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Abstract

The origins of these investigations are in the pursuit of heterocycles containing an N-O
bond. This project as a whole focusses on developing earlier chance observations made by
previous members of the Knight Research Group.

Chapter 2 focusses on the synthesis of isoxazoles: 5-membered aromatic rings containing
a nitrogen to oxygen bond. The origin of this project was the unexpected observation of a small
percentage of isoxazole products in the Group’s earlier synthesis of isoxazolines, which were
thought to be the oxidation products arising from using silver nitrate as a catalyst for those
cyclisations. It has now been found that by using an excess of silver nitrate, isoxazoles can be

selectively formed from the same hydroxylamine precursors.

Chapter 3 centres on the viability of obtaining unusual 6-endo-trig products from the
iodocyclisation of unsaturated tert-butyl carbonates. This Chapter is connected to the theme of
N-O chemistry, as the tert-butyl carbonate starting materials were the unexpected products of a
synthesis that had been designed to form hydroxylamines. The initial discovery of these
unexpected 6-endo products on iodocyclisation was expanded upon to produce a series of cyclic

carbonates with a procedure optimised to maximise the yield of this desired structural isomer.

Chapter 4 concentrates on building saturated N-O rings onto existing cyclic systems,
including transannular cyclisations - investigating previous reports of rearrangement of N and O
during cyclisation and working towards a synthesis of the core-structure of the natural product
Histrionicotoxin. These schemes prove the utility of this acid-catalysed hydroamination
methodology in building heterocycles and the chiral products that can be gleaned from them.

For the most part, this project has been concerned with methodology - solving problems

and optimising key-step procedures - which can be applied to complex target molecules.
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Abbreviations and acronyms

Several abbreviations and acronyms have been used throughout this thesis that may not

be familiar to the reader. They are listed below:

A heat

A Angstrom(s)

APCI Atmospheric Pressure Chemical lonisation
app. apparent

ag. aqueous

Ar aromatic

Bn benzyl

Boc tert-butoxycarbonyl

boc anhydride di-tert-butyl dicarbonate

BOC-ON 2-(tert-butoxycarbonyloxyimino)-2-phenylacetonitrile
br broad

Bu butyl

C celsius

cat. catalytic

column chromatography
d

flash column chromatography
doublet

DBN 1, 5-Diazabicyclo(4.3.0)non-5-ene
DCAD di-(4-chlorobenzyl) azodicarboxylate
DCM dichloromethane

dd double doublet

DDQ 2,3-dichloro-5,6-dicyanobenzoquinone
DEAD diethyl azodicarboxylate

DEPT Distortionless Enhancement by Polarization Transfer
DET diethyl tartrate

DIAD diisopropyl azodicarboxylate
DIBAL-H diisobutylaluminium hydride

dm decimeter

DMAP 4-dimethylaminopyridine

DMF dimethylformamide



DMPU N,N'-Dimethylpropyleneurea

DMSO dimethylsulfoxide

dg double quartet

dt double triplet

e.g. exempli gratia

El Electron lonisation

EPSRC Engineering and Physical Sciences Research Council
eqg. equivalent(s)

ES electrospray

Et ethyl

g gram

h hour(s)

HMBC Heteronuclear Multiple Bond Correlation
HMPA Hexamethylphosphoramide

HRMS High Resolution Mass Spectrometry
HSQC Heteronuclear Single Quantum Coherence
Hz hertz

ie. id est

IR infra-red

J coupling constant

LDA Lithium diisopropylamide

LHMDS Lithium bis-(trimethylsilyl)amide
lit. literature

m meta

m multiplet

M molar

mCPBA 3-chloroperoxybenzoic acid

Me methyl

mech mechanism

MHz megahertz

mins minutes

ml millilitre(s)

mmol millimole(s)



mol%
moldm™
mp

Ms

NBS
NIS
NMR
NOESY
nosyl or ns
o/n

Y

PG

Ph

PMB

ppm
Pr

q

rt

S

Sn2

t
TBDMS
TBHP
TBS

td

TEA

tfOH/triflic acid

THF
TIPS
TLC
TMAD
TMS
Tosyl

mole percent

moles per decimeter cubed
melting point
methanesulfonyl
N-bromosuccinimide
N-iodosuccinimide

Nuclear Magnetic Resonance
nuclear Overhauser enhancement spectroscopy
p-nitrobenzenesulphonyl
overnight

para

Protecting Group

phenyl

para-methoxybenzyl

parts per million

propyl

quartet

room temperature

singlet

2nd order nucleophilic substitution
triplet

tert-butyldimethylsilyl
tert-butyl hydrogen peroxide
tert-butyldimethyisilyl

triple doublet

triethylamine
trifluoromethanesulphonic acid
tetrahydrofuran
triisopropylsilyl

Thin Layer Chromatography
tetramethyl azodicarboxamide
trimethylsilyl

toluenesulfonyl



trig trigonal

Ts toluenesulfonyl
uv ultra-violet

W watts

wiw weight for weight

Please refer back to the above list if any terms need clarification throughout the following
pages.



Chapter 1

General Introduction



1.1 General introduction

At first glance the three results chapters of this thesis may not be obviously linked.
However, there are two themes that do provide continuity between these sections. These are that
the origins of these investigations are in the pursuit of heterocycles containing an N-O bond, and
that this project as a whole focusses on developing earlier chance observations made by previous

members of the Knight Research Group.

Chapter 2 focusses on the synthesis of isoxazoles: 5-membered aromatic rings containing
a nitrogen to oxygen bond. The origin of this project was the unexpected observation of a small
percentage of isoxazole products in the Group’s earlier synthesis of isoxazolines, which were
thought to be oxidation products arising from using silver nitrate as a catalyst for those

cyclisations.

Chapter 3 centres on the viability of obtaining unusual 6-endo-trig products from the
iodocyclisation of unsaturated tert-butyl carbonates. A previous observation that these
6-membered products had been formed upon cyclisation of a tert-butyl carbonate led to the
desire to pursue this project. This Chapter is connected to the theme of N-O chemistry, as the
tert-butyl carbonates were the unexpected products of a synthesis that had been designed to form

hydroxylamines.

Chapter 4 concentrates on building saturated N-O rings onto existing cyclic systems,
including transannular cyclisations - investigating previous reports of rearrangement of N and O
during cyclisation and working towards a synthesis of the core-structure of the natural product
Histrionicotoxin. This is hoped to prove the utility of this methodology in building heterocycles

and the chiral products that can be gleaned from them.

For the most part, this project has been concerned with methodology - solving problems
and optimising key-step procedures - which can be applied to complex target molecules.



1.11 Heterocycles

Heterocycles are inherently important in many modern pharmaceuticals. One of the
prevalent features of a heterocycle is the presence of at least one lone pair of electrons on an
atom (e.g. O, N, S), which provides a basis for electron coordination, hydrogen-bonding,
reactivity and resonance. Such electronic properties are crucial to the ability of a heterocycle to
exhibit biological activity.

Heterocyclic targets are generally obtained either by late formation of the heteroaromatic
ring from a complex acyclic precursor, or by multiple functionalisation of a simple
hetereoaromatic cycle, predominantly using electrophilic substitution or metallation strategies.’

This project has mainly been concerned with those highly functionalised heterocycles
containing both oxygen and nitrogen - the isoxazoles, isoxazolines, isoxazolidines and
morpholines. An example of a natural product that has one of these systems as its core structure,

Ibotenic acid 1 a secondary metabolite made by a poisonous mushroom, is shown in Figure 1.2

@)
0] OH

HO NH
Figure 1: Ibotenic acid. 1

The Knight group has long been involved in the synthesis of such synthetically valuable
heterocycles, employing silver-, iodo- and acid-catalysed cyclisations for the key ring-forming

steps.

1.12 Silver-catalysed cyclisations

Silver(l) salts had long been known to be capable of activating allenes in cyclisation
reactions,® and extensive work has more recently been carried out within the Knight group on
silver-catalysed heterocycle formation from alkyne precursors. Preceding the isoxazoline and
isoxazole chemistry that will be the focus of Chapter 2 (page 18), Sharland showed that
pyrroles 3 could be formed in excellent yields from 3-alkyne-2-hydroxy-1-sulphonamides 2 on
exposure to 10% silver nitrate supported on silica gel (Scheme 1).* This material, more often
associated with the chromatographic separation of alkene stereoisomers, was especially effective
and could also, in theory, be recycled.® In the formation of the pyrrole 3, shown below in

Scheme 1, the second double bond of the aromatic product is introduced by dehydration.



3 R2

R
R2 OH_~ 10% AgNO; - SiO,
[\
R! R3

DCM l}l
R1” “NHTs 20 °C, ~3 hours Ts
2 3

Scheme 1: Siver-catalysed pyrrole formation.

This was also the case in Menzies’ synthesis of furans 5 from 3-alkyne-1,2-diols 4 using

this methodology, shown in Scheme 2 below.°

R3 . 2
10% AgNOg; - R
L OH_2 0% AgNO; - SIO;

R =
/ \
DCM R R3

R1” SOH 20 °C, ~3 hours o

4 5
Scheme 2: Silver-catalysed pyrrole formation.

In the case of Proctor’s isoxazoline synthesis, shown below in Scheme 3, there was
obviously no hydroxyl group present in the starting materials 6, so dehydration could not occur
and the products 7 were non-aromatic with a single double bond.” In the subsequent oxidative
cyclisations from the same starting materials 6 to yield the isoxazoles 38 documented in

Chapter 2, aromatisation would happen via an alternative mechanism.

R? 1
- \/ 10% AgNOj - SiO, 0.30 eq R>_>\
O  ~
o DCM < P~p?
NH, 20 °C, ~3 hours N
6 7

Scheme 3: Silver-catalysed isoxazoline formation.

1.13 lodo-cyclisations

In terms of using molecular iodine within the research group, specifically to facilitate
cyclisations to form heterocycles, the first reactions were 5-endo-trig cyclisations to synthesise
tetrahydrofurans 9 and 11 (Scheme 4). A crucial feature of these reactions was that anhydrous
acetonitrile had to be used as the solvent, and they yielded products in a highly stereocontrolled
manner depending on the geometry of the starting materials 8 and 10, as shown in Scheme 4

below.®

10
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[ >
o I, 3.00 eq Bu o I, 3.00 eq
/j\ NaHCO; 3.00 eq b\ v/j\ NaHCO; 3.00 eq Z_)\
Bu -~ .
HO Bu™ ~o HO Bu'

acetonitrile acetonitrile (e}

8 9 10 11

Scheme 4: lodocyclisations to form tetrahydrofurans.

In a very similar reaction to that previously described in Scheme 2 that used silver nitrate,
3-alkyne-1,2-diols 4 also successfully undergo iodine-promoted 5-endo-dig cyclisations followed

by dehydration to give B-iodofurans 12 in good to excellent yields, as shown below in

9
Scheme 5. R® 12 3.00 eq R2 |
r2 O Z NaHCO; 3.00 eq /Z_ﬁ\
_—_—m
DCM, 0 °C RL /) R3
R NOH 82-94% o
4 12

Scheme 5: lodocylisation to form furans.

The above iodocyclisation could be seen as preferable to the silver-catalysed variation
(Scheme 2) if a fourth substituent is required on the furan product 12. The resulting iodine
moiety can undergo regioselective metallation using halogen-metal exchange, or alternatively be

displaced using a palladium-catalysed coupling method.°

1.14 Acid-catalysed cyclisations

The development in acid-catalysed hydroamination cyclisations in the Knight group was
actually a direct result of research into the aforementioned iodocyclisations. It had been
suspected that the observed isomerisation of the iodo-pyrrolidines 13 to 14 could occur due to a

proton-induced recyclisation under the conditions shown in Scheme 6 below.

L n
Rl "IRZ _— Rl R2

N N
Ts MeCN

13 14
Scheme 6: Proton induced isomerisation.

This chemistry led to speculation that it might be possible to trigger such cyclisations
using acid. Haskins’ demonstrated that triflic acid was an excellent catalyst for inducing overall

5-endo-trig cyclisations of homoallylic sulphonamides 15 to give pyrrolidines 16.*

11
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Scheme 7: Acid-catalysed pyrrolidine formation.

In competitive experiments, N-tosyl pyrrolidines are formed in preference to the
corresponding piperidines, even when the latter would be obtained by trapping a tertiary
carbocation. The opposite is true with methoxycarbonyl protected amine analogues, which
preferentially form 6-membered products due to less steric interference. Cationic cascades
terminated by a sulphonamide group are viable for the efficient formation of polycyclic systems
18, as shown in Scheme 8 below.*?

17 18

Scheme 8: Acid-catalysed cascade reaction.

1.15 N-O heterocycles

In recent years a large number of alkaloids, as well as other nitrogen containing
compounds, have been synthesised using electrocyclic and radical pathways via intermediates
possessing N-O bonds.™® A brief review on some of the established reactions that yield such N-O
containing cyclic intermediates follows.

Intramolecular Diels-Alder reactions can be effected simply by pyrolysis of dilute
solutions of the reactants 19 in refluxing toluene (Scheme 9).* This is a [4+2] cycloaddition of
the dieneophilic acyl nitroso compound 19, and gives a fused bicyclic system 20, as shown in

Scheme 9 below.

OR OR
N
| heat N
N\ N\
\O O
(0] (0]
19 20

Scheme 9: Intramolecular [4+2] cycloaddition.

An intermolecular reaction can happen between the reactants 21 and 22, shown below in
Scheme 10, with the nitrile oxide 22 enabling a [1.3]-dipolar cycloaddition. In these

12



cycloadditions, with 1,2-unsymmetrically substituted alkenes such as 21 the reaction generally
proceeds non-regioselectively to give a mixture of the two possible regioisomers 23. The
example shown in Scheme 10 below however, exploits the discovery that the regiochemical
course of the cycloaddition is reversed by modification of the a,B-unsaturated aldehyde
precursors to either their acetal or dithioacetal derivatives 21, allowing a single chosen structural

isomer to be produced.’®

RO
RO_ _OR 9@ OR  p1 OR
+ N® TEA RL
DCM/toluene — 0 je
Rl R2 rt, 12 hours R2 N R2 =N
21 22 23

Scheme 10: Intermolecular [1.3]-dipolar cycloaddition.

Such [1.3]-dipolar cycloadditions can also occur intramolecularly, between alkenes and
nitrone groups. This cycloaddition, which is shown below in Scheme 11, features high regio- and

stereo-selectivity which reflect the geometry of the olefinic moiety in the starting materials 24.°

R0 | Row P
N AL Ti(OPr)4 N2
©0 o e —— (0] 0

dichloroethane "
Rl\/\/ Rl H
24 25

Scheme 11: Intramolecular [1.3]-dipolar cycloaddition.

In the above example (Scheme 11), cycloaddition of the a-allyloxycarbonyl nitrone 24 is
attractive as it gives cycloadducts 25 in one step with a high degree of control over the relative

stereochemistry.*®

If the Michael addition product of a secondary allylamine to a nitroalkene is captured as
an O-allylaminoalkyl nitronate, the starting material 26 (Scheme 12) is generated. The
subsequent reaction is a stereoselective intramolecular silyl nitronate-olefin [1.3]-dipolar
cycloaddition, to provide the highly functionalised pyrrolidine 27.*" This cycloaddition of O-silyl
nitronates 26 is very similar to that shown in the preceding Scheme 11, giving an idea of the

breadth of functional groups that can be tolerated in these types of reaction.

13
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HNT N 00 TEA SN
e
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26 27

Scheme 12: Intramolecular [1.3]-dipolar cycloaddition.

An intermolecular [4+2] cycloaddition of nitroalkenes 28 shown below in Scheme 13, to

the dialkene 29, gives the stable compounds 30.'

©0.®_0 ©0.9.0
N \N/
SnCly
+ -, |
N () oo w
r2 -15°C 2
28 29 30

Scheme 13: Intermolecular [4+2] cycloaddition.

However, when the alkenes 30 are exposed to elevated temperatures, a subsequent

transannular [3+2] cycloaddition is effected to give the bridged tricyclic nitroso acetals 31

(Scheme 14).'8
©0.9®_0
N
) | heat d /O
R N
R2

Rl R2
30 31

Scheme 14: Intramolecular [3+2] cycloaddition.

Heterocycles with a direct N-O bond can be used as intermediates for the synthesis of
amino alcohols following N-O bond cleavage, giving control over the regio- and stereochemistry
of the final product. These heterocycles can be formed from hydroxylamines (as well as the
methods given in Schemes 9-14), cyclised under various conditions according to the nature of
the unsaturation in the N-substituent, an example of which is shown in Scheme 15 below.'®
Hydroxylamines 32 are an example of tethered nitrogen that can induce ring-closure onto an
alkene. This leads to the formation of an isoxazolidine 33, and complements the routes that rely

on the preceding cycloaddition chemistry.?

_NHCO,R' PdCl,, CuCl, COR'
0 CO, MeOH, MeCN O—N
)\/\ co,Me
H
32 33

Scheme 15: Cyclisation to form an isoxazolidine.

14



A variety of nitrogen-containing natural products, including aminosugars and
aminocyclitols, have been synthesised by routes that feature the intramolecular delivery of a
temporarily tethered nitrogen nucleophile to an electrophilic site. This general tactic for amino
group introduction frequently provides entropic advantages, as well as improved site selectivity
and stereoselectivity compared to an intermolecular approach.? Also the resulting cyclic
products can sometimes be more easily manipulated towards the desired final target than the
corresponding free amine.

If, as is the case with the hydroxylamine chemistry in this project, the ‘tether’ used in the
neighbouring group participation is oxygen, then on breaking the N-O bond after cyclisation, a
hydroxyl group is also introduced, as was previously mentioned. Vicinal amino alcohols are a

common motif in many natural products, two examples (34 and 35) are shown in Figure 2.2

NH,

O <
HO%OCHs HO,,,Q,SCH3
(HsC),N  OH N

HO OH
(-)-methyl ravidosaminide 34 (+)-mannostatin 35

Figure 2: Natural products bearing vicinal amino alcohols.

The N-O bond can be selectively cleaved under mild conditions, including the use of
catalytic hydrogenolysis or dissolving metals,® to provide nitrogen in its more common
oxidation states (i.e. as an amine). Reductive cleavage of these N-O containing heterocycles can
also be accomplished under a variety of other conditions, including: reduction with mercury

3

amalgams of magnesium,?? aluminium or sodium,? reduction using titanium trichloride** or

reduction by molybdenum hexacarbonyl.?

In 1982 it was reported that the N-O bond within isoxazole 36, related to those
synthesised in Chapter 2, could be cleaved with the reducing agent samarium(ll) iodide (Sml,,
also known as "Kagan’s reagent”), in the presence of a proton source such as methanol, to give

the B-amino enone 37 as the product (Scheme 16 below).?®

O—N Sml; O NH,
Voo D e
/k)\ THF =
MeOH
36 37

Scheme 16: Reductive cleavage of the N-O bond.

It has been found that this methodology can be employed for the one-step production of a

variety of protected amines via directly quenching the reaction mixture with an acylating agent.*®

15



From the previous results shown in this General Introduction, the various methods of
cyclisation reported by the Knight group have a great capacity to be further explored as powerful
methods for the synthesis of nitrogen and oxygen containing heterocycles. Some of this potential

is explored over the following chapters.

16



Chapter 2

A Silver Nitrate Facilitated Isoxazole

Synthesis

17



2.1 Introduction

Isoxazoles 38, and their reduced forms (including isoxazolines 7 and isoxazolidines 39
(Figure 3), are important in heterocyclic chemistry due to their frequent occurrence in
compounds displaying high levels of biological activity. For example, isoxazoles have been
identified as potent injectable analgesics,?” such as Parecoxib 40 (Figure 3).

Rl Rl R?
2/4\_,2 2/4\_,2 Rz/Cf)
R N R N H

38 7 39
Figure 3: Isoxazoles and isoxazolines.

Furthermore, they are synthetically useful, as cleavage of the weak nitrogen-oxygen bond

generates an amino-alcohol 42 with complete regioselectivity, in the case of the reduced forms

41 (Scheme 17).28 R Rl
R R? Pd/IC R R2
| R3 m R3
~0 2 NH, OH
41 42
isoxazoline

Scheme 17: Amino-alcohols from isoxazolines.

Irrespective of the substituents, the N-O bond of the isoxazole ring can also be cleaved
under well-controlled conditions, usually hydrogenolysis. Solvent-dependant hydrogenolysis of
3,5-diphenyl isoxazole 44 in the presence of palladium on charcoal resulted in the open chain
products 43 or 45 (Scheme 18).%

Ph H, Ph H, PhY\(Ph
- !
Ph/\)\\N/OH O N - NH, OH
43 44 45

Scheme 18: Solvent dependant hydrogenolysis.
Studies since the 1980s on isoxazole systems have been extensive, due to their versatility

in the chemical syntheses of a variety of compounds, as well as their usefulness in several fields
such as agriculture (herbicides), medicine (muscle relaxants and bactericides) and industry
(batteries).?

In one of the Knight group’s recent publications it was noted that during their silver
nitrate-catalysed cyclisation to synthesise isoxazolines 7 from alkynyl hydroxylamines 6 (via the

initially formed isomers 46, Scheme 19), the only detectable impurities were small traces (2-3%)

18



of the corresponding isoxazoles 38, the amount of which increased if more silver nitrate was
used.*® These small impurities were easily removed by chromatography, so this was an excellent
method for the catalytic formation of isoxazolines 7. It was also a clean and straightforward

procedure as the silver nitrate that was used was supported on silica gel.

/NHZ —_ —
(o) Ag* cat. O—NH (6] IQ| Ag*? (0] |§|
—_— 1&/\ 2 —> Rl/K)\RZ “““ > 1/v 2
Rl\ R R oxidation ™ R
R2
6 46 7 97% 38 3%

Scheme 19: Proposed oxidation during isoxazoline formation.

Following on from this successful new isoxazoline 7 synthesis, the focus moved to
applying similar methods to producing other significant heterocycles, namely the related
isoxazoles 38. During the silver-catalysed reactions to synthesise isoxazolines 7, the formation of
small amounts of the isoxazoles 38 was an inconvenience (Scheme 19). However, this provided
the basis for the idea which was to be pursued in this present project, of developing a new and
simple method of oxidising isoxazolines 7 to isoxazoles 38 — by treating them with an excess of
silver nitrate, on the assumption that, as suggested in Scheme 19 this is a suitable oxidant.

Straightforward methods for converting isoxazolines into isoxazoles are of particular
interest and synthetic importance, as isoxazolines are more readily obtainable, whereas isoxazole
syntheses are limited and often suffer from problems of regiochemistry.®® In the Claisen
synthesis to produce 3,5-disubstituted isoxazoles 38 from (-diketones 47 and hydroxylamine 48
(Scheme 20), if the former is unsymmetrically substituted it is only possible to control the
regioselectivity by observing very strict reaction conditions,® unless there are extreme steric

differences in the substituents ‘R’.

R
ﬁo +  H,N—OH I\
) R -
NG 2 H,0 0
47 48 38
| - H,0 | -H,0
! R i
. R \
Lmmmmmmmmmmn NN i e e - o — ameeaaaa a
O !
R s
R Yo e
49 50

Scheme 20: Claisen synthesis of isoxazoles.
Other general methods include cycloadditions of alkynic derivatives with nitrile oxides
19



that also yield 3,5-substituted isoxazoles. The analogous reaction of alkenic derivatives to nitrile
oxides to give isoxazolines will be explained and utilised later in this Chapter.

The higher stability of isoxazoles should favour the oxidative conversion of
2-isoxazolines to isoxazoles, which is achieved by either dehydrogenation or by elimination. In
the literature, there are several examples of the oxidation of isoxazolines 7 to give isoxazoles 38,

however in most cases R' is either phenyl or alkenyl,*®

(Scheme 21), i.e. the 5-H is a relatively
more reactive benzylic or allylic proton. Therefore, it would be significant to develop a method

of oxidation which was successful for examples with more than one saturated alkyl substituent.

R? R! =
7 38

Scheme 21: Oxidation of isoxazolines to isoxazoles.

N-Bromosuccinimide can be a suitable reagent for the bromination of 2-isoxazolines 7, to
give a mixture of bromides 51 and 52, subsequent dehydrobromination of which leads to the
isoxazoles 38 (Scheme 22). However, it was observed that such brominations were often

incomplete where R was a simple alkyl group.®

Scheme 22: Isoxazoline oxidation using NBS.

Using y-manganese dioxide as the oxidant (normal active manganese dioxide caused only
partial conversion), high yields of isoxazoles have been obtained from isoxazolines,® although
there was no example given of an oxidation using this method where both substituents were
simple alkyl groups. Furthermore, this method does have some drawbacks, as

6 and the

28.75 equivalents(!) of y-manganese dioxide were used to complete the reaction,’
y-manganese dioxide itself has to first be prepared using a time-consuming procedure.*’

It has been claimed that a good yield of isoxazole 54 can be obtained from 3,5-dialkyl
isoxazoline 53 by oxidation using three equivalents of DDQ,*® although the reaction had to be
strongly heated for 18 hours (Scheme 23), which could cause the decomposition of more

sensitive substrates.
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DDQ 3.00 eq

N refluxing benzene
(@) 18 hours

54
83% yield

53

Scheme 23: Isoxazoline oxidation using DDQ.

In a recent publication on the oxidative aromatisation of 3,5-disubstituted
2-isoxazolines 7, it was documented that, perhaps not surprisingly, R* exerts a larger influence
than R? on the yield of product and the reactivity of the substrate (Scheme 24). With an aliphatic
substituent at R*, no aromatised product was obtained with the weak oxidant nitric oxide, which
otherwise gave isoxazole products 38 in moderate yields. Although the conditions are
conveniently mild, the reaction does take 15 hours to reach completion even when it is

successful >

R? R2
; NO R! = R?=Ph, yield 67%
N, R CH,CH,, rt N/\ ) R!
o 22 o R!=n-C,Hg, R? = Ph, yield 0%
7 38

Scheme 24: Isoxazoline oxidation using NO.

The limitations of the aforementioned reagents in oxidising a wide variety of isoxazolines
highlight the need for a new universally effective method that utilises mild conditions. This

encouraged the present investigation into using silver nitrate for this purpose.
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2.2 Results and Discussion
2.21 Initial Trials

To test the suitability of silver nitrate supported on silica gel as an oxidant rather than a
catalyst for cyclisation, firstly a series of isoxazolines 7 with varying substituents needed to be
synthesised. It was decided to use an alternative method to the new Knight group isoxazoline
synthesis, as in this case an asymmetric synthesis was not required, and forming any oxidised
by-products at this stage could confuse the investigation.

This decision was in no way a reflection on the utility of the group’s isoxazoline
synthesis, which stands out as an extremely efficient and inherently regiospecific alternative to
more traditional isoxazoline syntheses. It is a clean and simple intramolecular reaction that can
yield optically pure products if the precursor propargylic alcohols are obtained as single
enantiomers, which is possible using a number of approaches.*

The alternative method that was chosen to begin this project was a [1,3]-dipolar
cycloaddition of nitrile N-oxides 22 to alkenes 55, a classical approach to isoxazolines 7.*° Such
cycloadditions to 1-alkenes proceed with essentially complete regioselectivity in the sense shown
(Scheme 25).

©
Nitrile oxide (from treating the oxime with sodium hypochlorite) O—%I: R? 292 Rl
WRZ
Terminal alkene (dipolarophile) 55 O\N
/:
R! 7

Scheme 25: [1,3]-dipolar cycloaddition.

The first step of the synthesis was to form an oxime, by the condensation of
hydroxylamine with an aldehyde. Both aryl (benzyl 56) and alkyl (isobutyl 57) oximes were
synthesised and used in such cycloadditions (Scheme 25) to styrene 291 and 1-hexene 290 to
give a total of four different isoxazolines 58-61. The yields using this method were moderate to
good for these reactions, and are shown in Table 1 below. A representative method is given in
the Experimental section for both oxime formation and the cycloaddition reaction which were

carried out as described in the literature, 3% 4°
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Product Name / Substituents % Yield
56 Benzaldoxime 68
57 Isobutylaldoxime 72
R R
58 Phenyl Phenyl 43
59 Phenyl Isopropyl 46
60 n-Butyl Phenyl 77
61 n-Butyl Isopropyl 68

Table 1: Oximes and isoxazolines.

The isoxazolines 58-61 were synthesised with this variety of alkyl and aryl substituents
as it was hoped that silver nitrate could then be showcased as a convenient oxidant regardless of
substituents, which would set it apart from the other oxidants described in the introduction.

The isoxazolines 58-61 could then undergo trial oxidations utilising silver nitrate
supported on silica gel, using similar procedures to those described in General Method D (in
dichloromethane, page 111). Numerous experiments were carried out on precursors 58-61,
varying the number of mole equivalents of silver nitrate (1-2.5 mole equivalents), reaction
temperature (20-70 °C, at the increased temperatures a higher boiling solvent was used), and
duration (3-24 hours), but surprisingly no reaction at all was seen, even with the diphenyl
isoxazoline 58, which had previously been oxidised using very mild oxidation conditions
(Scheme 24: Isoxazoline oxidation using NO. page 21).%! In all cases although the supported
silver had changed in colour to black, indicating the reduction of the silver, no product of
oxidation could be seen in the *H NMR spectra of the crude reaction mixtures.

For comparison, samples were also treated with DDQ, a known oxidant of this type of
compound.® Repeating the literature procedure (as was shown in Scheme 23 only with toluene
substituted for benzene, page 21), in the case of isoxazolines that had a phenyl substituent a- to
the oxygen (58 and 59), this oxidation was successful. However, no isoxazole products were
seen from the initial trials on isoxazolines that had a simple alkyl substituent a- to the oxygen
(60 and 61). As this contradicted the literature findings, a repeat reaction was carried out on the
dialkyl isoxazoline 61 (Scheme 26) with the reaction mixture being allowed to reflux for a longer
duration at the increased temperature. In this case the oxidation was partially successful: *H
NMR analysis of the crude product showed that the ratio of product 62 to the starting material 61

was approximately 3:2, after a 42 hour reflux. The relevant peak integrations in the spectra of the
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crude product mixture that were compared to deduce this ratio, were the aromatic proton of the
isoxazole 62 at 5.84 ppm (s), and one of the diastereotopic CH, protons of the isoxazoline ring at
2.54 ppm (dd, J 16.7 and 8.2 Hz). Purification was not carried out for full analysis of the
isoxazoles, as the integrations within the NMR spectra of the crude products were sufficient to

determine the level of oxidation that had occurred.

DDQ 3.00 eq
N~g refluxing toluene N~qg

61 42 hours 62
~60%

Scheme 26: Oxidation with DDQ.
To confirm the observation by former group member Anthony Proctor that some

isoxazole product had indeed been formed during his silver nitrate-catalysed cyclisations (see
Scheme 19, page 19), his reaction scheme to synthesise the diphenyl substituted isoxazoline 58
was repeated.” The only modification to his procedure was to the final cyclisation step, where the
free hydroxylamine 63 was treated with an excess of silver nitrate (see General Method D,
page 111) instead of a catalytic amount, in the hope that this would cause a complete conversion
to the isoxazole 44 (Scheme 27).

O/NHz
AgNO31.40 eq

X DCM
O 63 N O rt, 18 hours

Scheme 27: Cyclisation with excess silver nitrate.

Using 1.4 equivalents of silver nitrate (10% by weight) on silica gel gave a ratio of 2:1 of
isoxazole 44 : isoxazoline 58. Though it was hoped that in using an excess of silver nitrate,
complete conversion to the isoxazole would occur, the fact that it was the major product

indicated that this was still a viable method to pursue for forming the oxidised product.

Furthermore, as it had been proven that silver nitrate did not oxidise pre-made
isoxazolines (by all of the trials carried out on isoxazolines 58-61), then the result of the
cyclisation reaction shown in Scheme 27 indicated that oxidation actually happened before or
during cyclisation. A proposed mechanism is shown below in Scheme 28, and shows how it
could be oxidation of the nitrogen before cyclisation 66, and then the loss of water 67, that forms

the second double bond of the isoxazole 38.
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Scheme 28: Proposed mechanism of oxidative cyclisation.

It was thought that this must be a fast process to allow it to happen before the expected
silver-catalysed cyclisation to form the isoxazoline 7, where the silver would activate the alkyne
of the hydroxylamine 6 (Scheme 29). If only a catalytic amount of silver is present, the major
product is the isoxazoline 7 and the minor product is the isoxazole 38.

3
O/N\OH
some mech as O_':I
— —— > Scheme 28, — 1/@\ 2
_NH R! R R
0 2 66 % above

)\ Ag* cat. R? // 38
R! N [
6 \ R2 Ag+

O—NH O—N
: > Rl/M\RZ > RI/K)\RZ
7

mainly
46

Scheme 29: Alternative cyclisation paths.

To improve this reaction by increasing the proportion of isoxazole that was formed, and
to provide further evidence that this method was indeed useful for forming isoxazoles with

simple alkyl substituents, further trials were carried out.

Firstly, again trying to form the oxidised product of the diphenyl substituted
isoxazoline 58 (Scheme 30), five equivalents of silver nitrate were used, and the ratio of
isoxazole 44 : isoxazoline 58 that was observed had increased to 11:2. The increase in mole

equivalents of silver nitrate had greatly improved upon the yield of the desired product 44.
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O/NHz
AgNO35.00 eq

X DCM
\
O 63 O rt, 18 hours

Scheme 30: Cyclisation with 5 equivalents of silver nitrate.

The real test however, would be to form the oxidised product (an isoxazole), under these
new conditions, of an isoxazoline 60 (see Scheme 31) that did not have a phenyl substituent a- to
the oxygen, and which is therefore harder to oxidise with DDQ. For this cyclisation reaction, five
equivalents of silver nitrate were again added at room temperature. It was pleasing to find that
the desired isoxazole 69 accounted for 85% of the crude yield (Scheme 31). The isolated yield of
the product mixture was lower than anticipated however, at 48%, which will be addressed later.

_NH,
N ~ bem

68 rt, 18 hours

Scheme 31: Cyclisation with five equivalents of silver nitrate.

The initial aim of this preliminary investigation was to find successful conditions for
oxidising ready-made isoxazolines using a simple and mild silver nitrate on silica reaction
(which is not possible, as was illustrated in Scheme 29). The fact was, that instead it was found
that the oxidation seemed to happen before cyclisation occurred, when the hydroxylamine
intermediates were exposed to an excess of silver nitrate. The efficacy of this process was not
affected by the substituent o- to the oxygen, which has led towards the development of
conditions for a new all-in-one synthesis of isoxazoles with simple alkyl substituents, which is of

synthetic significance due to the difficulty in oxidising the corresponding isoxazolines.

Further optimisation of the method was, however, required. The proportion of the desired
isoxazoles, 44 and 69, to the corresponding isozazolines, 58 and 60 (Scheme 30 and Scheme 31),
had been good in the initial trials, however, as was previously mentioned the crude yields were
relatively low, equalling 44 and 48% respectively. This was thought to be due to either partial
decomposition (as the reactions had been allowed to run overnight), or just that the washing of
the reaction mixture through celite on work-up had not been thorough enough. The full syntheses
to remake the isoxazoles 44 and 69 were therefore repeated, along with schemes to form
isoxazoles with other alkyl and aryl substituents to show the versatility and value of this method,

and improve on the efficiency and cleanliness of the reactions at every stage of the syntheses.
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2.22 Experimental Optimisation

The synthetic sequence towards the hydroxylamine precursors 6 to this series of
cyclisations is shown below in Scheme 32.

Scheme 32: Proposed synthetic sequence.

The required propargylic alcohols 72 were synthesised by the addition of a range of
lithiated alkynes 71 to a selection of suitable aldehydes 70 (Scheme 33, General Method A,
page 110).

1.1.01 eq nBulLi
2.1.00eq O
R1J 70 OH
\\ 2 Rl \
R THF XX,
-78°C - rt R
1 4 hours 72

Scheme 33: Synthesis of propargylic alcohols.
The propargylic alcohols that were synthesised are shown in Table 2 below, and in all

cases there was no need for further purification.

Product R R % Yield
74 Phenyl n-Butyl 98

75 Phenyl Phenyl 98

76 Isobutyl Butyl 83

77 Butyl Phenyl 89

78 Citronellyl Phenyl 100

Table 2: Propargylic alcohols
The next stage of the scheme was to introduce the O-N functionality into the compounds.

The method that was chosen for this purpose was the Mitsunobu reaction as this had previously
been optimised within the group for exactly this type of reaction.** The substitution of primary or
secondary alcohols with nucleophiles mediated by a redox combination of a trialkyl or
triarylphosphine and a dialkyl azodicarboxylate is popularly known as the Mitsunobu reaction.*?
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The readily available reagent N-hydroxyphthalimide has been used as a nucleophile to
couple intermolecularly with different alcohols for some time.** The Mitsunobu reaction was
carried out on the propargylic alcohols 72 to yield the phthalimide-protected hydroxylamines 73
(Scheme 34, General Method B, page 110).

PPh31.20 eq
DIAD 1.01 eq
OH N-Hydroxyphthalimide 2.00 eq
Rl)\ THF
o R2 0°C-rt
72 18 hours

Scheme 34: Mitsunobu reaction.

The phthalimide-protected hydroxylamines 73 that were synthesised are shown in
Table 3 below. It can be seen that the reaction was successful, and good to excellent yields of the
key hydroxylamine intermediates were achieved. The yields given are those obtained after
purification, which was carried out by silica gel chromatography in the case of those compounds
which have a phenyl group a- to the oxygen, and quickly and conveniently by a silica plug

filtration for the other products.

Product R R % Yield
79 Phenyl n-Butyl 54
80 Phenyl Phenyl 64
81 Isobutyl Butyl 83
82 Butyl Phenyl 74
83 Isobutyl Phenyl 91
84 Citronellyl Phenyl 69

Table 3: Phthalimide-protected hydroxylamines
The final intermediates to be synthesised were the free hydroxylamines, which were

gained by deprotecting the phthalimide products 79-84. Although in previous trials aqueous
methylamine had been used as the reagent, it was decided to examine hydrazine as an alternative,
due to the inconvenience of semi-soluble organic by-products which were inherent in the former
reaction. The standard conditions of treating the starting materials 73 with two equivalents of
hydrazine in refluxing ethanol (the Inge-Manske procedure),** was used and in an interesting

aside, the cyclised isoxazoline products 7 were in fact formed (Scheme 35).
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i O—N
Hydrazine 2.00 eq /k)\ Rl = T‘Bu, R2 = Ph, yield 95% 60
_ R! RZ  R!=iBu, R? = "Bu, yield 86%
refluxing EtOH

3 hours 7

Scheme 35: Hydrazine mediated deprotection and cyclisation.

When this reaction was repeated at room temperature in diethyl ether, the desired free
hydroxylamine product 6 was formed and only a trace of the cyclised isoxazoline 7 was
observed. Initial trials have indicated that subsequently warming a sample of this crude product
mixture, consisting mainly of hydroxylamine 6 (as Scheme 36), with 5 mol% of hydrazine does
not cause any further cyclisation. The preparation of 2-isoxazolines 7 from O-propargylic
hydroxylamines via a tandem rearrangement-cyclisation reaction utilising potassium carbonate
as the basic catalyst was published in 2006.* Further investigations could be undertaken to
determine if this proposed one-pot deprotection and base-catalysed cyclisation (Scheme 35) is a
viable complementary method of forming isoxazolines to silver cyclisation. A representative
procedure to form 5-butyl-3-phenylisoxazoline 60 using hydrazine in refluxing ethanol is given
in the Experimental chapter (page 120). However, as this would be beyond the remit of the
current project, it was decided to revert to carrying out the deprotection reaction with aqueous
methylamine and devising a more convenient solution for removing the phthalimide residue
impurities.

The final deprotections were carried out by treating the phthalimide-protected
hydroxylamines 73 with 2.10 equivalents of 40% w/w methylamine in water, and on work-up,
the astute addition of ice-cold petroleum ether ensured that all by-products were crystalline and
could be effectively removed by filtration leaving the pure hydroxylamines 6 (Scheme 36,
General Method C, page 111).

_NH
MeNH, aq 2.10 o
o) 2aq .10 €q
1
R \ , ether, rt Rl)\
73 R 4 hours 6 R2

Scheme 36: Dephthaloylation reaction.
The hydroxylamines that were synthesised are shown in Table 4, and in all cases there
was no need for any further purification. Only the diphenyl hydroxylamine 63 had been
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subjected to any form of characterisation before,*® as these products are reported to be unstable;
however proton NMR spectroscopy was successfully carried out on the compounds shown in

Table 4 to confirm purity, before these intermediates were immediately taken on to the key

cyclisation step.

Product R R’ % Yield
85 Phenyl n-Butyl 93
63 Phenyl Phenyl 91
86 Isobutyl Butyl 82
68 Butyl Phenyl 74
87 Isobutyl Phenyl 89
88 Citronellyl Phenyl 90

Table 4: Free hydroxylamines.

Optimisation of the final cyclisation step began with trials to discover if five equivalents
of silver nitrate (as had been used in the initial trails, Scheme 30 and Scheme 31, page 26) were
actually necessary to achieve a good yield of isoxazole product. Trial cyclisations using diphenyl
hydroxylamine 63 were carried out with 1.50, 3.00 and 5.00 equivalents, and progress of the
reactions was monitored by TLC. After 15 minutes of reaction time had passed there was no
starting material visible in the reaction mixture spots. Consequently the reactions were halted by
filtering out the supported reagent, as it was assumed that as isoxazolines could not be oxidised
to isoxazoles using silver nitrate, then if there was no un-cyclised starting material left, then no
further isoxazole product was subsequently going to be formed. In studying the NMR spectra of
the crude products from each of the trials, it was found that the cyclisations had gone to
completion, but in the case of the reactions using 1.50 and 3.00 equivalents of silver nitrate there
was only a trace of the oxidised product visible, and even with five equivalents the yield of
isoxazole 44 was only 30% (Scheme 37), with the isoxazoline 58 accounting for the remainder

of the product mixture.
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AgNO35.00 eq
—————

dry DCM

™
O 63 N O rt, 15 mins

30% : 70%
Scheme 37: Cyclisation with five equivalents of silver nitrate.

This was an unanticipated result; as previously the cyclisation of hydroxylamine 63 had
yielded 85% isoxazole after an 18 hour reaction period and using five equivalents of silver
nitrate (Scheme 30). As it was thought that oxidation occurred before or during cyclisation, a
shorter reaction time should not have affected the ratio of products, as long as all of the starting
material had been consumed.

It was considered that this difference in the proportion of isoxazole product may have
been because in previous trials there had been some water present due to not using thoroughly
dried hydroxylamine starting material, or there having been some water adsorbed onto the silica
that the silver nitrate was supported on.

There is water involved in the proposed oxidation mechanism that was outlined in
Scheme 28 (page 25). To investigate this possibility, two test cyclisations were carried out, again
on hydroxylamine 63 and using 1.40 equivalents of silver nitrate and stirring for 1.5 hours, one
with water present and one without. There was only a small difference in the results between
them; having water present seemed to increase the proportion of isoxazole 44 from 70 to 75%
(Scheme 38) of the crude product mixture.

_NH,
AgNO31.40 eq

————
\ DCM, Hzo
O 63 N O rt, 1.5 hours

Scheme 38: Silver-cyclisation in the presence of water.

75% 25%

Although the addition of water had only made a very small improvement, the fact that it
did not hinder the reaction meant that from then on the trials could be carried out using bench
(non-anhydrous) dichloromethane, and indeed exposed to air, which was very convenient. As
had been the case with the reaction shown in Scheme 37, after only 15 minutes into the reaction
shown above in Scheme 38, there was no starting material remaining by TLC. A further sample
was then taken after 1.5 hours for analysis by proton NMR spectroscopy. At this stage the crude
product mixture was 75% isoxazole 44, and there was no further change after leaving the

reaction mixture stirring overnight. This result showed that by some means leaving the reaction
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mixture stirring for longer than it takes for the initial cyclisations to occur (15 minutes) does
actually allow for the formation of further isoxazole by an unknown mechanism, if there is an
excess of silver nitrate present. This could possibly be due to a degree of reverse cyclisation of
the isoxazoline 7 occurring over time, as shown in Scheme 39 below, although no evidence of

this was seen when treating isolated isoxazolines.

@ ®
: H o NH2
O-N - O—NH - )\
\ R? N
1 2 1 7 2
R %R R %R S 2
H H
7 46 6

Scheme 39: Proposed reverse cyclisation mechanism.

The hydroxylamine 6 could then re-cyclise oxidatively to give the isoxazole product.
Alternatively, rather than the oxidation mechanism that was proposed in Scheme 28 where
oxidation occurred before cyclisation, it could be the case that the initially formed isoxazoline
isomer 89 loses an electron to a silver cation and oxidation occurs at this stage. The proposed
mechanism would then be similar to that outlined in Scheme 28, only from the intermediate 89
shown in Figure 4 below. This alternative explanation may well account for why oxidation does
not occur with the isomeric pre-made isoxazolines, and why oxidation occurred after the starting

material had been converted.

o
K R&% 1o Q -
_H"'
89a

38

/Z

Figure 4: Oxidation intermediates.

To ascertain if, with the intentional addition of water, it would be possible to oxidise a
ready-made isoxazoline 58 with silver nitrate to the isoxazole 44, the reaction shown in

Scheme 40 was carried out, but still no oxidation was seen, confirming all earlier results.

AgNO31.40 eq

DCM, H,0
rt, o/n

Scheme 40: No oxidation.

There was one final challenge, in that when it was necessary to begin using a new bottle
of commercial silver nitrate on silica (“10% by weight”), it was found that the concentration of

silver between bottles was actually very inconsistent. With Sample 1 (from the batch of reagent
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that was used to effect the transformations in the initial trials) just 1.40 eq had yielded 75% of
the diphenyl isoxazole product 44 (Scheme 38), however under otherwise identical conditions,
treating precursor 63 with 3.00 equivalents of the following different batches of reagent gave:
Sample 2, 59%; Sample 3, 33%; and Sample 4, 70%, of the desired isoxazole products 44
respectively (with the balance of the yield being the corresponding isoxazoline 58). Small
samples were sent off for testing for average silver content by Atomic Absorption spectroscopy,
and the results confirmed the suspected irregularities - sample 2, 6.5%; sample 3, 5.5%; and
sample 4, 10.6%. Furthermore, it was also noted that each individual bottle of supported reagent
was not homogeneous in silver nitrate concentration throughout its contents.

Sample bottle 4 was used for the final reactions that were carried out using the optimised
conditions of stirring the free hydroxylamines 6 for 4 hours at room temperature in
dichloromethane with an assumed 4.00 equivalents of silver nitrate to yield the desired
isoxazoles 38 (Scheme 41, General Method D, page 111).

/NHZ ~N
(@) AgN03 (0] N\ R2
N I ~
1
R DCM, rt R
RZ
6 38

Scheme 41: Optimised cyclisation.

The yields of the isoxazoles 38, calculated by analysis of the NMR spectra of the crude
products are given in Table 5 below, and column chromatography was carried out to glean
samples for full analysis.

Product R R % Yield
90 Phenyl n-Butyl 64
44 Phenyl Phenyl 74
91 Isobutyl Butyl 74
69 Butyl Phenyl 89
92 Isobutyl Phenyl 90
93 Citronellyl Phenyl 83

Table 5: Isoxazoles.

As stated beforehand, though the initial aim of this investigation was to find successful
conditions for oxidising ready-made isoxazolines with silver nitrate, the fact that instead it was
found that the oxidation actually happened during the cyclisation step and that this was not
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affected by the substituent a- to the oxygen, has led to the optimisation of conditions for a new
all-in-one, quick and clean synthesis of isoxazoles with simple alkyl substituents. This is of

synthetic significance due to the difficulty in oxidising the corresponding isoxazolines.

The isoxazole products shown in Table 5 were obtained in very good yields with the
modified work-up that used ethyl acetate to wash the product from the silica on which the silver
nitrate reagent was supported. It was also discovered that these reactions could be carried out
successfully and conveniently open to the air (although still sheltered from light) and in
non-anhydrous dichloromethane, in just 4 hours (the more silver nitrate is used, the faster the

reaction).
It can also be seen from studying Table 5 that higher yields are gained when there is an

alkyl substituent at R*, making this complementary to the isoxazole syntheses outlined in the

introduction to this chapter.
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Chapter 3

A surprising propensity of tert-butyl
carbonates to undergo 6-endo-trig

lodocyclisations
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3.1 Introduction

Although at first glance this chapter does not appear to link to the N-O chemistry
described in the previous section, the route that led to this work did begin with hydroxylamine
syntheses, specifically attempting to form them using a particular example of oxaziridine
chemistry. The Knight group had wanted to investigate an alternative and more efficient method
to the well-established Mitsunobu reaction for forming O-allylic hydroxylamines.
Alkoxylamines are very important precursors in organic chemistry. However, there is only a
narrow range of methods that have been developed to prepare these compounds.*” Generally,
these methods rely upon a specific two-step sequence consisting of nucleophilic O-alkylation of
an N-protected hydroxylamine nucleophile upon an electrophilic carbon, followed by
deprotection to provide the alkoxylamine product. An example of this is the Mitsunobu reaction
featuring N-hydroxyphthalimide as extensively utilised in Chapter 2 (page 28). However, it had
also been found within the group that in unsymmetrical allylic systems 94 there could be issues
with unwanted Sn2’ reactions (red arrows) competing with the desired Sy2 path (black arrows),

as shown below in Figure 5.

1 (> 2
R R
8.2 C/ 52 X = OTs, Br

The competing reactions illustrated above led to synthetically useless mixtures of

Figure 5: Sy2° vs Sp2

products in approximately a 1:1 ratio.

An obvious alternative to the sometimes problematic installation of a pre-formed
nitrogen-oxygen bond (as in the Mitsunobu reaction) was to investigate the amination of an
alcohol or alkoxide.” The direct electrophilic amination of alcohols should provide a more
powerful and efficient approach. This would also provide the opportunity to retain the
stereochemistry at the hydroxyl stereocentre, as opposed to the inversion that accompanies the
Sn2 Mitsunobu reaction. This methodology of direct amination will be further discussed and
applied in Chapter 4 (page 85). Previously in the literature, such transformations had been
achieved using chloramine, but only with a large excess of the alkoxide and in poor yields.*
Chloramine also has poor stability and can cause the formation of chlorine containing by-

products.*® Since then, other reagents have enjoyed a degree of success in performing this
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transformation, but none are without drawbacks. A method using hydroxylamine-O-sulphonic
acid was reported in 1982 that involves handling fuming sulphuric acid, and has to be carried out
in aqueous media due to insolubility of the reagent in organic solvents.®® Another amination
reagent, O-(mesityl sulphonyl)hydroxylamine, was found to be very unstable and explosive in its

pure form.™

In 1999, a report was published that outlined the reaction of the easily accessible, safe
and stable reactant 3,3’-di-tert-butyloxaziridine with a range of potassium alkoxides in DMPU
and in the presence of 18-crown-6 to provide free O-alkylhydroxylamines in 10-86% yields.*’
This synthetically valuable procedure provided the inspiration to the Knight group for similar
aminations, instead using the highly electron deficient oxaziridine 98, to give a novel range of
BOC-protected hydroxylamines 99 as shown in Scheme 42 below.>? Reagent 98 was known to
be a good source of electrophilic amine and so was thought to be set up well to react with the

nucleophilic oxygen species 97.

Q 0
3
o
CcCl ~NH
OH 1.00 eq LHMDS o° 98 3 o0
Rl)\/ﬁRZ Rl)\/ﬁRZ Rl)\/ARZ

THF THF
9% -78°C-0°C 97 -78°C-0°C 99

Scheme 42: Published alcohol amination.

It was hoped that these protected hydroxylamines 99 could then be cyclised to form
isoxazolidines 100, to complement the innovative isoxazoline and isoxazole syntheses that had
already been optimised within the group (Chapter 2 — pages 19-34). However, there were
difficulties with the subsequent cyclisation (desired product 100 shown below in Scheme 43),
and deprotection trials on the BOC-protected O-alkylhydroxylamines 99 that had been prepared
using this new amination procedure. Therefore it was decided within the group to repeat the

above reaction scheme (Scheme 42), to confirm the structure 99 and then resolve these concerns.

O\\‘/O% O>\\ o>L

O/NH ? O—N
R? R?
le\/ﬁRz /KH\
|
99 100

Scheme 43: Expected cyclisation products of the proposed structures.
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Commercially available 1-octen-3-ol was used as the starting material for these retrials,
carried out by previous group member Anthony Proctor.” As with the published results,> the
hydroxylamine formation was thought to have been successful due to the disappearance of all
starting material resonances and the incorporation of a tert-butyl peak in the *H NMR spectra of
the product. However, as had been previously found within the group, the BOC moiety could not
then be removed in any way to give the desired free hydroxylamine, yielding only decomposition
products.>®

It was decided to try to form the iodocyclisation product of the protected hydroxylamine,
leaving the existing BOC-protection group in situ instead of replacing it with the initially chosen
tosyl-protection group. In initial trials, standard iodocyclisation conditions using molecular
iodine did not yield any product. It had been known to the group for some time that iodine
monobromide could more readily facilitate iodocyclisations, as it possesses an increased level of
reactivity compared to molecular iodine.>* Using three molar equivalents of this reagent,
complete iodocyclisation did occur to give a mixture of two products. However, after prolonged
elemental and spectroscopic analysis it was discovered that no nitrogen was incorporated into the
products and they were, in fact, cyclic carbonates 102 and 103 in the ratio given in Scheme 44
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Scheme 44: Products of iodocyclisation.

As it could not be seen how these carbonates 102 and 103 could have been formed from
the predicted structure 99 (Scheme 44), this strongly indicated that the initial oxaziridine reaction
had not actually worked as planned, and had instead formed a tert-butyl carbonate 101 (had in

fact simply BOC-protected the alcohol). To prove this by comparison, the suspected carbonate
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intermediate 101 (“actual structure” in Scheme 44 above) was synthesised from the initial
starting material, 1-octen-3-ol, using a more standard transformation. There are a few different
reagents available for tert-butyl carbonate formation: di-tert-butyl carbonate, di-tert-butyl
dicarbonate and 2-(tert-butoxycarbonyloxyimino)-2-phenylacetonitrile (BOC-ON). The latter
was chosen in this instance as it had been reported that it gave high yields of product from
similar secondary alcohol starting materials.>® The resultant tert-butyl carbonate product was
indeed found to be identical on full analysis to the original product of the oxaziridine reaction,
proving the actual structure 101 was as shown above in Scheme 44.

On revisiting the experimental findings of the paper that had outlined the method of
BOC-protected hydroxylamine formation using tert-butyl 3-(trichloromethyl)-1,2-oxaziridine-2-
carboxylate 98 (Scheme 42),%? it could be seen in the light of these more recent findings that the
quoted product structures 99 were incorrect and had all in reality been the BOC-protected
alcohols 104.

A proposed mechanism for the formation of these carbonates 104 using the oxaziridine
species 98, due to the increased electrophilicity of the carbonyl compared to the nitrogen in the
ring, is shown in Scheme 45 below.
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Scheme 45: Unexpected mechanism of carbonate formation.

Although this was initially a disappointing finding, as it had proven the unsuitability of
the oxaziridine 98 for the amination of alkoxides, the result of the subsequent iodocyclisation
reaction was remarkable in that this appeared to be the first example of a 6-endo-trig cyclisation
of this kind (Scheme 44). Directly following the refutation of the amination procedure, this
unexpected result obtained by Proctor was understandably initially treated with a degree of
scepticism. Not wanting to circulate any further erroneous results, it was important to prove this
unusual product, which could then feature as the silver lining in a retraction of the original
O-amination paper. As further investigation was beyond the scope of Proctor’s project, this
serendipitous development was pursued as part of the present project. The ratios of the 6-endo to
5-exo products on cyclisation of these carbonates 104 will be explored, along with the influence
of the nature and size of the ring substituents. It can then be determined if this iodocyclisation
can be used as a general synthetic method for the formation of this unusual and novel type of
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6-endo-trig product.

3.11 lodocyclisation.

The electrophilic activation of unsaturated carbon-carbon bonds by an iodonium
electrophile increases their susceptibility towards attack by a heteroatomic nucleophile, thus
allowing for the synthesis of a wide range of polysubstituted heterocycles through ring closures,
some of which apparently contravene Baldwin’s rules.”® " Such reactions were first documented
as a versatile method for iodolactonisation, before the discovery that iodo-tetrahydrofurans were
also formed in the reaction mixture.

The Knight group showed an early interest in the potential applications of this
methodology, as was discussed in the General Introduction (page 10). Having spent considerable
time investigating iodolactonisation reactions, they had also observed the presence of
iodo-tetrahydrofurans in some of the crude reaction mixtures, and resolved to develop the
procedure further. The group set about developing this reaction as a means for the synthesis of a

variety of iodine-substituted heterocycles, including the structures 106 and 108 shown in

Scheme 46 below.>®*°
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Scheme 46: Heterocycles formed by iodocyclisation.

lodo-isoxazolines and -isoxazolidines have also been made by the group by utilising the
above method, preceding the syntheses utilising silver catalysis that were discussed in the
introduction to Chapter 2 (page 19). This previous work on iodine-facilitated cyclisations
provides another link between these proposed new carbonate iodocyclisations and the formation
of heterocycles which comprises the root of the present project.

The synthesis of cyclic carbonates via iodocyclisation has been previously reported in the

literature, where it was demonstrated that cyclic iodocarbonates 109 could be synthesised in a
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one-pot carboxylation of alkoxides followed by either 5-exo-trig or 6-exo-trig cyclisation of the

resulting allylic carbonates, an example of which is shown in Scheme 47 below.®

1. "BuLi
2.CO,
OH 3.
i A
R! = R?

Rl R2
|
96 109

Scheme 47: Carbonate formation and iodocyclisation.

More recently, it has been reported that the unsymmetrical carbonate 110, bearing a
tert-butyl moiety, underwent a 6-exo-trig cyclisation when exposed to an excess of iodine
monobromide to give the iodo-carbonate 111 as a mixture of diastereoisomers depending upon

the conditions used (Scheme 48).>*

O O
>I\0)J\o IBr 3.00 eq o)J\o

M\OBH I\’JJ\‘WOBH

110 111
Scheme 48: 6-exo-trig iodocyclisation.

When discussing the relative facility of ring formation given the option of two different
products, such as the case with the carbonates to be synthesised in this Chapter (an example is
shown in Scheme 49), Baldwin’s Rules can be used as a predictive tool for the ratio of products.
The 5- and 6-exo-trig reactions shown in Scheme 47 and Scheme 48 above are types of reaction

that are defined as favoured processes and have many literature precedents.
0 )< o) o)
e Ao A,
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Bu Bu Bu
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Scheme 49: lodocyclisations to give 5- and 6-membered products.

The 6-endo-trig cyclisation to form the above 6-membered ring 102 (Scheme 49) is also
favoured, however it has been published that when 5-exo-trig cyclisation is also possible, the

latter is preferred, as shown in Scheme 50 below.*
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Scheme 50: Preferred radical and nucleophilic cyclisations.

The above scheme shows radical and nucleophilic reactions (Baldwin’s rules also apply
to homolytic and cation induced closures), that yield preferentially the cyclopentylmethyl

products 113 and 117 by a 5-exo-trig closure rather than the 6-endo-trig path.®*
In exploring the ratio of the less common 6-endo 119 to the 5-exo 109 products on
cyclisation of starting materials with varying substituents 104 (Scheme 51), it will be determined

if this can be optimised into a general synthetic method to form this novel 6-endo-trig product

type 119 by iodolactonisation.
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Scheme 51: General iodolactonisation scheme.

42



3.2 Results and Discussion

To test the suitability of iodine monobromide, a potent electrophile for alkene
activation,® as a reagent for exploring and optimising the ratio of the 6-endo to 5-exo products
on cyclisation, firstly a series of tert-butyl carbonates 104 with varying substituents needed to be
synthesised. It could then be investigated if this ratio was affected by the size of the ring
substituents, in order to determine if this is a relatively general synthetic method to form this
unusual and novel 6-endo product 119. The general synthetic scheme is shown in Scheme 52

below.

OH L )J\ )< L i i
RlJ\/ARZ )\ﬂ )\H\ >—‘S/

= R,

97 104 119 Major Product?
Scheme 52: Proposed synthetic scheme.

Some of the secondary alcohols 97 were commercially available, but others had to be
formed in one-step syntheses from alternative starting materials. The three alkenols 122, 124 and
127 that were synthesised via a Grignard addition, by hydride reduction and by alkyl lithium

reaction respectively are shown in Scheme 53.
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Scheme 53: Synthesising allylic alcohols.
The next step in the sequence was to carry out the BOC-protection of the secondary

alcohols 97 to yield the tert-butyl carbonates 104 prior to cyclisation. As mentioned in the
Introduction to this Chapter (page 39), there are a small number of different reagents available
for tert-butyl carbonate formation and BOC-ON was again chosen for this transformation, as in
the literature it had been said to give high yields of product with similar secondary alcohols.>
The general reaction is shown in Scheme 54 (General Method E, page 111).
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Scheme 54: BOC-ON carbonate formation.
The tert-butyl carbonates 128-132 that were synthesised by the above method are shown

in Table 6 below. The yields not given in brackets are those obtained after purification, which
was carried out by column chromatography (where the silica gel had been basified with
triethylamine as these carbonates are unstable to acidic environments). It is clear to see that this
reaction was not as successful as had been expected, it being a known reagent for these exact
conversions. The crude yields (given in brackets) initially looked to be reasonable, however on
examining the *H NMR spectra of the crude products, it was found that a proportion (~45% in
the case of carbonate 129) of this was actually BOC-ON residue, which was quantified by
calculating the ratio of its five aromatic protons to an integrated peak of the product spectra. It
was not trivial to remove these impurities from the crude product mixtures. Furthermore, no
product at all could be formed from the diphenyl alcohol 130 using this reaction. It was thought
that chromatography might not be the most appropriate method of purification due to these low
isolated yields. This led to carbonate 129 being remade, and an alternative purification was
attempted by triturating out the solid BOC-ON residues with a cold petroleum ether filter. The

purified yield obtained was then 83% but the sample was not as clean as the previous columned

material.
Product R R % Yield
128 Methyl Methyl (86) 36
129 Phenyl Methyl (>100) 30
130 Phenyl Phenyl 0
131 Methyl Phenyl (>100) 40
132 tert-Butyl Methyl (92) 17

Table 6: Carbonates from BOC-ON method.
Due to these unsatisfactory yields, when it was necessary to synthesise more of the above

carbonates (apart from carbonate 129 as this had already been repeated), optimisation of this step
was sought. In examining more recent literature, it was found that the more conventional

BOC-protection agent BOC-anhydride had also been used to form carbonates from similar
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secondary alcohols in medium to good yields.>® This was used as an alternative, and the new

scheme to give the carbonates 104 is shown in Scheme 55 below (General Method F, page 111).
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Scheme 55: BOC-anhydride formation of carbonates.
On carrying out these reactions with this different reagent, the yields that were obtained
were much improved (See Table 7 below). This led to the conclusion that, in disagreement with
the Smith paper,” BOC-ON is not the best compound to use to form tert-butyl carbonates from

secondary alkenols.

Product R* R % Yield
128 Methyl Methyl 86

129 Phenyl Methyl Did not repeat
130 Phenyl Phenyl 84

131 Methyl Phenyl 53

132 tert-Butyl Methyl 95

Table 7: Carbonates from BOC-anhydride method.
Additional purification steps were not needed, due to the BOC-anhydride residues being

easily washed out with water during the work-ups - apart from in the case of the methyl, phenyl
example 131 where some remaining starting material had to be removed using column
chromatography which accounts for the lower yield in that case. The yield of the diphenyl
carbonate 130 formation was most pleasing due to the previous difficulties in synthesising it at
all using the BOC-ON method. The carbonate forming procedure that gave the highest yield for
each product is given in the Experimental Chapter. With the carbonate syntheses having been
optimised, and a range of intermediates 128-132 in hand, it was time to investigate the outcomes
of the ensuing iodocyclisations.

The first trial iodocyclisation was carried out using the standardised conditions that had
been previously successfully used within the group, as mentioned in the Introduction to this
Chapter (page 38). A modification to the procedure was to use the iodine monobromide as a
stock solution of 0.5 moldm™ in anhydrous dichloromethane, to facilitate a quicker and more

straightforward addition of the reagent.
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The dimethyl carbonate 128 was treated with three equivalents of iodine monobromide at
0 °C for one hour (Scheme 56).
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Scheme 56: Trial iodolactonisation.

Of the 89% crude yield of product material that was recovered after this initial reaction, it
was calculated by studying the relevant integrations in the NMR spectra of the product mixture,
that 88% of it was the desired 6-endo product 133 and 12% the 5-exo isomer 134, which was a
complex mixture of diastereomers. This meant that the overall yield of the 6-membered product
133 was 78% of the theoretical yield, by analysis of the NMR spectra (a section of which,
showing H,.. 133 and the corresponding peaks from the 5-exo isomers 134 for comparison, is

shown in Figure 6 below), making it the major isomer as had been hoped.
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Figure 6: Section of proton NMR spectra highlighting the major iodocyclisation product.
The resonances highlighted above in Figure 6 of the three methine protons H,.. were

consistent with those recorded by Proctor for the methyl, butyl analogue 102 - with H, and H.
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producing the expected double quartet (2H, J values of 10.8 Hz and 6.2 Hz at 4.65 ppm) and Hy
a triplet (1H with a J value of 10.8 Hz at 3.73 ppm) with a very similar J value to the analogous
signal in Proctor’s analysis.” A minor, assumed to be also 6-membered product, due to its
matching splitting pattern, made up 15% of the total 6-membered product (seen at 4.56 ppm and
3.59 ppm in Figure 6). The identity of this unexpected minor product was hoped to be discovered
after purification.

Purified samples of the isomers 133 and 134 were gleaned by column chromatography,
and two dimensional NMR techniques were used to decipher and assign the structural isomers,
that could then be confidently labelled in Figure 6. The key to this being possible is that the shift
of a methine carbon that is also bonded to iodine appears characteristically lowfield in a *C
NMR spectra (shifted ~60 ppm from the other CH resonances). This is an example of the “heavy
atom effect”, which can be explained in this case as a decrease in the chemical shift (5c) of the
nucleus bound directly to the halogen substituent with increasing atomic number of the
halogen.®* After the methine shift (at ~28 ppm) that corresponded to the CHI centre had been
identified in the DEPT *C NMR spectra of each isolated isomer, then the multiplicity of the
paired proton shift could be examined using an HSQC experiment. HSQC links resonances from
13C NMR spectra to the peaks in the corresponding proton NMR spectra from the hydrogen
atoms that they are directly bonded to. Studying this allowed the structures of the stereocisomers
to be assigned, as in the case of the proton NMR spectra of the major 6-membered product 133
this H-CI peak takes the form of a triplet (or double doublet), but in the case of the alternative
5-membered isomer 134 it would have a more complex splitting pattern and be dependent on the

substituent (in this case, 134 Figure 7, a double quartet).
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Figure 7: Protons and multiplicities. 133 134

The purified sample of the 6-endo product(s) that had been garnered by column
chromatography for full analysis seemed to be more stable than the starting material, although
due to the known photosensitivity of bonds to iodine, exposure to light was kept to a minimum.
Assigning the structural isomer had been relatively straightforward, but to identify the specific
major stereoisomer, further analysis had to be carried out. It could be tentatively concluded that

the ring protons were trans-diaxial by the magnitude of the coupling constants (10.8 Hz). A
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NOESY experiment further indicated that the alkyl substituents were cis to each other and trans
to the iodo group. This was unequivocally confirmed by X-ray crystallography of the desired

product 133, as shown in Figure 8 below.

Figure 8: X-ray structure of 6-membered iodocarbonate 133.

The structure determined (133, Figure 8), showed a 6-membered ring containing two
oxygen atoms in a 1,3 arrangement. The O-C-O bonds were 1.378 A in length, with an internal
angle between them of 116.5 ° (Full details of the data obtained are given in Appendix 1). A
simple energy minimisation experiment performed using the programme Chem3D Pro calculated
the same bond lengths to be 1.382 A.

It could be seen in the NMR spectra of the purified desired product that even after
column chromatography the minor 6-membered component of unknown structure had still not
been separated from the major compound 133, accounting for ~15% of the sample. It was not
thought to be a stereoisomer of the main product 133 shown above, as inverting one or more of
the stereocentres would have had a major effect on the magnitude of the coupling constants.
Very little change in the size of the coupling constants, and only a small upfield shift could have
been attributed to it being a conformer 133, due to flipping of the carbonyl group in the ring
(Figure 9). This solution would also explain why this minor “product” could not be removed by

purification.

Figure 9: Conformational change 133 to 133°.
To investigate the above possibility, an increased temperature proton NMR experiment
was carried out (at 55 °C), which would have caused a change in the ratio of conformers if they

were present due to increasing the rate of movement in the ring. This was found to not be the
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case however, as there was no change in the relative integrations of the relevant signals, and
other possible structures had to be taken into account.

Another potential solution was thought to be that the minor product could have arisen
from an unexpected degree of bromocyclisation, due to a small amount of the iodine
monobromide reacting through bromine (or the presence of molecular bromine impurities in the
reagent). Although it could not be separated from the iodo-carbonate 133, the existence of the
bromo species could be proven by examining the HRMS analysis for the presence of the
characteristic twinned molecular ion peaks (1:1) arising from the predicted structure and the
stable isotopes of bromine ("°Br and 2'Br). These peaks were indeed found to be present, along
with a set that corresponded to the molecular ion +MeCN which was echoed in the
iodocarbonate high resolution spectra also. This identified the minor 6-membered product to be
the bromocarbonate 135, as pictured below with the CHI and CHBr resonances from a section of
the *H NMR spectra of the purified product 133 (Figure 10).
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Figure 10: 3.73 (1H, t, J 10.8, CHI) and 3.59 (1H, t, J 10.3, CHBr)
Furthermore, the shift in ppm between the iodo- and bromo-cycles, shown above in
Figure 10, is consistent with that between the relevant peaks in the ‘H NMR spectra of

commercially available iodocyclohexanol and bromocyclohexanol.
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Unfortunately, identifying the impurity, although interesting, did not lead to an
immediate solution for preventing its production in the reaction. It was known that molecular
iodine was not suitable for effecting these cyclisations, so it was decided to continue using
iodine-monobromide. It was hoped that by changing the other conditions of the reaction that the
incidence of bromolactonisation could be minimised, as removing the impurity after it had been
formed had proved troublesome.

More pressingly, to try and further improve the ratio of the 6-membered to 5-membered
products of iodocyclisation, the reaction was then repeated at a series of decreasing
temperatures; -40 °C, -78 °C and -100 °C. After 1 hour at -40 °C, of the 87% by weight of
product material that was recovered after the reaction, 83% of it was the desired 6-endo products
(8% of which was the minor bromide product 135 - as in Figure 10) and 17% the 5-exo product
134, again as a complex mixture of diastereomers. This meant that the overall yield of
6-membered products was 72%, according to the *H NMR data, but they contained less of the
brominated side-product than in the 0 °C trial. At -78 °C, and for the same duration, of the 85%
crude yield 84% of it was the 6-membered iodocarbonate 133 (and under these conditions no
bromide product could be seen in the product mixture) and 16% the 5-membered isomer 134,
giving the yield of the desired product to be 71%. For the trial at -100 °C, the molar equivalents
of iodine monobromide were reduced to 1.50, to test if the reaction would still go to completion
within one hour. The best, most selective, results were found, and surprisingly still after the same
short reaction time, under these conditions (Scheme 57).
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Scheme 57: Optimised iodocyclisation conditions.

Possibly due to there being less decomposition at this very low temperature, the crude
yield was 99%. Of this, 86% was the 6-endo product 133, and at this stage it was possible to
carry out a quick recrystallization from cold hexane to give pure crystals of the desired
compound, without having to carry out column chromatography to remove the minor structural
isomer 134. There was also, again, no trace of the minor 6-membered bromide product 135 in the
product mixture of this very low temperature reaction. These were thought to be the optimal
conditions for this transformation, yielding 85% of the desired novel 6-membered iodo carbonate

133, and in this case eliminating the issue of competing bromination.
50



To form the cyclic iodo-carbonate with methyl and phenyl substituents, there were two
isomeric starting materials 129 and 131 to trial (Scheme 58), to see if one provided more
selectivity than the other. These would technically give the same 6-endo products due to
symmetry, although the 5-exo products 137 and 139 have different structures.
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Scheme 58: Methyl, phenyl products.
After 1 hour at 0 °C, the ratio of structural isomers in each case appeared to be very

similar on studying the *H NMR spectra of the crude product mixtures, with the minor
5-membered isomers being a very complex mixture that made up about 45% of the product
mixtures. Again it could be seen after both reactions that the 6-membered product was a mixture
of two products assumed to be from iodination and bromination respectively, with the latter this
time accounting for 35% of the total amount of 6-membered products.

As there seemed to be no difference in the selectivity between the two starting materials
129 and 131 (Scheme 58), only the methyl, phenyl carbonate 131 that had given the higher crude
yield above (95%) was taken on to the subsequent low temperature trials. At -78 °C, the crude
yield was 69%, but with a quick recrystallisation all of the 5-membered structural isomers 139
(that accounted for ~12% of the crude product mixture) were removed. The major product was
shown to be the 6-endo isomer 138, using the same analytical techniques for structural
assignment as with the previous dimethyl example 133. Interestingly, even though in this case
the ring is asymmetrically substituted, the CHI resonance in the *H NMR spectra of the
6-membered product 138 still took the form of a triplet. Again (as was seen in Figure 6), there
was a minor 6-membered product showing a very similar coupling pattern (but shifted
~0.08 ppm upfield) that still made up 10% of the recrystallised product. At -100 °C the crude
yield was 94%, which could also be purified by recrystallisation to remove the 5-membered
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isomers 139. The major product (~85%) was again shown to be the product of 6-endo-trig
cyclisation, with the recurring minor bromide product displaying the analogous coupling pattern
making up 9% of the purified product even in this case. With this example, it was not possible to
prevent all occurrences of cyclisation through bromine by carrying out the reaction at an
extremely low temperature. Again, the identity of impurity as the bromide was proven by its
characteristic presence in the HRMS of the recrystallised product.

In the case of the diphenyl intermediate 130 (Scheme 59), at -78 °C the crude yield was
99% - and it could be seen by analysing the proton NMR spectra of the crude product mixture
that the 6-endo products accounted for ~53% - and recrystallisation from cold hexane removed

the minor structural isomers 141.
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Scheme 59: Diphenyl cyclic carbonates.

The major product was the desired 6-membered cycle 140, with the corresponding
bromolactone making up 13% of the purified product. For the trial at -100 °C, the number of
molar equivalents of iodine monobromide was reduced to 1.50, to test if the reaction would still
go to completion within one hour, which it successfully did. After a sample had been taken to
analyse the ratio of products, immediate recrystallisation of the crude product (99%) had to be
carried out to prevent decomposition. It could be seen by examining the *H NMR spectra of the
crude product sample that in this example the 6-endo products 140 accounted for an improved
79% of the overall yield. The crystalline product contained no 5-membered product 141 as
desired, with the minor 6-membered bromide product accounting for only 8% of the purified
yield. This result, along with the ratios of products achieved with the various substituents and at
different temperatures will be summarised in a table later in the Chapter.

At this stage, due to the unwanted bromide product still being an undesirable presence,
even after carrying out reactions at -100 °C, and because the diphenyl carbonate 130 had been
synthesised on a large scale, it was decided to carry out further trials to investigate this
unexpected but consistent side reaction. Three further investigative trials were carried out, one
with molecular iodine as a control, one with NIS and one with molecular bromine to endeavour
to further prove the structure of the minor product by comparison.

As had been expected, due to previous trials within the group, there was no product
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yielded from the attempted cyclisation with molecular iodine, and understandably none of the
bromination product. The attempted cyclisation using NIS as an alternative source of iodine also
only returned unreacted starting material.

After treating the starting material 130 under the usual conditions, only with molecular
bromine as the reagent, it could be seen from the *H NMR spectra of the crude product mixture
that the resonances of the major product matched exactly with the peaks of the recurring minor
product 142 from the course of iodine monobromide reactions (Scheme 60). Bromocarbonate
142 was not purified, but it was calculated by studying the integrations from the proton NMR
spectra of the crude product mixture that it accounted for ~55% of the theoretical yield after this

preliminary trial reaction.

o)
(0] 3.00 eq Br,
)J\ )< 3.00 eq K,CO3 o)]\o
PP
_ CH,Cl, Ph)\H\Ph
Ph Ph  _100°C, 1 hour Br
142

130
Scheme 60: Bromine facilitated cyclisation.

This cemented the theory that the minor 6-membered product was the result of reaction
with bromine. Interestingly, when examining the literature to discover if these cyclic
bromocarbonates were known compounds, it was found that this type of reaction had not been
previously reported. Neither 6-endo, nor more surprisingly, the more common 5-exo reactions
had been reported from treating similar starting materials with brominating agents. This opens
the scope for further investigation into this type of bromo-cyclisation to produce an analogous
series of bromo-substituted heterocycles. However, this was deemed to be beyond the range of
the current project and remains a noteworthy initial observation.

The final carbonate example 132 showed the largest steric effects, with its very bulky
tert-butyl substituent (Scheme 61).

o) O

j\ )< o)J\o o)ko

132 143 144

Scheme 61: tert-Butyl, methyl cyclic carbonates.

Even in this case though, at -100 °C, the crude product (88% vyield) was comprised

mostly of the 6-endo product 143. However, after purification by recrystallisation, the minor
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6-membered product (now known to be the bromide) did in this case account for 35% of the
sample. The reaction was repeated at 0 °C to confirm that the best result had already been
gleaned at the very low reaction temperature. As expected, the NMR spectra of this crude
product then showed an unintelligible mixture assumed to be of numerous isomers and

decomposition products.

The general reaction is shown below in Scheme 62, and below that in Table 8 all of the

various cyclisations can be compared by yields and the compositions of the product mixtures.

IBr 3.00 or 1.50 eq O o o)

o)
P L e S A
le\/ﬁRz (imzoilrz le\H\Rz R1>_S/R2 le\H\Rz
| I Br
104 119 109 119b
Scheme 62: General iodocyclisation scheme.
Crude | Combined | Calculated | Malor 6-endo | - Minor 6-endo
152 | Temp | . . iodo product | bromo product
R% R . yield 6-endo overall yield
(°C) . (% of (% of
(%) | (% of total) | of desired
6-membered) | 6-membered)
products
0 89 88 78 85 15
'\rf]igr‘]y'l 40 | 87 83 72 92 8
YW 78 | 85 84 71 100 0
-100 99 86 85 100 0
0 95 55 52 65 35
'\Sﬁ;%'l 78 | 69 83 61 90 10
-100 94 85 66 91 9
Phenyl, | -78 99 53 52 87 13
phenyl | -100 99 79 78 92 8
t
Bul, | 100 | 68 56 50 65 35
methyl

Table 8: Cyclisation results.

As can be seen in Table 8 above, better crude yields were consistently achieved at
increasingly low temperatures of reaction. Furthermore, the overall yields of the desired
6-membered products were found to be very good, and in most cases reducing the temperature
led to a decrease in the formation of the brominated product by a substantial degree.
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When a pure sample of the dimethyl 6-membered cyclic carbonate 133 was exposed
again to the cyclisation reagents and conditions, it was found that no equilibration occurred to

give any of the 5-exo structural isomer 134 (Scheme 63).

1 X
(@] (@] (@] O
)\H\ > \ )—S/
' |
133 134
Scheme 63: No isomerisation.

In conclusion, it has been found that the optimised reaction conditions are convenient and
relevant as a general synthetic method for synthesising these novel products 119 of 6-endo-trig

iodocyclisation (Scheme 64).
j\ )< IBr 1.50 eq j\
K,CO33.00 e
)O\AO 2L03 q o
= CH,CI
1 2 212 1 2
R R -100 °C, 1 hour R )\H\R

Scheme 64: 6-endo-trig iodocyclisation.

In all examples, the desired 6-membered structural isomers 119 resulting from the
unprecedented 6-endo-trig cyclisations of the tert-butyl carbonate reactants 104 were the major
products. This was proven in each case by thorough NMR spectroscopic investigations, and was
also confirmed by X-ray crystallography. Where this had been carried out, it also verified the
stereochemistry and shape of the major product. This was as expected, with the ring substituents
equatorial causing the alkyl moieties to be trans to the large iodine atom (Figure 11).

R
R ox
@)
Figure 11: Chair confirmation 119.

Optimal selectivity was achieved at a decreased temperature of around -100 °C within a

short reaction time. The crude yields were very good, and on average consisted of over 80% the
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desired novel 6-endo structural isomer, which could then be isolated and investigated as to its
stereochemical makeup. Samples for crystallography were easily gleaned by recrystalisation,

which could also be optimised for providing maximum isolated yields.
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Chapter 4

Acid-catalysed hydroaminations to form
fully saturated N- and O- containing
heterocycles

- Working towards Histrionicotoxin
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4.1 Introduction

The overall theme of this Chapter is the application of novel hydroamination cyclisation
methods to synthesising nitrogen and oxygen containing saturated heterocycles. Hydroamination
Is a highly atom-economical process in which an amine N-H functionality is added across an
unsaturated carbon-carbon linkage,®” in this case intramolecularly to induce a ring-closure. This
methodology is working towards an application, focussing on a transannular cyclisation, which
will ultimately introduce the chiral heterocyclic core structure of the complex natural product
Histrionicotoxin 145 (Figure 12). The spirocyclic core of the Histrionicotoxin family of
compounds is unique in the world of natural products, and has therefore been the subject of

much study in the chemical community.®

HO
Nad
3 3 NHHH\—/// 145

Figure 12: Histrionicotoxin. —

Though the final natural product itself 145 (Figure 12) does not contain an N-O
heterocyclic ring, one will be formed in the synthetic scheme leading towards it (shown in red in
the transannular intermediates 147 and 148 in Scheme 65 below), in order to introduce the
stereospecific amino-alcohol precursor. This kind of amino-alcohol synthesis was covered in the
General Introduction, outlining cyclisation methods and the subsequent reductive cleavage of the
N-O bond (page 15). A proposed retrosynthesis outlining this is shown in Scheme 65.

R . R . R R~
v N p— A8 N p— = HN p— NHo\S
H R | R | R | R
HO O O (@]
146 147 148 149

Scheme 65: Retrosynthesis of the core structure of Histrionicotoxin.

There are several other biologically active compounds which do contain a non-aromatic
N-O heterocycle themselves, such as the series of oxazolidinediones one of which,

Trimethadione 150, is shown in Figure 13 below, which are anticonvulsant drugs.®’

\

Trimethadione 150

Figure 13: Oxazole-based natural product.
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The work in this Chapter will be building on that previously carried out within the Knight
group, such as the acid-catalysed hydroamination cyclisations to form the heterocycles 16 and

152 shown below in Scheme 66.

ﬂ TfOH 0.40 eq 7@
R ) R
N co,Me 15 min N coMe

Ts 0°C Ts
15 16
R R
/ TfOH 0.50 eq
0 0
l}l CH,Cl, I}I
Ts 0°C Ts
151 152

Scheme 66: Acid-catalysed hydroaminations.

These reactions had been found to work very well and to give high yields by previous
group members.** Prior to this, Bransted acids had not been extensively used as reagents for
hydroamination processes involving alkenes, due to the more basic character of the amine
nitrogen compared to the n-system of the alkene. This could lead to the preferential and complete
formation of an ammonium salt instead of the desired carbenium ion which would result from
proton addition to the carbon-carbon double bond. This, in turn, would remove the nucleophilic
character of the nitrogen, preventing it from attacking the alkene. However, it has been found
that catalytic amounts of Brgnsted acids do trigger the inter- and intramolecular hydroaminations

8-70

of alkenes and alkynes when the amine is present as a sulphonamide 153,°*"° as revealed by the

first intramolecular example in the literature, shown in Scheme 67 below.
TfOH 0.20 eq
R H toluene, 100 °C R N

153 154 s M=lor2

Scheme 67: Intramolecular hydroamination.

The amino-alkene starting material 153 has an electron-withdrawing group on the
nitrogen, and leads to pyrrolidines and piperidines 154 in excellent yields under the conditions
given in Scheme 67 above. More basic amines, however, do lead to lower rates of reaction as
they drastically change the reactant-acid catalyst interaction.”" The previous acid-catalysed
cyclisations that had been optimised within the group (Scheme 66), also utilise an
electron-withdrawing tosyl protecting group to decrease the basicity of the amine functionalities.

The regiochemistry of the process is determined mostly by the stability of the carbenium

ion intermediate, and therefore most of the transformations are 5-endo-trig cyclisations. These
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are unfavourable according to Baldwin’s rules (which were outlined in the introduction to
Chapter 3 - page 40), however cation driven reactions often disobey Baldwin’s Rules.>

As was discussed in Chapter 2, the use of silver nitrate had proven highly effective in
catalysing cyclisations as a means for the synthesis of isoxazolines and isoxazoles. However, it
has been shown that when applied to the type of reaction shown below in Scheme 68, the
catalyst fails to generate any of the fully saturated isoxazolidine product, returning only

unreacted starting materials 155.”

o NHTs AgNO3/SiO, 0.10 eq

155

NO REACTION

Scheme 68: Failed silver-catalysed cyclisation.

It was decided to use an acid catalyst to facilitate the addition of N-H across a double
bond for this venture, following on from the Group’s successful work in this area, as previously
mentioned in Scheme 66. However, as the substrate is a hydroxylamine there is the added
complication that the relatively weak nitrogen-oxygen bond might not tolerate such conditions
and partial or even total decomposition of either the starting material or any product formed
could be observed. It was also expected that there could be some possible complications with the
reaction, due to the oxygen-carbon bond breaking and the resulting carbocation being attacked
by the nitrogen to give the product with the positions of the oxygen and nitrogen inverted in the
ring (isomerisation of the nitrogen-oxygen bond). This was thought to be a possibility as it had
been observed in reactions, such as the cyclisation of 156 shown below in Scheme 69, which had

been carried out by previous group member Anthony Proctor.’

Ts
X _NHTs +
° oo L Sl
0°C
156 72% 157 19% 158 Isolated yields

Scheme 69: Observed isomerisation in acid-catalysed cyclisations.

4.11 Benzannulation.

In order to extend the utility of such new hydroaminations, it was decided to first
examine their application to the formation of Pictet-Spengler-like products 159, as shown below

in Figure 14, to optimise the cyclisation procedure before applying it transannularly to the
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Histrionicotoxin chemistry.

o 159
NTs

Figure 14: Desired hydroamination products.

The Pictet-Spengler reaction is a chemical transformation in which a
B-arylethylamine 160 undergoes ring closure after condensation with an aldehyde or ketone.
Usually an acidic catalyst is employed and the reaction mixture heated. The Pictet-Spengler
reaction can be considered a special case of the Mannich reaction,”” and an example is shown in
Scheme 70 below.

160 161

Scheme 70: Pictet-Spengler reaction.

A new synthetic approach that did not require the involvement of a carbonyl directing
group had recently been optimised within the group, is now in press, and is shown in Scheme 71

below.*?

TfOH
NHTs NTs

162 R 163 'R

Scheme 71: Knight group hydroamination to give a Pictet-Spengler type product.
It was thought that synthesising the equivalent of the intermediate 162 with oxygen a to

the nitrogen would be possible, so that morpholine analogues 159 (as Figure 14 above) could be
synthesised using this methodology. The possibility of isomerisation of N-O could be increased
in this case (compared to the result in Scheme 69), due to the fact that the carbocation that could
form from cleavage of the C-O bond would be stabilised by being in the benzylic position. As
shown in Scheme 71, the cyclisation had previously been catalysed by triflic acid. Triflic acid is
a ‘superacid’ and is widely used, especially as a catalyst and a precursor in organic chemistry.”
With a pKa of around -15, triflic acid is inordinately stronger than sulphuric acid (pK, -3), and is
difficult to handle.

It was decided to attempt to optimise these cyclisations (Scheme 72) with the milder

reagent sulphuric acid, and at 0 °C, which will be examined in the Results and Discussion
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segment after introducing the second section of this Chapter.

? ?

+
NHTs H NTs
164 g 159 g

Scheme 72: Proposed cyclisation.

4.12 Transannulation.

Natural products containing multiple fused or bridged ring systems are regularly shown
to exhibit biological activity against a wide variety of human diseases.” Transannular
cyclisations, that form a new ring across an existing one , have been demonstrated within the

group using their novel acid-catalysed hydroamination methodology,*? as shown in Scheme 73

below.
_NHTs TfOH 0.50 eq q
0 - NTs
DCM, 0 °C
2 hours
165 166

Scheme 73: Transannular acid-catalysed hydroamination.

The transannulation precursor 165 usually has to be constructed with appropriate
functionality at specific points around the ring to allow for the desired transannulation reaction to
occur. Thus a single transannulation precursor 165 gives rise to a single stereospecific product
166 of a transannulation reaction.’* This investigation will ascertain whether this transannular
hydroamination methodology can be successfully used for synthesising models and precursors of
the core structure of Histrionicotoxin with varying degrees of complexity. The retrosynthesis
including this cyclisation step was outlined in Scheme 65 (page 58), and the transannular
hydroamination step is shown below in Scheme 74, to give the bicyclic product 168 with

simplified side-chains.

167 168

Scheme 74: Transannular cyclisation to give intermediate to Histrionicotoxin core.

The Histrionicotoxins are of considerable neurophysical research interest, given their
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biological activity as selective, non-competitive inhibitors of central neuronal, ganglionic and
muscular nicotinic acetylcholine receptors.” " Non-competitive inhibition is a type of enzyme
inhibition where the inhibitor reduces the activity of the enzyme, by binding not to the active site
of the enzyme, but to a different (allosteric) site. The inhibitor and the substrate may both be
bound at the same time, but when they are the enzyme-substrate-inhibitor complex cannot form
product. Histrionicotoxin does not block interaction of acetylcholine with the nicotinic receptor,
but instead interacts with a site on the associated ion channel. This type of inhibition temporarily
reduces the maximum rate of a specific in vivo chemical reaction without changing the apparent
binding affinity of the catalyst for the substrate.”” The interaction with Histrionicotoxin appears
to cause the channel to assume an inactive and non-conducting state.”

Histrionicotoxins are found at extremely low natural abundances, at less than 180 pg per
Columbian poison arrow frog (dendrobates histrionicus). Captive frogs have been found not to
secrete these toxins, so it has been impossible to determine a plausible biosynthetic pathway.
The activity of these alkaloids, combined with their scarcity and interesting structures, has led to
a considerable number of synthetic approaches over the last thirty years. Some previous
syntheses towards these compounds will be outlined, focussing on those methodologies where
the final bond formed in order to generate the core spiropiperidine system 169 is between the
nitrogen and the alkyl chain (indicated in red, Figure 15), as with the retrosynthetic scheme that

was proposed for this project in Scheme 65 (page 58).

*
HIN 169

Figure 15: Spirocycle formation.

All of these approaches start from a functionalised carbocyclic system, to which the
heterocyclic ring is fused to form the core spirocycle. A recent review by Stockman provides a
comprehensive summary of many of these syntheses,®® and reference will now be made to some

of the more relevant to this project.
In 1987, the Harrison group published an enantioselective route towards the

azaspirocyclic histrionicotoxin core structure, based on the use of carbohydrate starting

materials, namely D-mannose 170 (Scheme 75).”
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o)
S o OH
)VO
175 174

Scheme 75: Harrison’s 1987 histrionicotoxin approach.

An intermolecular Henry reaction was carried out on the aldehyde 171 to generate the
nitroalkane 172. This was followed by a second intramolecular Henry reaction to generate the
nitrocyclohexane as a mixture of isomers 173, which could be separated after tosylation of the
primary alcohol moiety (34% desired isomer). The Henry reaction is a base-catalysed C-C
bond-forming reaction between nitroalkanes and aldehydes (or ketones). It is similar to the aldol
additions, and is sometimes referred to as the Nitro-aldol reaction.®

Secondary alcohol protecting groups had to be introduced to form the triacetate 174,
which was then found to spontaneously cyclise on exposure to aluminium amalgam to give the
desired spirocycle 175. This route was not progressed further towards the target natural products,
but demonstrated the potential for using carbohydrate starting materials in the synthesis of

enantiomerically pure azospirocycles.
A few years later, the Stork group were able to develop an impressive asymmetric

synthesis of the histrionicotoxin precursor 181, commencing from the very simple starting
material 176 (Scheme 76).
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OH ‘y oy,
OAc ||
181 180

Scheme 76: Stork’s 1990 histrionicotoxin approach.

The silyl ether 177 was isolated as a single enantiomer, upon reaction of the aldehyde
176 with a chiral (-)-a-pinene-derived allyl borane and a silyl protection reagent. In common
with this project’s proposed synthetic route, the retrosynthesis of which was given in Scheme 65,
a transannular intermediate imparts the correct stereochemistry. In this case, it is a lactone 178
that is formed as a single enantiomer, in an intramolecular cyclisation, possessing three correctly

set stereogenic centres. This was followed by formation of the bromide 179.

The construction of the piperidine ring required the conversion of the lactone carbonyl
into an amino function, which was carried out in two steps, to give the amine 180. This was
achieved by the action of trimethylaluminium and ammonium chloride followed by the addition
of acetic anhydride, to give the crude acetoxy amide, which then underwent a Hoffmann
rearrangement promoted by phenyliodonium bis-(trifluoroacetate) to give amine 180. The
desired cyclisation of this then required heating at 55 °C in the presence of triethylamine, to

promote the key intramolecular elimination to yield the target azaspirocycle 181.

In 2006, the Harrity group reported a formal synthesis of the spirocyclic precursor 186,

based on a stepwise [3+3] annelation strategy (Scheme 77).%*
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182 183 184 185 186
Scheme 77: Harrity’s 2006 histrionicotoxin approach.

Starting from the TBS-protected hydroxy ketone 182, this was converted into the
exocyclic alkene 183. Sharpless methodology then generated the desired aziridine 184,
containing the required stereochemistry in a 42% yield. A stepwise addition sequence furnished
the alcohol 185, which cyclised in the presence of titanium isopropoxide and palladium to give
the spirocycle 186. The remainder of the synthesis to the histrionicotoxin product then involved
straightforward functional group interconversions.

Specifically, it was Holmes’ 1999 synthesis that sparked the idea of investigating the
synthesis of histrionicotoxins via the isoxazolidine precursor 187,22 shown below (Figure 16).

187

Figure 16: Isoxazolidine precursor.

The general transannular isoxazoline intermediate 147 was formed in their route, a
section of which is shown below in Scheme 78, and looked to be an excellent candidate to reach

utilising the Knight group’s acid-catalysed cyclisation methodology.

Scheme 78: Section of Holmes’ synthesis.

This was not, however, the first route to histrionicotoxin that went through a transannular
isoxazolidine precursor. This was achieved by Gossinger, through a retro- and re-cyclisation

from nitrone 190 (Scheme 79).%%
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190 191 192
Scheme 79: Section of Gossinger’s synthesis.

The Holmes’ isoxazolidine intermediate 147 can be seen in this project’s simple
retrosynthetic disconnection, repeated below (Scheme 80). The spirocyclic core structure of the
histrionicotoxins 146 could be obtained following N-O bond cleavage of the isoxazolidine 147
(highlighted in red). N-O bond cleavage to give amino alcohols was covered in the General
Introduction (page 15), and in this specific case the heterocyle to be opened is an isoxazolidine
which are cleaved particularly efficiently with hydrogenolysis catalysed by rhodium on carbon.®*
This route has been chosen, as an obvious disconnection of the C-N bond in the isoxazolidine
148 gives the substrate 149 that is set up to effect a transannular acid-catalysed cyclisation of the
nitrogen on to the double bond. It is hoped that this will provide an opportunity to apply the
Groups’s hydroamination methodology (that was discussed in the Introduction to this Chapter,

page 59) to synthesising a hydroxy amine functionalised natural product framework.

R . R . R R~
S N —1 A8 N —1 = HN —1 NHo\N
H R | R | R | R
HO O O (e}
146 147 148 149

Scheme 80: Retrosynthesis of the core structure of Histrionicotoxin.

A synthetic route leading to the cyclisation precursor 149 will be devised, so that the
hydroamination conditions can be investigated, and a forward synthesis planned corresponding

to the proposed retrosynthesis above.

Prior to this however, the non-transannular cyclisations to synthesise morpholines (that
were discussed in the benzannulation section of this introduction, page 60) will be explored, to
optimise the hydroamination step, and address any issues in synthesising the precursors or with

isomerisation of the N-O bond on cyclisation.
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4.2 Results and Discussion

4.21 Initial route from benzyl alcohol

The synthetic sequence that was proposed for the formation of the heterocycle 198 is

outlined below in Scheme 81.

(0]
NH
/N Vs 2
I

o) _—————
| I
193 194 .
\
H o H
? ==== O/N\S// - - === O/N\S//O
(0] % / 196
N S L APE
/7 | |
o}
198 197

Scheme 81: Proposed synthetic scheme.

The first step in the synthesis was to carry out a Mitsunobu reaction on the benzyl alcohol
193 to yield the phthalimide protected hydroxylamine 194. The Mitsunobu reaction was again
used to introduce the O-N functionality in this case (Scheme 82), after it had been optimised for

carrying out the same transformation in Chapter 2 (page 28).

PPh31.20 eq

DIAD 1.01 eq 0
(;COH N-Hydroxyphthalimide 2.00 eq 4
| THF, 0°C -1t o~
18 hours (0]
|
193 194

Scheme 82: Mitsunobu reaction.

Carrying out General Method B (page 110) proceeded as a very straightforward reaction,
as by using two equivalents of N-hydroxyphthalimide, there was no starting material 193
remaining and the cleanness of the reaction meant that purification could be carried out by
washing the crude product through a plug of silica gel, rather than having to use a
time-consuming column. The isolated yield of pure material 194 achieved was 71%.

The next stage of the scheme really includes two steps, as the free hydroxylamine 195

was not purified and analysed due to concerns about its stability, and so was instead taken
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straight through to the tosylation reaction to give the protected hydroxylamine 196 (Scheme 83).

. pyridine 1.01 eq H
hydrazine 2.00 eq pTsCl 1.00 eq N

_ N - NH2 N 7
(0] ) (0) //S
o) refluxing EtOH DCM, -78 °C - rt (@)
| I o/n I

3 hours
194 195 196

Scheme 83: Dephthaloylation and tosylation.

The deprotection of the phthalimide 194 was carried out in refluxing ethanol and went to
completion within three hours (Scheme 83). Unfortunately however, the tosylation reaction did
not prove to be as simple, as there were unexpected problems with what appeared to be, on
careful analysis of the NMR spectra, bis-tosylation. This was thought to be the consequence of
increased nucleophilicity of the hydroxylamine nitrogen compared to that of an amine. After
many trials, varying the base, duration and temperature of the reaction, and also trialling it
without the usual addition of the nucleophilic catalyst DMAP, it was found that the best
conditions were with pyridine (1.01eq) and no DMAP, with the temperature on addition
at -78 °C before warming to room temperature overnight (Scheme 83). This gave an overall yield
of 64% of the tosylated hydroxylamine 196.

This was then followed by a Suzuki reaction at the iodine moiety in the ortho-position,
using a vinyl boronic acid to introduce the required alkenyl chain substituent. The Suzuki
reaction - a palladium-catalysed cross-coupling of aryl halides with boronic acids - is one of the
most versatile and utilised reactions for the selective construction of carbon-carbon bonds.®
However, in this case it was anticipated that it might have been difficult to achieve, due to both
steric hindrance and the relative electron-richness of the substrate. The reaction was first tried
under commonly used Suzuki conditions ([PPhz]4sPd, K,CO3z, THF), under reflux. This only
yielded a very small amount of the desired product. Transferring these same reagents to the
microwave was also unsuccessful, despite recent literature showing that this could be very
successful in triggering Suzuki reactions.®®

Instead, it was decided to trial using a “pre-mix” of reagents that had been optimised by
previous group member Laura Henderson for her similar ortho Suzuki couplings.? Pre-mixes are
different combinations of catalyst, ligand and base, which are designed to make the weighing of
these components much easier and faster, especially on a small scale. This particular pre-mix
contained K3PO, (base), palladium acetate (catalyst) and dtbpf ligand (1,1’-bis(di-tert-butyl
phosphino) ferrocene), and facilitated the completion of the reaction after half an hour in the

100 W microwave at 100 °C (Scheme 84), with a purified yield of the alkene 197 of 56% after
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column chromatography.

H //O Premix H //O
o~ \//S 1-penten-1-yl boronic acid o~ \//S
@) @)
| EtOH:H,0
100 W, 0.5 hrs |
196 197

Scheme 84: Suzuki reaction.

This moderate yield was thought to be due to carrying out the reaction and subsequent
purification on a small scale, as conversion of the starting material was complete using these
reaction conditions that had been optimised within the group.

The final step in the scheme was the pivotal acid-catalysed cyclisation step. In the initial
trial, concentrated sulphuric acid was simply added dropwise to the product of the Suzuki
reaction 197, at 0 °C in anhydrous dichloromethane, and the cyclisation was rapid to give the
desired bicyclic product 198 (Scheme 85).

(H2SOq .
DCM, 0 °C N 2
S
%
ADN

198

Scheme 85: Acid-catalysed cyclisation.

The reaction was only trialled on a very small scale, but it could be seen by studying the
proton NMR spectra of the crude product 198 that a complete conversion had occurred.
Comparing the sections of spectra below (Figure 17 - starting material 197 is shown above the
cyclised product 198), shows the disappearance of the CH, singlet o to oxygen from the starting
material (5.00 ppm), and its replacement by the characteristic diastereotopic CH; pair of doublets
(at 5.11 and 4.70 ppm, J = 14.5 Hz - axial and equatorial due to their newly fixed position on the
ring) and the new tertiary C-H double doublet (at 4.93 ppm, J = 8.0 and 5.5 Hz).

It can be clearly seen that there is only one isomer 198 present, as the spectra is
consistent with the CH, resonances being o to O rather than N. The formation of a single product
in this reaction is evidence that there was no rearrangement of the N-O bond (unlike the earlier

reaction that was shown in Scheme 69).
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197

200

Figure 17: 84 4.5-5.3 Section of NMR Spectra before and after cyclisation.

A literature search uncovered no similar structures to either the desired compound 198 or
the unwanted isomerisation product 202 for comparison to the NMR spectra. However,
experimental methods could be carried out to transform the product of cyclisation into

intermediates that would prove its original structure, as shown below in Scheme 86.
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Scheme 86: Transformations to prove heterocyclic structure.

On cleavage of the N-O bond (indicated in red) of the above heterocycles 159 and 202,
the resultant amino alcohols 199 and 203 can then easily be either acylated or oxidised at the
hydroxyl moiety to give the products shown above in Scheme 86. In the case of the desired
structural isomer 159; formation of the acetate 200 from the amino alcohol 199 would cause a
~1 ppm shift in the peak that corresponds to the CH; a to O, and oxidation would give a
characteristic aldehyde 201 resonance. However, in the case of the product from the unwanted
N-O bond isomerisation 202; formation of the acetate 204 would cause a ~1 ppm shift in the
peak that corresponds to the CH o to O, and oxidation would give a ketone 205, so no aromatic
aldehyde resonance would be visible around 10 ppm.

Although this was a brief initial investigation, it facilitated the optimisation of some
important transformations that will be utilised in the following route towards models of the
Histrionicotoxin core structure. This project of building morpholine rings onto existing cylic
skeletons was then passed over to be pursued as a final year MChem assignment.

In conclusion, it was previously thought that if the hydroxylamine group was in an allylic
(or similarly stabilised, in this case benzylic) position, then it could be likely that some degree of
rearrangement would occur under the acidic cyclisation conditions, due to the stability of the
carbocation that would form from cleavage of the carbon-oxygen bond. However, it was found
that by using a less aggressive acid catalyst in a dilute reaction mixture cooled in an ice bath, this
novel cyclisation method was successful, and exhibited no such rearrangement issues. It would
now be possible to prove the wider utility of this particular reaction by trialling the Suzuki
coupling with a selection of boronic acids, to give heterocycles with a variety of substituents. A
phenyl substituent in this position has already been successfully installed. An alternative to the

Suzuki couplings could also be investigated, for example the Wittig olefination.
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As an extension, the scheme could be trialled with a methyl group in the benzylic
position a- to the oxygen (Figure 18), to see if the cyclisation method would still be successful

even with the possibility of forming a further stabilised secondary carbocation.

NTs 206

Figure 18: Proposed heterocyle
The fact that the key acid-catalysed intramolecular hydroamination step was successful

provides an excellent basis for the transannular equivalents that are to be carried out.
Furthermore, the perfected tosylation conditions can be used to efficiently synthesise the
hydroxylamines that are protected with the electron-withdrawing group, that are required for the

subsequent transannular cyclisations to give the isoxazolidine precursors to the histrionicotoxins.

4.22 Racemic model of the simplified Histrionicotoxin core.

Due to the complexities involved in synthesizing a single enantiomer of a chiral natural
product, especially when the key steps are being attempted for the first time, it was decided to
first focus on a simplified racemic model, with one of the side chains of the transannular
precursor simplified to a methyl group. Synthesising this methyl model 213 would allow all of
the steps up to the formation of the spirocycle to be established, before optimising them in a
chiral synthesis. The projected Schemes 87 and 88 below indicate the relative, not absolute,
stereochemistry and lead to the initial target precursor 213 of the core of Histrionicotoxin. A
standard disconnection of the required cyclohexene ring 211 indicated that a route utilising
Grubbs’ metathesis would be suitable and allow the scheme to begin from a relatively simple
straight chain starting material.

In both schemes shown below, from the initial hydroxyl esters the diol functionality can

be introduced with a reduction reaction, followed by selective protection of the primary alcohol
moiety before the aforementioned metathesis.
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Scheme 87: Proposed synthetic scheme from syn hydroxyl ester 207.
Starting from the syn hydroxyl ester 207, as above in Scheme 87, the ring substituents

have the desired relative stereochemistry after metathesis, and so a transformation to the

hydroxylamine 211 that does not involve inversion of that stereocentre is required.

OH OH 0
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Scheme 88: Proposed synthetic scheme from anti hydroxyl ester 214.
In contrast, starting from the anti hydroxy ester 214, as above in Scheme 88, the ring

substituents would not have the desired relative stereochemistry on methathesis, so the

stereocentre of the secondary alcohol 216 needs to be inverted. A Mitsunobu reaction using
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N-hydroxylphthalimide would effect this, and also install the requisite hydroxylamine
functionality 217. This would, however, introduce an additional deprotection step to give the free
hydroxylamine 211.

A single reaction yields both of the starting material hydroxy esters 207 and 214, pictured
in the above schemes, which can then be separated chromatographically due to their being
diastereoisomers. As this reaction was not stereocontrolled towards either the syn- or
anti- product specifically it was preferable to have a purpose for both major products and incur
less wastage so early on in the synthesis. Therefore it was decided to trial the above schemes
concurrently, to see which methods of hydroxylamine formation and protection yielded the best
results overall in reaching the immediate precursor 212 of the key cyclisation step.

This first stage to synthesise the hydroxyl-esters 207 and 214 featured a dienolate
condensation with an aldehyde 223, as shown in Scheme 89. The deconjugative a-alkylation of
a,B-unsaturated esters has been studied in simple systems.?® In a general example, treatment of
the unsaturated ester 222 with lithium diisopropylamide at -78 °C results in formation of the
dienolate, which upon exposure to a carbonyl compound 223 and quenching of the reaction,
results in isolation of the corresponding homoallylic alcohol esters 207 and 214.%” Without the
1:1 complexation of the LDA to DMPU (or HMPA) the base employed for these reactions might
also act as a nucleophile and conjugatively add to the unsaturated ester 222 at a rate competitive
with proton abstraction.®® The addition of DMPU (preferable to HMPA which is carcinogenic)
30 minutes before the dienolate formation results in an essentially non-nucleophilic form of
LDA, which only acts as a base towards the unsaturated ester 222 and permits high yielding
mono-alkylation at the a-carbon atom of this ester. With this knowledge in hand the reaction was
carried out on a multi-gram scale. In the literature, in those cases where diastereocisomers were

generated, approximately a 1:1 mixture of aldols was observed.®’

0] (o) LDA 1.70 eq OH OH
+ DMPU 1.50 eq +
N _ HW _ _
© THF, -78 °C :
2
222 223 0”0 207 0”0 214

Scheme 89: Hydroxy ester diastereomers formation.

The combined isolated yields of the products 207 and 214 was 60%, which was moderate
but well within the expected literature range of similar reactions of 47-91%.%" Also, the separated
diastereoisomers were very pure according to NMR spectra, despite running particularly close on
the chromatography column. Initial assignment by studying the spectra identified the

diastereoselectivity of the reaction, with the syn diastereocisomer 207 as the minor constituent of
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the product mixture, accounting for an isolated 13% of the entire theoretical yield. The anti
diastereoisomer 214 was therefore the major product, with an isolated yield of 47%.

Assignment from the NMR spectra was made possible by several studies which have
shown that the well-known relationship between the dihedral angle of adjacent C-H bonds and
the spin-spin coupling constants of the protons can be used to obtain information about the
relative conformations of a pair of diastereoisomers.®**® The following conclusions may be
drawn for this type of diastereoisomer in non-polar aprotic solvents: (1) the two diastereoisomers
exist as intramolecularly hydrogen bonded structures with a six-membered ring containing the
hydrogen bond in a chair conformation, and with the maximum number of substituents
equatorial; (2) in all cases the vicinal coupling constant, Jqp, is larger (typically 6-9 Hz) for the
anti isomer (with trans diaxial protons H, and Hp) than for the syn isomer (typically 2-4 Hz).
This coupling constant difference is diminished when the hydrogen bond is disrupted by
measuring the *H NMR spectrum in a protic solvent.®* The hydrogen-bonded chair structures
that would be formed by the diastereomeric products of this first reaction are shown in Figure 19

below.

anti syn

Figure 19: Hydrogen bonded chair conformations of diastereoisomers 214 and 207.
It had also been observed in the **C NMR spectra that the carbinol (CH,O) and methine

(CH,) carbons experienced an upfield shift for the syn-isomer relative to the anti-isomer.*?

The major product was assigned as the anti-diasterecisomer 214 due to its larger coupling
constant 3JHa,Hb of 8.9 Hz observed at the H, doublet, compared to the coupling constant 3JHa,Hb
of 7.1 Hz seen at the equivalent peak in the spectra of the syn-diastereoisomer 207. This was a
smaller difference than had initially been expected in order to confidently assign the
stereochemistry, however in a similar literature example it had been shown that this resonance
from the syn-isomer could exhibit a coupling constant as high as 8.0 Hz.*” Furthermore, as well

as the fact that in all known examples the syn-isomer exhibited a coupling constant less than the

76



anti-isomer, the relevant comparable signals in the **C NMR spectra were also in agreement with
this assignment. In the diastereocisomer assigned as syn, the peaks of interest were at 58.9 ppm
(CH,) and 68.8 ppm (CHp), which were indeed shifted upfield compared to those of the
anti-isomer which were at 59.7 ppm (CH,) and 70.2 ppm (CHy). ldentities of the preliminary
compounds of the proposed syntheses in hand, the next stage was to reduce them to their
respective diols.

A straightforward lithium aluminium hydride reaction was chosen for the subsequent
reductions, which are outlined in Scheme 90 below.

OH OH
P LiAlH, 2.50 eq _ 98% vyield
THF, rt
o~ O 1.5 hours OH
I
207 208
OH OH
)J\/V\/v/ LiAIH, 2.50 eq )UW/ 100% yield
: THF, rt :
oé\o 1.5 hours \OH
| 214 215

Scheme 90: Hydroxy ester reduction.

This reaction went without a hitch in both cases, as can be seen above from the excellent
yields. A crossroads was then met in the syntheses, where the choice arose to either metathesise
the free diols, or to first protect the primary hydroxyl function. It was decided to trial both of
these scenarios in order to ascertain any differences in the overall yields and success of the
reactions.

Addressing the protection of the straight chain diols first, it was thought a bulky silyl
protecting group would be appropriate to ensure selectivity. The nature of the protecting group
(shown in the retrosyntheses as PG) used for the protection of the primary alcohol is critical to
these synthetic schemes. This group must be stable to both strongly acidic and strongly basic
conditions, for the acid-catalysed cyclisation and amination steps respectively. If this group is
deprotected under either of these reaction environments then either the amination or the
cyclisation will not achieve the correct selectivity. A primary alcohol will be aminated faster
under the conditions used, and an unprotected alcohol will be more likely to attack the olefin
than the nosyl-protected nitrogen in the subsequent cyclisation.

A method for protecting group introduction was employed that had been used on a

similar diol in the literature,” that utilised TBDMS chloride to protect the primary alcohol,
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leaving the secondary alcohol free to react. The conditions are shown in Scheme 91 below, with
a lower isolated yield being achieved for the syn example 224 - possibly due to it being the first

trial and not using the optimal solvent, or due to steric reasons.

TEA 1.10 eq
OH DMAP 0.10 eq OH
_~ _'BDMS-CI1.05eq — 224 40% vyield
DCM, 0 °C - rt
OH 24 hours o. /
Si
208 / \’<
TEA 1.10 eq
OH DMAP 0.10 eq OH
)U\N/ 'BDMS-CI 1.05 eq J\)\N/ 225 81% yield
: DMF, 0 °C - 1t :
~ 24 hours ~

OH o./

Si
215 / \’<

Scheme 91: Silyl protection of the primary alcohol groups.

The reactions were successful, with a good conversion to the desired products and no
unwanted protection of the secondary alcohol moieties were observed. The alternative path for
these straight-chain diol starting materials 208 and 215 was, as discussed, to first subject them to
ring-closing metathesis.

Of the three categories of olefin metathesis, the most widely used is ring-closing
metathesis.** Here, two terminal alkenes from the same molecule react with the catalyst to
generate a cyclic olefin, releasing a smaller olefin. Ring-closing metathesis reactions can proceed
to completion partly because the volatile by-product is removed (ethene), pushing the
equilibrium away from the reverse process. If the catalyst used is ruthenium based, it may be
used with substrates that carry an alcohol, a carboxylic acid, or an aldehyde; but can be rendered
inactive in the presence of structurally exposed amines and phosphines.** Grubbs' catalyst is a
ruthenium carbene complex, and there are two generations of the reagent available which are
compatible with a wide range of solvents. For these reasons, Grubbs' Catalysts are
extraordinarily versatile, with the second generation catalyst boasting both higher activity and an
increased stability.*

With the fact that it would be compatible with diols in mind, and because it had been
frequently used within the group, a simple ring closing metathesis using Grubbs’ second
generation catalyst was chosen to form the cyclic diastereomeric diols 226 and 227, as shown in

Scheme 92 below.
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)J\/?va Grubbs 110.03 eq s
HO -
= ‘ 226 50% yield (after chromatography)

: DCM, rt \
R 5 days HO'
oH
215
OH Grubbs 11 0.03 eq
— HO o i ) .
DCM, rt § 227 100% yield (with no purification needed)
24 hours HO'
OH
208

Scheme 92: Ring closing metathesis of free diols.

The same catalyst loading of 3 mol% was used for each reaction, however the metathesis
of the anti straight chain diol 215 did not reach completion within 24 hours and so was left to stir
at room temperature whilst other reactions were carried out. The lower yield of this reaction
compared to the quantitative yield achieved from the syn diol 208, was due to the fact that a trace
of residual starting material had to be removed using column chromatography, and unfortunately
these diols were found to stick quite resolutely to the silica gel. As this reaction was not repeated,
it was not ascertained whether the anti straight chain starting material 215 was less reactive
towards the metathesis or if the lower yield had been caused by an issue with the catalyst.

Metathesis of the protected anti straight chain diol 225, using the same method as above,

went cleanly to completion as shown in Scheme 93 below.

)UHVV Grubbs 11 0.03 eq
= \S/o/ 228 100% vyield
|

DCM, rt
3 days \ HO"

225
Scheme 93: Metathesis of the protected anti straight chain diol.

The other diastereoisomer 229 was synthesised by protecting the cyclic anti diol 227,
using the same method as for the equivalent straight chain diol as shown below in Scheme 94.
TEA 1.10 eq

DMAP 0.10 eq
HO tBDMS-CI 1.05 eq

\ .o
Si
HO™ DCM, 1t >f \ oo

2 days
227

229 40% vyield

Scheme 94: Silyl protection of the anti cyclic diol.
There did not seem to have been much consistent variance in the combined yields of the
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protection and metathesis steps depending on the order in which these transformations were
carried out for either diastereomer.

The mono-silylprotected anti diol 229 was now ready to be taken on to the significant
O-N bond forming step, leaving the relative stereochemistry of the substituents intact. As was
discussed in the introduction to Chapter 3 (page 37) the most appropriate method for this was
thought to be an electrophilic amination using an oxaziridine reagent. However, it was decided to
first refine this reaction on a simpler model (to be discussed in section 4.23), to obtain suitable
conditions for this type of substrate. This was thought to be the best course of action as the
protected diol 229 was more highly functionalized than those in the literature aminations.

The alternative mono-silylprotected syn-diol 228 was also ready to be taken on to the
hydroxyl amine forming step, although in this case with inversion of the stereocentre at the
secondary alcohol moiety. As was discussed in Chapter 2 (page 27) the most appropriate method
for this was thought to be a Mitsunobu reaction. As the desired product was a free, unprotected
O-alkyl hydroxylamine, the phthalimide protected product would then need to be deprotected.
The option was also available to attempt the Mitsunobu reaction on the straight chain
mono-silylprotected anti-diol 225 and metathesise afterwards, and this was undertaken first. The
initial experiment was carried out under the conditions from General method B (page 110),
which had been successful in several other instances within this project. These did include the
transformations of secondary alcohols, however in previous reactions the alcohols had been
propargylic or benzylic. Unfortunately, this conversion was not to be as straightforward, and
only starting material was recovered from the reaction mixture.

It was decided to retrial the reaction using Mitsunobu conditions that had been successful
in the literature for a more structurally similar substrate. Employing modifications from the
literature,*® for a similarly substituted secondary alcohol; increasing the reagent loading, and
carrying out the reaction in dichloromethane with the additions at -34 °C, also led to no
identifiable product being isolated from the purification column. It was found that the only *H
NMR spectra of a set of column fractions that did show any peaks that may have corresponded to
the desired product, was obscured by hydrazine residue from the DIAD reagent. In the next
slightly larger scale trial, it was decided to utilise di(4-chlorobenzyl)azodicarboxylate (DCAD)
as an alternative to DIAD. Most of the byproduct hydrazine formed in the Mitsunobu reaction
when using DCAD can be precipitated from dichloromethane. The polarity of the residue is also
quite different from those arising from DIAD/DEAD which facilitates separation of the products

more readily during chromatography.*? Regrettably, it could then be seen in the NMR spectra of
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the reaction mixture, after exposure to the reagents overnight, that the starting material was
unchanged.

A method was found that was hoped would be suitable to trial on the corresponding
metathesised cyclic protected diol 228 instead. Using conditions from the literature,”” for a
similarly substituted ring, this time employing DEAD, were initially inconclusive. Trialling the
reaction again using increased reagent loading did lead to a complete conversion of the starting
material. However, on detailed examination of the product analysis, it could be seen that the
product of the transformation was not as desired, and it was proposed that it was the result of an

unexpected elimination (Figure 20).
Sli—O )

230
Figure 20: Suspected elimination product.

The pre-metathesis intermediate 225 was exposed to the same conditions that had
provoked this elimination, and in this case no such loss of the substituent was observed. In fact,
at first the proton NMR spectra of the crude product mixture seemed to show unreacted starting
material and reagent residues. However, on carrying out column chromatography to recover the
starting material, a small amount (5% yield) of the desired phthalimide protected hydroxylamine
product 231 was recovered! This was obviously not an ideal result, but one that was seen as
positive after many previous futile attempts. To endeavour to build upon this, further
experiments were carried out, one with the same ratio of reagents to starting material but heated
to 40 °C, and the other with five molar equivalents of each reagent. These trials did not return an
increased yield of the desired product. Substituting the standard triphenylphosphine for the more
reactive tributyl phosphine, did allow for a small increase in productivity, from 5 to 9% of the
theoretical yield. A more modern alternative to DIAD and DEAD, called TMAD, was tested for

suitability but was not appropriate in this instance.

O
OH N
, DEAD 1.50 eq o) 5
= N-Hydroxyphthalimide 1.50 e -
\o y y yp q Pz 9%
~Sj z
/ THF ol /

0°C-rt ~gj

225 24 hours 231 /SI\’<

Scheme 95: Mitsunobu reaction.

Combining the small amount of phthalimide product 231 from the most successful trial,
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conditions of which are given in Scheme 95 above, with that that had already been isolated,
yielded enough of the hydroxylamine to continue on with this planned synthetic route.

Ring-closing metathesis of 231 was then successfully carried out as before, as shown in
Scheme 96 below, to give the desired cyclohexene structure 232.

o}
\ .o
Si
\ N
Grubbs 11 0.05 eq 9
o=N_o
DCM, rt
24 hours
232

Scheme 96: Metathesis of the phthalimide protected hydroxylamine.
A quantitative yield was achieved, with no sign of the elimination product 230 that had

been the unwanted result of carrying out the metathesis and Mitsunobu reaction in the reverse
order. Standard dephthaloylation conditions were then employed to vyield the free

hydroxylamine 233 as shown in Scheme 97 below.

\S_/o
[
>( o MeNH,(ag) 2.10 eq \ o

| Si

N ether, rt \ .

o o 1 hour o
[
232 233

Scheme 97: Dephthaloylation.

The above reaction was also very high vyielding, with the deprotection going to
completion quickly and cleanly. The tosylation that followed utilised the method that had been
optimised earlier in this Chapter (page 67), to give the intermediate 234 that was set up for the

key step transannular cyclisation.
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“
pyridine 1.01 eq >( (I)\‘

\S_/o pTsCl 1.00 eq NH
| I
I .78 °C -
NH, 78 °C - rt, o/n
233 234

Scheme 98: Tosylation.
The product 234 did contain a small amount of excess tosyl residues, but was of

sufficient purity to take on to trial acid-catalysed cyclisations. Initial trials using concentrated
sulphuric acid caused partial conversion to the cyclised product, when the reaction was carried
out in an ice bath for 30 minutes. This could be seen by studying the proton NMR spectra of the
crude product mixture, where the alkene resonance could be seen to be diminishing to be
replaced by a new CH, signal, along with the expected shift in the aromatic peaks of the tosyl
group.

As the reaction was carried out on a very small scale (~10 mg), due to the difficulties of
bringing product through to this stage, purification could not be carried out to lead to full
analysis. It was decided at this juncture to revert to a simpler model of the core structure to
address these issues one at a time. These racemic syntheses, the proposed schemes of which were
outlined in Scheme 87 and Scheme 88, have raised some important questions and also provided
significant information on the behaviour of these compounds that will be highly beneficial for

the following chemistry.

4.23 Simplified model synthesis

The retrosynthesis from the transannular isoxazolidine intermediate 235 (Scheme 99),
follows the same disconnection as with the previous synthesis, only with the primary alcohol
side-chain removed for simplicity. In synthesising the hydroxylamine 236, conditions can be

optimised for the direct amination of the alcohol using oxaziridine chemistry.

HN NH
| p— |2 f—
(0] (@]
HO
235 236 237

Scheme 99: Simplified model retrosynthesis.
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To make the cyclohexenol intermediate 237, instead of using the disconnection across the
alkene that would again lead to a scheme utilising Grubb’s metathesis, it was found that it could
be synthesised in three steps from readily available 3-methyl anisole 238, exploiting the
ready-made six carbon cyclic skeleton. The proposed synthetic scheme towards the cyclohexenol

intermediate 237 is shown in Scheme 100 below.
238 239 240 237

Scheme 100: Proposed synthetic scheme.

Three straightforward steps utilising well established chemistry gives the cyclohexenol
reactant 237 for the key amination step. The first transformation of the above scheme was
effected with a Birch Reduction, which involves the reaction of dissolving metals in ammonia
with aromatic compounds to produce 1,4-cyclohexadienes, and was discovered by Arthur Birch
in 1944.%® The reaction involves an initial radical anion resulting from the introduction of an
electron from the liquid ammonia solution of solvated electrons formed by dissolution of lithium
or sodium metal. This radical ion 241 (Figure 21) is protonated by the tert-butanol co-solvent
and is then further reduced to a second carbanion.

OMe
©.@ 241

Finally, the carbanion is protonated using a second proton to afford the non-conjugated

Figure 21: Anisole radical ion.

cyclohexadiene product. The regiochemistry of the final product is directed by the substituents
present. In the case of electron-donating substituents such as the methoxy group (Figure 21), the
dihydro-aromatic is formed with the maximum number of substituents on the residual double
bond, as shown above. This avoids carbanion formation adjacent to the methoxy group and gives
the correct cyclohexadiene 239. It was decided to use lithium metal, as it had been reported that
lithium leads to better yields that sodium.® The experimental conditions that were employed are

shown in Scheme 101 below.

OMe ‘BuOH OMe
Li, NHg
THF
-33 °C, 1 hour
Scheme 101: Birch reduction. 238 239

The isolated yield of the cyclohexadiene 239 was 74%, and the product was very clean
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with no need for purification. Acid hydrolysis of the Birch reduction product 239 then gives the
desired cyclohexene 240 with the double bond occupying the required position in the ring.
Perchloric acid was used as it had been applied in the literature to the transformation of a
structurally similar starting material.’®° Care is needed in carrying out the reaction in order to not
produce any of the conjugated enone, and after the reaction below none was seen. However, as
can be seen by the yield of the reaction shown in Scheme 102, the reaction was not as successful

as had been expected.

QMe perchloric acid 0.04 eq O
36% yield
CHCI3/H,0
rt, 48 hours
239 240

Scheme 102: Acid hydrolysis.
This was the purified yield after carrying out column chromatography, so the fact that it

is low could possibly be due to instability of the product on silica gel, or its volatility. However,
although the yield was disappointing, as the reaction had been carried out on a multi-gram scale
there was a sufficient amount of the cyclohexenone 240 to carry on with the proposed scheme.

The reduction to cyclohexenol 237 was accomplished in an isolated yield of 78% using a
solution of lithium aluminium hydride as shown below in Scheme 103, followed by a another
chromatographic purification.

o OH

LiAlH, 0.50 eq
78% vyield
ether
-30 °C, 1.5 hours

240 237

Scheme 103: Ketone reduction.

With the cyclohexenol intermediate 237 in hand, it was time to trial the key direct
amination step with, as was previously discussed, an oxaziridine reagent. As the desired product
was a free, unprotected O-alkyl hydroxylamine, the oxaziridine that was to be synthesized had to
also have no N-substituent. The first example of such an oxaziridine unsubstituted at nitrogen
was published in 1961,"* and its ability to transfer its N-H group was discovered shortly
afterwards.'® The majority of known oxaziridines had been prepared from the reaction of a
Schiff’s base with a peracid.49 However, a less general access to oxaziridines is possible by the
electrophilic amination of carbonyl compounds.'®®
N-Unsubstituted oxaziridines are extremely reactive towards nucleophiles and are usually

formed in solution and reacted further without isolation. However, in the absence of nucleophiles
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the N-unsubstituted oxaziridines are stable, even to extended heating.*® The oxaziridines 243 in
Scheme 104 below were obtained by the peracid procedure from imines 242. The diphenyl
example 244 was unstable at room temperature, but the tert-butyl oxaziridine 245 could be
purified by high-vacuum distillation.***

/'L MmCPBA R R = phenyl 244, unstable
— R/%NH
R NH o R ='Bu 245, 90% yield
242 243

Scheme 104: Oxaziridine synthesis.

Nucleophiles 246 attack the N-H group of the 3-membered ring 243 with simultaneous
bond formation and cleavage of the N-O bond, as shown below in Scheme 105.%°

R 'T .
©
R/F/N/H Nu R | 0 _— products
D 246 NHNU
243 intermediate 247

Scheme 105: Mechanism of amination.

The desired outcome is that upon protonation of intermediate 247 a hemiaminal is formed
which rapidly disintegrates to the corresponding ketone and aminated nucleophile product. The
specific method that was chosen to synthesise the required oxaziridine 245 is shown in
Scheme 106 below, and was taken from a more recent publication.*” Since N-unsubstituted
oxaziridines 245 react with almost every nucleophile, they must be prepared and handled in inert

solvents, such as the anhydrous dichloromethane that was used in Scheme 106 below.

mCPBA
> NH
NH DCM, 0 °C o
1 hour
248 245

Scheme 106: Oxaziridine formation.

As was discussed in Chapter 3 (page 37), in 1999 a report was published that outlined the
reaction of the above oxaziridine 245 with a range of potassium alkoxides in DMPU and in the
presence of 18-crown-6 to provide free O-alkylhydroxylamines in 10-86% yields.*’ This reaction

was carried out on the cyclohexenol 237 using the conditions shown in Scheme 107 below.
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1) KH 1.23 eq
18-crown-6 0.10 eq

2) O-NH
>%< 245
Q\ HZN\ Q\
HO DMPU S
237 -40 °C - rt, 2 hours 236

Scheme 107: Hydroxylamine formation.

After a work up to try and remove the majority of the high-boiling DMPU solvent,
'H NMR spectroscopy could be carried out on the crude product mixture to determine the yield
of hydroxylamine 236. Apart from some residual DMPU there were no other impurities present
and the transformation of the starting material to the hydroxylamine 236 was complete. As
expected, there was an upfield shift observed of the methine signal a to oxygen compared with
that present in the cyclohexenol starting material 237. The calculated yield from the proton NMR
spectra of the crude product was 42%, well within the literature expectation of 10-86%. This
yield was moderate, possibly due to the size and polarity of the product, but no additional
deprotection step was needed, as the free hydroxylamine had been formed directly. As the yield
had been calculated, there was then no need to isolate the free hydroxylamine from the DMPU
and it could be taken straight through to protection of the nitrogen.

It was also thought that forming the necessary sulphonamides would not be affected by
the residual DMPU that was present. Tosylation was trialled initially, using the method that had

been optimised earlier in this chapter (Scheme 83), to give sulphonamide 249.

pyridine 1.01 eq

pTsCl 1.00 eq O\\ /H\ /@\
H,oN XN ©
(6] DCM, -78 °C - rt O
236 o/n 249

The reaction went to completion overnight, although column chromatography had to be

Scheme 108: Tosylation.

carried out to remove excess tosyl residues and the residual DMPU. The isolated yield was then
43%, which was below expectations, so it was decided to also trial nosylation to see if this
delivered a better yield. Also, harsh conditions are required to remove tosyl groups from amines.
The deprotection typically involves the use of reducing metals in ammonia, fluoride or
electrochemical reduction, all of which show poor chemoselectivity. This issue was addressed in
1995 by the Fukuyama group. They developed the nosyl protecting groups, which have similar
electron-withdrawing effects to the tosyl group, but can be selectively removed by the mild ipso
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attack of thiolate.
A biphasic method was chosen for nosylation of hydroxylamine 236,)%° using

p-nitrobenzenesulphonyl chloride as shown below in Scheme 1009.

NaCO3; 1.50 eq o H
pNsCI 1.50 eq NN
- s "o
HoN .
o) DCM:H,0 1:1 o
236 t, o/n O,N 250

Scheme 109: Nosylation.
The reaction went to completion overnight and the residual impurities were removed by

column chromatography. The isolated yield of the sulphonamide 250 in this case was 61% which
was an improvement on the vyield of tosyl protection. The tosyl- and nosyl-protected
hydroxylamines 249 and 250 could then be exposed to the acidic hydroamination conditions to
facilitate the transannular cyclisations. Comparitive studies that have been undertaken within the
group to investigate nosyl and tosyl protected amines in this type of cyclisation reaction have
shown that there is no significant difference in reactivity between the two.

The key transannular cyclisation of the tosyl-protected intermediate 249 was carried out
by adding it to an ice-cold, anhydrous dichloromethane solution of triflic acid (0.50 molar
equivalents). After one hour at 0 °C the cyclisation had gone to completion (Scheme 110), and
column chromatography removed the small base-line impurities to give an isolated yield of 85%

of the transannular product 251.

O, NH /@\ tiflic acid 050 eq O N _0
s’ 0 S
N o’
/©/ 0 DCM, 0 °C
249 1 hour 251

Scheme 110: Transannular cyclisation.

This was an excellent result, and the novel ring system was fully characterised to prove
the success of the reaction. Below are corresponding sections of the NMR spectra of the starting
material 249 (top) and cyclised product 251 (bottom), for comparison. They show that the
signals labelled H, (5.34, s) and Hy, (4.37-4.24, m) in the spectra of the cyclohexene 249 are no
longer present in the spectra of the product 251 (indicated by the red arrows), where they have
been replaced by the new CH resonance (4.64, t, J 5.7 Hz) which unexpectedly took the form of
an apparent triplet.
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Figure 22: Spectra pre- and post-cyclisation.

The transannular cyclisation of the nosyl-protected intermediate 250 was carried out
under the same conditions as the tosyl-protected equivalent above. After one hour at 0 °C the
cyclisation had again gone to completion (Scheme 111), and column chromatography removed

the small impurities to give an isolated yield of 77% of the transannular product 252.

O NH /@\ tific acid 0.50eq O N _0
s; O S
A\ o~
/©/ o DCM, 0 °C
NG 1 hour

2 250 252

NO,
Scheme 111: Transannular cyclisation.

As expected, there was no significant difference in reactivity between the two
sulphonamide intermediates 251 and 252. The vyield of the above reaction in Scheme 111 was
slightly lower, however as well as carrying out the same full analysis as for the previous example
(the NMR spectra was very similar to that shown in Figure 22), X-ray crystallography was also
performed as this model crystallised on purification. The three dimensional picture that was

generated from this is shown in Figure 23 below.
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Figure 23: Nosyl-protected transannular cyclisation product 252.

The structure determined (Figure 23), showed the transannular 5-membered ring 252
containing an N-O linkage. The N-O bond was 1.456 A in length, with the new N-C bond
1.506 A long (Full details of the data obtained are given in Appendix 2).

This is a novel heterocyclic system, and exemplifies the ease, selectivity and scope of this

new transannular acid-catalysed hydroamination methodology.

Using all of the information learnt from the syntheses of the racemic models and the
simplified transannular core with no functionalized side chains, it was possible to embark upon a
full chiral synthesis towards the target with the option of increasing the complexity of the methyl

side chain.

4.24 Chiral core synthesis.

As the previous model substrate 252 (successfully synthesised for the first time as shown
in Scheme 111) contained no competing functional groups for the acid-catalysed cyclisation, the
next model was designed to allow incorporation of another of the side chains needed in the final
intermediate. This increased the complexity of synthesis in a stepwise fashion to allow it to be
possible to see at which stage, if any, difficulties could arise with the synthetic scheme that
needed to be dealt with. As seen previously, Stockman has published a short total synthesis of
the precursor (x)-HTX via Holmes’ isoxazolidine intermediate 147. It therefore seemed sensible

to again use an analogue of Holmes’ isoxazolidine 154 as an intermediate in the synthesis of our
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next model, target 253, utilising the same retrosynthesis as for the racemic schemes - up until

how to form the chiral straight-chain diol 258.

The retrosynthetic analysis of (x)-HTX model 253 is shown below in Scheme 112. The
first step (retrosynthetically) is to synthesise the side chain from the protected alcohol 254 using
the Stockman method.®® The key acid-catalysed cyclisation requires nosyl protection of the
amine which is disconnected to expose an O-hydroxylamine and olefin in compound 256, as
with the disconnections of the previous substrate models.

The primary alcohol must be chemoselectively protected (R = protecting group in
Scheme 112) before the amination step to prevent amination of the primary alcohol in compound
257. The olefin is then disconnected using a ring closing metathesis to give the di-unsaturated
compound 258. This can be disconnected to give isopropenylmagnesium bromide 259 (in
Scheme 112 where only a methyl substituent is desired in this position) and Sharpless
epoxidation product 260. Using an epoxide is an obvious disconnection as it will allow for the
correct absolute stereochemistry to be introduced to the synthesis. Also, at this stage, opening the
epoxide to form the enantiomeric diol allows for the introduction of a variety of side-chains
depending on the Grignard reagent that is used and therefore the degree of complexity that is
desired. An alternative to introduce the more complex side-chain that will allow the core
spirocycle to be formed onto the nitrogen will be discussed later.

The allylic alcohol 261 is required to produce epoxide 260 by the Sharpless epoxidation,
which can be synthesised from the DIBAL-H reduction of a,B-unsaturated ester 262. The
a,pB-unsaturated ester 262 can then be synthesised from a Horner-Wadsworth-Emmons type

Wittig reaction from commercially available 4-pentenal 223.
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Scheme 112: Retrosynthesis.

The straight-chain diol 258 is structurally the same as in the racemic synthesis. However,
in this chiral synthesis the stereochemistry of this intermediate must be absolute, with the diol
being obtained as a single isomer. It was for this reason that asymmetric Sharpless epoxidation
was chosen as the tool to introduce the correct stereochemistry. The forward synthesis
corresponding to the above retrosynthesis (Scheme 112) was chosen as the route begins from
commercially available 4-pentenal 223, and uses well known and reliable reactions to reach the
amination precursor.

The first step of this route was to synthesise the diene 262, and it was decided to use the
Masamune-Roush modification of the Horner-Wadsworth-Emmons reaction. In 1958, Horner
published a modified Wittig reaction using phosphate-stabilised carbanions, which was further
defined by Wadsworth and Emmons, resulting in the Horner-Wadworth-Emmons reaction that

reliably transforms aldehydes in to E-alkenes.'®

Masamune and Roush went on to develop mild
conditions using lithium chloride and DBN,*®” which were employed in this case as these
conditions had been successfully used within the group for very similar chemistry.'%

The reaction was carried out as shown in Scheme 113 below, and went completion after
stirring overnight.

LiCl 1.00 eq
triethyl phosphonoacetate 1.05 eq

DBN 1.05 e 0
OM a N~ M 60%

223 MeCN, 0 °C - rt o 262

18 hours

Scheme 113: Diene formation.
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As a known compound, it could be seen that the *H NMR spectra of the ester product 262
was exactly as expected and no further purification was needed after the aqueous work-up. The
isolated yield of this multi-gram reaction was 60%, and the product 262 was taken on to the
subsequent reduction step.

Due to the desired product 261 being an allylic alcohol, the reducing agent had to be
chosen carefully so that complete reduction to the saturated alcohol did not occur. The mild
reducing agent sodium borohydride was not suitable as it is not reactive enough to reduce ester
groups. Lithium aluminium hydride on the other hand is much more reactive, and although there

109 it was

are examples of it being cautiously applied to this type of reaction in the literature,
decided to go for a more common reagent. Diisobutylaluminium hydride (DIBAL-H) was chosen
as it had been successfully used in the literature for this exact transformation.**°

The conditions for this straightforward reduction are shown in Scheme 114 below, and an

excellent isolated yield of 96% was achieved.

DIBAL-H 2.50 eq

~_© ™

o) THF, 0 °C - 1t
262 S hours | 261

Scheme 114: DIBAL-H reduction.

This allylic alcohol 261 was the starting material for the chirality-inducing epoxidation
reaction. The reaction of an allylic alcohol with tert-butyl hydroperoxide (TBHP) in the presence
of Ti(O-i-Pr), and diethyl tartrate (DET) to form an epoxy alcohol of high enantiomeric purity
was introduced in 1980 by the Sharpless group.'** More recently they reported a simple
modification of the original procedure which allowed the asymmetric epoxidation to be carried
out with just 5-10% catalyst. The key feature of the catalytic modification was the use of
molecular sieves to remove water from the reaction mixture.*? In carrying out the retrosynthesis

it had been calculated which tartrate was required to introduce the correct stereochemistry.

It can be seen in Scheme 115 below that it is L-(+)-diisopropyl tartrate that will lead to

the correct product under these conditions.
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Scheme 115: Stereoselectivity of epoxidation.

The multipart reaction was carried out under the conditions shown in Scheme 116 below,
and an isolated purified yield of 64% was achieved. The very detailed preparation from a
Sharpless paper on catalytic asymmetric epoxidation was followed,'*? as it included numerous
guidelines on the best way to carry out the additions and complex reaction workup.

L-(+)-diisopropyl tartrate 267 0.06 eq
Ti(O-i-Pr), 0.05 eq

'BHP 2.00 e 0
HO\/M a HOW 64%
DCM, -20 °C (S)
261 3.5 hours 260

Scheme 116: Sharpless epoxidation.

The purified epoxide 260, for which there was no analytical data in the literature, was
fully characterised and found to be very stable to storing for long periods of time. With the
desired epoxide available, the regiospecific ring-opening reaction of the epoxide 260 to give the
1,3-diol 258 and invert the stereocenter in the 2-position could be attempted.

At this stage, a sample of the epoxide 260 was also taken to determine the specific
rotation of the compound. In stereochemistry, the specific rotation of a chemical compound [a] is
defined as the observed angle of optical rotation a, when plane-polarized light is passed through
a sample with a path length of 1 dm and a sample concentration of 1 g per ml. It is the main
property used to quantify the chirality of a molecular species or a mineral. The specific rotation

of a pure material is an intrinsic property of that material at a given wavelength and temperature.
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A polarimeter was used to measure the optical rotation of solutions of known
concentrations of the novel chiral molecules made in this synthesis, including this epoxide 260,
to contribute to the full analysis, and to allow some comparisons to be drawn to stereochemically
similar compounds if the relevant analysis was available in the literature.

For solutions, the equation below is used:

[0]p? = a
Ixc

In this equation, | is the path length in decimeters and c is the concentration in g ml™, for
a sample at a temperature T (given here as 20 °C) and wavelength 4 (589 nm, sodium D line).
When using this equation, the concentration and the solvent are provided in parentheses after the
rotation. The rotation is reported using degrees, and no units of concentration are given (it is
assumed to be g/100 ml). The [«]po® value calculated for the (S,S) epoxide 260 was -105.3°
(c=3.8, MeOH). A negative value means levorotatory rotation, and this correlates with the
literature optical rotation of a similar epoxide, (2S-trans)-3-propyloxiranemethanol [a]p” -46.6°
(c = 1.0, CHCl3).™2 [a]p?° values will also be calculated for the subsequent chiral intermediates
of this synthetic scheme.

In the next stage of the synthesis it was imperative to ensure that the epoxide opening
occurred at the 2- and not the 3-position, to give the desired diol 258 and not a mixture of
isomers. A literature method was found where the cuprous iodide catalysed addition of Grignard
reagents under carefully controlled conditions took place selectively at C-2, and inverted the
stereochemistry at that centre.**® This method had been shown to provide selectivity even with
sterically unbiased epoxides, as it seems likely that the epoxy alcohol group directs the
nucleophilic attack at C-2.*** The selectivity of the reaction is maintained only within a narrow
range of conditions. Lower temperatures favoured the 1,3-diol but diminished the reaction rate.

A compromise between selectivity and an acceptable rate can be reached by conducting
reactions with vinylic Grignard reagents at -20 to -25 °C. Tetrahydrofuran was found to be an
essential cosolvent (although large amounts were found to be inhibitory), which was convenient
as in this case the commercial reagent that was to be used was a one molar isopropenyl Grignard
solution in tetrahydrofuran. A small percentage of complexing solvent may be necessary to
solubilize the reagent.** The copper (1) mediated epoxide opening reaction that was carried out

using the aforementioned conditions is shown in Scheme 117 below.
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Scheme 117: Regioselective epoxide opening.

It can be seen that with this judicious choice of reaction conditions, a selective reaction
occurred even though there was a lack of stereochemical bias for attack of the epoxide 260. The
yield of 84% was that of the purified product 258 after column chromatography. It was
confirmed as the 1,3-diol (rather than the 1,2-) by spectral comparison to the previously made
racemic diols 208 and 215. This novel chiral diol 258 was of sufficient purity to take on to the

subsequent metathesis reaction, again using Grubb’s 2" catalyst (Scheme 118).

HO
™ Grubbs 11 0.04 eq ®
; HO
S 99%
R~ o DCM, rt . °
OH 18 hours HO'
258 257

Scheme 118: Grubb’s metathesis.

A near quantitative yield was achieved, and the lack of impurities from the reaction
allowed full analysis of the crystalline product 257 to be carried out without a need for
purification. As the cyclic diol 257 was crystalline, it was possible to carry out X-ray
crystallography on the sample. The three dimensional picture that was generated from this is
shown in Figure 24 below.

Figure 24: Chiral cyclic diol 257.
It can be seen from the trans-diaxial protons at the C-2 and C-3 positions that the alcohol
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ring-substituents are anti to each other in their relative stereochemistry as desired. The
stereocentres at the secondary alcohol and primary alcohol can be deduced to be (S) and (R)
respectively due to the known outcome of the Sharpless asymmetric epoxidation. This proves the
reputed configuration of the cyclic diol 257 and therefore the stereochemistry of the preceding
straight-chain diol 258 and epoxide 260. The structure determined (Figure 24), showed the
6-membered ring containing the C=C double bond. The new endocyclic double bond was
1.328 A in length (Full details of the data obtained are given in Appendix 3). A simple energy
minimisation experiment performed using the programme Chem3D Pro calculated the same
bond length to be 1.345 A.

The nature of the protecting group (shown in the retrosynthetic Scheme 112 as R) used
for the protection of the primary alcohol is critical to this synthetic scheme. This group must be
stable to both strongly basic and strongly acidic conditions, for the amination and acid-catalysed
cyclisation steps respectively. If this group is deprotected under either of these reaction
conditions then either the amination or the cyclisation will not achieve the correct selectivity. As,
previously mentioned, a primary alcohol will be aminated faster under the conditions used, and
an unprotected alcohol will be more likely to attack the olefin than the nosyl-protected nitrogen
in the cyclisation.

As it had been chosen for the previous analogous racemic syntheses, the protecting group
strategy that was trialled first was again to form the TBDMS ether of the primary alcohol moiety.
However, in employing the same conditions (as in Scheme 94, page 79), the extent of conversion
of the starting material was deemed unsatisfactory, and so a different literature preparation was
utilised.*® Silyl derivative 263 was then obtained in a 61% yield, starting from compound 257,
by treatment with TBDMS chloride and imidazole in anhydrous tetrahydrofuran (Scheme 119).

Imidazole 2.40 eq
(R tBDMS-CI 1.10 eq R)
HO

\ .o
Si
§ THF, 0 °C - 1t N
HO' 18 hours HO

257

263 61%

Scheme 119: TBDMS protection of primary alcohol.
This isolated yield was an improvement, and a sample of the mono-protected diol 263

was subjected to the amination conditions that had proved successful on the simplified model
237 in Scheme 107 (page 84).

This method was trialled on the mono-silylprotected chiral diol 263, but unfortunately,

due to a presumed deprotection under the reaction conditions to return the diol, the highly polar
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compound could not be retrieved from the water that is necessary in the work-up to remove the
DMPU solvent, and the reaction was unsuccessful. It was decided that this step would be
retrialled at a later date, employing a more durable protecting group, as it was later found that
deprotection even occurred during storage with the compound under an atmosphere of nitrogen.
The bulky isopropyl substituents on silicon in the triisopropylsilyl (TIPS) protecting
group are known to slow down reactions at silicon compared to TMS or TBDMS ethers.**’ It
was hoped that this would mean that the protecting group would survive the conditions of the
direct amination on the neighbouring secondary alcohol. Obviously the bulkiness of the TIPS
group also makes it sensitive to the steric demands of reaction partners, thus rendering
TIPS-chloride and -triflate selective silylating agents for primary hydroxyl moieties in the
presence of secondary alcohols. TIPS triflate and 2,6-lutidine were chosen as the reagents for the

protection of diol 257, the conditions of which are shown in Scheme 120 below.*
2,6-lutidine 1.50 eq >
(R TIPS-triflate 1.20 eq
HO .
\< o 52%
DCM, -78 °C
HO 2 hours v

257 268
Scheme 120: TIPS protection.

The isolated yield of 52% was lower than that desired for a reaction that simply
introduced a protecting group. It was thought that this might have been due to carrying out the

reaction and subsequent purification on a small scale.

This mono-TIPS protected diol 268 could then be exposed to exactly the same amination
conditions that had been previously successfully trialled on the simplified model 236
(Scheme 107, page 87). However, on studying the proton NMR spectra of the crude product
mixture in residual DMPU (a section of which is shown at the bottom of Figure 25), it was
apparent that again unwanted deprotection had occurred as there was no longer the large
characteristic triisopropyl resonance visible (at 1.07 ppm (18H, d, J5.6 Hz, 6 x CHj3)). On
comparison to the analysis of the free diol 257 (top of Figure 25), it could be seen that some
degree of reaction had occurred as well as the deprotection, as the peaks of the protons a to the
alcohol groups had shifted. However, the degree of the shifts was not as had been observed in
previous hydroxylamine formation (~0.15 ppm upfield) and the reaction was deemed
unsuccessful, as it was not known at what centre and to what degree the reaction had occurred.
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Figure 25: NMR spectra comparison of diol, protected diol and amination reaction product mixture.

A complete rethink was needed at this stage of the synthesis, to overcome these recurring
issues with protecting group instability and the complications caused to the ensuing amination
reaction. This was assigned to an MChem student, William Dean, as his fourth year project,

under my guidance.

Another possible protecting methodology would be to convert the primary hydroxyl
group into a thiophenol ether. These groups are much less common than the silyl protecting
groups, but are able to chemoselectively protect primary alcohols and can then later be removed

by oxidation to the sulfoxide and Pummerer rearrangement.

Primary alcohols such as 257 can be selectively substituted for a thiophenol benzyl ether
by stirring with tributylphosphine and diphenyl disulfide overnight at room temperature.*® An
isolated yield of 36% of the thiophenol ether 269 was attained by Dean (Scheme 121), which
was attributed to a slower conversion of the starting material than had been expected from

literature precedents.
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257 269

Scheme 121: Thioether formation.

The amination was then performed on the thiophenol ether 269, which produced a
mixture of unchanged starting material and a product which was eventually assigned as
diene 270 (Scheme 122). Unfortunately this once more showed that the amination had not
worked, instead eliminating thiophenol under the basic conditions rendered by the potassium
hydroxide. While it is surprising that this should have happened, with the pKa of the removed
proton being several orders of magnitude higher than the pKa of KH, it is proposed that the
stability of the PhSH leaving group has a role to play in this outcome, or that it was the
proximity of the oxygen anion to the proton in question (intermediate 271 Scheme 122), that

facilitated the elimination.

1) KH 1.23 eq
18-crown-6 0.10 eq
2) O-NH 245 2.00 eq

>€S< SP
N S N H ) 271

DMPU
HO -40°C-rt,2 hours HO

269 270

Scheme 122: Thioether elimination with possible mechanism.

It was also unexpected that the exocyclic olefin stayed in the exo-position, rather than
migrating to form a more thermodynamically stable cyclohexadiene compound. A section of the
'H NMR spectra of the reaction mixture showing the 1:1 ratio of the starting material 269 and

the diene 270 makes up Figure 26, where the relevant resonances are highlighted.
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Figure 26: Elimination of thioether.

While the synthesis of diene 270 was not planned, the stability of this compound opened
up a possible new avenue for synthesising the oxygen containing side-chain later in the
synthesis, and after the contentious amination step. It is proposed that if diene 270 was aminated
and nosylated, to form the protected O-hydroxylamine 272, then an acid-catalysed cyclisation
would ring-close at carbon 2 due to its proximity when compared to carbons 8 and 4, and the

strained ring formation if it attacked at carbon 3 (Scheme 123).

If this is the case, then the correct stereochemistry of carbon 3 could then be regained
through the hydroboration of isoxazolidine 273. The heteroatoms of the isoxazolidine ring could
be used guide the hydroboration agent, such as 9-BBN, to give the correct stereochemistry.
Oxidative cleavage of the borane to the alcohol will then give a building block from which the

rest of the side chain can be synthesised.
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Scheme 123: Proposed scheme from exocyclic alkene.

If this alternative scheme worked, then a route could be developed to reliably reach the
diene 270. At this juncture, Dean’s assignment came to a close and it was decided to focus on the

introduction of the final side-chain as the concluding investigation of this research project.

4.25 Full synthesis.

As was previously discussed, a convenient consequence of using the route proposed in
Scheme 112 (page 92) is the ability to easily synthesise the full Histrionicotoxin molecule by
changing isopropenylmagnesium bromide 281 for a more complex vinyl-Grignard that will go
on to synthesise the spirocyclic piperidine ring 275. The retrosynthesis for Histrionicotoxin 145
using this approach is shown below in Scheme 124, and will introduce a further level of
complexity to the synthesis in the form of another hydroxyl-containing side-chain and the
inherent complications that this may introduce to the amination with the possibility of

subsequent competitive cyclisation.
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Scheme 124: Retrosynthesis.
The retrosynthesis of Histrionicotoxin 145 starts with the conversion back to the

protected alcohol side chains of isoxazolidine 275 from their highly unsaturated counterparts
using Stockman’s route.”® The piperidine ring is then disconnected to the corresponding
a,p-unsaturated ester 276, which can be synthesised by the oxidation and
Horner-Wadsworth-Emmons type Wittig reaction of compound 277. Both the acid-catalysed
cyclisation of 278 and the selective amination of 279 require both primary alcohols to be
protected with complementary protecting groups. The disconnection of the cyclohexene ring of
compound 280 at the olefin and the addition of the Grignard reagent 281 to epoxide 260 is
similar to the previous retrosynthesis (Scheme 112, page 92).

As the asymmetric epoxidation reaction to form epoxide 260 could be reliably repeated
on a large scale, and the product itself was conveniently stable, plenty of the epoxide 260 was
available to attempt an opening with the complex Grignard 281.

The Grignard reagent 281 or its corresponding bromo- or iodo-compounds were not
commercially available, so this needed to be synthesised by a concise route. Formation of the
iodoalkene 283 was attempted by the Markovnikov addition of hydrogen iodide to commercially

available 5-hexyn-1-ol 282, using a literature preparation,* as shown below in Scheme 125.

Nal 2.00 eq
TMSCI 2.00 eq
H H,0 1.00 eq
HO MeCN, rt HO l
1 hour
282 283

Scheme 125: Hydroiodination of alkyne.
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The reaction appeared to have proceeded as desired on studying the *H NMR spectra of
the crude product, despite the risk of terminal- or di-iodination. However, to remove the minor
impurities column chromatography was carried out and this led to the isolated yield being 42%.
On carrying out the chromatography it became apparent that there were several different
compounds present and the reaction was not as selective as had been first thought. Nonetheless,
the desired product 283 did account for the largest fraction of the product mixture, and as it was
a known compound the structure could be confidently assigned on comparison of the analysis.

The appropriate protection of the alcohol moiety of the iodoalkene 283 was important as,
referring back to intermediate 278 in Scheme 124, if R was removed under acidic conditions
then cyclisation through the oxygen to give a 6-membered spirocyclic ring would be a real threat
to the desired transannular cyclisation through nitrogen. Also, a protecting group was required
that would be complementary to that on the hydroxyl moiety of the other primary alcohol
substituent on the cyclohexene ring structure 278.

Methoxybenzyl groups are widely used as a convenient way of protecting hydroxyl
groups in multi-step syntheses of complex natural products, as they can be selectively cleaved
under specific oxidative environments. The p-methoxybenzyl group is by far the most
widespread methoxybenzyl protecting group, as it is more stable to a variety of reaction
conditions. This solution was chosen to mask the reactivity of the alcohol 283, and a common
method for benzyl ether protection was employed where the alcohol 283 (Scheme 126) was
reacted with benzyltrichloroacetimidate, in a reaction promoted by triflic acid.'*

PMB-trichloroacetimidate 2.00 eq
triflic acid 0.003 eq
/\/\)J\ @AO | 62%
HO |
e

ether, rt
283 1 hour

Scheme 126: PMB-protection.

On studying the proton NMR spectra of the crude product mixture from the above
reaction, it could be seen that there had only been around a 75% conversion of the starting
material 283 to the PMB-protected product 284. This residual starting material and the other
more minor impurities were removed by column chromatography to give an isolated yield of
62%. It was important to successfully remove all of the unreacted alcohol as this could have
caused side-reactions in the subsequent Grignard forming step. Furthermore, in doing so the
remaining starting material was recovered to be used at a later date. The suitably protected
iodoalkene could then be exposed to Grignard reagent-forming conditions.

Grignard reagents form via the reaction of an alkyl (or aryl) halide with magnesium

metal, and it is important to exclude water and air which rapidly destroy the reagent by
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protonolysis or oxidation.*** There was not much detail in the literature about exactly how to
form a Grignard reagent from this type of vinyl compound. A typical preparation was trialled by
adding the organic halide 284 to a suspension of magnesium in an ethereal solvent (Scheme
127), as this provides the ligands required to stabilize the organomagnesium compound.*?? Also,
rapid stirring of the magnesium turnings under nitrogen prior to the reaction weakens the
passivating layer of magnesium oxide on the surfaces to expose the highly reactive magnesium
beneath.
Mg(s) 2.00 eq

A/\)J\ crystal of iodine AA)J\
THF, 50 °C
~o 284 ~o 285

3 hours

Scheme 127: Grignard formation.

The progress of the magnesium insertion reaction could be monitored by quenching
samples of the reaction mixture with ammonium chloride (Scheme 128), and if the Grignard 285

had been formed then it would be hydrolysed to give the monosubstituted alkene 286.

/\/\)J\ MHeClea /\/\)J\
e

Scheme 128: Quenching the Grignard reagent.

The reaction was carried out as shown in Scheme 127, and after the three hour reflux the
'H NMR spectra of the sample of reaction mixture that was quenched as above did show that the
monosubstituted alkene 286 had been formed, and no iodo starting material 285 was remaining.

The alkene 286 is a known compound,*?®

and its proton NMR spectra matched exactly to that in
the literature, proving that the Grignard reagent had been successfully formed. The remaining
vinyl magnesium iodide 285 solution in anhydrous tetrahydrofuran could then be used to trial the
opening of the epoxide 260.

The same conditions that had been successful for the previous regioselective epoxide
opening using the commercially available Grignard reagent (Scheme 117, page 96), were

employed for this next step as proposed in Scheme 129 below.

Cul 0.30 eq HO

O vinyl grignard 285 ~3.00 eq \:
HO S~y PMBO :
NG X ? ¢ A
ether, '23 OC 287 z
260 5 hours OH

Scheme 129: Epoxide opening using synthesised side-chain.

It was unfortunate that three equivalents of the Grignard reagent were necessary at this
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stage, as it meant sacrificing two equivalents of a reactant that had taken three steps to make. The
solution of Grignard reagent 285 had been kept under nitrogen overnight before its addition to
the suspension of copper (1) iodide. Following the work-up after the five hours of reaction time
had passed, it was found on studying the proton NMR spectra of the crude reaction mixture that
the epoxide 260 had, in fact, remained intact. As it was known that the Grignard reagent 285 had
been formed, it was thought that the reason for this failure to react could be either due to an
insufficient reaction time as the side-chain being introduced was much bulkier, or that the
Grignard reagent was short-lived and should have been utilised directly after formation.

If, after retrialling the Grignard addition, it was possible to reach the transannular
intermediate 288 shown below, then the PMB group could be removed from the primary alcohol
using DDQ. The resulting hydroxyl group could then be simply oxidised up to an aldehyde,
which would be able to undergo a Wittig reaction to install the required ester functionality. As
can be seen in Scheme 130 below, the spirocyclic nitrogen containing ring can then be formed by
Michael addition 289.

Scheme 130: Proposed final steps of synthesis.

Despite falling short of the full model synthesis that had been designed, it can be

concluded from this Chapter that this chemistry is well suited to this type of complex synthesis.

Taking this project as a whole, numerous compounds have been made that have not been
previously published, and the methods optimised within this thesis have been shown to be
reliably repeatable. These are the main achievements of this project, and | hope that through the
subsequent publication of some of these novel methods that they could go on to be used in the

synthesis of other compounds and play a small part in future discoveries.
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Chapter 5

Experimental
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5.1 Experimental
5.11 General Details

Reagents were obtained from Aldrich, Alfa Aesar and Lancaster chemical suppliers and
used as received unless otherwise specified. Dichloromethane was dried by refluxing over, and
distilling from, calcium hydride. Anhydrous tetrahydrofuran was obtained by refluxing over
sodium with sodium benzophenone ketyl as indicator, followed by distillation. Diethyl ether and
acetonitrile were used in their anhydrous state directly from an MBRAUN SPS solvent
purification system. All aqueous solutions were saturated unless otherwise stated. “Dried” refers
to the addition of dried magnesium sulphate (MgSQO,) to remove trace amounts of water.
“Filtered” refers to the removal of solid residues by gravity filtration of organic solutions
through filter paper. “Evaporated” refers to the distillation of volatiles using a Blchi rotary
evaporator attached to a 20 L Charles Austen pump at approx. 8 mbar, heated with a water bath
typically between 20 and 40 °C.

All reactions using air/moisture sensitive reagents were performed in oven-dried
apparatus, under a nitrogen atmosphere. Solid carbon dioxide and an acetone bath (-78 °C) or an
ice-water bath (0 - 5 °C) were used to obtain low temperatures unless otherwise stated. “m.p.”
stands for melting point. Heated reactions were conducted in a stirred oil bath heated on a
magnetically stirred hotplate. Reactions were followed and monitored by TLC, 'H NMR,
13C NMR and mass spectrometry as appropriate.

TLC analysis refers to analytical thin layer chromatography, using aluminium-backed
plates coated with Merck Kieselgel 60 GF254. Product spots were viewed either by UV
fluorescence, or by staining with a suitable staining solution. Column chromatography refers to
flash column chromatography using head pressure by means of compressed air, and using Merck
Kieselgel 60 H silica or Matrix silica 60.

Melting points were recorded using a Kofler Heated Stage Micro Melting Point
Apparatus and are uncorrected.

Infra-red spectra were recorded in the range 4000-600 cm™ using a Perkin-Elmer 1600
series FTIR instrument as a thin film between sodium chloride plates unless otherwise stated, in
which case samples were run dissolved in dichloromethane (DCM) between sodium chloride
plates. All absorptions are quoted in wave numbers (cm™).

3C NMR spectra (8c) were recorded at 125MHz on an Avance Bruker DPX 500

instrument (500 MHz) unless otherwise stated. “"H NMR spectra (5p) were recorded using an
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Avance Bruker DPX 400 instrument (400 MHz) or an Avance Bruker DPX 250 instrument
(250 MHz). Spectra were obtained as dilute solutions in deuterated chloroform, unless otherwise
stated. Chemical shifts are expressed in parts per million (ppm, ) and were recorded relative to
residual chloroform (7.26 or 77.0 ppm) as an internal standard unless otherwise stated. All NMR
spectra were measured at room temperature unless otherwise stated. Abbreviations used for the
multiplicities are s (singlet), d (doublet), t (triplet), g (quartet), br. s (broad singlet), dd (doublet
of doublets), dt (doublet of triplets), td (triplet of doublets), m (unresolved multiplet), app.
(apparent) or as a combination of these multiplicities. All coupling constants (J) are recorded in
Hertz (Hz). Assignments were made on the basis of chemical shift and coupling constant data
using DEPT-90, DEPT-135, COSY, NOESY, HSQC and HMBC experiments where required.
Mass spectrometric data was determined using a Waters GCT Premier instrument using
electron ionisation (EI) unless otherwise stated. In which case mass spectrometric data was
determined by a Waters LCT Premier XE instrument (LRMS) or Agilent 5975C Series GC/MSD
(GC-MS) using pressure chemical ionisation (APCI) or electrospray ionisation (ES). High
resolution mass spectrometric data were determined with the molecular formula corresponding to

the observed signal using the most abundant isotopes of each element.
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5.12 General Methods

General Method A — Addition of an alkyne to an aldehyde

The alkyne (1.00 equivalent) was taken up in dry tetrahydrofuran (2.00 ml/mmol of
alkyne) and the solution stirred at -78 °C. n-Butyl lithium (1.01 equivalents of a 2.5 M solution
in hexanes) was added dropwise via syringe, and the resulting solution stirred for 0.5 hours at
this temperature. The resulting solution of metallated alkyne was transferred to a solution of the
aldehyde (1.00 equivalent) in dry tetrahydrofuran (1.00 ml/mmol of aldehyde) at -78 °C, and the
resulting mixture allowed to warm to room temperature over a period of 4 hours, then quenched
by the addition of saturated aqueous ammonium chloride (equal volume to the reaction mixture)
and extracted with dichloromethane (3 x volume of the reaction mixture). The combined organic
extracts were washed with water (3 x volume of the combined extracts), and saturated sodium
chloride solution (equal volume to the combined extracts) then dried, filtered and evaporated to

give the product, which was used without further purification.

General Method B — Mitsunobu reaction'®

To a solution of triphenylphosphine (1.20 equivalents) in dry tetrahydrofuran
(10.00 ml/mmol of alcohol) at 0 °C was added diisopropyl azodicarboxylate (1.01 equivalents)
via syringe. The resulting orange solution was stirred until it became colourless and opaque
(about 15 minutes). The alcohol (1.00 equivalent) was added dropwise via syringe and the
resulting solution stirred for 20 minutes. N-Hydroxyphthalimide (2.00 equivalents) was then
added portionwise and the solution allowed to warm to room temperature overnight. The solvent
was evaporated and replaced with a minimum amount of dichloromethane. The resulting solution
was washed with a 1:1 solution of water and 30% w/w hydrogen peroxide (20.00 ml/g
triphenylphosphine), and the aqueous layer was extracted with dichloromethane (3 x volume of
aqueous layer). The combined organic extracts were then washed with saturated sodium sulphite
solution (equal volume to the combined extracts — added slowly as reaction with residual
hydrogen peroxide can be vigorous), and the aqueous layer was extracted with dichloromethane
(3 x 5.00 ml/mmol product). The combined organic extracts were then washed with water (equal
volume to the combined extracts) then dried, filtered and evaporated to give the crude product.
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General Method C — Phthalimide deprotection

The phthalimide (1.00 equivalent) was taken up in diethyl ether (10.00 ml/mmol of
phthalimide) and 40% w/w aqueous methylamine (2.10 equivalents) was added in one portion at
room temperature. The resulting solution was stirred for 4 hours at this temperature, over which
time a white precipitate formed, then a small amount of petroleum ether was added and the
solution was cooled in an ice-water bath to 0 °C and filtered under vacuum. The solid residue
was washed with petroleum ether and the combined organic filtrates dried, filtered and

evaporated to give the hydroxylamine, which was used without further purification.

General Method D — Silver nitrate cyclisations

The hydroxylamine (1.00 equivalent) was taken up in dichloromethane (30.00 ml/mmol
of hydroxylamine) and the reaction flask was covered with aluminium foil to exclude all light.
10% wi/w Silver nitrate on silica gel (see specific procedures for suitable number of equivalents)
was added in one portion and the resulting mixture stirred for 4 hours. The mixture was passed
through a plug of celite, eluting with ethyl acetate until filtrate runs clear, and the solvent

evaporated to give the product.

General Method E — Carbonate formation with BOC-ON*®

A solution of the alcohol (1.00 eq) in dry diethyl ether (1.00 ml/mmol) at -78 °C was
treated with n-butyl lithium (2.5 molar solution in hexane, 1.10 eq) and stirred for 0.5 hours at
this temperature. The resultant alkoxide solution was transferred via syringe to a solution of
2-(tert-butoxycarbonyloxyimino)-2-phenylacetonitrile ~ (BOC-ON, 1.00 eq), in dry
tetrahydrofuran (2.00 ml/mmol) at 0 °C. After stirring for 4 hours at room temperature the
mixture was washed successively with 2 M aqueous sodium hydroxide (2 x volume of reaction
mixture) and saturated aqueous sodium chloride (equal to volume of reaction mixture). The
combined aqueous washings were back extracted with diethyl ether (2 x 3.00 ml/mmol), and the

combined organic extracts were dried, filtered and evaporated to give the carbonate product.

General Method F — Carbonate formation with BOC—anhydride63
A solution of the alcohol (1.00 eq) in dry tetrahydrofuran (1.00 ml/mmol) at 0 °C was

treated with n-butyl lithium (2.5 molar solution in hexane, 1.10 eq) and stirred for 10 minutes at
this temperature. Di-tert-butyl dicarbonate (BOC-anhydride, 1.05 eq) in dry tetrahydrofuran
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(2.00 ml/mmol) was added to the alkoxide solution at 0 °C and the reaction mixture was allowed
to warm to room temperature and stir for 24 hours. Water (3.00 ml/mmol) was added to form a
biphasic mixture which was left to stir to decompose any residual BOC-anhydride for 1 hour.
The tetrahydrofuran was removed under reduced pressure, and diethyl ether (3.00 ml/mmol) was
added. The organic layer was washed with brine (equal volume to organic layer), then dried,

filtered and evaporatred to give the carbonate product.

General Method G - Optimised iodocyclisation

A solution of the carbonate (1.00 eq) in dry dichloromethane (30.00 ml/mmol) was
stirred at -100 °C (in a CO./diethyl ether cooling bath) prior to the addition of potassium
carbonate (3.00 eq) and iodine monobromide (0.50 molar solution in dry dichloromethane,
1.50 eq). The resulting solution was stirred at this temperature for 1 hour in a foil wrapped flask
to maintain a darkened environment. The reaction mixture was then quenched by the addition of
saturated aqueous sodium sulphite (equal to half the volume of reaction mixture), and extracted
with dichloromethane (3 x equal volume to aqueous layer). The combined organic layers were
washed with saturated aqueous sodium sulphite (equal volume to organic layer), then water

(equal volume to organic layer) and dried, filtered and evaporated to give the cyclised product.
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5.13 Chapter 2 compounds

Isobutylaldoxime 57

HOL
NQ\ >

A solution of sodium hydroxide (14.00 g, 0.35 mol) in water (40.00 ml) was mixed with
isobutanal (14.00 g, 0.20 mol). Hydroxylamine hydrochloride (15.00 g, 0.22 mol) was added
portionwise causing an exotherm, and on cooling crystals of the sodium derivative precipitated
out of solution. The solution was acidified with 2 M hydrochloric acid (125.00 ml, to pH 3), and
the aqueous layer was extracted with dichloromethane (2 x 50.00 ml). The combined organic
extracts were dried, and the solvent was evaporated to yield the crude product which was
purified by vacuum distillation (35 °C, 1 mmHg,) [Lit.***bp 141-142 °C] to give the oxime 20
(5.29 g, 30%) as a colourless oil. All data obtained were in accordance with those reported in the
literature™®* and showed: 8y 7.35 (1H, d, J 5.9, CH), 2.56-2.44 (1H, m, CH), 1.20 (6H, d, J 7.0,
2 x CHj3).

3-1sobutyl-5-butylisoxazoline 61

e — I
290 57 61

To a flask containing 1-hexene 290 (2.61 ml, 21.00 mmol), triethylamine (0.20 g,
0.28 ml, 1.98 mmol), dichloromethane (15.00 ml) and sodium hypochlorite solution (20.00 ml,
available chlorine 10-13%), was added isobutylaldoxime 57 (1.83 g, 21.00 mmol) in
dichloromethane (10.00 ml) dropwise at 0 °C. After stirring for 2 hours the layers were separated
and the aqueous layer was extracted with dichloromethane (2 x 10.00 ml). The combined organic
extracts were dried, and the solvent was evaporated to yield the crude product which was
purified by vacuum distillation (80 °C, 1 mmHg) to give the isoxazoline 61 (1.09 g, 31%) as a
yellow oil, showing: Vnax/em™ [thin film] 2966, 2874, 1595, 1466, 1387, 1108; oy 4.54-4.45 (1H,
m, CH), 2.99-2.90 (1H, m, CH), 2.76-2.64 (1H, m, CH), 2.50 (1H, dd, J 16.7, 8.1, CHy),
1.74-1.62 (1H, m, CHy), 1.55-1.44 (1H, m, CHy), 1.41-1.28 (4H, m, 2 x CH3), 1.15 (6H, d,
J7.0,2 x CHs), 0.87 (3H, t,J 7.0, CHj).
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1-Phenylhept-2-yn-1-ol 74

<|3 OH
X
©) + \\/\/ - - ©)\/\/
291 292 74

Benzaldehyde 291 (1.24 ml, 12.17 mmol) was reacted with 1-hexyne 292 (1.40 ml,
12.17 mmol) under the conditions described in General Method A to give the alkynol 74 (2.24 g,
98%) as a colourless oil. All data obtained were in accordance with those reported in the
literature'® and showed: vma/cm™ [thin film] 3399, 2958, 2203, 1644, 1451, 1267; 84 7.55 (2H,
d, J 7.1, 2 x ArH), 7.38 (2H, app. t, J 7.1, 2 x ArH), 7.30 (1H, d, J 7.1, ArH), 5.45 (1H, s, CH),
2.28 (2H, td, J 7.0, 2.0, CH,), 2.15 (1H, br. s, OH), 1.54 (2H, tt, J 7.0, 5.9, CH,) 1.43 (2H,
app. g, J 7.2, CH,), 0.92 (3H, t, J 7.2, CH3); ¢ 136.4 (ArC). 133.4 (ArC), 129.1 (2 x ArCH),
128.0 (2 x ArCH), 96.4 (C), 79.2 (C), 64.4 (CH), 29.3 (CHy), 21.6 (CHy), 18.4 (CHy), 13.0
(CH3); HRMS m/z [EI] C13H160 requires 188.1201, found 188.1200.

1,3-Diphenylprop-2-yn-1-ol 75

|O OH
N
vy — O C
291 293 75

Benzaldehyde 291 (0.92 ml, 9.43 mmol) was reacted with phenylacetylene 293 (1.08 ml,
9.43 mmol) under the conditions described in General Method A to give the alkynol 75 (1.92 g,
98%) as a colourless oil. All data obtained were in accordance with those reported in the
literature™?® and showed: vma/cm™ [thin film] 3411, 2198, 1640, 1032, 757; &y 7.65-7.61 (2H, m,
ArH), 7.50-7.47 (2H, m, 2 x ArH), 7.44-7.40 (2H, m, 2 x ArH), 7.36-7.31 (4H, m, 4 x ArH),
5.70 (1H, s, CH), 2.43 (1H, br. s, OH); ¢ 140.5 (ArC), 131.6 (2 x ArCH), 128.5 (3 x ArCH),

128.3 (ArCH), 128.2 (2 x ArCH), 126.6 (2 x ArCH), 122.2 (ArC), 88.6 (C), 86.5 (C), 65.0 (CH);
HRMS m/z [EI] C15H120 requires 208.0888, found 208.0884.

114



2-Methyldec-5-yn-4-ol 76

Isovaleraldehyde 294 (2.61 ml, 24.35 mmol) was reacted with 1-hexyne 292 (2.80 ml,
24.35 mmol) under the conditions described in General Method A to give the alkynol 76 (3.39 g,
83%) as a colourless oil. All data obtained were in accordance with those reported in the
literature'?” and showed: vmad/cm™ [thin film] 3608, 3583, 2360, 441; &, 4.37 (1H, t, J 7.1, CH),
2.18 (2H, td, J 7.0, 1.9, CH_), 1.90 (1H, br. s, OH), 1.81 (1H, app. p, J 6.8, CH), 1.63-1.32 (6H,
m, 3 x CHy), 0.92 (6H, d, J 6.8, 2 x CH3), 0.89 (3H, t, J 7.1, CH3); 5¢ 85.1 (C), 81.2 (C), 61.0
(CH), 47.0 (CHy), 30.5 (CHy), 24.6 (CH), 22.3 (CH3), 22.2 (CH3), 21.6 (CH), 18.1 (CH,), 13.3
(CH3); HRMS m/z [EI] C11H200 - H,0 requires 150.1409, found 150.1406.

1-Phenyl-3-hydroxyl-hept-1-yne 77
OH

o X
O — T

295 293 77

Valeraldehyde 295 (2.08 ml, 19.58 mmol) was reacted with phenylacetylene 293
(2.15 ml, 19.58 mmol) under the conditions described in General Method A to give the alkynol
77 (3.27 g, 89%) as a colourless oil. All data obtained were in accordance with those reported in
the literature'®® and showed: vma/cm™ [thin film] 3349, 2956, 2362, 1490, 1028, 755; &y 7.43
(2H, dd, J 6.7, 3.0, 2 x ArH), 7.24-7.17 (3H, m, 3 x ArH), 459 (1H, t, J 6.5, CH), 2.47 (1H,
br. s, OH), 1.79-1.64 (2H, m, CH,), 1.46-1.36 (2H, m, CHy), 1.35-1.23 (2H, m, CH), 0.94 (3H,
t, J 7.3, CHs); ¢ 131.5 (ArCH), 128.2 (2 x ArCH), 128.1 (2 x ArCH), 122.5 (ArC), 90.1 (C),
84.6 (C), 62.8 (CH), 37.5 (CH,), 27.2 (CH,), 22.2 (CH,), 13.9 (CH3); HRMS m/z [EI] C13H160
requires 188.1201, found 188.1203.
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(3RS,5RS) and (3RS,5SR) 5,9-Dimethyl-1-phenyldec-8-en-3-ol 78
O X
AT Ty — A
293

296

OH
A

78

Citronellal 296 (0.28 ml, 1.58 mmol) was reacted with phenylacetylene 293 (0.18 ml,
1.58 mmol) under the conditions described in General Method A to give the alkynol 78 as a 1:1
diastereomeric mixture — multiplets could not be resolved to separate resonances for each
diastereomer (0.41 g, 100%) as a yellow oil. All data obtained were in accordance with those
reported in the literature*® and showed: vmad/cm™ [thin film] 3390, 2930, 1602, 1443, 768; &y
7.46-7.39 (2H, m, 2 x ArH), 7.33-7.28 (3H, m, 3 x ArH), 5.17-5.05 (1H, m, C=CH), 4.67 (1H,
dd, J 7.7, 6.3, CH), 2.11-1.93 (2H, m, CH,), 1.90-1.82 (1H, m, CH), 1.81-1.70 (2H, m, CH,),
1.68 (3H, s, CH3), 1.61 (3H, s, CH3), 1.47-1.33 (1H, m, CH,), 1.31-1.17 (1H, m, CHp), 0.98 (3H,
app. dd, J 6.5, 5.5, CH3); 6¢c 131.5 (CH), 129.7 (ArCH), 129.6 (ArC), 129.5 (2 x ArCH), 128.1
(C), 126.6 (2 x ArCH), 90.1 (C), 84.6 (C), 98.6 (CH), 62.8 (CH), 29.4 (CH,), 26.3 (CHy), 22.0
(CHy), 13.9 (2 x CH3), 13.5 (CHs3).

2-(1-Phenylhept-2-yn-1-yloxy)isoindoline-1,3-dione 79

o)
OH o’ N
o)
A A
74 79

The propargyl alcohol 74 (2.24 g, 11.90 mmol) was reacted with N-hydroxyphthalimide

(3.88 g, 23.80 mmol) under the conditions described in General Method B, except that the
propargyl alcohol and N-hydroxyphthalimide were added at the same time. The crude product
was purified by eluting 100.00 ml fractions of dichloromethane through a silica plug with the
second fraction yielding the phthalimide 79 (2.13 g, 54%) as a yellow oil, showing: vma/cm™
[thin film] 2958, 2235, 1735, 1374, 1186, 970; 64 7.82 (2H, dd, J 5.5, 3.1, 2 x ArH), 7.77-7.70
(4H, m, 4 x ArH), 7.43-7.38 (3H, m, 3 x ArH), 6.08 (1H, t, J 2.1, CH), 2.20 (2H, td, J 7.0, 2.1,
CHy), 1.45-1.37 (2H, m, CH,), 1.34-1.24 (2H, m, CH,), 0.79 (3H, t, J 7.3, CHg3); d¢c 163.4
(2 x CO), 135.0 (ArC), 134.1 (2 x ArCH), 129.5 (ArCH), 128.8 (2 x ArC), 128.7 (2 x ArCH),
128.3 (2 x ArCH), 123.3 (2 x ArCH), 92.2 (C), 79.1 (CH), 74.9 (C), 30.0 (CH,), 21.7 (CH,),
116



18.4 (CH,), 13.3 (CH3); HRMS m/z [EI] C2:1H1sNOs requires 333.1365, found 333.13609.

2-(1,3-Diphenylprop-2-yn-1-yloxy)isoindoline-1,3-dione 80
OH

e ®

75

The propargyl alcohol 75 (1.88 g, 9.03 mmol) was reacted with N-hydroxyphthalimide
(2.94 g, 18.06 mmol) under the conditions described in General Method B, except that the
propargyl alcohol and N-hydroxyphthalimide were added at the same time. The crude product
was chromatographed (10-40% diethyl ether in petroleum ether) to give the phthalimide 80
(2.04 g, 64%) as a pale yellow solid (the title compound had been reported in the literature®® but
with no analysis), showing: mp 43-46 °C; vmad/cm™ [film] 3583, 3064, 2358, 2228, 1735, 698; &
7.85 (2H, dd, J 5.4, 3.1, 2 x ArH), 7.83-7.78 (2H, m, 2 x ArH), 7.74 (2H, dd, J 5.4, 3.1,
2 x ArH), 7.48-7.40 (5H, m, 5 x ArH), 7.35-7.27 (3H, m, 3 x ArH), 6.31 (1H, s, CH); d¢c 163.6
(CO), 134.6 (ArC), 134.5 (2 x ArCH), 131.8 (2 x ArCH), 130.0 (ArCH), 129.2 (2 x ArCH),
129.0 (ArCH), 128.9 (ArC), 128.7 (2 x ArCH), 128.3 (2 x ArCH), 123.6 (2 x ArCH), 121.8
(ArC), 90.5 (C), 83.9 (C), 79.5 (CH); HRMS m/z [APCI] CxH15NO3z + H” requires 354.1130,
found 354.1129.

2-(2-Methyldec-5-yn-4-yloxy)isoindoline-1,3-dione 81

76
The propargyl alcohol 76 (1.00 g, 5.94 mmol) was reacted with N-hydroxyphthalimide

(1.94 g, 11.88 mmol) under the conditions described in General Method B, and the crude product
was purified by elution through a silica plug with copious amounts of dichloromethane to give
the phthalimide 81 (1.54 g, 96%) as a colourless oil (the title compound had been reported in the
literature®® but with no analysis), showing: vma/cm™ [thin film] 2958, 2241, 1735, 1375, 1187,
975; 8y 7.83 (2H, dd, J 5.4, 3.1, 2 x ArH), 7.74 (2H, dd, J 5.4, 3.1, 2 x ArH), 5.11 (1H, tt, J 6.9,
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2.0, CH), 2.11 (2H, td, J 7.0, 2.0, CH,), 1.97 (1H, sept., J 6.6, CH), 1.91 (1H, dt, 14.3, 7.1, CHy),
1.72 (1H, dt, J 14.2, 7.1, CHp), 1.37-1.28 (2H, m, CHy), 1.27-1.17 (2H, m, CH,), 1.03 (3H, d,
J6.6, CHs), 0.94 (3H, d, J 6.6, CH3), 0.76 (3H, t, J 7.2, CHy); 8¢ 163.5 (2 x CO), 134.1
(2 x ArCH), 128.8 (2 x ArC), 123.2 (2 x ArCH), 89.6 (C), 76.5 (CH), 76.2 (C), 42.7 (CH>), 30.0
(CH,), 24.8 (CH), 22.3 (2 x CH3), 21.6 (CH,), 18.2 (CH,), 13.3 (CHa).

2-(1-Phenyl-1-hept-1-yn-3-yloxy)isoindoline-1,3-dione 82

OH

A

77 82

The propargyl alcohol 77 (0.50 g, 2.63 mmol) was reacted with N-hydroxyphthalimide
(0.86 g, 5.26 mmol) under the conditions described in General Method B, and the crude product
was purified by elution through a silica plug with copious amounts of dichloromethane to give
the phthalimide 82 (0.64 g, 86%) as a pale yellow waxy solid, showing: mp 43-46 °C; vmadcm™
[film] 3434, 2360, 1734, 1645, 1375, 1187, 700; 64 7.85 (2H, dd, J 5.4, 3.1, 2 x ArH), 7.74 (2H,
dd, J 5.4, 3.1, 2 x ArH), 7.35 (2H, d, J 7.7, 2 x ArH), 7.29-7.23 (3H, m, 3 x ArH), 5.27 (1H, t,
J 6.7, CH), 2.16-1.95 (2H, m, CHy), 1.71-1.59 (2H, m, CH,), 1.49-1.39 (2H, m, CH,), 0.97 (3H,
t, J 7.3, CH3); 8¢ 163.5 (CO), 134.2 (2 x ArCH), 131.5 (2 x ArCH), 128.8 (ArC), 128.5 (ArCH),
128.1 (2 x ArCH), 123.4 (2 x ArCH), 121.8 (ArC), 88.2 (C), 85.1 (C), 78.0 (CH), 33.4 (CHy),
27.1 (CH,), 22.2 (CH,), 13.8 (CHs); HRMS m/z [APCI] C,1H1gNO;s + H* requires 334.1443,
found 334.1433.

2-(5-Methyl-1-phenylhex-1-yn-3-yloxy)isoindoline-1,3-dione 83

OH

—_—

A

76

The propargyl alcohol 76 (1.96g, 10.41 mmol) was reacted with N-hydroxyphthalimide
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(3.40 g, 20.82 mmol) under the conditions described in General Method B, and the crude product
was purified by elution through a silica plug with copious amounts of dichloromethane to give
the phthalimide 83 (3.16 g, 91%) as a pale yellow solid (the title compound had been reported in
the literature® but with no analysis), showing: mp 87-90 °C; vmad/cm™ [film] 2958, 2235, 1791,
1738, 1371, 1187; 64 7.83 (2H, dd, J 5.4, 3.1, 2 x ArH), 7.72 (2H, dd, J 5.4, 3.1, 2 x ArH),
7.37-7.32 (2H, m, 2 x ArH), 7.30-7.23 (3H, m, 3 x ArH), 5.31 (1H, t, J 6.9, CH), 2.15-2.01 (2H,
m, CHy), 1.92-1.82 (1H, m, CH), 1.08 (3H, d, J 6.4, CH3), 1.01 (3H, d, J 6.4, CH3); ¢ 163.7
(CO), 134.4 (2 x ArCH), 131.6 (2 x ArCH), 129.0 (2 x ArC), 128.6 (ArCH), 128.3 (2 x ArCH),
123.5 (2 x ArCH), 122.1 (ArC), 88.3 (C), 85.5 (C), 76.9 (CH), 42.7 (CH,), 25.0 (CH), 22.6
(CHs), 22.5 (CHs); HRMS m/z [EI] C,1H1gNO3 + H requires 334.1443, found 334.1458.

(3RS,5RS) and (3RS,5SR) 2-(5,9-Dimethyl-1-phenyldec-8-en-1-yn-3-yloxy)isoindoline-1,3-
dione 84

OH
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The propargyl alcohol 78 (1.00g, 3.90 mmol) was reacted with N-hydroxyphthalimide
(1.27 g, 7.80 mmol) under the conditions described in General Method B, and the crude product
was purified by elution through a silica plug with copious amounts of dichloromethane to give
the phthalimide 84 (1.09 g, 69%) as a pale yellow viscous oil, showing: vma/cm™ [thin film]
3449, 3062, 2958, 1735, 1376, 1187, 973; oy 7.88-7.82 (2H, m, 2 x ArH), 7.74 (2H, dd, J 5.5,
3.3,2 x ArH), 7.37-7.31 (2H, m, 2 x ArH), 7.29-7.24 (3H, m, 3 x ArH), 5.38-5.31 (1H, m, CH),
5.16-5.10 (1H, m, CH), 2.24-2.13 (1H, m, CH,), 2.09-1.90 (4H, m, 2 x CH,), 1.79 (1H, ddd,
J14.1, 8.4, 5.9, CHp), 1.67 (3H, d, J 0.8, CH3), 1.61 (3H, s, CH3), 1.36-1.22 (1H, m, CH), 1.11
(3H, d, J 6.6, CH3); d¢c 163.7 (2 x CO), 134.5 (2 x ArCH), 131.6 (2 x ArCH), 131.5 (C), 129.0
(2 x ArC), 128.6 (ArCH), 128.3 (2 x ArCH), 124.5 (CH), 123.5 (2 x ArCH), 122.1 (ArC), 85.7
(C), 82.1 (C), 76.6 (CH), 41.2 (CHy), 37.0 (CH,), 29.3 (CH), 25.7 (CH3), 25.3 (CHy), 19.3
(2 x CHs).
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5-Butyl-3-phenylisoxazoline 60
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The phthalimide 82 (1.00 g, 3.00 mmol) was taken up in ethanol (50.00 ml) and
hydrazine hydrate (0.30 g, 0.29 ml, 6.00 mmol) was added. The reaction was heated to reflux for
3 hours. The reaction mixture was then allowed to cool to room temperature and cooled in ice,
before the solid was filtered off and the filtrate was evaporated to yield the isoxazoline 60
(0.58 g, 95%) as a colourless solid. All data obtained were in accordance with those reported in
the literature'® and showed: mp 42-44 °C [Lit.?® 40-42 °C]; &y 7.69-7.63 (2H, m, 2 x ArH),
7.48-7.39 (3H, m, 3 x ArH), 4.66 (1H, ddd, J 14.6, 10.3, 6.5, CH), 3.47 (1H, dd, J 16.9, 10.4,
CH,), 3.04 (1H, dd, J 16.9, 8.2, CHy), 1.66-1.51 (2H, m, CH,), 1.37-1.24 (4H, m, 2 x CH,), 0.88
(3H,t,J 6.9, CHs).

O-(1-Phenylhept-2-ynyl)hydroxylamine 85
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The phthalimide 79 (1.12 g, 3.37 mmol) was deprotected under the conditions described
in General Method C to yield the hydroxylamine 85 (0.64 g, 93%) as a yellow oil (the title
compound had been reported in the literature™ but with no analysis), showing: 8y 7.53 (2H, dd,
J 8.0, 1.5, 2 x ArH), 7.45-7.27 (3H, m, 3 x ArH), 5.36 (1H, t, J 1.9, CH), 2.35-2.23 (2H, m,
CHy), 1.60-1.50 (2H, m, CHy), 1.49-1.38 (2H, m, CH), 0.92 (3H, t, J 7.3, CHj3).
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O-(1,3-Diphenylprop-2-yn-1-yl)hydroxylamine 63

s
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The phthalimide 80 (0.56 g, 1.58 mmol) was deprotected under the conditions described
in General Method C to yield the hydroxylamine 63 (0.32 g, 91%) as an orange oil. All data
obtained were in accordance with those reported in the literature™! and showed: 5y 7.61 (2H, dd,
J 8.0, 1.4, 2 x ArH), 7.55-7.49 (2H, m, 2 x Ar-H), 7.45-7.37 (3H, m, 3 x ArH), 7.37-7.31 (3H,
m, 3 x ArH), 5.61 (1H, s, CH), 5.27 (2H, br s, NH,).

O-(2-Methyldec-5-yn-4-yl)hydroxylamine 86

The phthalimide 81 (0.52 g, 1.66 mmol) was deprotected under the conditions described
in General Method C to yield the hydroxylamine 86 (0.25 g, 82%) as a yellow oil (the title
compound had been reported in the literature®® but with no analysis), showing: 8y 5.38 (2H, brs,
NH,), 4.28 (1H, tt, J 7.2, 1.9, CH), 2.23 (2H, td, J 7.0, 1.9, CH,), 1.82 (1H, tt, J 13.4, 6.7, CH,),
1.61 (1H, dt, J 14.4, 7.2, CHy), 1.53-1.45 (3H, m, CH + CH,), 1.44-1.37 (2H, m, CH,), 0.94-0.89
(9H, m, 3 x CHj3).
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O-(1-Phenylhept-1-yn-3-yl)hydroxylamine 68
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The phthalimide 82 (0.45 g, 1.35 mmol) was deprotected under the conditions described
in General Method C to yield the hydroxylamine 68 (0.20 g, 74%) as a yellow oil, showing:
814 7.46 (2H, dd, J 6.7, 3.0, 2 x ArH), 7.35-7.27 (3H, m, 3 x ArH), 5.51 (2H, br s, NH,), 4.48
(1H, t, J 6.7, CH), 1.86-1.71 (2H, m, CH,), 1.52-1.45 (2H, m, CH,), 1.43-1.29 (2H, m, CHy),
0.93 (3H,t,J 7.3, CHs).

O-(5-Methyl-1-phenylhex-1-yn-3-yl)hydroxylamine 87

83 87
The phthalimide 83 (2.90 g, 8.69 mmol) was deprotected under the conditions described
in General Method C to yield the hydroxylamine 87 (1.57 g, 89%) as a yellow oil (the title
compound had been reported in the literature®® but with no analysis), showing: & 7.46 (2H, dd,
J6.7, 3.0, 2 x ArH), 7.33-7.29 (3H, m, 3 x ArH), 5.51 (2H, br s, NH,), 4.52 (1H, t, J 7.2, CH),
1.98-1.83 (1H, m, CH), 1.74 (1H, dt, J 14.4, 7.2, CH,), 1.63 (1H, dt, J 13.6, 7.2, CHy), 0.98 (3H,
d, J 6.6, CH3), 0.96 (3H, d, J 6.6, CH3).
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(3RS,5RS) and (3RS,5SR) O-(5,9-Dimethyl-1-phenyldec-8-en-1-yn-3-yl)hydroxylamine 88
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The phthalimide 84 (1.02 g, 2.55 mmol) was deprotected under the conditions described
in General Method C to yield the hydroxylamine 88 (0.62 g, 90%) as a yellow oil, showing:
84 7.45 (2H, dd, J 6.7, 3.0, 2 x ArH), 7.33-7.28 (3H, m, 3 x ArH), 5.51 (2H, br s, NH,),
5.13-5.08 (1H, m, C=CH), 4.63-4.51 (1H, m, CH), 2.08-1.95 (2H, m, CH,), 1.93-1.83 (1H, m,
CH), 1.82-1.72 (2H, m, CHy), 1.67 (3H, s, CH3), 1.60 (3H, s, CHg3), 1.46-1.34 (1H, m, CH,),
1.28-1.19 (1H, m, CHy), 0.97 (3H, d, J 6.5, CH3).

3-Butyl-5-phenylisoxazole 90

~NH,
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The hydroxylamine 85 (0.20 g, 0.98 mmol) was treated with 10% w/w silver nitrate on
silica gel (6.69 g, 3.94 mmol) as described in General Method D to yield the title compound as
64% of the crude product (0.19 g, 96%), the rest of which was the corresponding isoxazoline by
'H NMR analysis. The crude product was chromatographed (5% diethyl ether/hexane) to give a
sample of the isoxazole 90 as a viscous yellow oil. All data obtained were in accordance with
those reported in the literature®® and showed: vma/cm™ [thin film] 3065, 2958, 2201, 1576,
1451, 765; 6y 7.78-7.73 (2H, m, 2 x ArH), 7.48-7.40 (3H, m, 3 x ArH), 6.37 (1H, s, 4-H), 2.63
(2H, t, J 7.6, CH,), 1.70 (2H, dt, J 15.3, 7.4, CH,), 1.42 (2H, dq, J 14.7, 7.4, CH,), 0.88 (3H, t,
J 7.4, CH3); 8¢ 169.7 (ArC), 164.9 (ArC), 130.1 (ArCH), 129.1 (2 x ArCH), 127.9 (ArC), 125.7
(2 x ArCH), 99.3 (ArCH), 30.7 (CHy), 26.0 (CH,), 22.5 (CH,), 14.0 (CH3); HRMS m/z [APCI]
C13H1sNO + H* requires 202.1232, found 202.1231.
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3,5-Diphenylisoxazole 44
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The hydroxylamine 63 (0.18 g, 0.80 mmol) was treated with 10% wi/w silver nitrate on
silica gel (1.90 g, 1.12 mmol) as described in General Method D to yield the title compound as
74% of the crude product (0.17 g, 96%), the rest of which was the corresponding isoxazoline by
'H NMR analysis. The crude product was chromatographed (5% diethyl ether/hexane) to give a
sample of the isoxazole 44 as a pale yellow solid. All data obtained were in accordance with
those reported in the literature™® and showed: mp 136-139 °C [Lit.*? 139-140 °C]; vmadcm™
[film] 3583, 3114, 3049, 2358, 1463, 1451, 763; 6y 7.90-7.82 (4H, m, 4 x ArH), 7.52-7.44 (6H,
m, 6 x ArH), 6.84 (1H, s, 4-H); 8¢ 170.2 (ArC), 162.8 (ArC), 130.0 (ArCH), 129.8 (ArCH),
129.0 (ArC), 128.8 (4 x ArCH), 127.3 (ArC), 126.6 (2 x ArCH), 125.7 (2 x ArCH), 97.3
(ArCH); HRMS m/z [APCI] C15H11NO + H” requires 222.0919, found 222.0919.

3-Butyl-5-isobutylisoxazole 91
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The hydroxylamine 86 (0.90 g, 0.49 mmol) was treated with 10% w/w silver nitrate on

silica gel (3.34 g, 1.96 mmol) as described in General Method D to yield the title compound as
74% of the crude product (0.88 g, 99%), the rest of which was the corresponding isoxazoline by
'H NMR analysis. The crude product was chromatographed (5% diethyl ether/hexane) to give a
sample of the isoxazole 91 as a yellow oil, showing: vma/cm™ [thin film] 2959, 2360, 1602,
1467, 797; 84 5.81 (1H, s, 4-H), 2.65-2.55 (4H, m, CH,), 2.06 (1H, m, CH), 1.62 (2H, m, CH,),
1.38 (2H, dq, J 14.6, 7.3, CHy), 0.97-0.91 (9H, m, 3 x CHj3); 3¢ 172.0 (ArC), 163.7 (ArC), 100.8
(ArCH), 35.5 (CH,), 30.2 (CHy), 29.4 (CHy), 27.4 (CH), 25.5 (CH,), 22.1 (2 x CH3), 13.5 (CH3);
HRMS m/z [APCI] C1;H19NO + H” requires 182.1545, found 182.1554.
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5-Butyl-3-phenylisoxazole 69
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The hydroxylamine 68 (0.17 g, 0.82 mmol) was treated with 10% wi/w silver nitrate on
silica gel (3.48 g, 2.05 mmol) as described in General Method D to yield the title compound as
89% of the crude product (0.14g, 85%), the rest of which was the corresponding isoxazoline by
'H NMR analysis. The crude product was chromatographed (5-15% diethyl ether/hexane) to give
a sample of the isoxazole 69 as a colourless oil. All data obtained were in accordance with those
reported in the literature®> and showed: vmad/cm™ [thin film] 3434, 2958, 2086, 1642, 1408, 767;
Oy 7.81-7.77 (2H, m, 2 x ArH), 7.47-7.41 (3H, m, 3 x ArH), 6.29 (1H, s, 4-H), 2.80 (2H, t, J 7.6,
CH,), 1.73 (2H, m, CH,), 1.43 (2H, tq, J 14.7, 7.4, CH,), 0.99-0.93 (3H, t, J 7.4, CH3); 8¢ 174.1
(ArC), 162.1 (ArC), 129.6 (ArCH), 129.28 (ArC), 128.6 (2 x ArCH), 126.6 (2 x ArC), 98.6
(ArCH), 29.4 (CH,), 26.3 (CHy), 22.0 (CH), 13.5 (CH3); HRMS m/z [EI] C13H15sNO requires
201.1154, found 201.1154.

5-1sobutyl-3-phenylisoxazole 92
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The hydroxylamine 87 (0.54 g, 2.66 mmol) was treated with 10% w/w silver nitrate on
silica gel (13.69 g, 8.06 mmol) as described in General Method D to yield the title compound as
90% of the crude product (0.50 g, 94%), the rest of which was the corresponding isoxazoline by
'H NMR analysis. The crude product was chromatographed (10% diethyl ether/hexane) to give a
sample of the isoxazole 92 as a yellow oil. All data obtained were in accordance with those
reported in the literature®> and showed: vmad/cm™ [thin film] 3127, 2960, 1602, 1470, 1408, 768:
814 7.82-7.77 (2H, m, 2 x ArH), 7.48-7.41 (3H, m, 3 x ArH), 6.29 (1H, s, 4-H), 2.68 (2H, d, J 7.1,
CHy), 2.15-2.04 (1H, m, CH), 1.00 (6H, d, J 6.7, 2 x CHj3); 8¢ 173.5 (ArC), 162.5 (ArC), 130.0
(ArCH), 129.7 (ArC), 129.1 (2 x ArCH), 127.0 (2 x ArCH), 99.8 (ArCH), 36.0 (CH,), 28.0
(CH), 22.6 (2 x CH3); HRMS m/z [EI] C13H17NO requires 201.1154, found 201.1158.
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5-(2,6-Dimethylhept-5-enyl)-3-phenylisoxazole 93
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The hydroxylamine 88 (0.25 g, 0.91 mmol) was treated with 10% wi/w silver nitrate on
silica gel (3.85 g, 2.27 mmol) as described in General Method D to yield the title compound as
83% of the crude product (0.23 g, 94%), the rest of which was the corresponding isoxazoline by
'H NMR analysis. The crude product was chromatographed (5% diethyl ether/hexane) to give a
sample of the isoxazole 93 as a colourless oil, showing: vma/cm™ [thin film] 3126, 2925, 1601,
1471, 1408, 768; &4 7.80 (2H, d, J 7.0, 2 x ArH), 7.49-7.39 (3H, m, 3 x ArH), 6.29 (1H, s, 4-H),
5.10 (1H, t, J 6.5, C=CH), 2.80 (1H, dd, J 14.8, 5.6, CH,), 2.63 (1H, dd, J 14.8, 7.9, CHy),
2.04-1.90 (3H, m, CH + CHy), 1.69 (3H, s, CH3), 1.61 (3H, s, CH3), 1.48-1.38 (1H, m, CHy),
1.31-1.21 (1H, m, CHy'), 0.97 (3H, d, J 6.4, CH3); 8¢ 173.5 (ArC), 162.5 (ArC), 131.9 (C), 130.0
(ArCH), 129.7 (ArC), 129.1 (2 x ArCH), 127.0 (2 x ArCH), 124.4 (CH), 99.9 (ArCH), 36.8
(CH,), 34.3 (CHy), 32.2 (CH), 25.9 (CHg3), 25.7 (CH,), 19.7 (CH3), 17.9 (CH3); HRMS m/z
[APCI] C1gH23NO + H' requires 270.1858, found 270.1867.

5.14 Chapter 3 compounds

tert-Butyl (E)-pent-3-en-2-yl carbonate 128
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The alcohol 297 (1.00 g, 1.19 ml, 11.61 mmol) was treated with BOC-anhydride (2.66 g,
12.19 mmol) under the conditions described in General Method F to give the carbonate 128
(1.86 g, 86%) as a yellow oil, which was used without further purification. All data obtained
were in accordance with those reported in the literature*: vya/cm™ [thin film] 2981, 2935,
1739; 84 5.78-5.69 (1H, m, C=CH), 5.48 (1H, dd, J 15.3, 7.1, HC=C), 5.11-5.04 (1H, m, CH),
1.68 (3H, d, J 6.5, CH3), 1.47 (9H, s, 'Bu), 1.31 (3H, d, J 6.5, CHs); 8¢ 152.9 (CO), 130.6 (CH),
128.5 (CH), 81.6 (C), 74.2 (CH), 27.6 (‘Bu), 20.37 (CHs), 17.60 (CHa).
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(E)-1-Phenylbut-2-en-1-ol 122
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Crotonaldehyde 121 (0.90 ml, 11.00 mmol) was diluted in dry tetrahydrofuran (6.00 ml)
and phenyl magnesium bromide 120 (1.00 molar solution in tetrahydrofuran, 15.00 ml,
15.00 mmol) was added slowly at 0 °C. The resulting solution was allowed to warm to room
temperature over 4 hours, then quenched by the addition of saturated aqueous ammonium
chloride (20.00 ml) and extracted with diethyl ether (3 x 10.00 ml). The combined organic
extracts were dried over magnesium sulphate, filtered and evaporated to give the alcohol 122
(1.47 g, 90%) as a colourless oil, which was used without further purification. All data obtained
were in accordance with those reported in the literature®: vya/cm™ [thin film] 3360, 3029,
2916, 2855, 1675, 699; &y 7.27-7.22 (4H, m, 4 x ArH), 7.19-7.14 (1H, m, ArH), 5.69-5.53 (2H,
m, 2 x C=CH), 5.02 (1H, d, J 6.4, CH), 2.25 (1H, br s, OH), 1.62 (3H, d, J 5.7, CHz); 6c 143.5
(ArC), 133.7 (ArCH), 128.5 (2 x ArCH), 127.5 (CH), 127.3 (CH), 126.2 (2 x ArCH), 75.2 (CH),
17.7 (CHy).

tert-Butyl (E)-1-phenylbut-2-enyl carbonate 129

The alcohol 122 (0.50 g, 3.38 mmol) was treated with BOC-ON (0.83 g, 3.38 mmol)
under the conditions described in General Method E, and the crude product was purified by
trituration in cold petroleum ether to give the carbonate 129 (0.70 g, 83%) as a pale yellow oil,
showing: vma/cm™ [thin film] 2935, 1739, 1678, 754; &y 7.40-7.37 (2H, m, 2 x ArH), 7.35-7.28
(3H, m, 3 x ArH), 6.62 (1H, d, J 7.0, CH), 6.20 (1H, dd, J 16.0, 7.0, HC=C), 5.32 (1H, m,
C=CH), 1.49 (9H, s, 'Bu), 1.45 (3H, d, J 6.5, CHa3); 8¢ 152.9 (CO), 136.4 (ArC), 131.8 (CH),
128.6 (2 x ArCH), 127.9 (CH), 126.6 (2 x ArCH), 126.5 (CH), 82.0 (C), 74.11 (CH), 27.9 (‘Bu),
20.6 (CHs).
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tert-Butyl (E)-1,3-diphenylallyl carbonate 130
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Alcohol 298 (2.00 g, 9.51 ml, 11.61 mmol) was treated with BOC-anhydride (2.18 g,
9.99 mmol) under the conditions described in General Method F to give the carbonate 130
(12.47 g, 84%) as a white crystalline solid, which was used without further purification. All data
obtained were in accordance with those reported in the literature®®®: mp 98-99 °C [Lit.%
94-94.5 °C]; vmadem™ [thin film] 3030, 1740, 791, 742, 695; &y 7.50-7.44 (2H, m, 2 x ArH),

7.43-7.38 (4H, m, 4 x ArH), 7.37-7.30 (3H, m, 3 x ArH), 7.29-7.25 (1H, m, ArH), 6.70 (1H, d,
J15.8, C=CH), 6.41 (1H, dd, J 15.8, 7.0, HC=C), 6.24 (1H, d, J 7.0, CH), 1.52 (9H, s, ‘Bu).

(E)-4-Phenyl-3-buten-2-ol 124
Q P . OH
)J\/\© —
123 124
4-Phenyl-3-butene-2-one 123 (2.04 g, 14.00 mmol) was dissolved in methanol
(20.00 ml), and sodium borohydride (0.56 g, 14.00 mmol) was added in one portion at 0 °C. The
reaction was stirred at this temperature for 4 hours, before being neutralised with 2 M aqueous
hydrochloric acid and extracted with ethyl acetate (3 x 20.00 ml). The combined organic extracts
were dried, filtered and evaporated to give the alcohol 124 (2.00 g, 96%) as a white solid, which
was used without further purification. All data obtained were in accordance with those reported
in the literature®’: mp 44-46 °C [Lit."*" 40-43 °C]: vmad/cm™ [thin film] 3399, 3027, 2927, 1657,
749; 8y 7.42-7.38 (2H, m, 2 x ArH), 7.37-2.32 (2H, m, 2 x ArH), 7.30-7.25 (1H, m, ArH), 6.58
(1H, d, J 15.9, C=CH), 6.29 (1H, dd, J 15.9, 6.4, HC=C), 4.50 (1H, dp, J 6.4, 1.1, CH), 2.41 (1H,
br s, OH), 1.40 (3H, d, J 6.4, CH3); dc 136.7 (ArC), 133.6 (CH), 129.4 (ArCH), 128.6
(2 x ArCH), 127.7 (CH), 126.5 (2 x ArCH), 69.0 (CH), 23.4 (CHs); HRMS m/z [EI] CyoH1,0
requires 148.0888, found 148.0887.
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tert-Butyl (E)-4-phenylbut-3-en-2-yl carbonate 131

The alcohol 124 (0.10 g, 0.68 mmol) was treated with BOC-anhydride (0.15 g,
0.68 mmol) under the conditions described in General Method F, and the crude product was
chromatographed (35% diethyl ether in hexane) to give the carbonate 131 (0.09 g, 53%) as a
yellow oil, showing: vmad/cm™ [thin film] 2932, 1739, 1277, 851, 793, 757; &y 7.32-7.29 (2H, m,
2 x ArCH), 7.26-7.21 (2H, m, 2 x ArH), 7.19-7.14 (1H, m, ArH), 6.55 (1H, d, J 16.0, C=CH),
6.13 (1H, dd, J 16.0, 7.0, HC=C), 5.27 (1H, dqg, J 7.0, 6.5, CH), 1.42 (9H, s, 'Bu), 1.37 (3H, d,
J 6.5, CHg); 8¢ 152.9 (CO), 136.4 (ArC), 131.8 (CH), 128.5 (2 x ArCH), 128.6 (ArCH), 127.9
(CH), 126.6 (2 x ArCH), 82.0 (C), 74.1 (CH), 27.9 ('‘Bu), 20.6 (CHs); HRMS m/z [El] C15H20
requires 248.1412, found 248.1414.

(E)-2,2-Dimethylhex-4-en-ol 127
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To anhydrous diethyl ether (10.00 ml) was added crotonaldehyde 126 (14.27 mmol,
1.00 g, 1.18 ml) and the solution was cooled to -30 °C, before the dropwise addition of tert-butyl
lithium 125 (1.70 molar solution in pentane, 7.81 ml, 13.27 mmol). The reaction mixture was
allowed to stir and warm to room temperature overnight before being cooled in an ice bath, then
guenched by the dropwise addition of water (0.50 ml) followed by 2 M aqueous sulphuric acid
(10.00 ml). The layers were separated and the organic portion was washed with saturated
aqueous sodium bicarbonate (15.00 ml), and brine (15.00 ml). The organic extracts were dried,
filtered and evaporated to give the alcohol 127 (1.45 g, 79%) as a yellow oil, which was used
without further purification. All data obtained were in accordance with those reported in the
literature™®: vina/cm™ [thin film] 3419, 2961, 2870; &4 5.67-5.58 (1H, m, C=CH), 5.55-5.47 (1H,
m, HC=C), 3.63 (1H, d, J 7.5, CH), 1.94 (1H, br s, OH), 1.69 (3H, dd, J 6.3, 0.8, CH3), 0.87 (9H,
s, 'Bu); 8¢ 131.1 (CH), 128.1 (CH), 81.0 (CH), 34.7 (C), 29.5 (CH3), 25.7 (‘Bu).
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tert-Butyl (E)-2,2-dimethylhex-4-en-3-yl carbonate 132

The alcohol 127 (1.39 g, 10.84 mmol) was treated with BOC-anhydride (2.48 g,
11.38 mmol) under the conditions described in General Method F to give the carbonate 132
(2.36 g, 95%) as a colourless oil, which was used without further purification and which showed:
vmadcm™ [thin film] 2964, 2871, 1739, 1279, 1254, 969; &y 5.74-5.65 (1H, m, C=CH), 5.44 (1H,
ddg, J 15.3, 8.1, 1.5, HC=C), 4.69 (1H, d, J 8.1, CH), 1.69 (3H, dd, J 6.5, 1.5, CH3), 1.46 (9H, s,
'Bu), 0.89 (9H, s, 'Bu); 8¢ 153.5 (C), 130.5 (CH), 126.6 (CH), 81.3 (C), 74.6 (CH), 34.4 (C), 27.9
(3 x CH3), 25.8 (3 x CH3), 20.5 (CHg).

(4SR,6RS)-4,6-Dimethyl-5-iodo-1,3-dioxan-2-one 133

0 .
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)\/\ H oo CHs

128 133

The carbonate 128 (0.50 g, 2.68 mmol) was treated with potassium carbonate (1.11 g,
8.05 mmol) and iodine monobromide solution (8.06 ml, 4.03 mmol) under the conditions
described in General Method G to yield the title compound as 85% of the crude product
(0.683 g, 99%), the rest of which was the corresponding 5-membered isomer by ‘H NMR
analysis. The crude product was recrystallised from warm hexane to give a sample of the cyclic
carbonate 133 as a pale grey crystals, showing: mp 114-116 °C; vmad/cm™ [thin film] 2979,
1740, 1273; 84 4.65 (2H, dqg, J 10.8, 6.2, 2 x CHMe), 3.73 (1H, t, J 10.8, CHI), 1.65 (6H, d,
J 6.2, 2 x CH3); d¢c 148.1 (CO), 80.5 (2 x CH), 27.1 (CHI), 20.8 (2 x CH3); HRMS m/z [APCI]
CeHoOsl + H requires 256.9675, found 256.9663.
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(4SR,6RS)-4-Methyl-6-phenyl-5-iodo-1,3-dioxan-2-one 138

O/ji\CY/Li: o’ji\o

The carbonate 131 (1.37 g, 5.52 mmol) was treated with potassium carbonate (2.29 g,
16.55 mmol) and 1M iodine monobromide solution (16.6 ml, 16.6 mmol) under the conditions
described in General Method G (except with 3 equivalents of iodine monobromide) to yield the
title compound as 85% of the crude product (1.84, 94%), the rest of which was the corresponding
5-membered isomer by *H NMR analysis. The crude product was recrystallised from warm
hexane to give a sample of the cyclic carbonate 138 as a brown solid, showing; mp 120-122 °C,;
vmadem™ [film] 1755, 1614, 1460, 1389, 1203, 757; &y 7.44-7.41 (3H, m, 3 x ArCH), 7.39-7.36
(2H, m, 2 x ArCH), 5.46 (1H, d, J 10.8, CHPh), 4.82 (1H, dq, J 10.8, 6.2, CHMe), 4.06 (1H, t,
J10.8, CHI), 1.74 (3H, d, J 6.2, CHs); 8¢ 148.0 (CO), 135.5 (ArC), 130.1 (ArCH), 128.8
(2 x ArCH), 127.6 (2 x ArCH), 85.7 (CH), 80.5 (CH), 27.3 (CHI), 21.0 (CH3); HRMS m/z [EI]
C11H11103 requires 317.9753, found 317.9747.

(4SR,6RS)-4,6-Diphenyl-5-iodo-1,3-dioxan-2-one 140
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The carbonate 130 (143 mg, 0.46 mmol) was treated with potassium carbonate (0.19 g,
1.38 mmol) and iodine monobromide solution (2.76 ml, 0.69 mmol) under the conditions
described in General Method G to yield the title compound as 78% of the crude product
(0.173 g, 99%), the rest of which was the corresponding 5-membered isomer by ‘H NMR
analysis. The crude product was recrystallised from warm hexane to give a sample of the cyclic
carbonate 140 as a white solid, showing: mp 170-173 °C; vmad/cm™ [thin film] 3434, 2101, 1738,
1641, 1087; 6y 7.50-7.40 (10H, m, 10 x ArCH), 5.64 (2H, d, J 10.9, 2 x CH), 4.38 (1H, t, J 10.9,
CHI); 8¢ 148.1 (CO), 135.4 (2 x ArC), 130.1 (2 x ArCH), 128.7 (4 x ArCH), 127.6 (4 x ArCH),
85.9 (2 x CH), 27.8 (CHI); HRMS m/z [APCI] CyH13031 +H requires 380.9988, found
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380.9977.

(4SR,6RS)-5-Bromo-4,6-diphenyl-1,3-dioxan-2-one 142
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The carbonate 130 (200 mg, 0.64 mmol) in anhydrous dichloromethane (20.00 ml)
at -78 °C, was treated with potassium carbonate (0.27 g, 1.92 mmol) and bromine (0.05 mi,
1.92 mmol) and the reaction mixture was allowed to stir at this temperature for one hour. The
work-up was carried out as described in General Method G to yield the title compound as ~50%
of the crude product (0.211 g, 99%), the rest of which was thought to be the corresponding
5-membered isomer by *H NMR analysis. The crude product was recrystallised from warm
hexane to give a sample of the cyclic carbonate 142 as a white solid, showing: mp 182-185 °C;
Vmadem™ [film] 1745, 1611, 1461, 1242, 751; &y 7.51-7.38 (10H, m, 10 x ArCH), 5.55 (2H, d,
J10.4, 2 x CH), 4.23 (1H, t, J 10.4, CHBr); 8¢ 142.1 (CO), 134.6 (2 x ArC), 130.0 (2 x ArCH),
128.7 (4 x ArCH), 127.4 (4 x ArCH), 84.2 (2 x CH), 47.8 (CHBr); HRMS m/z [APCI]
C16H1303Br +H requires 333.0126, found 333.0136.

(4SR,6RS)-4-tert-Butyl-5-iodo-6-methyl-1,3-dioxan-2-one 143
(@] )< O
A AN
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The carbonate 132 ( 0.67 g, 2.94 mmol) was treated with potassium carbonate (1.22 g,
8.82 mmol) and iodine monobromide solution (8.82 ml, 4.41 mmol) under the conditions
described in General Method G to yield the title compound as 56% of the crude product (0.73 g,
88%), the rest of which was the corresponding 5-membered isomer by *H NMR analysis. The
crude product was chromatographed (20% ethyl acetate in hexane) to give the cyclic carbonate
143 as a brown oil, showing: vma/cm™ [thin film] 2871, 1800, 1364, 1158, 735; & 4.73 (1H, d,
J 7.4, CH), 452 (1H, dq, J 10.6, 6.2, CH), 3.88 (1H, dd, J 10.6, 7.4, CHI), 1.63 (3H, d, J 6.2,
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CHs), 1.10 (9H, s, 'Bu); 8¢ 153.9 (CO), 87.8 (CH), 80.4 (CH), 34.3 (C), 24.6 (3 x CHa), 23.0
(CHI), 21.6 (CH3); HRMS m/z [EI] CgH1503l requires 298.0066, found 298.0058.

5.15 Chapter 4 compounds

2-(2-1odobenzyloxy)isoindoline-1,3-dione 194
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The benzyl alcohol 193 (5.00 g, 21.36 mmol) was reacted with N-hydroxyphthalimide
(6.79 g, 42.73 mmol) under the conditions described in General Method B, and the crude product
was purified by elution through a silica plug with copious amounts of dichloromethane to give
the phthalimide 194 (5.72 g, 71%) as a yellow oil, showing: vma/cm™ [film] 1730, 1466, 1387,
1186, 752, 518; &4 7.86 (1H, dd, J 7.9, 1.1, ArH), 7.81 (2H, dd, J 5.2, 2.0, 2 x ArH), 7.75 (2H,
dd, J 5.2, 2.0, 2 x ArH), 7.62 (1H, dd, J 7.7, 1.6, ArH), 7.38 (1H, dt, J 7.5, 1.1, ArH), 7.06 (1H,
dt, J 7.7, 1.6, ArH), 5.31 (2H, s, CHy); 8¢ 163.3 (2 x C), 143.5 (C), 139.6 (CH), 134.5 (2 x CH),
131.1 (CH), 130.7 (CH), 128.9 (2 x C), 128.5 (CH), 123.5 (2 x CH), 86.0 (C), 82.9 (CHy,);
HRMS m/z [APCI] C15H1oNOgsl +H requires 379.9784, found 379.9766.

2-lodobenzyloxy-4-toluenesulfonamide 196

The phthallmlde 194 (3.47 g, 9.15 mmol) was taken up in ethanol (120.00 ml) and
hydrazine hydrate (0.92 g, 0.89 ml, 18.30 mmol) was added and the reaction was heated to reflux
for 3 hours. The reaction mixture was allowed to cool to room temperature and then cooled in
ice, before the solid was filtered off and the filtrate was evaporated to yield the hydroxylamine
195 (2.21 g, 97%) which was immediately taken on to the tosylation step. The crude free
hydroxylamine 195 (2.21 g, 8.88 mmol) was taken up in anhydrous dichloromethane (180.00 ml)
and the resulting solution was stirred at -78 °C. Pyridine (0.71 g, 0.73 ml, 8.97 mmol) was added

and the reaction mixture was stirred for 5 minutes at this temperature before p-tosyl chloride
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(1.69 g, 8.88 mmol) was added in one portion. The resulting reaction mixture was allowed to
warm to room temperature and stir overnight. The reaction was quenched by the addition of
water (100.00 ml), and the aqueous layer was extracted with dichloromethane (3 x 50.00 ml).
The combined organic extracts were washed with saturated aqueous copper sulphate (150.00 ml)
and water (3 x 50 ml), before being dried, filtered and evaporated to yield the crude product
which was purified by column chromatography (50% diethyl ether in hexane) to give the tosyl
protected hydroxylamine 196 (2.38 g, 67%) as a yellow oil, showing: vmad/cm™ [film] 1641,
1620, 1475, 1467, 1381, 1016, 735; oy 7.85-7.84 (2H, m, 2 x ArH), 7.83 (2H, dd, J 3.1, 1.3,
2 x ArH), 7.38 (1H, dd, J 7.6, 1.9, ArH), 7.36-7.31 (2H, m, 2 x ArH), 7.02 (1H, dt, J 7.7, 1.9,
ArH), 6.95 (1H, s, NH), 5.06 (2H, s, CHy), 2.44 (3H, s, CH3); HRMS m/z [EI] C14H14NO3SI -H
requires 401.9661, found 401.9656.

(E)-N-[(2-Pent-1-en-1-yl)benzyloxy]4-toluenesulfonamide 197
H
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The tosyl protected hydroxylamine 196 (73 mg, 0.18 mmol), Premix™ (400 mg,
corresponds to: Pd(OAc), 4.44 mg, 1,1’-bis(di-tert-butyl phosphino)ferrocine 5.56 mg and
K,CO3 390 mg) and 1-penten-1-yl boronic acid (20 mg, 0.18 mmol) were taken up in ethanol
and water 1:1 (1.00 ml of each) and heated with 100 W power to 100 °C in the microwave for
0.5 hours. The reaction mixture was partitioned between diethyl ether (10.00 ml) and water
(10.00 ml). The organic layer was washed with water (10.00 ml), and then saturated aqueous
sodium chloride (10.00 ml), then again with water (10.00 ml). The combined aqueous washings
were extracted with diethyl ether (3 x 10.00 ml), and the combined organic extracts were dried,
filtered and evaporated to yield the crude product which was purified by column chromatography
(40% diethyl ether in hexane) to give the title compound 197 (35 mg, 56%) as a pale yellow
viscous oil, showing: vmad/cm™ [film] 1691, 1641, 1620, 1475, 1467, 1431, 1381, 1016, 735; &4
7.74 (2H, d, J 8.4, 2 x ArH), 7.34 (1H, d, J 7.6, ArH), 7.23 (2H, d, J 8.4, 2 x ArH), 7.21 (2H, dd,
J4.0,2.4,2 x ArH), 7.12 (1H, dt, J 7.6, 1.2, ArH), 6.86 (1H, s, NH), 6.68 (1H, d, J 15.6, HC=C),
6.09 (1H, dt, J 15.6, 7.2, C=CH), 5.00 (2H, s, CHy), 2.35 (3H, s, tosyl CH3), 2.17 (2H, dq, J 7.2,
1.2, CH,), 1.44 (2H, q, J 7.2, CHy), 0.88 (3H, t, J 7.2, CH3); dc 146.5 (ArC), 144.9 (ArC), 138.4
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(ArC), 138.3 (ArC), 133.7 (ArCH), 131.2 (ArCH), 129.8 (2 x ArCH), 129.1 (CH), 128.3
(2 x ArCH), 126.8 (ArCH), 126.7 (ArCH), 126.0 (CH), 77.2 (CH), 35.4 (CHy), 22.6 (CH,), 21.8
(CHs), 13.7 (CHs).

4-Butyl-3-tosyl-3,4-dihydro-1H-benzo[1,2]oxazine 198
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(E)-4-Methyl-N-(2-(pent-1-enyl)benzyloxy)benzenesulfonamide 197 (0.087 mmol,
30 mg) was taken up in anhydrous dichloromethane (10.00 ml) and the solution was cooled to
0 °C in an ice bath. Concentrated sulphuric acid (5 drops) was added and the reaction mixture
was left to stir for 2 hours with no further addition of coolant. The reaction was then quenched
with saturated agqueous potassium carbonate (10.00 ml) and a small amount of solid potassium
carbonate was also added. The aqueous layer was extracted with dichloromethane (3 x 5.00 ml)
and the combined organic extracts were dried, filtered and evaporated to yield the crude product
which was purified by column chromatography (60% diethyl ether in hexane) to give the
cyclised product 198 (10 mg, 33%) an orange viscous oil, showing: vmad/cm™ [film] 2956, 2928,
2871, 1166, 814, 744; 6y 7.76 (2H, d, J 8.0, 2 x ArH), 7.22 (2H, d, J 8.0, 2 x ArH), 7.18-7.11
(2H, m, 2 x ArH), 7.07 (1H, d, J 7.0, ArH), 6.85 (1H, d, J 7.0, ArH), 5.11 (1H, d, J 14.5, CH,),
4.93 (1H, dd, J 8.0, 5.5, CH), 4.70 (1H, d, J 14.5, CHy), 2.35 (3H, s, tosyl CH3), 1.96-1.90 (1H,
m, CH,:), 1.80-1.74 (1H, m, CHy), 1.39-1.34 (2H, m, CHy), 1.27-1.22 (2H, m, CH,), 0.81 (3H, t,
J 7.3, CHs); 8¢ 141.2 (ArC), 141.1 (ArC), 136.3 (ArC), 136.2 (ArC), 129.5 (2 x ArCH), 128.5
(2 x ArCH), 126.8 (ArCH), 126.7 (ArCH), 124.1 (ArCH), 124.0 (ArCH), 70.0 (CH,), 56.7 (CH),
35.4 (CH,), 28.4 (CH,), 22.5 (CHy), 21.5 (CH3), 13.9 (CH3); HRMS m/z [ES] C19H23NO3S +H
requires 346.148, found 346.146.

(2SR, 3SR)- and (2RS, 3SR)-Methyl 3-hydroxy-2-(prop-1-en-2-yl)hept-6-enoate 207 and 214
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To a solution of diisopropylamine (2.49 g, 3.45 ml, 24.60 mmol) in anhydrous
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tetrahydrofuran (15.00 ml) at 0 °C was added n-butyl lithium (2.50 molar in hexane, 8.68 ml,
21.71 mmol). The solution was stirred at this temperature for 15 minutes. The reaction mixture
was then cooled to -78 °C and 1,3-dimethyl-3,4,5,6-tetranhydro-2(1H)-pyrimidinone (2.78 g,
2.62 ml, 21.71 mmol) was added, before stirring for another 0.5 hours at -78 °C. A solution of
methyl-3,3-dimethylacrylate 222 (1.65 g, 1.75 ml, 14.47 mmol) in anhydrous tetrahydrofuran
(5.00 ml) was then added to the reaction mixture, before stirring for a further 0.5 hours at -78 °C
to allow the dienolate to form. A solution of 4-pentenal 223 (1.70 g, 2.00 ml, 20.26 mmol) in
anhydrous tetrahydrofuran (5.00 ml) was then added to the solution, before stirring at -78 °C for
a final 1.5 hours. The reaction was quenched by the addition of saturated agueous ammonium
chloride solution (10.00 ml). The aqueous layer was extracted with diethylether (3 x 25.00 ml).
The combined organic extracts were washed with saturated aqueous sodium chloride (50.00 ml)
before being dried, filtered and evaporated to yield the crude products which were separated by
column chromatography (12% diethyl ether in hexane) to give:

i) the syn-hydroxyl ester 207 (0.355 g, 25% of the theoretical 50% yield) as a colourless
oil, showing: &4 5.82 (1H, ddt, J 17.0, 10.2, 6.7, HC=C), 5.04 (2H, m, H,C=C), 4.96 (2H, m,
C=CHy), 4.03 (1H, dt, J 7.1, 5.6, CH), 3.69 (3H, s, OCHg), 3.07 (1H, d, J 7.1, CH), 2.32-2.23
(1H, m, CH,), 2.20-2.10 (1H, m, CHy), 1.82 (3H, dd, J 1.4, 0.8, CH3), 1.56-1.50 (2H, m, CH,);
d¢c 173.0 (C=0), 140.1 (C), 138.2 (CH), 116.8 (CHy), 114.9 (CH,), 69.8 (CH), 58.9 (CH), 52.0
(CHs), 34.1 (CHy), 30.0 (CH,), 21.4 (CH3)

i) the anti-hydroxyl ester 214 (0.771 g, 54% of the theoretical 50% yield) as a colourless
oil, showing: vma/cm™ [film] 3455, 3079, 2977, 2950, 1736, 1642, 1196, 1165, 909; &
5.85-5.74 (1H, m, HC=C), 5.04 (1H, ddd, J 17.1, 3.5, 1.7, C=CH,), 4.98-4.90 (3H, m, C=CH, +
H,C=C), 4.00 (1H, dt, J 8.9, 2.8, CH), 3.71 (3H, s, OCHj3), 3.06 (1H, d, J 8.9, CH), 2.70 (1H, br
s, OH), 2.33-2.22 (1H, m, CH,’), 2.19-2.08 (1H, m, CHy), 1.72 (3H, dd, J 1.3, 0.9, CH3), 1.57
(1H, dddd, J 14.0, 9.5, 7.1, 2.8, CH,»), 1.47-1.36 (1H, m, CHy»); ¢ 173.9 (C=0), 140.0 (C),
138.2 (CH), 115.8 (CH,), 115.0 (CHy), 70.2 (CH), 59.7 (CH), 52.1 (CHg), 33.2 (CHy), 29.8
(CHy), 21.1 (CHj3); HRMS m/z [APCI] C11H1803 +H requires 199.1334, found 199.1325.
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(2SR, 3RS)-2-(Prop-1-en-2-yl)hept-6-ene-1,3-diol 208

OH OH

04:\? 207 Son 208
To a solution of the syn-hydroxyl ester 207 (226 mg, 1.14 mmol) in anhydrous

tetrahydrofuran (10.00 ml) was added lithium aluminium hydride powder (108 mg, 2.85 mmol)
at room temperature. The resulting solution was stirred at this temperature for 1.5 hours. The
reaction mixture was then cooled in an ice bath before being quenched by the addition of 2.00 M
aqueous sodium hydroxide (1.00 ml). Excess magnesium sulphate was added to remove the
water, and was then removed by filtration, washing with dichloromethane. The solvent was
evaporated to give the syn-diol 208 (190 mg, 98%) as a colourless oil (which was used without
further purification), showing: vmad/cm™ [film] 3359, 3076, 2920, 1642, 1027, 910; &4 5.88-5.76
(1H, m, HC=C), 5.10-4.75 (4H, m, 2 x C=CHy), 3.77 (1H, dd, J 10.9, 6.5, CH,), 3.75-3.70 (1H,
m, CH), 3.67 (1H, dd, J 10.9, 7.2, CHy), 2.48 (2H, br s, 2 x OH), 2.35 (1H, dd, 13.1, 6.6, CH),
2.31-2.19 (1H, m, CH,), 2.18-2.07 (1H, m, CHy"), 1.79 (3H, s, CH3), 1.66-1.41 (2H, m, CH,);
dc 148.4 (C), 138.3 (CH), 115.4 (2 xCHy), 70.4 (CH), 62.6 (CH,), 54.9 (CH), 34.0 (CH,), 30.2
(CHy), 21.4 (CHy).

(2SR, 3RS)-2-(tert-Butyldimethylsilyloxymethyl)-prop-1-en-2-yl-hept-6-ene-3-ol 224

To a solution of the syn-diol 208 (134 mg, 0.79 mmol) in anhydrous dichloromethane
(5.00ml) at 0 °C, were added triethylamine (0.09 g, 0.12 ml, 0.87 mmol), DMAP (10 mg,
0.08 mmol) and TBDMS chloride (125 mg, 0.83 mmol).The reaction mixture was allowed to
warm to room temperature and stir overnight. The reaction was quenched by the addition of
water (5.00 ml). The aqueous layer was extracted with dichloromethane (3 x 10.00 ml), and the
combined organic extracts were dried, filtered and evaporated to yield the crude product which
was purified by eluting through a plug of silica with dichloromethane to give the protected
syn-diol 224 (90 mg, 40%) as a colourless oil, showing: vma/cm™ [film] 3368, 2925, 2854, 1641,
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1034, 910; 64 5.90-5.76 (1H, m, HC=C), 5.08-4.71 (4H, m, 2 x C=CHy), 3.82 (1H, dd, J 9.9, 7.3,
CH,), 3.79-3.75 (1H, m, CH), 3.74 (1H, dd, J 9.9, 5.4, CHy), 2.36-2.23 (2H, m, CH,), 2.19-2.09
(1H, m, CH), 1.79 (3H, s, CHs), 1.65-1.54 (2H, m, CH,), 0.89 (9H, s, 'Bu), 0.06 (6H, s,
2 x CH3); 8¢ 143.5 (C), 138.4 (CH), 115.4 (2 x CH,), 70.5 (CH), 62.2 (CH,), 54.8 (CH), 33.8
(CHy), 29.7 (CHy), 25.8 (3 x CHj3), 21.9 (CHj3), 14.1 (C), -3.6 (2 x CH3); HRMS m/z [APCI]
C16H32,0,Si +H requires 285.2250, found 285.2245.

(1SR, 2RS)-2-(Hydroxymethyl)-3-methylcyclohex-3-en-1-ol 227
OH
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A solution of the syn-diol 208 (68 mg, 0.40 mmol) and Grubbs Il catalyst (10 mg,
0.012 mmol) in dry dichloromethane (10.00 ml) was stirred at room temperature overnight. The
solvent was evaporated to give the cyclic anti-diol 227 (57 mg, 100%) as a brown oil (which was
used without further purification), showing: vmad/cm™ [film] 3350, 2934, 1670, 1379, 1051; &y
5.42 (1H, t, J 3.5, C=CH), 4.13 (1H, dt, 9.3, 4.6, CH), 3.90-3.72 (2H, m, CH,), 3.55 (2H, br s,
2 x OH), 2.42 (1H, br app s, CH), 2.19-1.94 (2H, m, CHy), 1.80-1.71 (2H, m, CH,), 1.69 (3H, d,
J 1.8, CH3); ¢ 131.0 (C), 123.7 (CH), 71.4 (CH), 62.6 (CH,), 46.0 (CH), 27.2 (CH,), 23.4
(CHy), 21.9 (CHj3); HRMS m/z [EI] CgH140, -H,0 requires 124.0888, found 124.0885.

(1SR, 2RS)-2-(tert-Butyldimethylsilyloxymethyl)-3-methylcyclohex-3-enol 229
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To a solution of the cyclic anti-diol 227 (80 mg, 0.56 mmol) in anhydrous
dimethylformamide (5.00 ml) at 0 °C, were added triethylamine (62 mg, 0.09 ml, 0.62 mmol),
DMAP (8 mg, 0.062 mmol) and TBDMS chloride (89 mg, 0.59 mmol). The reaction mixture
was allowed to warm to room temperature and stir for 24 hours. The reaction was quenched by
the addition of water (5.00 ml), and the aqueous layer was extracted with ethyl acetate
(3 % 10.00 ml). The combined organic extracts were washed with water (2 x 10.00 ml), then

dried, filtered and evaporated to yield the crude product which was purified by column
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chromatography (10% ethyl acetate in hexane) to give the protected cyclic anti-diol 229 (57 mg,
40%) as a colourless oil, showing: vmad/cm™ [film] 3381, 2929, 1654, 1257, 1079, 839; & 5.43
(1H,t, J 3.4, C=CH), 4.08-3.96 (2H, m, CH + OH), 3.90 (1H, dd, J 10.4, 8.7, CH,), 3.85 (1H, dd,
J 10.4, 3.7, CHy), 2.47-2.40 (1H, m, CH), 2.18-2.08 (2H, m, CH), 1.80-1.72 (2H, m, CH), 1.69
(3H, d, J 1.5, CH3), 0.91 (9H, s, 'Bu), 0.10 (6H, s, 2 x CH3).

(2SR, 3SR)-2-(Prop-1-en-2-yl)hept-6-ene-1,3-diol 215
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To a solution of the anti-hydroxyl ester 214 (590 mg, 2.98 mmol) in anhydrous
tetrahydrofuran (20.00 ml) was added lithium aluminium hydride powder (283 mg, 7.45 mmol)
at room temperature. The resulting solution was stirred at this temperature for 1.5 hours. The
reaction mixture was then cooled in an ice bath before being quenched by the addition of 2.00 M
aqueous sodium hydroxide solution (1.00 ml). Excess magnesium sulphate was added to remove
the water, and was then removed by filtration, washing with dichloromethane. The solvent was
evaporated to give the anti-diol 215 (507 mg, 100%) as a colourless oil (which was used without
further purification), showing: vmadcm™ [film] 3359, 3076, 2974, 2919, 1642, 1376, 1043, 1000,
910; &y 5.87-5.76 (1H, m, HC=C), 5.04 (1H, dtd, J 17.2, 3.8, 1.6, C=CH,), 4.96 (1H, ddt, J 10.2,
3.0, 1.6, C=CHy), 4.90-4.85 (1H, m, H,.C=C), 4.80-4.74 (1H, m, Hy,C=C), 3.87-3.80 (1H, m,
CH), 3.75-3.70 (2H, m, CH,), 2.70 (2H, br s, 2 x OH), 2.29-2.20 (2H, m, CHy), 2.17-2.07 (1H,
m, CH), 1.68 (3H, dd, J 1.4, 0.9, CH3), 1.67-1.59 (1H, m, CH,-), 1.50-1.39 (1H, m, CHy-); 8¢
143.6 (C), 138.5 (CH), 115.0 (CH,), 113.5 (CH,), 73.7 (CH), 62.2 (CH,), 54.4 (CH), 34.7 (CH,),
29.8 (CH,), 21.7 (CH3).

(2SR, 3SR)-2-(tert-Butyldimethylsilyloxymethyl)-prop-1-en-2-yl-hept-6-ene-3-ol 225

OH OH

OH O.

si
215 205 / \’<

To a solution of the anti-diol 215 (134 mg, 0.79 mmol) in anhydrous dimethylformamide
(5.00 ml) at 0 °C, were added triethylamine (0.09 g, 0.12 ml, 0.87 mmol), DMAP (10 mg, 0.08
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mmol) and TBDMS chloride (125 mg, 0.83 mmol). The reaction mixture was allowed to warm
to room temperature and stir overnight. The reaction was quenched by the addition on water
(5.00 ml). The aqueous layer was extracted with dichloromethane (3 x 10.00 ml), and the
combined organic extracts were dried, filtered and evaporated to yield the crude product which
was purified by eluting through a plug of silica with dichloromethane to give the protected
anti-diol 225 (90 mg, 81%) as a colourless oil, showing: vmad/cm™ [film] 3497, 2929, 2857,
1642, 1472, 1256, 1103, 895; o4 5.83 (1H, ddt, J 17.0, 10.2, 6.7, HC=C), 5.03 (1H, ddd, J 17.1,
3.6, 1.6, C=CH,), 4.94 (1H, ddt, J 10.2, 2.2, 1.6, C=CHy), 4.86-4.81 (1H, m, C=CH,), 4.73 (1H,
d, J0.7, C=CHy), 4.03 (1H, br s, OH), 3.88-3.76 (3H, m, CH + CHy), 2.35-2.25 (1H, m, CH,-),
2.22 (1H, td, J 8.8, 4.3, CH), 2.18-2.08 (1H, m, CH,~), 1.68 (3H, dd, J 1.3, 0.9, CH3), 1.62-1.54
(1H, m, CH,~), 1.48-1.38 (1H, m, CHy~), 0.90 (9H, s, 'Bu), 0.09 (6H, s, 2 x CH3); 8¢ 143.9 (C),
139.9 (CH), 114.4 (CH,), 113.0 (CH,), 74.4 (CH), 67.1 (CH,), 54.1 (CH), 34.6 (CH,), 29.5
(CHy), 25.8 (3 x CHs), 22.07 (CHg), 18.2 (C), -55 (2 x CHs); HRMS m/z [APCI]
C16H3,0,Si + H" requires 285.2250, found 285.2237.

(1SR, 2SR)-2-(Hydroxymethyl)-3-methylcyclohex-3-enol 226

OH
)J\(\/\/ HO
HO

OH
215 226
A solution of the anti-diol 215 (430 mg, 2.53 mmol) and Grubbs 2" catalyst (68 mg,

0.08 mmol) in dry dichloromethane (25.00 ml) was stirred at room temperature for 5 days. The

solvent was evaporated to vyield the crude product which was purified by column
chromatography (40% ethyl acetate in hexane) to give the cyclic syn-diol 226 (176 mg, 50%) as
an off-white viscous oil, showing: vmad/cm™ [film] 3337, 2928, 1665, 1379, 1049, 809; &y 5.48
(1H, d, J 1.4, C=CH), 4.01 (1H, dd, J 10.6, 3.4, CH,), 3.92 (1H, ddd, J 10.1, 7.1, 3.3, CH), 3.58
(1H, dd, J 10.6, 8.3, CHy), 3.21 (2H, br s, 2 x OH), 2.19 (1H, app br s, CH), 2.11-1.99 (2H, m,
CH,), 1.85 (1H, ddd, J 12.9, 8.4, 4.9, CH,), 1.65 (3H, s, CH3), 1.62-1.52 (1H, m, CHy"); 8¢ 130.9
(C), 124.6 (CH), 71.4 (CH), 64.2 (CHy), 49.5 (CH), 29.5 (CH,), 23.2 (CH,), 21.3 (CH3); HRMS
m/z [El] CgH140,-H,0 requires 124.0888, found 124.0884.
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(1SR, 2SR)-2-(tert-Butyldimethylsilyloxymethyl)-3-methylcyclohex-3-enol 228

X0 — s
— Si
HO >( N Ho

226 228

A solution of the protected anti-diol 226 (248 mg, 0.87 mmol) and Grubbs Il catalyst
(22 mg, 0.026 mmol) in anhydrous dichloromethane (10.00 ml) was stirred at room temperature
for 3 days. The solvent was evaporated to give the cyclic protected syn-diol 228 (224 mg, 100%)
as a brown solid (which was used without further purification), showing: decomposes 110 °C;
vmadem™ [film] 3399, 2955, 2928, 2857, 1661, 1472, 1389, 1257, 1098, 836; &y 5.45-5.40 (1H,
m, C=CH), 4.03 (1H, dd, J 9.8, 4.2, CH,), 3.85 (1H, ddd, J 10.2, 6.8, 3.4, CH), 3.46 (1H, t, J 9.8,
CHyp), 2.25-2.17 (1H, m, CH), 2.06-1.96 (2H, m, CH,), 1.84 (1H, ddd, J 9.2, 8.5, 4.0, CH,-), 1.60
(3H, d, J 1.2, CH3), 1.56-1.47 (1H, m, CHy), 0.88 (9H, s, 'Bu), 0.07 (6H, s, 2 x CH3); 8¢ 130.9
(C), 124.2 (CH), 72.1 (CH), 66.3 (CH,), 49.3 (CH), 28.8 (CH>), 25.8 (3 x CH3), 23.3 (CHy), 21.3
(CHj3), 18.1 (C), -5.8 (2 x CH3); HRMS m/z [APCI] C14H280,Si +H requires 257.1937, found
257.1944.

(2SR,3RS)-2-((Prop-1-en-2-yl)hept-6-ene-1-tert-butyldimethylsilyloxy-3-yloxy)isoindoline-

1,3-dione 231 o)
_N
OH 0
O T AL
o./ o) =
Si I
/ —Si—
225 231

The protected anti-diol 225 (100 mg, 0.35 mmol), tributylphosphine (106 mg, 0.13 ml,
0.53 mmol) and N-hydroxyphthalimide (86 mg, 0.53 mmol) were successively dissolved in
anhydrous tetrahydrofuran (5.00 ml) with stirring at 0 °C, before diethyl azodicarboxylate
(92 mg, 0.08 ml, 0.53 mmol) was added to the solution. After 10 minutes, the reaction mixture
was allowed to warm to room temperature and stir for 24 hours. The solvent was removed under
reduced pressure to yield the crude product which was purified by column chromatography (5%
ethyl acetate in hexane) to give the syn protected hydroxlamine 231 (14 mg, 9%) as a colourless
oil, showing: vmax/cm™ [film] 2958, 2924, 2851, 1737, 1463, 1260, 1098; 3y 7.81 (2H, dd, J 5.5,
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3.1, 2 x ArH), 7.73 (2H, dd, 5.5, 3.1, 2 x ArH), 5.80 (1H, ddt, J 17.0, 10.2, 6.6, HC=C), 5.04
(1H, ddd, J 17.0, 3.3, 1.6, C=CH,), 4.97-4.89 (2H, m, C=CH, + C=CH,’), 4.90 (1H, d, J 0.7,
C=CHy), 4.53 (1H, dd, J 11.0, 6.0, CH), 4.01 (1H, dd, J 10.2, 5.8, CH,"), 3.86 (1H, dd, J 10.2,
6.9, CHy), 2.57 (1H, dd, J 11.0, 5.8, CH), 2.36-2.27 (1H, m, CH,~), 2.22-2.14 (1H, m, CHy~),
1.87 (3H, s, CH3), 1.85-1.80 (2H, m, CH,), 0.86 (9H, s, '‘Bu), 0.04 (6H, s, 2 x CH3); HRMS m/z
[APCI] C24H35sNO,Si +H requires 430.2412, found 430.2402.

(1SR,2RS)-2-(tert-Butyldimethylsilyloxymethyl)-3-methylcyclohexen-3-yloxy)isoindoline-
1,3-dione 232

o)
_N |
0 Si-0
o) . | y
?\
= N
o) (@] (0]

I.

/}\ 231 232

A solution of the syn protected hydroxylamine 231 (21 mg, 0.049 mmol) and Grubbs 11
catalyst (2 mg, 0.002 mmol) in anhydrous dichloromethane (5.00 ml) was stirred at room
temperature overnight. The solvent was evaporated to give the cyclised anti protected
hydroxylamine 232 (20 mg, 100%) as a brown oil (which was used without further purification
or sampling for analysis), showing: 6y 7.83 (2H, dd, J 5.5, 3.0, 2 x ArH), 7.74 (2H, dd, 5.5, 3.0,
2 xArH), 5.43 (1H, d, J 1.6, C=CH), 4.45 (1H, ddd, J 11.0, 5.1, 3.5, CH), 4.14-4.05 (2H, m,
CHjy), 2.55-2.50 (1H, m, CH), 2.31 (1H, d, J 15.2, CH,), 2.19-2.05 (2H, m, CHy), 1.92-1.84 (1H,
m, CHy), 1.76 (3H, d, J 1.6, CH3), 0.89 (9H, s, '‘Bu), 0.07 (6H, s, 2 x CH3).

(1SR,2RS)-0O-(2-(tert-Butyldimethylsilyloxymethyl)-3-methylcyclohexen-3-yl)

hydroxylamine 233
—%>——?r—0 —%>——?r—0
0-_N__o NH,

232 233

To the cyclised anti protected hydroxylamine 232 (20 mg, 0.0489 mmol) in diethyl ether
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(1.00 ml) was added methylamine (40% w/w solution in water, 0.0009 ml, 0.10 mmol) at room
temperature. After 1 hour of stirring at this temperature, the reaction mixture was cooled in an
ice bath before the addition of petroleum ether (1.00 ml). The solution was filtered through
magnesium sulphate, and the filtrate was evaporated to give the free anti hydroxylamine 233
(19 mg, 99%) as a brown oil (which was used without further purification or sampling for
analysis), showing: 6y 5.50 (2H, br s, NH>), 5.40 (1H, app br s, C=CH), 3.91-3.86 (1H, m, CH),
3.76 (1H, dd, J 10.2, 7.0, CH,), 3.63 (1H, dd, J 10.2, 3.5, CHp), 2.58 (1H, m, CH), 2.06 (2H, m,
CH,), 1.72 (3H, d, J 1.4, CH3), 1.71-1.61 (2H, m, CH,), 0.91 (9H, s, 'Bu), 0.06 (6H, s, 2 x CH3).

(1SR,2RS)-2-(tert-Butyldimethylsilyloxymethyl)-3-methylcyclohexen-3-yloxy-4-
toluenesulfonamide 234

|
NH, Qv NH
233 /©/S\\ 234
o)

The crude free anti hydroxylamine 233 (13 mg, 0.0489 mmol) was dissolved in
anhydrous dichloromethane (1.00 ml) and the resulting solution was stirred at -78 °C. Pyridine
(4 mg, 0.049 mmol) was added and the reaction mixture was stirred for 5 minutes at this
temperature before the addition of p-tosyl chloride (9 mg, 0.047 mmol). The resulting reaction
mixture was allowed to warm to room temperature and stir overnight. The reaction was
quenched by the addition of saturated aqueous copper sulphate (1.00 ml), and the aqueous layer
was extracted with dichloromethane (3 x 5.00 ml). The combined organic extracts were dried,
filtered and evaporated to give the tosyl protected anti hydroxylamine 234 (31 mg, 100% -
including excess tosyl residues) as a brown oil (which was used without further purification or
sampling for analysis), showing: 6y 7.74 (2H, d, J 8.2, 2 x ArH), 7.25 (2H, d, J 8.2, 2 x ArH),
5.38 (1H, app br s, C=CH), 4.28-4.20 (1H, m, CH), 3.63 (1H, dd, J 10.6, 7.5, CH,), 3.52 (1H, dd,
J 10.6, 2.4, CHp), 2.69-2.59 (1H, m, CH), 2.37 (3H, s, CH3), 2.11-1.98 (2H, m, CH,), 1.80-1.72
(1H, m, CH,), 1.71 (3H, s, CHs), 1.57 (1H, dd, J 14.6, 6.2, CH,), 0.78 (9H, s, 'Bu), 0.00 (6H, s,
2 x CHj3).
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3,3-Di-tert-butyl-1,2-oxaziridine 245*

X& O—NH
248 245

To a solution of 2,2,4,4-tetramethyl-3-pentanone imine 248 (5.00 g, 0.0354 mol) in
anhydrous dichloromethane (17.00 ml) over molecular sieves, was added dropwise a dried
solution of mMCPBA (8.73 g of the 77% pure solid, 0.0389 mol) in dichloromethane (78.00 ml) at
0 °C. The reaction mixture was stirred at this temperature for 1 hour before the solvent was
evaporated to yield the crude product, which was purified by filtering off the solid impurities
which were insoluble in cold hexane, to give the oxaziridine 245 (4.55 g, 82%) as a pale green
oil. All data obtained were in accordance with those reported in the literature*” and showed: &
3.72 (1H, br s, NH), 1.05 (18H, s, 2 x 'Bu); 8¢ 85.1 (C), 37.5 (2 x C), 28.0 (6 x CHa).

1-Methoxy-5-methylcyclohexa-1,4-diene 239

Methyl anisole 238 (23.21 g, 23.95 ml, 0.19 mol) was dissolved in anhydrous
tetrahydrofuran (50.00 ml) and t-butanol (80.00 ml) and cooled to -78 °C. Liquid ammonia
(approx 500 ml) was then introduced. Lithium metal (3.68 g, 0.53 mol) was added portion-wise
to the solution. Stirring was continued for 1 hour at -33 °C before the addition of methanol
(20.00 ml) to the reaction mixture. The reaction was quenched by the slow addition of water
(60.00 ml), and then left to warm to room temperature overnight so that the ammonia
evaporated. The mixture was extracted with diethyl ether (3 x 80.00 ml) and the combined
organic extracts were washed with water (4 x 50.00 ml) before being dried, filtered and
evaporated to give the diene 239 (17.56 g, 74%) as a colourless oil (which was used without
further purification). All data obtained were in accordance with those reported in the literature™*®
and showed: o6y 5.38 (1H, app d, J 1.1, HC=C), 4.60 (1H, app s, C=CH), 3.52 (3H, s, OCH3),
2.77-2.72 (2H, m, CHy), 2.58 (2H, t, J 7.6, CH,), 1.67 (3H, s, CH3).
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3-Methylcyclohex-3-enone 240

The diene 239 (5.27 g, 0.042 mol) was dissolved in chloroform (25.00 ml), and to this
solution was added perchloric acid (0.242 g of 70% w/w aqueous solution, 0.241 mmol) in water
(50.00 ml) which had been cooled in an ice bath. The reaction mixture was then stirred for 2
days at room temperature. The chloroform was removed under reduced pressure and diethyl
ether was added (50.00 ml). Sodium chloride was added to the biphasic solution until the
aqueous layer was saturated, which was then extracted with diethyl ether (3 x 50.00 ml). The
combined organic extracts were washed with water (50.00 ml) before being dried, filtered and
evaporated to yield the crude product which was purified by column chromatography (4% ethyl
acetate in hexane) to give the ketone 240 (1.66 g, 36%) as a colourless oil (the title compound
had been reported in the literature®* but with no analysis), showing: 84 5.58-5.54 (1H, m,
HC=C), 2.74 (2H, app s, CHy), 2.42-2.34 (4H, m, 2 x CH,), 1.69 (3H, s, CH3); 6c 210.5 (C=0),
132.2 (C), 121.0 (CH), 44.5 (CHy), 38.3 (CH,), 25.0 (CHy), 22.7 (CHs3).

3-Methylcyclohex-3-enol 237

The ketone 240 (1.64 g, 14.89 mmol) was dissolved in anhydrous diethyl ether
(100.00 ml) and the solution was cooled to -30 °C. Lithium aluminium hydride solution
(1.00 molar in hexane, 7.45 ml, 7.45 mmol) was added and the reaction mixture was left to stir in
the cooling bath for 1.5 hours. The reaction was quenched by the addition of 2.00 M aqueous
sodium hydroxide (1.00 ml). Excess magnesium sulphate was added to remove the water, and
was then removed by filtration, washing with dichloromethane. The solvent was evaporated to
yield the crude product which was purified by column chromatography (60% diethyl ether in
hexane) to give the alcohol 237 (1.31 g, 78% vyield) as a colourless oil. All data obtained were in
accordance with those reported in the literature*** and showed: &y 5.37-5.33 (1H, m, HC=C),
3.97-3.91 (1H, m, CH), 2.23 (1H, dd, J 16.7, 3.8, CH,), 2.17-2.10 (1H, m, CH,"), 2.08-1.99 (1H,
m, CHy), 1.92 (1H, dd, J 16.7, 6.5, CHy), 1.85 (1H, br s, OH), 1.82-1.75 (1H, m, CH,-), 1.64
(3H, d, J 0.4, CHgs), 1.54 (1H, m, CHy~); ¢ 131.3 (C), 120.5 (CH), 67.3 (CH), 39.1 (CH,), 30.5

145



(CHy), 23.5 (CH3), 23.2 (CH5).

O-(3-Methylcyclohexenyl)hydroxylamine 236

237 236

To a suspension of potassium hydroxide (that had been rinsed twice with anhydrous
hexane and blown dry under a stream of nitrogen, 0.73 g of 30% w/w suspension in mineral oil,
5.49 mmol) in N,N’-dimethylpropyleneurea (5.90 ml), was added dropwise a solution of the
alcohol 237 (050 g, 4.46 mmol) and 18-crown-6 (0.118 g, 0.446 mmol) in
N,N’-dimethylpropyleneurea (5.90 ml) at room temperature. The reaction mixture was stirred for
1 hour at this temperature. This alkoxide solution was then added dropwise to a solution of the
oxaziridine 245 (1.40 g, 8.92 mmol) in N,N’-dimethylpropyleneurea (5.90 ml) at -40 °C. The
reaction mixture was then allowed to warm to room temperature and stirred for 2 hours. 1.00 M
aqueous hydrochloric acid was added to acidify to solution, which was then washed with
dichloromethane (3 x 10.00 ml). The aqueous layer was then made alkali with 2.00 M aqueous
sodium hydroxide to pH 12, and extracted with diethyl ether (3 x 20.00 ml). The combined
organic extracts were dried, filtered and evaporated to give the free hydroxylamine 236
(calculated from the 'H NMR spectrum as 238 mg, 42%) as a yellow oil in residual
N,N-dimethylpropyleneurea (which was used without further purification), showing: vmadcm™
[film] 3456, 2932, 2863, 1252, 1217; 6y 5.29 (1H, app d, J 1.0, HC=C), 5.24 (2H, br s, NH,),
3.82-3.68 (1H, m, CH), 2.17 (1H, d, J 16.4, CH,), 2.09-1.93 (2H, m, CH,: + CHy"), 1.90 (1H, m,
CHy), 1.85-1.75 (1H, m, CH,~), 1.58 (3H, s, CH3), 1.54-1.43 (1H, m, CHy); &¢c 131.6 (C), 121.0
(CH), 79.4 (CH), 35.3 (CHy), 26.5 (CH,), 23.7 (CH3), 23.5 (CH,).
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3-Methylcyclohexenyloxy-4-toluenesulfonamide 249

The crude free hydroxylamine 236 (38 mg, 0.299 mmol, calculated as a percentage by
weight from the NMR spectra due to residual N,N’-dimethylpropyleneurea) was dissolved in
anhydrous dichloromethane (10.00 ml) and the resulting solution was stirred at -78 °C. Pyridine
(24 mg, 0.03 ml, 0.302 mmol) was added and the reaction mixture was stirred for 5 minutes.
p-tosyl chloride (57 mg, 0.299 mmol) was added in one portion and the reaction mixture was
stirred overnight without any further addition of coolant. The reaction was quenched by the
addition of water (10.00 ml), and the aqueous layer was extracted with dichloromethane
(3 x 10.00 ml). The combined organic extracts were successively washed with saturated aqueous
copper sulphate (10.00 ml), saturated aqueous sodium bicarbonate (10.00 ml) and water
(10.00 ml), before being dried, filtered and evaporated to yield the crude product which was
purified by column chromatography (20% diethyl ether in hexane) to give the tosyl protected
hydroxylamine 249 (36 mg, 43%) as a yellow oil, showing: vma/cm™ [film] 1678, 1641, 1620,
1475, 1467, 1414, 1392, 1076; &y 7.81 (2H, d, J8.2, 2 x ArH), 7.34 (2H, d, J 8.2, 2 x ArH),
6.82 (1H, s, NH), 5.34 (1H, app s, HC=C), 4.37-4.24 (1H, m, CH), 2.45 (3H, s, CH3), 2.33-2.21
(2H, m, CH,), 2.03 (2H, app s, CH,), 2.00-1.93 (1H, m, CH,), 1.92-1.83 (1H, m, CHy), 1.64
(3H, s, CH3); HRMS m/z [EI] C14H19NOj3 requires 281.1086, found 281.1080.

N-(4-methylphenylsulfonyl)-3-methyl-2-aza-1-oxabicyclo[3.2.1]octane 251

The tosyl protected hydroxylamine 249 (17 mg, 0.0604 mmol) in anhydrous
dichloromethane (1.00 ml) was added to triflic acid (4.5 mg, 2.7 ul, 0.0302 mmol) in anhydrous
dichloromethane (0.10 ml) in an ice bath, and the reaction mixture was stirred at 0 °C for 1 hour.

The reaction was quenched by the addition of saturated aqueous potassium carbonate (0.10 ml).
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Excess magnesium sulphate was added to remove the water, and was then removed by filtration,
washing with dichloromethane. The solvent was evaporated to give the protected cyclised
product 251 (14 mg, 85%) as a yellow oil (a sample was further purified by column
chromatography (30% diethyl ether in hexane) for analysis), showing: vma/cm™ [thin film] 2924,
1353, 1165, 1089, 814; 84 7.85 (2H, d, J 8.2, 2 x ArH), 7.32 (2H, d, J 8.2, 2 x ArH), 4.64 (1H,
app t, J 5.7, CH), 2.43 (3H, s, CHj3), 2.35-2.16 (1H, m, CH,), 2.05-1.86 (3H, m, CH, + CHy),
1.82-1.77 (1H, m, CH,"), 1.68 (3H, s, CHs), 1.55 (2H, m, CHy- + CH,), 1.34 (1H, dd, J 14.7, 5.8,
CHy»); 8¢ 144.3 (ArC), 135.4 (ArC), 129.4 (2 x ArCH), 129.1 (2 x ArCH), 77.8 (CH), 67.8 (C),
44.9 (CHy), 39.7 (CH,), 30.2 (CHy), 22.0 (CH3), 21.7 (CHgs), 18.4 (CH,); HRMS m/z [EI]
C14H19NO3S requires 281.1084, found 281.1086.

3-Methylcyclohexenyloxy-4-nitrobenzenesulfonamide 250

5o
(@]
236 O,N 250

p-Nitrobenzenesulphonyl chloride (0.62 g, 2.81 mmol) was added to a solution of the
crude free hydroxylamine 236 (38 mg, 0.299 mmol, calculated as a percentage by weight from
the NMR spectra due to residual N,N’-dimethylpropyleneurea) in a 1:1 mixture of
dichloromethane:water (6.00 ml of each). Sodium carbonate (0.30 g, 2.81 mmol) was added and
the biphasic reaction mixture was stirred at room temperature overnight. The organic layer was
washed with saturated aqueous sodium chloride solution (2 x 6.00 ml), and the combined
aqueous layers were back extracted with dichloromethane (20.00 ml). The combined organic
extracts were dried, filtered and evaporated to yield the crude product which was purified by
column chromatography (30% diethyl ether in hexane) to give the nosyl protected
hydroxylamine 250 (0.356 g, 61%) as an off-white solid, showing: mp 144-147 °C; vpadcm™
[thin film] 3820, 2924, 2853, 1532, 1175, 855; 64 8.40 (2H, d, J 8.9, 2 x ArH), 8.12 (2H, d,
J8.9, 2 x ArH), 6.96 (1H, s, NH), 5.36 (1H, dd, J 3.2, 1.7, HC=C), 4.42-4.33 (1H, m, CH),
2.33-2.25 (1H, m, CH,), 2.08-1.97 (3H, m, CH, + CHy), 1.96-1.86 (1H, m, CH,:), 1.65 (3H, s,
CHj3), 1.64-1.58 (1H, m, CHy); 8¢ 150.8 (ArC), 142.5 (ArC), 130.6 (C), 130.0 (2 x ArCH),
124.2 (2 x ArCH), 120.7 (CH), 82.2 (CH), 34.4 (CHy), 26.0 (CHy), 23.3 (CHg), 22.8 (CHy);
HRMS m/z [ES] C13H16N20sS -H requires 311.0702, found 311.0705.
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N-(4-nitrophenylsulfonyl)-3-methyl-2-aza-1-oxabicyclo[3.2.1]octane 252

- - —N
2N N O N0
I 2
N\
/(j o
O,N 250 252

The nosyl protected hydroxylamine 250 (226 mg, 0.977 mmol) in anhydrous
dichloromethane (10.00 ml) was added to triflic acid (0.40 molar solution in anhydrous
dichloromethane, 1.21 ml, 0.489 mmol) in an ice bath, and the reaction mixture was stirred at
0 °C for 1 hour. The reaction was quenched by the addition of saturated aqueous potassium
carbonate (1.00 ml). Excess sodium sulphate was added to remove the water, and was then
removed by filtration, washing with dichloromethane. The solvent was evaporated to give the
protected cyclised product 252 (173 mg, 77%) as an off-white solid, showing: mp 165-168 °C;
vmadem™ [film] 2952, 1532, 1349, 1171, 740, 644; 54 8.35 (2H, d, J 8.9, 2 x ArH), 8.15 (2H, d,
J 8.9, 2 x ArH), 4.75-4.64 (1H, m, CH), 2.24-2.16 (1H, m, CH,), 1.94 (1H, dd, J 13.0, 4.7, CHy),
1.90-1.79 (1H, m, CH,’), 1.72 (3H, s, CH3), 1.62-1.55 (1H, m, CH’), 1.41 (2H, td, J 12.9, 5.9,
CHy), 1.34-1.26 (2H, m, CH,); ¢ 155.1 (C), 154.0 (C), 130.4 (2 x CH), 123.9 (2 x CH), 78.2
(CH), 68.9 (C), 45.6 (CH,), 39.4 (CH,), 29.9 (CH,), 22.0 (CH3), 18.4 (CH,); HRMS m/z [EI]
C13H16N20sS requires 312.0780, found 312.0775.

(E)-Ethyl hepta-2,6-dienoate 262

N NF /\OW

(0]

223 262
To lithium chloride (2.52 g, 0.0594 mol) in anhydrous acetonitrile (250.00 ml) was added

triethyl phosphonoacetate (13.98 g, 12.37 ml, 0.0624 mol) and 1,5-diazabicyclo[4.3.0]non-5-ene
(7.75 g, 7.71 ml, 0.0624 ml) at room temperature. The resulting solution was cooled in an ice
bath before the dropwise addition of 4-pentenal 223 (5.00 g, 0.0594 mol). The reaction mixture
was stirred at room temperature overnight. Water (125.00 ml) was added to dissolve the
precipitate, and the mixture was extracted with a 1:99 mixture of diethyl ether:hexane
(4 x 100.00 ml, desired extract is the top layer of the 3). The combined organic extracts were

washed successively with saturated aqueous ammonium chloride (250.00 ml), saturated aqueous
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potassium carbonate (250.00 ml), water (250.00 ml) and saturated aqueous sodium chloride
(250.00 ml), before being dried, filtered and evaporated to give the ester 262 (5.50 g, 60%) as a
colourless oil (which was used without further purification). All data obtained were in
accordance with those reported in the literature'*? and showed: &y 6.92 (1H, dt, J 15.7, 6.7,
HC=C), 5.79 (1H, dt, J 15.7, 1.6, C=CH), 5.80-5.70 (1H, m, HC=C), 5.01 (1H, ddd, J 17.2, 3.0,
1.6, C=CH,), 4.97 (1H, ddd, J 10.2, 3.0, 1.2, C=CHy), 4.14 (2H, q, J 7.1, CHy), 2.30-2.23 (2H,
m, CHy), 2.22-2.14 (2H, m, CH,), 1.24 (3H, t, J 7.1, CH3).

(E)-Hepta-2,6-dien-1-ol 261

o)
AT e~
262 261

A solution of the ester 262 (1.07 g, 6.94 mmol) in anhydrous tetrahydrofuran (10.00 ml)
was cooled to 0 °C and diisobutylaluminium hydride (1.00 molar solution in hexane, 17.35 ml,
17.35 mmol) was added. The cooling bath was removed and the solution was stirred at room
temperature for 2.5 hours. To quench the reaction it was cooled in an ice bath before the
sequential addition of sodium hydroxide solution (15% w/w in water, 0.73 ml), diethyl ether
(0.73 ml) and water (1.71 ml). The mixture was stirred at room temperature for 15 minutes.
Excess magnesium sulphate was added to remove the water, and was then removed by filtration,
washing with dichloromethane. The solvent was evaporated to give the alcohol 261 (0.747 g,
96%) as a colourless oil (which was used without further purification). All data obtained were in
accordance with those reported in the literature™*? and showed: & 5.84-5.72 (1H, m, HC=C),
5.74-5.56 (2H, m, 2 x C=CH), 4.99 (1H, dd, J 17.0, 1.8, C=CH,), 4.94 (1H, dd, J 10.1, 1.8,
C=CHyp), 4.04 (2H, d, J 4.6, CH,), 2.26 (1H, br s, OH), 2.13-2.09 (4H, m, 2 x CHy).

((2S, 3S5)-3-(But-3-enyl)oxiran-2-yl)methanol 260

@)
W /\'>\/\/
HO HO 7

261 260

Activated molecular sieves (1.00 g) and anhydrous dichloromethane (30.00 ml) were
cooled to -20 °C. L-(+)-diisopropyl tartrate (0.125 g, 0.535 mmol) and titanium (IV)
isopropoxide (0.127 g, 0.13 ml, 0.446 mmol) were added with stirring at this temperature.

tert-Butyl hydroperoxide (5.5 molar in decane, 3.24 ml, 17.84 mmol) was added dropwise
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at -20 °C, and the reaction mixture was stirred at this temperature for 0.5 hours. The alcohol 261
(1.00 g, 8.92 mmol) was dissolved in anhydrous dichloromethane (5.00 ml) and added dropwise
to the reaction mixture, keeping the temperature below -15 °C. The reaction mixture was then
stirred for an additional 3.5 hours between -20 °C and -15 °C. To quench the reaction it was
added to a freshly prepared stirring solution of iron (I1) sulphate (3.30 g) and tartaric acid (1.00
g) in deionised water (10.00 ml) at 0 °C. The mixture was stirred for 10 minutes, before the
aqueous layer was extracted with diethyl ether (2 x 20.00 ml). The combined organic extracts
were treated with a solution of 30% w/v sodium hydroxide in saturated aqueous sodium
hydroxide (1.00 ml), and stirred vigorously for 1 hour at 0 °C. Water (20.00 ml) was added, and
the aqueous layer was extracted with diethyl ether (2 x 20.00 ml). The combined organic extracts
were dried, filtered and evaporated to yield the crude product which was purified by column
chromatography (30% ethyl acetate in hexane) to give the epoxy alcohol 260 (748 mg, 64%) as a
colourless oil (the title compound had been reported in the literature'*® but with no analysis),
showing: [¢]p?® = -105.3° (¢ = 3.8, MeOH); vma/cm™ [thin film] 3419, 3078, 2979, 2927, 2863,
1642, 997, 913;64 5.80 (1H, ddt, J 17.0, 10.2, 6.0, HC=C), 5.03 (1H, ddd, J 17.0, 3.0, 1.6,
C=CH,), 4.97 (1H, ddd, J 10.2, 3.0, 1.2, C=CHy), 3.87 (1H, ddd, J 12.6, 5.8, 2.4, CH), 3.63-3.48
(1H, m, CH), 3.00-2.85 (2H, m, CHy), 2.51 (1H, t, J 6.3, OH), 2.27-2.05 (2H, m, CH,), 1.65 (2H,
td, J 7.5, 6.0, CH,); 8¢ 137.8 (CH), 115.1 (CHy), 61.7 (CH,), 58.7 (CH), 55.5 (CH), 31.0 (CH,),
29.9 (CHy).

(2R, 3S)-2-(Prop-1-en-2-yl)hept-6-ene-1,3-diol 258

OH
O
/W - )Jf\/\/
HO
260 258

HO
To a stirred suspension of copper (I) iodide (0.218 g, 1.15 mmol) in anhydrous diethyl

ether (20.00 ml) at -8 °C was added isoprenyl magnesium bromide (0.5 molar in tetrahydrofuran,
22.90 ml, 11.46 mmol). The resulting suspension was immediately cooled to -23 °C and the
epoxy alcohol 260 (490 mg, 3.82 mmol) in anhydrous diethyl ether (5.00 ml) was added
dropwise. The reaction mixture was then stirred between -25 °C and -20 °C for 5.5 hours. The
solution was partitioned between diethyl ether (25.00 ml) and saturated aqueous ammonium
chloride that had been basified with concentrated sodium bicarbonate to pH 8 (25.00 ml). The
ethereal extract was washed with saturated aqueous sodium chloride (25.00 ml), before being

dried, filtered and evaporated to yield the crude product which was purified by column
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chromatography (60% diethyl ether in hexane) to give the diol 258 (545 mg, 84%) as a
colourless oil, showing: [a]p?° = +1.6° (¢ = 0.5, MeOH); vma/cm™ [thin film] 3369, 3076, 2923,
1641, 1376, 1033, 911;64 5.83 (1H, ddt, J 17.0, 10.1, 6.7, HC=C), 5.07 (1H, ddd, J 17.0, 3.2, 1.5,
C=CH,), 4.99 (1H, ddd, J 10.1, 2.4, 1.5, C=CHy), 4.93-4.83 (1H, m, C=CH,), 4.80 (1H, d, J 0.5,
C=CHy), 3.85-3.77 (2H, m, CH + CH,), 3.74 (1H, dd, J 10.9, 5.1, CHy), 2.79 (2H, br s, 2 x OH),
2.29-2.19 (2H, m, CHy), 2.18-2.08 (1H, m, CH), 1.71 (3H, d, J 0.9, CHg), 1.69-1.61 (1H, m,
CH,-), 1.52-1.40 (1H, m, CHy-); 8¢ 143.6 (C), 138.4 (CH), 115.1 (CH,), 113.6 (CH,), 73.8 (CH),
64.9 (CH,), 54.6 (CH), 34.7 (CH,), 29.9 (CH,), 21.7 (CHs); HRMS m/z [APCI] CyoH;50, +H
requires 171.1385, found 171.1378.

(1S, 2R)-2-(Hydroxymethyl)-3-methylcyclohex-3-enol 257

OH
- HO
HO'

OH 258 257

A solution of the diol 258 (184 mg, 1.08 mmol) and Grubbs Il catalyst (46 mg,
0.054 mmol) in anhydrous dichloromethane (20.00 ml) was stirred at room temperature
overnight. The solvent was evaporated to give the cyclic diol 257 (152 mg, 99%) as pale brown
crystals, showing: mp 76-77 °C ; [a]p® = +23.0° (c = 0.6, EtOH); vma/cm™ [thin film] 3349,
1652, 1379, 1050, 809; 64 5.51 (1H, app d, J 1.4, C=CH), 4.04 (1H, dd, J 10.5, 3.4, CH,), 3.94
(1H, ddd, J 10.2, 7.0, 3.3, CH), 3.62 (1H, dd, J 10.5, 8.3, CHy), 2.54 (2H, br s, 2 x OH), 2.22
(1H, app s, CH), 2.16-1.98 (2H, m, CH,), 1.88 (1H, ddd, J 9.6, 8.4, 4.3, CH,"), 1.67 (3H, s,
CHs), 1.65-1.55 (1H, m, CHy); 8¢ 130.9 (C), 124.6 (CH), 71.5 (CH), 64.3 (CH,), 49.5 (CH),
29.6 (CHy), 23.2 (CHy), 21.3 (CH3); HRMS m/z [EI] CgH140, -H,0 requires 124.0888, found
124.0887.

(1S, 2R)-2-(tert-Butyldimethylsilyloxymethyl)-3-methylcyclohex-3-enol 263

— Si
HO" X N ho

257 263
TBDMS chloride (181 mg, 1.20 mmol) was slowly added to a solution of the cyclic diol
257 (155 mg, 1.09 mmol) and imidazole (178 mg, 2.62 mmol) in anhydrous tetrahydrofuran
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(10.00 ml) at 0 °C. The reaction mixture was allowed to slowly warm to room temperature and
stir overnight. The solvent was removed under reduced pressure, and the residue taken up in
diethyl ether (20.00 ml). The organic layer was washed with water (3 x 20.00 ml), before being
dried, filtered and evaporated to give the TBDMS protected cyclic diol 263 (170 mg, 61%) as a
colourless oil (which was used without further purification), showing: vmad/cm™ [thin film] 3433,
2955, 2928, 2857, 1472, 1389, 1253, 1099, 836; oy 5.46 (1H, app d, J 0.9, C=CH), 4.07 (1H, dd,
J 9.8, 4.3, CH,), 3.86 (1H, ddd, J 10.2, 6.9, 3.4, CH), 3.48 (1H, t, J 9.8, CHy), 2.35-2.15 (2H, m,
CH,), 2.05 (1H, app s, CH), 1.91-1.81 (1H, m, CH,), 1.62 (3H, s, CHs), 1.58-1.50 (1H, m,
CHy), 0.91 (9H, s, 'Bu), 0.09 (6H, s, 2 x CH3); 8¢ 131.3 (C), 124.5 (CH), 72.5 (CH), 66.7 (CHy),
49.4 (CH), 29.1 (CHy), 26.3 (3 x CH3), 23.7 (CHy), 21.6 (CH3), 18.7 (C), -5.5 (2 x CH3); HRMS
m/z [APCI] C14H250,Si +H requires 257.1937, found 257.1925.

(1S, 2R)-2-(Triisopropylsilyloxymethyl)-3-methylcyclohex-3-enol 268

A solution of the cyclic diol 257 (0.120 g, 0.841 mmol) in anhydrous dichloromethane
(5.00 ml) was treated with 2,6-lutidine (0.126 g, 0.127 ml, 1.27 mmol) and triisopropylsilyl
trifluoromethanesulphonate (0.309 g, 0.272 ml, 1.01 mmol) at -78 °C. The reaction mixture was
stirred at this temperature for 2 hours and then quenched by the addition of saturated aqueous
sodium bicarbonate (10.00 ml). The aqueous layer was extracted with diethyl ether (3 x 20.00
ml), and the combined organic extracts were dried, filtered and evaporated to yield the crude
product which was purified by column chromatography (10% ethyl acetate in hexane) to give the
TIPS protected diol 268 (133 mg, 52%) as a colourless oil, showing: [o]p® = +28.0° (¢ = 0.9,
MeOH); vmad/cm™ [thin film] 3434, 2866, 1464, 1383, 1257, 1099, 794; &y 5.48-5.42 (1H, m,
C=CH), 4.18 (1H, dd, J 9.6, 4.2, CH,), 3.93-3.88 (1H, m, CH), 3.87 (1H, d, J 3.3, OH), 3.58 (1H,
dd, J 10.2, 9.6, CHy), 2.33-2.24 (1H, m, CH), 2.12-1.96 (2H, m, CH), 1.88 (1H, ddd, J 12.4, 8.7,
3.7, CHy), 1.61 (3H, s, CH3), 1.58-1.49 (1H, m, CH), 1.17-1.09 (3H, m, 3 x CH), 1.07 (18H, d,
J 5.6, 6 x CH3); 8¢ 130.9 (C), 124.3 (CH), 72.5 (CH), 67.1 (CH,), 49.44 (CH), 29.0 (CHy), 23.4
(CH,), 21.3 (CHs), 17.9 (6 x CH3), 11.8 (3 x CH); HRMS m/z [APCI] C17H340,Si +H requires
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299.2406, found 299.2408.

(1S,2S)-3-methyl-2-((phenylthio)methyl)cyclohex-3-enol 269

SPh
HOA@
——
HO' ;

HO'
257 269

To the cyclic diol 257 (78 mg, 0.55 mmol) in dry tetrahydrofuran (2.00 ml) was added
BusP (0.54 ml, 2.20 mmol) and Ph,S; (361 mg, 1.65 mmol). The reaction mixture was stirred
overnight at room temperature before the solvent was evaporated to yield the crude product
which was purified by column chromatography (40% ethyl acetate in hexane) to give the thio
ether 269 (46 mg, 36 %) as a green solid, showing: mp 29-31 °C; [0]p® = +12.7° (c = 0.17,
MeOH); vma/cm™ [thin film] 3391, 2919, 2849, 1583, 1481, 1438, 1377, 1063, 1025, 804, 739,
690; 6y 7.43-7.13 (5H, m, 5 x Ar-H), 5.58-5.48 (1H, m, H-5), 4.19-4.09 (1H, m, H-2), 3.38 (1H,
dd, J 12.9, 3.3, H-9), 2.84 (1H, dd, J 12.9, 8.3, H-9), 2.29 (1H, s, H-8), 2.17-2.02 (1H, m, H-1),
1.87-1.55 (4H, m, H-3 and -4), 1.72 (3H, s, H-7); 8¢ 136.9 (C), 132.4 (C), 129.2 (CH), 129.1
(CH), 126.1 (CH), 124.0 (CH), 69.0 (CH), 46.8 (CH), 35.4 (CHy), 27.3 (CH_), 22.1 (CH,), 22.0
(CHs3).

5-lodohex-5-en-1-ol 283

M /\/\)J\
HO HO |

282 283

Sodium iodide (18.33 g, 122.26 mmol) was dissolved in acetonitrile (90.00 ml) at room
temperature, and to this was added TMS chloride (13.28 g, 15.52 ml, 122.26 mmol) followed by
water (1.10 ml, 61.13 mmol). After 20 minutes a solution of 5-hexyn-1-ol 282 (6.00 g,
61.13 mmol) in acetonitrile (15.00 ml) was added to the mixture and the reaction mixture was
stirred for 1 hour at room temperature. Water (100.00 ml) was added to dissolve the precipitate,
and the aqueous layer was extracted with diethyl ether (3 x 100.00 ml). The combined organic
extracts were washed with water (100.00 ml), before being dried, filtered and evaporated to yield
the crude product which was purified by column chromatography (50% ethyl acetate in hexane)
to give the iodoalcohol 283 (5.81 g, 42%) as a yellow oil. All data obtained were in accordance
with those reported in the literature*** and showed: & 6.04 (1H, g, J 1.4, C=CH,), 5.71-5.70 (1H,
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m, C=CHy), 3.67 (2H, t, J 6.2, CHy), 2.42 (2H, t, J 6.2, CHy), 1.62-1.55 (4H, m, 2 x CHy).

1-((5-1odohex-5-enyloxy)methyl)-4-methoxybenzene 284

283 o/©/\ 284

To a stirred solution of the iodoalcohol 283 (330 mg, 1.46 mmol) in anhydrous diethyl
ether (6.00 ml) over molecular sieves was added p-methoxybenzyl-2,2,2-trichloroacetimidate
(825 mg, 0.61 ml, 2.92 mmol) followed by triflic acid (0.657 mg, 0.4 ul, 0.004338 mmol). The
reaction mixture was stirred at room temperature for 1 hour. The reaction was quenched by the
addition of saturated aqueous sodium bicarbonate (1.00 ml), and the organic layer was dried,
filtered and evaporated to yield the crude product which was purified by column chromatography
(15% ethyl acetate in hexane) to give the PMB protected iodoalcohol 284 (311 mg, 62%) as a
yellow oil, showing: 6y 7.27 (2H, d, J 8.6, 2 x ArH), 6.88 (2H, d, J 8.6, 2 x ArH), 6.02-6.00 (1H,
m, C=CH,), 5.69 (1H, d, J 0.6, C=CHy), 4.44 (2H, s, CH,), 3.81 (3H, s, OCH3), 3.48-3.43 (2H,
m, CH,), 2.39 (2H, t, J 6.1, CH,), 1.62-1.57 (4H, m, 2 x CH)).

1-((Hex-5-enyloxy)methyl)-4-methoxybenzene 286

A sample from the reaction to try and form a Grignard reagent from iodoalkene 284 was
quenched to check the progress of the transformation, to give the hydrolysed product 286 as a
colourless oil. All data obtained were in accordance with those reported in the literature* and
showed: 6 7.26 (2H, d, J 8.7, 2 x ArH), 6.88 (2H, d, J 8.7, 2 x ArH), 5.80 (1H, ddt, J 16.9, 10.1,
6.7, C=CH), 5.05-4.90 (2H, m, C=CHy), 4.43 (2H, s, CH,), 3.80 (3H, s, OCH3), 3.45 (2H, t,
J 6.4, CH,), 2.06 (2H, dd, J 14.2, 7.1, CH,), 1.64-1.59 (2H, m, CH,), 1.51-1.42 (2H, m, CH,).
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Appendix 1

Crystallographic data for iodocarbonate 133

CCDC 878231
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Table 1. Crystal data and structure refinement for iodocarbonate 133.

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group

Unit cell dimensions

Volume

Z

Density (calculated)
Absorption coefficient

F(000)

Crystal size

Theta range for data collection
Index ranges

Reflections collected
Independent reflections
Completeness to theta = 27.50°
Refinement method

Data / restraints / parameters
Goodness-of-fit on F?

Final R indices [I>2sigma(1)]
R indices (all data)

Absolute structure parameter
Extinction coefficient

Largest diff. peak and hole

CCDC 878231

dwk0902
C6H9 103
256.03
293(2) K
0.71073 A
Orthorhombic
Pna21

a=19.0743(15) A a=90°.
b =7.3931(10) A B=90°.
c=12.306(2) A y=90°.

825.6(2) A3

4

2.060 Mg/m3

3.829 mm-!

488

? X ?X?mmd3

3.21 to 27.50°.

-11<=h<=11, -9<=k<=9, -12<=I<=15
3385

1422 [R(int) = 0.0638]

97.8 %

Full-matrix least-squares on F?2
14221429/ 183

1.061

R1=0.0470, wR2 = 0.1254
R1=0.0677, wR2 =0.1416
0.01(18)

0.0105(16)

1.237 and -0.731 e. A3
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Appendix 2

Crystallographic data for transannular product 252

CCDC 878232
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Table 1. Crystal data and structure refinement for transannular product 252.

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group

Unit cell dimensions

Volume

Z

Density (calculated)
Absorption coefficient

F(000)

Crystal size

Theta range for data collection
Index ranges

Reflections collected
Independent reflections
Completeness to theta = 27.50°
Max. and min. transmission
Refinement method

Data / restraints / parameters
Goodness-of-fit on F?

Final R indices [I>2sigma(l)]
R indices (all data)

Largest diff. peak and hole

CCDC 878232

dwk1103
C13H16 N2 05 S
312.34

150(2) K

0.71073 A
Monoclinic

P21/c
a=6.8684(2) A

b =16.8474(8) A
¢ =12.2469(3) A
1396.22(8) A3

4

1.486 Mg/m3
0.256 mm-!

656

0.25 x 0.25 x 0.15 mm3
2.95 to 27.50°.

a=90°.

B=99.858(2)°.

y =90°.

-8<=h<=8, -21<=k<=21, -15<=I<=15

6149

3192 [R(int) = 0.0384]

99.7 %

0.9626 and 0.9388

Full-matrix least-squares on F?2
3192/0/191

1.035

R1=10.0530, wR2 =0.1234
R1=0.0766, wR2 = 0.1389
0.276 and -0.493 e.A-3
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Appendix 3

Crystallographic data for chiral diol 257

HO

HO'
257

CCDC 878233
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Table 1. Crystal data and structure refinement for chiral diol 257

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group

Unit cell dimensions

Volume

Z

Density (calculated)
Absorption coefficient

F(000)

Crystal size

Theta range for data collection
Index ranges

Reflections collected
Independent reflections
Completeness to theta = 27.48°
Max. and min. transmission
Refinement method

Data / restraints / parameters
Goodness-of-fit on F2

Final R indices [I>2sigma(l)]
R indices (all data)

Absolute structure parameter
Extinction coefficient

Largest diff. peak and hole

CCDC 878233

dwk1104

C8 H14 02
142.19
150(2) K
0.71073 A
Orthorhombic
p212121

a=53321(2) A o= 90°.
b =6.2335(2) A B=90°.
¢ =23.0851(9) A v =90°.

767.29(5) A3

4

1.231 Mg/m3

0.086 mm-!

312

0.30 x 0.22 x 0.20 mm3

3.92 t0 27.48°.

-6<=h<=6, -6<=k<=8, -21<=I<=29
3118

1710 [R(int) = 0.0306]

98.6 %

0.9829 and 0.9745

Full-matrix least-squares on F?2
1710/0/95

1.043

R1=0.0397, wR2 = 0.0923
R1 =10.0448, wR2 = 0.0963
0.4(13)

0.23(2)

0.199 and -0.168 e.A3
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