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ABSTRACT 

In the past decade the Scanning Electron Microscope (SEM) has taken on a 

significant role in the micro-nano imaging field.  A number of researchers have 

been developing computational techniques for determining depth from SEM 

images.  Depth from Automatic Focusing (DFAF) is one of the most popular 

depth computation techniques used for SEM. However, images captured with 

SEM may be distorted and suffer from problems of misalignment due to internal 

and external factors such as interaction between electron beam and surface of 

sample, lens aberrations, environmental noise and artefacts on the sample. 

 
Distortion and misalignment cause computational errors in the depth 

determination process. Image correction is required to reduce those errors. In this 

study the proposed image correction procedure is based on Phase Correlation and 

Log-Polar Transformation (PCLPT), which has been extensively used as a pre-

processing stage for many image processing operations.  

 
The computation process of PCLPT covers the pixel level interpolation process 

but it cannot deal with sub-pixel level interpolation errors. Hence, an image 

filtering stage is necessary to reduce the error.  This enhanced PCLPT was also 

utilised as a pre-processing step for DFAF which is the first contribution of this 

research.  
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Although DFAF is a simple technique, it was found that the computation involved 

becomes more complex with image correction. Thus, the priority to develop a less 

complicated and more robust depth computation technique for SEM is needed. 

This study proposes an optimised Blind Image Deconvolution (BID) technique 

using the Bees Algorithm for determining depth. 

 
The Bees Algorithm (BA) is a swarm-based optimisation technique which mimics 

the foraging behaviour of honey bees.  The algorithm combines exploitative 

neighbourhood search with explorative global search to enable effective location 

of the globally optimal solution to a problem.  The BA has been applied to several 

optimisation problems including mechanical design, job shop scheduling and 

robot path planning. Due to its promise as an effective global optimisation tool, 

the BA has been chosen for this work. 

 
The second contribution of the research consists of two improvements which have 

been implemented to enhance the BA. The first improvement focuses on an 

adaptive approach to neighbourhood size changes. The second consists of two 

main steps. The first step is to define a measurement technique to determine the 

direction along which promising solutions can be found.  This is based on the 

steepness angle mimicking the direction along which a scout bee performs its 

figure-of-eight waggle dance during the recruitment of forager bees.  The second 

step is to develop a hybrid algorithm combining BA and a Hill Climbing 

Algorithm (HCA) based on the threshold value of the steepness angle. 
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The final contribution of this study is to develop a novel technique based on the 

BA for optimising the blurriness parameter with BID for determining depth.   

 
The techniques proposed in this study have enabled depth information in SEM 

images to be determined with 68.23 % average accuracy. 
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Chapter 1   

INTRODUCTION 

 

 

1.1.    Background 

 

Over the years, the development of depth computation techniques has been one of 

the main tasks in the machine vision area. Depth computation is required in 

several applications such as surface imaging, robotics, pattern recognition, 

manipulation, and nano-manufacturing.   

 
There are different types of classification for depth computation techniques. The 

classification can be defined according to the image focus level, such as depth 

from automatic focusing (DFAF), depth from defocusing (DFD) and depth from 

automatic defocusing (DFAD). The DFAF technique utilises the sharpness 

function to find the focused image position with respect to the max / min value of 

the sharpness function. The DFD technique is based on the image blurriness level. 

The technique utilises the blurriness parameter to find depth information. The 

DFAD technique is based on reducing the blurriness of the image by varying the 

optical system parameters, and then utilising DFAF rules to determine depth.   

Applications of depth computation techniques have been implemented on several 

types of imaging systems such as: white-light microscope, interferometer, 
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Transmission Electron Microscope (TEM), and Scanning Electron Microscope 

(SEM). Firstly, this study focuses on the DFAF technique on SEM, which is one 

of the key systems for micro-nano imaging. Even though SEM is essential for the 

micro-nano area, a SEM image may be affected by distortion, translation and 

rotation during image acquisition. This is due to internal and external noise such 

as interaction between the specimen surface and electron beam, artefact on the 

surface, and environmental vibrations (Snella, 2010). Therefore, the captured 

image may need to be adjusted by an image correction process.  

 
Various types of image registration models have been developed to correct the 

orientation of the image according to a reference image.  Image registration 

models can be classified into different groups. One group is based on feature 

matching such as the feature-based and area-based image registration models 

(Zitovaa and Flusser, 2003). Feature-based image registration models cannot 

perform without a geometrical descriptor. However, area-based image registration 

techniques utilise statistical criteria in the Spatial / Fourier domain. 

 
Fourier domain-based image registration models have a computational advantage 

compared to spatial domain-based models.  Phase correlation is one the most 

widely used Fourier domain-based image registration techniques. Although phase 

correlation can find image translation it cannot work without a log-polar 

transformation to solve translation, rotation and scaling problems.  The 

computational process of phase correlation and log-polar transformation covers 

the pixel level interpolation process but there is an error in the sub-pixel level and 
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so it requires pre-processing. One of the pre-processing stages can be image 

filtering.  This is an essential tool in the image processing area as the filtering 

process can change the image sharpness level. Different types of image filters can 

be utilised in a pre-processing step. 

 
The blurriness parameter is utilised in the DFD technique to find depth. The 

blurriness parameter of the image cannot be determined easily, unless it has been 

found by deconvolution using a known sharp original image. In practice, there is 

no information about the sharp image and the Point Spread Function (PSF) which 

is convolved with the former to produce the blurred actual image. Therefore, a 

blind deconvolution process has been utilised to find both the original image and 

the PSF. The blind deconvolution process is an optimisation problem where a 

sharp image is found at the optimum point of some objective function.  

 
 There are various types of optimisation techniques. They can be classified based 

on the variable types such as deterministic and stochastic optimisation techniques. 

Deterministic optimisation techniques can solve problems in polynomial time.  

However, most of the optimisation problems cannot be solved in polynomial time 

and stochastic techniques are required to solve them.  There are several stochastic 

optimisation techniques such as Stochastic Hill Climbing, Random Optimisation, 

Simulated Annealing, Tabu Search, Genetic Algorithm, Evolutionary 

Programming, Particle Swarm Optimisation, Ant Colony Optimisation, and the 

Bees Algorithm.  Stochastic Hill Climbing is a direct search optimisation 

algorithm. Random Optimisation is a random search technique which is one of the 
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simplest stochastic optimisation techniques.  Simulated Annealing is inspired by 

the annealing process of metals. Tabu Search is inspired by the human memory 

process. The Genetic Algorithm technique mimics natural evolution. Evolutionary 

Programming is also inspired by the same natural process.  Particle Swarm 

Optimisation models the way a flock of birds or a school of fish moves.  The Ant 

Colony technique is based on how ants behave.  Finally, the Bees Algorithm is 

inspired by the foraging routine of honey bees.  

 
The Bees Algorithm is a stochastic and population-based optimisation algorithm. 

The algorithm has both local and global search ability, which makes the Bees 

Algorithm effective at finding the true optimum solution to a problem. The Bees 

Algorithm has been successfully tested on various types of problems. The 

algorithm has been improved with different types of strategies such as 

neighbourhood size change, site abandonment strategy and population size 

change. These improvements were focused on the neighbourhood search site. 

Other improvements have been carried out with hybrid approaches involving 

combining the Bees Algorithm with other techniques such as Particle Swarm 

Optimisation and Ant Colony Optimisation.    

 

1.2.     Motivation 

 

The automatic focusing technique has been employed on SEM (Nicolls, 1995 and 

Batten 2000). (Nicolls, 1995) developed an automatic focusing-based depth 
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computation process for SEM. The process is based on utilising the optical 

transfer function of two images.  Depth computation with automatic focusing 

requires pre-processing to correct the captured image (Snella, 2010).  Phase 

correlation and log-polar transformation have been utilised for image correction 

(Zitova and Flusser, 2003). However, phase correlation and log-polar 

transformation can be sensitive to errors due to the interpolation process at the 

sub-pixel level. Thus the first motivation of this work was to improve pre-

processing for the phase correlation and log-polar transformation technique with 

image filtering. Then, effort was focused on relating the sharpness function value 

to depth.  This work was carried out by utilising the DFAF technique on a SEM. 

 
The pre-processed DFAF technique has been successfully applied in some 

particular cases but requires much computational effort. Therefore, it makes the 

process very slow. To avoid the heavy computational demands an alternative 

depth computation technique was developed using blind deconvolution which is 

an optimisation problem.  There are several blind deconvolution techniques 

developed based on the Genetic Algorithm, Tabu Search, and Simulated 

Annealing.  A novel Bees Algorithm-based blind deconvolution process was 

developed in this study to predict the blurriness parameter.  As mentioned before, 

the Bees Algorithm has been applied to various types of optimisation problems 

and the algorithm has been enhanced with several approaches such as improving 

the neighbourhood search and combining it with other optimisation algorithms. In 

this work, the Bees Algorithm was hybridised with Hill Climbing and its 
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neighbourhood search parameters were allowed to change adaptively.  These 

modifications were aimed at producing a more efficient optimisation algorithm. 

 

1.3.    Aim and objectives  

 

The overall aim of this research was to develop a robust depth computation 

technique for SEM. The first proposed depth computation technique was based on 

the pre-processed DFAF technique. The second depth computation technique was 

developed from blind deconvolution optimised using the Bees Algorithm. 

Initially, the Bees Algorithm was improved in two ways.  First, the 

neighbourhood size was allowed to change adaptively and site abandonment was 

adopted.  Second, hybridisation with Hill Climbing was implemented.   

The objectives of this work were: 

1. To develop a pre-processed phase correlation and log-polar transformation 

technique with image filtering. 

2. To develop a method of correcting SEM images by employing the 

proposed pre-processed phased correlation and log-polar transformation 

technique. 

3. To develop a method of computing the sharpness of the image for different 

distances, and then relating the distance and sharpness of corrected 

images. 
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4. To enhance the Bees Algorithm with adaptive neighbourhood size change 

and site abandonment strategy. 

5. To improve the Bees Algorithm by combining it with the Hill Climbing 

Algorithm. 

6. To apply the enhanced Bees Algorithm to the blind deconvolution 

technique. 

7. To compute the blurriness parameter with the optimised blind 

deconvolution technique. 

8. To relate depth and the blurriness parameter.  

 

1.4.     Research methods 

 

In carrying out this research, the following methodologies were adopted: 

1. Surveying previous work related to depth computation, image registration, 

optimisation and deconvolution techniques.  

2. Implementing the proposed algorithms in MATLAB 

3. Testing the pre-processed phase correlation and log-polar transformation 

technique on benchmark images and SEM images. 

4. Applying the pre-processed phase correlation and log-polar transformation 

technique on different depth levels of SEM images and correcting them. 

5. Applying the DFAF technique on corrected SEM images and relating 

sharpness values with distances.  
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6.  Improving the Bees Algorithm and then testing the improved algorithm 

on benchmark functions and an optimisation problem.  

7. Applying the improved Bees Algorithm to blind deconvolution. 

8.  Testing the optimised blind deconvolution techniques on benchmark 

images and SEM images. 

9. Applying the optimised blind deconvolution algorithm on different SEM 

images obtained at different depths. 

10. Relating the predicted blurriness parameter and depth. 

 

 

1.5.     Outline of the thesis 

 

The remainder of the thesis is organised as follows. 

Chapter 2 reviews the DFAF technique. The image registration technique is 

presented. Then optimisation techniques are described and the Bees Algorithm is 

highlighted. Finally, blind deconvolution is discussed.   

Chapter 3 introduces the phase correlation and log-polar transformation 

technique. Image filtering is introduced as a pre-processing step. The chapter 

describes the testing of the pre-processed phase correlation and log-polar 

transformation technique on both benchmark images and SEM images of a copper 

sample. Then it gives the results of applying the proposed technique to SEM 

images at different distances. Finally, the chapter presents the application of the 
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DFAF technique to corrected images and assignment of specific depths to 

corresponding sharpness values.  

Chapter 4 presents two improvements to the Bees Algorithm. The first 

improvement is based on using adaptive neighbourhoods and site abandonment. 

The second improvement is based on combining the Bees Algorithm and Hill 

Climbing. The improved Bees Algorithm has been tested on benchmark functions 

and a given optimisation problem.  The test results are presented in the chapter.  

Chapter 5 introduces the Bees Algorithm-based optimised blind deconvolution 

technique and presents its application to benchmark images and SEM images of a 

copper sample at different distances from the SEM. The chapter gives the 

relationship between image depth and the values of the blurriness parameter 

obtained.   

Chapter 6 lists the contributions of this research, summarises the conclusions 

reached and provides suggestions for further research.  
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Chapter 2 

 LITERATURE REVIEW 

 

2.1.     Preliminaries 

 

This chapter overviews the implementation of Depth from Automatic Focusing 

(DFAF) on a SEM, and image registration, deconvolution and stochastic based 

optimisation techniques. Non-Gaussianity-based blind deconvolution techniques 

are reviewed in detail. 

 

2.2.     Depth from Automatic Focusing on a SEM 

 

DFAF is one of the most widely used technique for depth determination in the 

area of machine vision (Tenenbaum, 1970; Krotkov, 1987; Xiong and Shafer, 

1993; Tyan, 1997; Subbarao and Tyan, 1998). To determine depth DFAF finds 

the sharpest image from different depth levels using sharpness measurement 

functions. These are the functions used with the Automatic Focusing (AF) 

technique which has been an important development of the SEM (Yousefi, et al., 

2011).  
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Originally proposed for use on the SEM by Nicolls (1995) the AF technique uses 

the Modulation Transfer Function (MTF) in the Fourier domain. This was 

developed by Batten (2000) as an iterative-based sharpness search algorithm to 

find the position of the sharpest image from a set of captured images.  

 
The image captured from an out of focus plane is blurred, where the degree of 

blurring is determined by the convolution operation, given in Equation 2.1 

(Pentland, 1987; Subbarao and Surya, 1994; Aslantas, 1997): 

 

  dmdn)ny,mx(h)y,x(f)y,x(g                                                             (2.1) 

 
where g is the observed image, h is the Point Spread Function (PSF) of the system 

and f is the focused image. Equation 2.1 is the basis of the computational process 

used for cleaning blurred images (Dobes et al., 2010). 

 
Image formation in a SEM is shown in Figure 2.1, where the focused image 

occurs on the crossover point of the beams. If the position of specimen is far from 

the beam crossover, the captured image will be blurred. In Figure 2.1, 0A  denotes 

the aperture size of the SEM, 0d denotes the distance from the focused image 

plane to the objective lens, 1d denotes the distance from the surface of the 

specimen to the objective lens, 1A  denotes the beam diameter size on the 

specimen surface and    denotes the distance from the specimen to the focused 

image plane.   



 12

 

 

 

 

 

 

 

 

 

 

  Figure 2.1 Image formation with SEM. 

 
 
The sharpness function will be a maximum or minimum (depending on the given 

sharpness function) on the focused image plane.  The sharpness functions have 

been classified into five groups by Aslantas (1997) as shown in Figure 2.2. The 

functions considered for use in this research are given in Table 2.1. A full list of 

sharpness measurement functions is given in Appendix A.  
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Figure 2.2 Classification of sharpness functions for the AF technique. 
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Table 2.1 Sharpness functions for the AF technique used in this project. 
 

No Function Name Explanation Function 
Parameter / Operator 

 

1 Tenengrad  
Function 

The function computes the gradient of 
the image, the sharpest image has 
maximum  value ( Schlag, et al., 1983 
and Aslantas 1997) 

F











 
 

N

x

N

y

)y,x(Imax
1 1

2   

 

22 )y,x(I)y,x(I)y,x(I yx  ; where T)y,x(I 2
 

)y,x(I x =

















1    0    1-

2   0    2-

1    0    1-

, )y,x(I y =

















1-   2-   1-

0     0      0 

1     2      1 

 

(Sobel Operator is available to compute the derivations). 

 

2 Brenner  

Function 

Brenner function computes the sum of 
squared differences between pixels and 
pixels two units away, the sharpest image 
has maximum value (Brenner, et. al, 
1984 and Aslantas 1997). 

F  












 
 

N

x

N

y

)y,x(I)y,x(Imax
1 1

22    where T)y,x(I 2
 

3 
Squared Gradient 
Function 

The function computes the sum of the  
squared differences of each pixel and 
neighbouring pixels one unit away, the 
sharpest image has maximum value 
(Santos, et al., 1997). 














  

 

2

1 1

1
N

x

N

y

)y,x(I)y,x(ImaxF  where T)y,x(I)y,x(I 1  

4 Range Function 

The function is based on the search for 

the maximum value of the difference 

between the maximum grey level and 

minimum grey level of the image  

(Firestone et al., 1991) 

F  minmax IImax     
where maxI  and minI  are the maximum and minimum grey level,  

respectively. 
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Table 2.1 Sharpness functions for the AF technique used in this project (cont.). 

 

 

5 

Histogram 

Entropy Function 

The function minimises the entropy of 

the histogram diagram (Aslantas, 1997; 

Santos, et al., 1997; Aslantas and 

Kurban, 2009). 
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where )I(P  is the probability of the grey level of  I in histogram 

diagram. and 0)I(P  

6 Laplacian 
Function 

Computes the sum squared Laplacian of 
the image and sharpest image has 
maximum value (Muller et al., 1974; 
Krotkov, 1987). 
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where T)y,x(I 2
 The following operators are available. 
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7 

Variance Function The variance function computes variance 

of images and the sharpest image has the 

maximum value (Aslantas, 1997; 

Yousefi, et al., 2011). 
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 16

2.2.1. Gradient-Based Functions 

 
Gradient-based optimisation functions are widely used for image enhancement.  

The aim is to maximise the gradient image brightness in the region of interest and 

is based on the physical observation that image focus quality affects edge 

characteristics (Aslantas and Kurban, 2009; Rudnaya et al., 2011). The best 

focused image has the sharpest edges and maximum value for the gradient.  

2.2.2. Histogram-Based Functions 

 
Histogram-based functions are a type of sharpness measurement function. This 

group of functions deal with image pixel values.  The image focus level can be 

measured from the histogram of pixel values. For example, the focused image has 

a higher range of grey level but a blurred image contains a lower range of grey 

level (Rudnaya and Ochshorn, 2011).  

2.2.3. Image Contrast-Based Functions 

 
Image contrast-based sharpness functions measure the variation of image pixel 

value. A sharp image has more variation than a blurred one (Aslantas, 1997).  

2.2.4. Peak Height and Valley Depth-Based Functions 

 
These types of sharpness measurement functions compute the amplitudes of peaks 

or valleys in the image (Aslantas, 1997). The maximisation of these parameters 
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gives the sharpest image because the best image has the sharpest edges and thus 

the pixel grey level has its widest range.   

2.2.5. Image Transform-Based Functions 

 
Image transformation-based functions transform the image from the spatial 

domain to the desired domain. Rudnaya, et al., (2010) have used image 

transformation based on the Fourier transform and shown that because well- 

focused images contain sharper edges than blurred images, they have higher 

frequency components. Thus, the Fourier transform can be employed to find the 

sharpest image by searching for the transform with maximum value.  

 
Other types of transformations are orthogonal transformations such as Discrete 

Cosine and Walsh-Hadamard transformations and can be used to measure image 

sharpness (Aslantas, 1997).  

 

2.3.     Image Registration 

 

Image registration process refers to the matching of two images that share 

common information such as images of the same scene or images of the same 

object which can be taken either at different times or using different sensors. 

 
The image registration process has been applied in many applications in machine 

vision; e.g. medical imaging, computer vision, military-based image vision, and 
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satellite images. The image registration process consists of the following steps 

(Istenic et. al, 2007; Zitova and Flusser, 2003): 

 Feature detection, 

 Feature matching, 

 Transform model estimation, and 

 Image sampling and transform. 

 
Image registration techniques can be classified into different groups based on the 

above steps. One of the classifications was by Zitovaa and Flusser (2003). They 

classified image registration techniques based on feature matching properties (step 

2 in the list). According to the feature matching process, the image can be 

classified into either Feature Based Image Registration (FBIR) or Area Based 

Image Registration (ABIR). FBIR techniques are based on the correspondence 

between features in the images such as geometrical shapes and so require a 

geometrical descriptor (Oztireli and Basdogan, 2008).   

 
ABIR techniques are based on a matching criterion which computes pixel values 

and variations in both source and target images (Zitovaa and Flusser, 2003). ABIR 

techniques use statistical criteria such as normalised cross correlation in the 

spatial domain and the phase correlation in the Fourier domain (Hong and Zhang, 

2007).  

 
FBIR techniques are sensitive to the image content, that is to say, whether the 

image content is rich in detail or not (Matungka et al., 2009). ABIR techniques 
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have been much more widely used than FBIR ones. The latter carry out the image 

registration process without attempting to detect the salient objects, which is a 

weakness compared to ABIR. However, ABIR techniques while showing good 

performance on individual problems of translation, rotation and scaling may fail 

when having to deal with combinations of translation, rotation and scaling. To 

overcome this weakness, the technique needs to be improved.  

2.3.1. Phase Correlation and Log-polar Transformation  

 
Phase correlation is one of the most popular ABIR techniques. The phase 

correlation is performed in the Fourier domain after the Fourier transform has 

been completed but has difficulty when dealing with combined problems of image 

translation, rotation and scaling. To overcome these problems the log-polar 

transformation is used (Reddy and Chatterji, 1996; Ding et al., 2010). 

The log-polar transformation is a nonlinear and non-uniform transformation to 

map the Cartesian coordinate system onto the log-polar coordinate system (Zokai 

and Wolberg, 2005). The nonlinearity is related with the polar mapping and the 

non-uniformity is the property of logarithmic scaling. 

   

2.4.      Optimisation 

 

Optimisation is a mathematical technique concerned with finding the “best” 

solution of a problem. The best solution is the fittest solution in the solution space. 
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A multitude of optimisation techniques have been used in many fields such as 

engineering, physics, chemistry, medicine, manufacturing and economic analysis. 

However, there is no optimisation technique that is suitable for all problems 

(Wolpert and Macready, 1997). 

 
Optimisation techniques use the following when searching for optimum values: 

 Objective functions, 

 Variables, 

 Constraints, and 

 Search Space. 

 
The purpose of an optimisation technique is to minimise / maximise the objective 

function with respect to the constraints and search space, given below: 

Given:   

function:    )( Xf  can be defined as nAf :  

variable:    nxxxxX ,........,, 321  ,   AX     and A  is subset of n  

      dimensional Euclidian space n , 

constraints: 

      inequality constraints:    0)( Xgi ,          mi ....3,2,1   

      equality constraints:       0)( Xhi ,          pi ....3,2,1   

  
Sought: 
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Minimisation: 

               AX 
^

 such that )()(
^

XfXf   for all AX    

Maximisation:  

AX 
^

 such that )()(
^

XfXf   for all AX    

The domain A  of f  is referred to as the “search space” or “parameter space”, 

each element of A  is called a “candidate solution”, the function “ )( Xf ” is called 

the “objective function” (Blondin, 2009). Candidate solutions are substituted in 

the objective function and seek the minimised / maximised value. The minimised / 

maximised solution of an objective function is called the “optimal solution”. The 

optimum value searching technique is also called the “mathematical programming 

technique” (Rao, 1996).  

2.4.1. Classification of Optimisation Techniques 

 
This section classifies the different types of optimisation techniques. One 

classification is based on the types of variables, whether deterministic or 

stochastic variables. Deterministic variables are used in the deterministic 

optimisation technique and stochastic variables are used in stochastic optimisation 

techniques. Deterministic optimisation techniques are straightforward methods to 

solve the optimisation problem in polynomial time, and there is a clear 

relationship between the characteristics of the possible solutions and their utility. 

When the relationship between candidate solution and problem’s fitness are 

complicated, not obvious, and have no solution in polynomial time, then 
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stochastic optimisation techniques provide an alternative solution  that looks for 

optimum value in the desired time by generating random variables. The variable 

based classification of the optimisation techniques is shown in Figure 2.3 (Weise, 

2009). In this study, the focus is on Stochastic-based optimisation techniques. The 

Bees Algorithm is reviewed in detail which will be utilised in further chapters. 
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Figure 2.3 Classifications of optimisation techniques based on parameters used. 
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2.4.2. Stochastic Hill Climbing  

 
The Stochastic Hill Climbing (SHC) technique is a local search technique which 

is based on a direct search strategy (Schmidhuber and Zhao, 1999). SCH chooses 

the next iteration in proportion to the steepness of an uphill move.  SHC looks for 

the first best neighbour, and the population size of SCH is selected in a random 

manner (Rosete-Suarez et al., 1999; Brownlee, 2011).   

2.4.3. Random Optimisation  

 
The Random Optimisation (RO) technique is one of the simplest numerical 

techniques used to search for the global optimum when the gradient is difficult / 

impossible (Li and Rhinehart, 1998). The starting point of stochastic-based 

optimisation techniques is often RO (Kristoffersen, 2007). 

 
The initial point of the RO technique is chosen randomly. There is a “reproduce” 

operator defined in RO that looks like the mutation operator of an evaluation 

strategy. The purpose of the reproduce operator is to reach all of the points in the 

search space from every other point (Weise, 2009).  

2.4.4. Tabu Search  

 
Tabu Search is a single-point local search technique with local-optima avoidance 

modelled on the human memory process (Rayward-Smith et al., 1996; Pham and 

Karaboga, 2000). The memory process is the recorded list of previously seen 
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solutions (Gendreau and Potvin, 2010) and is called a “tabu list”. To avoid 

memory problems the length of the tabu list is limited and older solutions are 

removed (Rothlauf, 2011). Thus the tabu list improves the local search 

mechanism. If the search process stops at a local minimum and this does not allow 

a better solution, the process cycles back to previously recorded solutions 

encountered before the local minimum.  

2.4.5. Simulated Annealing 

 
In metallurgical science annealing is a process which consists of the heating and 

controlled cooling of metals that can change some of their physical properties 

including strength, hardness and ductility (Koppen and et al., 2011). The 

annealing process is applied to relieve the metals’ internal stresses so that if the 

temperature change is correct the metal will have the right hardness and ductility, 

but if the temperature change is too rapid the metal may be too brittle. Simulated 

Annealing (SA) is a single-point random search technique derived from the 

simulation of the annealing process and is a general method of locating an 

approximation of the global minimum / maximum when the search space is large 

(Koziel and Yang, 2011).  SA is also considered as a version of the classical 

“Metropolis Method” which simulates the behaviour of atoms at a given 

temperature (Zhigljavsky and Zilinskas, 2008; Belegundu and Chandrupatla, 

2011). The annealing process can be defined in terms of energy change (heating) 

modelled as a transition probability given by the Boltzmann probability 

distribution function as shown in Equation (2.2): 
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Tk

E

Bep




                                                                                                              (2.2) 

 

where Bk  is the Boltzmann’s constant, T  is the temperature of the annealing 

process and E is the energy change level of the process.  

SA can be performed as follows for a stated minimisation problem. A feasible 

arbitrary chosen starting point is  nxxxxX ,........,, 321 , and its objective 

function )( Xf  is selected. The step size is S  and an arbitrary random number is 

defined as R . The initial selected X vector will be assigned as the minimum point. 

Then the next probable point will be predicted in the vicinity of the current point 

as given by Equation 2.3: 

 

RSXX ii 1                                                                                                   (2.3) 

 

The objective function value of current point is given by )( iXf and the next 

probable point’s objective value is given by )( 1iXf . Equation (2.2) can be 

modified for a given SA by defining the link between the energy change E  and 

the objective function changes of problem f  as shown in Equation 2.4: 

 
fE                                                                                                               (2.4) 

where ii fff  1 . 
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  is usually given the value unity for simplicity, see Equation 2.5: 

 

Tk

f

Bep




                                                                                                             (2.5) 

 

The value of Bk affects the convergence characteristics of the method and is 

usually given the value unity (Rao, S., S., 1996).   

The probability of the next probable point is defined by (Koppen at al., 2011) as 

in Equation 2.6: 














T

f

e

p

1

    

otherwise

fif 0

                                                                   

(2.6) 

 

A promising new point 1iX  is accepted unconditionally when )()( 1 ii XfXf  ; a 

non-promising new point, where )()( 1 ii XfXf  , is accepted with probability 

T

f

ep




 when the value of rp  , where r is a random number, 10  r , which is 

defined as a threshold for acceptance of a non-promising location.  

In annealing an important parameter is the rate of cooling which controls the 

annealing process. Here the widely-used geometric cooling schedule has been 

implemented; see Equation 2.7:  

i
ii TT 1                                                                                                           (2.7) 
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where “ iT ” is the current temperature, “ i ” is the number of the current iteration 

and “ ” is the cooling factor which is a constant between 0 and 1.   

2.4.6. Genetic Algorithm 

 
The Genetic Algorithm (GA) is a population-based algorithm which is inspired 

from genetic systems in nature. The philosophical basis of the GA was proposed 

by John Holland in the early 1960s and its engineering applications were studied 

by Goldberg in 1983. In nature weak and unhealthy species are faced with 

extinction by natural selection, but stronger and healthier ones are able to pass 

their genes to future generations. The healthier genes will be passed to future 

generation and can be strengthened by crossover and mutational processes.  

GA performs the genetic reproduction process and assesses the survival of the 

best individuals’ strategies (Beledungu and Chandrupatla, 2011). The canonical 

version of GA has two fundamental operators which are crossover and mutation 

(Rutkowski, 2008). The canonical version consists of binary strings which 

represent the chromosomes of individuals.  

Crossover in GAs creates offspring by randomly mixing sections of the parental 

genome and mutational processes generate random variations in populations, both 

of which are adaptation processes found in nature. The transformations can be 

defined as (Zelinka et al., 2010):  

 Structure of child’s chromosome = Hereditary material (chromosomes of 

organism), 



 29 

 Crossover operation = Crossover in the parental chromosomes 

(chromosomes exchange between parental chromosomes to provide a child 

chromosome), 

 Mutation operation = Random changes in the child’s chromosomes, 

 Fitness evaluation = Natural selection process in nature.  

2.4.7. Evolutionary Programming 

 
Evolutionary Programming (EP) is another type of evolutionary algorithm 

developed by Fogel (1960) to simulate evolution as a learning process with 

artificial intelligence (Back et al., 1997). EP is implemented in machine learning 

by finite state machines and numerical optimisation techniques (Grosan and 

Abraham, 2011). Traditional EP uses the Gaussian mutation operator and no 

crossover operator. Modern EP uses self-adaptation of the mutation operator. The 

population of the crossover operator will be selected by the mutation operator. EP 

uses the real value representation for its chromosomes. The steps in EP are given 

below: 

 The EP technique starts by generating an initial population, 

 The second step is replication of initial solutions. Each of these crossover 

solutions are mutated according to the Gaussian distribution function (or 

any chosen distribution function). The mutation operator is judged based 

on the distribution function, 
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 The last step is the evaluation of the crossover solution of population.  

Determination of the retained solution depends on the selected technique 

such as stochastic tournament.  

2.4.8. Particle Swarm Optimisation 

 
Particle Swarm Optimisation (PSO) is a type of Swarm-Based Optimisation 

Technique (SBOT) which was inspired by the behaviour of socially organised 

populations in nature such as animal herds or bird flocks (Blum and Merkle, 

2008). PSO was proposed by Kennedy and Eberhart, (1995).  The population in 

PSO is called the swarm and each individual is called a particle (Li and Liu, 

2011). Each particle represents a possible solution of the problem (Lamm and 

Unger, 2011). The particles in PSO collectively search for the global optimum 

with given velocities (Floreano and Mattiussi, 2008). The velocities of individual 

particles are stochastically adjusted based on the previous best position of each 

individual particle. The performance of the algorithm is measured with a fitness 

function and it will run until any given termination criterion is satisfied.  

2.4.9. Ant Colony Optimisation  

 
Ant Colony Optimisation (ACO) technique is also an SBOT, which was inspired 

by pheromone-based strategies of ant foraging.  

When looking for food, ants initially randomly search the area immediately 

surrounding their nest. After finding a food source an ant carries some of it back 

to the nest. During this return trip, the ant deposits trail of a chemical pheromone 
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on the ground. The quantity of pheromone deposited is an indicator to other ants 

of the direction to the food source and the quantity and quality of the source 

(Dorigo & Stützle, 2004). 

In nature, the foraging behaviour of ants is based on finding the shortest path 

between the source and their nest (Panigrahi et al, 2011). When ants find a food 

source, they leave their pheromone trails on the path when they return to their nest 

from the source and the other ants find the path by using the pheromone trails and 

the pheromone level.  If the selected path is the shortest path, the pheromone level 

will be reinforced in other ways but it will evaporate as time passes (Sumathi and 

Surekha, 2010). A short path will be visited by more ants, and thus the pheromone 

level will be higher compared to other paths. ACO was inspired by the above 

behaviour of ants and applied to optimisation problems to determine the optimum 

value. ACO was introduced by Dorigo et al., (1996), for solving combinatorial 

optimisation problems such as the Travelling Salesman Problem (TSP), which 

entails the cost function being optimised. The construction of a candidate solution 

is done according to a probabilistic state transition rule; a candidate solution is 

defined as moving from one node ( i ) to another ( j ), which is given in Equation 

2.8: 
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where  )(tp m
ij  

: Transition probability from node i  to node j  , 

 ij
       

: The posterior effectiveness of the move from node i  to node j , 

         : The parameter to control the influence of ij
,
 

 ij
      

: The prior effectiveness of the move from node i  to node j , 

         : The parameter to control the influence of ij
,
 

 m
iN      : The set of feasible nodes for ant m  when located on node i . 

The pheromone concentration ij  represents how desirable it is to make a move 

from node i  to node j . The evaporation of pheromone is given in Equation 2.9:  

 
)()1()( tt ijij                                                                                                (2.9) 

 
where          : The reduction rate of the pheromone level,  ( ]1.0[ ). 

 
The purpose of evaporation is to avoid all the ants premature converging on a 

single good solution and to have diversification in the search space. 

The pheromone update starts with completion of a path by each ant, which is 

associated with the best found solution among all ants. The added value depends 

on the quality of the selected solutions. The update process is shown in Equations 

2.10-2.11: 
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)()()1( ttt ijijij                                                                                     (2.10) 





An

m

m
ijij t

1

)(                                                                                               (2.11) 

where  An          : The number of ants, 

)(tm
ij

 
: The amount of pheromone deposited by ant m from node i  to 

node j  at time step t . 

2.4.10. The Fundamentals of the Bees Algorithm 

 
The Bees Algorithm is a type of SBOT, which was proposed by Professor D. T. 

Pham and his team at MEC-Cardiff University in 2005 (Pham et. al. 2005; 2006a). 

 
The Bees Algorithm was inspired by the food foraging behaviour of honey bees. 

A swarm of honey bee colony consists of a queen bee, which is the mother of all 

colony members, and thousands of worker bees (Seeley, 1995).  After honey bees 

emerge from their cell, they have a duty to clean the cell, store food, construct the 

comb, feed the larva and when they are three weeks old, they start to forage and 

stop doing the other tasks.  

2.4.10.1. The Foraging Behaviour of Honey Bees  

 
A colony of honey bees can exploit a large number of food sources in big fields 

and they can fly up to 11 km to exploit food sources (Seeley, 1995 and Gould and 

Gould, 1988). The colony employs about one-quarter of its members as forager 
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bees. The foraging process begins with searching out promising flower patches by 

scout bees. The colony keeps a percentage of the scout bees during the harvesting 

season. When the scout bees have found a flower patch, they will look further in 

hope of finding an even better one (Gould and Gould, 1988). The scout bees 

search for the better patches randomly (Von Frisch, 1955).  

 
The scout bees inform their peers waiting in the hive as to the quality of the food 

source, based amongst other things, on sugar levels. The scout bees deposit their 

nectar and go to the dance floor in front of the hive to communicate to the other 

bees by performing their dance, known as the ‘waggle dance’ (Seeley, 1995). 

2.4.10.2. The Waggle Dance of Honey Bees  

 
The waggle dance is named from the wagging run (in which the dancers produce a 

loud buzzing sound by moving their body from side to side), which is used by the 

scout bees to communicate information about the food source to the rest of the 

colony. The scout bees provide the following information by means of the waggle 

dance: the quality of the food source, the distance of the source from the hive and 

the direction of the source (Gould and Gould, 1988; Von Frisch, 1955).  

 
The waggle dance path has a figure of eight shape. Initially the scout bee vibrates 

its wing muscles which produces a loud buzz and runs in a straight line the 

direction of which is related to the vertical on the hive and indicates the direction 

of the food source relative to the sun’s azimuth in the field, see Figure 2.4 a and b 

(Huang, 2008). The scout then circles back, alternating a left and a right return 
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path (Talbi, 2009). The speed / duration of the dance indicates the distance to the 

food source; the frequency of the waggles in the dance and buzzing convey the 

quality of the source; see Figure 2.4c (Huang 2008).  These will influence the 

number of follower bees. 

 

a) b) 

 

c) 

Figure 2.4 a) Orientation of waggle dance with respect to the sun, b) 

Orientation of waggle dance with respect to the food source, hive and sun, c) 

The Waggle Dance and followers. 
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2.4.10.3. Applications of the Bees Algorithm  

 
This section reports the applications of the Bees Algorithm to various types of 

optimisation problem. 

 
The first application of the Bees Algorithm was on the continuous type 

benchmark functions optimisation when the algorithm was performed on nine 

continuous type benchmark functions (Pham et al., 2006a). The Bees Algorithm 

was then tested on more continuous functions and the results compared with those 

of other optimisation algorithms (Pham and Castellani, 2009a). It was found that 

the performance of the Bees Algorithm was very effective on the benchmark 

function compared to the other algorithms.  

 
The Bees Algorithm was also implemented on multi-objective optimisation 

problems. The first application was on the welded beam problem by 

(Ghanbarzadeh, 2007). The goal of the study was to minimise the cost of 

fabrication by finding a feasible weld thickness, weld length, beam thickness and 

beam width under the stress constraints. The second application was on a carbon 

energy system and environmental dispatch problem (Lee, 2010). The aim of the 

study was to design a low carbon system by minimising both total cost and 2CO  

emission. The performance of the Bees Algorithm was most promising compared 

to all the other examined algorithms. 

 
Another application of the Bees Algorithm was with neural networks. The first 

implementation was on the training of a Learning Vector Quantisation network 
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(Pham et al., 2006b). The second was the training of a Multi Layered Perceptron 

neural network (Pham et al., 2006c; Koc, 2010).  The third was on the training of 

a Radial Basis neural network (Pham et al., 2006d). The simulation results of 

training and testing proved that the Bees Algorithm is a strong classifier and 

optimisation tool. 

 
The Bees Algorithm was also implemented on manufacturing systems. Pham et 

al., (2007a) applied the Bees algorithm to cellular manufacturing systems where 

the cell information problem was optimised by the Bees Algorithm. The results 

showed that the Bees Algorithm is applicable for combinatorial applications. 

 
The Bees Algorithm was tested on the job scheduling problem and the results 

were compared with TS, GA, PSO and their combinations (Pham et al., 2007b). 

The Bees Algorithm performed better than other optimisation algorithms on this 

combinatorial optimisation problem.  

 
Another application of the Bees Algorithm was on clustering problems. The Bees 

Algorithm was implemented on the K-means and C-means clustering algorithms 

(Pham et al., 2007c; Al-Jabbouli, 2009). And the results showed that the Bees 

Algorithm could be a powerful tool for clustering applications. 

 
A robotic application of the Bees Algorithm has been proposed (Pham et al., 

2008). The Bees Algorithm was employed for learning the inverse kinematics of a 

robot manipulator. The results from this application were excellent. Another 
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robotic application was proposed by (Pham et al., 2009b), whereby the Bees 

Algorithm was employed to optimise the membership functions of fuzzy logic. 

The proposed algorithm tuned the fuzzy logic controller parameter for stabilising 

and balancing an acrobatic robot. The results showed that the Bees Algorithm 

improved the gain of the fuzzy logic controller. 

 
The performance of the Bees Algorithm was improved using a hybrid approach 

such as combining it with PSO (Sholedolu, 2009). PSO has advantages in an 

adaptive neighbourhood search and by including the advantages of PSO in the 

Bees Algorithm; the convergence rate of the algorithm (called modified PSO) was 

improved. The performance of the PSO - Bees hybrid algorithm on the examined 

problems was very promising and fast.  

 
The Bees Algorithm can be optimised, tuning its parameters will provide an even 

more robust and efficient algorithm.  One of these improvements was carried out 

by (Otri, 2011) who improved the Bees Algorithm by adapting it to optimise itself 

and to decrease the sensitivity of the parameters. 

 
The Bees algorithm has also several enhancements, one of the enhancements was 

proposed based on an early neighbourhood search and efficiency based approach 

and tested on benchmark function (Pham et al., 2012a). According to the results, 

the proposed enhanced Bees Algorithm performed better than other optimisation 

algorithms. 
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From general considerations, it has been said that there will be no single 

optimisation algorithm that will perform equally well on all problems (Wolpert 

and Macready 1997). However, the performance of the Bees Algorithm is very 

impressive because it has the capability to perform both local and global searches 

using exploitation and exploration strategies. These features are the main 

strengths of the Bees Algorithm and it has been shown to perform very effectively 

on a wide range of problems.  The algorithm was also available in the author’s 

laboratory where extensive research had been carried out on it.  Therefore it was 

selected for this study.  

Further, the Bees Algorithm will be utilised in blind deconvolution and the results 

of the proposed algorithm will be compared with a Simulated Annealing-based 

blind deconvolution technique in chapter 5.  

 

2.5.     Image Deconvolution 

 

Image formation can be identified as the transformation of a 3D object onto the 

2D sensor plane which is a depth-weighted, mapped from the image intensity of 

the object. The image formation process uses the data from a sensor and prior 

information about the image. The mathematical modelling of image formation can 

be written using a convolution given in Equation 2.1. The convolution operation 

can be denoted with “*” operator, so Equation 2.1 can be written as: 
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)y,x(h*)y,x(f)y,x(g                                                                                 (2.12) 

 
If the observed image contains noise then Equation 2.12 can be rewritten as: 

 
)y,x(n)y,x(h*)y,x(f)y,x(g                                                                  (2.13) 

 
where )y,x(g  is the observed image, )y,x(f  is the original image, )y,x(h  is the 

PSF of the imaging system and )y,x(n  is the noise in the observed image.  

 
Equation 2.13 can be written in the Fourier domain as: 

 
)v,u(N)v,u(H)v,u(F)v,u(G                                                                     (2.14) 

 
where )v,u(G , )v,u(F , )v,u(H  and )v,u(N are the Fourier transforms of 

)y,x(g , )y,x(f , )y,x(h  and )y,x(n , respectively.  

 
The original image can be recovered using a deconvolution process which is the 

inverse process of the convolution operation. In the spatial domain this inverse 

operation is not cost efficient. Thus the Fourier domain operation gives a better 

and faster response for the deconvolution process, as shown in Equation 2.15 

(Madden et al., 1996): 

 

)v,u(H

)v,u(N

)v,u(H

)v,u(G
)v,u(F                                                                              (2.15) 
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The inverse Fourier transform of Equation 2.15 gives the original image )y,x(f . 

With respect to the deconvolution problem, it is assumed that the PSF of the 

original image is known. When there is no information about the PSF, 

deconvolution becomes a very complex and difficult process. Recovering the 

original image and PSF without or having less prior information is, however, 

possible with blind image deconvolution. 

2.5.1. Blind Image Deconvolution 

 
Blind Image Deconvolution (BID) is a fundamental process in machine vision. 

BID looks for the original image and its PSF when there is only partial 

information or no information available about the original image and its PSF. 

 
Several methods have been proposed for finding the original image and PSF. One 

of the most basic approaches is to obtain information about the original image; 

physical information about the original image such as the non-negativity and 

finite support, or statistical information such as entropy or probability density 

function (Kundur and Hatzinakos, 1996). 

 
Kundur and Hatzinakos (1996) grouped BID techniques into five main categories: 

 Zero sheet separation methods, 

 A priori blur identification methods, 

 Auto-regressive moving average methods, 

 Non-parametric methods based on high order statistics methods, and 
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 Non-parametric deterministic image constraints restoration methods. 

 
The Zero Sheet Separation (ZSS) methods were developed by Lane and Bates 

(1987) and are computationally intensive. They use the z-transform and assume 

that the observed image is formed by the convolving of several individual 

components.  

 
The Priori Blur Identification (PBI) methods are based on the estimation of prior 

information about the PSF to use in the BID model. The technique works with a 

known parametric form of the blur such as the linear camera motion of an out of 

focus system (Kundur and Hatzinakos, 1996).  Liu et al. (2003) employed a PBI 

method with information of the blur type and this information was used as a blur 

prior to the Maximum A-Posteriori (MAP) to recover the original image and PSF. 

The image recovery process cannot perform well when there is no parametric 

form of the blur type.  

 
Auto-Regressive Moving Average (ARMA) methods are one of the most widely 

used methods in BID. The original image is modelled as an Auto-Regressive (AR) 

process and the PSF is modelled as a Moving Average (MA) (Blume, 2007).  

Thus, the BID problem is transformed into an ARMA parameter estimation 

problem (Yap et al., 2003). To overcome the problem of accurate prediction of 

parameters under conditions of instability and non-uniqueness, additional 

techniques have been employed such as Maximum Likelihood (ML), Generalised 
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Cross Validation (GCV) and Neural Networks (NN), which are distinct among 

ARMA methods (Reeves and Mersereau, 1992).  

 
Non-Parametric Methods Based on the Higher Order Statistics have been used for 

solving the BID problem. The methods are based on the minimisation of the given 

cost function that accounts for the probabilistic non-Gaussian nature of the 

original image (Kundur and Hatzinakos, 1996; Jayaraman et al., 2009). Typically 

these models have been applied when the image or the edges are modelled as 

sparse (Campisi and Egiazarian, 2007). 

 
Non-Parametric Deterministic Image Constraints Restoration (NPDICR) methods 

use deterministic constraints with an iterative solution approach instead of using a 

parametric model for the original image or the PSF. NPDICR methods are 

different from the rest of BID methods (Kundur and Hatzinakos, 1996).  BID 

techniques proposed as NPDICR methods include iterative blind image 

deconvolution (Lam and Goodman, 2000; Biggs and Andrews 1997; Ayers and 

Dainty, 1988), genetic algorithm-based blind image deconvolution (Chen et al., 

1996; Yin, 2006), blind image deconvolution using least squares minimisation 

(Law and Lane, 1996) and simulated annealing-based blind image deconvolution 

(McCallum, 1990; Yu, 2008). Each of these techniques has an iterative-based 

approach to find the optimum solution for the sharp image and PSF. Apart from 

the model of Yu (2008) all other techniques try to recover the original image from 

the observed image by a recursive degradation model. Yu (2008) used an 
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Independent Component Analysis (ICA) based non–Gaussianity analysis with a 

simulated annealing technique.  

2.5.2. ICA-Based Non-Gaussianity Analysis 

 
Independent Component Analysis (ICA) is one of the Blind Source Separation 

(BSS) methods, which has been used for separating data into its original 

informational components (Stone, 2004). ICA is widely used in the signal 

processing and image processing area. It assumes that the observed signal is a 

linear combination of each independent component, as given in Equation 2.16 

(Hyvarinen et al., 2001): 

 

nn
* Sa...SaSaX  2211                                                                             (2.16) 

where *X is observed signal, n, a,...a,a 21  are the mixing coefficients of the n  

components respectively and nS,...S,S 21  are the source signals.  

 
It is assumed that all the components of the observed signal are statistically 

independent and non-Gaussian (Wang et al., 2009).  The non-Gaussianity is based 

on the Central Limit Theorem, which states that the distribution of the sum of n  

independent random variables approaches the Gaussian. It means that the 

observed signal is closer to the Gaussian distribution than its components. 
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A blurred image can also be separated into two main components, the original 

image and the PSF, using non-Gaussianity analysis. The non-Gaussianity can be 

measured with the following techniques: 

 Negentropy analysis, 

 Approximated negentropy analysis, 

 Mutual information analysis, and 

 Kurtosis analysis. 

2.5.2.1. Negentropy Analysis  

 
Negentropy is a non-Gaussianity measurement technique which is an information 

theoretic unit contrast function. Negentropy is based on differential entropy. The 

entropy of a random variable can be defined as a degree of information that the 

observation of the variables gives. The entropy of a discrete variable can be 

written as in Equation 2.17: 

 

 )Y(Plog)Y(P)Y(H                                                                               (2.17) 

 
where Y denotes a discrete random variable, )Y(H  is the entropy of  )Y(P  that 

denotes the probability density function of Y . 

 
The entropy is identified as differential entropy for continuous type variables, 

given in Equation 2.18 (Wang et al., 2009): 
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dy)y(flog)y(f)y(H                                                                               (2.18) 

The negentropy can be defined as: 

 
)y(H)y(H)y(J gauss                                                                                (2.19) 

where y  is a continuous type  random variable, )y(J  denotes the negentropy of 

y , gaussy  is a Gaussian random variable of the same covariance matrix as y .  

2.5.2.2. Approximated Negentropy Analysis  

 
The estimation of the negentropy is a difficult task and thus it remains as a 

theoretical function (Hyvarinen et al., 2001). However it has been proposed that 

some approximated negentropy functions can be used to measure non-

Gaussianity. One of these approaches is to use higher-order moment functions, as 

given in Equation 2.20 (Hyvarinen, 1998): 

 

223

48

1

12

1
)y(kurtosis}y{E)y(J                                                              (2.20) 

  
where y  is a random variable which is assumed to be of zero mean and unit 

variance, }y{E 3  is the third moment function of y , )y(kurtosis  denotes the 

kurtosis. 

 
Another approximation to the negentropy is based on the maximum entropy 

principle (Hyvarinen, 1998). It is shown in Equation 2.22: 
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    
2

1




p

i
iii )v(GE)y(GEk)y(J                                                               (2.22) 

 
where  y  is assumed to be a random variable with zero mean and unit variance, v  

is  a Gaussian variable of zero mean and unit variance, ik  are the constants, 

))y(G(E i  are the expected value of the )y(Gi  functions, and )y(J  is the 

negentropy of y , 2p . For simplicity, G functions are chosen as in Equation 

2.23 and 2.24 (Hyvarinen, 1999): 

 

xacoshlog)x(G 11                                                                                          (2.23) 

 

2
2

2
2xa

e)x(G



                                                                                                  (2.24) 

where 121 a,a  are constants. 

2.5.2.3. Mutual Information Analysis  

 
Mutual information is a measure between random variables that can be used to 

measure the amount of information shared between them (Hyvarinen, 1999). The 

shared information among n random variables is shown in Equation 2.25: 

 





n

i
in )y(H)y(H)y,...,y,y(I

1
21                                                                 (2.25) 
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where ny,...,y,y 21  are the n random variables, )y,...y,y(I n21 denotes the mutual 

information among n random variables, )y(H i  is the entropy of the i th element 

and )y(H  is the joint entropy. 

 
It is expected that the mutual information between independent components is 

zero. Therefore, the minimisation of the mutual information can be used for non-

Gaussianity analysis. The determination of non-Gaussianity with mutual 

information-based techniques requires a heavy computational process.  

2.5.2.4. Kurtosis Analysis  

 
Kurtosis, which is a fourth-order cumulant, is one the classical measures for non-

Gaussianity. Kurtosis is a measure of distribution, indicating whether the data are 

peaked or flatter than a Normal distribution which has a zero mean and unit 

variance (Crawley, 2005). The kurtosis of a random variable y  is given in 

Equation 2.26: 

 
224 3 })y{E(}y{E)y(kurtosis                                                                     (2.26) 

If it is assumed that y has unit variance, Equation 2.26 can be rewritten as: 

34  }y{E)y(kurtosis                                                                                  (2.27) 

 
Kurtosis can be negative, positive or zero. The kurtosis of a Gaussian random 

variable y is zero; on the other hand the kurtosis of a non-Gaussian random 

variable is non-zero. If the random variable has a negative kurtosis, it is called a 
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sub-Gaussian such as a Raised Cosine distribution (RCD) which has a kurtosis 

value of -0.5937 (Sun, 2010).  When the kurtosis of the random variable is 

positive, it is called super-gaussian such as a Laplace Distribution (LD) which has 

a kurtosis value of 3 (Sun, 2010). Density graphs for the RCD, LD and Normal 

distributions, are shown in Figure 2.5.  

 
The calculation process of kurtosis is easier than calculation of negentropy, 

approximated negentropy and mutual information. Therefore kurtosis analysis 

will be utilised in the ICA-based image recovery process to determine the original 

image and PSF. 

 

 

 

 

 

 

 

 

 

 

Figure 2.5. Density graphs for Laplace distribution, Gaussian distribution 

and Raised Cosine distribution. 
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2.6.     Summary 

This chapter has briefly described the DFAF technique, image registration 

techniques, optimisation techniques, deconvolution and BID techniques. Kurtosis-

based non-Gaussianity analysis has been highlighted. The aim of this chapter was 

to provide information on and background for the subsequent chapters. In Section 

2.2, the image formation in SEM and DFAF technique is presented and will be 

discussed with phase correlation and logarithmic polar transformation in Chapter 

3. In section 2.4, the stochastic optimisation techniques were discussed. One of 

the stochastic based optimisation algorithms, the Bees Algorithm, is presented in 

detail, which will be used in Chapters 4 and 5. In Chapter 4, an improvement to 

the Bees Algorithm will be presented. Finally, a novel depth computation 

technique will be described in Chapter 5 based on BID optimised with the Bees 

Algorithm for SEM images and the results of proposed algorithm will be 

compared with a Simulated Annealing-based optimised BID. Further, the Bees 

Algorithm-based optimised BID will be utilised to determine the depth between 

surface and objective lens in SEM. Note that none of the techniques surveyed are 

related to blind deconvolution and optimisation with depth computation.  
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Chapter 3 

 DEPTH FROM AUTOMATIC FOCUSING USING PRE-

PROCESSED IMAGE REGISTRATION 

TECHNIQUES 

 

3.1.     Preliminaries 

 

DFAF is a popular technique for depth computation and has been used on various types 

of imaging systems such as white-light microscopes, white-light interferometers 

and Transmission Electron Microscopes (TEM). In this study, the DFAF 

technique is applied to a Scanning Electron Microscope (SEM) image after an 

image correction process. 

 
SEM is one of the widely used vision systems in micro and nano imaging.  

However, SEM images may contain distortion, rotation and translation due to the 

interaction between the surface of the sample and the electron beam. Therefore, an 

image correction process is necessary to correct these problems with SEM images. 

 
Image correction is an important part of image processing and in this study an 

image correction process based on the Phase Correlation and Log-Polar 

Transformation (PCLPT) technique for SEM images is proposed. The PCLPT 

technique has been improved with a pre-processing step needed because of 
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interpolation error at the sub pixel level.  The pre-processing step consists of 

applying image filtering and the corrected image is obtained using the DFAF 

technique to determine the depth.  

 

3.2.    Image Correction with PCLPT Technique  

 

Phase correlation is used for the image translation problem but does not perform 

well on image rotation and scaling problems (Reddy and Chatterji, 1996). 

Therefore, as described in Chapter 2, phase correlation and log-polar 

transformation (PCLPT) technique is applied to overcome all three problems 

(Ding et al., 2010). In the following sub-sections each of the problems is 

explained sequentially. 

3.2.1. Image Translation Correction with Phase Correlation Technique 

 
Image translation is of major concern in the image registration area. The 

translation between observed image and reference image can be defined as:  

 

),(),( 12 yyxxIyxI                                                                                   (3.1) 

 

where ),(1 yxI and ),(2 yxI are the reference image and observed image, 

respectively; x and y  are the displacements in x and y directions respectively. 
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The translation problem can be solved in the Fourier domain with the phase 

correlation technique. The translation can be written in the Fourier domain as in 

Equation 3.2 (Reddy and Chatterji, 1996): 

 

)v,u(Fe)v,u(F )yvxu(i
1

2
2

                                                                               (3.2) 

 

where ),(1 vuF  and ),(2 vuF are the Fourier transforms of ),(1 yxI  and ),(2 yxI  

respectively.  

 
The phase correlation of the observed image and reference image is defined as: 

 

)v.u(F)v,u(F

)v.u(F)v,u(F
ePC

*

*
)yvxu(i

21

212                                                                  (3.3) 

 

where )v,u(F*
2  is the complex conjugate of )v,u(F2 . 

 
The translations in both x and y directions are found with an inverse Fourier 

transform of the phase correlation as: 

 

 )PC(Fmax)y,x( 1                                                                                 (3.4) 

 

where )PC(F 1  denotes the inverse Fourier transform of the phase correlation. 
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The inverse Fourier transform of the phase correlation comprises zero elements 

everywhere except at the position of the displacement. Because the inverse 

Fourier transform of the complex exponential is a delta function, the result has 

only one peak, and the position (both x and y directions) of the peak gives the 

translation between reference image and observed image.  

 
In practice, the translated image is expected to be a linear shift of the reference 

image, rather than a circular shift. If the translated image is also circularly shifted 

relative to the reference image, then )PC(F 1  is not expected to be a delta 

function and the performance of the phase correlation is likely to decrease. To 

avoid low performance, a window function can be applied such as the Hann 

window, the Hammingham window or the Blackman window. 

 
In this study, phase correlation was tested on images of Lena, Boats, Cameraman 

which have been used as benchmark images by many researchers (Levente, 2003), 

and a "copper sample". The copper sample image was captured with an SEM XB-

1504 in MEC Cardiff University for this study. The original images are provided 

in Figure 3.1 a-d. Then, the original images were translated in x and y directions 

by -40 pixels and 20 pixels respectively. The translated images are given in Figure 

3.2 a-d.   

 
The phase correlation technique uses both the original image and the translated 

image. The results for the corrected images are shown in Figure 3.3 a-d. The 

translated image of Lena, Boats, Cameraman and a copper sample captured with 
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the SEM were moved back to the original position according to the results of the 

phase correlation technique from the centre of translated images and all the results 

for the translation correction were found 100% correct by checking manually with 

Gimp 2 Open source image processing software.  

 
 

 

 

Figure 3.1 The test images a) Lena, b) Boats, c) Cameraman, and d) Copper 

sample. 

 

 

 

 

 
Figure 3.2 The test images translated in x and y directions by -40 pixels and 20 

pixels respectively a) Lena, b) Boats, c) Cameraman, and d) Copper sample. 

 
 

 

 

 

 

Figure 3.3 Corrected results for the translated images a) Lena, b) Boats, c) 

Cameraman, and d) Copper sample. 
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3.2.2. Image Rotation Correction with a Polar Transformation Based 

Phase Correlation Technique 

 
Image rotation is another important task in the field of image correction. The 

rotation can be defined as a translation problem in the Fourier domain obtained by 

using a polar transformation (Ding et al., 2010). Polar Transformation (PT) is a 

nonlinear and non-uniform transformation to map Cartesian coordinates into polar 

(Zokai and Wolberg, 2005).  

 
Any given point, )y,x( in the Cartesian coordinate system can be mapped into the 

polar coordinate system in the form of ),(   relative to a given reference 

point )y,x( 00 , where   is the radial distance from the reference to the given 

point, see Equation 3.5, and   is the angle made by the line joining the reference 

point to the given point see Equation 3.6: 

 
2

0
2

0 )yy()xx(                                                                                 (3.5) 

 













 

0

01

xx

yy
tan                                                                                               (3.6) 

The relation between the observed image (rotated  clockwise about the origin) 

and the reference image can be defined as: 

 

))sin(y)sin(x),sin(y)cos(x(I)y,x(I   12                                (3.7) 
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The Fourier transform of the rotated image is defined as in Equation 3.8, which is 

called the Fourier rotation property (Liu and Mason, 2009). 

 

))cos(v)sin(u),sin(v)cos(u(F)v,u(F   12                                  (3.8) 

 
To transform the rotation problem into a translation problem, transformation of 

Equation 3.8 into the polar domain is required, as given in Equation 3.9: 

 

),(F),(F   12                                                                                      (3.9) 

 
The rotation is defined as the angular difference in the Fourier domain and it can 

be determined with phase correlation.  

 
In this study, the same four images as used for translation were also used for 

rotation. For ease of reference the original images are again shown in Figure 3.4 

a-d. These were rotated by 20º in a counter clockwise direction, see Figure 3.5 a-

d. The rotated images were rotated back to their original position by rotated 

clockwise 20º from the centre of the rotated image with proposed technique. The 

results were determined with PT-based PC. All the results were found 100% 

correct by checking manually with Gimp2 open source package, given in Figure 

3.6 a-d.  
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Figure 3.4 The test images a) Lena, b) Boats, c) Cameraman, and d) Copper 

sample. 

 

 
 

 

 

 

Figure 3.5 The test images rotated through -200 a) Lena, b) Boats, c) 

Cameraman, and d) Copper sample. 

 

 

 

  

 

Figure 3.6 Corrected results for the rotated images a) Lena, b) Boats, c) 

Cameraman, and d) Copper sample. 
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3.2.3. Image Scaling Correction with Logarithmic Transformation -

Based Phase Correlation Technique  

 
Image scaling is another major task in the image processing field, which can be 

solved as a translation problem using the Logarithmic Transformation (LT) 

(Reddy and Chatterji, 1996). 

 

When an image is scaled by factors 1  and 2  in the x and y direction respectively 

( 1 and 2 are real numbers), then it can be modelled in the spatial domain as:  

 

)y,x(I)y,x(I 2112                                                                                       (3.10) 

 
The Fourier transform of Equation 3.10 can be written as Equation 3.11, in terms 

of the Fourier scaling property.  

 

)
v

,
u

(F)v,u(F
21

1

21

2

1


                                                                               (3.11) 

 
To find the scale factor for both directions, both sides of Equation 3.11 need to 

undergo LT. Ignoring the multiplicative factor (1/ γ1γ2) this can be written as 

Equation 3.12 (Liu and Mason, 2009). 

 
))(log)v(),log(log)u((logF))v(),logu((logF 2112                  (3.12)  

where   is the base of the logarithm. 
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According to Equation 3.12, the scaling factors can be defined as phase 

differences in the Fourier domain and the equation can be solved with the phase 

correlation technique. The scaling problem was tested on the four images; again 

the originals are included for ease of comparison in Figure 3.7 a-d. All the images 

were scaled by 75% of the original sizes (γ1 =γ2 = 0.75) and are shown in Figure 

3.8 a-d. The scale correction is accomplished with phase correlation based on the 

LT in the Fourier domain. The scaling factor was found as 1.3333 (1/0.75 = 

1.3333 for all entire images, and the given image were scaled by 1.3333 times. 

The corrected images are shown in Figure 3.9 a-d.  
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Figure 3.7 The test images a) Lena, b) Boats, c) Cameraman, and d) Copper 

sample. 

 
 

 
 

 
 

 

Figure 3.8 The test images scaled by 0.75 in both x and y directions a) Lena, b) 

Boats, c) Cameraman, and d) Copper sample. 

 

 

 
 

 

Figure 3.9 The corrected results for the scaled images a) Lena, b) Boats, c) 

Cameraman, and d) Copper sample. 

 

b) 

 

c) 
  

d) 

 
  

a) 

b) 

 

c) 
  

d) 

   

a) 

b) 

 

c) 

 

d) 

  

a) 



 62 

3.3.     Image Correction for the Combined Problems of Rotation-

Translation-Scaling  

 

Translation, rotation and scaling problems have been discussed individually in the 

previous sections. In this section, the technique of combining phase correlation 

with Log-Polar Transformation (PCLPT) is used to solve the combined problem 

of translation, rotation and scaling. The general form of a translated, rotated and 

scaled image is shown in Equation 3.13 and the Fourier transform of  Equation 

3.13 is given in Equation 3.14: 

 
)y))cos(y)sin(x(,x))sin(y)cos(x((I)y,x(I  12          (3.13) 

 

)
)cos(v)sin(u

,
)sin(v)cos(u

(Fe)v,u(F )yvxu(i










 

 
12

2
2

1
      (3.14) 

 
For simplicity, the x and y scale factors were selected equal (= γ) (Reddy and 

Chatterji, 1996). The exponential polar domain form of Equation 3.14 is given in 

Equation 3.15: 

 

),(Fe),(F )yvxu(i 





   

12

2
2

1
                                                       (3.15) 

 
To simplify the above equation, the magnitude of the Fourier transform can be 

utilised, as in Equation 3.16: 
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),(M),(M 





  122

1
                                                                        (3.16) 

The multiplicative factor 
2

1


 is ignored, and for simplicity both sides are 

expressed in a logarithmic form, see Equation 3.17: 

 
)),(log)((logM)),((logM    12                                         (3.17) 

 
The rotation and scaling problems have been transformed to a translation problem, 

as given in Equation 3.17 and so they can be solved with the phase correlation 

technique. The computed results of the scaling factor and rotation angle are 

substituted in  Equation 3.15 to determine the amount of translation between two 

images. To test the performance of the PCLPT technique on the translated, rotated 

and scaled image, the four images are given in Figure 3.10 a-d. The four test 

images were firstly rotated by 20º counter clockwise, then translated by (-40, 20) 

pixels in the (x, y) image coordinate system and finally scaled by 75% from the 

original size. The modified images are given in Figure 3.11 a-d. The corrected 

images are shown in Figure 3.12 a-d. 
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Figure 3.10 The test images a) Lena, b) Boats, c) Cameraman, and d) Copper 

sample. 

 

 

 

 
 
Figure 3.11 The test images translated in x and y directions by -40 pixels and 20 

pixels respectively, rotated through -200 and scaled by 0.75 in both x and y 

directions a) Lena, b) Boats, c) Cameraman, and d) Copper sample. 

 

 

 

 
 

 
Figure 3.12 The correction results for the translated-rotated -scaled images a) 

Lena, b) Boats, c) Cameraman, and d) Copper sample. 
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The results for the translation, rotation and scaling tests are given in Table 3.1, 

and it can be seen that the PCLPT technique did not perform well for the images 

of Lena and Boats. In the case of Lena, the PCLPT technique could not compute 

the correct amount of the translation and in the case of the Boats the PCLPT 

technique was unable to compute either the correct image translation or rotation. 

 
Thus the image correction process failed for the images of Lena and Boats. The 

computational errors in both cases are related to an interpolation error at the sub-

pixel level (Pan et al., 2009). To overcome the computational error with PCLPT, a 

pre-processing stage is introduced in the following section.  

 
In Table 3.1, the results of the PCLPT technique is given in column denoted with 

PCLPT. Absolute Difference between expected results and predicted result from 

PCLPT is utilised to measure the error, which is denoted as Abs. Diff, (see Table 

3.1).  
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Table 3.1 Results of image correction with PCLPT technique. 

 

 

Test Images 

Translation (pixel) 

Rotation (degree) Scaling 

X-direction Y-direction 

PCLPT Original 
Abs.

Diff. 
PCLPT Original 

Abs.

Diff. 

 

PCLPT 

 

Original 

Abs. 

Diff. 

 

PCLPT 

 

Original 

Abs. 

Diff. 

Lena 82 40 42 135 -20 155 -20 -20 0 1.33 1.33 0 

Boats -2 40 42 0 -20 20 -10 -20 10 1.33 1.33 0 

Cameraman 42 40 2 -20 -20 0 -20 -20 0 1.33 1.33 0 

Copper sample 40 40 0 -20 -20 0 -20 -20 0 1.33 1.33 0 
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3.4.     Image Correction with Pre-Processed PCLPT   

 

It was shown in the previous section that the PCLPT based image correction 

technique can accurately compute corrections for individual problems of 

translation, rotation and scaling but that the technique does not perform well with 

combinations of these problems. The major reason for this failing is related to the 

computational process. The PCLPT-based technique considers the shift values 

only at the pixel level but not at a sub-pixel level (Weihong et al., 2012). Thus, a 

cumulated error in sub-pixel level can occur during the interpolation process and 

this can mean the rotation angle and/or scaling factor may not be computed 

correctly (Foroosh et al., 2002 and Pan et al., 2009).  

 
To overcome this cumulated computational error in PCLPT in the case of the 

combined problem of image translation, rotation and scaling, an image filtering-

based pre-processing stage was introduced (Pham et al., 2012b). Several types of 

image filters were tested as the pre-processing stage and the performance of each 

pre-processed-PCLPT technique was calculated.  The flow chart of the proposed 

algorithm is shown in Figure 3.13. 
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Figure 3.13 The flow chart of the proposed technique. 
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In this study, the following image filters were tested as the pre-processing stage, 

the details about each filter are given in Appendix B. 

 Gaussian filter (Gonzalez et al., 2004; Semmlow, 2004; (Merchant, 2008), 

 Laplacian of the Gaussian filter (Gonzalez et al., 2004), 

 Prewitt filter (Gonzalez et al., 2004), 

 Sobel operator (Burger and Burge, 2009), 

 Median  filter (Gonzalez et al., 2004), 

 Iterative-based blind image deconvolution (Holmes et al., 1995; Biggs and 

Andrews, 1997). 

 
The proposed techniques were tested on the four images used previously and 

given in Figure 3.14 a-d. The images were rotated 20º in an anti-clockwise 

direction, translated by (-40, 20) pixels and scaled 75% from the original size, as 

shown in Figure 3.15 a-d.  

The amount of rotation, translation and scaling were predicted with pre-processed 

PCLPT and six different pre-processing techniques have been tested. The 

predicted images obtained using the six different pre-processing techniques are 

shown in Figures 3.16-3.21 a-d. The comparative results for rotation, translation 

and scaling for image of Lena, Boats, Cameraman and Copper sample are given in 

Table 3.2-3.5, the predicted results of the proposed techniques are given in 

column headed RPT (Results of the Proposed Technique).   
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Figure 3.14 The test images a) Lena, b) Boats, c) Cameraman, and d) Copper 

sample. 

 

 

 

 

 
 

Figure 3.15 The images translated by  (-40, 20) pixels, rotated 20º in an anti-

clockwise direction and scaled 75% a) Lena, b) Boats, c) Cameraman, and d) 

Copper sample. 

 
 
 
 
 

 
 

 
 
 
 

Figure 3.16 Images corrected using Gaussian filter based pre-processed PCLPT 

technique a) Lena, b) Boats, c) Cameraman, and d) Copper sample. 
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Figure 3.17 Images corrected using LoG filter based pre-processed PCLPT 

technique a) Lena, b) Boats, c) Cameraman, and d) Copper sample. 

 

 

 

 

 

Figure 3.18 Images corrected using Prewitt filter based pre-processed PCLPT 

technique a) Lena, b) Boats, c) Cameraman, and d) Copper sample. 

 

 

 

 

 

Figure 3.19 Images corrected using Sobel operator based pre-processed PCLPT 

technique a) Lena, b) Boats, c) Cameraman, and d) Copper sample. 
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Figure 3.20  Images corrected using Median filter based pre-processed PCLPT 

technique a) Lena, b) Boats, c) Cameraman, and d) Copper sample. 

 

 

 

 

Figure 3.21 Images corrected using iterative blind deconvolution based pre-

processed PCLPT technique a) Lena, b) Boats, c) Cameraman, and d) Copper 

sample.
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Table 3.2 The results for the rotated-translated and scaled image of Lena. 

 

Test Image: Lena 

Translation (pixel) 

Rotation (degree) Scaling 

X-direction Y-direction 

RPT Original 
Abs. 

Diff. 
RPT Original 

Abs. 

Error 
RPT Original 

Abs. 

Diff. 
RPT Original 

Abs. 

Diff. 

Gaussian filter-based 

PCLPT 
5 40 35 87 -20 107 -20 -20 0 1.33 1.33 0 

LoG filter-based 

PCLPT 
40 40 0 -12 -20 8 -20 -20 0 1.33 1.33 0 

Prewitt filter-based 

PCLPT 
40 40 0 -20 -20 0 -20 -20 0 1.33 1.33 0 

Sobel operator-based 

PCLT 
40 40 0 -20 -20 0 -20 -20 0 1.33 1.33 0 

Median filter-based 

PCLPT 
41 40 1 -20 -20 0 -20 -20 0 1.33 1.33 0 

Iterative Blind 

deconvolution-based 

PCLPT 

40 40 0 -20 -20 0 -20 -20 0 1.33 1.33 0 
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Table 3.3 The results for the rotated-translated and scaled image of Boats. 

 

 

Test Image: Boats 

Translation (pixel) 

Rotation (degree) Scaling 

X-direction Y-direction 

RPT Original 
Abs. 

Diff. 
RPT Original 

Abs. 

Diff. 
RPT Original 

Abs. 

Diff. 
RPT Original 

Abs. 

Diff. 

Gaussian filter-based 

PCLPT 
40 40 0 -2 -20 18 -20 -20 7 1.33 1.33 0 

LoG filter-based 

PCLPT 
42 40 2 -20 -20 0 -20 -20 0 1.33 1.33 0 

Prewitt filter-based 

PCLPT 
40 40 0 -18 -20 2 -20 -20 0 1.33 1.33 0 

Sobel operator-based 

PCLT 
41 40 1 -20 -20 0 -20 -20 0 1.33 1.33 0 

Median filter-based 

PCLPT 
40 40 0 -20 -20 0 -20 -20 0 1.33 1.33 0 

Iterative Blind 

deconvolution-based 

PCLPT 

40 40 0 -20 -20 0 -20 -20 0 1.33 1.33 0 
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Table 3.4 The results for the rotated-translated and scaled image of Cameraman. 
 

 

Test Image: 

Cameraman 

Translation (pixel) 

Rotation (degree) Scaling 

X-direction Y-direction 

RPT Original 
Abs. 

Diff. 
RPT Original 

Abs. 

Diff. 
RPT Original 

Abs. 

Diff. 
RPT Original 

Abs. 

Diff. 

Gaussian filter-based 

PCLPT 
55 40 15 -20 -20 0 -20 -20 0 1.33 1.33 0 

LoG filter-based 

PCLPT 
40 40 15 -20 -20 0 -20 -20 0 1.33 1.33 0 

Prewitt filter-based 

PCLPT 
50 40 10 -20 -20 0 -20 -20 0 1.33 1.33 0 

Sobel operator-based 

PCLT 
40 40 0 -20 -20 0 -20 -20 0 1.33 1.33 0 

Median filter-based 

PCLPT 
42 40 2 -13 -20 7 -20 -20 40 1.33 1.33 0 

Iterative Blind 

deconvolution-based 

PCLPT 

40 40 0 -20 -20 0 -20 -20 0 1.33 1.33 0 
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Table 3.5 The results for the rotated-translated and scaled image of copper sample captured with SEM. 
 

 

Test Image: Copper 

sample 

Translation (pixel) 

Rotation (degree) Scaling 

X-direction Y-direction 

PT Original 
Abs. 

Diff. 
PT Original 

Abs. 

Diff. 
PT Original 

Abs. 

Diff. 
PT Original 

Abs. 

Diff. 

Gaussian filter-based 

PCLPT 
40 40 0 -20 -20 0 -20 -20 0 1.33 1.33 0 

LoG filter-based 

PCLPT 
40 40 0 -80 -20 60 -21 -20 1 1.31 1.33 0.02 

Prewitt filter-based 

PCLPT 
83 40 43 -80 -20 60 -46 -20 16 2.55 1.33 1.22 

Sobel operator-based 

PCLT 
40 40 0 -71 -20 51 -38 -20 18 2.55 1.33 1.22 

Median filter-based 

PCLPT 
40 40 0 -20 -20 0 -20 -20 0 1.33 1.33 0 

Iterative Blind 

deconvolution-based 

PCLPT 

40 40 0 -20 -20 0 -20 -20 0 1.33 1.33 0 
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According to the absolute difference in Tables 3.2 to 3.5, the addition of a 

Gaussian and LoG filters as pre-processors to the PCLPT improved performance 

of the technique but did not provide the original amount of rotation, translation 

and scaling factor. This is due to certain characteristics of the Gaussian and LoG 

filters; both filters increase the blurriness level of image which decreases the 

quality of edges in the image. 

  
The Prewitt filter performed well as a pre-processor for the images of Lena and 

Boats but not so well on the images of the Copper sample captured with SEM and 

Cameraman. The Sobel operator performed very well on the images of Lena, 

Boats and Cameraman but not so well on the image of the Copper sample. The 

Prewitt filter and Sobel operator increases the edge quality of images. This is why 

both techniques have a problem with images which contain pixels close together 

having the same value elements. The Sobel operator utilises the second derivative 

of images, which decreases its sensitivity as a pre-processor compared to that of 

the Prewitt filter.  

 
The Median filter and iterative blind deconvolution performed very well as pre-

processors on all four images according to the absolute difference between 

predicted results and original results.  

 
In the next section all six pre-processors based on the PCLPT are combined with 

the DFAF method to produce an image correction technique which demonstrates 
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the performance of each pre-processer for the images of copper sample captured 

in different depth levels. 

 

3.5.     Pre-Processed PCLPT-Based DFAF Technique 

 

Image distortion is a critical problem with SEMs. Distortion can  occur as a result 

of internal and external factors such as beam motion, interaction between electron 

and surface of sample, artefacts on the sample, lens aberrations, environmental 

noise, etc. (Snella, 2010). The factors causing distortion may generate translation 

and rotation of the image, so SEM images often need to be corrected. The pre-

processed PCLT is proposed as a suitable image correction technique. The 

sharpness function is then applied to different levels of the focus images of the 

SEM to correlate depth with sharpness level. The block diagram of the proposed 

technique is shown in Figure 3.22. In this study, the following sharpness measure 

functions were employed: 

 Tenengrad function, 

 Brenner function, 

 Squared Gradient function, 

 Range function, 

 Entropy function, 

 Laplacian function, and 

 Variance function. 
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Figure 3.22 Block diagram of the proposed technique. 

 

3.5.1. Experimental Results for the Pre-Processed PCLPT-Based DFAF 

Technique 

 
In this section the proposed technique was performed on different levels of 

focused images of a copper sample captured with a SEM. The experiments were 

carried out with a 1500 XB model SEM system. The SEM parameters were set to: 

magnification = 135kX, working distance = 5 mm, aperture size = 30 µm, EHT = 

30 kV, current mode = high current, and imaging detector = secondary electron 

detector. The experiments started by calibrating the system for a focused image as 

shown in Figure 3.14d, then the position of the sample was moved up 0.2 mm and 

a new image captured. The process was repeated 10 times, each time moving the 

sample up 0.2 mm.  The next step was to replace the sample back in the focused 

image position. The sample was then moved down 10 steps of 0.2 mm, and at 

Distorted 

images 

Focus level measurement 

with sharpness function 

Correlate the depth between 

surface and objective lens 

and focus level 

 

Image correction with pre-

processed PCLPT 

 

Image acquisition with 

SEM 
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each level, an image was captured.  All test images are given in Appendices C.1 a-

j and C.2 a-j.  

 
The next step was to search for any distortion or registration problem such as 

rotation, translation or scaling in the images.  Image correction was accomplished 

with the GIMP 2.6 open source programme for  the Gaussian filter, LoG Filter, 

Prewitt filter, Sobel operator, Median filter and iterative-based blind image 

deconvolution as pre-processing stages for the PCLPT technique. Then the 

sharpness measure functions were applied to compute the sharpness levels of each 

image. Finally, the relationship between sharpness level and distance was defined, 

which is related to the distance from the focused plane and normalised sharpness 

function value. The results of the pre-processed PCLPT techniques are given in 

Table 3.6-3.11 and the error in each technique was determined in terms of 

absolute difference between the original and predicted results. In the tables, DTFI 

denotes the distance between the specimen and the focused image plane in SEM. 
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Table 3.6 Results of the Gaussian filter-based pre-processed PCLPT 
technique on different levels of the focused SEM images. 

 

Images DTFI 

Translation (pixel) 
Rot. 

(degree) 

Rot. 
Error 

(degree) 
 

Scale 
Scale 
Error 

Tx 
Tx 

Error Ty 
Ty 

Error 
Image1 2 0 0 0 0 0 0 1 0 

Image2 1.8 0 0 0 0 0 0 1 0 

Image3 1.6 0 0 0 0 0 0 1 0 

Image4 1.4 0 0 0 0 0 0 1 0 

Image5 1.2 0 0 0 0 0 0 1 0 

Image6 1 0 0 0 0 0 0 1 0 

Image7 0.8 0 0 0 0 0 0 1 0 

Image8 0.6 0 0 0 0 0 0 1 0 

Image9 0.4 0 0 0 0 0 0 1 0 

Image10 0.2 0 0 0 0 0 0 1 0 

Image11 0 0 0 0 0 0 0 1 0 

Image12 -0.2 0 0 0 0 0 0 1 0 

Image13 -0.4 0 0 0 0 0 0 1 0 

Image14 -0.6 0 0 0 0 0 0 1 0 

Image15 -0.8 0 0 0 0 0 0 1 0 

Image16 -1 0 0 0 0 0 0 1 0 

Image17 -1.2 0 0 0 0 0 0 1 0 

Image18 -1.4 0 0 0 0 0 0 1 0 

Image19 -1.6 0 0 0 0 0 0 1 0 

Image20 -1.8 0 0 0 0 0 0 1 0 

Image21 -2 0 0 0 0 0 0 1 0 
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Table 3.7 Results of the Laplacian of Gaussian-based pre-processed PCLPT 
technique on different levels of the focused SEM images. 

 

Images DTFI 

Translation (pixel) 
Rot. 

(degree) 

Rot. 
Error 

(degree) 
 

Scale 
Scale 
Error Tx 

Tx 
Error 

Ty 
Ty 

Error 

Image1 2 -48 48 9 9 38 38 2.55 1.55 

Image2 1.8 -8 8 -3 3 -17 17 1 0 

Image3 1.6 -10 10 15 15 -24 24 1 0 

Image4 1.4 -10 10 12 12 -24 24 1 0 

Image5 1.2 -11 11 -11 11 58 58 1 0 

Image6 1 9 9 10 10 1 1 1 0 

Image7 0.8 -2 2 -12 12 -34 34 1 0 

Image8 0.6 13 13 -7 7 -30 30 1 0 

Image9 0.4 4 4 7 7 28 28 1 0 

Image10 0.2 -7 7 8 8 32 32 1 0 

Image11 0 0 0 0 0 0 0 1 0 

Image12 -0.2 -9 9 -9 9 -15 15 1 0 

Image13 -0.4 5 5 -3 3 22 22 1 0 

Image14 -0.6 8 8 7 7 -17 17 1 0 

Image15 -0.8 8 8 8 8 -1 1 1 0 

Image16 -1 1 1 2 2 -31 31 1 0 

Image17 -1.2 16 16 -7 7 28 28 1 0 

Image18 -1.4 59 59 -69 69 45 45 2.55 1.55 

Image19 -1.6 23 23 34 34 34 34 2.55 1.55 

Image20 -1.8 -8 8 -8 8 -1 1 1 0 

Image21 -2 6 6 8 8 30 30 2.55 1.55 
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Table 3.8 Results of the Prewitt filter-based pre-processed PCLPT technique 
on different levels of the focused SEM images. 

 

Images DTFI 

Translation (pixel) 
Rot. 

(degree) 

Rot. 
Error 

(degree) 
 

Scale 
Scale  
Error Tx 

Tx 
Error 

Ty 
Ty 

Error 

Image1 2 7 7 4 4 -24 24 2.55 1.55 

Image2 1.8 7 7 -10 10 14 14 1 0 

Image3 1.6 -11 11 -5 5 6 6 1 0 

Image4 1.4 3 3 5 5 -10 10 1 0 

Image5 1.2 -9 9 12 12 -1 1 1 0 

Image6 1 -10 10 -10 10 -7 -7 1 0 

Image7 0.8 9 9 -2 2 21 21 1 0 

Image8 0.6 2 2 2 2 20 20 1 0 

Image9 0.4 -6 6 10 10 -1 -1 1 0 

Image10 0.2 -7 7 4 4 0 0 1 0 

Image11 0 0 0 0 0 0 0 1 0 

Image12 -0.2 2 2 8 8 20 20 1 0 

Image13 -0.4 5 5 4 4 0 0 1 0 

Image14 -0.6 16 16 36 36 -28 28 1 0 

Image15 -0.8 7 7 2 2 20 20 1 0 

Image16 -1 3 3 0 0 -6 6 1 0 

Image17 -1.2 6 6 9 9 0 0 1 0 

Image18 -1.4 4 4 8 8 0 0 1 0 

Image19 -1.6 -14 14 1 1 1 1 1 0 

Image20 -1.8 -44 44 1 1 21 21 1 0 

Image21 -2 9 9 1 1 1 1 1 0 
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Table 3.9 Results of the Sobel operator-based pre-processed PCLPT 
technique on different levels of the focused SEM images. 

 

Images DTFI 

Translation (pixel) 
Rot. 

(degree) 

Rot. 
Error 

(degree) 
 

Scale 
Scale 
Error Tx 

Tx 
Error 

Ty 
Ty 

Error 

Image1 2 26 26 -6 6 -24 24 2.55 1.55 

Image2 1.8 9 9 -7 7 22 22 1 0 

Image3 1.6 8 8 10 10 20 20 1 0 

Image4 1.4 -13 13 -10 10 -10 10 1 0 

Image5 1.2 17 17 11 11 13 13 2.55 1.55 

Image6 1 -3 3 14 14 39 39 1 0 

Image7 0.8 3 3 10 10 13 13 1 0 

Image8 0.6 -6 6 -1 1 10 10 1 0 

Image9 0.4 7 7 -11 11 14 14 1 0 

Image10 0.2 -18 18 -2 2 35 35 2.55 1.55 

Image11 0 0 0 0 0 0 0 1 0 

Image12 -0.2 3 3 -10 10 20 20 1 0 

Image13 -0.4 -2 2 12 12 0 0 1 0 

Image14 -0.6 16 16 -7 7 -28 28 1 0 

Image15 -0.8 5 5 -13 13 -10 10 1 0 

Image16 -1 0 0 78 78 39 39 1 0 

Image17 -1.2 13 13 28 28 15 15 1 0 

Image18 -1.4 1 1 9 9 0 0 1 0 

Image19 -1.6 26 26 37 37 25 25 1 0 

Image20 -1.8 -3 3 1 1 16 16 1 0 

Image21 -2 -11 11 10 10 1 1 1 0 
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Table 3.10 Results of the Median filter-based pre-processed PCLPT 
technique on different levels of the focused SEM images. 

 

Images DTFI 

Translation (pixel) 
Rot. 

(degree) 

Rot. 
Error 

(degree) 
 

Scale 
Scale 
Error Tx 

Tx 
Error 

Ty 
Ty 

Error 

Image1 2 0 0 0 0 0 0 1 0 

Image2 1.8 0 0 0 0 0 0 1 0 

Image3 1.6 0 0 0 0 0 0 1 0 

Image4 1.4 0 0 0 0 0 0 1 0 

Image5 1.2 0 0 0 0 0 0 1 0 

Image6 1 0 0 0 0 0 0 1 0 

Image7 0.8 0 0 0 0 0 0 1 0 

Image8 0.6 0 0 0 0 0 0 1 0 

Image9 0.4 0 0 0 0 0 0 1 0 

Image10 0.2 0 0 0 0 0 0 1 0 

Image11 0 0 0 0 0 0 0 1 0 

Image12 -0.2 0 0 0 0 0 0 1 0 

Image13 -0.4 0 0 0 0 0 0 1 0 

Image14 -0.6 0 0 0 0 0 0 1 0 

Image15 -0.8 0 0 0 0 0 0 1 0 

Image16 -1 0 0 0 0 0 0 1 0 

Image17 -1.2 0 0 0 0 0 0 1 0 

Image18 -1.4 0 0 0 0 0 0 1 0 

Image19 -1.6 0 0 0 0 0 0 1 0 

Image20 -1.8 0 0 0 0 0 0 1 0 

Image21 -2 0 0 0 0 0 0 1 0 
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Table 3.11 Results of the iterative blind deconvolution-based pre-processed 
PCLPT technique on different levels of the focused SEM images. 

 

Images DTFI 

Translation (pixel) 
Rot. 

(degree) 

Rot. 
Error 

(degree) 
 

Scale 
Scale 
Error Tx 

Tx 
Error 

Ty 
Ty 

Error 

Image1 2 0 0 0 0 0 0 1 0 

Image2 1.8 0 0 0 0 0 0 1 0 

Image3 1.6 0 0 0 0 0 0 1 0 

Image4 1.4 0 0 0 0 0 0 1 0 

Image5 1.2 0 0 0 0 0 0 1 0 

Image6 1 0 0 0 0 0 0 1 0 

Image7 0.8 0 0 0 0 0 0 1 0 

Image8 0.6 0 0 0 0 0 0 1 0 

Image9 0.4 0 0 0 0 0 0 1 0 

Image10 0.2 0 0 0 0 0 0 1 0 

Image11 0 0 0 0 0 0 0 1 0 

Image12 -0.2 0 0 0 0 0 0 1 0 

Image13 -0.4 0 0 0 0 0 0 1 0 

Image14 -0.6 0 0 0 0 0 0 1 0 

Image15 -0.8 0 0 0 0 0 0 1 0 

Image16 -1 0 0 0 0 0 0 1 0 

Image17 -1.2 0 0 0 0 0 0 1 0 

Image18 -1.4 0 0 0 0 0 0 1 0 

Image19 -1.6 0 0 0 0 0 0 1 0 

Image20 -1.8 0 0 0 0 0 0 1 0 

Image21 -2 0 0 0 0 0 0 1 0 
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According to the above results, the Gaussian filter, Median filter and iterative 

blind deconvolution-based PCLPT techniques determined the image rotation-

translation and scaling results 100% correctly for the different levels of focused 

SEM images. However, the LoG filter, Prewitt filter and Sobel operator-based 

PCLPT technique were unable to determine the correct results. Thus it is expected 

that the depth calculation results of the Gaussian filter, Median filter and iterative 

blind deconvolution-based PCLPT techniques will be more accurate than the other 

techniques.  

 
The next step is to measure the sharpness value of the corrected images. In this 

study, the Tenengrad function, the Brenner function, the Squared Gradient 

function, the Range function, the Entropy function, the Laplacian function and the 

Variance function were used for sharpness measurement. The sharpness results 

for each function were normalised between 0-1.  Finally the computed sharpness 

values were correlated with the distance between the specimen and the focused 

image plane. The results for each of the possible combinations of techniques are 

given in Figures 3.23-3.28.  
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The Sharpness Results of The Corrected Image 

(Corrected with Gaussian Filter Based PCLPT Technique)
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Figure 3.23 The relationship between distance and normalised function value 

for the corrected SEM image (carried out with Gaussian filter-based PCLPT 

technique). 

 

The Sharpness Results of The Corrected Image 

(Corrected with LoG Filter Based PCLPT Technique)
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Figure 3.24 The relationship between distance and normalised function value 

for the corrected SEM image (carried out with LoG filter-based PCLPT 

technique). 
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The Sharpness Results of The Corrected Image 

(Corrected with Prewitt Filter Based PCLPT Technique)
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Figure 3.25 The relationship between distance and normalised function value 

for the corrected SEM image (carried out with Prewitt filter-based PCLPT 

technique). 

 
 

The Sharpness Results of The Corrected Image 

(Corrected with Sobel Operator Based PCLPT Technique)
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Figure 3.26 The relationship between distance and normalised function value 

for the corrected SEM image (carried out with Sobel operator-based PCLPT 

technique). 
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The Sharpness Results of The Corrected Image 

(Corrected with Median Filter Based PCLPT Technique)
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Figure 3.27 The relationship between distance and normalised function value 

for the corrected SEM image (carried out with Median filter-based PCLPT 

technique). 

 

The Sharpness Results of The Corrected Image 

(Corrected with Iterative Blind Denvolution Based PCLPT Technique)
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Figure 3.28 The relationship between distance and normalised function value 

for the corrected SEM image (carried out with iterative blind deconvolution-

based PCLPT technique). 
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According to results presented in Figures 3.23 – 3.28 the Gaussian filter, Median 

filter and iterative blind deconvolution when used as pre-processors to the PCLPT 

perform well as an image correction process for DFAF technique. It is also clear 

that the Squared Gradient, Tenengrad, and Brenner functions provide the sharpest 

image position when used with the DFAF technique. The remainder of the 

sharpness functions did not show a clear relationship between sharpness and the 

distance moved by the sample. A robust sharpness function should define the 

relationship very clearly and it would be expected that the distribution of 

sharpness function would be symmetric with respect to the distance moved by the 

sample, either up or down. For example, the function value of the point 0.2 is 

expected to be equal to that at the point -0.2 relative to the focused image point 0.  

In the same way, any given point x and its symmetric value (-x) (reflection 

symmetry with respect to the horizontal direction) should have the same sharpness 

value. The matching error between symmetric distances can be used as an error 

metric to evaluate the performance of the given sharpness function. In this study, 

the sum of the absolute matching differences (SAMD) of symmetric points was 

utilised for the given sharpness functions and the following results were found for 

each function: Tenengrad function: 0.9715, Brenner function: 0.4701: Laplacian 

function: 0.4747, Squared Gradient: 0.3796, Range function: 3.2222, Entropy 

function: 3.4148 and Variance function: 5.0718. According to the SAMD results, 

the performance of the Squared Gradient function is best.  

 

 



 92 

3.6.     Summary 

 

In this chapter, the focus was on the image correction process for distorted SEM 

images. The image correction process was developed for SEM images using a 

pre-processed PCLPT technique after which the DFAF technique was used on the 

corrected images to define the relationship between depth and sharpness value.  

 
The pre-processing step was introduced utilising image filters to increase the 

efficiency of the PCLPT technique. In this study, six image filters were employed 

and the proposed technique was tested on four benchmark images: Lena, Boats, 

Cameraman and image of a copper sample captured with a SEM. Finally, the 

DFAF technique was used on the corrected images.  

 
Seven sharpness measurement functions were combined with the DFAF 

technique. The performance of each technique was measured using a SAMD 

metric. According to the experiments, the Squared Gradient function performed 

well in determining the relationship between distance and sharpness function 

value but still sensitive for the SEM image and a better technique is needed to 

illustrate the distance changes. A Bees Algorithm based optimised BID technique 

is proposed and two different approaches will be described in Chapter 4. After 

refining and developing the Bees Algorithm an improved version will be used 

with the BID technique and this will be described in Chapter 5. 
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Chapter 4 

 IMPROVEMENTS TO THE BEES ALGORITHM  

 

4.1.     Preliminaries 

 

This chapter proposes two different improvements to the Bees Algorithm (BA), 

both improvements are in the neighbourhood search and the improved BAs were 

tested on continuous type benchmark functions and an optimisation problem.  

 
The first improvement is based on the adaptive neighbourhood size change and 

site abandonment strategy. The proposed algorithm increases the speed of the 

searching process and avoids getting stuck in local minima by changing the 

neighbourhood size dynamically. 

 
The second improvement is to determine the direction of the most promising sites 

by computing the slope angle of the best sites.  If the slope angle is lower than a 

given threshold value, then a Hill Climbing Algorithm-based neighbourhood 

search process is utilised to find the most promising sites.  
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4.2.     The Bees Algorithm  

 

The BA has both local and global search capability utilising exploitation and 

exploration strategies respectively.  The BA uses the set of parameters given in 

Table 4.1. The pseudo code of the algorithm is given in Figure 4.1 and the flow 

chart of the algorithm is given in Figure 4.2.  

Table 4.1 Basic parameters of the Bees Algorithm. 
 

Parameter Symbols 

Number of scout bees in the selected patches n 

Number of best patches in the selected patches m 

Number of elite patches in the selected best patches e 

Number of recruited bees in the elite patches nep 

Number of recruited bees in the non-elite best patches nsp 

The size of neighbourhood for each patch ngh 

Number of iterations iter 

Difference between value  of the first and last iterations diff 

 
The Algorithm starts with sending n scout bees randomly to selected sites (see 

Figure 4.3). The fitness values of each site are evaluated and sorted from the 

highest to the lowest (a maximisation problem). The local search step of the 

algorithm covers the best locations (sites) which are the m fittest locations. The m 

best sites are also classified into two sub-groups; elite and non-elite best sites, as 

given in Figure 4.4. The number of elite sites is set as “e” and number of the non-
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elite best sites is “m-e”. The local search process starts with recruiting forager 

bees in the neighbourhood of the best sites. The neighbourhood size is set to 

“ngh”. The number of recruited bees in the neighbourhood of each elite site is set 

to “nep” and the number of recruited bees in the neighbourhood of the non-elite 

best sites is set to “nsp”, as given in Figure 4.5.  The global search process is a 

random search process in the n-m “non-best” sites, as given in Figure 4.6. Finally, 

the overall locations are sorted according to their fitness value and the process 

runs until the global optimum is found.  
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Figure 4.1 Pseudo-code of the basic Bees Algorithm. 

Generate the initial population size as n, set the best patch size as m, set the elite 

patch size as e, set the number of forager bees recruited to the of elite sites as 

nep, set the number of forager bees around the non-elite best patches as nsp, set 

the neighbourhood size as ngh, set the maximum iteration number as MaxIter, 

and set the error limit as Error. 

i= 0 

Generate initial population. 

Evaluate Fitness Value of initial population. 

Sort the initial population based on the fitness result. 

While MaxIteri   or ErrorueFitnessValueFitnessVal ii  1  

i= i+l; 

Select the elite patches and non-elite best patches for neighbourhood 

search. 

Recruit the forager bees to the elite patches and non-elite best patches. 

Evaluate the fitness value of each patch. 

Sort the results based on their fitness. 

Allocate the rest of the bees for global search to the non-best locations. 

Evaluate the fitness value of non-best patches. 

Sort the overall results based on their fitness. 

Run the algorithm until termination criteria met. 

End 
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Figure 4.2 Flowchart of the basic Bees Algorithm.  

Figure 4.2 Flowchart of the basic Bees Algorithm.  

Stop Searching 

Local Search 

Determine the neighbourhood size for both 

elite and non-elite best location as ngh  

Select the e  elite locations from best 

locations for neighbourhood search  

Select the em   non-elite location from best 

location for neighbourhood search  

Recruit nep  forager bees in vicinity of each 

elite location for neighbourhood search  

Recruit nsp  forager bee in vicinity of each 

non-elite best location for neighbourhood 

search  

Evaluate the fitness value for both elite and 

non-elite best locations 

 

 

 

 

Global Search 

Allocate the mn   forager bees to the rest 

of the patches randomly for global search 

Evaluate the fitness value for the global 

search 

Termination 

Conditions met 

 

Termination 
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Figure 4.3 The initially selected n patches and their evaluated fitness values 

 

 

 

 

 

 

 

 

Figure 4.4 Selection of elite and non-elite best patches. 
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Figure 4.5 Recruitment of forager bees to the elite and non-elite best 

locations. 

 

 

 

 

 

 

 

 

 
Figure 4.6 Results from basic BA after local and global search. 
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4.3.     BA Improved by Adaptive Change in Neighbourhood Size 

and Site Abandonment Strategy 

 

This section describes the proposed improvements to the BA by applying adaptive 

change to the neighbourhood size and site abandonment approach simultaneously.  

Combined neighbourhood size change and site abandonment (NSSA) strategy has 

been attempted on the BA by Koc (2010) who found that the convergence rate of 

a NSSA-based BA can be slow when the promising locations are far from the 

current best sites. Here an adaptive neighbourhood size change and site 

abandonment (ANSSA) strategy is proposed which will avoid local minima by 

changing the neighbourhood size adaptively. The ANSSA-based BA possesses 

both shrinking and enhancement strategies according to the fitness evaluation. 

The initial move is to implement the shrinking strategy. The strategy works on a 

best site after a certain number of repetitions. The strategy works until the 

repetition stops. If, in spite of the shrinking strategy, the number of repetitions still 

increases for a certain number of iterations, then an enhancement strategy is 

utilised. Finally, if the number of repetitions still increases for a number of 

iterations after the use of the enhancement strategy, then that site is abandoned 

and a new site will be generated. 

 
Koc (2010) utilised the following parameter for shrinking the neighbourhood size 

and site abandonment strategy: neighbourhood size = ngh , the shrinking constant 
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= sc , the abandoned sites = site_aband . In this study four more parameters are 

introduced. The first is the number of repetitions for each site, denoted as 

intpo_keep .The keep_point records the number of repetitions for all the 

repetitive results for the best sites. The second parameter is called the “Repetition 

Number for the Shrinking”, denoted as nshr_rep ; the number of shrinking is the 

number of repetitions for starting the shrinking strategy, as given in Equations 4.1 

and 4.2. 

The third parameter is called “Repetition Number for the Enhancement”, 

denoted nenh_rep . This parameter defines the number of repetitions until the end 

of the shrinking process, and the beginning of the enhancement process as shown 

in Equations 4.1 and 4.3. The enhancement process works until the number of the 

repetitions is equal to the naban_rep , which denotes the “Repetition Number for 

Abandonment Process”. So a non-productive site is abandoned and it is stored 

in site_aband  list. At the end of the searching process, if there is no better 

solution than the abandoned site, it will be the final solution. The pseudo code of 

the proposed algorithm is given in Figure 4.7. 

ngh

R

R

ngh

intpo_keepnaban_rep

naban_reintpo_keepnenh_rep

nenh_repintpo_keepnshr_rep

nshr_repintpo_keep

ngh_new
2

1





















                                            (4.1) 

)sc*
)nshr_repintpo_keep(

*ngh(nghR
100

100
1


                                               (4.2) 

)sc*
)nenh_repintpo_keep(

*ngh(nghR
100

100
2


                                         (4.3) 
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Figure 4.7 Pseudo code of improved BA with ANSSA strategy. 

Generate the initial population size as n, set the best patch size as m, set the elite patch size as e, set the 
number of forager bees around elite sites as nep, set the number of forager bees around non-elite best 
patches as nsp, set the shrinking constant as sc, set the shrinking start number as rep_nshr, set the 
enhancement start point as rep_nenh, set the abandoning start number as rep_naban, set the neighbourhood 
size as ngh, set the maximum iteration number as Max_Iter, and set the error limit as Error. 

)m,(Zerosintpo_keep 1 ;  

)m,iter(Zerossite_aband  ;   

i= 0.Generate initial population; Evaluate Fitness Value of initial population;  

Sort the initial population based on the fitness result. 

While MaxIteri   or ErrorueFitnessValueFitnessVal ii  1  

i= i+l; 

Select the elite patches and non-elite best patches for neighbourhood search. 

Recruit the forager bees to the elite patches and non-elite best patches. 

Evaluate the fitness value of each patch; Sort the results based on their fitness. 

m:kFor 1  

If  nshr_rep)k,iint(po_keep  and nenh_rep)k,iint(po_keep   then. 

)
)nshr_rep)k,iint(po_keep(

*sc*ngh(ngh)k,i(ngh_new
100

100 
 . 

End  

If nenh_rep)k,iint(po_keep  and naban_rep)k,iint(po_keep   

)
)naban_rep)k,iint(po_keep(

*sc*ngh(ngh)k,i(ngh_new
100

100 
  

End  

IfElse  nabanintpo_keep   

11  )k,i(site_aban)k,i(site_aband ; 

Else ngh)k,i(ngh_new  ; End  

Allocate the rest of the bees for global search to the non-best locations; evaluate the fitness value 

of non-best patches; Sort the fitness values and positions; Run the algorithm until termination   

criteria are met.  

End 
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4.3.1. Experimental Results for improved BA with ANSSA Strategy 

 
The basic BA has been tested on continuous benchmark functions by 

(Ghanbarzadeh, 2007; Sholedolu, 2009; Pham and Castellani, 2009; Koc, 2010). 

In this section, the improved BA was tested on both a continuous type 

optimisation problem and the benchmark functions. The results were compared 

with the basic BA. 

 
The selected continuous type optimisation problem was an inverted and shifted 

Himmelblau function (see Equation 4.4). This function is a multimodal 2D 

function and the figure representing the function is shown as Figure 4.8. The 

Himmelblau function is a set of quartic form functions and it is not easy to find 

the global optimum with analytical approaches. In addition, the inverted and 

shifted form of function becomes more complicated, therefore it is worth to utilise 

the modified form of the function in optimisation algorithms to evaluate the 

performance of the proposed algorithms. 

)X,X(F 21 22
21

2
2

2
1 71110

1

)XX()XX(. 
                                     (4.4) 

where     66 21  X,X  

 
The global maximum for Himmelblau function: 

1021 )X,X(F , ],[]X,X[ 2321   

The parameters of the algorithm can be seen in Table 4.2. 
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Figure 4.8 Himmelblau function. 
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Table 4.2 Selected parameters for the Bees Algorithm. 
 

Parameters Value 

Number of Scout Bees in the Selected Patches ( n ) 50 

Number of Best Patches in the Selected Patches ( m ) 15 

Number of Elite Patches in the Selected Best Patches ( e ) 3 

Number of Recruited Bees in the Elite Patches ( nep ) 12 

Number of Recruited Bees in the Non-Elite Best  Patches ( nsp ) 8 

The Size of neighbourhood for Each Patches ( ngh ) 1 

Number of Iterations ( iter ) 5000 

Difference between the First Iteration Value and the Last Iteration 

( diff ) 

0.001 

Shrinking Constant ( sc ) 2 

Number of Repetitions for Shrinking Process ( nshr_rep ) 10 

Number of Repetitions for Enhancement Process ( nenh_rep ) 25 

Number of Repetitions for Site Abandonment ( naban_rep ) 100 

 
The comparative results of the basic BA and the improved BA are given in Figure 

4.9. Both algorithms were run 100 times and the results presented are for the mean 

fitness evaluation in iterations. According to the computed results for the 

Himmelblau function, the improved BA performed better than the basic BA. The 

mean value and standard deviation of the enhanced BA and the basic BA are 

given in Table 4.3, further the average completing time and standard deviation of 

the completing time are given in Table 4.4.  
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Table 4.3 Synopsis of best fitness results for 100 runs with basic BA and 
enhanced BA for Himmelblau function. 

 

 Mean value Standard deviation 
 

BA 9.6327 0.3984 
Enhanced BA 9.7450 0.3138 

 

Table 4.4 Synopsis of time taken for 100 runs with basic BA and enhanced 
BA for Himmelblau function. 

 

 Mean value 
(secs) 

Standard deviation 
(secs) 

BA 19.21 0.5941 

Enhanced BA 13.05 0.4752 

 
The statistical significance between the best fitness results of the 100 runs for the 

Himmelblau function was assessed using the t-test, see Appendix D1-D2.  The 

results are in terms of number of iterations is shown in Figure 4.9 and in terms of 

number of runs is shown in Figure 4.10. According to the given results, the alpha 

value for a two tailed test was 0.0278 with a 95% confidence level which strongly 

indicates that the ANSSA strategy-based improved BA is significantly better than 

the basic BA.   

The next test performed with the parameters given in Table 4.2 on fifteen 

benchmark functions first presented by Adorio (2005) and Pohlheim (2006) and 

developed by Pham and Castellani (2009), as listed in Table 4.5. The comparative 

results of these benchmark tests are given in Table 4.6. 
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The Average Fitness Results of the Himmelblau Function 
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Figure 4.9 Average fitness value of the basic BA and the improved BA with 

ANSSA strategy (mean fitness value of 100 runs). 
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Figure 4.10 Best fitness results of the basic BA and Improved BA with 

ANSSA strategy (100 runs). 
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Table 4.5 The selected benchmark functions. 

No Function Name Interval Function Global Optimum 

1 De Jong   (2D) 

[-2.048, 

2.048] Fmax 933905. )XX( 2
2

2
1100  2

11 )X(   

X = [1, 1] 

F(X) = 3905.93 

2 

Goldstein &Price 

(2D) [-2, 2] 

Fmin
2

21 11 )XX([  )]XXXXXX( 2
2212

2
11 361431419   

2
21 3230 )XX([  )]XXXXXX( 2

2212
2
11 273648123218   

X = [0, -1] 

F (X) = 3 

3 

Branin RCOS 

(2D) [-5, 10] 

Fmin e)Xcos()f(e)dcXbXX(a  1
2

1
2
12 1  

1a , 
24

15



.
b  , 



5
c ,  6d , 10e , 

8

1
f  

X = [-π, 12.275] 

X = [π, 2.275] 

X = [3π, 2.475] 

F(X) = 

0.3977272 

4 

Martin & Gaddy 

(2D) [0, 10] 
Fmin 2212

21
3

10
)

XX
()XX(


  

X = [5, 5] 

F(X) = 0 

5 

Rosenbrock - a 

(2D) [-1.2, 1.2] Fmin
2

1
2

2
2

1 1100 )X()XX(   

X = [1, 1] 

F(X) = 0 
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Table 4.5 The selected benchmark functions (Cont.). 

 
 

6 Rosenbrock - b (4D) [-1.2, 1.2] 
Fmin 


 

3

1

22
1

2 1100
i

iii ])X()XX([  
X = [1, 1, 1, 1] 

F(X) = 0 

7 Hyper Sphere (6D) 

[-5.12, 

5.12] 
Fmin 



6

1

2

i
iX  

X= [1, 1, 1, 1, 1, 

1] 

F(X) = 0 

8 Hyper Sphere (10D) 

[-5.12, 

5.12] 
Fmin 



10

1

2

i
iX  

X = [0, 0, 0, 0, 0, 

0, 0, 0, 0, 0] 

F(X) = 0 

9 Griwank (10D) [-512, 512] 

Fmax

10
4000

1
10

1

10

1

2

.])
i

X
cos(

X
[

i i

ii  
 

 
X = [0, 0, 0, 0, 0, 

0, 0, 0, 0, 0] 

F(X) = 10 

10 Rastrigin (10D) 

[-5.12, 

5.12] 
Fmin  




10

1

2 210100
i

ii ))Xcos(X(   

X = [0, 0, 0, 0, 0, 

0, 0, 0, 0, 0] 

F(X) = 0 
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Table 4.5 The selected benchmark functions (Cont.). 

 

11 Easom (2D) [-100, 100] Fmin ))X()X((e)Xcos()Xcos(
2

2
2

1

21
   

X = [π, π] 

F(X) = -1 

12 Schwefel (2D) 

[-500 , 

500] 
Fmin 




2

1
1

i
i )]Xsin(X[  

X = [0, 0] 

F(X) = -837.658 

13 Schaffer (2D) [-100, 100] 
Fmin

22
2

2
1

22
2

2
1

00101

50
50

)XX(.

.))XX(sin(
.




  

X = (0, 0) 

F(X) = 0 

14 Ackley (10D) [-32, 32] Fmin eee
i

i
i

i )Xcos(X

.












2020 10

2

10
20

10

1

10

1

2 

 

X = [0, 0, 0, 0, 0, 

0, 0, 0, 0, 0] 

F(X) = 0 

15 

Sum of Different Power 

(10D) [-1, 1] 
Fmin 




10

1

1

i

i

iX  

X = [0, 0, 0, 0, 0, 

0, 0, 0, 0, 0] 

F(X) = 0 
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Table 4.6 Comparative results of basic BA and the ANNSA strategy-based 
improved BA for 100 test runs of all fifteen benchmark functions. 

 

 

 

Func. 
No 

The  ANNSA strategy based 
improved BA 

The basic BA  

Significance of 
difference in mean 
time between basic 
BA and enhanced 

BA 

Success 

Rate  % 

Mean 

Iteration 

Number 

 

Total 

Iteration 

Time 

(secs) 

 

Success 

Rate % 

 

Mean 
Iteration 

Number 

 

 

Total 

Iteration 

Time 

(secs) 

 

 

Sig. 

(α<0.05) 

Alpha 

(α) 

1 100 297 3’ 12’’ 100 342 3’ 33’’ Yes 0.022 

2 100 1497 24’’ 40 100 1497 17’ 21’’ No 0.200 

3 100 1497 10’’ 08’ 100 1497 6’’ 09 No 0.600 

4 100 293 3’ 20’ 100 317 5’ 25’’ No 0.110 

5 100 183 3’ 51’’ 100 225 3’ 0’’ No 0.358 

6 100 184 8’ 15’’ 100 138 4’ 51’’ No 0.957 

7 100 101 6’ 32’’ 100 116 5’ 40’’ No 0.762 

8 100 150 17’ 4’’ 100 143 14’ 47’’ No 0.433 

9 100 734 83’3’’ 98 1117 88’ 41’’ Yes 0.020 

10 98 560 58’ 42’’ 98 700 56’ 39’’ No 0.07 

11 99 1497 28’ 26’’ 98 1497 23’ 10’’ No 0.563 

12 100 1497 28’ 41’’ 98 1497 20’ 51’’ No 0.468 

13 100 1497 21’ 40’’ 100 1497 30’ 11’’ No 0.801 

14 100 1402 153’ 5’’ 100 1226 112’ 21’’ Yes 0.020 

15 100 3 0’ 23’’ 100 5 0’ 29’’ Yes 0.002 
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According to the results in Table 4.6, the ANSSA strategy-based improved BA 

performed well on functions 1, 9, 14, and 15 with a 100% success rate and the 

process time was also significantly better than the basic BA at better than a 5% 

level of confidence. The improved algorithm performed well for the rest of the 

benchmark functions but the process time did not significantly change compared 

to that of the basic BA. 

 

4.4.     BA Improved with Slope Angle Computation and Hill 

Climbing Algorithm  

 

This section focuses on an improvement of the BA based on the Slope Angle 

Computation and Hill Climbing Algorithm (SACHCA). Even though the BA has 

both local and global search capability, it still has some weakness such as a high 

level of randomness, computational time, and blind search in the local search 

process.  Thus local search improvement in the BA is proposed in this study. 

 
The Hill Climbing Algorithm (HCA) is an iterative single element-based local 

search algorithm, also known as Gradient Ascent / Descent algorithms. The local 

minimum of an optimisation problem can be found by the HCA but the global 

optimum is not guaranteed (Grosan and Abraham, 2011).  

 
The SACHCA-based improved BA is concerned with locating the best sites.  

Slope angle computation is employed to determine the inclination of the current 
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sites. The promising location is far from the current position if the slope angle is 

close to 90º. The current location is near to a local optimum point if the slope 

angle is close to 0º. According to the angle orientation, the direction of the local 

optimum can be determined (see Figure 4.11). The process starts with computing 

the slope angle. The HC algorithm finds the related local optimum point when the 

slope angle of a related site is less than a certain threshold value. The slope angle 

computation can show the orientation of the local optimum according to the 

current position in terms of angular degrees, which may help to find the global 

optimum faster.  With honey bees this directional information is conveyed by a 

waggle dance. The slope angle computation approach mimics this behaviour to 

determine the direction of promising sites. To increase the speed of an 

optimisation algorithm, the information about the orientation of promising 

locations can be utilised to boost the search process. 

 
In this study, the slope angle is computed using the first order numerical 

derivation. The numerical derivation of each site is calculated from its 

neighbourhood. The two end points in the vicinity of the neighbourhood are used 

to compute the numerical derivation. The central difference method is utilised for 

numerical derivation (see Equation 4.5) as shown in Figure 4.11. 

 
 

X

)
X

X(F)
X

X(F
)X(Fangle_slope '









 22                                      (4.5) 
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If the slope angle is very steep, then the promised location is far from the selected 

site but when the angle is close to zero, the promised location is very close to the 

selected site, as shown in Figure 4.12. 

 

 

 

 

 

 

 

 

Figure 4.11 Slope angle with numerical derivation based on the central 

difference. 
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Figure 4.12 Slope angle for each of the best selected sites. 

 

There are three selected (best) sites shown in Figure 4.12. Around site A, the 

angle direction is towards site A˟, which is a local optimum. The direction of sites 

B and C are towards the site B˟, which is another local optimum. At the end of the 

searching process, all the local optimums will be sorted and the biggest selected as 

the global optimum. In the case of Figure 4.12, the site B˟ was selected as global 

optimum. The local search process was accomplished with the use of the HCA, as 

shown in Equation 4.6. 

 

)X(Fh)i(X)i(X i1                                                                              (4.6) 
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where i  is the iteration number, )i(X  is the current position, )i(X 1  is the next 

position, h  is the incremental size, )X(F i  is the gradient of the current 

position. 

 
The BA improved with SACHCA has four more additional parameters than the 

basic BA. The first parameter is step size, denoted as h  and is used as the step size 

of the HCA to predict the next position. 

 
The second parameter is the slope angle, denoted as angle_slope . This parameter 

is used for identifying the direction of the local optimum site. Initially, the angle 

of steepness is set to zero. 

 
The third parameter is called slope angle limit, denoted as itlim_angle . If the 

angle of slope is equal or less than itlim_angle , then the local optimum is close to 

the related site. This parameter is also the starting condition for the HCA. The 

predicted local optimum points are stored and compared with the other local 

optima.  

 
The forth parameter is called the “number of waiting time for the HCA”, denoted 

as itlim_time_HC . The HCA runs for the selected sites until the “number of 

waiting time for the HCA” is reached which is the termination condition. 

 
The pseudo code of the SACHCA-based improved BA is shown in Figure 4.13 
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Figure 4.13 Pseudo code of the improved BA based on SACHCA. 

Generate the initial population size as n  , set the best patch size as m , set the elite patch size as m , set the 

number of forager bees around of elite as nep , m , set the number of forager bees around of non-elite best 

patches as nsp , set the step size for HC algorithm as h , set the angle limit as itlim_angle , set the “number 

of the waiting time for HC” algorithm as  itlim_time_HC , set the neighbourhood size as ngh , set the 

maximum iteration number as MaxIter , and set the error limit as Error . 

i= 0, 0time ; 01 )m:(angle_slope ; Generate initial population; Evaluate Fitness Value of initial 

population; 

Sort the initial population based on the fitness result. 

While MaxIteri   or ErrorueFitnessValueFitnessVal ii  1  

i= i+l;  

Select the elite patches and non-elite best patches for neighbourhood search. 

Recruit the forager bees to the elite patches and non-elite best patches. 

Evaluate the fitness value of each patch; Sort the results based on their fitness. 

m:kFor 1  

Calculate  )k(angle    

While itlim_angle)k(angle_slope  and itlim_time_HCtime   then. 

))k.,i(X(Fh)k,i(X)k,i(X 1 . 

Evaluate Fitness value for each position 

End  

Record all found local optimum sites and sort them (end of the neighbourhood search). 

Allocate the rest of the bees for global search to the non-best locations;  

Evaluate the fitness value of non-best patches; 

 Sort the fitness values and positions; Run the algorithm until termination criteria are met. 

End 
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4.4.1. Experimental Results for the BA Improvement based on 

SACHCA 

 
The performance of the BA enhanced by use of the SACHCA was tested against 

an inverted and translated Himmelblau function and the fifteen benchmark 

functions described above in Section 4.3.1. The results were compared with those 

obtained with the basic BA and the BA improved with the ANSSA strategy. The 

parameters set for the proposed algorithm are given in Table 4.7. 

 
The comparative best fitness results are given in Figure 4.14. All the results are an 

average of 100 runs. The mean value and standard deviation of the basic BA, 

ANSSA strategy based BA and SACHCA based improved BA are given in Table 

4.8, further the average completing time and standard deviation of the completing 

time are given in Table 4.9. According to results, the BA improved with 

SACHCA performed better than the other two algorithms. 
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Table 4.7 Test parameters for BA improved with SACHCA. 
 

Parameters Symbols 

Number of Scout Bees in the Selected Patches ( n ) 50 

Number of Best Patches in the Selected Patches ( m ) 15 

Number of Elite Patches in the Selected Best Patches ( e ) 3 

Number of Recruited Bees in the Elite Patches ( nep ) 12 

Number of Recruited Bees in the Non-Elite Best  Patches ( nsp ) 8 

The Size of neighbourhood for Each Patches ( ngh ) 1 

Number of Iterations ( iter ) 5000 

Difference between the First Iteration Value and the Last Iteration 

( diff ) 

0.001 

Angle limit ( itangle lim_ ) 0.5 

Step size for HC algorithm ( h ) 0.1 

Number of waiting time for HC algorithm ( ittimeHC lim__ ) 1000 
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The Average Fitness Results of the Himmelblau Function 
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Figure 4.14 Average fitness value of the basic BA, BA improved with ANSSA 

strategy and BA improved with SACHCA (mean fitness value of 100 runs). 

 

Table 4.8 Synopsis of best fitness results for 100 runs with basic BA and 
enhanced BA for Himmelblau function. 

 

Algorithms Mean value Standard deviation 
The Basic BA 9.6327 0.3984 

The BA improved with ANSSA Strategy 9.7450 0.3138 
The BA improved with SACHCA 9.8240 0.1807 

 

Table 4.9 Synopsis of time taken for 100 runs with basic BA and enhanced 
BA for Himmelblau function. 

 

Algorithms Mean value Standard deviation 
The Basic BA 19.21 0.5941 

The BA improved with ANSSA 
Strategy 

13.05 0.4752 

The BA improved with SACHCA 9.23 0.0197 
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The t-test was used to calculate the statistical significance of the difference 

between the best fitness values obtained from the three algorithms. The results are 

given in Appendix D3. The test was performed in pairs such as, the improved BA 

with SACHCA and one of the others. The t-test between mean best fitness values 

for the SACHCA based BA and basic BA gave an alpha value of 5103792 x.  

which means it is possible to say with greater than 95% confidence level that there 

is a significant difference between the mean values obtained with these two 

algorithms. Similarly mean value obtained for the BA improved with ANSSA was 

significantly higher than that obtained with the basic BA. The best fitness results 

for 100 runs of the improved BA with SACHCA and the basic BA are given in 

Figure 4.15.  

 
The third comparison, between the mean best fitness values for the SACHCA 

based BA and the BA improved ANSSA, showed that the former is significantly 

greater than the latter at the 95% confidence level. The t-test gave an alpha value 

of 0.003. The 100 best fitness results of both algorithms are given in Figure 4.16. 

 
Further, the proposed algorithm has been tested on fifteen benchmark functions 

which were given in Table 4.5 and the results were compared with the results of 

the basic BA and ANSSA strategy based enhanced BA, given Table 4.10. 
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The Best Fitness Results  of the Himmelblau Function
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Figure 4.15 Best fitness value of the basic BA and the BA improved with 

SACHCA (100 runs). 
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Figure 4.16 Best fitness value of BA improved with ANSSA and BA improved 

with SACHCA (100 runs). 
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Table 4.10 Comparative results of fifteen benchmark functions for the BA improved with SACHCA, BA improved with 
ANNSA and basic BA. 

 

Func 

No 

Basic BA 

(A1) 

BA Improved with ANNSA 

(A2) 

BA Improved with SACHCA 

(A3) 

Significance of 
difference between 

(A3-A1) 

Significance of 
difference between  

(A3-A2) 

Success 

Rate % 

 

Mean 

Iteration

Number 

 

Total 

Iteration 

Time 

(sec) 

Success

Rate % 

 

Mean 

Iteration 

Number 

 

Total 

Iteration 

Time (sec) 

 

Success 

Rate % 

 

Mean 

Iteration 

Number 

 

Total 

Iteration 

Time 

(sec) 

Significant 

(α<0.05 

 

α 

 

Significant 

(α<0.05 

 

α 

 

F1 100 297 3’ 12’’ 100 342 3’ 33’’ 100 240 2’ 43’’ Yes 0.002 Yes 0.0001 

F2 100 1497 24’’ 40 100 1497 17’ 21’’ 100 1497 10’ 51’’ Yes 1.58E-08 Yes 8.79E-11 

F3 100 1497 10’’ 08’ 100 1497 6’’ 09 100 1497 4’ 22’’ Yes 0.0003 Yes 5.68E-06 

F4 100 293 3’ 20’ 100 317 5’ 25’’ 100 359 3’ 18’’ Yes 0.0018 Yes 0.0392 

F5 100 183 3’ 51’’ 100 225 3’ 0’’ 100 162 3’ 20’’ No 0.1595 No 0.2908 

F6 100 184 8’ 15’’ 100 138 4’ 51’’ 100 141 5’ 12’’ No 0.9653 No 0.9478 

F7 100 101 6’ 32’’ 100 116 5’ 40’’ 100 133 6’ 53 No 0.4496 No 0.4426 

F8 100 150 17’ 4’’ 100 143 14’ 47’’ 100 121 12’ 04’’ Yes 6.16E-09 Yes 3.46E-09 
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Table 4.10 Comparative results of fifteen benchmark function for the improved BA with SACHCA, improved BA with ANNSA and basic BA 

(Cont.). 

 
F9 100 734 83’ 3’’ 98 1117 88’ 41’’ 100 535 51’ 39’’ No 0.9567 Yes 0.0041 

F10 98 560 58’ 42’’ 98 700 56’ 39’’ 100 644 53’ 21’’ Yes 0.0098 Yes 5.6E-06 

F11 99 1497 28’ 26’’ 98 1497 23’ 10’’ 100 1497 9’ 58’’ No 0.1040 Yes 0.0268 

F12 100 1497 28’ 41’’ 98 1497 20’ 51’’ 100 1497 9’ 40’’ No 0.4553 No 0.9692 

F13 100 1497 21’ 40’’ 100 1497 30’ 11’’ 100 1497 9’ 28’’ No 0.2599 No 0.2652 

F14 100 1402 153’ 5’’ 100 1226 112’ 21’’ 100 1497 103’19’’ Yes 6.08E-06 Yes 0.0125 

F15 100 3 0’ 23’’ 100 5 0’ 29’’ 100 38 2’ 34’’ Yes 3.27E-09 Yes 2.21E-17 
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According to Table 4.10, the BA improved with SACHCA performed well with 

benchmark test functions F1, F2, F3, F4, F8, F10, F14 and F15 (refer to Table 

4.5). The total iteration time of the proposed algorithm is better than the others. 

Finally, the proposed algorithm found the global optimum value in every run.  

 
To calculate the statistical significance between the BA improved with SACHCA 

and other BA versions, t-test was utilised.  According to the Table 4.10, the 

proposed algorithm performed better than the others for the following functions: 

F1, F2, F3, F4, F8, F10, F14 and F15; because the alpha values were found lower 

than 0.05 with a 95% confidence level for both comparison between the BA 

improved with SACHCA – basic BA (denoted as A3-A1 in Table 4.10) and the 

BA improved with SACHCA – the BA improved with ANSSA (denoted as A3-

A2 in Table 4.10). 

 
The BA improved with SACHCA performed well on functions F5, F6, F7, F12, 

and F13, achieving a 100% success rate and the process times were faster than 

those of the basic BA. However, the results were not significant than the other BA 

versions.  

 
Finally, the results of SACHCA-based BA achieved with functions F9 and F11 

were better than other BA versions, although functions F9 and F11 are 10 

dimensional and a hard group of functions (Pham and Castellani, 2009),  
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The total iteration times of the BA improved with SACHCA for the given 

functions were less than those of the basic BA and the BA improved with 

ANNSA, which means the process time is also improved with the BA improved 

with SACHCA.  
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4.5.     Summary 

 

This chapter has presented two improvements to the BA.  

The first improvement was based on changing the neighbourhood size strategy 

and on having a more adaptive neighbourhood size change during the search 

process.  

The second improvement was to determine the direction of local optima by using 

the slope angle of a neighbourhood. The HCA was then utilised on the sites which 

had a moderate slope angle.  

By including the second improvement, both the search speed was improved and 

more accurate results were obtained. 

 
Both improvements to the BA were tested on the Himmelblau function and fifteen 

selected benchmark functions. The results have been presented in this chapter. 

 
The results of the proposed algorithms are satisfactory for the given optimisation 

problems. The improved BA algorithms and the basic BA will therefore be used 

in the next chapter as a new depth calculation technique based on the BA as an 

optimisation tool to find the best possible level of blurriness. 
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Chapter 5  

A NOVEL DEPTH COMPUTATION TECHNIQUE WITH 

A BEES ALGORITHM BASED BLIND IMAGE 

DECONVOLUTION 

 

5.1.     Preliminaries 

 

This chapter presents a novel depth computation technique based on optimised 

Blind Image Deconvolution (BID). The optimisation process uses the basic Bees 

Algorithm (BA), BA enhanced by SACHCA and BA enhanced with ANNSA as 

described in Chapter 4.  For comparison a simulated annealing (SA)-based BID is 

also used. 

 
A blurred image can be caused by changes in optical system parameters such as 

the focal length, object position in the optical system, aperture diameters, f-

number of the camera, etc. The main task of the deconvolution process is to 

recover the original image and Point Spread Function (PSF), see Equation 2.1. 

 
The PSF of a defocused image can be used for many applications in machine 

vision such as depth calculation, image restoration and image de-blurring. In 

practice, the PSF of a blurred image is not known and while it is not an easy task 
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to determine it without having some prior information a number of approaches 

have been proposed for computing the PSF without prior information. 

 
The proposed techniques utilise kurtosis-based non-Gaussianity analysis and the 

BA to find the optimum value of the PSF blurriness parameter, sigma (σ), which 

is the standard deviation of the PSF.  Then the determined parameter can be 

correlated with the distance from the surface of the sample to the objective lens of 

the SEM to define the relationship between sigma and depth.  

 

5.2.     Kurtosis of Blurred Images 

 

Different levels of blurred images have different kurtosis values which are related 

to the blurriness parameter.  In this section, the effect of changes in σ on the 

kurtosis value of the image is investigated. To show the relationship between 

sigma and kurtosis, the four images of Lena, Boats, Cameraman and Copper 

sample captured with a SEM were used. The original images are given in Figure 

5.1 a-d. All four images were blurred with a Gaussian filter by changing the σ 

value from 1 to 20 and the relationship between σ and kurtosis for the images is 

shown in Figure 5.2 a-d.   
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Figure 5.1 Images for kurtosis analysis a) Lena, b) Boats, c) Cameraman and 

d) Copper sample. 

 

 

c) 

 

b) 

 

d) 

 

 

a) 
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Figure 5.2 Relationship between sigma and kurtosis for the given images a) 

Lena, b) Boats, c) Cameraman and d) Copper sample. 

 

 
According to the Central Limit Theorem (CLT) the distribution of the mean of n  

independent random variables approaches a Normal Gaussian distribution. In the 

case of a blurred image, there are two main components, the original image and 

b)  

 

 

d) 

 
a)  

 
c)  
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the PSF that together create the blurred image. As explained in Section 2.5.2.4 the 

kurtosis value for a Gaussian distribution is zero so it is expected that the kurtosis 

value for a blurred image is closer to zero than that for a sharp image.   

 
In Figure 5.2 it can be seen that the results are promising; as σ increases the 

kurtosis decreases for the images of Lena, Cameraman and the Copper sample. 

However, the results for the image of the Boats show that the kurtosis decreases 

with increase in σ only for σ > 2. The main reason for this is because of the large 

number of pixels in the areas of sky and sea where the intensity between a pixel 

and its neighbours are not so different. To overcome inconsistent changes in the 

kurtosis values, (Yu, 2008) proposed a whitening pre-processing stage.  

5.2.1. Whitening Process 

 
The whitening process is an essential pre-processing technique for independent 

component analysis ICA (Hyvarinen et al., 2001). The whitening process finds the 

low-correlated sub-data set from the raw data set and eliminates pixels where the 

number of pixels is higher than a certain threshold value. Yu (2008) proposed a 

threshold computational technique for the whitening process, as given in 

Equations 5.1-5.2: 

 
)_Deviationα(StandardMedianThreshold                                              (5.1) 
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where Median  is the median value of the histogram data representing pixel 

intensity against number of pixels, see Figure 5.3,   is a scale factor, 

Deviation_dardtanS  is the standard deviation of the histogram data. 

 

2iation]andard_DevMedian)/St[(Maximumif

2iation]andard_DevMedian)/St[(Maximumif

1

2
α









                (5.2)             

 
where Maximum  is the maximum value of the histogram data. 

 
The whitening process was applied to the histogram of the original Boats image. 

The histogram of the original image is given in Figure 5.3a. According to 

Equations 5.1 and 5.2, a threshold value was found as 861.4. Then the pixel 

elimination process was applied according to the computed threshold value. The 

final histogram is given in Figure 5.3b. After the whitening process, the image 

data became low-correlated. The final image of Boats is given in Figure 5.4.  
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Figure 5.3 Histogram of the image of Boats a) before the whitening process, 

b) after the whitening process. 

 

 

a) 

b) 
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Figure 5.4 Image of Boats after the whitening process. 

 

5.3.     Determining the Blurriness Parameter of the PSF with 

Kurtosis-Based Non-Gaussianity Analysis 

 

This section reports the determination of the blurriness parameter using kurtosis-

based non-Gaussianity analysis. The sharper the image the higher the kurtosis 

value and this information can be used to determine exactly the blurriness 

parameter of a blurred image. In this section, the images of Lena, Boats, 

Cameraman and Copper sample are blurred using 5 , This value of σ was 

selected because, as shown in Figure 5.2, the corresponding kurtosis is decreasing 

and close to its minimum value.  The blurred images are shown in Figure 5.5 a-d.  
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Figure 5.5 Images blurred using 5 ; a) Lena, b) Boats, c) Cameraman and 

d) Copper sample. 

 

All the blurred images were whitened as described in the previous section to 

increase consistency, see Figure 5.6 a-d. The blurriness prediction results are 

shown in Figure 5.7 a-d for 5 . The determination process worked with all four 

cases.  

a)  b)  

d)  

 

c)  
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Figure 5.6 Blurred and whitened images ( 5 ); a) Lena, b) Boats, c) 

Cameraman and d) Copper sample. 

 
The next step was to find the blurriness parameters with an optimised BID 

process. In practice, determination of the blurriness parameter is a blind search 

process. It is called a blind search process because there is no information on the 

level of blurriness or original image. In the next section, an optimised BID 

a)  

 

d)  

 
 

c)  

 

b)  
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technique is used to overcome this problem and find the optimum blurriness 

parameter.  

   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7 Blurriness parameter search for the blurred ( 5 ) and whitened 

images  a) Lena, b) Boats, c) Cameraman and d) ) Copper sample. 

 

 

 

 

 

 

a) 

 

 

c) 

b) 

 

 

d) 
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5.4.     The ICA-Based Optimised BID technique with the BA 

 

The aim of this section is to find the optimum blurriness parameter and it focuses 

on the ICA-based optimised BID technique with BA. The BID technique utilises 

the kurtosis-based non-Gaussianity analysis and the kurtosis is employed as a 

fitness function in the BA. The basic BA, BA enhanced by SACHCA and BA 

enhanced with ANNSA as described in Chapter 4 were used here. 

 
In this study, the PSF of the blurred image is assumed to be 2D-Gaussian 

function. The standard deviation,   of the PSF was searched by the proposed 

BAs. The global optimum value of the standard deviation was utilised to find the 

PSF.  Hence, the original image can also be estimated. 

 
 In the next sections, the following techniques will be explained; the ICA-based 

optimised BID technique with the basic BA, ICA-based optimised BID technique 

with the ANSSA strategy-based improved BA and ICA-based optimised BID with 

the SACHCA-based improved BA.  

5.4.1. ICA Based Optimised BID with Basic BA  

 
The ICA-based BID with the basic BA is based on optimisation of the blurriness 

parameter. The basic BA was employed to find the global maximum value of the 

kurtosis of the image by evaluating the blurriness parameter,  . The pseudo code 

of the technique is shown in Figure 5.8.  
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Figure 5.8 Pseudo code of the ICA-based optimised BID technique with basic 

BA. 

Set the initial population as n,  the best locations as m, the elite locations as e, the  number of bees 

around elite locations as neb, the number of bees around non-elite best locations as nsb, the 

neighbourhood size as ngh, number of maximum iterations as  MaxIter and error limit as Error.  

Generate initial population for PSF parameter; sigma,   and substitute the sigma in Gaussian PSF 

as )y,x(h , evaluate the kurtosis value as and sort absolute value of kurtosis in descending order for 

initial population. 

Compute the Fourier transform of the observed image as )n.m(G and predicted PSF as )y,x(H . 

Then restore the estimate of the original image in Fourier domain as, )n.m(F


 with following 

equation,  

)n,m(H

)n,m(G
)n,m(F





  then compute the inverse Fourier transform of the estimated original 

image as )y,x(f


. 0i . 

While MaxIteri   or ErrorKurtosisKurtosis ii  1  

     1 ii  

     Recruit forager bees to the elite sites and non-elite best sites for neighbourhood search. 

     Evaluate Ffitness Value. Sort Fitness Value. 

     Allocate the rest of the forager bees for global search.  

    Evaluate Fitness Value.  

    Sort the final result in descending order and the maximum kurtosis value.      

    Run the program until the termination conditions met.  

End 
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5.4.2. ICA-Based Optimised BID with ANSSA Strategy-Based 

Improved BA  

 
The ANSSA strategy-based improved BA was proposed in the previous chapter 

and tested on continuous type optimisation problems. 

 
In this section, the algorithm was utilised for the optimisation of the ICA-based 

BID technique. The main goal of the proposed technique was to find the optimum 

value of σ when the maximum non-Gaussianity has been found. The pseudo code 

of the technique is shown in Figure 5.9.  
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Figure 5.9 Pseudo code of the ICA-based optimised BID technique with the 

ANSSA strategy-based improved BA. 

Set the initial population as n,  the best locations as m, the elite locations as e, the  number of bees around of elite locations as 
neb, the number of bees around non-elite best locations as nsb, set the shrinking constant as sc, set the shrinking start number 
as rep_nshr, set the enhancement start point as rep_nenh, set the abandoning start number as rep_naban, set the 
neighbourhood size as ngh, number of maximum iteration as select  MaxIter and error limit as Error. 

)m,(Zerosintpo_keep 1 ; )m,iter(Zerossite_aband  . 

Generate initial population for PSF parameter; sigma,   and substitute the sigma in Gaussian PSF as )y,x(h , evaluate the 

kurtosis value as and sort absolute value of kurtosis as descend order for initial population.  

Calculate the Fourier transform of the observed image as )n.m(G  and predicted PSF as )y,x(H . 

 Then restore the estimated original image in Fourier domain as, )n.m(F


 with following equation,  

)n,m(H

)n,m(G
)n,m(F





  

then compute the inverse Fourier transform of the estimated original image as )y,x(f


.  0i ; 

While MaxIteri   or ErrorKurtosisKurtosis ii  1  

     1 ii ; Recruit the forager bees to the elite sites and non-elite best locations for neighbourhood search. 

nshr_rep)k,iint(po_keep  and nenh_rep)k,iint(po_keep   ; 

)
)nshr_rep)k,iint(po_keep(

*sc*ngh(ngh)k,i(ngh_new
100

100 
 ; 

End  

 If nenh_rep)k,iint(po_keep  and naban_rep)k,iint(po_keep    

)
)naban_rep)k,iint(po_keep(

*sc*ngh(ngh)k,i(ngh_new
100

100 
 ; 

End         

IfElse  nabanintpo_keep     

11  )k,i(site_aban)k,i(site_aband ; 

Else ngh)k,i(ngh_new  ;  

End  

      Evaluate Fitness Value. Sort Fitness Value.  Allocate the rest of the forager bees for global search.  

      Evaluate Fitness Value.  Sort the final result as descend order and the maximum kurtosis value.  

      Run the program until the termination conditions met.   

End 
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5.4.3. ICA-Based BID with the SACHCA-Based Improved BA 

 
The SACHCA-based improved BA was proposed in the previous chapter and 

tested on continuous type optimisation problems. 

 
In this section, the algorithm was used to optimise the ICA-based BID technique. 

The proposed technique looks for the optimum sigma value when kurtosis-based 

non-Gaussianity analysis has found a maximum. The pseudo code of the 

technique is shown in Figure 5.10.  
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Figure 5.10 Pseudo code of the ICA-based optimised BID technique with the 

SACHCA-based improved BA. 

Set the initial population as n, the best locations as m, the elite locations as e, the number of bees 

around of elite locations as neb, the number of bees around non-elite best locations as nsb, set 

the step size for HC algorithm as h, set the angle limit as angle_limit, set the number of the 

waiting time for HC algorithm as HC_time_limit, the neighbourhood size as ngh, number of 

maximum iteration as MaxIter and error limit as Error.  

Generate initial population for PSF parameter; sigma,   and substitute the sigma in Gaussian 

PSF as )y,x(h , evaluate the kurtosis value and sort absolute value of kurtosis as descend order 

for initial population. Calculate the Fourier transform of the observed image as )n.m(G  and 

predicted PSF as )y,x(H . Then restore the estimated the original image in Fourier domain 

as, )n.m(F


 with following equation,  

)n,m(H

)n,m(G
)n,m(F





  then compute the inverse Fourier 

transform of the estimated original image as )y,x(f


.  0i ; 

While MaxIteri   or ErrorKurtosisKurtosis ii  1  

     1 ii  

     Select the elite locations and non-elite locations for neighbourhood. 

m:kFor 1  

Calculate  )k(angle    

While itlim_angle)k(angle  and itlim_time_HCtime   then. 

))k.,i(X(Fh)k,i(X)k,i(X 1 . 

Evaluate Fitness Value for each position 

End  

      Evaluate fitness value. Sort Fitness value. 

      Allocate the rest of the forager bees for global search. Evaluate Fitness Value.  

      Sort the final result as descend order and the maximum kurtosis value. 

      Run the program until the termination conditions met;  

End 
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5.4.4. Experimental Results for the ICA-Based BID Technique with the 

BA 

 
This section presents the experimental results obtained for the ICA-based BID 

technique with the three proposed versions of the BA (basic BA, the ANSSA 

strategy-based improved BA and the SACHCA-based improved BA). The blurred 

images of Lena, Cameraman, Boats and the Copper sample were used to measure 

the performance of the proposed BID techniques. All four entire images were 

blurred using 5 (see Figure 5.5 a-d).  Then the given images were pre-

processed with a whitening process. Finally, each of the proposed BA versions 

was used with the BID technique to find the value of the optimum blurriness 

parameter (sigma). The results of the BA-based BID techniques were compared 

with a Simulated Annealing (SA)-based BID technique as given in Section 2.5.1, 

the model proposed by (Yu, 2008). The parameters of the BA-based BID 

techniques are given in Table 5.1. The simulation parameters for the SA algorithm 

were as follows: the highest temperature was set 20, the lowest temperature was 0, 

the number of iterations was selected as 100. 

 
The average results for the blurriness parameter found by the different algorithms 

are shown in Figures 5.11-5.14. Each algorithm was run 100 times. The best 

results of each run are given in Figures 5.15-5.18. Further, the average value and 

standard deviation of 100 best fitness results of each algorithm for the given 

images are given in Table 5.2.  Finally, the Root Mean Square (RMS) errors for 
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the techniques are given in Table 5.3. The RMS error was calculated as in 

following Equation 5.3: 





n

i
i Expx

n
RMS

1

2)(
1

                                                                                  (5.3)                

where Exp  =5 (expected value), ix = best value of each run, 100n (number of 

run).             

Table 5.1 Selected parameters for the BA. 

Parameters Basic BA 

ANSSA 

Based 

BA 

SACHCA 

Based BA 

Number of scout bees in the selected patches (n) 10 10 10 

Number of best patches in the selected patches (m) 5 5 5 

Number of elite patches in the selected Best patches (e) 1 1 1 

Number of recruited bees in the elite patches (nep) 5 5 5 

Number of recruited bees in the non- elite best  patches (nsp) 3 3 3 

The size of neighbourhood for each patch (ngh) 0.01 0.01 0.01 

Shrinking constant (sc) - 0.1 - 

Number of repetitions for shrinking process (rep_nshr) - 10 - 

Number of repetitions for enhancement process (rep_nenh) - 30 - 

Number of repetitions for site abandonment (rep_naban) - 100 - 

Angle limit (angle_limit) - - 0.5 

Step size for HCA ( h ) - - 0.1 

Number of waiting time for HCA (HC_time_limit) - - 100 

Number of Iterations (iter) 1000 1000 1000 

Difference between the first and last iteration value (diff) 0.001 0.001 0.001 
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Figure 5.11 Blurriness parameter for the blurred-whitened image of Lena as 

determined by the SA based BID and three BA-based BID techniques 

(average of 100 runs).  
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Figure 5.12 Blurriness parameter for the blurred-whitened image of 

Cameraman as determined by SA based BID and three BA-based BID 

techniques (average of 100 runs).  
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Figure 5.13 Blurriness parameter for the blurred-whitened image of Boats as 

determined by the SA based BID and three BA-based BID techniques 

(average of 100 runs). 
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Figure 5.14 Blurriness parameter for the blurred-whitened image of Copper 

sample as determined by the SA based BID and three BA -based BID 

techniques (average of 100 runs). 
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Figure 5.15 Best approximations to sigma for the blurred-whitened image of 

Lena as determined by the SA based BID and three BA-based BID 

techniques (average of 100 runs). 
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Figure 5.16 Best approximations to sigma for the blurred-whitened image of 

Cameraman as determined by the SA based BID and three BA-based BID 

techniques (average of 100 runs). 
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Figure 5.17 Best approximations to sigma for the blurred-whitened image of 

Boats as determined by the SA based BID and three BA-based BID 

techniques (average of 100 runs). 
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Figure 5.18 Best approximations to sigma for the blurred-whitened image of 

Copper sample as determined by the SA based BID and three BA-based BID 

techniques (average of 100 runs). 
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Table 5.2 Synopsis of best fitness results for 100 runs with SACHCA BA, 
ANSSA BA, basic BA and SA based-BID for images of Lena, Boats, 

Cameraman and Copper sample. 

 

 

Table 5.3 RMS error of each technique for the images of Lena, Cameraman, 

Boats and Copper sample. 

 

 

According to Table 5.2, the BA based-BID techniques performed well on entire 

images compare to the SA based BID. In addition that the RMS error of the 

SACHCA-based improved BA-based BID technique was less than for any of the 

other techniques for all four images, according to the Table 5.3. The SA-based 

BID technique performed worst in the sense that it gave the largest RMS error of 

Test Images 

SACHCA  BA 

Based BID 

ANSSA 

BA Based-BID 

Basic BA Based-

BID 
SA Based-BID 

Mean 
Standard 

Deviation 
Mean 

Standard 

Deviation 
Mean 

Standard 

Deviation 
Mean 

Standard 

Deviation 

Lena 5.0030 0.0465 5.0060 0.1384 5.0484 0.0777 4.4527 0.1070 

Boats 4.9540 0.0453 4.9472 0.0503 4.9413 0.0614 4.404 0.0228 

Cameraman 4.9572 0.0503 4.9840 0.0633 4.9408 0.0803 4.1146 0.1304 

Copper 

Sample 
5.0001 0.0084 5.0106 0.0217 4.8819 0.3027 4.2484 0.0635 

Test Images 
RMS Error of 

SACHCA Based 
BA-BID 

RMS Error of 
ANSSA Based 

BA-BID 

RMS Error of 
Basic Based BA-

BID 

RMS Error of SA 
Based-BID 

Lena 0.0554 0.1378 0.1912 0.5575 

Cameraman 0.0658 0.0817 0.0995 0.8949 

Boats 0.0710 0.0728 0.0846 0.5965 

Copper sample 0.0084 0.0240 0.3235 0.7543 
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any technique for all four images.  The ANSSA Based BA-BID generally 

outperformed the Basic Based BA-BID.  

Using the best values for σ by the obtained different algorithms (Figure 5.14 to 

5.17) the t-test was used to determine significant differences. The alpha values 

obtained from statistical significance tests are given in Table 5.4.  

 

Table 5.4 Statistical significance of difference between best values 

 of σ from each technique for given images. 

 
Image Techniques ANSSA  

BA Based-
BID 

Basic BA 
Based-BID 

SA Based-
BID 

 

Lena 

SACHCA  BA Based BID 0.0939 0.0471 0.0000 

ANSSA  BA Based BID  0.0078 0.0000 

Basic BA Based BID   0.0000 

SA Based BID    

Cameraman SACHCA  BA Based BID 0.2872 0.0865 0.0000 

ANSSA  BA Based BID  0.4834 0.0000 

Basic BA Based BID   0.0000 

SA Based BID    

Boats SACHCA  BA Based BID 0.3584 0.1252 0.0000 

ANSSA  BA Based BID  0.4658 0.0000 

Basic BA Based BID   0.0000 

SA Based BID    

Copper 
sample 

SACHCA  BA Based BID 0.0001 0.0002 0.0000 

ANSSA  BA Based BID  0.0001 0.0000 

Basic BA Based BID   0.0000 

SA Based BID    
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Table 5.4 clearly shows that the best values for each of the three BA based BID 

algorithms are significantly different from, and more accurate than, the SA based 

BID algorithm at the 99% confidence level. For each of the four images the 

apparent ranking of the three BA based BID algorithms is consistently in the order 

(from best to worst) SACHCA, ANSSA and Basic BA.  

 
However, application of the t-test shows the differences are not always significant 

at the 95% confidence level. For example with the image of Lena we see that the 

SACHCA and ANSSA are both significantly better than the basic BA based BID 

algorithm but not significantly different from each other. 

 
For the image of Cameraman, Table 5.4 shows there is no significant difference in 

the best values between the three BA based BID algorithms. 

 
For the image of Boats, Table 5.4 again shows there is no significant difference in 

the best values between the three BA based BID algorithms. 

 
Finally for the image of the copper sample, Table 5.4 shows that the SACHCA 

gives significantly more accurate results than the ANSSA which, in turn, gives 

significantly more accuare results than the Basic BA BID technique. 

 
It can thus conclude that the SACHCA based BA Bid technique consistently gave 

significantly more accurate results than the SA based BID, and where there was 

any significant difference with the other BA based techniques gave the best 
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results. The BA based appears to be the best. Accordingly, it is concluded that a 

BA-based BID technique has a better capability for the SEM image. 

5.5.     A Novel Depth Calculation Using the BA-Based BID 

Technique for SEM  

 

Depth computation is one of the most important tasks for SEMs. In this section, 

BA-based BID techniques are used to calculate the blurred parameter of a set of 

SEM images which were captured at different levels of depth and blurring 

according to the focused image plane of an SEM. The predicted results are related 

to depth.     

 
The technique is based on determining the blurriness parameter of the different 

distance levels of the SEM images. Image construction in SEMs is given in Figure 

5.19 (Nicolls, 1995). The predicted blurriness parameter is related with the 

distance according to Equations 5.4 and 5.5 and so a new depth metric can be 

defined according to the blurriness parameter. The technique is based on 

computing the blurriness parameter with an ICA-based optimised BID technique, 

and the optimisation step is carried out with the BA. 
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Figure 5.19 Schematic of image construction with SEM (Nicolls, 1995). 

 

According to Figure 5.19, a blurred image is captured if the distance between 

aperture and specimen differs from 0d  (distance of the focused image plane). 

Using similar triangles, a relationship between the blurriness diameter of the 

image and depth is derived as in Equation 5.4. 
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where Td1 , Td
2

, Bd1 and Bd2  are distances from the aperture of the SEM to the surface 

of the specimen; TA1 , TA2 , BA1 and BA
2

 are the blurriness diameters. 

Aslantas (1997) proposed the blurriness parameter as proportional to the 

blurriness radius, as given in Equation 5.5: 

 
kR                                                                                                                 (5.5) 

 
where R  is the blurriness radius, k is a constant and   is the blurriness 

parameter.  

 
If k  is known, the predicted value of σ can be substituted into Equation 5.4 and 

the distance from aperture to the surface of the specimen can be measured based 

on Equation 5.4.  The constant value can be measured using a calibration process. 

 
According to Figure 5.19, the blurriness diameters are symmetrically placed both 

sides (“up” and “down”) of the focused image plane. To overcome the ambiguity 

of which side is “up” and which is “down”, the specimen can be moved to a new 

position and a new blurriness parameter computed. Using the new position and 

the new blurriness diameter, the correct side can be defined and the depth can be 

found.   
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5.6.     Experimental Results for the Novel Depth Computation 

Technique Using the BA Based BID Techniques 

 

This section presents the experimental results for the novel depth computation 

technique based on the BA-based BID technique. Initially, a set image was 

captured with an SEM at different depth levels and the blurriness parameters were 

calculated with the proposed BA-based BID technique and the results were related 

to the depth.  

 
The proposed technique was implemented on a SEM model 1500XB. For the 

experiments, a copper sample was used, which contains a cylindrical shaped 

trench. All the experiments were carried out with the same SEM system 

parameters: Magnification = 135kX, Working Distance = 5 mm, Aperture Size = 

30 µm, EHT (Voltage) = 10 kV, Noise Reduction = Line Integration, Current 

Mode = High Current and Imaging Mode = Secondary Electron Detector. The 

experiments began with setting the specimen stage to the focused image position 

and capturing the focused image, as shown in Figure 5.1d.  Then the stage 

position of the focused image was moved up by 0.2 mm and the first blurred 

image was captured. This process was repeated 10 times in a series of incremental 

upward movements of 0.2 mm. When the last image was captured above the 

focused image plane the stage was moved back to the focused image position. 

Then the stage was moved down by 0.2 mm and the blurred image was captured. 
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This process was repeated 10 times in a series of incremental downward 

movements of 0.2 mm. The captured images are given in Appendices C1, and C.2.  

 
According to Equation 5.5, the blurriness parameter is related to the blurriness 

diameter. The value of the constant k  value was determined with a calibration 

process in which the stage was moved upwards by 0.2 mm, and the blurriness 

diameter calculated based on Equation 5.4. This was found to be 1.2 µm with 30 

µm aperture size. The blurriness parameter, σ, of the PSF was computed with the 

proposed BA-based BID technique, and found to be 0.4105. The standard 

deviation results and blurriness radius were substituted into Equation 5.5 and k  

was found to be 1.4618. The relationship between the distance, expected 

blurriness radius and the expected blurriness parameter are given in Table 5.5. 
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Table 5.5 The expected blurriness parameter and radius with regard to the 
distance between aperture and specimen. 

 
Distance from aperture to 

specimen (mm) 

Expected Blurriness 

Radius(µm) 

Expected Blurriness 

Parameter ( ) 

3.0 6.0 4.1045 

3.2 5.4 3.6941 

3.4 4.8 3.2836 

3.6 4.2 2.8732 

3.8 3.6 2.4627 

4.0 3.0 2.0523 

4.2 2.4 1.6418 

4.4 1.8 1.2314 

4.6 1.2 0.8209 

4.8 0.6 0.4105 

5.0 0.0 0.0000 

5.2 0.6 0.4105 

5.4 1.2 0.8209 

5.6 1.8 1.2314 

5.8 2.4 1.6418 

6.0 3.0 2.0523 

6.2 3.6 2.4627 

6.4 4.2 2.8732 

6.6 4.8 3.2836 

6.8 5.4 3.6941 

7.0 6.0 4.1045 
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The three versions of BA based BID techniques were used for the SEM image. 

The relationship between the blurriness parameter and distance from focused 

image plane to specimen are shown in Figure 5.20a and the results of the 

blurriness diameter and distance from focused image plane to specimen are given 

in Figure 5.20b. 

 
The accuracy of the BA-based BID techniques was measured using RMS error, 

see Table 5.6 which shows the performance of the SACHCA-based improved BA-

based BID technique was the better than either the ANSSA-based BA BID 

technique or the Basic BA - BID technique. In addition that, SACHCA-based 

improved BA, ANSSA-based BA BID and basic BA BID matched %85.7, %66.7 

and %52.3 of the given 21 depth level.  

 
According to Table5.6 the performance of the ANSSA-based BA BID technique 

is not better than SACHCA-based BA BID, but better than the basic BA BID.   
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The Relationship Between Blurriness Parameter (Sigma)  and Depth

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7

Sigma

D
is

ta
n

c
e

 (
m

m
) The SACHCA-BA Based BID

The ANSSA-BA Based BID

The Basic BA Based BID

Expected Sigma

 

a)  

The Relationship Between Blurriness Diameter and Depth
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b)  

Figure 5.20 a) Relation between blurriness parameter and distance between 

aperture and specimen, and b) Relationship between blurriness diameter and 

distance between aperture and specimen.  
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Table 5.6 The RMS error results of the proposed techniques for the sigma 
and depth relationship. 

 

 

 

 

 

 

 

 

 

 

 

 

Technique Percentage(%) of Correct 

Estimated  Distances 

RMS Error 

The Basic BA - BID 52.3% 0.4127 

The ANSSA BA - BID 66.7% 0.1033 

The SACHCA BA - BID 85.7% 0.0530 
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5.7.     Summary 

 

This chapter has covered prediction of the blurriness parameter using BA-based 

BID techniques, found a robust and effective BID technique combined with the 

BA and used it for depth determination.   

Three different types of BA-based BID techniques were considered and assessed. 

The first was the basic BA; the second was an ANSSA strategy-based improved 

BA and the third and last was a SACHCA-based improved BA.  

The three proposed BA-based and one SA-based BID techniques were tested on 

three benchmark images and an image of a copper sample captured with an SEM. 

The results obtained from the BA-based BID techniques were compared with each 

other and those obtained from the SA-based BID technique. The SA-based 

algorithm performed significantly less well than the others and was eliminated.  

The three BA-based techniques were used on a set of SEM images captured at 

different distances from the focused image plane to predict the blurriness 

parameter.  The predicted blurriness parameters were then used to determine 

distance from focused image plane to specimen in SEM. Thus a novel depth 

computation technique was obtained based on the BA-based optimised BID. 

The relative performance of the BA-based BID techniques was assessed in this 

chapter and it was found that the SACHCA BA-BID algorithm was consistently 

the most accurate. 
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Chapter 6 

  CONCLUSION 

 

This chapter summarises the contributions and conclusions of this study. It also 

provides suggestions for further research. 

 

6.1.     Contributions 

 

First, this work investigated the depth computation techniques for SEM. The first 

investigation was based on a pre-processed DFAF technique. The processing 

stage is image correction. During the image acquisition stage with SEM, the 

captured images are affected by distortion, translation and rotation.  In this study, 

captured images were corrected using the Phase Correlation Log-Polar 

Transformation (PCLPT) technique. Even though the PCLPT technique is a 

strong image correction technique, due to sub-pixel level interpolation errors, it 

also needs pre-processing. In this study, the pre processing stage was introduced 

based on image filtering for images captured with SEM. Then the DFAF 

technique was applied to the corrected SEM image to find the sharpness levels. 

Finally, the sharpness values were related to corresponding distances.  
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Second, this research investigated neighbourhood search in the BA and focused 

on improving the BA by utilising adaptive neighbourhood sizes and site 

abandonment (ANSSA). The proposed algorithm was tested on benchmark 

functions and an optimisation problem. The results of the improved BA were 

compared with the basic BA. The performance of the new algorithm was 

statistically tested with the t-test.  

 
Third, this research investigated the Slope Angle Computation and Hill Climbing 

Algorithm (SACHCA)-based hybrid BA. Slope Angle Computation (SAC) is 

based on computing the slope of each best location. The Hill Climbing Algorithm 

(HCA) was utilised to find promising sites, when the slope of any patch is closer 

to zero with respect to a defined threshold. The proposed algorithm was tested on 

selected benchmark functions and an optimisation problem. The results of the 

proposed algorithm were compared with the results of the basic BA and the 

ANSSA strategy-based improved BA.  The performance of the algorithm was 

statistically measured with the t-test. 

 
Fourth, the blind image deconvolution (BID) technique was introduced. The 

technique was developed with the BA-based optimised non-gaussianity analysis. 

The non-gaussianity analysis was based on the kurtosis of the given images. The 

PSF, the blurriness parameter (sigma) of the PSF and the original image were then 

recovered. The proposed algorithm was tested on images of Lena, Boats, 

Cameraman and a copper sample captured by a SEM. Then, the proposed 

algorithm was utilised on a set of images captured with SEM at different depths. 
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The proposed algorithm was compared with a Simulated Annealing (SA)-based 

BID technique. The performance of the proposed algorithm was statistically tested 

with the t-test.  Finally, the predicted blurriness parameters were utilised for the 

depth calculation process, where the blurriness parameter of each different depth 

level of the image was assigned to the related distance from the focused image 

plane.  

 

6.2.     Conclusions 

 

In conclusion, all objectives stated in Chapter 1 have been met. 

An image filtering-based pre-processed PCLPT technique was developed 

(Objective 1).  This method gave good performance compared to the case without 

pre-processing.  

 
The proposed pre-processed PCLPT technique was utilised on the image of a 

copper sample captured by an SEM and it corrected the given images (Objective 

2). The performance of the pre-processed algorithm was acceptable in the case of 

the Gaussian, Median and iterative blind deconvolution-based pre-processing 

stage. In the case of the LoG, Prewitt and Sobel filtering-based pre-processing 

techniques, the proposed technique failed. 
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The DFFA technique was utilised on images corrected with the Gaussian filtering-

based pre-processed PCLPT, Median filtering-based PCLPT and iterative BID 

technique-based pre-processed PCLPT. With respect to the sharpness function 

values, the sharpness results were successfully assigned to distances from the 

focused image plane (Objective 3).  

 
The BA was developed with the ANSSA strategy and compared with the basic 

BA (Objective 4). The performance of the proposed algorithm on some 

benchmark functions was better than the basic BA. 

 
The BA was improved with SACHCA and compared with the basic BA and the 

ANSSA strategy-based improved BA (Objective 5). The proposed algorithm 

performed better than the other two BA versions for the majority of the given 

benchmark functions. 

 
The improved BAs and the basic BA were utilised in the BID technique 

(Objective 6). 

 
Kurtosis-based non-gaussianity analysis was employed in the proposed BID 

technique and the optimum blurriness parameter of the image was searched by the 

BA with respect to the image kurtosis value. By varying the blurriness parameters 

of the PSF, the optimum value was found for each different depth level of the 

image. The results of the BA-based predicted blurriness values were compared 



 168 

with the results of the SA-based BID technique. Finally, the success rate of the 

proposed techniques was computed with the RMS error metric (Objective 7). 

The predicted blurriness parameters were related to the different levels of distance 

according to the focused image (Objective 8).  

6.3.     Further research 

 

First, this work investigated depth computation for SEM images. The first 

experiment was carried out with the DFAF technique on a corrected SEM image. 

Image correction was carried out with the pre-processed PCLPT technique. Six 

selected filters for the pre-processing step were tested. It is worth studying other 

image filters and testing their performance on the DFAF technique. Seven 

different sharpness functions were used. Furthermore, several functions have been 

proposed. It is worth utilising other sharpness functions to define the relationship 

between depth and sharpness value more accurately.   

 
Second, the BA was improved with the ANSSA strategy to have a more adaptive 

and effective strategy during the search process. It was expected that adaptability 

would make the system more robust against chance.  According to this, the 

adaptive neighbourhood size change was the start point. Further, it is worth 

improving the BA in respect of its adaptability on different aspects such as 

changing the number of bees adaptively, changing the best sites adaptively and so 

on.  
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Third, the second improvement of the BA was based on the SACHCA approach. 

This approach was inspired by the direction information in the waggle dance. The 

slope angle of the local search area was used to indicate the most promising 

search direction in this study. According to the slope angle, promising sites were 

found and searched by the HCA.  If the slope angle was less than a threshold 

value then the HCA was utilised. In this study, the slope angle of each top-

performing site was computed with the numerical first derivative of the fitness 

function. It is worth improving the slope angle computation with more accurate 

approaches. The second improvement for the BA is to focus on the other 

neighbourhood search techniques that can be utilised with the BA.  

 
Fourth, the BA-based BID technique utilised kurtosis-based non-gaussianity 

analysis. It is worth studying other metrics with the BA-based BID technique. 

Furthermore, a novel depth computation technique based on the BA-based BID 

technique was introduced. It is worth studying the blurriness parameters to define 

a new depth computation technique using different imaging systems such as TEM 

and the interferometer. 
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Appendix A 
 

No Function Name Explanation Function 
Parameters / Operators 

 

1 
Tenengrad  

Function 

The function computes the gradient of 
the image, the sharpest image has max 
value ( Schlag, et al., 1983 and Aslantas 
1997) 
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(Sobel Operator is available to compute the derivations). 

 

2 
Brenner  

Function 

Brenner function computes the sum of 
squared differences between pixels and 
two unit away pixels, the sharpest image 
has max value (Brenner, et. al, 1984 and 
Aslantas 1997). 
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3 
Laplacian 
Function 

Laplacian computes the sum squared 
Laplacian of the image and sharpest 
image has maximum value (Muller et al., 
1974 and Krotkov, 1987). 
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where T)y,x(I 2
 The following operators are available. 
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4 

Sum Modified 
Laplacian  

Function 

 

The function measures the Laplacian of 
the image; the sharpest image has max 
value (Nayar, and Nakagawa., 1990, and 
Aslantas 1997). 
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5 
Squared Gradient 
Function 

The function computes the sum squared 
differences of the each pixel and a unit 
away neighbour pixels, the sharpest 
image has max value (Santos, et al., 
1997). 
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6 

Thresholded 

Absolute Gradient  

Function 

The function is one of the basic gradient 

based sharpness function, the sharpest 

image has max function value (Groen et, 

al., 1985). 
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7 

Sum Modulus - 

Difference  

Function 

The function computes the gradient of 

the region of interest which is the first 

order intensity differences between 

adjacent pixels (Jarvis, 1976 and 

Aslantas 1997). 
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8 Range Function 

The function is based on the searching 

for the maximum value of the difference 

between the maximum grey level and 

minimum grey level of the image  

Firestone et al., 1991) 

F  minmax IImax     
where maxI  and minI  are the maximum and minimum grey level,  

respectively. 

9 
Mendelsohn’s and 

Mayall’s Function 

The function maximises the sum of 

difference between a selected threshold 

value and the pixels grey level 

(Mendelsohn and Mayall, 1972 and 

Aslantas, 1997). 
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where )I(Num is the number of the grey level of I , and T  is the 

threshold and defined by the user, which may be  selected as the mean 

value (Aslantas, 1997). 
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10 
Mason’s and 

Green’s Function 

This function maximises the sum of the 

difference between defined threshold and 

pixel grey level. The difference between 

the Mendelsohn’s and Mayall’s function 

and this function is the definition of the 

threshold (Aslantas, 1997). 
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where xy  is defined as the gradient of point )y,x( . 

11 Histogram 

Entropy Function 

The function minimises the entropy of 

the histogram diagram (Aslantas, 1997; 

Santos, et al., 1997 and Aslantas and 

Kurban, 2009). 
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where )I(P  is the probability of the grey level of I in histogram 

diagram. and 0)I(P  

12 Histogram of 

Local Variance 

Function 

The function computes the local variance 

of the image histogram and the sharpest 

image has the minimum value (Aslantas, 

1997). 

  

13 Variance Function The variance function computes variance 

of images and the sharpest image has the 

maximum value (Aslantas, 1997 and 

Yousefi, et al., 2011). 
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14 Normalised 

Variance Function 

The function utilises a normalised 

variance based sharpness function. But 

(Aslantas, 1997) proposed the function 

as a standard deviation based function. 

The sharpest image has maximum value. 
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15 Absolute Variation 

Function 

The function is defined as a difference 

between pixel value and mean pixel 

value (Groen, et al., 1985). The sharpest 

image has maximum value. 
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16 Normalised 

Absolute Variation 

Function 

The function measures the normalised 

difference between each pixel value and 

mean value (Groen, et al., 1985). The 

sharpest image has maximum function 

value. 
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17 Thresholded 

Video Signal 

Content Function 

The function computes the sum of the 

difference between a defined threshold 

and the pixel values (Aslantas, 1997). 
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18 Thresholded 

Video Signal Pixel 

Count 

The function counts number of pixel, 

which has bigger pixel value then 

selected threshold value. The sharpest 

image has maximum value (Aslantas, 

1997). 
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19 Signal Power 

Function 

The function computes the sum of the 

squared grey level of the images 

(Aslantas, 1997). The sharpest image has 

maximum value. 
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Appendix B 
 

 
B.1. Gaussian Filter  

The Gaussian Filter is one of the most widely used low pass filter (Gonzalez et al., 2004 

and Semmlow, 2004).  The filter removes the high-frequency components in the image 

with Gaussian. The Gaussian filter makes the image smoother (Merchant, 2008). The 

Gaussian function is given in Equation B.1: 

22

22

22

1 



yx

e)y,x(h




                                                                                               (B.1) 

where   is the standard deviation. 

B.2. Laplacian of Gaussian Filter 

The Laplacian of a Gaussian-based filter (LoG) is another smoothening type filter, which 

utilises the Gaussian function. The LoG-based filter uses the second derivation of the 

Gaussian function, given in Equation B.2 (Gonzalez et al., 2004):  

 yyxx hhh 2                    
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where xxh and yyh are the second order partial derivative of h  n x and y directions 

respectively. 

In practice, the matrix form of the LoG is utilised instead of the continuous function form. 

The 5x5 matrix form of the LoG filter is given in Equation B.3: 
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B.3. Prewitt Filter 

  
The Prewitt filter is a linear spatial type filter which utilises the first order derivative. The 

Prewitt filter increases the image sharpness while enhancing the edges (Gonzalez et al., 

2004). Thus it is called the edge detector. A first order gradient-based filter can be 

defined as a magnitude of gradient or simply the gradient of the image, given in Equation 

B.4: 

  2122
/

yx hhh                                                                                                       

(B.4) 

 where xh  and yh  are the first order partial derivatives of h in the direction x and y 

respectively. 

The Prewitt filter utilises a 3x3 kernel matrix for the first order derivative in the x-

direction and y-direction. The kernel matrixes are given in Equation B.5: 
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For simplicity the gradient magnitude can be calculated approximately as in Equation 

B.6: 

yx hhh                                                                                                                (B.6) 

The Prewitt filter focuses on highlighting the edges.  
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B.4. Sobel Operator 

The Sobel operator is also a first order derivative-based linear spatial filter.  This filter 

utilises edge detection and highlights the edges (Burger and Burge, 2009). The Sobel 

operator utilises 3x3 kernel matrix to determine first order derivatives in the x and y 

directions. The kernel matrix is given in Equation B.7:  
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Then the gradient magnitude h , of the each pixel is calculated as in Equation B.6. The 

Sobel operator has the same features as the Prewitt filter. The performance of the Sobel 

operator-based pre-processed PCLPT technique was therefore expected to be the same as 

that of the Prewitt-based technique. 

B.5. Median Filter 

The Median filter is a non-linear type smoothing filter which is utilised for reducing the 

noise in the image (Gonzalez et al., 2004). The computation process is based on the 

replacing of the pixel intensity value with the median of the intensity value in the 

corresponding neighbourhood.  This filter is effective when the noise pattern contains 

spike like components. 

B.6. Iterative-Based Blind Deconvolution 

The blind deconvolution algorithms have been improved to recover the original image 

and PSF without having information about any of them. There are several type of Blind 

image model have been developed. One type of the blind deconvolution is Iterative Blind 
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deconvolution which has been developed for the MATLAB. The technique utilises 

Maximum Likelihood Estimation (MLE) to recover the original image and it’s PSF. The 

algorithm was developed based on the study of (Holmes et al., 1995 and Biggs and 

Andrews, 1997). The algorithm steps are given below: 

1. Initialise the PSF 0h  and template image )y,x(I 0



, 

2. Predict the )y,x(hk  as in Equation B.8: 
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3. Predict the )y,x(I k 1



 as in Equation B.9: 

)y,x(I)y,x(h*
I

)y,x(I kk
)y,x(h*)y,x(

)y,x(g
k

kk



































1                                       (B.9) 

4. Result of the estimated image )y,x(I k 1



 is compared to that of initial image, 

5. The algorithm works until the termination condition is met. 
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Appendix C 
 

Figure C.1 a-j shows the images of a copper sample captured with SEM from the 

upper side of the focused plane by 0.2 incremental sizes.  Figure C.2 a-j shows the 

images of a copper sample captured with SEM from the under side of the focused 

plane by 0.2 incremental sizes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a) The image is captured 0.2mm above 

from the focused image. 

 

b) The image is captured 0.4mm above 

from the focused image. 

 

c) The image is captured 0.6mm above 

from the focused image. 

 

d) The image is captured 0.8mm above 

from the focused image. 
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e) The image is captured 1mm above from 

the focused image. 

 

f) The image is captured 1.2mm above 

from the focused image. 

g) The image is captured 1.4mm above 

from the focused image. 

 

h) The image is captured 1.6mm above 

from the focused image. 
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Figure C.1 a-j The images were captured with SEM by 0.2 incremental size from 

the upper direction of the focused plane. 

 

 

 

 

 

 

 

 

 

 

 

i) The image is captured 1.8mm above from 

the focused image. 

 

j) The image is captured 2mm above from the 

focused image. 

 

a) The image is captured 0.2mm below 

from the focused image. 

 

b) The image is captured 0.4mm below 

from the focused image. 
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c) The image is captured 0.6mm below from 

the focused image. 

 

d) The image is captured 0.8mm below from 

the focused image. 

 

e) The image is captured 1mm below from 

the focused image. 

 

f) The image is captured 1.2mm below from 

the focused image. 
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Figure C.2 a-j The image was captured with SEM by 0.2 incremental size from 

the lower direction of the focused plane. 

 

g) The image is captured 1.4mm below than 

the focused image. 

 

h) The image is captured 1.6mm below from 

the focused image. 

i) The image is captured 1.8mm below than 

the focused image. 

 

j) The image is captured 2mm below than 

the focused image. 
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Appendix D 
 
The Table D.1, D.2 and D.3 show the best fitness value of 100 runs for the Himmelblau 

function with the basic BA, the ANNSA strategy based improved BA and the improved 

BA based on the slope angle computation and HC algorithm respectively. 

Table D.1 Best fitness values for 100 runs for Himmelblau function with the basic BA. 

8.6417 9.7738 9.0988 9.9581 9.3068 

9.6553 9.9978 9.7641 9.8115 9.9963 

9.9288 9.8090 9.7891 9.8047 9.8952 

9.8971 8.9007 9.4824 9.9425 9.7692 

9.6014 9.8777 9.8833 8.3195 9.7340 

9.8365 9.6062 9.6178 9.9781 9.9470 

9.4210 9.9999 9.6766 9.7417 9.7086 

9.5828 8.9268 8.8594 8.4171 8.9914 

9.7052 9.9773 9.9887 9.9919 9.9269 

9.9155 9.8787 9.6898 9.6790 8.4495 

9.1936 9.9008 9.9696 9.5634 9.8942 

9.8867 9.9912 9.8167 9.6941 8.9851 

9.97512 9.9198 9.1940 9.6137 9.9893 

9.9826 9.9806 9.6071 9.9201 8.8415 

9.5572 9.9305 9.8272 9.9967 9.7755 

8.8403 9.4309 9.7021 9.3806 9.6106 

9.8307 9.9976 9.8193 9.9008 9.2591 

9.3815 9.3515 9.7870 9.8807 9.5933 

9.8609 9.4403 9.9212 9.8133 9.2199 

9.9694 9.6647 9.9780 8.7745 9.6993 
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Table D.2 Best fitness value of 100 runs for Himmelblau function with improved BA 

with ANSSA strategy. 

9.9596 9.9449 9.9087 9.9869 9.8899 

9.8812 9.9758 9.8371 9.8836 9.7611 

9.8387 9.4372 9.9988 9.9536 9.8876 

9.85978 9.4467 9.9133 9.8675 9.9253 

9.9302 9.8340 8.8576 9.8875 9.8567 

9.3483 9.9320 9.6926 9.8973 9.9699 

9.8568 9.9967 9.7089 8.9794 9.9609 

8.4607 9.9641 9.7427 9.9070 9.8764 

9.1988 9.8261 9.9566 9.6428 9.8377 

9.9996 9.3646 9.7883 9.4486 9.9647 

9.9727 9.8365 9.2090 9.5547 9.0461 

9.9647 9.9406 9.8642 9.9867 9.8298 

9.7550 9.9524 9.9722 9.7492 9.9751 

8.9670 9.75043 9.5288 9.9270 9.9374 

9.6950 9.4610 9.8316 9.8281 9.9457 

9.9683 9.92248 9.9975 9.8813 9.5335 

9.7910 9.8667 9.8501 9.7236 9.9931 

9.9612 9.3949 9.9678 9.3060 9.4702 

8.5931 9.8749 9.7437 9.1395 9.8132 

9.9967 9.9472 9.5871 9.8765 9.9780 
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Table D.3 The best fitness value of 100 runs for Himmelblau function with the improved 

BA based on the slope angle computation and HC algorithm. 

9.8275 9.9238 9.7072 9.9920 9.9429 

9.9843 9.9664 9.8078 9.9930 9.9395 

9.9775 9.8143 9.8159 9.9528 9.8186 

9.9301 9.9609 9.9176 9.9063 9.8908 

9.7649 9.9740 9.4463 9.8346 9.6003 

9.9865 9.8860 9.8139 9.7630 9.8458 

9.8637 9.9110 9.9008 9.6055 9.3061 

9.9477 9.9833 9.3118 9.9829 9.6478 

9.6268 9.9478 9.2858 9.7682 9.8418 

9.5974 9.8097 9.8093 9.9328 9.9727 

9.6071 9.9850 9.9613 9.8263 9.6180 

9.7532 9.9908 9.9761 9.8947 9.9832 

9.9776 9.8620 9.6576 9.8937 9.9779 

9.3526 9.9724 9.7950 9.9427 9.8781 

9.8207 9.8937 9.5935 9.9693 9.9378 

9.9917 9.9613 9.9641 9.9239 9.8790 

9.9234 9.7773 9.6330 9.6408 9.2060 

9.6489 9.4254 9.9997 9.9902 9.8402 

9.9529 9.6489 9.9053 9.9906 9.8110 

9.9840 9.9539 9.7250 9.8121 9.6569 

 


