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Following Lancaster (2002), we propose a strategy to solve the inci-
dental parameter problem. The method is demonstrated under a simple
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1 Introduction

In microeconomic and other applications, we often see models with some pa-
rameters whose number will increase with the sample size and other parameters
whose number will remain the same. We call those parameters whose num-
ber will change with the sample size incidental parameters. They capture the
heterogeneity of economic agents. Those parameters whose size remains the
same are called common parameters. It is well known in the literature that
the maximum likelihood estimates (MLE) of the common parameters are not
consistent due to the presence of the incidental parameters. Such problems are
documented as incidental parameter problems, see e.g. Nerlove (1968), Nickell
(1981) and Lancaster (2000). The failure of the likelihood method has driven re-
searchers to look for valid instruments and orthogonality conditions to estimate
the common parameters through generalized method of moments (GMM), see
e.g. Arellano and Bond (1991) and Blundell and Bond (1998). However, when
the instruments are weak predictors of the endogenous variables, the GMM es-
timators may have poor finite sample properties and are not free from bias.
Such problems have been pointed out by Alonso-Borrego and Arellano (1999)
and Stock et al. (2002). A more recent paper by Bun and Windmeijer (2007)
showed that both the GMM estimators proposed by Arellano and Bond (1991)
and Blundell and Bond (1998) are not free from weak instrument problems
for the linear AR(1) panel model when the data are persistent. Moreover, the
GMM statistics could have non-normal distributions, even for large sample size.
The conventional IV or GMM inferences are hence misleading. Another prob-
lem with GMM is that it is hard for researchers to decide whether some set of
the moment conditions are more superior than the others when both can pass
the overidentification test. In this regard, the GMM framework provides little
information on model comparison and selection.

While GMM seems to be the dominant method in most economic appli-
cations, there are some researchers who stick to the likelihood based methods
to find solutions. The most common practice may be to treat the incidental
parameters as random variables from certain distribution and to transform the
estimation problem to estimating the common parameters along with the param-
eters in the distribution of the incidental parameters. It is known as the random
effect model in the classical literature, see e.g. Wooldridge (2005). However,
the viability of such method depends heavily on the correct specification of the
incidental parameter distribution. Hsiao et al. (2002) got around the incidental
parameter problem in MLE by assuming certain conditions on the data generat-
ing processes of the exogenous regressors. Hahn and Newey (2004) and Arellano
and Hahn (2006) developed the bias reduction approach. This approach tries
to first estimate the first order bias of the MLE and then remove the estimated
bias from the estimator. Another important stream of the likelihood approach
is the conditional likelihood method, or the modified profile likelihood devel-
oped by Cox and Reid (1987), who found that when the incidental parameters
and the common parameters are information orthogonal, an approximation is
available for the conditional likelihood given the maximum likelihood estimator
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of the incidental parameter. This method attempts to fix the bias of the profile
likelihood by introducing information orthogonality. Lancaster (2002) further
developed this idea under the Bayesian framework and found the priors which
lead to consistent estimation for a few models. However, information orthog-
onality is not available for all models, such as the linear autoregressive (AR)
panel model with fixed effect and exogenous regressors. Arellano and Bonhome
(2006) tried to find the first order bias reduction prior and their results showed
that such prior will generally involve the dependent variable(s).

In this paper, we propose a strategy to derive the same prior found in Lan-
caster (2002). Our strategy is related to finding the Jacobian from the old
incidental parameters, which are not information orthogonal to the common
parameters, to the new information orthogonal incidental parameters and hence
the correction function required for consistent estimation. We also extend our
strategy to find the bias reducing prior for linear AR panel data model of or-
der more than one. Our results show that the correction function happens to
have closed form for this model and it involves only the common parameters in
concern. The specific form of the correction function will change with the num-
ber of observations for each economic agent and the number of lags in the AR
model. With the correction function, the posterior distribution of the common
parameters is generally not a standard one. Therefore to estimate the model,
we propose a Metropolis-Hastings algorithm. The results from the simulated
datasets show strong signs of estimation consistency of our method. A very
important issue related to the likelihood based bias correction method raised in
Li (2009) is that consistent parameter estimation is related to consistent model
selection. For the linear panel AR model, when we include the wrong set of
exogenous regressors, we may not be able to obtain consistent estimate for the
autoregresive coefficient. Therefore, parameter estimation and model selection
should be carried out simultaneously. To compare different model specifications,
we use the Bayes factor calculated through the method proposed by Chib and
Jeliazkov (2001) and a reversible jump algorithm. The results from the simu-
lated datasets suggest that the Bayes factor criterion could achieve consistency
for model selection.

The setup of the paper is as follows. Section 2 gives a Bayesian perspective
on the incidental parameter problem and our strategy to find the correction
function to solve the problem. Section 3 demonstrates how our strategy is
applied to the linear panel AR model of order more than one to derive the
correction function. Section 3.2 and Section 3.3 discuss the algorithms to carry
out point estimation and model comparison, while Section 3.4 and Section 3.5
give the respective examples using simulated datasets before Section 4 concludes.
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2 A Possible Way to Solve the Incidental Pa-
rameter Problem

Let us put the parameters to be estimated into two categories: the common
parameter, denoted by θ, whose dimension is the same regardless of the sample
size, and the incidental parameter, f , whose dimension will increase with the
sample size. The Bayesian way to estimate θ is to integrate f out of the likeli-
hood function p(Y |θ, f) with respect to the prior p(f |θ) and then the estimation
results are drawn from the marginal posterior distribution of θ,

p(θ|Y ) ∝
∫
F

p(θ, f)p(Y |θ, f) df

∝
∫
F

p(θ)p(f |θ)p(Y |θ, f) df.
(1)

Here we use Y to stand for the collection of the dependent variable(s) and p(f |θ)
is a permissible prior function1 with support F. The problem with the Bayesian
method is that there is no guarantee for us to obtain consistent estimates of θ
for arbitrary specification of the prior function, p(f |θ)2. That is, the posterior
function p(θ|Y ) will become a spike at a point different from the true value of θ
(denoted by θtrue) as the sample size, N , increases3. Denote ν as the probability
measure, of which p(θ|Y ) is the density. Further assume that θ has the support
Θ. If Ω represents any subset of Θ, we have the following,

ν(Ω) =
∫
θ∈Ω

p(θ|Y ) dθ. (2)

The incidental parameter problem now can be interpreted as

plim
N→∞

ν(Ω) = I(θb ∈ Ω) (3)

where I(·) is the indicator function and θb 6= θtrue. The Bayesian method could
be viewed as related to the random effect model in the classical literature, in
which p(f |ζ, θ)4 is assumed to be the correct distribution for f . In a situation
like this, we have a new parameter ζ, whose dimension will not change with
the sample size. We then need to estimate it along with θ after we integrate f
out of the likelihood with respect to p(f |ζ, θ). The difference between p(f |ζ, θ)
and p(f |θ) in (1) does not just lie in the introduction of a new parameter. For
the random effect model to work well, the assumed p(f |ζ, θ) has to be a proper

1A permissible prior function means that it should satisfy p(Y |θ) =
R
F p(f |θ)p(Y |θ, f) df <

∞ for fixed sample size. Note that all proper priors are permissible while improper priors may
or may not be permissible. For more details, see Bernardo (2005).

2It is shown by Hahn (2004) that the Jeffrey’s prior is generally not bias reducing.
3We assume that the prior function p(θ) is non-dogmatic throughout. That is, the inte-

grated likelihood function p(Y |θ) will asymptotically be dominant in the posterior function.
4The conditional density function can also possibly depend on the exogenous regressors.
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density5 and a good approximation of the underlying distribution for the inci-
dental parameter. However, for most situations, it is unlikely for researchers to
have such “prior” knowledge about the form of the true incidental parameter
distribution. On the other hand, the prior used in a Bayesian framework does
not have to be a proper probability measure. There is a large literature on the
use of objective priors or so-called reference priors, which only depend on the
assumed model and the available data (see Bernardo, 2005). Liseo (2006) found
that such priors are able to solve or alleviate the incidental parameter problem
for a few specific examples. However, the reference prior is not inherently de-
signed to solve the incidental parameter problem. For some situations, there is
not a clear guideline on the choice of bias-reducing prior.

To see why a prior, pr(f |θ), can remove the bias, we can compare it to a
bias prior, pb(f |θ)6 which has the incidental parameter problem described in
(3). Here we implicitly assume both priors are permissible. Then the marginal
posterior density functions of θ implied by the two priors through the Bayes
Theorem can be linked by a function, pr(θ|y) ∝ r(θ)pb(θ|y)7, where

r(θ) =

∫
F
pr(f |θ)p(Y |θ, f)d f∫

F
pb(f |θ)p(Y |f, θ)d f

. (4)

It is not hard to see that r(θ) serves as a correction function and is a non-
negative and integrable (with respect to ν) function, which can induce another
probability measure νr,

νr(Ω) =
∫
θ∈Ω

k · r(θ)pb(θ|Y ) dθ =
∫
θ∈Ω

k · r(θ) dν. (5)

where k is a normalizing constant not depending on θ, such that

plim
N→∞

νr(Ω) = I(θtrue ∈ Ω). (6)

The problem now is to find the permissible and bias reducing prior, pr(f |θ).
Here we follow the information orthogonal argument used by Lancaster (2002)
to find such prior. If f is information orthogonal to θ, i.e.

EY

(
∂2 ln p(Y |θ, f)

∂f∂θ

)
=
∫
∂2 ln p(Y |θ, f)

∂f∂θ
p (Y |θ, f) dY = 0 (7)

we can just use a flat prior p(f |θ) ∝ 18 to integrate out the incidental parameter
and the resulting marginal posterior mode of θ is a consistent estimator (given
that p(θ) is non-dogmatic). This result holds since the Bayesian integrated like-
lihood obtained from a flat prior is asymptotically equivalent to the modified

5It means
R
F

p(f |ζ, θ)d f = 1.

6For many cases, it is convenient to choose p(f |θ) ∝ 1 as a reference given that it is
permissible, though this flat prior could be bias free in some case.

7We use the same marginal prior of θ under the two different conditional priors.
8We must assume here that the flat prior is a permissible prior.
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profile likelihood in Cox and Reid (1987), see also Sweeting (1995). The modi-
fied profile likelhood was derived by Cox and Reid (1987) as an approximation
to the conditional likelihood given the maximum likelihood estimator of the inci-
dental parameter (as a function of the common parameter) when the incidental
parameter is information orthogonal to the common parameter. We can un-
derstand this approach from the fact that consistent estimator of the common
parameter can be obtained from maximizing the conditional likelihood given
the sufficient statistic for the incidental parameter, see Lancaster (2000). If the
orginal parameterization does not lead to information orthogonality, Lancaster
(2002) suggested that we can reparameterize f as f(g, θ) such that the new in-
cidental parameter g (with the same dimension as f) is information orthogonal
to θ and the integrated likelihood

∫
G
p (Y |f(g, θ), θ) d g can yield consistent es-

timation of θ. Lancaster (2002) showed that to find the information orthogonal
reparameterization amounts to solving the following differential equation

∂f

∂θ
= −

(
EY (

∂2 ln p(Y |θ, f)
∂f∂f ′

)
)−1

EY

(
∂2 ln p(Y |θ, f)

∂f∂θ

)
(8)

The new incidental parameter g can be recovered as the constant term in
the solution. Under the flat prior p(g|θ) ∝ 1, the integrated likelihood can
lead to consistent estimation of θ. In terms of the original parameterization,
the integrated likelihood can be represented as

∫
F
|det( ∂g∂f ′ )|p (Y |f, θ) d f for

p(g|θ)|det( ∂g∂f ′ )| = p(f−1(g, θ)|θ)|det( ∂g∂f ′ )| = p(f |θ) ∝ |det( ∂g∂f ′ )|. Hence to find
the bias reducing prior is equivalent to finding the Jacobian from the old inci-
dental parameter to the new incidental parameter. If we can assume different
individuals (y′is) are conditionally independent, since the bias reducing prior is
proportional to the absolute value of the determinant of the Jacobian matrix,
without loss of generality, we can assume ∂g

∂f ′ is diagonal, which means fi is

only related to gi in addition to θ, such that |det( ∂g∂f ′ )| =
N∏
i=1

|∂gi

∂fi
|. We can now

rewrite (8) as
∂fi
∂θ

= χ(fi, θ) (9)

where χ(fi, θ) is defined as

χ(fi, θ) = −
(
Ey(

∂2 ln p(yi|θ, fi)
∂f2

i

)
)−1

Ey

(
∂2 ln p(yi|θ, fi)

∂fi∂θ

)
. (10)

Since fi is defined implicitly as a one-one function of gi, we can differentiate
both sides of (9) with respect to gi to obtain

∂2fi
∂θ∂gi

=
∂χ(fi, θ)
∂fi

∂fi
∂gi

,

which is equivalent to

−
∂ ln |∂gi

∂fi
|

∂θ
=
∂ ln |∂fi

∂gi
|

∂θ
=

∂2fi
∂θ∂gi

(
∂fi
∂gi

)−1

=
∂χ(fi, θ)
∂fi

. (11)
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Let us denote ψ(fi, θ) = ∂χ(fi,θ)
∂fi

and λ(fi, θ) = ln |∂gi

∂fi
|. It is possible to find out

λ(fi, θ) and hence |∂gi

∂fi
| from (11) to solve the incidental parameter problem.

Example 1. Let us consider a simple panel Poisson count model: yi,t ∼
i.i.d.Poisson (fi exp(xi,tθ)) with t = 1, 2, . . . , T and i = 1, 2, . . . , N where θ
is a scalar and fi exp(xi,tθ) is the mean parameter in the Poisson distribution.
Denote yi = (yi,1, yi,2, . . . , yi,T )′, the likelihood contribution of individual i is
given by

li(fi, θ) = p(yi|fi, θ) ∝ e−fi
P

t exp(xitθ)f
P

t yit

i eθ
P

t yitxit (12)

Note that we can choose the parameterization fi = gi (
∑
t exp(xitθ))

−1 such that
the individual likelihood can be decomposed into two functions of only gi and θ
respectively, i.e. li(fi(g, θ), θ) = li1(gi)li2(θ),

li(fi(g, θ), θ) ∝ e−gig
P

t yit

i × eθ
P

t yitxit

(
∑
t exp(xitθ))

P
t yit

(13)

which means gi and θ are orthogonal to each other and the MLE of θ is consis-
tent. Due to the parameterization invariance property, the maximum likelihood
estimator of θ is consistent under even the original parameterization. On the
other hand, the flat prior p(fi|θ) ∝ 1 can not lead to consistent estimation since
the Bayesian integrated likelihood is

p(yi|θ) ∝
eθ

P
t yitxit

(
∑
t exp(xitθ))

1+
P

t yit
, (14)

which is different from li2(θ) in (13) and hence the posterior mode of p(θ|y)
under the prior p(θ) ∝ 1 is not a consistent estimator. A natural choice of the
correction function is r(θ) =

∑
t exp(xitθ), by which (14) is multiplied to give

the same form as li2(θ). We can also derive this correction function and the
bias reducing prior from the Jacobian argument outlined before. First note that

Ey

(
∂2li(fi, θ)
∂fi∂θ

)
= −

∑
t

xit exp(xitθ) 6= 0

Ey

(
∂2li(fi, θ)
∂f2

i

)
= Ey

(
−
∑
t yit
f2
i

)
= −

∑
t exp(xitθ)

fi

χ(fi, θ) = −
fi
∑
t xitexp(xitθ)∑
t exp(xitθ)

(15)

We can see that fi is not information orthogonal to θ in the model. That
is why the flat prior is not bias reducing in this case. Next we can see that
ψ(fi, θ) = ∂χ(fi,θ)

∂fi
= −

P
t xitexp(xitθ)P

t exp(xitθ)
. Finally use (11) to find out that λ(fi, θ) =

ln(
∑
t exp(xitθ)) and hence the bias reducing prior p(fi|θ) ∝ |∂gi

∂fi
| =

∑
t exp(xitθ),

which is exactly the same as the correction function we found earlier.
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When the dimension of θ is more than one, say, θ = (θ1, θ2), there is no gu-
rantee that we can find λ(fi, θ) from the differential equation (11) since the com-
patibility condition ∂2ψ(fi,θ)

∂θ1∂θ2
= ∂2ψ(fi,θ)

∂θ2∂θ1
may not be satisfied. That is why the

information orthogonal reparameterization in general does not exist as pointed
out by Lancaster (2002). For the linear dynamic panel AR(1) model, Lancaster
found that information orthogonality is not necessary for consistent estimation
of the common parameter. Note that if θ is a scalar, we can always find λ(fi, θ)
from (11). The idea proposed here is to break θ into blocks such that for the
jth block we have the differential equation ∂λj(fi,θ)

∂θj
= ψj(fi, θ) which can be

solved to obtain λj(fi, θ). We then assemble all the solutions to yield the bias
reducing prior as

p(fi|θ) ∝ exp [λ1(fi, θ) + λ2(fi, θ) + . . . ] . (16)

We will show in the next section that such strategy can produce the prior and the
correction function needed to give consistent estimation for the linear dynamic
AR(p) panel model.

3 The Linear AR(p) Panel Model with Fixed
Effect

3.1 The Bias Reducing Prior and the Posterior Results

Suppose our model has p lags and can be written as

yi = ιfi + Yi ρ+Xiβ + ui (17)

where yi is [yi,1,yi,2,. . . ,yi,T ]′, fi is the fixed effect scalar, ι is a vector of ones,
Yi is a T × p matrix, in which a typical row (the j + 1th row) looks like
[yi,j , yi,j−1, . . . , yi,j−p+1] (j=0,1,. . . ,T-1), ρ is [ρ1, ρ2, . . . , ρp]′, Xi is a strictly
exogenous regressor matrix of dimension T ×K and ui is a T × 1 disturbance,
for which we assume ui ∼ i.i.d.N(0, σ2IT ).

In our model, it is obvious that fi is the incidental parameter, or the fixed ef-
fect, which captures the heterogeneity of economic agents, while θ = (ρ′, β′, σ2)′

are the common parameters, which we want to have consistent estimates for.
The dimension of θ is p+K + 1. Lancaster (2002) showed that there does not
exist any information orthogonal reparameterization for this model. However,
we can see that θ has naturally three blocks, ρ, β and σ2. For each block, we
may be able to solve the differential equation (11) to obtain λρ(fi, θ), λβ(fi, θ)
and λσ2(fi, θ). Using the strategy mentioned in the previous section, the bias
reducing prior could have the form:

p(fi|θ) ∝ exp [λρ(fi, θ) + λβ(fi, θ) + λσ2(fi, θ)] . (18)
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We will show later that this is indeed the case for the model9.
Note that the log likelihood contribution of individual i conditionnal on the

initial p observations (denoted by yi,−p) is the following,

li = ln p(yi|fi, θ, yi,−p) ∝ −T
2

lnσ2− 1
2σ2

(yi − ιfi − Yi ρ−Xiβ)′ (yi − ιfi − Yi ρ−Xiβ) .

(19)
To implement our strategy, we first need to calculate the following quantities,

Ey

(
∂2li
∂f2

i

)
= − T

σ2
, (20)

Ey

(
∂2li
∂fi∂β

)
= − T

σ2
X ′
iι, (21)

Ey

(
∂2li

∂fi∂σ2

)
= −Ey

[
(yi − ιfi − Yiρ−Xiβ)′ ι

(σ2)2

]
= 0, (22)

Ey

(
∂2li
∂fi∂ρ

)
= − T

σ2
Ey(Y ′i ι)

= − T

σ2
[Th(ρ)fi + ω1(Xiβ, ρ) + ω2(yi,−p, ρ)] , (23)

where h(·), ω1(·) and ω2(·) are all p× 1 vector functions10. ω1(·) and ω2(·) are
functions which do not involve fi. From (22), we can see that fi is information
orthogonal to σ2. The right hand side of (21) does not involve fi. Hence we can
have λβ(fi, θ) = 0K×1 and λσ2(fi, θ) = 01×1, which implies that we can just
use a flat prior p(fi|β, σ2) ∝ 1 to obtain consistent estimation of β and σ2 when
the model does not have the lag term, i.e. ρ = 0.11 With the lag term, to find
λρ(fi, θ), we need to solve the following differential equation system,

∂λρ(fi, θ)
∂ρ

= h(ρ). (24)

We show in the appendix that (24) has a solution, λρ(fi, θ) = τ(ρ), which is
a function of ρ only. The functional form of τ(ρ) depends on T and p. Table
1 shows some forms of τ(ρ) under different values of T and p. For specific
values of T and p, we refer the readers to the appendix of this paper and a
Maplet program written by the author (available on request) for the exact form
of τ(ρ). Since our posterior results are conditional on the initial p observations,
the actual number of time periods for an economic agent is T + p. Under our
setup, estimation is only possible if T ≥ 2. When T takes a particular value,
the form for τ(ρ) will not change for p ≥ T − 1. Finally the bias reducing prior,

9In the appendix, we show that the true values of the common parameters constitute a
local stationary point asymptotically for the integrated likelihood under the solution obtained
in this way.

10See appendix for the detailed forms of the functions.
11It is well known that the within group estimator of β under static panel model is consis-

tent. Under the Bayesian framework, the integrated likelihood will give the correct degrees of
freedom for the estimator of σ2.
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Table 1: The functional form of τ(ρ) under different values of T and p
HH

HHHp
T

2 3 4

1 1
T

T−1∑
t=1

T−t
t ρt1

2 1
2ρ1

1
3

2∑
t=1

3−t
t ρ

t
1 + 1

3ρ2
1
4

3∑
t=1

4−t
t ρ

t
1 + 1

4ρ1ρ2 + 1
2ρ2

3 1
2ρ1

1
3

2∑
t=1

3−t
t ρ

t
1 + 1

3ρ2
1
4

3∑
t=1

4−t
t ρ

t
1 + 1

4ρ1ρ2 + 1
2ρ2 + 1

4ρ3

4 1
2ρ1

1
3

2∑
t=1

3−t
t ρ

t
1 + 1

3ρ2
1
4

3∑
t=1

4−t
t ρ

t
1 + 1

4ρ1ρ2 + 1
2ρ2 + 1

4ρ3

p(fi|θ) under our strategy in (18) is

p(fi|θ) = p(fi|ρ) ∝ exp(τ(ρ)). (25)

Note that this prior involves ρ only. The correction function defined in (4) is
therefore

r(θ) = r(ρ) = exp[Nτ(ρ)]. (26)

For the linear panel AR(p) model, it happens that the conditional prior of f
given θ does not involve f in both the numerator and the denominator on the
left hand side of (4). That is why the correction function in (26) has closed
form. It is possible that the bias reducing prior defined in (16) can involve f in
other cases12 and the correction function does not have closed form.

Next we need to specify the prior, p(θ) for our Bayesian analysis. The
structure of the prior distribution of (f, θ) looks like the following,

p(f, θ) = p(f, ρ, β, σ2) = p(f1|ρ) . . . p(fN |ρ)p(ρ)p(σ2)p(β|σ2)

∝ r(ρ)
1
σ2
I(ρ ∈ S)

1
m(S)

p(β|σ2)
(27)

where the set S denotes the stationary region of ρ, I(·) is the indicator function
and m(S) is the measure of the volume of S13. The general form of m(S)
can be found in Piccolo (1982). Here we adopt the uniform prior restricted to
the stationary region for ρ. We use the g-prior for the conditional prior of β
on σ2, which is asymptotically non-informative if we set η = η(N) such that
lim
N→∞

η(N) = 014,

β|σ2 ∼ N

(
0, σ2(η

N∑
i=1

X ′
iHXi)−1

)
, (28)

where the demean matrix H is equal to IT − ιι′

T .

12The binary logistic model is such an example.
13For example, if p = 1, then ρ ∈ (−1, 1) and hence m(S)=2.
14Note also that β and σ2 are asymptotically independent in our prior.
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Proposition 3.1. Conditional on the initial p observations of the dependent
variable, using the bias reducing prior (25) and the priors described in (27) and
(28), we can obtain the following posterior distributions,

fi|Y, yi,0, σ2, ρ, β ∼ N

(
ι′(yi − Yi ρ−Xiβ)

T
,
σ2

T

)
, (29)

β|Y, Y0, σ
2, ρ ∼

N

(
1

η + 1

(
N∑
i=1

X ′
iHXi

)−1 N∑
i=1

X ′
iH(yi − Yi ρ), σ2

(
(η + 1)

N∑
i=1

X ′
iHXi

)−1)
,

(30)

σ2|ρ, Y, Y0 ∼ IG(N(T − 1),∆), (31)

where

∆ =
N∑
i=1

(yi − Yi ρ)′H(yi − Yi ρ)−

1
η + 1

N∑
i=1

(yi − Yi ρ)′HXi

(
N∑
i=1

X ′
iHXi

)−1 N∑
i=1

X ′
iH(yi − Yi ρ).

(32)

Moreover, after we integrate out f , β and σ2, we can have

ρ|Y, Y0 ∝ I(ρ ∈ S)r(ρ)t(A−1b,
1

N(T − 1)− p
(c− b′A−1b)A−1, N(T − 1)− p)

(33)
where

A
p×p

=
N∑
i=1

Y ′i HYi −
1

η + 1

N∑
i=1

(Y ′i HXi)

(
N∑
i=1

X ′
iHXi

)−1 N∑
i=1

(X ′
iHYi )

b
p×1

=
N∑
i=1

Y ′i Hyi −
1

η + 1

N∑
i=1

(Y ′i HXi)

(
N∑
i=1

X ′
iHXi

)−1 N∑
i=1

(X ′
iHyi)

c
1×1

=
N∑
i=1

y′iHyi −
1

η + 1

N∑
i=1

(y′iHXi)

(
N∑
i=1

X ′
iHXi

)−1 N∑
i=1

(X ′
iHyi) .

(34)

Equation (33) tells us that the kernel of the posterior distribution of ρ can be
viewed as the product of r(ρ) and the multivariate t distribution with N(T−1)−
p degrees of freedom, mean parameter A−1b and covariance matrix 1

N(T−1)−p (c−
b′A−1b)A−1, which we could have obtained using the flat prior p(f |θ) ∝ 1. Note
that A−1b is the within group estimator in the classical literature, which is
inconsistent. The function r(ρ) serves as the correction function to fix such
inconsistency.

11



3.2 Estimation Algorithm

Our estimation is based on the draws of the parameters from their posterior dis-
tributions. From (29), (30) and (31) we can see that the posterior distributions
of g, β and σ2 all depend on ρ. Once we have posterior draws of ρ, we can have
draws of other parameters. We can see that the posterior distribution of ρ in
(33) is not standard and we can not directly draw from it. Before we get into
the details of the posterior estimation, let us recap the prior of ρ in (27). The
prior of ρ is a uniform distribution in the stationary region. Barndorff-Nielsen
and Schou (1973) found that there is a one-to-one differentiable mapping be-
tween the partial autocorrelations (PAC) and the slope coefficients (ρ) for the
stationary AR model. Let us denote the PAC as πp×1 = (π1, . . . , πp)′ and in-
troduce the quantities κ(k) = (κ(k)

1 , . . . , κ
(k)
k )′, k = 1, . . . , p. Then the mapping

from PAC to ρ can be recovered from

κ
(k)
i = κ

(k−1)
i − πkκ

(k−1)
k−i , i = 1, . . . , k − 1, (35)

with κ(k)
k = πk and ρ = κ(p). The Jacobian of the transformation is

J(π) =
p∏
k=2

(1− πk)[
k

2
](1 + πk)[

k − 1
2

] (36)

On the other hand, the mapping from ρ to π can be obtained by

κ
(k−1)
i =

κ
(k)
i + κ

(k)
k κ

(k)
k−i

1−
(
κ

(k)
k

)2 (37)

As Jones (1987) showed, if ρ follows a uniform distribution in the stationary
region, PAC will be related to a beta distribution as follows,

πk + 1
2

∼ i.i.d.Beta

(
[
1
2
(k + 1)], [

1
2
k] + 1

)
(38)

where [x] denotes the integer part of x. Moreover, for the AR model to be
stationary, the absolute values of all its partial autocorrelations must be less
than 1. A more formal proof can be found in Ramsey (1974). It is also possible
to adopt a uniform prior for the PAC instead, see Philippe (2006). However,
through simulations we find that these two priors are very different. The second
prior has a higher tendency to choose the models bordering the unit root circle
as the lag order increases. Results are shown in Figure 115, We can see that
as the number of lags increases, the moduli of the characteristic roots16 from
the AR model under the second prior tends more to be close to 1. Here we do

15Here and in the subsequent sections, we use a nonparametric package (ksdensity.m) from
MatLabR© to make such plots based on the simulated draws from the corresponding distribu-
tions.

16The roots are obtained from the characteristic equation: xp − ρ1xp−1 − · · · − ρp = 0
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Figure 1: The kernel plots of the characteristic roots moduli. The dashed lines
represent the case when we use uniform prior for ρ and the solid lines denote
the case when we use uniform prior for PAC.
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not want to assume a prori that our model is close to the unit circle. Hence we
choose the uniform prior for ρ in the stationary region.

Now we can turn to the details of how to take draws of ρ from (33), which
can be rewritten as,

p(ρ|Y, Y0) ∝ I(ρ ∈ S) exp
{
N

[
τ(ρ)− T − 1

2
ln(ρ′Aρ− 2ρ′b+ c)

]}
∝ I(ρ ∈ S) exp [Nϑ(ρ)]

(39)

where
ϑ(ρ) = τ(ρ)− T − 1

2
ln(ρ′Aρ− 2ρ′b+ c). (40)

Since the mode of the posterior distribution is a consistent estimator, we can
expect ϑ(ρ) has a unique global maximum in the stationary region whenN tends
to infinite. Under certain regularity conditions, the posterior distribution will
converge to a normal distribution as the sample size N increases, see Bernardo
and Smith (section 5.3 1994). It is sensible to use the following truncated normal
distribution to approximate the posterior:

ρ|Y, Y0
a∼ I(ρ ∈ S)N

(
ρ̂,

1
N

[−ϑ′′(ρ̂)]−1
)
. (41)

where the mean of the normal distribution, i.e. ρ̂, is the maximum of ϑ(ρ) in
the stationary region, which can be estimated by Newton’s method, and ϑ′′(ρ̂)
denotes the Hessian matrix evaluated at ρ̂. Algorithm 3.2 in the following is a
Metropolis-Hastings (MH) algorithm, which makes draws from (39) using (41)
as the proposal distribution. We refer the reader to Chib and Greenberg (1995)
for the details on the convergence of MCMC estimates. Note that the truncated
normal distribution is a good approximation to the true posterior only in large
sample. To take account of such scale errors, in practice when we propose a
draw from (41), we could replace N in the denominator of the variance by v ·N .
The value of v is at our discretion. The variance in the proposal distribution is
scaled in this way such that we can sample from a wide range of the parameter
space.

Algorithm 3.2. Starting from the current value of ρ0 ∈ S, we repeat the fol-
lowing steps.

1. We propose a draw ρc from (41).

2. We accept ρc as a draw from the posterior distribution (39) with the prob-
ability

α(ρ0, ρc) = min
(

1,
exp [Nϑ(ρc)] q(ρ0)
exp [Nϑ(ρ0)] q(ρc)

)
(42)

where q(·) is the density function of the truncated normal distribution (41).

3. If we accept ρc as our new draw, we replace ρ0 with ρc; otherwise we keep
it the same. Then we go back to step 1.
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After we obtain enough draws from the posterior distribution, we can also use
the mean of the draws as our point estimator and construct the highest posterior
density interval to make inference.

The above algorithm should work for most circumstances. However, there
are still some issues remaining. One potential problem is that when p is large but
N is small, the Newton’s method may not be efficient in finding the maximum
point of the posterior distribution. For such situation, we may try many initial
values but they may converge to different points through the Newton’s method.
A possible way to tackle the problem is to have a pilot run of Algorithm 3.2 after
we obtain a crude estimate of the maximum point from the Newton’s method.
Then we could improve the estimation by using the Newton’s method again on
a selection of the posterior draws, such as those with high posterior density. We
can repeat such processes until we find the satisfactory global maximum point.

Another potential problem has been noticed by Lancaster (2002). When N
is small for the case of one lag, the posterior density function of ρ may not have
a bell shape. Figure 2 shows such a case. We can see that the maximum is not
close to the true value (0.6) but on the unit circle instead. More importantly,
the second order derivative of the density function at the maximum is positive,
which means the truncated distribution in (41) has a negative (definite) variance.
Although such situation does not always arise, it is not hard to imagine that

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4
ρ=0.6
T=2
N=40
p=1

Figure 2: The plot of a non-bell shape posterior density function of ρ

when p gets larger and N is small, it could happen more often. Therefore it
should be sensible for us to take precaution against such case in our algorithm.
One way is to replace the negative definite variance matrix in (41) by a positive
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definite variance matrix, such as 1
N(T−1)−p (c − b′A−1b)A−1 in (33). Again, we

can multiply the variance matrix by 1
v to control the acceptance rate such that

our algorithm can explore a wide range of the parameter space.

3.3 Comparison of Different Model Specifications

Li (2009) noticed that when our model is misspecified, such as the case when
we include the wrong set of exogenous regressors, the solution for (24) may
not enable us to obtain consistent estimate of ρ under the AR(1) panel model.
Therefore Li (2009) suggested comparing different model specifications using the
Bayes factor and showed certain regularity conditions under which the Bayes
factor is consistent in model selection. Drawing the analogy, we also recommend
comparing different model specifications here. We propose two algorithms to
achieve this.

Different model specifications are defined by different lag orders (p) and the
inclusion of different sets of regressors in (17). They are compared based on their
posterior model probabilities. We use a K by 1 vector ix, whose elements are
either 0 or 1, to denote the exclusion or the inclusion of a particular exogenous
regressor. If we denote the maximum AR order by P ,17 the total number of
models will be (P +1)2K . Suppose for our dataset, there are Ttrue observations
for each economic agent. Since our estimation is conditional on the first p
observations, the dimension of yi (T ) in (17) and the maximum AR order (P )
must satisfy P +T = Ttrue. When we compare different model specifications, T
does not change for different models. The posterior model probability of model
i is defined as

p (Mi|Y, Y0) =
p (Mi) p (Y |Y0,Mi)

p (Y |Y0)

=
p (Mi) p (Y |Y0,Mi)∑(P+1)2K

j=1 p (Mj) p (Y |Y0,Mj)
.

(43)

where p (Mi) is the prior model probability. Here we just assume all the models
are equally possible a priori such that the posterior model probability only
depends on the marginal likelihood, i.e.

p (Y |Y0,Mi)

=
∫
p(g, θ|Y0,Mi)p(Y |g, θ, Y0,Mi)dg dθ

=
∫
ρ∈S

p(ρ|Y0,Mi)p(Y |ρ, Y0,Mi)dρ

(44)

17In the case of p = 0, we define τ(ρ) = 0, A = 0 and b = 0. When ix is a vector of zeros,

we have A =
NP

i=1
Y ′i HYi , b =

NP
i=1

Y ′i Hyi and c =
NP

i=1
y′iHyi.
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Therefore the comparison of two different models depends on the Bayes factor,
p(Y |Y0,Mi)
p(Y |Y0,Mj)

.
If the number of models under consideration is not large, we can calculate

the marginal likelihood for all of them. The method due to Chib and Jeliazkov
(2001) can help us in this regard. Recall that the marginal likelihood for model
i can be also calculated as,

p(Mi|Y, Y0) =
p(ρ∗|Mi)p(Y |ρ∗, Y0,Mi)

p(ρ∗|Mi, Y, Y0)
(45)

For ρ∗ we can choose arbitrary value in the stationary region, but for estimation
efficiency, the estimated mode of ρ from (41) is preferred. According to Chib
and Jeliazkov (2001), p(ρ|Mi, Y, Y0) can be estimated by

p̂(ρ|Mi, Y, Y0) =
K−1

K∑
k=1

α(ρ(k), ρ∗)q(ρ(k), ρ∗)

J−1
J∑
j=1

α(ρ∗, ρ(j))
(46)

As in Algorithm 3.2 before, α(ρ∗, ρ(j)) and q(ρ∗, ρ(j)) respectively stand for the
acceptance probability and the proposal density function moving from ρ∗ to ρ(j)

in the Markov chain.18 In addition to that, {ρ(k)} are the sample draws from
the posterior distribution and {ρ(j)} are the draws from q(ρ∗, ρ(j)) (the proposal
density). Carlin and Luis (2000) recommend the Chib’s method for calculating
the marginal likelihood since it is safe and relatively easy to implement. For our
algorithm, we find that the estimates of the marginal likelihood are quite stable
once we set up the proposal density appropriately. However, the Chib’s method
can evaluate only one model each time we use it. When the number of models
under consideration is huge, it is computationally prohibitive to evaluate all the
models. Next we propose the reversible jump algorithm (Algorithm 3.3) which
samples the parameter space and the model space at the same time.

Algorithm 3.3. Starting from the current status (p(0), ix(0), ρ(0)), we repeat
the following steps.

1. From p(0) and ix(0), we propose p(c) and ix(c). The details of the proposal
will be discussed later.

2. Depending on the values of p(c) and ix(c), we propose ρ(c) and calculate
the acceptance probability according to the following:

• If p(c) > p(0), we first use (37) to transform ρ(0) into π(0) and then
draw a (p(c)−p(0))×1 vector u, whose elements follow i.i.d.U(−1, 1).
Finally ρ(c) is obtained by transforming (π(0), u)′ through (35). The
acceptance probability is calculated as

18In our context, q(ρ∗, ρ(j)) = q(ρ(j)).
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min
(

1,
(

η

η + 1

)(k(c)−k(0))

·

m
(
S(0)

)
exp

[
Nϑ(ρ(c)|ix(c))

]
q(c, 0)

m
(
S(c)

)
exp

[
Nϑ(ρ(0)|ix(0))

]
2p(0)−p(c)q(0, c)

∣∣∣∣ ∂ρ(c)

∂(ρ(0)′, u′)

∣∣∣∣),
(47)

where ϑ(·) is defined in (40). q(x, y) denotes the probability of jump-
ing to model y given that the chain is now at model x and

∣∣∣ ∂ρ(c)

∂(ρ(0)′,u′)

∣∣∣
is the Jacobian from (ρ(0)′, u′) to ρ(c). We can calculate the Jacobian
as ∣∣∣∣ ∂ρ(c)

∂(ρ(0)′, u′)

∣∣∣∣ = p(c)−p(0)∏
i=1

(1 + ui)[
p(0)+i−1

2 ](1− ui)[
p(0)+i

2 ], (48)

where [x] denotes the integer part of x. (See the appendix for the
proof.)

• If p(0) > p(c), we first transform ρ(0) to π(0) and ρ(c) is obtained
from transforming (π(0)

1 , . . . , π
(0)

p(c)). The acceptance probability is cal-
culated as

min
(

1,(
η

η + 1

)(k(c)−k(0)) m
(
S(0)

)
exp

[
Nϑ(ρ(c)|ix(c))

]
2p

(c)−p(0)q(c, 0)
m
(
S(c)

)
exp

[
Nϑ(ρ(0)|ix(0))

]
q(0, c)

·∣∣∣∣∣∣ ∂ρ(0)

∂(ρ(c)′, π
(0)

p(c)+1
, . . . , π

(0)

p(0)
)

∣∣∣∣∣∣
−1)

.

(49)

where the Jacobian takes the following form∣∣∣∣∣∣ ∂ρ(0)

∂(ρ(c)′, π
(0)

p(c)+1
, . . . , π

(0)

p(0)
)

∣∣∣∣∣∣ =
p(0)∏

i=p(c)+1

(1 + π
(0)
i )[

i−1
2 ](1− π

(0)
i )[

i
2 ].

(50)

• If the values of p(0) and p(c) are the same, then we deliver ρ(c) = ρ(0)

and the acceptance probability is calculated from

min

(
1,

exp
[
Nϑ(ρ(0)|ix(c))

]
exp

[
Nϑ(ρ(0)|ix(0))

]) . (51)
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3. If we accept ρ(c) as our new draw, we also replace p(0) and ix(0) with p(c)

and ix(c). If we reject the proposed model and the parameter value, we use
Algorithm 3.2 to update ρ(0) under the old model. Then we go back to step
1.

The reversible jump algorithm, first proposed by Green (1995), can be seen
as an extension of the MH algorithm when the dimension of the parameter
space under consideration varies in the Markov chain. The rationale behind the
updating scheme of ρ in step 2 is that when we increase (reduce) the dimension
of ρ, we at the same time increase (reduce) the dimension of the PAC (π) in the
model. The way of updating in step 2 means when we increase the dimension
of ρ, we deliver (π, u)′ as our new PAC; for the dimension reduction, we deliver
(π1, . . . , πp(c)) as our new PAC.

Now we go back to discuss how we propose to change the parameter di-
mension, i.e., how we propose p(c) and ix(c) in step 1 of Algorithm 3.3 above.
The bottom line here is that we want our algorithm to move quickly enough
to sample the model space (especially when it is large) and to overcome the
problem of multi-modes. Similar practices can be seen in Ehlers and Brooks
(2002). We propose p(c) and ix(c) independently. To propose p(c), we use the
discretized Laplacian distribution so that the density for p(c) conditional on p(0)

(q(p(0), p(c))) is given by

q(p(0), p(c)) ∝ exp
(
−ς|p(c) − p(0)|

)
, p(c), p(0) ∈ [1, . . . , P ], (52)

where p(0) stands for the current value of p and ς ≥ 0 denotes a scale parameter.
For ς = 0, the proposal is a uniform distribution not depending on the current
status of the chain, while for bigger values of ς, the models further away from
p(0) are less likely to be proposed.

As for ix, we wish that it should change more often since the potential
number of regressors is generally large. We may like every proposed model to
be different from the old model. A simple way to achieve this is to first use a
truncated binomial distribution19 to generate the number of elements in ix to
be changed. Then we draw the elements uniformly without replacement. For
the selected elements, we change them to 1 (0) if they are originally 0 (1). Let
us denote the number of elements to be changed by k and it has the probability
function q(k),

q(k) =
(
K

k

)
γk(1− γ)K−k

(
1− (1− γ)K

)−1
(53)

where γ ∈ (0, 1) is the scale parameter. Taking γ = 1
2 , we have the uniform

distribution for all the potential models under consideration. For small values
of γ, we prefer small changes while for big values of γ, we prefer big changes.

Through the study of the simulated dataset later, we find that the results
obtained through our reversible jump algorithm are quite similar to the results

19We do not include 0 in the support for the proposal.
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from the Chib’s method, although the reversible jump may sometimes have
difficulty in separating two models with close posterior probabilities.

3.4 Demonstration Examples for Estimation

In this section, we use simulated data to demonstrate the performance of our
methods developed above. We want to show our methods can still work for a
rather difficult case.

First we use the techniques in Section 3.2 to estimate a model with three
lags and no exogenous regressors. Suppose there are Ttrue observations for each
economic agent in our panel. Recall that P (the maximum lag) and T (the
observations we use for estimation) must satisfy T + P = Ttrue. The lowest
value for T is 2 according to Table 1. In the simulated dataset, we first set
Ttrue = 5 and set σ2 = 1, ρ1 = −1.1718, ρ2 = 0.17399 and ρ3 = 0.49181
(Table 2). Such setting implies that the true value of ρ is near the unit circle in
the stationary region. The largest modulus of the characteristic root is 0.9196,
which is fairly close to 1. We estimate our model with different Ns (cross section
sample sizes). The results are shown in Table 3. As we can see, for N=50 and
100, both the posterior mode and mean are very different from the true values,
though the posterior mean seems to be closer than the mode. Note that the
largest moduli of the characteristic roots obtained based on the posterior modes
for these two cases are 0.9998 and 0.9999, which are virtually equal to 1. This
should remind us of Figure 2 when the maximum point of the density function
is obtained on the unit circle and the density function does not have a bell
shape. In fact, evaluated at the posterior mode under N=50 and 100, the
Hessian matrix of ϑ(ρ) is positive definite, which means the variance matrix of
the proposal density in (41), i.e. 1

N [−ϑ′′(ρ̂)]−1, is negative definite and has to
be replaced by a positive definite matrix. When N is increased to 200 and 1000,
such problems disappear. The largest moduli are 0.8807 and 0.9282 respectively,
which means the posterior modes for these cases are inside the stationary region.
Moreover, the Hessian matrix of ϑ(ρ) is now negative definite. As for N = 200,
the estimated mode and mean are already much closer to the true value of ρ
than those for N=50 and 100. For ρ1 and ρ3 under N = 1000, our estimates
look quite near to the true values. However, there is still some difference for
ρ2. We may say that when T is 2 and the true value is near the unit circle,
consistency results may require huge N to achieve. When we have bigger values
of T , our estimators could be dramatically improved, as will be shown later. We
also put down the maximum likelihood estimates here under the header “MLE”
for comparison. The MLE are much further away from the true values for all
cases and none of the elements are close even for N = 1000.

Though point estimates could be important, sometimes we may be more
interested in knowing the uncertainty surrounding our estimators. Figure 3
shows the posterior marginal density plots for ρ1, ρ2 and ρ3 under different cross
secion sample sizes. We can see that for N = 50 and 100, the marginal densities
are quite skewed and show signs of non-normality. When N = 200, the marginal
density already looks rather symmetrical. It looks more like normal distribution
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Table 2: The true value of ρ in the simulation and the moduli of the character-
istic roots

ρtrue root moduli
-1.1718 0.9196
0.1740 0.9196
0.4918 0.5816

Table 3: Point Estimation Results for T = 2
N = 50 N = 100

mode root moduli mean MLE mode root moduli mean MLE

-0.7657 0.9998 -0.94 -2.157 -0.758 0.9999 -0.91 -2.145

0.8687 0.9469 0.55 -1.594 0.9203 0.9152 0.636 -1.548

0.8965 0.9469 0.73 -0.38 0.8376 0.9152 0.695 -0.325

N = 200 N = 1000

mode root moduli mean MLE mode root moduli mean MLE

-1.28 0.8807 -1.24 -1.942 -1.27 0.9282 -1.26 -1.943

-0.07 0.8807 -0.02 -1.217 0.03 0.9282 0.04 -1.191

0.32 0.4182 0.35 -0.227 0.44 0.5050 0.44 -0.176

under N = 1000. Table 4 shows the highest posterior density intervals (HPDI)
of the marginal distributions and the confidence intervals based on the MLE.
Under N = 50, though the posterior means and the modes are very different
from the true values of ρ, there is a high degree of uncertainty surrounding our
estimators. As we can see, the posterior distributions have very long tails. The
true values of ρ are within the 99% and 95% HPDI, and they are near the border
of the 90% HPDI. When N equals 100, the situation is similar, though our point
estimates are better than those under N = 50. As the sample size increases,
the posterior distributions get more symmetrical. When N = 200, we start to
see that not only can we get better point estimates, we can also have better
interval coverage. The HPDIs become narrower with the true values inside as
the cross section sample size increases. However, as for the MLE confidence
intervals, the true values are far away from the intervals for any cross section
sample size, which implies such intervals based on biased estimates could be
very misleading.

Now we increase T and repeat the experiment above. As far as the MLE
is concern, again, the estimates are poor even for T = 10 and N = 1000,
which have still quite a distance from our true values. Although the confidence
intervals are closer to the true values, none of them can have the true values
inside for different cross section sample sizes. As for our correction function
method, under T = 4, even for N = 50, the mode of the posterior distribution
for ρ is no longer on the unit circle as before and the marginal distributions are
all quite symmetrical. Though the posterior mode and the mean are still fairly
different from the true values, compared to the case of T = 2, they already
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Figure 3: The marginal density plots of the posterior draws of ρ for T = 2

Table 4: HPDI and Confidence Intervals for T = 2
N = 50 ρ1 HPDI ρ1 MLE ρ2 HPDI ρ2 MLE ρ3 HPDI ρ3 MLE

99% -1.363 -0.679 -2.415 -1.9 -0.201 0.890 -2.07 -1.12 0.328 0.966 -0.64 -0.12
95% -1.251 -0.711 -2.35 -1.96 0.046 0.890 -1.95 -1.24 0.443 0.942 -0.58 -0.18
90% -1.173 -0.725 -2.32 -1.99 0.179 0.890 -1.89 -1.29 0.510 0.926 -0.55 -0.21
80% -1.083 -0.740 -2.285 -2.029 0.358 0.875 -1.83 -1.36 0.588 0.909 -0.501 -0.25

N=100 ρ1 HPDI ρ1 MLE ρ2 HPDI ρ2 MLE ρ3 HPDI ρ3 MLE
99% -1.293 -0.691 -2.33 -1.96 -0.070 0.938 -1.88 -1.21 0.348 0.896 -0.5 -0.149
95% -1.179 -0.703 -2.28 -2.01 0.187 0.938 -1.8 -1.29 0.464 0.878 -0.458 -0.19
90% -1.118 -0.710 -2.26 -2.03 0.324 0.938 -1.76 -1.33 0.528 0.862 -0.437 -0.212
80% -1.037 -0.729 -2.23 -2.06 0.456 0.930 -1.71 -1.38 0.589 0.846 -0.412 -0.237

N=200 ρ1 HPDI ρ1 MLE ρ2 HPDI ρ2 MLE ρ3 HPDI ρ3 MLE
99% -1.512 -0.917 -2.06 -1.82 -0.487 0.548 -1.44 -0.997 0.113 0.628 -0.346 -0.11
95% -1.464 -1.010 -2.03 -1.85 -0.412 0.406 -1.38 -1.05 0.156 0.559 -0.32 -0.14
90% -1.443 -1.055 -2.02 -1.86 -0.362 0.321 -1.36 -1.08 0.177 0.514 -0.303 -0.15
80% -1.403 -1.100 -2.002 -1.88 -0.292 0.222 -1.33 -1.11 0.210 0.466 -0.29 -0.17

N=1000 ρ1 HPDI ρ1 MLE ρ2 HPDI ρ2 MLE ρ3 HPDI ρ3 MLE
99% -1.386 -1.135 -1.998 -1.889 -0.189 0.302 -1.29 -1.09 0.323 0.565 -0.23 -0.12
95% -1.356 -1.160 -1.985 -1.9 -0.140 0.233 -1.27 -1.11 0.347 0.535 -0.22 -0.13
90% -1.344 -1.178 -1.98 -1.908 -0.111 0.193 -1.26 -1.13 0.359 0.517 -0.21 -0.14
80% -1.328 -1.197 -1.97 -1.92 -0.084 0.161 -1.24 -1.14 0.375 0.502 -0.2 -0.148
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get much closer20. The interesting thing to note is that although we have
better point estimates under T = 4, the coverage of the posterior marginal
distributions does not seem to be as good as for T = 2. The true values of ρ
are quite often outside even the 99% intervals.21 The situation only starts to
improve for N = 200. When N gets to 1000, the true values of ρ are fairly well
within (or bordering) the HPDIs, which are the signs of estimation consistency.
For T = 10, all results appear to be much nicer. Both the posterior mode
and the mean are already quite near the true values even for N = 50. As for
the posterior marginal distribution coverage, the true values are quite near the
center of the marginal distributions. This strongly confirms the viability of our
correction function method under the linear short panel context.

Table 5: Point Estimation Results for T = 4
N = 50 N = 100

mode root moduli mean MLE mode root moduli mean MLE

-1.4303 0.9009 -1.4226 -1.7435 -1.3814 0.9253 -1.377 -1.712

-0.27864 0.9009 -0.2641 -0.8622 -0.14912 0.9253 -0.14 -0.7667

0.24896 0.3068 0.2563 -0.0491 0.34034 0.3975 0.3452 0.0239

N = 200 N = 1000

mode root moduli mean MLE mode root moduli mean MLE

-1.2123 0.9166 -1.2077 -1.6178 -1.2173 0.9111 -1.2164 -1.628

0.095423 0.9166 0.1039 -0.6581 0.072174 0.9111 0.0739 -0.665

0.44979 0.5354 0.4542 0.0578 0.43123 0.5195 0.4321 0.007

Table 6: HPDI and Confidence Intervals for T = 4
N = 50 ρ1 HPDI ρ1 MLE ρ2 HPDI ρ2 MLE ρ3 HPDI ρ3 MLE

99% -1.629 -1.213 -1.92 -1.57 -0.657 0.140 -1.18 -0.55 0.066 0.459 -0.23 0.13
95% -1.585 -1.259 -1.88 -1.61 -0.558 0.040 -1.1 -0.62 0.101 0.415 -0.18 0.085
90% -1.556 -1.286 -1.86 -1.63 -0.512 -0.014 -1.06 -0.66 0.120 0.394 -0.16 0.064
80% -1.530 -1.323 -1.83 -1.66 -0.463 -0.073 -1.02 -0.7 0.148 0.358 -0.137 0.039

N = 100 ρ1 HPDI ρ1 MLE ρ2 HPDI ρ2 MLE ρ3 HPDI ρ3 MLE
99% -1.528 -1.213 -1.84 -1.59 -0.442 0.164 -0.99 -0.54 0.187 0.528 -0.1 0.15
95% -1.498 -1.244 -1.81 -1.62 -0.358 0.093 -0.94 -0.596 0.226 0.472 -0.07 0.12
90% -1.482 -1.273 -1.79 -1.63 -0.328 0.047 -0.91 -0.62 0.243 0.444 -0.056 0.1
80% -1.456 -1.298 -1.77 -1.65 -0.289 -0.004 -0.88 -0.66 0.262 0.423 -0.038 0.09

N = 200 ρ1 HPDI ρ1 MLE ρ2 HPDI ρ2 MLE ρ3 HPDI ρ3 MLE
99% -1.325 -1.089 -1.71 -1.53 -0.129 0.350 -0.82 -0.5 0.335 0.579 -0.034 0.15
95% -1.301 -1.114 -1.69 -1.55 -0.076 0.287 -0.78 -0.54 0.366 0.548 -0.01 0.13
90% -1.282 -1.133 -1.67 -1.56 -0.048 0.260 -0.76 -0.55 0.377 0.530 -0.001 0.12
80% -1.270 -1.149 -1.66 -1.57 -0.018 0.219 -0.74 -0.58 0.395 0.511 0.012 0.1

N = 1000 ρ1 HPDI ρ1 MLE ρ2 HPDI ρ2 MLE ρ3 HPDI ρ3 MLE
99% -1.275 -1.157 -1.67 -1.588 -0.029 0.180 -0.74 -0.59 0.381 0.483 0.029 0.11
95% -1.260 -1.172 -1.66 -1.597 -0.004 0.152 -0.72 -0.61 0.393 0.471 0.039 0.1
90% -1.254 -1.180 -1.65 -1.6 0.006 0.140 -0.71 -0.618 0.398 0.466 0.044 0.096
80% -1.245 -1.189 -1.648 -1.61 0.021 0.126 -0.7 0.63 0.407 0.458 0.05 0.09

20The L2 distance between the mode and the true value for T = 2 and N = 50 is 0.9, while
for T = 4 and N = 50, it is 0.575.

21Note that these results are based on two particular datasets. If we want to investigate the
HPDI coverage performance in more details, further simulation research needs to be carried
out.
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Figure 4: The marginal density plots of the posterior draws of ρ for T = 4

Table 7: Point Estimation Results for T = 10
N = 50 N = 100

mode root moduli mean MLE mode root moduli mean MLE

-1.2032 0.9253 -1.2012 -1.362 -1.1758 0.91668 -1.1753 -1.354

0.12109 0.9253 0.1249 -0.177 0.16192 0.91668 0.1629 -0.176

0.47575 0.5556 0.4775 0.321 0.48155 0.57306 0.482 0.304

N = 200 N = 1000

mode root moduli mean MLE mode root moduli mean MLE

-1.1615 0.9086 -1.1607 -1.333 -1.1624 0.9173 -1.1624 -1.328

0.17642 0.9086 0.1777 -0.145 0.19369 0.9173 0.1938 -0.118

0.47595 0.5765 0.4765 0.31 0.49693 0.5905 0.497 0.335
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Figure 5: The marginal density plots of the posterior draws of ρ for T = 10

Table 8: HPDI and Confidence Intervals for T = 10
N = 50 ρ1 HPDI ρ1 MLE ρ2 HPDI ρ2 MLE ρ3 HPDI ρ3 MLE

99% -1.311 -1.089 -1.47 -1.25 -0.066 0.310 -0.36 0.01 0.371 0.585 0.213 0.43
95% -1.285 -1.115 -1.44 -1.28 -0.020 0.276 -0.32 -0.034 0.396 0.559 0.239 0.4
90% -1.270 -1.133 -1.43 -1.29 0.002 0.246 -0.296 -0.057 0.409 0.545 0.25 0.39
80% -1.256 -1.147 -1.42 -1.31 0.028 0.221 -0.27 -0.083 0.423 0.531 0.27 0.37

N = 100 ρ1 HPDI ρ1 MLE ρ2 HPDI ρ2 MLE ρ3 HPDI ρ3 MLE
99% -1.256 -1.093 -1.433 -1.27 0.022 0.302 -0.31 -0.038 0.406 0.559 0.22 0.39
95% -1.239 -1.114 -1.414 -1.29 0.051 0.268 -0.28 -0.071 0.424 0.542 0.24 0.37
90% -1.230 -1.121 -1.4 -1.3 0.067 0.255 -0.26 -0.087 0.428 0.530 0.25 0.36
80% -1.220 -1.133 -1.39 -1.31 0.086 0.235 -0.24 -0.11 0.440 0.521 0.26 0.34

N = 200 ρ1 HPDI ρ1 MLE ρ2 HPDI ρ2 MLE ρ3 HPDI ρ3 MLE
99% -1.219 -1.105 -1.39 -1.28 0.067 0.282 -0.24 -0.05 0.424 0.532 0.26 0.37
95% -1.204 -1.119 -1.38 -1.29 0.098 0.261 -0.22 -0.07 0.435 0.519 0.27 0.35
90% -1.197 -1.125 -1.37 -1.3 0.112 0.244 -0.21 -0.08 0.442 0.511 0.28 0.345
80% -1.189 -1.133 -1.36 -1.31 0.125 0.229 -0.19 -0.1 0.450 0.502 0.28 0.34

N = 1000 ρ1 HPDI ρ1 MLE ρ2 HPDI ρ2 MLE ρ3 HPDI ρ3 MLE
99% -1.185 -1.138 -1.35 -1.3 0.153 0.237 -0.16 -0.077 0.475 0.521 0.31 0.36
95% -1.180 -1.145 -1.346 -1.31 0.161 0.227 -0.15 -0.087 0.480 0.514 0.316 0.353
90% -1.178 -1.148 -1.343 -1.313 0.166 0.221 -0.145 -0.092 0.483 0.511 0.319 0.35
80% -1.174 -1.151 -1.34 -1.316 0.172 0.214 -0.139 -0.098 0.485 0.508 0.32 0.347
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3.5 Demonstration Examples for Model Comparison

In this section, we show how well the algorithms developed in Section 3.3 work
in some examples. As in the previous section, we also set the true values of
ρ as (−1.1718, 0.17399, 0.49181)′, which indicates the model is fairly near the
unit circle. For T , it is set to 4. We then include some exogenous regressors
out of a group of potential regressors in our model. Similar to Li (2009)22, we
generate serially and cross-sectionally correlated exogenous regressors such that
when we include the wrong set of regressors, the correction function is generally
not a valid solution for the incidental parameter problem. We set the number of
potential regressors to 6 and the maximum possible AR order to 3. Therefore
the total number of models considered will be (3 + 1)26 = 256. For such scale
of model space, both the Chib’s method and the reversible jump are applicable
for calculating the posterior model probabilities, though care should be taken
in fine-tuning some parameter settings for the reversible jump method.

Table 9 shows the posterior model probabilities of the top models. The re-
sults from the Chib’s method and the reversible jump are quite close. Most of
the model rankings are the same, though some discrepancies exist for the pos-
terior model probabilities. Such discrepancies may become more conspicuous
for the models with low model probabilities, which, however, can be seen as
unimportant for our analysis. As the cross section sample size becomes larger,
the posterior model probability will concentrate more on the top models. Al-
though for N = 50, the model with the highest posterior model probability is
not the true model (the one with 3 lags and regressor 1,3,4 and 6). For bigger
sample sizes, the top posterior model probability criterion successfully picks up
the true model. This is the evidence supporting that our correction function
method may not only lead to consistency in estimation, but also consistency in
model selection.

In addition to calculating the posterior model probabilities, we use Bayesian
model averaging (BMA) to estimate the coefficients for the exogenous regres-
sors unconditional on any particular model (see Fernandez et al., 2001). We
use the inclusion probability to measure the significance of each exogenous re-
gressor23. Since we assume that all models are a priori equally probable, it is
virtually equivalent as saying that the prior probability to include a particular
regressor is 50%. If the posterior inclusion probability is above 50%, it could
be interpreted as a sign that our data support or reinforce our prior and the
exogenous regressor is significant. Since the posterior model probabilities based
on the Chib’s method and the reversible jump are quite close, we can use ei-
ther of them for BMA. Table 10 shows the BMA results based on the reversible
jump method, where the column under β shows the true values of the coeffi-
cients for the regressors included. The true model has regressor 1, 3, 4 and 6
included. The column under “inclp” is the inclusion probability obtained from
the reversible jump method, while the column “inclpC” is calculated based on

22See Appendix for the details of the data generating process.
23It is the sum of posterior model probabilities of all the models with the exogenous regressor

included.
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Table 9: The top models for T = 4 (true model indicated by “R”)
N = 50 Chib’s Method Reversible Jump

Ranking Model Post Prob Ranking Model Post Prob

1 1,4,6,p = 3 0.2433 1 1,4,6,p=3 0.23707

2 4,5,6,p = 3 0.19001 2 4,5,6,p=3 0.18852

3 1,2,4,6,p = 3 0.15484 3 1,2,4,6,p=3 0.14336

4 4,6,p = 3 0.076556 4 4,6,p=3 0.07719

5 3,4,5,6,p = 3 0.066607 5 3,4,5,6,p=3 0.07282

6(R) 1,3,4,6,p = 3 0.052044 6(R) 1,3,4,6,p=3 0.05234

7 2,4,5,6,p = 3 0.046289 7 2,4,5,6,p=3 0.0408

8 1,4,5,6,p = 3 0.036396 8 1,4,5,6,p=3 0.03418

9 1,2,3,4,6,p=3 0.030323 9 1,2,3,4,6,p=3 0.03318

10 1,2,4,5,6,p=3 0.025478 10 1,2,4,5,6,p=3 0.02379

N = 200 Chib’s Method Reversible Jump

Ranking Model Post Prob Ranking Model Post Prob

1(R) 1,3,4,6,p=3 0.52507 1(R) 1,3,4,6,p=3 0.54598

2 3,4,5,6,p=3 0.16266 2 3,4,5,6,p=3 0.15571

3 3,4,6,p=3 0.15322 3 3,4,6,p=3 0.14305

4 1,3,4,5,6,p=3 0.049876 4 1,3,4,5,6,p=3 0.0482

5 1,2,3,4,6,p=3 0.038934 5 1,2,3,4,6,p=3 0.03768

6 2,3,4,5,6,p=3 0.033994 6 2,3,4,5,6,p=3 0.03438

7 2,3,4,6,p=3 0.032771 7 2,3,4,6,p=3 0.0312

8 1,2,3,4,5,6,p=3 0.003463 8 1,2,3,4,5,6,p=3 0.0038

9 1,2,4,6,p=3 3.46E-06 9 1,2,3,6,p=3 0

10 4,5,6,p=3 1.10E-06 10 1,2,6,p=3 0

N = 1000 Chib’s Method Reversible Jump

Ranking Model Post Prob Ranking Model Post Prob

1(R) 1,3,4,6,p=3 0.8647 1(R) 1,3,4,6,p=3 0.88282

2 1,2,3,4,6,p=3 0.058693 2 1,2,3,4,6,p=3 0.04998

3 1,2,3,4,5,6,p=3 0.046229 3 1,2,3,4,5,6,p=3 0.04087

4 1,3,4,5,6,p=3 0.030118 4 1,3,4,5,6,p=3 0.02621

5 2,3,4,5,6,p=3 0.000183 5 2,3,4,5,6,p=3 7.00E-05

6 3,4,5,6,p=3 8.26E-05 6 3,4,5,6,p=3 5.00E-05

7 2,3,4,6,p=3 2.84E-10 7 3,4,6,p=1 0

8 1,2,4,5,6,p=3 4.01E-12 8 4,6,p=1 0

9 3,4,6,p=3 5.45E-17 9 2,3,4,6,p=1 0

10 1,2,4,6,p=3 9.90E-44 10 2,3,4,p=1 0
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the Chib’s method. Both the Chib’s method and the reversible jump give us
similar estimates. The coefficients of the true regressors, except regressor 3, all
have inclusion probabilities higher than 50% under N = 50. When the cross
section sample size increases, the true regressors will have higher inclusion prob-
ability; while for wrong regressors, the inclusion probabilities tend to decrease.
For N = 1000, the BMA estimates are nearly equal to the true values of β. We
can conclude that our method can not only achieve consistent estimates for ρ,
but is also consistent for β.

Table 10: The BMA estimates for the exogenous regressors
N=50

β mean nse std inclp inclpC
0.1 0.095 0.000 0.129 0.567 0.586
0 -0.033 0.000 0.066 0.309 0.323

0.2 0.040 0.000 0.118 0.224 0.195
0.8 0.688 0.001 0.211 0.972 0.973
0 -0.034 0.000 0.112 0.422 0.427

1.6 1.504 0.000 0.129 1 1
N=200

β mean nse std inclp inclpC
0.1 0.063 0.000 0.057 0.636 0.617
0 -0.002 0.000 0.011 0.107 0.109

0.2 0.176 0.000 0.032 1 1
0.8 0.813 0.000 0.047 1 1
0 0.015 0.000 0.031 0.242 0.250

1.6 1.646 0.000 0.030 1 1
N=1000

β mean nse std inclp inclpC
0.1 0.105 0.000 0.038 1.000 1.000
0 -0.008 0.000 0.033 0.091 0.105

0.2 0.200 0.000 0.016 1 1
0.8 0.802 0.000 0.017 1 1
0 -0.004 0.000 0.022 0.067 0.077

1.6 1.598 0.000 0.022 1 1

Next we enlarge our model space by setting the potential regressors to 16 and
choose 8 to include in the data generating process. Now there are 262144 models
altogether. If we use the Chib’s method to calculate the model probability for
each model, it will take a mainstream PC 7− 9 days to run uninterruptedly to
finish, which is rather impractical. The reversible jump is the only alternative,
which only takes 1089 seconds for 20,000 draws. The point estimation results
are shown in Table 11, which are quite good. All the true regressors have
inclusion probabilities higher than 50% underN = 50 while the highest inclusion
probabilities for the wrong regressors are below 40%. In terms of point estimates,
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it appears to be better than the previous example with 6 potential regressors.
Table 12 confirms the high level of model uncertainty when we enlarge the model
space. The top twenty models only account for around 64% of posterior model
probability compared to 92% taken up by the top ten models in the previous case
under N = 50. However, the good thing for the true model with more exogenous
regressors is that the true model has much higher model probability than any
other potential models. This can again be viewed as signs of consistency in
model selection.

Table 11: The BMA estimates for the exogenous regressors with a large model
space

N=50
β mean nse std inclp

0.1 0.0902 0.0016 0.0713 0.7710
0.2 0.1035 0.0024 0.1063 0.5960
0 0.0709 0.0025 0.1108 0.3845
0 -0.0009 0.0005 0.0240 0.0825
0 0.0016 0.0009 0.0410 0.1835

0.3 0.2637 0.0019 0.0837 0.9735
0.8 0.8538 0.0014 0.0618 1.0000
0.9 0.9308 0.0015 0.0681 1.0000
0 -0.0212 0.0011 0.0477 0.2830
1 1.0464 0.0015 0.0671 1.0000
0 0.0457 0.0020 0.0880 0.3335
0 -0.0013 0.0006 0.0266 0.1815

1.5 1.3995 0.0022 0.0967 1.0000
1.6 1.5485 0.0016 0.0719 1.0000
0 0.0264 0.0015 0.0670 0.2185
0 -0.0086 0.0010 0.0436 0.1445

4 Conclusion

In this paper, we propose a strategy to solve the incidental parameter prob-
lem. It involves finding the Jacobian from the incidental parameters, which
are not information orthongonal to the common parameters, to the informa-
tion orthogonal incidental parameters. The strategy is implemented under the
original parameterization. No reparameterization of the incidental parameters
is required. The strategy is demonstrated under a simple Poisson count model.
We also extend our strategy to the case when information orthogonalization of
the incidental parameters is not possible, such as the linear AR(p) panel model
with fixed effect. We show that there exists a correction function to solve the in-
cidental parameter problem for the model. It could be a function of the common
parameters under concern and it does not necessarily depend on the dependent
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Table 12: The top models for T = 4 with a large model space (true model
indicated by “R”)

N = 50 Reversible Jump
Ranking Model Posterior Prob

1(R) 1,2,6,7,8,10,13,14,p=3 0.182
2 1,2,3,6,7,8,10,13,14,p=3 0.04
3 1,2,6,7,8,10,11,13,14,p=3 0.035
4 1,3,6,7,8,9,10,13,14,p=3 0.032
5 1,2,6,7,8,9,10,13,14,p=3 0.0305
6 1,6,7,8,10,11,13,14,p=3 0.029
7 1,2,3,6,7,8,10,12,13,14,p=3 0.0285
8 1,2,5,6,7,8,10,12,13,14,p=3 0.0285
9 1,2,5,6,7,8,9,10,13,14,p=3 0.0265
10 1,2,4,6,7,8,10,11,13,14,p=3 0.0225
11 1,3,6,7,8,9,10,12,13,14,p=3 0.0215
12 3,4,6,7,8,,9,10,13,14,15,p=3 0.021
13 1,6,7,8,10,11,13,14,15,p=3 0.021
14 1,2,4,6,7,8,10,13,14,16,p=3 0.02
15 1,6,7,8,10,11,13,14,16,p=3 0.0185
16 3,6,7,8,10,13,14,15,p=3 0.018
17 1,3,6,7,8,10,11,12,13,14,15,p=3 0.017
18 1,2,6,7,8,10,12,13,14,p=3 0.0165
19 2,3,5,6,7,8,10,13,14,15,p=3 0.016
20 1,2,6,7,8,10,11,13,14,16,p=3 0.016
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variable when our model is correctly specified. We have also developed algo-
rithms for estimation and to calculate the Bayes factors. Our results suggest
that our method could achieve consistency in both parameter estimation and
model selection.

Whether our approach will provide more solutions for other models with
incidental parameter problem is still under research. Some assumptions for the
panel AR model may be restrictive for application, such as the stationarity of
the model, the strictly exogenous assumption for the regressors and the ho-
moscedasticity. Future research to relax such assumptions and to investigate
the correction function approach under a wider context may be productive.
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A Appendix

A.1 Solution for (24)

By repetitive substitution, we can rewrite the model in (17) as the following,
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[y′i,−p, yi,1, yi,2, . . . , yi,T−1]′ = fic1 + IT−1+p ⊗ y′i,−pc2 + CXiβ + Cui

yi,−p
p×1

=


yi,−p+1

yi,−p+2

. . .
yi,−1

yi,0

 , P
p×p

=


ρ1 1 0 . . . 0
ρ2 0 1 . . . 0
. . . . . . . . . . . .
ρp−1 0 0 . . . 1
ρp 0 0 . . . 0

 ,

c1
(T−1+p)×1

=



0p×1

1
P(1,1) + 1

P 2
(1,1) + P(1,1) + 1

. . .

PT−2
(1,1) + PT−3

(1,1) + · · ·+ P(1,1) + 1

 , c2
[p2+(T−1)p]×1

=


vec(Ip)
P(:,1)

P 2
(:,1)

. . .

PT−1
(:,1)

 ,

C
(T−1+p)×T

=


0p×1 0p×1 . . . 0p×1 0p×1

1 0 . . . 0 0
P(1,1) 1 . . . 0 0
. . . . . . . . . . . . . . .

PT−2
(1,1) PT−3

(1,1) . . . 1 0

 .

(54)

where Pn(1,1) and Pn(:,1) denote the (1,1) element and the first column of the
matrix Pn. To find Ey(Y ′i ι)

p×1

, we just need to make use of (54). For the conve-

nience of subsequent exposition, we define h : Rp 7→ Rp, ω1 : Rp+T 7→ Rp and
ω2 : Rp+p 7→ Rp as

h
p×1

( ρ
p×1

) =
1
T


ι′c1(p:T+p−1)

ι′c1(p−1:T+p−2)

. . .
ι′c1(1:T )

 = −


trace

(
HC(p:T+p−1,:)

)
trace

(
HC(p−1:T+p−2,:)

)
. . .

trace
(
HC(1:T,:)

)


ω1
p×1

(Xiβ
T×1

, ρ
p×1

) =


ι′(CXiβ)(p:T+p−1)

ι′(CXiβ)(p−1:T+p−2)

. . .
ι′(CXiβ)(1:T )



ω2
p×1

(yi,−p
p×1

, ρ
p×1

) =


ι′(IT−1+p ⊗ y′i,−pc2)1(p:T+p−1)

ι′(IT−1+p ⊗ y′i,−pc2)1(p−1:T+p−2)

. . .
ι′(IT−1+p ⊗ y′i,−pc2)1(1:T )



(55)

where a1(1:T ) and A(1:T,:) denote the 1 to T elements and the 1 to T rows of
a and A respectively. Note that since Ey(Cui) is equal to zero, we can obtain
Ey(Y ′i ι) = [Th(ρ)fi + ω1(Xiβ, ρ) + ω2(yi,−p, ρ)] and hence (23).

Since the right hand side of (24) only involves ρ, we could assume λρ(fi, θ)
1×1

=
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τ(ρ) + constant, where the constant term could be any arbitrary function of fi,
β and σ2. For simplicity, we choose the constant term to be 0.24 The equation
∂τ(ρ)
∂ρ = h(ρ) implies the following,

d τ(ρ) =
p∑
k=1

hk(ρ) dρk. (56)

To prove that τ(ρ) exists, we just need to prove the differential of τ(ρ) is
exact. Before the proof, we need to establish Lemma A.1.

Lemma A.1.
∂P i+j(1,1)

∂ρi
=
∂P i

′+j
(1,1)

∂ρi′
(57)

where i, i′ = 1, 2, . . . , p and j is zero or a positive integer. Without loss of
generality, we can assume i ≤ i′.25

Proof. First note that26

Pn(1,1) =
p∑
k=1

ρkP
n−k
(1,1) . (58)

The above equation implies
∂Pn

(1,1)

∂ρi
= 0 and

∂Pn
(1,1)

∂ρi
= 1 for n < i and n = i

respectively. Then we can prove (57) by mathematical induction, which involves
the following three steps:

1. We assume that for any integer less than j equation (57) holds. The left
and right hand side of (57) can be rewritten as

∂P i+j(1,1)

∂ρi
= ρ1

∂P i+j−1
(1,1)

∂ρi
+· · ·+

∂
(
ρiP

i+j−i
(1,1)

)
∂ρi

+· · ·+ρi′
∂P i+j−i

′

(1,1)

∂ρi
+· · ·+ρp

∂P i+j−p(1,1)

∂ρi
(59)

∂P i
′+j

(1,1)

∂ρi′
= ρ1

∂P i
′+j−1

(1,1)

∂ρi′
+· · ·+ρi

∂P i
′+j−i

(1,1)

∂ρi′
+· · ·+

∂
(
ρi′P

i′+j−i′
(1,1)

)
∂ρi′

+· · ·+ρp
∂P i

′+j−p
(1,1)

∂ρi′
(60)

Due to our assumption27, the following must hold

ρn
∂P i+j−n(1,1)

∂ρi
= ρn

∂P i
′+j−n

(1,1)

∂ρi′
, (61)

24This choice indeed can produce the solution to achieve consistent estimation for this

particular model. The authors are not entirely sure if
∂χ(fi,θ)

∂fi
, where χ(fi, θ) is defined

in (10), involves all the common parameters and the incidental parameter, what strategy is
required for consistent estimation. It should depend on the specific problems.

25It is obvious that if i = i′, equation (57) holds. Therefore in the following, we just need
to prove the case when i < i′.

26We define P n−k
(1,1)

= 1 if n− k = 0 and P n−k
(1,1)

= 0 if n− k < 0.
27Note that j − n < j.
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where n ∈ {1, 2, . . . , p} \{i, i′}. Now to prove (59) and (60) are equal to
each other is reduced to proving

∂
(
ρiP

i+j−i
(1,1)

)
∂ρi

+ ρi′
∂P i+j−i

′

(1,1)

∂ρi
= ρi

∂P i
′+j−i

(1,1)

∂ρi′
+
∂
(
ρi′P

i′+j−i′
(1,1)

)
∂ρi′

, (62)

which is equivalent to

P j(1,1) + ρi
∂P i+j−i(1,1)

∂ρi
+ ρi′

∂P i+j−i
′

(1,1)

∂ρi
= P j(1,1) + ρi

∂P i
′+j−i

(1,1)

∂ρi′
+ ρi′

∂P i
′+j−i′

(1,1)

∂ρi′
.

(63)
It is not hard to see that (63) is true due to our assumption. Finally we
know that if (57) holds for any integer less than j, then it also holds for j.

2. The smallest possible number for j is 0, which indicates both sides of (57)
are equal to 1. So (57) holds.

3. From the above two points, we know that Lemma A.1 is true.

Now we are ready to prove that there exists a solution for the partial differ-
ential equation system (56).

Proof. It can be seen from (56) that if the system has a solution, the differential
of τ(ρ) must be exact, which implies the following must be satisfied,

∂hi(ρ)
ρi′

=
∂hi′(ρ)
ρi

(64)

Note that hi(ρ) and hi′(ρ) can take the following forms

hi(ρ) =
T − i

T
+
T − i− 1

T
P(1,1) + · · ·+ T − i− i′

T
P i

′

(1,1) + · · ·+ 1
T
PT−i−1

(1,1)

hi′(ρ) =
T − i′

T
+
T − i′ − 1

T
P(1,1) + · · ·+ T − i′ − i

T
P i(1,1) + · · ·+ 1

T
PT−i

′−1
(1,1) .

To prove (64), we need to have

T − i− i′

T

∂P i
′

(1,1)

∂ρi′
+· · ·+ 1

T

P i
′+T−i−i′−1

(1,1)

∂ρi′
=
T − i′ − i

T

∂P i(1,1)

∂ρi
+· · ·+ 1

T

P i+T−i−i
′−1

(1,1)

∂ρi
(65)

By Lemma A.1, we know that (65) is true. Hence (64) is true and d τ(ρ) is
exact. So we can conculde that τ(ρ) exists and (56) has a solution.

Next we go on to solve (56). A solution for τ(ρ) can take the following form,

τ(ρ) = R1(ρ) + φ1(ρ2:p) (66)
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where R1(ρ) =
∫
h1(ρ)dρ1 and φ1(ρ2:p) is a function involving all the elements

in ρ except ρ1. To derive φ1(ρ2:p), we can use the following relationship

∂τ(ρ)
∂ρ2

= h2(ρ) =
∂R1(ρ)
∂ρ2

+
∂φ1(ρ2:p)
∂ρ2

. (67)

Hence

φ1(ρ2:p) =
∫ (

h2(ρ)−
∂R1(ρ)
∂ρ2

)
dρ2 + φ2(ρ3:p). (68)

where φ3(ρ3:p) is a function of all the element of ρ except ρ1 and ρ2. We could

denote R2(ρ2:p) =
∫ (

h2(ρ)− ∂R1(ρ)
∂ρ2

)
dρ2. If we continue the above procedure

p times, we could find out the general solution for τ(ρ) is

τ(ρ) =
p∑
i=1

Ri(ρi:p) + k (69)

where k is an arbitrary constant not depending on ρ and

Ri(ρi:p) =
∫ hi(ρ)− i−1∑

j=1

∂Rj(ρj:p)
∂ρi

 dρi for i = 2, . . . , p (70)

with R1(ρ) =
∫
h1(ρ)dρ1. If we look at (69) more carefully, we can see that

the general solution of τ(ρ) is obtained by summing up all the distinct terms in
each element of

∫
h(ρ)
p×1

d ρ
p×1

and an arbitrary constant (which we set to 0).

A.2 An Asymptotic Local Stationary Point of the Inte-
grated Likelihood

In this subsection, we will prove that the true value, θ is a local stationary
point asymptotically for the integrated likelihood function, p(Y |θ) obtained by

integrating out f under the prior p(f |θ) =
N∏
i=1

p(fi|ρ) ∝ r(ρ) = exp[Nτ(ρ)]. The

natural log of the integrated likelihood function takes the following form (see
the next subsection for derivation details),

ln p(Y |r, b, s2) ∝ QN (r, b, s2)

= − 1
2s2

∑
i

(yi − Yi r −Xib)′H(yi − Yi r −Xib)−
N(T − 1)

2
ln s2 +Nτ(r).

(71)
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where r, b and s2 are the specific values that θ takes. Subsituting (17) into (71)
yields

ln p(Y |r, b, s2) ∝ QN (r, b, s2)

= − 1
2s2

{
(ρ− r)′

∑
i

Y ′i HYi (ρ− r) + (β − b)′
∑
i

X ′
iHXi(β − b)

+
∑
i

uiH
′ui + 2(ρ− r)′

∑
i

Y ′i Hui + 2(ρ− r)′
∑
i

Y ′i HXi(β − b)

+ 2
∑
i

u′iHXi(β − b)
}
− N(T − 1)

2
ln s2 +Nτ(r).

(72)

Next we assume the following probability limits exist:

plim
N→∞

1
N

N∑
i

Y ′i HYi = Y Y
p×p

plim
N→∞

1
N

N∑
i

Y ′i Hui = σ2


trace

(
HC(p:T+p−1,:)

)
trace

(
HC(p−1:T+p−2,:)

)
. . .

trace
(
HC(1:T,:)

)
 = −σ2h(ρ)

plim
N→∞

1
N

N∑
i

Y ′i HXi = Y X
p×K

plim
N→∞

1
N

N∑
i

X ′
iHXi = XX

K×K

(73)

Hence the probability limit of 1
NQN (r, b, s2) exists as the following28,

plim
N→∞

1
N
QN (r, b, s2) = Q(r, b, s2)

= − 1
2s2

{
(ρ− r)′ (Y Y ) (ρ− r) + (β − b)′ (XX) (β − b) + (T − 1)σ2

− 2σ2(ρ− r)′h(ρ) + 2(ρ− r)′ (Y X) (β − b)
}
− T − 1

2
ln s2 + τ(r).

(74)

28We also use the facts that plim
N→∞

1
N

PN
i uiH

′ui = (T − 1)σ2 and Xi and fi are strictly

exogenous.
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Now we can differentiate Q(r, b, s2) to check the first order condition:

∂Q

∂r
=

1
s2
[
(ρ− r)′ (Y Y )− σ2h(ρ) + (Y X) (β − b)

]
+ h(r)

∂Q

∂b
=

1
s2

[XX(β − b) + (ρ− r)′(Y X)]

∂Q

∂s2
=

1
2s2

{
(ρ− r)′ (Y Y ) (ρ− r) + (β − b)′ (XX) (β − b) + (T − 1)σ2

− 2σ2(ρ− r)′h(ρ) + 2(ρ− r)′ (Y X) (β − b)
}
− (T − 1)

2s2
.

(75)

We can see that (r = ρ, b = β, s2 = σ2) can obviously solve the above three
equations and hence is a local stationary point for the integrated likelihood
asymptotically.

A.3 Proof of Proposition 3.1

Let us define wi = yi − Yi ρ. The product of the likelihood and the prior for θ
is

p(θ)p(Y |θ, Y0) =
1

m(S)
I(ρ ∈ S)p(β|σ2)(2π)−

T N
2 σ2(−NT+2

2 )r(ρ)

N∏
i=1

exp
{
− 1

2σ2
[wi − fiι−Xiβ]′ [wi − fiι−Xiβ]

}
,

(76)

where Y = (y1, y2, . . . , yN )′ excludes the first observations of all economic
agents, of which Y0 = (y1,0, y2,0, . . . , yN,0)′ is the collection.

Now we derive the posterior distribution of fi. We can rewrite equation (76)
as

p(θ)p (Y |θ, Y0) = p(β|σ2)
1

m(S)
I(ρ ∈ S)(2π)−

T N
2 σ2(−NT+2

2 )r(ρ)

N∏
i=1

exp
{
− 1

2σ2
[(wi −Xiβ)′(wi −Xiβ)

+Tf2
i − 2ι′(wi −Xiβ)− fi

}
.

We then complete the square for fi by adding − (ι′wi−Xiβ)2

T + (ι′wi−Xiβ)2

T inside
the exponential. So it becomes

p(θ)p (Y |θ, Y0) = p(β|σ2)
1

m(S)
I(ρ ∈ S)(2π)−

T N
2 σ2(−NT+2

2 )r(ρ)

N∏
i=1

exp
{
− 1

2σ2
[(wi −

ιι′wi
T

−HXiβ)′(wi −
ιι′wi
T

−HXiβ)

+T (fi −
ι′wi
T

)2]
}
,
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or equivalently

p(θ)p (Y |θ, Y0) = p(β|σ2)
1

m(S)
I(ρ ∈ S)(2π)−

T N
2 σ2(−NT+2

2 )r(ρ)

N∏
i=1

exp
{
− 1

2σ2
[(wi −Xiβ)′H(wi −Xiβ)

+T (fi −
ι′(wi −Xiβ)

T
)2]
}

where H = IT − ιι′

T is the demean matrix. Substituting wi = yi − Yi back into
our equation, we can have

p(θ)p (Y |θ, Y0) = p(β|σ2)
1

m(S)
I(ρ ∈ S)(2π)−

T N
2 σ2(−NT+2

2 )r(ρ)

N∏
i=1

exp

{
− 1

2σ2

T

[fi −
ι′(yi − Yi ρ−Xiβ)

T
]2
}

exp

[
− 1

2σ2

N∑
i=1

(yi − Yi ρ−Xiβ)′H(yi − Yi ρ−Xiβ)

] (77)

Remember p(β|σ2) does not involve parameters other than σ2. Moreover, since
we ignore the distribution of Y0 and assume the prior of θ is independent of it,
from (77) it is clear that the posterior distribution of gi conditional on yi,0, σ2

and ρ is i.i.d. normal as in (29).
Next we go on to derive the posterior distributions for β and σ2. First we

can integrate out g in equation (77) to obtain

p(ρ, β, σ2, Y |Y0) = p(ρ, β, σ2|Y, Y0)p(Y |Y0)

= p(β|σ2)
1

m(S)
I(ρ ∈ S)T−

N
2 (2π)−

N(T−1)
2 σ2[−N(T−1)+2

2 ]

r(ρ) exp

[
− 1

2σ2

N∑
i=1

(yi − Yi ρ−Xiβ)′H(yi − Yi ρ−Xiβ)

]
.

(78)

If we define w̃i = H(yi − yi ρ) and X̃i = HXi, by incorporating the prior of β
in (28) we can rewrite equation (78) as

p(ρ, β, σ2|Y, Y0)p(Y |Y0) =
1

m(S)
I(ρ ∈ S)T−

N
2 (2π)−

N(T−1)+k
2

σ2[−N(T−1)+2+k
2 ]r(ρ)

∣∣∣∣∣η
N∑
i=1

X̃ ′
iX̃i

∣∣∣∣∣
1
2

exp

{
− 1

2σ2

[
N∑
i=1

w̃i
′w̃i + β′

N∑
i=1

(η + 1)X̃ ′
iX̃iβ − 2

N∑
i=1

w̃′iX̃iβ

]}
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Then completing the square of β yields

p(ρ, β, σ2|Y, Y0)p(Y |Y0)

=
1

m(S)
I(ρ ∈ S)T−

N
2 (2π)−

N(T−1)+k
2 σ2[−N(T−1)+2+k

2 ]r(ρ)

∣∣∣∣∣η
N∑
i=1

X̃ ′
iX̃i

∣∣∣∣∣
1
2

exp

− 1
2σ2

 N∑
i=1

w̃i
′w̃i −

1
η + 1

N∑
i=1

w̃′iX̃i

(
N∑
i=1

X̃ ′
iX̃i

)−1 N∑
i=1

X̃ ′
iw̃i


exp
{
− 1

2σ2

β − 1
η + 1

(
N∑
i=1

X̃ ′
iX̃i

)−1 N∑
i=1

X̃ ′
iw̃i

′
(

N∑
i=1

(η + 1)X̃ ′
iX̃i

)β − 1
η + 1

(
N∑
i=1

X̃ ′
iX̃i

)−1 N∑
i=1

X̃ ′
iw̃i

}

(79)

We can see that the conditional posterior of β follows a normal distribution as
in (30). Now we can integrate out β in (79) to obtain the posterior distribution
for ρ and σ2 as the following,

p(ρ, σ2|Y, Y0)p(Y |Y0) =
1

m(S)
I(ρ ∈ S)

(
η

η + 1

) k
2

T−
N
2 (2π)−

N(T−1)
2

σ2[−N(T−1)+2
2 ]r(ρ) exp

{
− 1

2σ2
[
N∑
i=1

w̃i
′w̃i

− 1
η + 1

N∑
i=1

w̃′iX̃i

(
N∑
i=1

X̃ ′
iX̃i

)−1 N∑
i=1

X̃ ′
iw̃i]

}
. (80)

It is clear from equation (80) that conditional on ρ, σ2 follows an inverted
gamma distribution with mean ∆

N(T−1)−2 and degrees of freedom N(T − 1) as
in (31),

Now we can integrate out σ2 to obtain the posterior distribution of ρ as in
(82).

p(ρ|Y, Y0)p(Y |Y0) =
1

m(S)
I(ρ ∈ S)

(
η

η + 1

) k
2

(∆)−
N(T−1)

2

Γ
[
N(T − 1)

2

]
T−

N
2 (π)−

N(T−1)
2 r(ρ)

(81)

p(ρ|Y, Y0) ∝ I(ρ ∈ S)r(ρ) (∆)−
N(T−1)

2 , (82)

Another way to interpret the posterior of ρ is given in (33) under Proposition
3.1.
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A.4 Proof of Equation (48)

Proof. Note that there is a differentiable mapping from (π(0)′, u′)′ to ρ(c), whose
Jacobian is given in (36), and also from ρ(0) to π(0). Hence we can obtain∣∣∣∣ ∂ρ(c)

∂(ρ(0)′, u′)

∣∣∣∣ = ∣∣∣∣ ∂ρ(c)

∂(π(0)′, u′)
∂(π(0)′, u′)′

∂(ρ(0)′, u′)

∣∣∣∣
=
p(c)−p(0)∏
i=1

(1 + ui)[
p(0)+i−1

2 ](1− ui)[
p(0)+i

2 ]

∣∣∣∣ ∂ρ(0)

∂π(0)′

∣∣∣∣ ∣∣∣∣ ∂π(0)

∂ρ(0)′

∣∣∣∣
=
p(c)−p(0)∏
i=1

(1 + ui)[
p(0)+i−1

2 ](1− ui)[
p(0)+i

2 ]

A.5 Data Generating Process for the Exogenous Regres-
sors in Section 3.5

We go through the following steps to generate the exogenous regressors used in
Section 3.5:

1. We generate the potential regressors (X ′
is) from the uniform distribution

U [−4, 4].

2. We make the regressors serially correlated with each other. We achieve
this by first making each two neighboring period observations correlated
with each other as follows,

xt,s = st−1xt−1,s + s̄txt,ns, (83)

where xt,ns has no serial correlation and is generated from the i.i.d. uni-

form distribution U[-4,4]. We set st−1 = s′t−1√
s′2t−1+s

′2
t

and s̄t = s′t√
s′2t−1+s

′2
t

.

For s′t−1 and s′t, we generate them from i.i.d.U [−2.5, 2.5]. In doing so, the
correlation matrix for the serially correlated [x1,s, x2,s, . . . , xT,s]′ is

S =



1 s1 · · ·
T−1∏
i=1

si

s1 1 · · ·
T−1∏
i=2

si

s2s1 s2 · · ·
T−1∏
i=3

si

· · · · · · · · · · · ·
T−1∏
i=1

si
T−1∏
i=2

si · · · 1


(84)
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We can see that {xt} generated in such a way is not covariance stationary.
Moreover, for small T 29, the distribution of x′s will change with t. How-
ever, if T is sufficiently large, the final few points of x′s at the end of the
series will approximately follow, due to the central limit theorem, a nor-
mal distribution with the same mean (0) and the same variance (around
5.3) as the uniform distribution30. We just use the final few observations
from the series for our study.

3. We introduce correlation among the regressors by using a linear combina-
tion of those we just made serially correlated.

Xj,c =
K∑
i=1

qj,iXi,nc j = 1, 2, . . . ,K (85)

where Xi,nc denotes the regressor without collinearity and we set qj,i =
q′j,is
KP

i=1
q′2j,i

and q′j,i ∼ i.i.d.U [−2.5, 2.5]. Note that the L2-norm of [qj,1, qj,2, . . . , qj,K ]′

is equal to 1 so that we can preserve the same variance as that from the
uniform distribution we use to generate x at the very beginning. Note that
the correlation coefficient of any two elements of Xi is the same across dif-
ferent individuals and can be calculated as

corr(Xt,k, Xt′,k′) = S(t, t′)
K∑
i=1

qk,iqk′,i t = 1, 2, . . . , T k = 1, 2, . . . ,K.

(86)
where S(t, t′) denote the (t, t′) element in S and K is the potential number
of regressors.

29Here T denotes the sample size of the generated series.
30We choose T to be 100 for the results to be presented in the section so that x′s approxi-

mately converge to a normal distribution.
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