this group (p>0.05). In 

the normal cultures, initial adhesion ranged between 5.3 and 9.9 percent (figure 5.4), and 

within this group significant variation was confirmed using ANOVAs (p<0.05).  

 

Interestingly, in relation to figures 5.3 and 5.4 together it can be seen that there appears to 

be an inverse trend occurring; a higher percent of cells in the OA cultures initially adhere 
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compared to the normal cultures; but of these adhered cells, far fewer go on to form 

colonies in the OA cultures when compared to the normal cultures.  

 

5.4.2. Proliferation and senescence  

 

Cell proliferation in clonally-derived cell lines from OA and normal articular cartilage was 

assessed using a BrdU assay which incorporates BrdU into cellular DNA in place of 

thymidine during the replicative process. Three cell lines were examined per donor. 

Consistency was observed between cell lines of each donor regardless of their origin (OA 

or normal articular cartilage) (figure 5.6). In the OA category, the percent of BrdU positive 

cells ranged from 52 to 87. More specifically, the percent of BrdU incorporation in cell 

lines of the two patients showed a distinct difference; with one demonstrating a higher 

level of proliferation (mean = 85%) and the other demonstrating a lower level of 

proliferation (mean=58%). T-tests confirmed that the differences between the two patients 

were significant (p<0.05). A similar trend was observed in the normal category; the 

percent of positive cells ranged from 64 to 89 however, as mentioned, there was a divide 

seen between the cell lines of the two donors. The mean of BrdU positive cells in cell lines 

of one donor was 66 percent, whereas in cell lines from the second patient, figures were 

significantly higher with a mean of 88 percent BrdU positive cells (p<0.05). Using the data 

between the two cohorts collectively (therefore excluding patient variability), there was no 

difference between the percentage of BrdU positive cells in the OA and normal cohort 

(p<0.05). Figure 5.5 is a photomicrograph showing the differences of BrdU labelling in the 

high and low proliferating cell lines obtained from OA and normal articular cartilage.  

 

A senescence associated β-galactosidase assay was used to assess the degree of senescence 

within chondroprogenitor cell lines from OA and normal donors. A considerable degree of 

variation was evident between and within cell lineages from patients. Within the OA 

group, the variation was not significant (p>0.05) however within the normal group the 

variation between patients was significant (p<0.05). Senescence was reduced in 

osteoarthritic cell lines when compared to cell lines from normal articular cartilage, 

confirmed statistically using a T-test (p<0.05). In the OA category, the percent of SA β-gal 

positive cells ranged between 1.4 and 5.9, whereas in the normal cohort the range was 

from 5.9 to 15.7 percent. In the normal group, the range was enlarged as a result of cell 
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lines from one particular patient exhibiting high levels of senescence (mean=15.2). Figure 

5.7 is a photomicrograph demonstrating the blue precipitate formed as a result of this assay 

in each of the cell lines obtained from the OA and normal donors. It can be seen that in 

image (C) there are noticeably more labelled cells.  

 

Correlating the cell proliferation and senescence results (figures 5.6 and 5.8) it can be 

noted that in the OA category, the patient whose cell lines elicited a higher percent of 

BrdU as a result of proliferation (OA-1) presented with relatively low levels of SA β-gal 

compared to the other patient (OA-2) where higher SA β-gal is accompanied by relatively 

low levels of BrdU labelling. This pattern was also observed in the normal group –high 

proliferation was accompanied by relatively low levels of senescence.  

 

5.4.3. Biochemical analysis of pellets  

 

Following 21 days in culture, pellets were lysed using a papain digestion buffer. DNA 

content in the lysed pellets from OA and normal origins was determined using a 

PICOGREEN kit (figure 5.9). Each bar represents the mean of 5 pellets. In the OA 

samples, DNA content of the pellets varied significantly, from 38 to 91 µg per pellet 

(ANOVAs confirmed p<0.05). In the normal samples, DNA content ranged from 22 to 73 

µg (p<0.05). Due to the similarities in ranges, no trend was observed in relation to DNA 

content in pellets derived from OA or normal articular cartilage, and this was confirmed 

statistically using T-tests (p>0.05).  

 

Dimethyl methylene blue (DMMB) assays were performed to quantitatively assess GAG 

content of the pellets. Combining these data with the DNA content is was possible to 

elucidate the content of GAG relative to DNA (figure 5.10). As a whole, it was apparent 

that within both OA and normal pellets, there was very little GAG per DNA. In the OA 

cohort, GAG/DNA ranged between 0.09 to 0.19 µg/µg, and in the normal cohort the range 

was between 0.16 and 0.5 µg/µg. ANOVAs confirmed that there were significant 

differences within both the OA and normal groups (p≤0.05) and a T-test was used to 

confirm no significant difference between the OA and normal groups (p>0.05). Using this 

preliminary data it appears that there is no real difference between GAG/DNA in pellets 

derived from chondroprogenitors from OA and normal origins.   
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5.4.4. Integration study 

 

Chondroprogenitor cells were successfully labelled with CMTPX and CMFDA cell tracker 

labels. Concentration and incubation time was optimised in monolayer cultures (figure 

5.11). Optimal concentration was 5µM, incubated in a dark room on a roller for 45 

minutes. Cell viability was assessed to ascertain whether cell trackers affected cell 

viability (figure 5.12). In cultures with no tracker, 8.7 % of the cells were trypan blue 

positive, compared to the 9.9 % and 6.7 % in CMTPX and CMFDA cultures respectively. 

As such there was no significant difference between viability in cultures labelled with 

either of the cell trackers when compared to the corresponding control. This was 

confirmed using a T-test where p>0.05 in both cases (figure 5.13).  

 

Cell aggregates were formed combining clonally-derived chondroprogenitor cell lines. 

Different OA lines were combined, different normal cell lines were combined and a 

mixture of OA and normal cell lines were combined (figure 5.14). Figure 5.14.1 

demonstrates three different OA: OA cell aggregates. The results amongst the OA 

aggregates were variable in that cell integration was observed in certain aggregates 

(represented through figure 5.14.1-i); partial integration was seen in other aggregates 

(figure 5.14.1-ii) and distinct segregation was observed in others (figure 5.14.1-iii). Where 

‘partial integration’ was observed, it was evident that there were regions in the aggregate 

where cells failed to integrate, despite other areas of the aggregate showing clear 

integration. In figure 5.14.1-iii the aggregate has been categorised under ‘segregation’ as 

one population of cells can be seen to be heavily weighted on the right side (green 

CMFDA) whereas the red CMTPX labelling is localised to the left hand side. As such, no 

definitive pattern was detected when combining chondroprogenitor cell lines from OA 

articular cartilage.  

 

When two different chondroprogenitor cell lines from normal derivatives were combined, 

the trend was biased towards segregation rather than integration in the aggregates. In 

figure 5.14.2-i, there appears to be one dominant cell line (red) that has formed the 

majority of the aggregate, and cells from the other cell line (green) appear to be largely 

restricted to a small portion on the bottom left side of the aggregate. In a different 

aggregate (figure 5.14.2-ii) a similar trend was observed in that there appeared to be a 
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dominant cell line, with a concentrated area in which the other cell line predominantly 

resides. In this case however, a small increase in integration was also noted throughout the 

rest of the structure.  

 

Aggregates formed from OA and normal chondroprogenitor cells can be viewed in figure 

5.14.3. In two of the three aggregates presented, widespread integration was observed 

throughout the structure (i and ii). In the third case, clear segregation was observed 

between the two different cell lines (iii). Figure 5.14.4 is an aggregate which was formed 

in the initial optimisation stages, with a seeding density ten times larger than the optimised 

number (1.0x106 cells). As such, for analysis this structure was sectioned before being 

viewed under the confocal microscope. Despite being distinctly larger in size, clear 

integration between the two cell lines (OA: normal) was observed. 

 

Alongside the aggregates, pellets were formed which were cultured for 21 days prior to 

being subject to confocal microscopy (figure 5.15).Variation was again seen within the 

pellets with no distinct pattern of segregation and/or integration observed. In figure 5.15.1-

i, a pellet formed from two OA cell lines, segregation was evident as one cell line adopted 

the periphery (red), while the other cell line occupied the core (green). Other pellets of 

mixed OA cell lines however demonstrated greater levels of integration (figures 5.15.1-ii 

& iii). Integration with pockets of segregation as seen in the aggregates was also observed 

in the pellets (figure 5.15.1-ii).  

 

Pellets formed by normal cell lines and mixed OA and normal cell lines did not elicit any 

distinct pattern of organisation (figures 5.15.2 and 5.15.3). Again, in some instances 

integration was observed and in others clear evidence of segregation was seen. As such, no 

distinct trend could be defined within the aggregates or pellets formed from normal, OA 

and/or OA and normal cell lines. Table 5.2 summarises the results of the aggregation study 

which helps in drawing the conclusion that no defined pattern could be observed.  
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Figure 5.2. CFEs of chondroprogenitor cells isolated from OA (blue) and normal (red) 
tissue. 

CFEs based on the initial seeding density. Combined mean displayed (+/- SEM) (n=3). 
ANOVAs suggested that there was no significant difference in CFEs within the OA group 
(p>0.05), yet that there was a significant difference in CFEs within the normal group 
(p<0.05). Using the averages for each patient, t-tests suggest that there is no significant 
difference in CFEs between the two (OA and normal) groups (p>0.05).  
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Figure 5.3. CFEs of chondroprogenitor cells isolated from OA (blue) and normal (red) 
tissue.  

CFEs calculated following initial adhesion to fibronectin. Combined mean displayed (+/- 
SEM) (n=3). ANOVAs suggested that there was no significant difference in CFEs within 
the OA group (p>0.05), yet that there was a significant difference in CFEs within the 
normal group (p<0.05). Using the averages for each patient, t-tests suggest that there is no 
significant difference in CFEs between the two (OA and normal) groups (p>0.05). 
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Figure 5.4. Bar chart demonstrating the initial number of cells isolated from OA (blue) 
and normal (red) articular cartilage adhering to fibronectin within 20 minutes.  

Data illustrates the mean, displayed as a percentage of the total (+/- SEM) (n=3). 
ANOVAs suggested that there was no significant difference in percentage of adhered cells 
within the OA group (p>0.05), yet that there was a significant variability within the normal 
group (p<0.05). Using the averages for each patient, t-tests suggest that there is no 
significant difference in initial adhesion between the two (OA and normal) groups 
(p>0.05). 
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Figure 5.5. Photomicrographs of clonally derived chondroprogenitor cells isolated from 
OA (A & B) or normal (C & D) articular cartilage treated with BrdU to detect cell 
proliferation.  

Photomicrographs are representative images to demonstrate BrdU incorporation to greater 
(A & D) and lesser extents (B & C) in both cohorts. Cells were viewed under a Nikon 
Eclipse TS100 microscope and imaged using a Nikon E4500 camera. Scale bars = 200µm.  
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Figure 5.6. Graph representing mean percentage of 5-bromo-2-deoxyuridine (BrdU) positive cells in cells lines (n=3) from different patients (n=2 for OA, 
n=2 for normal).  

Blue bars represent cultures obtained from osteoarthritic patients. Red bars represent cultures obtained from normal un-diseased patients. There was a 
significant difference in BrdU labelling between patients in both the OA and normal groups, and this was confirmed statistically using t-tests (p<0.05). 
Comparing the whole OA group against the whole normal group, no difference was found and this was confirmed by a t-test (p>0.05).  
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Figure 5.7. Photomicrographs of clonally derived chondroprogenitor cells isolated from 
OA (A & B) or normal (C & D) articular cartilage stained for senescence associated β-
galactosidase (SA-β-Gal) at pH 6.0.  

Photomicrographs are representative images to demonstrate senescent cells in which a blue 
precipitate is formed following the assay. Cells were viewed under a Nikon Eclipse TS100 
microscope and imaged using a Nikon E4500 camera. Scale bars = 200µm. 
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Figure 5.8. Graph representing mean percentage of senescence associated β-galactosidase (SA-β-Gal) positive cells in cells lines (n=3) from different patients 
(n=2 for OA, n=2 for normal).  

Blue bars represent cultures obtained from osteoarthritic patients and red bars represent cultures obtained from normal un-diseased patients. SA-β-Gal 
labelling did not vary significantly within the OA group as confirmed through a student t-test (p>0.05). However, a significant difference in SA-β-Gal 
labelling within the normal group was confirmed using a t-test (p<0.05). A significant difference was observed when comparing SA-β-Gal labelling in the 
whole OA group against the SA-β-Gal labelling in the normal group, and this was confirmed using a student t-test (p<0.05).  
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Figure 5.9. Bar chart representing mean DNA content (µg) (n=5) in articular cartilage 
progenitor cell pellets derived from OA (blue) or normal (red) tissue (+/- SEM) following 
digestion using papain and DNA quantification using PICOGREEN.  

Within both the OA and normal groups, significant variation was observed in DNA 
content per pellet. This difference was confirmed statistically using ANOVAs where 
p<0.05. A t-test was used to compare DNA content between the two groups and no 
significant difference was suggested (p>0.05).  
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Figure 5.10. Bar chart representing mean glycosaminoglycan (GAG) content per µg DNA 
of articular cartilage progenitor cell pellets derived from OA (blue) or normal (red) tissue 
(+/- SEM).  

Pellets were digested using papain, DNA quantified using PICOGREEN and GAG 
quantified using a DMMB assay. Within both the OA and normal groups, significant 
variation was observed in mean GAG/DNA. This difference was confirmed statistically 
using ANOVAs where p<0.05. A t-test was used to compare GAG/DNA between the two 
groups and no significant difference was suggested (p>0.05).  
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Figure 5.11. Chondroprogenitor cell labelling using 5µM CMTPX red (A) and CMFDA 
green (B) tracker labels in monolayer cultures.  

During labelling, cells were incubated in a dark room at 37°C for 45 minutes. Cultures 
were viewed and imaged under a BX61 Olympus fluorescent microscope.  
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Figure 5.12. Trypan blue exclusion test of cell viability.  

Viable (unstained) and non-viable (stained blue) were counted using a haemocytometer. 
Cells were viewed under a Nikon Eclipse TS100 microscope and imaged using a Nikon 
E4500 camera. 

 

Figure 5.13. Bar chart demonstrating mean cell viability (n=5) after using CMTPX and 
CMFDA cell trackers in monolayer cultures.  

Mean percent of positive cells was 8.7% in control cultures, 9.9% in CMTPX cultures and 
6.7% in CMFDA cultures. T-tests confirmed that there was no significant difference in 
viability between cells labelled with either of the trackers when compared to the control 
(p>0.05).  
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Figure 5.14. Fluorescently labelled cell aggregates containing mixed populations of 
chondroprogenitors (OA:OA, normal:normal and OA:normal) cultured for 4 days in 
optimised media. 
 
Green CMFDA and red CMTPX cell trackers were used to demonstrate relative positions 
of labelled cells. Aggregates were viewed and imaged using a confocal laser scanning 
microscope.  
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Figure 5.14.1-i: OA:OA 
 
Chondroprogenitor cell aggregates of mixed cells from different OA cell lines (OA:OA) at 
a ratio of 1:1. CMFDA green and CMTPX red cell trackers distinguish between the two 
cell populations. (A & C) Position of the individually labelled cells. (B & D) Composite 
images demonstrating relative positions of cell populations. (A & B) Low power images 
and higher power images (C & D). 
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Figure 5.14.1-ii: OA:OA 

 
Chondroprogenitor cell aggregates of mixed cells from different OA cell lines (OA:OA) at 
a ratio of 1:1. CMFDA green and CMTPX red cell trackers distinguish between the two 
cell populations. (A & C) Position of the individually labelled cells. (B & D) Composite 
images demonstrating relative positions of cell populations. (A & B) Low power images 
and higher power images (C & D). 
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Figure 5.14.1-iii: OA:OA 
 
Chondroprogenitor cell aggregates of mixed cells from different OA cell lines (OA:OA) at 
a ratio of 1:1. CMFDA green and CMTPX red cell trackers distinguish between the two 
cell populations. (A) Position of the individually labelled cells. (B) Composite image 
demonstrating relative positions of cell populations. (A & B) Low power images. 
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Figure 5.14.2-i: Normal:normal 

 
Chondroprogenitor cell aggregates of mixed cells from normal cell lines (normal : normal) 
at a ratio of 1:1. CMFDA green and CMTPX red cell trackers distinguish between the two 
cell populations. (A & C) Position of the individually labelled cells. (B & D) Composite 
images demonstrating relative positions of cell populations. (A & B) Low power images 
and higher power images (C & D). 
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Figure 5.14.2-ii: Normal:normal 

 
Chondroprogenitor cell aggregates of mixed cells from normal cell lines (normal : normal) 
at a ratio of 1:1. CMFDA green and CMTPX red cell trackers distinguish between the two 
cell populations. (A & C) Position of the individually labelled cells. (B & D) Composite 
images demonstrating relative positions of cell populations. (A & B) Low power images 
and higher power images (C & D). 
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Figures 5.14.3-i -iii: OA:normal 
 
Chondroprogenitor cell aggregates of mixed cell origins (OA : normal) at a ratio of 1:1. 
CMFDA green (normal) and CMTPX red (OA) cell trackers distinguish between the two 
cell populations. (A) Position of the individually labelled cells. (B) Composite image 
demonstrating relative positions of cell populations. (A & B) Low power images. 
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Figure 5.14.4: Sectioned aggregate OA:normal 
 
Sectioned chondroprogenitor cell aggregate of mixed cell origins (OA : normal) at a ratio 
of 1:1. Initial seeding density of aggregate = 1.0x106, formed during optimisation process. 
CMFDA green (normal) and CMTPX red (OA) cell trackers distinguish between the two 
cell populations. (A & C) Position of the individually labelled cells. (B & D) Composite 
images demonstrating relative positions of cell populations. (A & B) Low power images 
and higher power images (C & D). 
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Figure 5.15. Fluorescently labelled pellets containing mixed populations of 
chondroprogenitors (OA:OA, normal:normal and OA:normal) cultured for 21 days in 
optimised media. 
 
Green CMFDA and red CMTPX cell trackers were used to demonstrate relative positions 
of labelled cells. Pellets were viewed and imaged using a confocal laser scanning 
microscope.  
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Figure 5.15.1-i: OA:OA 

 
Chondroprogenitor cell pellets of mixed cells from OA cell lines (OA : OA) at a ratio of 
1:1. CMFDA green and CMTPX red cell trackers distinguish between the two cell 
populations. (A, C & E) Position of the individually labelled cells. (B, D & F) Composite 
images demonstrating relative positions of cell populations. (A & B) Low power images 
and higher power images (C, D, E, F). 
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Figure 5.15.1-ii: OA:OA 
 
Chondroprogenitor cell pellets of mixed cells from OA cell lines (OA : OA) at a ratio of 
1:1. CMFDA green and CMTPX red cell trackers distinguish between the two cell 
populations. (A, C & E) Position of the individually labelled cells. (B, D & F) Composite 
images demonstrating relative positions of cell populations. (A & B) Low power images 
and higher power images (C, D, E, F). 
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Figure 5.15.1-iii: OA:OA 

 
Chondroprogenitor cell pellets of mixed cells from OA cell lines (OA : OA) at a ratio of 
1:1. CMFDA green and CMTPX red cell trackers distinguish between the two cell 
populations. (A & C) Position of the individually labelled cells. (B & D) Composite 
images demonstrating relative positions of cell populations. (A & B) Low power images 
and higher power images (C & D). 
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Figure 5.15.2-i: Normal:normal 
 
Chondroprogenitor cell pellets of mixed cells from normal cell lines (normal : normal) at a 
ratio of 1:1. CMFDA green and CMTPX red cell trackers distinguish between the two cell 
populations. (A,C & E) Position of the individually labelled cells. (B, D & F) Composite 
images demonstrating relative positions of cell populations. (A & B) Low power images 
anf higher power images (C, D, E & F).  
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Figure 5.15.2-ii: Normal:normal 
 
Chondroprogenitor cell pellets of mixed cells from normal cell lines (normal : normal) at a 
ratio of 1:1. CMFDA green and CMTPX red cell trackers distinguish between the two cell 
populations. (A & C) Position of the individually labelled cells. (B & D) Composite 
images demonstrating relative positions of cell populations. (A & B) Low power images 
anf higher power images (C & D). 
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Figure 5.15.3-i: OA:normal 

 
Chondroprogenitor cell pellet of mixed cell origins (OA : normal) at a ratio of 1:1. 
CMFDA green (normal) and CMTPX red (OA) cell trackers distinguish between the two 
cell populations. (A, C & E) Position of the individually labelled cells. (B, D & F) 
Composite images demonstrating relative positions of cell populations. (A & B) Low 
power images and higher power images (C, D, E, F). 
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Figure 5.15.3-ii: OA:normal 

 
Chondroprogenitor cell pellet of mixed cell origins (OA : normal) at a ratio of 1:1. 
CMFDA green (normal) and CMTPX red (OA) cell trackers distinguish between the two 
cell populations. (A & C) Position of the individually labelled cells. (B & D) Composite 
images demonstrating relative positions of cell populations. (A & B) Low power images 
anf higher power images (C & D). 
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Figure 5.15.3-iii: OA:normal 

 
Chondroprogenitor cell pellet of mixed cell origins (OA : normal) at a ratio of 1:1. 
CMFDA green (normal) and CMTPX red (OA) cell trackers distinguish between the two 
cell populations. (A & C) Position of the individually labelled cells. (B & D) Composite 
images demonstrating relative positions of cell populations. (A & B) Low power images 
anf higher power images (C & D). 
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Table 5.2. Summary results table of cell tracker study in aggregates and pellets. Colour 
code displays results in the form of green (integration), red (segregation) and yellow 
(largely integrated with distinct areas of segregation).  

 

 

 

Key 

Integration (I)  
Segregation (S)  
Integration with segregation I (S)  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 OA : OA Normal : 
normal OA : normal 

i ii iii i ii i ii iii 
         

Aggregates I I (S) S S I (S) I I S 
   

Pellets S I (S) I S I (S) S I S 
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5.5. Discussion 

 

The aim of this chapter was to compare chondroprogenitor cells from osteoarthritic 

cartilage to those isolated from normal cartilage, in order to elucidate whether or not there 

are distinct differences between the two cell types. Results were also used as a platform to 

understand integration potentials of the two cell types.  

 

Results from this study should only be used as preliminary data due to the restricted ‘n’ 

numbers. Due to time limitations and the difficulties acquiring normal articular cartilage, 

in certain experiments it was only possible to obtain an n of 2 in the normal category. As 

such, results may be used only as suggestive data and further data acquisition would be 

required to give results from this chapter greater weight.   

 

Originally, colony forming efficiencies (CFEs) were calculated using the percentage of 

colonies formed as a proportion of the initial seeding density (Jones and Watt, 1993). 

However, depending on seeding densities, cells are known to behave very differently 

(Melero-Martin et al., 2006). As such, data were represented not only using the traditional 

method of calculation, but also as a proportion of the number of cells that initially adhered 

to the tissue culture plastic coated in fibronectin. The difference in results observed may 

appear to show similar trends, but it is important to highlight the meaning between the two 

different bar charts. Figure 5.2, demonstrates the percentage of colonies formed based on 

the initial seeding density. As such, this gives an indication of colony forming cells within 

the entire collection of cells released during the digestion of the tissue. Within both OA 

and normal categories, the total percent of colonies formed, according to the colony 

forming efficiencies was consistently below 0.5 percent. These data are agreeable to that 

of Dowthwaite et al., (2004) who reported a mean CFE of 0.27 in cells digested from 7-

day-old bovine articular cartilage. As such, this population of cells represents a small 

proportion of the whole contingent in both OA and normal cartilage. Using CFEs as an 

indicator of the presence of stem cells within the tissue is a justified proposal as these cells 

are not known to be widely abundant in mature articular cartilage; and as such, a 

proportion of less than one percent supports these data. It has previously been 

demonstrated that putative stem cell markers are upregulated in OA tissue (Grogan et al., 

2009) and thus, it would be expected that CFEs would be higher in the more diseased state. 
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Ironically, Figure 5.2 demonstrates that this was not the case; however the difference was 

not statistically significant and so must be regarded cautiously. 

 

The percentage of cells that initially adhered (within 24 hours of plating) to fibronectin 

gives an indication of the number of active α5β1 integrin receptors on the surface of the 

digested cells. The trend observed was that there was a higher proportion of cells that 

initially adhered in the OA cohort when compared to the normal group; however this 

difference was not statistically significant. This trend however, is agreeable to findings by 

other authors (Fickert et al., 2004, Grogan et al., 2009) who describe the notable increase 

in specific stem cell markers in OA tissue. Colonies formed in relation to the number of 

adherent cells (figure 5.3) therefore, demonstrates the relative proportion of cells that 

become colony forming in relation to the number cells which were initially selected due to 

receptor-integrin interactions. As there was a higher proportion of initially adhered cells in 

the OA group, it may have been hypothesised that this would consequently result in more 

colonies arising in the OA group. However, this was not the case and, in fact, it was shown 

that there was a significant decrease in colonies formed in the OA group when compared 

to colonies formed from the normal group. Consequently, it may be said that within OA, 

the progenitor cell population is elevated when compared to the normal counterpart (based 

on the number of initially adherent cells) however, the cells are not fully functioning, and 

as a result, there is a marked reduction in CFEs in the OA group. Indeed, an editorial by 

Dealy (2012) states that “the presence of disease may alter endogenous progenitor 

populations and compromise their ability to accomplish self-repair”, which in this case is 

supported by the reduced CFEs in the diseased tissue. 

 

Within all the categories; CFEs based on initial seeding density, CFEs based on initially 

adhered cells and numbers of cells that initially adhered to the fibronectin coated plates, 

significant variation was observed in the normal group. This not only highlights once again 

heterogeneity between patients, but also the need for larger ‘n’ numbers in the study. It 

could also be suggested that within the group of cells that rapidly adhere to fibronectin, 

there may be sub-groups of cells that can be further classified. As such, it is imperative 

that a greater understanding is sought not only into the differences between adherent cells, 

but also into the reasons why cells selected in a like manner form morphologically 

different colonies. Indeed, work by Barrandon and Green (1987) demonstrated that clones 
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formed by single human epidermal cells adopted one of three classes. The holoclone which 

has the greatest reproductive capacity, the paraclone which contains cells with a short 

replicative lifespan, and the meroclone which encompasses the transitional phase between 

the two. Upon further study, it may be found that a similar classification phenomenon also 

occurs in chondroprogenitor cells isolated from articular cartilage.  

 

Primary cultures of normal and OA clonal cell lines were examined for proliferation and 

senescence using BrdU and SA β-Gal respectively. Relating to the BrdU results 

specifically, no notable difference was detected between the OA and the normal cultures, 

however within both individual cohorts there was significant variation. This, therefore 

suggests, that any differences seen may not necessarily be due to the severity of tissue 

from which the chondroprogenitor cell is excised, and more so the variation between 

individual patients.  

 

Proliferation is often assessed using sectioned tissue and immunohistochemistry (as 

covered in the previous chapter) as a means of detection. It is accepted that chondrocyte 

proliferation is a characteristic feature typically considered to be part of the OA pathology 

(Dealy, 2012). However, within this study we are looking specifically into the 

chondroprogenitors and not the whole chondrocyte population. It could be that this is the 

reason why the usual discrepancies between proliferation in normal and OA articular 

cartilage were not observed in this study. As such, one may hypothesise that the 

chondrocyte clusters as a result of cell proliferation may not be instigated by the residing 

progenitor cells themselves, but instead, the transient amplifying cells. This hypothesis 

could explain the failure in self-repair that articular tissue is renowned for –perhaps the 

chondroprogenitor cells lack the signal necessary for activation. Indeed, a recent study by 

Pretzel et al., (2011) found that the relative content of superficial and mid-zone progenitors 

was similar in normal and OA cartilage. As such, it may be suggested that the increased 

metabolism evident in OA cartilage is not necessarily indicative of increased 

chondroprogenitor cell activity. Further work would be needed to test this hypothesis.  

 

Clonal cell cultures in both OA and normal categories tested positive for SA β-Gal despite 

showing continued proliferation. Interestingly it was found that senescence was higher in 

the normal group when compared to the OA group, although again significant variation 
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was observed. Clonal cell lines from ‘Normal-1’ demonstrated particularly high levels of 

senescence, with a mean of approximately 15 percent labelling positively. If cell lines 

from this patient were omitted and a comparison was made purely between ‘OA-2’ and 

‘Normal-2’, no significant difference would have been found. As such, this highlights the 

issue and need for analysing greater numbers in order to give more statistical validity. As 

mentioned previously, differences seen may be purely a result of individual patient 

variation rather than a consequence of disease, however this will not be known until 

additional numbers are analysed. This issue of low ‘n’ numbers also applies to the BrdU 

results obtained through this study and further analysis is imperative in order for solid 

conclusions to be drawn.   

 

Rate of proliferation may also be a reason for differences observed in senescence results 

from this study. Unpublished results from our laboratory have shown that some OA cell 

lines match the proliferation rate of normal cell lines when measured using population 

doublings, however, other cell lines are far slower. As this experiment was carried out at 

the same point in time rather than same PD, it may be that the normal cell lines, in this 

particular instance, proliferated at a faster rate than the OA cell lines and as such were 

farther along the proliferation timeline when compared to the OA counterpart. This may 

justify the reason for increased senescence in the normal clonal cell lines. Furthermore, it 

was also noted in the previous chapter that some cell lines had the tendency to almost 

suddenly stop proliferating, and so at this stage it is unknown whether or not the cell lines 

used for this study would have fallen into that category or not.   

 

Potentially affecting both the BrdU and SA β-Gal results in this study, compared to many 

studies in the literature that rely on histological sections for analysis, are the issues that 

accompany in vitro culturing of cells. Not only are the cells initially stripped from their 

3-D environment having adverse effects, the cells are also prone to dedifferentiation 

(Schnabel et al., 2002). Having said that, this factor does not influence the relative 

differences observed between chondroprogenitor cells isolated from normal and OA tissue.  

 

Following 21 days in culture, 3-D pellets were digested and analysed for DNA and GAG 

content as there was no clear morphological difference between the pellets originating 

from normal or OA articular cartilage. Similar to other findings throughout this chapter, 
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there was no distinct trend observed between normal and OA pellets it terms of 

biochemical composition. What was reiterated again however, was the variation between 

patients within the same cohort. A study conducted by Temple-Wong et al., (2009) 

demonstrated that GAG levels were also variable in articular cartilage samples which were 

characteristically normal or showing signs of OA. In this study the variation seen was vast 

throughout different areas of a specific joint, highlighting the ease of which disparities 

may arise, when studying human articular cartilage.  

 

Data from this study suggest that GAG content per DNA is very low in both categories, 

however it is should be noted that in comparison, DNA levels within the pellets of this 

study appear to be significantly higher than levels reported in other studies. A study by 

Giovanni et al., (2010) reported less that 10µg DNA per pellet whereas in this study DNA 

content per pellet exceeded 90µg. Differences in methods used, therefore, hinders the 

ability to compare results of this study to previous findings. Perhaps the difference in the 

way that the pellet cultures were formed and maintained affected the DNA content within 

the pellet. It may also be that the instruments used in DNA detection in this study was 

more sensitive or vice versa, raising discrepancies.  

 

It does appear that within this study, levels of GAG are low; particularly in the OA pellets 

despite there being no statistical significance. Interestingly, it appears that pellets with a 

higher DNA content do not reciprocate with a higher GAG/DNA content, suggesting that 

GAG production is hindered in these pellets. This occurred in pellets from both OA and 

normal origins. The normal pellet which is shown to have the greatest GAG/DNA content 

is consistent with the pellet with the least DNA content. In this case, it appears that 

regardless of the low levels of DNA, the pellets were able to produce greater amounts of 

GAG. As such, the need to further expand this study is emphasized so that definitive 

trends can be noted. Is this increased GAG production a result of ‘normal’ 

chondroprogenitor cells being superior to chondroprogenitor cells isolated from OA 

tissue? Or is it simply a case of patient variation regardless of OA grade? These are 

questions that remain to be answered and are essential in the pursuit to understand 

similarities and differences between chondroprogenitor cells present in normal and OA 

tissue, so that the true potential of cells in OA tissue can be elucidated.     
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Aggregation and integration 

 

The integration study of this chapter was carried out in order to determine whether 

chondroprogenitor cells isolated from OA articular cartilage differ behaviourally from 

those isolated from normal cartilage; and if so, whether local signals from the normal 

chondroprogenitor cells would improve cartilage formation in mixed co-cultures. There 

are many recent studies that look into the effect of combining MSCs to articular cartilage 

chondrocytes, suggesting that the co-culture system yields a more favourable cartilage 

phenotype to MSCs alone (Tsuchiya, 2004, Acharya et al., 2011, Bian et al., 2011). 

Relating back to this study, it was thought that perhaps if the cells showed distinct 

segregation, indicating two different cohorts of cells, paracrine factors from the normal 

cells may relay a beneficial effect onto the OA chondroprogenitor cells. 

 

As such, results from the integration study yielded very inconsistent and inconclusive data. 

It was hypothesised that co-cultures of different OA chondroprogenitors would integrate 

and show no behavioural differences, however this was not always the case. In both the 

pellets and aggregates, integration was seen in some cultures and segregation in others. 

This supports the previous suggestion that within OA articular cartilage, 

chondroprogenitor cells may be further classified into behaviourally different groups. The 

pellets, which were cultured for 21 days were given more time to structurally reorganise, 

however within the OA: OA group, no distinct change in structural conformation could be 

detected.  

 

The underlying attraction in understanding chondroprogenitor cells in OA tissue is to 

elucidate whether or not these cells, given the right conditions, have the potential to repair 

into a hyaline cartilage like tissue. This may be through in vivo stimulation or through in 

vitro culture in a laboratory prior to being reinserted into the tissue of interest. Either way 

it is imperative that the tissue integrates efficiently to produce a decent repair tissue; an 

issue that is widely discussed in the literature [reviewed by Khan et al., (2008)]. Although 

further investigations are necessary in order to definitively report this result due to the 

small ‘n’ numbers used in this study, these preliminary data suggest that all 

chondroprogenitor cells isolated from OA tissue using the fibronectin adhesion assay, will 

not necessarily integrate effortlessly with neighbouring cells. As a result, further work 
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would need to be carried out in order to determine whether or not, given the right 

conditions, these cells could be directed into successful integration.  

 

Co-culturing chondroprogenitors from normal origins (normal: normal), and normal with 

OA (normal: OA) in aggregates and pellets, similarly demonstrated inconsistent data. As 

such, it appears that the phenomenon of ‘good and bad’ cell lines that was apparent in the 

OA group, may also be evident in cells isolated from normal tissue. In the OA: normal 

group, certain pellets and aggregates were beautifully integrated while others showed 

pockets of segregation. It may, therefore, be suggested that part of what determines a cell 

line as a ‘good’ cell line is its integrative capacity. Circulating paracrine factors from 

neighbouring cells are involved in improving chondrocyte integration with progenitor cells 

(Ahmed et al., 2007) and so it would be interesting to investigate these in the cultures used 

for this study, and identify whether or not paracrine factors are stimulated at differing 

levels between cell lines. This may reveal information relating to why some cell lines 

integrate efficiently while others do not.  

 

The protocol used for this co-culture study was adapted from Moscona et al., (1961), 

however there are currently many intricate scaffolds that have been developed to support 

3-D structure formation [recently reviewed by Vinatier et al., (2009)] (Vinatier et al., 

2009). As such, it would be beneficial to repeat a similar integration study using a scaffold 

to support the cells to see if the increased integrity allows scope for better integration 

between the cells.  

 

In this chapter, mixed cell populations were co-cultured and results demonstrated the 

compatibility of the different cell types. Testing the integrative capacities of the 

chondroprogenitor cells to whole cartilage explants would further enhance this work and 

give a true indication of the integrative capacity of the tissue engineered from 

chondroprogenitor cells isolated from normal and OA tissue. Additionally, quantitative 

methods of assessment would then be able to be used to test the adhesive strength of the 

integration surface using push-out mechanical tests. This work could be coupled with the 

introduction of scaffolds as mentioned above to achieve greater consistencies and better 

integrated tissue.  
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As a whole, this chapter has shown that there is not only great patient variation, but also 

variation between clonally derived cells lines, which may supersede changes occurring as 

a result of osteoarthritis. It is also imperative, however, that these results are only regarded 

as preliminary as ‘n’ numbers used in this study were restricted. As such a study of a 

greater magnitude is essential to confirm these results. If, however, these results are shown 

to be true, it could be positively assumed that chondroprogenitors isolated from OA tissue 

are not necessarily compromised when compared to normal cells. Instead, it highlights the 

importance to understand why cells isolated using a single technique are so variable. 

Understanding this will undoubtedly help with achieving the goal of obtaining a reliable 

cell type to be used in cartilage repair and regeneration.  
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Chapter 6: 

General Discussion 
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6. General discussion 

 

A Scottish anatomist and physician, William Hunter, wrote his first paper to the Royal 

Society in 1743 on articular cartilage and its diseases. In this paper he wrote “If we consult 

the standard Chirurgical Writers from Hippocrates down to the present age, we shall find, 

that an ulcerated cartilage is universally allowed to be a very troublesome disease; that it 

admits of a Cure with more Difficulty than carious Bone; and that, when destroyed, it is 

never recovered” (Hunter, 1743). Despite the age of this quote, the poor intrinsic capacity 

for articular cartilage to repair itself continues to be a challenge to scientists and clinicians 

alike.  

 

The inherently poor repair capacity of articular cartilage is due to the avascular, 

alymphatic and aneural nature of the tissue, combined with low cellularity and the absence 

of a germinal layer. The structural and biochemical composition of articular cartilage, 

however, gives the tissue its characteristic features including resilience, ability to bear high 

tensile forces and ability to withstand and restore itself after compression (Benjamin, 

1999). In health, metabolism and mitotic activity are low resulting in a stable tissue that 

can be regarded as ‘low maintenance’ however, this asset in a healthy state exacerbates the 

problem when diseased.  

 

Osteoarthritis is one of many diseases that affects articular cartilage. Despite the 

involvement of many surrounding tissues including the subchondral bone, synovium and 

meniscus; the hyaline cartilage has traditionally been the prime target when investigating 

the morbid disease (Martel-Pelletier and Pelletier, 2010). 

  

Congruent to the work of others, within this study, the main focus was directed towards 

evaluating the potential for hyaline cartilage repair using progenitor cells resident in the 

diseased tissue. However a subset of the work was also directed towards exposing the 

relationship of neighbouring bone and the clinical implications that this could lead 

towards.  

 

Figure 6.1 is a summary flow chart which outlines the development of work carried out 

within this study.  
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Figure 6.1. Summary flow chart outlining briefly the topic of work (green), the 
development of work carried out within the study (black) and indications of future benefits 
which may arise from the work (blue).  
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As a means of histologically assessing the severity of OA, many scoring systems have 

been devised; however, the focus of these established scoring systems, as previously 

mentioned, is the hyaline cartilage (Mainil-Varlet et al., 2003, Mankin et al., 1971, 

O'Driscoll et al., 1988, Roberts et al., 2003). With the increase in literature highlighting the 

involvement of bone in the osteoarthritic process, a novel scoring system was devised 

within the study which incorporates this neighbouring tissue.  

 

An observation that was evident and consistent throughout the study was the degree of 

variation. It is accepted that cartilage changes occur alongside bony changes (Lajeunesse 

and Reboul, 2003). However, as disease progression varies so significantly from patient to 

patient, the involvement of the bone in the development of the disease may also differ. 

Therefore, bone changes should not be eliminated from the histological assessment 

process. As such, the new scoring method is more encompassing and consequently 

provides a more accurate representation of the severity of disease in the histological 

specimens. 

 

Upon analysis of the scoring system by comparing individual parameters, it was seen that 

bone changes may precede the degenerative change that occurs in the cartilage. This is a 

significant finding which needs to be further addressed as it could lead to major 

repercussions. Is it that metabolic changes occur more quickly in bone and, as such, the 

bone starts to be symptomatic earlier than the cartilage? Or is it, in fact, a signal that 

initiates in the bone? Not only does this finding draw upon the “chicken or egg” analogy of 

which comes first, which in turn could affect targeted treatments, but this also has major 

clinical implications with regards to diagnostic tools. Indeed, understanding the correlation 

of bone changes in relation to other changes in OA, if developed properly, could provide a 

means for diagnosis at early stages of disease, using a minimally invasive bone-based 

method. Hypothetically, this early diagnosis could translate into early attenuation of the 

disease, perhaps reducing the need for cartilage repair and regeneration which is currently 

so critical. 

 

In order for this to be achievable, however, a study of a significantly larger scale would be 

essential, so that the entire range of scores are covered. This information is vital, ensuring 

that each stage of progression can be accounted for. A study of a larger scale would also 
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allow for a better indication of patient variability, as well as inter- and intra-observer 

variability which will ultimately affect the validity of the new scoring system.  

 

Within this study, the newly devised scoring system was used to correlate disease severity 

with the expression of matrix markers, chondrocyte proliferation & putative stem cell 

markers so that progressive changes could be mapped out. The scoring system yielded 

scores ranging from a possible 0 to 17, where lower scores were representative of a more 

normal state and high scores were suggestive of thick, eburnated bone. As scores greater 

than 10 contained little exposed cartilage, it is important to put into context what is meant 

by a ‘high’ score, when referring to immunolabelling in the articular cartilage. For 

instance, immunolabelling in the articular cartilage of OCPs scored between 11 and 17 

would not have demonstrated vast amounts of labelling, if any, due to the mere absence of 

cartilage. As such, the discussion of immunolabelling in the cartilage is only inclusive of 

OCPs that actually contained a layer of articular cartilage over the subchondral bone.  

 

The presence of type I collagen and procollagen type IIA was confirmed in the early stages 

of tissue degeneration, suggesting that early remodelling was occurring in an attempt to 

repair the tissue whilst it was still recoverable. Dissimilar to many articles in the literature, 

type X collagen expression remained in the deep and calcified cartilage regions, without 

spreading into other regions of the tissue, upon disease progression. Results of this study 

demonstrated the difficulty in extrapolating likely trends, and again, highlights the need for 

a clear understanding in the changes that occur throughout OA to be sought.  

 

Within the small scale of this study, an anomalous OCP was clearly distinct from others. It 

would be of use to elucidate whether or not OA, as a disease, does in fact rear these 

different histological specimens or, if perhaps, patients’ symptoms are being 

misdiagnosed. As OA is a multifactoral disease that affects patients to different extents, it 

seems plausible that this may happen; however, moving on it is essential that patients 

receive the right diagnosis so that they can receive optimum treatment.  

 

Together with the matrix markers, the scoring system was used to quantify the presence of 

putative stem cell markers Stro-1 and Notch-1 in tissue of varying severities. Although 

some data in the literature suggest that these markers can be used as stem cell markers 
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(Dennis et al., 2002, Dowthwaite et al., 2004), others have reported a surprisingly high 

number of these cells in OA tissue, questioning their validity as a stem cell marker whilst 

confirming their involvement in the abnormal cell activation and differentiation process 

that occurs in OA (Grogan et al., 2009). Results from this study confirmed the suggestion 

of Grogan et al., (2009) in that over 40 percent of cells in the surface zone labelled 

positively for both Stro-1 and Notch-1.  

 

The difficulty in identifying stem cells of mesenchymal origin is that, unlike hematopoietic 

stem cells, there is no single marker that can be used, and the identified markers are not 

exclusively restricted to the cohort of specialised stem cells. Despite this difficulty, they 

may however be indicative of stem cell interaction. Previous work from our laboratory has 

identified a method that relies on α5β1 interactions to isolate a progenitor cell population 

from normal articular cartilage of several different species (Dowthwaite et al., 2004, 

Williams et al., 2010, McCarthy et al., 2011). 

 

Within this study, the question was asked ‘Are the chondroprogenitor cells that are present 

in normal articular cartilage also present in diseased osteoarthritic cartilage, and can they 

be isolated and expanded?’ The answer to this question was ‘yes’ and it was shown for the 

first time that these cells could be isolated, and did have capacity to proliferate beyond the 

potential of chondrocytes, whilst maintaining the chondrogenic phenotype. That said, this 

result requires further investigation as not all of the cells behaved in the same manner and, 

as such, the heterogeneity observed between the cells has left many unanswered questions.  

 

Heterogeneity was observed throughout all stages of experimentation; colony morphology, 

proliferation potential, rate of proliferation and chondrogenic capabilities were all factors 

which, in some cases, yielded very positive results and, in other cases, raised concern over 

the potential of these cells. Plasticity into osteogenic and adipogenic lineages was also 

achieved however, the time required for osteogenic induction varied between cells. This 

leads to the proposition that perhaps the chondroprogenitors isolated using this method can 

still be further refined so that the deranged cells are excluded. Indeed, the long-term 

outlook of these cells is that they would be used for repair and, thus, it is imperative that 

the cells behave accordingly and homogeneously so that the desired output can be 

achieved.  
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Interestingly, unpublished work from our laboratory has investigated telomere length in 

chondroprogenitors isolated from normal and OA tissue. Telomeres are terminal regions of 

linear chromosomes that function to allow chromosomal replication and prevent 

chromosomal fusion and rearrangements (Blackburn, 1991). Telomeres shorten with each 

cycle of genomic replication, resulting in the cell eventually reaching replicative 

senescence (Hastie et al., 1990). There is strong evidence to suggest that telomere length is 

maintained in stem cell populations to facilitate and maintain the cell division required for 

tissue homeostasis (Allen and Baird, 2009). Results from co-workers have shown that 

within the normal group of chondroprogenitors, there is a high average telomere length, 

whereas in the group of chondroprogenitors isolated from OA tissue, there is a distinct 

division whereby 60 percent of the cells display lower telomere lengths. Telomere length 

of the remaining 40 percent is slightly lower, yet comparable, to that of the normal group. 

As such, these findings support the results of this study in that the heterogeneity observed 

may in fact be due to different groups of cells exhibiting behavioural discrepancies. 

 

In a continued attempt to decipher whether or not chondroprogenitor cells isolated from 

OA tissue was similar or dissimilar to chondroprogenitors of normal origin, a preliminary 

study was carried out to initially compare the two populations of cells. Contradictory to 

previous work from our laboratory, heterogeneity was also observed within the normal 

cohort. As such, no significant difference between the OA and normal groups was 

observed when comparing colony forming efficiencies of cell lines, BrdU incorporation of 

cells, and biochemical composition of pellets. Senescence associated β- galactosidase was 

surprisingly higher in the normal group, however, this may be due to the cells being at a 

later population doubling as a result of faster proliferation rates. This would need to be 

further investigated in order to make a solid conclusion. 

 

An integration study was carried out to see whether any structural reorganisation would 

occur upon mixing different populations of cells, as local circulating paracrine factors are 

known to influence cell interactions (Ahmed et al., 2007). Integration between normal and 

OA cells could be indicative of a positive effect of the normal chondroprogenitor cells on 

the OA cells, and/or, suggestive of the fact that perhaps the cells are indeed similar with 

comparable behavioural responses therefore resulting in no segregation between the cells.  
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Unfortunately, within this study it was not possible to extrapolate any conclusions, and 

these results must be used merely as a springboard for more experimentation. It is 

necessary to undertake this study on a much larger scale in order to elucidate conclusively 

the similarities or differences between chondroprogenitor cells isolated from normal and 

OA articular cartilage.  

 

As a whole, it can be said that osteoarthritic tissue does contain a group of 

chondroprogenitor cells, and it has been shown that some of these cells do have the 

potential to repair articular cartilage. This is a pivotal finding as many characteristics seen 

within this study reflect those of other stem cells, highlighting their capability potentials 

which can be further exploited to aid the field of regenerative medicine. 

 

That said, this study has also highlighted the importance of carrying out further work in 

order to establish sufficient groundwork to be able to consider these cells as suitable 

candidates for translational use in the future.   

 

6.1. Further work 

 

Referring back to the early work on the scoring system and the correlation between bone 

and cartilage, it would be interesting to determine conclusively whether the trend of the 

bone changes preceding the cartilage changes in humans, is in fact true, as this could offer 

clinical implications. On a similar note, it would be of interest to further this study by 

assessing the correlation between the degree of pain experienced by the patient, and scores 

obtained using this new scoring system. If pain was directly related to the score, and the 

score tied-in with degree of bone change, then this could further enhance the case for 

developing a method for a bone-based diagnostic tool.   

   

One of the major challenges faced in part of this study was the issue of auto-fluorescence 

in the osteochondral plugs. Many failed attempts were carried out to reduce this hindrance 

during this study and, as such, the less sensitive method of peroxidise labelling as used 

rather than fluorescent labelling. Background labelling is a well known issue particularly 

in aged, human tissue; however, it may also be exacerbated by tissue preparation and 

fixation techniques. As such, although seemingly basic, it would be of use to methodically 
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try different fixation, decalcification, and auto-fluorescence reducing techniques in order 

to establish a method that can be used successfully using immunofluorescence. Similarly, 

epitope unmasking and antigen retrieval techniques can also contribute to the problem, so 

it would be of use to include these in the study.   

 

With regards to the in vitro work, heterogeneity was a distinguishable recurring factor 

throughout this study. As such, it would be of use to know whether additional factors 

affected the results of this study or if the cells are inherently enigmatic. As such, it would 

be interesting to determine whether expansion time affected the composition of the 

engineered pellets. In other words, do the growth kinetics of particular cell lines affect the 

chondrogenicity and integrity of a pellet? Similarly, it would be of use to further 

investigate the underlying reason behind the different colonies which initially form, so that 

the colony selection process need not be at random. Equally, this may result in reduced 

heterogeneity and more consistent data.    

 

Additionally, it would be interesting to investigate whether maturity, or age of patient 

affects the structural integrity and composition of the chondrogenic pellets. This is 

difficult, however, due to the lack of availability of osteoarthritic tissue in patients of a 

young age.  

 

The in vitro section of this study relied heavily on the Dowthwaite et al., (2004) method of 

isolating chondroprogenitors cells from articular cartilage. In his study, he identifies the 

progenitor cells in the surface zone of the tissue. Due to the lack of uniform tissue acquired 

from total knee replacements in patients with OA, it is difficult to definitively separate 

cells from the surface from the remaining regions. As such, cells from regions other than 

the surface were included in this study and this may have been another cause for the 

heterogeneity in this study. Indeed, a study by Siczkowski and Watt (1990) have 

demonstrated that cells from the upper zone of articular cartilage adhere and proliferate 

more slowly than cells from the lower zones when cultured in vitro. As such, as it was not 

only the surface zone that was being digested for cell isolation, could it be that during the 

20 minute adhesion period, chondroprogenitors were adhering together with deep zone 

chondrocytes purely because they have a tendency to adhere quickly? It would be 

interesting to investigate this further, as it may again, be a contributing factor to the 
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heterogeneity observed within this study. Perhaps the isolation procedure in osteoarthritic 

cartilage needs to be further refined in order to obtain a more specific cohort of cells.  

 

Linking the work on histological sections with the in vitro findings, it would also be 

interesting to determine whether there is a correlation between the cells which labelled 

positively for Stro-1 and Notch-1, and the cells that adhere during the fibronectin adhesion 

assay. As such, a fluorescently activated cell sorter could be used to sort and replate 

positively immunolabelled cells, and subsequently, colony forming efficiencies and 

percentage of initial adhesion to fibronectin following the ‘Dowthwaite method’ could be 

investigated. This would give us an indication as to whether or not it is in fact the same 

cells which label positively for Stro-1 and/or Notch-1 that are involved in the α5β1 

interactions. Not only would this enable us to decipher a more specific means of 

chondroprogenitor cell selection, but it will also unveil more crucial information regarding 

stem cells in osteoarthritic tissue.    

 

Lastly, with regards to the final chapter which addressed similarities and differences 

between chondroprogenitors from OA and normal tissue, as well as their integrative 

capacities; it would be necessary to repeat this study on a larger scale. A solid conclusion 

to that study would reveal information that could be critical, when considering taking this 

work forward into translational science.  
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8: Appendix 

 

Massons trichrome stain: 

 

Stain in Celestine blue B (10 minutes) 

Wash in running tap water until clear 

Stain in Mayer’s Haematoxylin (10 minutes) 

Wash in running tap water (10 minutes) 

Stain in Ponceau/acid fuchin (5 minutes) 

Wash in running tap water (1 minute) 

Differentiate in 1% phosphomolydic acid (5 minutes) 

Transfer to light green stain (3 minutes) 

Wash in running tap water (1 minute) 

Wash in 1% acetic acid (1 minute) 

Rinse in running tap water (30 seconds) 

Dehydrate in alcohols  

Clear in xylene 

Mount in DPX 
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