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ABSTRACT 
 

The electrical properties of composites containing antimony tin oxide (ATO) coated 

mica platelets are investigated. High frequency measurement techniques are 

employed to measure properties at spot microwave frequencies and over a broad 

microwave frequency range 100 MHz – 8.5 GHz. A novel cavity resonator 

configuration is developed and constructed to measure samples of arbitrary shape; 

the technique is then extended to measurements with a large ‘split’ present in the 

cavity allowing unprecedented access to TM010 fields and the sample under test. 

Higher order modes (namely the TM210 mode) are used as a reference to refine the 

measurement technique and account for ambient temperature fluctuations. To 

demonstrate the advantages of the split cavity, ATO powder is irradiated in the 

cavity and a change in conductivity is observed in real time as the electrons are 

excited into the conduction band. 

 

Broadband measurements of absorption in composites of transparent conducting 

oxide (TCO) coated particles show that absorption peaks exist in the microwave 

frequency region. When samples are annealed at higher temperatures the frequency 

of the absorption peak increases; corresponding to an increase in electron mobility in 

the TCO layer. When the mobility is increased beyond some critical value, the 

absorption peak begins to decrease in frequency. Electromagnetic modelling of the 

layered particles confirms this behaviour, which has not been predicted or observed 

previously in the literature. 



 



 

The electromagnetic absorption characteristics of composites of small conducting 

particles are investigated. A comprehensive model of absorption mechanisms in 

magnetic and electric fields for a range of particle conductivity and radii is 

developed. Analytic solutions for the electric and magnetic dipole absorption of 

small conducting spheres with isotropic electrical conductivity are derived and 

applied to the specific example of absorption in response to microwave irradiation at 

the ISM (i.e. industrial, scientific and medical) standard frequency of 2.45 GHz. 

Simple principles are thereby presented for the efficient heating of small conducting 

particles in microwave electric and magnetic fields. 
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 Chapter 1 – Introduction  1 

1 INTRODUCTION & THESIS SUMMARY 

 

 

The principal aim of this thesis is the investigation of the electrical properties of 

conducting pigments provided by Merck KGaA. These pigments are generally 

micron-sized mica particles coated with a transparent conducting oxide (TCO) and 

are conventionally dispersed in a polymer matrix at varying volume fractions to 

form composite structures. To measure the electrical properties of composites and 

powder materials is not easy since one cannot simply attach terminals as in the 

measurement of bulk materials. We therefore turn to high frequency techniques, 

which are capable of measuring composites and powders of conducting particles, but 

are also capable of measuring non-conducting particles. 

 

This thesis therefore has three main themes; 1) the development and use of high 

frequency measurement techniques for the application to Merck pigments, 2) the 

investigation of the fundamental electrical properties of TCOs, and 3) the study of 

the complex electrical behaviour of composites. 

 

A thorough exploration of these themes is carried out in a number of permutations. 

Chapter 2 develops and uses high frequency techniques to measure composites of 

TCOs, chapter 3 investigates composites of TCOs theoretically, chapter 4 examines 

electromagnetic absorption in composites of conducting particles for the 

optimization of heating applications and Annex A forms a study of the fundamental 

optical and electrical properties of TCOs and considers the practical application of 

thin-film solar cells.  

 

We now give an overview of each chapter and a summary of the aims and major 

original contributions of the work. 

 

 

Chapter 2: Microwave Cavities for the Measurement of Dielectric Materials 

 

The objective of chapter 2 is to review microwave cavity resonator measurement 
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techniques, to extend the method and exploit these powerful tools to investigate 

Merck pigments and dielectric materials in general. 

 

After a discussion of cavity resonator principles and design methodology, a 

cylindrical cavity is constructed in a novel ‘split’ configuration for use in the TM010 

mode. The TM010 mode forms a highly uniform electric field in the centre of the 

cavity, which minimizes depolarization in cylindrical samples. We demonstrate 

theoretically that for a cylindrical water sample at 2.45GHz, a non-depolarizing 

configuration can increase power dissipation by a factor of 1600 over the 

depolarizing sample. A scheme is set out in which the material properties of 

cylindrical samples can be inferred based upon the frequency shift and bandwidth 

change in the resonant cavity upon sample insertion. A quick and easy calibration 

technique is developed in which a precision engineered vanadium-coated steel 

sphere is inserted into the cavity and from the well-defined dipole moment formed 

by the sphere; calibration values associated with the cavity are obtained. This is an 

innovative approach, and the method becomes invaluable when taking 

measurements at arbitrary split width. 

 

The presence of a split in the cavity in the same plane as the axis of revolution is an 

original concept. Similar approaches have been used in the TE011 mode where the 

split is half way along the length of the cylinder and forms an industrial standard of 

measurement (JIS R 1641 [1]). In this work the TM010 mode is able to survive the 

presence of the axial split because no wall currents traverse the split boundaries; 

wall currents run parallel to the split. We therefore maintain a high Q factor of above 

8000 for the enclosed cavity and importantly, above 7000 even for a split width of 

8mm. 

 

The ability to take measurements at large split widths allows unprecedented access 

to samples in the highly uniform field of the TM010 mode and the simple calibration 

method using metal spheres means that measurements can be taken at arbitrary split 

width. 

 

Measurements of TCO powders are taken at increased split widths and it is found 

that results remain accurate to within 0.5% for a 2mm split and even for widths of 
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8mm are well below 4% compared with results from the enclosed cavity 

configuration (i.e. no split present). 

 

Higher order modes are investigated in the cavity for novel functions in resonant 

perturbation techniques. We consider the TM210 mode as a reference mode to 

complement TM010 measurements. The TM210 mode exists at 5.327 GHz in the 

cavity constructed here and it is shown that the frequency ratio of the two modes is 

fixed by f010 / f210 = 0.468. It is demonstrated experimentally that the TM210 mode is 

unaffected by the presence of any samples inserted axially into the cavity. Crucially, 

we therefore have a means by which we can infer an unperturbed frequency even 

when the sample is in place. There are two major practical implications of this fact; 

firstly that we no longer have to take an unperturbed reference measurement before 

the sample is inserted in order to invert the measurement; and secondly, any shift in 

frequency of this mode is not due to the sample, but is due to the influences of the 

environment. Using this fact we can account for changes in ambient temperature and 

separate out any external effects. We find that we can track temperature changes 

down to mK accuracy. Both of these facts are demonstrated experimentally. 

 

A major advantage of the split cavity is the unprecedented access to the sample 

under test in the uniform field of the TM010 mode. As a demonstration of this, an 

exciting new result is presented in which a TCO powder is stimulated by an 

ultraviolet (UV) lamp. A significant change in conductivity is measured in real time 

as the UV light excites electrons into the conduction band. For powders of antimony 

doped tin oxide, we observe significant responses at UV wavelengths of 254nm and 

365nm. 

 

Summary of major original contributions of chapter 2: 

 

 A novel ‘split’ cavity is presented which gives unprecedented access to a 

sample under test in highly uniform TM010 fields. This is facilitated by a 

dynamic calibration technique allowing measurements to be taken at 

arbitrary split widths. 

 



 Chapter 1 – Introduction  4 

 We present a demonstration of the use of the TM210 mode as a reference 

since it is unaffected by the presence of the sample. This allows 

measurements to be taken without having to remove the sample and 

corrections made for ambient temperature shifts down to mK accuracy. 

 

 Advantages of the split cavity are demonstrated by stimulating a TCO 

powder using an ultraviolet (UV) lamp. A significant change in conductivity 

is measured in real time. For powders of antimony doped tin oxide, we 

observe significant responses at UV wavelengths of 254nm and 365nm. 

 

 

 

Chapter 3: Composites of Conducting Particles and TCOs at Microwave 

Frequencies 

 

The principal objective of Chapter 3 is to develop a comprehensive theoretical 

model of the electrical properties of TCO coated particles at high and low 

concentrations and conductivities. We aim to treat polarization at high and low 

frequencies and describe percolation and relaxation mechanisms in composites 

before verifying our conclusions experimentally.  

 

We begin by reviewing the development of mixing laws, effective medium 

approximations and statistical approaches to the modelling of randomly structured 

media. We highlight the limitations and uncertainties of these approaches. After 

introducing the concept of relaxation in core-shell structured particles we examine 

interpretations in the context of Merck pigments. Electromagnetic modelling based 

upon the polarization of individual particles and using the Clausius Mossotti 

formulation [2] is carried out and modifications to account for internal structure of 

the particles are shown to give illuminating results. 

 

We observe that the conductivity of the conducting layer is proportional to the 

frequency of maximum absorption in composites. We also observe that as the ratio 

of the volumes of inner core the entire particle increases (i.e. the inner core increases 
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in size), the absorption peak is reduced in frequency. These behaviours are known in 

the literature and the frequency of the absorption peak is considered to be 

proportional to the DC conductivity of homogeneous and core-shell structures [3,4]. 

 

Time domain analysis of the Lorentz model of an oscillating system consolidates our 

understanding of the mechanisms of dielectric relaxation and percolation. To 

investigate the alleged ‘universal’ behaviour of composites at the percolation 

threshold, we first look at random resistor-capacitor networks (RRCN). RRCNs are 

studied by solving large networks and analyzing the frequency dependence in the so-

called ‘emergent’ power law region. Results from the literature are reproduced 

which show that the gradient of the fractional power law region of the frequency 

dependent conductivity corresponds to the proportion of capacitive elements in the 

network. These findings are supported in the literature by experimental results for 

the case of a porous lead zirconium titanate (PZT) pellet impregnated with water [5]. 

We take broadband conductivity measurements of composites of TCO coated 

particles and find that the power law behaviour prediction consistently 

underestimates the proportion of the capacitive phase in the mixture. Since the 

RRCN model is only applicable if a scaling behaviour is satisfied in which the 

aspect ratio of capacitive and resistive elements is equal we conclude that it is not a 

suitable approach to modelling Merck TCO composites. The model would work for 

a cubic arrangement of alternatively capacitive and resistive cubes, which the PZT 

case is clearly closer to than composites of Merck pigments. 

 

The merits of measuring composites of conducting particle at high frequencies are 

shown by a direct comparison of sheet resistance measurements at DC and 2.8GHz 

at a range of particle volume concentrations. The DC measurements show a clear 

first order phase transition to the conducting state as the percolation threshold is 

reached, but the high frequency measurements demonstrate no such transition. 

Indeed, the percolation threshold remains ‘invisible’ to the microwave measurement 

technique, which simply continues to measure the quantity of conducting particle 

present. The question of over what frequency range this is valid is investigated by 

taking broadband measurements of composites through the percolation threshold. A 

relaxation peak of maximum absorption is observed for non-percolating samples, but 

as the percolation threshold is reached, the ‘lower leg’ of the absorption peak rises. 
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This low frequency dispersion shows that the effect of percolation is visible below 

the characteristic relaxation frequency, but above this frequency the absorption is 

unaffected. High frequency measurements are invariant through the percolation 

threshold above the relaxation frequency. 

 

A comprehensive electromagnetic model is developed of the polarizing, layered 

ellipsoidal particle used in Merck composites. The model is based upon the Clausius 

Mossotti model used earlier in the chapter, but modifying the polarisability to 

account for the layered oblate spheroidal structure allows us to relate directly to the 

behaviour of Merck composites. 

 

To investigate the effects of carrier mobility in the TCO layer, Merck pigment 

samples are annealed at increasing temperatures corresponding to increasing 

electron mobility values. Upon broad band measurement (100MHz-8.5GHz) we 

observe that the absorption peaks previously observed increase in frequency 

corresponding to the increase in mobility. But importantly, as the mobility is 

increased past some critical value, the frequency of the absorption peak is 

decreased. This result is contrary to well established theory of absorption in 

conducting particles since absorption peak frequency is generally considered to be 

proportional to DC conductivity [3,4]. 

 

To explain this behaviour we use the simple Drude model of the degenerate free 

electron gas to model a frequency dependent imaginary permittivity in the TCO 

layer. We find that for an increasing value of mobility, there is indeed a critical point 

at which increasing the mobility further (and therefore the DC conductivity) causes 

the frequency of the absorption peak to be reduced. This result has not previously 

been predicted or observed in the literature. 

 

The theoretical prediction of this behaviour employs well established theory to yield 

a surprising result and is a convincing argument for the existence of this 

phenomenon, but to validate the experimental behaviour observed in these samples 

future work must eliminate the possibility of contributions from material 

degradation. 
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Summary of major original contributions of chapter 3: 

 

 Broadband conductivity measurements of composites of TCO coated 

particles show that the power law behaviour prediction consistently 

underestimates the proportion of the capacitive phase in the mixture. We 

conclude that the necessary scaling behaviour exhibited in random resistor-

capacitor networks and in the experimental case of PZT [5] is not satisfied by 

Merck TCO composites 

 

 We demonstrate the measurement of composite materials through the 

percolation threshold and confirm that the percolation threshold remains 

‘invisible’ to the microwave measurement technique.  

 

 We present broadband measurements of the transition though the percolation 

threshold in which the development of low frequency dispersion is clearly 

observed. This result confirms that high frequency measurements are 

invariant through the percolation threshold above the relaxation frequency. 

 

 Broadband measurements are presented in which the absorption peak 

increases in frequency with increasing mobility, but begins to decrease when 

some critical value of mobility is reached. Modelling of the system confirms 

the result which is contrary to well established theory of absorption in 

conducting particles. This result has not previously been predicted or 

observed in the literature. 

 

 

 

Chapter 4: Microwave Absorption in Composites of Small Conducting Particles 

 

The objective of chapter 4 is to investigate the electromagnetic absorption 

characteristics of composites of small conducting particles. We aim to develop a 

comprehensive model of absorption mechanisms in magnetic and electric fields for a 

range of particle conductivity and radii. A direct comparison of electric and 
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magnetic absorption will then expose the conditions under which each is preferable. 

 

Analytic solutions for the electric and magnetic dipole absorption of small 

conducting spheres (i.e. of particle radii much less than the wavelength of the 

incident radiation) with isotropic electrical conductivity are developed and applied 

to the specific example of absorption in response to microwave irradiation, at the 

ISM (i.e. industrial, scientific and medical) standard frequency of 2.45 GHz. 

 

Knowledge of the absorption characteristics is increasingly important in many areas 

of scientific research and industry. Small conducting particles often feature as 

additives to act as catalysts or to simply augment the microwave heating 

characteristics of a material, though applications are wide ranging and include the 

enhancement of chemical and biological reactions [6], microwave absorbing screens 

and coatings [7], full sintering of metal particles [8] and targeted stimulus of 

biological functions [9].  

 

By consideration of a full electromagnetic model of dipole absorption in conducting 

particles we account for the relationship of electric and magnetic dipole heating to 

the particle size, conductivity and magnetic properties. We establish the following 

simple principles for the optimisation of microwave absorption in conducting 

particles: 

 

1) Magnetic absorption dominates electric absorption over a wide range 

of particle radii. 

2) Optimum magnetic absorption is set by the ratio of mean particle 

radius a to the skin depth  (specifically, by the condition  41.2a . 

Computational studies in the literature estimate this value as a ≈ 2.5δ 

[10]). 

3) For weakly conducting samples, electric dipole absorption dominates, 

and is maximised when the conductivity is approximately 

4.03 0  S/m, independent of particle radius. 

4) The absorption of sub-micron particles is small in both magnetic and 

electric fields. However, if the particles are magnetic, then magnetic 
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dipole losses are dramatically enhanced compared to their values for 

non-magnetic particles below the Curie point. 

 

Summary of major original contributions of chapter 4: 

 

 Optimization of electromagnetic absorption may be achieved by following 

the original principles developed here. For instance, since for non-magnetic 

particles, optimum absorption is achieved when a = 2.41 this means that for 

particles of any conductivity, optimised magnetic absorption (and hence 

microwave heating by magnetic induction) can be achieved by simple 

selection of the mean particle size. 

 

 Conventional approaches to explaining absorption by conducting particles by 

microwaves use effective medium approximations and statistical approaches 

[11]. In this work, by considering absorption in individual particles we have 

highlighted guiding principles for the efficient heating of conducting 

particles, which are supported by results in the literature [12]. 

 

 

Annex A: Transparent Conducting Oxides in Thin-Film Solar Cells 

 

Additional to the main body of this thesis, Annex A conducts a theoretical 

investigation of the origin of the mutual properties of optical transparency and 

electrical conductivity in TCOs. We aim to develop a model of the fundamental 

properties of carrier concentration and carrier mobility and apply this to the practical 

example of the performance of TCOs in thin-film solar cells. 

 

High optical transparency and high electrical conductivity are the key performance 

indicators of TCOs and nowhere is this more keenly felt than in thin-film solar cells. 

In TCOs, above the Mott Insulator-Conductor Transition, one may increase dopant 

levels in order to increase the conductivity (though this is may be offset by an 

associated reduction in mobility). However, as the carrier density is increased, so the 

optical transparency is diminished. We therefore have a trade-off between 

transparency and conductivity as a function of carrier density. 
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We must therefore look towards higher mobilities in order to maximize conductivity 

and transparency. We propose that in any given TCO system, higher mobilities may 

be reached by moving closer to the Mott critical density [13]. 

 

We model the optical and electrical power transmission through TCO layers in thin-

film solar cells as a function of both the electron carrier density, n, and its mobility, 

μ. The electrical and optical properties of the TCO layer are described by the simple 

Drude model of the degenerate free electron gas and the concomitant 

electromagnetic absorption due to skin-depth effects is calculated. 

 

An empirical model of ionized impurity scattering in indium tin oxide (ITO) at high 

carrier densities [14] allows direct comparison of the μ-n relationship in real TCO 

layers to the total power absorption in such layers in thin-film solar devices. We 

determine that decreasing the electron density from 2.6 × 10
21

 cm
-3

 to 2 × 10
21

 cm
-3

 

in such an ITO layer above the Mott critical density can decrease the total power 

absorption in the layer by a large amount (around 8% relative to the minimum 

theoretical absorption). 

 

Summary of major original contributions of Annex A: 

 

 This original work was presented in reference [Error! Bookmark not 

defined.]. We have proposed that producers of TCOs must search closer to 

the Mott conductor-insulator transition for high-performance materials, 

where the low carrier density but high mobility is well suited to use in thin-

film solar devices. 

 

 We model the optical and electrical power transmission through TCO layers 

in thin-film solar cells as a function of both the electron carrier density, n, 

and its mobility, μ. Using an empirical model of real ITO we determine that 

decreasing the electron density from 2.6 × 10
21

 cm
-3

 to 2 × 10
21

 cm
-3

 in such 

an ITO layer above the Mott critical density can decrease the total power 

absorption in the layer by a large amount (around 8% relative to the 
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minimum theoretical absorption). This highly significant result will allow 

optimization of the performance of a given TCO material in thin-film solar 

cells. 
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2 MICROWAVE CAVITIES FOR THE 

MEASUREMENT OF DIELECTRIC 

MATERIALS 

 

2.1   INTRODUCTION 

 

Microwave resonators provide robust and versatile methods for non-contact and 

non-destructive measurement of complex materials. Resonators can be constructed 

at relatively low cost and can yield real-time dynamic measurements of the electrical 

properties of substances. Resonators take many forms, each of which suited to 

different tasks of measurement, but all using the same basic principle of extracting 

information about a sample by the way in which it interacts with the electromagnetic 

field and how it perturbs the resonance. A resonant measurement technique which is 

particularly accommodating for samples of arbitrary shape is the cavity perturbation 

method. This method allows samples to be placed directly into the centre of the 

cavity, which in the TM010 mode is a region of highly uniform electric field. In this 

way it is possible to isolate the response due to electric field and measure the 

electrical properties of substances such as dielectric powders. 

 

After a thorough examination of the theory of cavity resonators and the state of the 

art, this chapter goes on to present a design for a cavity resonator optimised for the 

measurement of dielectric powders, and with the potential to measure other samples 

of arbitrary shape. Following this, a novel configuration is developed in which the 

TM010 mode wall currents traverse no boundaries and a ‘split’ may be introduced to 

give further access to the sample under test. Such a split is highly useful, since 

extensive access allows parallel monitoring or stimulus of the sample under test by 

other means. This may mean stimulating the sample by heat, or light; or monitoring 

the progress of a chemical reaction in parallel using optical as well as electrical 

means. 

 

The split cavity is investigated at large split widths and its characteristics and 
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potential are discussed. The method is shown to be a dynamic one with easy 

calibration of the cavity at arbitrary split widths using metal spheres. The cavity 

maintains a high Q factor; above 7000 even for split widths of 8mm. Measurements 

of a cylindrical dielectric sample are carried out at increasing split widths to test the 

robustness of the method. The method is found to work well, but the calibration is 

not universal for cylindrical samples. This is because the electric fields are no longer 

uniform at the split for large widths; furthermore this effect is non-linear since the 

presence of a dielectric sample further distorts the field. 

 

Higher order modes in the cavity are investigated and once more their characteristics 

and potential are discussed. The TM210 mode in particular is marked as a useful 

mode with interesting applications as a reference, since it is unperturbed by the 

presence of dielectric samples and maintains a constant relationship with the TM010 

mode when both are unperturbed. This means that an unperturbed frequency for the 

TM010 mode can be inferred from the TM210 mode even when a sample is in place. 

Furthermore, the TM210 mode may be used to track temperature shifts in the cavity 

to a high degree of accuracy, and the ability of the resonator to resolve mK shifts in 

temperature is demonstrated. The cavity is measured over a period of 12 hours and 

as the ambient temperature of the laboratory fluctuates and the ability of higher 

order modes to track the TM010 mode is assessed. 

 

Finally, the split cavity is exploited to measure transparent conducting oxide (TCO) 

samples under ultraviolet irradiation. A change in conductivity of the TCO is 

observed as electrons are excited into the conduction band and the TM010 mode is 

perturbed. 
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2.2 CAVITY RESONATORS: 

BACKGROUND 

2.2.1  Cavity Resonator Fields 

 

The cavity resonator is a useful tool for accurate measurements of microwave 

dielectric properties. Figure 2.0a) shows the simple cylindrical form of the TM010 

cavity into which samples are inserted axially and 2.0b) shows the split cavity (with 

radius 4.6cm and height 4cm) developed in this work.  

 

 

Figure 2.0 – a) The cylindrical cavity resonator (samples are inserted axially) 

and b) the split configuration realised in this work.  

 

This section aims to provide some of the background theory of the electromagnetic 

fields and pertinent characteristics of a cylindrical cavity resonator (for a full 

derivation of cavity fields see [15]). Starting with Maxwell’s equations, the fields of 

a travelling wave can be established in cylindrical coordinates. Necessary boundary 

conditions are then enforced for propagation in a circular waveguide. Finally, 
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conditions for resonance are imposed by terminating the circular waveguide with 

conducting end-walls and an expression for resonant frequency is presented. 

 

In a waveguide free of sources, Maxwell’s equations may be written as 

HjE   
(1) 

 

 

EjH   (2) 

 

where E is the vector electric field, H is the vector magnetic field, ω is the angular 

frequency, μ is the permeability and ε is the permittivity. 

 

 

Figure 2.1 – Cylindrical coordinate system 

 

Solving for the curl of E and H in cylindrical coordinates we can then resolve for the 

transverse fields in terms of the z component. Since for TM modes Hz = 0, we solve 

the wave equation for Ez 

022  zz EkE  (3) 

      

where 
k

. 

 

We find a solution of the form 
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         cnz kJnBnAe cossin, 
 (4) 

 

Where A and B are arbitrary amplitude constants and 
222  kkc . Jn denotes a 

Bessel function of the first kind and the integer n is introduced since the solution to 

ez must be periodic in φ. 

 

The circular component of the E field in the TM mode is sinusoidal in form; 

however, the component radially outwards takes the form of a Bessel function. 

Boundary conditions dictate that at ρ = a, the electric field component Ez must equal 

zero. So for   0, zE  at a  (where a is cavity radius), we must have 

  0akJ cn , meaning a

p
k nm

c 
, where pnm is the mth root of Jn(x). The propagation 

constant of the TMnm mode is now 
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(5) 

 

The above equations describe the electromagnetic fields in a cylindrical waveguide 

and therefore satisfy the necessary boundary conditions at the conducting walls 

where a . To apply these equations to the cylindrical cavity resonator we apply 

the final boundary conditions that Eφ = 0 and Eρ = 0 at the end walls where z = 0 

and z = d (where d is cavity height). To satisfy these conditions we have  
 ldnm 

  

for  l = 1,2,3,…  implying that the length of the waveguide must be an integer 

number of half-wavelengths. 

 

From equation (5) 
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The resonant frequency of the cavity may now be defined as  
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(6) 

 

 

2.2.2 Finite Element Modelling 

 

Finite Element Modelling (FEM) is a useful tool for modelling field distributions in 

complex structures. Discretising the spatial dimensions of the system to finite 

elements allows us to solve field equations across the entire domain subject to 

certain boundary conditions. A comprehensive study of the method can be found in 

[16]. FEM lends itself to resonant electromagnetic problems of this nature and 

provides a useful means of optimising the design of the cavity resonator, which can 

be validated analytically. The FEM package COMSOL will be used in this work. 

 

The model is constructed in two dimensions and given an axial symmetry such that 

the model domain describes the cylinder of the cavity. Modelling in two dimensions 

will improve the accuracy of the model, and exploits the symmetry of the problem. 

For structures without such symmetry, 3D, more complex models are required at a 

cost of higher computational demand and lower mesh resolution. The governing 

electromagnetic equations are specified in the transverse magnetic (TM) waves 

mode of the COMSOL RF-module and are based upon the following wave equation 

[17],  
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(7) 

 

which can be simplified to a scalar equation for TM waves since the magnetic fields 

have only a φ component. 

 

The model is discretised by creating a mesh, which allocates points in space and 

connects them by forming triangular or quadrilateral elements (in two dimensions) 

as specified by the user. The accuracy of the results produced in FEM can be 
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directly associated with the quality of the mesh that the problem is solved on. 

Meshing algorithms can have difficulties meshing complex structures and sharp 

edges which can cause singularities in the solution. Also, to mesh complex 

structures effectively requires finer and more numerous elements (especially in three 

dimensions) making the solution more computationally demanding. The result is that 

for accuracy in the solution the structure of the model must be as simple as possible 

with sufficiently fine elements around regions of high field variation. For these 

reasons, where possible, the cavity model is a two dimensional mesh that is extruded 

about its axis for rotational symmetry. In this way we ensure the most accurate 

solution for this already relatively simple geometry. 

 

Figure 2.2 – Axisymmetric mesh of cavity structure (axis of symmetry to the 

left) 

 

The domain within the cavity is set to be air (εr = 1) and the boundary condition 

0En  is enforced on the conducting walls of the cavity such that no electric field 

exists parallel to the surface.  

 

With the structure, mesh and physics of the model now defined, we turn to solving 

the problem. In contrast to the analytical approach, where modes of resonance are 

defined by integer multiples of half-wavelengths and roots of Bessel functions, the 

FEM approach solves the governing electromagnetic equations for a number of 

eigenvalues given by   j , where the imaginary part ω represents the 

eigenfrequency and the real part δ represents the damping factor. The damping 
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factor is directly related to the quality factor by Q = ω / δ, and so for highly damped 

systems, the Q factor is low. The desired mode of resonance will reside at one of the 

resulting eigenfrequencies. The solver used is the direct linear system solver 

(UMFPACK). 

 

For initial dimensions of d = 4cm and a = 5cm we obtain an eigenfrequency of 

2.294851 GHz and the following TM010 electric field distribution, where red 

indicates high field strength.  

 

 

Figure 2.3 – Normalised TM010 electric field distribution with high field 

strength (red) in centre 

 

 

2.2.3 Cavity Resonator Analysis 

 

The cavity resonator may be represented as an impedance to which electromagnetic 

energy is coupled either capacitively (to the electric field by an open circuit 

transmission line) or inductively (to the magnetic field by a short circuit 

transmission line). Figure 2.4Figure 2.4  – Equivalent circuit for an inductively 

coupled resonator. m1 and m2 are mutual inductances and Z0 is the characteristic 

impedance of the coupling lines. shows the equivalent circuit for an inductively 

coupled resonator. In practice, coupling loops are used. Their mutual inductance is 

determined by geometrical factors alone. 
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Figure 2.4  – Equivalent circuit for an inductively coupled resonator. m1 and m2 

are mutual inductances and Z0 is the characteristic impedance of the coupling 

lines. 

 

A resonant system is defined by its resonant frequency and bandwidth (the width of 

the frequency band at the half-power point). The quality factor, or Q factor, is a 

measure of the ‘sharpness’ of the resonance, and is related to the bandwidth BW by 

Q = f / BW, where f is the frequency of resonance. If the resonator impedance Z is 

modelled as a series LRC circuit, we may exploit transfer matrices to determine a 

transfer function for the system in the high QU limit (where QU is the unloaded 

Quality factor, which describes the resonator alone and does not include the loading 

effects of the coupling circuit). For the voltage transmission coefficient we have [18] 
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where g1 and g2 are the dimensionless coupling coefficients and f0 is the resonant 

frequency. g1 and g2 are defined by 
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where Z0 is the characteristic impedance of the coupling lines (usually 50Ω). 

 

For the power transmission coefficient, we take 
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where QL is the loaded quality factor, which accounts for the loading effect of the 

coupling circuit. 

 

The resonance power transmission P(f) described above forms a Lorentzian 

lineshape. Fitting the resonant peak to the Lorentzian form allows us to extract 

parameters such as resonant frequency f0 and loaded Quality factor QL (which may 

then be unloaded to remove the effects of coupling using equation (8). These 

parameters are then used to measure materials by perturbation analysis, which is 

discussed further in section 2.3.3. 

 

 

2.2.4 Cavity Design Considerations 

 

Care taken during the design of a resonant cavity can help to ensure its effective 

operation. The immediate concerns are size and resonant frequency, but as we shall 

see in this section many more subtleties are pivotal in achieving optimum 

performance and ensuring that the cavity is fit for purpose. 
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The cavity is designed to operate in the TM010 mode, though subsequently we may 

exploit higher order modes. The TM010 mode will create a uniform electric field in 

the centre of the cavity into which a sample can be inserted to measure the electrical 

properties. This mode is ideal for measuring electrical properties in the region of the 

cavity axis; however we must be aware of other modes operating in the cavity and 

the effect of the presence of these modes. 

 

The method of interpreting measurements from resonance involves measuring the 

frequency shift and bandwidth change of the perturbed mode. Analysis of the 

resonant circuit shows that this resonance forms a Lorentzian lineshape in the 

frequency domain, but the presence of other modes in the vicinity of the mode being 

measured will distort the lineshape from the ideal Lorentzian causing any 

measurements to be inaccurate. For this reason, we require the TM010 mode to be 

isolated from other frequencies. This must be taken into account when specifying the 

dimensions of the cavity for the required resonant frequency. 

 

Samples are to be inserted into the cavity along the axis at the point of high field 

intensity. It is therefore necessary to have holes in the top and bottom plates wide 

enough to accommodate sample tubes, but small enough to avoid disturbing the 

electromagnetic fields too much. The holes will distort the uniform electric fields in 

the centre of the cavity, though this effect can be offset by increasing the height of 

the cavity. The distortion effect is then proportionally reduced when compared to the 

length of sample placed in the electric field. We note that extending the cavity height 

will change the resonant frequency, but also may introduce more resonant modes 

into the frequency region of the TM010 mode. Given that a number of modes will be 

present in the cavity, the design must allow us to couple directly to the appropriate 

fields i.e. the fields that contribute to the electric field in which measurement takes 

place. 

 

Having developed an analytical method and a FEM method for analysis of the 

resonant cavity it is now possible to investigate some of the issues of design that 

were discussed in the previous section. Optimisation of the design at this stage will 

prevent problems with the cavity during operation and ensure that maximum 

efficiency is achieved. 
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When determining the cavity dimensions for operation at a desired frequency, it is 

possible to produce a mode chart which details all possible modes and their 

frequencies. 

 

Since for TM modes  
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the first eleven modes of a mode chart for a cylindrical cavity resonator chart are as 

follows: 

 

Figure 2.5 – Mode chart for cylindrical cavity resonator 

 

The ordinate axis (af)
2
, of the mode chart is normalised with the value of the radius a 
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and so the graph becomes invariant as dimensions are scaled. The mode chart is 

therefore extremely useful for seeing which modes are in operation for any given 

cavity size.  Note that the horizontal lines describe modes which are affected only by 

the cavity radius and not by the cavity height; these include all TMmn0 modes. 

 

Taking the cavity described in previous sections as an example we see that for d = 

4cm and a = 4.6cm, (a/d)
2
 = 1.3225. The mode chart shows that the TM010 mode 

which is required for measurement is clear of any other interfering modes. The chart 

shows that the TM010 mode is clear of other frequencies by over 1 GHz as 

demonstrated in the following table. In the next section (2.3), a cylindrical cavity is 

constructed with radius a = 4.6cm and height d = 4cm, such that the TM010 mode is 

clear of other modes and suitable for the high frequency measurements subsequently 

described in this work. 
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Mode f GHz  

TM010 2.4946 

TM110 3.9748 

TE111 4.2060 

TM011 4.5019 

TE211 4.9070 

TM210 5.3274 

TE011 5.4629 

TM111 5.4629 

TM020 5.7258 

TE112 7.7344 

TM012 7.8993 

TM030 8.9766 

 

Table 1 – Resonant modes and corresponding frequencies for cavity with for d 

= 4cm and a = 4.6cm. 

 

Note that though a cavity of these dimensions is clear of modes conflicting with 

TM010, if d increases relative to a (or if a decreases relative to d), the cavity may 

enter a region affected by unwanted modes. This becomes important for high 

accuracy measurements in the TM010 mode, but we shall see that in order to exploit 

higher order modes, distortion by other local modes is a small sacrifice for the 

increased functionality. 

 

The distortion of the uniform electric fields at the centre of the cavity as mentioned 

above is remedied by the relatively large height of the resonator compared to the 

small aperture through which samples will be inserted. This aperture is expected to 

be no more than 5mm in diameter.
 

 

With some room for manoeuvre we are able to tune the cavity to bring it into line 

with commonly used microwave frequencies. With a cavity height d = 4cm it is 

found that for TM010 resonance at 2.45GHz, the cavity radius must be 4.68cm. 
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Using the TM010 mode for dielectric measurement has major advantages such as 

minimal sample depolarisation high electric and magnetic field separation and high 

field uniformity along the axis. Though the cavity described here is designed to 

isolate the TM010 mode and, for high accuracy, keep the resonant peak free from the 

distorting effect of other modes, in subsequent sections higher order modes will be 

used to provide further data. Indeed, other modes are used to provide temperature 

data, multiple frequency dielectric data and even reference points for automatic 

calibration using the TM210 mode. 

 

2.2.5 An abridged historical development of the Cavity Resonator 

 

Resonant perturbation techniques have been used for many years. In 1945, Maclean 

et al. published a paper describing the reactance theorem for a resonator [19], which 

was closely followed by methods for cavity perturbation measurements [20] 

following the approach of Works, Dakin and Boggs, which were developed in 

parallel with Horner et al. [21,22]. In subsequent years, the method was extended 

and refined, for example, to include correction factors for the presence of sample 

insertion holes [23] and microwave perturbation methods became prolific and 

versatile techniques used in many areas of scientific enquiry. Early examples include 

the measurement of electron density in plasma columns [24,25]. Precise analytical 

field solutions were developed for TM010 cavities with cylindrical samples inserted 

along the axis. Transcendental equations were also developed to include the effect of 

the presence of sample-holding tubes [26]. The work of Kobayashi [27], Krupka 

[28], and Kajfez [29] continued to provide innovative approaches to measurement 

using this versatile technique, even forgoing the requirement to have full resonant 

structures by using quarter-cut image resonators [30] and half-cut image resonators 

[31]. 

 

In 1988, Kent et al. [32] set out an approach using a split resonant cavity to measure 

the complex permittivity of dielectric plates non-destructively. Using the TE011 

mode, the cylindrical cavity was split half way along the length of the cylinder and 

dielectric plates were inserted. As the method was developed, the highly complex 

fringing fields in this configuration were solved rigorously using the Ritz-Galerkin 
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method since analytical modelling of such evanescent fields is notoriously difficult. 

This proved to be a particularly useful technique and became a Japanese Industrial 

Standard (JIS R 1641) for the measurement of dielectric plates [27]. 

 

The benchmark was set in microwave cavity perturbation techniques with the 

publication in 1993 of three papers by Klein et al. [33,34,35]. These papers set out 

the principles, experimental scheme and applications of the techniques described and 

formed the basis for further development in the area of resonant microwave 

measurements. Today, the possibilities for applications of these versatile techniques 

seem countless. Recent publications continue to increase the accuracy of such 

measurements and examine novel techniques, for example employing higher-order 

modes [36], using microwave cavity technologies in the processing of materials [37] 

and even for measurement of the quantum hall effect [38]. 

 

2.3 The TM010 Split Cavity 

 

In this section we develop a split TM010 cavity resonator. In contrast to the split 

cavity encountered in the previous section, which forms Japanese Industrial 

Standard, JIS-R-1641 for measurement of dielectric plates, the TM010 split cavity has 

the split in a different plane. The TE011 mode cavity has a split in the plane half way 

along, and perpendicular to the length of the cylinder. The TM010 cavity split is in 

the same plane as the sample insertion hole axis and is shown in Figure 2.9. A 

comprehensive discussion of the merits of such a configuration is deferred to 

subsequent sections, but accurate measurements may be taken with a large gap 

present. This benefit is utilised in the TE011 mode to measure plate samples, but 

using the TM010 mode we may measure samples of arbitrary shape in the highly 

uniform electric field, with unprecedented access to the sample under test. 

 

A cylindrical cavity operating in the TM010 mode provides a highly uniform electric 

field at its centre. The radial electric field forms a Bessel function of the first kind 

and a sample can be inserted axially into the point of highest field strength. The 

frequency of operation of this mode is given by 
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where c is the speed of light in free space, p01 = 2.4048 is the first root of the zeroth 

order Bessel function of the first kind J0(x) and a is the radius of the cavity. Note 

that the frequency of the resonant mode is determined by the radius of the cavity 

alone, since there are no variations of either the electric or magnetic fields along the 

z axis in this mode. 

 

 

Figure 2.6 - a) Schematic of cavity fields in the TM010 mode showing the electric 

(cylinder) and transverse magnetic (toroid) fields. b) Cylindrical coordinate 

system for the cavity resonator. 

 

The length of the cavity does not affect the frequency of resonance for this mode, 

but a longer cavity leads to mode degeneracy, which cause uncertainties in 

measurements. For the TM010 mode, the highly uniform electric field in the centre of 

the cavity and the axial insertion of the sample provide a configuration that may be 

considered to be in the quasi-static regime, vastly simplifying the analysis and 

leading to a more robust experimental arrangement. As will be seen in subsequent 

sections, the maximum Q for any of the TM0n0 modes occurs when the cavity length 

d equals the radius a. 
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2.3.1 Sample depolarization 

 

In a cavity perturbation measurement using the TM010 mode, the inserted sample 

should be parallel to the E-field to avoid depolarization. The sample may then be a 

long, thin cylindrical sample, or a thin flat sample, both inserted along the axis. 

Indeed, as long as the sample passes through the cavity completely, and the sample 

volume is known, the (uniform) cross-section may be arbitrary. Since the parallel 

electric field is continuous at a material boundary, this configuration exhibits the 

smallest amount of sample depolarisation and so leads to the maximum attainable 

electric dipole moment of the sample. This is necessary for the sample to provide the 

maximum possible shift in resonant frequency and decrease in Q factor for the 

measurement of its complex permittivity using the cavity perturbation technique. 

This behaviour is easily illustrated by calculating the power dissipated in a 

cylindrical sample of water at 2.45 GHz (the frequency of microwave ovens), firstly 

parallel to the electric field, then perpendicular to the field. 

 

For a long, thin sample parallel to the E-field as in Figure 2.7a), the internal field is 

roughly equal to the applied field, E ≈ E0 

   

Figure 2.7 – a) Cylindrical sample in parallel, non-depolarising configuration, 

and b) Cylindrical sample in perpendicular, depolarising configuration. 

 

For the power dissipated in the sample with parallel configuration we have 
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where ε0 is the permittivity of free space, ε” is the imaginary permittivity of the 

sample, ω is the angular frequency of the applied electric field and Vs is the volume 

of the sample. 

 

In a dielectric, permittivity is a measure of the polarisation of the sample to an 

incident electric field. This is a mechanism of energy storage, but in an oscillating 

electric field the losses incurred may be quantified by an imaginary permittivity. The 

complex permittivity of a sample therefore gives details of energy storage (real part 

ε’) and loss (imaginary part ε”). We have a complex permittivity, ε* = ε’ – j ε”, the 

imaginary part of which quantifies the loss mechanisms present and may be used to 

determine power dissipation (i.e. heating) in the sample. 

 

For a sample which is perpendicular to the applied field as in Figure 2.7b), the 

internal field is reduced due to depolarisation giving [39] 
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and for the power dissipated in the sample with perpendicular configuration we have 
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Since water has a complex permittivity ε* ≈ 79.9 – j9.2 at 2.45 GHz [40,41], the 

power dissipated in the same water sample in the parallel configuration is larger by a 

factor of 1660 than in the perpendicular configuration. 

 

Depolarisation is often overlooked when exciting samples at microwave frequencies 

and since many cavities used to deliver electromagnetic energy do not have simple 

field distributions, depolarisation is inevitable. In this work, the effects of 

depolarisation are minimized in the TM010 mode and the Split Post Dielectric 

Resonator (described in the subsequent chapter), which has a circularly polarised, 

non-depolarising E-field for sheet samples. 
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2.3.2 Cavity construction 

 

Resonant techniques are most often used for measurement of medium to low loss 

samples. However, by reducing sample size it is possible to measure high loss 

samples effectively. A high quality factor and large dynamic range are necessary in 

order to extend the range of the cavity to samples with large losses. In search of a 

high Q-factor, we must account for the losses in the cavity. When the sample is 

inserted, the loaded Q-factor has contributions from other sources of loss such as 

resistive losses in the cavity walls and coupling losses. The contributing Q-factors 

are related as follows: 

 

samplecouplingresistiveL QQQQ

1111
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(10) 

 

 

Coupling losses can be accounted for by measuring the cavity insertion loss, but 

resistive losses in the cavity walls must be minimised to achieve high Q. The walls 

must therefore be made of a highly conducting metal. Difficulties arise in 

construction when the mode of interest causes current flow over a join in the cavity 

walls, which can cause dramatic losses and a large reduction in Q. In the TM010 

mode (and TM0n0 modes in general) the surface current flow is vertical (i.e. along 

the z axis) in the curved side-wall and radial on each of the two flat end-plates. A 

conventional cavity construction would consist of a hollow cylinder with two end-

plates, but in the TM0n0 mode this yields current flow across the metal joins, with a 

possible suppression of Q factor. Attempts have been made to minimise losses from 

these boundaries, and such methods have included use of the TM020 mode, with the 

break in the cavity walls positioned at the H-field null point, where no currents flow 

on the metal surface [42]. In this work, the novel construction shown in Figure 2.9 

results in surface current flow parallel to any joins preserving a high Q (here above 

8000), but importantly the split configuration permits the continued use of TM0n0 

modes even when the gap, S, becomes large. In subsequent sections it will be shown 

that for splits of up to 8mm, the Q factor remains high enough (>7000) to take 

measurements with less than 3.5% error based upon conventional measurements 
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with no gap. This enables unprecedented access to samples under test in a highly 

uniform TM010 E-field, offering a simple method to combine other complementary 

measurement techniques or for stimulus by light or heat. 

 

For an operating frequency of 2.5GHz, we have a = 4.6cm. This is chosen (as 

opposed to exactly 2.45 GHz) since the dielectric loading of the sample reduces the 

frequency slightly, so that the measurement is taken closer to 2.45 GHz. The height 

of the cavity, d, is such that the uniformity of the E-field is not compromised by the 

insertion hole and mode degeneracy is avoided by limiting d. The dimensions of the 

cavity also influence the Q-factor of the resonator. For resistive losses in the cavity 

walls 

 


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S
S

V
resistive

dSHR

dVH
Q

2

2

0

 

(11) 

 

where V denotes integration over the entire volume for energy stored in the cavity 

and S denotes integration over the surfaces of resistance Rs, for power dissipated in 

the walls and end-plates. Analytic integration of equation (11) for the purely 

azimuthal magnetic field present within any of the TM0n0 modes yields 

 

da

a
Qresistive

/1

/





 (12) 

  

where δ is the classical skin depth in the metal cavity walls at the resonant 

frequency. 

 

Using equations (9) and (12), for fixed length d the maximum Q is attained 

when a =d, giving Qmax = a/2δ. This is lower than the Q produced by some other 

modes (e.g. TE011 in particular), but this is not a major sacrifice given the highly 

uniform axial electric field generated. Figure 2.8 shows the effect of varying the 

radius and length of the cavity upon the Q-factor in the TM010 mode. The power 

dissipation ratio is linear since with increasing a, the ratio of end plate area to side 

wall area increases as a
2
/a. For increasing length, the diminishing contribution from 

end-plate loss causes Q to plateau.  
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Figure 2.8 – Theoretical Quality factor (circles) and power dissipation ratio 

(squares) for a) increasing cavity radius and b) increasing cavity length. For an 

aluminium wall resistivity of 2.8×10
-8

 Ωm. 
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Figure 2.9 – a) Half of cavity construction formed by one aluminium block. In 

this configuration the wall currents avoid traversing any lossy boundaries. b) 

Plan view of cavity with cylindrical sample inserted axially. c) Transparent 

schematic of complete split cavity with split size S, and cylindrical sample 

inserted axially. 

 

The cavity is constructed from two identical aluminium blocks. Into each is 

machined a half-cylinder that provides an uninterrupted surface for current-flow. A 

cutter program developed using a Delcam machining package is used to mill the 
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half-cylinder from each block. Use of a 5mm Ball Nose cutter enables milling 

without creating any discontinuities in the cavity walls. The resulting cavity height is 

4cm and the radius is 4.6cm. Capacitive coupling is realised using pin-terminated 

square SMA launchers, positioned diametrically opposite to each other. Symmetric 

coupling is attained by adjusting the pin lengths and measurements of S21 are 

performed in the frequency domain using an Agilent E5071B vector network 

analyzer. 

 

The assumptions of perturbation theory allow the use of much simplified equations 

relating frequency and bandwidth shifts to the real and imaginary parts of the 

permittivity. As the sample size begins to grow, perturbation theory begins to break 

down and fields can no longer be considered to be within the small perturbation 

limit. In many configurations this makes the analytical approach intractable and an 

inversion based upon this method is no longer valid. In this case, computational 

modelling of the fields may permit the calculation of material properties for larger 

samples, where the distribution of cavity fields or the fields inside the sample itself 

may be considerably different.  In the TM010 mode the simple field distribution 

within the cavity has enabled the derivation of analytical results for a rod inserted 

axially into a cylindrical cavity [26]. This, in theory, permits the analytical inversion 

of resonant measurements for samples of any size. In practise, once occupying a 

large proportion of the cavity, even low-loss samples will cause resonance to be 

significantly damped. 

 

2.3.3 Measurement principles and Calibration 

 

In order to measure the complex permittivity ε*, of a sample, two independent 

parameters must be measured. Upon insertion of a sample, the change in resonant 

frequency and change in bandwidth can be related to the real and the imaginary parts 

of the permittivity respectively. Figure 2.10 shows the resonant curve of the empty 

cavity (blue) and the cavity with a sample inserted axially (red). When the dielectric 

sample is introduced into the high electric field of the TM010 mode, the frequency of 

resonance decreases, and the bandwidth increases. 
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Figure 2.10 – Resonant curve of the TM010 cavity before (blue) and after (red) 

sample insertion. 

 

It can be shown that for a sample in a polarizing field [33] 
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(13) 

 

where p is the (complex) dipole moment created by the inserted sample, E0 is the 

cavity electric field and U is the stored energy in the cavity. 

 

Therefore we can relate the induced dipole moment to the fractional frequency shift 

and fractional bandwidth shift. The real part of the dipole moment relates to 

polarization in a sample and the imaginary part relates to losses. For any given 

sample, we can measure the complex dipole moment, simply by observing the shift 

in frequency and bandwidth upon insertion into the polarizing field. The dipole 

moment can then be used to infer material properties of the inserted sample. 

 

Before testing samples in this manner, we must first calibrate the measurement. This 

calibration can be done using a sample of known permittivity, which will form a 

known dipole moment in the polarizing field. Here we use precision manufactured, 
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vanadium coated steel spheres, which form well-defined dipole moments upon 

insertion. From this known dipole moment, we will calibrate the parameters of the 

measurement. 

 

The dipole moment created by a metal sphere in a uniform electric field is p = 

4πε0a
3
E0  

Since 


cav

dVEU 2

0
2

1
  (14) 

 

Substituting for dipole moment p, in equation (13) and using equation (14) we 

obtain, for a metal sphere 

eff

s

V

V

f

f

2

3



 (15) 

 

where Vs is the sample volume, and  

dV
E

E
V

cav

eff 
2

0

2

 (16) 

 

Since the E-field in equation (16) is normalised to the peak field E0, upon integration 

throughout the volume, the resulting Veff will be some value less than the volume of 

the cavity and can be considered as an effective volume occupied by the cavity 

fields. The simple relation shown above can be applied to any sample under test, 

provided that the dipole moment can be solved. Veff therefore becomes a universal 

constant for the cavity (within the small perturbation limit) that can be used for any 

further samples measured in the same configuration. For the TM010 mode it can be 

shown that Veff/Vcavity = J1
2
(p01) = 0.267. For the cavity considered here, with radius 

4.6cm and height 4cm, this yields Veff = 71.6cm
3
. For the case of metal spheres in 

equation (15) we now have the means to directly calculate the shift in frequency for 

a given sample volume. 

 

Measurements are taken using an Agilent ENA 5071B Vector Network Analyser 

(VNA). The loading effect of the coupling arrangement on the measured bandwidth 

is removed using the measured insertion loss. Precision manufactured, vanadium 
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coated steel spheres of increasing radius were inserted into the centre of the cavity E 

field and the shift in resonant frequency observed. 
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Figure 2.11 – Frequency shift plotted against a
3
 for a series of metal spheres 

(i.e. vanadium coated steel balls) inserted into the cavity. The response is seen 

to be highly linear to within 1%, demonstrating the robustness of the approach. 

Any deviations from linearity are due to uncertainties in the size of the sphere 

rather than the frequency measurement. 

 

Since, from (15) we have 

effV

f

a

f 2
3



 

from the gradient of the line we establish Veff  = 69.7cm
3
. The value obtained by 

integrating the electric field across the cavity volume is 71.6cm
3
, which is 

remarkably close, but the small difference is associated with the modification of the 

electric field in the vicinity of the sample hole, corrections for which will be 

discussed in subsequent sections. The ability of this calibration technique to fully 

account for these fringing fields in one simple measurement will prove invaluable 

for a split cavity, in which the fringing fields at the split are substantial. The validity 

of split cavity calibrations shall be explored in subsequent sections. 

 

By using this calibrated value for the effective volume, any sample for which the 
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dipole moment can be solved can be measured. Equations (13) may be used to 

determine the relationship between the complex permittivity and the shift in either 

resonant frequency or bandwidth. For cylindrical samples passing completely 

through the cavity in a non-depolarising configuration, it can be shown that the 

dipole moment is p = (εr–1)ε0E0VS. From (13) and (14) we now have 

 

 

eff

s

V

V

f

f

2

1


 
 

eff

s

V

V

f

BW
 


 

(17) 

 

2.3.4 On calibration, corrections and uncertainty 

 

For resonant perturbation measurements, the method of calibration is critically 

important for ensuring accurate results. Conventionally, perturbation measurements 

are inverted analytically, empirically, or numerically. The analytical approach is 

valid for simple structures in which the perturbation effect upon the electromagnetic 

fields of the presence of a sample can be solved. For cavity perturbation of the 

TM010 cylindrical mode, the analytical approach used in section 2.3.3 resulted in a 

value Veff = 71.6cm
3
. This value is valid for the inversion of measurements using 

equations (17), but is an idealised case. The analytical result for the inversion of 

measurements cannot account for fringing fields without some correction factor. 

Also, this approach cannot account for experimental errors in measurement, whereas 

empirical calibration methods can. In the previous section it was shown, using the 

known dipole moment of a metal sphere, that the experimental value of Veff was 

69.7cm
3
. This is certainly a more reliable approach given the assumptions made by 

the analytical approach of a perfectly formed cylinder with no fringing fields and 

perfectly obeyed boundary conditions. 

 

Empirical calibration by known materials is clearly the more desirable approach 

since it accounts for experimental errors that theoretical methods cannot. But 

comprehensively characterising complete inversion behaviour for samples of 

arbitrary complex permittivity is impractical and this ‘black-box’ approach tells us 

nothing of underlying causes and mechanisms. 
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Numerical approaches such as Finite Element Modelling (FEM) are suited to more 

complex structures for which field distributions cannot be solved analytically. In 

another ‘black-box’ approach, FEM may be used to establish inversion values for 

arbitrary complex permittivity, and a complex frequency may be obtained, which 

implicitly includes all higher order effects. This method is useful and helps one to 

understand the electromagnetic behaviour of the system, but once more we rely upon 

a predetermined inversion ‘look-up’ table and the results are only as accurate as the 

model used. Use of a look-up table is not a problem per se, and indeed, for 

conventional cavity measurements, this FEM type inversion has become popular 

[43], but for investigations where a split is present, empirical calibration is certainly 

the most dynamic approach. 

 

When the cavity split is present, the analytical approach is flawed and any attempts 

to model the fields at the split become cumbersome; modelling evanescent fields is 

often impractical in a non-trivial geometry. For conventional cavity configurations 

the geometry is far simpler and methods to correct for evanescent field at the sample 

insertion hole have been relatively successful. Mode matching is carried out at the 

insertion hole and integrating the cavity fields at the interface enables simple 

matching to the evanescent TM01 field which decays rapidly outside of the cavity. 

For the split cavity, mode matching at each of the four interfaces of the split leads 

inevitably to vast assumptions about the forms taken by the matched fields. For 

example, matching the TM010 mode E-field at the top and bottom end-plates of the 

resonator requires approximating the axially symmetric field in rectangular 

coordinates; this is shown schematically in Figure 2.12a) and quickly becomes 

inaccurate as the cavity is split. Numerical approaches to modelling the fringing 

fields as shown in Figure 2.12b) are much better. 
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Figure 2.12 – a) Plan view of a schematic approximation of TM010 cavity E-

field strength (dark is high). As the two halves of the cavity are separated by 

the split, S, this approximation breaks down. b) Side view of FEM model of 

fringing E-field at the cavity split (red denotes high field). 

 

As we shall see, it may be impractical to use a numerical inversion such as that 

obtained from finite element modelling when a cavity split is present. One of the 

greatest sources of error is the limited accuracy of FEM models, which is acceptable 

for enclosed, precision machined cavities, but for a cavity with an arbitrary split 

width, we must use some form of empirical calibration. 

 

To calibrate the measurement at each split width we may use a sample of known 

complex permittivity, but it is simply easier to use the universal approach described 

in section 2.3.3. Prescribing a set split width at which to measure a sample 

introduces experimental errors in the setup. This is because even minor errors in the 

width of the split make the theoretical model irrelevant. But in accordance with the 

dynamic calibration using a metal sphere described above an accurate experimental 

value of Veff is obtained for the inversion. Any significant errors in measurements at 

large split widths subsequent to this quick and easy calibration are not directly due 



 Chapter 2 – Microwave cavities for the measurement of dielectric materials  44 

to errors in the cavity setup. 

 

At this point we note the more general limitations of the perturbation approach. This 

approach is a simplification of the real situation. It relies upon a model of the 

resonant system, by which small perturbations to the electric field yield meaningful 

data. The unperturbed and perturbed fields are considered to have the same field 

distribution. This is evident in equation (16), where integration of the perturbed 

field, normalized by the unperturbed field leads to a value which enables our 

inversion based upon approximations of linear relationships between a) real 

permittivity and frequency shift and b) imaginary permittivity and bandwidth shift. 

This exposes the limitations of the perturbation technique, since there is not a linear 

relationship between these parameters at high values of real or imaginary 

permittivity and neither are the perturbed and unperturbed fields the same. We 

conclude that these higher order effects are irrelevant if we remain within the limits 

of perturbation theory, but it is possible to account for all of the non-linear effects 

encountered if calibration is carried out using samples of known complex 

permittivity. A non-linear function of complex permittivity may be obtained which 

is related to the shift in complex frequency  

),(
2

1~
  mBWjff

 

 

where the imaginary part is the shift in frequency and the real part describes the shift 

in bandwidth. The complex frequency describes the function m, which is dependent 

upon the real permittivity ε’ and the imaginary permittivity ε” of the sample. 

 

But as discussed above, use of the complex frequency would require full 

characterization of the complex space of interest. This is no good for the split cavity 

since the largest source of error would be the accuracy to which we could define the 

split (and model it accordingly). The empirical method of the metal spheres enables 

a quick and dynamic calibration of the split cavity, which does not require 

knowledge of the split width. 

 

One particular limitation of the perturbation approach, which is resolved by using 

the complex frequency is a higher-order effect exposed by considering the response 
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of a lossless sample with finite real permittivity. The Q factor, upon insertion of a 

lossy sample is reduced (i.e. bandwidth is increased since Q = f / BW), but since we 

have 

 

diss

stored

E

E
Q 2

 

 

where Estored is energy stored in the system and Ediss is the average energy dissipated 

in the system over one cycle, for a sample with negligible imaginary permittivity 

(loss) and finite real permittivity (storage), we may observe an increase in Q. This is 

not adequately described by the perturbation theory, but we may assume that for 

such a low-loss sample is beyond the range of measurement of this system 

regardless. 

 

For conventional cavity perturbation measurements, correction factors have been 

developed for the analytical approach to data inversion. Firstly, the influence of the 

sample hole was corrected analytically based upon mode matching methods at the 

holes [23]. This method is useful provided that we are within acceptable limits for 

the analytical approach. More recently, the ‘rigorous analysis’ used by Kawabata et 

al. [43] has been used to develop correction charts to account for inconsistencies in 

the perturbation formulation. However, this approach uses the Ritz-Galerkin 

method, which describes a family of methods for discretising problems, and of 

which the finite element method is a member. Therefore, this amounts to nothing 

more than solving the problem numerically and using look-up tables. The 

corrections to perturbation theory described by Kawashima et al. [44] are 

superfluous. 

 

2.3.5 Investigation of the effects of the cavity split 

2.3.5.1  Quality factor in the split cavity 

The split cavity method relies upon the existence of a pronounced resonance, which 

is to be perturbed by the sample under test. As discussed in previous sections, the 

Quality factor describes the ‘sharpness’ of the resonance and can be related to the 
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bandwidth by 

 

BW

f
Q 0

 

 

For the resonant perturbation technique, a high quality factor is required for high 

accuracy measurements. As the Q factor is reduced, the uncertainty in the 

measurement is increased. How then does the Q factor behave in the split cavity? As 

the cavity is split from the conventional enclosed configuration, many modes 

previously present will be destroyed as wall currents cannot traverse the split. These 

include TE modes of interest such as the TE011 mode used in the already established 

split cavity, which forms Japanese Industrial Standard, JIS-R-1641 [45]. Modes that 

survive the presence of the split do so because their wall currents run parallel to the 

join. This also means that modes such as the TM210 mode which has some rotational 

degeneracy, becomes fixed in orientation. Such control over the orientation of such 

modes can be achieved by positioning the coupling points in desired regions of high 

electric or magnetic field, but the presence of the split comprehensively destroys 

other orientations in modes such as the TM210. 

 

The split cavity described in this chapter is initially positioned with a split of 0mm. 

By using an Agilent ENA 5071B Vector Network Analyser (VNA), the frequency of 

resonance and bandwidth are recorded. This is repeated at split widths of 2mm, 

4mm, 6mm, and 8mm. The cavity has locating rods on which it slides (see Figure 

2.9) positioned in each corner to maintain the orientation of each section. The cavity 

split is extended using a micrometer to achieve an accurate position. 

 

From the measured results for frequency and bandwidth of the resonant TM010 

mode, we calculate the quality factor (unloaded using measured insertion loss 

values). 
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Figure 2.13 – Quality factor of the TM010 mode at increasing split widths 

 

Figure 2.13 shows the unloaded quality factor of the cavity as the split width is 

increased. The quality factor remains remarkably high and for widths of up to 8mm 

is still above 7000. This suggests that accurate measurements may still be taken 

using the TM010 mode at large split widths. As we shall see in subsequent sections, 

for a given cavity configuration, measurements remain highly repeatable. 

 

2.3.5.2 Veff in the split cavity 

 

Method 

 

In order to investigate the effects of the presence of the cavity split, we first establish 

the calibration characteristics at increasing split widths. Using the system described 

in section 2.3.3, metal spheres are suspended at the point of maximum E-field. From 

the known dipole moment induced by the sphere, an effective volume occupied by 

the cavity fields is obtained. With increasing split width, the evanescent fringing 

fields protrude further from the sides of the cavity causing Veff to increase. The 

nature of this increase exposes the level to which this dynamic calibration technique 

compensates for the altered cavity configuration. Subsequent investigation will then 

test the validity of measurements at large split widths calibrated in this way. 
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The split cavity described in section 2.3.2 is initially positioned with a split of 0mm. 

By using an Agilent ENA 5071B Vector Network Analyser (VNA), the frequency of 

resonance is recorded with the sample holder in place. In this case the sample holder 

is simply a low-loss PET tube. A 2.5mm diameter, precision manufactured 

vanadium coated steel sphere is suspended in the centre of the cavity and the 

resonant frequency is measured once more. From equation (15) we obtain Veff for the 

cavity in its current configuration. This is repeated three times at split widths of 

2mm, 4mm, 6mm, and 8mm. The cavity has locating rods on which it slides (see 

Figure 2.9) positioned in each corner to maintain the orientation of each section. The 

cavity split is extended using a micrometer to achieve an accurate position. 

 

Results and discussion 

 

The mean and standard deviation of the calibration measurement raw data are shown 

in Table 2. From the values in Table 2, Veff is determined for each split width. 

 

Split (mm) f0 (GHz) σ0 (kHz) fs (GHz) σs (kHz) 

0 2.49487 1.51 2.49441 1.75 

2 2.46102 231 2.46058 241 

4 2.43050 5.46 2.43010 8.43 

6 2.40395 8.72 2.40357 14.1 

8 2.37498 11.9 2.37462 12.2 

 

Table 2 – Table of raw measurement data for calibration using 2.5mm diameter 

metal spheres, f0 denotes the empty cavity and fs denotes the cavity with sphere 

in position. 

 

Figure 2.14 shows the effective volume Veff occupied by the cavity E-field in cm
3
 at 

split widths of 0mm, 2mm, 4mm, 6mm, and 8mm. The volume increases as 

expected and is linear in nature.  
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Figure 2.14 – Veff in cm
3
 for increasing split width S. 

 

Veff increases as the fringing fields at the split protrude further out of the cavity and 

the E-field occupies a greater volume. The data were obtained for this calibration by 

re-setting the split width for each measurement taken. This was in order to test the 

robustness of Veff when positioning the cavity split using a micrometer. The results 

indicate that for no split width, the calibration is highly repeatable, with the standard 

deviation σ, of frequency measurements less than 2 kHz. For measurements taken 

with a split present, σ is increased. This result indicates that the dominant source of 

error is the imprecise width of the split. If the width of the split is 0.5mm out, it 

could cause an error of almost 1cm
3
 in Veff. We shall see that this does not matter for 

sample measurements, because it is not necessary to correlate split widths, we 

simply need to calibrate the cavity at the arbitrary width being used; what the width 

of the split happens to be is irrelevant. This dynamic, empirical calibration therefore 

has a great advantage over numerical or analytical inversion techniques since the 

accuracy of such techniques is dependent upon having accurate knowledge of the 

cavity dimensions, which is impractical for a split cavity such as this. 
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Split (mm) Veff (cm
3
) σeff (cm

3
) Δε'(σeff) Δε"(σeff) 

0 66.502 0.0363 1.245×10
-3

 3.321×10
-4

 

2 69.498 1.4804 1.271×10
-3

 3.391×10
-4

 

4 73.195 0.6919 1.257×10
-3

 3.352×10
-4

 

6 76.294 1.0828 1.264×10
-3

 3.371×10
-4

 

8 80.207 1.4981 1.272×10
-3

 3.392×10
-4

 

 

Table 3 – Mean Veff and standard deviation σeff from measurement data of 

Table 2. The final two columns show the change in real and imaginary 

permittivity if the calibration value Veff deviates by one standard deviation. 

 

The calibrated values for Veff and the standard deviation are shown in Table 3 for the 

different split widths. We note that the standard deviation σeff increases as the split 

width is increased. Since the dominant source of error is the imprecise measurement 

of split width, we conclude that this source of error is exacerbated at larger widths 

when measurements are taken with a micrometer. But, as discussed above, this 

source of error is irrelevant when taking sample measurements and we do not 

require a more accurate method of defining the cavity split width. 

 

The final two columns in Table 3 show the change in real permittivity Δε'(σeff), and 

the change in imaginary permittivity Δε"(σeff) for one standard deviation in the 

calibration value of Veff. That is to say, if the calibration of the cavity at any given 

split width was off by one standard deviation, what would the resulting error in 

measured permittivity values be? These calculated values are based upon a 

cylindrical sample of diameter 1.36mm, with complex permittivity ε* = 4 – j0.4, and 

with initial Veff = 70cm
3
. We observe that both Δε'(σeff) and Δε"(σeff) increase with 

increasing split width, but the magnitude of the changes is very small. This indicates 

that the influence of the calibration quantity upon the final inverted permittivity 

values is small, which is good news for a cavity with arbitrary and imprecise split 

widths. In the next section, we measure cylindrical dielectric samples and we note 

that any significant sources of error are unlikely to be due to errors in the calibration 

of Veff. 
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2.3.6 Cavity Measurements 

 

As a demonstration of the application of this work, the cylindrical dielectric samples 

used to investigate aspects of the measurement technique consist of powders of 

micron-sized transparent conducting oxide (TCO) coated mica flakes. The structure 

of these conducting particles is described in detail in chapter 3, but for the purposes 

of these investigations we note simply that these high-frequency techniques are 

capable of measuring powders, as well as sheets, liquids, plasmas and indeed 

dielectric and magnetic materials in any form. 

 

2.3.6.1 Dielectric measurements at increased split widths 

 

Method 

 

To investigate cavity perturbation measurements at increasing split widths, a 

cylindrical dielectric sample is measured in the enclosed cavity and the same sample 

is then measured at different split widths. Results are compared for agreement and 

sources of error are investigated. 

 

Once again the split cavity is initially positioned with a split of 0mm. A quick 

calibration measurement is carried out using the metal sphere method described 

above. With Veff calibrated, we proceed to measure the sample. Using an Agilent 

ENA 5071B Vector Network Analyser (VNA), the frequency of resonance and 

bandwidth are recorded with an empty sample tube in place. For these measurements 

the sample tube is a quartz-glass tube with inner diameter 1.36mm. A filled tube is 

then placed axially in the centre of the cavity and the frequency of resonance and 

bandwidth are once again recorded. From equations (17) and using the calibrated Veff 

value for the cavity configuration (i.e. 0mm split width) we obtain values of real 

permittivity ε’, and imaginary permittivity ε” for the sample. This is repeated three 

times at split widths of 2mm, 4mm, 6mm, and 8mm. The cavity has locating rods on 

which it slides (see Figure 2.9) positioned in each corner to maintain the orientation 

of each section. The cavity split is extended using a micrometer to achieve an 
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accurate position. 

 

Results 

 

The shift in resonant frequency Δf, and the shift in bandwidth ΔBW upon insertion 

of the sample are shown for each split width in Table 4a). Corresponding values of 

real and imaginary permittivity are shown in Table 4b). 

 

Split (mm) Δf (MHz) σf (kHz) ΔBW (MHz) σBW (kHz) 

0 4.5002 35.0348 1.4204 5.6945 

2 4.2198 41.0927 1.3308 2.7837 

4 3.9375 61.5440 1.2328 11.8017 

6 3.6469 11.8094 1.1538 1.2233 

8 3.3987 26.0865 1.0774 5.9057 

Split (mm) ε' σε' ε" σε” 

0 3.9945 0.0224 0.4717 0.0020 

2 3.9752 0.0911 0.4691 0.0109 

4 3.9597 0.0585 0.4633 0.0074 

6 3.8881 0.0339 0.4569 0.0066 

8 3.8637 0.0580 0.4539 0.0076 

 

Table 4 – a) Shift in frequency and bandwidth and standard deviation, upon 

insertion of a cylindrical dielectric sample at varying split widths and b) 

corresponding values of complex permittivity and standard deviation at 

varying split widths. 
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Figure 2.15 – Measured values of real permittivity for cylindrical sample at 

varying split widths. There is good agreement even for a split width of 8mm. 
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Figure 2.16 – Measured values of imaginary permittivity for cylindrical sample 

at varying split widths. We observe similar results for the real permittivity: 

there is good agreement though there is a tendency to underestimate the 

permittivity value at larger split widths. 
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Figure 2.17 – Measured shift in resonant frequency upon insertion of the 

cylindrical dielectric sample. The effects of the presence of the sample are 

diminished at larger split widths. 
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Figure 2.18 – Measured shift in resonance bandwidth upon insertion of the 

cylindrical dielectric sample into the cavity. The effects of the presence of the 

sample are again diminished at larger split widths. 
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Discussion 

 

Figure 2.15 and Figure 2.16 show that dielectric measurements in the split cavity 

remain highly consistent, even for split widths up to 8mm in size. Measurements of 

the same sample taken in a cavity with a large split agree well with measurements 

taken in an enclosed configuration.  Shown in Table 5 below are the percentage 

errors based upon the mean values measured in the enclosed cavity. The errors in 

real and imaginary permittivity are around 0.5% for a 2mm split and are well below 

4% even for widths of 8mm. 

 

Split (mm) 0 2 4 6 8 

ε' 3.9945 3.9752 3.9597 3.8881 3.8637 

% error - 0.48 0.87 2.66 3.27 

ε" 0.4281 0.4691 0.4633 0.4569 0.4539 

% error - 0.55 1.78 3.13 3.77 

 

Table 5 – Percentage error of measured sample values at varying split width. 

 

The shift in resonant frequency Δf, and the shift in bandwidth ΔBW, are shown in 

Figure 2.17 and Figure 2.18. We note that as the cavity split widens, the measurable 

shift in resonant frequency and bandwidth is reduced. This is an important feature of 

the split cavity, since the ability to measure sensitively the complex permittivity of 

samples relies upon a measurable shift in f and BW. We therefore lose some 

sensitivity in the split configuration, but also to a lesser degree some resolution is 

lost. This also contributes to errors at large split widths and we would observe a 

similar error in the calibration measurements shown in Figure 2.14 if experimental 

error was not dominated by uncertainty in the width of the split. In these sample 

measurements however, precise knowledge (indeed, any knowledge) of the split 

width is not necessary if the calibration is carried out in the cavity configuration 

used for measurement. 

 

The results of sample measurements at larger widths agree well, but begin to 
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underestimate the real and imaginary parts of the permittivity. This disparity is 

exhibited in Table 5, Figure 2.15 and Figure 2.16. We can further investigate the 

disparity by considering equations (17), which are stated in previous sections, and 

are as follows 

 

 

eff

s

V

V

f

f

2

1


 
  

eff

s

V

V

f

BW
 


 

 

We know from Figure 2.17 and Figure 2.18 that at larger widths, the shift in 

frequency and bandwidth upon insertion of the sample are reduced. This is of course 

offset when measuring at larger widths by the calibration of Veff, which adjusts 

accordingly. In fact, considering only the first of the above equations, we can see 

that the only variables to change at large widths are Δf, f and Veff. Therefore to 

maintain an accurate measurement we must have 

 

effV

A

f

f




 

 

where A is a constant. So as Δf / f decreases, 1 / Veff must decrease proportionally. 

Figure 2.19 shows normalised values of Δf / f and 1 / Veff as the split width is 

increased. There is a clear disparity present, which must either be caused by an 

underestimated value of Δf / f, or an underestimated value of Veff (that is, an 

overestimated value of 1 / Veff), or of course, both. 
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Figure 2.19 – Normalised values of Δf / f  (solid line) and 1 / Veff (dashed line) 

for varying split width. 

 

But how does the presence of the split lead to the apparent underestimation of Δf / f, 

and/or Veff? Firstly, we note that it is not possible to ‘underestimate’ Δf / f simply by 

virtue of the inversion; it is the measured quantity. But, can Veff be entirely to blame 

for the underestimated complex permittivity at large split widths? The value Veff is a 

convenient and intuitive variable, formed when the dipole moment is substituted into 

(13). Veff then becomes (16), and if the perturbed E-field E, is considered to be the 

same as the unperturbed E-field E0, then the E
2
/E0

2
 = 1 is integrated over the volume 

of the cavity. 
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The resulting value is an effective volume occupied by the cavity E-field, and is 

some value less than the actual volume of the cavity. 

 

But can we assert that the value Veff remains valid for the cavity at increased split 

widths? The perturbation equations (13), are valid for any resonant system in the 
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small perturbation limit. But, the assumption made that the unperturbed and 

perturbed fields are the same in equation (16) is less valid than in the enclosed 

cavity; even though the perturbing sample is the same in each case. 

 

The error may be interpreted as fundamental nonlinearities in the dipole moment p. 

The dipole moment of a long cylinder in a parallel, uniform E-field is 

 

  sr VEp 001  
 

 

Veff appears in the final equation (17) because the dipole moment is a function of E0, 

which will always be the case and therefore some version of Veff remains in any 

corrected formulation. But this is where the nonlinearity occurs. The assumptions 

made in the formulation of the dipole moment itself become flawed at large split 

widths, principally because the dipole is based upon a uniform polarising field, 

which is no longer the case at the cavity split. In this sense, the calibrated value for 

Veff using the metal spheres is perhaps more accurate because the field at the centre 

of the cavity where the sphere is placed remains relatively uniform. 

 

A correction to the measurement discrepancy at large split widths would therefore 

involve a modification to the dipole moment of the cylinder to represent the 

reduction in the induced dipole due to non-uniform fields at the cavity split. 

 

Such non-uniformity in the fields would be accounted for if calibrations were carried 

out using a cylindrical sample of known permittivity, but even when this is done, the 

non-uniformity of the fields is a function of both split width and sample permittivity. 

The non-uniformity of the field becomes a non-linearity in the measurement when 

samples with finite (>1) permittivity are introduced. The already non-uniform fields 

become even less uniform at the split in the presence of a high permittivity sample. 

In an enclosed cavity this does not pose a problem, since the fields remain relatively 

uniform because of the overriding influence of the cavity walls. 

 

In summary, there are two compounding factors contributing to the error. 1) The 

non-uniform fields at the cavity split leading to a reduced dipole moment and 2) The 
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presence of a sample in these non-uniform fields leads to further non-uniformity of 

the field. The dipole moment is a non-linear function of permittivity and split width 

S; we have dipole moment 
),,*,( 0 sVESp 

. This manifests itself in the inversion 

equations in the form of a non-linear Veff, which is a function of split width and 

sample permittivity. We have for a cylindrical sample 
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Here we encounter a situation where non-linearities in the measurement make 

numerical approaches unavoidable. For the system used here, using the cavity with a 

split present becomes a trade-off between split width and the level of accuracy 

required. The alternative of course is to take the complex frequency approach, with a 

numerical inversion accounting for all non-linearities, but in this case we lose the 

freedom associated with the arbitrary split width. The split cavity developed in this 

work has the useful feature of easy and comprehensive access to the sample under 

test, plus with the novelty of the presence of a uniform, axially directed E-field and a 

simple, quick calibration technique for arbitrary split width. It is clear that the width 

of the cavity is limited by our accuracy requirements, but the system performs well, 

with less than 1% error in the real permittivity for split widths up to 4mm. If our 

accuracy requirements are not met at the prescribed split width, a complex frequency 

inversion based upon a numerical approach must be used. 

 

Another method of circumventing the loss of accuracy at large split widths is to use 

samples in the form of pellets. The dipole moment of pellet geometries can be 

solved analytically and an inversion is trivial for known sample size. In this way, the 

sample is unaffected by non-uniform fields at the cavity split. At very large split 

widths the error is therefore reduced. Using pellets to perturb the cavity removes 

issues of field uniformity and the dynamic calibration of metal spheres for arbitrary 

split widths may still be used. The sample is in a highly depolarising configuration 

when in pellet form, a consequence of which is that Δf is less for any given 

measurement and so resolution is lost, but errors associated with the cavity split are 



 Chapter 2 – Microwave cavities for the measurement of dielectric materials  60 

significantly reduced and measurements of pellet samples are more robust at larger 

split widths. Highly depolarising measurements such as these become very sensitive 

to parameters such as sample volume. 

 

2.3.6.2 Higher order modes 

 

Many modes exist simultaneously in the cylindrical cavity. We have thus far 

exploited the TM010 mode because of the useful, highly uniform electric field at its 

centre and its robustness to measurements with a split cavity. But there are also 

many opportunities to use these higher-order modes and innovative approaches may 

be taken to exploit the unique properties of each. In this section, a brief account is 

given of some of the more interesting higher order modes and the possibilities for 

their use in dielectric measurements are discussed. 

 

 

a) TM010   b) TM020   c) TM030 

Electric-field   Electric-field   Electric-field 

Figure 2.20 – The electric field distributions for TM0n0 modes in the cylindrical 

cavity. The frequency of these modes depends only upon the radius of the 

cavity. For a cavity with radius of 4.6cm, we have: a) TM010, f = 2.4946 GHz, b) 

TM020, f = 5.7258 GHz, a) TM010, f = 8.9766 GHz. 

 

The TM010 mode described in this work has a family of modes associated with it, 

which exhibit many of the same useful properties. The frequency of resonance for 

TM0n0 modes depends only upon the radius of the cavity. The electric currents 

associated with these modes all run along the walls of the cavity from the centre of 

one end-plate, the centre of the other. This means that in the split cavity, currents run 
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parallel to the split and the modes survive even large split widths. 

 

We shall see that most other modes are destroyed by the presence of the split in this 

configuration, but TM0n0 modes remain robust. Each of the modes maintains the 

high E-field at the centre of the cavity and the high field uniformity exhibited by the 

TM010 mode. We also note that the high field point is more localised in the TM020 

mode. At first glance, this might suggest that for a given sample placed in the centre 

of the cavity, we would achieve a greater filling factor (i.e. ratio of field in the 

sample to field outside of the sample), leading to increased sensitivity. This is easily 

investigated by taking the ratio of the total electric energy at the centre of the cavity 

to the total electric energy outside of the centre. Considering the ‘centre’ of the 

cavity in this case to be a cylinder of 1cm radius, spanning the entire height of the 

cavity, we take the following ratio of volume integrals for the TM010 and TM020 

modes. 
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where cavity radius a = 4.6cm, centre boundary c = 1cm, and length of the cavity l = 

4cm. Since only the radial component of the E-field, E(ρ) is different, this rather 

cumbersome integral cancels down to become 
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since the radial component of the cavity E-field is 
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where E0 is the E-field magnitude, J0 is the zero order Bessel function of the first 
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kind, n indicates the mode of the TM0n0 field and p0n denotes the nth root of Bessel 

function J0. 

 

The results of this integration show that for the TM010 mode, 19% of the total 

electric energy is present in the region of radius 1cm in the centre of the cavity and 

the remaining 81% is in the surrounding, outer region. In the TM020 mode, the same 

integration reveals that only 8% of the electric energy is present in the centre region. 

We therefore obtain a much greater filling factor for the TM010 mode than for higher 

order modes. 

 

These higher order modes can be used to measure dielectric samples in precisely the 

same way as the TM010 mode, and being able to take measurements at different 

frequencies allows us to measure frequency dependent behaviour of any samples 

under test to a high degree of accuracy. 

 

 

a) TM110   b) TM110   c) TM210 

Electric-field   Magnetic-field   Electric-field 

Figure 2.21 – Finite Element Model solutions for the distributions of a) the 

TM110 electric field and b) the TM110 magnetic field, both of which are at f = 

3.9748 GHz, and c) the TM210 mode electric field in the cylindrical cavity, which 

occurs at f = 5.327 GHz. 

 

In Figure 2.21a) and b) is shown the electric and magnetic fields of the TM110 mode 

respectively. This mode has a relatively good field separation and at its centre is a 

magnetic field maximum and an electric field null. This mode is well-suited to 

measurements of magnetic samples or measurement using the excitation of eddy 

currents. 
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2.3.6.3 The TM210 mode as a reference 

 

In Figure 2.21c), is shown the electric field of the TM210 mode. This mode has no E-

field at its centre, and as a result it has many useful applications as a reference. 

 

When samples are inserted into the cavity axially, the TM210 mode remains 

unperturbed, even for samples of extremely high permittivity. Taking the same 

approach used above, we can determine the fraction of the total electric energy 

present in the centre region of the cavity and relate this directly to the sensitivity of 

the mode to perturbation by dielectric samples. 

 

We no longer have rotational symmetry since the circular component of the E-field 

in TMmn0 modes (where m > 0) is sinusoidal in form. The E-field now becomes 
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which is integrated according to equation (18). 

 

The fraction of electric energy in the sample region of the cavity normalised to the 

TM010 mode is shown for higher order modes of interest in Figure 2.22. The electric 

energy present in the sample region is over six orders of magnitude less for the 

TM210 mode than for the TM010 mode, demonstrating the independence of the TM210 

mode from the influence of the sample under test. 
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Figure 2.22 - The fraction of electric energy in the sample region (cylinder of 

radius 0.68mm) of the cavity normalised to the TM010 mode, for modes TM010, 

TM020, TM110 and TM210. 

 

From Figure 2.22, we see that the TM020 mode is marginally less influenced by the 

presence of the sample, whilst the central null-point of the TM110 mode shown in 

Figure 2.21a) causes a reduction by a factor of 1000. The TM210 mode as shown in 

Figure 2.21c) is clearly even less influenced by the presence of the sample. 

 

This independence of the TM210 mode may be tested experimentally by measuring 

the frequency shift when a sample of high permittivity is placed into the centre. 

 

f0 (GHz) σf0 (Hz) f (GHz) σf (Hz) Δf (Hz) 

5.33217 1186 5.33216 1530 8165.248 

BW0 (kHz) σBW0 (Hz) BW (kHz) σBW (Hz) ΔBW (Hz) 

507.7 986 508.2 758 456 

 

Table 6 – Mean resonant frequency and bandwidth of the TM210 mode with (f, 

BW), and without (f0, BW0) a sample in place.  

 

Using the same cylindrical sample used in the dielectric measurement investigations 
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of previous sections (ε* = 3.99 – j0.47, radius 0.68mm), measurements were taken 

of the resonant frequency and bandwidth of the TM210 mode with and without the 

sample in place. Each measurement was repeated ten times. 

 

Table 6 shows the mean and standard deviation σ, of measured values. Upon 

insertion of the sample, we observe a shift in frequency Δf and bandwidth ΔBW of 

8165 and 465 Hz respectively. Such a small change in values cannot be interpreted 

as a shift due to the presence of the dielectric since the standard deviation in all 

measurements taken is of the order of 1 kHz. We therefore conclude that for samples 

of permittivity ε* = 3.99 – j0.47 and radius 0.68mm, no measurable shift occurs. 

 

As a reference point this mode is invaluable, no sample, regardless of dielectric 

strength will influence the mode in this configuration. Any effects upon the mode 

are attributable to the cavity alone. 

 

Having established the robustness of the TM210 mode, we now turn to its 

applications. Since the resonant frequency of the TM010 mode and the TM210 mode 

are inherently linked, we may use measurement of one to learn about the other. 

When standard cavity perturbation measurements are taken, the resonant frequency 

and bandwidth of the cavity are noted for the unperturbed fields; the sample is then 

inserted and the frequency and bandwidth are noted once more. By using the fixed 

relationship between the TM010 mode and the TM210 mode, we can establish an 

unperturbed frequency for the TM010 resonance without having to observe sample-

free measurement at all. This is an advantageous extension of the cavity perturbation 

technique in terms of general convenience, but importantly, enables measurements 

to be taken over time without having to disturb the sample under test. 

 

For both the TM010 and the TM020 modes the frequency of resonance depends only 

upon the radius of the cavity. Given this identical and exclusive dependence, the 

ratio of frequencies is fixed. We have 
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In order to validate the approach we once again consider measurements of the 
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cylindrical sample, with permittivity ε* = 3.99 – j0.47 and radius 0.68mm and use 

the TM210 mode as a reference. 

 

There is necessarily some systematic offset of the frequency ratio from theory to the 

actual values due to the nature of the split in the cavity, since the TM010 mode has 

rotational symmetry and the TM020 does not. But this offset itself is fixed and can 

easily be calibrated when the TM010 mode is unperturbed. 

 

 f010/ f210 

f010 

(GHz) 

sample 

σ010,s 

(kHz) 

f010 (GHz) 

inferred from 

TM210 

σ010,0 

(kHz) 
ε' 

Error 

(based upon 

TM010) 

Theory 0.46826 2.48581 45.07 2.49685870 0.716 1.952 51.12% 

Calibrated 0.46704 2.48581 45.07 2.49032544 0.714 4.067 1.82% 

 

Table 7 – Resulting permittivity values and associated errors of measurements 

taken of a sample of known permittivity (ε’ = 3.9945, measured using the 

TM010 mode in section 2.3.6), using the TM210 mode as a reference and inferring 

unperturbed frequency value from theoretical and from experimental values of 

f010/ f210. 

 

In Table 7 we observe the results of cavity perturbation measurements taken using 

the TM210 mode as a reference. Clearly, the systematic offset in the theoretical 

frequency ratio of the TM010 and TM210 modes causes a significant error of 51% in 

the resulting permittivity value. This is easily accounted for by calibrating the ratio. 

This calibration need only be carried out once, since though subsequent 

measurements exhibit a small error of 1.82%, the standard deviation in the resulting 

permittivity values, σε' = 0.0308, compares favourably with that of the measurements 

taken using the conventional TM010 method, σε' = 0.0224 (see section 2.3.6). We 

conclude that using the TM210 mode to infer unperturbed frequencies is indeed a 

viable method for measuring the permittivity of dielectric samples. We also note that 

the standard deviation in measured frequencies mirrors the behaviour of results with 

and without the sample present, even though the sample is present for all 

measurements presented here. 

 

The robustness of the TM210 mode as a substitute for unperturbed TM010 frequencies 
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seems evident, and it relies upon the mode being unaffected by the presence of the 

sample. In order to further test the limits of the TM210 mode, a silver-coated copper 

wire of diameter 1mm is placed in the sample position and the frequency shift is 

measured. Then an alloy steel rod of diameter 2.39mm is placed in the sample 

position and the frequency shift is measured once again. In other, similar TM modes 

the presence of a metal on the cylinder axis would destroy any resonance, since the 

parallel E-field cannot exist at the metal surface of the wire. For the TM210 mode this 

does not occur. Instead of the resonance being destroyed, or there being no 

perturbation as for dielectric samples, we observe the following 

 

 f0 (GHz) σf0 (Hz) f (GHz) σf (Hz) Δf (Hz) 

Dielectric 5.33217 1186 5.33216 1530 8165 

Wire 5.33710 1759 5.33712 9918 -17120 

Rod 5.33710 1738 5.33724 6264 -137549 

 

Table 8 – Mean resonant frequency of the TM210 mode with (f), and without (f0) 

a sample in place for a dielectric sample and a metal wire of diameter 1mm.  

 

The resonance of the cavity actually increases in frequency (adopting the convention 

of a downward shift in frequency being positive). This raises the question of whether 

the TM210 mode is as robust as we first thought. In order to explain such behaviour 

we must look to the H-field in the TM210 mode. 
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a) TM210    b) TM210 

Electric field    Magnetic field 

Figure 2.23 – a) the Electric field distribution of the TM210 mode and b) the 

magnetic field distribution of the TM210 mode. 

 

The electric and magnetic field distributions of the TM210 mode are shown in Figure 

2.23. At first glance it may seem that both fields have a null at their centre, and as 

before we should see no perturbation from samples inserted axially. To further 

investigate the magnetic field at the centre of the cavity, we use equation (18) once 

more to assess the fraction of magnetic energy present at the centre. 
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Figure 2.24 - The fraction of energy in the sample region (cylinder of radius 

0.68mm) of the cavity normalised to the TM010 mode electric energy, for TM210 

electric energy and TM210 magnetic energy. The Magnetic energy present is 

greater by a factor of 1000. 
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The magnetic energy in the sample region is more than 1000 times that of the 

electric energy. Values in Figure 2.24 are once again normalised to the electric 

energy value present in the sample region of the TM010 mode, which is larger still 

(see Figure 2.22), but the H-field is strong enough in the TM210 mode to be 

influenced by the presence of the sample. The magnitudes of electric and magnetic 

energies in a given region of the cavity are commensurable because in resonant 

systems the total electric and magnetic energies are equal. 

 

Samples of high permittivity may be measured using the TM210 reference without 

difficulty, but for highly conducting samples, or samples with finite magnetic 

permeability, perturbation of the H-field leads to a shift in frequency which is not 

experienced by the TM010 mode. This perturbation is due to induced eddy currents in 

the conducting material. The TM210 mode can adequately perform its role as a 

reference for highly conducting samples, but only if samples of small radius are 

measured. The extent to which metallic samples affect the TM210 mode is easily 

checked before measurements are carried out. 

 

The presence of the magnetic field can be used in order to measure the magnetic 

properties of samples with finite (>1) magnetic permeability, but is also an important 

method of measuring the conductivity of samples. Often in dielectric measurements 

we consider losses due to finite conductivity, which are easily interpreted when this 

is the dominant cause of loss. But using H-field measurements of induced eddy 

currents allows us to separate the contributions of conductive loss and dielectric loss, 

giving a definitive answer to the question of whether conduction mechanisms are 

present in the sample [46,47]. However, though the TM210 mode has a suitable 

magnetic field for such measurements, the easily accessible magnetic field of the 

TM110 mode may be a better candidate. 

 

2.3.6.4 Environmental corrections 

 

The ability of the TM210 mode to act as a reference for TM010 dielectric 

measurements enables measurements to be taken without disturbing the sample 

under test. This is of great benefit for measurements taken over time. Not simply in 
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terms of automation and convenience, but the TM210 mode is a reference for the 

unperturbed cavity itself. This means that any environmental changes experienced 

may be tracked by this mode and corrected for, comprehensively separating effects 

of sample and cavity. 

 

Over the duration of any cavity measurement the ambient temperature may drift, the 

result of which is a thermal expansion in the cavity itself. We have the temperature 

dependent resonant frequency, for TMmn0 modes, 

 

 
 Ta

cp
Tf mn

2


 
(20) 

 

where, c is the speed of light in free space, and pmn is the nth root of the m order 

Bessel function of the first kind. a(T) is the temperature dependent radius of the 

cavity, given by 

 

     
     TTaTa  10  

 

α(T) is the fractional increase in length per Kelvin change in temperature, and is 

called the linear thermal expansion coefficient, given by 
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After substituting for a(T) in equation (20), the fractional frequency shift reduces to 

 

  TT
f

f





 

 

So the fractional frequency shift is independent of which TMmn0 mode is being 

considered and for each 1 Kelvin rise in temperature, the fractional frequency 

increases by α(T), which for aluminium is  α(T) =  22.2 × 10
-6

 K
-1

. For example, at a 

frequency of 2.4946 GHz (TM010 mode), a 1 Kelvin change in temperature will 

cause a 55.4 kHz shift in frequency. At a frequency of 5.327 GHz (TM210 mode), a 1 
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Kelvin change in temperature will cause a 118.26 kHz shift in frequency, but both 

modes will have an identical fractional frequency shift. 

 

A correction for changes in ambient conditions is easily implemented. Since the 

TM210 mode isolates the effects of the cavity and excludes any effects of the sample, 

the measurement includes such a correction inherently and becomes invariant with 

temperature. This is a useful feature for measurements in general and is essential for 

measurements of samples being investigated under the influence of heating. Such is 

the accuracy of this method of temperature correction that the method may itself find 

use tracking temperature changes. Using a standard VNA we can measure frequency 

shifts to kHz accuracy with confidence. We are therefore able to track changes in 

frequency to around a 20mK resolution for the TM010 mode, 10mK resolution for the 

TM210 mode, and even higher resolution for higher order modes. This method 

therefore offers hyper-accurate tracking of temperature changes, in dielectric 

measurements, but also one of the highest resolutions currently available for 

temperature measurement in general. 

 

The resonant frequency of the TM010 and TM210 modes were measured over a period 

of 12 hours. The resonator was left overnight and the frequency shift recorded as the 

ambient temperature follows the diurnal variation of the laboratory.  
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Figure 2.25 – Fractional frequency shift of the TM010 (blue), TM110 (red) and 

TM210 (black) modes over a period of 12 hours. 

 

The fractional frequency shift of the TM010, TM110 and TM210 modes is shown in 

Figure 2.25. Over the 12 hour period, the TM210 mode tracks the TM010 mode almost 

identically, but the uncertainty in the TM110 mode is larger. This is quantified by the 

mean absolute error (from the TM010 mode) shown in Table 9. 

 

 TM110  TM210 

Mean Absolute Error (×10
-

5
) of fractional frequency 

shift  (from TM010 mode) 

0.104 0.009 

 

Table 9 – Mean Absolute Error (MAE) from the TM010 mode fractional 

frequency shift of the TM110 mode and the TM210 mode. 

 

The TM210 mode is clearly the more accurate reference to the TM010 mode and has a 
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very small error in fractional frequency shift of less than 0.2%. 

 

Though the mean absolute error of the TM210 mode is 0.009×10
-5

, the mean error is 

0.006×10
-5

. This suggests that there is some small systematic offset present. The 

systematic offset is the same effect that was described above and is due to the nature 

of the split in the cavity, since the TM010 mode has rotational symmetry and the 

TM020 does not. This offset however, is clearly minute and can be corrected since it 

is a fixed relationship between the two modes. 

 

Since we have the relationship 

  TT
f

f





 

 

the maximum fractional frequency shift observed of -5.52349 ×10
-5

 is simply 

divided by α(T) to give a temperature change of -2.488K. 

 

Stimulus of samples in the split cavity 

 

The split cavity described in this work offers a uniform, axially polarised E-field for 

measurements at arbitrary split widths. We therefore have unprecedented access for 

samples under test in a uniform TM010 E-field. Such quick and easy access enables 

the straightforward implementation of countless experiments. As a demonstration, 

the following investigations test the photoactivity of powders and sheets of 

transparent conducting oxides. 

Mica platelets approximately 20-30μm in length and up to 1μm in thickness coated 

with a layer of antimony-doped tin oxide (ATO) were placed into the cavity on a 

low-loss PTFE platform. With a split of arbitrary (1-2cm) width, an ultraviolet lamp 

of centre wavelength 254nm was suspended above the powder sample. 
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Results and discussion 

 

Figure 2.26 – Trace of the TM010 mode power transmission coefficient, taken 

from the Agilent ENA5701B Vector Network Analyser for the TCO powder 

sample under UV irradiation (blue) and the Lorentzian curves fitted to the 

excited and unexcited states. 

 

The resonance of the TM010 mode of the split cavity is shown under UV stimulation 

in Figure 2.26. The ‘spiked’ trace shows the Vector Network Analyser (VNA) 

sweep of the TCO sample under the influence of the UV lamp. The UV strip light is 

mains operated at a frequency of 50Hz. The observed spikes therefore correspond to 

excitation of electrons into the conduction band as the 254nm wavelength light 

oscillates with a period of 20ms. The relaxation time of the excited electrons is much 

shorter than the VNA or UV lamp responses and the periods of excitation are 

associated with mains fluctuations above some ‘switch-on’ threshold. In fact, the 

spikes present in the trace correspond to the ‘off’ state, where no UV light falls upon 

the sample. This occurs twice for each cycle and therefore 100 peaks are exhibited 

per second as the VNA samples the resonant peak. As described in section 2.2.3, the 

cavity resonator response is Lorentzian in form, so by fitting a Lorentzian curve to 

the excited and unexcited states of the sample it is possible to extract the resonant 
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frequency and bandwidth of the states. This result shows the unique ability of the 

split cavity to investigate the dielectric and conductive properties of powders. 

 

In order to refine this approach, powders may be formed into pellets so that sample 

volumes and macroscopic dipole moments are more easily calculated. A further step 

may be to use a sheet sample of conducting particles dispersed in a low-loss 

dielectric lacquer as described in chapter 3 of this work. In this way, sample 

volumes are more easily calculated plus the level of UV excitation is quantifiable 

since the sample can be irradiated from both sides and is fully penetrated by the UV 

light. The AC driven UV source used here serves to expose the dynamic nature of 

the measurement technique and provides further questions regarding relaxation of 

the excited state. This is may have some further use in the interpretation of 

excitation mechanisms, but using a DC UV source will isolate the ‘steady’ excited 

state for clearer analysis. 

 

2.4 Conclusions 

 

The cavity resonator measurement technique is well established as a useful and 

accurate method for assessing the complex dielectric and magnetic properties of 

samples. The method can be tailored to measure bulk dielectrics, metals, powders, 

liquids, gases and plasmas. These may be anything from biological tissue to 

inorganic electronic materials. The method has even been used to investigate the 

fundamental physics of materials such as the quantum hall effect. Cavity 

perturbation methods have found use in industry, for example in the measurement of 

ceramic plates using a split cavity, which forms Japanese Industrial Standard JIS-R-

1641. 

 

In this work, a new experimental scheme is developed in which a cylindrical 

resonant cavity is constructed with a split orthogonal to the plane of the split 

described in JIS-R-1641 (i.e. in the plane of the cylinder axis). In the TM010 mode, 

this cavity operates effectively, with no associated wall currents having to traverse 

joints in the cavity construction. We therefore maintain a high quality factor 
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(>8000), enabling the accurate measurement of dielectric samples. By integration of 

the purely azimuthal H-fields at the surfaces of the cavity walls and end plates it is 

determined that the optimum Q factor is obtained when the cavity radius a is equal 

to the cavity height, and that the maximum obtainable Q for the TM010 mode is 

therefore equal to a/2δ, where δ is the skin depth of the electromagnetic fields at the 

cavity walls. The TM010 mode has a highly uniform electric field at its centre in 

which a cylindrical sample inserted axially will experience minimal depolarisation, 

enabling highly accurate measurements. Such depolarisation is shown, for a cylinder 

of water, to result in a decrease in dissipated power of a factor of over 1600. A 

simple and dynamic calibration technique is described, which uses metal spheres of 

known electric dipole moment to characterize the cavity configuration. This means 

that measurements may be taken with the cavity split at arbitrary widths simply by 

taking a measurement of the metal sphere first. 

 

The merits of different methods of calibration are discussed, in particular, the ability 

of empirical methods of calibration to account for systematic experimental error 

rather than the idealised approaches of analytical or numerical approaches. 

Analytical and numerical approaches are useful in conventional measurements, but 

for complex structures with evanescent fields, which are difficult to model, 

empirical approaches are invaluable. 

 

Limitations of the perturbation method were discussed and the complex frequency 

was introduced as a method of overcoming the assumptions made by perturbation 

theory. But for the split cavity, we conclude that the complex frequency approach is 

not dynamic enough to avoid experimental errors. The calibration must be empirical 

and since use of the complex frequency would require full characterization of the 

complex space of interest, it is impractical for arbitrary split widths. 

 

Correction factors were discussed as a means to account for non-linear effects 

beyond the assumptions of perturbation theory. One example of such analytical 

corrections is introduced in section 2.3.4, and uses mode matching techniques to 

account for the presence of the sample insertion hole. The more recent ‘rigorous’ 

approaches which use Ritz-Galerkin methods may indeed be called corrections, but 

serve no practical purpose, since they are simply concerned with numerically 
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producing inversion charts. This may of course be a valid approach and may even 

expose sources of non-linearity, but it is not a correction factor in the analytical 

sense and is certainly not appropriate for practical measurements in the split cavity 

at arbitrary split width. 

 

The cavity resonator was investigated with the split present, up to 8mm in width. 

The Q factor remains >7000 for large split widths indicating that accurate and highly 

repeatable measurements may be taken. The value used in the inversion, Veff 

describes an effective volume occupied by the cavity fields and in the linear 

perturbation equations used in this work functions as a calibration variable. For the 

split cavity, the behaviour of the effective volume occupied by the cavity E-field is 

investigated for widths of up to 8mm. The increase in effective volume is linear in 

nature and the dominant source of error is the setting of the split width. Each time 

that Veff is measured the split is repositioned, and the standard deviation in measured 

Veff is over 1cm
3
 for larger split widths. Two main conclusions are drawn regarding 

this result, firstly that for a cylindrical sample of diameter 1.36mm, with complex 

permittivity ε* = 4 – j0.4, and with initial Veff = 70cm
3
, the change in resulting 

permittivity caused by variations in Veff of one standard deviation are negligible (this 

is not the case for less robust configurations of the cavity measurement such as in 

depolarising samples). And secondly, though inadequate knowledge of the split 

width is the dominant source of uncertainty here, no such error exists in cavity 

measurements, since the inversion does not require any knowledge of the split 

width; the value of Veff is calibrated for any given arbitrary width. 

 

Sample measurements were carried out in the split cavity at widths once again up to 

8mm. Using a cylindrical dielectric sample consisting of powders of micron-sized 

transparent conducting oxide (TCO) coated mica flakes, the width of the split is 

increased and measurements were compared with established results from the 

enclosed cavity (i.e. no split). The measurements remain consistent, with the errors 

in real and imaginary permittivity around 0.5% for a 2mm split and well below 4% 

even for widths of 8mm. We also note that as the cavity split widens the measurable 

shift in resonant frequency and bandwidth is reduced. This is an important feature of 

the split cavity, since the ability to measure sensitively the complex permittivity of 

samples relies upon a measurable shift in f and BW. We therefore lose some 
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sensitivity in the split configuration, but also to a lesser degree some resolution is 

lost. 

 

The causes of the error introduced at large split widths are investigated and it is 

concluded that non-uniform fields at the cavity split cause a reduced dipole moment, 

but the presence of a sample with finite (>1) permittivity compounds this effect. The 

value of Veff becomes a non-linear function of split width and permittivity. 

 

Non-linearities in the measurement make numerical approaches unavoidable at very 

large split widths. For cylindrical samples, using the cavity with a split present is a 

trade-off between split width and the level of accuracy required. The alternative of 

course is to take the complex frequency approach, with a numerical inversion 

accounting for all non-linearities, but in this case we lose the freedom associated 

with the arbitrary split width. The split cavity developed in this work has the useful 

feature of easy and comprehensive access to the sample under test, and with the 

novelty of the presence of a uniform, axially directed E-field and a simple, quick 

calibration technique for arbitrary split width. It is clear that the width of the cavity 

is limited by our accuracy requirements, but the system performs well, with less than 

1% error in the real permittivity for split widths up to 4mm. If our accuracy 

requirements are not met at the prescribed split width, a complex frequency 

inversion based upon a numerical approach must be used. Furthermore, we conclude 

that this nonlinearity in the measurement is present only for samples present at the 

cavity split; pellet samples would not experience the same errors. 

 

Higher order modes were investigated and their potential uses discussed. Analytical 

integration of the cavity fields shows that for the TM010 mode, 19% of the total 

electric energy is present in the region of radius 1cm in the centre of the cavity and 

the remaining 81% is in the surrounding, outer region. In the TM020 mode, the same 

integration reveals that only 8% of the electric energy is present in the centre region. 

We therefore obtain a much greater filling factor for the TM010 mode than for higher 

order modes. 

 

Carrying out the integration throughout the sample region shows that for the TM210 

mode, the electric energy present is over six orders of magnitude less than for the 
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TM010 mode. The TM210 mode is therefore unaffected by the presence of dielectric 

samples in the centre of the cavity. This is proven experimentally, results showing 

that the presence of a sample of permittivity ε* = 3.99 – j0.47 and radius 0.68mm 

affects the mode negligibly. As a reference point this mode is invaluable, no 

dielectric sample, regardless of dielectric strength will influence the mode in this 

configuration. Any effects upon the mode are attributable to the cavity alone. 

 

The TM210 mode was used as a reference for measurement of the TM010 mode. 

Normally such a measurement would require an unperturbed cavity measurement 

first, but by using the fixed relationship between the TM010 mode and the TM210 

mode, we can establish an unperturbed frequency for the TM010 resonance without 

having to observe sample-free measurement at all. This is an advantageous 

extension of the cavity perturbation technique in terms of general convenience, but 

importantly, enables measurements to be taken over time without having to disturb 

the sample under test. 

The temperature dependence of TMmn0 modes was established and it was determined 

that the fractional frequency shift for a given temperature change is identical in all 

such modes. Over a period of twelve hours, as the ambient temperature of the 

laboratory fluctuates diurnally, the TM210 mode is shown experimentally to track the 

fractional frequency shift of the TM010 mode to a mean absolute error as small as 

0.009. The shift in frequency depends only upon the radius of the cavity and it is 

shown that temperature changes may be tracked to around a 20mK resolution for the 

TM010 mode, 10mK resolution for the TM210 mode, and even higher resolution for 

higher order modes. 

Finally, as a demonstration of the benefits of the split cavity, the photoactivity of 

powders and sheets of transparent conducting oxides is tested. Lorentzian curves are 

obtained of the real-time excitation of charge carriers into the conduction band as 

UV light stimulates the sample. This remarkable result shows the versatility of the 

split cavity for testing stimulated samples in any form. 
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3 COMPOSITES OF CONDUCTING 

PARTICLES AND TCOS AT MICROWAVE 

FREQUENCIES 
 

 

3.1   INTRODUCTION 

 

The high frequency electromagnetic properties of composite materials are of key 

importance in applications such as metamaterials, microwave heating, 

electromagnetic screening, radar absorption and plasmonic light trapping. 

Knowledge of the parameters influencing electromagnetic absorption at these 

frequencies is of particular interest and enables the effective design of composites to 

better perform their function, whether it is to create perfect lenses [48,49,50], cause 

targeted heating in substances [51], selectively absorb parts of the electromagnetic 

spectrum [52,53], or increase the efficiency of light absorption in solar cells [54]. 

 

In these areas of research it is desirable to characterize the electrical properties of 

composites of conducting particles. However, measuring the conductivity, carrier 

mobility and carrier density of conducting and semiconducting particles is a 

challenge. DC measurements of composites are not possible below the percolation 

threshold since a macroscopic current cannot flow through samples without 

complete conduction pathways. At microwave frequencies however, it is possible to 

measure the effective complex permittivity of samples and infer the electrical 

properties of constituent materials. Microwave measurement techniques are widely 

used to measure the high frequency properties of bulk dielectrics and provide a fast, 

non-invasive way to assess the complex permittivity of materials. In homogeneous 

samples, the measured loss can be directly related to the effective conductivity at the 

frequency of measurement. A recent review of microwave measurement techniques 

applied to polar liquids was carried out by Gregory et al. [55]. In this work, the onset 

of DC conduction and the associated low frequency dispersion is investigated using 

broadband frequency measurements as the concentration of conducting particles 
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approaches and exceeds the percolation threshold. Theoretical examinations of 

percolative behaviour are carried out using Lorentz models and time domain 

analysis, and random resistor-capacitor networks are used to identify possible 

‘emergent’ behaviour in composites of conducting particles. 

 

In composites of conducting particles there is a complex relationship between the 

frequency response of the system and the structure and properties of its constituent 

materials. This relationship is further complicated if the particles themselves are 

inhomogeneous. Modelling of dilute composites consisting of layered; conducting 

particles reveals a frequency dependent electromagnetic absorption that peaks at a 

characteristic frequency associated with structural and material parameters. 

Approaches to modelling the frequency dependent permittivity of mixtures suggest 

that for spherical particles with a non-conducting core and a conducting outer shell, 

this frequency of relaxation is proportional to the ratio of core volume to total 

volume (see Figure 3.8) and the conductivity of the shell [3,4]. 

 

Models of the frequency response of composites indicate that increasing the 

conductivity of the particle causes an increase in the frequency of maximum 

absorption [3,4]. In this work, it is shown that this is inadequate for the case of 

degenerately doped semiconductors. Using the simple Drude model of the 

degenerate electron gas it is demonstrated that increasing the conductivity does 

indeed increase the frequency of the absorption peak but importantly, for 

semiconductors, increasing the mobility (and therefore the DC conductivity) of the 

particle beyond a critical value leads to a decrease in the frequency of the absorption 

peak. Furthermore, the effect is present in both layered and homogeneous particles, 

though it is observed at lower frequencies for layered particles such as those 

measured in this work. The analysis in this work is entirely equivalent to the widely 

used Rayleigh formulation [56], demonstrating the wide impact of this result. 

 

In this work, the effect is measured in composites of layered, degenerately doped 

semiconducting particles and it is observed that by annealing we may increase the 

mobilities of the particles such that there is a reduction in the absorption peak 

frequency. 
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A broadband (100MHz-8.5GHz) coaxial reflectance probe [57], is used to measure 

the loss of a dilute composite of mica particles approximately 40μm in length, 

coated with antimony-doped tin oxide (ATO). The transparent conducting oxide 

(TCO) layer is degenerately doped and is of moderate conductivity. A series of 

samples is annealed at temperatures from 650°C to 900°C. It is shown that there is a 

measurable shift in the absorption peak frequency corresponding to the increasing 

electron mobility in the TCO layer.  

 

3.2 BACKGROUND 

 

In this work, Mica platelets approximately 20-30μm in length and up to 1 μm in 

thickness were coated with a layer of antimony-doped tin oxide. The degenerately 

doped layer was deposited by a sol-gel process giving rise to a uniform coating of 

~40nm thickness. A 100nm non-conducting silica (SiO2) layer was deposited as a 

diffusion barrier before the final <20nm layer of titania (TiO2) was deposited to 

prevent agglomeration of the particles. The non-conducting outer layers also serve to 

prevent percolation of charge-carriers through the composite, though samples in this 

work are below the percolation threshold and are considered to be 

electromagnetically ‘dilute’ and non-interacting. Scanning electron microscope 

images are of the resulting particles are shown in Figure 3.0. 
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Figure 3.0 – Conducting ATO coated mica platelets, with SiO2 diffusion barrier and 

TiO2 outer layer. 

 

3.2.1 Mixing Laws and Complex Dielectric Materials  

 

3.2.1.1  Introduction to Mixing Laws 

 

Predicting the effective electrical properties of complex heterostructures is not a 

trivial task. Many mechanisms contribute to the overall polarisation of a composite 

and though many theories exist to predict the overall response to an electric field, 

large differences are evident when compared to measurement. 

 

This section begins with a general discussion of composites and their effective 

response to electromagnetic fields. From first principles, some of the more common 

theoretical approaches to predicting effective electrical properties are derived. 

 

Investigation of the effective permittivity of random heterogeneous media such as 

conducting particles randomly placed in a dielectric matrix must start from the 

simplest case. Our understanding of the electrodynamic response of the composite 

may then be systematically extended to more complex scenarios such as anisotropic 

geometries or intrinsically anisotropic materials. Approaching the discussion of 

composite media in this way allows us to highlight deficiencies in mixing theories 

and modelling and enables us to seek improved methods for predicting the effective 

properties of these materials. 
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This section therefore begins with the simple model of spherical conducting particles 

in a dielectric matrix and proceeds to derive the most fundamental of all mixing 

laws, the Maxwell Garnett mixing formula. This thorough derivation will allow us to 

assess the weaknesses of the formula and others like it. 

 

3.2.1.2 The Maxwell Garnett mixing formula 

 

The spheres in Figure 3.1 are given permittivity εi. We term this the inclusion phase, 

which can be said to occupy a fraction f of the total volume. The dielectric 

background in which the spheres reside is given a permittivity εe, and it follows that 

this host phase occupies a volume-fraction 1 – f.  

 

Figure 3.1 – Distribution of spherical particles in host phase 

 

The effective permittivity of this mixture can be considered via the constitutive 

relation of the volume-averaged electric field E and electric flux density D. 

 

ED eff  (21) 

 

The averaged fields can now be considered as the sum of averaged fields in the 

respective phases weighted by the volume fractions. 

 

eeei EfEfD  )1(   (22) 

 

ee EffEE )1(   (23) 
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Now for the effective permittivity 
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The key to solving for effective permittivity is therefore to have a method of relating 

the internal and external electric fields for particles in the composite. This is 

achieved by considering the case of a single dielectric sphere placed in the host 

dielectric matrix and subjected to a uniform polarising field E0. The initially uniform 

field is deformed by the presence of the inhomogeneity, the effect of which can be 

modelled by a dipole centred at the origin. The field inside the sphere becomes a 

uniform depolarising field, and is in the opposite direction to E0. 

 

Figure 3.2 – Sphere in uniform field E0 

 

The uniform field acts along the axis z, the sphere has radius a. As before, the sphere 

has permittivity εi, and the host matrix has permittivity εo. The problem can be 

solved by taking the Laplace equation with the appropriate boundary conditions at r 

= a. The solution to 02   is unique and the problem is formulated in spherical 

coordinates to simplify the application of boundary conditions. After separating 

variables, using Legendre polynomials we can expect the solution to be of the form 

 
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lin PrA   (25) inside the sphere, 
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Outside the sphere contributions can be seen from the polarising electric field and 

from the induced dipole which distorts the uniform field around the sphere. These 

are quasistatic approximations that work well in practice [58]. At infinity  

cos0rE  and the boundary condition causes the only non-vanishing term in 

the expansion (26) to be 01 EB  . The remaining coefficients in equations (25) and 

(26) can be obtained at r = a by using the following boundary conditions. 
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For D normal to surface 
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In each series above, after imposing the boundary conditions, the resulting equations 

can be satisfied only if subsequent terms after l = 1 vanish [4], leading to 
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Solving simultaneously we have, 
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Substituting in the coefficients gives 
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We can now state from equation (33) that since Φin describes a constant electric field 

parallel to the applied field Ein < Eo as follows: 
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Returning to equation (24) and substituting we arrive finally at 
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Equation (37) is the Maxwell Garnett (MG) mixing formula. This seminal formula is 

the starting point for many approaches to analysing mixtures. Thorough analysis of 

the MG formula derivation as shown above is of fundamental importance when 

studying mixing formulas of this type and serves to expose the limitations of the 

approach. An example of the behaviour of the MG mixing formula over all volume 

fractions is given below for εi =10 and εe =1. 
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Figure 3.3 – Behaviour of the Maxwell Garnett mixing model for εi =10 and εe =1 

 

3.2.1.3  Mixing law limitations and the Clausius-Mossotti 

formula 

 

The above analysis based upon single perturbing particles can now be applied to a 

distribution of many particles in a background medium. The MG formula takes the 

polarising field to be uniform, and independent of other perturbing particles. 

However, the Clausius-Mossotti (CM) formula considers the polarisability of each 

particle as a dipole and sets the particles in a background of averaged polarisation 

densities. This must surely be an improvement on the MG external field, which 

remains ignorant of its guests in the host medium? This question may be resolved by 

examining briefly the origins of the CM formula. 

 

Note that the CM method describes the effective permittivity of a composite as a 

function of the polarisabilities and the MG formula replaces the polarisabilities with 

material parameters of the mixture. The CM formulation contains explicit detail of 

the nature of polarisation of the individual particles, but the MG formula uses only 

permittivity values and volume fractions whilst assuming spherical shape. 

 

The dipole moment p is linearly related to the polarising field as 

 

eEp   (38) 
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where the coefficient of proportionality α represents the polarisability. The dipole 

moment is proportional to the internal field within the particle, its volume, and the 

dielectric contrast between the permittivities. 

 

   dVEp iei   (39) 

 

Using the result (36) obtained earlier for Ei we may write 
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and so the polarisability can be written 
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which appears in the final CM formula for the effective medium. 

 

The average electric polarisation density is given by 

 

mixnpP   (42) 

 

where n is the number density of dipoles, which are all assumed by nature of the 

averaging to be of equal strength. pmix is the dipole moment of a single particle in the 

mixture and is different from the previously calculated dipole moment. Since 

polarisability remains constant, the local field EL around the particle must also 

change and is given by 

 

Lmix Ep   (43) 

 

Combining equations (42) and (43), 

LEnP   (44) 

 



  Chapter 3 – Composites of conducting particles and TCOs at microwave frequencies  91 

The classical approach to the external electric field is to consider that it is a uniform 

field in which the particle is placed. In reality, the external field is distorted due to 

the polarisation of the particle and the local field is increased. The contribution of 

this polarisation to the local field (also known as the Lorentz field) can be calculated 

as follows 

 

PEE
e

L
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1
  (45) 

 

This equation is governed by the shape of the particle and features the 

‘depolarisation factor’ 1/3, which is characteristic of a sphere. Substituting for <P> 

in equation (45) and rearranging for EL yields 
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Since 

PEED eeff    (47) 

 

we can substitute for <P> followed by EL, and rearrange for εeff to obtain 
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which is the Clausius-Mossotti mixing formula. 

 

3.2.1.4  Review of the classical approach 

 

The Maxwell Garnett formula is the basis for many variations that are applied in 

wide-ranging settings. It can be manipulated to apply to more complicated mixtures 

such as anisotropic materials or geometrical anisotropy caused by arbitrarily shaped 

inclusions, and even lossy materials. The MG formula can be effectively applied to 

lossy materials by the conventional approach of using a complex permittivity, 

Where 
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Where σ is the conductivity, ε0 is the permittivity of free space, and ω is the angular 

frequency. We must also note at high frequencies that the MG formula is only valid 

in the quasi-static limit (the wavelength is much greater than particle dimensions). 

 

Uncertainties 
 

The derivation started by analysing the response of a single particle in a uniform 

field. This was then adapted to account for other particles in a homogenised 

background medium, with local fields perturbed by the Lorentz contribution. This 

provides a solid theoretical base that at first glance may be considered to model well 

the behaviour of composites. It is the case however, that this analysis is based upon 

averages and homogenised fields. Real composites are not averages, and in a 

random medium whose electrical response is influenced by its microstructure, the 

precise results produced cannot provide the exact answer. It is of course not possible 

to have absolute knowledge of such a microstructure, and so we must accept some 

form of statistical approach. But having accepted this, we note that it is necessary to 

accommodate uncertainties in the structure and set about characterising them. In 

subsequent sections we shall introduce bounds as a method of quantifying the 

uncertainty of these results. 

 

Weaknesses 
 

Apart from the inherent uncertainties brought about by averaging, there are a 

number of fundamental factors that cause differences between MG predictions and 

reality. The common feature of these is that they stem from the idealised model in 

which the MG system is conceived. A factor in the geometrical dependence of the 

electrical response is the interaction between the particles. The CM formula 

accounts for the Lorentz field of each particle, but the stimulus for this contribution 

to the local field from polarisation is simply an averaged field and cannot account 

for the cumulative effect of neighbouring Lorentz contributions. In order to do so, 

we would have to completely describe the many-body problem of interacting 
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particles. 

 

Differences can also be caused by mechanisms such as percolation. When the 

concentration of conducting inclusions reaches the percolation threshold the 

electrical response of the composite changes considerably. Conducting pathways 

form across the length of the sample and current flows. It is also the case that in real 

composites clustering occurs and particles are no longer individual spheres but 

clustered conductors of random shape. 

 

3.2.1.5  Bounds on effective permittivity values 

 

As discussed in the previous section, we cannot have complete knowledge of a 

sample microstructure. Variations in the structure can alter the effective electrical 

properties of the medium and so a level of uncertainty must be accepted. In order to 

quantify these uncertainties we can produce upper and lower bounds on the possible 

values of permittivity and assert that the actual value must lie somewhere therein. To 

begin this brief look at bounds on the effective permittivity, we first examine the 

most basic limits and then discuss how, by considering more information about the 

medium, we can further narrow the allowable values. 

 

In a two-phase mixture we might expect the effective permittivity of the medium to 

fall somewhere between the permittivity values of each constituent material. This 

seems to be a reasonable assumption, but the effective permittivity of lossy materials 

can actually exceed the value of both constituents [2]. Here we treat only lossless 

dielectrics for which the assumption will hold. To state stricter bounds than this a 

two-phase mixture is considered with arbitrary volume fraction, but with the 

inclusions aligned firstly with the direction of flux and then perpendicular to the 

flux. 
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Figure 3.4 – Inclusions aligned with the electric flux and perpendicular to the 

electric flux form limits of possible effective permittivity values for the medium 

 

The effective permittivities for the two cases are 

  eieff ff   1max,  (50) 
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Each case corresponds to capacitors either connected in series or parallel in a circuit. 

These two simple limits are known as Wiener bounds. Stricter bounds exist such as 

those developed by Hashin and Shtrikman, who used a variational method to 

develop bounds for the effective permeability of a mixture, though the results are 

analogous. A functional is written for the electrostatic energy in the medium, which 

is a volume integral of the fields and polarisation densities. The stationary value of 

this volume integral can be shown to be the correct total energy value. Exploiting the 

stationary value by using various trial distributions upper and lower bounds can be 

formed, leading to the following Hashin-Shtrikman bounds [59] 
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Figure 3.5 shows the possible values of a composite with inclusions of permittivity 
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in a host matrix of permittivity 1. The Hashin-Shtrikman bounds are seen to be 

significantly stricter than the Wiener bounds. 

 

Figure 3.5 – Wiener (blue) and Hashin-Shtrikman bounds (red dash) for εi =10, 

εe =1 

 

Higher-order bounds exist which take into account correlation functions of the 

structure (such as radial distribution functions and orientational distribution 

functions) in order to characterise the microstructure and classify the material into 

still stricter bounds [60]. 

 

3.2.2 An Introduction to Relaxation in Core-Shell Structured Particles 

 

This section provides an introduction to the concepts of relaxation in small particles, 

which are further explored in subsequent sections. We consider the polarization 

behaviour of small conducting particles and explore frequency dependent behaviour. 

Small conducting particles exhibit interesting electrodynamic properties which vary 

dramatically with size, distribution, conductivity, shape and structure. Small 

homogeneous metallic particles often display loss peaks in the optical frequency 

range that are associated with resonance absorption and scattering effects. By 

adjusting the properties of conducting particles it is possible to observe a shift in 

frequency of such loss-peaks to the microwave region. In this section, the nature and 

cause of this frequency shift will be considered theoretically. 

 

Microwave absorbing materials find use in areas such as medical research, 
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telecommunications and microwave heating applications. Composite materials 

containing particles with conductive coatings provide a means to tailor dielectric 

relaxation at microwave frequencies. A thin-film related reduction in conductivity 

can be considered to contribute to the reduced-frequency relaxation effect. The 

relationship between coating conductivity and relaxation frequency is the subject of 

current research, and the literature [61] provides various examples of investigations 

of particles with conductive coatings. In Youngs et al. (2006) it states in relation to 

shifting relaxation to microwave frequencies that, “This could be achieved by using 

a filler with reduced conductivity, but there is no continuum of conductivity in 

naturally occurring materials to allow engineers to readily achieve this aim or to 

have complete design freedom.” However, in this work the use of degenerately 

doped conducting oxides does indeed allow the investigation of relaxation effects 

via a continuum of coating conductivities. 

 

3.2.2.1  Interpretations 

 

Typical dielectric relaxation of Debye form is shown in Figure 3.6. In its simplest 

interpretation, the polarisation observed is considered to be due to a gathering of 

charge at the interfaces between constituent materials. This is the so-called 

Maxwell-Wagner effect and from this starting-point we can begin to unravel the 

subtleties of dielectric relaxation in complex heterogeneous materials. 

 

Considering the bulk properties of a material with reversible polarisation, we may 

define a complex dielectric permittivity such that 
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where, 
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The real and imaginary permittivities may be given as follows 
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This well-known classical treatment of Debye [62] presents a general approach to 

time-dependent dielectric polarisation based upon τ, the relaxation time. The angular 

frequency is represented by ω, and the bulk permittivity values are split into the 

contribution from static permittivity, εs, and the contribution from electronic 

polarisation, ε∞, which is considered to be instantaneous in the microwave region 

and is responsible for the optical refractive index of the material. 

 

3.2.2.2  Loss-peaks and the relaxation time 

 

Debye behaviour is plotted in Figure 3.6. The most striking feature is a frequency 

dependent loss, which has a peak that is characteristic of the material. To fully grasp 

the physical origin of Debye behaviour, we consider the basic model of a single 

electric dipole influenced by a time-dependent electric field. 

 

The polarisation of a system will cause loss. We observe the peak loss value at a 

frequency which maximises the polarisation per unit energy applied. This frequency 

gives the characteristic relaxation time associated with the dominant polarisation 

mechanism, and since the polarisation mechanism in this system is due to charge 

transport, it could tell us something about intrinsic conduction properties of the 

material such as electron mobility. 

 

Practical materials are not expected to follow Debye behaviour closely. Broadening 

of the loss-peak occurs and often a material with Debye processes may only weakly 

exhibit the classical response, or indeed exhibit no loss-peak at all in the frequency 

region of interest as is the case for percolative conducting materials. 
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Figure 3.6 – Composite sample relaxation (red) plotted against the ideal Debye 

response (blue). See section 3.3.3 for sample details. 

 

Figure 3.6 shows the real and imaginary permittivity in the for the ideal Debye 

response (blue) and example results (red) for Merck KGaA conducting pigments 

investigated in later sections of this work. For the Debye response, we have ε∞ = 4, 

εs = 9, and the relaxation time τ, is taken as 0.5ns. The Debye model was derived for 

molecular polarisation and represents a system with a single relaxation time. Clearly, 

in a larger system, many reversible polarisations take place, all with different 

physical parameters. A real system will therefore have many relaxation times, which 

may contribute to a deviation from the Debye behaviour [63]. One might expect this 

behaviour in the system under test because of distributions in particle size, coating 

thickness, coating conductivity and variation in the spatial distribution of the 

particles themselves. 

 

As mentioned above, more than one relaxation mechanism will be present and 

multiple relaxation times will contribute to the bulk material response. This is a 

common interpretation of dielectric polarisation; however, at high dipole densities 

this approach is not rigorous. It may be useful and instructive to characterise a 

response by distributions of relaxation times, but this makes the assumption that all 

contributing mechanisms are Debye-like polarisations. Dipoles present will interact 

with each other mutually and with increasing cooperative influence, this becomes an 
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intractable multi-polar, many-body problem not adequately represented by 

relaxation times. We must be aware that values of τ in these cases may not simply be 

attributed to identifiable dipoles, but require a higher-order interpretation. However, 

in dilute systems with little or no interaction, the distribution of relaxation times 

approach may be considered a good approximation. 

 

3.2.2.3  Multi-layered particles – A closer look 

 

It is possible to tune dielectric relaxation to a given frequency by appropriate choice 

of physical parameters; most notably by choosing conductivity or those properties 

that affect charge transport.  

 

The Clausius-Mossotti (CM) approach can be used to demonstrate the effect that a 

reduction in conductivity of the particles has on the frequency response. The CM 

model considers the polarisability of each particle as a dipole and sets the particles 

in a background of averaged polarisation densities. 
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Figure 3.7 - The effect of conductivity on relaxation frequency 

 

Figure 3.7 uses the CM model and shows the real and imaginary permittivities for 

solid particles of radius 10μm and at a volume concentration of 0.3. The three 

relaxation peaks correspond to conductivities of 10
2
 S/m (solid line), 10

4
 S/m 

(dashed line) and 10
6
 S/m (dotted line). The reduced conductivity brings the 
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frequency of relaxation down considerably, though to observe relaxation at 

microwave frequencies would require a conductivity of around 1 S/m. 

 

It is possible instead, to use a dielectric particle with a conductive coating to bring 

relaxation down to microwave frequencies. To investigate this it is possible to 

extend the CM model to layered particles. The CM formula is as follows 
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3
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(58) 

 

where εeff is the effective permittivity of the sample, εe is the permittivity of the 

background medium, n is the number density of dipoles and α is the polarisability. 

Note that the 1/3 coefficient in the denominator of the CM equation is the 

depolarisation factor and is a result of the shape of the particle. It is instructive here 

to use spherical inclusions. 

 

The solution for the polarisability of the layered spherical particle in Figure 3.8 is 

formed in the same manner as for the homogeneous particle. The electromagnetic 

plane-wave incident upon the sphere induces a secondary field inside and outside of 

the body. The resultant field is then the vector sum of the primary and secondary 

fields [64]. The induced secondary field for the layered sphere is constructed in three 

parts, one for each of the regions defined in Figure 3.8. Each part is written as an 

expansion that is identical to those for the single-sphere problem, but the amplitude 

coefficients will have different values determined by the different boundary 

conditions [65]. This approach is similar to that used by Mie [66], though only the 

absorption is included in the expansion and scattering terms are neglected, with the 

assumption that we are within the long-wavelength limit (i.e. the wavelength is 

much greater than the dimensions of the particle). 
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Figure 3.8 - The layered spherical particle 

 

In the long-wavelength limit, the solution for the polarisability of the layered sphere 

in Figure 3.8 is as follows 

 

))((2)2)(2(

))(2()2)((

3

1213

1

3

2
121

1213

1

3

2
121













ee

ee

e

a

a

a

a

V  (59) 

 

The analytical solution for structures such as this can be extended to multi-layered 

spheres regardless of the number of layers. In equation (60), for N layers the 

extension ends with the terms 3

1

3 aaN  in the numerator and 3

1

3

NN aa in the 

denominator [2]. 
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Figure 3.9 - Frequency response for increasing core:layer ratio of layered 

spherical particle. The core is air and the outer layer has conductivity of 10
4
 

S/m 

 

Using the CM formulation, Figure 3.9 maps the transition from a solid conducting 

particle to a conducting layer with a dielectric (air) inner core. The particle has a 

diameter of 10 microns and as the size of the air core is increased linearly by volume 

a number of effects become apparent. The loss peak grows and reaches a maximum 

as the ratio 3

1

3

2 aa converges towards 1. The influence upon frequency is also seen to 

increase dramatically as the shell thickness is reduced. The real permittivity in the 

low-frequency region remains unaffected by the particle structure. This is because 

the core is highly screened by the conducting outer layer and the contribution to 

polarisation by the core can only be seen at higher frequencies, where the shell 

begins to act more like a dielectric. The asymptotic real permittivity value at high 

frequency is therefore seen to decrease as the influence of the low-permittivity core 

increases. 

 

The effects of changing the conductivity and layer thickness upon the frequency 

response of the layered particle are significant. It is apparent that the CM 

formulation models the behaviour of the layered structure well given the 

assumptions discussed above such as non-interaction with other particles. In 

subsequent sections, this approach will be extended to layered ellipsoidal particles. 

We shall discover that the particles under test in this work exhibit a relaxation 

frequency which is reduced to the microwave region by virtue of their core-shell 

structure and lower conductivity. However, a further reduction in conductivity may 

be associated with thin-film effects. 

increasing 

core size 

increasing 

core size 
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Size effects and surface scattering can have a significant influence upon charge 

transport and as noted above, shifts in conductivity will certainly lead to a shift in 

relaxation frequency. Very thin conductive coatings exhibit conductivities much 

lower than that of the bulk material caused by factors such as reduction in the mean-

free-path and surface roughness [4]. The contribution of surface scattering becomes 

appreciable in the size range below 100nm; certainly greater than the thickness of 

layers in the samples under test here. Discontinuities in such coatings can also have 

a dramatic effect upon scattering [67,68]. These combined effects will cause the 

frequency to be reduced still further. 

 

There is a conceptual subtlety in the polarisation of particles where screening is 

observed. The effects contributing to the imaginary permittivity of the depolarising 

particle will contribute to the real permittivity at low frequencies i.e. macroscopic 

energy storage occurs via the very mechanism that is the dominant cause of loss. 

This is one example of the intrinsic link between the real and imaginary parts of the 

permittivity. Indeed the imaginary part of the permittivity is often linked with the 

conductivity of the sample. If this conductivity is complex, then the imaginary part 

(i.e. conventionally the reactance), contributes to energy storage in an equivalent, 

capacitive sense. 

 

Another revealing result is observed when the core permittivity is larger than that of 

the outer layer. When the core of the particle is not subject to a large depolarising 

field, the polarisation due to the real permittivity of the core causes a second 

relaxation peak [69]. This double relaxation peak emerges when the loss-peaks of 

two separate polarisation mechanisms are allowed to contribute to the overall 

response. 

 

3.2.3  Mixtures At High Concentrations 

3.2.3.1  Introduction to percolation  

 

In the context of this work, the volume fraction of ATO coated mica particles 

dictates whether macroscopic percolation of conduction current can take place. At 
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concentrations of around 6% by weight in lacquer, these composites begin to 

percolate. In this section, a short introduction to the important subject of percolation 

theory is described. Subsequently, percolation investigations of Merck composites 

are presented. 

 

A non-conducting dielectric matrix, with conducting (or semiconducting) inclusions 

can be considered as a large lattice of conducting pathways. However, if the 

concentration of inclusions is low, pathways become broken or isolated and will 

form clusters. If we call p the probability of a path being occupied, then in an N
2
 

two-dimensional lattice as shown in Figure 3.10, p2N(N-1) pathways will be 

occupied. This perspective of percolation is called bond-percolation as opposed to 

site-percolation, where occupied or vacant adjacent sites determine percolation 

rather than the connecting bonds. 

 

 

Figure 3.10 - Lattice exhibiting bond percolation 

 

As the concentration of inclusions is increased, clusters will grow until eventually 

one will stretch across the entire lattice becoming an infinite cluster, it is now said to 

percolate through the system. The probability pc, at which this occurs, is called the 

percolation threshold or the critical threshold. Peculiar phenomena are observed at 

this threshold, and do not necessarily translate to larger lattices. It is at this threshold 

that one first observes percolation across the lattice and in the terminology of phase 

transitions we see a ‘critical slowing down’. For example, in a conductor-insulator 
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composite, newly formed conducting pathways will have greatly varying values of 

resistance. On an infinite scale, these varying values at the phase transition 

aggregate to an ‘emergent’ trend. These features are called critical phenomena and 

are described by scaling theory. The study of critical phenomena has applications in 

many fields e.g. analysing the advancement of forest fires or idealised models of oil 

fields to determine the probability of oil reservoirs being present [70]. Basic scaling 

theory examines the structure of a cluster as a representative of the entire lattice i.e. 

its nature on many length scales. 

 

Taking a very small sample of the lattice in Figure 3.10, can properties such as 

average cluster size or proportion of occupied bonds of our sample be considered 

truly representative? To answer this question we consider a bond placed in the 

largest cluster of a percolating material with p > pc. Placing a frame of size S×S 

around this point and counting the number of bonds belonging to the cluster f(S), we 

see that within the cluster f(S) grows linearly with S
2
. However, around the 

percolation threshold, the cluster may have holes or include other clusters. f(S) will 

no longer grow linearly with S
2
, but instead grows linearly with S

d
, where d may be 

1.9 or some value below the initial dimension. We now have dSSf )( , where d is 

the fractal dimension of the lattice. Relating this to the case of conducting inclusions 

in a dielectric matrix, if f(S) grows with S
1.9

, the average density of conducting 

pathways can be considered to decay as S
-0.1

. Therefore, for a sample of size 10cm 

the average density of conducting pathways will be (10
4
)
-0.1

 ≈ 0.4 that of a sample of 

10μm. 

 

Scaling behaviour such as this must be taken into consideration when modelling 

cells of dielectric materials. The applicability of the model to the generalised or 

‘infinite’ case must be carefully scrutinised. However, the density of conducting 

pathways becomes uniform when considering length scales of sufficient size, ξ, 

which is called the correlation length. For our example, we can now say that f(S) is 

proportional to S
1.9

 below the correlation length and proportional to S
2
 above it. The 

correlation length may be considered to be a measure of the largest hole in the 

largest cluster and a sample larger than this length should be used in order to model 

larger structures accurately. 
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3.2.3.2  Time domain analysis and the Lorentz model 

 

The overall electromagnetic frequency response of any composite sample can 

fundamentally be divided into two contributions: the first from current percolation 

between particles; the second from the polarization of particles. In order to model 

the behaviour of such samples, we examine the form of the contribution from each 

individually and combine them in the final model, attributing appropriate critical 

behaviour to the percolative contribution as a function of particle volume 

concentration. 

 

Starting in the time domain, the polarization of a particle is described and is related 

to frequency domain behaviour. In this way we are able to directly relate the 

frequency response to the many material and geometrical factors influencing 

polarization. Initially, non-percolating, polarizing particles are modelled using a 

Debye-type formulation. This instructive approach highlights the factors influencing 

the frequency response. We then look in more detail at the influence of the structure 

of the polarizing particles. Percolation of conduction current will then be examined 

using the Drude model to explain the low frequency dispersion present in 

percolating samples. Again, this approach will be further developed to look in more 

detail at the material and structural influences present. We then obtain a 

comprehensive final model, which combines the percolative, Drude-like behaviour 

and the polarising Debye-like behaviour. 

 

THE POLARIZING PARTICLE AND THE LORENTZ MODEL 

 

The familiar form of Debye-type relaxation can be understood by considering the 

response of a polarizing particle in the time domain. Upon application of the 

polarizing electric field, the bound charge distribution immediately begins to move, 

until there is a saturation of polarization. This is demonstrated by the susceptibility 

kernel 
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     tAett   (61) 

 

where Θ is the Heaviside function, which is unity for all positive values and zero 

otherwise, A is a constant and τ is the relaxation time. This exponential decay in the 

time domain is observed in Figure 3.11a) , the Fourier transform of which leads us 

directly to the common form for Debye polarization in Figure 3.11b). 
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Figure 3.11 – a) Susceptibility kernel for Debye polarization in the time domain 

and b) real (dotted line) and imaginary permittivity frequency response for the 

Debye model. 

 

The frequency behaviour shown in Figure 3.11b) can be described by the Lorentz 

model of an oscillating system. This model is often used to describe plasmonic 

resonances observed at optical frequencies and accounts for the resonance 

absorption responsible for the brilliant colours in optical pigments. The Lorentz 

equation describes the frequency dependent complex permittivity as follows: 

 

 
vj

p







  22

0

2

0  (62) 

 

where ε∞ is the high frequency permittivity, ε0 is the static permittivity, ωp is the 

plasma frequency, ω0 is the resonance frequency and v is the damping amplitude. 

 

We now examine the relationship of this phenomenon to the dielectric relaxation 
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observed in Merck pigments (further described in subsequent sections) in order to 

cast light upon the nature of contributing mechanisms. We then further extend the 

model to describe the behaviour of percolating pigments observed in section 3.3. 

The form of dielectric relaxation observed in conducting pigments may be viewed as 

an overdamped resonance in the Lorentz-type system. The effect of the increased 

damping is to cause a reduction in both frequency and magnitude of the imaginary 

permittivity. 
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Figure 3.12 – Imaginary permittivity of the Lorentz system under increased 

damping. The system moves away from resonance and the loss magnitude 

becomes stable at some lower value. 

 

Figure 3.12 shows the imaginary permittivity of a Lorentz system under increased 

damping. The loss peak reduces in frequency and magnitude, and takes the form of 

the Debye-type response observed in Merck pigments as the damping amplitude v is 

increased. This revealing approach suggests that a deeper understanding of the 

causes of observed frequency behaviour may be obtained by directly relating charge 

transport mechanisms in the ATO layer to damping effects in the oscillating system. 

That is to say, such effects as surface scattering and scattering due to the 

polycrystalline nature of the ATO layer, which are issues of electron mobility, may 

be distinguishable from factors of carrier density. 

 

THE PERCOLATING LORENTZ MODEL 
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We now look at the application of the Lorentz model to percolating samples, before 

combining percolating and non-percolating conditions within the framework of 

polarizing pigments. 

 

Using the Lorentz model, we have determined that the damping amplitude affects 

the location and form of the loss-peak in the frequency domain. Damping has a 

substantial effect upon the response of percolating samples also, but to explore the 

fundamental differences we return to the time domain. Upon application of the 

polarizing electric field, the charge (which is no longer bound as in the non-

percolating case) begins to move, but there is no saturation of polarization. The 

charge continues to move as the current percolates through the network of touching 

particles. This is described by the susceptibility kernel (see Figure 3.13a) below) 

 

     tvp
e

v
tt  1

2

0


  (63) 

 

where Θ is the Heaviside function, ε0 is the permittivity of free space, ωp is the 

plasma frequency and v is the damping coefficient.  

 

The freedom of charge carriers is reflected in the continued response of Figure 

3.13a), the Fourier transform of which reveals in Figure 3.13b), the low frequency 

dispersion familiar to percolating materials. 
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Figure 3.13 – a) Susceptibility kernel for the Drude model of current 

percolation in the time domain and b) imaginary permittivity frequency 

response for the Drude model. 

 

The percolating and non-percolating models differ a great deal in the time domain 

and consequently in their frequency response. The fundamental difference is simply 

that the non-percolating particles exhibit interfacial polarization, whereas in 

percolating samples charge does not necessarily accumulate at such interfaces, but 

will continue through neighbouring conducting layers. 

 

In the Lorentz system of equation (62) this may be modelled by setting ω0 = 0, 

giving 

 

 
vj

p







  2

2

0  (64) 

 

which is shown in Figure 3.13b). This is the Drude model for frequency dependent 

permittivity. 

 

 

THE INDEPENDENCE OF RELAXATION TIMES FOR DRUDE AND 

DEBYE-TYPE RESPONSES 

 

It is clear that low-frequency dispersion associated with percolation is present in 

samples above the percolation threshold. The fully conducting sample would 

therefore have a monotonically decreasing imaginary permittivity as frequency 

increases. But how should this emerge? At a frequency of 0 Hz, the direct current 

cannot flow until the percolation threshold is reached, at which point we observe a 

first order critical transition to the conducting state. However, for alternating current 

the transition between such states behaves differently depending upon the frequency 

of observation and the position in the frequency domain relative to the relaxation 

frequency of the medium. It is clear that the time domain behaviours exhibited in 

Figure 3.11a) and Figure 3.13a) are related by the charge transport properties of the 

medium, but to determine to what extent, we must examine the structure of the 
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sample further. Given the frequency behaviour of fully percolating i.e. conducting 

samples, we might expect the lower ‘leg’ of the relaxation frequency response to rise 

as the percolation threshold is reached.  

 

 

Figure 3.14 – Schematic rise of the lower ‘leg’ of the imaginary permittivity as 

percolation begins. 

 

In Figure 3.14 the expected development of low frequency dispersion as the 

percolation threshold is traversed is shown schematically. The Drude-type response 

present in percolating systems develops from the relaxation peak of the non-

percolating system. Such a system shall be investigated experimentally in section 

3.3.3. 

 

3.2.4  The Broadband Coaxial Probe  

3.2.4.1  Principles 

 

The high frequency measurement of composites has been carried out using cavity 

resonance methods, providing accurate results at fixed resonant frequencies. 

Broadband measurements, however, can provide yet more information about a 

material. Broadband reflectance probes are used through microwave frequencies 
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(typically 0.1 – 10GHz) to yield signature complex plots of electrical characteristics 

for composites under test. The greatest advantage of the coaxial probe over other 

open-ended electromagnetic sensors is its effectiveness in non-destructive 

measurements over a broad frequency band, exposing polarisation phenomena and 

electrical behaviour across a large spectral range. 

 

The coaxial reflectance probe operates on the basis that the echo signal produced at 

the end of a coaxial cable is characteristic of the material terminating it. The fringing 

electromagnetic fields at the end of the probe interact with the sample; knowledge of 

this behaviour and the fields around the aperture lead us to the apparent aperture 

admittance. 

 

 

Figure 3.15 - The coaxial probe electric field distribution 

 

Figure 3.15 shows a COMSOL finite element model of the coaxial probe used in this 

investigation. The coaxial cable is connected to a broadband signal source, in this 

case a Vector Network Analyser (VNA) and the probe end is left as an open circuit. 

Signals generated by the VNA are partially reflected back from the interface and the 

VNA yields a complex reflection coefficient, ρ. 

 

When the open end is simply air-terminated, the electromagnetic fields at the end of 

the probe are evanescent, negligible power is transmitted and the reflection 

coefficient, |ρ| ≈ 1. The end of the probe effectively acts as an air-spaced capacitor. 

If instead of the air termination a dielectric is placed at the coaxial aperture, the 

phase and magnitude of ρ are affected greatly by the complex permittivity ε*, of the 

material. Where 
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  j*  (65) 

     

ε’ is the storage term and can be attributed to the polarisation, and ε” is the loss term. 

The permittivity of the terminating material influences the fringing fields of the 

probe. In this way it is possible to generate characteristic plots of the dielectric 

properties of materials across broad frequencies [71]. 

 

Figure 3.16 below shows the raw data taken from the VNA. It shows a plot of the S11 

parameters taken from 300kHz to 8.5GHz.  
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Figure 3.16 - Raw data obtained from VNA 

 

Plot ρ0 in Figure 3.16 is for the air terminated probe. Starting at the point 1+j0, it 

can be seen that as the frequency increases, the phase θ, of the reflection coefficient 

also increases. However, the losses remain negligible even up to 8.5GHz and the 

magnitude is still around 1. Plot ρ1 shows the S11 parameter for the dielectric sample 

Minatec Gold TAT21/05, provided by Merck KGaA, which clearly exhibits a 

significant phase change and loss. The right hand chart in Figure 3.16 shows the 

ratios of ρ1 and ρ2 for three different measurements. 
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3.2.4.2  Inversion 

 

The reflection coefficient, ρ, is given by 

0

0

ZZ

ZZ

L

L




  (66) 

 

where ZL is the impedance of the load and Z0 is the characteristic impedance of the 

source (50Ω). 

 

Considering load admittance and the associated phase of the reflection, we have 
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The phase information included in this reflection coefficient is frequency dependent, 

but it will also include an additional phase change due to the electrical length of the 

probe itself, here denoted by e
jθ

. The VNA is only calibrated to the plane of the port, 

so to account for the difference in electrical length we eliminate the e
jθ

 term by 

dividing ρ by the reference measurement, ρair, which has the same phase change. 

Thus 
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 (68) 

 

If the aperture admittance of the air terminated probe is known, it becomes trivial to 

extract the aperture admittance of the sample under test, YL. It is at this point that a 

model is required relating the aperture admittance to the material properties. This 

will enable us firstly to determine the aperture admittance of air (as the material 

properties of air are well documented), allowing us to extract YL from equation (68), 

and secondly, it will enable us to relate the newly extracted YL, to the effective 

permittivity of the sample. 

 

A discussion of the approach to modelling aperture admittance follows in 

subsequent sections. The model used in this work, reduces finally to 
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)( 352/5423  OCjBjAYL   (69) 

 

where the coefficients A, B and C are determined by the geometry of the aperture. 

However, subsequent terms in this series expansion tend to zero with the assumption 

that the aperture of the probe remains electrically small and radiation is negligible, 

giving 

 

jAYL   (70) 

 

The coefficient A can now be determined experimentally or analytically for the 

geometry of the probe in use. For the probe in this work, A was determined by 

measuring dielectrics of known permittivity, yielding a result of 8.2 ± 0.5 × 10
-15 

Ω
-

1
s. This may be interpreted as quantifying the fringing field entering the material 

from the end of the probe.
 

 

In practice, this technique requires a calibration measurement to be taken for each 

set of measurements, but measurements take seconds to complete and the calibration 

is carried out by simply removing the sample from the probe and exposing it to the 

air. The inversion is then completed automatically. 

 

The procedure does require that a good contact is made between the aperture and the 

material, but using a simple clamping mechanism the procedure is effective and 

robust. 
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Figure 3.17 - Minatec Gold TA-T 21/05 broadband measurements 

 

 

Figure 3.17 shows measurements of the sample Minatec Gold TAT 21/05 taken at 

the same position on the sheet sample.  The top graph plots the real and imaginary 
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permittivity components against frequency and the bottom graph plots the real 

against the imaginary parts at a frequency of 2.737GHz. The technique is shown to 

be repeatable and accurate and a clear frequency dependence emerges for both 

polarisation and loss terms of the permittivity. The reflectometric coaxial probe 

technique is useful in characterising solid dielectrics, but it also has uses in 

characterising liquids. If the probe is simply dipped into a liquid, the same 

measurement can be performed with ease, and with greater accuracy. There is no 

longer an issue caused by poor contact between the probe and the material. 

 

3.2.4.3  Modelling the probe 

 

In order to extract the permittivity from measurements of aperture admittance, the 

electromagnetic fields at the end of the probe must be modelled. Modelling of open-

ended coaxial lines can be traced back to the work of Levine and Papas [72,73] who 

derived variational expressions based on integral equations for the aperture electric 

and magnetic fields. These expressions assume an infinite conducting flange and 

that the field distribution is of the dominant TEM mode and is proportional to 1/ρ. 

More recent formulations for determining aperture admittances also make this 

assumption and although this is acceptable at lower frequencies, at higher 

microwave frequencies the aperture is not electrically small and excites higher order 

modes that must be accounted for in analysis, the extent to which they must be 

accounted for has been investigated with conflicting conclusions [57].  

 

It has become common for researchers to use simpler expressions of the aperture 

admittance that yield satisfactory results for a range of frequencies and 

permittivities. One such expression was derived by Misra [74,75], basing the 

analysis of the aperture on a model of two capacitors and a conductance. One 

capacitor represents the fringe field in the line and the other represents the field in 

the material. The conductance represents the power radiated from the end of the line. 

By making a quasi-static approximation to the integrand in a variational expression 

for the aperture admittance we obtain 

 



  Chapter 3 – Composites of conducting particles and TCOs at microwave frequencies  119 

   




















b

a

b

a

jkr

L ddd
r

e

a

b

kj
Y 







0

2

0

2 )cos(

ln

2
 

(71) 

 

using a cylindrical coordinate system (ρ, φ, z) where primed coordinates represent 

source points and unprimed represent field points, a and b are the inner and outer 

conductor radii respectively, k is the wavenumber in the material and 

  2/122 )cos(2  r  (72) 

 

As described above, the solution to this elliptic integral reduces to equation (70), 

allowing the inversion to effective permittivity values of the sample. 

 

3.2.5  The Split Post Dielectric Resonator 

3.2.5.1  Principles 

 

The split post dielectric resonator (SPDR) provides an accurate technique for 

measuring the complex permittivity of dielectric sheets and thin films at a given 

frequency [76,77] and will be used in subsequent sections to determine the sheet 

resistance of composite samples. This is a resonant perturbation method similar to 

those in chapter 2, but is included here because it is well-suited to the measurement 

of sheet samples and thin-films. This is because of the non-depolarising TE011 field 

into which samples are inserted. The SPDR consists of a high permittivity, low-loss 

dielectric post, which is encased in a metal cavity to prevent radiation losses. If the 

dielectric post is formed of two cylindrical pieces with a small gap between them, 

the electric fields of the TE011 resonant mode behave as if the gap were not there. 

Sheet samples may be inserted into the split in order to perturb the fields and make 

measurements in the same way as in the cavity perturbation methods of chapter 2. 
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Figure 3.18 – Cross section of the TE011 mode E-fields in the split post dielectric 

resonator 

 

Figure 3.18 shows a finite element model of the SPDR electric fields. The Electric 

field is mostly contained in the high permittivity dielectric regions. The ‘ring’ of 

high electric field formed at the gap is the location at which the sample is being 

measured. The sample must therefore be larger than radius of the dielectric 

resonator, but thinner than the gap in order to fit into the high E-field region. 

Practically the dielectric resonator is held in position by a low-loss PTFE casing. For 

a (Zn,Sn)TiO4 resonator of radius r = 1cm and with aluminium housing, we achieve 

a quality factor in excess of 8000. The circularly polarized E-field of the TE011 mode 

is parallel to the inserted sample and since minimal depolarisation occurs, the 

sample is fully penetrated by the interrogating field.  

 

No special sample preparation is needed and so this non-contact, non-destructive, 

highly sensitive technique offers the most accurate high frequency dielectric 

measurements for sheets and thin-films available. 

 

Using the same approach to resonant measurements as in chapter 2, we take 
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where A is a constant which depends upon the resonator geometry and t is the 

sample thickness.  
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In subsequent sections, this technique will be used to measure the sheet resistance of 

composite samples containing conducting particles. When measuring sheet 

resistance, the measurement becomes invariant with sample thickness since 
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3.3 ELECTROMAGNETIC ABSORPTION 

THROUGH THE PERCOLATION 

THRESHOLD 

 

3.3.1 Random Resistor Capacitor Networks, Emergent and Universal 

Properties 

 

Very large networks of random resistors and capacitors can be used to model the 

heterostructures of random media. Two-phase conductor-insulator materials are 

represented by lattices of lumped components, which can be simulated across a 

range of frequencies to investigate the many phenomena observed in composite 

materials. 

 

Conducting inclusions within a dielectric matrix alter the field distribution across the 

material and provide regions for charge storage, increasing the effective capacitance 

of the structure. Above the percolation threshold, these inclusions form conducting 

pathways with associated resistances, but also associated with the inclusions are 

capacitive effects brought about by the geometry of the heterostructure. 

 

Figure 3.19 - The capacitive nature of heterostructures 

 

 

It can be seen in Figure 3.19, that as conducting inclusions overlap and make contact 

with each other, they form resistive and capacitive cells. In the material under test, 
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these capacitive properties manifest themselves as a frequency dependence leading 

to a complex admittance for bulk material properties. Investigations of these 

structures may be carried out by constructing random networks of lumped capacitors 

and resistors in parallel, then reducing the network to an equivalent admittance over 

a range of frequencies. 

 

 

 

Figure 3.20 - The random RC network (n = 5) 

 

 

The model is constructed in the MathWorks software Matlab. At random, 

components are allocated positions in the lattice until all positions are filled to a 

preset proportion (e.g. 60% capacitors, 40% resistors) as shown in Figure 3.20 for a 

square lattice of width n = 5. Capacitors and resistors are then given values of 1nF 

and 1kΩ respectively. 

 

To reduce the network to an equivalent complex admittance, an algorithm derived 

by Frank and Lobb [78] is used. This is based upon star-delta transforms throughout 

the lattice, which take the admittance of each bond and iteratively reduce the mesh 

to a single admittance. This process can then be carried out across a range of 

frequencies and be repeated for many random configurations of the constituent 

components, to obtain distributions of frequency responses. 
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Figure 3.21 - Frequency response of RC networks showing percolative 

behaviour, firstly with an R:C ratio of 40:60, then with a ratio of 50:50. In each 

case values of 1nF and 1kΩ are used. 

 

The top graph of Figure 3.21 shows results generated by the simulation at a lattice 

size of n = 20 (722 components) and at a proportion of 40% resistors (the remaining 

60% are capacitors). It has been shown mathematically that the percolation threshold 

for 2D resistor-capacitor networks is 50% [70]. The graph shows the outcome of 60 

randomly generated lattice configurations. Clearly, as the proportion of resistors is 

below the percolation threshold, at low frequencies the equivalent impedance of the 
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network is extremely high, since at DC capacitors are effectively open circuit. As the 

frequency increases to the microwave region, the impedance of the percolating 

capacitors is dominant and the effective impedance of the network becomes very 

small. In the lower graph of Figure 3.21, the lattice size is again n = 20 (722 

components), but 50% of components are now resistors (and the other 50% 

capacitors). At the percolation threshold, we now observe randomly generated cases 

of both resistor percolation and capacitor percolation. 

 

The graphs of Figure 3.21 highlight an interesting result of the simulation. In the 

central frequency region there appears a fractional power law behaviour, which it 

has been suggested [79], directly relates to the composition of the lattice.  

 

The existence of anomalous power law frequency dependence in dielectric materials 

has been a longstanding problem [80,81,82]. It was proposed that the power law 

behaviour exhibited by many materials could be linked to the permittivity and 

conductivity response of two-phase conductor-insulator networks and equivalently, 

RC networks [83,84,85]. Almond et al. showed that the electrical response of 

conductor-insulator composites could be predicted by a simple phenomenological 

logarithmic mixing rule known as Lichtenecker’s rule [86], based on the discovery 

that large RC networks exhibit properties that conform to these expressions [87]. 

This power law behaviour has been described as an ‘emergent’ property of the 

networks [85], which is ‘universal’ in relaxation processes [63]. The complex 

conductivity of a network is given as [85] 
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where x is the  proportion of the network occupied by capacitors. We have, for the 

real part of σ*, Re(σ*) = σ 
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and for the imaginary part of σ*, Im(σ*) = jωC, which is the admittance of the 

network 
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Figure 3.22 shows the conductivity of networks with an RC ratio of 50:50, where R 

= 1kΩ and C = 1nF. For a lattice size of n = 10 (162 components), the power law 

behaviour spans two decades in frequency and is centred around a characteristic 

frequency given by 1 / (2πRC). But if we increase the size of the lattice to n = 40 

(3042 components), the power law region expands to cover more of the frequency 

range. 

 

Figure 3.22 – Frequency dependent conductivity of RC networks with an RC 

ratio of 50:50, for 30 permutations each of n = 10 (162 components) (red), and n 

= 40 (3042 components) (blue). 

 

As the lattice size increases, the computational intensity increases exponentially, but 

in real composites, the effective lattice size is much larger than computationally 

achievable in RC network models and the power law region must span a very much 

larger frequency band. At low frequencies, we may expect the conductivity to 

asymptotically approach some DC value. But at what frequency might we expect 

this asymptotic behaviour to cause a deviation from the power law? A number of 
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factors influence the extent of the power law region at low frequencies. In the 

context of a random RC network, we note that the higher the proportion of resistors, 

the higher the DC conductivity and from Figure 3.22 we also see that as the size of 

the lattice becomes larger, the DC conductivity is decreased. This is easily explained 

since in the former case, the extra resistors are placed in parallel pathways replacing 

the capacitors, but in the latter case, proportionally the same number of parallel 

pathways exist, but more resistors in series results in a lower conductivity. It is 

proposed that the power law behaviour itself is related to the composition of the 

lattice, and for a lattice composed 40% of capacitors, we obtain a slope of 0.4 [88]. 

 

Figure 3.23 – Power law behaviour of R = 0.4 (blue), R = 0.5 (red) and R = 0.6 

(black), for  n = 40 (3042 components) with 5 iterations each. Based upon the 

component values, the characteristic frequency is 1.5915×10
5
 Hz 

 

Figure 3.23 shows the conductivity slopes at the characteristic frequency for 10 

permutations of the lattice with RC ratio 40:60 (blue), 10 permutations of 50:50 

(red), and 10 permutations of 60:40 (black) and each with n = 40 (3042 

components),  where R = 1kΩ and C = 1nF. We observe the following results 

RC ratio 40:60 (blue trace) 50:50 (red trace) 60:40 (black trace) 

Gradient 0.571 0.495 0.419 

Table 10 – Gradients in the ‘emergent’ anomalous power law dispersion region 

for different RC ratios. 
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As shown in the literature, the slopes correspond to the proportion of capacitors 

present in the lattice. But how does this correspond to real composite materials? In 

Almond et al. 2006 [88], results are given for 3D network simulations which exhibit 

the same power law behaviour as in the 2D networks, this suggests that the 2D 

results may be applicable to real percolating structures. Almond goes on to present 

results for a lead zirconium titanate (PZT) powder, sintered to form a low-density 

pellet. Water was infused into the porous pellet to form the conducting phase. In this 

case the slopes for the measured samples matched the porosity of the PZT pellet, 

corresponding to the proportion on insulating (capacitive) phase present. Clearly this 

indicates that the same power laws govern the resistor-capacitor networks and the 

water-PZT samples, and are dependent upon the proportion of capacitive and 

conductive phases. We now investigate to what extent these principles apply to the 

composites of conducting particles examined in this work. 

 

Experimental 

 

Mica platelets approximately 20-30μm in length and up to 1 μm in thickness were 

coated with a layer of antimony-doped tin oxide. The degenerately doped layer was 

deposited by a sol-gel process giving rise to a uniform coating of ~40nm thickness. 

The platelet particles were annealed in air for 30 minutes 700°C. The coated 

platelets were then dispersed in a solvent based lacquer, based on a polyacrylate and 

nitrocellulose mixture. Ten samples were prepared for measurement by dispersing 

the coated particles in the lacquer at concentrations (by weight) of 1% to 10%, and 

then applying a layer of the mixture around 50 μm thick, to 100 μm thick PET sheets 

(of low dielectric loss). The resulting sheet samples were then cured prior to 

measurement, giving dry particle volume concentrations of 2.6%, 4.8%, 6.8%, 8.6%, 

10.2%, 11.6%, 12.8%, 14.0%, 15.1% and 16.0%. 

 

The coaxial probe technique as discussed in section 3.2.4 is used to measure the 

broadband (200MHz-8.5GHz) conductivity of the samples. A schematic diagram of 

the novel miniaturised coaxial probe used in this work is shown in Figure 3.24, 

based on an Anritsu K-connector (here K102F), which has an inherent bandwidth 

from DC up to 40 GHz. The connector’s glass bead provides a convenient coaxial 

aperture, which can be ground flat and then polished using fine emery paper. The 
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probe’s inner and outer radii are a = 0.15mm and b = 0.80mm, respectively. Hence 

the aperture remains electrically small (i.e. wavelength much larger than b – a) over 

the full range of measurement frequencies (up to 8.5 GHz). 

 

 

Figure 3.24 – Schematic diagram of the coaxial probe and sample fixture.  

 

The thick film samples were placed against the aperture of the coaxial reflectance 

probe. With the sample flat and in intimate contact with the aperture, measurements 

of the voltage reflection coefficient S11 were taken in the range 100MHz to 8.5GHz 

using an Agilent ENA 5071B Vector Network Analyser (VNA). The calibration 

plane is shifted to the aperture plane by first measuring the probe without the sample 

and then using this to normalize the sample data. The complex permittivity of the 

sample was calculated using the simple inversion process based on a capacitive 

aperture admittance model described in previous sections. 
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Results and discussion 

 

Figure 3.25 – Broadband measurement of the frequency dependent 

conductivity of conductor-insulator composites at volume concentrations of 

2.6% (bottom trace) through to 16.0% (top trace). 

 

PVC (%) 2.6 4.8 6.8 8.6 10.2 11.6 12.8 14.0 15.1 16.0 

Gradient 0.932 0.929 0.886 0.810 0.787 0.726 0.705 0.716 0.745 0.735 

Table 11 - Gradients in the ‘emergent’ anomalous power law dispersion region 

for different particle volume concentrations (PVC). 

 

The frequency dependent conductivity of the ten samples is shown in Figure 3.25 

and their gradients are shown in Table 11. 

 

In Figure 3.25 the frequency dependent conductivities show the characteristic 

change in gradients, with low frequency dispersion present for the higher 

concentration, percolating samples. We assume the higher frequencies measured to 
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be above the low frequency dispersion regime and in the anomalous power law 

dispersion regime. All gradients are therefore taken from this region. 

 

From Table 11 we see that the gradient decreases as the proportion of the capacitive 

phase decreases, just as in our RC network interpretation. Indeed, with 97.4% 

capacitive phase by volume (2.6% PVC), we have a gradient of 0.93, which 

overestimates the role of the conductive phase somewhat. This trend of 

overestimation by the experimental results continues, until at 84% capacitive phase 

by volume (16% PVC), we have a gradient of 0.73. 

 

The conductor-insulator composite system here deviates from the predicted 

behaviour of the power law, though emergent behaviour is present. We can learn 

about conductor-insulator composites by this perspective, but the application of the 

anomalous power law is only valid for particular systems. The RC networks have 

lumped element resistors and capacitors; in a real composite the equivalent 

resistances and capacitances are distributed. But for equivalence, the regions 

occupied by the distributed resistances and capacitances should have the same aspect 

ratios. Since 
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From [88], when 
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Equation (77) is useful for predicting the power law response of samples that behave 

like RC network, i.e. they satisfy the scaling condition
l

A

l

A




 . In the PZT pellet 

used by Almond et al., the water (conductive) phase and the PZT (capacitive) phase 

make a good approximation to this condition. A real material satisfying the aspect 

ratio condition might be a packed cubic arrangement of conducting and insulating 

cubes. 
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In the conducting composite measured in this work however, this scaling condition 

is not satisfied. The conductive phase is in the form of platelets, which may diminish 

any capacitive effects. Certainly this is what is suggested by the experimental 

results, since for composites obeying equation (77), the gradients would be higher 

and so, in the power law interpretation, the capacitive effect may be suppressed 

relative to the PZT case. 

 

3.3.2  Direct Current Versus High Frequency  

 

3.3.2.1  Experimental 

 

Current research into the nature of percolation and the percolation threshold is 

almost always in a static (0Hz) regime. This stems from the use of critical 

phenomena such as percolation to study such things as the advancement of forest 

fires or idealised models of oil fields to determine the probability of oil reservoirs 

being present. Scaling theories were developed in order to service these real world 

application areas. Following this pattern, in the literature, the approach to 

investigating the percolation threshold electrically is inevitably, also at DC, since the 

fundamental mechanisms of current percolation are inherently DC phenomena. In a 

conductor-insulator composite, as the concentration of conducting inclusions is 

increased and the percolation threshold is approached, a critical phase transition is 

observed and the DC resistance of the macroscopic sample reduces dramatically as 

the bulk sample becomes conducting. Practically, below the percolation threshold 

conventional Ohmmeters and high voltage Ohmmeters reach a maximum resistance, 

beyond which meaningful measurement cannot be taken. 

 

At high frequencies, measurements of the conductive properties of the particles in 

the composite may be taken below the percolation threshold. Even though no full 

conducting pathways exist, there is now a contribution from the displacement 

current, the mechanism of which in conducting particles is still conventional charge 

transport. In this way, a high frequency sheet resistance can be obtained and 

compared with the DC sheet resistance above and below the percolation threshold. 
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To investigate the effects of high frequency conduction through the percolation 

threshold, samples were prepared with conducting particles dispersed in a polymer 

matrix. Each sample has an increasing concentration of conducting particles in order 

to observe the electrical properties as we approach the percolation threshold. 

 

For the percolating particles, as in the previous section, mica platelets approximately 

20-30μm in length and up to 1 μm in thickness were coated with a layer of 

antimony-doped tin oxide. The degenerately doped layer was deposited by a sol-gel 

process giving rise to a uniform coating of around 40nm thickness. After drying and 

annealing at 700°C, the particles are distributed in a lacquer at concentrations of 1% 

to 10% by weight and applied to PET sheets. 

 

For DC measurements a conventional digital multimeter (DMM) is used for sheet 

resistance above the percolation threshold, but for below the percolation threshold, a 

high voltage (HV) METRISO 5000D-PI [89] Ohmmeter is employed . 

 

High frequency measurements are carried out using a split post dielectric resonator 

(SPDR) operating at 2.8 GHz. The principles of operation of the SPDR are similar to 

those of the cavity resonator in chapter 1, but the SPDR is optimised for sheet 

measurements (see section 3.2.5 for details of the split post dielectric resonator). 
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3.3.2.2  Results and discussion 

 

 

Figure 3.26 – High frequency and Direct Current measured sheet resistance of 

composites of conducting particles at concentrations through the percolation 

threshold. 

 

The onset on percolation is clear in the DC sheet resistance measurements at 

between 4% and 5% particle concentration by weight in lacquer (i.e. before the 

sample is cured). Far below the percolation threshold a limiting value is produced by 

the HV Ohmmeter since no current can flow at all. Above 3%, it is clear that a small 

level of percolation is achieved, bringing the DC sheet resistance down to GigaOhm 

values. The decrease is sharp and characteristic of a first order critical phase 

transition. 

 

The high frequency measurements of sheet resistance have no limiting values at 

concentrations far below the percolation threshold because at microwave frequencies 

we are able to detect the presence of the low concentration particles and their 

associated displacement current. Indeed, the percolation threshold itself remains 

invisible to the microwave measurement and we simply observe a smooth curve 
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describing the increasing quantity of conducting particles in the sample. This 

approach is clearly advantageous and measurements of conducting particles may be 

made irrespective of their concentration. In the following section, we investigate 

percolation at a broad range of frequencies and determine over what frequency range 

such measurements transcend the effects of percolation as in the case of Figure 3.26. 

 

3.3.3  Broadband Investigations 

 

3.3.3.1  Experimental 

 

In order to systematically investigate the shift from non-percolating to percolating 

composites it is necessary to isolate the mechanism of percolation in a controlled 

experiment. To achieve this, factors affecting the electromagnetic frequency 

response such as the bulk polarisation density must remain unchanged. 

 

As discussed in section 3.2.3, if we take   j* , the imaginary permittivity 

may be related to the conductivity of the sample by 0  . In section 3.2.3, 

the onset of percolation was described by an increase in low frequency conduction 

of the macroscopic sample, corresponding to growth in cluster size as the conducting 

particles begin to touch. Low frequency dispersion is observed in percolating 

samples, but by simply increasing the concentration of conducting particles to reach 

the percolation threshold, we increase the number of polarising particles and also the 

quantity of conducting material. This would significantly alter the frequency 

response of the samples. To maintain uniformity in frequency response whilst 

exposing the effects of current percolation, samples were constructed of mixtures 

containing percolating (conducting outer layer) and non-percolating (non-conducting 

outer layer) particles. Both types of layered particle have the same structure (but 

additional, non-conducting layers are added to the latter) and should therefore have 

the same inherent frequency response. 

 

For the percolating particles, as in the previous section, mica platelets approximately 

20-30μm in length and up to 1 μm in thickness were coated with a layer of 



  Chapter 3 – Composites of conducting particles and TCOs at microwave frequencies  136 

antimony-doped tin oxide. The degenerately doped layer was deposited by a sol-gel 

process giving rise to a uniform coating of ~40nm thickness. For the non-percolating 

particles, A 100nm non-conducting silica (SiO2) layer was deposited as a diffusion 

barrier before the final <20nm layer of titania (TiO2) was deposited to prevent 

agglomeration of the particles. These non-conducting outer layers serve to prevent 

percolation of charge-carriers through the composite. 

 

Eleven samples were made; the two pigment types were mixed together in varying 

proportions at volume concentrations above the percolation threshold. The mixture 

is varied in 10% steps by number density of particles from 100% non-percolating 

pigment to 100% percolating pigment. Notably, the mixture is varied by number 

density of polarising particles in order to maintain a consistent electrical response 

and enable a systematic investigation of the effects of percolation in isolation from 

other effects. 

 

The particles were mixed in powder form, by weight, before being distributed in a 

lacquer based upon a polyacrylate and nitrocellulose mixture and applied to a PET 

sheet before being cured. All samples have a particle concentration of 10% by 

weight in the lacquer before curing, corresponding to a dried particle volume-

concentration of 16% (which is above the percolation threshold if all particles are 

conducting). 

 

The non-percolating particles are larger than the percolating particles since they 

have two extra layers. So to obtain the same number density of particles in all 

samples we take the density ratio of percolating to non-percolating particles as 1:1.9. 

As an example, to achieve a 60:40 (percolating:non-percolating) ratio by number 

density of particles, we take (60:40)×(1:1.9) = (60:76), which as a percentage by 

weight is 44:56. Enough mixture in powder form is then dispersed in lacquer to 

achieve the prescribed 10% particle concentration by weight. Finally, the imaginary 

permittivity (i.e. loss) of the samples is measured using the broadband coaxial probe 

described in section 3.2.4. 
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3.3.3.2  Results and discussion 

 

 

Figure 3.27 – Mixtures of percolating and non-percolating particles in ratios 

from 0:100 to 100:0 in 10% steps. Low frequency dispersion is exhibited as 

percolation increases. 

 

 

Clearly the mixture in Figure 3.27 begins to percolate as the composition changes, 

but the relaxation peak is also present. We might expect this since the mixture 

contains non-percolating particles as well as percolating particles, but we find the 

relaxation peak present even for a mixture of 100% percolating particles. The 

frequency location of the loss peaks has remained the same for each sample, but the 

magnitude of the loss is increasing as the proportion of conducting particles 

increases. This cannot be due to the effect of percolation itself since it is present at 

frequencies above the frequency of relaxation. But it may be due to errors in the 

density ratios, leading to increased numbers of polarizing particles for the given 

weight of dispersed particles. 

 

The presence of both the Drude-type low-frequency current conduction and the 
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Debye-type relaxation for an apparently fully percolating sample suggests that the 

two types of response must have some independence and percolation does not 

simply emerge from the relaxation peak as described in Figure 3.14 of section 3.2.3. 

Both forms are caused by charge transport in the conducting ATO layers of the 

sample, which remain the same. The only difference between the two types of 

response in these samples is the path taken by the moving charge. In fact, as charge 

accumulates at the interfacial boundaries in non-percolating samples the form of the 

polarization in the frequency domain is dictated by the mechanisms of charge 

transport. The differences may therefore arise due to the differences in scattering of 

an electron passing through the relatively uniform ATO layer of the non-percolating 

particles and the increased scattering experienced by an electron tunnelling through 

the network of irregular connecting sites on the surface of percolating particles. The 

result is that we observe different relaxation times for percolating and non-

percolating samples. In the high frequency region above the low frequency 

dispersion, the non-percolating response dominates and we observe the absorption 

peak emerging from the monotonic percolation response. 

 

 

Conventionally, percolation in conducting composites is examined using DC 

measurements. When the composite is below the percolation threshold and the 

conducting particles are not in contact with each other, conduction current cannot 

percolate between particles. Simple measurements of resistance show that negligible 

DC current can flow through the macroscopic sample and therefore the properties of 

the conducting inclusions cannot be interrogated. Measurements of percolating and 

non-percolating samples at microwave frequencies do not require complete 

conducting pathways and measurements of the electrical properties of the composite 

are possible regardless of percolation. This assumption is not however universal. If 

we take a measurement at the spot frequency of 5 GHz, at this frequency we observe 

that non-percolating phenomena dominate the response. A change in the electrical 

properties of the sample may be measured at this frequency irrespective of the level 

of percolation in the material. But at frequencies below this level such as at 100 

MHz in Figure 3.27 it is clear that percolation significantly affects the level of loss. 

Measurements at this spot frequency are not able to decouple the effects of changes 

in the electrical properties of inclusions and the effects of current percolation. When 
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using the highly accurate methods of resonant microwave techniques for the 

investigation of conducting composites, measurements are taken at spot frequencies. 

It is therefore extremely important that broadband knowledge of the behaviour of the 

composites near the percolation threshold is obtained if measurements are to be 

taken of percolating samples. Together, the complementary use of resonant and 

broadband microwave measurement techniques is a powerful tool for the 

interrogation of conducting composites. 
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3.4 BROADBAND ELECTROMAGNETIC 

ABSORPTION IN CONDUCTIVE, 

LAYERED ELLIPSOIDAL PARTICLES 

 

In this section, we investigate experimentally and theoretically the absorption peaks 

of composites of TCO coated mica platelets. We begin by discussing generally the 

behaviour of absorption peaks in materials and conventional approaches to 

modelling composites, and then extend this to layered and ellipsoidal particles. 

Dilute composites of TCO coated particles are measured experimentally using a 

broadband coaxial probe and we observe absorption peaks at dramatically lower 

frequencies than predicted for homogeneous particles because of the layered 

structure. Samples are annealed at increasing temperatures in order to affect the 

carrier mobility in the transparent conducting oxide layer. We observe that the 

absorption peaks of each sample increase in frequency with increasing annealing 

temperature as expected from the associated carrier mobility increase, but at high 

annealing temperatures, the frequency of the absorption peak begins to decrease. 

This is contrary to conventional theory, which describes the absorption peak 

frequency as proportional to the DC conductivity. 

 

In order to investigate this behaviour theoretically, the simple Drude model of the 

degenerate electron gas is used to describe the frequency dependent conduction 

properties of the degenerately doped TCO layer. Combined with a theoretical model 

of polarization in layered particles we determine a possible cause of the contrary 

behaviour at high mobilities and show that it may be a result of the mobility rising 

above a critical value, beyond which further increases cause a reduction in the 

absorption peak frequency. 

 

 

3.4.1 A Framework for Modelling the Effective Permittivity 

 

The effective permittivity εeff(ω) of a composite is dependent upon a complex 
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relationship between the material parameters of its constituents and structural 

factors. We begin constructing a model for the effective permittivity of a composite 

by considering the polarizability of a single particle. This approach does not 

consider the higher order interaction effects of mixing, but highlights the 

fundamental parameters affecting frequency dependent electromagnetic absorption 

in composites. For a quasi-static analysis it is required that the system is in the long 

wavelength limit, where for particle radius a and free space wavelength λ, we have λ 

>> a. A second requirement is that for thickness t of the conducting layer and skin 

depth δ, we have δ >> t, where in this work the minimum skin depth 

f 21 0min   > 1mm at fmax = 8.5GHz and σmax ≈ 0.16 S/m (based upon nmax = 

1×10
20

cm
-3

 and μmax = 50cm
2
V

-1
s

-1
), with t ≈ 40nm. Where f is the frequency, σ = 

nμe is the DC conductivity, e is the unit charge of an electron, n is the electron 

density and μ is the electron mobility, which is distinct from μ0, the permeability of 

free space. 

 

 

   

 

Figure 3.28 – Dimensions and coordinate system for a) layered sphere, b) 

layered oblate spheroid (x aligned). 

 

For a homogeneous dielectric sphere in a uniform polarizing field in the x direction, 

we solve the Laplace equation with the appropriate boundary conditions. The 

uniform internal electric field and the axial symmetry of the problem lead to the 

internal to external field ratio [58] 
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where Ein is the internal electric field strength, E0 is the polarizing field strength, Nx 

is the x-directed depolarization factor (1/3 for spherical inclusions) and εe and ε1 are 

the complex permittivities of the background medium and the sphere respectively. 

The polarizability α is simply the electric field ratio multiplied by the volume V of 

the particle and the permittivity contrast. 
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The local field EL at an inclusion is the sum of contributions from the average 

macroscopic field  E   and the average polarization  P   of other dipoles in the 

sample. 
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For a non-percolating, dilute mixture obeying the Lorentz relation (80), direct 

substitution of the particle polarizability into the Clausius-Mossotti formula [90] 

leads to an effective permittivity, εeff for the system. 
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where n is the number density of particles and Nx describes the depolarization effect 

associated with the Lorentz field contribution. 

 

For dielectric spheres, we obtain the Maxwell-Garnett mixing equation [91], which 

is equivalent to the Rayleigh mixing formula, but at low frequencies scattering 

effects may be neglected and absorption dominates. 

 

The Maxwell-Garnett and Rayleigh formulas contain no information about 

individual scatterers. The composites in this work contain inclusions that are layered 
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and are ellipsoidal and a more detailed treatment of the polarizability is therefore 

needed. We shall see that the effect of this altered polarizability is to reduce the 

frequency of associated absorption peaks and reduce the extent to which the high 

mobility effects described in this work influence the absorption peak. 

 

3.4.2 Layered and Ellipsoidal Particles 

 

The polarizability of layered particles cannot be solved in the same way as for the 

homogeneous sphere since layered particles do not have a uniform internal field. 

Here we use the approach developed by Sihvola et al. [92], in which the fields in 

homogeneous regions of mutilayered particles are calculated by interpreting static 

field components as travelling waves and exploiting propagation matrices. The 

polarizability of a single layered sphere as shown in Figure 3.28a) is given by 
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where R is simply the volume ratio of the core to the total volume. 

 

A model of the effective permittivity must also consider the ellipsoidal nature of the 

inclusions. The effects of the ellipsoidal shape of the polarized particle can be 

introduced by the depolarization factor Nx,y,z. In homogeneous particles, as seen 

above the depolarization factor directly influences the polarizability of the inclusion 

and the effective permittivity of the mixture in equations (79) and (81) respectively. 

 

In this work we approximate the particles as oblate spheroids, since for spheroids we 

may write a closed form solution for the depolarization factor. Depolarization 

factors for inclusions of arbitrary shape must be solved numerically. For spheres, N 

= 1/3, but oblate spheroids are anisotropic, having Nx = Ny ≠ Nz [93]. For simplicity, 

we consider all particles to be aligned to the x axis as shown in Figure 3.28b) with a 

uniform polarizing field in the x-direction. We have 
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where e is the eccentricity of the oblate spheroid. 

 

The approach of Sihvola et al. [92] cannot be applied directly in the case of 

uniformly layered ellipsoids, since the static solution in each homogeneous layer is 

not solvable using the Laplace equation. A solution to the Laplace equation for 

layered ellipsoids by separation of variables is possible only if the boundaries 

between the layers are confocal [94]. Giving, for the oblate spheroid, the x-directed 

polarizability 
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where Nx,1 is the x-directed depolarization factor of ellipsoid 1 (outer) and Nx,2 is the 

x-directed depolarization factor of ellipsoid 2 (inner) as shown in Figure 3.28b) and 

R is again the volume ratio of the core to the total volume. For confocal ellipsoids 

we have Nx,1 > Nx,2. Substituting the polarizability expression (84) into (81) leads us 

to an equation describing the x-component of the effective permittivity of a mixture 

containing aligned, confocally layered oblate spheroids. 

 

3.4.3 Experimental 

 

3.4.3.1 Sample manufacture and measurement 

 

Once again, Mica platelets approximately 20-30μm in length and up to 1 μm in 

thickness were coated with a layer of antimony-doped tin oxide. The degenerately 

doped layer was deposited by a sol-gel process giving rise to a uniform coating of 

~40nm thickness. A 100nm non-conducting silica (SiO2) layer was deposited as a 

diffusion barrier before the final <20nm layer of titania (TiO2) was deposited to 

prevent agglomeration of the particles. The non-conducting outer layers also serve to 
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prevent percolation of charge-carriers through the composite, though samples in this 

work are below the percolation threshold and are considered to be 

electromagnetically ‘dilute’ and non-interacting. Scanning electron microscope 

images are of the resulting particles are shown in Figure 3.29. 

 

 

Figure 3.29 – Conducting ATO coated mica platelets, with SiO2 diffusion 

barrier and TiO2 outer layer. 

 

A series of the platelet particles were first annealed in air for 30 minutes at 650°C, 

700°C, 750°C, 800°C, 850°C and 900°C. The coated platelets were then dispersed in 

a solvent based lacquer, based on a polyacrylate and nitrocellulose mixture. The 

samples were prepared for measurement by dispersing the coated particles in the 

lacquer at a volume concentration of 3.3%, and then applying a layer of the mixture 

around 50 μm thick, to 100 μm thick PET sheets (of low dielectric loss). The 

resulting sheet samples were then cured prior to measurement of the imaginary 

permittivity (i.e. loss) of the samples using the broadband coaxial probe described in 

section 3.2.4. 
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3.4.4 Results 

 

 

Figure 3.30 – Broadband imaginary permittivity (loss) of annealed samples of 

TCO coated platelets. The frequency of the absorption peak increases with 

annealing temperature, but reduces beyond 900°C (red trace). 

 

The absorption peaks of the annealed composites are shown in Figure 3.30. As the 

annealing temperature is increased, the mobility of the TCO layer is increased and 

the frequency of the absorption peak rises as predicted by conventional theory for 

increasing conductivity. When the annealing temperature reaches 900°C, the 

frequency of the absorption peak begins to decrease. This behaviour is contrary to 

conventional understanding if we consider the mobility to be increasing with higher 

annealing temperatures. 
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Figure 3.31 – Absorption peak frequency for of TCO coated platelets annealed 

at increasing temperatures. 

 

A clear absorption peak is visible at microwave frequencies for each of the annealed 

samples. The frequency of absorption peaks is dramatically reduced by the layered 

structure of the particles [95], but we shall see in the next section that, though the 

thickness and conductivity of the coating are fundamental parameters influencing 

the location of the absorption peak in the frequency domain, we must look more 

closely at the conduction properties of the coating to predict the frequency behaviour 

shown in Figure 3.31. 

 

 

3.4.5 Calculations and Discussion 

 

The frequency of relaxation frel for composites of conducting particles is a function 

of the bulk conductivity of the inclusions. In this work, the frequency dependence of 

the absorption peak is directly related to the frequency dependence of the imaginary 

polarizability through its introduction into the Maxwell Garnett mixing equation; an 

approach entirely equivalent to the Rayleigh formulation. Such a formulation is 

conventionally considered to predict that  frel ∝ σdc [3,4], where σdc is the bulk DC 

electrical conductivity. But we observe that in the case of degenerate 
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semiconductors such as those in Figure 3.31, the increase of frel with σdc is not 

monotonic. 

 

The electrical properties of ITO thin films above the Mott critical density [96] are 

discussed in Porch et al. [97], within the framework of the simple Drude model 

where the parabolic conduction band is considered to be partially filled by a 

degenerate free electron gas. There is a strong frequency dependence of the 

scattering time τ for Fermi surface electrons [98], though if we consider only 

microwave frequencies (0.1GHz – 10GHz), τ is assumed to be approximately 

constant. The Drude form of the complex permittivity is ε* = ε’ – jε” [99], thus 

giving 
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where */ 0

22 mnep   , ε∞ is the high frequency relative permittivity and m* is the 

electron effective mass. In order to examine the electrical behaviour of the 

transparent conducting layer, from the literature we take typical values for Drude 

parameters in TCO thin films ε∞ ≈ 4.0, m* ≈ 0.35me and τ ≈ 3.3 × 10
-15 

s [97]. Minor 

scaling of these values does not affect our general conclusions. 

 

Well above the plasma frequency of a conducting material we have 
  . Below 

ωp, we have 0 , but at microwave frequencies, for Drude-like materials, 

  . For the purposes of this study we therefore make the approximation 

  j1* . 

 

Figure 3.32 shows full numerical solutions for the absorption peak frequency for a 

composite of aligned, layered ellipsoids as in Figure 3.28b), from equations (84) and 

(81), where the volume fraction f = nV = 0.05. Here the simple Drude model of 

electrical properties above the Mott critical density is used with μ = eτ /m* and ε2 = 

εe = 1. The conducting layer is 40nm at its widest point, a1 = 40.001μm, a2 = 40μm, 
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b2 = 1μm, and so for confocality we have b1 = 1.039μm. This corresponds to Nx,1 = 

0.0197 and Nx,2 = 0.019. 

 

 

Figure 3.32 – Calculated absorption peak frequency for layered oblate 

spheroids with conducting outer layer. 

 

 

We observe that with increasing mobility μ, the absorption peak frequency increases. 

But importantly, for increasing carrier density the increase in absorption peak 

frequency is not monotonic. There exists a carrier density for which frel is a 

maximum. It is clear that this previously unobserved behaviour may be masked by 

associated increases in n, and that to exhibit a decrease in absorption peak 

frequency, we must have n  since above the critical mobility value, at high 

mobilities 
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Immediately above the critical mobility value, the general assumption frel ∝ σdc is not 
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valid. 

 

To further examine this behaviour we consider the frequency dependent absorption 

of a single, layered, spherical particle. The absorption peak exhibited by the mixture 

corresponds to the imaginary part of the polarizability of the individual particle as 

described in equation (79). For homogeneous, spherical particles with εe = 1, the 

imaginary polarizability peaks when the frequency dependent imaginary permittivity 

  3  pk , which is independent of particle size. For particles with a conducting 

layer we observe that the frequency of the absorption peak is reduced. Considering 

equation (82), it can be shown that the imaginary part of the complex polarizability 

(i.e. the absorption) of a layered, spherical particle, will reach a maximum when we 

have  
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which means that for any coating with a given frequency dependent imaginary 

permittivity, the absorption peak frequency depends upon R alone, where R is the 

volume ratio of the core to the total volume. We note that equation (88) reduces to 

the value 3 for homogeneous particles (R = 0) as expected. 

 

As an example, shown in Figure 3.33 is the frequency dependent imaginary 

permittivity for increasing levels of electron mobility based upon the Drude model 

of the free electron gas. Marked on the graph are the levels   3  pk , and 

  150  pk . 

 

An individual conducting sphere exhibits an absorption peak (a peak in the 

imaginary part of the polarizability) at the frequency that ε” reaches the value set by 

equation (88). For homogeneous spheres (R = 0), this value is   3  pk . And for a 

1μm core with a 10nm conducting shell (R = 0.9703), this value is   150  pk . 

 

The absorption peak occurs at a far lower frequency for the layered particle than for 
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homogeneous conducting particles. We observe that for the ratio R = 0.97, which is 

typical of the particles in this work, the frequency of the absorption peak is 

dramatically reduced to microwave frequencies, as we have observed experimentally 

in Figure 3.30.  

 

 

Figure 3.33 – Drude imaginary permittivity of conducting material (blue traces) 

vs frequency, for increasing values of mobility. Absorption peaks for individual 

particles occur when ε” = 3 for homogeneous spheres and ε” ≈ 150 for layered 

sphere with R = 0.97. The absorption peak is at a lower frequency in layered 

particles. 

 

Figure 3.33 illustrates the frequency domain behaviour of the absorption peaks 

observed in Figure 3.31 and Figure 3.32. The frequency dependent, Drude imaginary 

permittivity (blue traces) of the conducting material for an increasing mobility from 

0.1 to 100 cm
2
V

-1
s

-1
 in logarithmic steps and for an electron density n = 1×10

20
cm

-3
 

is shown; corresponding to values used for the layered ellipsoid in Figure 3.32. 

 

The absorption peak is observed at a significantly lower frequency for layered 

particles, but the high mobility effects leading to ∂frel / ∂μ < 0 are somewhat 

suppressed. In Figure 3.33 we observe that at the lower line (ε” = 3), as the mobility 

increases, the absorption frequency begins to reduce. At the upper line (ε” = 150), 

the same mobility increase does not immediately have the same effect. 
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We conclude that theoretical evidence strongly suggests that the frequency 

behaviour of the absorption peak at high carrier mobilities is a result of the mobility 

rising above a critical value, beyond which further increases cause a reduction in the 

absorption peak frequency; though a subject of future work must be to rule out any 

possible contribution of material degradation. 

 

3.5 CONCLUSION 

 

This chapter investigated the electromagnetic behaviour of composites of conducting 

particles and layered conducting particles at high frequencies. Mixing laws for 

composites and classical mixing formulas were introduced and their limitations 

discussed. 

 

We cannot have complete knowledge of a sample microstructure and variations in 

the structure can alter the effective electrical properties of the medium, therefore a 

level of uncertainty must be accepted. In order to quantify these uncertainties upper 

and lower bounds on the possible values of permittivity were presented. 

 

Classical interpretations of frequency dependent loss were discussed via the Debye 

model of dielectric relaxation. A general approach to the analysis of loss-peaks in 

terms of the relaxation time is deemed inadequate and we take a closer look at the 

polarization of multi-layered particles, by using the Clausius-Mossoti approach. 

 

The Clausius-Mossotti (CM) approach was used to demonstrate the effect that a 

reduction in conductivity of the particles has on the frequency response. The CM 

model considers the polarizability of each particle as a dipole and sets the particles 

in a background of averaged polarization densities. The reduced conductivity brings 

the frequency of relaxation down considerably, though to observe relaxation at 

microwave frequencies would require a conductivity of around 1 S/m. We conclude 

that the dominant effect upon absorption peak frequency is from conductivity of the 

particle material, but that layered particles have a dramatically reduced frequency of 

absorption peak. It is also noted that there may be a small contribution to the 
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frequency dependence from thin-film effects causing decreased mobility in the 

conducting layer. 

 

The coupled effects of real and imaginary permittivity are exposed in this work since 

there is a conceptual subtlety in the polarization of particles where screening is 

observed. The effects contributing to the imaginary permittivity of the depolarizing 

particle will contribute to the real permittivity at low frequencies i.e. macroscopic 

energy storage occurs via the very mechanism that is the dominant cause of loss. 

This is one example of the intrinsic link between the real and imaginary parts of the 

permittivity. Indeed the imaginary part of the permittivity is often linked with the 

conductivity of the sample. If this conductivity is complex, then the imaginary part 

(i.e. conventionally the reactance), contributes to energy storage in an equivalent, 

capacitive sense. Another revealing result is observed in the case that the core 

permittivity is larger than that of the outer layer. When the core of the particle is not 

subject to a large depolarising field, the polarisation due to the real permittivity of 

the core causes a second relaxation peak. The double relaxation peak emerges when 

the loss-peaks of two separate polarisation mechanisms are allowed to contribute to 

the overall response. 

 

Critical phenomena and the scaling of percolative behaviour in general are discussed 

and the polarization of particles in the time domain is reviewed.  

 

Debye-type relaxation is explored by considering the response of a polarizing 

particle in the time domain. Upon application of the polarizing electric field, the 

bound charge distribution immediately begins to move, until there is a saturation of 

polarization. Using the Lorentz form of the Debye model we observe that for high 

damping amplitudes, the damping is responsible for a large reduction in loss-peak 

frequency. We next look at percolative behaviour, where in the time domain there is 

no saturation of polarization since the charge is no longer bound. Once again the 

Lorentz form is used, but with the resonance frequency set to zero, we obtain the 

Drude model of unbound charge. 

 

A combination of both Debye-type polarization and Drude-type conduction is used 

to describe a percolating composite exhibiting both a relaxation peak, and low-
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frequency dispersion. 

 

The percolation threshold is then investigated using random resistor-capacitor 

networks. Very large networks of random resistors and capacitors were used to 

model the heterostructures of random media. Two-phase conductor-insulator 

materials are represented by lattices of lumped components, which were simulated 

across a range of frequencies to investigate the many phenomena observed in 

composite materials. 

 

In the resulting frequency dependent admittance, the central frequency region 

exhibits a fractional power law behaviour, which directly relates to the composition 

of the lattice. The gradient observed in the fractional power law region corresponds 

to the proportion of the lattice occupied by capacitive components. 

 

It is observed that as the size of the network is increased power law region expands 

to cover more of the frequency range, with the conclusion that for real materials, this 

behaviour dominates all frequencies, subject to limiting low and high frequency 

values. It is verified that the value of the gradient in the anomalous power law region 

of the frequency dependent conductivity depends upon the proportion of capacitive 

components present in the lattice and results are shown from literature supporting 

the application of this to real materials. 

 

The broadband coaxial probe technique is used to measure the frequency dependent 

conductivity of the TCO based composites used in this work.  

 

Measured results indicate that the gradient decreases as the proportion of the 

capacitive phase decreases, just as in our RC network interpretation. Indeed, with 

97.4% capacitive phase by volume (2.6% particle concentration by volume), we 

have a gradient of 0.93, which overestimates the role of the conductive phase 

somewhat. This trend of overestimation by the experimental results continues, until 

at 84% capacitive phase by volume (16% PVC), we have a gradient of 0.73. The 

conductor-insulator composite system here deviates from the predicted behaviour of 

the power law, though emergent behaviour is present. This deviation comes about 

because scaling behaviour is not satisfied in the composite material measured in this 
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work. RC networks have lumped element resistors and capacitors; in a real 

composite the equivalent resistances and capacitances are distributed. But for 

equivalence, the regions occupied by the distributed resistances and capacitances 

should have the same aspect ratios. 

 

We conclude that since the conductive phase here is in the form of platelets, any 

capacitive effects may be diminished. Certainly this is what is suggested by the 

experimental results, since for composites conforming to the behaviour shown by 

resistor-capacitor networks, the gradients would be higher and so, in the power law 

interpretation the capacitive effect are suppressed relative to network models and 

real material that satisfy the scaling law. 

 

In order to investigate the critical behaviour of the percolation threshold, the split 

post dielectric resonator technique is used to measure the sheet resistance of 

percolating and non-percolating samples at high frequencies and results are 

compared to DC measurements of the same samples. 

 

As the concentration of conducting particles is increased, DC measurements show 

the sharp phase transition as the percolation threshold is reached. Below the 

percolation threshold, the DC measurements show that the sheet resistance is too 

high to be measured. At high frequencies, measurements of sheet resistance below 

the percolation threshold do not default to some large ‘open-circuit’ value because 

using microwave frequencies we are able to detect the presence of the low 

concentration particles and their associated displacement current. Indeed, the 

percolation threshold itself remains invisible to the microwave measurement and we 

simply observe a smooth curve describing the increasing quantity of conducting 

particles in the sample. This approach is clearly advantageous and measurements of 

conducting particles may be made irrespective of their concentration. The question 

of whether this is true at all frequencies is answered by examining the broadband 

emergence of percolative behaviour. 

 

Systematic broadband investigations of the shift from non-percolating to percolating 

composites are carried out. To isolate the effects of percolation, we attempt to fix 

other factors affecting the electromagnetic frequency response such as the bulk 
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polarization density.  

 

Samples were constructed of mixtures containing percolating (conducting outer 

layer) and non-percolating (non-conducting outer layer) particles and the 

concentration of the particles was maintained at some value above the percolation 

threshold. As the make-up of the mixture is varied from 100% non-conducting to 

100% conducting particles, low-frequency dispersion emerges from the loss-peak. 

However, at the onset of low frequency dispersion, the ‘lower leg’ of the frequency 

response does not simply rise and engulf the relaxation behaviour of the particles. In 

fact, with 100% percolating particles, we still observe a small relaxation peak, which 

emerges from the low frequency dispersion that is characteristic of percolation. We 

can conclude that the relaxation times of percolative and polarization effects are 

independent and dissimilar. 

 

We also conclude that high frequency measurements may be taken of composites of 

conducting particles and are insensitive to the level of percolation present, but at 

frequencies below the characteristic loss-peak frequency, low-frequency dispersion 

is present and percolation must be accounted for in measurements. 

 

In the final section the absorption peaks of composites of TCO coated mica platelets 

were investigated experimentally and theoretically. The behaviour of absorption 

peaks in materials and conventional approaches to modelling composites were 

discussed generally which was then extended to layered and ellipsoidal particles.  

 

Dilute composites of TCO coated particles were measured experimentally using a 

broadband coaxial probe and absorption peaks were observed at dramatically lower 

frequencies than predicted for homogeneous particles because of the layered 

structure. Samples were annealed at increasing temperatures in order to affect the 

carrier mobility in the transparent conducting oxide layer. The absorption peaks of 

each sample increased in frequency with increasing annealing temperature as 

expected from the associated carrier mobility increase, but at high annealing 

temperatures, the frequency of the absorption peak was decreased. This is contrary 

to conventional theory, which describes the absorption peak frequency as 

proportional to the DC conductivity. 
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In order to investigate this behaviour theoretically, the simple Drude model of the 

degenerate electron gas was used to describe the frequency dependent conduction 

properties of the degenerately doped TCO layer. Combined with a full theoretical 

model of polarization in layered spheroidal particles it was shown numerically that a 

possible cause of the contrary behaviour at high mobilities may be the mobility 

rising above a critical value, beyond which further increases cause a reduction in the 

absorption peak frequency. 

 

It was shown that for any layered spherical particle, the absorption peak frequency 

occurs at an imaginary permittivity set by R alone, where R is the volume ratio of 

inner core to the entire particle. For homogeneous conducting particles (R = 0) we 

have an imaginary permittivity at which the absorption peak occurs of   3  pk . 

And for typical particles used in this work (R = 0.9703), this value is   150  pk . 

The Drude model of the frequency dependent imaginary permittivity shows that 

ε”(ω) reaches a value of around 150 at much lower frequencies than it reaches a 

value of 3. Indeed, as observed experimentally in this work, the layered particle 

absorption peaks are reduced to microwave frequencies.  

 

As the carrier mobility in the Drude model of electron transport is increased, the 

frequency dependent behaviour is changed and the frequency at which ε”(ω) reaches 

either the value 3 or 150 is also changed. The absorption peak frequency increases 

with increasing mobility until some critical value at which the frequency begins to 

decrease, just as was observed in the experimental results. 

 

This significant experimental result exhibits a behaviour that is previously 

unobserved in composite materials and the decrease in absorption peak frequency as 

the carrier mobility of the conducting material is increased has been 

comprehensively demonstrated theoretically. But the experimental result however, 

needs verification, since at high annealing temperatures mica particles may 

experience material degradation. 

 

We conclude that theoretical evidence strongly suggests that the frequency 
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behaviour of the absorption peak at high carrier mobilities is a result of the mobility 

rising above a critical value, beyond which further increases cause a reduction in the 

absorption peak frequency; though a subject of future work must be to rule out any 

possible contribution of material degradation. 
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4 MICROWAVE ABSORPTION IN 

COMPOSITES OF SMALL CONDUCTING 

PARTICLES 
 

4.1 INTRODUCTION 

 

The use of microwaves in materials processing is widespread and microwave 

heating is now a standard processing tool for the industrial chemist 

[100,101,102,103]. The ability of microwaves to facilitate fast, efficient volumetric 

heating is complemented by targeted and selective heating techniques [104]. 

Knowledge of the interaction of microwaves with conducting particles is important 

in many interdisciplinary applications; these include the enhancement of chemical 

and biological reactions [105], microwave absorbing screens and coatings [106] and 

fundamental studies involving the electronic characterisation of the particles 

themselves. Furthermore, microwave interaction with small conducting particles is 

important in other innovative applications such as the full sintering of metal particles 

[107] and targeted stimulus of biological functions [108].  

 

Small conducting particles often feature as additives to act as catalysts or to simply 

augment the microwave heating characteristics of a material. It is desirable therefore 

to have a robust model of electromagnetic absorption in small conducting particles 

from which we may develop a scheme for the optimisation of heating processes. 

 

In this work, analytic solutions for the electric and magnetic dipole absorption of 

small conducting spheres (i.e. of particle radii much less than the wavelength of the 

incident radiation) with isotropic electrical conductivity are developed and applied 

to the specific example of absorption in response to microwave irradiation, at the 

ISM (i.e. industrial, scientific and medical) standard frequency of 2.45 GHz. 

 

The increasing use of single mode applicators for the efficient microwave heating of 

materials leads to high electric and magnetic field separation. Electric and magnetic 
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absorption mechanisms are evaluated separately and power dissipation in each is 

assessed. A direct comparison of electric and magnetic absorption exposes the 

conditions under which each is preferable. 

 

Ongoing experimental work in the literature is concerned with the heating effects of 

small conducting particles for the applications discussed above. The conclusions 

drawn analytically in this work are validated experimentally in countless studies. As 

an example, one such study is Fujiwara et al. 2010 [109], in which stainless steel 

powders of different compositions are heated in a 500W, single mode applicator. 

Figure 4.1 shows the relationship between powder size and highest temperature 

achieved in a magnetic field for two non-magnetic and two magnetic samples. 

 

 

Figure 4.1 – The relationship of temperature reached to particle size upon 

heating by magnetic field, for non-magnetic stainless steel samples SUS304L 

and SUS316L (red) and magnetic stainless steel samples SUS410L and 

SUS430L (blue). Taken from reference [109]. 

 

As we shall see in subsequent sections, for non-magnetic particles, the maximum 

magnetic absorption point is a function of particle size for a given conductivity set 

by the ratio of radius a to skin depth δ, where  41.2a . For a material with a 

magnetic component, magnetic absorption is increased and the maximum absorption 
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point occurs at smaller particle sizes. 

 

In other studies, experimental results have been given for the heating of conducting 

particles and theoretical explanations have been presented based upon effective 

medium approximations [110,111,112,113]. In this work, we do not take a statistical 

or effective medium approach, since by examining the polarisation behaviour of 

single particles we may develop a clearer picture of electromagnetic absorption in 

dilute materials. Should the effects of particle interaction become significant, 

corrections to the general behaviour may be made. 

 

By consideration of a full electromagnetic model of dipole absorption in conducting 

particles we account for the relationship of electric and magnetic dipole heating to 

the particle size, conductivity and magnetic properties. We establish simple 

principles for the optimisation of microwave absorption in conducting particles: 

 

1) Magnetic absorption dominates electric absorption over a wide range 

of particle radii. 

2) Optimum magnetic absorption is set by the ratio of mean particle 

radius a to the skin depth  (specifically, by the condition  41.2a . 

Computational studies in the literature estimate this value as a ≈ 2.5δ 

[114]). 

3) For weakly conducting samples, electric dipole absorption dominates, 

and is maximised when the conductivity is approximately 

4.03 0  S/m, independent of particle radius. 

4) The absorption of sub-micron particles is small in both magnetic and 

electric fields. However, if the particles are magnetic, then magnetic 

dipole losses are dramatically enhanced compared to their values for 

non-magnetic particles below the Curie point. 

 

It will be shown that magnetic absorption, or induction heating caused by eddy 

currents in the conducting particle is far more effective than electric absorption for a 

large range of particle radii and that this range is extended by the use of magnetic 

particles. For non-magnetic particles, optimum absorption is achieved when 
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 41.2a . This means that for particles of any conductivity, optimised magnetic 

absorption (and hence microwave heating by magnetic induction) can be achieved 

by simple selection of the mean particle size. 

 

In weakly conducting samples, dominant absorption is by the electric field and 

electric dipole heating can be as effective as magnetic dipole heating for a powder 

sample of the same volume. But since the optimum absorption occurs at a specific 

conductivity and is independent of particle radius, it is harder to achieve maximum 

absorption at a given frequency. Finally, we see that since for sub-micron particles 

both electric and magnetic dipole absorption are small, the use of magnetic particles 

dramatically increases heating. An interesting application of this is the use of very 

small magnetic particles for the selective microwave heating of biological samples. 

 

 

4.2 MODELLING ELECTROMAGNETIC 

ABSORPTION 

 

If the applied magnetic field 0H  is that of a transverse electromagnetic wave then it 

is linked to the associated electric field 0E  by 000 / EH , where  7.3760  is 

the wave impedance of free space. The same relationship holds for the electric and 

magnetic field magnitudes at their respective antinodes within a cavity resonator, 

often used to drive heating in conducting powder samples. Therefore, electric and 

magnetic power absorptions can be compared in both of these field configurations. 

  

Power absorption will be calculated initially assuming that the spherical conducting 

particles are all of equal radius. The effects of including a distribution of particle 

radii will be considered once this simpler case has been dealt with. Results for the 

time averaged power absorption will be expressed per unit volume (i.e. 1 m
3
) of 

conducting material, for an applied electric field of magnitude 1 V/m or an applied 

magnetic field of magnitude 0.002654 A/m. Assuming a linear electromagnetic 

response, the absorption at other field levels can be found by simply scaling the 
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results here by the squares of the field magnitudes.  It will also be assumed that the 

conducting spheres are dispersed with a low volume filling fraction (i.e. 0.01 or less) 

within a vacuum (approximating a low permittivity, low loss host material), thus 

removing the need to apply local field corrections. Hence, each particle (if they are 

of the same radius) will absorb equally and the total absorption is simply the sum of 

that due to the individual particles. Results will be presented as a function of varying 

particle radius, assuming that the overall volume (and volume filling fraction) of the 

sample is kept constant. 

 

 

4.2.1 Electric Dipole Absorption in conducting particles 

 

A conducting sphere (of radius a) will develop an electric dipole moment p in 

response to a uniform, applied electric field 0E . Electromagnetic scattering can be 

neglected if the particle is electrically small, i.e. 0a , where  /20 c  is the 

free space wavelength and  the angular frequency of the applied electric field. The 

analytic solution for p for a spherical conducting particle (of isotropic conductivity) 

in this limit is derived in appendix A [115]. 
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where ck /  is the wavenumber within the particle, 21  i  is the 

complex permittivity and 21  i  is the complex permeability of the particle. 

Using equation (89), the time-averaged power dissipation per unit volume EP  

associated with electric dipole absorption of a spherical conducting particle is 

 

      

     























2

2
2
00

*
03E

cot11

cot112
Im

4

3
Im

8

3

kakaka

kakaka
EEp

a
P  (90) 

 

where 0E  is the amplitude (i.e. peak value) of the applied electric field. 
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For a non-magnetic, highly conducting particle (such as gold) at microwave 

frequencies then 0/ i  and 1 , where  is the bulk electrical conductivity. 

For a weakly conducting particle then a more appropriate form for the permittivity is 

01 / i , but for the purposes of this study it is assumed that 0/1  i  

over a wide range of .  

 

There are two limiting forms for equation (90), set by the ratio of the particle radius 

a to the skin depth     2/1
0/2Im/1  k . In the large skin depth limit (i.e. 

when 1/ a ), equation (90) reduces to the usual, quasi-static result for a lossy 

dielectric sphere in a uniform electric field 















 2

1
Im

2

3
lim 2

00E
0/

EP
a

 (91) 

 

with a uniform internal electric field of magnitude  2/3 0  EEi , i.e. it is 

unaffected by the classical skin effect, although for moderate to high conductivity 

(i.e. when 0 ) the internal field is screened significantly by the presence of the 

conductor.  

 

Equation (91) itself also has two limiting forms, depending on the size of the ratio 

0/ . When 1/ 0   then 2/9 2
0E EP  , i.e. proportional to conductivity; 

when 1/ 0   then  2/9 2
0

2
0

2
E EP , i.e. inversely proportional to 

conductivity. Hence, on varying the conductivity of the particle EP  attains a 

maximum value of 4/3 2
00maxE EP   when 03 . In fact, in the limit 

1/ a  the electric dipole absorption within a particle of any shape within which 

the external electric field is screened is at a maximum when the particle conductivity 

is chosen such that 0 . Once the conductivity exceeds this maximum value the 

internal electric field within the particle is reduced by screening, and so EP  

reduces accordingly. 
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In the small skin depth limit (i.e. when 1/ a ) 
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Although the electric dipole absorption is enhanced in this limit, it is of little 

practical importance since the power dissipation is already negligibly small once this 

limit is reached. 
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(a) 

 

(b) 

 

Figure 4.2 - The electric dipole absorption (in units of W/m
3
) at a peak applied 

electric field of 1 V/m oscillating at a frequency of 2.45 GHz (a) as a function of 

particle radius for various values of conductivity, and (b) as a function of 

conductivity for various values of particle radius. There is an optimum 

absorption, which is set solely by the frequency and conductivity (via 0 ) 

and is independent of particle radius. 
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Results for the full calculation of EP  (i.e. based on equation (90)) as a function of 

particle radius and conductivity are shown in Figure 4.2, illustrating the limiting 

functional forms and general features discussed above. Importantly, EP  is 

independent of particle radius in the large skin depth limit ( 1/ a ), meaning that 

it is insensitive to a finite particle size distribution, provided that the particles are 

well-dispersed so that local field corrections may be neglected. Hence, the 

contribution to the absorption of a single particle of 1 m radius is 1000 times that 

of a particle of 100 nm radius, so to estimate the overall absorption for a sample 

consisting of a range of particle radii one needs only to know the overall volume of 

conducting material. 

 

4.2.2 Magnetic dipole absorption in conducting particles 

 

A conducting sphere will develop a magnetic dipole moment m in response to a 

uniform, applied magnetic field 0H . Scattering can once more be neglected if the 

particle is electrically small, i.e. 0a . The analytic solution for m in a spherical 

conducting particle (again of isotropic conductivity) in this limit is derived in 

appendix B [115]. We note the equivalent forms of the electric and magnetic dipoles 

given by equations (89) and (93). 
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where again ck /  is the wavenumber within the particle, 21  i  is the 

complex permittivity and 21  i  is the complex permeability of the particle. 

The time averaged power dissipation per unit volume MP  associated with 

magnetic dipole absorption of a spherical conducting particle is 
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where 0H  is the amplitude (i.e. peak value) of the applied magnetic field. The origin 

of this dissipation is associated with electromagnetic induction by the changing 

applied magnetic field, so one would expect it to be a sensitive function of the 

particle size. For a non-magnetic, conducting particle 0/1  i  and 1 , so 

that equation (94) reduces to 
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There are again two limiting forms for the magnetic dipole absorption set by the 

ratio /a . In the large skin depth limit (i.e. 1/ a , appropriate for small particles 

of low conductivity at low frequency), equation (95) reduces to 
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which is that of a uniform applied internal magnetic field (in this case equal to the 

applied magnetic field since it is assumed that 1 ). In the small skin depth limit 

(i.e. 1/ a , appropriate for large particles of high conductivity at high 

frequency), equation (95) reduces to 
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where   2/1
0s 2/ R  is the surface resistance of the conducting material.  
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(a) 

 

(b) 

 

Figure 4.3 - The magnetic dipole absorption (in units of W/m
3
) at a peak 

applied magnetic field of 0.002654 A/m (corresponding to a peak, free space 

electric field of 1 V/m) oscillating at a frequency of 2.45 GHz (a) as a function of 

particle radius for various values of conductivity, and (b) as a function of 

conductivity for various values of particle radius. This time the optimum is set 

by the frequency, conductivity and particle size via the relationship  41.2a , 

where δ is the skin depth. 
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Results for the full calculation of MP  (based on equation (95)) as a function of 

particle radius and conductivity are shown in Figure 4.3, illustrating the limiting 

functional forms and general features discussed above. The different dependences of 

magnetic absorption on both conductivity and particle radius in either limit suggest 

that the magnetic dipole absorption (like electric dipole absorption) has a maximum 

value; from equation (95), it is found that for non-magnetic particles the maximum 

magnetic absorption occurs when  41.2a , where  is the skin depth. 

Computational studies in the literature estimate this value as a ≈ 2.5δ [114]. 

Comparing Figure 4.1 and Figure 4.3a) we see that the experimental results have the 

same form as predicted here and exhibit a maximum absorption corresponding to the 

condition  41.2a  for non-magnetic particles. 

 

For  41.2a , we have 

2
00maxM 266.0 HP   (98) 

 

Thus, the maximum electric dipole absorption exceeds the maximum magnetic 

dipole absorption by a factor of 2.82 (assuming that 2
00

2
00 EH  , as discussed 

above), but occurs for a fixed value of conductivity set by 03 . This is rather 

low if the frequency is restricted to microwave frequencies (e.g. around 0.4 S/m at 

2.45 GHz) and is independent of particle radius. If magnetic absorption is used 

instead, there is much more flexibility in attaining the condition of maximum 

absorption since both particle radius and conductivity can be changed whilst 

maintaining the condition  41.2a . For example, gold particles of conductivity 

S/m1000.4 7  have a skin depth of m61.1   at 2.45 GHz, so maximum 

magnetic absorption occurs for particles of radii m88.3 a . If particles of lower 

conductivity are chosen, then at a fixed frequency the maximum magnetic 

absorption can be obtained by an appropriate increase of the particle radius. 
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4.2.3 Comparison of Magnetic and Electric Power Dissipation 

 

To emphasise the comparison between magnetic and electric absorption, the ratio   

EM / PPR   is plotted as a function of particle radius and conductivity at 2.45 

GHz in Figure 4.3. For particles of a highly conducting metal like gold, 1R  for 

all particle radii of practical significance, and in excess of 710  when 

m88.341.2 a . The strong dependence of magnetic induction on particle 

radius means that for sub-micron particles of a highly conducting metal, the 

magnetic absorption is small (recall from equation (96) that 2
M aP  ), but it is still 

much larger than the associated electric absorption. It will be seen in the next section 

that to enhance the magnetic absorption of highly conducting particles of sub-micron 

sizes, all that is required is to make them magnetic, with an associated complex (i.e. 

lossy) permeability. 

 

For conducting particles, clearly magnetic power dissipation dominates for all 

practical particle sizes. In Yoshikawa et al. (2006) [113], experimental results are 

shown for the case of NiO particles with radius 3.5μm. The NiO is first placed in the 

E-field and then the H-field of a single mode microwave applicator, but heating only 

takes place in the high E-field. Since NiO has σ < 1×10
-8

 S/m, basic knowledge of 

the behaviour of insulators in electromagnetic fields suggests these different heating 

characteristics, but Figure 4.4 shows the extent of the difference and that the power 

dissipated in the E-field is almost 10 orders of magnitude larger than in the H-field. 
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(a) 

 

(b) 

 

Figure 4.4 - The ratio of magnetic to electric dipole absorption for peak applied 

fields satisfying the relationship 000 HE   oscillating at a frequency of 2.45 

GHz (a) as a function of particle radius for various values of conductivity, and 

(b) as a function of conductivity for various values of particle radius. For 

metallic (i.e. highly conducting) particles the magnetic dipole absorption is the 

larger of the two for particle radii commonly met in practice. 
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The effect of including a distribution of particle radii is more important for the case 

of magnetic absorption than for electric absorption, particularly in the large skin 

depth limit. In this limit, (96) is modified to 
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where  rf  is the particle radius distribution. For any reasonable form for  rf  then 

aa eff , and the magnetic absorption could be dominated by relatively few, much 

larger particles, though not too large as to be in the small skin depth limit. A general 

feature is that in the small skin depth limit MP  is enhanced by up to 1 or 2 orders 

of magnitude compared to the situation of magnetic absorption in a sample of 

particles of the same radii. 

 

4.2.4 Magnetic dipole absorption in magnetic particles 

 

Finally, the magnetic dipole absorption in small magnetic particles will be 

considered. Introducing magnetic loss into a particle via a complex permeability 

21  i  enhances the magnetic absorption in the large skin depth regime. This 

is seen by re-evaluating equation (94) in the limit when a , giving the resulting 

limiting form for MP  
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where for simplicity it is assumed that 12  . The inclusion of a finite magnetic 

loss 2  thus removes the sensitivity of the magnetic absorption on particle radius 

and conductivity. For any particle in the large skin depth limit, a magnetic 

absorption within an order of magnitude of the maximum value for a non-magnetic 

particle is attained for values of 2  as small as 0.1. Results of the full calculation 

(based on equation (94)) for the example of i1.05.1   are shown in Figure 4.5, 

which should be compared with the data of Figure 4.3 and Figure 4.4, particularly in 

the large skin depth region. Unlike that for magnetic dipole absorption, the effect of 
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introducing magnetic loss has very little effect on the electric dipole absorption. 

(a) 

 

(b) 

 

Figure 4.5 - The effect of introducing finite magnetic loss at 2.45 GHz on (a) the 

magnetic dipole absorption (conditions the same as for Figure 4.3), and (b) the 

ratio of magnetic to electric dipole absorption, both as a function of particle 

radius for various conductivities. Magnetic loss enhances magnetic dipole 

absorption in the large skin depth region, whilst the electric dipole absorption is 

almost unaffected over the whole range of particle radii studied here. 
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4.3 DISCUSSION, CONCLUSIONS AND 

SUMMARY 

 

There is a common misconception that small, highly conducting particles heat 

profusely when placed in a large microwave electric field. However, it is clear from 

the results of Figure 4.2 that this is not the case, with the simple physical explanation 

that the electric field (which drives the heating) within a highly conducting particle 

is highly screened. Instead, it is the magnetic absorption associated with induction 

that accounts for the large experimental heating rates observed for small metal 

particles. 

 

The presence of small metal particles may cause heating in their surroundings and 

therefore higher electric field absorption, but this is due to the reconfiguration of the 

electric field in the space outside of the particles. High fields develop at the surface 

of the particles and at sites of close contact between particles hot-spots can occur. 

This is the same mechanism that at sufficiently high electric field strengths can 

cause dielectric breakdown leading to arcing. In any case, the enhanced absorption is 

much smaller than can be achieved by magnetic absorption alone. 

 

In the case of a dispersed metal powder bathed by microwave radiation, it is clear 

from Figure 4.4 that the dominant absorption is magnetic in origin. In the case of a 

metal powder sample placed in a microwave cavity at an apparent electric field 

antinode (i.e. at a magnetic field node), it would be expected that the only 

mechanism for heating would be via electric dipole absorption. This would indeed 

be the case for a very small powder sample, which can be placed at the exact 

antinode of the electric field, but for an extended powder sample placed within a 

microwave oven (where the distance between antinodes of the electric and magnetic 

fields at 2.45 GHz is around cm34/0  ) there must also be a significant magnetic 

field present. Under such conditions the microwave heating is predominantly via 

magnetic dipole absorption. 

 

Enhancement of magnetic absorption (and thus heating) within sub-micron particles 
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is best accomplished by making the particles from lossy magnetic materials. The 

magnetic dissipation exceeds the electric dissipation in these particles by many 

orders of magnitude for highly conducting particles, as can be seen from Figure 4.5. 

This has important implications for the selective heating of biological tissue using 

microwave radiation, into which has been embedded sub-micron magnetic particles. 

The surrounding tissue will be unaffected by an applied microwave magnetic field, 

while the embedded particles will heat strongly due to magnetic dipole absorption. 

Magnetic nanoparticles used in this way are being investigated for the treatment of 

cancer [116,117]. Attempting the same experiment using an applied microwave 

electric field will result in an efficient heating of the biological tissue (if water 

based) and an inefficient heating of the embedded particles, quite the opposite to the 

desired effect. 

 

To summarise, analytic results for the electromagnetic absorption within electrically 

small, conducting particles for otherwise arbitrary values of conductivity and radii 

have yielded some important results for microwave heating applications.  

 

A summary of limiting factors for electric and magnetic absorption is given in Table 

12. 

 

 Electric field Magnetic field 

Particle Non-magnetic Non-magnetic Magnetic 

Dominant limitation Screening Skin effect Skin effect 

Notes Max absorption when σ ≈ 

ωε0. 

The skin effect has no 

practical impact upon 

absorption in this regime. 

Max 

absorption 

when a = 

2.41δ. 

 

Absorption in 

sub-micron 

particles is 

significantly 

increased 

below Curie 

point. 

where σ is the conductivity, ω is the angular frequency, ε0 is the permittivity of free 

space, a is the particle radius and δ is the skin depth. 

 

Table 12 – Limiting factors for electric and magnetic absorption in small 
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conducting particles. Particles considered are in the range σ > 0.1 S/m and a = 

1nm – 1mm. 

 

For particles of low conductivity, absorption is predominantly due to electric dipole 

absorption (driven by a microwave electric field), which is maximised when the 

conductivity is approximately 0 . For highly conducting particles, magnetic 

dipole absorption (driven by a microwave magnetic field) exceeds electric dipole 

absorption over the full range of particle radii, from < 10 nm to > 1 mm. The 

maximum magnetic dipole absorption is of the same order of magnitude as the 

maximum electric dipole absorption (for equivalent electric and magnetic fields 

satisfying the condition 000 / EH ) for powders of the same volume, except it 

occurs for particle radii of the order of the microwave skin depth. An exact condition 

for spherical, non-magnetic powders is  41.2a ; this is a remarkable result, which 

means that for a metal of any given conductivity at a particular frequency, maximum 

magnetic absorption can be assured by simple selection of the mean particle radius. 
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5 DISCUSSION AND CONCLUSIONS 

 

 

In this thesis we have comprehensively investigated electrical aspects of TCOs and 

composites. To enable the investigation we have employed high frequency 

measurement tools capable of accurately measuring conducting and non-conducting 

composites and powders, as well as bulk materials. These tools are used to 

determine the properties of TCO based composites provided by Merck KGaA. A 

number of high frequency techniques are considered in this work, including the split 

post dielectric resonator and the broadband coaxial probe, but the cavity perturbation 

method is used for its versatile, non depolarizing configuration. The conventional 

cylindrical cavity method is extended to include a split in the axial plane, which 

provides an accessible space occupied by highly uniform TM010 E-fields.   This 

space may accommodate samples of arbitrary shape, but importantly the sample may 

be externally stimulated and measured simultaneously. For example, simultaneous 

measurement of multiple properties as some chemical reaction takes place provides 

the opportunity to link changes in the electrical properties of materials to the 

changes in other properties under test. Mutual measurements may be taken 

highlighting, for example changes in crystal structure whilst the cavity reveals 

concomitant electrical changes. Also, the highly accessible sample in the split may 

be excited by external stimulus as was demonstrated in chapter 2 of this thesis. A 

further extension of the cavity perturbation technique has allowed us to correct for 

ambient temperature changes in the measurement down to an accuracy of the order 

of milliKelvins. The method therefore has one of the highest resolutions in 

temperature measurement available and may have applications based upon this 

property alone. 

 

In the TM010 mode, this cavity operates effectively with the split present, with no 

associated wall currents having to traverse joints in the cavity construction. We 

therefore maintain a high quality factor (>8000), enabling the accurate measurement 

of dielectric samples. It is determined that the optimum Q factor is obtained when 

the cavity radius a is equal to the cavity height, and that the maximum obtainable Q 

for the TM010 mode is therefore equal to a/2δ, where δ is the skin depth of the 
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electromagnetic fields at the cavity walls. A simple and dynamic calibration 

technique is used which means that measurements may be taken with the cavity split 

at arbitrary widths simply by taking a measurement of the metal sphere first. 

 

Limitations of the perturbation method were discussed and the complex frequency 

was introduced as a method of overcoming the assumptions made by perturbation 

theory. But for the split cavity, we conclude that the complex frequency approach is 

not dynamic enough to avoid experimental errors. The calibration must be empirical 

and since use of the complex frequency would require full characterization of the 

complex space of interest, it is impractical for arbitrary split widths. 

 

The cavity resonator was investigated with the split present, up to 8mm in width. 

The Q factor remains >7000 for large split widths indicating that accurate and highly 

repeatable measurements may be taken. The value used in the inversion, Veff 

describes an effective volume occupied by the cavity fields and in the linear 

perturbation equations used in this work functions as a calibration variable. For the 

split cavity, the behaviour of the effective volume occupied by the cavity E-field is 

investigated for widths of up to 8mm. The increase in effective volume is linear in 

nature and the dominant source of error is the setting of the split width. 

 

Sample measurements were carried out in the split cavity at widths once again up to 

8mm. Using a cylindrical dielectric sample consisting of powders of micron-sized 

transparent conducting oxide (TCO) coated mica flakes, the width of the split is 

increased and measurements were compared with established results from the 

enclosed cavity (i.e. no split). The measurements remain consistent, with the errors 

in real and imaginary permittivity around 0.5% for a 2mm split and well below 4% 

even for widths of 8mm. 

  

The causes of the error introduced at large split widths are investigated and it is 

concluded that non-uniform fields at the cavity split cause a reduced dipole moment, 

but the presence of a sample with finite (>1) permittivity compounds this effect. The 

value of Veff becomes a non-linear function of split width and permittivity. 

 

Non-linearities in the measurement make numerical approaches unavoidable at very 
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large split widths. For cylindrical samples, using the cavity with a split present is a 

trade-off between split width and the level of accuracy required. Furthermore, we 

conclude that this nonlinearity in the measurement is present only for samples 

present at the cavity split; pellet samples would not experience the same errors. 

 

Higher order modes were investigated and their potential uses discussed. Analytical 

integration of the cavity fields in the sample region shows that for the TM210 mode, 

the electric energy present is over six orders of magnitude less than for the TM010 

mode. The TM210 mode is therefore unaffected by the presence of dielectric samples 

in the centre of the cavity. This is proven experimentally, results showing that the 

presence of dielectric samples affects the mode negligibly. As a reference point this 

mode is invaluable, no dielectric sample, regardless of dielectric strength will 

influence the mode in this configuration. Any effects upon the mode are attributable 

to the cavity alone. 

 

The TM210 mode was used as a reference for measurement of the TM010 mode. 

Normally such a measurement would require an unperturbed cavity measurement 

first, but by using the fixed relationship between the TM010 mode and the TM210 

mode, we can establish an unperturbed frequency for the TM010 resonance without 

having to observe sample-free measurement at all. This is an advantageous 

extension of the cavity perturbation technique in terms of general convenience, but 

importantly, enables measurements to be taken over time without having to disturb 

the sample under test. 

 

The temperature dependence of TMmn0 modes was established and it was determined 

that the fractional frequency shift for a given temperature change is identical in all 

such modes.The shift in frequency depends only upon the radius of the cavity and it 

is shown that temperature changes may be tracked to around a 20mK resolution for 

the TM010 mode, 10mK resolution for the TM210 mode, and even higher resolution 

for higher order modes. 

 

Finally, as a demonstration of the benefits of the split cavity, the photoactivity of 

powders and sheets of transparent conducting oxides is tested. Lorentzian curves are 

obtained of the real-time excitation of charge carriers into the conduction band as 
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UV light stimulates the sample. This remarkable result shows the versatility of the 

split cavity for testing stimulated samples in any form. 

 

Following the investigations of microwave measurement techniques, a study of the 

Merck particles themselves was conducted in which we relate the high frequency 

behaviour of these composite to theoretical descriptions of structural and material 

properties. 

 

The behaviour of composites of conducting particles was investigated theoretically 

and experimentally at microwave frequencies. Merck KGaA samples of micron-

sized mica particles coated with a transparent conducting oxide were measured over 

broadband microwave frequencies in an effort to learn more about the electrical 

behaviour of the composite. Results reveal absorption peaks in the microwave 

frequency range, and low frequency dispersion in percolative samples. Such a low 

frequency absorption peak is caused by the core-shell structure of the particle. When 

the mobility of the TCO shell is increased by raising annealing temperatures we 

observe experimentally an increase in the frequency of the absorption peak that is 

proportional to the increase in DC conductivity as predicted in the literature [3,4]. 

However, at higher levels of mobility we begin to see a decrease in the absorption 

peak frequency. This is a result that has not been predicted, or observed in the 

literature. A comprehensive electromagnetic model of representative layered 

conducting oblate spheroids was developed and by using the simple Drude model of 

the degenerate electron gas, we confirm theoretically the origin of this anomalous 

behaviour. There is a critical value of mobility beyond which the absorption peak 

frequency begins to decrease. This result may have a wide ranging impact as the 

field of semiconducting composites grows. 

 

Mixing laws for composites and classical mixing formulas were introduced and their 

limitations were discussed. We conclude that significant limitations exist at high 

concentrations where electromagnetic interaction between particles becomes a 

notable. Since we cannot have complete knowledge of a sample microstructure and 

variations in the structure can alter the effective electrical properties of the medium a 

level of uncertainty must be accepted, though for micron sized particles interrogated 

by wavelengths of the order of centimetres, averaging effects are implicit. 
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Classical interpretations of frequency dependent loss were discussed via the Debye 

model of dielectric relaxation. A general approach to the analysis of loss-peaks in 

terms of the relaxation time is deemed inadequate and we take a closer look at the 

polarization of multi-layered particles, by using the Clausius-Mossoti approach. 

 

Critical phenomena and the scaling of percolative behaviour in general were 

discussed and the polarization of particles in the time domain is reviewed. A 

combination of both Debye-type polarization and Drude-type conduction is used to 

describe a percolating composite exhibiting both a relaxation peak, and low-

frequency dispersion. 

 

The percolation threshold was investigated using random resistor-capacitor 

networks. In the resulting frequency dependent admittance, the central frequency 

region exhibits a fractional power law behaviour, which directly relates to the 

composition of the lattice. The gradient observed in the fractional power law region 

corresponds to the proportion of the lattice occupied by capacitive components. 

 

It is observed that as the size of the network is increased power law region expands 

to cover more of the frequency range, with the conclusion that for real materials, this 

behaviour dominates all frequencies, subject to limiting low and high frequency 

values. It is verified that the value of the gradient in the anomalous power law region 

of the frequency dependent conductivity depends upon the proportion of capacitive 

components present in the lattice and results are shown from literature supporting 

the application of this to real materials. 

 

The broadband coaxial probe technique is used to measure the frequency dependent 

conductivity of the TCO based composites used in this work. Measured results 

indicate that the gradient decreases as the proportion of the capacitive phase 

decreases, just as in our RC network interpretation. But results underestimate the 

role of the capacitive phase somewhat and the gradient is less than the predicted 

behaviour of the power law, though emergent behaviour is present. We conclude 

that this deviation comes about because scaling behaviour is not satisfied in the 

composite material measured in this work since the conductive phase here is in the 
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form of platelets. This model is not therefore suited to composite systems such as 

this. 

 

In order to investigate the critical behaviour of the percolation threshold, the split 

post dielectric resonator technique is used to measure the sheet resistance of 

percolating and non-percolating samples at high frequencies and results are 

compared to DC measurements of the same samples. The percolation threshold 

remains invisible to the microwave measurement and we simply observe a smooth 

curve describing the increasing quantity of conducting particles in the sample. At 

DC we see the expected critical phase transition from the non-conducting to the 

conducting state. This approach is clearly advantageous and measurements of 

conducting particles may be made irrespective of their concentration. 

  

Systematic broadband investigations of the shift from non-percolating to percolating 

composites are carried out. As the composite begins to percolate low-frequency 

dispersion emerges from the loss-peak. However, at the onset of low frequency 

dispersion, the ‘lower leg’ of the frequency response does not simply rise and engulf 

the relaxation behaviour of the particles. In fact, well above the percolation 

threshold we still observe a small relaxation peak, which emerges from the low 

frequency dispersion that is characteristic of percolation. We can conclude that the 

relaxation times of percolative and polarization effects in this system are 

independent and dissimilar. We also conclude that high frequency measurements 

may be taken of composites of conducting particles and are insensitive to 

percolation effects, but at frequencies below the characteristic loss-peak frequency, 

low-frequency dispersion is present and percolation must be accounted for in 

measurements. 

 

Having established theoretical approaches to model the particle polarization and 

fundamental material properties, we extend the investigation of TCOs towards the 

high impact application of thin-film solar cells. 

 

Models of the μ-n relationship in transparent conducting oxides were considered 

using combined electron scattering models which have been fitted to experimental 

data for ITO. Above the Mott critical density for the Insulator-Conductor Transition, 
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ionized impurity scattering causes a large decrease in electron mobility. It is 

suggested that to achieve high mobilities for a given TCO system, we must 

manipulate the material to move closer to the Mott critical density. 

 

The simple Drude model was used here to determine the electrical and optical 

properties of the TCO as a function of electron mobility and electron density. When 

the electron mobility is increased, the optical transparency is reduced because of the 

electromagnetic absorption associated with the concomitant reduced skin depth. It 

was been proposed that properties for any TCO material may be improved by 

increasing mobility in preference to electron density. It was shown that this is 

particularly important for devices such as thin-film solar cells, in which the TCO 

layer must be both highly transparent and highly conducting. 

 

Power absorption coefficients for a TCO layer in a typical thin-film solar cell were 

calculated as functions of the mobilities and electron densities. Using experimental 

data for ITO, a direct observation was made of total power absorption in the layer 

for a real ITO system. It was shown that decreasing the electron density n from 2.6 × 

10
21

 cm
-3

 to 2 × 10
21

 cm
-3

, increases μe and decreases total power absorption in the 

layer by around 8% relative to the theoretical minimum value. This result has a large 

potential impact for producers of thin-film solar cells and producers of TCOs in 

general. And could lead to significantly improved efficiencies in all applications 

where a transparent conducting oxide is used. 

 

Having modelled effectively the behaviour of composites and TCOs the spotlight is 

once more focussed upon the properties of conducting composites in general. 

Interest in their microwave absorbing properties is ubiquitous and knowledge of the 

interaction of microwaves with conducting particles is important in many 

interdisciplinary applications. 

 

It was shown that though there may be a common misconception that small, highly 

conducting particles heat profusely when placed in a large microwave electric field, 

it is not the case. The simple physical explanation is that the electric field (which 

drives the heating) within a highly conducting particle is highly screened. We 

observe that the magnetic absorption associated with induction accounts for the large 

experimental heating rates observed for small metal particles. The presence of small 
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metal particles may cause heating in their surroundings and therefore higher electric 

field absorption, but this is due to the reconfiguration of the electric field in the 

space outside of the particles. 

  

For metal powders in microwave radiation, it was shown that the dominant 

absorption is magnetic in origin. 

 

Enhancement of magnetic absorption (and thus heating) within sub-micron particles 

is best accomplished by making the particles from lossy magnetic materials. The 

magnetic dissipation exceeds the electric dissipation in these particles by many 

orders of magnitude for highly conducting particles. This has important implications 

for the selective heating of biological tissue using microwave radiation, into which 

has been embedded sub-micron magnetic particles. Conventionally, in this case 

microwaves would heat biological tissue, but the surrounding tissue will be 

unaffected by an applied microwave magnetic field, while the embedded particles 

will heat strongly due to magnetic dipole absorption. Magnetic nanoparticles used in 

this way are being investigated for the treatment of cancer [116,117]. 

 

General principles were developed for efficient microwave absorption by small 

conducting particles. For particles of low conductivity, absorption is predominantly 

due to electric dipole absorption (driven by a microwave electric field), which is 

maximised when the conductivity is approximately 0 . For highly conducting 

particles, magnetic dipole absorption (driven by a microwave magnetic field) 

exceeds electric dipole absorption over the full range of particle radii, from < 10 nm 

to > 1 mm. The maximum magnetic dipole absorption is of the same order of 

magnitude as the maximum electric dipole absorption (for equivalent electric and 

magnetic fields satisfying the condition 000 / EH ) for powders of the same 

volume, except it occurs for particle radii of the order of the microwave skin depth. 

An exact condition for spherical, non-magnetic powders is  41.2a ; this is a 

remarkable result, which means that for a metal of any given conductivity at a 

particular frequency, maximum magnetic absorption can be assured by simple 

selection of the mean particle radius. 
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6 ANNEX A: TCOs in Thin-Film Solar Cells 

 

The production of high-performance transparent conducting oxides (TCO) is of 

critical importance to thin-film solar cells. The remarkable properties of both high 

conductivity and high transparency are however only achievable within certain 

limits. As dopant density is increased, a natural competition between these two 

critical performance indicators emerges. The challenge facing producers of TCOs is 

therefore to achieve high dopant densities for high conductivity, but low dopant 

densities for high transparency. Producers of TCOs must search closer to the Mott 

conductor-insulator transition for high-performance materials, where the low carrier 

density but high mobility is well suited to use in thin-film solar devices. As thin-film 

solar cells emerge as a possible alternative to silicon wafer based technology, the 

optimization of TCOs remains essential for the further proliferation of thin-film 

photovoltaics. This article considers the power absorption of an indium tin oxide 

layer in such a thin-film device and pursues optimal performance close to the Mott 

transition. 

 

 

The performance of thin-film solar cells is critically dependent upon the effective 

operation of transparent conducting oxide (TCO) layers, which play a significant 

role in both optical and electrical power transmission through these photovoltaic 

devices. In this article, we model the optical and electrical power transmission 

through TCO layers in thin-film solar cells as a function of both the electron carrier 

density, n, and its mobility, μ. The electrical and optical properties of the TCO layer 

are described by the simple Drude model of the degenerate free electron gas and the 

concomitant electromagnetic absorption due to skin-depth effects is thereby 

calculated. Above the critical carrier density for the composition-induced Mott 

Insulator-Conductor Transition, TCOs exhibit metallic-type conduction. However, 

with increasing electron (carrier) density above the transition, the optical 

transparency of the layer is significantly decreased. Importantly, in order to achieve 

high electrical conductivity whilst preserving high optical transparency of the TCO 

layer, electron mobilities need to be increased in preference to increasing electron 
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densities. To reach higher carrier mobilities in any given TCO system, we propose 

that one should move the material close to the Mott transition. A model of ionized 

impurity scattering in indium tin oxide (ITO) at high carrier densities allows direct 

comparison of the μ-n relationship in real TCO layers to the total power absorption 

in such layers in thin-film solar devices. We determine that decreasing the electron 

density from 2.6 × 10
21

 cm
-3

 to 2 × 10
21

 cm
-3

 in such an ITO layer above the Mott 

critical density can decrease the total power absorption in the layer by a large 

amount (around 8% relative to the minimum theoretical absorption). 

 

6.1 Introduction 

 

Transparent conducting oxides (TCO) find widespread use as transparent electrodes 

in optoelectronic devices [118]. TCOs such as tin-doped indium oxide (ITO) and 

fluorine-doped tin oxide (FTO) are used as current collectors and form conducting 

layers in thin-film photovoltaic cells [119,120]. The TCO layer influences the 

performance of such solar cell devices in two respects. Firstly, by transmission of 

the optical power of incident light through the layer. Secondly, by transmission of 

electrical power through the layer by the transport of the optically-generated 

carriers. Consequently, it is very important that the TCO layer has both a low sheet 

resistance Rsq and high optical transparency in order to optimize the output power of 

the device. Unfortunately, as we will illustrate, these parameters are in natural 

conflict. 

 

Since Rsq = 1/neμet, to reduce the sheet resistance one might increase the carrier 

density n, the carrier mobility μe, or the film thickness t. However, increasing n and 

μe also affects the electromagnetic skin depth δ, which is associated with absorption 

of electromagnetic radiation. This ultimately determines the optical transparency of 

the film since the optical power transmission coefficient is approximately 

proportional to exp(–2t/ δ). For a given layer thickness, increasing the carrier density 

in any TCO system will therefore have the effect of increasing the conductivity, but 

also necessarily decreasing the transparency. In Error! Reference source not 

found. we show the effect of increasing the electron density, for a material at carrier 
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densities above the Mott Insulator-Conductor Transition, upon the dc electrical 

conductivity and optical transparency of a typical TCO layer, calculated using the 

simple Drude model as discussed in the following sections. 
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Figure 6.1 - The effect of increasing the electron density upon conductivity 

(solid line) and transparency (dashed line) in a TCO layer at carrier densities 

above the Mott Insulator-Conductor Transition. For normally incident light of 

wavelength 800nm, upon an ITO film of thickness 80nm. 

 

Transparent conducting thin-films can therefore only be optimized for both low 

sheet resistance and high optical transparency by increasing the electron (carrier) 

mobility in preference to the carrier density [121]. In the following sections, this will 

be shown to have a major effect upon the power absorption of the transparent 

conducting layer in photovoltaic cells. In the relationship [122,123]
 
between the 

mobility and carrier concentration shown in Error! Reference source not found., 

we observe that higher mobilities may be achieved by moving the material closer to 

the Mott critical density, where reduced ionized-impurity scattering is exhibited at 

lower carrier densities. Then, for a given TCO system, this finding allows optimized 

values of both n and μe to be deduced for applications in solar energy devices. 

Photon absorption due to in-band states is ignored in this work under the assumption 
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that this can be suppressed by appropriate materials processing. 
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Figure 6.2 - μe–n relationship using the combined model proposed by Ellmer et 

al. [Error! Bookmark not defined.] and fitted to empirical data for ITO. 

 

Plotting the empirical curve proposed by Masetti et al. [Error! Bookmark not 

defined.], for ionized impurity scattering in doped semiconductors and fitted to 

experimental values for ITO obtained by Ellmer et al. [124], an optimization in both 

parameters is demonstrated by comparison with power absorption curves for TCO 

photovoltaic device layers derived using the simple Drude model of optoelectronic 

properties above dopant levels set by the Mott criterion [96]. Importantly, a carrier 

density reduction from 2.6 × 10
21

 cm
-3

 to 2 × 10
21

 cm
-3

 is shown to result in an 

decrease in total power absorption in the TCO layer of  around 8% relative to the 

theoretical minimum absorption of ITO. 

 

6.2 The μ-n relationship and the Mott critical 

density 

 

To investigate the μ-n relationship in TCOs and the effects of this relationship upon 
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optical power absorption in a thin-film solar cell, we first consider empirical models 

of scattering mechanisms for TCOs and related doped semiconductor systems. The 

behaviour of such TCOs will, of course, vary greatly from material to material and 

with different preparation methods. However, the exact behaviour does not influence 

our conclusions since the principle of optimization remains valid for any given TCO 

system under the influence of ionized impurity scattering above the Mott critical 

density. 

 

It is generally recognised that the dominant carrier scattering mechanism in ITO 

above n ≈ 3 × 10
21

 cm
-3

 is due to ionized impurities [125] and with increasing carrier 

density, a decrease in carrier mobility is observed [Error! Bookmark not defined.]. 

This behaviour was modelled by Masetti et al. [Error! Bookmark not defined.] for 

carrier densities above the Mott critical density, and at  densities of 1 × 10
19

 cm
-3

 by 

fitting experimental results for As, P and B doped Si to the empirical curve 

described by equation Error! Reference source not found., 
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  

(101) 

 

 

Here,  μmax describes the carrier mobility at low carrier densities and μmin describes 

the mobility limited by ionized impurity scattering. The model was fitted to ITO 

experimental data by Ellmer et al.
7
 yielding the parameters μmax = 210 cm

2
/Vs, μmin = 

55 cm
2
/Vs, μ1 = 50 cm

2
/Vs, Cr = 15 × 10

17
 cm

-3
, Cs = 20 × 10

20
 cm

-3
, α = 1, β = 2. 

 

 

Below the Mott critical density the decrease in mobility may have a number of 

contributing causes. Ellmer et al. [Error! Bookmark not defined.] include the 

influence of grain barrier limited transport at lower carrier densities in their model of 

polycrystalline ITO, and Leenheer et al. [Error! Bookmark not defined.] attribute 

similar behaviour in amorphous indium zinc oxide films to a hopping (or 

percolation) type carrier transport and lattice scattering. In Error! Reference source 

not found. we show the combined ionized and grain boundary model using the 

empirical parameters obtained for ITO [Error! Bookmark not defined.]. The 

electron mobility is limited above n ≈ 5 × 10
20

 cm
-3

 by electron-ion impurity 
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scattering modelled by equation Error! Reference source not found. as described 

above [Error! Bookmark not defined.], and below n ≈ 5 × 10
20

 cm
-3

 scattering is 

described by the model proposed by Seto et al. [126], though carrier densities down 

to this order are not considered in this work. 

 

6.3 Optical properties of the free electron gas 

 

The optical properties of ITO thin films above the Mott critical density are discussed 

in Porch et al. [127], within the framework of the simple Drude model where a 

parabolic conduction band is considered to be partially filled by a degenerate free 

electron gas. There is a strong frequency dependence of the scattering time τ for 

Fermi surface electrons [98] in such a model, though if we consider only the visible 

part of the spectrum, τ is assumed to be approximately constant. The Drude form of 

the complex permittivity is ε = ε1 – jε2 [99], thus giving 
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where ωN
2
 = ne

2
/ε0m*, ε∞ is the high frequency relative permittivity and m* is the 

electron effective mass. Data collected by Porch et al. for ITO suggests that ε∞ ≈ 4.0, 

m* ≈ 0.35me and τ ≈ 3.3 × 10
-15 

s. The plasma frequency ωp of a conducting material 

is defined to be the frequency at which ε1 = 0. At frequencies below the plasma 

frequency the conductor is highly reflective since ε1 < 0. At high electron densities 

(n > 1 × 10
21

 cm
-3

) and high electron mobilities (μe > 20 cm
2
/Vs) we have ωN

2
τ

2
/ε∞ 

>> 1 and ωp ≈ ωN/ε∞
½
  n

½
. So for the conductor to be non-reflective to incident 

light in the visible spectrum (including red light of wavelength up to 780nm), we 

must have nmax < 2.6 × 10
21

 cm
-3

. 
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Figure 6.3 – Normalized optical power transmission coefficient Topt (solid lines) 

as a function of electron density n and mobility μe for normally incident light of 

wavelength 800nm upon an ITO film of 80 nm thickness. Dotted lines are 

contours of constant sheet resistance Rsq = 1/neμet (units of Ω). 

 

The skin depth and free electron absorption ultimately determine the transparency of 

sufficiently thick TCO layers. Calculations of the optical power transmission 

coefficient T can be carried out using the wavenumber k = ωε
½
/c and the plane wave 

impedance Z = ωμ0/k. The skin depth is defined using the wavenumber k by δ = –

1/Im(k). This analysis gives 
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(104) 

 

 

which can be calculated using Error! Reference source not found. and Error! 

Reference source not found.. The skin depth δ and the optical power transmission 

coefficient T follow the same qualitative behaviour, since as a function of thickness 

T(t) ≈ T(0)exp(–2t/ δ) for frequencies well above the plasma frequency ωp. 

 

In Error! Reference source not found. we show contours of normalized optical 
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power transmission coefficient Topt = T(t)/T(0) as a function of μe and n, for normally 

incident, incoherent light of free space wavelength λ0 = 800nm and for an ITO film 

of thickness 80nm. The contours are normalized to the maximum theoretical optical 

power transmission, i.e. for t = 0, giving 100% transparency. For large values of n, 

the normalized optical power transmission coefficient becomes very small as the 

plasma frequency approaches the frequency of the incident light, since ωp  n
½
. The 

increased values of Topt when μe < 10 cm
2
V

–1
s

–1
 correspond to increased values of δ, 

and is the result of ωp increasing with decreasing μe in this low mobility limit. 

Similar contours are obtained for both shorter wavelengths and decreased 

thicknesses, but increased values of Topt are exhibited as we move further above ωp 

and are less subject to skin depth effects as t is reduced. 

 

6.4 Implications for thin-film photovoltaic 

devices 

 

The power generated by a thin-film photovoltaic device is influenced by many 

layers and interfaces, but considering the TCO layer in isolation, and its 

optoelectronic performance, we can determine the total power absorption coefficient 

AT calculated relative to the minimum theoretical value for the layer. The optical 

power passing through the TCO layer of a photovoltaic cell is subject to the effects 

of electromagnetic absorption. The same layer is responsible for conducting 

generated current towards a metal contact. The total power transmission of the TCO 

layer is therefore proportional to the factor [Error! Bookmark not defined.,128] TT 

= Telec × Topt = (nμet) × exp(–2t/ δ), where the figure of merit Telec = (nμet) accounts 

for the increased spreading current as thickness t increases (assuming a rectangular 

contact geometry) and is the reciprocal of the sheet resistance. The term Topt = exp(–

2t/ δ) accounts for the increased electromagnetic absorption due to the skin depth. 

For incident light entering the TCO layer, we define the power absorption 

coefficient AT = 1 – TT. This is normalized to the minimum theoretical absorption for 

the layer dictated by the intrinsic mobility limit for ITO established by Bellingham 

et al. [Error! Bookmark not defined.] at around 100cm
2
V

-1
s

-1
. 



Annex A – TCOs in Thin Film Solar Cells  196 

 

In Error! Reference source not found. we show a schematic diagram of a typical 

thin-film solar module in superstrate configuration [Error! Bookmark not 

defined.]. The TCO layer spreads current between the rectangular contacts of each 

active cell in the solar module. The power absorption of the transparent conducting 

layer is decreased by increasing μe, but for varying n or t an optimum value exists 

which minimizes power absorption. This is demonstrated in Error! Reference 

source not found., which plots normalized power absorption contours for normally 

incident incoherent light of free space wavelength λ0 = 800nm and for an ITO film 

of thickness 80nm (appropriate for antireflection purposes). Each value of μe has a 

corresponding, optimized value of n, which lies on the locus shown in Error! 

Reference source not found. by a dashed line. 

 

 

Figure 6.4 – Schematic diagram of a typical thin-film photovoltaic module 

(from Reference [Error! Bookmark not defined.]). 

 

Plotting the empirical model described by equation Error! Reference source not 

found. with parameters obtained experimentally allows a direct analysis of the free 

carrier behaviour for a given TCO system. In Error! Reference source not found. 

the curve is plotted for an ITO system with empirical parameters obtained from 

reference [Error! Bookmark not defined.]. It is observed that following the ITO 

curve towards lower electron densities by moving closer to the Mott critical density 

minimizes the total power absorption of the photovoltaic device layer. For example, 

decreasing n from 2.6 × 10
21

 cm
-3

 to 2 × 10
21

 cm
-3

, increases μe and decreases total 
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power absorption by around 8%, a very significant result. 

 

 

Figure 6.5 –  Contours of power absorption coefficient AT, normalized to the 

minimum theoretical value at μe = 100 cm
2
/Vs for an ITO layer in a thin-film 

photovoltaic cell. The film thickness is 80nm and incident wavelength λ0 = 

800nm. Optimum carrier density for a given mobility is shown (red dashed 

line), which intersects the μe–n line describing ionized impurity scattering in 

ITO. 

 

6.5 Summary and conclusions 

 

Models of the μ-n relationship in transparent conducting oxides were considered 

using combined electron scattering models which have been fitted to experimental 

data for ITO. Above the Mott critical density for the Insulator-Conductor Transition, 

ionized impurity scattering causes a large decrease in electron mobility. It is 

suggested that to achieve high mobilities for a given TCO system, we must 

manipulate the material to move closer to the Mott critical density. 

 

The simple Drude model was used here to determine the electrical and optical 

properties of the TCO as a function of electron mobility and electron density. 
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However, it is clear that these parameters are in natural conflict, since for increasing 

electron density, the conductivity is increased, but the optical transparency is 

reduced because of the electromagnetic absorption associated with the concomitant 

reduced skin depth. It has been proposed that properties for any TCO material may 

be improved by increasing mobility in preference to electron density. It was shown 

that this is particularly important for devices such as thin-film solar cells, in which 

the TCO layer must be both highly transparent and highly conducting. 

 

Within the framework of the simple Drude model, power absorption coefficients for 

a TCO layer in a typical thin-film solar cell were calculated as functions of the 

mobilities and electron densities. Using the scattering model outlined above and 

fitted to experimental data for ITO, a direct observation was made of total power 

absorption in the layer for a real ITO system. It was shown that decreasing the 

electron density n from 2.6 × 10
21

 cm
-3

 to 2 × 10
21

 cm
-3

, increases μe and decreases 

total power absorption in the layer by around 8% relative to the theoretical minimum 

value. We believe that this highly significant result will allow optimization of the 

performance of a given TCO material in thin-film solar cells. 
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7 APPENDICES 
 

7.1 APPENDIX A:  Spherical Particle within an 

Oscillating Electric Field 

 

First consider the electric dipole developed by a spherical particle placed within in a 

uniform, oscillating electric field, and the subsequent electric dipole absorption. 

Electromagnetic scattering can be neglected if the sphere is electrically small, in 

which limit the electromagnetic fields are considered to be quasi-static; specifically, 

this occurs for a particle radius 0a , where  /20 c  is the free space 

wavelength and  the angular frequency of the applied electric field.  

 

Referring to the spherical polar co-ordinate system of Fig. A1, consider a uniform 

electric field of magnitude 0E  applied parallel to the z-axis. The sphere is considered 

to have isotropic relative permittivity  and permeability , which can be complex 

quantities to allow for energy absorption.  

 

Figure A1:  The spherical polar co-ordinate system used to solve the 

electromagnetic fields in and around a material sphere. 
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The quasi-static electric and magnetic field fields inside the sphere are of the form 

  tj

r eEEE 
  0,sin,cos   and   tjeHH 

  sin,0,0 , where EEr ,  and H  are 

scalar functions of radial position r only, and are proportional to the applied electric 

field magnitude E0. This results in an electric dipole moment parallel to the applied 

electric field. Helmholtz’s equation for the induced magnetic field within the sphere 

is then 

 

  0sin
sin

1
sin

22

22 







 
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  H

r
kH  

 

which reduces to 

 

  0222 










Hx

dx

dH
x

dx

d
 (A1) 

 

Where x = kr. The wavenumber k is defined (in the usual manner) using 

ck / . The unique solution of Eqn.(A1) which remains finite as 0x  has 

the Bessel function form 

 

    
 

21
2/3 cossin

x

xxx
H

x

xJ
xH


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where the magnetic field scaling factor H1 is independent of radial position r. The 

corresponding electric field components within the sphere can now be calculated 

from Maxwell’s displacement current density, i.e. EjH 0 , resulting in 
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 (A2) 

 

where the position-independent electric field scaling factor is  011 /2 jkHE  .  
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Outside of the sphere, the electric field is that of the original field (of magnitude E0), 

perturbed by the dipole field associated with the presence of the sphere. The external 

electric field is again of the form   tj

r eEEE 
  0,sin,cos  , and in terms of the 

sphere’s induced electric dipole moment p 

 

3
0

0
2 r

p
EEr


 , 

3
0

0
4 r

p
EE


       

(A3) 

 

Applying the electric field boundary conditions at the sphere’s surface for the field 

components of Eqns. (A2) and (A3) allows the electric dipole moment to be found, 

with the end result being 

 

    

    2

2

0
3

0
cot11

cot112
2

kakaka
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


      (A4) 

 

In the low frequency limit (i.e. ka << 1), Eqn.(A4) reduces to the familiar result of 

the static electric dipole moment of a uniformly polarised dielectric sphere, namely  
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7.2 APPENDIX B:  Spherical Particle within an 

Oscillating Magnetic Field 

 

Now consider the magnetic dipole developed by a spherical particle placed within a 

uniform, oscillating magnetic field, which can be developed in analogy with the 

treatment of the particle’s electric dipole moment discussed in Appendix A. Assume 

that the sphere is again electrically small (i.e. 0a ) and has complex, isotropic 

relative permittivity  and permeability . A uniform, oscillating magnetic field of 

magnitude H0 applied parallel to the z-axis generates a magnetic dipole moment 

which is also parallel to the z-axis. The resulting electric and magnetic fields are 

then   tj
r eHHH 

  0,sin,cos and   tjeEE 
  sin,0,0 , respectively. By the 

reduction of Helmholtz’s equation applied to the azimuthal electric field component, 

it is found that Eϕ satisfies  
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which has the unique solution  
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which remains finite as 0x , where again x = kr and ck / . The field 

scaling factor now is E2, which differs from E1 encountered in the treatment of the 

electric dipole moment. The corresponding magnetic field components can be 

generated using Faraday’s law HjE 0 , resulting in 
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where the magnetic field scaling factor is defined by 022 /2 kjEH  . 

 

Outside of the sphere, the magnetic field is that of the original field (of magnitude 

H0), perturbed by the dipole field associated with the presence of the sphere. The 

external magnetic field is again of the form   tj

r eHHH 
  0,sin,cos  , and in 

terms of the sphere’s induced magnetic dipole moment m 
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(B2)  

Applying the magnetic field boundary conditions at the sphere’s surface for the field 

components of Eqns. (B1) and (B2) allows the magnetic dipole moment to be found, 

with the end result being 
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In the low frequency limit (i.e. ka << 1), Eqn.(B3) reduces to the familiar result of 

the static magnetic dipole moment of a uniformly magnetised sphere, namely  
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