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Paleogene Larger Benthic Foraminifera of 
Tanzania and the Eocene-Oligocene Transition 

 

Laura J. Cotton 

 

Abstract 

Mass extinctions are important events for the evolution of life on Earth but often 
the mechanisms behind them are poorly understood. The Eocene - Oligocene Transition 
(EOT) had a profound and lasting influence on global climate and, though not one of 
the “big 5” mass extinction events, widespread extinctions in many fossil groups have 
been recognised. Larger benthic foraminifera (LBF), one of the most conspicuous and 
widespread fossil groups during the Eocene, are known to have experienced a rapid 
global overturning during the EOT, including the extinction of long-ranging families 
such as the Discocyclinidae, Orbitoclypeidae, Pellatispiridae and a number of species in 
the Nummulitidae. However, detailed records through the transition are rare, and few 
complete sections are known; the timing and causes of extinctions therefore remain 
uncertain.  

Extensive field samples from the southern Tanzanian coastal region along with 
Tanzania Drilling Project (TDP) samples are used to give an overview of Eocene to 
Miocene LBF and to produce high resolution stratigraphic records of LBF events across 
the EOT. Two further important EOT sites, Fuente Caldera, Spain and Melinau Gorge, 
Sarawak, both with unresolved questions relating to LBF at the EOT were studied for 
comparison.  

The field samples combined with the TDP data cover an area of approximately 
200 km from Kilwa to the Mozambique border. Initial comparisons with Tethyan and 
Indo-Pacific faunas show perhaps an intermediate assemblage in the Eocene and some 
similarities with the Indo-Pacific in the Miocene. However in both epochs there are 
features distinctive of an East African or western Indo-Pacific fauna. Additionally, this 
work identifies many previously unreported localities and provides a solid basis for 
future work.  
 Three of the TDP sites span the EOT and contain abundant LBF. Extensive 
calcareous micro-, nannofossil and stable isotope studies of these cores allow the LBF 
stratigraphy to be tied to global stratigraphy. These records show that the LBF 
extinction event occurs close to the Eocene/Oligocene boundary (EOB), as defined by 
the extinction of the planktonic foraminiferal Family Hantkeninidae, rather than at the 
prominent oxygen isotope excursion in the early Oligocene that signifies maximum ice 
growth and global sea-level fall. New bulk isotope data from the Melinau Limestone of 
Sarawak further support this conclusion. In Fuente Caldera, where the extinction level 
was previously reported to be within the Oligocene, extensive reworking means that an 
EOB extinction is also likely at this site.  This correlation raises new questions about the 
cause of the extinctions and has important implications for global larger benthic 
foraminiferal stratigraphy. 
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Chapter 1: 

Introduction 

 

1.1 Introduction: the big questions 

Mass extinction events have occurred periodically throughout the evolution of 

life on Earth, causing dramatic shifts in evolution and ecology. The largest extinction 

events of the Phanerozoic have been extensively studied and yet the exact mechanisms 

responsible remain debated. Most of the large extinction events occur during periods of 

pronounced climatic change or are associated with events such as meteorite impacts or 

large volcanic eruptions (e.g. Alvarez et al., 1980; Courtillot et al., 1986; Courtillot, 

1990; Hallam and Wignall, 1997). Raup and Sepkoski (1982) identified what are 

referred to as the “big five” mass extinction events; the end Ordovician, the late 

Devonian, the Permo-Triassic, the Triassic-Jurassic and the Cretaceous-Paleogene 

extinction events. However, these are not the only mass extinction events, there are a 

number of others which although not as large as the “big five” are still globally 

recognised and exceptionally important in shaping the evolution of life.  

Whilst mass extinction events are detrimental to life at the time, they can be 

extremely useful for biostratigraphy, in that they provide useful horizons for correlation. 

Synchronous extinctions occurring on a global scale can form “natural biozones”; a 

mass extinction is often followed by evolution and radiation of the surviving organisms 

and therefore often results in a distinct change in fossil assemblage which can be easily 

recognised and used for dating (see discussion in McGowran, 2005). This is one of the 

reasons mass extinctions are often found at stage boundaries. Additionally, certain 

extinction events are useful analogues for the study of future environmental 

perturbations.  

The Eocene - Oligocene Transition (EOT) was one of the most profound 

episodes of lasting climate change to occur in the Cenozoic. It is an extended period of 

step-wise cooling occurring between 33.5 and 34 Ma, associated with the growth of the 

first semi-permanent ice sheets on Antarctica (Shackleton and Kennett, 1975; Coxall et 

al., 2005). Though not listed as one of Sepkoski’s “big five” the EOT is considered a 

period of significant biological overturning, with rapid and widespread extinctions in 
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many fossil groups (see reviews by Prothero, 1994; Coxall and Pearson, 2007). 

Planktonic and larger benthic foraminifera both show rapid extinctions within this 

interval (Adams et al., 1986; Molina, 1986; Coccioni et al., 1988; Wade and Pearson, 

2008) and although changes in other microfossils are less dramatic, assemblage changes 

and overturning are still clearly visible (Baldauf, 1992; Brinkhaus, 1992; Brinkhaus and 

Biffi, 1993; Dunkley Jones et al., 2008). Major overturning is also seen within some 

molluscan records (Dockery and Lozouet, 2003). In terrestrial vegetation a strong trend 

to more temperate vegetation occurs (Wolfe, 1992, 1994) and in the land mammal 

record there is a high turnover in hoofed mammals with 60 % of taxa disappearing 

(Savage and Russell, 1983; Coxall and Pearson, 2007). Many of these records, 

particularly the macro-fossil record, remain difficult to tie exactly to the events of the 

EOT (e.g. Prothero and Swisher, 1992) or have a patchy distribution and although there 

is a general link to the cooling the exact mechanisms for their extinctions are complex 

and remain ambiguous. The response of the carbonate platform environment, in 

particular, remains poorly understood. The shallow carbonate platforms at that time, 

much like today, were a highly diverse and dynamic environment and a major carbonate 

factory. The study of this environment in particular can provide information on sea-

level changes, surface run off/sedimentation changes and the response of shallow water 

organisms. Shallow platform dwelling organisms, such as corals, calcareous algae and 

larger benthic foraminifera (LBF) are highly specialised to this environment, so small 

changes can bring about dramatic effects. Therefore, in this thesis LBF are used to 

examine the changes taking place in the shallow carbonate environment through this 

period of rapid climate change.  

 

1.2 LBF of the Paleogene  

LBF are emblematic of the Paleogene, occurring in rock forming quantities 

around the tropical regions of the Tethyan, Indo-Pacific and American provinces. 

Nummulites are found in such high numbers during this period that it was once referred 

to as the Nummulitique (Rollier, 1923; Gradstein et al., 2004). This applies in particular 

to the Eocene, when some of the most well-known LBF - the Nummulites, became 

widespread and exceptionally abundant. The LBF assemblage, however, is not constant 

throughout the Paleogene. Several global overturning events occur within the Eocene 

causing extinctions of a number of important, widespread genera and dramatically 

altering the LBF assemblage, but these events are poorly understood. Migrations of 
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LBF from America to the Tethys and Indo-Pacific in the late Oligocene, coupled with 

extinction of the Nummulites and evolution of new genera result in an entirely different 

LBF assemblage which continues into the Neogene.  

 After the K/T extinction event at the end of the Cretaceous the Paleocene was a 

period of recovery for LBF; over 80 % of the Maastrichtian LBF suffered extinction at 

the boundary (BouDagher-Fadel, 2008). The carbonate platforms of the Paleocene were 

dominated by calcareous algae rather than LBF, which diversified rapidly after the 

Maastrichtian and have a peak in the Early Eocene (Figure 1.1; Zamagni et al., 2012). 

LBF remained small sized and relatively rare through the Early Paleocene. Their size 

and diversity then begins to steadily increase from the Late Paleocene and through the 

Early and Middle Eocene (Hottinger 1997, 1998).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1. Diagram showing increase in LBF diversity through the Paleocene and Early 
Eocene, along with coralline, coral and dasycladalean diversity changes (modified from 
Zamagni et al., 2012) 
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Nummulites, Assilina, orthophragmines and Alveolina are among the LBF which 

evolved during the Late Paleocene and came to dominate the LBF assemblages of the 

Early and Middle Eocene. Middle Eocene Nummulites and Assilina are known to have 

reached exceptionally large sizes, often several centimetres in diameter and up to almost 

15 cm diameter in the case of Nummulites millicaput (Beavington-Penney and Racey, 

2004).  Following this, however, were a series of global turnover events affecting the 

LBF (indicated on Figure 1.2). During the late Bartonian there is a rapid turnover in 

species of Nummulites, the evolution of the first reticulate Nummulites also occurs 

around this time. This is followed by the extinction of Assilina and shortly afterwards 

the extinction of Alveolina and large species of Nummulites (Hallock et al., 1991). A 

rapid extinction event then occurs at the EOT with the extinction of the 

orthophragmines, pellatispirids and some species of Nummulites (Adams et al., 1986). 

Whilst these extinction events are well known, their cause and exact timing remain 

uncertain. High resolution records across these intervals with means of independently 

dating them are rare. Additional problems arise when there are associated sea level 

changes such as during the EOT, which cause erosion of the interval of interest. Hallock 

et al. (1991) noted that there were similarities in timing between these LBF events and 

events within the planktonic foraminiferal record, but could not compare these two 

records more accurately due to problems with LBF biostratigraphy (Figure 1.2).  

 Following the EOT the Early Oligocene assemblages are mostly composed of 

small Nummulites and other nummulitids, until the migration of lepidocyclinids to the 

Tethys from America near the end of the Early Oligocene and then to the Indo-Pacific 

in the Early Miocene (BouDagher-Fadel and Price, 2010). The Nummulites become 

extinct near the end of the Early Oligocene and after this lepidocycinids tend to 

dominate assemblages. Miogypsinids then evolve close to the Oligocene/Miocene 

boundary and become abundant in Miocene shallow platform carbonates.  

 Whilst there are clearly many interesting events in LBF evolutionary history, 

this thesis focusses on the EOT, using recently drilled exceptionally complete records 

from a location little studied in terms of LBF.  
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1.3 A note on LBF provinces 

During the Paleocene and Eocene the Tethyan Ocean still existed and the 

Mediterranean was connected to the Indo-Pacific via a low latitude sea passageway. The 

LBF assemblages of the Mediterranean and Indo-Pacific therefore share many common 

features during the Eocene (Renema, 2007). During the Early Miocene this pathway 

closed leading to a divergence of LBF, however there remain similarities (Renema, 

2007). The evolution of Paleogene LBF in the American province, however, shows 

considerable differences when compared with the Indo-Pacific and Tethyan regions. 

The recovery period following the K/T extinction in the American province was much 

longer than elsewhere (Boudagher-Fadel, 2008). Whilst the Tethys and Indo-Pacific are 

dominated by Nummulites during the Eocene, in the Americas they make up only a 

small proportion of LBF assemblages, their taxonomic status also remain uncertain. 

Assilina which is, again, abundant in the Eocene of the Tethys and also found in the 

Indo-Pacific, is absent in the American province (BouDagher-Fadel, 2008). The 

lepidocyclinids first occur in the American province in the Lutetian, but are not found in 

the Tethys and Indo-Pacific until the late Early Oligocene. Discocylina in the American 

province became extinct during the late Bartonian extinctions, rather than during the 

EOT as seen elsewhere (BouDagher-Fadel and Price, 2010). For these reasons and due 

to the geographic location of Tanzania, this thesis largely focusses on the LBF of the 

Indo-Pacific region and comparisons with the Tethys.  

 

1.4 Tanzanian Geology and the Tanzania Drilling Project.  

 Cenozoic sediments are known to occur in the southern coastal region of 

Tanzania from the Kilwa Peninsula south to the Mozambique border (Kent et al., 1971, 

Nicholas et al., 2006; 2007). The geology of this region has remained little studied and 

poorly understood since the oil company work of the 1960s and 1970s. However, recent 

work by the Tanzania Drilling Project (TDP) has helped resolve some of the Mesozoic 

and Cenozoic depositional history of the region (Pearson et al., 2004; Nicholas et al., 

2006; Pearson et al., 2006; Nicholas et al., 2007; Bown et al., 2008; Lear et al., 2008; 

Pearson et al., 2008). The TDP is a collaborative onshore drilling program between a 

number of universities and the Tanzanian Petroleum Development Corporation (TPDC), 

whose main aim is to recover records for palaeoclimatic analysis from the Paleogene, 

but also improve the geological understanding of this region of Tanzania.  



Chapter 1: Introduction 

 

7 

 

 Since 1998, a series of field surveys and shallow drilling has been carried out 

around the areas of Kilwa and Lindi, which has provided a large amount on new data. 

Reconnaissance work, sampling and mapping were carried out during 1998 and 2000. 

During this work over 500 sites were sampled and biostratigraphic ages were found for 

many of them (Nicholas et al., 2006). Many of the Paleogene clays were found to 

contain exceptionally well preserved micro- and nannofossils, making them ideal for 

palaeoclimatic analysis. A program of drilling then began in 2002 and to date 40 TDP 

Sites have been drilled and sedimentary successions recovered from the Upper 

Cretaceous to the Miocene (see Pearson et al., 2004; Nicholas et al., 2006; Pearson et 

al., 2006, 2008; Berrocoso et al., 2012),  including three Sites which appear to have a 

continuous succession through the EOT.  

 LBF were recognised in many of the TDP successions from the Eocene and 

Oligocene, occurring as secondary limestone beds or loose specimens within clays. 

LBF, particularly large Nummulites, were also found in outcrop during the 

reconnaissance fieldwork. The occurrence of LBF in this region of Tanzania is reported 

by Kent et al., (1971) and Blow and Banner (1962), but the latter work is largely 

focussed on the planktonic foraminifera. Though the occurrences of LBF found during 

TDP work are mentioned by Nicholas et al (2006, 2007) little detailed work was carried 

out on them, with the exception of those found in the EOT drill Sites. A preliminary 

study was carried out on these LBF and found that the LBF EOT extinction was visible 

within the TDP succession (Pearson et al., 2008). Younger (Oligo-Miocene) carbonates 

containing lepidocyclinids are reported from further south (Kent et al., 1971; 

unpublished TDP data), however as the TDP is primarily concerned with recovering 

Paleogene clay records this more southerly area remained little studied.  

 This thesis is closely linked to the work of the TDP and extensively uses TDP 

samples to examine the LBF of Tanzania. Additionally, fieldwork was carried out in 

collaboration with Chris Nicholas, Niamh O’Sullivan and Wellington Hudson with one 

of the main aims being to work on mapping and increasing understanding of the 

younger, more southerly region.   

 

1.5 LBF basics: ecology, morphology and identification 

LBF are an informal group of foraminifera recognised by their complex internal 

structures and large test size. Tests generally exceed 3 mm
3
 in volume (Ross, 1974) and 

may be up to ~150 mm in diameter (Nummulites millecaput; Beavington-Penney and 
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Racey, 2004). LBF generally inhabit shallow tropical carbonate platforms, within the 

photic zone, as most extant species harbour photosymbionts and their presence is 

inferred from morphology in extinct species (Cowen, 1983).  LBF are important 

carbonate producers in both modern and ancient times. Studies of Marginopora 

kudakajimensis have shown that it accounts for 10% of the inorganic carbon production 

in protected lagoon communities (Fujita and Fujimura, 2008). Additionally, Langer 

(2008) estimates LBF are responsible for the production of almost 5% of the annual 

CaCO3 in reef and shelf areas and ~2.5% of the CaCO3 of all oceans.  

LBF have an environmentally sensitive depth distribution, reproductive strategy 

and morphology (e.g. Hallock and Glenn, 1986; Hohenegger, 1995; Beavington-Penney 

and Racey 2004; Renema, 2005, 2006). Light levels (strongly related to depth) and 

energy are generally considered to be two of the main factors influencing test shape and 

distribution over the platform. LBF living deeper water tend to have a more flattened 

test shape to allow more light to enter the test, whilst those in the shallower water tend 

to have more robust test shapes and thicker test walls. This strong relationship between 

morphology (species) and environment is exceptionally useful for interpreting 

paleoenvironment or carrying out facies analysis of carbonate deposits. Studies of 

modern LBF have shown this and have been used to interpret LBF limestone deposits 

and create generalised facies models (e.g. Hallock and Glenn, 1986). This has been used 

within this thesis to interpret the environments and depositional setting of many of the 

Tanzanian outcrops.  

Although the external morphology gives indications of environment, it is the 

internal structure of the test which is used for identification. The morphology of LBF 

varies considerably between genera, but there are some common features. The 

description here is based on Cenozoic genera of LBF as the Eocene and Oligocene are 

the main focus of this thesis. The initial chambers consist of a spherical proloculus and 

kidney shaped deuteroconch which together form the embryon. Often (e.g. in 

nummulitids) these are approximately central to the test, however in some LBF such as 

miogypsinids the embryon is offset towards one side. The LBF then grows from this 

point commonly with either spiral (e.g. in Nummulites or Operculina) or annular growth 

(e.g. as seen in Discocyclina) and may be involute or evolute. The chambers within the 

LBF may be simple or further divided into chamberlets, which are thought to be related 

to the harbouring of symbionts and strengthening of the test (Haynes, 1965; Hallock and 

Glenn, 1986; Beavington-Penney and Racey, 2004; Hottinger, 2006a). Many LBF have 
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additional morphological features such as pillars, pustules, ribs etc which vary between 

families and genera (Hottinger, 2006b). A basic overview of how to identify the main 

groups of LBF found within Tanzania is shown in Figure 1.3. 

 

 

 

Additional complications arise in LBF identification due to their reproductive 

strategy. LBF exhibit sexual dimorphism with an asexual generation which has a large 

proloculus and small overall test size referred to as the A or megalospheric form and a 

sexual generation with a small proloculus and large test size known as the microspheric 

or B form. B forms reproduce by multiple fission whilst A forms release gametes. There 

is also a third generation which is documented in some living foraminifera (Dettmering 

et al., 1998) where a B form produces a megalospheric schizont rather than an A form 

(Figure 1.4). Most species descriptions of LBF in the literature and morphometric 

studies are based on A forms, as often in B forms it may not be possible to measure 

Figure 1.3. Table giving a basic overview of identifying the main groups of LBF found 
in the Eocene to Miocene of Tanzania. 



Chapter 1: Introduction 

 

10 

 

certain parameters. However, major works on the genus Nummulites taxonomy mainly 

used B forms (e.g. Schaub, 1981). The majority of LBF found and studied in Tanzania, 

with the exception of the lepidocyclinids and some large middle Eocene Nummulites, 

were A forms.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.6 Biostratigraphy of LBF 

 The biostratigraphy of LBF is has limitations largely due to the environments 

they inhabit. Unlike planktonic foraminifera and nannofossils which occur throughout 

the surface waters of the oceans LBF are restricted to carbonate platforms within the 

tropics. The discrete nature of carbonate platforms mean that endemic species to a 

region often occur. Additionally there are differences in ranges of species or genera 

between localities due to migration events. This has led to the formation of regional 

zonal schemes. Within the Indo-Pacific the East Indian Letter Classification is used (see 

reviews by Adams, 1970; Renema 2007), whilst in the Tethyan region the Shallow 

Benthic Zones (SBZ) are used (Cahuzac and Poignant, 1997; Serra-Kiel et al., 1998). 

Figure 1.4. Diagram showing the life cycle of Amphistegina gibbosa with A forms and B 
forms (modified from Dettmering et al., 1998; Beavington-Penney and Racey, 2004). 
2n: diploid; n: haploid.  
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These are discussed in detail in section 4.2. The common lack of planktonic 

foraminifera within LBF environments, and LBF often occurring within thick carbonate 

successions make independent dating problematic. Therefore whilst LBF turnover 

events are well known, their timing with respect to climatic events and extinctions 

within other fossil groups is often vague.  

 

1.7 Thesis aims and outline 

The aims of this thesis are: 

- Study the LBF across the EOT at high stratigraphic resolution using TDP 

records.  

- Determine how the EOT correlates to the climatic record and implications 

for extinction mechanisms.  

- To give an overview of the LBF distribution, facies and biostratigraphy of 

Tanzania using TDP technology and extensive additional fieldwork 

- To compare both the longer range and the EOT Tanzanian records with the 

better known Tethyan and Indo-Pacific records 

- Improve LBF stratigraphic correlation.  

 

The scientific results from this work are presented within Chapters 3 to 5. 

Chapter 3 gives an overview of LBF from the Eocene to Miocene of Tanzania using 

both outcrop and TDP samples. Chapter 4 then focusses on the EOT and uses high 

resolution records from TDP Sites to determine exact timing of the LBF extinction and 

then discusses the implications this has for mechanisms. Chapter 5 contains three 

smaller scale studies of other LBF rich sections for comparison with the work on 

Tanzania; the EOT succession from the Melinau Limestone, Sarawak, the Fuente 

Caldera EOT succession from Southern Spain and the Cortes Zarabanda, Upper 

Oligocene section also from Southern Spain.  

 

1.8 Fieldwork 

1.8.1 Tanzania 

Fieldwork was carried out in Tanzania between 17/08/09 and 28/09/09. During 

the first week of this work limestone core samples from TDP 11, 12, 17, 20, 2, 13, 4, 18 

and 6 were collected from the TPDC core store in Dar es Salaam. These are the samples 

used for the study in Chapter 3. 3. Following this I joined a team consisting of 
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Christopher Nicholas, Niamh O’Sullivan and Wellington Hudson from Trinity College, 

Dublin to carry out fieldwork. My role was to collect samples of the Cenozoic LBF for 

biostratigraphy and palaeoenvironmental analysis. A large area was covered during the 

fieldwork from Kilwa Masoko in the north to the Mozambique border in the south and 

inland as far as Tendaguru, the famous dinosaur site. Chapter 3 gives a detailed 

description of the areas covered, samples collected and results of this work.  

1.8.2 Malta  

Following the work in Tanzania a week of opportunistic fieldwork was carried 

out from the 17/10/09 to 23/10/09 on Malta and Gozo. Though not reported directly in 

this thesis this work was very useful for understanding the LBF facies distribution on a 

well-studied Miocene carbonate ramp. Sections were visited on the south western side 

of the Marfa ridge, which was the deeper part of the carbonate ramp during the 

Miocene. A sample was also taken near Il Mara on the southern end of the island, which 

was the shallower part of the Miocene ramp. Heterosteginid rich limestones on Gozo 

were also observed. In Malta the transition from large flattened lepidocyclinids in the 

deeper part of the shelf to more robust forms in the shallower part is very clear and was 

very useful for the study of the Tanzanian lepidocyclinid rich sediments.  

1.8.3 Spain 

Fieldwork was carried out between 28/12/2010 and 1/1/2011 at Fuente Caldera 

and Cortez Zarabanda near Granada in Spain, with Eustoquio Molina and Alba Legarda  

from the University of Zaragoza and Helen Coxall from the University of Cardiff. The 

aim of this work was to sample the LBF rich limestones across the EOT at Fuente 

Caldera to determine ranges of orthophragmines and through the section at Cortes 

Zarabanda to assist in determining biostratigraphy. Previous work by Eustoquio Molina 

and other researchers at the University of Zaragoza had resulted in a detailed log of both 

sections. Therefore fieldwork primarily consisted of sampling the LBF rich limestones 

and recording these on the existing logs, along with observations. Details of the 

sampling and results are given in section 5.3 for Fuente Caldera and section 5.4 for 

Cortes Zarabanda.  
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Chapter 2:		

General Methods 
 

The methods described within this chapter are those which have been used 

throughout this thesis. Where a method is specific to only one chapter or section it has 

been described within that respective section.  

2.1 Oriented thin section 

The identification and classification of larger benthic foraminifer (LBF) is 

largely based on their internal structures. For this reason they are studied in thin section. 

Oriented thin sections are used to enable accurate comparison of measurements of the 

internal structure between specimens. Sections are generally made of the equatorial 

plane (horizontal) and the axial plane (vertical; see Figure 2.1).  

 

 

 

 

 

 

 

 

 

 

2.1.1 Equatorial sections 

Specimens free from matrix or with very little matrix are used. These are usually 

washed out of clays or can be removed from limestones. As the technique is destructive 

an image is taken of the external view of the test before the thin section is made. 

External ornamentation can be useful for identification particularly within 

orthophragmines or Nummulites. The following method is not commonly fully 

described in papers and so was demonstrated to the author by Prof. Ercan Özcan at 

Istanbul Technical University.  

Figure 2.1. External view (a), equatorial view (b) and axial view (c) of a reticulate Nummulites.  
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To make the section a frosted slide is placed upon a hot plate and once warm a 

small piece (depending on the size of the LBF) of Lakeside 70 cement is placed upon 

the slide. The cement should melt but not bubble. The LBF is then placed onto the 

cement and the slide removed from the hot plate. Before the cement cools the LBF is 

manipulated under the microscope using a mounted needle or a drawing pin until it is 

horizontal. The slide is then allowed to cool and the cement sets. The LBF can then be 

ground on fine, wet, silicon carbide paper (800 to 1200 grade). The slide should be 

washed and progress checked frequently under the microscope to see how close the 

proloculus is. Once near the proloculus or when the proloculus/equatorial layer has been 

reached the slide is washed and dried and returned to the hot plate. When the cement 

has fully melted the LBF can be flipped using the pin or needle so that the flat side is 

“safe” against the slide and can be ground no further. Under the microscope the LBF is 

then gently pushed down into the cement using the pin to make sure it remains flat 

against the slide whilst the cement cools. It is important to avoid bubbles under the 

LBF, particularly around the proloculus as these may affect measurements. The 

grinding process can then be repeated on the new side until only a thin section through 

the equatorial layer remains.  

If the original side was not close enough to the equatorial plane the cement can 

be melted and the LBF flipped again and ground on the original side, and this process 

can be repeated until the equatorial layer is reached. The LBF position and orientation 

can also be adjusted during the process by re-melting the cement (e.g. if the LBF was 

not completely horizontal initially). The slide is then labelled and is complete. 

 

2.1.2 Axial sections  

This follows the method of the equatorial section, but with the LBF oriented the 

opposite way, on its edge. This often requires more cement to support the specimen in 

this position whilst being ground. The cement is melted on a frosted slide, the LBF is 

then manipulated using the pin or needle to stand on its edge in a vertical position. The 

LBF is then ground until the proloculus is reached, with frequent washing and checking 

of progress under the microscope. The slide is then replaced on the hot plate and when 

the cement has melted is flipped so the flat side is against the slide. It is then pushed 

gently down with the pin or needle and when cool ground on the opposite side, until a 

thin section through the proloculus remains. The slide is then labelled. Like the 
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Figure 2.2. a) Diagram of equatorial sections of Nummulites (A and B forms) showing method 

of measurement for proloculus diameter (P) and whorl radii (W1-5), modified from Renema 

(2002); b) measurement of proloculus (P) and deuteroconch (D) in lepidocyclinids also 

showing primary auxiliary chamberlets (PAC) and accessory auxiliary chamberlets (AAC), 

modified from Özcan et al., (2010a); c) measurement of proloculus (P) and deuteroconch (D) 

in orthophragmines, modified from Özcan et al., (2007). 

 

 

equatorial section adjustments to the LBF position can be made by remelting the cement 

at any point during the process. 

2.1.3 Measurement of specimens 

Thin sections are imaged using a digital camera microscope attachment and 

Leica image manager software. Images are calibrated and measurements taken using 

this program. For most LBF measurements of proteroconch and deuteroconch were 

taken to aid in identification. In some species of Nummulites which were common in 

samples whorl measurements were taken to allow more accurate comparison between 

specimens and with previous studies (see Chapter 4). Figure 2.2 shows the method of 

measurement in some of the major LBF groups found in Tanzania.  
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Table 2.1. Concentrations of stains used for acetate peels. 

2.2 Acetate Peels 

Acetate peels are the imprint of an etched surface of the rock on a transparent 

plastic film. They are easy and quick to produce and virtually non-destructive to the 

specimen and are effective on well cemented carbonates. The following method is based 

on Dickson (1965, 1966). 

To create a peel the sample is cut and polished with a final polish of 800 grade 

carborundum powder or finer. The polished surface of the sample is then etched in 1.5% 

hydrochloric acid for 10 to 15 seconds and then rinsed in deionised water. The surface 

is initially stained using a mix of potassium ferricyanide and Alzarin red-S for 30 to 45 

seconds and rinsed with deionised water. It is then stained a second time using Alzarin 

red-S for 10 to 15 seconds and is rinsed in deionised water. Stains are used in the 

concentrations shown in table 2.1. The sample is then allowed to dry. Once dry, 

plasticine can be used to support the specimen so that the polished surface is horizontal. 

A suitable sized piece of acetate is cut. The surface of the sample is flooded with 

acetone and the acetate carefully placed on top. Care should be taken to avoid bubbles. 

The acetate and sample should be left to dry. The acetate is then removed, if possible, 

with one smooth continuous motion. Excess acetate should be trimmed from the edge to 

avoid crinkling and the peel should be stored flat. It can be studied under the 

microscope as it is, or between two glass slides to keep it flat.  

 

Stain Concentration 

Alzarin red-S and potassium ferricyanide 

mix 

0.2 g A.R.S/100 ml 1.5 % HCl 

2.0 g P.F/100 ml 1.5 % HCl  

Mixed in ratio A.R.S:P.F =3:2 

Alzarin red-S 0.2 gm A.R.S/ 100 ml 1.5 % HCl 
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Chapter 3:  

An overview of the LBF biostratigraphy and 

biofacies of southern coastal Tanzania 

 

The work on the nine TDP sites within this chapter has been published (Cotton, 

L.J. and Pearson, P.N., 2012. Larger benthic foraminifera from the Middle Eocene to 

Oligocene of Tanzania, Austrian Journal of Earth Sciences 105, 189-199). LJC is 

responsible for the scientific content, PNP contributed in discussions and paper 

revisions. This paper has been incorporated within this chapter with a modified 

introduction and conclusion. The field work and discussions leading to the remainder of 

this chapter were carried out in collaboration with a team from Trinity College Dublin, 

in particular Niamh O’Sullivan, who also assisted in the preparation of maps. This 

chapter focusses on the biostratigraphy and palaeoenvironment of LBF bearing 

localities. For more structural and tectonic analysis and interpretation, including 

localities without LBF, see O’Sullivan 2012. Planktonic foraminiferal identifications 

and age determination were carried out by Paul Pearson.  

 

3.1. Introduction 

The coastal basins of southern Tanzania contain a thick succession of Paleogene 

and Neogene marine sediments. The Paleogene, in particular, has been the focus of 

much recent research on the palaeontological and palaeoclimatic history of the area 

(Pearson et al., 2004, 2006; Nicholas et al., 2006, 2007; Pearson et al., 2008; Wade and 

Pearson, 2008; Lear et al., 2008; Dunkley Jones et al., 2008, 2009; Pearson et al., 2009). 

Rich assemblages of larger benthic foraminifera (LBF) occur throughout both periods 

but have received relatively little attention. Blow and Banner (1962) gave a brief 

overview of LBF species found in much of the succession, but largely concentrated on 

the planktonic foraminifera. Kent et al. (1971) also mention some LBF found in outcrop 

used to assign ages to the stratigraphy, but not in detail. The region is of active interest 

for oil exploration; however it remains poorly mapped with the facies and ages of many 

areas uncertain.  
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The aim of this chapter is to give a comprehensive overview of occurrences, 

ages and palaeoenvironments of LBF bearing strata and the LBF genera present in 

Tanzania, using firstly the Tanzania Drilling Project (TDP) drill core record and 

secondly field outcrop samples collected by myself and Niamh O’Sullivan in 2009, 

thereby improving the overall geological understanding of this region.  

The Kilwa and Lindi Districts of Tanzania contain a thick succession of clay 

sediment from Santonian to Oligocene age (Nicholas et al., 2006, 2007). These 

sediments are formally defined as the Kilwa group and are split into four formations: 

the Nangurukuru (Santonian to Paleocene), Kivinje (Paleocene to lower Lutetian), 

Masoko (lower Lutetian to mid Bartonian) and Pande formations (mid Bartonian to the 

Rupelian; Nicholas et al., 2006). A large proportion of this succession has been 

recovered in a series of shallow drill cores by the TDP (see Nicholas et al., 2006 for 

review). The sediments of the Kilwa group are broadly homogeneous and consist of a 

succession of dark greenish grey clays and claystones to marls with limestones and 

calcareous sandstones deposited as sediment gravity flows. LBF are abundant in the 

limestone beds and they also occur in clay horizons in the succession. Specimens from 

the clays are generally better preserved than those from the limestone but are smaller 

and more dispersed. Calcareous micro- and nannofossils are often exceptionally well-

preserved (e.g. Pearson et al., 2008; Bown et al., 2008) and planktonic foraminiferal and 

nannofossil studies have been used to determine the stratigraphy of the succession 

(Pearson et al., 2004, 2006; Nicholas et al., 2006; Wade and Pearson, 2008, Dunkley 

Jones et al., 2008, 2009). Stable isotope analysis has been carried out on three sites 

which span the Eocene - Oligocene transition (EOT) enabling these sites to be 

correlated with the global isotope stratigraphy (Pearson et al., 2008).   

Nine of the TDP sites are stratigraphically placed between the Upper Ypresian 

and Late Rupelian (Pearson et al., 2004, 2006; Nicholas et al., 2006). During this 

interval LBF are known to have undergone several global turnover events (Hallock et 

al., 1991). Towards the late Middle Eocene there is a large turnover in nummulitids, 

followed by the extinction of Assilina and then the extinctions of Alveolina and large 

species of Nummulites. A further global extinction of LBF is then seen at the EOT, with 

the extinction of the orthophragmines, the pellatispirids and several species of 

Nummulites (Adams et al., 1986). All of these are long ranging and widespread groups 

of LBF.  
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Figure 3.1. Location map showing the total field area, with field tracks, TDP sites and 

sample positions (white dots) marked. Sampling areas shown in more detail in later figures 

in this chapter are outlined in white. Key applies to all maps in this chapter. 
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Although the TDP ages of LBF occurrences are well constrained, the area they 

sample is limited and LBF only occur in these records as transported grains. Therefore 

field sampling was carried out over a much wider area, ranging across approximately 

200 km along the coast from Kilwa Masoko to the Mozambique border (Figure 3.1) to  

gain a more complete overview of LBF present, identify potential new drill sites and 

further investigate the Oligo-Miocene LBF which are not found in the TDP record cores 

but are known to occur in this region (Blow and Banner, 1962, Kent, 1971, Nicholas et 

al., 2007). 

Limestones rich in LBF from a variety of depositional environments are 

abundant in the field area. In the north of the area, from Kilwa to the Kiswere peninsula, 

outcrops are Paleocene in age. Several sites known to contain LBF within this region 

had previously been described by Nicholas et al. (2006, 2007) and were revisited during 

the 2009 fieldwork to examine the LBF in more detail. Additional Paleogene localities 

were also identified. South of the Kiswere peninsula the majority of sediments are of a 

younger, Neogene age. This region is very rich is shallow water carbonate successions 

and lepidocyclinid beds are particularly common. The LBF and other fossils can be 

used study platform evolution and sea-level fluctuation.  Where possible, dating of the 

outcrops has been carried out using planktonic foraminifera from clay sediments from 

within successions or nearby. Where there are no clay sediments the age has been 

determined using the LBF genera with the most robust global ranges (Adams 1970; 

Cahuzac and Poignant, 1997; Serra-Kiel et al., 1998, Boudaher-Fadel and Banner, 1999; 

Renema, 2007).  

The combined study of both TDP sites and more widespread surface sampling 

presented within this chapter provides a solid overview of the occurrences of LBF in 

Tanzania through the Paleogene and Neogene and also allows potential links between 

LBF extinctions and global climatic events to be explored. Additionally, this study has 

identified a number of new localities and at least one of these shows significant 

potential as a possible future drilling site.  

3.2. Materials and methods 

Section 3.3 and 3.4 utilise nine TDP sites from the top of the Kivinje formation 

to the top of the Pande formation to examine LBF occurrences across the Middle 

Eocene to Oligocene interval. The locations (see Figure 3.1), assigned planktonic 

foraminiferal zones and ages of these cores are summarised in Table 3.1. The second 
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Table 3.1. Location and age data for the TDP sites used in this study. 

 

 

part uses samples collected by myself and Niamh O’Sullivan during extensive fieldwork 

carried out in 2009 (see Tables 3.2 and  3.3). The main field areas described are outlined 

in Figure 3.1, more detailed maps showing sample locations are given with the 

respective descriptions of localities.    

 Clay samples were washed through a 63 m sieve and residues dried. Oriented 

sections of loose individual LBF were made for identification according to the method 

described in Chapter 2. The majority of samples were studied in randomly oriented thin 

sections prepared and acetate peels (prepared according to Dickson, 1965, 1966; as 

described in Chapter 2).  

 

Site Location UTM Planktonic 
foraminiferal 
Zone  

Age 

TDP 2 SW Kilwa 
prison (80m 
from TDP 20) 

37L 555371 
9013813 

E7-E9 L. Ypresian to 
Mid Lutetian 

TDP 20 SW Kilwa 
prison 

37L 555457 
9013846 

E7-E9 L. Ypresian to 
Mid Lutetian 

TDP 13 Roadside N of 
Mkazambo 

37L; 558673 
8975981 

E9-E11 Middle to Upper 
Lutetian 

TDP 18 Roadside N of 
Mkazambo  

37L; 558640 
8975370 

E12 (lower part) Bartonian 

TDP 4 Ras Tipuli 37L; 578530 
8900033 

E12-E13 mid Bartonian 

TDP 11 Close to the 
village of 
Stakishari 

37L; 560250 
8983211 

E16-O1 Upper 
Priabonian to 
Lower Rupelian 

TDP 12 Close to the 
village of 
Stakishari 

37L; 560222 
8981309 

E16-O1 Upper 
Priabonian to 
Lower Rupelian 

TDP 17 Close to the 
village of 
Stakishari 

37L; 560539 
8984483 

E15-O1 Upper 
Priabonian to 
Lower Rupelian 

TDP 6 W of Kilwa 
Masoko airstrip 

37L; 555752 
9014922 

O2-O4 Lowe Oligocene 
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Sample no. X Y Location 

K04 08 55' 29.8" S 039 30'19.1" E Kilwa Creek 

K05 08 55'29.8" 039 30'17.9" Kilwa Creek 

K06 08 55'27.1" 39 55'27.9" Kilwa Creek 

K07 08 55'27.1" 39 30'18.1" Kilwa Creek 

K08 08 35'26.9" 39 30'18.1" Kilwa Creek 

K09 08 55'27.7" 39 30'15.0" Kilwa Creek 

K10 08 55'28.0" 39 30'14.4" Kilwa Creek 

K11 0552530 897358 Pande quarry 

K12 0552530 897358 Pande quarry 

K13 0552530 897358 Pande quarry 

K14 0552530 897358 Pande quarry 

K15 - - Nr TDP sites 13 and 18  

K16 0558573 8976122 Nr TDP sites 13 and 18  

K17 560034 8981434 EOB site 

K18 560034 8981434 U. Eocene at E/O site 

K19 560073 8981374 Oligocene at E/O site 

33 559644 8954469 Kiswere 

34 560320 8954186 Kiswere 

35 563053 8953908 Kiswere 

44 581123 8909169 Mitonga river quarry 

61 580940 8892982 Kitunda 

62 580915 8892978 Kitunda 

63 580899 8892977 Kitunda 

79 580261 8914225 Base Likonga river 

83 578105 8925029 Mchinga school 

84 578105 8925029 Mchinga school 

88 855562 8929994 Past Mchinga school 

92 588185 8858446 Mikindani area 

98 585096 8870310 Mikindani area 

100 573996 8923800 Mbuyuni 

101 573996 8923800 Mbuyuni 

107 573956 8923858 Mbuyuni log 

109 564575 8913779 Moka 

111 558009 8941703 Near lake Mkoe 

113 563211 8941314 Near lake Mkoe 

119 577757 8933141 North Mchinga 

120 577243 8934781 North Mchinga 

122 574037 8933657 North Mchinga 

131 593583 8882771 Pangaboi (S. Kitunda) 

135 590942 8883840 Navanja  

137 583557 8881821 Naminda 

138 583557 8881821 Naminda 

143 566130 8953943 Kiswere 

145 536971 8953844 Kiswere 
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Table 3.2. Location data for the limestone (LBF) field samples used in this study; co-

ordinates are given in UTM 37L (Arc 1950) except K04-K10 which are given and lat. and 

long. (WGS’84). 

 

 

Table 3.3. Location data for the clay (planktonic foraminifera) field samples used in this 

study; co-ordinates are given in UTM 37L (Arc 1950). 

 

 

Sample no. X Y Location 

148  564291 8953149 Kiswere 

149 564126 8953679 Kiswere 

150 563960 8954208 Kiswere 

151 562298 8954028 Kiswere 

152 561835 8953923 Kiswere 

165 573957 8923748 Mbuyuni 

 

 

 

 

Sample no. X Y Area 
36 566999 8956081 Kiswere 

43 581123 8909169 Mitonga river quarry 

45 580001 8915412 Likonga 

64 580621 8892914 Kitunda 

65 573654 8879177 Kitunda 

69 579120 8900348 Nr Ras Tipuli 

77 577503 8598875 Ras Bura 

78 577503 8598875 Ras Bura 

80 579659 8922502 Nr Mchinga turning 

81 579659 8922502 Nr Mchinga turning 

85 578105 8925029 Mchinga school 

86 - - Past Mchinga school 

89 321240 8864420 Mikindani area 

104 573956 8923858 Mbuyuni  

112 562823 8941623 Nr Lake Mkoe 

134 590942 8883840 Navanja 

144 539971 8953844 Kiswere 

162 573957 8923748 Mbuyuni 

 

 

3.3 TDP Succession 

3.3.1 TDP results 

The Eocene limestone beds are bioclastic pack-grainstones. LBF are the 

dominant bioclastic component, but also present are echinoid fragments, red algae, 

smaller foraminifera and serpulid worm tubes. The LBF occur in a matrix of finer 

carbonate fragments including smaller-sized foraminifera and quartz grains. Most LBF 

have suffered at least some abrasion to the outer test whorls, comparable with category 

2 to 3 on the scale of Beavington-Penney (2004). Intraclasts are present in some 

samples, but are rare. Several large-sized LBF show evidence of boring and/or 
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overgrowth by red algae. The Oligocene beds are calcareous sandstones with a high fine 

grained quartz content. Bioclasts including LBF are present but less abundant than in 

the Eocene beds. The samples from TDP Site 6 are distinctly different from the rest of 

the succession. These contain a large number of reworked carbonate clasts including 

LBF in a finer quartz-rich matrix.  

The stratigraphic occurrences of the LBF genera are shown in Figure 3.2 with 

the levels of the TDP sites. The assemblage throughout the Lutetian (TDP Sites 2, 20 

and 13) remains fairly constant and is generally dominated by Nummulites and 

Alveolina with orthophragmines and Linderina (Figures 3.3 and 3.4). Also present but 

less frequent are Lockhartia, Assilina, Glomalveolina and Orbitolites (Figures 3.3 and 

3.4), although the latter two genera only occur in the lower half of the Lutetian. Assilina 

are rare in the core samples, but are abundant in outcrops on the edge of Kilwa Creek, 

close to the drill sites of TDP 2 and TDP 20 and thought to be of similar age. Towards 

the top of TDP Site 13 the last Alveolina specimen is found, which has had an almost 

continuous presence in the TDP samples to this point. In the Bartonian (TDP Site 18) 

there is a high diversity of LBF genera and there appears to have been a change in the 

LBF assemblage between the uppermost samples of TDP Site 13 and the lowermost 

samples of TDP Site 18. In TDP Site 18 there are the first occurrences of reticulate 

Nummulites, Operculina, Sphaerogypsina and  Heterostegina (Figure 3.3f), although a 

possible Heterostegina  occurs towards the top of TDP 13. There is also the last 

occurrence of Lockhartia, and the last definite occurrence of Linderina. TDP Site 4 is 

still within the Bartonian but stratigraphically slightly higher than TDP Site 18. In these 

samples Nummulites are most common and occur with Discocyclina, Operculina and 

possible Linderina. There is then a gap in the TDP record and the next sites are Upper 

Priabonian to Lower Rupelian (TDP Sites 11, 12 and 17) and continuously span the 

EOT (Pearson et al., 2008). These samples also show a relatively high diversity of LBF. 

At these sites the majority of the genera present go extinct at the Eocene / Oligocene 

boundary (EOB), coincident with the extinction of the Hantkeninidae (see the more 

detailed study in Chapter 4 and Cotton and Pearson, 2011). Only Sphaerogypsina and 

some species of Nummulites pass through the boundary apparently unaffected. Several 

of the genera which do go extinct at the boundary, including Fabiania, Pellatispira and 

Palaeonummulites, (Renema, 2002) are only present in these samples. In the Upper 

Rupelian (TDP Site 6) limestone beds there are a large number of intraclasts and the 

only LBF  in them that do not appear to have been reworked are small Nummulites. 
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Figure 3.2. Range chart showing the stratigraphic occurrence of LBF genera in the TDP 

succession. Stratigraphic levels of the TDP sites are shown in the left hand column. Crosses 

indicate the occurrence of a genus; black lines are used to indicate the occurrences of genera 

in TDP 11, 12 and 17 as a high resolution study has been carried out. Pale blue bars in the 

background show known global ranges of genera (Hallock et al., 1991; Renema, 2002; 

BouDagher-Fadel, 2008). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 3: An overview of the LBF biostratigraphy and biofacies of southern coastal 

Tanzania 

 

26 

 

3.3.2 TDP discussion 

As LBF are known to inhabit the shallow carbonate environment (Beavington-

Penney and Racey, 2004) all specimens occurring in the hemipelagic clay succession of 

the Kilwa group have been transported. Despite this, they can still be used to give 

ranges of LBF as the majority appear to have been deposited penecontemporaneously 

with the clay sediments. There are occasional examples of large-sized LBF which have 

been bored ; the borings are infilled by the surrounding matrix indicating they were still 

uncemented when re-deposited. LBF in clay layers are commonly not recrystallised. 

Intraclasts are rare in the sediment and the foraminifera appear to have been deposited 

as uncemented grains, evidenced by the tests within limestone beds having been highly 

abraded during transport. The high levels of abrasion suggest high energy transport and 

rapid deposition (Beavington-Penney, 2004). The exception to this 

penecontemporaneous sedimentation are the limestone beds from site TDP Site 6 which 

contains numerous intraclasts often with biostratigraphically older LBF. The only LBF 

that do not appear to be reworked are small Nummulites.  

The ranges of the LBF genera found in the TDP sites from Tanzania all fall 

within global ranges (Adams, 1970, Adams et al., 1986, Hallock et al., 1991, Serra-Kiel 

et al., 1998, Renema, 2002, Renema, 2007). One of the largest changes in the Tanzanian 

LBF assemblage takes place between the last sample of TDP Site 13 and the first 

sample of TDP Site 18. These two sites were drilled less than 1 km from each other, 

making it unlikely that the assemblage change is due to geographic location or varying 

sediment source. The succession in TDP Site 18 has been assigned to the lower part of 

planktonic foraminiferal Zone E12 (Nicholas et al., 2006) and is therefore close to a 

global climatic warming event known as the Mid Eocene Climatic Optimum (MECO). 

The MECO was a global interval of rapid warming from ~40 Ma to ~40.8 Ma which 

interrupted the overall cooling trend of the Eocene (Boharty et al., 2009; Edgar et al., 

2010). The MECO is relatively little studied with regards to both planktonic 

foraminifera and LBF response. Some overturning within the planktonic acaraninids 

and morozovellids is associated with this period and there is the occurrence of a short 

ranging 'excursion taxon', Orbulinoides beckmanni, which spans the MECO (Edgar et 

al., 2010). In LBF, overturning within Nummulites and the first occurrences of reticulate 

Nummulites have been noted to occur around this level (Hallock et al., 1991) although 

have not been previously directly associated with the MECO event. 
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Studies of planktonic biostratigraphy from TDP Site 18 show that the 

Orbulinoides beckmanni present are apparently early forms (Nicholas et al., 2006), 

suggesting that the succession is from the very early stages of, or even slightly precedes, 

the MECO. Therefore the faunal change in Tanzania occurred before the peak of the 

MECO. Additionally TDP Site 18 samples contain reticulate Nummulites from the N. 

fabianii group and therefore their evolution pre-dates the main phase of the MECO. 

Preceding the MECO is an interval of cooling from ~40.6-41.6 Ma which has also been 

recognised in 
18

O records (Boharty et al., 2009). A cooling trend followed by the onset 

of rapid warming may have been responsible for at least local changes in the LBF 

assemblage. 

The global extinction of Alveolina and large species of Nummulites are known to 

occur in the late Middle Eocene, slightly preceded by the extinction of Assilina (Hallock 

et al., 1991). Although attempts have been made by the TDP to locate and drill this 

stratigraphy, thus far these have proved unsuccessful. Assilina is rare in the TDP 

samples, and little light is shed on its extinction level. No examples of Assilina were 

seen above the Lutetian, however their abundance in outcrop suggests that this may be 

due to the small area sampled by the TDP cores and the fact that LBF assemblages vary 

across the shelf. Further outcrop samples may therefore be able to help with this issue. 

The disappearance of large sized species of Nummulites requires a more detailed 

species-level study. However, Nummulites specimens > 10 mm diameter are present in 

the clays of TDP Site 18 and Nummulites > 25 mm belonging to the N. perforatus group 

were found in outcrop close to the drill site. These large Nummulites are not found at 

TDP Sites 11, 12 and 17. This suggests that they became extinct within the un-sampled 

interval. Alveolina has a lower last occurrence at the top of TDP Site 13 and is found in 

almost all TDP samples until this point. This indicates that the mechanism causing the 

assemblage changes between the successions in TDP Sites 13 and 18 may have also 

caused a local “early” extinction of Alveolina.  

The EOT shows a rapid extinction of a number of genera shown to have long 

ranges in the Tanzanian record. The Priabonian samples are the most diverse, but this 

could be in part due to the higher-resolution study carried out on them. The Tanzanian 

sites have allowed accurate correlation between the LBF extinctions and plankton 

extinctions in the EOT (see Chapter 4; Cotton and Pearson, 2011).   
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Figure  3.3. LBF in petrological thin sections from limestones. a) Nummulites sp. (TDP 20); b) 

Nummulites sp. (TDP 18); c) Nummulites sp. (TDP 4); d) Asterocyclina sp. (TDP 20); e) 

Discocyclina sp. (TDP 13); f) Heterostegina sp. (TDP 18); g) Linderina sp. (TDP 18); h) 

Lockhartia sp. (TDP 20) 
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Figure 3.4. a-d) LBF in petrological thin sections from limestones; e-h) Oriented 384 individual 

LBF thin sections of specimens from clays. a) Alveolina sp. (TDP 2); b) Alveolina sp. (TDP 2); 

c) Glomalveolina sp. (TDP 2); d) Orbitolites sp. (TDP 2); e) Reticulate Nummulites of the N. 

fabianii group (TDP 18); f) Asterocyclina sp. (TDP 18); g) Operculina gomezi (TDP 18); h) 

Orbitoclypeus sp. (TDP 18). 
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3.4 Field samples  

The results from analysis of field samples are broadly divided into the Eocene to 

Early Oligocene localities and the Upper Oligocene to Miocene localities, within this 

they are then ordered geographically, roughly north to south.  

 

3.4.1 Field sample results: Eocene to Early Oligocene 

Several Eocene localities were known to contain LBF from previous studies 

(Nicholas et al., 2006, 2007; P. Pearson pers. comm.). These sites were re-visited to 

sample and study the LBF in more detail. Additionally, several new sites were also 

found during the fieldwork. 

 

3.4.1.1 Kilwa Creek 

Middle Eocene limestones of a similar age and facies type to those found at 

recovered in TDP sites 2 and 20 and found at Kilwa Prison are known to outcrop along 

the northern bank of Kilwa Creek, but had not been studied in detail (Nicholas et al. 

2006, 2007; P. Pearson pers. comm.). Samples were collected along the mangrove edge 

along Kilwa Creek at Kilwa Masoko (Figure 3.5). Large fallen blocks are common 

where supporting sediment (i.e. clays) have been washed out from underneath (Figure 

3.6d). Some in situ beds were visible where the surface sediments and vegetation had 

been removed and a short log was made (Figure 3.6a-c). The limestone beds are 

approximately 20 cm to 50 cm thick within a clay sequence. The limestones are 

bioclastic pack-grainstones, largely comprised of LBF. Nummulites spp. dominate the 

assemblage, but large numbers of Assilina are present in particular beds (Figure 3.6c) 

and Discocyclina is also frequently found.  Large rounded Nummulites of the 

Nummulites perforatus group along with large Assilina can be found eroded out on the 

soil surface. The LBF show damage to their tests, particularly the outer whorls and 

broken fragments are common, indicating extensive transportation has taken place 

(Beavington-Penney, 2004).  

The sedimentation is similar to that found in TDP sites 2 and 20, however the 

LBF assemblage differs slightly in that it has very few Alveolina which is common in 

the core samples. Additionally, Assilina spp. is abundant in outcrops on Kilwa Creek 

whilst they are extremely rare in TDP 2 and 20.  This is likely to be related to varying 

source area for the two deposits, as LBF tend to be strongly zoned with different genera 
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Figure 3.5. Location map showing the Kilwa Creek, Pande, Kiswere and Mkoe localities and 

samples collected, for more detailed maps of the Kiswere and Lake Mkoe areas see Figures 

3.9 and 3.12 respectively.  

 

inhabiting different depth habitats (Beavington-Penney and Racey, 2004; see section 1.5 

for discussion) or may possibly be due to slight differences in age. 
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Figure 3.6. a) Short log of exposed in situ beds of Nummulites and Assilina rich limestone; b) 

Photograph of beds logged, hat for scale; c) Close up of Assilina rich layer; d) One of many 

large blocks found on the banks of the creek, person for scale; e) Surface of LBF rich 

limestone; f) Thin section of Kilwa Creek limestone, showing Nummulites spp., 

orthophragmine fragments and complex miliolids (sample K08).  
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3.4.1.2 Pande Quarry  

Pande quarry is a white limestone quarry found on the road between Hotelitatu 

and Mkazambo (see Figure 3.5), at the edge of the lower Eocene sediments mapped by 

Nicholas et al. (2006). The quarry contains two lithologies; an Alveolina rich grainstone 

and a softer, marly, Nummulites rich carbonate. Within the quarry wall the softer 

sediment can be seen overlying the blocky grainstone (Figure 3.7a). The grainstone is 

also found in large blocks on the quarry floor (Figure 3.7b). It is extremely rich in 

Alveolina, with varying amounts of Nummulites (Figure 3.7d-f). Occasional bryozoan 

and gastropod fragments are also present. Dasyclads are very common and thalli of 

thyrsoporellids (Thyrsoporella and Belzungia) and Ovulites (probably Ovulites 

maillolensis) are visible (Figure 3.7e-f) and indicate a Lower to Middle Eocene age, 

consistent with the age given by Nicholas et al (2006) which is based on planktonic 

foraminifera. These coupled with the abundance of Alveolina, the undamaged nature of 

the LBF and low diversity assemblage indicate the limestone was formed in the inner 

part of the carbonate platform. The softer, marly sediment can be seen on the quarry 

floor to the north eastern end of the quarry. Loose Nummulites up to ~1 cm diameter are 

abundant (Figure 3.7c) and complete tests of irregular echinoids are common in this 

sediment. Planktonic foraminifera were also found during in previous studies (P. 

Pearson, per. comm). These softer sediments represent a deeper environment than that 

of the grainstones.  

 The occurrence of this outcrop in the middle of a hemipelagic succession of 

clays is puzzling. It has been suggested that the quarry represents a gully infill (P. 

Pearson pers. comm.). The Alveolina rich limestone was cemented on the shelf and 

redeposited as blocks within a gully in the platform, possibly due to tectonic movement. 

Less cemented sediment, mixed in with pelagic clays and planktonic foraminifera was 

then deposited on top. This accounts for the blocky nature of the grainstones, variation 

in lithology and presence of planktonic foraminifera in the upper beds. However, the 

LBF and echinoids are unlikely to have survived long distance transportation within soft 

sediment and remained intact. Alternatively, the quarry may represent a patch reef with 

very shallow facies. The overlying more marly Nummulites rich beds may represent 

deeper water, with increasing clay content as the platform begins to drown and finally 

clays are draped over the top. The blocky nature of the grainstone could be due to 

differential cementation. Eocene patch reefs have been found in other parts of the field  
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Figure 3.7. Images from Pande quarry outcrop: a) Photograph of quarry face showing blocky 

sparry limestone beneath softer, marly sediment, hammer for scale, b) Large block of 

Alveolina rich grainstone on quarry floor, hammer for scale, c) Nummulites on “pillars” 

weathered out of soft marly sediment, d) Fresh surface of Alveolina rich grainstone, showing 

Nummulites and Alveolina, e and f) Thin sections of the Alveolina rich grainstone, showing 

abundant Alveolina with Nummulites and dasyclads, scale bars 1 mm (sample K14).  
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area and so this interpretation is not unreasonable. However, a further more detailed 

study of the quarry and surrounding lithology would be needed to ascertain its true 

mechanism of formation.  

 

3.4.1.3  Mkazambo-Stakishari road 

Just after the road turns north, close to Mkazambo, limestones are found 

exposed in and to the side of the road close to the sites of TDP 18 and 13 as reported in 

Nicholas et al. (2006). These are similar in appearance to the limestones found in Kilwa 

Creek, with an orange weathered surface and occur as debris flow beds within the clay. 

Samples from this site contain large Nummulites spp., including some from the N. 

perforatus group, Assilina and Discocyclina indicating a lower to middle Eocene age.  

Further north, close to Stakishari, the EOT is found partially exposed on the 

hillside close to the site of TDP 12 (Nicholas et al., 2006). Unfortunately, the hillside 

was more overgrown than when visited by Nicholas et al. (2006), but it was still 

possible to find the transition from Eocene to Oligocene sediments. The limestones 

occur as sediment gravity flow beds, within a hemipelagic clay sequence. Within the 

Eocene the limestones are bioclastic packstones, rich in LBF. Pellatispira cf. madarazi 

is very common in the last Eocene bed collected from this site and indicates Priabonian 

age (Hottinger et al., 2001). Also present are reticulate Nummulites, Discocyclina, other 

orthophragmines and Spiroclypeus. Samples from this site and from the TDP sites 11, 

12 and 17 are discussed in detail and a comprehensive list of LBF present given in 

Chapter 4. 

 

3.4.1.4 Ras Mtama 

Middle Eocene limestones are also known to crop out on the foreshore at Ras 

Mtama (Nicholas et al 2006) and were revisited during the 2009 fieldwork. Ras Mtama 

is further south, close to the town of Lindi and can be seen on Figure 3.8. Nicholas et al. 

(2006) place these limestones in the Lutetian, within the upper part of zone E9. This 

corresponds to the middle of the succession recovered by TDP 13. The limestones dip 

landwards and are unconformably overlain by Pleistocene reef sediments, which are 

exposed in a cliff face (Figure 3.8). The middle Eocene limestones occur in beds up to 

~50 cm thick within a clay succession and are packstones dominated by LBF, many of 

which show breakages and abrasion to the outer whorls.  There is a diverse LBF 

assemblage within these limestones, dominated by Nummulites spp. and Alveolina spp., 
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Figure 3.8. Images from Ras Mtama: a) Middle Eocene LBF limestones overlain by 

Pleistocene limestones, b) Middle Eocene LBF limestones cropping out along the foreshore, 

c) thin section showing Nummulites, Alveolina, Linderina and miliolids in a quartz rich matrix, 

d) thin section showing small orthophragminids, also with high quartz content (RAS99-24 and 

RAS99-51).  

 

also present but less abundant are Assilina, Sphaerogypsina, Linderina, Neorotalia, 

Planolinderina, Asterigerina, Gyroidinella, Asterocyclina, Glomalveolina, 

indeterminate orthophragmines and a single fragment of Somalina was identified by L 

Hottinger (in pers. comm. to P. Pearson). This is one of only two sites where Somalina 

was identified. The beds occur between clay layers and are composed of shallow 

carbonate debris and  therefore probably formed as sediment gravity flows of material 

from the carbonate platform.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.4.1.5 Kiswere 

Kiswere is a small peninsula south of Pande peninsula bounded by Kiswere 

Haven and Msungu Bay (see Figure 3.5). A series of samples were take along the road 

which goes east to Rushungi and were found to be a succession from the Middle Eocene 

to Upper Oligocene (Figure 3.9). The succession begins with Samples 33 and 34. These 
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are pack-grainstones containing mostly LBF, but also coral fragments, miliolids and 

dasyclads (Figure 3.10a-b). The LBF appear to be undamaged and uncompacted and 

matrix is present, this along with the presence of dasyclads, suggests the sediment 

formed on the carbonate platform. Somalina up to 2 cm in diameter are common (Figure 

3.10a) and are the largest bioclasts, occurring with Nummulites, Alveolina and 

Discocyclina. This is the only site where complete Somalina were found during the 

fieldwork. Somalina has a Lutetian age (Loeblich and Tappan, 1987; BouDagher-Fadel, 

2008) and is listed as a Middle Eocene Tanzanian genus by Blow and Banner (1962). 

The following sample (152) is a pack-grainstone with a largely micro-sparite cement. 

The bioclasts consist mostly of LBF typical of the Eocene (see Figure 3.10c), there is 

some abrasion to the outer whorls of Nummulites tests and LBF fragments are visible in 

the matrix. Large Nummulites are present with extensive borings which have been 

infilled. Occasional small intraclasts are present. Poorly preserved dasyclads were also 

observed in some sections. The sediment type and assemblage closely matches those 

found in TDP 18 and so it is likely to be a similar Bartonian age. Sample 151 is a very 

clean grainstone largely composed of miliolids and red algae with intact 

orthophragmines (?Discocylina) (Figure 3.10e) and occasional other LBF, including 

Halkyardia (Figure 3.10d).  Sample 35 is very similar with the addition of bryozoan 

encrusted mollusc shells. Both samples indicate the limestone was formed on the 

carbonate platform. The assemblage gives an Eocene age as Discocyclina and other 

orthophragmines apparently became globally extinct at the end of the Eocene, see 

Chapters 4 and 5. The lower limit is constrained by the previous sample and so it is 

Bartonian or younger in age.  

Samples 148, 149 and 150 are taken in a series up the slope on the northern side 

of the road. Sample 148 bears some similarity to the previous two samples. It is a pack- 

grainstone largely composed of miliolids and red algae, but contains few LBF – only 

Sphaerogypsina was identifed in thin section. The matrix differs from the previous 

samples in being largely micritic with some patches of sparite cement. Sample 149 

contains more abundant LBF; mainly Nummulites spp. including both radiate and 

reticulate forms, with Sphaerogypsina, ?Operculina, Amphistegina and ?Linderina. 

Miliolids are common, with fragments of red algae and coral and occasional dasyclads. 

Some Nummulites tests are broken but most appear complete; there is a large amount of 

matrix and little compaction of the LBF. The presence of reticulate Nummulites 

indicates an Eocene age younger than middle Bartonian. Sample 150 is a pack-
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grainstone with a microsparite cement. The bioclasts consist of small fragments of red 

algae and miliolids with LBF and occasional coarse grains of quartz. The LBF 

assemblage is much more diverse than the previous two samples, containing common 

Pellatispira cf. madaraszi (Figure 3.10g), Nummulites (cf. fabianii; Figure 3.10f), 

Orbitolites, Spiroclypeus (or possibly Heterostegina), Discocyclina, ?Biplanispira, 

Linderina, smaller rotaliids and Sphaerogypsina.  Pellatispira is a largely Priabonian 

genus (Hottinger et al., 2001) and in Tanzania Pellatispira cf. madarazi has been found 

in the limestone beds just prior to the EOB in the TDP succession (see Chapter 4) and in 

the uppermost Eocene sediments cropping out on the hillside close to the TDP 12 site. 

This therefore indicates a probable Priabonian age for this sample, likely close to the 

EOB.  

Samples 143, 144 and 145 are taken close together further east along the road, 

on the downward slope of the scarp. Samples 143 and 145 are both pack-grainstones; 

143 contains large Nummulites in a matrix of carbonate (including LBF) fragments and 

smaller foraminifera and 145 contains Nummulites, Planostegina (Figure 3.10h) and 

poorly preserved dasyclads, again with a large number of LBF fragments. Between the 

two samples is a clay level (sample 144) containing planktonic foraminifera which 

indicated an upper Lower Oligocene age (probably O3). The large number of fragments 

and presence of the clay layer suggests that there is redeposition of the carbonate 

material in the Upper Oligocene. A final clay sample was taken after the road turned 

north towards Rushingi. Planktonic foraminifera were sparse in this sample and 

preservation was poor, only a Paleogene age could be determined. lepidocyclinids were 

found weathered out on the surface of the clay, but their source was uncertain. This 

does, however, suggest Upper Oligocene to Miocene limestones are present on the most 

easterly part of the peninsula.   

The Kiswere peninsula therefore appears to be a near continuous in situ 

carbonate succession through the Lutetian to Priabonian, which then continues into the 

Oligocene and possible Miocene but perhaps as redeposited sediments in deeper water, 

as indicated by clay horizons. The importance of this section is discussed further in 

section 3.4. 
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Figure 3.9. Diagram showing location, occurrence of LBF and ages of samples from the 

Kiswere peninsula. LBF occurrences are marked with crosses, solid lines joining them 

indicate observed range and dashed lines indicate inferred range. Clay samples and ages are 

in grey; R indicates reworked specimens.  
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Figure 3.10. LBF from Kiswere peninsula samples: a) Somalina sp. (sample 33) b) Dasyclad 

with Somalina (sample 33) c) Assilina sp (sample 152) d) Halkyardia sp. (sample 151) e) 

orthophragmine - ?Discocyclina (sample 151). f) Nummulites cf fabianii (sample 150) g) 

Pellatispira cf madarazi (sample 150) h) Planostegina sp. (sample 145). 
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Figure 3.11. Images from Lake Mkoe: a) Small limestone hillock, b) ?Orbitoclypeus in pack-

grainstone collected from hillock shown in “a” (sample 111).  

 

3.4.1.6 Lake Mkoe  

The lake Mkoe area is southwest of the Kiswere peninsula (see Figure 3.5). The 

topography in this area is very flat with occasional prominent small limestone hillocks 

(Figure 3.11). Sample 111 was taken from a hillock approximately 50 m wide and 8 m 

high, to the East of Mkuru village. This was a pack-grainstone containing 

?Orbitoclypeus, Nummulites and ?Alveolina with red algae (including Distichoplax), 

which indicates an Paleocene to Eocene age. A further sample (113) was taken from a 

small outcrop past Lake Mkoe. This contained Nummulites with echinoderm fragments, 

in a matrix of smaller red algae fragments and sparite cement. The Nummulites indicate 

an Eocene to Lower Oligocene age.  

 

 

 

 

 

3.4.2 Results: Oligocene to Miocene 

3.4.2.1 North Mchinga and Mchinga Bay 

The Miocene outcrops have been divided into geographic areas from north to 

south, beginning with those in the North Mchinga and Mchinga Bay. Figure 3.12 shows 

a map of the regions described and locations of samples. 

 

3.4.2.1.1 Mchinga school   

The Mchinga school locality is just north of the village of Mchinga, close to 

Mchinga bay (Figure 3.12). The school sits above a ~ 5 m high outcrop of limestone 

with clay forming the ground level (Figure 3.13a). Sample 83 and 84 are from the 

limestone outcrop and contain small rounded lepidocyclinids (probably  
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Figure 3.12 Map of North Mchinga and Mchinga bay areas showing sampling localities. 
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Nephrolepidina), Miogypsina and Sphaerogypsina in a sparry cement with red algae 

and smaller foraminifera (Figure 3.13b). The assemblage of LBF indicates a Miocene 

age which is confirmed by planktonic foraminifera from the clay underlying the 

limestone outcrop (sample 85) which indicates an Early / Middle Miocene boundary age 

(Praeorbulina glomerosa zone). Sample 86 was taken in a roadside gully from a clay 

which appears to stratigraphically overlie the limestones. Planktonic foraminifera from 

this sample also yielded an Early / Middle Miocene boundary age (P. glomerosa 

subzone).  

 

3.4.2.1.2 Nondo bay  

Nondo bay is to the North of Mchinga Bay. Here a bioclastic limestone which 

passes up into a more marly sandy carbonate and crops out from 7.5 m to 18.8 m along 

the road towards Ruvu. There is a gap in the exposure, suggesting a possible eroded 

clay layer, followed by a 50 cm thick bioclastic packstone at 21.6 m with visible LBF. 

A further 5 m gap in exposure is then followed by a coralline limestone. A sample was 

taken from the limestone at 21.6 m which is a bioclast rich packstone containing 

lepidocyclinids, Miogypsinoides, Borelis ?pygmeaus and Amphistegina and indicates a 

Miocene age (~Aquitanian; Figure 3.13c-e). The limestone also contains red algae, coral 

fragments, echinoid fragments and planktonic foraminifera. The planktonic foraminifera 

are largely globular forms (Figure 3.13f), and a single specimen was identified as 

?Globorotalia praescitula by P. Pearson. The presence of planktonic foraminifera 

suggests a position on the transition from the photic zone to basin on an open ramp with 

a pelagic infux or possible transportation of the shallow water material and mixing with 

pelagic sediments. Both explanations are consistent with the position of the bed between 

two potential clay layers, occurring either due to fluctuating sea level or transport into 

deeper water.  

 

3.4.2.1.3 Mchinga plateau  

Mchinga plateau forms a distinct topographic feature. The plateau extends for ~ 

25 km in the north-south direction (see Figure 3.12) and the Mchinga school and Nondo 

bay localities are on the edges of this platform. A number of samples were taken along 

the roads crossing the top of the plateau, however exposure is limited by the Ndimba 

Forest Reserve. The surface is composed of a sandy coralline limestone (Figure 3.14) 

and beneath this is a LBF rich limestone visible in river cuttings. 
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Figure 3.13. Mchinga school images: a) Photograph of Mchinga school locality  showing clay 

from the ground level being sampled (85) and outcrop of limestones beneath school in 

background  (samples 84 and 83) b) Miogypina in petrological thin section from sample 84; 

Nondo bay images: c) Lepidocyclinid axial section d) Miogypsinoides e) Borelis ?pygmeaus 

with Amphistegina f) globular planktonic foraminifera, all from sample 88.  

 

The limestone forming the plateau is a packstone with Miogypsina (particularly 

abundant in sample 122), lepidocyclinids, Sphaeorogypsina, Borelis, Amphistegina and 

?Operculina and therefore is Miocene or uppermost Oligocene age.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 3: An overview of the LBF biostratigraphy and biofacies of southern coastal 

Tanzania 

 

45 

 

Figure 3.14. Images from Mchinga platform: a) road surface outcrop on the plateau, b) detail of 

outcrop showing fossilised coral, coin for scale, c) lepidocyclinid in  packstone with red alge 

(sample 122) d) Miogypsina  (sample 122). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.4.2.1.4 Mbuyuni quarry 

Mbuyuni quarry is west of Mchinga Bay and contains three logged sections: the 

Mbuyuni main quarry, Mbuyuni east (a shorted section exposed in the eastern side of 

the quarry) and Mbuyuni roadside (exposed on the roadside next to the quarry). The 

main quarry section consists of approximately 12 m of well bedded stratigraphy, 

consisting of clays, sandy clayey limestones with very large (up to 6 cm) 

lepidocyclinids and harder more well cemented limestones with smaller bioclasts, which 

become more algal towards the top (Figure 3.15). Both the Mbuyuni east and roadside 

sections show similar sediments (Figure 3.16) and can be correlated to the main quarry 

section, as shown in Figure 3.17. The assemblage consists of large lepidocyclinids, 

Nephrolepidina, Operculina, Heterostegina, Spiroclypeus, miogypsinids (Figure 3.18) 

and a small achaisine form and indicates a Miocene age. One clay sample contained few 

planktonic foraminifera but could only constrain the age to the Neogene. The sediments 

are carbonate platform deposits.  Large flattened and unbroken lepidocyclinids along 

with complete large echinoid tests suggest that there was probably no significant 

transport of tests.  
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Figure 3.15. Main Mbuyuni quarry log, showing occurrences of LBF genera. 
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Figure 3.16  East and roadside quarry logs, both give occurrences of LBF marked by crosses. 

For key please see main Mbuyuni quarry log. 
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Figure 3.17 Diagram showing correlation between the three sections a) view showing main quarry 

and east quarry outcrops b) view showing roadside and east quarry outcrops. c and d)  

lepidocyclinids from uppermost bed of main log and middle bed of east quarry respectively, 

showing very similar lithology and LBF in outcrop, e and f) very similar lepidocyclinids from the 

roadside (~18 m) and main log (~26.5 m).  
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Figure. 3.18. Mbuyuni quarry log images: a) Highly flattened large lepidocyclinid bed at 3.7 m b) 

lepidocyclinid bed at 9 m c) small lepidocyclinids and other LBF in sparry limestone from bed at ~ 

11 m d) Nephrolepidina, Spiroclypeus and Borelis also showing geopetal micritic cement e) 

Nephrolepidina f) Spiroclypeus g) Miogypsina, Nephrolepidina and Amphistegina all from sample 

162 h) Spiroclypeus from sample 101 
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Figure 3.19 a) Outcrop at snake quarry with visible small faults b) detail of boulder at base of 
outcrop showing LBF and echinoid. 

 

Additionally, the top bed contains coral-algal layers. The clays represent the deepest 

facies away from the platform. Large flattened lepidocyclinids inhabit the outer part of 

the platform with some clay deposition to form a clayey carbonate matrix and more 

diverse LBF assemblages which are generally smaller in size occur on the middle to 

inner platform. The succession therefore shows a fluctuating relative sea level during 

this period, but with an overall shallowing as the smaller LBF limestones become more 

common upwards through the sequence. It seems likely that at least the smaller 

fluctuations are related to tectonics as a large number of Miocene faults are recognised 

from this region (O’Sullivan, 2012).  

 

3.4.2.1.5 Snake quarry  

Snake quarry is close to Mbuyuni (see Figure 3.12) and has a similar lithology. 

Here there is an 8 m high outcrop of poorly consolidated bioclastic limestone overlain 

by a harder sparry limestone (Figure 3.19). Both contain LBF, the lower unit is 

particularly rich in LBF up to ~ 5 mm in size and also contains echinoid fragments and 

sand grains. The contact between the two beds appears unconformable and small faults 

are visible in the quarry. Snake quarry and Mbuyuni quarry form prominent westerly 

facing ridges and are probably part of the same depositional sequence, but offset ~3 km 

from each other by a dextral west-east fault (O’Sullivan, 2012). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.4.2.1.6 Mchinga turn  

Where the road turns south, south of Mchinga Bay (see Figure 3.12) there is a 16 

m exposure of sediments as a road cutting (Figure 3.20). Some material has slumped 

due to the recent nature of the cutting, but it is still possible to distinguish the 

stratigraphy. At the base of the section was a green-grey clay containing planktonic 
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Figure 3.20 a. Photo taken of the Mchinga turn road cutting b) LBF rich limestone bed.  

 

foraminifera which yielded an Early – Middle Miocene boundary age (Praeorbulina 

glomerosa zone; sample 80). This is followed by an LBF rich sandy bioclastic marl 

containing lepidocyclinids. Above this is a green clay which gave a base middle 

Miocene age from planktonic foraminifera and the sequence is capped by boulders of 

harder reefal limestones. The lithology here is very similar and the same age as that at 

Mchinga school and similar to some of the Mbuyuni section, consisting of shallow 

carbonate LBF rich limestones and clay beds.  

 

3.4.2.2 Lindi area 

The Lindi area is considered here as the region south of Mchinga Bay to the 

Lindi Creek (Figure 3.21). 

 

3.4.2.2.1 Likonga  river  

A series of outcrops occur along the roadside at Likonga (Figure 3.21). North of the 

village reef limestones displaying karstic weathering with clints and grikes crops out at 

the roadside and forms the top of a plateau. A greenish clay is found in roadside gullies 

further along the road (sample 45), this contains planktonic foraminifera which give an 

Upper Miocene to Lower Pliocene age. This is followed by a marly limestone at the 

roadside before the riverbed. On the south bank of the river is a 5 m high limestone 

outcrop. The upper part of this consists of a LBF rich pack-grainstone (sample 79) with 

a high medium to fine quartz grain content. LBF consist of Miogypsina, small (< 5mm) 

Nephrolepidina and ?Operculina along with common red algae fragments (Figure 

3.22a). The LBF assemblage indicates a Miocene age and is therefore consistent with 

the clay date. The lower part of the outcrop is a rubbly limestone rich in coral 

fragments.  
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Figure 3.21. Map of the Lindi area showing localities and field samples.   
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Figure 3.22. a) Nephrolepidina from Likonga (sample 79); b) Miogypsina from Mitonga 

(sample 44); c) Coralline limestone quarry at Mitonga; d) Nautilus in LBF limestone in Mitonga 

quarry; e) LBF limestone with meniscus cement in Mitonga quarry; f) large fossil coral in 

Mitonga quarry.  

 

  

 

 

 

 

3.4.2.2.2 Mitonga river  

A similar series of roadside outcrops occur near the village and river of Mitonga, 

as the road continues downhill (Figure 3.21). Between 73 m and 53 m coral and LBF 

rich limestone is found as boulders and in outcrop, and forms the surface of the road 

between here and Likonga (sample 44). This is a bioclastic packstone with Miogypsina 
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and ?Nephrolepidina with common red algae and miliolids, indicating a Miocene age 

(Figure 3.22b). Between 52 m and 42 m green clays crop out in roadside gullies; 

planktonic foraminifera from these indicate a base Mid Miocene age. Further along the 

road at 34 m asl is a white limestone quarry. The quarry outcrop is approximately 3.5 m 

high and consists of reef limestone (Figure 3.22c-f). Large blocks composed of 

fossilised coral are common. Between the corals there is a very well sorted LBF 

grainstone, containing Miogypsina and lepidocyclinids. In some areas the LBF have a 

meniscus cement and there are numerous vugs in the limestone. A single Nautilus fossil 

was found within the LBF limestone.  

From stratigraphy and the planktonic foraminiferal age the sections at Mitonga 

lie below those at Likonga and the top reefal limestone therefore appears likely to 

correspond to the basal bed at Likonga. The complete sequence therefore shows a 

variation in facies between pelagic clays with planktonic foraminifera, inner platform 

sediments rich in red algae and LBF and coral and LBF dominated reef limestones, 

indicating variation in relative sea level.   

 

3.4.2.2.3 Ras Tipuli  

Ras Tipuli is one of a series of small headlands found north of Lindi at the edge 

of Lindi Bay (Figure 3.21). Ras Tipuli is described as being a “geobreccia” in an 

unpublished report by Martin (1954) reported in Kent et al. (1971). More recently 

Nicholas et al. (2006, 2007) have studied the Ras Tipuli “geobreccia”. Large blocks, up 

to 10 m across, of yellowish, sandy carbonate, rich in LBF occur on or within clays. 

They are randomly oriented with a variety of dips. This unusual formation is thought to 

have formed through slumping or faulting causing large blocks of older already 

cemented material to be redeposited onto the clay sediment (Nicholas et al, 2006; 2007, 

O’Sullivan, 2012). Several clay samples from this locality were analysed by Stewart et 

al. (2004), an Early Miocene age (M1) was assigned to clay beside the bridge the 

headland is entered over, Base Mid Miocene (M6; 14.3-15.7 Ma.) and base Upper 

Miocene (M11-M12; 10.46-11.63) ages were assigned to the clays north of the 

boulders, close to the location of sample 69 in this study. Gastropods at this locality 

have also been studied by Harzhauser (2009) and yielded an Aquitanian age. The  
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gastropods studied were from a 2.5 m thick section of grain- and rudstones in a coastal 

cliff and not within the geobreccia blocks (Harzhauser, 2009). 

The lithology of the blocks is very similar to Miocene deposits seen elsewhere. 

They are bioclastic, sandy packstones extremely rich in LBF, though the dominant LBF  

genus varies between blocks. Planostegina and both microspheric and megalopheric 

lepidocyclinids are abundant (Figure 3.23). Complete Pecten valves and articulated 

specimens, echinoids and other invertebrate fossils are also common. The complete 

Figure 3.23. Images from Ras Tipuli: a) Large “geobreccia” blocks, b) Planostegina, c) 
Lepidocyclinids d) Pectin with Planostegina e) ?Echinoid spine with smaller lepidocyclinids 
and other LBF, f) mould of coral. 
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nature and assemblage of shallow water fossils indicates the sediment was cemented on 

the platform and then later formed the blocks of the “geobreccia”. The varying LBF 

content of the blocks may relate to varying facies within the platform sediment, the 

large flattened lepidocyclinid beds represent the outer part of the platform, whilst 

smaller lepidocyclinids are likely to have been shallower.  

North around the headland the boulders are no longer present. Greenish clays are 

overlain by planar calcareous sandstones. The clay here (69) is dated as Mid Miocene 

(M6 14.3-15.7 Ma). Continuing towards Ras Mongo a 1 m exposure is seen in the cliff 

consisting of a yellowish, soft, friable, sandy marl containing LBF overlain by a white 

LBF-rich grainstone with an abutting more recent clay with caliche.  

 

3.4.2.3 South Lindi and Sudi Bay  

The south Lindi and Sudi Bay area is the most southerly region sampled and 

spans from the southern shore of Lindi Creek and the Kitunda Plateau to Mikindani bay. 

South of here no further LBF rich outcrops were found.  

 

3.4.2.3.1 Kitunda 

 Kitunda plateau is south of Lindi Creek (Figure 3.24). The base of the cliff near 

the landing jetty is composed of Pande formation clays (Nicholas et al., 2006). Further 

up the cliff a there are younger carbonates; a continuous 55 m section was logged along 

a footpath from the top of the plateau (village) to a water well where the topography 

flattens out (Figure 3.25). Clays from the base of the section were sandy and contained 

planktonic foraminifera, but generally poorly preserved. The planktonic assemblage 

gives an Upper Oligocene to Lower Miocene age, constraining the lower age on the 

section. The clay is followed by a 36 m thick section of sandy, powdery white marls 

with occasional harder sandier beds with burrowed tops. The upper part of the section is 

a series of LBF rich limestones with varying LBF and other shallow water fossil 

content. Lepidocyclinids and Spiroclypeus dominate the assemblages, with Miogypsina, 

Planorbulinella and an archaiasine form (Figure 3.26a-c). The lepidocyclinids are larger 

towards the bottom of the LBF rich limestones and are smaller rounded forms near the 

top – including Nephrolepidina cf. sumatrensis (Fig 3.26a). Large complete clypeid 

echinoids are also common with the larger lepidocyclinids. Towards the top of the 

section there is an increase in algal material with oncoids and layers visible in both 

outcrop and thin section. The uppermost samples also show dedolomitisation.  
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Figure 3.24. Map of the south Lindi and Sudi Bay areas, showing sample localities.   
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Figure 3.25. Log of Kitunda section showing occurrences of LBF and images of beds.  
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Figure 3.26. a-c) thin section images from Kitunda limestones, sample 62: a) Nephrolepidina 

cf sumatrensis b) Planorbulina c) Spiroclypeus; d) Pack-grainstone with Miogypsina from 

outcrop near Naminda (sample 137). 

 

 

 

 

 

The log suggests shallowing upwards through the section, from a deeper 

environment where clay is deposited, to shallower with carbonate deposition but few 

fossils and then photic zone carbonates with a large number of LBF fossils. A trend can 

also be seen upwards through the LBF limestones at the top of the section from large 

flatter lepidocyclinids to small, rounded robust Nephrolepidina towards the top 

suggesting further shallowing from outer to middle platform.   

A similar section is seen to the south east at Navanja, also within the Kitunda 

Plateau. Here 64 m of section consisted of silty clays barren of foraminifera (sample 

73), calcareous sandstones and LBF packstones with coarse quartz and large 

lepidocyclinids similar in morphology to those in the Kitunda section. Further inland, 

near Naminda LBF rich pack- grainstones are seen near the road (sample 137 and 138) 

which contain Miogypsina, lepidocyclinids, Amphistegina and ?Borelis along with 

algae, large coral fragments, miliolids, mollusc and echinoid shell fragments and also 

indicate a Miocene age (Figure 3.26d).  
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These outcrops and sections indicate it is likely that the whole of the Kitunda 

Plateau consists of Miocene limestones extending to the Mambu river to the south and 

inland as far as Lake Kitere. 

 

3.4.2.3.2 Lake Kitere 

Further south and inland near Lake Kitere (see Figure 3.24) there was a 20 m 

long roadcut of lepidocyclinid limestone, composed of mostly large flattened B form 

lepidocyclinids in a sandy packstone (Figure 3.27). They are similar to those found at 

Ras Tipuli and Mbuyuni and so probably of similar age.  

 

3.4.2.3.4 Ntegu 

Ntegu is inland from Sudi Bay on the Kitunda Plateau (see Figure 3.24) A 

running log was constructed along the roadside near Ntegu from 74m to 118 m asl. 

Approximately 3 m of powdery white marl outcropped in the roadside at Ntegu which 

contained small (< 5 mm) hydrobiid or rissoid gastropods (Figure 3.27). These 

gastropods are known to inhabit brackish to freshwater environments. Overlying this at 

102 m is a sandy carbonate which contained a very large gastropod (20 cm), worm 

tubes and bivalve shells, above this was a coarse sandy limestone which contained 

visible LBF. Further along the road at 118 m a cream calcareous sandstone cropped out, 

with no visible LBF. At 124 m there is a grey, powdery, sandy limestone containing 

poorly sorted angular quartz grains. Sample 98 from this outcrop contains miogypsinids, 

lepidocyclinds and a large soritid giving a probable Miocene age. Capping the section is 

a cream coralline limestone which seems to form the surface of the plateau. Very 

similar outcrops were also found close to Pangaboi, which is located approximately half 

way between the Ntegu road section and Navanja. 

This series of outcrops represents a transgressive sequence from freshwater-

brackish conditions through very sandy nearshore carbonates and LBF rich inner 

platform/lagoonal pack-grainstones to finally a reefal limestone.  
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Fig. 3.27. a) Outcrop at Lake Kitere; b) close up showing large lepidocyclinids, pencil for 

scale; Ntegu images: c) gastropod in ?tufa; d) image of thin section of sample 98 showing 

Miogypsinids  

 

 

 

 

3.4.3 Field samples discussion 

An overview of LBF genera present and ages of all localities described is shown 

in Figure 3.28. The Eocene LBF rich sediments are deposited in a variety of settings: 

debris flows within hemi-pelagic clays, in-situ carbonate platform and patch reef/reef 

knoll deposits (Figure 3.29). The depositional environment of Pande quarry remains 

uncertain but either gully infill or isolated platform are likely. This variety of 

sedimentation provides a good overview of the LBF present in different environments 

on the carbonate platform, and the sedimentary processes taking place. The debris flow 

deposits and reef knolls indicate the platform is nearby to the west. However, in-situ 

platform deposits (including those of the inner platform) are found on the Kiswere 

peninsula. The Kiswere peninsula appears to be a faulted block moved eastwards, with 

the two bays bounding it marking the position of two faults. This also explains why in-

situ Eocene platform deposits are not found elsewhere.  

The section at Kiswere is a new and important discovery. The section spans the 

Lutetian to Upper Oligocene. The Lutetian to Priabonian appears to be a continuous or  
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near continuous limestone succession. It should therefore include the end middle 

Eocene extinction event of LBF, which is missing from the TDP succession. The 

section also includes a boundary between the Priabonian and Oligocene although it is 

not known if it is conformable or not. This site has high potential for future 

investigation and also as a potential drilling site.  

The Oligo-Miocene outcrops consist of a large number of small sections and 

rubbly outcrops over a wide geographic area. The majority of the limestones appear to 

have been formed on the carbonate platform. The laterally discontinuous nature of LBF 

biofacies and extensive faulting known to occur in the region (Nicholas et al., 2006; 

2007, O’Sullivan, 2012) make it difficult to correlate between sections. However, some 

general observations can be made.  

 The samples from the Mchinga Plateau all indicate ages from the Early/Middle 

Miocene boundary to the Middle Miocene. Though the individual outcrops are difficult 

to correlate between, they indicate this interval is composed of a series of clays, large 

flattened lepidocyclinid packstones and smaller sized LBF packstones or pack-

grainstones which contain mostly lepidocyclinids (Nephrolepidina) and miogypsinids, 

all capped by a reefal limestone also containing lepidocyclinids and miogypisinids 

which forms the surface of the plateau. The Mbuyuni quarry outcrop is considered to be 

older than the other Mchinga Plateau localities due to its location, eastward dip of the 

beds and presence of Spiroclypeus, it is of probable Early Miocene age. Further south in 

the region north of Lindi at Mitonga and Likonga a similar sequence of LBF and 

coralline limestones and clays is seen, but here it continues into the Upper Miocene. 

The limestones at these localities generally appear to have been formed on the plateau 

and not been transported. The variation between large lepidocyclinid limestones, clays 

and smaller LBF/coralline limestones is therefore explained by relative sea-level 

changes due to fault movement, which is known to have occurred during the Miocene in 

this region (O’Sullivan, 2012).  

 To the south of Lindi the Kitunda shore section is Early Miocene, with the basal 

clay potentially being Upper Oligocene to Early Miocene. The sedimentation here is 

less variable than seen at Mchinga, Likonga and Mitonga. The Kitunda plateau appears 

to have undergone a consistent gradual shallowing during the Early Miocene.  

The Kitunda shore section is therefore either older than the faulting, but of a similar age 

to Mbuyuni quarry which shows the repeated changes in facies, or it did not occur in the 
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Kitunda plateau region at this time.  This may be related to the large Lukeledi fault 

which passes through Lindi bay separating these two regions.  

At a generic level the Eocene Tanzanian LBF assemblage is similar to that of 

both the Tethys and Indo-Pacific, with Alveolina, Nummulites (particularly reticulate 

Nummulites in the mid to late Eocene) and orthophragminids dominating the 

assemblage. The Tethys and Indo-Pacific at this time only have a limited difference in 

LBF (Renema 2007) and so similarity to both regions would be expected. The 

Tanzanian assemblage additionally includes an abundance of Somalina in the inner 

platform environment. Somalina is only known from the Middle East (including Oman, 

Iran, Iraq, Turkey), East Africa (including Egypt, Somalia, Tanzania) and has more 

recently been found in Greece (Loeblich and Tappan, 1987; White, 1997; BouDagher-

Fadel, 2008; Di Carlo et al., 2010), suggesting Tanzania is part of an intermediate or 

West Pacific-type fauna. Pellatispira appears to only occur in the Priabonian, possibly 

only in the upper part (close to the stratigraphic EOB) and not in the middle Eocene as 

seen elsewhere (Romero et al., 1999). Pellatispira cf. madaraszi shows more similarity 

to the P. madaraszi form common in Europe, than the more globular pellatispirids of 

Indo-Malaysia (Hottinger et al., 2001). The uppermost Eocene LBF are discussed and 

compared in more detail within Chapter 4. 

  The Miocene assemblage is typical of that period, with abundant lepidocyclinids 

and miogypsinids (Renema, 2007). The Tanzanian lepidocyclinids consist of mostly 

Nephrolepidina and large B forms which cannot be attributed to a genus. Eulepidina is 

present but far less frequently observed than Nephrolepidina. B form lepidocyclinids 

appear to be more common in the Early Miocene (or Late Oligocene to Early Miocene 

in the case of Ras Tipuli), forming large beds where they are the dominant component. 

Lepidocyclinids first occurred in the Americas during the Eocene and migrated to the 

Tethys, with a first occurrence in the late Rupelian, followed by the Indo-Pacific, with a 

first occurrence in the Early Miocene (Renema, 2007; Boudagher-Fadel and Price, 

2010). The Tanzanian lepidocyclinids definitely occur in the Early Miocene which 

corresponds to the first occurrences seen in the Indonesia/Malaysia (Renema, 2007; 

Boudagher-Fadel and Price, 2010). It is possible that the blocks at Ras Tipuli may be 

Upper Oligocene, which would mean an earlier first occurrence of lepidocyclinids more 

similar to the Tethys, but this is uncertain. Nephrolepidina is abundant in the Early to 

Middle Miocene of the Indo-Pacific region (Renema, 2007). Nephrolepidina 

sumatrensis is a rounded robust form, abundant in the Indo-Pacific and listed as a 
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diagnostic form to recognise stages Te5 and Tf (Early and Middle Miocene) of 

Indonesia (Adams, 1970; Adams, 1965). A very similar rounded Nephrolepidina, with 

no pillars and stacks of lateral chamberlets which is typical for N. sumatrensis (W. 

Renema pers. comm.), is seen in the Kitunda section, suggesting at least some affinity 

with the Indo-Pacific species. Lepidocyclinids have a last occurrence in the Tethys 

within the Middle Miocene. In the Indo-Pacific the Tribliolepidina lineage continues to 

occur until the end of the late Miocene (Renema, 2007; Boudagher-Fadel and Price, 

2010). The only definite upper Miocene sequence occurs at Likonga, in which 

Nephrolepidina was found. The sequence here does not appear to be reworked, 

indicating that Nephrolepidina continue into the Upper Miocene in East Africa, as they 

do in Indonesia. However, more specimens are needed to confirm this.  

 Miogypsina is found in both Early and Middle Miocene outcrops, but appears to 

be more common within the Middle Miocene. The reefal limestone at Mitonga contains 

a particular abundance. Miogypsina are also present within the Upper Miocene of 

Likonga. Within the Indo-Pacific, Miogypsina is known from the beginning of the Early 

Miocene to the very earliest Upper Miocene (Renema, 2007). Tanzanian occurrences 

are within this range. Miogypsinoides is far less common, with only a single definite 

occurrence within the Middle Miocene, which is within the global range for this genus 

(Cahuzac and Poignant, 1997; Renema, 2007).  

 Spiroclypeus is abundant within the Early Miocene sediments at Mbuyuni and 

Kitunda, but has not been seen in any younger deposits. Within the Indo-Pacific 

Spiroclypeus occurs until the end of Te5 (Early Miocene) (Adams, 1970, Boudagher-

Fadel and Banner, 1999; Renema, 2007). Whilst in the Tethys it occurs until the 

Oligocene/Miocene boundary (Cahuzac and Poignant, 1997). The Tanzanian occurrence 

of Spiroclypeus therefore appears similar to that in Indo-Pacific.  

 Planostegina is found within several thin sections in the Paleogene of Kiswere, 

however is only seen in abundance at Ras Tipuli. The age of this locality is uncertain, 

but thought to be late Oligocene to Early Miocene. Planostegina has a range from 

Paleocene to Holocene (BouDagher-Fadel, 2008). It is common within the Tethys, but 

also known from the Indo-Pacific where it is typical of Tc-Td (Lower Oligocene) 

assemblages of Java and Borneo (Banner and Hodgekinson, 1991; Renema, 2007). 

Notably Cycloclypeus has not been found in the assemblage. Cycloclypeus is 

common in upper Oligocene and Miocene assemblages in both the Tethyan and Indo-

Pacific regions (Renema, 2007). However, no specimens of this genus have been found 
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in the Tanzanian samples to date, indicating that they may not be present or are 

extremely rare in this region. They are not confirmed from any other localities in East 

Africa (Renema pers. comm.). It has been suggested that Tethyan and Indo-West Pacific 

Cycloclypeus may have evolved as separate lineages (MacGillavry, 1962, O’Herne, 

1972, Renema, 2007). If neither lineage then migrated far from its origin this could 

perhaps account for their apparent absence in Tanzania.  

 

3.5 Conclusion 

This study gives an insight into the range and distribution of LBF genera present 

in a previously little-studied region. The penecontemporaneous redeposition of the LBF 

into the hemipelagic environment during the Eocene and Oligocene enables LBF ranges 

to be tied to global nannofossil and planktonic foraminiferal biostratigraphy. The TDP 

succession shows a similar overall Eocene assemblage to that found in field samples. 

However, the wider distribution of field samples enabled local variations and 

abundances to be determined, and revealed a variety of depositional environments, 

including in-situ shelf deposits not previously recorded. The combination of drill cores 

from the TDP and outcrop sampling therefore provides a good overview of the LBF of 

the Paleogene of Tanzania. The Kiswere site is also a very important new discovery and 

has high potential for more detailed future study.    

The TDP cores studied do not span the Miocene but fluctuating relative sea 

during this period means many sequences contain clay levels which were used for 

independent dating of the LBF. Within this study a large number of Miocene LBF 

localities and occurrences have been documented accurately for the first time, and 

analysis of genera present and facies has been carried out.  

Initial comparisons with Tethyan and Indo-Pacific faunas have been carried out, 

showing perhaps an intermediate assemblage in the Eocene and some similarities with 

the Indo-Pacific in the Miocene. Although, much more detailed work with species level 

identifications is needed to look at migration events and accurate comparisons, this 

study provides a solid basis for such further work to be carried out. With further work, 

there is therefore a high potential for using the TDP data along with outcrop data to help 

improve global LBF stratigraphy and provide links between LBF and climatic events. 

The EOT is explored in detail using the TDP sites in chapter 4.  



Chapter 4: Extinction of Larger Benthic Foraminifera at the Eocene / Oligocene 

boundary 

 

68 

 

 

Chapter 4:  

Extinction of Larger Benthic Foraminifera at the 

Eocene / Oligocene boundary. 

 

This chapter has been published as a paper in Palaeogeography, 

Palaeoclimatology, Palaeoecology: Cotton, L.J. and Pearson, P.N., 2011. Extinction of 

larger benthic foraminifera at the Eocene / Oligocene boundary Palaeogeography, 

Palaeoclimatology, Palaeoecology 311, 281-296. LJC is responsible for the scientific 

content, PNP contributed in discussion, editing and revising drafts of the manuscript. 

 

4.1 Introduction 

The Eocene - Oligocene transition (EOT) was a time of profound climatic and 

oceanographic change associated with the first major continental-scale glaciation of 

Antarctica (see Coxall and Pearson, 2007, for review). This environmental disruption 

led to a global peak in biotic turnover, seen in both terrestrial and marine records and in 

shallow-water and deep-sea environments. This complex series of events occurred over 

an extended period between about 33.5 Ma and 34.0 Ma. The Eocene / Oligocene 

boundary (EOB) itself is located at the extinction of the planktonic foraminiferal Family 

Hantkeninidae at 33.7 Ma on the timescale of Cande and Kent (1995; also see Berggren 

et al., 1995; Wade et al., 2011). The boundary significantly pre-dates, by about 200 kyr,  

the largest shift in global oxygen isotope curves which is interpreted as representing the 

most rapid phase of ice expansion in Antarctica and hence sea-level fall (Zachos et al., 

1996; Coxall and Pearson, 2007; Lear et al., 2008). The period of most positive oxygen 

isotope values following this shift is referred to as the Early Oligocene Glacial 

Maximum (EOGM; Liu et al., 2004; Coxall and Pearson, 2007). This period coincides 

with the base of an isotope stage referred to as the Oi-1 isotope zone (Miller et al., 

1991). The most detailed study of extinctions within the larger benthic foraminifera 

(LBF) through the EOT was carried out by Adams et al. (1986). Those authors 

suggested that these global environmental changes, in particular the sea-level fall, could 

have caused a rapid mass extinction within the LBF including the disappearance of long 
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ranging and widespread Families such as the Discocyclinidae and Orbitoclypeidae 

(collectively referred to as the orthophragmines), Pellatispiridae, and a number of 

species in the Nummulitidae. 

Thick Cenozoic limestones containing LBF are common within the Indo-Pacific 

region (e.g. Adams, 1965, 1970; Adams et al., 1986; Renema, 2002; Wilson, 2002; 

Renema, 2007). However, because global sea level decreased during the EOT, many 

sections are incomplete, with hiatuses or unconformities in the transition interval. The 

most complete sections reported from the Indo-Pacific region are thought to be the 

Melinau limestone of Sarawak (Adams, 1965, 1970; Adams et al., 1986), the Amravati 

Formation of Cambay, India (Mukhopadhyay, 2003) and in the Fulra formation of 

Kutch, India (Sarangi et al., 1998, 2001; Sarkar et al., 2003a, 2003b). However, lack of 

dating evidence independent of the LBF ranges, along with species endemism, makes 

global correlation problematic and the exact timing of LBF extinctions difficult to 

determine.  

The Kilwa District of south Tanzania contains an excellent and apparently 

complete succession through the EOT that has recently been studied in outcrop section 

and three boreholes drilled by the Tanzania Drilling Project (TDP; Pearson et al., 2004, 

2006; Nicholas et al., 2006, 2007; Pearson et al., 2008; Bown et al., 2008; Dunkley 

Jones et al., 2008a, 2008b; Lear et al., 2008; Wade and Pearson, 2008; Pearson et al., 

2009). The dominant lithology is hemipelagic clay with limestone beds rich in LBF 

(Nicholas et al., 2006, 2007). The stratigraphy of this succession has been established 

using extensive planktonic foraminiferal, nannofossil and isotope studies of the clays 

(Pearson et al., 2008; Dunkley Jones et al., 2008a, 2008b; Lear et al., 2008; Wade and 

Pearson, 2008).  

 A preliminary study of the LBF within the clay residues was carried out by 

Pearson et al. (2008).  Extinctions of several genera such as Discocylina, Asterocyclina, 

Pellatispira and Spiroclypeus, were found to approximately coincide with the extinction 

of the planktonic foraminiferal Family Hantkeninidae which marks the EOB in the type 

section at Massignano, Italy (Coccioni, 1988; Coccioni et al., 1988).  Here we carry out 

a more detailed study of the palaeontology and sedimentology utilising petrological thin 

sections and oriented thin sections of LBF specimens from both clay and limestone 

samples. The succession provides an excellent opportunity to examine the precise 

timing of the LBF extinctions in relation to climatic events and global isotope and 

biostratigraphy providing a tie point for global LBF stratigraphy.  
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4.2 Biostratigraphic framework for larger benthic foraminifera 

 There are currently two main biostratigraphic schemes for Paleogene LBF: i) the 

Shallow Benthic Zonation which is applied principally to the Tethys and ii) the East 

Indian Letter Classification used in the Indo-Pacific region, primarily Indonesia (see 

below for references). Neither scheme is directly applicable to Tanzania but both 

contain key elements that are relevant to the Tanzanian record and identify fauna that go 

extinct during the critical EOT interval.  

Cenozoic Tethyan LBF biostratigraphy was revised by Cahuzac and Poignant 

(1997) and Serra-Kiel et al. (1998). The Paleocene to Eocene was divided into 20 

shallow benthic zones (SBZs; Serra-Kiel et al., 1998) and the Oligocene to Late 

Miocene into 5 SBZs (Cahuzac and Poignant, 1997). In the Tethyan region the 

boundary between SBZs 20 and 21 correlates with the broad EOT interval and is 

defined by the last occurrence of the orthophragmines, and various species of 

Heterostegina and Nummulites including N. fabianii and the first occurrence of N. 

vascus and N. fichteli (Cahuzac and Poignant, 1997; Serra-Kiel et al., 1998). The precise 

correlation of the SBZ 20/21 boundary to the EOB and the EOGM remains ambiguous. 

The Indo-Pacific region contains several important carbonate successions which 

have been the subject of considerable stratigraphic investigation and work is ongoing 

(Adams, 1970; Adams et al., 1986; Boudagher-Fadel and Banner, 1999; Renema, 2002; 

Renema et al., 2003; Sharaf et al., 2006; Renema, 2007). The correlation of these 

sections has long been problematic (see Renema, 2002; McGowran, 2005; Renema, 

2007 for overviews). Problems arise largely due to a lack of species in common with the 

Tethyan region and many of the Indo-Pacific carbonates contain very few planktonic 

foraminifera (Renema, 2007).  

The East Indian Letter Classification consists of zones or stages defined by 

assemblages of LBF. Several revisions in the number and ranges of the stages have 

taken place since their origins in the 1920s (e.g. van der Vlerk and Umbgrove, 1927; 

van der Vlerk, 1955). Within the East Indian Letter Classification the EOT corresponds 

to the boundary between Stages Tb and Tc and is largely defined by the last occurrence 

of Pellatispira and first occurrence of Nummulites fichteli (Adams, 1970; Renema 

2007). This species is the same as is used in the Tethyan zonation (see above), however 

the closely related Priabonian species N. fabianii, which is common in the Tethyan 

region, is not found anywhere east of India (Renema et al., 2003). Because of this, and 

the fact that boundary is not tied to global plankton biostratigraphy nor the global 
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isotope curve it is uncertain how the Tb-Tc transition relates to the SBZ 20 / 21 

boundary and the globally defined EOB and transition.  

If the LBF extinctions can be accurately correlated to global isotope 

stratigraphy, they could provide a clear tie-point between the two schemes for further 

work on their correlation. The Tanzanian site, which clearly shows the extinction and is 

correlated well with global stratigraphy, is therefore important in linking the zonal 

schemes of the Tethys and Indo-Pacific both to each other and to global plankton and 

isotope stratigraphy. 

 

4.3 Materials and methods  

Marine sediments of Aptian to Oligocene age crop out along a broad coastal belt 

in Tanzania south of the Rufiji River, from the Kilwa Peninsula to Lindi Creek 

(Nicholas et al., 2006; Figure 4.1). These sediments are formally defined as the Kilwa 

group and are split into four formations: the Nangurukuru, Kivinje, Masoko and Pande 

formations (Nicholas et al., 2006). The Pande formation spans the Upper Eocene to 

Lower Oligocene and contains an apparently conformable sequence through the EOB.  

Three TDP sites (TDP 11, 12 and 17) were drilled in 2004 and 2005 in the Pande 

formation to recover the EOB sediments (Nicholas et al., 2006; Pearson et al., 2008). 

These three sites were positioned approximately along strike within 3 km of each other 

(TDP 17 – UTM 37L; 560539 8984483; TDP 11 – UTM 37L; 560250 8983211; TDP 

12 – UTM 37L; 560222 8981309; Nicholas et al., 2006; see Figure 4.1). The drill sites 

are estimated to be approximately 50 km from the palaeo-shoreline, distal of a narrow 

shelf (Kent et al., 1971; Nicholas et al., 2006, 2007). The sedimentary facies and smaller 

benthic foraminiferal biofacies and suggest that the sediment was deposited in a bathyal 

outer shelf to slope setting, at ~300-500 m water depth (Nicholas et al., 2006, 2007) 

although maximum depths are difficult to determine and it is possible the 

palaeoenvironment was deeper than this. The sediment is primarily a succession of dark 

greenish grey clays with <10% CaCO3 (Nicholas et al., 2006). The clays contain 

exceptionally well-preserved calcareous microfossils (Pearson et al., 2008; Bown et al., 

2008; Wade and Pearson, 2008). Limestone beds, deposited allochthonously with the 

clays, are present throughout the succession and are rich in LBF. In addition to the 

boreholes, the EOT succession is also intermittently exposed on a hillside close to the 

TDP 12 drill site (UTM 37L; 560034, 8981434; see Figure 4.1, 4.2). Limestones of the 
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upper Eocene and lower Oligocene at this site were collected and were correlated to the 

limestone beds in TDP 12 using the LBF assemblages present and plankton 

biostratigraphy from the surrounding clays. 

For the hemipelagic clays, half-round samples approximately 10 cm in length 

were washed though a 63 m sieve and the residues dried (Pearson et al., 2008; Lear et 

al., 2008; Wade and Pearson, 2008). Oriented sections of the LBF were made for 

identification. A combination of randomly orientated petrological thin sections, acetate 

peels (prepared according to Dickson, 1965, 1966) and oriented individual LBF thin 

sections were used in the study of limestones. The limestones are well cemented, hence 

free LBF specimens are rare; therefore most LBF in the limestones have been identified 

to generic level only using petrological thin sections. Identification to species level is by 

comparison of sections with the orientated sections of clay specimens, from rare free 

specimens or equatorial sections occurring within the petrological sections.  

Figure 4.1 . Location and geological maps of the Tanzanian Drilling Project Eocene / Oligocene 
boundary sites (TDP 11, 12 and 17), additional Tanzanian Drilling Project sites in the area are 
also shown. Modified from Nicholas et al. (2006). 
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4.5 Correlation and isotopes 

The EOB is formally defined at the Global Stratotype Section and Point (GSSP) 

at Massignano, Italy at a level corresponding to the extinction of the planktonic 

foraminiferal Family Hantkeninidae (Coccioni, 1988; Premoli Silva and Jenkins, 1993). 

This occurs slightly above (~60 kyrs) another planktonic extinction, that of the 

Turborotalia cerroazulensis group of species. In Tanzania five hantkeninid 

morphospecies are present (Wade and Pearson, 2008). The extinction level was 

originally placed at approximately 102.7 meters composite depth (mcd; Wade and 

Pearson, 2008), but by re-sampling at higher resolution we have constrained the 

extinction level to be between 102.28 and 102.22 mcd, with all five species 

disappearing in an interval of less than 10 cm. The Turborotalia cerroazulensis group 

disappears ~5.6 m below this (Wade and Pearson, 2008). The clear gap between these 

events suggests good stratigraphic completeness through this critical interval.  

A stable isotope stratigraphy was constructed from overlapping intervals of TDP 

12 and 17 using shells of the mixed layer planktonic foraminifera Turborotalia 

Figure 4. 2. The Eocene / Oligocene boundary in outcrop. a) Hillside exposure close to TDP 12, 
the lower arrow indicates the highest in situ Type 1 “Eocene” bed, the upper arrow indicates the 
lowest in situ Type II “Oligocene” bed; b) astrocoeniid coral weathered out of the Type II beds; c) 
Nummulites-rich Type I limestone. 
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ampliapertura by Pearson et al. (2008). The oxygen and carbon records are both similar 

to deep-sea sites and have been used to correlate the succession to the global isotope 

curve. The oxygen isotopes show two main steps that lead to the most positive values of 

the EOGM. The Hantkeninidae extinction occurs in the plateau between the two steps, 

i.e. preceding the maximum oxygen isotope shift (Pearson et al., 2008; Wade and 

Pearson, 2008). The age model was generated using a combination of biostratigraphic 

and geochemical tie-points from the clays. The correlation of the clays ties the LBF 

extinction events across the boundary to global stratigraphy, which has not been 

possible at other sites in the Indo-Pacific region. 

 

4.6 Results 

4.6.1  Sedimentology  

A microfacies study of the gravity sediment flow beds in the three cores reveals 

that there are two distinct lithologies, which we refer to as Type I and Type II beds 

(Figure 4.3). Type I beds are 0.1-1.5 m thick and are present in TDP 11 and 12, but not 

in TDP 17. Their absence in TDP 17 may be due to palaeobathymetry; if the area was a 

slight topographic high then the sediment gravity flows might not be deposited there. 

The Type I beds are found exclusively within the top 25m (124.88 to 103.16 mcd) of the 

Eocene part of the succession, plus one thin bed ~2 m above the EOB. The Type II beds 

are found higher in the Oligocene part of the succession, between 62.96 to 20.76 mcd.  

Type I beds are coarse bioclast- and quartz-rich packstones (see Figure 4.3a). 

The grains are composed of approximately 35% coarse angular, quartz grains (up to 

~1.5 mm in size, though most 0.5-1 mm) with 65% bioclasts and occasional peloids. 

The matrix is partly micritic and partly sparry calcite or ferroan calcite cement.  

 

 

 

 

 

 

 

 

 

 

Figure 4.3. a) Typical thin section view of Type I lithology, with large numbers of LBFs and coarse 
quartz grains; b) Typical thin section view of Type II lithology, with rare LBFs (radiate Nummulites) 
and finer quartz rich matrix.  
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Bioclasts are mostly LBF tests, but also present are echinoid test and spine 

fragments, coral and red algae fragments along with smaller benthic foraminifera 

(including miliolids). The Nummulites and other LBF are heavily abraded, with the test 

periphery broken in most cases and the outer whorl frequently broken or, in some cases, 

completely removed. When compared with the scale of abrasive damage of Beavington-

Penney (2004), the level of abrasion indicates they have undergone extensive transport 

or transport within turbidity currents. The packstone contains several compaction 

features, indicating that the material was re-deposited as loose sediment. The LBF are 

orientated approximately horizontally due to compaction prior to cementation. Thin 

disk-shaped LBF show brittle fracturing due to compression against harder quartz 

grains. No cemented lithoclasts were seen in any of the samples, although clay rip-up 

clasts are present. Some beds fine upwards.  

The Type II beds are yellowish calcareous sandstones containing occasional 

LBF (Figure 4.3b). The calcareous sandstones contain a high percentage of medium 

sand-sized quartz grains, with a calcite cement and, in some samples, a clay-rich matrix. 

The bioclasts are far fewer, lower diversity and smaller sized than the Type I 

packstones, with the exception of on the hillside outcrop close to TDP12 where large 

astrocoeniid corals were found weathered out (see Figure 4.2b). The change in lithology 

from LBF rich pack-grainstones to calcareous sandstones may indicate a decrease in sea 

level. The increase in quartz content suggests a closer shoreline and decrease in skeletal 

carbonate material suggests at least a partial shut-down of shallow-water carbonate 

production in the Early Oligocene, although reasons for the decrease in quartz grain size 

remain uncertain. This interpretation is consistent with the observation that the highest 

Type I bed occurs in the lowermost Oligocene in the interval before the inferred major 

sea-level fall associated with the main isotope shift.  

 

4.6.2  Palaeontology 

The clay residue samples contain mostly small LBF specimens (most <2 mm but 

up to ~1 cm). Preservation is good, with exceptionally well-preserved tests present in 

some levels: In occasional samples with a high amount of pyrite, foraminifera are only 

present as pyrite moulds or are highly dissolved, possibly related to sea-floor anoxia. 

The LBF are found in low concentrations throughout the length of the succession, 

occurring within wisps of shallow carbonate material in the clays which also contain  
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bryozoan, echinoderm and coral fragments. Aragonitic micro-molluscs are also present 

but are likely to have been part of the in-situ benthos. LBF inhabited the photic zone, 

generally less than 130 m water depth (Hottinger, 1983; Hallock, 1984; Beavington-

Penney and Racey, 2004), therefore all specimens are interpreted as having been 

transported from the shallow carbonate platform onto the continental slope, probably 

during storm events. Large storms or hurricanes cause mixing of platform sediments 

and transportation onto the slope (Hohenegger and Yordanova, 2001; Beavington-

Penney, 2004; Jorry et al., 2006).  Nummulites may be particularly susceptible to 

transportation by suspension due to their high porosity (Aigner, 1982; Beavington-

Penney, 2004).  

It is generally accepted that LBF were strongly zoned across platforms due to 

many factors including light levels and energy (see Beavington-Penney and Racey, 

2004; Renema, 2005, 2006; Figure 4.4). The assemblages present are dominated by 

Nummulites, with pellatispirids, Sphaerogypsina, Spiroclypeus and rare Discocyclina 

suggesting a mainly mid-outer platform source for the sediment. As the platform is 

thought to have been narrow (Kent et al., 1971; Nicholas et al., 2006, 2007) LBF 

assemblages would therefore change rapidly across the shelf and a mix of shallow and 

deeper faunas would be expected in debris flow deposits.  

The packstone beds are rich in LBF; however preservation is poor in comparison 

to the surrounding clays, with abraded and infilled specimens being common. The 

assemblage found within the limestones is likely to be skewed by the transportation 

mechanism; robust lenticular forms are more likely to survive intact than flattened disk 

shaped morphologies such as Discocyclina (see Beavington-Penney and Racey, 2004, 

for review of influences on test shape). This accounts for the absence or very low  

Figure 4.4. Schematic diagram showing depth zoning of LBF present in the Tanzanian Eocene / 
Oligocene section across a carbonate ramp (modified from Beavington-Penney and Racey, 2004). 
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Figure 4.5. Range chart of LBF found in both clay residue and limestone samples plotted against 
isotope data from Pearson et al. (2008; isotope records from TDP 12 are plotted in black and from 
TDP 17 plotted in grey), the abundance of Hantkeninids per cm through the clay succession (Wade 
and Pearson, 2008; this study) and the planktonic foraminifera zones of Berggren and Pearson 
(2005). Circles represent occurrences within the clay sediment of LBF. Horizontal bands represent 
packstone beds, drawn to scale; black bars within these show occurrences of LBF in the 
packstones. 
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occurrence of the more fragile genera in the limestones, which are present in the clay 

residues.  

The stratigraphic occurrence of LBF in both the primary clay samples and 

packstones are summarised in Figure 5 along with the stable isotope stratigraphy and 

the abundance of the planktonic Hantkeninidae which are used to correlate the EOB.  

Discocyclina (Figure 4.9, c-f; 4.13, e), Pellatispira (Figures 4.11, d; 4.13, a-c), 

Spiroclypeus (Figure 4.11, a; 4.12, g-h), Palaeonummulites (Figure 4.10, g-h; 4.12, f), 

Fabiania (Figure 4.13, g), Operculina sp. (Figure 4.11, c) and a number of species of 

Nummulites all have last occurrences between 102.14 mcd and 99.55 mcd, close to the 

EOB at 102.28 mcd. Asterocyclina (Figure 4.9, a-b) has a lower last occurrence at 116.5 

mcd but is rare in the core samples with less than five complete individuals found in this 

study. Heterostegina (Figure 4.11, b) is only represented by one specimen, which was 

found at 175.50 mcd and Biplanispira (Figure 4.13, d) by a single specimen in the 

packstone at 103.16 mcd. 

Nummulites is the most commonly found genus in the cores. It can be divided 

into reticulate and radiate groups of species on the basis of their morphology, 

particularly their external ornamentation. Reticulate Nummulites (Figure 4.10, a-c; 4.12, 

a-d) are present throughout the succession, but show a change across the boundary 

interval. The external morphology appears near identical before and after the boundary 

but there is a change in both the proloculus size and the tightness of the coiling (Figure 

4.6), which likely indicates a change in the reticulate Nummulites species. Specimens 

below 101.39 mcd have a proloculus size of 140-220 m (with a mean value of 175 

m), while those above this level have a proloculus of 180-330 m (with a mean value 

of 250 m), forming two distinct clusters. The sample at 101.39 mcd in TDP 17 

contains both types.  To compare the geometry of the whorls between the two 

Nummulites groups, graphs of whorl number against radius (coiling diagrams) have 

been plotted as in previous studies (e.g. Blondeau, 1972; Schaub, 1981; Racey, 1995; 

Renema, 2002; Renema et al., 2003; Figure 4.6b-d). All specimens in this study were A 

forms, as B forms are rare. These show a clear difference between the two groups, with 

the older group being slightly more tightly coiled with less variance between 

individuals. The younger specimens are comparatively more loosely coiled and more 

variable. Given the external similarity between the two groups, these are likely to be  
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two separate but closely related species and have been identified as N. cf. fabianii 

(Figure 4.10, a, b) and N. cf. fichteli (Figure 4.10, c). The reason why these are not 

assigned directly to N. fabianii and N. fichteli is that there are slight differences in the 

range of proloculus size compared with the Tethyan material of Schaub (1981) and 

Papazzoni (1998). This variation from Tethyan forms is interesting and potentially 

important in the study of reticulate Nummulites evolution, but requires further 

investigation. Reticulate Nummulites are also widely used in LBF biostratigraphy, 

therefore the change from N. cf. fabianii to N. cf. fichteli may be useful as an EOB 

indicator; however this is complicated by the morphological variation between regions 

and again requires further work. Other nummulitids including Spiroclypeus sp., 

Operculina sp. and Palaeonummulites cf. variolarius are also present. All these have 

last occurrences close to the Hantkeninidae extinction (see Figure 4.5). Extinctions 

within these genera are known to occur globally during the EOT (Adams et al., 1986) so 

Figure 4.6. Proloculus size and corresponding coiling diagrams of reticulate Nummulites across the 
Eocene / Oligocene boundary. Mean plot on coiling diagrams is shown as single line; the shaded 
area represents the spread of individual plots, a) Proloculus diameter against depth; larger darker 
symbols show mean values, b) coiling diagram of Oligocene Nummulites specimens 
(corresponding proloculus measurements shown in light purple), c) coiling diagram of specimens 
from sample at 101.39 mcd Nummulites specimens (corresponding proloculus measurements 
shown in pink), d) coiling diagram of  Eocene Nummulites specimens (corresponding proloculus 
measurements shown in dark purple).  
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the Tanzanian record seemingly reflects the global extinctions of these groups. 

Palaeonummulites cf. variolarius is similar to forms from Indonesia (see Figure 4.7) 

which also became extinct during the EOT (Renema, 2002). Orthophragmines are found 

as rare, small specimens of Discocyclina and Asterocyclina. Specimens of Discocyclina 

show similar characteristics to D. trabayensis and D. augustae from Turkey, but have a 

smaller protoconch and deuteroconch (compare Figure 4.9, c, f  with Özcan et al., 2006 

- Plate 2, 3, Text Fig. 12, Özcan et al., 2007 - Fig. 8, 9, Özcan et al., 2010b – Fig. 27). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Radiate Nummulites spp. (including sp.1; Figure 4.10, e-f) and Sphaerogypsina 

sp. (Figure 4.11, e; 4.13, f) are the only LBF which pass through the transition 

apparently unaffected. These surviving groups and newly occurring species above the 

EOB event appear to be generalist forms. Nummulites is known to have lived in a range 

of environments on the platform (Beavington-Penney and Racey, 2004), and 

Sphaerogypsina has been recorded from the Miocene-Pliocene of the Dominican 

Republic as possibly occurring below the photic zone and recent Sphaerogypsina have 

no symbionts (Hottinger et al., 2001). From this it can be inferred that the Eocene / 

Oligocene extinctions appear to be mainly within the deeper photic zone specialists. 

Figure 4.7 Coiling diagram of Palaeonummulites cf.. variolarius. Tanzanian specimen values are 
shown in black, average values for Indonesian P.variolarius from Renema (2002) are shown in grey 
for comparison.  
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4.6.3 Synthesis  

The sedimentological and palaeontological evidence across the EOT in Tanzania 

shows that during the Eocene there was an active carbonate factory on the platform with 

diverse biota including corals, red algae, echinoids, bryzoans and LBF. Frequent storms 

caused mixing and suspension of the shelf sediment and washed smaller individuals of 

the LBF taxa onto the slope, where they settled out in the clays. This process continued 

throughout the deposition of the sediment – in both the Eocene and Oligocene. 

Meanwhile carbonate sediment built up on the platform which periodically destabilised 

and spilt off the platform edge as sediment gravity flows, forming the packstone 

deposits (Figure 4.8a).  

At the EOB proper (between 102.28 and 102.22 mcd) there was a co-ordinated 

extinction of the planktonic Hantkeninidae. This closely coincided with the extinction of 

several important genera of LBF (see Figure 4.5). The last Type I (Eocene style) bed is 

above this at 100.23-100.28 mcd, but with a much reduced fauna indicating that the 

extinctions seem to have occurred before the switch from Type I to Type II 

sedimentation. At 96.64 mcd is the maximum 
18

O value of the transition (Pearson et 

al., 2008). This signifies not only a decrease in temperature, but also a drop in sea level 

due to ice growth (Lear et al., 2008). It seems that above this level the carbonate factory 

was severely reduced and there was a pause in the debris flow deposition: With a lower 

sea level and closer shoreline, terrestrial quartz built up and was subsequently deposited 

as Type II debris flows (Figure 4.8b). LBF in these beds are rare, and those present 

appear to be unspecialised forms. Orthophragminines, Spiroclypeus, pellatispirids, 

Fabiania and some species of Nummulites are all known to have suffered global 

extinction at the EOT (Adams et al., 1986). Our record from Tanzania shows that these 

extinctions did not occur at the isotope shift as we would expect following Adams 

(1965), but are all coincident with, or rapidly following, the Hantkeninidae extinction. 

The clear offset between these extinctions and the sedimentary change in the samples 

supports that the last occurrences are not an artefact of sedimentation. The relatively 

sharp and well-defined disappearance horizon indicates that the LBF sedimentation was 

penecontemporaneous with the clay and there was little significant reworking into 

younger deposits.  
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Figure 4.8. Conceptual model of shelf sedimentary processes before and after the early Oligocene 
sea-level drop. A) Carbonate factory builds up sediment (1) and destabilises resulting in periodic 
sediment gravity flows into deeper water (2) forming occasional limestone beds within the clay 
succession (3); B) Terrigenous sediment builds up (1), destabilises (2) and forms sediment gravity 
flow beds containing only occasional LBFs (3). 
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4.7 Extinction mechanisms  

Several large overturning events took place within the LBF and planktonic 

foraminifera over an extended period of ~20 million years from the middle Eocene to 

the Oligocene. The extinctions have been linked to long-term climatic trends (e.g. 

Hallock et al., 1991). The results discussed above clearly show that the end-Eocene 

extinctions in the LBF, while arguably part of this long term trend, are not spread out 

but instead occur nearly simultaneously (at least within a few thousand years). This 

leads us to speculate that the causes of these extinctions may be directly linked to each 

other and with the extinction of the planktonic Hantkeninidae.  

The relative suddenness of the event seems to demand a rapid kill mechanism, 

whether the trigger was environmental or ecological. The widespread biogeographic 

distribution of the groups in question indicates a global cause. The records also indicate 

it must be a very rare occurrence with a repeat time of at least millions or tens of 

millions of years or more and duration of much less than 100 kyrs. Further clues to the 

nature of the extinction are its apparent selectivity: Those LBF that became extinct and 

the Hantkeninidae lived in oligotrophic waters, in the deeper part of the photic zone and 

all may have relied on photosynthetic algal symbionts (see Coxall et al., 2000 for a 

discussion of hantkeninid ecology; Wade and Pearson, 2008); moreover all the extinct 

species were relatively specialised forms. The survivors among both the LBF (e.g. 

Sphaeorogypsina, some Nummulites) and the planktonic foraminifera (e.g. 

dentoglobigerinids) seem to have been tolerant of a wide range of habitats and had a 

more generalist morphology. Here we discuss potential mechanisms for these sudden 

extinctions.  

In general the EOT (34.0-33.5 Ma) was a period of cooling and ice growth 

resulting in the lowering of global sea levels, but the changes were pulsed and occurred 

over an extended period of time (Zachos et al., 1996; Coxall et al., 2005; Coxall and 

Pearson, 2007; Pearson et al., 2008; Lear et al., 2008). However, the precise extinction 

level of the LBF and Hantkeninidae does not correspond to a noticeable step in the 

oxygen isotope stack or other climatic records (see Figure 4.5). It is appreciably earlier 

(by an estimated 200 kyrs on the Tanzanian age model) than second large 
18

O shift in 

the early Oligocene which is thought to represent the major phase of ice growth and a 

significant sea-level fall (Lear et al., 2008). This global sea-level fall therefore cannot be 

the cause of the extinction, as previously suggested by Adams et al. (1986). This is 
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further supported by the change from Type I to Type II lithology, which occurs above 

the extinction level.  

Sudden and dramatic perturbations in the Earth system that would not 

necessarily be seen in the oxygen isotopes include bolide impact, massive volcanism 

and a supernova explosion relatively close to the Earth. The first two of these potential 

mechanisms can easily be dismissed through lack of geological evidence at the 

appropriate biostratigraphical interval. High levels of volcanism are known from around 

the EOT but are too long lived to specifically be linked with the extinction (Berhe et al., 

1987; Hofmann et al., 1997; Jicha et al., 2009) and there is no geological evidence for 

an especially large singular event. Likewise, though there is abundant evidence for 

major bolide impacts in the late Eocene, no large ones have been shown to coincide 

with the Eocene - Oligocene extinction events (Keller, 1986; Coccioni et al., 2000; 

Spezzaferri et al., 2002; Molina et al., 2006). Within the Tanzanian cores no 

microtektites or other evidence for an extraterrestrial impact were observed and there is 

no iridium anomaly (Pearson et al., 2008). The effects of a supernova would be more 

difficult to detect. It has been suggested that a nearby supernova (within 10 parsecs of 

the Earth) would produce ionising radiation causing ozone destruction of between 20 

and 95% at the equator leading to a large influx of solar radiation to the Earth’s surface 

(Ruderman, 1974; Crutzen and Brühl, 1995; Ellis and Schramm, 1995; Fields and Ellis, 

1999; Gehrels et al., 2003). However the effect of a supernova would probably be more 

widespread among the Earth’s biota, both terrestrial and marine, than is observed.  

Increased nutrient supply into shallow water has been suggested as a mechanism 

for a number of similarly timed extinctions in LBF and planktonic foraminifera, such as 

the mid Eocene extinction of Alveolina, large Nummulites and muricate planktonic 

foraminifera (Hallock et al., 1991). At the Cenomanian / Turonian boundary a similar 

coincident extinction occurred between LBF and the planktonic rotaliporids (Parente et 

al., 2008). This is thought to have been caused by thermal destabilisation of a highly 

stratified water column, leading to upwelling of nutrient rich deep waters, destroying the 

surface oligotrophic environment (Parente et al., 2008). A sudden increase in nutrients 

to the surface waters at the EOB could cause extinctions in oligotrophic foraminifera, 

both planktonic and benthic, particularly among more specialist genera. Increased 

nutrients in the surface waters could lead to increased biomass and organic particles, 

and decreased water transparency (Hallock, 1986; Riley, 1956). It may also cause 

overfeeding stress and increased competition for space (Hallock, 1986). However, 
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though there are indications of a general increase in nutrients across the transition 

(Diester-Haass and Zachos, 2003; Dunkley-Jones et al., 2008), we do not have evidence 

for a sudden increase at the extinction level. 

The net effect of cooling and ice growth in the interval preceding the EOB 

would have reduced living space on the continental shelves and may have caused 

latitudinal restriction in carbonate platform and pelagic environments. These changes 

may have stressed the various groups and preconditioned them for extinction. 

Weakening of ecosystem linkages may have eventually reached a tipping point and 

caused sudden catastrophic extinctions in groups of specialist species with 

commonalities of life strategy, even without a major sudden external perturbation in the 

Earth system. 

 

4.8 Conclusion  

The record of the EOT shallow carbonate environments is exceptionally well 

correlated to global isotope and plankton biostratigraphy in the Tanzanian cores. We 

show that the extinction of important genera of LBF, including Discocylina, 

Asterocyclina and Pellatispira, occurred before the major sea-level drop and was 

closely coincident with the extinction of the planktonic foraminiferal family 

Hantkeninidae. This has implications for the global correlation of LBF biozonations. 

The extinction levels correlate both the top of letter stage Tb (Adams, 1970) and 

shallow benthic foraminiferal (SBZ) zone 20 (Serra Kiel et al., 1998) with the EOB (top 

of planktonic foraminifer Zone E16; Berggen and Pearson, 2005) in the stratotype 

section at Massignano, Italy, providing a clear tie point between the regional larger 

benthic zonations and global stratigraphy.  

The co-ordinated extinction within the two foraminiferal groups also raises 

questions about the mechanism responsible. It seems likely that the climatic changes in 

the early stages of the EOT may have preconditioned the LBF for extinction. A sudden 

nutrient supply at the EOB may have been the push that caused the extinction of various 

LBF and the planktonic Hantkeninidae all of which occupied relatively specialised deep 

photic zone environments. 
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4.9 Taxonomy 

Classifications and descriptions of the Nummulitoidea are based on Schaub 

(1981), Racey (1995) and Renema (2002), with the exception of the Pellatispiridae 

which are based on the work of Hottinger et al. (2001). The classification and 

descriptions of the orthophragmines – Discocylinidae and Asterocyclinidae are based on 

the work of Özcan et al. (2006, 2007, 2010). The remaining genera follow Loeblich and 

Tappan, (1987).  

 

Order Foraminiferida Eichwald, 1930 

Suborder Rotaliina Delage and Hérouard, 1896 

Superfamily Nummulitoidea de Blainville, 1827 

Family Nummulitidae de Blainville, 1827 

Subfamily Nummulitinae de Blainville, 1827 

Genus Nummulites Lamarck, 1801 

 

Nummulites cf.  fabianii (Prever 1905) 

Figure 4.6; Figure 4.10, a-b 

 

1905  Bruguieria fabianii Prever, p. 1805, 1825 (fide Schaub 1981). 

1981 Nummulites fabianii Prever, Schaub, Fig. 88; Plate 49, 57-69; Plate 50, 1-4; 

Table 15, i. 

1995 Nummulites fabianii Prever, Papazzoni and Sirotti, Plate 2, 8-10.  

1995 Nummulites fabianii Prever, Racey  p. 43; Plate 4, 8-13; Text Fig. 37. 

1998    Nummulites fabianii Prever, Papazzoni p. 165-168; Plate 1, 1-15; Plate 2, 1-15.  

 

Material: 20 orientated sections, comprising of 19 equatorial and 1 axial sections, along 

with numerous unsectioned specimens, all from clay residues. Reticulate Nummulites 

are abundant in the packstones, but have not been identified beyond genus level due to a 

lack of clear oriented sections.  

 

Description: Tests are lenticular, mostly 1-2 mm in diameter with a rounded periphery 

and strongly reticulate septal filaments. The spire is regular and opens steadily, coiling 

is looser than that of N. cf. fichteli. Chambers are regular, sub-rectangular, and almost 

isometric in innermost whorls but become wider than high in outer whorls. Septa are 
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straight to very slightly curved and slightly inclined. Pillars are visible in axial section. 

The proloculus is 140-220 m. All sectioned specimens are A forms.   

 

Remarks: External morphology appears near identical with N. cf. fichteli, but N. cf. 

fabianii can be distinguished in equatorial thin section by smaller proloculus diameter 

and looser coiling (see discussion in section 4.6.2).  

 

Stratigraphic range: N. cf. fabianii is common in the clay samples of all three cores and 

has a last occurrence at 101.39 mcd, just above the EOB. Within the Type I lithology 

reticulate Nummulites are common, whereas in the Type II lithology a single specimen 

in oblique section is seen (Figure 4.12, d). N. fabianii has a Priabonian range and is used 

to define SBZ 19 (early Priabonian) in the Tethyan region (Serra Kiel et al., 1998), but 

is not known from anywhere east of India (Renema et al., 2003). 

 

Geographic range: Wide distribution, common throughout Europe and the eastern 

Tethyan region. Known from Tanzania (this study); Libya, Rhodes, Algeria, India 

(Blondeau, 1972); Northern Italy, Swiss and French Alps, Romania, Spain and Somalia 

(Schaub, 1981); India (Samanta, 1968); Oman (Racey 1995); Turkey (Özcan et al., 

2006).  

 

Nummulites cf.  fichteli (Michelotti, 1841) 

Figure 4.6; Figure 4.10, c 

 

1841 Nummulites fichteli Michelotti, p. 44; Plate III, 7 (fide Schaub 1981) 

1970 Nummulites fichteli Michelotti, Adams, p. 122. 

1981 Nummulites fichteli Michelotti, Schaub, p. 128; Plate 50, 5-18; Table 15, k,l. 

1995 Nummulites fichteli Michelotti, Racey, p. 44. 

2002 Nummulites fichteli Michelotti, Renema, Fig 6.8; Plate 12, D-E.  

 

Material: 25 individuals, comprising of 24 equatorial and 1 axial sections, along with 

numerous unsectioned specimens all from the clay residues. Reticulate Nummulites are 

abundant in the packstones, but have not been identified beyond genus level due to a 

lack of clear oriented sections. 
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Description: Tests are lenticular, mostly 1-2 mm in diameter, with a rounded periphery 

and strongly reticulate septal filaments. The spire is regular, opens steadily and is tightly 

coiled. Chambers are sub-rectangular, isometric to 1.5x wider than high in innermost 

whorls and up to ~3x wider than high in the outermost whorls of the largest specimens. 

Septae are straight or very slightly curved and slightly inclined. Pillars are visible in 

axial section. The proloculus is 180-330 m in diameter. All sectioned specimens are A 

forms.   

 

Remarks: External morphology near identical with N. cf. fabianii, it is distinguished in 

equatorial section by a larger proloculus size and tighter coiling. Chambers are also 

wider in the outer whorls and the test is slightly flatter, though this is less noticeable in 

smaller specimens. The coiling diagrams (Figure 4.6) show measurements of N. cf. 

fichteli cluster less closely together than those of N. cf. fabianii.  

 

Stratigraphic range: N. cf. fichteli has a first occurrence at 101.39 mcd just above the 

EOB and continues to the top of the core. The first occurrence level of N. cf. fichteli 

coincides with the last occurrence of N. cf. fabianii and this is the only sample in which 

the two species are found together. This suggests N. cf.  fichteli is replacing N. cf.  

fabianii. Within Indonesia N. fichteli is a characteristic species of Tc and Td (Early 

Oligocene age). The last Indonesian occurrence is at 29.4 Ma in Java (Renema, 2002). 

Within the Tethys N. fichteli is characteristic of SBZ 21 and 22 (Rupelian- Middle 

Chattian), and has a range from the EOB to within the lower part of SBZ 23 (Cahuzac 

and Poignant, 1997). 

 

Geographic range: Widespread within both the Tethyan region (Blondeau, 1972; 

Schaub, 1981) and Indo-Pacific (Adams, 1965, 1970; Renema, 2002; Renema et al., 

2003). 

 

Nummulites sp. 1 

Figure 4.10, e-f 

 

Material: 25 individuals, comprising of 21 naturally split equatorial sections, 2 

equatorial thin sections and 2 axial sections along with numerous unsectioned 

specimens within the clay residues.  
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Description: Tests are flattened lenticular (with a diameter/thickness ratio of ~3), and up 

to 2.5 mm in diameter. Septal filaments are sigmoidal, in some specimens the septal 

filaments in the umbilical region form granules and there is an umbilical plug,. The 

spire is regular, loosely coiled and rapidly opening. Chambers in innermost whorls are 

~isometric, but become ~2.5x higher than wide in outer whorls. The proloculus is 43 -

77 m in diameter.  

 

Remarks: Sub axial sections show similarity to some of the radiate Nummulites seen in 

the Type II beds (Figure 4.12, e).  

 

Stratigraphic range: Nummulites sp. 1 has a first occurrence at 185.81 mcd and last 

occurrence at 32.54 mcd, making it one of the few species that passes through the EOB. 

This species is especially common in TDP 17, with counts of over 250 individuals in a 

14 cm clay sample.  

 

Nummulites spp. (radiate) 

Figure 4.9, d 

 

Material: 3 equatorial sections, along with unsectioned specimens from the clay 

samples. 

 

Remarks: A small number of other radiate Nummulites occur in the samples, including 

some larger examples (up to 7 mm). Multiple species appear to be present, but further 

detailed sectioning is required to distinguish between them.   

 

Stratigraphic range: Nummulites spp. (radiate) occur in the clays between 131.48 mcd 

and 47.95 mcd.  

 

Genus Palaeonummulites Schubert, 1908 

 

Palaeonummulites cf. variolarius (Lamarck, 1804) 

Figure 4.10, h-g 

 



Chapter 4: Extinction of Larger Benthic Foraminifera at the Eocene / Oligocene 

boundary 

 

90 

 

1804 Lenticulites variolaria Lamarck, p. 187 (fide Renema 2002). 

1972 Nummulites variolarius Lamarck, Blondeau, p. 143; Plate XIX, 1-14. 

2002 Palaeonummulites variolarius Lamarck, Renema, p. 155; Fig 6.18; Plate 11, E-H.  

 

Material: 3 equatorial thin sections, 1 axial section and 1 sub axial specimen from the 

clay layers, along with several unsectioned specimens.  

 

Description: Small, biconical test up to ~ 1.5 mm in diameter and up to ~0.8 mm in 

thickness, giving a diameter to thickness ratio of ~ 1.7. Septal filaments are straight or 

slightly curving radiating from a distinct polar pillar, which forms a clear umbilical 

pillar in axial section. Sectioned specimens have 4 whorls, which are tightly coiled and 

open very regularly. Septa are perpendicular to the marginal chord and slightly curved. 

The proloculus is very small, 0.07-0.08mm in diameter. 

 

Remarks: It is unclear whether this is the A or B form of the species, as both have very 

small proloculus diameter. Comparison of whorl radii with those measured in 

Indonesian specimens by Renema (2002) show a strong similarity with the Indonesian 

B form (see Fig. 7), but more specimens would be needed to confirm this and show the 

variation within the population. The septae appear straighter than the Indonesian 

specimens (see Renema, 2002). P. cf. variolarius is also seen within the Type I 

packstones (Figure 4.12, f), but is rare.  

 

Stratigraphic range: P. cf. variolarius has a first occurrence at 187.00 mcd and last 

occurrence at 101.39 mcd. Within Indonesia the range is estimated to be Middle-Late 

Eocene, Letter Classification zone Ta3-Tb (Middle Lutetian to Priabonian; Renema, 

2002). 

 

Geographic distribution: Rarely included in studies dealing with the Nummulitidae 

(Renema, 2002). Blondeau (1972) reports it from Somalia, Mozambique and Egypt 

along with England, France, Belgium, the former Soviet Union and New Caledonia. 

Renema (2002) reports it as being widely distributed throughout Indonesia, including 

Java, Borneo, Timor, Sulawesi, Nias and Sumba.  
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Genus Operculina d’Orbigny, 1826 

 

Operculina sp. 

Figure 4.11, c 

 

Material: <10 unsectioned specimens from clay residue samples; often fragmented.  

 

Description: Specimens up to ~1 mm in diameter. Test flat and evolute, with whorls 

rapidly opening. Granules are visible along septae and marginal cord.  

 

Stratigraphic range: Operculina sp. has a first occurrence at 187.00 mcd and a last 

occurrence at 101.32 mcd. Specimens are rare in the clays, often occurring only as 

fragments and have not been found in the limestone beds.  

 

Subfamily Heterostegininae Galloway, 1933 

Genus Heterostegina d’Orbigny, 1826 

 

Heterostegina sp.   

Figure 4.11, b 

 

Material: Single unsectioned specimen from clay residues.  

 

Description: Specimen is ~1 mm in diameter. Test is lenticular with an inflated central 

region. Central pile is clearly visible with slightly sigmoidal sutures. Chamberlets are 

visible on broken edge of test.  

 

Remarks: Only a single specimen has been identified from the clays and Heterostegina 

sp. has not been found in the packstones. External ornamentation resembles that of H. 

armenica from the Western Tethys (Less et al., 2008; Fig. 11). Further specimens and 

sections are required for species level identification 

 

Stratigraphic range: The specimen is found at 173.68 mcd. 

 

Genus Spiroclypeus Douville, 1905 



Chapter 4: Extinction of Larger Benthic Foraminifera at the Eocene / Oligocene 

boundary 

 

92 

 

 

Spiroclypeus sp.  

Figure 4.11, a; Figure 4.12, g-h 

 

Material: 4 equatorial sections, plus additional sub axial and oblique sections in 

peterological thin sections from the Type I packstones and a number of unsectioned 

specimens from the clays.  

 

Description: Tests are lenticular and 0.6-2.9 mm in diameter, with an inflated central 

region and thin flange, though the flange is often missing probably due to damage 

during transportation. Pillars occur over the inflated region, decreasing in size and 

density away from the centre and not visible on the flange. These can be seen in axial 

section. The spire is coiled tightly for ~ 3 whorls and then opens rapidly. The proloculus 

is ~ 0.05 mm. Chambers are higher than wide, their height increasing rapidly after the 

first 2-3 whorls. Primary septae are strongly curved backwards. Following the embryon 

there are 3-4 undivided (operculine) chambers and all successive chambers are 

subdivided into chamberlets, with 5 chamberlets in the 14
th

 chamber. The chamberlets 

are largely rectangular to trapezoidal in shape.  

 

Remarks: Similar to “older” Spiroclypeus forms such as S. carpaticus (see Less and 

Özcan, 2008, for discussion), although flange appears to be narrower than S. carpaticus 

but this may be due to preservation.  

 

Stratigraphic range: Spiroclypeus sp. has a first occurrence at 147.60 mcd and last 

occurrence at 101.39 mcd and is found within both the clay residues and Type I 

packstones. It is especially common in the limestone bed at 108.55 mcd. 

 

Family Pellatispiridae Hanzawa, 1937 

Subfamily Pellatispirinae Hanzawa, 1957 

Genus Pellatispira Boussac, 1906 

 

Pellatispira cf. madaraszi (Hantken, 1876) 

Figure 4.11, e; Figure 4.13, a-b 
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1876 Nummulites madaraszi Hantken, p. 86; Plate 16, 7 (fide Hottinger et al., 2001). 

1928 Pellatispira madaraszi Hantken, Umbgrove, p. 17; Figs. 27-33. 

1999 Pellatispira madaraszi Hantken, Romero et al., p. 91; Plate 1, 7, 9-11. 

2001 Pellatispira madaraszi Hantken, Hottinger et al., p. 44-46; Text Figs. 3, 4, 5A, 6; 

Plate 7, 1-4; Plate 8, 1-5. 

 

Material: 11 equatorial sections within petrological thin sections of Type I packstones, 

along with a number of oblique and sub-axial sections. One specimen found in clay 

residues.   

 

Description: Tests are up to 5mm in diameter and are discoidal to lenticular. The 

chambers are arranged in an evolute, near planispiral form with ~ 8 chambers in the first 

whorl and ~ 15 chambers in the second whorl. In equatorial section the marginal crest 

reaches a height roughly equivalent to the height of the chamber. In vertical section 

piles are clearly visible and can be seen as pustules on the surface of specimens, along 

with pores. In some specimens preserved within sparite cement small spines are visible. 

The proloculus is spherical with a diameter of 110-117 m. The deuteroconch is slightly 

smaller than the proloculus ~112 m mean diameter.   

 

Remarks: The proloculus size is slightly smaller than in the specimens described by 

Hottinger et al. (2001) and Umbgrove (1928), who give averages of ~ 256 m and 200 

m respectively. 

 

Stratigraphic occurrence: Specimens of P. cf. madaraszi have a first occurrence in the 

limestones at 108.55 mcd and last occurrence at 103.16 mcd, with a single specimen in 

the clays at 102.14 mcd. The genus Pellatispira is known from Bartonian to Priabonian 

age, becoming extinct during the EOT (Umbgrove, 1928; Adams, 1970; Hottinger et al., 

2001).  

 

Geographic range: Pellatispira madaraszi is common within the Tethyan region 

(Hottinger et al., 2001) and Pellatispira is found throughout Indonesia (Adams, 1965, 

1970; Renema, 2002) and in India (Sarangi et al., 2001).  
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Pellatispira sp. 

Figure 4.13, c 

 

Material: Single specimen in oblique axial section. 

 

Description: The test is lenticular and ~3mm in diameter. The specimen shows what 

appears to be biplanar growth in the initial spiral and planispiral growth in the outer 

whorls.  

 

Remarks: The growth pattern is the opposite of Indonesian material showing 

intermediate growth patterns: These display biplanispiral growth in the outer whorls and 

pellatispiral growth in the inner whorls (W. Renema pers. comm.). 

 

Stratigraphic range: Single specimen found at 103.16 mcd. 

 

Genus Biplanispira Umbgrove, 1937 

 

Biplanispira ?mirabilis (Umbgrove, 1936) 

Figure 4.13, d 

 

1936 Heterospira mirabilis Umbgrove, p. 155; Figs. 1-11 (fide Hottinger et al., 2001). 

1984 Biplanispira mirabilis Umbgrove, Samanta, p. 316; Figs. l, 2, 6.  

2001 Biplanispira mirabilis Umbgrove, Hottinger et al.,  p. 50; Plate 16-17. 

 

Material: 2 sub axial section within petrological thin section of Type I packstone. 

 

Description: The test shows a biconvex lenticular shape with pellatispirine architecture. 

The test has a width of ~140 m and height of ~40 m. Piles forming pustules on the 

surface of the test are clearly visible. Two layers of lateral chamberlets are present, one 

on either side of the marginal crest. 

 

Remarks: The specimen shows a strong resemblance to the sub axial sections of B. 

mirabilis illustrated by Hottinger et al (2001; Plate 17).  
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Stratigraphic range: Biplanispira ?mirabilis is very rare in the cores, with two 

specimens found in the limestone bed at 103.16 mcd. The genus Biplanispira is known 

globally from Bartonian to Priabonian age (Adams, 1970; Hottinger et al., 2001; 

Renema, 2002). 

 

Geographic range: Biplanispira is common within Indonesia (Adams, 1970; Hottinger 

et al., 2001; Renema, 2002). 

 

Family Discocylinidae Galloway, 1928 

Genus Discocylina Gümbel, 1870 

 

Discocyclina cf. augustae (van der Weijden, 1940) 

Figure 4.9, f 

 

1940 Discocyclina augustae van der Weijden  (fide Özcan et al., 2006) 

2006 Discocyclina augustae Özcan et al., p. 493-494; Plate 4, 19-20. 

2010 Discocyclina augustae Özcan et al., p. 53-54; Fig. 27, g-m.  

 

Material: single equatorial thin section from clay residue samples.  

 

Description: Small flattened test, unribbed with granules on surface. Nephrolepidine 

embryon (protoconch is semi-enclosed by deuteroconch; see Özcan et al. (2006) for 

detail on orthophragmine terminology), with rectangular, low adauxilliary chamberlets. 

The chamberlets increase in height towards the outer edge of the test. The deuteroconch 

130m and protoconch 60 m in diameter. 

 

Remarks: Tanzanian specimens show similarities to D. augustae from Turkey (Özcan et 

al., 2006, 2010), but have a smaller embryon size.  

 

Stratigraphic range: The specimen of Discocyclina cf. augustae occurs at 122.74 mcd. 

D. augustae ranges from the middle Ilerdian to the end of the Priabonian (Özcan et al., 

2006). 
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Geographic range: D. augustae extends from North East Spain to India (Özcan et al., 

2006).  

 

Discocyclina cf. trabayensis (Neumann, 1955) 

Figure 4.9, c 

 

1955 Discocyclina trabayensis Neumann, (fide Özcan et al., 2006) 

2006 Discocyclina trabayensis Neumann, Özcan et al., p. 494-495; Plate 2, 7-9; Text 

Fig. 12. 

 

Material: single equatorial thin section from clay residue samples.  

 

Description: Small flattened test, unribbed, with granules on surface – very similar to 

Discocyclina cf. augustae in external morphology. Nephrolepidine embryon with low, 

wide adauxilliary chamberlets which are slightly arched at the top. Chamberlets are 

narrow and tall, increasing in height towards the edge of the test. Deuteroconch 105 m 

and protoconch 50 m in diameter. 

 

Remarks: The Tanzanian specimens are very similar to D. trabayensis from Turkey 

(Özcan et al., 2006), but have a smaller embryon size.  

 

Stratigraphic range: The specimen of Discocyclina cf. trabayensis occurs at 120.41 

mcd. D. trabayensis ranges from the early Cuisian to the end of the Priabonian (Özcan 

et al., 2006). 

 

Geographic range: D. trabayensis occurs from South West France to Anatolia (Özcan et 

al., 2006).  

 

Discocyclina sp. 1 

Figure 4.9, e 

 

Material: Single equatorial thin section from clay residue samples.  
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Description: Small flattened test, with granules on surface. In thin section 7 or 8 ribs are 

visible, these were only faintly seen in the external morphology, but this could be 

influenced by erosion on the test during transportation. Nephrolepidine embryon with 

rectangular, tall adauxilliary chamberlets which are slightly arched at the top. 

Chamberlets slowly increase in height towards the outer edge of the test. Deuteroconch 

310 m and protoconch 150 m in diameter. 

 

Remarks: Shows some similarity to D. radians (Özcan et al., 2006; Özcan et al., 2010) 

and D. nandori (Özcan et al., 2010) from Turkey, but more specimens are needed for 

further identification. 

 

Stratigraphic range: The specimen of Discocyclina sp. 1 occurs at 120.41 mcd.  

 

Discocyclina spp. 

(Figure 4.13, d) 

 

Remarks: Some specimens of Discocylina currently remain identified to only generic 

level and do not appear to belong to the species described above, further measurements 

and comparisons are required to fully identify them. A number of specimens from the 

clay residues also currently remain unsectioned. Additionally, specimens from the Type 

I limestones are largely fragments in oblique section and so identification beyond 

generic level is not possible.  

 

Stratigraphic range: Discocyclina specimens have a first occurrence at 205.03 mcd and 

last occurrence at 99.55 mcd. Globally, Discocyclina is known from the Middle 

Paleocene to top of the Late Eocene (Loeblich and Tappan, 1987).   

 

Family Orbitoclypeidae Brönniman, 1945 

Genus Asterocyclina Gümbel, 1870 

 

Asterocyclina stellata (d’Archiac, 1846) 

Figure 4.9, b 

 

1846 Asterocyclina stellata d’Archiac (fide Özcan et al., 2006). 
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2006 Asterocyclina stellata d’Archiac, Özcan et al., p. 507; Plate 4, 8-12; Text Fig. 12. 

2010 Asterocyclina stellata d’Archiac, Özcan et al., p.61; Fig. 29, o-t. 

 

Material: Single equatorial thin section from clay residue samples.  

 

Description: Star shaped test with 5 rays. Granules are clearly visible on test surface. 

Nephrolepidine embryon, with clear “stellata” arrangement of adauxiliary chamberlets - 

with 5 large chamberlets corresponding to the 5 rays, and narrower chamberlets 

between (see Özcan et al., 2006). Equatorial chamberlets are arranged into ateroidal 

annuli. Deuteroconch is 200 m and protoconch is 130 m in diameter.  

 

Stratigraphic range: The specimen of Asterocyclina stellata occurs at 119.01 mcd. This 

species is known from the early Cuisian to the end of the Priabonian (Özcan et al., 

2006).  

 

Geographic range: A. stellata is know from North East Spain to India and may occur in 

Indonesia (Özcan et al., 2006). 

 

Asterocyclina sp. 

Figure 4.9, a 

 

Material: Single equatorial thin section from clay residue samples.  

 

Description: Star shaped test with 5 rays. Nephrolepidine embryon, adauxiliary 

chamberlets are not clear in the section. Equatorial chamberlets arranged into ateroidal 

annuli. Deuteroconch is 135 m and protoconch is 90 m in diameter.  

 

Stratigraphic range: The specimen of Asterocyclina sp. occurs at 120.41 mcd.  

 

Asterocyclina spp. 

 

Remarks: A number of specimens of Asterocyclina remain unsectioned and are 

therefore not identified beyond generic level. 

 



Chapter 4: Extinction of Larger Benthic Foraminifera at the Eocene / Oligocene 

boundary 

 

99 

 

Stratigraphic range: Globally, the genus Asterocyclina is known from the Middle 

Paleocene to the top of the Eocene (Loeblich and Tappan, 1987).  

 

Superfamily Acervulinoidea Schultze, 1854 

Family Acervulinidae Schultze, 1854 

Genus Sphaerogypsina Galloway, 1933 

 

Sphaerogypsina sp. 

Figure 4.11, d; 4.13, f 

 

Material: 1 sub equatorial section, ~ 20 un-sectioned individuals from clay residue 

samples and a number of sub equatorial sections within petrological thin section from 

both Type I and Type II beds.  

 

Description: Spherical test with a diameter of 0.55-1.3 mm. Chambers in numerous 

layers, with between 6 and 10 rings in the outer “aligned” section of the test, with a 

flower-like arrangement in the centre. Chambers in successive layers are aligned one 

above each other, adjacent chambers alternate with a brick-like arrangement. The 

chambers are rectangular in shape with a height of ~30 m and width of 50-90 m, with 

the width increasing in successive rings. The proloculus is ~20 m in diameter. Pores 

are visible on the external surface of the test.  

 

Stratigraphic range: Sphaerogypsina sp. has a first occurrence at 120.43 mcd and 

continues to the top of the cores. The genus Sphaerogypsina is known from the 

Palaeocene to Recent (Loeblich and Tappan, 1987). 

 

Family Cymbaloporidae Cushman 1927 

 

Subfamily Fabianiinae Deloffre and Hamaoui, 1973 

Genus Fabiania Silvestri, 1924 

 

Fabiania sp. 

Figure 4.13, g-h 
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Material: 15 sub axial and oblique sections within petrological thin sections of Type I 

packstone.  

 

Description: Test is conical with a diameter of 1.5-2.5 mm and height of 0.5-1.0 mm. 

The cone has a deeply excavated centre, with large inner chambers. Outer chambers are 

split vertically and horizontally into small chamberlets. Chamber walls are thick.  

 

Remarks: Fabiania sp. is only found within the Type I packstones. 

 

Stratigraphic range: Fabiania sp. has a first occurrence at 120.43 mcd and last 

occurrence at 103.16 mcd. Fabiania globally ranges from the Late Paleocene to Late 

Eocene (Loeblich and Tappan, 1987). 

 

Geographic range: The genus Fabiania is known from France, Italy, Spain, Turkey, W. 

Pacific, India, New Caledonia, Japan and the Caribbean (Loeblich and Tappan, 1987).  
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Figure 4.9. Clay specimens: a) Asterocyclina sp., equatorial section, external view also shown, TDP 
12/20/1 41–50 cm (4); b) Asterocyclina stellata (d’Archaic, 1846), equatorial section, external view 
also shown TDP 11/34/1 71-81 cm (1); c) Discocyclina cf. trabayensis (Neumann, 1955), equatorial 
section, TDP 12/20/3 74-83 cm (2); d) Discocyclina sp., equatorial section, external view also shown, 
TDP 12/20/1 41-50 cm (3); e) Discocyclina sp. 1, equatorial section, TDP 12/20/1 41-50 cm (2)..  
f) Discocyclina cf. augustae (van der Weijden, 1940), equatorial section, TDP 12/20/3 74-83 cm (1). 
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Figure 4.10. Clay specimens: a) Nummulites cf.  fabianii (Prever, 1905), equatorial section, external 
view also shown, TDP 17/16/2 63-75 cm (21); b) Nummulites cf.  fabianii (Prever, 1905), axial section, 
TDP 17/35/1 49-55 cm (23); c) Nummulites cf. fichteli (Michelotti, 1841), equatorial section, TDP 
17/24/1 20-35 cm (1); external view of TDP 12/12/2 80-90 cm (3) d) Nummulites sp. (striate), 
equatorial section, external view also shown, TDP 17/16/2 63-75 cm (13); e) Nummulites sp. 1, 
equatorial section, external view also shown, TDP 17/15/2 87-97 cm (1); f) Nummulites sp. 1, axial 
section, TDP 17/14/1 0-14 cm; g) Palaeonummulites cf. variolarius (Lamarck, 1804), axial section, 
TDP 17/35/1 49-55 cm (28). h) Palaeonummulites cf. variolarius (Lamark, 1804), equatorial section, 
external view also shown, TDP 17/35/1 49-55 cm (26). 
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Figure 4.11. Clay specimens: a) Spiroclypeus sp. equatorial section, external view also shown, TDP 
12/20/1 41-50 cm (1); b) Heterostegina sp., external view, TDP 12/38/3 83-93 cm; c) Operculina sp., 
external view, TDP 12/19/1 22-34 cm; d) Sphaeorogypsina sp., sub axial section, external view also 
shown, TDP 17/25/2 48-59 cm e) Pellatispira cf. madaraszi (Hantken, 1876), external view, TDP 
12/14/1 14-22 cm;  
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Figure 4.12. Limestone specimens: a) Reticulate Nummulites sp., axial section, TDP 11/28/1 
64-68 cm; b) Reticulate Nummulites sp., axial section TDP 11/34/2 60-71 cm; c) Reticulate 
Nummulites sp., equatorial section, TDP 12/15/3 74-78 cm; d) Reticulate Nummulites sp., sub 
axial section, TDP 11/4/1 61-108 cm; e) Striate Nummulites sp., sub axial section, TDP 11/3/1 
50-53 cm, f) Palaeonummulites cf. variolarius (Lamarck, 1804), oblique section, TDP 11/34/4 ; 
g) Spiroclypeus sp. sub axial section, TDP 12/16/1 0-55 cm; h) Spiroclypeus sp., specimen on 
rock surface TDP 12/21/2 66-88 cm. 
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Figure 4.13. Limestone specimens: a) Pellatispira cf. madaraszi (Hantken, 1876), equatorial 
section TDP 12/15/4 0-7 cm; b) Pellatispira cf. madaraszi (Hantken, 1876), sub axial section 
sample K18; c) Pellatispira sp., oblique section TDP12/16/1 0-55cm; d) Biplanispira cf. mirabilis 
(Umbgrove, 1936), sub axial section TDP 12/14/2 1-10 cm; e) Discocyclina sp., axial section, 
TDP 12/14/2 1-10 cm; f) Sphaerogypsina sp., sub axial section, TDP 11/35/1 0-63 cm; g) 
Fabiania sp., sub axial section TDP 12/15/2 15-25 cm; h) Fabiania sp., sub axial section, TDP 
11/35/1 51-63 cm. 

 
 
 
 

 
 
 



Chapter 5: Testing the theory: The Melinau Limestone, Sarawak and Fuente Caldera 

and Cortes Zarabanda sections, Spain 

 

106 

 

 

Chapter 5:  

Testing the theory: The Melinau Limestone, 

Sarawak and Fuente Caldera and Cortes 

Zarabanda sections, Spain.  

 

The work on the section of Cortes Zarabanda was part of a collaborative 

integrated micropalaeontological study, which has been published as a paper. The 

reference for this is Fenero, R., Cotton, L., Molina, E. and Monechi, S., 2013. 

Micropaleontological evidence of the late Oligocene Oi-2b global glaciation at the 

Zarabanda section, Spain. Palaeogeography, Palaeoclimatology, Palaeoecology 369, 1-

13. Within this work analysis of planktonic foraminifera was carried out by EM, benthic 

foraminifera by RQ, nannofossils by SM and LBF by LJC. Only the parts of the study 

carried out by LJC are included in this chapter as modified versions from the paper. 

 

 5.1 Introduction 

 Within the Tanzanian Eocene - Oligocene Transition (EOT) section discussed in 

the previous chapter the extinction of the LBF occurs at the Eocene / Oligocene 

boundary (EOB), coincident with the extinction of the Hantkeninidae. This precedes the 

global sea-level fall by 200,000 years, indicating it is not the cause. In this chapter 

studies of two further EOT sites were carried out for comparison with the results of the 

Tanzanian study to ascertain whether this is a truly global phenomenon. The two 

sections are the Melinau Limestone section of Sarawak and Fuente Caldera section in 

Spain. Additionally, an upper Rupelian site close to Fuente Caldera was studied to 

determine the potential of using integrated studies including LBF in identifying links 

between other climatic events and LBF. Both the Melinau Limestone and Fuente 

Caldera are reported to continuously span the EOT and contain LBF across this interval. 

However both sections have different but unresolved questions relating to the LBF 

events at the boundary which this chapter aims to address.  

 The Melinau Limestone, like Tanzania, is within the Indo-Pacific region but is 

located in Sarawak on the opposite side of the Indian Ocean. This succession is thought 
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to be one of the most complete shallow water sections across the EOT (Adams, 1965; 

Adams et al., 1986; Renema, 2002). Both its location and completeness make it a good 

comparison to Tanzania, to determine if the same extinction pattern is found across the 

Indo-Pacific region. However, previous studies have been unable to determine the exact 

boundary level (Adams, 1965; Adams et al., 1986). Bulk isotope studies were therefore 

carried out as part of this study to identify major isotopic shifts associated with the EOT 

and constrain the timing of LBF events.  

The Fuente Caldera section is a succession of hemipelagic marls with turbiditic 

LBF rich limestones within the Tethyan region. The section is known to continuously 

span the EOT, but an extended range of orthophragmines has been reported from the 

site (Molina, 1986; Molina et al., 2004; Molina pers. comm.). Orthophragmines are 

generally thought to become globally extinct at the EOT (e.g. Serra-Kiel et al., 1998; 

BouDagher-Fadel, 2008) and in Tanzania this has been found to occur at the EOB 

(Chapter 4; Cotton and Pearson, 2011). The extended range reported from Fuente 

Caldera is therefore highly unusual. The LBF and sedimentation of this site were 

therefore examined firstly to confirm the occurrence of the orthophragmines and 

secondly to determine if different events within the LBF were occurring during the EOT 

of the Tethyan region or whether it is an artefact of sedimentation.  

 Close to the site of Fuente Caldera is Cortes Zarabanda, which also contains 

LBF in limestone beds within a hemipelagic marl succession. In collaboration with 

researchers at the University of Zaragoza and University of Firenze an integrated 

micropalaeontological study was carried out to determine biostratigraphy and 

palaeoenvironmental changes in this section. This shows the potential of studies beyond 

the EOT linking changes in LBF assemblages with smaller climatic events in the 

Oligocene. 

 

5.2 Melinau Limestone, Sarawak 

5.2.1 Introduction 

The Melinau Limestone of Sarawak is thought to be one of the most complete 

shallow water Cenozoic sections in the Indo-Pacific region (Adams, 1965; Adams, 

1970; Adams et al., 1986). The succession consists of ~2000 m of continuous shallow 

water carbonate sedimentation from the Bartonian to Miocene and spans the EOT 

(Adams, 1965). An extensive biostratigraphic study was carried out by Adams (1965), 

however, the exact level of the EOB remained uncertain largely due to the lack of 
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independent dating. Adams (1965) found that the Eocene faunas disappear rapidly, 

followed by an interval containing no LBF before the Oligocene faunas gradually 

emerged. The EOT could therefore only be constrained to this interval. Here bulk  

stable isotope analysis is carried out on the section for the first time, using the samples 

of Adams (1965) as provided by the Natural History Museum, London. The resulting 

isotope record allows for comparison with global chemostratigraphy and clarifies the 

events of the EOT. This enables the extinction pattern to be determined and compared 

to the results from Tanzania.  

 The Melinau Limestone is located in Sarawak, just south of Brunei (Figure 5.1). 

It is named after the river Melinau which cuts through its centre and provides one of the 

best sections through the stratigraphy in the Melinau Gorge (Adams, 1965). The 

limestone is approximately 37 km in a NE-SW direction and 8 km at its widest with a 

thickness of ~2000 m (Adams, 1965). The Melinau Limestone contains an LBF 

succession from Bartonian to Miocene within almost a single facies, making it 

exceptionally important for biostratigraphy (Adams, 1965). It therefore provides a 

standard section against which shorter sections from Indo-Malaysia can be compared, 

and was used extensively within revisions of the East Indian Letter Classification 

(Adams, 1965; Adams, 1970; Adams et al. 1986). However, few age-diagnostic fossils 

other than LBF are present in the section (Adams, 1965). The biostratigraphy is 

determined from the LBF, which can be problematic due to species endemism and 

migration events (see discussion in section 4.2). Though broad correlations can be made 

with planktonic biostratigraphy and climatic events, exact correlations are more 

difficult. 

The EOT is recognised within the Melinau Limestone due to a large overturning 

of LBF (Adams 1965; Adams et al., 1986), but the exact EOB level remains uncertain. 

Adams (1965) constrains the EOB to occurring between sample 10085 and 10093, in a 

zone labelled “?Tc” on his biostratigraphy chart. Taxa that are recorded as disappearing 

are Discocyclina, Fabiania saipanensis, Pellatispira, Spiroclypeus vermicularis and at 

least one species of striate Nummulites (Adams, 1965; Adams et al., 1986). The last 

occurrences of these taxa are all within a short stratigraphic interval in the uppermost 

Eocene whilst the new Oligocene assemblages appear gradually after the boundary 

(Adams, 1965). Between the last age-diagnostic late Eocene assemblages and the first 

datable Oligocene assemblages there is a thick succession of algal limestones (~60 m) 

devoid of age diagnostic fossils, which has been interpreted as representing a sea-level 
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Figure 5.1. Location and geological maps of the Melanau Limestone, Sarawak modified 
from Adams (1965). 
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fall across the transition (Adams, 1965; Adams, 1970; Adams et al., 1986). Adams et al. 

(1986) proposed this sea-level fall as a potential extinction mechanism for the LBF at 

the EOT, though the results from the Tanzanian EOT section show this is not the case in 

Tanzania (Chapter 4; Cotton and Pearson, 2011) 

 Using the samples of Adams, which have already been studied extensively in 

terms of biostratigraphy, bulk oxygen and carbon stable isotope analysis was used to 

provide an independent age constraint on the LBF events and determine the extinction 

pattern within the Melinau Limestone. This enables a comparison with the results from 

Tanzania to determine if the same events are visible across the Indo-Pacific, in one of 

the most complete EOT sections known from the Indonesian region. 

 

5.2.2 Materials and methods 

Samples were collected by G.E.Wilford and studied by Geoffery Adams during 

the 1960s. Detailed biostratigraphic and lithological data was published in Adams 

(1965). The samples are currently held at the Natural History Museum in London, in 

their Wandsworth store. In total 195 samples were collected in sequence from the 

Melinau gorge section which cuts the Melinau Limestone perpendicular to bedding and 

provides the greatest exposed section, spanning from the Upper Eocene to Miocene. For 

this study only the Upper Eocene and Oligocene samples were used, a total of 165 

samples (numbers S10000 to S10165) over 1036 m. Adams numbered the samples in 

order along the Melinau Gorge, but only gives stratigraphic heights for a small number 

of them in Adams (1965). The data has therefore been plotted against sample number. 

For the bulk carbonate stable isotope analysis a microdrill was used to grind 

powder from several areas on fresh surfaces of samples and these were mixed together 

to homogenise the sample. Between 200 and 400 g of powder from each sample was 

weighed and placed into vials. The samples were run on a MAT251 mass spectrometer 

at Cardiff University, and carbon and oxygen isotope values measured. Values are 

reported as a permil deviation from the Vienna Pee Dee Belemnite (VPDB). Internal 

precision, based on replicates of a limestone standard was better than 0.08‰ and 0.06‰ 

for δ
18

O and δ
13

C, respectively. 

 

5.2.3 Stable Isotope Results 

The bulk limestone 
18

O and 
13

C values are shown plotted against the range  
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Figure 5.2. Bulk isotopes plotted against the range chart and log of Adams (1965). 
18

O 

values are shown in blue and 
13

C in red, the shift in 
13

C isotopes across the onset of 

the EOGM is indicated by grey bars. 
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chart, assigned letter stages and log of Adams (1965) in Figure 5.2. The 
18

O values 

range between -3.5 and -13.5 ‰. The most negative values occur towards the base of 

the section between samples 10000 and 10034 with a value of -13.6 ‰ in sample 

10003. From sample 10034 to 10085 values are more stable and are in the range of -4 

‰ to -6 ‰.  There is then a decrease in values forming a plateau between sample 10086 

and 10096 of values around -7 ‰. Following this the isotope record is stable with 

values of around -5 ‰, with only a slight negative excursion in sample 10152.  

The 
13

C record shows a range of values between -0.5 ‰ and 3.2 ‰. The initial 

Tb section of the 
13

C record, from 10000 to 10054, is variable with values of ~0.5 ‰ 

to 3.2 ‰. From 10055 to 10088 values are more stable and show an overall slight 

increase. This is followed by a sudden negative spike of ~-0.5 ‰ in sample 10093 and 

then a smaller positive overshoot immediately afterwards of ~3 ppm, before returning to 

values of around 1.5 ‰ to 2.5 ‰. Values then begin to decrease towards the top of the 

section. There is a general increase in the 
13

C values of 0.5 ppm between the record 

before and after the spike in sample 10093, this is marked by the grey bars on Figure 

5.2.  

When plotted against the range chart of Adams (1965) the plateau in the 
18

O 

record and overall shift with negative spike in the 
13

C record broadly correlate with the 

interval which was referred to as Tc? by Adams (1965), in which the EOB was thought 

to occur. The last definite Tb assemblage occurs within the stable period in the 
13

C 

record, with no large shift in the isotopes at this level. The first indication of the new 

“Oligocene” assemblage occurs above this in sample 10089, just preceding the spike in 

the 
13

C values. The Oligocene assemblage is more apparent in sample 10094, 

immediately above the spike and becomes fully established in sample 10100, 

immediately after the overshoot.  The results therefore appear to show possible 

correlations between the two records.  

 

5.2.4 Comparison to EOT stable isotope records 

The 
18

O record shows very negative values, particularly toward the lower part 

of the section this is likely to be related to diagenesis, as Adams (1965) reports 

extensive recrystallisation and some dolomitisation in the section. The very flat 
18

O 

values in the Oligocene further suggest that they have been reset during a later event.  

There appear to be several sections to the curve which may be related to preferential 



Chapter 5: Testing the theory: The Melinau Limestone, Sarawak and Fuente Caldera 

and Cortes Zarabanda sections, Spain 

 

113 

 

diagenesis of particular beds or diagenetic events may affect particular parts of the 

sequence.  The high diagenetic alteration of the 
18

O values therefore means they offer 

little insight into determining the boundary level. 

The carbon isotope data are, however, more promising. The 
13

C values were plotted 

against 
18

O, but no co-variance was visible (Figure 5.3). This indicates that the 
13

C 

are likely to be less altered and have not been reset by the same processes affecting the 


18

O values. The step of +0.5 ‰ in values seen just after sample 10093 is comparable to 

the 
13

C shift seen at the Early Oligocene Glacial Maximum (EOGM) in both Tanzania 

(Pearson et al., 2008) and deep sea ODP sites (Coxall et al., 2005; Coxall and Pearson, 

2007). Additionally the record also shows a small initial overshoot of 
13

C to more 

positive values, which is also recognised in both the global records and Tanzania 

(Coxall et al., 2005; Coxall and Pearson, 2007; Pearson et al., 2008). The general trend 

of the Melinau Limestone 
13

C record therefore appears consistent with other EOT 

records within the boundary interval. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 5.3. Plot of 
13

C against 
18

O; crosses represent samples 10096 to 10165, red 

diamonds samples 10086 to 10095 and blue circles 10000 to 10085.  
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Figure 5.4. a) Image from thin section 10084 showing holotype of Wilfordia, common in the 

Priabonian of the Melinau Limestone; b) thin section 10092  showing lineation and 

recrystalisation of the limestone; c) thin section 10093 showing strongly deformed limestone; 

d) thin section 10094 showing  recrystallisation of the limestone; e) thin section 10095 algal 

rich grainstone showing no obvious deformation; f) Nummulites fichteli in sample 10100  
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However the 
13

C spike in sample 10093 does not match with complete records 

seen elsewhere. This spike occurs just beneath the overall 
13

C shift, which represents 

the onset of the EOGM. The EOGM is a period of major ice growth it is associated with 

major sea-level fall (see Chapter 4). Adams (1965) noted a facies change to more algal 

dominated limestones during the ?Tc interval, which was interpreted as being due to 

shallowing of the shelf. The excursion in 
13

C may therefore represent a short 

disconformity due to sea-level fall. Thin sections from the Natural History Museum of 

samples S10090 to S10095 were examined, but no definite evidence of an exposure 

surface was found. However, this does not necessarily mean there was no exposure 

surface; lithological indicators of exposure are environmentally specific and so if the 

palaeoenvironment in Melinau was either too dry or too wet no indications of its 

exposure would be preserved (V. P. Wright pers. comm.). The thin sections from 

samples within this interval all lack LBF, as reported by Adams (1965) and are largely 

composed of miliolid foraminifera and algae. They also show considerable 

recrystallisation and deformation (Figure 5.4b-d). Sample 10093 appears to be most 

deformed with an almost schist like foliated texture in thin section (Figure 5.4c). The 

limestones on either side of this interval appear undeformed and LBF rich. The 
13

C 

spike therefore coincides with the most deformed samples, but there is no co-variant 

spike in the 
18

O values which would be likely if caused by diagenetic processes. The 

cause of the 
13

C spike therefore remains uncertain. One possibility is that an exposure 

surface did form and created a weakness along the rock allowing a fault plane to occur 

along it. This would then account for both the 
13

C spike and the deformation visible in 

thin section. However, the site would need to be visited to determine whether this 

occurred.  

 

5.2.5 EOT Extinction pattern 

  The extinction level in Adams’ (1965) study occurs between sample 

10085 and 10086 (see Figure 5.2). Several major groups of LBF including 

orthophragmines and pellatispirids become rapidly extinct between 10085 and 10086. A 

new assemblage starts to appear slightly above this in sample 10089. This is then 

followed by the onset of the EOGM and associated sea level-fall at sample 10093, this 

perturbation in the shallow water environment may prevent the Oligocene assemblage 

from becoming established initially. The Oligocene fauna then becomes more 
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established from sample 10100 onwards. Due to the lack of planktonic foraminifera 

within shallow facies along with the poor 
18

O record it is not possible to determine if 

the LBF extinction coincides with the level of the Hantkeninidae extinction. However, 

the LBF extinction in the Melinau Limestone is appears to occur below the 
13

C isotope 

shift indicating the level of the EOGM and associated sea-level fall, as also recognised 

in Tanzania. This supports the conclusion that sea-level fall and associated decrease in 

platform space is not the major cause of their extinction and further supports that the 

extinction pattern found in Tanzania is likely to be a global phenomenon. This enables 

the extinctions of LBF that occur at the EOB to be used as a global biostratigraphic tie 

point between the regional LBF zonal schemes, planktonic biostratigraphy and the 

global isotope curve.  

 

5.3 Fuente Caldera 

5.3.1 Introduction 

 Fuente Caldera is a well-known Tethyan EOT site in southern Spain which has 

been subject to detailed micropalaeontological study (Molina 1986; Molina et al., 1986; 

Molina et al., 2004; Molina et al., 2006; Robin and Molina, 2006; Alegret et al., 2008; 

Fenero et al., 2008;). The majority of work at this site has been carried out on the 

planktonic and smaller benthic foraminifera through the Priabonian of the section and 

across the EOT. More recent works by Fenero et al., (2008) and Alegret et al., (2008) 

examine the upper part of the section from the EOT to the lowermost Chattian, 

primarily using smaller benthic foraminifera. However, little remains published on the 

LBF of the section, despite apparently very unusual occurrences. Orthophragmines are 

considered to become globally extinct at the EOT (Serra-Kiel et al., 1998; BouDagher- 

Fadel, 2008) but in the Fuente Caldera section a number of orthophragmines, including 

Discocyclina, are reported to extend well beyond the EOB to the Upper Rupelian 

(Molina, 1986; Molina et al., 2004; Alegret et al., 2008). Additionally there appears to 

be an apparent replacement of orthophragmines by lepidocyclinids in the Upper 

Rupelian (E. Molina pers. comm.) which is also not known to occur elsewhere. The last 

occurrence of the orthophragmines and the first occurrence of the lepidocyclinids in 

both the Tethys and Indo-Pacific regions are separated by the duration of most of the 

Rupelian. Due to these unusual occurrences and lack of previous detailed study, we 

were invited by E. Molina of the University of Zaragoza to sample and study the LBF of 

the section. The range of the orthophragmines is identified, along with the ranges of 
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associated LBF, and the nature of the sedimentation within the sequence is assessed to 

determine whether the extended range of the orthophragmines is a true occurrence or an 

artefact due to reworking of older material.  

 The Fuente Caldera section is located in the township of Pedro Martinez in the 

northern Granada province, Southern Spain (Figure 5.5). This location is within the 

median Subbetic realm, which was a subsiding trough during the Eocene, and makes up 

part of the Betic Cordillera – the most western mountain system of the European Alpine 

chains (Comas et al., 1985; Molina, 1986). The Fuente Caldera succession consists of a 

460 m thick succession of hemipelagic marls with limestone and sandstone beds, 

spanning the Priabonian to late Chattian. This includes an apparently complete section 

across the EOT. The hemi-pelagic marls are rich in both planktonic foraminifera, 

smaller benthic foraminifera and nannofossils, which are generally well preserved 

enabling detailed biostratigraphic and assemblage studies to be carried out (Molina, 

1986; Molina et al., 2004; Molina et al., 2006; Alegret et al., 2008). LBF are present in 

the limestone beds, which have been redeposited from the carbonate platform into 

deeper water. These beds occur throughout the section and are considered 

penecontemporaneous by Molina (1986 and subsequent publications). If this is the case, 

LBF ranges can be constrained by micro-and nanno-fossil biostratigraphy from the 

marls. However, two olistostrome levels are present in the Rupelian (Alegret et al., 

2008) showing that large scale reworking has occurred in at least some levels.  

 The biostratigraphy of the lower 106 m of the section and was established in 

Molina (1986) later refined in Molina et al., (2004) and Molina et al., (2006).  The 

planktonic biostratigraphy shows that the section is apparently complete without known 

unconformities. The EOB is marked by a faunal turnover including the last occurences 

of Turborotalia cocoaensis, T. cunialensis, Hantkenina alabamensis, H. brevispira, 

Cribohantkenina lazzarii and Pseudohastigerina micra at, or a few 10s of cm below, the 

boundary (Alegret et al., 2008). An increase in the percentage of high latitude species in 

the assemblage also occurs towards the early Oligocene (Alegret et al., 2008). A high 

amount of reworked and epiphytic smaller benthic foraminifera are found thoughout 

this part of the succession, due to the nearby shallow photic environment. The upper 

part of the section, approximately 330 m from the EOB to the Upper Chattian has been 

studied in detail by Alegret et al., (2008). These authors identify several events within 

the Oligocene of the succession, from benthic and planktonic foraminiferal assemblage  

 



Chapter 5: Testing the theory: The Melinau Limestone, Sarawak and Fuente Caldera 

and Cortes Zarabanda sections, Spain 

 

118 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

studies: in the upper part of Zone O1 warming and sea-level rise are recognised; a sea-

level fall resulting in the 37 m thick intensively bioturbated layer seen at ~ 235 m, 

probably due to tectonics; and a warming event in the lower part of O6 which may 

correspond to the Late Oligocene Warming event.  

Despite these extensive foraminiferal studies, there remains little work on the 

LBF. Molina et al., (2004) found that the LBF assemblage consists of mainly 

discocyclinids (orthophragmines) nummulitids, pellatispirids and amphisteginids. 

Nummulites and Spiroclypeus are recorded as rare, Heterostegina and Pellatispira as 

frequent and Discocyclina and Asterocyclina common (Molina et al., 2004). 

Additionally occurrences of Atkinocyclina and Gypsina are reported in Molina (1986). 

Red algae is also reported to commonly occur (Molina et al., 2004). Molina (1986) 

writes that the orthophragmines decrease gradually in the upper part of the series but are 

still well represented in the biozone of G. tapuriensis, but does not include them in 

range charts. The discocyclinids are then reported as being replaced by the 

lepidocyclinids, but the exact level at which this happens is not explicit in publications. 

The turnover from discocyclinids to lepidocyclinids is also reported from the nearby site 

of Molino de Cobo, which has a very similar setting also in the median Subbetic realm 

(Molina et al., 1988). 

Figure 5.5. Location map of Fuente Caldera, from Alegret et al., (2008). 

 

 

 



Chapter 5: Testing the theory: The Melinau Limestone, Sarawak and Fuente Caldera 

and Cortes Zarabanda sections, Spain 

 

119 

 

5.3.2 Methods 

 A total of 41 samples were collected from the levels shown in Figure 5.7, 

spanning the Priabonian through to the Upper Rupelian. Samples were from the 

limestone beds or from immediately beneath the beds where LBF had been weathered 

out. Petrological thin sections were made from 12 of these samples to gain an overview 

of sedimentation and assemblages. Orientated sections of individual foraminifera were 

made from all samples with LBF to establish the presence or not of orthophragmines. In 

total 42 oriented sections were used.  

 

5.3.3 Results 

5.3.3.1 Sedimentation 

  The limestone beds in the section vary between fine grained limestones, 

calcareous sandstones with little or no LBF and LBF rich limestones with LBF clearly 

visible on the surface in outcrop (Figure 5.6). Rubbly algal material is seen towards the 

bottom of the limestone beds from 155 m upwards and a considerably thicker limestone 

occurs at ~320 m (Figure 5.6; 5.7).  

 The thin sections from the Priabonian samples are located at the base of the 

section and just below the EOB (samples A and N; see Figure 5.7). Both were 

composed primarily of LBF (dominated by orthophragmines) and red algae, which 

appear to have been deposited as uncemented grains. The sediment is highly compacted 

with very little matrix and strongly sutured grain boundaries between bioclasts. There 

are occasional pockets of micrite containing planktonic foraminifera. Definite lithoclasts 

are visible in sample N. They may also be present elsewhere, but this is uncertain due to 

the lack of matrix for comparison and the suturing of the edges of grains.  

 Samples Q, R, S and T are from the four limestone beds immediately following 

the boundary. Q and S are fine-grained, generally well sorted limestones and composed 

of primarily planktonic foraminifera, smaller benthic foraminifera, red algae fragments 

and fragments of LBF and bryozoan with very little matrix or cement. Sample S 

additionally contains quartz grains and occasional larger fragments of (>2 mm) of LBF 

and red algae  

within the finer grained matrix. Samples R and T are both very similar to the Priabonian 

samples; they are largely composed of LBF and red algae, with high compaction, little 

matrix and sutured grain boundaries. Orthophragmines strongly dominate the 

assemblage in R, along with nummulitids whilst in sample T orthophragmines are 
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present but a smaller component and nummulitids including Heterostegina, Operculina 

and Nummulites make up a larger proportion of the assemblage. Planktonic foraminifera 

are found within micritic pockets in both samples. In sample R small pockets of sparite 

cement and lithoclasts were also observed.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6. a) View of lower part of Fuente Caldera site; b) lower part of Fuente Caldera site 

showing prominent limestone beds; c) the EOB, marked by hammer; d) thicker rubbly 

limestone beds in the upper part of the Rupelian; e) loose LBF weathered out underneath 

limestone beds; f) surface of LBF rich limestone.  

 

 

 



Chapter 5: Testing the theory: The Melinau Limestone, Sarawak and Fuente Caldera 

and Cortes Zarabanda sections, Spain 

 

121 

 

The remaining thin sections are spaced through the Rupelian of the succession. 

With the exception of  AJ and AL which are both fine grained grainstones, these 

samples show a distinct difference in lithology to those found within the Priabonian and 

just after the EOB (see images in Figure 5.7). These limestone beds are bioclastic 

packstones with red algal layers and rhodoliths up to ~5 mm in size, coral fragments and 

LBF. Red algae are the major bioclastic component in these packstones and there is a 

much larger amount of micritic matrix with little compaction. LBF are present but much 

less numerous than in previous samples. Planktonic foraminifera can be seen within the 

micritic areas. Lithoclasts are also frequently observed throughout. In sample AB red 

algae is observed overgrowing a micritic clast and in AM can be seen overgrowing a 

reworked LBF. Samples AJ and AL are both fine grained, well sorted pack-grainstones, 

composed of smaller foraminifera and other carbonate fragments including LBF within 

little matrix. They are very similar to the fine grained limestones found after the EOB. 

The Priabonian and Lower Rupelian limestones are typical of turbidite deposits 

with little matrix, strong compaction and a mix of shallow water and pelagic material 

due to extensive transportation. Finer grained limestones are likely to be smaller 

turbidites or from the upper part of the deposit. The change in sedimentation seen in 

sample AB is probably due to a change in source area for the sediment, likely related to 

the tectonically active nature of the region at this time. 

5.2.3.2 Palaeontology 

The occurrences of LBF are shown in Figure 5.7 plotted against the combined 

logs of Molina et al., (2006) and Alegret et al., (2008). LBF are found throughout the 

limestone beds of the Fuente Caldera section, although vary in abundance. In the 

Priabonian and earliest Rupelian they are the dominant component of the rock, whilst 

are much less abundant in the upper part of the section. The assemblage consists of 

mainly orthophragmines and nummulitids, with occasional other LBF. As the main 

aim was to determine the presence of orthophragmines, extensive sectioning of other 

groups was therefore not carried out. However, a number of individual sections were 

made and they are often clearly visible in the petrological sections, which allows for an 

overview of their occurrences.  

The orthophragmines are almost continuous through the section from A at ~5 m 

to AI at ~270 m. A diverse assemblage is present with at least the genera Asterocyclina,  
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 Figure 5.7. Occurrences of LBF and planktonic foraminifera plotted against the combined 

logs of Molina et al., 2006 and Alegret et al., 2008. Images show the change in 

sedimentation from orthophragmine rich grainstone with little matrix to more algally 

dominated packstone with a higher matrix content.  
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Discocyclina and Orbitoclypeus commonly occurring (Figure 5.8). The 

orthophragmines are abundant in the Priabonian forming ~ 80% of the limestone are 

abundant in the Priabonian forming ~ 80% of the limestone and appear to have been 

deposited as uncemented grains. This high abundance is maintained immediately across 

the EOB, but then begins to decrease from sample T onwards. Nummulitids are also 

common within the section and are represented by Heterostegina, Nummulites and 

Operculina (Figure 5.8). Heterostegina appears to occur most commonly in the 

Priabonian samples. Nummulites appear more common in the Rupelian, but are found 

throughout in low numbers. Several species of Nummulites are present in the section, 

but do not appear to occur continuously. Operculina is rare throughout. Genera from 

other groups of LBF also occasionally occur, but make up a minor component of the 

assemblage. These include Sphaerogypsina which is found in low numbers in the 

Rupelian and Coskinolina which occurs in samples Z and R in the lower part of the 

Rupelian, but is known to have a Paleocene to end Middle Eocene global range.   

In the uppermost part of the section lepidocyclinids are found. There is a 

possible occurrence in sample AL at 310 m and a definite occurrence with multiple 

specimens within the 10 m thick limestone at 320 m (AM). This occurrence is just 

above the highest occurrence of the orthophragmines in the section. Planktonic 

foraminifera have been seen in all thin sectioned samples are likely to be present in the 

samples that were not sectioned. This indicates that planktonic material was being 

mixed in with the shallow water material. The majority of planktonic foraminifera seen 

in thin section appear to be globular forms which are typical of the Oligocene, but also 

present in sample Z and AB in the early Rupelian were specimens of the genus 

Morozovella (identified by P.N. Pearson).  

 

5.3.4 Discussion 

 These results confirm the occurrence of orthophragmines throughout the 

Rupelian of the Fuente Caldera section. The apparent replacement of orthophragmines 

by lepidocyclinids (as recorded by E. Molina, pers. comm.) is also observed. However 

there is substantial evidence of reworking of older material which casts doubt as to 

whether these are true ranges and events.   The Priabonian orthophragmines and those 

from immediately above the boundary appear to have been deposited as uncemented 

grains in high numbers. It is therefore likely they were either living abundantly on the 

platform or a build-up of dead tests not yet cemented or a combination of both. If  
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Figure 5.8. Oriented sections of LBF (numbers in brackets indicate oriented specimen 

number); a) Orbitoclypeus ?varians  with external view, sample F (1) b) Orbitoclypeus 

?varians, sample N (2) c) Asterocyclina ? kecskemetii, sample I (1) d) Asterocyclina stella 

with external view, sample J (2) e) Operculina gomezi sample D (3), f) Heterostegina 

reticulata with external view, sample H (1) g) Heterostegina reticulata sample L (1) 
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orthophragmines had inhabited that area of the platform for some time there may have 

been a build-up of dead tests beneath the living foraminifera. The abundance of 

orthophragmines decreases just after the EOB and they become rarer through the 

section. This indicates a decrease in the number of orthophragmines in the platform 

source and suggests they are either a significant decrease in their population or they are 

no longer present but occasional older tests are still being reworked. Heterostegina, 

Nummulites and Operculina both have long ranges at a generic level and are common in 

both the Eocene and Oligocene of the Tethyan region (Schaub, 1981; Banner and 

Hodgekinson, 1991; Serra-Kiel et al., 1998; BouDagher-Fadel, 2008). They therefore 

give little insight as to whether other LBF known to become extinct at the EOT also 

continue. Heterostegina shows a similar pattern to the orthophragmines, decreasing in 

abundance up section which may be due to a shared sediment source. However the 

presence of Coskinolina in the Rupelian is a strong indicator of reworking of older 

material (Figure 5.9). This genus has a range from the Paleocene to the end of the 

Middle Eocene (BouDagher-Fadel, 2008). Further evidence of the reworking of Middle 

Eocene or older sediments is seen in the planktonic foraminifera. Morozovella occurs 

within the Rupelian of the Fuente Caldera limestones. These planktonic foraminifera 

also became extinct within the late Middle Eocene (Pearson et al., 2006) and so have 

been reworked from older material. Orthophragmines were also abundant in the Middle 

Eocene of the Tethys and so may have been reworked from the same material as the 

Coskinolina and Morozovella. The lepidocyclinids, however, have a first occurrence 

consistent with their first occurrence in the Tethys (BouDagher-Fadel and Price, 2010). 

This also occurs in the thicker limestone bed, suggesting a change in sedimentation 

occurs at this level and may have begun to source more contemporaneous sediment.  

  Lithoclasts are frequently visible in hand specimen and thin section throughout 

the succession (Figure 5.9). Reworking of older sediments therefore occurred 

throughout the Priabonian and the Rupelian. The two olistostromes in the Rupelian also 

clearly show large scale reworking is occurring in the section, probably due to tectonic 

activity.  

 

5.3.5 Summary 

Within the Fuente Caldera section there is a large amount of evidence for 

reworking within the turbidite limestones, particularly during the Rupelian. This  
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coupled with the lack of evidence for orthophragmines beyond the EOB from elsewhere 

means that although the abundance of orthophragmines in the Priabonian was probably 

near contemporaneous with the marl deposition, those in the Rupelian were reworked. 

The apparent replacement of orthophragmines by lepidocyclinds in the Rupelian is 

therefore an artefact of a change in sedimentation. As the area was tectonically active 

during the Paleogene this is likely to be related to faulting and/or eustatic sea-level 

changes. The reported occurrence of orthophragmines in the Rupelian of Molino de 

Figure 5.9. Evidence for reworking; a Coskinolina in sample R (Rupelian) b) Coskinolina in 

sample Z (Rupelian), c) Morozovella in sample Z (Rupelian) d) Morozovella in sample AB 

(Rupelian) e) Lithoclast in sample A, f) lithoclast in sample AB. 
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Cobo (Molina et al., 1988) is likely due to the same sedimentary processes as the sites 

are close to each other and both within the median Subbetic realm.   

A change from reworked to penecontemporous sediment appears to occur close 

to the Rupelian / Chattian boundary with the first occurences of lepidocyclinids. Further 

Chattian sites showing penecontemporaneous sedimentation are known within this 

region and a short investigation of one such site is carried out in the following section. 

 

5.4 Cortes Zarabanda 

5.4.1 Introduction 

An integrated micropalaeontological study was carried out the Oligocene section 

at Cortes Zarabanda, in order to determine the biostratigraphy of the section and 

potential links to Oligocene climatic events. Following the events of the EOT the 

Oligocene climate was variable with several cooling events (Miller et al., 1991; Miller 

et al., 2008; Miller et al., 2009) linked fluctuations in the Antarctic ice sheet and the 

formation of cold deep water in the Southern Ocean (Zachos et al., 2001; Lawyer and  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.10. Location map of the Cortes Zarabanda site, from Fenerro et al., (accepted with 

revisions).  
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Gahagan, 2003). The largest of these events occurred at the EOGM ~ 33.5-33.7 Ma 

(Miller et al., 1998; Zachos et al., 2001; Coxall and Pearson, 2007; Eldrett et al., 2009). 

However this was followed by a second large 
18

O isotope excursion at approximately 

26.7 Ma which is the Oi−2b glaciation event (Miller et al., 1998; Wade and Palike, 

2004; Flower and Chisholm, 2006; Pekar et al., 2006). Two further decreases in 
18

O 

isotope values were also recognized in the late Oligocene, the Oi−2c (~25.1 Ma) and 

Mi−1 (~23.2 Ma) glaciation events (e.g., Pekar et al., 2006). Here the results from the 

LBF study of the Cortes Zarabanda section which were carried out by the author are 

presented and the compared with the results from studies of other calcareous 

microfossils from the section which were carried out as part of the collaborative work.  

The Zarabanda section is situated very close to the site of Fuente Caldera also 

within the Subbetic realm (Figure 5.10). The site is from the upper Oligocene but 

detailed biostratigraphy has not previously been carried out. The section consists of an 

82 m thick sequence of hemipelagic marls with limestone and turbiditic sandstone 

layers. The hemipelagic marls contain abundant planktic foraminifera and calcareous 

nannofossils, common small benthic foraminifera and rare ostracodes. The smaller 

foraminifera and calcareous nannofossils studied are from the autochthonous marls. The 

calcareous sandstone strata contain abundant larger foraminifera and small benthic 

foraminifera resedimented from the shelf, which appear to have been deposited 

penecontemporaneously with the marls. The preservation of calcareous nannofossils, 

planktonic and benthic foraminifera and LBF is moderate to poor. 

The biostratigraphy of this site is therefore determined using planktonic 

foraminifera, LBF, nannofossil and benthic foraminiferal studies. This integrated 

approach is then used to see whether the cooling events of the Oligocene can be 

recognised in the section, in particular, whether it is possible to recognise these smaller 

events (when compared with the EOT) in the LBF record.  

 

5.4.2 Methods 

A total of 42 samples were collected at the Zarabanda section for an integrated 

study of the foraminifera and calcareous nannofossils.  Eight of these samples were 

from the calcareous sandstone and limestone beds for the study of LBF. Samples were 

collected towards the base of beds, where foraminifera had been naturally weathered out 

and were clearly visible. The samples were then studied using petrological thin sections 

and oriented thin sections of individual foraminifera, with the exception of sample Zb A 
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which was studied using oriented individual sections only. In total 15 petrological thin 

sections and 60 oriented individual thin sections were used in this study.  

 

5.4.3 LBF Biostratigraphy  

Within the marl sequence at Zarabanda section there are limestone beds 

composed of platform carbonate debris, primarily LBF. These beds, though redeposited, 

are believed to have been deposited as uncemented grains penecontemporaneous with 

the deposition of the surrounding clays. The limestones can therefore be used to 

examine the shallow water LBF assemblages and biostratigraphic age across the section 

and to compare them with the planktic and smaller benthic foraminiferal ages 

determined from the clays.  

The larger benthic foraminiferal assemblage present in the limestone samples is 

fairly consistent through the log (Figure 5.11), and is common for the upper Oligocene 

of the Tethyan region. The key foraminifera present for determining the 

biostratigraphical age of the samples are the lepidocyclinids – Eulepidina dilatata and 

Nephrolepidina morgani, and the presence of miogypsinids (Cahuzac and Poignant, 

1997). Operculina?complanata, Heterostegina and Neorotalia have long ranges though 

the Oligocene−Miocene (Cahuzac and Poignant, 1997).  

In the lowermost bed, of the diagnostic species mentioned, only E. dilatata is 

present. This indicates that the lowermost bed has a maximum age of middle to lower 

Oligocene (within SB 22A following the Shallow Benthic Zonation of Cahuzac and 

Poignant, 1997), and can be no younger than uppermost Oligocene – just below the 

Oligocene/Miocene boundary (top of SB 23). In sample Zb B no E. dilatata are found, 

but N. morgani is present which ranges from the lower part of the upper Oligocene to 

~mid lower Miocene (SB 22B to within SB 25). Sample Zb C contains an indeterminate 

miogypsinid fragment. Miogypsinids have a first occurrence in the upper Oligocene 

(base of SB 23) and continue to the top of the Lower Miocene (top of SB 25). Samples 

Zb D, Zb E and Zb G all contain N. morgani and are therefore upper Oligocene to the 

lower Miocene (SB 22B to within SB 25) in age. Sample Zb F contains lepidocyclinid 

fragments, it is likely that these also belong to N. morgani, however there were no clear 

equatorial sections of A forms for this sample for species level identification. Finally 

sample Zb H contains N. morgani and a miogypsinid specimen the maximum age of Zb 

H is therefore upper Oligocene – base of SB 23, and the minimum age ~middle to lower 

Miocene (mid SB25). 
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The age as indicated by the LBF from the sequence is therefore upper Oligocene 

to lower Miocene age, though it is possible for bed A to be slightly older – within the 

upper part of the lower Oligocene.  

Planktonic foraminiferal studies indicate the studied section spans the upper part 

of Zone O5 to O7 of Wade et al. (2011) and does not include the Oligocene/Miocene 

boundary (Fenero et al., 2013). The calcareous nannofossil analyses support this and 

conclude the section belongs to the CP19b−CN1 zones of Okada and Bukry (1980) and 

to the Zone MNP25 and lower part of MNN1 of Fornaciari and Rio (1996) (Fenero et 

al., 2013). Therefore it is most likely that the larger benthic foraminiferal limestones are 

upper Oligocene in age, belonging to SB 23. 

 

5.4.4 Palaeoenvironmental implications 

As the deposition of the LBF is appears to be penecontemporaneous they can be 

used to give an insight into the palaeoenvironmental changes occurring on the shallow 

water platform during this interval.  

The beds are coarse bioclastic packstones, with the majority showing strong 

pressure dissolution structures between grains. The LBF are highly abraded with 

significant test damage, and are comparable with category 3 in the scale of 

transportation damage as described by Beavington−Penney (2004). This category 

indicates extensive transportation by wave action or within turbidity currents 

(Beavington−Penney, 2004). There is very little matrix in the limestone samples, with 

only occasional clasts of micritic material which frequently contain planktic 

foraminifera and further suggests the limestones were deposited as true turbidites.  

The limestones are primarily composed of LBF. Red algae fragments are also 

common thoughout and additionally peyssonnelid algae are seen in sample Zb C. Coral, 

echinoid, bryozoan, bivalve and worm tube (possibly of the genus Ditrupa) fragments 

also frequently occur in the samples all of which are common on the platform.  

Lepidocyclinids are the most commonly occurring LBF, tending to dominate 

assemblages, Operculina and Heterostegina occur frequently along with Neorotalia and 

Amphistegina. Nummulites are relatively uncommon but multiple species are present. 

Miogypsinids are very rare. It is generally accepted that LBF were strongly zoned 

across platforms due to many factors, including light levels and energy (see 

Beavington−Penney and Racey, 2004; Renema, 2005, 2006). This combination of LBF 
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Figure 5.11. Stratigraphic column of the Zarabanda section showing limestone sample 
positions (A−H) and ranges of LBF. Due to the discrete nature of the beds, occurrences in 
the limestones are shown to scale in black, ranges between occurrences are in grey. 
Dashed lines show presumed continuation of the range, but where there were no further 
samples. 
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Figure 5.12. Plate showing larger benthic foraminifera from the Zarabanda section; a−g  
shown at same scale with scale bar below d; h and i shown at half this scale with scale bar 
below h; number in brackets is the oriented specimen number a) Nephrolepidina morgani, 
equatorial section; external view also shown, Zb D (4), b) Nephrolepidina morgani, equatorial 
section, Zb G (5), c) Nephrolepidina morgani, axial section from petrological thin section, Zb 
H. d) Heterostegina sp., equatorial section, Zb G (16), e) Neorolatia sp, (sub) equatorial 
section, Zb G (11), f) Neorolatia sp, axial slightly oblique section from petrological thin 
section, Zb C, g) Miogypsinid, equatorial or near equatorial section from petrological thin 
section, Zb H, h) Eulepidina dilatata, equatorial section, Zb A (10), i) Operculina 
?complanata, equatorial section, Zb A (20). 
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is typical of an Oligocene−Miocene outer or mid to outer ramp assemblage (e.g., 

Beavington−Penney and Racey, 2004) suggesting this is the source of the carbonate 

sediment. The ramp itself is likely to be a distally steepened, rather than homoclinal 

ramp, to enable redeposition as gravity flow deposits. Turbidites therefore may have 

occurred due to destabilisation of the outer ramp sediment. The lack of miogypsinids in 

the limestone beds may therefore be due to them living outside of the source area of the 

turbidites (i.e. in shallower waters).  

The major change in the assemblage is the disappearance of E. dilatata and 

appearance of N. morgani (see Fig. 6). The last occurrence of E. dilatata is in sample 

Zb A, before the 10 m thick limestone sequence and the first occurrence of N. morgani 

is in sample Zb B which is taken towards the top of this sequence. This is the same 

interval in which Fenero et al. (2013) find an increase in the shallow water, and 

decrease in the deep water smaller benthic foraminiferal taxa, which is interpreted as 

indicating a dramatic sea-level fall which would trigger redeposition of shallow material 

into deeper water. There is also a coeval increase in the relative abundance of the 

percentages of cool−water benthic species (Fenero et al., 2013).  

 Eulepidina is thought to have inhabited slightly deeper waters than 

Nephrolepidina (e.g., Schiavinotto and Verrubbi, 1994). A sea−level fall would cause 

an overall shallowing of the platform and therefore Eulepidina may not have been able 

to survive in the new shallower platform conditions and was replaced by 

Nephrolepidina. This change seen in the LBF therefore further supports that a sea−level 

fall occurred within the interval around 26.7 Ma. 

 

5.4.5 Summary 

Although significant cooling at this palaeolatitude would not be expected, 

comparison of the LBF and smaller benthic foraminiferal assemblages has shown a 

coeval relative change occurring at about 26.7 Ma. Both changes are indicative of a sea-

level fall and can be correlated to the major expansion of the Antarctic ice sheet that 

occurred at approximately 26.7 Ma, the Oi−2b global glaciation event. Though the 

change in LBF assemblage is less dramatic than the changes seen at the EOT and 

appears to be a local rather than global event, it does show how integrated studies can 

be used to examine the effects of smaller climatic changes on LBF.  
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5.5 Conclusion 

 This chapter has presented new data on the LBF from two well-known EOT 

sites and a further section in the Oligocene. The study of the Melinau Limestone has 

provided new data on a stratigraphically very important section. The 
13

C record 

coupled with the existing biostratigraphy has allowed the extinction level and the 

EOGM isotope shift to be identified, which was not previously possible. This work has 

shown that the extinction clearly occurs before the EOGM and is therefore not caused 

by the most prominent sea-level fall. This is the same extinction pattern as seen in 

Tanzania and is therefore not a local phenomenon, but at least extends through the Indo-

Pacific region and is likely to be global.  

 This study also shows the potential of using bulk isotope analysis to help 

constrain LBF ranges in shallow water sections. This is highly relevant for the Kiswere 

section in Tanzania (Chapter 3). The section appears to cover the late middle Eocene 

extinction event and the EOT continuously within shallow water facies. Bulk isotopes 

coupled with extensive sampling could be used in future to create a longer high 

resolution Eocene Tanzanian record.  

 The Fuente Caldera site from the Tethys displays the problems that can occur 

when dealing with turbiditic deposits. It appears likely that the orthophragmines suffer 

EOT extinction here, as they do elsewhere in the Tethys and Indo-Pacific regions and 

do not continue through the Rupelian. This is due to reworking of older, possibly 

Middle Eocene, material. It may be possible to further identify the extinction level of 

the orthophragmines, but this would require a much more detailed species level study. 

More detailed petrological examination of the beds would be needed, along with species 

level identifications of the orthophragmines to attempt to distinguish true occurrences 

from reworked material.  

 The Cortes Zarabanda site is an example of how integrated studies can be used 

to identify the effects of other climatic changes beyond the EOT on LBF. Though the 

events in this study appear localised, it shows how changes in assemblages from deeper 

to shallower species can be linked to sea-level changes and ice volume. It is uncertain if 

such studies would be successful for the younger Tanzanian sediments. Little Oligocene 

material is present in Tanzania and during the Miocene there appears to have been 

extensive faulting resulting in rapid facies changes (Chapter 2). Larger global climatic 

events such as the EOT, MECO and late Middle Eocene extinction therefore hold much 
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more potential in creating tie points between the biostratigraphic and chemostratigraphic 

schemes. 
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Chapter 6:  

Conclusions  

 

In this thesis new data on larger benthic foraminiferal events across the Eocene -

Oligocene Transition (EOT) and on longer range occurrences of larger benthic 

foraminifera (LBF) of Tanzania are presented from Tanzania Drilling Project (TDP) 

drill cores and field samples. The three TDP sites spanning the EOT have shed new 

light on the timing and potential mechanisms for the LBF extinction which occurs in 

this interval. The TDP records from the Lower Eocene to Oligocene coupled with 

extensive field samples have additionally provided a large amount of new data on 

occurrences, ages and distributions of LBF over the southern coastal region of Tanzania, 

providing a good foundation for future work. In this final chapter the aims given in 

Chapter 1 are addressed, the main aims of this work are summarised and future work is 

proposed.  

6.1 Aims given in Chapter 1:  

6.1.1 Study the EOT at high stratigraphic resolution using TDP records  

The EOT from the Kilwa District of Tanzania has been studied at high 

resolution using three TDP records (sites 11, 12 and 17) which apparently continuously 

span the transition. These sediments contain a continuous record of LBF within the clay 

sediments, along with periodic limestone beds rich in LBF. The section is expanded due 

to a high sedimentation rate and therefore ideal for high resolution studies. The recent 

work by Pearson et al. (2008), Lear et al. (2008) and Wade et al. (2008) on the 

planktonic foraminiferal biostratigraphy and chemostratigraphy means the TDP records 

are exceptionally well correlated to global biostratigraphy and the global isotope curve. 

The timing of LBF events in these records can therefore be tied to global stratigraphy, 

something which is often not possible at other sites. This correlation has shown that the 

extinction of important groups of LBF, such as the orthophragmines, pellatispirids and 

some Nummulites occurs at the Eocene / Oligocene boundary (EOB), co-incident with 

the extinction of the planktonic foraminiferal Family the Hantkeninidae.  
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This has implications for the global correlation of LBF biozonations. The 

extinction levels correlate both the top of letter stage Tb (Adams, 1970) and shallow 

benthic foraminiferal (SBZ) zone 20 (Serra Kiel et al., 1998) with the Eocene / 

Oligocene boundary (top of planktonic foraminifer Zone E16; Berggen and Pearson, 

2005) in the stratotype section at Massignano, Italy, providing a clear tie point between 

the regional larger benthic zonations and global stratigraphy. Additionally, within 

shallow carbonate sections, where planktonic foraminifera are often absent, LBF could 

be used to determine the boundary level.  

6.1.2 Determine how the EOT larger benthic foraminiferal extinction correlates to the 

climatic record and implications for mechanisms.  

The high resolution study of the EOT enabled the LBF extinction level to be tied 

to both planktonic foraminiferal biostratigraphy and chemostratigraphy. The extinction 

of LBF was found to be rapid and to occur at the EOB, closely coincident with the 

extinction of the Hantkeninidae. The EOB is within the plateau of the EOT 
18

O isotope 

curve, between the first step (largely due to temperature) and the second step (largely 

related to ice volume). This finding has important implications for the potential 

extinction mechanisms.  

Sea-level fall was previously thought to be the responsible mechanism (Adams 

et al., 1986), however this study has shown the extinction precedes the large sea-level 

decrease by ~200,000 years. The rapidity of the extinction suggests a sudden event, 

such as a large volcanic eruption or bolide impact. However, there is no geological 

evidence for either at the EOB level. A supernova close to the Earth could also 

potentially cause sudden extinction, but effects would likely be more widespread among 

biota. The EOT is a period of global cooling and LBF distribution is known to be 

temperature dependent, but the cooling occurs over an extended period of time and so 

would be unlikely to cause a sudden extinction event. However, it may be a contributing 

factor. Changes in ocean stratification and increased nutrients in surface waters would 

be detrimental to both groups of foraminifera. General increases in surface water 

nutrients are seen across the transition (Diester-Haass and Zachos, 2003; Dunkley Jones 

et al., 2008b), however the exact mechanism for this remains uncertain. It therefore 

seems likely that the climatic changes in the early stages of the EOT may have 

preconditioned the LBF for extinction. An increase in nutrient supply at the EOB may 
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have been the push that resulted in the extinction of both certain LBF and the 

Hantkeninidae.  

 

6.1.3 To give an overview of the LBF distribution, facies and biostratigraphy of 

Tanzania using TDP technology and extensive additional fieldwork 

A combination of existing TDP site records spanning the lower middle Eocene 

to Oligocene and extensive fieldwork spanning Lower Eocene to Upper Miocene have 

been used to give an overview of the LBF of southern coastal Tanzania. The records 

from TDP sites have been well studied in terms of plankton biostratigraphy and, in 

some sites, isotope stratigraphy. The age of LBF occurrences in these records is 

therefore well constrained. However, their geographical distribution is more limited. 

Extensive field sampling was therefore carried out. Field samples showed a similar 

overall assemblage to the TDP site samples, but also revealed a variety of depositional 

environments, including in-situ shelf deposits with LBF genera not present in the TDP 

material. A large amount of Miocene material from the Mchinga and Lindi regions was 

also sampled, with many localities documented for possibly the first time. Though the 

Miocene samples are from outcrop, they often occur with clay layers containing 

planktonic foraminifera, which allow independent dating of the LBF. The combination 

of drill cores from the TDP and outcrop sampling therefore provides a good overview of 

the LBF of the Eocene to Miocene of Tanzania and a solid basis for future work.  

 

6.1.4 To compare both the longer range and the EOT Tanzanian records with the 

better known Tethyan and Indo-Pacific records 

 The longer range Tanzanian record has been compared with the LBF assemblage 

records of the Indo-Pacific and Tethyan regions. During the Eocene the assemblages of 

the Tethyan and Indo-Pacific regions have limited differences and therefore the 

Tanzanian record shows similarities to both regions with assemblages containing mostly 

Nummulites, orthophragmines and alveolinids. However, specimens of Pellatispira 

show more similarities to the flattened forms of the Tethys than the more rounded forms 

of the Indo-Pacific. At the Kiswere locality samples were found containing abundant 

Somalina, a genus known only from East Africa, parts of the Middle East and Greece. 

This suggests though there are shared components with the Indo-Pacific and Tethys, it 

is part of a West Pacific/East African realm. 
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 The Miocene assemblage is typical of that period with abundant lepidocyclinids 

and miogypsinids. Highly rounded Nephrolepidina similar to Indo-Pacific species are 

common and potential range of Nephrolepidina into the Upper Miocene suggests a 

possible Indo-Pacific affinity, however much more detailed identification is needed to 

confirm this. Cycloclypeus is notably absent and is not known from elsewhere in East 

Africa, again suggesting it is part of a West Pacific/East African realm with certain 

characteristics unique to this region.  

 The results of the Tanzania EOT study were compared to two other sites; the 

Melinau Limestone of Sarawak and the Fuente Caldera section of Spain. The Melinau 

Limestone is thought to be one of the most complete shallow carbonate EOT sites, 

however it lacks independent dating. Therefore although detailed studies of LBF 

biostratigraphy were carried out by Adams (1965) the exact boundary level was not 

possible to determine. In Chapter 5 bulk isotope studies were carried out on the samples 

studied by Adams (1965), which allowed the onset of the EOGM to be identified. The 

LBF extinction, as documented by Adams (1965) occurred below this level, indicating 

that the extinction occurs before the global sea-level fall. This therefore supports that 

the extinction pattern seen in Tanzania and indicates it is likely to be a global 

phenomenon. The well-known Fuente Caldera site was also examined, due to reports of 

orthophragmines ranging into the Oligocene. However, when examined closely large 

amounts of reworking of Middle Eocene material was evident from the Oligocene 

sediments. It is likely that the orthophragmine extinction at this site also occurs during 

the EOT and that higher occurrences are due to reworking.  

6.1.5 Improve LBF stratigraphic correlation.  

This thesis has provided a large amount of new data on the LBF present in the 

southern coastal region of Tanzania. One of the major findings of this work was the 

extinction level of LBF at the EOB. This creates an important tie point in LBF 

stratigraphy between regional zonal schemes. A generic level overview of LBF through 

the Paleogene of the region has also been carried out. Little data on the LBF of 

Tanzania and also East Africa are currently available. Therefore this study provides an 

important resource and basis for future work, contributing towards an East African LBF 

biostratigraphy and an overall improved understanding of LBF migrations, 

biostratigraphy and evolution.  
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6.2 Future work 

 As the EOT is an important interval in the evolution of Earth’s climate and the 

LBF of the Tanzanian region is poorly studied, there are many potential ways to 

continue this research. Notably, though Chapter 3 contains an overview of LBF from 

the Eocene to Miocene of Tanzania, this has been carried out at a generic level. There is 

a large diversity of LBF in Tanzania, which it was not possible to study in detail within 

this PhD.  In order to accurately compare the LBF to other regions and to build up a 

detailed biostratigraphy species level identifications are needed. Chapter 3 is therefore 

useful to identify potential target areas for sampling by future workers with specific 

interests.  

 One area of interest is the Kiswere section. This area shows an apparently 

complete carbonate succession through the Lutetian to Priabonian and into the 

Oligocene (although there may be a possible hiatus). This therefore should include the 

interval absent from the TDP records which contains the upper Middle Eocene 

extinction event. This section could therefore shed further light on the LBF extinction 

before the EOT and potentially lead to a greater understanding of the mechanisms 

behind both events. The successful results of the bulk isotope study of the Melinau 

Limestone also suggest it may be possible to constrain the age of the Kiswere section 

using the same technique.  

 Further EOT sites should be studied to confirm the extinction pattern is truly 

global, although potential sites for such work are extremely rare. The extinction 

mechanism itself still remains ambiguous, culturing experiments using living LBF could 

be used to assess the effects of global cooling and ascertain whether this is likely to 

have been a major contributing factor to their extinction. There is therefore a high 

potential for future studies in this region, particularly relating to biostratigraphy, 

evolution and mechanisms of extinction.  
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