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ABSTRACT

In the past decade the Scanning Electron Microscope (SEM) has taken on a
significant role in the micro-nano imaging field. A number of researchers have
been developing computational techniques for determining depth from SEM
images. Depth from Automatic Focusing (DFAF) is one of the most popular
depth computation techniques used for SEM. However, images captured with
SEM may be distorted and suffer from problems of misalignment due to internal
and external factors such as interaction between electron beam and surface of

sample, lens aberrations, environmental noise and artefacts on the sample.

Distortion and misalignment cause computational errors in the depth
determination process. Image correction is required to reduce those errors. In this
study the proposed image correction procedure is based on Phase Correlation and
Log-Polar Transformation (PCLPT), which has been extensively used as a pre-

processing stage for many image processing operations.

The computation process of PCLPT covers the pixel level interpolation process
but it cannot deal with sub-pixel level interpolation errors. Hence, an image
filtering stage is necessary to reduce the error. This enhanced PCLPT was also
utilised as a pre-processing step for DFAF which is the first contribution of this

research.



Although DFAF is a simple technique, it was found that the computation involved
becomes more complex with image correction. Thus, the priority to develop a less
complicated and more robust depth computation technique for SEM is needed.
This study proposes an optimised Blind Image Deconvolution (BID) technique

using the Bees Algorithm for determining depth.

The Bees Algorithm (BA) is a swarm-based optimisation technique which mimics
the foraging behaviour of honey bees. The algorithm combines exploitative
neighbourhood search with explorative global search to enable effective location
of the globally optimal solution to a problem. The BA has been applied to several
optimisation problems including mechanical design, job shop scheduling and
robot path planning. Due to its promise as an effective global optimisation tool,

the BA has been chosen for this work.

The second contribution of the research consists of two improvements which have
been implemented to enhance the BA. The first improvement focuses on an
adaptive approach to neighbourhood size changes. The second consists of two
main steps. The first step is to define a measurement technique to determine the
direction along which promising solutions can be found. This is based on the
steepness angle mimicking the direction along which a scout bee performs its
figure-of-eight waggle dance during the recruitment of forager bees. The second
step is to develop a hybrid algorithm combining BA and a Hill Climbing

Algorithm (HCA) based on the threshold value of the steepness angle.

il



The final contribution of this study is to develop a novel technique based on the

BA for optimising the blurriness parameter with BID for determining depth.

The techniques proposed in this study have enabled depth information in SEM

images to be determined with 68.23 % average accuracy.
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Chapter 1

INTRODUCTION

1.1. Background

Over the years, the development of depth computation techniques has been one of
the main tasks in the machine vision area. Depth computation is required in
several applications such as surface imaging, robotics, pattern recognition,

manipulation, and nano-manufacturing.

There are different types of classification for depth computation techniques. The
classification can be defined according to the image focus level, such as depth
from automatic focusing (DFAF), depth from defocusing (DFD) and depth from
automatic defocusing (DFAD). The DFAF technique utilises the sharpness
function to find the focused image position with respect to the max / min value of
the sharpness function. The DFD technique is based on the image blurriness level.
The technique utilises the blurriness parameter to find depth information. The
DFAD technique is based on reducing the blurriness of the image by varying the

optical system parameters, and then utilising DFAF rules to determine depth.

Applications of depth computation techniques have been implemented on several

types of imaging systems such as: white-light microscope, interferometer,



Transmission Electron Microscope (TEM), and Scanning Electron Microscope
(SEM). Firstly, this study focuses on the DFAF technique on SEM, which is one
of the key systems for micro-nano imaging. Even though SEM is essential for the
micro-nano area, a SEM image may be affected by distortion, translation and
rotation during image acquisition. This is due to internal and external noise such
as interaction between the specimen surface and electron beam, artefact on the
surface, and environmental vibrations (Snella, 2010). Therefore, the captured

image may need to be adjusted by an image correction process.

Various types of image registration models have been developed to correct the
orientation of the image according to a reference image. Image registration
models can be classified into different groups. One group is based on feature
matching such as the feature-based and area-based image registration models
(Zitovaa and Flusser, 2003). Feature-based image registration models cannot
perform without a geometrical descriptor. However, area-based image registration

techniques utilise statistical criteria in the Spatial / Fourier domain.

Fourier domain-based image registration models have a computational advantage
compared to spatial domain-based models. Phase correlation is one the most
widely used Fourier domain-based image registration techniques. Although phase
correlation can find image translation it cannot work without a log-polar
transformation to solve translation, rotation and scaling problems. The
computational process of phase correlation and log-polar transformation covers

the pixel level interpolation process but there is an error in the sub-pixel level and



so it requires pre-processing. One of the pre-processing stages can be image
filtering. This is an essential tool in the image processing area as the filtering
process can change the image sharpness level. Different types of image filters can

be utilised in a pre-processing step.

The blurriness parameter is utilised in the DFD technique to find depth. The
blurriness parameter of the image cannot be determined easily, unless it has been
found by deconvolution using a known sharp original image. In practice, there is
no information about the sharp image and the Point Spread Function (PSF) which
is convolved with the former to produce the blurred actual image. Therefore, a
blind deconvolution process has been utilised to find both the original image and
the PSF. The blind deconvolution process is an optimisation problem where a

sharp image is found at the optimum point of some objective function.

There are various types of optimisation techniques. They can be classified based
on the variable types such as deterministic and stochastic optimisation techniques.
Deterministic optimisation techniques can solve problems in polynomial time.
However, most of the optimisation problems cannot be solved in polynomial time
and stochastic techniques are required to solve them. There are several stochastic
optimisation techniques such as Stochastic Hill Climbing, Random Optimisation,
Simulated Annealing, Tabu Search, Genetic Algorithm, Evolutionary
Programming, Particle Swarm Optimisation, Ant Colony Optimisation, and the
Bees Algorithm. Stochastic Hill Climbing is a direct search optimisation

algorithm. Random Optimisation is a random search technique which is one of the



simplest stochastic optimisation techniques. Simulated Annealing is inspired by
the annealing process of metals. Tabu Search is inspired by the human memory
process. The Genetic Algorithm technique mimics natural evolution. Evolutionary
Programming is also inspired by the same natural process. Particle Swarm
Optimisation models the way a flock of birds or a school of fish moves. The Ant
Colony technique is based on how ants behave. Finally, the Bees Algorithm is

inspired by the foraging routine of honey bees.

The Bees Algorithm is a stochastic and population-based optimisation algorithm.
The algorithm has both local and global search ability, which makes the Bees
Algorithm effective at finding the true optimum solution to a problem. The Bees
Algorithm has been successfully tested on various types of problems. The
algorithm has been improved with different types of strategies such as
neighbourhood size change, site abandonment strategy and population size
change. These improvements were focused on the neighbourhood search site.
Other improvements have been carried out with hybrid approaches involving
combining the Bees Algorithm with other techniques such as Particle Swarm

Optimisation and Ant Colony Optimisation.

1.2. Motivation

The automatic focusing technique has been employed on SEM (Nicolls, 1995 and

Batten 2000). (Nicolls, 1995) developed an automatic focusing-based depth



computation process for SEM. The process is based on utilising the optical
transfer function of two images. Depth computation with automatic focusing
requires pre-processing to correct the captured image (Snella, 2010). Phase
correlation and log-polar transformation have been utilised for image correction
(Zitova and Flusser, 2003). However, phase correlation and log-polar
transformation can be sensitive to errors due to the interpolation process at the
sub-pixel level. Thus the first motivation of this work was to improve pre-
processing for the phase correlation and log-polar transformation technique with
image filtering. Then, effort was focused on relating the sharpness function value

to depth. This work was carried out by utilising the DFAF technique on a SEM.

The pre-processed DFAF technique has been successfully applied in some
particular cases but requires much computational effort. Therefore, it makes the
process very slow. To avoid the heavy computational demands an alternative
depth computation technique was developed using blind deconvolution which is
an optimisation problem. There are several blind deconvolution techniques
developed based on the Genetic Algorithm, Tabu Search, and Simulated
Annealing. A novel Bees Algorithm-based blind deconvolution process was
developed in this study to predict the blurriness parameter. As mentioned before,
the Bees Algorithm has been applied to various types of optimisation problems
and the algorithm has been enhanced with several approaches such as improving
the neighbourhood search and combining it with other optimisation algorithms. In

this work, the Bees Algorithm was hybridised with Hill Climbing and its



neighbourhood search parameters were allowed to change adaptively. These

modifications were aimed at producing a more efficient optimisation algorithm.

1.3. Aim and objectives

The overall aim of this research was to develop a robust depth computation
technique for SEM. The first proposed depth computation technique was based on
the pre-processed DFAF technique. The second depth computation technique was
developed from blind deconvolution optimised using the Bees Algorithm.
Initially, the Bees Algorithm was improved in two ways.  First, the
neighbourhood size was allowed to change adaptively and site abandonment was

adopted. Second, hybridisation with Hill Climbing was implemented.
The objectives of this work were:

1. To develop a pre-processed phase correlation and log-polar transformation
technique with image filtering.

2. To develop a method of correcting SEM images by employing the
proposed pre-processed phased correlation and log-polar transformation
technique.

3. To develop a method of computing the sharpness of the image for different
distances, and then relating the distance and sharpness of corrected

images.



4. To enhance the Bees Algorithm with adaptive neighbourhood size change
and site abandonment strategy.

5. To improve the Bees Algorithm by combining it with the Hill Climbing
Algorithm.

6. To apply the enhanced Bees Algorithm to the blind deconvolution
technique.

7. To compute the blurriness parameter with the optimised blind
deconvolution technique.

8. To relate depth and the blurriness parameter.

1.4. Research methods

In carrying out this research, the following methodologies were adopted:

1. Surveying previous work related to depth computation, image registration,
optimisation and deconvolution techniques.

2. Implementing the proposed algorithms in MATLAB

3. Testing the pre-processed phase correlation and log-polar transformation
technique on benchmark images and SEM images.

4. Applying the pre-processed phase correlation and log-polar transformation
technique on different depth levels of SEM images and correcting them.

5. Applying the DFAF technique on corrected SEM images and relating

sharpness values with distances.



>

Improving the Bees Algorithm and then testing the improved algorithm

on benchmark functions and an optimisation problem.

7. Applying the improved Bees Algorithm to blind deconvolution.

8. Testing the optimised blind deconvolution techniques on benchmark
images and SEM images.

9. Applying the optimised blind deconvolution algorithm on different SEM

images obtained at different depths.

10. Relating the predicted blurriness parameter and depth.

1.5. Outline of the thesis

The remainder of the thesis is organised as follows.

Chapter 2 reviews the DFAF technique. The image registration technique is
presented. Then optimisation techniques are described and the Bees Algorithm is

highlighted. Finally, blind deconvolution is discussed.

Chapter 3 introduces the phase correlation and log-polar transformation
technique. Image filtering is introduced as a pre-processing step. The chapter
describes the testing of the pre-processed phase correlation and log-polar
transformation technique on both benchmark images and SEM images of a copper
sample. Then it gives the results of applying the proposed technique to SEM

images at different distances. Finally, the chapter presents the application of the



DFAF technique to corrected images and assignment of specific depths to

corresponding sharpness values.

Chapter 4 presents two improvements to the Bees Algorithm. The first
improvement is based on using adaptive neighbourhoods and site abandonment.
The second improvement is based on combining the Bees Algorithm and Hill
Climbing. The improved Bees Algorithm has been tested on benchmark functions

and a given optimisation problem. The test results are presented in the chapter.

Chapter S introduces the Bees Algorithm-based optimised blind deconvolution
technique and presents its application to benchmark images and SEM images of a
copper sample at different distances from the SEM. The chapter gives the
relationship between image depth and the values of the blurriness parameter

obtained.

Chapter 6 lists the contributions of this research, summarises the conclusions

reached and provides suggestions for further research.



Chapter 2

LITERATURE REVIEW

2.1. Preliminaries

This chapter overviews the implementation of Depth from Automatic Focusing
(DFAF) on a SEM, and image registration, deconvolution and stochastic based
optimisation techniques. Non-Gaussianity-based blind deconvolution techniques

are reviewed in detail.

2.2. Depth from Automatic Focusing on a SEM

DFAF is one of the most widely used technique for depth determination in the
area of machine vision (Tenenbaum, 1970; Krotkov, 1987; Xiong and Shafer,
1993; Tyan, 1997; Subbarao and Tyan, 1998). To determine depth DFAF finds
the sharpest image from different depth levels using sharpness measurement
functions. These are the functions used with the Automatic Focusing (AF)
technique which has been an important development of the SEM (Yousefi, et al.,

2011).

10



Originally proposed for use on the SEM by Nicolls (1995) the AF technique uses
the Modulation Transfer Function (MTF) in the Fourier domain. This was
developed by Batten (2000) as an iterative-based sharpness search algorithm to

find the position of the sharpest image from a set of captured images.

The image captured from an out of focus plane is blurred, where the degree of
blurring is determined by the convolution operation, given in Equation 2.1

(Pentland, 1987; Subbarao and Surya, 1994; Aslantas, 1997):

g(x.y) =[] f(x.y)h(x—m,y—n)dmdn 2.1)

where g is the observed image, 4 is the Point Spread Function (PSF) of the system

and f'is the focused image. Equation 2.1 is the basis of the computational process

used for cleaning blurred images (Dobes et al., 2010).

Image formation in a SEM is shown in Figure 2.1, where the focused image

occurs on the crossover point of the beams. If the position of specimen is far from

the beam crossover, the captured image will be blurred. In Figure 2.1, 4, denotes
the aperture size of the SEM, ddenotes the distance from the focused image
plane to the objective lens, ddenotes the distance from the surface of the

specimen to the objective lens, A4; denotes the beam diameter size on the

specimen surface and & denotes the distance from the specimen to the focused

image plane.
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Aperture Plane

Beam Crossover

Specimen

g

Figure 2.1 Image formation with SEM.

The sharpness function will be a maximum or minimum (depending on the given
sharpness function) on the focused image plane. The sharpness functions have
been classified into five groups by Aslantas (1997) as shown in Figure 2.2. The
functions considered for use in this research are given in Table 2.1. A full list of

sharpness measurement functions is given in Appendix A.
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Sharpness Functions
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Figure 2.2 Classification of sharpness functions for the AF technique.
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Table 2.1 Sharpness functions for the AF technique used in this project.

Function Name

Explanation

Function

Parameter / Operator

Tenengrad
Function

The function computes the gradient of
the image, the sharpest image has
maximum value ( Schlag, et al., 1983
and Aslantas 1997)

N N )
F=maxy 2 X 1(x,y)
x=1y=1

I(x,y):\/lx(x,y)z +Iy(x,y)2 ; where [()C,y)2 >T

-1 0 1 1 2 1
Io(x,y)=1-2 0 2. 1,(xy)=|0 0 0
-1 0 1 -1 -2 -1

(Sobel Operator is available to compute the derivations).

Brenner
Function

Brenner function computes the sum of
squared differences between pixels and
pixels two units away, the sharpest image
has maximum value (Brenner, et. al,
1984 and Aslantas 1997).

N N
F = max > z([(x’y+2)—l(x,y))2

x=ly=1

where I(x,y)2 >T

Squared Gradient
Function

The function computes the sum of the
squared differences of each pixel and
neighbouring pixels one unit away, the
sharpest image has maximum value
(Santos, et al., 1997).

N N
F =max{ Y. Z|I(x,y+1)—l(x,y)|
x=1y=1

2

where |[(x,y+1)—1(x;y)|2T

Range Function

The function is based on the search for
the maximum value of the difference
between the maximum grey level and
minimum grey level of the image
(Firestone et al., 1991)

F= max{lmax _Imin}

where max and 1 min are the maximum and minimum grey level,

respectively.
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Table 2.1 Sharpness functions for the AF technique used in this project (cont.).

Histogram
Entropy Function

The function minimises the entropy of
the histogram diagram (Aslantas, 1997;

F=mind=Y P(1)In(P(1))

where P('I ) is the probability of the grey level of [ in histogram
diagram. and P([)# 0

Santos, et al., 1997; Aslantas and I
Kurban, 2009).
F= where I(x, y)2 > T The following operators are available.
Computes the sum squared Laplacian of NN 0 I / / ] / 4 J
Laplacian the image and sharpest image has _ _ 12 - - - - - - -
Function maximum value (Muller et al., 1974; max Z Z(I(x’y+l) 2U(x.y)=1(x.y l)) F={-1 4 -1|,|-1 S -1 -4 20 -4
Krotkov, 1987). x=lx=1 ’ ’ !
0o -1 01\|-1 -1 -1||-1 -4 -1
Variance Function | The variance function computes variance N N
of images and the sharpest image has the | F = ;¢ z Z[l(x y)- 7]2
maximum  value (Aslantas, 1997; N2 x=1y=1

Yousefi, et al., 2011).
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2.2.1. Gradient-Based Functions

Gradient-based optimisation functions are widely used for image enhancement.
The aim is to maximise the gradient image brightness in the region of interest and
is based on the physical observation that image focus quality affects edge
characteristics (Aslantas and Kurban, 2009; Rudnaya et al., 2011). The best

focused image has the sharpest edges and maximum value for the gradient.

2.2.2. Histogram-Based Functions

Histogram-based functions are a type of sharpness measurement function. This
group of functions deal with image pixel values. The image focus level can be
measured from the histogram of pixel values. For example, the focused image has
a higher range of grey level but a blurred image contains a lower range of grey

level (Rudnaya and Ochshorn, 2011).

2.2.3. Image Contrast-Based Functions

Image contrast-based sharpness functions measure the variation of image pixel

value. A sharp image has more variation than a blurred one (Aslantas, 1997).

2.2.4. Peak Height and Valley Depth-Based Functions

These types of sharpness measurement functions compute the amplitudes of peaks

or valleys in the image (Aslantas, 1997). The maximisation of these parameters
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gives the sharpest image because the best image has the sharpest edges and thus

the pixel grey level has its widest range.

2.2.5. Image Transform-Based Functions

Image transformation-based functions transform the image from the spatial
domain to the desired domain. Rudnaya, et al., (2010) have used image
transformation based on the Fourier transform and shown that because well-
focused images contain sharper edges than blurred images, they have higher
frequency components. Thus, the Fourier transform can be employed to find the

sharpest image by searching for the transform with maximum value.

Other types of transformations are orthogonal transformations such as Discrete
Cosine and Walsh-Hadamard transformations and can be used to measure image

sharpness (Aslantas, 1997).

2.3. Image Registration

Image registration process refers to the matching of two images that share
common information such as images of the same scene or images of the same

object which can be taken either at different times or using different sensors.

The image registration process has been applied in many applications in machine

vision; e.g. medical imaging, computer vision, military-based image vision, and
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satellite images. The image registration process consists of the following steps

(Istenic et. al, 2007; Zitova and Flusser, 2003):

e Feature detection,
e Feature matching,
e Transform model estimation, and

e Image sampling and transform.

Image registration techniques can be classified into different groups based on the
above steps. One of the classifications was by Zitovaa and Flusser (2003). They
classified image registration techniques based on feature matching properties (step
2 in the list). According to the feature matching process, the image can be
classified into either Feature Based Image Registration (FBIR) or Area Based
Image Registration (ABIR). FBIR techniques are based on the correspondence
between features in the images such as geometrical shapes and so require a

geometrical descriptor (Oztireli and Basdogan, 2008).

ABIR techniques are based on a matching criterion which computes pixel values
and variations in both source and target images (Zitovaa and Flusser, 2003). ABIR
techniques use statistical criteria such as normalised cross correlation in the
spatial domain and the phase correlation in the Fourier domain (Hong and Zhang,

2007).

FBIR techniques are sensitive to the image content, that is to say, whether the

image content is rich in detail or not (Matungka et al., 2009). ABIR techniques
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have been much more widely used than FBIR ones. The latter carry out the image
registration process without attempting to detect the salient objects, which is a
weakness compared to ABIR. However, ABIR techniques while showing good
performance on individual problems of translation, rotation and scaling may fail
when having to deal with combinations of translation, rotation and scaling. To

overcome this weakness, the technique needs to be improved.

2.3.1. Phase Correlation and Log-polar Transformation

Phase correlation is one of the most popular ABIR techniques. The phase
correlation is performed in the Fourier domain after the Fourier transform has
been completed but has difficulty when dealing with combined problems of image
translation, rotation and scaling. To overcome these problems the log-polar

transformation is used (Reddy and Chatterji, 1996; Ding et al., 2010).

The log-polar transformation is a nonlinear and non-uniform transformation to
map the Cartesian coordinate system onto the log-polar coordinate system (Zokai
and Wolberg, 2005). The nonlinearity is related with the polar mapping and the

non-uniformity is the property of logarithmic scaling.

2.4. Optimisation

Optimisation is a mathematical technique concerned with finding the “best”

solution of a problem. The best solution is the fittest solution in the solution space.
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A multitude of optimisation techniques have been used in many fields such as
engineering, physics, chemistry, medicine, manufacturing and economic analysis.
However, there is no optimisation technique that is suitable for all problems

(Wolpert and Macready, 1997).

Optimisation techniques use the following when searching for optimum values:

e Objective functions,
e Variables,
e Constraints, and

e Search Space.

The purpose of an optimisation technique is to minimise / maximise the objective

function with respect to the constraints and search space, given below:

Given:
function:  f(X) can be defined as f: 4 —R"
variable: X ={x,,%,,Xy,....... x,}, Xed and 4 is subset of n
dimensional Euclidian space R",
constraints:
inequality constraints: g,(X)<0, i=123...m
equality constraints: h(X)=0, i=123....p
Sought:
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Minimisation:

X € 4 suchthat f(X)< f(X) forall X e 4

Maximisation:

X € 4 suchthat f(X)2= f(X) forall X € 4

The domain 4 of f is referred to as the “search space” or “parameter space”,
each element of A is called a “candidate solution”, the function “ /(X ) ” is called
the “objective function” (Blondin, 2009). Candidate solutions are substituted in
the objective function and seek the minimised / maximised value. The minimised /
maximised solution of an objective function is called the “optimal solution”. The

optimum value searching technique is also called the “mathematical programming

technique” (Rao, 1996).

2.4.1. Classification of Optimisation Techniques

This section classifies the different types of optimisation techniques. One
classification is based on the types of variables, whether deterministic or
stochastic variables. Deterministic variables are used in the deterministic
optimisation technique and stochastic variables are used in stochastic optimisation
techniques. Deterministic optimisation techniques are straightforward methods to
solve the optimisation problem in polynomial time, and there is a clear
relationship between the characteristics of the possible solutions and their utility.
When the relationship between candidate solution and problem’s fitness are

complicated, not obvious, and have no solution in polynomial time, then
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stochastic optimisation techniques provide an alternative solution that looks for
optimum value in the desired time by generating random variables. The variable
based classification of the optimisation techniques is shown in Figure 2.3 (Weise,
2009). In this study, the focus is on Stochastic-based optimisation techniques. The

Bees Algorithm is reviewed in detail which will be utilised in further chapters.
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Figure 2.3 Classifications of optimisation techniques based on parameters used.
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2.4.2. Stochastic Hill Climbing

The Stochastic Hill Climbing (SHC) technique is a local search technique which
is based on a direct search strategy (Schmidhuber and Zhao, 1999). SCH chooses
the next iteration in proportion to the steepness of an uphill move. SHC looks for
the first best neighbour, and the population size of SCH is selected in a random

manner (Rosete-Suarez et al., 1999; Brownlee, 2011).

2.4.3. Random Optimisation

The Random Optimisation (RO) technique is one of the simplest numerical
techniques used to search for the global optimum when the gradient is difficult /
impossible (Li and Rhinehart, 1998). The starting point of stochastic-based

optimisation techniques is often RO (Kristoffersen, 2007).

The initial point of the RO technique is chosen randomly. There is a “reproduce”
operator defined in RO that looks like the mutation operator of an evaluation
strategy. The purpose of the reproduce operator is to reach all of the points in the

search space from every other point (Weise, 2009).

2.4.4. Tabu Search

Tabu Search is a single-point local search technique with local-optima avoidance
modelled on the human memory process (Rayward-Smith et al., 1996; Pham and

Karaboga, 2000). The memory process is the recorded list of previously seen
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solutions (Gendreau and Potvin, 2010) and is called a “fabu list”. To avoid
memory problems the length of the tabu list is limited and older solutions are
removed (Rothlauf, 2011). Thus the tabu list improves the local search
mechanism. If the search process stops at a local minimum and this does not allow
a better solution, the process cycles back to previously recorded solutions

encountered before the local minimum.

2.4.5. Simulated Annealing

In metallurgical science annealing is a process which consists of the heating and
controlled cooling of metals that can change some of their physical properties
including strength, hardness and ductility (Koppen and et al, 2011). The
annealing process is applied to relieve the metals’ internal stresses so that if the
temperature change is correct the metal will have the right hardness and ductility,
but if the temperature change is too rapid the metal may be too brittle. Simulated
Annealing (SA) is a single-point random search technique derived from the
simulation of the annealing process and is a general method of locating an
approximation of the global minimum / maximum when the search space is large
(Koziel and Yang, 2011). SA is also considered as a version of the classical
“Metropolis Method” which simulates the behaviour of atoms at a given
temperature (Zhigljavsky and Zilinskas, 2008; Belegundu and Chandrupatla,
2011). The annealing process can be defined in terms of energy change (heating)
modelled as a transition probability given by the Boltzmann probability

distribution function as shown in Equation (2.2):
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poe b (2.2)

where k, is the Boltzmann’s constant, 7' is the temperature of the annealing

process and AE is the energy change level of the process.

SA can be performed as follows for a stated minimisation problem. A feasible

arbitrary chosen starting point is X = {xl I S S X, }, and its objective
function f(X) is selected. The step size isS and an arbitrary random number is

defined as R . The initial selected X vector will be assigned as the minimum point.
Then the next probable point will be predicted in the vicinity of the current point

as given by Equation 2.3:

X, =X +RS (2.3)

The objective function value of current point is given by f(X,)and the next
probable point’s objective value is given by f(X,,). Equation (2.2) can be

modified for a given SA by defining the link between the energy change AE and

the objective function changes of problem Af" as shown in Equation 2.4:

AE = yAf (2.4)

where Af = f,,, — f,.
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y 1is usually given the value unity for simplicity, see Equation 2.5:

poe b (2.5)

The value of kjaffects the convergence characteristics of the method and is

usually given the value unity (Rao, S., S., 1996).

The probability of the next probable point is defined by (Koppen at al., 2011) as

in Equation 2.6:
1 if Af<0
- otherwise

(2.6)

A promising new point X, is accepted unconditionally when (X )< f(X;); a
non-promising new point, where f(X,,;)= f(X,), is accepted with probability

Y
p=e T when the value of p > r, where r is a random number, 0 < » <1, which is

defined as a threshold for acceptance of a non-promising location.

In annealing an important parameter is the rate of cooling which controls the
annealing process. Here the widely-used geometric cooling schedule has been

implemented; see Equation 2.7:

T . =Ta' (2.7)

i+1 i
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({3

where “7.” is the current temperature, “;” is the number of the current iteration

and “«a ” is the cooling factor which is a constant between 0 and 1.

2.4.6. Genetic Algorithm

The Genetic Algorithm (GA) is a population-based algorithm which is inspired
from genetic systems in nature. The philosophical basis of the GA was proposed
by John Holland in the early 1960s and its engineering applications were studied
by Goldberg in 1983. In nature weak and unhealthy species are faced with
extinction by natural selection, but stronger and healthier ones are able to pass
their genes to future generations. The healthier genes will be passed to future

generation and can be strengthened by crossover and mutational processes.

GA performs the genetic reproduction process and assesses the survival of the
best individuals’ strategies (Beledungu and Chandrupatla, 2011). The canonical
version of GA has two fundamental operators which are crossover and mutation
(Rutkowski, 2008). The canonical version consists of binary strings which

represent the chromosomes of individuals.

Crossover in GAs creates offspring by randomly mixing sections of the parental
genome and mutational processes generate random variations in populations, both
of which are adaptation processes found in nature. The transformations can be

defined as (Zelinka et al., 2010):

e Structure of child’s chromosome = Hereditary material (chromosomes of

organism),
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e Crossover operation = Crossover in the parental chromosomes
(chromosomes exchange between parental chromosomes to provide a child
chromosome),

e Mutation operation = Random changes in the child’s chromosomes,

e Fitness evaluation = Natural selection process in nature.

2.4.7. Evolutionary Programming

Evolutionary Programming (EP) is another type of evolutionary algorithm
developed by Fogel (1960) to simulate evolution as a learning process with
artificial intelligence (Back et al., 1997). EP is implemented in machine learning
by finite state machines and numerical optimisation techniques (Grosan and
Abraham, 2011). Traditional EP uses the Gaussian mutation operator and no
crossover operator. Modern EP uses self-adaptation of the mutation operator. The
population of the crossover operator will be selected by the mutation operator. EP
uses the real value representation for its chromosomes. The steps in EP are given

below:

e The EP technique starts by generating an initial population,

e The second step is replication of initial solutions. Each of these crossover
solutions are mutated according to the Gaussian distribution function (or
any chosen distribution function). The mutation operator is judged based

on the distribution function,
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e The last step is the evaluation of the crossover solution of population.
Determination of the retained solution depends on the selected technique

such as stochastic tournament.

2.4.8. Particle Swarm Optimisation

Particle Swarm Optimisation (PSO) is a type of Swarm-Based Optimisation
Technique (SBOT) which was inspired by the behaviour of socially organised
populations in nature such as animal herds or bird flocks (Blum and Merkle,
2008). PSO was proposed by Kennedy and Eberhart, (1995). The population in
PSO is called the swarm and each individual is called a particle (Li and Liu,
2011). Each particle represents a possible solution of the problem (Lamm and
Unger, 2011). The particles in PSO collectively search for the global optimum
with given velocities (Floreano and Mattiussi, 2008). The velocities of individual
particles are stochastically adjusted based on the previous best position of each
individual particle. The performance of the algorithm is measured with a fitness

function and it will run until any given termination criterion is satisfied.

2.4.9. Ant Colony Optimisation

Ant Colony Optimisation (ACO) technique is also an SBOT, which was inspired

by pheromone-based strategies of ant foraging.

When looking for food, ants initially randomly search the area immediately
surrounding their nest. After finding a food source an ant carries some of it back

to the nest. During this return trip, the ant deposits trail of a chemical pheromone
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on the ground. The quantity of pheromone deposited is an indicator to other ants
of the direction to the food source and the quantity and quality of the source

(Dorigo & Stiitzle, 2004).

In nature, the foraging behaviour of ants is based on finding the shortest path
between the source and their nest (Panigrahi et al, 2011). When ants find a food
source, they leave their pheromone trails on the path when they return to their nest
from the source and the other ants find the path by using the pheromone trails and
the pheromone level. If the selected path is the shortest path, the pheromone level
will be reinforced in other ways but it will evaporate as time passes (Sumathi and
Surekha, 2010). A short path will be visited by more ants, and thus the pheromone
level will be higher compared to other paths. ACO was inspired by the above
behaviour of ants and applied to optimisation problems to determine the optimum
value. ACO was introduced by Dorigo et al., (1996), for solving combinatorial
optimisation problems such as the Travelling Salesman Problem (TSP), which
entails the cost function being optimised. The construction of a candidate solution
is done according to a probabilistic state transition rule; a candidate solution is

defined as moving from one node (i) to another ( j ), which is given in Equation

2.8:
i (O] (1)
D i TONE@) i jEN"(0)
p; ()= (2.8)
0 if jeN" ()
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where p'(¢) : Transition probability from node i to node j ,

T, : The posterior effectiveness of the move from node i to node j ’
a : The parameter to control the influence ofz, ’

n, - The prior effectiveness of the move from node i to node ’

yij : The parameter to control the influence of 7, ’

N*  :The set of feasible nodes for ant m when located on node i

The pheromone concentrationz, represents how desirable it is to make a move

from node i to node j . The evaporation of pheromone is given in Equation 2.9:

5, (0= (- ), () (2.9)

where p : The reduction rate of the pheromone level, (o €[0.1]).

The purpose of evaporation is to avoid all the ants premature converging on a

single good solution and to have diversification in the search space.

The pheromone update starts with completion of a path by each ant, which is
associated with the best found solution among all ants. The added value depends
on the quality of the selected solutions. The update process is shown in Equations

2.10-2.11:
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r,(t+D)=7,()+ A7, (1) (2.10)

Az, =D AT (1) 2.11)
m=1
where n, : The number of ants,

Az} (¢) : The amount of pheromone deposited by ant m from node i to

node j at time stepz.

2.4.10. The Fundamentals of the Bees Algorithm

The Bees Algorithm is a type of SBOT, which was proposed by Professor D. T.

Pham and his team at MEC-Cardiff University in 2005 (Pham et. al. 2005; 2006a).

The Bees Algorithm was inspired by the food foraging behaviour of honey bees.
A swarm of honey bee colony consists of a queen bee, which is the mother of all
colony members, and thousands of worker bees (Seeley, 1995). After honey bees
emerge from their cell, they have a duty to clean the cell, store food, construct the
comb, feed the larva and when they are three weeks old, they start to forage and

stop doing the other tasks.

2.4.10.1. The Foraging Behaviour of Honey Bees
A colony of honey bees can exploit a large number of food sources in big fields
and they can fly up to 11 km to exploit food sources (Seeley, 1995 and Gould and

Gould, 1988). The colony employs about one-quarter of its members as forager
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bees. The foraging process begins with searching out promising flower patches by
scout bees. The colony keeps a percentage of the scout bees during the harvesting
season. When the scout bees have found a flower patch, they will look further in
hope of finding an even better one (Gould and Gould, 1988). The scout bees

search for the better patches randomly (Von Frisch, 1955).

The scout bees inform their peers waiting in the hive as to the quality of the food
source, based amongst other things, on sugar levels. The scout bees deposit their
nectar and go to the dance floor in front of the hive to communicate to the other

bees by performing their dance, known as the ‘waggle dance’ (Seeley, 1995).

2.4.10.2. The Waggle Dance of Honey Bees

The waggle dance is named from the wagging run (in which the dancers produce a
loud buzzing sound by moving their body from side to side), which is used by the
scout bees to communicate information about the food source to the rest of the
colony. The scout bees provide the following information by means of the waggle

dance: the quality of the food source, the distance of the source from the hive and

the direction of the source (Gould and Gould, 1988; Von Frisch, 1955).

The waggle dance path has a figure of eight shape. Initially the scout bee vibrates
its wing muscles which produces a loud buzz and runs in a straight line the
direction of which is related to the vertical on the hive and indicates the direction
of the food source relative to the sun’s azimuth in the field, see Figure 2.4 a and b

(Huang, 2008). The scout then circles back, alternating a left and a right return
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path (Talbi, 2009). The speed / duration of the dance indicates the distance to the
food source; the frequency of the waggles in the dance and buzzing convey the
quality of the source; see Figure 2.4c (Huang 2008). These will influence the

number of follower bees.

Figure 2.4 a) Orientation of waggle dance with respect to the sun, b)
Orientation of waggle dance with respect to the food source, hive and sun, c)

The Waggle Dance and followers.
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2.4.10.3. Applications of the Bees Algorithm

This section reports the applications of the Bees Algorithm to various types of

optimisation problem.

The first application of the Bees Algorithm was on the continuous type
benchmark functions optimisation when the algorithm was performed on nine
continuous type benchmark functions (Pham et al., 2006a). The Bees Algorithm
was then tested on more continuous functions and the results compared with those
of other optimisation algorithms (Pham and Castellani, 2009a). It was found that
the performance of the Bees Algorithm was very effective on the benchmark

function compared to the other algorithms.

The Bees Algorithm was also implemented on multi-objective optimisation
problems. The first application was on the welded beam problem by
(Ghanbarzadeh, 2007). The goal of the study was to minimise the cost of
fabrication by finding a feasible weld thickness, weld length, beam thickness and
beam width under the stress constraints. The second application was on a carbon
energy system and environmental dispatch problem (Lee, 2010). The aim of the
study was to design a low carbon system by minimising both total cost and CO,
emission. The performance of the Bees Algorithm was most promising compared

to all the other examined algorithms.

Another application of the Bees Algorithm was with neural networks. The first

implementation was on the training of a Learning Vector Quantisation network
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(Pham et al., 2006b). The second was the training of a Multi Layered Perceptron
neural network (Pham et al., 2006¢; Koc, 2010). The third was on the training of
a Radial Basis neural network (Pham et al.,, 2006d). The simulation results of
training and testing proved that the Bees Algorithm is a strong classifier and

optimisation tool.

The Bees Algorithm was also implemented on manufacturing systems. Pham et
al., (2007a) applied the Bees algorithm to cellular manufacturing systems where
the cell information problem was optimised by the Bees Algorithm. The results

showed that the Bees Algorithm is applicable for combinatorial applications.

The Bees Algorithm was tested on the job scheduling problem and the results
were compared with TS, GA, PSO and their combinations (Pham et al., 2007b).
The Bees Algorithm performed better than other optimisation algorithms on this

combinatorial optimisation problem.

Another application of the Bees Algorithm was on clustering problems. The Bees
Algorithm was implemented on the K-means and C-means clustering algorithms
(Pham et al., 2007c; Al-Jabbouli, 2009). And the results showed that the Bees

Algorithm could be a powerful tool for clustering applications.

A robotic application of the Bees Algorithm has been proposed (Pham et al.,
2008). The Bees Algorithm was employed for learning the inverse kinematics of a

robot manipulator. The results from this application were excellent. Another
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robotic application was proposed by (Pham et al., 2009b), whereby the Bees
Algorithm was employed to optimise the membership functions of fuzzy logic.
The proposed algorithm tuned the fuzzy logic controller parameter for stabilising
and balancing an acrobatic robot. The results showed that the Bees Algorithm

improved the gain of the fuzzy logic controller.

The performance of the Bees Algorithm was improved using a hybrid approach
such as combining it with PSO (Sholedolu, 2009). PSO has advantages in an
adaptive neighbourhood search and by including the advantages of PSO in the
Bees Algorithm; the convergence rate of the algorithm (called modified PSO) was
improved. The performance of the PSO - Bees hybrid algorithm on the examined

problems was very promising and fast.

The Bees Algorithm can be optimised, tuning its parameters will provide an even
more robust and efficient algorithm. One of these improvements was carried out
by (Otri, 2011) who improved the Bees Algorithm by adapting it to optimise itself

and to decrease the sensitivity of the parameters.

The Bees algorithm has also several enhancements, one of the enhancements was
proposed based on an early neighbourhood search and efficiency based approach
and tested on benchmark function (Pham et al., 2012a). According to the results,
the proposed enhanced Bees Algorithm performed better than other optimisation

algorithms.
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From general considerations, it has been said that there will be no single
optimisation algorithm that will perform equally well on all problems (Wolpert
and Macready 1997). However, the performance of the Bees Algorithm is very
impressive because it has the capability to perform both local and global searches
using exploitation and exploration strategies. These features are the main
strengths of the Bees Algorithm and it has been shown to perform very effectively
on a wide range of problems. The algorithm was also available in the author’s
laboratory where extensive research had been carried out on it. Therefore it was

selected for this study.

Further, the Bees Algorithm will be utilised in blind deconvolution and the results
of the proposed algorithm will be compared with a Simulated Annealing-based

blind deconvolution technique in chapter 5.

2.5. Image Deconvolution

Image formation can be identified as the transformation of a 3D object onto the
2D sensor plane which is a depth-weighted, mapped from the image intensity of
the object. The image formation process uses the data from a sensor and prior
information about the image. The mathematical modelling of image formation can
be written using a convolution given in Equation 2.1. The convolution operation

ek

can be denoted with operator, so Equation 2.1 can be written as:
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g(x,y)=f(x,y)*h(x,y) (2.12)

If the observed image contains noise then Equation 2.12 can be rewritten as:

g(x,y)=f(x,y)*h(x,y)+n(x,y) (2.13)

where g(x,y) is the observed image, f(x,y) is the original image, A(x,y ) is the

PSF of the imaging system and n('x, y) is the noise in the observed image.

Equation 2.13 can be written in the Fourier domain as:

G(u,v)=F(u,v)H(u,v)+ N(u,v) (2.14)

where G(u,v), F(u,v), H(u,v) and N(u,v)are the Fourier transforms of

g(x,y), f(x,v), h(x,y) and n(x,y ), respectively.

The original image can be recovered using a deconvolution process which is the
inverse process of the convolution operation. In the spatial domain this inverse
operation is not cost efficient. Thus the Fourier domain operation gives a better
and faster response for the deconvolution process, as shown in Equation 2.15

(Madden et al., 1996):

G(u,v) N(uyv)

Fuv)= H(u,v) H(u,v)

(2.15)
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The inverse Fourier transform of Equation 2.15 gives the original image f(x,y).
With respect to the deconvolution problem, it is assumed that the PSF of the
original image is known. When there is no information about the PSF,
deconvolution becomes a very complex and difficult process. Recovering the
original image and PSF without or having less prior information is, however,

possible with blind image deconvolution.

2.5.1. Blind Image Deconvolution

Blind Image Deconvolution (BID) is a fundamental process in machine vision.
BID looks for the original image and its PSF when there is only partial

information or no information available about the original image and its PSF.

Several methods have been proposed for finding the original image and PSF. One
of the most basic approaches is to obtain information about the original image;
physical information about the original image such as the non-negativity and
finite support, or statistical information such as entropy or probability density

function (Kundur and Hatzinakos, 1996).

Kundur and Hatzinakos (1996) grouped BID techniques into five main categories:

e Zero sheet separation methods,
e A priori blur identification methods,
e Auto-regressive moving average methods,

e Non-parametric methods based on high order statistics methods, and
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e Non-parametric deterministic image constraints restoration methods.

The Zero Sheet Separation (ZSS) methods were developed by Lane and Bates
(1987) and are computationally intensive. They use the z-transform and assume
that the observed image is formed by the convolving of several individual

components.

The Priori Blur Identification (PBI) methods are based on the estimation of prior
information about the PSF to use in the BID model. The technique works with a
known parametric form of the blur such as the linear camera motion of an out of
focus system (Kundur and Hatzinakos, 1996). Liu et al. (2003) employed a PBI
method with information of the blur type and this information was used as a blur
prior to the Maximum A-Posteriori (MAP) to recover the original image and PSF.
The image recovery process cannot perform well when there is no parametric

form of the blur type.

Auto-Regressive Moving Average (ARMA) methods are one of the most widely
used methods in BID. The original image is modelled as an Auto-Regressive (AR)
process and the PSF is modelled as a Moving Average (MA) (Blume, 2007).
Thus, the BID problem is transformed into an ARMA parameter estimation
problem (Yap et al., 2003). To overcome the problem of accurate prediction of
parameters under conditions of instability and non-uniqueness, additional

techniques have been employed such as Maximum Likelihood (ML), Generalised

42



Cross Validation (GCV) and Neural Networks (NN), which are distinct among

ARMA methods (Reeves and Mersereau, 1992).

Non-Parametric Methods Based on the Higher Order Statistics have been used for
solving the BID problem. The methods are based on the minimisation of the given
cost function that accounts for the probabilistic non-Gaussian nature of the
original image (Kundur and Hatzinakos, 1996; Jayaraman et al., 2009). Typically
these models have been applied when the image or the edges are modelled as

sparse (Campisi and Egiazarian, 2007).

Non-Parametric Deterministic Image Constraints Restoration (NPDICR) methods
use deterministic constraints with an iterative solution approach instead of using a
parametric model for the original image or the PSF. NPDICR methods are
different from the rest of BID methods (Kundur and Hatzinakos, 1996). BID
techniques proposed as NPDICR methods include iterative blind image
deconvolution (Lam and Goodman, 2000; Biggs and Andrews 1997; Ayers and
Dainty, 1988), genetic algorithm-based blind image deconvolution (Chen et al.,
1996; Yin, 2006), blind image deconvolution using least squares minimisation
(Law and Lane, 1996) and simulated annealing-based blind image deconvolution
(McCallum, 1990; Yu, 2008). Each of these techniques has an iterative-based
approach to find the optimum solution for the sharp image and PSF. Apart from
the model of Yu (2008) all other techniques try to recover the original image from

the observed image by a recursive degradation model. Yu (2008) used an
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Independent Component Analysis (ICA) based non—Gaussianity analysis with a

simulated annealing technique.

2.5.2. ICA-Based Non-Gaussianity Analysis

Independent Component Analysis (ICA) is one of the Blind Source Separation
(BSS) methods, which has been used for separating data into its original
informational components (Stone, 2004). ICA is widely used in the signal
processing and image processing area. It assumes that the observed signal is a
linear combination of each independent component, as given in Equation 2.16

(Hyvarinen et al., 2001):

X =a\S, +ayS, +..+a,S, (2.16)

where X is observed signal, a;,a,,..a, are the mixing coefficients of the n

components respectively and S,,S,,...S, are the source signals.

It is assumed that all the components of the observed signal are statistically
independent and non-Gaussian (Wang et al., 2009). The non-Gaussianity is based
on the Central Limit Theorem, which states that the distribution of the sum of »
independent random variables approaches the Gaussian. It means that the

observed signal is closer to the Gaussian distribution than its components.
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A blurred image can also be separated into two main components, the original
image and the PSF, using non-Gaussianity analysis. The non-Gaussianity can be

measured with the following techniques:

e Negentropy analysis,
e Approximated negentropy analysis,
e Mutual information analysis, and

e Kurtosis analysis.

2.5.2.1. Negentropy Analysis

Negentropy is a non-Gaussianity measurement technique which is an information
theoretic unit contrast function. Negentropy is based on differential entropy. The
entropy of a random variable can be defined as a degree of information that the
observation of the variables gives. The entropy of a discrete variable can be

written as in Equation 2.17:

H(Y)=-Y P(Y)log P(Y) (2.17)

where Y denotes a discrete random variable, H(Y ) is the entropy of P(Y ) that

denotes the probability density function of Y .

The entropy is identified as differential entropy for continuous type variables,

given in Equation 2.18 (Wang et al., 2009):
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H(y)==[f(y)log f(y)dy (2.18)

The negentropy can be defined as:

J(Y)=H(Y quss )= H(Y) (2.19)

where y is a continuous type random variable, J(y) denotes the negentropy of

Y'Y eauss 18 @ Gaussian random variable of the same covariance matrix as y .

2.5.2.2. Approximated Negentropy Analysis

The estimation of the negentropy is a difficult task and thus it remains as a
theoretical function (Hyvarinen et al., 2001). However it has been proposed that
some approximated negentropy functions can be used to measure non-
Gaussianity. One of these approaches is to use higher-order moment functions, as

given in Equation 2.20 (Hyvarinen, 1998):
1 1
J(y)= EE{y3}2 +4—8kurz‘0sis(y)2 (2.20)

where y is a random variable which is assumed to be of zero mean and unit

variance, E{ y3 } is the third moment function of y, kurtosis(y) denotes the

kurtosis.

Another approximation to the negentropy is based on the maximum entropy

principle (Hyvarinen, 1998). It is shown in Equation 2.22:
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2

J(y) = S h[EG (v}~ EG(v)] (222)

where y is assumed to be a random variable with zero mean and unit variance, v
is a Gaussian variable of zero mean and unit variance, k; are the constants,
E(G;(y)) are the expected value of the G;(y) functions, andJ(y) is the

negentropy of y, p=2. For simplicity, G functions are chosen as in Equation

2.23 and 2.24 (Hyvarinen, 1999):

G,(x)=Ilogcosha,x (2.23)

2
—ayx

G,(x)=e 2 (2.24)

where a,,a, >1 are constants.

2.5.2.3. Mutual Information Analysis

Mutual information is a measure between random variables that can be used to
measure the amount of information shared between them (Hyvarinen, 1999). The

shared information among n random variables is shown in Equation 2.25:

10332009, = S H (v )= H(y) 229)
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where y,,y,,..,y, are the n random variables, I(y,,y,,...y, Jdenotes the mutual
information among n random variables, H(y, ) is the entropy of the ith element

and H(y) is the joint entropy.

It is expected that the mutual information between independent components is
zero. Therefore, the minimisation of the mutual information can be used for non-
Gaussianity analysis. The determination of non-Gaussianity with mutual

information-based techniques requires a heavy computational process.

2.5.2.4. Kurtosis Analysis

Kurtosis, which is a fourth-order cumulant, is one the classical measures for non-
Gaussianity. Kurtosis is a measure of distribution, indicating whether the data are
peaked or flatter than a Normal distribution which has a zero mean and unit

variance (Crawley, 2005). The kurtosis of a random variable y is given in

Equation 2.26:

kurtosis(y)=E{y* }=3(E{y* })’ (2.26)

If it is assumed that y has unit variance, Equation 2.26 can be rewritten as:

kurtosis(y)=E{ y* }-3 (2.27)

Kurtosis can be negative, positive or zero. The kurtosis of a Gaussian random

variable y is zero; on the other hand the kurtosis of a non-Gaussian random

variable is non-zero. If the random variable has a negative kurtosis, it is called a
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sub-Gaussian such as a Raised Cosine distribution (RCD) which has a kurtosis
value of -0.5937 (Sun, 2010). When the kurtosis of the random variable is
positive, it is called super-gaussian such as a Laplace Distribution (LD) which has
a kurtosis value of 3 (Sun, 2010). Density graphs for the RCD, LD and Normal

distributions, are shown in Figure 2.5.

The calculation process of kurtosis is easier than calculation of negentropy,
approximated negentropy and mutual information. Therefore kurtosis analysis
will be utilised in the ICA-based image recovery process to determine the original

image and PSF.

0.7 —
\ Laplace Distribution .

06 H— | ‘ Normal Distribution _

Raised Cosine Distribution - - - - - - _

0.5 |—

f(y)

v

Figure 2.5. Density graphs for Laplace distribution, Gaussian distribution

and Raised Cosine distribution.
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2.6. Summary

This chapter has briefly described the DFAF technique, image registration
techniques, optimisation techniques, deconvolution and BID techniques. Kurtosis-
based non-Gaussianity analysis has been highlighted. The aim of this chapter was
to provide information on and background for the subsequent chapters. In Section
2.2, the image formation in SEM and DFAF technique is presented and will be
discussed with phase correlation and logarithmic polar transformation in Chapter
3. In section 2.4, the stochastic optimisation techniques were discussed. One of
the stochastic based optimisation algorithms, the Bees Algorithm, is presented in
detail, which will be used in Chapters 4 and 5. In Chapter 4, an improvement to
the Bees Algorithm will be presented. Finally, a novel depth computation
technique will be described in Chapter 5 based on BID optimised with the Bees
Algorithm for SEM images and the results of proposed algorithm will be
compared with a Simulated Annealing-based optimised BID. Further, the Bees
Algorithm-based optimised BID will be utilised to determine the depth between
surface and objective lens in SEM. Note that none of the techniques surveyed are

related to blind deconvolution and optimisation with depth computation.
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Chapter 3

DEPTH FROM AUTOMATIC FOCUSING USING PRE-
PROCESSED IMAGE REGISTRATION
TECHNIQUES

3.1. Preliminaries

DFAF is a popular technique for depth computation and has been used on various types
of imaging systems such as white-light microscopes, white-light interferometers
and Transmission Electron Microscopes (TEM). In this study, the DFAF
technique is applied to a Scanning Electron Microscope (SEM) image after an

image correction process.

SEM is one of the widely used vision systems in micro and nano imaging.
However, SEM images may contain distortion, rotation and translation due to the
interaction between the surface of the sample and the electron beam. Therefore, an

image correction process is necessary to correct these problems with SEM images.

Image correction is an important part of image processing and in this study an
image correction process based on the Phase Correlation and Log-Polar
Transformation (PCLPT) technique for SEM images is proposed. The PCLPT

technique has been improved with a pre-processing step needed because of
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interpolation error at the sub pixel level. The pre-processing step consists of
applying image filtering and the corrected image is obtained using the DFAF

technique to determine the depth.

3.2. Image Correction with PCLPT Technique

Phase correlation is used for the image translation problem but does not perform
well on image rotation and scaling problems (Reddy and Chatterji, 1996).
Therefore, as described in Chapter 2, phase correlation and log-polar
transformation (PCLPT) technique is applied to overcome all three problems
(Ding et al., 2010). In the following sub-sections each of the problems is

explained sequentially.

3.2.1. Image Translation Correction with Phase Correlation Technique

Image translation is of major concern in the image registration area. The

translation between observed image and reference image can be defined as:

I,(x,y)=1,(x—Ax,y—Ay) (3.1

where [,(x,y)and/,(x,y)are the reference image and observed image,

respectively; Ax and Ay are the displacements in x and y directions respectively.
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The translation problem can be solved in the Fourier domain with the phase
correlation technique. The translation can be written in the Fourier domain as in

Equation 3.2 (Reddy and Chatterji, 1996):

Fy(u,v)=e "N E yy) (3.2)

where Fj(u,v) and F,(u,v)are the Fourier transforms of /,(x,y) and I,(x,y)

respectively.

The phase correlation of the observed image and reference image is defined as:

PC = /27 (ubxnty) _ Fi(u,v)F, (uv) (3.3)

Fy(u,v)F, (u.v)

where F, (u,v) is the complex conjugate of F,(u,v).

The translations in both x and y directions are found with an inverse Fourier

transform of the phase correlation as:

(Ax,Ay) = max{F‘l (PC )} (3.4)

where F~'(PC) denotes the inverse Fourier transform of the phase correlation.
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The inverse Fourier transform of the phase correlation comprises zero elements
everywhere except at the position of the displacement. Because the inverse
Fourier transform of the complex exponential is a delta function, the result has
only one peak, and the position (both x and y directions) of the peak gives the

translation between reference image and observed image.

In practice, the translated image is expected to be a linear shift of the reference

image, rather than a circular shift. If the translated image is also circularly shifted
relative to the reference image, then F~'(PC) is not expected to be a delta

function and the performance of the phase correlation is likely to decrease. To
avoid low performance, a window function can be applied such as the Hann

window, the Hammingham window or the Blackman window.

In this study, phase correlation was tested on images of Lena, Boats, Cameraman
which have been used as benchmark images by many researchers (Levente, 2003),
and a "copper sample". The copper sample image was captured with an SEM XB-
1504 in MEC Cardiff University for this study. The original images are provided
in Figure 3.1 a-d. Then, the original images were translated in x and y directions
by -40 pixels and 20 pixels respectively. The translated images are given in Figure

3.2 a-d.

The phase correlation technique uses both the original image and the translated
image. The results for the corrected images are shown in Figure 3.3 a-d. The

translated image of Lena, Boats, Cameraman and a copper sample captured with
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the SEM were moved back to the original position according to the results of the
phase correlation technique from the centre of translated images and all the results

for the translation correction were found 100% correct by checking manually with

Gimp 2 Open source image processing software.

Figure 3.1 The test images a) Lena, b) Boats, ¢) Cameraman, and d) Copper

sample.

Figure 3.2 The test images translated in x and y directions by -40 pixels and 20

pixels respectively a) Lena, b) Boats, ¢) Cameraman, and d) Copper sample.

a) b) 9) d)

Figure 3.3 Corrected results for the translated images a) Lena, b) Boats, c)

Cameraman, and d) Copper sample.
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3.2.2. Image Rotation Correction with a Polar Transformation Based

Phase Correlation Technique

Image rotation is another important task in the field of image correction. The
rotation can be defined as a translation problem in the Fourier domain obtained by
using a polar transformation (Ding et al., 2010). Polar Transformation (PT) is a
nonlinear and non-uniform transformation to map Cartesian coordinates into polar

(Zokai and Wolberg, 2005).

Any given point, (x,y )in the Cartesian coordinate system can be mapped into the
polar coordinate system in the form of (p, @) relative to a given reference
point('x,,y,), where p is the radial distance from the reference to the given

point, see Equation 3.5, and 4 is the angle made by the line joining the reference

point to the given point see Equation 3.6:

p=A(x=x ) +(y=2, )’ (3.5)
0= tan{mj (3.6)
X=X,

The relation between the observed image (rotated f° clockwise about the origin)

and the reference image can be defined as:

Iy(x,y)=1,(xcos(f)+ ysin(ff)~=xsin(f)+ ysin(f)) (3.7)
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The Fourier transform of the rotated image is defined as in Equation 3.8, which is

called the Fourier rotation property (Liu and Mason, 2009).

F,(u,v)=F(ucos(f)+vsin(f)—-usin(fB)+vcos(f)) (3.8)

To transform the rotation problem into a translation problem, transformation of

Equation 3.8 into the polar domain is required, as given in Equation 3.9:

Fy(p.0)=F(p.0-p) (3.9)

The rotation is defined as the angular difference in the Fourier domain and it can

be determined with phase correlation.

In this study, the same four images as used for translation were also used for
rotation. For ease of reference the original images are again shown in Figure 3.4
a-d. These were rotated by 20° in a counter clockwise direction, see Figure 3.5 a-
d. The rotated images were rotated back to their original position by rotated
clockwise 20° from the centre of the rotated image with proposed technique. The
results were determined with PT-based PC. All the results were found 100%
correct by checking manually with Gimp2 open source package, given in Figure

3.6 a-d.
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a) b) c) d)

Figure 3.4 The test images a) Lena, b) Boats, ¢) Cameraman, and d) Copper

sample.

a) b) c) d)

Figure 3.5 The test images rotated through -20° a) Lena, b) Boats, c)

Cameraman, and d) Copper sample.

d)

Figure 3.6 Corrected results for the rotated images a) Lena, b) Boats, ¢)

Cameraman, and d) Copper sample.
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3.2.3. Image Scaling Correction with Logarithmic Transformation -

Based Phase Correlation Technique

Image scaling is another major task in the image processing field, which can be
solved as a translation problem using the Logarithmic Transformation (LT)

(Reddy and Chatterji, 1996).

When an image is scaled by factors y, and y, in the x and y direction respectively

(,and y, are real numbers), then it can be modelled in the spatial domain as:

L(x,y)=1(yx7,y) (3.10)

The Fourier transform of Equation 3.10 can be written as Equation 3.11, in terms

of the Fourier scaling property.

1
F(+2) (3.11)
7172 Vi V»

F,(u,v)=

To find the scale factor for both directions, both sides of Equation 3.11 need to
undergo LT. Ignoring the multiplicative factor (1/ yyy,) this can be written as

Equation 3.12 (Liu and Mason, 2009).

Fy(log,(u),log,(v))=F (log,(u)—log,(y, ) log,(v)—log,(y,)) (3.12)

where « is the base of the logarithm.
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According to Equation 3.12, the scaling factors can be defined as phase
differences in the Fourier domain and the equation can be solved with the phase
correlation technique. The scaling problem was tested on the four images; again
the originals are included for ease of comparison in Figure 3.7 a-d. All the images
were scaled by 75% of the original sizes (yl1 =y2 = (0.75) and are shown in Figure
3.8 a-d. The scale correction is accomplished with phase correlation based on the
LT in the Fourier domain. The scaling factor was found as 1.3333 (1/0.75 =
1.3333 for all entire images, and the given image were scaled by 1.3333 times.

The corrected images are shown in Figure 3.9 a-d.
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a) b) c) d)
Figure 3.7 The test images a) Lena, b) Boats, ¢) Cameraman, and d) Copper

sample.

a) b) 0) d)

Figure 3.8 The test images scaled by 0.75 in both x and y directions a) Lena, b)

Boats, ¢c) Cameraman, and d) Copper sample.

d)

Figure 3.9 The corrected results for the scaled images a) Lena, b) Boats, c)

Cameraman, and d) Copper sample.
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3.3. Image Correction for the Combined Problems of Rotation-

Translation-Scaling

Translation, rotation and scaling problems have been discussed individually in the
previous sections. In this section, the technique of combining phase correlation
with Log-Polar Transformation (PCLPT) is used to solve the combined problem
of translation, rotation and scaling. The general form of a translated, rotated and
scaled image is shown in Equation 3.13 and the Fourier transform of Equation

3.13 is given in Equation 3.14:

Iy(x,y)=1,((xcos(f)+ysin(f))y — Ax,(=xsin() + ycos(f))y = Ay) (3.13)

Fy () = i) 1 Fl(ucos(ﬂ)+vsin(ﬂ),—usin(ﬂ)+vcos(ﬂ)) (3.14)

2

4 v

For simplicity, the x and y scale factors were selected equal (= y) (Reddy and
Chatterji, 1996). The exponential polar domain form of Equation 3.14 is given in

Equation 3.15:

—i27(ulx+v. 1
Fy(p,6)=e A”FFl(f,e—ﬂ) (3.15)

To simplify the above equation, the magnitude of the Fourier transform can be

utilised, as in Equation 3.16:
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Mz(p,e)zﬁMl(f,e—ﬁ) (3.16)

The multiplicative factor iz is ignored, and for simplicity both sides are

expressed in a logarithmic form, see Equation 3.17:

M,(log,(p).0)=M,(log,(p)—log,(y).0—F) (3.17)

The rotation and scaling problems have been transformed to a translation problem,
as given in Equation 3.17 and so they can be solved with the phase correlation
technique. The computed results of the scaling factor and rotation angle are
substituted in Equation 3.15 to determine the amount of translation between two
images. To test the performance of the PCLPT technique on the translated, rotated
and scaled image, the four images are given in Figure 3.10 a-d. The four test
images were firstly rotated by 20° counter clockwise, then translated by (-40, 20)
pixels in the (x, y) image coordinate system and finally scaled by 75% from the
original size. The modified images are given in Figure 3.11 a-d. The corrected

images are shown in Figure 3.12 a-d.
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a) b) c) d)
Figure 3.10 The test images a) Lena, b) Boats, ¢) Cameraman, and d) Copper

sample.

d)
Figure 3.11 The test images translated in x and y directions by -40 pixels and 20
pixels respectively, rotated through -20° and scaled by 0.75 in both x and y

directions a) Lena, b) Boats, ¢) Cameraman, and d) Copper sample.

c) d

Figure 3.12 The correction results for the translated-rotated -scaled images a)

Lena, b) Boats, ¢) Cameraman, and d) Copper sample.
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The results for the translation, rotation and scaling tests are given in Table 3.1,
and it can be seen that the PCLPT technique did not perform well for the images
of Lena and Boats. In the case of Lena, the PCLPT technique could not compute
the correct amount of the translation and in the case of the Boats the PCLPT

technique was unable to compute either the correct image translation or rotation.

Thus the image correction process failed for the images of Lena and Boats. The
computational errors in both cases are related to an interpolation error at the sub-
pixel level (Pan et al., 2009). To overcome the computational error with PCLPT, a

pre-processing stage is introduced in the following section.

In Table 3.1, the results of the PCLPT technique is given in column denoted with
PCLPT. Absolute Difference between expected results and predicted result from
PCLPT is utilised to measure the error, which is denoted as Abs. Diff, (see Table

3.1).
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Table 3.1 Results of image correction with PCLPT technique.

Translation (pixel)
Rotation (degree) Scaling
X-direction Y-direction

Test Images Al
PCLPT | Original gpfsf. PCLPT | Original gpfsf. g?}sf‘ D.bfsf‘
- "1 PCLPT | Original | “™" | PCLPT | Original -

Lena 82 40 42 135 -20 155 -20 -20 0 1.33 1.33 0
Boats -2 40 42 0 -20 20 -10 -20 10 1.33 1.33 0
Cameraman 42 40 2 -20 -20 0 -20 -20 0 1.33 1.33 0
Copper sample 40 40 0 -20 -20 0 -20 -20 0 1.33 1.33 0
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3.4. Image Correction with Pre-Processed PCLPT

It was shown in the previous section that the PCLPT based image correction
technique can accurately compute corrections for individual problems of
translation, rotation and scaling but that the technique does not perform well with
combinations of these problems. The major reason for this failing is related to the
computational process. The PCLPT-based technique considers the shift values
only at the pixel level but not at a sub-pixel level (Weihong et al., 2012). Thus, a
cumulated error in sub-pixel level can occur during the interpolation process and
this can mean the rotation angle and/or scaling factor may not be computed

correctly (Foroosh et al., 2002 and Pan et al., 2009).

To overcome this cumulated computational error in PCLPT in the case of the
combined problem of image translation, rotation and scaling, an image filtering-
based pre-processing stage was introduced (Pham et al., 2012b). Several types of
image filters were tested as the pre-processing stage and the performance of each
pre-processed-PCLPT technique was calculated. The flow chart of the proposed

algorithm is shown in Figure 3.13.
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Input

Image /, and Image /,

v

Apply the image filter as the pre-processing step.

v

Calculate zero centred 2D-FFT of both images.

v

Calculate magnitude of both zero centred 2D-FFT.

v

Transform the magnitude of images to the log-polar domain

v

Calculate the phase correlation in log-polar space; calculate rotation angle, £ and scaling

parameter y . Scale the image / , by 1/ y times on both x and y directions.

v

Rotate image [,, /8 °and calculate [ , rotate image I, (180 + £) ®and calculate /" .

v

Calculate the phase correlation between [, and /; , (PC)) the same for I, and I;" (PC»)

v

Calculate the inverse Fourier transform of PC, and PC, as IPC,,IPC, respectively.

v

IPC >
— IPC,
YES NO
\4 y
The coordinate of the max valued element The coordinate of the max valued element
of IPC, is selected as the translation of IPC, is selected as the translation
amount. amount.

v v

Translate the given image according to the reference image with computed results.

Figure 3.13 The flow chart of the proposed technique.
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In this study, the following image filters were tested as the pre-processing stage,

the details about each filter are given in Appendix B.

e (Gaussian filter (Gonzalez et al., 2004; Semmlow, 2004; (Merchant, 2008),
e Laplacian of the Gaussian filter (Gonzalez et al., 2004),

e Prewitt filter (Gonzalez et al., 2004),

e Sobel operator (Burger and Burge, 2009),

e Median filter (Gonzalez et al., 2004),

e [terative-based blind image deconvolution (Holmes et al., 1995; Biggs and

Andrews, 1997).

The proposed techniques were tested on the four images used previously and
given in Figure 3.14 a-d. The images were rotated 20° in an anti-clockwise
direction, translated by (-40, 20) pixels and scaled 75% from the original size, as

shown in Figure 3.15 a-d.

The amount of rotation, translation and scaling were predicted with pre-processed
PCLPT and six different pre-processing techniques have been tested. The
predicted images obtained using the six different pre-processing techniques are
shown in Figures 3.16-3.21 a-d. The comparative results for rotation, translation
and scaling for image of Lena, Boats, Cameraman and Copper sample are given in
Table 3.2-3.5, the predicted results of the proposed techniques are given in

column headed RPT (Results of the Proposed Technique).
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Figure 3.14 The test images a) Lena, b) Boats, ¢) Cameraman, and d) Copper

sample.

Figure 3.15 The images translated by (-40, 20) pixels, rotated 20° in an anti-
clockwise direction and scaled 75% a) Lena, b) Boats, ¢) Cameraman, and d)

Copper sample.

Figure 3.16 Images corrected using Gaussian filter based pre-processed PCLPT

technique a) Lena, b) Boats, ¢c) Cameraman, and d) Copper sample.
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Figure 3.17 Images corrected using LoG filter based pre-processed PCLPT

technique a) Lena, b) Boats, ¢c) Cameraman, and d) Copper sample.

Figure 3.18 Images corrected using Prewitt filter based pre-processed PCLPT

technique a) Lena, b) Boats, ¢) Cameraman, and d) Copper sample.

Figure 3.19 Images corrected using Sobel operator based pre-processed PCLPT

technique a) Lena, b) Boats, ¢) Cameraman, and d) Copper sample.

71



Figure 3.20 Images corrected using Median filter based pre-processed PCLPT

technique a) Lena, b) Boats, ¢c) Cameraman, and d) Copper sample.

Figure 3.21 Images corrected using iterative blind deconvolution based pre-
processed PCLPT technique a) Lena, b) Boats, c) Cameraman, and d) Copper

sample.
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Table 3.2 The results for the rotated-translated and scaled image of Lena.

Translation (pixel)
Rotation (degree) Scaling
X-direction Y-direction
Test Image: Lena
i Abs. . Abs. i Abs. . Abs.
RPT Original Diff RPT Original Error RPT | Original Diff. RPT Original Diff.
Gaussian filter-based
. } - ) 1.
PCLPT 5 40 35 87 20 107 20 20 0 1.33 33 0
LoG filter-based
- - - - . 1.
PCLPT 40 40 0 12 20 8 20 20 0 1.33 33 0
Prewitt filter-based
- - - - . 1.
PCLPT 40 40 0 20 20 0 20 20 0 1.33 33 0
Sobel operator-based
- - - - . L.
PCLT 40 40 0 20 20 0 20 20 0 1.33 33 0
Median filter-based
- - - - . 1.
PCLPT 41 40 1 20 20 0 20 20 0 1.33 33 0
Iterative Blind
deconvolution-based 40 40 0 -20 -20 0 -20 -20 0 1.33 1.33 0
PCLPT
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Table 3.3 The results for the rotated-translated and scaled image of Boats.

Translation (pixel)
Rotation (degree) Scaling
X-direction Y-direction
Test Image: Boats
.. Abs. .. Abs. .. Abs. .. Abs.
RPT | Original Diff. RPT Original Diff RPT | Original Diff RPT Original Diff.
Gaussian filter-based
PCLPT 40 40 0 -2 -20 18 -20 -20 7 1.33 1.33 0
LoG filter-based
PCLPT 42 40 2 -20 -20 0 -20 -20 0 1.33 1.33 0
Prewitt filter-based
PCLPT 40 40 0 -18 -20 2 -20 -20 0 1.33 1.33 0
Sobel operator-based
PCLT 41 40 1 -20 -20 0 -20 -20 0 1.33 1.33 0
Median filter-based
PCLPT 40 40 0 -20 -20 0 -20 -20 0 1.33 1.33 0
Iterative Blind
deconvolution-based 40 40 0 -20 -20 0 -20 -20 0 1.33 1.33 0
PCLPT
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Table 3.4 The results for the rotated-translated and scaled image of Cameraman.

Translation (pixel)
Rotation (degree) Scaling
X-direction Y-direction
Test Image:
Cameraman 0 0 0 0
. S. . S. . S. . S.
RPT | Original Diff. RPT Original Diff. RPT Original Diff RPT Original Diff.
Gaussian filter-based
- - - - . 1.
PCLPT 55 40 15 20 20 0 20 20 0 1.33 33 0
LoG filter-based
- - - - . 1.
PCLPT 40 40 15 20 20 0 20 20 0 1.33 33 0
Prewitt filter-based
- - - - . 1.
PCLPT 50 40 10 20 20 0 20 20 0 1.33 33 0
Sobel operator-based
- - - - . 1.
PCLT 40 40 0 20 20 0 20 20 0 1.33 33 0
Median filter-based
- - - - . 1.
PCLPT 42 40 2 13 20 7 20 20 40 1.33 33 0
Iterative Blind
deconvolution-based 40 40 0 -20 -20 0 -20 -20 0 1.33 1.33 0
PCLPT
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Table 3.5 The results for the rotated-translated and scaled image of copper sample captured with SEM.

Translation (pixel)

Rotation (degree) Scaling
X-direction Y-direction
Test Image: Copper
sample Ab Ab Ab Ab
. S. . S. . S. . S.
PT Original Diff. PT Original Diff. PT Original Diff. PT Original Diff.
Gaussian filter-based
PCLPT 40 40 0 -20 -20 0 -20 -20 0 1.33 1.33 0
LoG filter-based
PCLPT 40 40 0 -80 -20 60 -21 -20 1 1.31 1.33 0.02
Prewitt filter-based
PCLPT 83 40 43 -80 -20 60 -46 -20 16 2.55 1.33 1.22
Sobel operator-based
PCLT 40 40 0 -71 -20 51 -38 -20 18 2.55 1.33 1.22
Median filter-based
PCLPT 40 40 0 -20 -20 0 -20 -20 0 1.33 1.33 0
Iterative Blind
deconvolution-based 40 40 0 -20 -20 0 -20 -20 0 1.33 1.33 0
PCLPT
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According to the absolute difference in Tables 3.2 to 3.5, the addition of a
Gaussian and LoG filters as pre-processors to the PCLPT improved performance
of the technique but did not provide the original amount of rotation, translation
and scaling factor. This is due to certain characteristics of the Gaussian and LoG
filters; both filters increase the blurriness level of image which decreases the

quality of edges in the image.

The Prewitt filter performed well as a pre-processor for the images of Lena and
Boats but not so well on the images of the Copper sample captured with SEM and
Cameraman. The Sobel operator performed very well on the images of Lena,
Boats and Cameraman but not so well on the image of the Copper sample. The
Prewitt filter and Sobel operator increases the edge quality of images. This is why
both techniques have a problem with images which contain pixels close together
having the same value elements. The Sobel operator utilises the second derivative
of images, which decreases its sensitivity as a pre-processor compared to that of

the Prewitt filter.

The Median filter and iterative blind deconvolution performed very well as pre-
processors on all four images according to the absolute difference between

predicted results and original results.

In the next section all six pre-processors based on the PCLPT are combined with

the DFAF method to produce an image correction technique which demonstrates
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the performance of each pre-processer for the images of copper sample captured

in different depth levels.

3.5. Pre-Processed PCLPT-Based DFAF Technique

Image distortion is a critical problem with SEMs. Distortion can occur as a result
of internal and external factors such as beam motion, interaction between electron
and surface of sample, artefacts on the sample, lens aberrations, environmental
noise, etc. (Snella, 2010). The factors causing distortion may generate translation
and rotation of the image, so SEM images often need to be corrected. The pre-
processed PCLT is proposed as a suitable image correction technique. The
sharpness function is then applied to different levels of the focus images of the
SEM to correlate depth with sharpness level. The block diagram of the proposed
technique is shown in Figure 3.22. In this study, the following sharpness measure

functions were employed:

e Tenengrad function,

e Brenner function,

e Squared Gradient function,
e Range function,

e Entropy function,

e Laplacian function, and

e Variance function.
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Distorted
Image acquisition with 1mages »| Image correction with pre-
SEM processed PCLPT
Focus level measurement Correlate the depth between
with sharpness function surface and objective lens

A

and focus level

Figure 3.22 Block diagram of the proposed technique.

3.5.1. Experimental Results for the Pre-Processed PCLPT-Based DFAF

Technique

In this section the proposed technique was performed on different levels of
focused images of a copper sample captured with a SEM. The experiments were
carried out with a 1500 XB model SEM system. The SEM parameters were set to:
magnification = 135kX, working distance = 5 mm, aperture size = 30 um, EHT =
30 kV, current mode = high current, and imaging detector = secondary electron
detector. The experiments started by calibrating the system for a focused image as
shown in Figure 3.14d, then the position of the sample was moved up 0.2 mm and
a new image captured. The process was repeated 10 times, each time moving the
sample up 0.2 mm. The next step was to replace the sample back in the focused

image position. The sample was then moved down 10 steps of 0.2 mm, and at
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each level, an image was captured. All test images are given in Appendices C.1 a-

jand C.2 a-j.

The next step was to search for any distortion or registration problem such as
rotation, translation or scaling in the images. Image correction was accomplished
with the GIMP 2.6 open source programme for the Gaussian filter, LoG Filter,
Prewitt filter, Sobel operator, Median filter and iterative-based blind image
deconvolution as pre-processing stages for the PCLPT technique. Then the
sharpness measure functions were applied to compute the sharpness levels of each
image. Finally, the relationship between sharpness level and distance was defined,
which is related to the distance from the focused plane and normalised sharpness
function value. The results of the pre-processed PCLPT techniques are given in
Table 3.6-3.11 and the error in each technique was determined in terms of
absolute difference between the original and predicted results. In the tables, DTFI

denotes the distance between the specimen and the focused image plane in SEM.
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Table 3.6 Results of the Gaussian filter-based pre-processed PCLPT
technique on different levels of the focused SEM images.

Translation (pixel) Rot.
Images | DTFI Tx Ty | (degmes) | (degree) | S Force
Tx Error Ty Error
Imagel 2 0 0 0 0 0 0 1 0
Image2 1.8 0 0 0 0 0 0 1 0
Image3 1.6 0 0 0 0 0 0 1 0
Image4 1.4 0 0 0 0 0 0 1 0
Image5 1.2 0 0 0 0 0 0 1 0
Image6 1 0 0 0 0 0 0 1 0
Image7 0.8 0 0 0 0 0 0 1 0
Image8 0.6 0 0 0 0 0 0 1 0
Image9 0.4 0 0 0 0 0 0 1 0
Imagel0 | 0.2 0 0 0 0 0 0 1 0
Imagell 0 0 0 0 0 0 0 1 0
Imagel2 | -0.2 0 0 0 0 0 0 1 0
Imagel3 | -0.4 0 0 0 0 0 0 1 0
Imagel4 | -0.6 0 0 0 0 0 0 1 0
Imagel5 | -0.8 0 0 0 0 0 0 1 0
Imagel6 -1 0 0 0 0 0 0 1 0
Imagel7 | -1.2 0 0 0 0 0 0 1 0
Imagel8 | -1.4 0 0 0 0 0 0 1 0
Imagel9 | -1.6 0 0 0 0 0 0 1 0
Image20 | -1.8 0 0 0 0 0 0 1 0
Image21 -2 0 0 0 0 0 0 1 0
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Table 3.7 Results of the Laplacian of Gaussian-based pre-processed PCLPT

technique on different levels of the focused SEM images.

Translation (pixel) Rot.

Images | DTFI ~ = Rot. Error Scale Scale

Tx Error Ty Error (degree) | (degree) Error
Imagel 2 -48 48 9 9 38 38 2.55 1.55
Image2 1.8 -8 8 -3 3 -17 17 1 0
Image3 1.6 -10 10 15 15 -24 24 1 0
Image4 1.4 -10 10 12 12 -24 24 1 0
Image5 1.2 -11 11 -11 11 58 58 1 0
Image6 1 9 9 10 10 1 1 1 0
Image7 0.8 -2 2 -12 12 -34 34 1 0
Image8 0.6 13 13 -7 7 -30 30 1 0
Image9 0.4 4 4 7 7 28 28 1 0
Imagel0 0.2 -7 7 8 8 32 32 1 0
Imagell 0 0 0 0 0 0 0 1 0
Imagel2 -0.2 -9 9 -9 9 -15 15 1 0
Imagel3 -0.4 5 5 -3 3 22 22 1 0
Imagel4 -0.6 8 8 7 7 -17 17 1 0
Imagel5 -0.8 8 8 8 8 -1 1 1 0
Imagel6 -1 1 1 2 2 -31 31 1 0
Imagel?7 -1.2 16 16 -7 7 28 28 1 0
Imagel8 -1.4 59 59 -69 69 45 45 2.55 1.55
Imagel9 -1.6 23 23 34 34 34 34 2.55 1.55
Image20 -1.8 -8 8 -8 8 -1 1 1 0
Image21 -2 6 6 8 8 30 30 2.55 1.55
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Table 3.8 Results of the Prewitt filter-based pre-processed PCLPT technique
on different levels of the focused SEM images.

Translation (pixel) Rot.

Images DTFI Tx Ty Rot. Error Scale Scale

Tx Error Ty Ermor (degree) | (degree) Error

Imagel 2 7 7 4 4 -24 24 2.55 1.55
Image2 1.8 7 7 -10 10 14 14 1 0
Image3 1.6 -11 11 -5 5 6 6 1 0
Image4 1.4 3 3 5 5 -10 10 1 0
Image5 1.2 -9 9 12 12 -1 1 1 0
Image6 1 -10 10 -10 10 -7 -7 1 0
Image7 0.8 9 9 -2 2 21 21 1 0
Image8 0.6 2 2 2 2 20 20 1 0
Image9 0.4 -6 6 10 10 -1 -1 1 0
Imagel0 0.2 -7 7 4 4 0 0 1 0
Imagell 0 0 0 0 0 0 0 1 0
Imagel2 -0.2 2 2 8 8 20 20 1 0
Imagel3 -0.4 5 5 4 4 0 0 1 0
Imagel4 -0.6 16 16 36 36 -28 28 1 0
Imagel5 -0.8 7 7 2 2 20 20 1 0
Imagel6 -1 3 3 0 0 -6 6 1 0
Imagel?7 -1.2 6 6 9 9 0 0 1 0
Imagel8 -1.4 4 4 8 8 0 0 1 0
Imagel9 -1.6 -14 14 1 1 1 1 1 0
Image20 -1.8 -44 44 1 1 21 21 1 0
Image21 -2 9 9 1 1 1 1 1 0

&3




Table 3.9 Results of the Sobel operator-based pre-processed PCLPT
technique on different levels of the focused SEM images.

Translation (pixel) Rot.

Tmages DTFI -~ = Rot. Error Scale Scale

Tx Error Ty Error (degree) | (degree) Error
Imagel 2 26 26 -6 6 -24 24 2.55 1.55
Image2 1.8 9 9 -7 7 22 22 1 0
Image3 1.6 8 8 10 10 20 20 1 0
Image4 1.4 -13 13 -10 10 -10 10 1 0
Image5 1.2 17 17 11 11 13 13 2.55 1.55
Image6 1 -3 3 14 14 39 39 1 0
Image7 0.8 3 3 10 10 13 13 1 0
Image8 0.6 -6 6 -1 1 10 10 1 0
Image9 0.4 7 7 -11 11 14 14 1 0
Imagel0 0.2 -18 18 -2 2 35 35 2.55 1.55
Imagell 0 0 0 0 0 0 0 1 0
Imagel2 -0.2 3 3 -10 10 20 20 1 0
Imagel3 -0.4 -2 2 12 12 0 0 1 0
Imagel4 -0.6 16 16 -7 7 -28 28 1 0
Imagel5 -0.8 5 5 -13 13 -10 10 1 0
Imagel6 -1 0 0 78 78 39 39 1 0
Imagel7 -1.2 13 13 28 28 15 15 1 0
Imagel8 -1.4 1 1 9 9 0 0 1 0
Imagel9 -1.6 26 26 37 37 25 25 1 0
Image20 -1.8 -3 3 1 1 16 16 1 0
Image21 -2 -11 11 10 10 1 1 1 0
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Table 3.10 Results of the Median filter-based pre-processed PCLPT
technique on different levels of the focused SEM images.

Translation (pixel) Rot.
Images | DTFI | Tx N 1y | dljg():ée) ( dEegr"ere) Scale Eﬁ‘éﬁ
Error Error
Imagel 2 0 0 0 0 0 0 1 0
Image2 1.8 0 0 0 0 0 0 1 0
Image3 1.6 0 0 0 0 0 0 1 0
Image4 1.4 0 0 0 0 0 0 1 0
Image5 1.2 0 0 0 0 0 0 1 0
Image6 1 0 0 0 0 0 0 1 0
Image7 0.8 0 0 0 0 0 0 1 0
Image8 0.6 0 0 0 0 0 0 1 0
Image9 0.4 0 0 0 0 0 0 1 0
Imagel0 0.2 0 0 0 0 0 0 1 0
Imagell 0 0 0 0 0 0 0 1 0
Imagel2 -0.2 0 0 0 0 0 0 1 0
Imagel3 -0.4 0 0 0 0 0 0 1 0
Imagel4 -0.6 0 0 0 0 0 0 1 0
Imagel5 -0.8 0 0 0 0 0 0 1 0
Imagel6 -1 0 0 0 0 0 0 1 0
Imagel?7 -1.2 0 0 0 0 0 0 1 0
Imagel8 -1.4 0 0 0 0 0 0 1 0
Imagel9 -1.6 0 0 0 0 0 0 1 0
Image20 -1.8 0 0 0 0 0 0 1 0
Image21 -2 0 0 0 0 0 0 1 0

&5




Table 3.11 Results of the iterative blind deconvolution-based pre-processed
PCLPT technique on different levels of the focused SEM images.

Translation (pixel) Rot.
Images | DTFI ~ Ty Rot. Error Scale Scale
Tx Error Ty Error (degree) | (degree) Error
Imagel 2 0 0 0 0 0 0 1 0
Image2 1.8 0 0 0 0 0 0 1 0
Image3 1.6 0 0 0 0 0 0 1 0
Image4 1.4 0 0 0 0 0 0 1 0
Image5 1.2 0 0 0 0 0 0 1 0
Image6 1 0 0 0 0 0 0 1 0
Image7 0.8 0 0 0 0 0 0 1 0
Image8 0.6 0 0 0 0 0 0 1 0
Image9 0.4 0 0 0 0 0 0 1 0
Imagel0 0.2 0 0 0 0 0 0 1 0
Imagell 0 0 0 0 0 0 0 1 0
Imagel2 -0.2 0 0 0 0 0 0 1 0
Imagel3 -0.4 0 0 0 0 0 0 1 0
Imagel4 -0.6 0 0 0 0 0 0 1 0
Imagel5 -0.8 0 0 0 0 0 0 1 0
Imagel6 -1 0 0 0 0 0 0 1 0
Imagel7 -1.2 0 0 0 0 0 0 1 0
Imagel8 -1.4 0 0 0 0 0 0 1 0
Imagel9 -1.6 0 0 0 0 0 0 1 0
Image20 -1.8 0 0 0 0 0 0 1 0
Image21 -2 0 0 0 0 0 0 1 0
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According to the above results, the Gaussian filter, Median filter and iterative
blind deconvolution-based PCLPT techniques determined the image rotation-
translation and scaling results 100% correctly for the different levels of focused
SEM images. However, the LoG filter, Prewitt filter and Sobel operator-based
PCLPT technique were unable to determine the correct results. Thus it is expected
that the depth calculation results of the Gaussian filter, Median filter and iterative
blind deconvolution-based PCLPT techniques will be more accurate than the other

techniques.

The next step is to measure the sharpness value of the corrected images. In this
study, the Tenengrad function, the Brenner function, the Squared Gradient
function, the Range function, the Entropy function, the Laplacian function and the
Variance function were used for sharpness measurement. The sharpness results
for each function were normalised between 0-1. Finally the computed sharpness
values were correlated with the distance between the specimen and the focused
image plane. The results for each of the possible combinations of techniques are

given in Figures 3.23-3.28.
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Figure 3.23 The relationship between distance and normalised function value
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The Sharpness Results of The Corrected Image
(Corrected with Prewitt Filter Based PCLPT Technique)
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Figure 3.25 The relationship between distance and normalised function value
for the corrected SEM image (carried out with Prewitt filter-based PCLPT

technique).
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The Sharpness Results of The Corrected Image
(Corrected with Median Filter Based PCLPT Technique)
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Figure 3.27 The relationship between distance and normalised function value
for the corrected SEM image (carried out with Median filter-based PCLPT

technique).
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Figure 3.28 The relationship between distance and normalised function value
for the corrected SEM image (carried out with iterative blind deconvolution-

based PCLPT technique).
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According to results presented in Figures 3.23 — 3.28 the Gaussian filter, Median
filter and iterative blind deconvolution when used as pre-processors to the PCLPT
perform well as an image correction process for DFAF technique. It is also clear
that the Squared Gradient, Tenengrad, and Brenner functions provide the sharpest
image position when used with the DFAF technique. The remainder of the
sharpness functions did not show a clear relationship between sharpness and the
distance moved by the sample. A robust sharpness function should define the
relationship very clearly and it would be expected that the distribution of
sharpness function would be symmetric with respect to the distance moved by the
sample, either up or down. For example, the function value of the point 0.2 is
expected to be equal to that at the point -0.2 relative to the focused image point 0.
In the same way, any given point x and its symmetric value (-x) (reflection
symmetry with respect to the horizontal direction) should have the same sharpness
value. The matching error between symmetric distances can be used as an error
metric to evaluate the performance of the given sharpness function. In this study,
the sum of the absolute matching differences (SAMD) of symmetric points was
utilised for the given sharpness functions and the following results were found for
each function: Tenengrad function: 0.9715, Brenner function: 0.4701: Laplacian
function: 0.4747, Squared Gradient: 0.3796, Range function: 3.2222, Entropy
function: 3.4148 and Variance function: 5.0718. According to the SAMD results,

the performance of the Squared Gradient function is best.
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3.6. Summary

In this chapter, the focus was on the image correction process for distorted SEM
images. The image correction process was developed for SEM images using a
pre-processed PCLPT technique after which the DFAF technique was used on the

corrected images to define the relationship between depth and sharpness value.

The pre-processing step was introduced utilising image filters to increase the
efficiency of the PCLPT technique. In this study, six image filters were employed
and the proposed technique was tested on four benchmark images: Lena, Boats,
Cameraman and image of a copper sample captured with a SEM. Finally, the

DFAF technique was used on the corrected images.

Seven sharpness measurement functions were combined with the DFAF
technique. The performance of each technique was measured using a SAMD
metric. According to the experiments, the Squared Gradient function performed
well in determining the relationship between distance and sharpness function
value but still sensitive for the SEM image and a better technique is needed to
illustrate the distance changes. A Bees Algorithm based optimised BID technique
is proposed and two different approaches will be described in Chapter 4. After
refining and developing the Bees Algorithm an improved version will be used

with the BID technique and this will be described in Chapter 5.
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Chapter 4

IMPROVEMENTS TO THE BEES ALGORITHM

4.1. Preliminaries

This chapter proposes two different improvements to the Bees Algorithm (BA),
both improvements are in the neighbourhood search and the improved BAs were

tested on continuous type benchmark functions and an optimisation problem.

The first improvement is based on the adaptive neighbourhood size change and
site abandonment strategy. The proposed algorithm increases the speed of the
searching process and avoids getting stuck in local minima by changing the

neighbourhood size dynamically.

The second improvement is to determine the direction of the most promising sites
by computing the slope angle of the best sites. If the slope angle is lower than a
given threshold value, then a Hill Climbing Algorithm-based neighbourhood

search process is utilised to find the most promising sites.
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4.2. The Bees Algorithm

The BA has both local and global search capability utilising exploitation and
exploration strategies respectively. The BA uses the set of parameters given in
Table 4.1. The pseudo code of the algorithm is given in Figure 4.1 and the flow

chart of the algorithm is given in Figure 4.2.

Table 4.1 Basic parameters of the Bees Algorithm.

Parameter Symbols
Number of scout bees in the selected patches n
Number of best patches in the selected patches m
Number of elite patches in the selected best patches e
Number of recruited bees in the elite patches nep
Number of recruited bees in the non-elite best patches nsp
The size of neighbourhood for each patch ngh
Number of iterations iter
Difference between value of the first and last iterations diff

The Algorithm starts with sending » scout bees randomly to selected sites (see
Figure 4.3). The fitness values of each site are evaluated and sorted from the
highest to the lowest (a maximisation problem). The local search step of the
algorithm covers the best locations (sites) which are the m fittest locations. The m
best sites are also classified into two sub-groups; elite and non-elite best sites, as

given in Figure 4.4. The number of elite sites is set as “e” and number of the non-
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elite best sites is “m-e”. The local search process starts with recruiting forager
bees in the neighbourhood of the best sites. The neighbourhood size is set to
“ngh”. The number of recruited bees in the neighbourhood of each elite site is set
to “nep” and the number of recruited bees in the neighbourhood of the non-elite
best sites is set to “nsp”, as given in Figure 4.5. The global search process is a
random search process in the n-m “non-best” sites, as given in Figure 4.6. Finally,
the overall locations are sorted according to their fitness value and the process

runs until the global optimum is found.
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Generate the initial population size as 7, set the best patch size as m, set the elite
patch size as e, set the number of forager bees recruited to the of elite sites as
nep, set the number of forager bees around the non-elite best patches as nsp, set
the neighbourhood size as ngh, set the maximum iteration number as Maxlter,

and set the error limit as Error.
=0
Generate initial population.

Evaluate Fitness Value of initial population.

Sort the initial population based on the fitness result.
While i < Maxlter or FitnessValie, — FitnessValue, | < Error
= 1+l

Select the elite patches and non-elite best patches for neighbourhood
search.

Recruit the forager bees to the elite patches and non-elite best patches.
Evaluate the fitness value of each patch.

Sort the results based on their fitness.

Allocate the rest of the bees for global search to the non-best locations.
Evaluate the fitness value of non-best patches.

Sort the overall results based on their fitness.

Run the algorithm until termination criteria met.

End

Figure 4.1 Pseudo-code of the basic Bees Algorithm.
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Local Search

Randomly generate initial population of 7 scout bees

v

Fitness evaluation of the initial population

v

Sort the initial population from maximum to minimum

(maximisation problem)

Select the e elite locations from best
locations for neighbourhood search

Select the m —e non-elite location from best
location for neighbourhood search

v

Determine the neighbourhood size for both
elite and non-elite best location as ngh

v

Recruit nep forager bees in vicinity of each

elite location for neighbourhood search

2

Recruit nsp forager bee in vicinity of each

non-elite best location for neighbourhood

v

Evaluate the fitness value for both elite and
non-elite best locations

Termination
Conditions met

Stop Searching

Termination
Conditions met

Termination
Conditions met

Evaluate the fitness value for the global
search

7y

Allocate the n—m forager bees to the rest

of the patches randomly for global search

Global Search

Figure 4.2 Flowchart of the basic Bees Algorithm.
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Figure 4.4 Selection of elite and non-elite best patches.
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Figure 4.6 Results from basic BA after local and global search.
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4.3. BA Improved by Adaptive Change in Neighbourhood Size

and Site Abandonment Strategy

This section describes the proposed improvements to the BA by applying adaptive
change to the neighbourhood size and site abandonment approach simultaneously.
Combined neighbourhood size change and site abandonment (NSSA) strategy has
been attempted on the BA by Koc (2010) who found that the convergence rate of
a NSSA-based BA can be slow when the promising locations are far from the
current best sites. Here an adaptive neighbourhood size change and site
abandonment (ANSSA) strategy is proposed which will avoid local minima by
changing the neighbourhood size adaptively. The ANSSA-based BA possesses
both shrinking and enhancement strategies according to the fitness evaluation.
The initial move is to implement the shrinking strategy. The strategy works on a
best site after a certain number of repetitions. The strategy works until the
repetition stops. If, in spite of the shrinking strategy, the number of repetitions still
increases for a certain number of iterations, then an enhancement strategy is
utilised. Finally, if the number of repetitions still increases for a number of
iterations after the use of the enhancement strategy, then that site is abandoned

and a new site will be generated.

Koc (2010) utilised the following parameter for shrinking the neighbourhood size

and site abandonment strategy: neighbourhood size =ngh , the shrinking constant
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=sc, the abandoned sites =aband _site . In this study four more parameters are
introduced. The first is the number of repetitions for each site, denoted as
keep point .The keep point records the number of repetitions for all the
repetitive results for the best sites. The second parameter is called the “Repetition
Number for the Shrinking”, denoted asrep nshr ; the number of shrinking is the

number of repetitions for starting the shrinking strategy, as given in Equations 4.1

and 4.2.

The third parameter is called “Repetition Number for the Enhancement”,
denotedrep nenh . This parameter defines the number of repetitions until the end
of the shrinking process, and the beginning of the enhancement process as shown
in Equations 4.1 and 4.3. The enhancement process works until the number of the
repetitions is equal to therep naban , which denotes the “Repetition Number for
Abandonment Process”. So a non-productive site is abandoned and it is stored
inaband _site list. At the end of the searching process, if there is no better
solution than the abandoned site, it will be the final solution. The pseudo code of

the proposed algorithm is given in Figure 4.7.

keep point <rep nshr ngh
rep _nshr<keep point<rep nenh Rl 4.1)
new_ngh= .
- rep _nenh<keep point<re naban R2
rep naban< keep point ngh
RI = ngh — (ngh * 100 — (‘keep _ﬁ%;nt—rep _nshr) sc) (4.2)

100—(keep _point—rep _nenh) , sc) (4.3)

R2 =ngh+ h*
ngh+(ng 100
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Generate the initial population size as n, set the best patch size as m, set the elite patch size as e, set the
number of forager bees around elite sites as nep, set the number of forager bees around non-elite best
patches as nsp, set the shrinking constant as sc, set the shrinking start number as rep_nshr, set the
enhancement start point as rep_nenh, set the abandoning start number as rep_naban, set the neighbourhood
size as ngh, set the maximum iteration number as Max_Iter, and set the error limit as Error.

keep _point = Zeros(l,m);

aband _site = Zeros(iter,m ) ;

i= 0.Generate initial population; Evaluate Fitness Value of initial population;

Sort the initial population based on the fitness result.

While i < Maxliter or FitnessValie; — FitnessVakie; | < Error
i= i+l
Select the elite patches and non-elite best patches for neighbourhood search.
Recruit the forager bees to the elite patches and non-elite best patches.
Evaluate the fitness value of each patch; Sort the results based on their fitness.

For k=1:m
If keep point(i,k)>rep nshr and keep point(i,k)<rep nenh then.

100—(keep _point(i,k)—rep nshr)
100

new ngh(i,k)=ngh—(ngh*sc* ).

End

If keep point(i,k)>rep nenh and keep point(i,k)<rep naban

100— int(i k) —
new  ngh(i, k)= ngh+ (ngh* sc* 00— (keep _poznlt(()(z) k) rep_naban))
End

Else If keep point > naban

aband _site(i+1,k)=aban _site(i,k)+1;

Else new _ngh(i,k)=ngh; End

Allocate the rest of the bees for global search to the non-best locations; evaluate the fitness value
of non-best patches; Sort the fitness values and positions; Run the algorithm until termination

criteria are met.

End

Figure 4.7 Pseudo code of improved BA with ANSSA strategy.
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4.3.1. Experimental Results for improved BA with ANSSA Strategy

The basic BA has been tested on continuous benchmark functions by
(Ghanbarzadeh, 2007; Sholedolu, 2009; Pham and Castellani, 2009; Koc, 2010).
In this section, the improved BA was tested on both a continuous type
optimisation problem and the benchmark functions. The results were compared

with the basic BA.

The selected continuous type optimisation problem was an inverted and shifted
Himmelblau function (see Equation 4.4). This function is a multimodal 2D
function and the figure representing the function is shown as Figure 4.8. The
Himmelblau function is a set of quartic form functions and it is not easy to find
the global optimum with analytical approaches. In addition, the inverted and
shifted form of function becomes more complicated, therefore it is worth to utilise
the modified form of the function in optimisation algorithms to evaluate the

performance of the proposed algorithms.

1
0.1- (X} +X,-11)>—(X,+X;-7)°

F(X,X,)= (4.4)

where —-6<X,,X,<6

The global maximum for Himmelblau function:

F(XI,XZ)Zl(), [X1:X2]:[3:2]

The parameters of the algorithm can be seen in Table 4.2.
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T

Figure 4.8 Himmelblau function.
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Table 4.2 Selected parameters for the Bees Algorithm.

Parameters Value
Number of Scout Bees in the Selected Patches (7 ) 50
Number of Best Patches in the Selected Patches (m ) 15
Number of Elite Patches in the Selected Best Patches (¢ ) 3
Number of Recruited Bees in the Elite Patches (nep ) 12
Number of Recruited Bees in the Non-Elite Best Patches (nsp ) 8
The Size of neighbourhood for Each Patches ( ngh ) 1
Number of Iterations (iter ) 5000
Difference between the First Iteration Value and the Last Iteration 0.001
(diff" )
Shrinking Constant ( sc) 2
Number of Repetitions for Shrinking Process (rep nshr ) 10
Number of Repetitions for Enhancement Process (rep nenh ) 25
Number of Repetitions for Site Abandonment (rep _naban ) 100

The comparative results of the basic BA and the improved BA are given in Figure
4.9. Both algorithms were run 100 times and the results presented are for the mean
fitness evaluation in iterations. According to the computed results for the
Himmelblau function, the improved BA performed better than the basic BA. The
mean value and standard deviation of the enhanced BA and the basic BA are
given in Table 4.3, further the average completing time and standard deviation of

the completing time are given in Table 4.4.
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Table 4.3 Synopsis of best fitness results for 100 runs with basic BA and
enhanced BA for Himmelblau function.

Mean value Standard deviation
BA 9.6327 0.3984
Enhanced BA 9.7450 0.3138

Table 4.4 Synopsis of time taken for 100 runs with basic BA and enhanced
BA for Himmelblau function.

Mean value Standard deviation
(secs) (secs)
BA 19.21 0.5941
Enhanced BA 13.05 0.4752

The statistical significance between the best fitness results of the 100 runs for the
Himmelblau function was assessed using the t-test, see Appendix D1-D2. The
results are in terms of number of iterations is shown in Figure 4.9 and in terms of
number of runs is shown in Figure 4.10. According to the given results, the alpha
value for a two tailed test was 0.0278 with a 95% confidence level which strongly
indicates that the ANSSA strategy-based improved BA is significantly better than

the basic BA.

The next test performed with the parameters given in Table 4.2 on fifteen
benchmark functions first presented by Adorio (2005) and Pohlheim (2006) and
developed by Pham and Castellani (2009), as listed in Table 4.5. The comparative

results of these benchmark tests are given in Table 4.6.
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The Average Fitness Results of the Himmelblau Function

—+—The Improved BA with ANSSA

— The Basic BA

Fitness
=

0
1 51 101 151 201 251 301 351 401 451 501 551 601 651 701 751 801 851 901 951 1001

Iteration

Figure 4.9 Average fitness value of the basic BA and the improved BA with
ANSSA strategy (mean fitness value of 100 runs).

The Best Fitness Results of the Himmelblau Function

—&—The Improved BA with ANSSA

—=—The Basic BA

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99
Cycle (Run) Number

Figure 4.10 Best fitness results of the basic BA and Improved BA with
ANSSA strategy (100 runs).
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Table 4.5 The selected benchmark functions.

No | Function Name Interval Function Global Optimum
X=[1,1]
[-2.048,
1 |DeJong (2D) | 2.048] max F =3905.93 —100( X - X; ) —(1- X, )’ F(X) = 3905.93
min F = [1+(X, + X, +1)° (19-14X, +3X] —14X, +6X, X, +3X; )] | 5 _ [0, -1]
Goldstein &Price ’
2 | @D) [-2,2] [30+(2X, -3X,)% (18-32X, +12X] +48X, 36X, X, +27X])] F(X)=3
X =[-m, 12.275]
X =[x, 2.275]
minF =a(X,—bX] +cX,-d)’ +e(1- f)cos(X,)+e X = [3r, 2.475]
i 1 1 —
Branin RCOS a=1,b=52,c=i, d=6,e=10, f=— FX)
3 | (2D) [-5, 10] 4rr 7 87 0.3977272
i X +X,-10 X=15.5]
Martin & Gaddy min F = (X, —X2)2 et ) )
4 | (2D) [0, 10] 3 F(X)=0
X=[1,1]
Rosenbrock - a
5 | (2D) [-1.2, 1.2] min F =100( X} - X, )* +(1- X, )’ F(X)=0
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Table 4.5 The selected benchmark functions (Cont.).

3 X=11,1,1,1]
minF = [100( X} =X, )} +(1-X,)* ]
6 Rosenbrock - b (4D) [-1.2, 1.2] i1 F(X)=0
X=[L, 1,1, L1,
6 1]
[-5.12, min F = ZX,.Z
7 Hyper Sphere (6D) 5.12] =) FX)=0
X=10,0,0,0,0,
0 0,0,0,0,0]
[-5.12, mianZ:Xi2
8 Hyper Sphere (10D) 5.12] i1 F(X)=0
1 Xz[oa Oa Oa Oa Oa
mavF = 0,0,0,0,0]
[ L —|cos(—)] +0.1
9 Griwank (10D) [-512, 512] ; 4000 1:1[ Vi F(X)=10
X=10,0,0,0,0,
0 0,0,0,0,0]
[-5.12, min F = 100+ (X2 —10cos(27X, )
10 | Rastrigin (10D) 5.12] il F(X)=0
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Table 4.5 The selected benchmark functions (Cont.).

X=[m,n]
11 | Easom (2D) [-100, 100] | min F = —cos(X, )cos(X, Je X/ +Xm) F(X) = -1
500 2 X =10, 0]
) ’ min F =) [=X,sin({/|X,|)]
12 | Schwefel (2D) 500] Z‘ sin(1X | F(X) = -837.658
. 05+(sin(,/)(l2 X2 )P -05 X=(0,0)
min = U.
13 | Schaffer (2D) [-100, 100] 1+0.001( X} + X7 )? F(X)=0
X=10,0,0,0,0,
IZOX,Z icos(ZirX,) 0’ 0’ 0’ 0’ 0]
14 | Ackley (10D) [-32,32] | minF=-20e ' 10 —¢ W 120+e F(X)=0
X=10,0,0,0,0,
Sum of Different P 0 0,0,0,0,0]
um O 1Iieren ower mmF=Z|Xl|
15 | (10D -1, 1] = F(X) =0
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Table 4.6 Comparative results of basic BA and the ANNSA strategy-based
improved BA for 100 test runs of all fifteen benchmark functions.

The ANNSA strategy based

. The basic BA
improved BA Significance of

difference in mean

time between basic

Total BA and enhanced

Total Mean . BA
Mean . . Iteration
Func. | Hteration Iteration | Success | Iteration Time
No Heeess © Time Rate % | Number
Rate % | Number (secs)

(secs) Sig. | Alpha

(0<0.05) (o)
1 100 297 3712”7 100 342 3’ 33> Yes 0.022
2 100 1497 2477 40 100 1497 17° 21 No 0.200
3 100 1497 10°° 08’ 100 1497 6’ 09 No 0.600
4 100 293 3200 100 317 525> No 0.110
5 100 183 351> 100 225 370”7 No 0.358
6 100 184 815> 100 138 451 No 0.957
7 100 101 6’ 32” 100 116 540 No 0.762
8 100 150 17> 4> 100 143 14> 47 No 0.433
9 100 734 83’3 98 1117 88’41 Yes 0.020
10 98 560 58’42 98 700 56’ 39’ No 0.07
11 99 1497 28’26 98 1497 23710 No 0.563
12 100 1497 287 41” 98 1497 207 51> No 0.468
13 100 1497 21740 100 1497 30011 No 0.801
14 100 1402 153° 5> 100 1226 112° 21 Yes 0.020
15 100 3 0’ 23> 100 5 0’29 Yes 0.002
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According to the results in Table 4.6, the ANSSA strategy-based improved BA
performed well on functions 1, 9, 14, and 15 with a 100% success rate and the
process time was also significantly better than the basic BA at better than a 5%
level of confidence. The improved algorithm performed well for the rest of the

benchmark functions but the process time did not significantly change compared

to that of the basic BA.

4.4. BA Improved with Slope Angle Computation and Hill

Climbing Algorithm

This section focuses on an improvement of the BA based on the Slope Angle
Computation and Hill Climbing Algorithm (SACHCA). Even though the BA has
both local and global search capability, it still has some weakness such as a high
level of randomness, computational time, and blind search in the local search

process. Thus local search improvement in the BA is proposed in this study.

The Hill Climbing Algorithm (HCA) is an iterative single element-based local
search algorithm, also known as Gradient Ascent / Descent algorithms. The local
minimum of an optimisation problem can be found by the HCA but the global

optimum is not guaranteed (Grosan and Abraham, 2011).

The SACHCA-based improved BA is concerned with locating the best sites.

Slope angle computation is employed to determine the inclination of the current
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sites. The promising location is far from the current position if the slope angle is
close to 90°. The current location is near to a local optimum point if the slope
angle is close to 0°. According to the angle orientation, the direction of the local
optimum can be determined (see Figure 4.11). The process starts with computing
the slope angle. The HC algorithm finds the related local optimum point when the
slope angle of a related site is less than a certain threshold value. The slope angle
computation can show the orientation of the local optimum according to the
current position in terms of angular degrees, which may help to find the global
optimum faster. With honey bees this directional information is conveyed by a
waggle dance. The slope angle computation approach mimics this behaviour to
determine the direction of promising sites. To increase the speed of an
optimisation algorithm, the information about the orientation of promising

locations can be utilised to boost the search process.

In this study, the slope angle is computed using the first order numerical
derivation. The numerical derivation of each site is calculated from its
neighbourhood. The two end points in the vicinity of the neighbourhood are used
to compute the numerical derivation. The central difference method is utilised for

numerical derivation (see Equation 4.5) as shown in Figure 4.11.

T S g
slope angle=F (X )= 2 2

NG (4.5)
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If the slope angle is very steep, then the promised location is far from the selected
site but when the angle is close to zero, the promised location is very close to the

selected site, as shown in Figure 4.12.

F(X)

F(X +AX

F(X)

AX
F(X-=>)

v

X

Figure 4.11 Slope angle with numerical derivation based on the central

difference.
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Figure 4.12 Slope angle for each of the best selected sites.

There are three selected (best) sites shown in Figure 4.12. Around site A, the
angle direction is towards site 4 which is a local optimum. The direction of sites
B and C are towards the site B>, which is another local optimum. At the end of the
searching process, all the local optimums will be sorted and the biggest selected as
the global optimum. In the case of Figure 4.12, the site B* was selected as global
optimum. The local search process was accomplished with the use of the HCA, as

shown in Equation 4.6.

X(i+1)=X(i)+hVF(X,) (4.6)
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where i is the iteration number, X (i) is the current position, X (i+1) is the next
position, % is the incremental size, VF(X,) is the gradient of the current

position.

The BA improved with SACHCA has four more additional parameters than the
basic BA. The first parameter is step size, denoted as # and is used as the step size

of the HCA to predict the next position.

The second parameter is the slope angle, denoted asslope angle . This parameter

is used for identifying the direction of the local optimum site. Initially, the angle

of steepness is set to zero.

The third parameter is called slope angle limit, denoted asangle Ilimit. If the
angle of slope is equal or less thanangle _lim it , then the local optimum is close to

the related site. This parameter is also the starting condition for the HCA. The
predicted local optimum points are stored and compared with the other local

optima.

The forth parameter is called the “number of waiting time for the HCA”, denoted

as HC _time limit. The HCA runs for the selected sites until the “number of

waiting time for the HCA” is reached which is the termination condition.

The pseudo code of the SACHCA-based improved BA is shown in Figure 4.13
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Generate the initial population size as 7 , set the best patch size as m, set the elite patch size as m , set the

number of forager bees around of elite as nep, m, set the number of forager bees around of non-elite best
patches as nsp , set the step size for HC algorithm as /4 , set the angle limit as angle limit, set the “number

of the waiting time for HC” algorithm as HC _time _lim it , set the neighbourhood size as ngh, set the

maximum iteration number as MaxIter , and set the error limit as Error .

i= 0,time=0; slope angle(1:m)=0; Generate initial population; Evaluate Fitness Value of initial

population;

Sort the initial population based on the fitness result.

While i < Maxlter or FitnessValie; — FitnessVakie; | < Error
=i+l
Select the elite patches and non-elite best patches for neighbourhood search.
Recruit the forager bees to the elite patches and non-elite best patches.
Evaluate the fitness value of each patch; Sort the results based on their fitness.
For k=1:m
Calculate angle(k )
While slope angle(k ) > angle limit and time < HC _time limit then.
X(i+Lk)=X(i,k)+hVF(X(i.,k)).
Evaluate Fitness value for each position
End
Record all found local optimum sites and sort them (end of the neighbourhood search).
Allocate the rest of the bees for global search to the non-best locations;
Evaluate the fitness value of non-best patches;

Sort the fitness values and positions; Run the algorithm until termination criteria are met.

End

Figure 4.13 Pseudo code of the improved BA based on SACHCA.
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4.4.1. Experimental Results for the BA Improvement based on

SACHCA

The performance of the BA enhanced by use of the SACHCA was tested against
an inverted and translated Himmelblau function and the fifteen benchmark
functions described above in Section 4.3.1. The results were compared with those
obtained with the basic BA and the BA improved with the ANSSA strategy. The

parameters set for the proposed algorithm are given in Table 4.7.

The comparative best fitness results are given in Figure 4.14. All the results are an
average of 100 runs. The mean value and standard deviation of the basic BA,
ANSSA strategy based BA and SACHCA based improved BA are given in Table
4.8, further the average completing time and standard deviation of the completing
time are given in Table 4.9. According to results, the BA improved with

SACHCA performed better than the other two algorithms.
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Table 4.7 Test parameters for BA improved with SACHCA.

Parameters Symbols

Number of Scout Bees in the Selected Patches (7 ) 50
Number of Best Patches in the Selected Patches (m ) 15
Number of Elite Patches in the Selected Best Patches (e ) 3
Number of Recruited Bees in the Elite Patches (nep ) 12
Number of Recruited Bees in the Non-Elite Best Patches (nsp ) 8
The Size of neighbourhood for Each Patches ( ngh ) 1
Number of Iterations (iter ) 5000

Difference between the First Iteration Value and the Last Iteration 0.001
(diff)

Angle limit (angle limit) 0.5

Step size for HC algorithm (/) 0.1

Number of waiting time for HC algorithm ( HC _time _limit ) 1000
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The Average Fitness Results of the Himmelblau Function

12

10

Fitness
[e>)

172 143 214 285 356 427 498 569 640 711 782 853 924 995

Iteration

—- The Improved BA with SACHCA
—o—The Improved BA with ANSSA

The Basic BA

Figure 4.14 Average fitness value of the basic BA, BA improved with ANSSA

strategy and BA improved with SACHCA (mean fitness value of 100 runs).

Table 4.8 Synopsis of best fitness results for 100 runs with basic BA and
enhanced BA for Himmelblau function.

Algorithms Mean value | Standard deviation
The Basic BA 9.6327 0.3984
The BA improved with ANSSA Strategy 9.7450 0.3138
The BA improved with SACHCA 9.8240 0.1807

Table 4.9 Synopsis of time taken for 100 runs with basic BA and enhanced
BA for Himmelblau function.

Algorithms Mean value | Standard deviation
The Basic BA 19.21 0.5941
The BA improved with ANSSA 13.05 0.4752
Strategy
The BA improved with SACHCA 9.23 0.0197
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The t-test was used to calculate the statistical significance of the difference
between the best fitness values obtained from the three algorithms. The results are
given in Appendix D3. The test was performed in pairs such as, the improved BA

with SACHCA and one of the others. The t-test between mean best fitness values

for the SACHCA based BA and basic BA gave an alpha value of 2.379x107
which means it is possible to say with greater than 95% confidence level that there
is a significant difference between the mean values obtained with these two
algorithms. Similarly mean value obtained for the BA improved with ANSSA was
significantly higher than that obtained with the basic BA. The best fitness results
for 100 runs of the improved BA with SACHCA and the basic BA are given in

Figure 4.15.

The third comparison, between the mean best fitness values for the SACHCA
based BA and the BA improved ANSSA, showed that the former is significantly
greater than the latter at the 95% confidence level. The t-test gave an alpha value

01 0.003. The 100 best fitness results of both algorithms are given in Figure 4.16.

Further, the proposed algorithm has been tested on fifteen benchmark functions
which were given in Table 4.5 and the results were compared with the results of

the basic BA and ANSSA strategy based enhanced BA, given Table 4.10.
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The Best Fitness Results of the Himmelblau Function
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Figure 4.15 Best fitness value of the basic BA and the BA improved with
SACHCA (100 runs).

The Best Fitness Results of the Himmelblau Function

10.5

10 1
05 —e— The Improved BA with SACHCA
—=— The Improved BA with ANSSA

Fitness
©
-
L
L
-—

8.5

7.5 AT T T T T T T T T T T T T T
1 7 13 19 25 31 37 43 49 55 61 67 73 79 8 91 97
Cycle (Run) Number

Figure 4.16 Best fitness value of BA improved with ANSSA and BA improved
with SACHCA (100 runs).
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Table 4.10 Comparative results of fifteen benchmark functions for the BA improved with SACHCA, BA improved with

ANNSA and basic BA.
Significance of Significance of
Basic BA BA Improved with ANNSA BA Improved with SACHCA difference between difference between
(A1) (A2) (A3) (A3-Al) (A3-A2)
Mean Mean Total Mean
Success | Iteration TOt"fll Success | Iteration | Iteration | Success | Iteration TOtf‘l Significant Significant
Rate % | Number | Iteration | Rate 9 | Number | Time (sec) | Rate % | Number | Iteration (0<0.05 o (0<0.05 o
Func Time Time
No (sec) (sec)
F1 100 297 312> 100 342 3> 33> 100 240 2°43” Yes 0.002 Yes 0.0001
F2 100 1497 247 40 100 1497 17217 100 1497 10’ 517 Yes 1.58E-08 Yes 8.79E-11
F3 100 1497 10’ 08’ 100 1497 6>’ 09 100 1497 4227 Yes 0.0003 Yes 5.68E-06
F4 100 293 320 100 317 57 25” 100 359 37 18> Yes 0.0018 Yes 0.0392
F5 100 183 351> 100 225 3’0 100 162 3°20” No 0.1595 No 0.2908
Fé6 100 184 8 15 100 138 4’517 100 141 512> No 0.9653 No 0.9478
F7 100 101 6> 32 100 116 5740 100 133 6’53 No 0.4496 No 0.4426
F8 100 150 174 100 143 14> 47 100 121 12° 04> Yes 6.16E-09 Yes 3.46E-09
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Table 4.10 Comparative results of fifteen benchmark function for the improved BA with SACHCA, improved BA with ANNSA and basic BA

(Cont.).
F9 100 734 83’3 98 1117 88’417 100 535 51°39” No 0.9567 Yes 0.0041
F10 98 560 58°42” 98 700 56’ 39” 100 644 53’217 Yes 0.0098 Yes 5.6E-06
F11 99 1497 28’ 26 98 1497 23> 107 100 1497 9’ 58 No 0.1040 Yes 0.0268
F12 100 1497 28’417 98 1497 20° 517 100 1497 9’ 40 No 0.4553 No 0.9692
F13 100 1497 21° 40> 100 1497 300117 100 1497 9 28 No 0.2599 No 0.2652
F14 100 1402 153°5” 100 1226 112> 21 100 1497 103°19” Yes 6.08E-06 Yes 0.0125
F15 100 3 023> 100 5 0’297 100 38 2’ 34> Yes 3.27E-09 Yes 2.21E-17
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According to Table 4.10, the BA improved with SACHCA performed well with
benchmark test functions F1, F2, F3, F4, F8, F10, F14 and F15 (refer to Table
4.5). The total iteration time of the proposed algorithm is better than the others.

Finally, the proposed algorithm found the global optimum value in every run.

To calculate the statistical significance between the BA improved with SACHCA
and other BA versions, t-test was utilised. According to the Table 4.10, the
proposed algorithm performed better than the others for the following functions:
F1, F2, F3, F4, F8, F10, F14 and F15; because the alpha values were found lower
than 0.05 with a 95% confidence level for both comparison between the BA
improved with SACHCA — basic BA (denoted as A3-Al in Table 4.10) and the
BA improved with SACHCA — the BA improved with ANSSA (denoted as A3-

A2 in Table 4.10).

The BA improved with SACHCA performed well on functions F5, F6, F7, F12,
and F13, achieving a 100% success rate and the process times were faster than
those of the basic BA. However, the results were not significant than the other BA

versions.

Finally, the results of SACHCA-based BA achieved with functions F9 and F11
were better than other BA versions, although functions F9 and F11 are 10

dimensional and a hard group of functions (Pham and Castellani, 2009),

125



The total iteration times of the BA improved with SACHCA for the given
functions were less than those of the basic BA and the BA improved with
ANNSA, which means the process time is also improved with the BA improved

with SACHCA.
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4.5. Summary

This chapter has presented two improvements to the BA.

The first improvement was based on changing the neighbourhood size strategy
and on having a more adaptive neighbourhood size change during the search

process.

The second improvement was to determine the direction of local optima by using
the slope angle of a neighbourhood. The HCA was then utilised on the sites which

had a moderate slope angle.

By including the second improvement, both the search speed was improved and

more accurate results were obtained.

Both improvements to the BA were tested on the Himmelblau function and fifteen

selected benchmark functions. The results have been presented in this chapter.

The results of the proposed algorithms are satisfactory for the given optimisation
problems. The improved BA algorithms and the basic BA will therefore be used
in the next chapter as a new depth calculation technique based on the BA as an

optimisation tool to find the best possible level of blurriness.
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Chapter 5

A NOVEL DEPTH COMPUTATION TECHNIQUE WITH
A BEES ALGORITHM BASED BLIND IMAGE
DECONVOLUTION

5.1. Preliminaries

This chapter presents a novel depth computation technique based on optimised
Blind Image Deconvolution (BID). The optimisation process uses the basic Bees
Algorithm (BA), BA enhanced by SACHCA and BA enhanced with ANNSA as
described in Chapter 4. For comparison a simulated annealing (SA)-based BID is

also used.

A blurred image can be caused by changes in optical system parameters such as
the focal length, object position in the optical system, aperture diameters, f-
number of the camera, etc. The main task of the deconvolution process is to

recover the original image and Point Spread Function (PSF), see Equation 2.1.

The PSF of a defocused image can be used for many applications in machine
vision such as depth calculation, image restoration and image de-blurring. In

practice, the PSF of a blurred image is not known and while it is not an easy task
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to determine it without having some prior information a number of approaches

have been proposed for computing the PSF without prior information.

The proposed techniques utilise kurtosis-based non-Gaussianity analysis and the
BA to find the optimum value of the PSF blurriness parameter, sigma (c), which
is the standard deviation of the PSF. Then the determined parameter can be
correlated with the distance from the surface of the sample to the objective lens of

the SEM to define the relationship between sigma and depth.

5.2. Kurtosis of Blurred Images

Different levels of blurred images have different kurtosis values which are related
to the blurriness parameter. In this section, the effect of changes in ¢ on the
kurtosis value of the image is investigated. To show the relationship between
sigma and kurtosis, the four images of Lena, Boats, Cameraman and Copper
sample captured with a SEM were used. The original images are given in Figure
5.1 a-d. All four images were blurred with a Gaussian filter by changing the o
value from 1 to 20 and the relationship between ¢ and kurtosis for the images is

shown in Figure 5.2 a-d.
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Figure 5.1 Images for kurtosis analysis a) Lena, b) Boats, ¢c) Cameraman and

d) Copper sample.
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Figure 5.2 Relationship between sigma and kurtosis for the given images a)

Lena, b) Boats, ¢) Cameraman and d) Copper sample.

According to the Central Limit Theorem (CLT) the distribution of the mean of »

independent random variables approaches a Normal Gaussian distribution. In the

case of a blurred image, there are two main components, the original image and
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the PSF that together create the blurred image. As explained in Section 2.5.2.4 the
kurtosis value for a Gaussian distribution is zero so it is expected that the kurtosis

value for a blurred image is closer to zero than that for a sharp image.

In Figure 5.2 it can be seen that the results are promising; as ¢ increases the
kurtosis decreases for the images of Lena, Cameraman and the Copper sample.
However, the results for the image of the Boats show that the kurtosis decreases
with increase in ¢ only for ¢ > 2. The main reason for this is because of the large
number of pixels in the areas of sky and sea where the intensity between a pixel
and its neighbours are not so different. To overcome inconsistent changes in the

kurtosis values, (Yu, 2008) proposed a whitening pre-processing stage.

5.2.1. Whitening Process

The whitening process is an essential pre-processing technique for independent
component analysis ICA (Hyvarinen et al., 2001). The whitening process finds the
low-correlated sub-data set from the raw data set and eliminates pixels where the
number of pixels is higher than a certain threshold value. Yu (2008) proposed a
threshold computational technique for the whitening process, as given in

Equations 5.1-5.2:

Threshold = Median + o(Standard Deviation) (5.1)
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where Median 1is the median value of the histogram data representing pixel
intensity against number of pixels, see Figure 5.3, « is a scale factor,
S tan dard _ Deviation is the standard deviation of the histogram data.

B {2 if  [(Maximum— Median)/Standard Deviation] < 2 52)

1 if [(Maximum— Median)/Standard Deviation] > 2

where Maximum is the maximum value of the histogram data.

The whitening process was applied to the histogram of the original Boats image.
The histogram of the original image is given in Figure 5.3a. According to
Equations 5.1 and 5.2, a threshold value was found as 861.4. Then the pixel
elimination process was applied according to the computed threshold value. The
final histogram is given in Figure 5.3b. After the whitening process, the image

data became low-correlated. The final image of Boats is given in Figure 5.4.
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Figure 5.3 Histogram of the image of Boats a) before the whitening process,

b) after the whitening process.
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Figure 5.4 Image of Boats after the whitening process.

5.3. Determining the Blurriness Parameter of the PSF with

Kurtosis-Based Non-Gaussianity Analysis

This section reports the determination of the blurriness parameter using kurtosis-
based non-Gaussianity analysis. The sharper the image the higher the kurtosis
value and this information can be used to determine exactly the blurriness
parameter of a blurred image. In this section, the images of Lena, Boats,
Cameraman and Copper sample are blurred using o =5, This value of ¢ was
selected because, as shown in Figure 5.2, the corresponding kurtosis is decreasing

and close to its minimum value. The blurred images are shown in Figure 5.5 a-d.
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Figure 5.5 Images blurred using o = 5; a) Lena, b) Boats, ¢) Cameraman and

d) Copper sample.

All the blurred images were whitened as described in the previous section to
increase consistency, see Figure 5.6 a-d. The blurriness prediction results are
shown in Figure 5.7 a-d foro = 5. The determination process worked with all four

cascs.
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Figure 5.6 Blurred and whitened images (o = 5); a) Lena, b) Boats, c)

Cameraman and d) Copper sample.

The next step was to find the blurriness parameters with an optimised BID
process. In practice, determination of the blurriness parameter is a blind search
process. It is called a blind search process because there is no information on the

level of blurriness or original image. In the next section, an optimised BID
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Figure 5.7 Blurriness parameter search for the blurred (o = 5) and whitened

images a) Lena, b) Boats, ¢) Cameraman and d) ) Copper sample.
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5.4. The ICA-Based Optimised BID technique with the BA

The aim of this section is to find the optimum blurriness parameter and it focuses
on the ICA-based optimised BID technique with BA. The BID technique utilises
the kurtosis-based non-Gaussianity analysis and the kurtosis is employed as a
fitness function in the BA. The basic BA, BA enhanced by SACHCA and BA

enhanced with ANNSA as described in Chapter 4 were used here.

In this study, the PSF of the blurred image is assumed to be 2D-Gaussian
function. The standard deviation, o of the PSF was searched by the proposed
BAs. The global optimum value of the standard deviation was utilised to find the

PSF. Hence, the original image can also be estimated.

In the next sections, the following techniques will be explained; the ICA-based
optimised BID technique with the basic BA, ICA-based optimised BID technique
with the ANSSA strategy-based improved BA and ICA-based optimised BID with

the SACHCA-based improved BA.

5.4.1. ICA Based Optimised BID with Basic BA

The ICA-based BID with the basic BA is based on optimisation of the blurriness
parameter. The basic BA was employed to find the global maximum value of the
kurtosis of the image by evaluating the blurriness parameter, o . The pseudo code

of the technique is shown in Figure 5.8.

139



Set the initial population as n, the best locations as m, the elite locations as e, the number of bees
around elite locations as neb, the number of bees around non-elite best locations as nsb, the

neighbourhood size as ngh, number of maximum iterations as MaxlIter and error limit as Error.

Generate initial population for PSF parameter; sigma, o and substitute the sigma in Gaussian PSF
as h(x,y), evaluate the kurtosis value as and sort absolute value of kurtosis in descending order for

initial population.
Compute the Fourier transform of the observed image as G(m.n ) and predicted PSFas H(x,y ).

N
Then restore the estimate of the original image in Fourier domain as, F'(m.n ) with following

G(m,n)

H(m,n)

N
equation, F(m,n)= then compute the inverse Fourier transform of the estimated original

image as }(x,y). i=0.
While i < MaxlIter or Kurtosis; — Kurtosis,;_, < Error
i=i+1
Recruit forager bees to the elite sites and non-elite best sites for neighbourhood search.
Evaluate Ffitness Value. Sort Fitness Value.
Allocate the rest of the forager bees for global search.
Evaluate Fitness Value.
Sort the final result in descending order and the maximum kurtosis value.

Run the program until the termination conditions met.

End

Figure 5.8 Pseudo code of the ICA-based optimised BID technique with basic
BA.
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5.4.2. ICA-Based Optimised BID with ANSSA Strategy-Based

Improved BA

The ANSSA strategy-based improved BA was proposed in the previous chapter

and tested on continuous type optimisation problems.

In this section, the algorithm was utilised for the optimisation of the ICA-based
BID technique. The main goal of the proposed technique was to find the optimum
value of ¢ when the maximum non-Gaussianity has been found. The pseudo code

of the technique is shown in Figure 5.9.
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Set the initial population as n, the best locations as m, the elite locations as e, the number of bees around of elite locations as
neb, the number of bees around non-elite best locations as nsb, set the shrinking constant as sc, set the shrinking start number
as rep_nshr, set the enhancement start point as rep_nenh, set the abandoning start number as rep_naban, set the
neighbourhood size as ngh, number of maximum iteration as select MaxlIter and error limit as Error.

keep _point = Zeros(1,m); aband _site = Zeros (iter,m ) .

Generate initial population for PSF parameter; sigma, O and substitute the sigma in Gaussian PSF as h( X,y ) , evaluate the

kurtosis value as and sort absolute value of kurtosis as descend order for initial population.

Calculate the Fourier transform of the observed image as G(m.n ) and predicted PSFas H(x,y ).

~ A G(m,n
Then restore the estimated original image in Fourier domain as, F'(m.n) with following equation, F(m,n) = #
H(m,n)

N
then compute the inverse Fourier transform of the estimated original image as f(x,y). i =0;

While i < MaxlIter or Kurtosis ; — Kurtosis ;_; < Error

1
i =1 +1; Recruit the forager bees to the elite sites and non-elite best locations for neighbourhood search.

keep point(i,k)>rep nshr and keep point(i,k)<rep nenh ;

100 — (keep _point(i,k)—rep nshr)
100

new _ngh(i,k)=ngh—(ngh*sc* );

End
If keep point(i,k)>rep nenh and keep point(i,k)<rep naban

100 — (keep _ point(i,k)—rep naban)
100

new_ngh(i,k)=ngh+ (ngh*sc* );

End

Else If keep point > naban

aband _site(i+ 1,k )=aban _site(i,k)+1;
Else new ngh(i, k)=ngh;

End

Evaluate Fitness Value. Sort Fitness Value. Allocate the rest of the forager bees for global search.
Evaluate Fitness Value. Sort the final result as descend order and the maximum kurtosis value.
Run the program until the termination conditions met.

End

Figure 5.9 Pseudo code of the ICA-based optimised BID technique with the
ANSSA strategy-based improved BA.
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5.4.3. ICA-Based BID with the SACHCA-Based Improved BA

The SACHCA-based improved BA was proposed in the previous chapter and

tested on continuous type optimisation problems.

In this section, the algorithm was used to optimise the ICA-based BID technique.
The proposed technique looks for the optimum sigma value when kurtosis-based
non-Gaussianity analysis has found a maximum. The pseudo code of the

technique is shown in Figure 5.10.
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Set the initial population as n, the best locations as m, the elite locations as e, the number of bees
around of elite locations as neb, the number of bees around non-elite best locations as nsb, set
the step size for HC algorithm as h, set the angle limit as angle_limit, set the number of the
waiting time for HC algorithm as HC #ime_[limit, the neighbourhood size as ngh, number of
maximum iteration as Maxlter and error limit as Error.

Generate initial population for PSF parameter; sigma, o and substitute the sigma in Gaussian
PSF as A(x,y), evaluate the kurtosis value and sort absolute value of kurtosis as descend order

for initial population. Calculate the Fourier transform of the observed image as G(m.n) and

predicted PSF as H(x,y). Then restore the estimated the original image in Fourier domain

G(m,n)

H(m,n)

A A
as, F(m.n) with following equation, F(m,n)= then compute the inverse Fourier

transform of the estimated original image as }( x,y). i=0;
While i < MaxIter or Kurtosis; — Kurtosis, | < Error
i=i+1
Select the elite locations and non-elite locations for neighbourhood.
For k=1:m
Calculate angle(k)
While angle(k ) > angle limit and time < HC _time limit then.
X(i+Lk)=X(i,k)+hVF(X(i,k)).
Evaluate Fitness Value for each position
End
Evaluate fitness value. Sort Fitness value.
Allocate the rest of the forager bees for global search. Evaluate Fitness Value.
Sort the final result as descend order and the maximum kurtosis value.
Run the program until the termination conditions met;

End

Figure 5.10 Pseudo code of the ICA-based optimised BID technique with the
SACHCA-based improved BA.
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5.4.4. Experimental Results for the ICA-Based BID Technique with the

BA

This section presents the experimental results obtained for the ICA-based BID
technique with the three proposed versions of the BA (basic BA, the ANSSA
strategy-based improved BA and the SACHCA-based improved BA). The blurred
images of Lena, Cameraman, Boats and the Copper sample were used to measure
the performance of the proposed BID techniques. All four entire images were
blurred using o =5(see Figure 5.5 a-d). Then the given images were pre-
processed with a whitening process. Finally, each of the proposed BA versions
was used with the BID technique to find the value of the optimum blurriness
parameter (sigma). The results of the BA-based BID techniques were compared
with a Simulated Annealing (SA)-based BID technique as given in Section 2.5.1,
the model proposed by (Yu, 2008). The parameters of the BA-based BID
techniques are given in Table 5.1. The simulation parameters for the SA algorithm
were as follows: the highest temperature was set 20, the lowest temperature was 0,

the number of iterations was selected as 100.

The average results for the blurriness parameter found by the different algorithms
are shown in Figures 5.11-5.14. Each algorithm was run 100 times. The best
results of each run are given in Figures 5.15-5.18. Further, the average value and
standard deviation of 100 best fitness results of each algorithm for the given

images are given in Table 5.2. Finally, the Root Mean Square (RMS) errors for
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the techniques are given in Table 5.3. The RMS error was calculated as in

following Equation 5.3:

RMS =\/lzn:(xi — Exp)®

=

(5.3)

where Exp =5 (expected value), x,= best value of each run, n=100(number of

run).
Table 5.1 Selected parameters for the BA.
ANSSA
Based SACHCA
Parameters Basic BA BA Based BA
Number of scout bees in the selected patches () 10 10 10
Number of best patches in the selected patches (m) 5 5 5
Number of elite patches in the selected Best patches (e) | 1 |
Number of recruited bees in the elite patches (nep) 5 5 5
Number of recruited bees in the non- elite best patches (nsp) 3 3 3
The size of neighbourhood for each patch (ngh) 0.01 0.01 0.01
Shrinking constant (sc) - 0.1 -
Number of repetitions for shrinking process (rep_nshr) - 10 -
Number of repetitions for enhancement process (rep_nenh) - 30 -
Number of repetitions for site abandonment (rep_naban) - 100 -
Angle limit (angle_limit) - - 0.5
Step size for HCA (4 ) - - 0.1
Number of waiting time for HCA (HC time limit) - - 100
Number of Iterations (iter) 1000 1000 1000
Difference between the first and last iteration value (diff) 0.001 0.001 0.001
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Figure 5.11 Blurriness parameter for the blurred-whitened image of Lena as
determined by the SA based BID and three BA-based BID techniques

(average of 100 runs).
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Figure 5.12 Blurriness parameter for the blurred-whitened image of
Cameraman as determined by SA based BID and three BA-based BID

techniques (average of 100 runs).
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Figure 5.13 Blurriness parameter for the blurred-whitened image of Boats as
determined by the SA based BID and three BA-based BID techniques

(average of 100 runs).
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Figure 5.14 Blurriness parameter for the blurred-whitened image of Copper
sample as determined by the SA based BID and three BA -based BID

techniques (average of 100 runs).
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Figure 5.15 Best approximations to sigma for the blurred-whitened image of
Lena as determined by the SA based BID and three BA-based BID

techniques (average of 100 runs).
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Figure 5.16 Best approximations to sigma for the blurred-whitened image of
Cameraman as determined by the SA based BID and three BA-based BID

techniques (average of 100 runs).
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Figure 5.17 Best approximations to sigma for the blurred-whitened image of
Boats as determined by the SA based BID and three BA-based BID

techniques (average of 100 runs).
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Figure 5.18 Best approximations to sigma for the blurred-whitened image of
Copper sample as determined by the SA based BID and three BA-based BID

techniques (average of 100 runs).
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Table 5.2 Synopsis of best fitness results for 100 runs with SACHCA BA,
ANSSA BA, basic BA and SA based-BID for images of Lena, Boats,
Cameraman and Copper sample.

ANSSA i -
SACHCA BA Basic BA Based SA Based-BID
Based BID BA Based-BID BID
Test Images Standard Standard Standard Standard
Mean . Mean . Mean .. Mean .
Deviation Deviation Deviation Deviation
Lena 5.0030 0.0465 5.0060 0.1384 5.0484 0.0777 4.4527 0.1070
Boats 4.9540 0.0453 4.9472 0.0503 4.9413 0.0614 4.404 0.0228
Cameraman | 4.9572 0.0503 4.9840 0.0633 4.9408 0.0803 4.1146 0.1304
Copper 1 5 0001 | 0.0084 | 5.0106 | 0.0217 | 48819 | 03027 | 42484 0.0635
Sample

Table 5.3 RMS error of each technique for the images of Lena, Cameraman,

Boats and Copper sample.

RMS Error of RMS Error of RMS Error of RMS E £SA
Test Images SACHCA Based ANSSA Based | Basic Based BA- Basgi‘_’]rsﬁ)
BA-BID BA-BID BID
Lena 0.0554 0.1378 0.1912 0.5575
Cameraman 0.0658 0.0817 0.0995 0.8949
Boats 0.0710 0.0728 0.0846 0.5965
Copper sample 0.0084 0.0240 0.3235 0.7543

According to Table 5.2, the BA based-BID techniques performed well on entire
images compare to the SA based BID. In addition that the RMS error of the
SACHCA-based improved BA-based BID technique was less than for any of the
other techniques for all four images, according to the Table 5.3. The SA-based

BID technique performed worst in the sense that it gave the largest RMS error of
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any technique for all four images.

The ANSSA Based BA-BID generally

outperformed the Basic Based BA-BID.

Using the best values for ¢ by the obtained different algorithms (Figure 5.14 to

5.17) the t-test was used to determine significant differences. The alpha values

obtained from statistical significance tests are given in Table 5.4.

Table 5.4 Statistical significance of difference between best values

of o from each technique for given images.

Image Techniques ANSSA Basic BA | SA Based-
BA Based- | Based-BID BID
BID

SACHCA BA Based BID 0.0939 0.0471 0.0000

Lena ANSSA BA Based BID 0.0078 0.0000
Basic BA Based BID 0.0000
SA Based BID

Cameraman | SACHCA BA Based BID 0.2872 0.0865 0.0000
ANSSA BA Based BID 0.4834 0.0000
Basic BA Based BID 0.0000
SA Based BID

Boats SACHCA BA Based BID 0.3584 0.1252 0.0000
ANSSA BA Based BID 0.4658 0.0000
Basic BA Based BID 0.0000
SA Based BID

Copper SACHCA BA Based BID 0.0001 0.0002 0.0000

sample
ANSSA BA Based BID 0.0001 0.0000
Basic BA Based BID 0.0000
SA Based BID
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Table 5.4 clearly shows that the best values for each of the three BA based BID
algorithms are significantly different from, and more accurate than, the SA based
BID algorithm at the 99% confidence level. For each of the four images the
apparent ranking of the three BA based BID algorithms is consistently in the order

(from best to worst) SACHCA, ANSSA and Basic BA.

However, application of the t-test shows the differences are not always significant
at the 95% confidence level. For example with the image of Lena we see that the
SACHCA and ANSSA are both significantly better than the basic BA based BID

algorithm but not significantly different from each other.

For the image of Cameraman, Table 5.4 shows there is no significant difference in

the best values between the three BA based BID algorithms.

For the image of Boats, Table 5.4 again shows there is no significant difference in

the best values between the three BA based BID algorithms.

Finally for the image of the copper sample, Table 5.4 shows that the SACHCA
gives significantly more accurate results than the ANSSA which, in turn, gives

significantly more accuare results than the Basic BA BID technique.

It can thus conclude that the SACHCA based BA Bid technique consistently gave
significantly more accurate results than the SA based BID, and where there was

any significant difference with the other BA based techniques gave the best
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results. The BA based appears to be the best. Accordingly, it is concluded that a

BA-based BID technique has a better capability for the SEM image.

5.5. A Novel Depth Calculation Using the BA-Based BID

Technique for SEM

Depth computation is one of the most important tasks for SEMs. In this section,
BA-based BID techniques are used to calculate the blurred parameter of a set of
SEM images which were captured at different levels of depth and blurring
according to the focused image plane of an SEM. The predicted results are related

to depth.

The technique is based on determining the blurriness parameter of the different
distance levels of the SEM images. Image construction in SEMs is given in Figure
5.19 (Nicolls, 1995). The predicted blurriness parameter is related with the
distance according to Equations 5.4 and 5.5 and so a new depth metric can be
defined according to the blurriness parameter. The technique is based on
computing the blurriness parameter with an ICA-based optimised BID technique,

and the optimisation step is carried out with the BA.
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Aperture Plane

Blurred Image Position

Blurred Image Position

Focused Image Position

Blurred Image Position

Blurred Image Position

Figure 5.19 Schematic of image construction with SEM (Nicolls, 1995).

According to Figure 5.19, a blurred image is captured if the distance between
aperture and specimen differs from d,, (distance of the focused image plane).

Using similar triangles, a relationship between the blurriness diameter of the

image and depth is derived as in Equation 5.4.

ﬂ:do_d{:do_d;":df_do_ (54)
4, A A" AP A* '
1 1

2
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where d| ,d . d’and d; are distances from the aperture of the SEM to the surface

of the specimen; A4, A}, A’and A4 7 are the blurriness diameters.

Aslantas (1997) proposed the blurriness parameter as proportional to the

blurriness radius, as given in Equation 5.5:

R=ko (5.5)

where R is the blurriness radius, kis a constant and o 1is the blurriness

parameter.

If & is known, the predicted value of ¢ can be substituted into Equation 5.4 and
the distance from aperture to the surface of the specimen can be measured based

on Equation 5.4. The constant value can be measured using a calibration process.

According to Figure 5.19, the blurriness diameters are symmetrically placed both
sides (“up” and “down”) of the focused image plane. To overcome the ambiguity
of which side is “up” and which is “down”, the specimen can be moved to a new
position and a new blurriness parameter computed. Using the new position and
the new blurriness diameter, the correct side can be defined and the depth can be

found.
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5.6. Experimental Results for the Novel Depth Computation

Technique Using the BA Based BID Techniques

This section presents the experimental results for the novel depth computation
technique based on the BA-based BID technique. Initially, a set image was
captured with an SEM at different depth levels and the blurriness parameters were
calculated with the proposed BA-based BID technique and the results were related

to the depth.

The proposed technique was implemented on a SEM model 1500XB. For the
experiments, a copper sample was used, which contains a cylindrical shaped
trench. All the experiments were carried out with the same SEM system
parameters: Magnification = 135kX, Working Distance = 5 mm, Aperture Size =
30 um, EHT (Voltage) = 10 kV, Noise Reduction = Line Integration, Current
Mode = High Current and Imaging Mode = Secondary Electron Detector. The
experiments began with setting the specimen stage to the focused image position
and capturing the focused image, as shown in Figure 5.1d. Then the stage
position of the focused image was moved up by 0.2 mm and the first blurred
image was captured. This process was repeated 10 times in a series of incremental
upward movements of 0.2 mm. When the last image was captured above the
focused image plane the stage was moved back to the focused image position.

Then the stage was moved down by 0.2 mm and the blurred image was captured.
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This process was repeated 10 times in a series of incremental downward

movements of 0.2 mm. The captured images are given in Appendices C1, and C.2.

According to Equation 5.5, the blurriness parameter is related to the blurriness
diameter. The value of the constant k& value was determined with a calibration
process in which the stage was moved upwards by 0.2 mm, and the blurriness
diameter calculated based on Equation 5.4. This was found to be 1.2 pm with 30
um aperture size. The blurriness parameter, o, of the PSF was computed with the
proposed BA-based BID technique, and found to be 0.4105. The standard
deviation results and blurriness radius were substituted into Equation 5.5 and &
was found to be 1.4618. The relationship between the distance, expected

blurriness radius and the expected blurriness parameter are given in Table 5.5.
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Table 5.5 The expected blurriness parameter and radius with regard to the
distance between aperture and specimen.

Distance from aperture to Expected Blurriness Expected Blurriness
specimen (mm) Radius(pum) Parameter (o )
3.0 6.0 4.1045
32 5.4 3.6941
3.4 4.8 3.2836
3.6 4.2 2.8732
3.8 3.6 2.4627
4.0 3.0 2.0523
4.2 2.4 1.6418
4.4 1.8 1.2314
4.6 1.2 0.8209
4.8 0.6 0.4105
5.0 0.0 0.0000
52 0.6 0.4105
5.4 1.2 0.8209
5.6 1.8 1.2314
5.8 24 1.6418
6.0 3.0 2.0523
6.2 3.6 2.4627
6.4 4.2 2.8732
6.6 4.8 3.2836
6.8 5.4 3.6941
7.0 6.0 4.1045
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The three versions of BA based BID techniques were used for the SEM image.
The relationship between the blurriness parameter and distance from focused
image plane to specimen are shown in Figure 5.20a and the results of the
blurriness diameter and distance from focused image plane to specimen are given

in Figure 5.20b.

The accuracy of the BA-based BID techniques was measured using RMS error,
see Table 5.6 which shows the performance of the SACHCA-based improved BA-
based BID technique was the better than either the ANSSA-based BA BID
technique or the Basic BA - BID technique. In addition that, SACHCA-based
improved BA, ANSSA-based BA BID and basic BA BID matched %85.7, %66.7

and %52.3 of the given 21 depth level.

According to Table5.6 the performance of the ANSSA-based BA BID technique

is not better than SACHCA-based BA BID, but better than the basic BA BID.
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The Relationship Between Blurriness Parameter (Sigma) and Depth

—*—The SACHCA-BA Based BID

—*—The ANSSA-BA Based BID

—+— The Basic BA Based BID
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The Relationship Between Blurriness Diameter and Depth
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Figure 5.20 a) Relation between blurriness parameter and distance between
aperture and specimen, and b) Relationship between blurriness diameter and

distance between aperture and specimen.
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Table 5.6 The RMS error results of the proposed techniques for the sigma
and depth relationship.

Technique Percentage(%) of Correct RMS Error
Estimated Distances
The Basic BA - BID 52.3% 0.4127
The ANSSA BA - BID 66.7% 0.1033
The SACHCA BA - BID 85.7% 0.0530
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5.7. Summary

This chapter has covered prediction of the blurriness parameter using BA-based
BID techniques, found a robust and effective BID technique combined with the

BA and used it for depth determination.

Three different types of BA-based BID techniques were considered and assessed.
The first was the basic BA; the second was an ANSSA strategy-based improved

BA and the third and last was a SACHCA-based improved BA.

The three proposed BA-based and one SA-based BID techniques were tested on
three benchmark images and an image of a copper sample captured with an SEM.
The results obtained from the BA-based BID techniques were compared with each
other and those obtained from the SA-based BID technique. The SA-based

algorithm performed significantly less well than the others and was eliminated.

The three BA-based techniques were used on a set of SEM images captured at
different distances from the focused image plane to predict the blurriness
parameter. The predicted blurriness parameters were then used to determine
distance from focused image plane to specimen in SEM. Thus a novel depth

computation technique was obtained based on the BA-based optimised BID.

The relative performance of the BA-based BID techniques was assessed in this
chapter and it was found that the SACHCA BA-BID algorithm was consistently

the most accurate.
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Chapter 6

CONCLUSION

This chapter summarises the contributions and conclusions of this study. It also

provides suggestions for further research.

6.1. Contributions

First, this work investigated the depth computation techniques for SEM. The first
investigation was based on a pre-processed DFAF technique. The processing
stage is image correction. During the image acquisition stage with SEM, the
captured images are affected by distortion, translation and rotation. In this study,
captured images were corrected using the Phase Correlation Log-Polar
Transformation (PCLPT) technique. Even though the PCLPT technique is a
strong image correction technique, due to sub-pixel level interpolation errors, it
also needs pre-processing. In this study, the pre processing stage was introduced
based on image filtering for images captured with SEM. Then the DFAF
technique was applied to the corrected SEM image to find the sharpness levels.

Finally, the sharpness values were related to corresponding distances.
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Second, this research investigated neighbourhood search in the BA and focused
on improving the BA by utilising adaptive neighbourhood sizes and site
abandonment (ANSSA). The proposed algorithm was tested on benchmark
functions and an optimisation problem. The results of the improved BA were
compared with the basic BA. The performance of the new algorithm was

statistically tested with the t-test.

Third, this research investigated the Slope Angle Computation and Hill Climbing
Algorithm (SACHCA)-based hybrid BA. Slope Angle Computation (SAC) is
based on computing the slope of each best location. The Hill Climbing Algorithm
(HCA) was utilised to find promising sites, when the slope of any patch is closer
to zero with respect to a defined threshold. The proposed algorithm was tested on
selected benchmark functions and an optimisation problem. The results of the
proposed algorithm were compared with the results of the basic BA and the
ANSSA strategy-based improved BA. The performance of the algorithm was

statistically measured with the t-test.

Fourth, the blind image deconvolution (BID) technique was introduced. The
technique was developed with the BA-based optimised non-gaussianity analysis.
The non-gaussianity analysis was based on the kurtosis of the given images. The
PSF, the blurriness parameter (sigma) of the PSF and the original image were then
recovered. The proposed algorithm was tested on images of Lena, Boats,
Cameraman and a copper sample captured by a SEM. Then, the proposed

algorithm was utilised on a set of images captured with SEM at different depths.
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The proposed algorithm was compared with a Simulated Annealing (SA)-based
BID technique. The performance of the proposed algorithm was statistically tested
with the t-test. Finally, the predicted blurriness parameters were utilised for the
depth calculation process, where the blurriness parameter of each different depth
level of the image was assigned to the related distance from the focused image

plane.

6.2. Conclusions

In conclusion, all objectives stated in Chapter 1 have been met.

An image filtering-based pre-processed PCLPT technique was developed
(Objective 1). This method gave good performance compared to the case without

pre-processing.

The proposed pre-processed PCLPT technique was utilised on the image of a
copper sample captured by an SEM and it corrected the given images (Objective
2). The performance of the pre-processed algorithm was acceptable in the case of
the Gaussian, Median and iterative blind deconvolution-based pre-processing
stage. In the case of the LoG, Prewitt and Sobel filtering-based pre-processing

techniques, the proposed technique failed.
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The DFFA technique was utilised on images corrected with the Gaussian filtering-
based pre-processed PCLPT, Median filtering-based PCLPT and iterative BID
technique-based pre-processed PCLPT. With respect to the sharpness function
values, the sharpness results were successfully assigned to distances from the

focused image plane (Objective 3).

The BA was developed with the ANSSA strategy and compared with the basic
BA (Objective 4). The performance of the proposed algorithm on some

benchmark functions was better than the basic BA.

The BA was improved with SACHCA and compared with the basic BA and the
ANSSA strategy-based improved BA (Objective 5). The proposed algorithm
performed better than the other two BA versions for the majority of the given

benchmark functions.

The improved BAs and the basic BA were utilised in the BID technique

(Objective 6).

Kurtosis-based non-gaussianity analysis was employed in the proposed BID
technique and the optimum blurriness parameter of the image was searched by the
BA with respect to the image kurtosis value. By varying the blurriness parameters
of the PSF, the optimum value was found for each different depth level of the

image. The results of the BA-based predicted blurriness values were compared
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with the results of the SA-based BID technique. Finally, the success rate of the

proposed techniques was computed with the RMS error metric (Objective 7).

The predicted blurriness parameters were related to the different levels of distance

according to the focused image (Objective 8).

6.3. Further research

First, this work investigated depth computation for SEM images. The first
experiment was carried out with the DFAF technique on a corrected SEM image.
Image correction was carried out with the pre-processed PCLPT technique. Six
selected filters for the pre-processing step were tested. It is worth studying other
image filters and testing their performance on the DFAF technique. Seven
different sharpness functions were used. Furthermore, several functions have been
proposed. It is worth utilising other sharpness functions to define the relationship

between depth and sharpness value more accurately.

Second, the BA was improved with the ANSSA strategy to have a more adaptive
and effective strategy during the search process. It was expected that adaptability
would make the system more robust against chance. According to this, the
adaptive neighbourhood size change was the start point. Further, it is worth
improving the BA in respect of its adaptability on different aspects such as
changing the number of bees adaptively, changing the best sites adaptively and so

on.
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Third, the second improvement of the BA was based on the SACHCA approach.
This approach was inspired by the direction information in the waggle dance. The
slope angle of the local search area was used to indicate the most promising
search direction in this study. According to the slope angle, promising sites were
found and searched by the HCA. If the slope angle was less than a threshold
value then the HCA was utilised. In this study, the slope angle of each top-
performing site was computed with the numerical first derivative of the fitness
function. It is worth improving the slope angle computation with more accurate
approaches. The second improvement for the BA is to focus on the other

neighbourhood search techniques that can be utilised with the BA.

Fourth, the BA-based BID technique utilised kurtosis-based non-gaussianity
analysis. It is worth studying other metrics with the BA-based BID technique.
Furthermore, a novel depth computation technique based on the BA-based BID
technique was introduced. It is worth studying the blurriness parameters to define
a new depth computation technique using different imaging systems such as TEM

and the interferometer.
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Appendix A

Parameters / Operators

No Function Name Explanation Function
- 2 2 2
I(x,y)=11x(x,y) +Iy(x,y) ;where I(x,y) >T
. . N N _
Tenengrad The‘functlon computes Fhe gradient of F = max Z Z I(x, y)Z 1 0 1 1 2 1
the image, the sharpest image has max I -2 0 2|1 =0 0 0
1 =1y=1 x(x.y) Ay x,y)
F . value ( Schlag, et al., 1983 and Aslantas x=ly=
unction 1997) -1 0 1 -] -2 -1
(Sobel Operator is available to compute the derivations).
Brenner function computes the sum of
Brenner squared differences between pixels and N N b
2 two unit away pixels, the sharpest image | F = max{ Y, Y. (I(x, y+2)- I(x,y)) where /(x, y)2 >T
Function has max value (Brenner, et. al, 1984 and x=ly=1
Aslantas 1997).
F= where I(x,y )2 > T The following operators are available.
Laplacian computes the sum squared N N 0 10 J J ] J 4 J
3 Laplaglan ‘Laplac1an of th‘e image and sharpest max Z Z (I(x, y+ 1) _ 2[()(’ y) _ I(x, y— 1))2
Function image has maximum value (Muller et al., F=¢-1 4 -1||-1 8 -I 4 20 -4\
1974 and Krotkov, 1987). x=lx=1 ’ ’ ’
0 -1 0| |-1 -1 -1||-1 -4 -I
Sum Modified
Laplacian The function measures the Laplacian of D) ) 2 2
the image; the sharpest image has max _ NN |0’7 ](X’J’)| |0’7 ](x,y)| |0” I(x’y)| |0’) I(x’y)|
4 Function value (Nayar, and Nakagawa., 1990, and £ =max z z 2 * 2 where 2 + 2 2T
g Nokagava 1990 ==l a2 || a? |

Aslantas 1997).
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The function computes the sum squared

Squared Gradient differences of the each pixel and a unit N N 2

anction away neighbour pixels, the sharpest F=max{y Y. > |l(x, y+1)-1I(x, y)| where |I(x, y+1)—1I(x, y)| >T
image has max value (Santos, et al., x=ly=1
1997).

Thresholded The function is one of the basic gradient

Absolute Gradient

Function

based sharpness function, the sharpest
image has max function value (Groen et,
al., 1985).

N N
F=max{ 3\ 3 |I(x,y+1)-1(x,y)
x=ly=l1

where |[(x,y+1)—1(x;y)|2T

Sum Modulus -
Difference

Function

The function computes the gradient of
the region of interest which is the first
order intensity differences between
adjacent pixels (Jarvis, 1976 and
Aslantas 1997).

N N
F=max Y, Z|I(x,y)—l(x,y—l)|
x=1y=1

Range Function

The function is based on the searching
for the maximum value of the difference
between the maximum grey level and
minimum grey level of the image
Firestone et al., 1991)

F= max{lmax _Imin}

where max and 1 min are the maximum and minimum grey level,

respectively.

Mendelsohn’s and
Mayall’s Function

The function maximises the sum of
difference between a selected threshold
value and the pixels grey level
(Mendelsohn and Mayall, 1972 and
Aslantas, 1997).

F = max{ > Num(I)
1>T

where Numi (I ) is the number of the grey level of / ,and T is the

threshold and defined by the user, which may be selected as the mean
value (Aslantas, 1997).

184




Appendix A (Cont.).

This function maximises the sum of the

N N 2
Z Zl(x,y)A Xy

difference between defined threshold and where T = x=ly=1
10 Mason’s and pixel grey level. The difference between F = max Z Num(l)(l _ T) ]Zv: ]Zv: A2
Green’s Function the Mendelsohn’s and Mayall’s function IST e
and this function is the definition of the > x=ly=l
threshold (Aslantas, 1997).
where A xy is defined as the gradient of point (x,y) .
11 Histogram The function minimises the entropy of where P('I ) is the probability of the grey level of Iin histogram
Entropy Function | the histogram diagram (Aslantas, 1997; | F = mind — ZP([) In(P(1)) .
Santos, et al., 1997 and Aslantas and I diagram. and P(1) # 0
Kurban, 2009).
12 | Histogram of | The function computes the local variance
Local  Variance | of the image histogram and the sharpest
Function image has the minimum value (Aslantas,
1997).
13 | Variance Function | The variance function computes variance 1 N N
ofnTlages and the sharpest image has the F = max Z Z [I(x,y) _ i]z
maximum value (Aslantas, 1997 and N2 =1 v=1
Yousefi, et al., 2011). ==
14 | Normalised The function utilises a normalised 1 /2
Variance Function | variance based sharpness function. But 1 N N -
[ !
(Aslantas, 1997) proposed the function F = max (2 2 2l(xy)-1
as a standard deviation based function. I7\N" -1 x=1y=1

The sharpest image has maximum value.
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15 | Absolute Variation | The function is defined as a difference N N
Function between pixel value and mean pixel F = max L Z Z |I(x,y) _i|
value (Groen, et al., 1985). The sharpest NZ =l y=1
image has maximum value.
16 | Normalised The function measures the normalised N N
Absolute Variation | difference between each pixel value and F = max 1 Z Z |I(x,y) _ f|
Function mean value (Groen, et al., 1985). The NZ; r=ly=1
sharpest image has maximum function
value.
17 | Thresholded The function computes the sum of the N N
Video Signal | difference between a defined threshold F = max Z Z(I(x,y)iT)
Content Function and the pixel values (Aslantas, 1997). x=1y=1
18 Thresholded The function counts number of pixel, NN 1 lf ([(x)y) _ T) >0
Video Signal Pixel | which has bigger pixel value then F = max ZZ(I(X’J’) _ T) (I(x,y) - T) = 0 " .
Count selected threshold value. The sharpest Xy otherwise
image has maximum value (Aslantas,
1997).
19 | Signal Power | The function computes the sum of the N N
Function squared grey level of the images F = max Z Zl(x’y)z

(Aslantas, 1997). The sharpest image has
maximum value.

x=1y=1
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Appendix B

B.1. Gaussian Filter

The Gaussian Filter is one of the most widely used low pass filter (Gonzalez et al., 2004
and Semmlow, 2004). The filter removes the high-frequency components in the image
with Gaussian. The Gaussian filter makes the image smoother (Merchant, 2008). The
Gaussian function is given in Equation B.1:

7)( +y

e (B.1)

h(x.y)= 270

where o 1is the standard deviation.

B.2. Laplacian of Gaussian Filter

The Laplacian of a Gaussian-based filter (LoG) is another smoothening type filter, which
utilises the Gaussian function. The LoG-based filter uses the second derivation of the
Gaussian function, given in Equation B.2 (Gonzalez et al., 2004):

2,..2

2 2 7X +y
Vih=h th, =  Vh=— (X i —1} 20? (B.2)

270" 2
where/, and /i are the second order partial derivative of /4 n x and y directions

respectively.

In practice, the matrix form of the LoG is utilised instead of the continuous function form.

The 5x5 matrix form of the LoG filter is given in Equation B.3:

187



0 -1 -2 -1 0
Vih=-1 -2 16 -2 -1 (B.3)
0 -1 =2 -1 0
0 0 -1 0 0

B.3. Prewitt Filter

The Prewitt filter is a linear spatial type filter which utilises the first order derivative. The
Prewitt filter increases the image sharpness while enhancing the edges (Gonzalez et al.,
2004). Thus it is called the edge detector. A first order gradient-based filter can be
defined as a magnitude of gradient or simply the gradient of the image, given in Equation
B.4:

thﬂhx 2 +‘h},‘2)/2

(B4)

where A, and h  are the first order partial derivatives of /% in the direction x and y

respectively.
The Prewitt filter utilises a 3x3 kernel matrix for the first order derivative in the x-

direction and y-direction. The kernel matrixes are given in Equation B.5:

1—1 -1 -1 1 0 -1
=3[0 0 o hx:§1 0 -1 (B.5)
111 10 -1

For simplicity the gradient magnitude can be calculated approximately as in Equation

B.6:
Vhx|h|+|h,] (B.6)

The Prewitt filter focuses on highlighting the edges.
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B.4. Sobel Operator

The Sobel operator is also a first order derivative-based linear spatial filter. This filter
utilises edge detection and highlights the edges (Burger and Burge, 2009). The Sobel
operator utilises 3x3 kernel matrix to determine first order derivatives in the x and y

directions. The kernel matrix is given in Equation B.7:

1 0 -1 1 -2 -1
hY:120—2, =10 o o
! !

1 0 -1 2
(B.7)

Then the gradient magnitude V/, of the each pixel is calculated as in Equation B.6. The
Sobel operator has the same features as the Prewitt filter. The performance of the Sobel
operator-based pre-processed PCLPT technique was therefore expected to be the same as

that of the Prewitt-based technique.

B.S5. Median Filter

The Median filter is a non-linear type smoothing filter which is utilised for reducing the
noise in the image (Gonzalez et al., 2004). The computation process is based on the
replacing of the pixel intensity value with the median of the intensity value in the
corresponding neighbourhood. This filter is effective when the noise pattern contains

spike like components.

B.6. Iterative-Based Blind Deconvolution
The blind deconvolution algorithms have been improved to recover the original image
and PSF without having information about any of them. There are several type of Blind

image model have been developed. One type of the blind deconvolution is Iterative Blind
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deconvolution which has been developed for the MATLAB. The technique utilises
Maximum Likelihood Estimation (MLE) to recover the original image and it’s PSF. The
algorithm was developed based on the study of (Holmes et al., 1995 and Biggs and

Andrews, 1997). The algorithm steps are given below:

A\
1. Initialise the PSF /4, and template image [o(x,y ),

2. Predict the /1, (x,y ) as in Equation B.8:

VAN
I (x,y) = 85Y)  w (mxmy) g (x,7) (B.8)
h(x,y)*1c(x,y)

A
3. Predict the /k+1(x,) ) as in Equation B.9:

A A
Lini(x,)=1| 52 sy (xmy )t Tk (x.7) (B.9)
Li(xy)*h(x.y)

A
4. Result of the estimated image 1 x+1( X,y ) is compared to that of initial image,

5. The algorithm works until the termination condition is met.
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Appendix C

Figure C.1 a-j shows the images of'a copper sample captured with SEM from the
upper side of the focused plane by 0.2 incremental sizes. Figure C.2 a-j shows the

images of a copper sample captured with SEM from the under side of the focused

plane by 0.2 incremental sizes.

a) The image is captured 0.2mm above b) The image is captured 0.4mm above

from the focused image. from the focused image.

¢) The image is captured 0.6mm above d) The image is captured 0.8mm above

from the focused image. from the focused image.
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e) The image is captured lmm above from  f) The image is captured 1.2mm above

the focused image. from the focused image.

g) The image is captured 1.4mm above h) The image is captured 1.6mm above

from the focused image. from the focused image.
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i) The image is captured 1.8mm above from  j) The image is captured 2mm above from the

the focused image. focused image.

Figure C.1 a-j The images were captured with SEM by 0.2 incremental size from

the upper direction of the focused plane.

a) The image is captured 0.2mm below b) The image is captured 0.4mm below

from the focused image. from the focused image.
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¢) The image is captured 0.6mm below from  d) The image is captured 0.8mm below from

the focused image. the focused image.

e) The image is captured 1 mm below from f) The image is captured 1.2mm below from

the focused image. the focused image.
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g) The image is captured 1.4mm below than h) The image is captured 1.6mm below from

i) The image is captured 1.8mm below than  j) The image is captured 2mm below than

the focused image. the focused image.

Figure C.2 a-j The image was captured with SEM by 0.2 incremental size from

the lower direction of the focused plane.
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Appendix D

The Table D.1, D.2 and D.3 show the best fitness value of 100 runs for the Himmelblau
function with the basic BA, the ANNSA strategy based improved BA and the improved

BA based on the slope angle computation and HC algorithm respectively.

Table D.1 Best fitness values for 100 runs for Himmelblau function with the basic BA.

8.6417 9.7738 9.0988 9.9581 9.3068
9.6553 9.9978 9.7641 9.8115 9.9963
9.9288 9.8090 9.7891 9.8047 9.8952
9.8971 8.9007 9.4824 9.9425 9.7692
9.6014 9.8777 9.8833 8.3195 9.7340
9.8365 9.6062 9.6178 9.9781 9.9470
9.4210 9.9999 9.6766 9.7417 9.7086
9.5828 8.9268 8.8594 8.4171 8.9914
9.7052 9.9773 9.9887 9.9919 9.9269
9.9155 9.8787 9.6898 9.6790 8.4495
9.1936 9.9008 9.9696 9.5634 9.8942
9.8867 9.9912 9.8167 9.6941 8.9851
9.97512 9.9198 9.1940 9.6137 9.9893
9.9826 9.9806 9.6071 9.9201 8.8415
9.5572 9.9305 9.8272 9.9967 9.7755
8.8403 9.4309 9.7021 9.3806 9.6106
9.8307 9.9976 9.8193 9.9008 9.2591
9.3815 9.3515 9.7870 9.8807 9.5933
9.8609 9.4403 9.9212 9.8133 9.2199
9.9694 9.6647 9.9780 8.7745 9.6993
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Table D.2 Best fitness value of 100 runs for Himmelblau function with improved BA

with ANSSA strategy.
9.9596 9.9449 9.9087 9.9869 9.8899
9.8812 9.9758 9.8371 9.8836 9.7611
9.8387 9.4372 9.9988 9.9536 9.8876
9.85978 9.4467 9.9133 9.8675 9.9253
9.9302 9.8340 8.8576 9.8875 9.8567
9.3483 9.9320 9.6926 9.8973 9.9699
9.8568 9.9967 9.7089 8.9794 9.9609
8.4607 9.9641 9.7427 9.9070 9.8764
9.1988 9.8261 9.9566 9.6428 9.8377
9.9996 9.3646 9.7883 9.4486 9.9647
9.9727 9.8365 9.2090 9.5547 9.0461
9.9647 9.9406 9.8642 9.9867 9.8298
9.7550 9.9524 9.9722 9.7492 9.9751
8.9670 9.75043 9.5288 9.9270 9.9374
9.6950 9.4610 9.8316 9.8281 9.9457
9.9683 9.92248 9.9975 9.8813 9.5335
9.7910 9.8667 9.8501 9.7236 9.9931
9.9612 9.3949 9.9678 9.3060 9.4702
8.5931 9.8749 9.7437 9.1395 9.8132
9.9967 9.9472 9.5871 9.8765 9.9780
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Table D.3 The best fitness value of 100 runs for Himmelblau function with the improved

BA based on the slope angle computation and HC algorithm.

9.8275 9.9238 9.7072 9.9920 9.9429
9.9843 9.9664 9.8078 9.9930 9.9395
9.9775 9.8143 9.8159 9.9528 9.8186
9.9301 9.9609 9.9176 9.9063 9.8908
9.7649 9.9740 9.4463 9.8346 9.6003
9.9865 9.8860 9.8139 9.7630 9.8458
9.8637 9.9110 9.9008 9.6055 9.3061
9.9477 9.9833 9.3118 9.9829 9.6478
9.6268 9.9478 9.2858 9.7682 9.8418
9.5974 9.8097 9.8093 9.9328 9.9727
9.6071 9.9850 9.9613 9.8263 9.6180
9.7532 9.9908 9.9761 9.8947 9.9832
9.9776 9.8620 9.6576 9.8937 9.9779
9.3526 9.9724 9.7950 9.9427 9.8781
9.8207 9.8937 9.5935 9.9693 9.9378
9.9917 9.9613 9.9641 9.9239 9.8790
9.9234 9.7773 9.6330 9.6408 9.2060
9.6489 9.4254 9.9997 9.9902 9.8402
9.9529 9.6489 9.9053 9.9906 9.8110
9.9840 9.9539 9.7250 9.8121 9.6569
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