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Summary 

All inflammatory events are mark by infiltration by leukocytes including neutrophils, which 

cross the endothelium before following migratory cues to the site of infection, and phagocytosing 

the infectious microorganisms. Before crossing the endothelial wall, the neutrophils spread on 

the endothelium. It has been proposed that the necessary additional membrane for cell 

spreading results from unfolding of wrinkled cell membrane held in place by molecule like 

membrane linker protein (such as talin or  ezrin). Both talin and ezrin are potential substrates for 

cleavage by the Ca2+ activated proteolytic enzyme, calpain-1. It is possible that this mechanism 

underlies the membrane unwrinkling events but it is yet to be proved. The major aim of this 

thesis was to look for evidence that proteolysis and redistribution of these proteins occurred 

during neutrophil shape change. 

This thesis provide confirmatory evidence that ezrin is cleaved during extravasation of 

neutrophils and also provide evidence that the subcellular location of  talin and ezrin protein can 

serve as an biological marker to identify extravasted neutrophils.   

The subcellular locations of talin and ezrin were identified using immunocytochemistry. 

Both ezrin (87%) and talin (92%) were detected at the cell membrane of neutrophils. This pattern 

was lost in polarized neutrophils, as well as after an elevation of cytosolic calcium level and also 

after transmigration through endothelial monolayers in vitro. Under these conditions, the 

detected ezrin and talin was mainly cytosolic. The same translocation was observed in 

extravasated oral neutrophils and also neutrophils which had extravasted under pathological 

conditions (gingivitis and osteoarthritis). 

GFP-tagged ezrin was expressed in RAW cells, in order to investigate the mechanism 

behind the relocation of ezrin. It was found to be triggered by an elevation of cytosolic calcium 

and was irreversible. It was also triggered locally during phagocytosis at the site where the 

membrane expanded.   

Western blotting showed that ezrin (72-69 kDa intact) was cleaved under similar 

conditions with fragments at 55kDa, 51kDa and 49kDa being generated by elavated calcium and 

extravasation.  This cleavage was sensitive to calcium and calpain inhibition.  

It was concluded that ezrin is present in the plasma membrane wrinkles of resting 

neutrophils, but that changes when the cytosolic calcium level changes, as occur during 
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extravsation and phagocytosis. Addition to this, any dynamic change in the surface area of the 

plasma membrane (phagocytosis), cause a relocation of ezrin away from the plasma membrane. 

Evidence was also provided that ezrin can be uses as a biological marker to identify 

extravasated neutrophils. 
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1.1  Inflammation 

Inflammation is a localized, protective response to trauma or microbial invasion that 

destroys, reduces or “walls off” the injurious agent and the injured tissue. It is 

characterized in the acute form by the classic signs of dolor, calor, rubor, tumor and 

function laesa. Microscopically, it involves a complex series of events, including dilation of 

arterioles, capillaries and venules, with increased permeability and blood flow, exudation of 

fluids including plasma protein and transendothelial migration of leukocytes into the 

inflammatory focus. Diseases characterized by inflammation are an important cause of 

morbidity and mortality in humans. Deficiencies of inflammation compromise the host, 

whereas excessive inflammation caused by abnormal recognition of host tissue as foreign 

or prolongation of the inflammatory process, may lead to inflammatory diseases as diverse 

as atherosclerosis to post-infectious syndromes, like rheumatic diseases (Gallin 1999). 

The accumulation and subsequent activation of leukocytes are central events in the 

pathogenesis of most forms of inflammatory disease. 

1.1.1  History of inflammation 

  Inflammation has had a long and colorful history, intimately linked to the history of 

wounds, wars and infection (Gallin 1999; Ley et al. 2007).  The word “inflammation” comes 

from the latin word inflammare (to set on fire).The history of inflammation and research 

stretches over 2000 years, with 200 years of research at cellular level and 20 years of 

research at the molecular level (Ley et al. 2007). The insight that has been obtained not 

only led to a better understanding of the inflammatory phenomena, but have also benefited 

the diagnosis and treatment of patients with inflammatory disorders. 

 The descriptions of inflammation long before the cardinal signs of rubor, tumor, calor 

and dolor were stamped by Celsus in the 1st Century. Figure 1.1.1 shows the cartoon 

depiction of the cardinal signs of inflammation which were described by Celsus 2000 years 

ago. In its genesis, inflammation was defined by a combination of clinical signs and 
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symptoms not by specific pathophysiology. Two centuries after Celsus, Calen was 

influential in promoting the humoral view of inflammation. In his model, inflammation (and 

pus specifically) was part of the beneficial response to injury, rather than a superimposed 

pathology. This humoral view of inflammation persisted into the 19 th century when Virchow 

added the fifth cardinal sign, function laesa (loss of function) in 1871. By the end of the 

19th century, it was accepted that changing cell populations arising from both the blood 

and local proliferation were a key feature of many models of inflammation.  

           Advances in microscopy and cell biology in the 19 th century gave rise to cell based 

definitions of inflammation, which revealed the complexity of events that underlies all 

inflammatory reactions. A prominent German biologist, Neumann, defined inflammation 

more lossely as a “series of local phenomena developing as the result of primary lesions to 

the tissues and that tend to restore their health”. However, we know that inflammation 

today is a more complicated cascade. Modern molecular biology   superimposes additional 

layers of complexity on this commonly accepted model. Firstly, a tissue much be 

influenced by proinflammatory signaling molecules, even in the absence of inflammatory 

cell invasion. Secondly, both inflammation and repair can be triggered and modulated by 

primary events occurring outside the vasculature, such as vibration, hypoxia and 

mechanical loading.  

  All the views developed in the last century by Claude Bernard, Cohnheim, Virchow 

and Metchnikoff with the four signs of Celsus’ cardinal signs for inflammation  in the 

background  represents the pre-history of inflammation (Rocha e Silva 1994). Post-history 

of inflammation is marked  by Sir Henry Dale and his concept of auto-pharmacology, which 

describe the inflammation phenomena that depends upon formation, synthesis or release 

of endogenous active substances, called mediators of physio-pathological phenomena 

(Rocha e Silva 1994). Subsequent advances in field of inflammation are the identification 

of different classes of inflammatory mediators, the pathways that control their production 

and their mechanisms of action.  
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 Althought there has been an explosion of knowledge about inflammation over the 

second half of the 20th Century, our clinical concepts about inflammation have remained 

essentially unchanged. We now know that inflammation comes in many different forms 

and modalities, that  are governed by different mechanisms of induction, regulation and 

resolution, still we have long way to go to completely understand the basic of inflammation 

(Medzhitov 2010). There is no evidence that the pace of discoveries in inflammation 

research will slow down as the inflammatory components of many chronic and acute 

diseases are recognized and investigated. Table 1.1.1 enlists the key development in the 

field of inflammation from 1st Century until 20th Century; this table was adapted from Scott 

2004. 
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Figure 1.1.1. Five Greeks cartoon representing the cardinal signs of inflammation — 

heat, redness, swelling, pain and loss of function that are as appropriate today as they 
were first described by Celsus more than 2000 years ago. This figure was adopted from 
Nature Reviews Immunology, 2002, 2; 787-795.   
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Table 1.1.1. Key development in field of inflammation until 20th Century  (Scott et al. 

2004) 

Author and year Quotation 
Historical 
interpretation 

Modern 
significance 

Celsus,  1st Century AD 

Ruboor et tumor 
cum calore et 
dolore 

First documentation 
of cardinal signs of 
inflammation 

Emphasized 
importance of 
clinical 
observations 
than philosophy 
based medicine  

Galen  
3rd Century  

Laudable pus Infection and 
inflammation are 
beneficial to repair 
of wounds 

Inflammation 
was seen as an 
expression of 
humoral theory 
well into the 19th 
Century 
 

Virchow,1871 
(fifth cardinal sign) 

The inflammatory 
reaction is a 
consequence of 
an excessive 
intake by 
interstitial cells 
that filtering 
through the 
vessel wall 

Inflammation as a 
pathological 
proliferation of cells 
due to leakage of 
nutrients from 
vessels 

Recognized 
cellular nature 
of inflammatory 
response 

Cohnheim,1873 
 

Finally there lies 
outside the vessel 
a colourless 
blood corpuscle 
and reveled the 
physiological 
basis of the four 
cardinal signs 

Blood corpuscles 
were seen as 
pathological 
mechanisms by 
which infections 
spread, secondary 
to vascular injury 

First description 
of diapedesis 

Arnold, 1875  Diapedesis   

Weigert, 1889 
Inflammatory 
exudates  

Evidence of 
humoral theory  

 

Ziegler, 1889 
 

Involvement of 
circulatory system 
and tissue 
environment in 
inflammation 

  

Jules bordet, 1896 
Complements in 
inflammation 

  

Paul ehrlich, 1897  
 

Humoral theory of 
immunity 

Major milestone in 
history of 
inflammation  

 

Bernard shaw, 1906 
Cause of 
inflammation 
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Metchnikoff, 1908 

The prime moves 
of the 
inflammatory 
reaction are a 
digestive action 
toward the 
noxious agent 
and discovery of 
phagocytosis of 
macrophage and 
neutrophils 

Inflammation as a 
defensive cellular 
response to 
pathogens guided 
by the vessels 
rather than an 
aspect of the 
pathology itself 

First to express 
the view that 
phagocytes 
were protective 
not pathological 

Krogh, Lewis 
Zotterman and 
Mitchell ,1926  

 
H- Colloid 

  

Lewis, 1927 

Inflammation as 
the triple 
response to 
injury. And role of 
Endogenous 
mediator in 
inflammation 
(Triple response). 

Inflammation is 
characterized by 
the cascular events 
mediated both by 
local chemicals and 
by axons 

First recognition 
of neurogenic 
inflammation, 
first 
physiological 
characterization 
of vascular 
events 

Menkin, 1938 Leukotaxin   

Claude Bernard, 
Ludwig, Dubois-
Raymond, 1973 

Physiological 
regulations of 
inflammation 

  

Rocha e Silva, 1974 

 Inflammation as 
a multi-mediated 
phenomenon of a 
pattern type in 
which all 
mediators would 
come and go at 
the appropriate 
moments 
increasing 
cascular 
permeability 
attracting 
leucocytes 
producing pain 
local edema and 
necrosis 

Inflammation defined 
by mediators 

Biochemical 
definition of 
inflammation 

Robert Koch and 
Louis Pasteur, 1979 

Microbial agents 
as major inducers 
of the acute 
inflammatory 
response 
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1.2 Principles of inflammation  

           Inflammation is a manifestation of the body's response to tissue damage and infection. 

Humans and animals have various defensive mechanisms to protect them from different 

pathogens including viruses, bacteria, fungi, and protozoan and metazoan, parasites; as 

well as tumors and a number of various harmful agents, which are capable to alter the 

homeostasis. The basic principle of inflammatory reaction is to bring the cells of the defense 

and immune system to the site of infection or tissue injury, in order to remove the 

pathological agent and to protect the host. The detailed processes of inflammation have 

revealed that it is a complex stereotypical reaction involving a number of cellular and 

molecular components and important changes in the physiological systems as well. The 

result of each inflammatory reaction may be beneficial (defending the body against agents 

that alters the homeostasis) or harmful (damage to surrounding tissues).  

  According to different criteria, inflammatory reaction can be divided into several 

categories. The criteria include:  

1. Time -- hyperacute (peracute), acute, subacute and chronic inflammation;  

2. The main inflammatory manifestation - alteration, exudation, proliferation;  

3. The degree of tissue damage - superficial, profound (bordered, not bordered);  

4. Characteristic picture - nonspecific, specific; 

5. Immunopathological mechanisms  

o allergic (reaginic) inflammation,  

o inflammation mediated by cytotoxic antibodies,  

o inflammation mediated by immune complexes,  

o delayed-type hypersensitivity reactions.  

 Either exogenous factors like traumatic, ionizing irradiation, nutritional deficiency, biological 

agents and caustic agents, endogenous factors like immunological reactions, genetic and 

neurogenic, cause cell and tissue damage. Thus, specific immune response help in the 
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healing processor or can leads to harmful outcomes like autoimmune diseases and 

immunopathological reactions.  

  Inflammation is often considered in terms of acute inflammation that includes all the 

events of the acute vascular and acute cellular response (see below); and chronic 

inflammation that includes the events during the chronic cellular response and resolution or 

scarring (see below). The earliest, gross event of an inflammatory response is temporary 

vasoconstriction, i.e. narrowing of blood vessels caused by contraction of smooth muscle in 

the vessel walls, which can be seen as blanching (whitening) of the skin. This is followed by 

several phases that occur over minutes, hours and days later, outlined in the table 1.2. 

     Table 1.2. Vascular and cellular events associated with inflammatory reactions 

                

1 Acute 

vascular 

response 

Few seconds to 

few minutes 

Vasodilation and increased capillary 

permeability due to alterations in the 

vascular endothelium, which leads to 

increased blood flow (hyperaemia) that 

causes redness (erythema) and the entry 

of fluid into the tissues (oedema). 

2 Acute cellular 

response 

Few hours  Appearance of granulocytes, particularly 

neutrophils, in the tissues. Pus formation. 

3 Chronic 

cellular 

response 

Next few days  Appearance of a mononuclear cell 

infiltrate composed of macrophages and 

lymphocytes. 

4 Resolution Next few weeks Scarring or granulomatous tissue. 
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Figure1.2. Flow chart showing the various outcomes of inflammatory reaction to tissue injury. 

This reaction can result from sustained tissue insult, failed resolution of the acute 

inflammation or hypersensitivity immune response.  Chronic inflammation often 

demonstrates slow onset with a persistent cyclical tissue destruction and repair.  

Tissue damage or necrosis 

Marked neutrophil response 

with tissue destruction Acute inflammation 

Organization with 

continued inflammation 

Persisting damaging agent 

with tissue destruction 

Organization through 

phagocytosis and granulation 

tissue formation 

Damage neutralized 

with tissue 

destruction 

Damage neutralized 

and tissue damage is 

minimal 

Healing by repair 

Chronic 

inflammation 
Resolution 

Abscess formation 
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1.2.1     Phases of inflammatory reaction to injury and infection 

Inflammation is the phylogentically and ontogenetically the body's oldest defense reaction 

to protect the body against infectious agent, antigen challenge or even just physical, 

chemical or traumatic damage, it is characteristic by three major events. 

 1. Vasodilation is a classic feature of acute inflammation and is clinically 

characterized by redness and warmth at the site of injury. The purpose of the vasodilatory 

response is to facilitate the local delivery of soluble mediators and inflammatory cells. This 

is mediated primarily by nitric oxide (NO) and vasodilator prostaglandins. Both these 

mediators causes smooth muscle relaxation which leads to vasodilation. Vasodilatation 

initially involves arterioles followed by the opening of new microvascular beds. In cases of 

severe systemic inflammation such as sepsis, induced by the actions of NO and pro-

inflammatory cytokines, such as TNF-α (Sherwood and Toliver-Kinsky 2004). 

 2.  Increased capillary permeability: Beginning immediately after injury, several 

different pathways can induce increased vascular permeability as listed below (Wilhelm 

1973):  

 Formation of venule intercellular endothelial gaps is the most common mechanism 

underlying increased vascular permeability; endothelial cells are induced to contract, 

thereby opening intercellular gaps. Contraction is elicited by chemical mediators (e.g. 

histamine), which occurs rapidly after injury and is reversible and transient (15 to 30 

minutes); hence it is an immediate‐transient response. It involves only small venules 

(not capillaries or arterioles); these venules will also eventually be sites for leukocyte 

emigration. The same response can be caused by cytokines, such as interleukin‐1 

(IL‐1) and tumor necrosis factor (TNF-α), but will be delayed (4 to 6 hours) and 

protracted (24 hours or more). 
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 Direct endothelial cell injury. Severe necrotizing injury (e.g. burns) causes endothelial 

cell necrosis and detachment that affects venules, capillaries and arterioles; recruited 

neutrophils may contribute to injury. The damage usually evokes immediate and sustained 

endothelial cell leakage. 

 Delayed prolonged leakage begins after a delay of 2 to 12 hours and may last for 

days; venules and capillaries are affected. The causes of this include mild/moderate 

thermal injury, x-ray irradiation, or ultraviolet (UV) injury (e.g., sunburn). Direct endothelial 

injury or secondary cytokine effects (endothelial contraction) may also be implicated. 

 Leukocyte‐mediated endothelial injury results from leukocyte aggregation, adhesion, 

and migration across the endothelium. Leukocytes release of reactive oxygen species and  

proteolytic enzymes causes endothelial injury or detachment. 

 Increased transocytosis. Transendothelial channels form by interconnection of 

vesicles from the vesiculovacuolar organelle. Certain factors (e.g. vascular endothelial 

growth factor, VEGF) induce vascular leakage by increasing the numbers of these 

channels. 

 Leakage from new blood vessels. During repair, endothelial proliferation and 

capillary sprouting (angiogenesis) result in leaky vessels. Increased permeability persists 

until the endothelium matures and intercellular junction form.  

 

Inflammatory responses can be classified into three types, based on the onset of 

inflammatory reaction and change in vascular permeability. The three types of 

inflammatory response are listed below (table 1.2.1).  
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Table 1.2.1. Types of inflammatory response   

 

3.    Oedema and leukocytes migration. Fluid which accumulates during 

inflammation is composed of exudate that is caused by alterations in post-capillary 

venules pressure, which overcomes the osmotic pressure of plasma protein. There are two 

phases of inflammatory oedema formation. The immediate temporary phase, with a peak 

Type of 

inflammatory 

response 

Duration  Type  of 

injury 

Characteristic  Example 

Early 

response 

Less than 

1 minute 

Non-intense 

injury 

Begins in one minute, 

reaches peak in 3 

minutes and last only 

5-10 minutes 

Heating, cold injury, 

surgical incision 

crushing and 

chemical injury. 

Immediate 

response 

1 to 10 

minutes 

Moderate 

injury 

Begins in the initial 

minutes after injury, 

reaches a peak in the 

first hour and has a 

duration not exceeding 

10 hours. 

Thermal injury, 

ultraviolet injury. 

Delayed 

 

Two forms 

 

 

 

 

 

 

 

Less than 

1hour 

 

 

Moderate 

injury  

 

Follows after increased 

vascular permeability,  

 

Moderate thermal 

injury, cold injury, 

ultrasonic injury, 

acute bacterial 

infection.  

 

2- 10 hours  

 

 

 

 

Severe injury  Ultraviolet and 

chemical injury, β and 

x-radition, iota-toxin 

and delayed 

hypersensitivity 

reaction. 
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between 8 and 10 minutes and duration about 30 min, develops because of a release of 

fluid from venules mediated by histamine. This is followed by a immediate prolonged 

phase, which has characteristics similar to the early phase, but with a longer duration of a 

few days. The second delayed phase needs a few hours to develop.  

  In the fluid exudate, all components of plasma, including fibrinogen, kinins, 

complement, immunoglobulins, etc; and inflammatory cells are present. Exudative infiltrate 

is responsible for two of the cardinal signs of inflammation. The first is swelling (tumour), 

and the second is pain (dolor), caused by the increased pressure in tissue.  The pain can 

also result from the acidic pH of exudate, the accumulation of potassium ions and the 

presence of bradykinin, serotonin or other mediators.  

            The formation of oedema can also lead to stasis of blood flow, which in turn 

causes the white blood cells to accumulate along the endothelium and begin to cross the 

vessel wall. Cellular exudate is formed during the second and the third phases of 

inflammation. In the earliest stages of inflammation, neutrophils are particularly prevalent, 

but later monocytes and lymphocytes migrate towards the site of infection, the entire steps 

involved in migrations of leukocytes is explained later. The cellular composition of 

exudates, thus, differs depending on the phase of inflammation but can vary with the type 

of inflamed tissue and factors triggering inflammatory process. Neutrophils are dominant 

when a pyogenic bacterial infection or local depositions of immune complexes containing 

IgG are the cause of inflammation. Mononuclear phagocytes represent the main infiltrating 

cells in subacute and chronic phases of the majority of inflammatory reactions; and in the 

case of infection with intracellularly parasitizing microorganisms. Eosinophils and 

basophils are predominant when inflammation has been initiated by immediate allergic 

reactions or by parasites.  

 Therefore, a number of different cell types are recruited into the area where damage 

has occurred; and these are responsible for inactivation and removing of the invading 
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infectious agents, for removing damaged tissues, for inducing the formation of new tissue; 

and reconstructing the damaged cell matrix, including basement membranes and 

connective tissues. 

 The cellular content in the exudates have specific role in order to resolve the 

inflammatory situation. For instants, professional phagocytes (neutrophils, eosinophils, 

monocytes and tissue macrophages) are essential for performing phagocytosis and 

removing all the microbes and dead cells. Lymphocytes are involved in the specific 

immune responses, endothelial cell play a major role in the regulation of leukocyte 

emigration from the blood into inflamed tissue; and platelets with mast cells are involved in 

the production of early phase mediators. The accumulation of leukocytes in inflamed 

tissue results from adhesive interactions between leukocytes and endothelial cells within 

the microcirculation. These adhesive interactions and the excessive filtration of fluid and 

protein that accompanies an inflammatory response are largely confined to one region of 

the microvasculature -- postcapillary venules. The contribution of different adhesion 

molecules to leukocyte rolling, adherence, and emigration in venules will be discussed 

later. This process is similar for granulocytes, monocytes and lymphocytes, only different 

chemotactic factors and cytokines may be involved in its initiation and control.  

The flowchart shown below, outlines the various cellular and vascular events and 

different phases involved in any inflammatory events. This chart was adapted from text 

book of Anatomy and Physiology by Benjamin Cummings 2001, 3rd edition, published by 

Pearson education. 
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Transmigration 

(diapedesis) 
Leukocyte activation 

Recognition of opsonis 
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1.3  Neutrophils  

 Neutrophils play a central role in the inflammatory process, followed by 

macrophages, eosinophils and mast cells. The neutrophils represent the first line of 

defence against infecting microbes. It is the most numerous white blood cell, out-

numbering all the other white cells put together. It represents the most significant part of 

the immune system, without which any species would be overwhelmed by infection and 

unable to survive.   

1.3.1 History of the study of neutrophils 

 Early microscopists visualized the white corpuscles of the blood along with the 

numerous red blood corpuscles.  However, it was not until Paul Ehrilich used coloured 

stains and showed that these white corpuscles were of several types. The nuclear stains 

showed that the white blood cells had either a clearly defined large single nucleus or 

apparently smaller numerous nuclei. Ehrlich consequently named these latter cells as 

polynuclear cells. However, further studies showed that the apparently separate nuclei 

were, in fact, the large lobes of a single nucleus. The large nuclear lobes were linked by 

fine interconnecting parts which were difficult to visualize, and gave rise to the original 

error. In 1898, Ehrlich renaming these cells as cells with polymorphous nuclei. This 

complex name was adapted by Metchnikoff to produce the more familiar name: 

polymorphonuclear leukocyte (PMN). Consequently, this name remained in common use 

today.The stains that Erhlich used also also showed that the PMNs were themselves not a 

uniform population of cells. The granules within some PMNs stained with basic aniline 

dyes (basophils); and some other PMNs had granules which stained with acidic dyes, such 

as eosin (eosinophils). However, the major population of PMNs had granules which 

stained with neutral stains, and were hence named as neutrophils. However, Metchnikoff 

(father of neutrophil cell biology) actually called neutrophils,  microphages to contast with 

the larger macrophages.  
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 The role of neutrophils in inflammation was unclear to 19 th Century scientists, when it 

was thought that neutrophils carried “germs” (which were spontaneously generated) to the 

site of inflammation.  However, Waller demonstrated that neutrophils leave the blood 

vessels by diapedesis, doubting the 19th Century concept. Metchnikoff proved that 

neutrophils were actually the opponents of infection, describing the process of 

phagocytosis; and proving that both phagocytosis and diapedesis were the mechanism 

used by neutrophils to kill the infecting microbes.  

 Following the acceptance of Metchnikoff’s phagocyte theory, the focus of research 

became the mechanism by which neutrophils achieved the killing of bacteria after 

phagocytosis. Eichwald in 1864 had demonstrated that pus contained products of 

proteolysis. However, this was neglected as a killing mechanism because of presence of 

anti-proteases. The exact mechanism for the killing remained undiscovered for 50 years. It 

was not until 1933, that it was discovered that phagocytosis was accompanied by a 

massive burst of oxygen consumption (Baldridge and Gerard 1933).  Anger L, showed that 

neutrophil peroxidase could destroy toxins in the presence of hydrogen peroxide. Selvaraj 

further established a role of oxygen and Sbarra showed that in low oxygen neutrophils 

could phagocyte but do not kill microorganisms. Segal and Jones later established the 

molecular nature of the oxidase as containing a b-type cytochrome by its lack in patients 

with Chronic granulomatous disorder(CGD) (Hallett MB, 2001) 

 Advances in signaling within neutrophils have occurred more recently, mainly in the 

second half of the 20th Century.  Karnovsky demonstrated that inorganic phosphate was 

incorporated into phosphatidylinositol during neutrophil activation and made the first major 

discovery of the signaling mechanism in neutrophils. The second discovery was that 

cytosolic free Ca2+ signaling which was involved. Woodin and Weinke were the first to 

demonstrate a direct role for Ca2+ (Hallett MB, 2001). They showed that Streptolysin A 
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activated neutrophils by increasing the permeability of the plasma membrane to Ca2+.  

Table 1.2.1 lists other advances. 

Table  1.3.1: History of discovery of neutrophils (adapted from Hallet MB 1989) 

Discovery Discoverers  Date 

Identification of the neutrophils Ehrlich 1886 

Phagocyte theory Metchnikoff 1895 

Opsins Wright & Douglas 1903 

Respiratory burst Baldridge and Gerard 1933 

Non-mitochondrial oxidase 

activity 

Becker et al, Sbarra & 

Karnovsky 

1958,1959 

Involvement of phosphatides Karnovsky & Wallach 1960 

Involvement of ca2+ ions Woodin & Weineke 1963 

 
 

1.3.2 Haematopoiesis of neutrophils 

  The term ”haematopoiesis” comes from ancient Greek meaning "to make blood ". All 

cellular blood components are derived from haematopoietic stem cells. In a healthy adult 

person, approximately 1011–1012 new blood cells are produced daily in order to maintain 

steady state levels in the peripheral circulation (Stites 2001). Haematopoietic stem cells 

(HSCs) reside in the medulla of the bone (bone marrow) and have the unique ability to 

give rise to all of the different mature blood cell types. HSCs are self-renewing. When they 

proliferate, at least some of their daughter cells remain as HSCs, so the pool of stem cells 

does not get depleted. The other daughters of HSC differentiate into three lineages 

(myeloid, erythroid and lymphoid progenitor cells). However, each can commit to any of 

the alternative differentiation pathways that lead to the production of one or more specific 

types of blood cells, but cannot self-renew. This is one of the vital processes in the body. 

In developing embryos, blood formation occurs in aggregates of blood cells in the yolk sac. 

As development progresses, blood formation occurs in the spleen, liver and lymph nodes. 

When bone marrow develops, it eventually assumes the task of forming most of the blood 

cells for the entire organism. In children, haematopoiesis occurs in the marrow of the long 
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bones, such as the femur and tibia. In adults, it occurs mainly in the pelvis, cranium, 

vertebrae, and sternum. In some cases, the liver, thymus, and spleen may resume their 

haematopoietic function, if necessary. This is called extramedullary haematopoiesis. The 

figures 1.3.2a and 1.3.2b show the changes in anatomical location of hematopoiesis 

during human development. Two models have been proposed; a classic model and a 

myeloid-based model. According to the classic model proposed by Weissman (Wheeler 

1993) the hematopoietic stem cells give rise to myeloid-erythroid progenitor cells and 

lymphoid progenitor cells. However this model is not accepted anymore. The myeloid-

based concept has become widely accepted, where the stem cells give rise to myelo-

eyrthroid progenitors and myelo-lymphoid progenitors. The figure 1.2.3c is the schematic 

representation of both these models.  

   Differentiatied red and white blood cell production is regulated with great precision 

in healthy humans; and the production of granulocytes is rapidly increased during 

infection. The proliferation and self-renewal of these cells depend on stem cell factor 

(SCF). Glycoprotein growth factors regulate the proliferation and maturation of the cells 

that enter the blood from the marrow and cause cells in one or more committed cell lines 

to proliferate and mature. Other factors that stimulate the production of committed stem 

cells include CSF-granulocyte-macrophage (CSF-GM), CSF-granulocyte (CSF-G) and 

CSF-macrophage (CSF-M). These stimulate CFU-GEMM (colony forming unit-

granulocyte, erythroid, monocyte, megakaryocyte) which no longer retain the capacity to 

self replicate. These cells in turn differentiate into the CFU-GM (colony forming unit – 

granulocyte, macrophage), which in turn differentiate into CFU-G (colony forming unit– 

granulocyte), which becomes progressively more committed with each division eventually 

give rise to neutrophils. These cell lines along with the stem cells comprise the neutrophil 

progenitor pool (NPP) (Kanwar and Cairo 1993; Wheeler 1993), as shown in figure 1.3.2d. 

   Neutrophil myelopoiesis is a closely regulated process that begins with the 

differentiation of puripotent cells into primitive myeloid progenitors, which differentiate into 
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specific myeloid precursors. Contact with adhesion molecules, hematopoietic growth factor 

and cytokines promotes the progression of myeloblasts along specific pathways to mature 

as either neutrophils, eosinophils, basopils or monocytes (Serhan 2010). The coordinated 

expression of a number of myeloid transcription factor including PU.1, CCAAT enhancer 

binding protein α and Ω and GF, are necessary for the regulation of neutrophil 

development. Among the extracellular factors that direct pluripotent stem cells to 

differentiate into neutrophils, CSF-G plays an essential role. CSF-G had been shown to 

induce myeloid differentiation, stimulate proliferation of granulocytic precursors and 

provoke neutrophil release from the bone marrow (Serhan 2010). The biological effects of 

G-CSF are mediate via its receptor CD114, a member of haematopoietic cytokine receptor 

family. Other haematopoietic cytokines contributing to neutrophil development in vivo 

include CSF-GM, IL-6 and IL-3. Figure 1.3.2.f is a schematic representation of 

granulocytopoieisis and the possible factors responsible for regulation of synthesis of 

neutrophils and other granulocytes. Although incompletely understood, the mechanisms 

controlling neutrophil homeostasis involve both neutrophil production and clearance 

(Serhan 2010). Recent observations implicate the SDF-1/CXCR4 signaling system in the 

process of neutrophil clearance. SDF-1 is a chemokine that is secreted from bone marrow 

and attracts neutrophils by engaging the CXCR4 receptor. Senescent neutrophils 

upregulate CXCR4 and obtains the ability to migrate towards SDF-1 and homing to the 

bone marrow, result in clearance of aging cells from the blood. In the bone marrow, as well 

as in the spleen and liver, damaged and aging neutrophils are cleared by tissue 

macrophages. Reduction of neutrophil populations is also effected through the induction of 

apoptosis.  

  A feedback loop down regulating neutrophil production has recently been identified. 

Following phagocytosis of apoptotic neutrophils by tissue macrophages, the latter shut 

down their secretion of IL-23. In consequence, IL-17 production by TH17 cells is reduced. 

Lack of IL-17 then results in decrease levels of CSF-G and consequently, reduced 
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neutrophil development and release (Serhan 2010). In the setting of increased neutrophil 

populations, this system is poised to maintain neutrophil populations within a constant 

range (Serhan 2010).. Table 1.2.3 and figure 1.2.3d, shows the various cytokines and 

regulating factors responsible to produce different granulocytes. 



           

Introduction  22 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3.2c.  Models of lineage commitment during hematopoiesis. 
A. Classic  model. Hematopoietic stem cells diverge into common myelo-erythroid 
progenitors and common lymphoid progenitors. B. Myeloid-based model. The first 

branch point generates common myelo-erythroid and common myelo-lymphoid 
progenitors, and the myeloid potential persists in the T and B cell branches even 
after these lineages have diverged. This model postulates that specification towards 
erythroid, T and B cell lineages proceeds on the basis of a prototypical myeloid 

program. This picuture was adapted from RIKEN Press Release (2008). 

Figure 1.3.2 a. Various hematopoiesis sites in human. Yolk 

sac is the most predominant hematopoiesis tissue in fetus, 

while bone marrow is the common site for hematopoiesis 

during postnatal stage. Various bone marrows of long bones 

remain the predominant site for the production of various blood 

cells are the common sites in grown adult. This picture is 

adapted from Wikipedia.  
Figure 1.3.2b.  Hematopoiesis in humans.Schematic 

diagram showing the predominant hematopoiesis 

tissues involved in production of different blood cells 

during various development stage in human life. This 

picture is adapted from Wikipedia. 
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Figure 1.3.2d. Cytokines involved in hematopoiesis.Diagram including 

some of the important cytokines that determine which type of blood 

cell will be created. This picture was adapted from Wikepedia.  

Figure 1.3.2e. Production of 

various blood cells in human. This 

picture was taken from New world 

Encyclopedia. 
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1.3.3    Life cycle of neutrophils 

   The neutrophils life cycle can be categorized into three phases, the bone marrow 

phase, followed by a circulating phase and ending with a tissue phase. Within the bone 

marrow phase, neutrophils originate from  self-renewing myeloid stem cells  which give rise to 

myeloblast which inturn differentiate into prometamyeloblast (azurophils granule formation), 

myelocytes (specific granule formation), metamyelocytes, at which stage the cell division 

terminates while the development of granules continues.  Terminally differentiated neutrophils 

are released from the bone marrow (figure 1.3.3a; figure 1.3.3b and table 1.3.3a). The entire 

bone marrow phase for neutrophils last for approximately 14 days. About 60% of all nucleated 

cells in the bone marrow belong to the myeloid series. The bone marrow comprises a reserve 

pool of mature neutrophils that contains roughly 20 times the number of neutrophils in the 

Figure 1.3.2.f: Granulocytopoiesis in the bone marrow. Stem cells present in the niches provided 

by osteoblasts and endothelial cells. The balance between PU.1 and C/EBPα and Gfi-1 
expression determines the differentiation of cells into the granulocytic or the monocytic pathways. 
The different subsets of granules (azurophil (red), specific granules (green), and gelatinase 
granules (yellow) and secretory vesicles (empty) are formed sequentially during maturation from 
promyelocytes, determined by the expression of transcription factors indicated on the top of the 
figure. Retention and release of cells is determined by the balance between CXCR4 (favoring 
retention) and CXCR2 (favoring release) and their ligands SDF-1, and KC and Groβ, 
respectively. G-CSF stimulates neutrophil release directly by effects on the neutrophil and 
indirectly by reducing the SDF-1 expression and enhancing the expression of Groβ on 
endothelial cells. This picture was taken from Journal of Immunity, 2010, 33(5): 657-70 



           

Introduction  25 
 

circulation. During infections, the cells are released sooner (up to 1012 per day instead of 1011 

per day in normal condition (Kuijpers 2001). The neutrophils released from the bone marrow 

enter the next phase, the circulating phase. In the circulation, neutrophils have a half -life of 6-

9 hours. Neutrophils comprise more than 50% of circulating leukocytes and more than 90% of 

circulating phagocytes. Within the circulation, PMNs exist in two pools in a dynamic 

equilibrium: a circulating pool and a marginated pool, the latter believed to be sequestered 

within the microvasculature of many organs. They move reversibly from circulating pools and 

margination pool (capillaries of certain tissues like lungs). The main function of marginated 

neutrophils is to be mobilized rapidly in response to infection or other stress (Hallett, 

MB,2001). During steady-state granulopoiesis, roughly 10 11 neutrophils are released into the 

blood stream daily.  Tissue phase is the last phase in   the life cycle of neutrophils, were these 

cells leave the blood stream and entre the inflammatory area with help of chemotatic 

gradients (figure 1.3.3a). The main purpose of this phase is to kill tissue bacteria and fungi. 

Once they destroy the microorganism, they undergo apoptosis and are cleared by tissue 

macrophages. In normal body conditions, the neutrophils extravaste in the lungs, the oral 

cavity and into the gastointestinal tract and are cleared in this way (Hallett, MB, 2001) 

In the resting uninfected host, the production and elimination of neutrophils are 

balanced, resulting in constant number of peripheral blood neutrophils. Neutrophil turn over is 

under strict control, as demonstrated by the spontaneous apoptosis that neutrophils undergo 

before their removal by macrophage in the lung, spleen and liver (Hallett, MB, 2001). During 

pathogical conditions the number of circulating neutrophils dramatically increases even up to 

10-fold because of either an accelerated release of neutrophils from the bone marrow 

combined with a stimulated maturation of immature neutrophils by CSF, or a demargination 

from lungs or the spleen. Under these conditions, the generation of specific chemotactic 



           

Introduction  26 
 

agents triggers the migration of neutrophils to the site of infection, where their phagocytic 

activities and defensive functions are exerted (Hallett, MB, 2001). 

   The last three cell stages (the metamyelocytes, band cells and neutrophils. myeloblast) 

constitute the neutrophil storage pool (NSP). Once the neutrophils are produced they lose the 

ability to divide and their synthetic machinery becomes almost totally inactivated.  The 

development and formation of neutrophil granules occurs in a sequential process during 

myeloid cell differentiation (figure 1.3.3a.). Granule formation begins in the early promyelocyte 

stage, a period during which the majority of nascent granules are rich in myeloperoxidase, an 

enzyme that catalyzes that formation of hypochlorous acid. These primary granules are also 

referred to as azurophilic, owing to their affinity for the basic dye azure A. They are functionally 

similar, although not identical, to lysosomes of other cells. Azurophilic granules maturation is 

largely complete at the myelocyte stage of neutrophil development, at which point, peroxidase 

negative granules begin to form. Based on their time of appearance and content, the latter are 

subdivided into secondary and tertiary granules. Specific granules developed in myelocytes 

and metamyelocytes are rich in lactoferrin, whereas gelatinase granules form in band stage 

and lack lactoferrin. A fourth category of granules, secretory vesicles, are smaller than the 

others and appear during the late stage band nuclear neutrophil segmentation. The content of 

granules is listed in the table 1.3.3b.  
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Table 1.3.3a. Stages in neutrophil development and morphological characters  (this table 

was taken from Text Book of Physiology by Guyton 12th Edition) 

Stage of neutrophils 

development 

Morphological characteristics 

MYELOBLAST Prominent round nuclei, relatively undifferentiated cytoplasm, high 

nuclear cytoplasmaic ratio, peroxidase found in RER, golgi, matured 

azurophil granules. (Blue-red in Wright's, 3-5 mitotic divisions). 

PROMYELOCYTE Production and accumulation of many peroxidase positive sheroidal 

ellipsoidal azurophil granules (~05µm) with cystalline centers, 

peroxidase also in RER and Golgi,peroxisomes appear (catalase). 

 

MYELOCYTE 

Production and accumulation of peroxidase negative specific 

granules (0.2 µm spheres, 0.1 x1µm rods) other variable shapes, cell 

divisions now dilute azurophil granules so that specific granule are 2X 

more abundant. 

META MYELOCYTE Non- dividing, non –secretory. 

BAND, 

SEGMENTED  

Nuclear morphology changes, mitochondria are lost, surface receptors 

for activation become expressed 33% azurophil, 67% specific 

granules. 

Figure 1.3.3a.: Shows the different cell stages during maturation of the neutrophil. The overall 

maturation scheme of the neutrophilic line consists of nuclear shrinkage and segmentation with 

concurrent condensation of the chromatin. This process begins with the formation of a functionally 

immature myeloblast and culminates with the development of a phagocytic-segmented neutrophil. This 

maturation takes about 15 days and occurs in the bone marrow. Adapted from 

www.googleimages.com.  

MYELOBLAST PROMYELOCYTE 

MYELOCYTE 

METAMYELOCYTE 

BAND CELL 

SEGMENTED  
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Table 1.3.3b. Content of neutrophil granules (adapted from Borregaard et al, 1996) 

Granules Membrane content Matix content 

Azurophil 
granules 

CD63, CD68. Acid β glycerophosphatase, acid 
mucopolysaccharide, α1- antitrypsin, 
αmannosidase, azurocidin/ CAP37, 
heparin binding protein, bactericidal 
permeability, increasing protein, β-
glycerophosphatase,β-glucuronidase, 
cathepsins, defensins, elastase, 
lysozyme, myeloperoxidase, N-acetyl- 
β- glucosaminidase, proteinase-3, 
sialidase. 

Specific 
granules 

CD15 antigens,CD66, CD67, 
cytochrome-b558, FMLP-R, 
fibronectin-R, G-protein α -subunit, 
Laminin-R, Mac-1 (CD11b/CD18), 
NB1 antigen, 19kD-protein, 
155kD-protein, Rap1, Rap2, 
thrombospondin-R, TNF-receptor, 
vitronectin-R. 

β2-microglobulin, collagenase, 
gelatinase,histaminases, heparanase, 
lactoferrin, lysozyme, plasminogen 
activator, sialidase, vitamin B12-binding 
protein. 

Figure 1.3.3b:  Stages of 

neutrophil maturation. 

Schematic diagram of different 

stages in maturation of 

neutrophils and its morphologic 

characters. This picture was 

taken from Harrison’s Principle 

of Internal Medicine, 17th 

edition by Fauci AB et al, 2001.   
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Gelatinase 
granules 

Cytochrome b558, diacylglycerol, 
deacylating enzyme, FMLP-R, 
mac-1(CD11b/CD18). 

Actytranferase, β2-microglobulin, 
gelatinase, lysozyme. 

Secretory 
vesicles 

Alkaline phosphatase, CR1 
(CD45), cytochrome b 558, FMLP-
R, mac-1(CD11b/CD18), 
uroplasminogen activator-R, 
CD10, CD13, CC45, 
FcγRIII(CD16), C1q-receptor, 
DAF. 

Plasma protein, including tetranectin. 

 

1.3.4   Morphology of neutrophils 

   Neutrophils are small, having a spherical diameter of approximately 10 micrometers 

(Wintrobe,1981). The cytosol is largely filled with 5 nuclear lobes connect by fine threads. 

They have hetergenous cytoplasmic granules that are storage pools for mostly cell-specific 

intracellular enzymes, cationic protein, receptors and discrete proteins. They have a water 

volume of approximately 346fl (Hempling 1973). The density of a typical neutrophils is 1.08-

1.09 (Pertoft et al. 1960), making them denser than most other cells of myeloid lineage. This 

high density is due largely to the granules, which make up 15-16% of the cell by volume 

(Schmid-Schonbein et al. 1980) which are themselfs very dense (Bretz and Baggionlini, 

1974). As previously described, the nucleus is the chief distinguishing feature of the 

neutrophils, occupying more than 20% of the cell volume (Schmid-Schonbein et al 1980). 

The nucleus is multi-lobed, with the number of lobes increasing from 2-5 as the neutrophils 

age (Kline. 1975, Mcdonald et al. 1978). The neutrophil cytoplasm is packed with three 

different types of granules (Boxer and Smolen 1988), each containing substances specific to 

particular functions performed by the cells (table 1.3.4).  
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      By electron microscopy, approximately one third of the cytosol appears to be occupied 

by these organelles. However, in the living spherical neutrophils, this appears to be an 

underestimated, with the major part of neutrophil cytoplasm being occupied by nuclear lobes. 

In contrast, the nucleus plus perisomes, lysosomes and endosomes in live cells occupies only 

9% of the cell volume. Another striking feature is that neutrophils contain virtually no 

mitochondria, and few   ER and a golgi-like region which makes up less than 1% of the total 

volume of the average cell (Hallett 1989). These unique features distinguish the neutrophils 

from other white blood cells, and their isolation and identification depends on the density and 

morphology conferred by them. 

 Table 1.3.4 Morphology of neutrophils 
 

 

 

 

 

 

1.3.5   Receptors of neutrophils 

    Neutrophils also have a specific set of surface markers, including receptors for 

substance produced in the natural immune response, e.g Fcγ, C5a and C3bi. Another marker 

abundant on neutrophils surfaces is CD59. Since their interactions with the external milieu are 

crucial for innate responses, neutrophils have developed a recognition apparatus that is able to 

specifically bind a wide range of extracellular ligands (Hallett 1989). There are between 0.5-1 

Parameter Value Species 

Diameter  10-15μm Human 

Volume 346fl Human 

Organelle volume  

Cytoplasm 

 

63% 

 

Human 

Nucleus 21% Human 

Granules 15.4% Human 

Mitochondria 0.6% Human 

Water volume 274fl Human 
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million of these receptors per neutrophils. There are also receptors for a range of inflammatory 

mediators, such as TNFα, interleukins and other cytokines and bacterial formylated peptides 

(the most commonly used analogue is a FMLP) and lipopolysaccharide (LPS, endotoxin). 

Following ligation of one or more types of surface receptors, neutrophils generate a number of 

activation steps, via the generation of a cascade of intracellular “second messengers.” (Hallett 

1989). These steps are biochemical events, which mediate the transmission of biological 

information between membrane receptors and various intracellular components, involved in 

specific effector functions. Consequently, neutrophil receptors are able to regulate a wide range 

of functions, including adhesion, migration, phagocytosis, survival, cell activation, gene 

expression induction, proinflammatory mediator release; and target cell killing (Hallett 1989).  

          The transduction machinery is mainly, but not exclusively, located in the plasma 

membrane; and is composed of a series of enzymes (i.e. kinases, phosphatases, adenylate 

cyclase, phospholipases and other enzymes involved in lipid metabolism) or regulatory proteins 

(G-protein subunits, channel proteins, anchoring and adaptor proteins) (Hallett 1989). This in 

turn, is regulated by several other second messengers (calcium ions, inositol phosphates, 

diacyglycerol, phosphatidate, cAMP, and so forth). A non- exhaustive list of neutrophil receptors 

includes  

 Receptors for proinflammatory mediators (i.e. the anaphylotoxin complement 

component C5a, leukotriene B4 [LTB4], platelet-activating factor [PAF], substance P, 

and bacterial formylated peptides typified by FMLP);   

 Receptors for cytokines such as interferon-γ (IFNγ), IL-1, IL-4, IL-6, IL-10, IL-13, IL-

15, IL-18, TNFα, G-CSF, GM-CSF and many others;  

 Receptors for chemokines, including those for IL-8/CXCL8 and GROα/CXCL1, called 

CXCR1 and CXCR2;  
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 Receptors/adhesion molecules for the endothelium (see later); 

 Receptors for tissue matrix proteins and lectins; opsonin receptors, those for the Fc 

portion of γ-immunoglobulins (FcγRs); and for the major cleavage fragments of the 

complement system (CRs).  

     Neutrophils constitutively express the low-affinity FcγRs (FcγRIIA/CD32A and 

FcγRIIIA/CD16A), and when exposed to IFNγ or G-CSF, the high-affinity FcγR (FcγRI/CD64) 

as well. CR expressed by neutrophils are CR1 (also known as CD35), which binds to 

complement components C1q, C4b, C3b, and mannan-binding lectin (MBL); CR3 (α Mβ 2 

integrin, CD11b/CD18, or MAC-1), which binds to iC3b, ICAM-1 and some microbes; CR4 (α 

Xβ 2 integrin, CD11c/CD18), which binds to iC3b (Hallett 1989). By expressing these latter 

receptors, neutrophils are able to recognize and bind, in a cooperative manner, IgG-opsonized 

particles and/or complement-opsonized microbes; and then activate their phagocytosis. 

Neutrophils also express a variety of pattern recognition receptors (PRRs). The latter represent 

an emerging class of sensors that function by recognizing the so-called pathogen-associated 

molecular patterns (PAMPs) (Hallett 1989). Neutrophils express all TLRs (with the exception of 

TLR3), whose activation has been shown to influence many functional responses. For 

instance, engagement of TLR can  (a) modulate neutrophil expression of adhesion molecules; 

(b) regulate neutrophils recruitment directly through effects on chemokine receptor expression 

and indirectly through effects on CXCL8 generation by neutrophils themselves;  (c) “prime” 

neutrophils for enhanced ROS production; and (d) prolong neutrophil survival both directly and 

indirectly (via monocyte) (Hallett 1989). 
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          Table 1.3.5.Receptors of neutrophils 

Receptor  Cell response Signal generated Activation 
mechanism 

Ligand type 

7TMR Chemotaxis Calcium, tyrosine Occupancy IL-8 

PAF Degranulation   C5a 

G protein SP 
coupled R 

Oxidase 
activation 

Phosphorylation 

cAMP, actin 
polymerization 

 FMLP 

Selectin-
carbohydrate 
residue 

Rolling  Aggregatoin  

Integrin R Adherence, 
phagocytois 
  

Ca2+, tyrosine  Aggregation
  

C3bi 

ICAM-1 

 

Oxidase 
activation, 
shape change 
  

Phosphorylation, 
actin polymerization,  

 

 

 

 

FcR  immune 
complex 

Adherence, 
                                                    
shape change  

Ca2+ , monomeric 
tyrosine 

Aggregation  IgG 

GCP-linked 
CD59 

  
  
   

Calcium, tyrosine 
phosphorylation 

Aggregation CD16 

TNFα R Priming Tyrosine 
phosphorylation 

Occupancy 
and 
aggregation 

TNFα 
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1.4 Kinetics of neutrophils 

         Inflammation is defined as a condition or state that tissues enter as a response to injury 

or insult (Seely et al. 2003). The neutrophils are the most important and the one of the most 

Figure 1.3.5. Schematic representation of various signals inside neutrophils. This picture was 

taken from Journal of Laboratory Investigation, 2000, 80(1): 198-201. 
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extensively studied cell involved in the inflammatory response. As the principal circulating 

phagocytes, the neutrophils is the first and most abundant leukocyte to be delivered to a site of 

infection or inflammation; and is an integral component of the innate immune system (Seely et 

al. 2003). The kinetics of neutrophils from the circulation to the inflamed area is highly 

regulated which involves extensive interaction of adhesion molecules and receptors between 

the endothelial lining and the neutrophils.  The migratory properties of white blood cells are 

indispensable to drive immune responses throughout the body. To ensure migration to the 

proper locations, the trafficking of leukocytes is tightly regulated. The migration and 

extravasation of leukocytes across the endothelium that lines the vessel wall occurs in several 

distinct steps, referred to as the multi-step paradigm, originally introduced by (Butcher 1991) 

and extended by Springer (1994b).  The first step comprises the rolling of the leukocytes over 

the endothelial cells, mediated by transient weak interactions between adhesion molecules. 

Subsequently, loosely attached leukocytes are in such close proximity of the endothelium that 

they can be activated by cytokines, presented on the apical surface of the endothelium. 

Consequently, the activated leukocytes will spread and firmly adhere to the endothelium and 

finally migrate through the intercellular clefts between the endothelial cells to the underlying 

tissue. The recruitment of leukocytes from the blood is one of the most dramatic cellular 

responses to inflammation; and is central to the physiologic trafficking of leucocytes. The steps 

which neutrophils undergo in order to reach the inflammatory tissue are explained in detail in 

this section. Figure 1.4 shows the various steps involved during extravasation of neutrophils 

and the associated adhesion molecules and receptors.  

1.4.1 Margination and adhesion (Step 1)  

         Neutrophils are partitioned in the blood between a circulating pool, present in large blood 

vessels, in the axial stream of small vessles and a marginating pool. In the absence of 
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inflammation, the marginating or physiological regional granulocyte pool (Peters 1998) 

comprises granulocytes transiently arrested in narrow, mainly pulmonary, capillaries. 

Neutrophils transmigration from the intravascular to the extravascular milieu predominantly 

occurs in the post capillary venule within the systemic circulation and in the capillary in the 

pulmonary circulation, tooth gingival junction in oral cavity. (Downey  1993). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4b. Stages during extravastaion of neutrophils. Under inflammatory condition, endothelial 

cells express E and P selectin, as well as ligands on surface of neutrophils are L-selectin. The 
relatively weak interaction between selectins and their ligands results in a rolling motion of the 
neutrophils over the endothelium, slowing the cell down. The rolling neutrophils are activated by 
binding of its chemokine receptors to chemokines presented on the endothelial surface. Next, 
integrins are activated causing firm adhesion, which is followed by transmigration of the neutrophils 
throught the endothelial barrier. This picture was taken from Robbin’s Text Book of Pathology, 12th 
Edition, 2001. 

Figure 1.4a. Stages and molecules involved in extavasation of neutrophils. The molecules involved during 
this process are E and P selectin expressed on endothelium and the mucin family on neutrophils. The 
neutrophils roll over the endothelium. Signals induced by chemoattractant makes the neutrophils to attach 
firmly over the endothelium. Activation of integrins neutrophil movement is arrested and they finally attach 
firmly over the endothelial lining and finally enables the neutrophils to cross the endothelial barrier. This 
picture was taken from Robins Textbook of Pathology 12

th
 Edition, 2001. 
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   The first step  is margination or movement of the neutrophils from the central stream to 

the periphery of a vessel, in post-capillary venules. When the vessel diameter is 50% larger 

than the diameter of the leukocyte, erythrocytes move faster than the larger leukocytes, 

especially in the centre of the vessel, pushing neutrophils to the vessel periphery (Schmid-

Schönbein et al. 1980). This margination allows for a molecular interaction between the cell 

surface of the neutrophils and endothelial cells to occur, resulting in neutrophils rolling onto the 

vessel wall. This initial event appears on the endothelium adjacent to the inflamed site, new 

adhesion molecules are expressed by the endothelium under the presence of inflammatory 

mediators released by damaged or infected tissues, which result in the local extravasation of 

leukocytes. In post-capillary venules or in pulmonary capillaries, the slow flow rate, futher 

reduced by vessel dilation at sites of inflammation, allows a loose and somewhat transient 

adhesion, referred to as tethering. During this tethering step, neutrophils respond to ligands, 

mainly chemokines, dispatched on the endothelium surface (Springer 1994a). This weak 

adhesive interaction between the neutrophils and endothelial cells allows the neutrophils to 

interact with the endothelium, which in turn results in the extravasation of neutrophils  (Premack 

and Schall 1996).  

 

1.4.2    Adhesion to endothelium (Step 2) 

            The next step in movement of neutrophils is termed “rolling”, which involves both 

physical and molecular forces. The ability to roll and adhere to endothelial cells is inversely 

proportional to the vessel shear rate and directly proportional to luminal red blood cell velocity 

(Blixt 1985; Firrell and Lipowsky 1989; Perry and Granger 1991). Once in proximity to the 

endothelial cell, a low-affinity adherence occurs and in conjugation with the shear stress of 

passing erythrocytes, the neutrophils begins to roll along the endothelial lining of the vessels.  
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The low affinity-rolling step is mediated by selectins and their ligands (table1.4.2). Selectins 

are a family of glycoprotein surface adhesion molecules and include L-selectin (expressed 

exclusively on leukocytes), E-selectin (expressed exclusively on endothelial cells) and P-

selectin (expressed on platelets and endothelial cells).  The ligands for neutrophil L-selectin 

are multiple sialylated carbohydrate determinates, which are linked to mucin-like molecules 

(Rosen 1993; Springer 1994c).  

            These selectin ligands on endothelial cells are inducible with a variety of inflammatory 

cytokines and lipopolysaccharide (Spertini et al. 1991). In addition to L-selectin-mediated 

rolling, endothelial cell expression of E-selectin is necessary for normal leukocyte recruitment 

and rolling (Mulligan et al. 1991; Kanwar et al. 1997). E-selectin appears on endothelial cells 

one to two hours after cell stimulation by IL-1, TNFα or lipopolysacharides (Lawrence and 

Springer 1993; Patel et al. 1995). E-selectin counter receptors include PSGL-1 and ESL-1 (E-

selectin-ligand 1), a molecule highly homologous to the cystein-rich FGF receptor (CFR) and 

located on neutrophil microvilli (Sheerin et al. 1997), a location organized by the ERM proteins 

ezrin, radixin and moesin that connect to the actin cytoskeleton (Bruehl et al, 1997; 

Steegmaier et al, 1997; Buscher et al, 2010).  

           Defects in neutrophil selectin ligand expression due to a metabolic defect in a synthetic 

pathway common to all selectin ligands, leads to faulty neutrophil trafficking (LAD2). P-

selectin, readily mobilized in a few minutes to the endothelial cell surface following stimulation 

by thrombin, histamine or oxygen radicals, interacts primarily with a mucin-like ligand, PSFL-1 

(P-selectin glycoprotein ligand-1), located at the tip of leucocyte microvilli (Moore et al. 1995; 

McEver and Cummings 1997).  

        The kinetic of neutrophils recruitment in selectin-deficient mice suggests that P- and L- 

selectin contribute sequentially to leukocyte rolling and shows that L-selectin is involved in 



           

Introduction  39 
 

prolonged neutrophil sequestration in inflamed microvasculature (Doyle et al. 1997; Ley et al. 

1995; Steeber et al. 1998). Binding of PSGL-1 to P-selectin and E-selectin establishes the 

initial contact between neutrophils and activated endothelial cells. E-selectin and ESL-1 

mediate the slower rolling, while E-selectin binding to CD44 mediates a redistribution of 

PSGL-1 and L-selectin to form clusters (Hidalgo et al. 2007) concomitant with further 

reduction in the speed of rolling.  

           The selectin-mediated bonds form and detach sequentially, but with sufficient strength 

to mediate attachment only  during the shear stress that is created by the laminar flow of 

blood in vessels (Ley et al. 2007; Papayannopoulos et al. 2010). Unlike P- and E- selectins, 

L-selectin is constitutively present on leukocytes. Its binding capacity is, however, rapidly and 

transiently increased after leukocyte activation (Li et al. 1998). So far, only one inducible L- 

selectin counter-receptor, specifically expressed on inflamed endothelium has been 

described, which bears the cutaneous lymphocyte antigen (CLA) (Tu et al. 1999).  

             In addition to its binding to endothelial ligands, leukocyte PSGL-1 is a counter 

receptor for leukocyte L-selectin and there is evidence that neutrophils roll, via L-selectin, on 

previously adherent neutrophils (Bargatze et al. 1994; Alon et al. 1996). This secondary 

tethering would synergistically enhance leukocyte accumulation on inflamed endothelium. 

However, other investigators have demonstrated that antibodies to P-selectin will attenuate 

rolling, but not impact on adherence (Bienvenu and Granger 1993). Blocking L-selectin in 

animal models reduced neutrophils mediated tissue injury, which  was belived to be 

dependent upon neutrophils adherence (Mulligan et al. 1994). In addition, soluble L-selectin 

shed from neutrophils may attenuate TNFα-stimulated neutrophils adherence and 

subsequent vascular permeability (erri 2002).  
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             These studies suggest that selectins not only mediate rolling, but also impact upon 

ensuring leukocyte adherence (Witko-Sarsat et al. 2000). Selectins bind sialyl Lewis X 

carbohydrate structures expressed on their ligands (Somers et al. 2000). The signaling 

induced by binding of ligands to PSGL-1 and CD44 involves activation of Src family kinases 

Hck, Fgr and Lyn (Yago et al. 2010), which phosphorylate and activate ITAMs 

(immunoreceptor tyrosine-based activation motifs) on two adaptor proteins, DAP12 (NDAX 

activation protein of 12 kDa) and FcRγ (γ chain of immunoglobulin Fc receptors) (Zarbock et 

al. 2008).  

             These recruit Syk (spleen tyrosine kinase) that becomes activated by 

phosphorylation. Activated Syk in turn activates Bruton tyrosine kinase (Yago et al. 2010; 

Mueller et al. 2010), which mediates the further activation of PLC-γ (phospholipase C γ), 

PI3K (phosphoinositide 3-kinase) and p38 mitogen-activated protein kinase, resulting in 

integrin activation and cytoskeletal rearrangements in the neutrophil (Ley et al. 2007; 

Barreiro and Sánchez-Madrid 2009; Woodfin et al. 2010). Table 1.4.2 lists the adhesion 

molecules and receptors involved in the extravasation of neutrophils. Figure 1.4.2 is a 

schematic representation of the interaction of selectins during the extravasation of 

neutrophils. 

 Table 1.4.2.  Neutrophil and endothelial cell adhesion receptors 

Receptors Cell Ligand Cell type Purpose 

L-selectin Neutrophils sLea , sLex Endothelium Rolling and weak 
adhesion of 
neutrophils on 
endothelium 

CD11a/CD18 Neutrophils ICAM-1, 
ICAM-2, 
ICAM-3 

Endothelium Adhesion of 
neutrophils on 
endothelium 
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CD11b/CD18 Neutrophils ICAM-1 

iC3b 

fibrinogen 

factor X 

endothelium 

complement 

 

Adhesion of 
neutrophils on 
endothelium 

Phagocytosis 

 

CD11c/CD18 Neutrophils iC3b Complement Phagocytosis 

E-selectin Endothelium 

 

sLex 

 

Neutrophils Firm neutrophils 
on endothelium 
adhesion 

P-selectin Endothelium, 
platelets 

sLex 

 

PSGL-1 

Endothelium 

 

neutrophils 

Firm neutrophils 
on endothelium 

adhesion 

Firm neutrophils 
on endothelium 
adhesion 

PECAM-1 Endothelium 

neutrophils 

CD31/αv Leukocytes Diapedesis of 
neutrophils 
through 
endothelium 

ICAM-3 Neutrophil CD11a/cd18 Leukocytes Antigen 
presentation 

 

 

 

 

 

 

 

 

Figure 1.4.2. Interaction of neutrophils and 
endothelial cells. Neutrophils roll on constitutively 
expressed P-selectin and E-selectin on the dermal 
vasculature by interacting with ligands, such as P-
selectin glycoprotein ligand 1 (PSGL1).  L-selectin, 
expressed on leukocytes and P-selectin, expressed 
on activated platelets and endothelial cells, with 
their common leukocyte ligand, P-selectin 
glycoprotein ligand-1 (PSGL-1). These rapidly 
reversible interactions mediate rolling adhesion of 
leukocytes on vascular surfaces during 
inflammation. L- and P-selectin bind to the same N-
terminal region of PSGL-1 but with different 
affinities. This picture was adopted Nature Reviews 

Immunology, 2009, 9: 364-375. 
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1.4.3 Firm adhesion and spreading (Step 3) 

  During rolling, the cell surface of the neutrophil determines its ability to undergo 

'adherence'. In contrast to rolling, which is a dynamic low-affinity adhesive interaction, 

adherence is a stationary high-affinity (strong) adhesive interaction between the neutrophil 

and endothelial cell. This interaction is largely mediated by a separate set of adhesion 

molecules, namely the integrins β2 subfamily (CD11a, CD11b, CD11c/CD18) and their ligands 

(ICAM-1). The importance of integrin-mediated adhesion to neutrophil delivery and host 

defense was first demonstrated in patients with leukocyte adhesion deficiency type 1 

(Anderson and Springer 1987)  and in animal models (Fischer et al. 1983; Anderson et al. 

1984; Sligh et al. 1993). The interaction of neutrophils with integrin is unique which differ from 

monocytes and lymphocytes, which also interact via α4β1 integrin with endothelial VCAM-1. 

        Integrins are a family of heterodimeric proteins (made up of two different subunits, 

namely α-subunits and β-subunits) that are expressed on the cell surface; and are integral to 

the process of cell adhesion. Of this family, the β2-integrins are restricted to leukocytes and 

are essential for normal leukocytes trafficking. They consist of three distinct α-subunits 

(CD11a, CD11b, and CD11c) that are bound to a common β-subunit (CD18). Although the 

distribution of β2-integrin subclasses differs among leukocyte populations, neutrophils express 

all three classes (figure 1.3.3). The relative contribution of each α-subunit to leukocyte 

adherence may vary and depend upon the stimulus leading to adherence and transmigration 

(Granger and Kubes 1994). Neutrophil integrins interact with complementary surface molecule 

ligands on endothelial cells in order to generate the high-affinity bond that characterizes 

adherence. Particularly important to neutrophils, intercellular adhesion molecule (ICAM)-1 on 

endothelial cells serves as the ligand for both CD11a/CD18 and CD11b/CD18, whereas 

ICAM-2 is capable of binding CD11a only (Zimmerman 1992).   
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  The regulation of β2-integrin avidity (clustering) involves interactions of both α and β 

chain cytoplasmic tails with the cytoskeleton (Van Kooyk et al. 1999)  and the membrane 

association of cytohesin-1, a guanine nucleotide exchange protein that binds to the 

cytoplasmic portion of CD18 (Kolanus et al. 1996; Nagel et al. 1998). During the initial rolling 

on endothelial cells, integrin "activation" signals are also given by chemoattractants displayed 

on the endothelial membrane and presumably also by the engagement of selectins and their 

counter-receptors. The  ligation of L-selectin (Simon et al. 1995) or PSGL-1 interaction with P-

selectin (Yago et al. 1999) signal neutrophil adhesive functions, via CD11b/CD18 integrins 

(Brenner et al. 1996; Steeber et al. 1997). However, signaling pathways that lead to integrins 

switching to an active conformation differ with the stimulating agonist and are still incompletely 

characterized (Capodici et al. 1998; Jones et al. 1998; Blouin et al. 1999). 

     The β2 integrins are unable to interact with their physiological ligands in unstimulated 

neutrophils, a safety mechanism that controls acute and chronic inflammatory responses. The 

ligand binding capacity is acquired upon activation signals ("inside-out signaling") that lead to 

integrins clustering and to a transition of a β2-integrin subpopulation to a high affinity state 

(Rieu and Arnaout 1996; Stewart and Hogg 1996). Various agonists trigger CD11b/CD18 

activation in neutrophils, including chemoattractants (PAF, IL8, FMLP, C5a), cytokines and 

growth factors (TNF  or GM-CSF); and bacterial products (formylated peptides and 

lipopolysaccarides). Integrins transmit signals triggered by their clustering and multiple 

engagements with adhesion substrates ("outside-in signaling") into the cell cytoplasm.  

Neutrophils integrate these integrin engagement and signals, delivered simultaneously by 

inflammatory cytokines or chemoattractants, to activate a cascade of intracellular events 

resulting in cell spreading and tight adhesion of neutrophils to the endothelium.  
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Figure 1.4.3. Leukocyte recruitment to the endothelial surface. (a) Binding of glycoprotein selectin 
ligands (yellow and purple) on the leukocyte to selectins (blue) on the endothelial surface, and weak 
binding of low-affinity leukocyte integrins (green) to ICAMs (pale yellow) on the endothelium facilitates 
cell tethering and rolling. This binding, together with signals from chemokines (pink), generates inside-
out signals (yellow arrows) that shift the bound integrins to a high-affinity ligand-binding state. (b) 
Leukocyte arrest is mediated by clusters of high-affinity integrins (red) binding to ICAMs on the 
endothelial cells. These focal clusters can themselves signal outside-in to affect functions, such as cell 
polarization and migration. This picture was taken from Genome Biology 2007, 8(5): 215.4-215.8.    

    Intergrin activation is also necessary for neutrophil, locomotion, degranulation and 

oxidative burst. These outside-in transduction pathways also include the activation of various 

tyrosine kinases (Berton 1999a; Fuortes et al. 1999; Lowell and Berton 1999), CD11b/CD18 

promotes antibody-dependent phagocytosis (Todd and Petty 1997) by interacting with Fc

RIIIb. Moreover, activation of integrins plays a vital role in generation of pro-inflammatory 

mediators (CD14) interaction with CD11bCD18 only occurs in the presence of 

lipopolysaccarids and binding protein and may play a role in the generation of pro-

inflammatory mediators (Zarewych et al. 1996; Petty and Todd 1996; Todd and Petty 1997). 

 

 

 

 

 

 

 

 

 

 

 

 

 



           

Introduction  45 
 

1.4.4 Extravasation or diapedesis (Step 4) 

      The mechanism of leukocyte migration across the endothelium is a complex multistep 

process (Springer 1994b). Extravasation or diapedesis is the final step by which leukocytes  

migrate, either between two or three adjacent endothelial cells, across the endothelial cell body 

or through the endothelial cell (Feng et al. 1998). Still, it is not clearly understood which one of 

the three routes neutrophils take. However, extravasation requires modifications of endothelial 

cell-to-cell adherent junctions and the disorganization of the junctional components, like  VE-

cadherin, β-catenin, plakoglobin and the reorganization of actin filaments, which have been 

observed in the vicinity of regions of firm adhesion between neutrophils and endothelial cells (Del 

Maschio et al, 1996) .   

       Two cell adhesion molecules of the Ig-superfamily (CAMs) has been shown to be involved in 

leukocyte transmigration, the platelet endothelial cell adhesion molecule-1 (PECAM-1 or CD31) 

and, more recently, the junctional adhesion molecule (JAM) (Muller et al. 1993; Vaporciyan et al. 

1993; Martin-Padura et al. 1998). PECAM-1 is expressed both on the neutrophil surface and at 

the endothelial cell junction and mediates neutrophil extravasation via PECAM-1/PECAM-1 

homophilic interactions. A "zipper" model has been proposed to account for a transmigration of 

leukocytes that maintains the permeability barrier of the endothelial cell monolayer (Muller et al. 

1993).   The JAM is selectively concentrated at inter-endothelial tight junctions but is not present 

on neutrophils.  

    Finally, PECAM-1 is able to transduce signals into the cell and its dimerization, by 

antibody cross-linking, increases CD11b/CD18 binding capacity via an inside-out signal 

transduction that involves PI3-kinase (Berman and Muller 1995; Pellegatta et al. 1998). In 

addition, it has been shown that adherent leukocytes transmigrate by an increase in 

intracytoplasmic calcium levels in endothelial cells. This in turn activates MLCK (myosin light-
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chain kinase), resulting in myosin skeleton reorganization and retraction of the cell body 

(Hixenbaugh et al. 1997),  which leads to increases in the gap between the endothelial cells. But 

this phenomenon takes place only in endothelial cells adjacent to transmigrating leukocytes and 

facilitates leukocyte migration across the endothelial monolayer (Su et al. 2000).  Figure 1.4.4  

represents the two possible routes that neutrophils may take in order to cross the endothelial 

lining. 

 

 

 

 

 

 

 

1.5   New concept in extravasations of neutrophils  

       Transendothelial migration was described first almost 200 years ago (Ley et al. 2007), but its 

molecular mechanisms were only discovered recently (Imhof and Aurrand-Lions 2004) and were 

Figure 1.4.4. Paracellular and transcellular routes of leukocyte diapedesis. Trafficking of leukocytes 
throughout the body requires their movement into (intravasation) and out of (extravasation) the 
vascular and lymphatic circulation. Finally leukocytes cross the endothelial barrier (diapedese) and 
enter the interstitium.  The process of diapedesis, whether during intravasation or extravasation, can 
occur by two distinct pathways: paracellular or transcellular. Paracellular diapedesis. Leukocytes and 
endothelial cells coordinately disassemble endothelial cell-cell junctions and open up a gap between 
two or more endothelial cells (Muller, 2003). Transcellular diapedesis. Leukocytes migrate directly 
through individual endothelial cells via a transient transcellular pore that leaves endothelial cell-cell 
junctions intact. This picture was adapted from Journal of Cell Science, 2009, 1(5); 3025-3035. 
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not included in the classical adhesion cascade (Butcher 1991; Springer 1994a). In recent years, 

through more detailed real-time imaging of leukocytes, a number of additional steps have been 

added to the cascade including “slow rolling” and “intravascular crawling” and a more 

multifaceted transmigration response (Woodfin et al. 2010). Slow rolling mediates the transition 

between primarily selectin-mediated rolling to integrin-mediated firm arrest and is induced via 

selectin signalling and LFA-1 (Ley et al. 2007).  

         The subsequent firm arrest of rolling leukocytes to the endothelial cells surface involves a 

complex regulation of integrin-affinity modulation, leading to the interaction of high affinity 

integrins with their endothelial cells adhesion ligands, as coordinated by surface bound 

stimulating factors, such as chemokines (Ley et al. 2007; Woodfin et al. 2010). This aspect of the 

leukocyte adhesion cascade has been extensively researched and reviewed (Ley et al. 2007; 

Rose 2007; Evans et al. 2009).  

           Post arrest, the lateral motility of leukocytes on the surface of endothelial cells, 

intravascular crawling, towards preferred sites of transendothelial cell migration (TEM) (Schenkel 

et al. 2004; Phillipson et al. 2006) is mediated via the integrin Mac-1; and has been reported as a 

key determinant of the route of leukocyte TEM, i.e paracellular vs transcellular (Phillipson et al. 

2006). With respect to the latter, it is now widely accepted that leukocyte TEM can occur via both 

paracellular migration through endothelial cells junctions and the previously contentious model of 

transcellular migration, whereby leukocytes pass through the body of endothelial cells (Carman 

and Springer 2008; Carman 2009).  

              In addition, TEM is now accepted to be a component of a more compound leukocyte 

transmigration response, involving the collective penetration of leukocytes through the three 

distinct barriers of the venular wall, i.e the endothelium, pericytes and their associated basement 

membrane (Wang et al. 2006; Voisin et al. 2009).  Figure 1.4.4, illustrates the key steps pre-

requisite to and associated with neutrophil transmigration. 
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1.5.1 Intravascular leukocyte-endothelial cell interactions pre-requisite to 

transmigration 

1. Intravascular crawling  

           Adherent leukocytes do not necessarily transmigrate at the point of initial arrest, but 

rather locomote laterally to preferred sites of TEM (Schenkel et al. 2004; Phillipson et al. 2006). 

This luminal crawling is dependent on β2 integrins in vitro and in vivo; and its blockade 

increases the incidence of transcellular, as opposed to paracellular, TEM (Phillipson et al. 

2006). Details of the mechanisms that mediate the transition from firm arrest to intravascular 

crawling remain unclear, but recent in vivo data suggests a role for the Rho family guanine 

exchange factor, Vav-1, in this response, which play active roles in the crawling of leuckocytes 

along the shear flow of the blood (Phillipson et al. 2009).  Other molecules and mechanisms 

recently implicated in leukocyte motility include JAM-A (Weber et al. 2007; Alon and Ley 2008).  

       JAM-A has been implicated in leukocyte infiltration into inflamed sites in many inflammatory 

models (Weber et al. 2007), but the precise mechanism through which this occurs remains 

unclear. The strong endothelial cells junctional expression of JAM-A suggests that endothelial 

JAM-A may direct the movement of leukocytes through cell-cell junctions, via binding to its 

leukocyte ligand (Nourshargh et al. 2006; Woodfin et al. 2007a). However, there is also 

evidence for the involvement of leukocyte JAM-A in neutrophil transmigration in vivo and 

neutrophil JAM-A has been shown to mediate directional leukocyte migration in vitro (Corada et 

al. 2005; Woodfin et al. 2010). Such a role may facilitate leukocyte motility towards and through 

endothelial cells junctions, as well as leukocyte motility in the extravascular tissue in certain 

inflammatory scenarios (Woodfin et al. 2010). 
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2. Formation of adhesive platforms and docking structures  

              Endothelial cells are the critical substrate for the attachment and motility of leukocytes 

within the vascular lumen, thus actively facilitating the leukocyte transmigration response. The 

key feature of venular endothelial cells is the expression of endothelial cells adhesion 

molecules, such as ICAM-1 and VCAM-1, integrin ligands whose expression is enhanced on 

activated endothelial cells. Recent studies have shown that the expression of these molecules 

can be further regulated, resulting in the formation of pro-adhesive sites termed “endothelial 

adhesive platforms” (EAPs) (Barreiro et al. 2008) or sites that promote TEM, termed “docking 

structures” or “transmigratory cups” (Barreiro et al. 2002; Carman and Springer 2004). The latter 

are VCAM-1, ICAM-1, moesin, ezrin, tetraspanin and actin-binding protein enriched domains, 

that protrude from the surface of the endothelium to partially embrace adherent leukocytes 

(Barreiro 2007). Whilst the formation of “docking structures” appears to be triggered through 

interaction of endothelial cells adhesion molecules with their leukocyte ligands, the formation of 

EAPs is determined by the existence of pre-formed tetraspanin (e.g CD9, CD151 and CD81)-

enriched microdomains (Barreiro et al 2007). Although the ability of leukocyte integrins to bind 

to their ligands, through affinity and avidity changes, has long been known to be regulated by 

conformational changes and membrane clustering (Bing-Hao Luo 2007; Evans et al. 2009). 

3. Transcellular or paracellular route?  

             Classically, leukocyte transmigration was viewed as migration between adjacent 

endothelial cells. But two roads can be taken by neutrophils during transendothelial migration:  

the transcellular road, whereby neutrophils penetrate an individual endothelial cell, or the 

paracellular road, whereby neutrophils squeeze between endothelial cells.  Studies using 

electron microscopy have provided evidence that leukocytes can migrate directly through the 

endothelial cell body (Feng et al. 1998). Irrespective of the routes, the key players involved in 
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guidance are again the major neutrophil β2 integrins, LFA-1 and Mac-1; and their ligands ICAM-

1 and ICAM-2. ICAM-1 is concentrated to the recently described tetraspanin-enriched 

microdomains to form so-called endothelial adhesive platforms. A recent study has shown that 

the cytoplasmic tail of ICAM-1, together with higher expression levels, is required for high 

transcellular transmigration (Yang et al. 2005). In fact, the truncation of the cytoplasmic tail of 

ICAM-1 was shown to direct leukocytes to a paracellular transmigration route. This difference in 

ICAM-1-dependency may be due to the presence of alternative adhesion molecules in 

endothelial junctions highlighted by a number of recent studies. An endothelial ‘cup-like’ 

structure, called a ‘podoprint’, has been shown to form around migrating leukocytes during initial 

stages of transcellular migration of lymphocytes (Carman et al. 2007). These podoprints are 

composed of ICAM-1 and VCAM-1 in a caveolin-rich structure, possibly linked to the 

cytoskeleton protein vimentin(Carman and Springer 2004; Nieminen et al. 2006)  Mechanically, 

transcellular migration is driven by internalization of ICAM-1 by the caveolin-rich domains 

forming channels, through which leukocytes cross the endothelial cell body (Millan et al. 2006). 

Surprisingly, activated leukocytes also use  PECAM-1 for transcellularmigration, whereas non-

activated leukocytes ignore PECAM-1 during transmigration (Carman and Springer 2004; 

Nieminen et al. 2006). A cup-like structure also forms around activated leukocytes, but contains 

PECAM-1 in addition to ICAM-1. Thus, although mechanisms used for both routes of 

transmigration seem to differ, common adhesion molecules may be involved. The factors which 

influence the choice between the two migrating routes, however, remain to be found. Figure 1.5 

shows the schematic diagram of the recently added steps in extravasation of neutrophils. 

 

4. Neutrophil-endothelial cell cross talk and signaling to junctions  

          Leukocyte interactions with the endothelial surface trigger cellular and sub-cellular 

events that initiate and/or facilitate leukocyte passage through the endothelium. This includes 
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triggering the formation of endothelial cells adhesion molecule clusters in the form of docking 

structures described above, but also interaction of the associated molecules with the 

cytoskeleton via adaptor proteins such as vinculin, paxilin and ERM proteins (ezrin, radixin and 

moesin) (Barreiro 2007; Nottebaum 2008; Wittchen 2009). These events can link leukocyte- 

endothelial cells interaction to changes in endothelial cells contractility or junctional integrity 

(Nottebaum  2008; Alcaide 2009). The homophilic binding of VE-cadherin at endothelial cells 

junctions provides an essential means of regulating the stability of endothelial cells contacts, but 

also acts as a barrier to transmigrating leukocytes. Stimuli, such as histamine, thrombin, 

vascular endothelial growth factor and the adhesion of leukocytes via ICAM-1 ligation, can 

stimulate dissociation of VE-PTP from VE-cadherin; and a subsequent increase in tyrosine 

phosphorylation of VE-cadherin leading to decreased junctional VE-cadherin interaction and 

enhanced leukocyte TEM (Allingham et al. 2007; Alcaide et al. 2008).  
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1.5.2  Neutrophil migration through endothelial cell 

A. Paracellular endothelial migration  

  The molecular mechanisms mediating the paracellular migration of neutrophils have been 

worked out in great detail. The main players on endothelial cells are ICAM-1; ICAM-2; platelet 

endothelial cell adhesion molecule 1; junctional adhesion molecule A, B, and C; endothelial cell-

selective adhesion molecule; poliovirus receptor—all belonging to the immunoglobulin 

superfamily—CD 99; CD 99L2 and VE-cadherin. PECAM-1; JAM A, -B, and -C; ESAM; CD99 

and VE-cadherins form homotypic contacts to stabilize the endothelial cell junctions, but with 

the exception of VE-cadherin and ESAM, these adhesion molecules are also expressed on the 

neutrophil (PECAM-1, JAM A, CD99) and are capable of binding to proteins expressed on the 

neutrophil surface; and thus, assist the neutrophils in passage between the endothelial cells. 

 In addition, a number of molecules at endothelial cell junctions actively facilitate 

leukocyte transmigration via a paracellular route (eg PECAM-1, ICAM-2, CD99, ESAM and 

Figure 1.5. llustrating the hypothetical sequence of events involved in regulation of neutrophil transmigration. As 
indicated by recent findings. A: Rolling leukocytes adhere and crawl on the luminal surface to the point of 
transmigration. Adhesive platforms and docking structures facilitate the subsequent TEM response, which may 
occur via the paracellular or transcellular route. Beyond the endothelium, neutrophils migrate through gaps between 
pericytes and permissive regions within the vascular basement membrane where expression of certain basement 
membrane constituents is lower than average. Migration through the basement membrane may involve neutrophil 
proteases such as neutrophil elastase and β1 integrins such as the laminin receptor α6β1. Once within the three 
dimensional matrix of the interstitium leukocytes utilise an amoeboid, integrin independent, form of motility. It is 
hypothesised that different types of inflammatory stimuli trigger different mechanisms of transmigration as illustrated 
in panels B and C. B: Activation of the endothelium by stimuli such as IL-1β stimulates a PECAM-1-, ICAM-2- and 
JAM-A-dependent transmigration, with each of these molecules mediating a specific step of the transmigration 
response. C: Activation of leukocytes and endothelium with stimuli such as TNFα triggers a transmigration response 
that is independent of PECAM-1, ICAM-2 and JAM-A, but may involve other junctional proteins such as ESAM. 
Under these conditions leukocytes may use either the paracellular or transcellular route, with both routes possibly 
involving invasive protrusions. Adopted from Current Opinion in Hematology 2010, 17(1); 9-17. 
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JAMs) for which there is significant in vitro and in vivo evidence (Woodfin et al. 2010). Current 

research is to investigating the specific roles and mechanism of action of these molecules under 

different inflammatory conditions; and there is emerging evidence for the involvement of 

endothelial cell junctional molecules in multiple aspects of leukocyte transmigration, as 

exemplified in Table 1.5.2.  All these findings suggested the following sequence of events: 

  ICAM-1 and ICAM-2 accumulate at the cell-cell junctions mediating neutrophil contact via 

their β2 integrin partners (LFA-1 and Mac-1). ICAM-1 at the endothelial cell junctions guides 

neutrophils to these structures (Woodfin et al. 2009; Alcaide et al, 2009). Signals from ICAM-1 

activate Src and Pyk-2 tyrosine kinases, which phosphorylate VE-cadherin and destabilize the 

VE-cadherin bonds, probably by preventing VE-cadherin from associating with β-catenin that 

mediates binding to the actin cytoskeleton via α-catenin ((Ostermann.G 2002; van Buul et al, 

2005; Allingham et al., 2007; van Buul and Hordijk, 2008; van Buul et al, 2010a), thus loosening 

the endothelial cell-cell junctions. ESAM may also play a role in the loosening of the endothelial 

cell junctions. Lack of ESAM, as demonstrated in the Esam−/− mouse, results in decreased 

activity of the Rho signaling pathway in endothelial cells (Wegmann et al, 2006), which is known 

to destabilize endothelial cell junctions (Stamatovic et al, 2003).    

  Lack of ESAM results in decreased neutrophil transendothelial cell migration, as observed in 

both the mouse cremaster model (Wegmann et al, 2006) and in an ischemic-perfusion mouse 

liver model (Khandoga et al, 2009). ICAM-2 concentrated at the endothelial cell junctions further 

guides neutrophils to enter the endothelial cell junctions. Neutrophils accumulate at the 

entrance between endothelial cells if ICAM-2 is blocked or absent; and successful 

transmigration is inhibited correspondingly (Woodfin et al, 2009). Many knock out mice models 

have demonstrated the importance of PECAM-1 and JAM-A in paracellular migaration (Woodfin 

et al. 2010). Upregulation of the laminin receptor α6β1 induced by PECAM-1 signaling assists 

the further migration through the perivascular basement membrane (Dangerfield et al. 2002; 
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Woodfin et al. 2009). Endothelial cell PECAM-1 may also interact with the GPI-linkedCD177 

(NB1-antigen), which is upregulated on neutrophil surfaces from specific granules to facilitate 

transmigration (Sachs et al, 2007). The CD177-PECAM-1 interaction facilitates neutrophil 

transmigration with an efficacy that depends on a dimorphism of the PECAM-1 antigen (Bayat 

et al, 2010). Other significant advancements relate to the functions and signalling of JAMs listed 

in the table 1.5.2.a,b &c adapted from Woodfin A. et al. 2007 and Woodfin et al. 2007b 

    

 

 

    

 

 

 

 

 

 

 
      Table 1.5.2a. Function of JAM-A 

JAM-A Early neutrophil transmigration Hemophilic interaction with JAM-A and 
hetrophils interaction with LFA-1(Weber 
et al. 2007; Woodfin et al. 2007a; 
Wojcikiewicz. 2009) 

JAM-C Neutrophil transmigration Interaction between endothelial cell 
JAM-C and leukocyte Mac-1 (Woodfin 

Figure 1.5.2.a.  Molecules involed in paracellular transmigration of neutrophils. schematic diagram 

representing various junctional adhesion molecules properly involved during the paracellular 

transmigration of neutrophils. During their passage through the interendothelial cleft, leukocytes 

encounter different junctional proteins. During this process, vascular endothelial cadherin (VE-

cadherin) tends to redistribute to the endothelial surface, whereas platelet endothelial cell adhesion 

molecule (PECAM) and junctional adhesion molecules (JAMs) are concentrated along the endothelial 

cell borders, probably as a result of targeted recycling of specific vesicles. CD99, a membrane protein 

that is present in endothelial cells and leukocytes, functions independently in directing leukocyte 

diapedesis through the cleft. Blocking both PECAM and CD99 leads to an additive inhibitory effect on 

diapedesis. Nature Reviews Molecular Cell Biology, 2004, 5; 261-270. 
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et al. 2007a) 

    Table 1.5.2b. Role of various junctional molecules in diapediesis of neutrophils 

Endothelial cell 
junctional 
molecules and 
specific roles 

Associated transmigration response Reference 

Leukocyte sub-type 
specificity 

PECAM-1  

 

TEM of monocytes, PMN cells but only some sub-sets 
of lymphocytes 

 

(Woodfin et al. 2007b) 

ESAM Transmigration of PMN, but not lymphocytes (Woodfin et al. 2007a) 

CD99L2 Transmigration of PMN, but not lymphocytes (Woodfin et al. 2007a) 

Stimulus specificity 

PECAM- 1 

 

Transmigration-induced by IL-1β, H2o2 but not TNFα 
or HCL 

 

(Woodfin et al. 2007b) 

JAM-A Responses induced by IL-1β and other cytokine  (Woodfin et al. 2007a) 

ICAM-2 Transmigration induced by IL-1β, but not TNFα (Huang MTet al, Woodfin et 
al. 2009) 

Stage of migration 

ICAM-2 

 

Entry to the endothelial cell junction 

 

(Woodfin et al. 2009) 

PECAM-1 

 

Leukocyte migration through the endothelium and 
endothelial cell basement membrane, 

(Woodfin et al. 2009) 

 

JAM-A Migration through endothelial cell junction (Woodfin et al. 2007a; 
Woodfin et al. 2007b) 

CD99 Migration through EC at the stage distal to 
subsequent to that mediated by PECAM-1 

Schenkel AR, Lou O, 2009 

Trans cellular 
migration 

JAMA-A 

 

 
   Associated with transcellular pores 

 

 
Carman CV, 2009 

PECAM-1 Associated with transcellular pores and contributes 
to transcellular migration 

Carman CV, 2009 
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              B. Transcellular endothelial migration  

  The transcellular route is believed to be taken by about 20% of neutrophils, but may vary 

greatly among different tissues and depend on the stimulation of the endothelial cells in vitro 

set-ups (Woodfin et al, 2010). The mechanisms and incidence of transcellular TEM has recently 

been reviewed in detail, with a particular focus on the role of invasive leukocyte protrusions 

(Carman 2009). Transcellular TEM has been observed in a broad range of tissues including 

bone marrow, thymus, lymph nodes, pancreas and the blood brain barrier (Carman 2009); and 

in vitro assays have facilitated mechanistic investigations. They have also established a 

possible role for podosomes in guiding lymphocytes in crossing the endothelial barrier by  

locating the thinner peripheral areas of the cell, rather than the perinuclear region (Carman. 

2007) (Carman, 2007; Woodfin et al, 2010). The nature and functional role of such leukocyte 

protrusions requires further investigation. It has also been suggested that SNARE proteins are 

essential in trafficking and fusion of intracellular organelles and exocytosis of granules and 

vesicles are essential in this process (Carman et al, 2007). It seems that the lateral migration of 

neutrophils mediated by Mac-1 favors paracellular migration, and transcellular migration 

increases from 20% to 80% in the absence of Mac-1, as determined in a mouse cremaster 

muscle preparation (Phillipson et al, 2008). In that study, the endothelial cell docking structures 

were demonstrated to progress to domes that finally swept around the neutrophil in a process 

similar to phagocytosis, thus indicating a very active role of the endothelial cell in transcellular 

migration. 
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1.5.3   Neutrophil migration through venular walls beyond the endothelium 

 Once past the endothelium, migrating cells face two further barriers; the pericyte sheath and 

the tough venular basement membrane (Hirschi and D'Amore 1996; Rowe and Weiss 2008). 

Due to the difficulties associated with the isolation and culture of pericytes, little is known about 

the role of this cell type in leukocyte transmigration. There are, however, reports on the ability 

of neutrophils to migrate through the pericyte sheath, via both paracellular (Voisin 2009) and 

transcellular pathways (Feng 1998); though the associated mechanisms need to be fully 

elucidated. The mechanisms by which leukocytes penetrate the vascular basement membrane 

Figure 1.5.2.b(a). Various molecules involved in extravasation of neutrophils. Leukocytes may actively 
penetrate the endothelial cell cytoplasm by elongating pseudopods inside vesicles containing caveolin 
and ICAM-1. These vesicles can fuse with vesiculo-vacuolar organelles (VVOs), forming a channel that 
allows leukocyte migration through the endothelial monolayer. (b) When leukocytes adhere to the 
endothelial surface, an adhesion/transmigration cup is formed. This docking structure contains 
microvilli that elongate from both endothelial cells and leukocytes. The microvilli contain adhesion 
molecules (such as ICAM-1 and VCAM-1) and cytoskeletal proteins (such as vimentin and actin). The 
adhesion/transmigratory cup may mediate leukocyte phagocytosis and movement towards the basal 
membrane of endothelial cells.  Adopted from Nature Cell Biology  2006, 8; 105 – 107. 
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also remains unclear, but depending on the vascular bed and the leukocyte sub-type could 

involve leukocyte receptors for basement membrane constituents (e.g β1 integrins, such as 

α2β1 and α6β1, receptors for collagen IV and laminins, respectively) and leukocyte proteases 

(e.g neutrophil elastase) (Hallmann,2005; Wang et al, 2006). The neutrophil is highly equipped 

with proteases capable of breaking down the basal membrane collagens and laminins, such as 

elastase (azurophil granules), MMP8 (specific granules), MMP9; and the membrane attached 

matrix metalloproteinase, MT6-MMP (gelatinase granules and secretory vesicles) (Kang et al., 

2001). Additionally, it has recently been shown that the venular basement membrane contains 

pre-formed regions with low expression of certain basement membrane components (e.g 

laminin-8, laminin-10 and collagen IV), termed low expression regions (LERs), that are 

preferentially used by transmigrating neutrophils and monocytes (Voisin et al. 2009 ; ( Wang et 

al. 2006). It is possible that the same retraction of endothelial cells that opens the tight 

junctions subsequently allows passage through the basal membranes of a cell capable of 

amoeboid migration, such as the neutrophil, without necessitating degradation of the matrix 

(Rowe and Weiss, 2008). The complexity and diversity of leukocyte transmigration in different 

tissues suggests that mechanisms of leukocyte migration through the pericyte and basement 

membrane coverage of venules may similarly be diverse as governed at the molecular level 

(e.g composition of the basement membrane) and/or cellular level (e.g the phenotype and 

density of pericytes) (Woodfin et al. 2010). 

1.6  Signaling by chemoattractants   

           In addition to intercellular adhesion, leukocytes require a chemoattractant gradient in 

order to complete the process of transmigration. Chemoattractants are soluble molecules that 

confer directionality on cell movement; cells migrate in the direction of increasing concentration 

of a chemoattractant in a process termed ‘chemotaxis’. Neutrophils have long been known to 

undergo chemotaxis toward damaged or inflamed tissue (Seely et al. 2003). The production of 
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chemoattractants in the inflammatory environment is from a combination of sources, including 

bacterial by-products and cell wall constituents, complement factors and chemokines produced 

by inflammatory and non-inflammatory cells.  The endothelium of inflamed microvessels 

produces chemoattractants, such as platelet-activating factor (PAF), leukotriene B4 and 

various chemokines, immobilized via a "presentation molecule" (proteoglycan) on the luminal 

surface of endothelial cells. Among these chemokines, interleukin 8 (IL-8) specifically attracts 

neutrophils (Premack and Schall 1996; Rollins 1997)  and were unable to promote lymphocyte 

transmigration through endothelium (Roth et al. 1995) and has been demonstrated well in 

animal models (Sekido et al. 1993; Folkesson et al. 1995; Matsumoto et al. 1997). There is 

evidence that microvascular endothelial cells not only synthesize IL-8 in response to IL-1 or 

LPS, but also store IL-8 in Weibel-Palade bodies and release it upon stimulation by histamine 

or thrombin (Utgaard et al. 1998; Wolff et al. 1998).  Moreover, tissue-derived IL-8 is 

internalized by endothelial cells of postcapillary venules and small veins, transcytosed in a 

abluminal-to-luminal direction via plasmalemmal vesicles (caveolae); and presented at the tips 

of microvilli of the endothelial cell luminal surface (Middleton et al. 1997). Not only neutrophils 

and endothelium produce IL-8, monocytes, smooth muscle cells, epithelial cells and fibroblasts 

are also capable of generating IL-8 when they are stimulated with a pro-inflamatory agonist 

such as IL-1 or TNF-α (Seely et al. 2003). Chemoattractants serve not only to direct leukocytes 

to specific areas of inflammation, but also recruit specific subpopulations of leukocytes to 

inflamed tissue, such as neutrophils in response to acute bacterial infection, eosinophils at 

sites of chronic allergic inflammation or parasitic infection; and monocytes in chronic 

inflammatory diseases (Seely et al. 2003).  

        Chemoattractant mediators may thus be classified based on their spectrum of leukocyte 

activity (Table 1.6.a). Classical chemoattractants include N-formylated peptides produced by 

bacteria, such as FMLP, polypeptides (e.g. C5a) and lipids (e.g. leukotriene-B4), which act as 
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chemoattractants for various non-specific leukocyte populations (Schiffmann, 1975; Fernandez 

1978; Ford-Hutchinson  1980). Extensive in vitro and in vivo investigation has identified IL-8 as 

a principal factor in neutrophil delivery (Huber 1991; Mulligan 1993; Smart  1994a; Smart  

1994b).  

         Other chemokines that are specific for neutrophils include epithelial cell-derived 

neutrophil activating peptide; neutrophil activating peptide-2; growth-related oncogene (GRO)-

α, GRO-β and GRO-δ; and macrophage inflammatory protein (MIP)-2α and MIP-2β. These 

chemokines are structurally similar and consist of the first two cysteine (C) amino acid residues 

separated by a separate amino acid (X); and are referred to as CXC chemokines or α 

chemokines (Premack and Schall 1996). Separate families of chemokines are known as CC 

chemokines, because the first two-cysteine residues are in juxtaposition. Monocyte 

chemoattractant protein-1, -2 and -3; MIP-1α and MIP-1β; and RANTES (regulated upon 

activation, normal T cell expressed and secreted) are members of the CC family, (or either 

expressed and secreted) predominantly oriented toward monocytes (Strieter RM 1994). Thus, 

chemoattractants help to explain how leukocytes localize to specific inflammatory sites and 

how specific leukocyte populations are recruited to those sites (Seely et al. 2003). Leukocyte 

delivery is further regulated by chemoattractant receptors that exhibit specificity for both the 

type of leukocyte on which they are expressed and the ligand to which they bind. The 

specificity of chemoattractant-induced leukocyte chemotaxis is related to differential expression 

of chemokine receptors, a superfamily of G-protein-coupled receptors with seven 

transmembrane regions (Yokomizo et al. 1997).  

  Although chemokine receptors share similar structures, they differ in their ligand 

specificity (Table 1.6.b). For example, IL-8 receptor A (CXC R1) and IL-8 receptor B (CXC R2) 

have a 78% identical amino acid sequence and both bind IL-8. However, although IL-8 

receptor A is specific for IL-8, IL-8 receptor B has multiple agonists, including other CXC 
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chemokines, such GRO-α, GRO-β, GRO-δ, neutrophil-activating peptide-2; and epithelial cell-

derived neutrophil activating peptide-78 (Seely et al. 2003). Neutrophil transmigration appears 

to depend to a greater degree on IL-8 receptor A than on IL-8 receptor B, because antibodies 

directed against IL-8 receptor A inhibited the majority (78%) of IL-8 induced chemotaxis 

(Hammond et al. 1995; Ahuja and Murphy 1996). In contrast, IL-8 receptor B has been 

implicated in the transendothelial migration of T cells (Babi 1996).  

  In addition, chemoattractant receptors are expressed on specific leukocyte subsets 

(Table1.6.c), CXC chemokine receptors are primarily restricted to neutrophils (Springer 1994c). 

Thus, chemokine receptors display both ligand and leukocyte specificity. These complex rules 

defining the interactions between specific chemoattractants and leukocytes are the 

mechanisms that allow the host response to deliver specific subsets of leukocytes to localized 

areas of infection or inflammation (Seely et al. 2003). Chemoattractant receptors not only 

mediate the process of chemotaxis, but changes in receptor expression within the 

inflammatory environment confer changes on cell function.   

  Ligation of chemoattractants to receptors activates phospholipases, via heterodimeric G 

proteins, resulting in intracellular Ca2+ release, Ca2+ channel opening and activation of 

conventional proteine kinase C isoforms (Premack and Schall 1990; Brockhaus et al. 1990). 

Tyrosine kinases (mainly Lyn of the Srk-family) (Ptasznik et al. 1996; Welch and Maridonneau-

Parini 1997; Berton 1999b) and the GTP-binding protein Ras (Worthen et al. 1994)) are also 

activated. Ras activation triggers the MAPK/ERK cascade, which appears to be involved in 

various chemoattractant-induced neutrophil functions (Pillinger and Abramson 1995; Krump et 

al. 1997; Nick et al. 1997). Activation of small GTP-binding proteins of the Ras, Rac, and Rho 

families regulate actin-dependent processes, such as membrane ruffling, formation of filopodia 

and stress fibers, mediating cell adhesion and motility (Cox et al, 1997; Nobes and Hall, 1999, 

Benard et al, 1999;). Moreover, Rho family members relay signals from chemokine receptors 
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to the outside-in activation of integrins. The Ca++- and DAG-independent protein kinase C-  

has recently been proposed as a downstream effector of Rho signaling in this process 

(Laudanna et al, 1996, 1998).  

  Finally, chemoattractant receptors, via their coupled G-protein heterodimers, activate PI3-

kinase, which is involved in the pathways leading to degranulation and NADPH-oxidase 

activation (Okada et al, 1994; Klippel et al, 1996; Thelen and Didichenko, 1997). The role of 

PI3-kinase in neutrophil adhesion promoted by G-protein-coupled receptors is not clearly 

defined (Akasaki et al, 1999; Shimizu and Huntiii, 1996). Specific PI3-kinase inhibitors block 

chemoattractant-induced neutrophil locomotion or homotypic aggregation, but have no effect 

on integrin CD11b/CD18 expression and activation triggered by these agonists (Niggli and 

Keller 1997; Capodici et al. 1998; Jones et al. 1998). Cross-talks between chemoattractant 

receptors and their signaling pathways may result in desensitization to one chemoattractant by 

another. In particular, signals delivered by "end target-derived" chemoattractant; such as 

formyl peptides, released by bacteria or by mitochondria from dying cells, or complement C5a, 

produced in their immediate surrounding are dominant and override "regulatory cell-derived" 

attractants, such as bioactive peptides (LTB4) or chemokines (IL-8) (Kitayama et al. 1997; 

Foxman et al. 1999). This will allow, for example, leukocytes recruited by endothelial-derived 

chemoattractants to migrate away from the endothelial agonist source towards their final target 

within a tissue.  

  In summary, the kinetics of neutrophils are highly regulated and involves multiple steps 

which involves interaction between neutrophils and endothelial cells. Involvement of adhesion 

molecules on both the cells cannot be ignored. Selectins, expressed by activated endothelial 

cells and leukocytes, bind to ligands on opposing cells. These interactions mediate leukocyte 

capture from flow and tethering to endothelium. The high dissociation/association rates of 
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selectins allow leukocytes to roll in the direction of flow and sense activation signals on the 

endothelial wall. Chemokines presented on luminal surfaces trigger rapid activation of 

leucocyte integrins, leading to rolling arrest and firm adhesion. Secondary adhesion events are 

mediated by leukocyte integrins [LFA-1 (leukocyte function-associated antigen 1), VLA-4 (very 

late antigen 4) and Mac-1], which bind to endothelial adhesion molecules, such as ICAM-1  

and VCAM-1. (Figures 1.6). 

 

 

 

 

 

 

 

 

 

Figure 1.6.  Model of chemokine receptor activation and signal transduction for IL-8 and 

neutrophils.IL-8 binding to CXCR1 or CXCR2 causes guanosine triphosphate displacement 

of guanosine diphosphate in the Gαi2subunit, which allows dissociation of Gαi2 from Gβγ. 

Gβ activates phospholipase C (PLCβ), which cleaves PIP2 into the second messengers 

DAG and IP3. DAG activates PKCβ, whereas IP3 causes the release of calcium from 

intracellular stores. The rapid rise in intracellular calcium activates PLD. Meanwhile 

Gαi2directly activates PTK. These activate MAP kinases and phosphorylate serine and 

threonine residues on the C-termini of CXCR1 and CXCR2, leading to receptor inactivation. 

MAP kinases activate phospholipase A2. DAG, intracellular calcium, PKC and 

phospholipase A2 (PLA2) all interact with specific cell activation mechanisms, leading to cell 

motility, degranulation, release of superoxide anions and modification of integrin avidity.  

Adopted from Journal of Immunity, 2012, 5; 705-716. 
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             Table 1.6a. Neutrophil chemoattractants  

Neutrophil specific Neutrophil  non-specific 

IL-8 C5a 

Granulocyte chemotactic protein 
(GCP)-2 

Tumor necrosis factor (TNFα) 

Epithelial cell-derived neutrophil 
attractant (ENA)-78 

Monocyte chemoattractant protein (MCP)-1, 
MCP-2, MCP-3, MCP-4 

Neutrophil-activating peptide (NAP)-2 f-Met-Leu-Phe (FMLP) 

Growth-related oncogene (GRO)-α, 
GRO-β, GRO-γ 

Macrophage chemotactic and activating factor 
(MCAF) 

Macrophage inflammatory protein 
(MIP)-1, MIP-2 

  

Platelet-activating factor (PAF) 

Regulated upon activation, normal T cell 
expressed and secreted (RANTES) 

Platelet factor (PF)-4 I-309 

Mast cell-derived chemotactic factor Casein 

5-Hydroxyeicosatetraenoic acid Leukotriene-B4 (LTB4)  

                

              Table 1.6b.  Neutrophil chemoattractant receptors and their ligands  

Class Receptors Ligands 

C-X-C 
receptors 

CXCR1 (IL-8 receptor A) IL-8 

  
  
  

CXCR2 (IL-8 receptor B) IL-8, GRO, NAP-2, ENA-78, GCP-2 

CXCR3 Mig, IP-10 

CXCR4 SDF-1 

C-C 
receptors 

CCR1 MIP-1α, MIP-1β, MCP-3 

  
  
  
  
  
  

CCR2A, CCR2B MCP-1, MCP-3 

CCR3 Eotaxin, RANTES, MCP-3 

CCR4 MIP-1α, RANTES, MCP-1 

CCR5 MIP-1α, MIP-1β, RANTES 

CCR6 MIP-3α 

CCR7 ELC 

CCR8 I-309 

Non-C-
X-C 
  

C5aR C5a 

FMLPr FMLP 
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ELC, Epstein-Barr virus-induced molecule 1 ligand chemokine (CCL19); ENA, epithelial cell derived  

neutrophil activating peptide; FMLP, f-Met-Leu-Phe; GCP, granulocyte chemotactic protein; GRO, 

growth-related oncogene; IP, inducible protein; IP-10, interferon- γ inducible protein; MCP, 

monocyte chemoattractant protein; Mig, monokine induced by interferon- γ (CXCL9); MIP, 

macrophage inflammatory protein; NAP, neutrophil-activating peptide; RANTES, regulated upon 

activation, normal T cell expressed and secreted; SDF, stromal derived factor.  

     

     Table 1.6c. Human neutrophil states: adhesion, chemotaxis, apoptosis and function  

 

PMN state PMN receptors PMN functions 

Circulating PMN 
(resting 
bloodstream PMN, 
collected by 
venipuncture) 

Adhesion receptors: 
constitutive expression of L-
selectin, PECAM-1 

PMN–endothelial cell interactions: 
baseline PMN rolling, adhesion on 
activated endothelium and 
transmigration 

Chemoattractant receptors: 
constitutive expression of IL-
8 receptor A, IL-8 receptor B, 
C5aR 

 

Chemotaxis: will undergo chemotaxis 
to PMN-specific and leukocyte 
nonspecific chemoattractants 

 Function: minimal PMN respiratory 
burst (ROI

•
) and microbicidal activity 

(proteolytic enzymes). 

Apoptosis receptors: 
constitutive expression of 
TNF-α receptor I, Fas, FasL 

Apoptosis: constitutive apoptosis 
(PMN half-life ~6 h) 

 

Primed PMN (PMN 
stimulated with 
priming agent in 
vitro) 

Adhesion receptors: 
increased expression of 
CD11b, L-selectin, PECAM-
1, ↔FMLPr 

PMN–EC interactions: unclear impact 
on rolling, adhesion, diapedesis 

Chemoattractant receptors: 
?IL-8 receptor A, ?IL-8 
receptor B, ↔C5aR 

Chemotaxis: no change in chemotaxis 
Function: when activated, display 
increased respiratory burst and 
microbicidal activity after activation 

 

Apoptosis receptors: ?TNF-α 
receptor I, ?Fas, ?FasL 

Other: CD14, PAFr ↑LTB4r, 
↑PAFr  

Apoptosis: delayed constitutive 
apoptosis 

Activated PMN 
(PMN stimulated 
with activating 
agent in vitro)  

Adhesion receptors: ↑ 
CD11b, ↑ FMLPr, ?L-
selectin, PECAM-1 

PMN–endothelial cell interactions: ↑ 
PMN rolling and adhesion, 
?transmigration 
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PMN state PMN receptors PMN functions 

Chemoattractant receptors: 
IL-8 receptor A, ↓↓ IL-8 
receptor B, ↔C5aR 

 

Chemotaxis: ↔chemotaxis to C5a, 
LTB4/ZAS; ↑ ?chemotaxis to FMLP  

Function: ↑ respiratory burst (ROI
•
) 

and microbicidal activity (proteolytic 
enzymes); ↑ phagocytosis  

 

Apoptosis receptors: 
unknown Other: ↓ C3br, ↓ 
1C3b 

Apoptosis: delayed apoptosis 

Exudate PMN 
(PMN collected 
from dermal 
exudate milieu in 
vivo)  

Adhesion receptors: ↑ 
CD11b, ↑ Mac-1, ↓ L-
selectin, ↓ PECAM-1 

 

PMN–EC interactions: unknown 

 

Chemoattractant receptors: ↓ 
IL-8 receptor A, ↓ IL-8 
receptor B, ↑ C5ar  

Function: ↑ FMLPr 

 

Chemotaxis: ↑ baseline chemotaxis, ↓ 
chemotaxis to IL-8, ↑ chemotaxis to 
C5a 

Function: ↑ respiratory burst (ROI
•
), ↑ 

microbicidal activity and phagocytosis 

Apoptosis receptors: ↓ 
binding to TNF-α, ?↓ TNF 
receptor I, ↔Fas, FasL 

Apoptosis: ↓ constitutive apoptosis; ↓ 
TNF-α-induced, but not Fas-induced 
apoptosis 

Septic PMN (PMN 
collected from 
circulation in septic 
patients in vivo) 

 

 

 

 

Adhesion receptors: ↓ L-
selectin, ?CD11b, ?FMLPr, 
?PECAM-1 

PMN–EC interactions: unknown 

 

 

Chemoattractant receptors: ↓ 
IL-8 receptor A, ↓ IL-8 receptor 
B, ↓ C5aR 

 

Chemotaxis: ↓ chemotaxis to IL-8 and 
C5a 

Function: ? ↑ respiratory burst (ROI
•
), 

?↑ microbicidal activity and 
phagocytosis 

Apoptosis receptors: ↓ TNF-α 
receptor I, ?Fas, ?FasL 

Apoptosis: ↓ constitutive apoptosis; ↓ 
TNF-α-induced, but not Fas induced, 
apoptosis 

Adhesion receptors: ↓ L-
selectin, ?CD11b, ?PECAM-
1 

PMN–EC interactions: no interaction 

Unresponsive or 
apoptotic PMN 
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PMN state PMN receptors PMN functions 

Chemoattractant receptors: 
unknown 

 

Chemotaxis: ↓ chemotaxis 

Function: ↓ respiratory burst (ROI
•
), ↓ 

phagocytosis  

Apoptosis receptors: ? ↓ TNF 
receptor I, ?Fas, ?FasL 

Other: ↓ PAFr 

Apoptosis: unresponsive PMN 
undergo apoptosis. and apoptotic 
PMN are unresponsive 

?, unknown/controversial; EC, endothelial cell; FasL, Fas ligand; FMLP, f-Met-Leu-Phe; 

LT, leukotriene; PAF, platelet-activating factor; PECAM, platelet–endothelial cell adhesion 

molecule; PMN, polymorphonuclear leukocyte; ROI, reactive oxygen intermediates; TNF, 

tumor necrosis factor; ZAS, zymosan activated serum.  

 

1.7 Surface morphology of neutrophils  

   All inflammatory tissue is characterized by infiltration by neutrophils, macrophage, 

monocytes and lymphocytes. In order to achieve this, these inflammatory cells interact with 

endothelium and undergo a change from a spherical to a flattened morphological. This  

change in morphology is required not only for firm adhesion, but is also  necessary for 

transmigration through the endothelium, whether by migration between the endothelial cells or 

paracellular migration (Carman and Springer 2004 ;Dewitt and Hallett 2007). This morphology 

change requires a large expansion of the surface area of the leukocytes. The review by 

Robert Kay and colleagues (Kay et al. 2008) discussed this important topic of the 'surface-

area problem' — the mechanism by which the apparent surface area of the chemotactic cell 

expands (and contracts). It has been argued that without the ability to expand its surface 

membrane area, cell polarization, pseudopod formation, phagocytosis and chemotaxis would 

not be possible; and thus actin polymerization and other cytoplasmic changes are subordinate 

to membrane expansion (Dewitt and Hallett 2007; Hallett and Dewitt 2007) .  
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  Kay and colleagues suggest that 'folds' in the cell surface as possible reservoirs of 

additional membrane were unlikely; and focus on endocytic cycling as the potential 

mechanism. However, they have underestimated the surface-area problem for neutrophils 

that increase their surface by far more than the 20–30% increase in surface area in amoeba. 

Many electron microscopic studies  of neutrophils (Bessis 1973; Hallett et al. 2008) reveled 

that this cell type has an extensive wrinkled surface   which would  double the apparent cell 

surface area (Hallett et al. 2008).   Furthermore, the wrinkles disappear during expansion of 

the apparent surface area by osmotic swelling;  and quantification shows that this membrane 

reservoir produces an additional surface-area increase of approximately 100% (Ting-Beall et 

al. 1993).  

   The unwrinkling of the membrane may have been demonstrated in other experimental 

models, such as antibody-coated beads (Shao and Hochmuth 1996)  and micropipette suction 

(Evans et al. 1993; Herant et al. 2006). All these models showed not only unwrinkling of 

neutrophils cell membrane (producing extra membrane), but also increase in surface area. 

Mathematical modelling of the kinetics and forces that are required suggests that this extra 

membrane results from the unfurling of plasma-membrane wrinkles, which are held in place 

by a 'molecular velcro' ( Herant et al. 2005; Herant et al. 2006 ) . Significantly, the force 

required to 'unwrinkle' the membrane is significantly reduced during phagocytosis (Herant et 

al. 2005), which suggests that the velcro holding the wrinkles together can be released by 

intracellular signals that are associated with phagocytotic stimulation. Hallett et al have 

suggested that these signals might include the cleavage of proteins that hold the wrinkles in 

place (Hallett et al. 2008); and involve Ca2+ activation of -calpain (Dewitt and Hallett 2002). 

Although Lawson et al showed that  endocytic cycling occurs (as a way of replacing integrin to 

the front of neutrophils (Lawson and Maxfield 1995), Hallett et al suggested that wrinkled cell 
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surface  (Hallett et al. 2008) must not be discounted as a possible solution to the surface-area 

problem.  

  As the spherical geometry is the minimum surface area required to enclose a certain 

volume, it is obvious that the volume of the cell must decrease, or its surface area must 

increase during this transformation from spherical to non-spherical shape (Dewitt and Hallett 

2007). In fact, the surface area of the cell appears to increase during flattening onto the 

endothelium. For cells like neutrophils, where the intracellular organelles such as the nucleus 

and granules occupy a large percentage of its volume, there is little possibility of a volume 

change in any case. The increase in surface area, however, is surprisingly large, with an 

increase by more than 100% (Dewitt and Hallett 2007). This extra reserviour of plasma 

membrane may be provided by the unfolding of the wrinkles present on the cell membrane of 

the neutrophils (figure 1.7a & b).  

1.7.1 Possible methods of membrane expansion 

         The possibility of stretching the plasma membrane has been ruled out because the 

cohesion of the phospholipid bilayer depends on the hydrophobic interaction of the fatty acid 

chains excluding water (Dewitt and Hallett 2007). Any "stretching" effect on the bilayer, which 

laterally separates the lipid molecules would allows water molecules between the lipid and 

would  rupture of the bilayer (Hamill and Martinac 2001; Dewitt and Hallett 2007; Hallett and 

Dewitt 2007). The proteins in a biological membrane may permit a little additional stretch, but it 

has been shown experimentally (and theoretically calculated) that biological membrane and 

simple phospholipid bilayers can expand by no more than  about 4% before rupturing (Hamill 

and Martinac 2001).  
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          There is, thus, far too little stretch in the plasma membrane to account for the expansion 

of surface area required for cell flattening during adhesion to the endothelium.  The intracellular 

membranes which enclose secretory granules within the cell has also been excluded as 

potential source of membrane reserviour during, the polarization of neutrophils. There are two 

problems with this source of membrane (Dewitt and Hallett 2007; Hallett and Dewitt 2007). The 

first problem is that fusion of the membrane of the granule with the plasma membrane would 

also release the contents of the vesicle (superoxides, hydrolases, degradative enzymes in 

neutrophils) into the extracellular space, which will damage the tissue surroundings (Sengelov 

et al. 1995).  

            Moreover, it would need more then 2500 vesicles to fuse with cell membrane per 

polarization. A single granule with a diameter of 0.2 µm (1/50th the diameter of a neutrophilic 

Figure 1.7a & b. The electron microscopic picture of neutrophils. The picture shows 

the wrinkled plasma membrane and unfolding of these wrinkles as the neutrophils 

spread. Figure was adapted from Nature Reviews Molecular Cell Biology 2008, 

9; 662-665.  
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phagocyte) would contribute only 0.04% additional membrane area, in order to obtain 100% 

increase in surface area (Nüsse and Lindau 1988; Eiserich et al. 2002; Dewitt and Hallett 2007). 

Such a massive release of granular material does not occur during extravasation. Moreover, 

release of all the granular content in the vicinity of the endothelium could also be catastrophic 

(Dewitt and Hallett 2007).  

            A scanning electron micrograph (SEM) of a neutrophil or macrophage shows that  these 

cells have numerous surface wrinkles and folds, which means immediately that the that the 

actual surface area of these cells is greatly in excess of that of a sphere of the same diameter. 

This gives the possibilty that the extra membrane required during shape change of neutrophils 

is provided by the unfolding of the wrinkled plasma membrane. It is therefore important to 

understand how the wrinkles are formed and regulated (figure 1.7a & b). 

1.7.2 Molecular velcro of membrane wrinkles  

          A series of elegant biophysical studies about the properties of the neutrophil plasma 

membrane has been performed using suction of the plasma membrane into micropipettes 

(Evans et al. 1993; Herant et al. 2005, 2006). Their findings show that a moderate amount of 

suction can expand the membrane into the mouth of the micropipette by up to about 5% of the 

membrane area; and further expansion is possible by applying a greater force (Herant et al. 

2003; Dewitt and Hallett 2007; Hallett and Dewitt 2007). These measurements are consistent 

with there being a limited amount of "slack" in the wrinkles. Additional force is required to 

"unwrinkle" the remainder of the membrane, as if the wrinkles are held together by a molecular 

"velcro-like" mechanism (Herant et al. 2003).  

        Presumably, the "molecular velcro" is sufficiently strong to hold the wrinkles in place 

against the osmotic pressure tending to swell the cells. However, when neutrophils are 
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activated to expand their plasma membrane, the amount of available slack membrane 

increases, and the force required to un-velcro the wrinkles is reduced significantly (Herant et al. 

2005). As the velcro holding the wrinkles in place has lost its grip under this condition, the 

membrane in the wrinkles would now become available to accommodate the change in shape 

as the cell flattens out (Hallett and Dewitt 2007)(Fig. 1.7a & b) . The loss of surface wrinkles in 

neutrophils when they flattened out is apparent in SEMs and can be seen in classic textbooks. 

Dewitt et al and Hallett et al (2007) have explained the nature of the molecular velcro and 

suggest how its grip may be loosened.   

   The wrinkled plasma membrane is not unique to neutrophils and macrophages; and it is 

seen across the surfaces of myeloid cells. These linear ridges, projecting about0.8 µm high 

and 0.1 µm wide, with lengths of 10–15 µm (Burwen and Satir 1977),  which   on lymphocytes 

are termed "microvilli"; can be seen in transmission electron microscopy images (Tohya and 

Kimura 1998). These wrinkles and microvilli are permanent (or at least long-lived) structures, 

which influence the distribution of some surface molecules, like L-selectin (on the wrinkles) 

and integrin molecules (valleys between wrinkles). The lymphocyte microvilli have parallel 

actin filaments running within their long axis (Tohya and Kimura 1998), to which the 

cytoplasmic tail of selectins is bound via a linker molecule, ezrin (Ivetic et al. 2002; Ivetic 

2004).  

       In neutrophils, there is a well-defined cortical network of polymerized actin, but the 

molecules involved in maintaining the surface wrinkles are not yet fully established but 

probably include membrane linker proteins like talin and ezrin. Two general models has been 

suggested (Dewitt and Hallett 2007; Hallett and Dewitt 2007) (fig 1.7.3), dependent on linkage 

to the cytoskeleton via ezrin or talin. In both models, a wrinkled membrane could be formed by 

cross-linking actin to membrane proteins. The two models are not, of course, mutually 
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exclusive, but the "velcro" may be attached to the cytoskeleton outside the wrinkles (fig 

1.7.3a) or within the wrinkle (fig 1.7.3b). These models also depend on the actin-membrane 

linkage via L-selectin and β2-integrin; and would explain their non-homogenous distribution on 

the cell surface, i.e., their exclusion or inclusion from the wrinkled membrane  (Dewitt and 

Hallett 2007; Hallett and Dewitt 2007). 

1.7.3   Unfolding of wrinkled membrane – role of calcium 

           It has been established for over 20 years that a large rise in cytosolic-free Ca2+ 

accompanies macrophage and neutrophil spreading (Kruskal et al. 1986; Jaconi et al. 1991). 

It has also been shown that uncaging cytosolic Ca2+ or inositol 1,4,5-trisphosphate (IP3) to 

provide controlled Ca2+ elevation causes an acceleration in the rate of flattening (Marks and 

Maxfield 1997; Pettit and Hallett 1998). This is similar to the relationship between Ca2+ and 

membrane expansion during pseudopod extension around the particle during phagocytosis 

(Dewitt and Hallett 2002), where acceleration was dependent on µ-calpain activity (Molinari 

and Carafoli 1997; Dewitt and Hallett 2002).  

          This is a Ca2+-activated protease (Molinari and Carafoli 1997;Goll et al. 2003), which 

cleaves substrates in vitro and in vivo. The flattening of lymphocytes during adhesion via ß2-

integrin is dependent on the activity of calpain (Stewart et al. 1998; Leitinger et al. 2000).  As 

a number of the substrates of calpain are cytoskeletal proteins involved in membrane linkage 

(Franco and Huttenlocher 2005), this would provide a mechanism for releasing the grip of the 

molecular velcro. The calpain cleavage site lies between a 4.1/ezrin/radixin/moesin (FERM) 

domain, binding to membrane-associated proteins; and an actin-binding domain, linking to the 

cytoskeleton (Dewitt and Hallett 2007; Hallett and Dewitt 2007) (fig 1.7.3.e).   
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Activation of calpain by elevated Ca2+ would thus lead to the uncoupling of the link 

between the membrane and the underlying actin cytoskeleton and permit additional 

membrane to become available for cell flattening (Figure 1.7.4).  However, there must be 

some selectivity in the activation of calpain, as activation of a (relatively) non-specific protease 

within the cytosol of a healthy cell would be disastrous. In vitro, activation of µ-calpain 

requires unusually high Ca2+ concentrations, its dissociation constant is about 30µM (Michetti 

et al. 1997), whereas physiologically, global cytosolic Ca2+ signals reach a maximum of about 

1 µM.  

  In fact, the selectivity may arise from the existence of a subplasma membrane 

microdomain of high Ca2+. The Ca2+ concentration near the plasma membrane exceeds 50 

µM during the influx of Ca2+ from the extracellular medium, although the concentration in the 

bulk cytosol remains below 1 µM (Davies 1996; Davies and Hallett 1998). When uncaging 

Ca2+, it was necessary to elevate bulk, cytosolic-free Ca2+ to levels above the saturation point 

of the indicator, estimated to be about 50 µM (Pettit and Hallett 1998; Hillson 2006; Dewitt and 

Hallett 2007). However, the more physiological signal induced by uncaging IP3 (which induces 

release of Ca2+ from stores and then physiological Ca2+ influx) induced neutrophil flattening at 

physiological Ca2+ concentrations in the cytosol (Dewitt and Hallett 2002).  

This again suggests that calcium –influx driven microdomains of high Ca2+ exist in the cell. 

The Ca2+ concentrations within individual wrinkles may reach the highest level, as there is a 

larger localized surface area to volume ratio (Brasen et al. 2010). In addition, it has been 

reported that calpain translocates to the plasma membrane (Gil-Parrado et al. 2003), perhaps 

by virtue of its C2-like domain. Together, these phenomena would limit calpain activity to the 

strategically required location and target subplasma membrane proteins. It is, in fact, known 

that cleavage of talin, an important calpain substrate, occurs during physiological Ca2+ influx in 
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neutrophils (Sampath et al. 1998), suggesting that when activated by Ca2+ influx, calpain-

mediated proteolysis has specificity.  

Furthermore, a number of important calpain substrates, including ezrin, Wiskott-Aldrich 

syndrome protein and myosin X, undergo µ-calpain-dependent cleavage in myeloid and 

lymphoid cells (Shcherbina et al. 1999; Shcherbina et al. 2001; Sousa and Cheney 2005). In 

non-immune cells, calpains have also been implicated in the local control membrane surface 

area leading to membrane protrusions (Franco et al. 2004).  
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Figure 1.7.3. Mechanism for wrinkle release. In (a) and (b), two possible configurations are shown in 
which the wrinkles are held in place by (a) integrin–talin–actin across the wrinkle valleys and (b) 
selectin–ezrin–actin within the wrinkle. The effect of (c) talin or (d) ezrin cleavage on releasing the 
wrinkle is also shown. (e) The structural relationship of the FERM and actin-binding domains to the 
calpain cleavage site is shown. This relationship is seen in talin and ezrin. The proposed effect of Ca

2+
 

activation of calpain on releasing plasma membrane from wrinkles and may enable to accommodate 
the change in shape and associated increase in surface area. This figure is adopted from Journal of 
Leukocyte Biology, 2007, 81(5); 1160-1164. 
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1.8 Membrane linker proteins  

 Membrane actin linker proteins would have a key role in the formation and maintenance 

of cell surface wrinkles. The FERM (4.1 protein, ezrin, radixin and moesin) is band 4.1 

superfamily is  a group of proteins that potentially links actin to phospholipid membranes 

(Isenberg et al. 2002). To this group belong talin, the erythrocyte membrane protein 4.1 (Rees 

et al. 1990),  ezrin, radixin, moesin (Bretscher et al. 1997); and some tyrosine phosphatases 

(Belliveau et al. 1995) . The ERM is made of globular head domain, FERM domain in the amino 

terminus, followed by a long region of high α-helical linker region and terminats in a carboxy-

terminal domain, known as the C-terminal, ERM-association domain (C-ERMAD);  that has the 

ability to bind the FERM domain or filamentous actin (F-actin) (fig 1.8.1a).  

  The globular FERM domain is composed of three subdomains, characterized by 

similarity to: (1) the ubiquitin fold, α-helix bundle structure classified as an acyl-coenzyme A 

binding protein-like fold, (2) a seven-stranded β-sandwich with one long α-helix, classified as 

a phosphotyrosine-binding domain; and (3) a pleckstrin-homology domain. The C-terminal 

domain, on the other hand, adopts an extended structure and is composed of one β-strand 

and six helical regions comprised of 34 amino acid that provide the major actin binding sites, 

However, two additional sites in the middle region of the tail and in the N-terminal domain was 

also  sites for actin binding (Bretscher A 2002; Smith WJ 2002).  

Other than providing a binding site for actin, the C-terminal covers an extensive area on 

the FERM domain surface and covers the intergrin binding site. ERM proteins are maintained 

in a dormant, inactive conformation through the interaction between FERM and the C-terminal 

domains (Bretscher A 2002; Smith WJ 2002). The release of the C-ERMAD from the FERM 

domain is necessary for their full activation and exposes binding sites in the FERM domain 

and the F-actin-binding site of the C-ERMAD (fig 1.8.a). Current ideas indicate that the ERM 
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protein in dormant state act like a spring, when the affinity between the FERM domain and the 

C-ERMAD is reduced, the molecule pops open, allowing it to connect the membrane to the 

underlying actin cytoskeleton.  However, the entire mechanism for activation for ERM is yet to 

be studied, but it may be activated phospholipids and kinase. The proteins of this family which 

are elevant to neutrophils include talin and ezrin (Bretscher A 2002; Smith WJ 2002). 

1.8.1   Talin  

        Talin is a widespread protein that is found in a variety of mammalian cells, where it is 

concentrated in focal cell adhesions (Burridge and Connell 1983) and ruffling membranes 

(DePasquale and Izzard 1991).  In vertebrates, two talin genes, talin 1 and talin 2, have been 

reported (Monkley et al. 2001; Senetar and McCann 2005; Domadia et al. 2010) . Talin 

consists of multiple domains having distinct functions (Roberts and Critchley 2009). In 

platelets, talin redistributes from the cytoplasm to the plasma membrane upon activation, 

leading to secretory events and platelet coagulation via integrins (Beckerle et al. 1989) , a 

complex process that is not fully understood.  

         Each domain in the talin have distinct functions (Roberts and Critchley 2009) and  

Several divergent binding epitopes have been mapped along the entire sequence of 2541 

amino acids (Rees et al. 1990),  suggesting that talin may be a multifunctional protein. Talin 

has a globular N-terminal head region and a flexible rod domain, which can be dissociated by 

the protease calpain 2 (fig 1.8.1.a). The head contains a FERM (protein 4.1, ezrin, radixin, 

moesin) domain (subdivided into F1, F2 and F3 subdomains), which has binding sites for the 

cytoplasmic domains of β-integrins and as well as for filamentous actin (F-actin) (Critchley 

and Gingras 2008). The head also binds to two signalling molecules that regulate the 

dynamics of focal adhesion, namely PIPK1γ90 [a splice variant of phosphatidylinositol (4)-

phosphate 5-kinase type Iγ] and focal adhesion kinase (FAK), although it is not clear whether 
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binding to FAK is direct(Critchley and Gingras 2008). The N-terminal head region (residues 1–

400), is composed of the FERMdomain containing F1, F2, and F3 domains, with a further 

extension towards N-terminus termed the  F0 domain (Domadia et al. 2010).  

         The head region of talin functions as an activator of integrins by binding directly to the 

cytoplasmic region of the b tails (Tadokoro et al. 2003; Anthis et al. 2009). Structural study 

reveals that talin F3 contains a phosphotyrosine binding (PTB) fold that interacts with the 

membrane proximal NPxY motif of the b3 cytoplasmic tail (García-Alvarez et al. 2003).  The 

talin F2 and F3 domains are important for the activation of integrins, but the F0 and F1 

domains are also required for the activation of integrins a5b1 and aIIbb3, despite differences 

in the level of activation (Bouaouina et al. 2008). The talin rod (the C-terminal of talin: residues 

482–2541) defines a long helical rod region with multiple bundles of α-helices (Roberts and 

Critchley 2009).  

           The helical rod region is primarily involved in binding to cytoskeletal proteins F-actin 

and vinculin (Roberts and Critchley 2009); and it is also involved in maintaining an inactivated 

talin (Goult et al. 2009). In the tail of talin, an additional integrin-binding site at least two actin-

binding sites and several binding sites for vinculin, which itself has multiple partners, has been 

identified. Recently, binding sites for two independent transmembrane proteins, laylin 

(Borowsky and Hynes 1998) and integrin β-subunit cytoplasmic domain (Calderwood et al. 

1999), have been identified in this fragment. The C-terminal helices of two talin monomers 

form an anti-parallel dimer, although the relative position of the two subunits within the dimer 

is uncertain (Critchley and Gingras 2008).  Calpain cleavage before amino acid residue 434 

yields two major domains, an N-terminal head portion of 47-kDa and a 190-kDa rod domain 

containing the C-terminus (Isenberg et al. 2002). The 47-kDa head fragment is believed to be 

of major importance for talin’s association with the plasma membrane (Isenberg et al. 2002). 
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Phospholipid binding has also been show to be exculusively mediated by 47 kDa domin 

(Niggli 1994) (fig 1.8.1b). 

 

 

 

 

 

 

 

 

 

Figure 1.8.1a. Domain structure of talin. The N-terminal talin head (1–400) contains a FERM 

domain comprising F1, F2, and F3 domains preceded by the F0 domain. The talin rod (482–

2541) contains 62 amphipathic α-helices, the most C-terminal of which is required for talin 

dimerization (blue). The position of the various ligand-binding sites is indicated, including the 

intramolecular interaction between F3 and the talin rod.  Adopted from Journal of Cell Science, 

2008, 121; 1345-1347. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.8.1b. Possible orientations 
of the subunits in the talin dimer. 
Journal of Cell Science, 2008,121;  
1345-1347. 
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1.8.1.1 Interactivities of talin rod with actin cytoskeleton  

              The talin rod domain comprises 62 amphipathic α-helices, which form a series of 

helical bundles. Studies using peptide arrays show that around ten of these helices can bind to 

a hydrophobic pocket in the vinculin head. Predictably, the key vinculin-binding residues in talin 

are also hydrophobic, but these are usually buried within the helical bundles (Campbell and 

Ginsberg 2004; Gingras et al. 2005). Indeed, talin binds to vinculin with low affinity and it is 

unclear how vinculin accesses the vinculin-binding sites (VBSs) in talin. It is possible that force 

exerted on the integrin-talin-actin complex by actomyosin contraction exposes the VBSs in talin 

and enables vinculin to bind to and stabilize the complex, possibly by crosslinking talin to F-

actin (Ziegler et al. 2006; Humphries et al. 2007).  

      Binding of talin to F-actin is intimately linked to talin dimerisation. The actin-binding site 

(ABS) in the C-terminal region of the talin rod comprises a five-helix bundle and a C-terminal 

helix that is required for dimer formation. Together, these constitute a talin/HIP1R/Sla2p actin-

tethering C-terminal homology (THATCH) domain (Gingras et al. 2008). Interestingly, actin 

only binds to the THATCH dimer and the dimerisation domain itself appears to contribute to 

binding. Electron microscopy shows that the THATCH dimer binds to three actin monomers 

along the long pitch of the same actin filament and does not crosslink F-actin. Presumably, the 

actin-bundling activity of talin is explained by the presence of at least two other ABSs in talin 

(Critchley and Gingras 2008). 

1.8.1.2 Interaction between talin and integrin  

 `Integrins are formed by non-covalently bound α and β subunits. In mammals, 18 α and 8 

β subunits combine in a restricted manner to form 24 specific dimers, which exhibit different 

ligand-binding properties. Integrin subunits have large extracellular domains (approximately 
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800 amino acids)that contribute to ligand binding, single transmembrane (TM) domains 

(approximately 20 amino acids) and short cytoplasmic tails (13 to 70 amino acids, except that 

of β4). All three domains are required to regulate the affinity of integrins. β2 and β3 integrins 

can change affinity on a subsecond time  scale and many of the paradigms of integrin structure 

and function were deduced from studies of these integrins. However, it is not clear whether 

they can be generalized to all integrins (Hynes 2002).  

  The extracellular domain of the heterodimer consists of a ligand-binding head domain 

standing on two long legs (fig 1.8.1.2), α integrin subunits contain a seven-bladed β-propeller 

domain that forms the head. Half of the α subunits contain an I domain (also referred to as a 

von Willebrand factor A domain), which when present is nearly always the ligand-binding site. 

The I domain possesses a conserved metal ion–dependent adhesion site (MIDAS), which 

binds divalent cations required for ligand binding by integrins. The β subunit is composed of a 

hybrid domain that connects to the βI domain, which is analogous to the I domain of the α 

subunit, a PSI (plexin/semaphoring/integrin) domain, four epidermal growth factor (EGF) 

domains; and a membrane proximal β tail domain (βTD). In integrins without an I domain, 

ligands bind to a crevice between the αβ subunit interface, where they interact with a metal 

ion–occupied MIDAS within the β subunit and the propeller domain of the subunit (Meyer et al. 

2006). Despite the controversial role of the salt bridge in maintaining integrins in a low-affinity 

state, high integrin affinity is thought to be associated with separation of the α and β 

cytoplasmic tails. Many proteins bind directly to integrin tails, yet only talin and kindlins can 

regulate integrin affinity. The role of these NxxY motifs–binding proteins in integrin activation 

and function will now be discussed in detail.  

         The integrin-binding site for the talin head was mapped to the membrane-proximal NPxY 

motif, a common binding motif for PTB domain–containing proteins (Calderwood et al 1999; 
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Calderwood 2002; Uhlik 2005). Mutations within the NPxY motif of both β1 (Bouaouina  et al.  

2008) and β3 (Tadokora  et al. 2003)  integrins, as well as mutations in the talin PTB domain ( 

Wegener  et al 2007), abolish talin binding and decrease integrin affinity. Insights into how talin 

increases integrin affinity came from experiments showing that the talin head effectively out 

competes the αIIb tail for binding to the β3 tail (Vinogradova  et al. 2000). Fluorescence energy 

transfer (FRET) experiments in cells confirmed that the talin head induces separation of the 

integrin tails (in this case αLβ2), which is concomitant with increased basal integrin ligand 

binding (Kim et al. 2003).  

 Cells depleted of talin1 by small interfering RNA (siRNA) cannot respond to common 

activation stimuli (Tadokoro et al. 2003). Furthermore, genetic experiments (Monkley et al. 

2000; Brown et al. 2002; Cram et al. 2003; Petrich et al. 2007) demonstrated that talin1 

ablation universally leads to integrin-adhesion defects. Even though there are several protein 

with PTB domain such as Dok1 (Calderwood et al. 2002), tensin (McCleverty et al. 2007), and 

Numb (Calderwool et al. 2002), binds with NPxY motif, non other then talin can modulate 

integrin affinity. This might be because the talin head has an additional binding site on the β 

integrin tail in the membrane proximal region, where the α and β integrin tails interact (Patil  et 

al .1999; Vinogradova et al. 2002), whereas Dok1 binds only to the region surrounding the 

NPxY motif ( Oxley  et al. 2008).  

  Crystallographic data has clarified that talin-dependent integrin activation involves binding 

of the talin F3 subdomain to the β3 integrin tail at two locations, in order to induce the 

displacement of the α integrin tail and facilitate tail separation (Wegener  et al.  2007). The talin 

F3 subdomain contains an extra loop of amino acids that binds to membrane-proximal 

sequences in the β3 integrin tail. Thus, it was proposed that talin first encounters the β integrin 

tail by binding the NPxY motif through its PTB domain;  and the loop sequence subsequently 
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interacts with membrane proximal sequences within the β tail to displace the α integrin tail and 

separate the TM domains. Although the talin head increases integrin affinity, full-length talin is 

required to cluster integrins into focal adhesions (Legate et al .2009), which are hubs that relay 

signals from integrins to different cellular compartments. Cells that do not express talin are 

unable to undergo sustained spreading, which indicates an adhesion defect (Zhang X et al. 

2008).  

  Expressing the talin1 head in these cells partially restored the spreading defect, but focal 

adhesions were still absent, demonstrating that the clustering of integrins into larger adhesion 

structures depends on both the head and rod of talin. These studies also showed that talin is 

essential for coupling the actin cytoskeleton to adhesion structures and established talin as a 

key adaptor linking the cytoskeleton to the extracellular matrix (Zhang et al. 2008). Mutational 

analysis of talin indicates that a functional dimerization motif is both necessary and sufficient 

to localize talin to focal adhesions (Semetar 2006; Smith J et al. 2007). Because talin contains 

two β integrin–binding sites, one within the FERM and the other within the rod domain, the 

talin homodimer has up to four integrin-binding sites, which may enable talin to act as an 

integrin crosslinker in order to promote clustering.     

   Consistent with this hypothesis, cleavage of the talin head from the rod domain by the 

protease calpain induces focal-adhesion disassembly (Franco  et al .2004).Because integrin 

activation has to be strictly controlled, talin-integrin binding is tightly regulated (Fig1.8.1.2.2a). 

NMR studies revealed an autoinhibitory interaction between the talin C-terminus and the PTB 

domain that blocks the integrin-binding pocket (Goksoy et al.2008). Therefore, when talin 

function is not required it may be maintained in an autoinhibited state. Activation of talin is still 

not clear, however, it probably involves binding to the lipid second messenger 

phosphotidylinositol-4,5-bisphosphate [PtdIns(4,5)P2] because this lipid elicits a 
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conformational change that disrupts the autoinhibitory interaction and enhances integrin-talin 

binding (Martel  et  al . 2001; Goksoy  2008).  

  Although phosphoinositide binding can enhance the affinity of many PTB domains for 

their substrates (Uhlik et al. 2005), this does not hold true for the isolated talin head. Talin 

binds to PIPKIγ and directs it to focal adhesions (Di Paolo et al. 2002; Ling  et al. 2002). Thus, 

a feed-forward loop may exist to enhance talin recruitment to sites of adhesion 

formation.Talin-integrin interactions are also controlled through phosphorylation of the β 

integrin tail. The Tyr within the β1 and β3 integrin NPxY motif can be phosphorylated by src 

family kinases (Chen 1992c; Law et al. 1996) and when mutated to Phe, it reverses the 

integrin-dependent spreading and migration defects in viral-Rous sarcoma oncogene (v-src)–

transformed fibroblasts ( Chen 1992).   

  The interaction between talin and β integrin tails is regulated by a phosphorylation 

switch mechanism. Structural analysis showed that the talin PTB–integrin NPxY interaction 

occurs through acidic and hydrophobic interactions (Di Paolo et al. 2002) and cannot 

accommodate the introduction of a phosphate group. Accordingly, the affinity of the talin F3 

subdomain for a phosphorylated β3 tail peptide is reduced compared with that of the 

unphosphorylated peptide (Oxley et al. 2008). Therefore, phosphorylation could inhibit integrin 

activation by maintaining an inhibitory complex on inactive integrin tails or by blocking talin 

binding directly. Mutations and truncations of the β3 integrin tail C- terminal to the talin-binding 

site decrease integrin affinity for ligands (Chen et al.1992; Chen et al. 1994; Xi et al. 2003; Ma  

et al 2006), which raises the possibility that additional factors also alter integrin affinity status. 

Indeed, recent work shows that talin is not the only master regulator of integrin activation and 

that the kindlin family of proteins, which bind to this region of β1, β2, and β3 integrins, are as 
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important as talin in mediating this function (Ma  et al. 2008; Montanez et al. 2008;  Moser  et 

al. 2008). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.8.1.2.2. Potential mechanisms regulating talin-mediated integrin activation. Talin binding 
to integrin β tails induces conformational changes in the extracellular domain, increasing their 
affinity for ligands (the nature of the conformational changes remains controversial and the model 
shown represents only one of several possibilities). Mechanisms that regulate talin binding may 
therefore control integrin activation. The putative salt bridge stabilizing the interaction between 
membrane-proximal regions of the α and β tails in the inactive conformation is illustrated as a 
black bar. The three-lobed FERM domain within the talin head is indicated. (A) Stimulation of talin 
binding. Two hypothetical models of inactive talin are shown, where regions of the rod mask the β 
tail-binding site in the F3 subdomain. Calpain cleavage or PtdIns(4,5)P2 binding unmasks the 
binding site, potentially activating integrins. (B) Inhibition of talin binding. Src-mediated tyrosine 
phosphorylation (P) of integrin NPxY motifs, and competition with other β tail-binding proteins (e.g. 
PTB domain proteins), or other talin-binding proteins (e.g. PIPKIγ-90), may prevent integrin-talin 
interactions, so inhibiting integrin activation. Hence, dynamic interplay between the stimulatory and 
inhibitory pathways might determine the integrin activation state. Adopted from Journal of Cell 
Science, 2004, 117; 657-666.  
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1.8.2 Kindlin  

     Kindlins are related to talin. They belong to a family of evolutionarily conserved FER 

domain–containing proteins named after the gene mutated in Kindler syndrome, a rare skin 

blistering disease. There are three kindlin family members in mammals: kindlin-1 [Unc-112 

related protein 1 (URP1)], kindlin-2 (Mig2), and kindlin-3 (URP2) (Siegel et al .2003). Kindlin-1, 

which is predominantly expressed in epithelial cells, is found in tissues such as skin, intestine 

and kidney; kindlin-2 is expressed in most tissues, with highest amounts in skeletal and smooth 

muscle cells; and kindlin-3 expression is restricted to cells of hematopoietic origin (Siegel et al. 

2003; Jobard et al. 2003; Ussar et al. 2006). 

     All three proteins localize to integrin-dependent adhesion sites; kindlin-1 and -2 localize to 

focal adhesions and kindlin-3 localizes to podosomes, which are integrin-dependent adhesion 

sites found in hematopoietic cells. Two human diseases caused by kindlin gene mutations have 

characteristic features of defective integrin function. Kindler syndrome, which is caused by the 

loss of kindlin-1, is a rare genodermatosis characterized by an epithelial cell-adhesion defect 

followed by poikiloderma and cutaneous atrophy (Siegel et al. 2003; Jobard et al. 2003).  

Kindlin-2 deficiency is embryonically lethal in zebrafish and mice, but has not been described in 

humans. Kindlin-3 deletion causes severe bleeding that is reminiscent of Glanzmann 

thrombasthenia, a disorder arising from defects in αIIb or β3 integrin subunits. The platelet 

integrins cannot bind ligands and platelet aggregation is defective, despite normal amounts of 

talin (Moser et al. 2008). Only very limited information is available on the functions of kindlins. 

Kindlin-3 has been reported to influence integrin-mediated strengthening of cell adhesion (Shi, 

et al. 2007; Dowling 2008) and to cooperate with talin in inducing integrin activation (Ma, et.al.  

2008). 
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Figure 1.8.2b. Schematic diagram 

showing the binding site of kindling 
with intergrin. They bind via their F3 
subdomains to the membrane-distal 
NxxY motif of β integrin cytoplasmic 
tails. Figure adopted from Journal of 

Cell Science, 2010, 123; 2353-2356. 

Figure 1.8.2a. Kindlin domain structure and binding partners. (A) Domain architecture of kindlins. 
All members of the kindlin protein family show identical domain architecture (top). Arrows indicate 
the regions of kindlins that interact with β1-integrin and β3-integrin, ILK or migfilin. The interactions 
with ILK andmigfilin are based mainly on the studies of kindlin-2 and UNC-112. (B) Overlay of the 
kindlin-2 F3 subdomain model structure (blue) and the talin F3 subdomain structure (green) in 
complex with the β1-integrin peptide (red) showing a conserved PTB fold. ILK, integrin-linked 
kinase; PTB, phosphotyrosine binding; UNC-112, uncoordinated protein 112. Adopted from 
Journal of Cell Science, 2010, 123;  2353-2356. 
© 2010 
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1.8.2.1. Kindlins as regulators of integrin activation 

           Kindlins are essential components of the integrin adhesion complex. Mutations in 

kindlin-3 were implicated in a rare leukocyte-adhesion deficiency (LAD) type III (LAD-III), which 

results from severe defects in leukocyte and platelet integrin activation (Kuiljper et al. 2008; 

Mory  et al. 2008; Svensson  et al. 2009 ). Genetic and siRNA depletion of kindlin-1, -2 and -3 in 

mice and cells provided definitive experimental proof that kindlins are essential regulators of 

integrin function because the conformational shift of integrins from the low- to high-affinity state 

does not occur in the absence of kindlins (Ma  et al. 2006; Moser  et al. 2008; Ussar  et al. 

2008).  Both kindlin and talin depletion cause impairment of platelet aggregation which implies 

that both proteins are required to regulatory integrin affinity (Nieswandt et al. 2007; Petrich et al. 

2007).  

             Furthermore, leukocytes lacking kindlin-3 are unable to transmigrate across the vessel 

wall into inflamed tissues because of an integrin-mediated adhesion defect (Moser et al. 2009).  

The phenotypes of these mice resemble LAD-III patients, which led to the identification of 

mutations in kindlin-3 as a cause of this disease (Kuijper et al. 2009; Svenson et al. 2009) 

Kindlin-mediated integrin activation requires a direct interaction between kindlin and β integrin 

tails. The kindlin and talin FERM domains show high levels of sequence similarity (Koleker et al. 

2004). However, the kindlin FERM domain exhibits the structural hallmark of being split into two 

halves by a pleckstrin homology (PH)–domain insertion in the F2 subdomain (Fig 1.8.2.1a, b & 

c). Molecular modeling of the kindlin-2 F3 subdomain that uses the talin F3 subdomain as a 

structural template suggests that it also resembles a PTB domain capable of recognizing β 

integrin tails (Shi et al. 2007). Biochemical experiments confirmed the predicted interaction of 

kindlins with the cytoplasmic tails of β1, β2, and β3 tails (Kloeker et al. 2004; Shi 2007; Ma et al. 

2008; Montanez et al. 2008; Moser et al. 2008; Moser et al. 2009).  
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                 Kindlin-1 and kindlin-2 PTB-domain mutations abolish their interaction with the β1 

integrin tail (Usar et al. 2008; Shi et al. 2007) and impair the ability of kindlin-1 to activate 

integrins (Moser et al. 2008). Unlike talin, kindlins bind the distal NxxY motif on the β1, β2, and 

β3 tails (Fig.1.8.2.1) (Ma  et al. 2008; Montanez  et al. 2008; Moser et al. 2009; Moser et al. 

2008; Ussar  et al. 2008; Shi  et al. 2007 ) additional sequences may also be involved in kindlin 

binding. Although the intervening sequence between the two NxxY motifs in the β1 and β3 

integrin cytoplasmic tails are dispensable for talin binding, mutation of a double Thr or Ser/Thr 

within this sequence impairs kindlin binding (Moser et al. 2008). Because kindlins and talin bind 

distinct regions of the β integrin tail, they may cooperate to regulate integrin affinity (Ma et al. 

2008; Montanez et al. 2008; Moser et al. 2009; Calderwood et al. 2002; Calderwood et al. 

1999). 

          Although kindlins are not sufficient to shift integrins to a high-affinity state, they facilitate 

talin function. The amount of talin expressed in cells determines the efficacy of kindlins in 

promoting this function because overexpressing kindlin-2 in cells with relatively little talin  (Han  

et al. 2006) has little or no effect on integrin affinity modulation; and coexpression of the talin-

head domain with kindlin-1 or -2 results in a synergistic increase in αIIbβ3 affinity. Conversely, 

talin depends on kindlins to promote integrin affinity because talin-head overexpression failed to 

increase αIIbβ3 affinity in CHO cells in which kindlin expression was reduced by siRNA. Thus, 

kindlins require talin and talin is not sufficient to increase integrin affinity. Kindlins also function 

as cytoskeletal linker molecules in outside-in signaling. Kindlin-1 and -2 bind to integrin-linked 

kinase (ILK) and the filamin-binding protein migfilin, both of which link kindlins indirectly to the 

actin cytoskeleton (Tu. et al. 2003; Zhang et al. 2006; Montanez et al. 2008). Both proteins 

localize to cell-matrix adhesions in a kindlin-dependent manner, demonstrating that kindlins are 

central linker proteins mediating the assembly of integrin-dependent adhesion complexes (Tu. 

et al. 2003; Zhang et al. 2006; Montanez et al. 2008). Kindlin-3–deficient platelets exposed to 
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divalent Mn2+, which shifts integrins into the high-affinity state independent of intracellular cues, 

can adhere to fibrinogen or collagen-coated surfaces. However, subsequent platelet spreading 

is impaired, which indicates that integrin-dependent cytoskeletal rearrangements do not occur in 

the absence of kindlin-3 (Moser et al. 2008). These observations suggest that kindlins remain 

associated with the adhesion complex and fulfill essential functions as bidirectional signaling 

molecules.  
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Figure 1.8.2.1a. Integrin architecture and schematic representation 

of integrin activation. Specific contacts between the ectodomains, the 
TM, and cytoplasmic domains keep the integrin in its bent 
conformation. Separation of the integrin legs, transmembrane, and 
cytoplasmic domains occurs during integrin activation, resulting in an 
extended integrin conformation. The α subunit is shown in green and 
the β subunit in violet. (B) A closer look at the interacting site (orange 

rectangle) between the transmembrane and membrane proximal 
cytoplasmic domains of the α and β subunits. The membrane 
proximal (MP) and distal (MD) NPxY/NxxY motifs within the β tail are 
indicated. (C and D) Schematic drawings of the integrin-activating 

proteins talin (C) and kindlin (D). The FERM domains are depicted as 
balls subdivided into three subdomains, F1 to F3. Kindlins contain a 
PH domain inserted into the F2 subdomain. Domain sizes are not to 
scale, and talin is shown as a monomer for simplicity. This diagram 
was adapoted from, Science, 2009, 324; 895-899. 

 

Figure 1.8.2.1b: Hypothetical model of kindlin 

recruitment and binding to the β integrin cytoplasmic 

tail. Phosphoinositide binding to the PH domain 

and/or phosphorylation might activate kindlin 

proteins and recruit them to the membrane, where 

they bind via their F3 subdomains to the membrane-

distal NxxY motif of β integrin cytoplasmic tails. This 

diagram was adapoted from Science, 2009, 324; 

895-899. 
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1.8.3 Ezrin  

Ezrin is also a member of the FERM family and is of special interest to the maintenance of cell 

surface morphology. Ezrin is the p81 substrate of the epidermal growth factor (EGF) receptor 

tyrosine kinase; and was first purified from epithelial intestinal brush border microvilli. It is also a 

calpain substrate. Initially, the hypothesis of an interaction of ERM proteins, including ezrin, with 

the plasma membrane was due to the presence of the FERM domain, which is involved in the 

interaction between band 4.1 and glycophyrin C (Correas, et al. 1986). Algrain et al. (1993) did 

the first experiments reinforcing this hypothesis, showing by transfection experiments that the 

amino-terminal domain of ezrin associates with the plasma membrane whereas the carboxy-

terminal domain associates with the cytoskeleton (fig 1.8.3a). 

Figure1.8.2.1c. Putative crosstalk mechanisms 

between talin and kindlin during integrin 

activation. (a) Model for the sequential binding 

of kindlin and talin to the integrin tail. Kindlin 

binding to the MD NxxY motif facilitates talin 

binding to the MP NPxY motif, which results in 

the displacement of kindlin from the β tail and 

final integrin activation. (b) Because of the 

distinct binding sites for talin and kindlin at the 

β integrin tail, simultaneous binding may be 

possible. The order in which each protein binds 

to the integrin tail is not known. (c) 

Communication between talin and kindlin in 

trans, where each protein is bound to a 

different integrin tail, can also be envisioned. In 

this model, talin and kindlin binding to integrin 

tails results in the formation of integrin 

nanoclusters and a subsequent talin-kindlin 

crosstalk. This diagram was adapoted from 

Science, 2009, 324; 895-899. 
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The molecules which bind with ERM and plasma membrane are named ERMBMPs (ERM 

binding membrane proteins) (Yonemura and Tsukita, 1999). These proteins are subdivided in 

two classes: one involved in the direct attachment of ERM to the plasma membrane and the 

other in an indirect mechanism. Table 1.8.3 lists the two classes of ERM associated protein. 

          Table 1.8.3. ERM associated proteins   

Interactions  Functional outcome Cells/ tissues references 

Direct attachment 

  CD44 

 

Cell motility and 
formation of uropodia  

 

epithelial cells and 
fibroblasts 

 

Tsukita, et al.1994 

 ICAM-2    Cell motility and 
formation of uropodia  

lymphocytes 

 

Helander, et 
al.1996 

   Syndecan 2 

 

Transduction of signals 
from extra cellular 
matrix 

Family of transmembrane 
heparan sulfate 
proteoglycans 

 

 

Granes, et al. 2000. 

Figure1.8.3a. Structure of ERM family of proteins. All ERMs (ezrin, radixin and moesin) have a similar 

domain structure. The domain organization of ezrin is shown here. The amino‑terminal FERM domain 

(blue) consists of three subdomains: F1, F2 and F3. The central ~150 residue region (yellow) is 

predicted to have a high α‑helical content and propensity to assemble into a coiled coil. This is followed 

by a linker region that is Pro‑rich in ezrin and radixin, but not in moesin; and the protein terminates in 

the carboxy‑terminal ERM‑associated domain (C‑ERMAD; orange), which contains thefilamentous 

actin (F‑actin) - binding site. Adopted from Nature Reviews Molecular Cell Biology, 2010,11; 276-287. 
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PA2.26 

Reorganization of the 
actin cytoskeleton and 
a redistribution of ezrin 
concomitantly to a 
change in cell 
morphology. 

Carcinoma cell lines, 
fibroblasts, epithelial cells 
of the choroid plexus, 
mesothelial cells and 
endothelia of lymphatic 
vessels 

Scholl,  et al. 1999 

Indirect 
attachement 

EBP50 

 

Adaptor protein 

 

Polarized cells 

 

Reczek, et al. 1998 

 

    As ERM proteins are actin binding proteins, they may control actin assembly directly. This 

would be consistent with ERM proteins, notably ezrin, being highly abundant (almost 1:1 to 

actin) in dynamic membrane structures, such as in gastric parietal cell membranes or microvilli 

(Berryman, et al. 1995). In addition to the C-terminal F-actin-binding site, a second site within 

residues 280–309 of ezrin mediates binding to G-actin as well as to F-actin (Roy, et al.1997). 

Intriguingly, deletion of the conserved 30 N-terminal residues of ezrin inhibited both the actin-

binding and membrane extension properties identified in the 280–309 ezrin domain (Martin, et 

al.1997). Indeed, ezrin and other ERMS are candidates to control directly the elongation of actin 

microfilaments.  

  The two amino acid sequences (1–29 and 280–309) essential for actin-binding and 

membrane extensions in ezrin are highly conserved in other ERM proteins, including 

merlin/schwannomin. This protein is also concentrated in actin-rich structures1–3 but does not 

possess the C-terminal. At least in vitro, both the actin-binding and the membrane binding sites 

of full-length native ERM proteins appear to be masked. As mentioned above, the carboxy-

terminal half of ezrin binds to actin filaments with relatively high affinity (Badour, et al. 2003; 

Lee, et al. 2003; Cao, et al. 2005). At physiological ionic strength, full-length ERM proteins have 

very low affinity to the cytoplasmic domain of EMAP in vitro, whereas the amino-terminal halves 

of ERM proteins lacking carboxy-terminal halves bind to the same with high affinity (Gautreau, 

et al. 2002).  
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    Considering that a significant amount of monomeric ezrin is detected as a soluble form in 

the cytoplasm (Schwartz-Albiez, et al. 1995 and McClatchey, et al. 2003), these findings led to 

the proposal of an intramolecular head-to-tail association model for ERM protein activation and 

inactivation (fig1.8.3b). In native ERM proteins, the amino- and carboxy-terminal halves may 

mutually suppress each other’s functions, namely membrane- and actin-binding, respectively, 

through an intramolecular head-to-tail association. 

       Actually, the amino-terminal half of an ERM protein is directly associated with the carboxy-

terminal half in vitro (Kikuchi 2002) and the amino-terminal half of ezrin suppresses the 

dominant-negative effect of the carboxy-terminal half of ezrin in vivo. This arrangement 

suppresses the formation of cellular protrusions by inhibiting the function of ezrin (Kupfer and 

Singer 1989).  Intermolecular head-to-tail association of ERM proteins is found in viva (Schwartz-

Albiez, et al. 1995; McClatchey, et al. 2003); and the intermolecular and intramolecular interfaces 

between the amino- and carboxy-terminal halves appear to be distinct. 

       A specific feature of ERM proteins is the proposed change in conformation that could drive 

the translocation of the protein from a soluble pool to a membrane-skeleton-associated form (fig 

1.8.3b). There has been no formal demonstration of such a change, but it almost certainly occurs 

in vivo. The change was predicted following the discovery of the self-association properties, the 

mapping of the N- and C-ERMADs, various structure–function studies performed in different cell-

expression systems and the identification of binding sites that were apparently masked in the 

purified soluble proteins. Opening of the full-length molecule should result in unrestricted binding 

of proteins, such as EBP50 and RhoGDI or Dbl, in the N-ERMAD; and F-actin in the C-ERMAD.  

        In various experimental cell and tissue systems, ERM association with the membrane 

skeleton always correlates with an enhanced state of ERM phosphorylation. Conversely, 

dephosphorylation induced by various means triggers the reversion of ERM proteins to a soluble 

form and promotes  the disassembly of the membrane-skeleton structure  (Mackay,  et al. 1997; 
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Tran Quang, et al. 2000). Ezrin undergoes phosphorylation at Tyr and Ser/Thr sits. 

Serine/threonine phosphorylation may be a key signal for the activation of ERM proteins.  

          Two papers have described that ERM proteins specifically bind to phosphatidylinositol4-

phosphate (PIP) and phosphatidylinositol 4, 5-bisphosphate (PIP,) (Barret, et al. 2000; Gautreau, 

et al. 2002). As described above, native full-length ERM proteins have very low affinity for the 

cytoplasmic domain of EMBP’s at physiological ionic strength. PIP elevated this binding affinity, 

suggesting that phosphoinositides are also key factors for the activation of ERM proteins 

(Gautreau, et al. 2002). The possible upstream factors required for activation of phosphorylation 

and phosphoinositide synthesis are Rho, one of the small GTP-binding proteins, is now 

considered to be a general regulator of actin-based cytoskeletal organization, especially of actin-

filament-plasma-membrane associations. Recent in vitro and in vitro analyses suggest an 

intimate relationship between the Rho signalling pathway and activation of the actin-membrane 

cross-linking ability of ERM proteins (Gautreau, et al. 2002) . 

          The in vitro binding of ERM proteins to the cytoplasmic domain of EMBP’s in the presence 

of crude cell homogenate is enhanced by GTPyS and completely suppressed by C3 toxin, a 

specific inhibitor of Rho (Matsui, et al. 1998). Furthermore, Rho guanine nucleotide dissociation 

inhibitor (GDI), an important regulator of Rho, is tightly associated with ERM complexes in viva 

(Bretscher, et al. 2002). In addition, Myc-tagged Rho introduced into MDCK cells colocalizes with 

ERM proteins (Matsui, et al. 1998). Several intensive studies have been performed to identify the 

direct target of Rho, showing that Rho regulates phosphatidylinositol turnover (Nakamura et al 

1999). For example, Rho activates PIP 5-kinase, which elevates the PIP level in membranes. 

Rho also regulates the activity of some serine/threonine kinases (Nakamura, et al.1999). It is 

possible that these kinases phosphorylate ERM proteins. It is thus fascinating to speculate that, 

through the activation and inactivation of ERM proteins, Rho can regulate the actin-based. By 

forming a cross link between plasma membrane and actin, ERM proteins involved both in the 
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morphogenesis of the membrane structures on which they are concentrated and in cell 

adhesion, involving molecular mechanisms that are not yet understood fully (Mangeat, et al. 

1999). Functional inactivation of ERM proteins has provided some clues to their roles (table 

1.8.3b). Overall, these data indicates that ERM proteins are cytoskeletal proteins with pleiotropic 

functions. In addition to a structural role as membrane–cytoskeleton linkers, they also regulate 

cell adhesion. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.8.3b. Two forms of Ezrin. Ezrin is activated through phosphatidylinositol 4,5‑bisphosphate 

(PtdIns(4,5)P2) binding and phosphorylation of Thr567, which reduces the affinity of the N‑terminal FERM 

domain for the C‑ERMAD. This unmasks binding sites for F‑actin and the cytoplasmic tails of specific 

membrane proteins, such as CD43 (also known as SPN), CD44, intercellular adhesion molecule 1 (ICAM1), 

ICAM2, Na+–H+ exchanger 1 (NHE1; also known as SLC9A1), syndecan 2 and β‑dystrophin. Furthermore, the 

adaptor protein ERM‑binding phosphoprotein 50 (EBP50; also known as NHERF1) can also bind the FERM 

domain. This picture was taken from Frontiers in Bioscience, 2006,11; 207-211. 
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Table 1.8.3b. Experimental established functions of ERM proteins 

Experimental 

Studies 

Methods 

Used 

Inference Reference 

Suppression of 

expression of ERM in 

Thymoma cells 

Antisense 

oligonucleotides 

Disappearance of all 

membrane structures  

Takeuchi, et al. (1994) 

Suppression of 

expression of ERM in 

mouse epithelial cells 

Antisense 

oligonucleotides 

Cell-matrix and cell- cell 

adhesion inhibited 

 Takeuchi, et al. (1994) 

Bretscher, et al  (1997) 

Application of 

antisense to primary 

neurons in vitro 

 Promotes stabilizing the 

formation of neurite 

outgrowths and axonal 

growth cones 

Paglini, et al. (1998) 

Inactivation of Ezrin in 

Rat-1 fibroblast and a 

V-fos transformed cell 

line 

Chromophore-

assisted laser 

inactivation 

Inhibition of membrane 

protrusion and reversible 

membrane retraction. 

Helander, et al. (1996) 

Inactivation of Ezrin 

cytosolic pool in rat-1 

cells 

Chromophore- 

assisted laser 

inactivation 

Massive cell retraction 

that originated from the 

non-irradiated leading 

edge of the cells 

Lamb, et al. (1997) 

Overproducing in 

insect cell line  

 Delay in cell detachment 

after viral infection 

Martin, et al. (1995) 

Assessment of 

resistance of  mouse 

cell line expressing 

ICAM-2 cell surface 

molecules to natural 

killer cells 

Trasfection with 

cDNA encoding 

human ezrin 

Became sensitive to IL-2 

and  cause formation of 

uropods and relocation of 

ICAM-2 to the surface of 

uropods which leads to 

target-cell recognition 

Helander, et al. 

(1996) 

Inducing over 

production of ezrin 

during cell migration 

and tubulogenesis 

 Drastic improvement in 

tubulogenesis and cell 

migration 

Gary and Bretscher. 

(1995) 

Stable expression of 

an N-terminal ezrin   

 Absence of apical 

microvilli, decrease in 

tubulogenesis and cell 

migration 

Crepaldi, et al. (1997) 
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1.9    Membrane linker proteins and calpain 

Calpain is a calcium-activated, intracellular cysteine protease distributed widely in 

animal cells (Hayashi et al. 1999). There are two ubiquitous calpain isozymes, µ-calpain and 

m-calpain, that are activated at micromolar and millimolar Ca2+ concentrations, respectively. 

Both calpains share similar biochemical characteristics, except for the calcium concentration 

required for activation; and their amounts vary from one tissue to another. Both calpains are 

composed of a large catalytic (80kDa) subunit and a small regulatory (30kDa) subunit; and 

each subunit contains a calmodulin like domain at the c-terminus (Croall and Demartino 

1991; Kawasaki and Kawashima 1996). Upon Ca2+ binding to the calmodulin-like domains, 

calpains become active and begin to autolyze. In the case of µ-calpain it is belived that the 

restricted autolysis in the large subunit that accompanies the increase in calcium sensitivity is 

itself the activation steps. Hayashi  et al. (1999) have provide evidence that µ-calpain binds 

to the cytoplasmic surface of cell membranes as an 80kDa proenzyme and is converted 

autolytically to the 76kDa form via a 78kDa intermediate on the membrane. In neutrophils,    

µ-calpain is the predominate form (Inomata et al. 1989). Even though the physiological 

function of calpain is yet to be revealed, it has been suggested to play an important role in 

cellular events that occur in response to mobilized Ca2+.  Like talin, ezrin is also a substrate 

for proteolysis by calpain.  

      The hypothesis that different sensitivity to calpain provides a basis for selective 

termination of the specialized linker structures of ezrin and moesin is supported by 

theoretical considerations and experimental evidence. Since the ability of ezrin and moesin 

to function as linker proteins requires sites in the N-terminus that bind plasma membrane 

proteins and sites in the C-terminus that bind the actin cytoskeleton (Algrain et al. 1993), 

proteolytic cleavage has the capacity to disrupt membrane-cytoskeleton linkages. Evidence 
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strongly suggesting that calpain sensitivity suffices as a basis for terminating the linker 

function of ezrin is provided by studies in gastric parietal cells in which ezrin cleavage by 

calpain was linked to inhibition of proton secretion (Yao 1993). In endothelial cells, ezrin 

cleavage by calpain was associated with stimulation of locomotion and abolition of ezrin's 

ability to associate with β-actin (Shuster et al. 1995). Ezrin and moesin in blood lymphocytes 

exhibit a divergent response to Ca2+ signaling. Whereas ezrin was cleaved, moesin remained 

intact. Similar results were obtained when lymphocytes were activated with the more 

physiological stimulus anti-CD3 mAb.   

 These findings suggest that moesin, but not ezrin, retained the ability to function during and 

subsequent to Ca2+ signaling. Indeed, ezrin and moesin may function sequentially to support 

different morphological structures required as lymphocytes differentiate, i.e. early acting ezrin 

in resting cells and moesin contributing to surface projections in lymphocytes that have 

undergone Ca2+ signaling and activation. Circulating lymphocytes are spheroidal cells with a 

surface dominated by slender microvilli that serve to monitor the vascular wall (von Andrian 

etal 1995). As part of the early response to proliferation-inducing stimuli, lymphocytes 

undergo cytoskeletal remodeling and become polarized (Oslzowny etal 1998, Stewart et 

1998, Gray 1993).  

  In resting lymphocytes, ezrin and moesin were found by fluorescent microscopy to co-

localize in surface microvilli, and these structures were rapidly disassembled on cell 

activation.. Since ezrin and moesin can form heterodimers in vivo (Gary  and Bretscher  

1993), early acting linker structures in resting lymphocytes may be composed of both ezrin 

and moesin, yet be disassembled upon lymphocyte activation by calpain proteolysis of only 

ezrin. In support of this theory, fluorescent microscopy revealed weak ezrin staining 
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homogeneously distributed in the cytosol, and moesin found as the sole ERM protein in the 

uropods of polarized activated T-lymphoblasts (Serrador et al. 1997). 

In summary, ezrin and moesin represent the ERM proteins in blood cells. Cleavage of 

ezrin by calpain and insensitivity of moesin to this protease are documented as biochemically 

distinguishing features. Calpain-dependent cleavage of ezrin and persistence of moesin is 

demonstrated in the early response of intact lymphocytes to proliferation-inducing stimulation. 

Together, these findings suggest that different susceptibility to calpain contributes to the 

specialized non-redundant functions of ezrin and moesin. 

1.10 Aims 

             Neutrophils change shape to migrate across the endothelial cell line to infiltrate any 

inflammatory area. It has been suggested that this change in shape of the cell may be because 

of unfolding of wrinkles present on the plasma membrane of neutrophils. These wrinkles are 

probably held in place by a group membrane linker proteins like talin and ezrin, which are know 

to form a link between the cell membrane and actin. These proteins are also 

proteolytically cleaved by the calcium activated proteolytic enzyme called calpain. Theoretically, 

it is possible that proteolytic cleave of membrane linker proteins in neutrophils may cause 

unfolding of wrinkles which in turn provides the extra reservoir of plasma membrane which 

neutrophils may use to extravaste across the endothelial lining.   

              The aim of the work presented in this thesis is to identify the subcellular position of 

membrane linker protein in neutrophils, to establish whether they are proteolytically cleaved 

during neutrophil activation. This would also establish a possible biological marker in 

extravasted neutrophils. This thesis also present a cell model for investigating the dynamic of 

ezrin  proteolysis during cell shape change. 
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2.1 General materials  

2.1.1  Reagents used 

Table 2.1.1 List of reagents used in the study  

Reagent name Pharmaceutical company 

Acetic acid Fisher Scientific, Leicestershire, UK 

Acridine orange Sigma Chemical, Poole, UK 

ALAN   Calbiochem, UK 

Amaxa nucleofector solution V Lonza, Cologne, Germany 

Asante red TEFLabes, Inc, Austin, UK 

BCA protein assay Thermo scientific, UK 

Bio-Rad DC protein assay kit  Bio-Rad Laboratories, Hemel Hempstead, (UK) 

Biotinylated protein ladder Cell Signaling Technology  

Bovine serum albumin (BSA) Sigma Chemicals, Poole, Dorset, UK. 

CaCl2 Sigma Chemicals, Poole, Dorset, UK. 

Coomassie brilliant blue  Sigma Chemicals, Poole, Dorset, UK. 

Dextran Sigma Chemicals, Poole, Dorset, UK. 

Dimethyl sulphoxide (DMSO) Sigma Chemicals, Poole, Dorset, UK. 

EDTA Sigma Chemicals, Poole, Dorset, UK. 

EGTA Sigma Chemicals, Poole, Dorset, UK. 

Ethanol Fisher Scientific, Leicestershire, UK 

Fetal calf serum (FCS) Fisher Scientific, Leicester, UK 

Ficoll-paque Amersham Biosciences, Uppsala, Sweden 

Filter paper Whatman International Ltd, Maidstone,UK 

Fluorescein isothiocyanate 
(FITC) 

Sigma Chemicals, Poole, Dorset, UK. 

Fluro-4-AM Invitrogen, Carlsbad, California, USA 

FMLP Sigma Chemicals, Poole, UK 

Formaldehyde Fisher Scientific U.K. Ltd, Leicester, UK. 

Fura-2 dextran Invitrogen, Carlsbad, California, USA 

Fura-2-AM Molecular Probes, Eugene, Oregon, USA 
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Giemsa stain Raymond A Lamb, UK 

Glycine Melford Laboratories Ltd, Suffolk,UK 

Heparin sodium (5000 IU/ml) CP Pharmaceuticals Ltd, Wrexham, UK 

Hepes Fisher Scientific U.K., Leicester, UK. 

HiMark™ pre-stained high 
molecular weight protein 
standard 

Invitrogen, UK 

Horse serum   Horse serum Vector Laboratories Inc., Burlingame, USA 

Hybond nitrocellulose 
membrane 

Amersham Bioscience UK Ltd, Bucks, UK 

Ionomycin  Calbiochem, UK 

KCl Sigma Chemicals, Poole, Dorset, UK. 

KH2PO4 Sigma Chemicals, Poole, Dorset, UK. 

Machery-nagel nucleobond® 
extra maxi kit 

Abgene, Surrey, UK 

Methanol Fisher Scientific U.K. Ltd, Leicester, UK. 

MgSO4 Sigma Chemicals, Poole, Dorset, UK. 

Na2CO3 BDH Laboratory Supplies, Poole, UK. 

Na2HPO4 Sigma Chemicals, Poole, Dorset, UK. 

NaCl Sigma Chemicals, Poole, Dorset, UK. 

NaHCo3 Fisher Scientific U.K., Leicester, UK. 

NaOH Sigma Chemicals, Poole, Dorset, UK. 

NiCl2 Sigma Chemicals, Poole, Dorset, UK. 

NuPAGE®  anti-oxidant Invitrogen, UK 

NuPAGE® LDS sample 
buffer(4x) 

Invitrogen, UK 

NuPAGE® novex 3%-8% tris-
acetate Gel 1.5 mm, 15 well 

Invitrogen, UK 

NuPAGE® sample reducing 
agent (10x) 

Invitrogen, UK 

NuPAGE® tris-acetate SDS 
running buffer (20X) 

Invitrogen, UK 

Phosphate buffer (pH 6.8) 
tablets 

BDH Laboratory Supplies, Poole, UK 

Protease inhibitor cocktail  Sigma Aldrich, Poole, UK 
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2.1.2 Equipments used in this study 

96-well and 6-well; flat well bottom; TC-

treated; working volume: 0.1-0.2mL; 

Fisher-Scientific, UK 

BCA protein assay Thermo scientific , Uk       

Bio-Rad DC protein assay kit Bio-Rad Laboratories, Hammelmpstead, UK 

Cell culture inserts for 24 well plates   

(ThinCertTM) 

Greiner Bio-One GmbH, Germany 

Cellometer auto T4 plus SK-1800 Nexcelom Bioscience, Lawrence, USA 

Protein A/G PLUS-agarose Santa Cruz biotechnology, inc,  Heidelberg, 
Germany 

RPMI  Sigma Chemicals, Poole, UK. 

Sodium dodecyl sulphate (SDS)  Melford Laboratories Ltd, Suffolk,UK 

SuperSignal west pico 
chemiluminescent 

Thermo  Fisher Scientific , Rockford, USA 

SupersignalTM west dura system Pierce Biotechnology, Inc, Rockford, IL, USA 

 

Thapsigargin Sigma Chemicals, Poole, UK 

Tris base (tris-hydroxymethyl)-
aminomethane) 

Melford Laboratories Ltd, Suffolk,UK 

Triton® X-100  Sigma Chemicals, Poole, UK 

Trypan blue Sigma Chemicals, Poole, UK 

Trypsin Sigma Chemicals, Poole, UK 

Tween 20 (polyoxyethylene 
sorbitan monolaurate 

Sigma Chemicals, Poole, UK 

U73122-  PLC inhibitor  Sigma Chemicals, Poole, UK 

Zymosan A Sigma Chemicals, Poole, UK 

ZymosanA bioparticles 
opsonizing reagent 

Molecular Probes, Eugene, USA 
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Cellometer cell counting chamber slides Nexcelom Bioscience, Lawrence, USA 

CLSM confocal microscope (SP2) Leica, Milton Keynes, UK 

CLSM confocal microscope (SP5) Leica, Milton Keynes, UK 

Color silver stain kit Thermo scientific, UK 

Culture flasks (25cm2 and 75cm2 Greiner Bio-One Ltd, UK 

ECL PLUS western blotting detecting system GE Health Care, UK 

Eppendorf 5629 micromanipulator  Eppendorf, Hamberg, Germany 

Eppendorf Femtojet pressure controller  Eppendorf, Hamberg, Germany 

Eppendorf Injectman micromanipulator    Eppendorf, Hamberg, Germany 

Falcon tube Fisher-Scientific, Leicestershire, UK 

IC100 Intensified CCD camera  PTI, Surbiton, U.K. 

IC100 Intensified CCD camera  PTI, Surbiton, U.K. 

Micropipette capillaries Sutter Instruments, USA  

Micropipette Puller P2000  Sutter Instruments, USA 

Microscope stage heater Linkam Scientific Instruments, U.K.  

Neubauer haemocytometer counting 

chamber 

Mod-Fuchs Rosenthal, Hawksley, UK 

Nikon Eclipse inverted microscope  Nikon, UK 

Nikon Eclipse inverted microscope Nikon, UK 

Novex® Semi-Dry Blotter Invitrogen , UK 

Olympus BX5I Microscope  Olympus, U.K. 

Pre-pulled femtotips  

Phagocytosis - tip diameter 1m   

SLAM -  tip diameter 0.5m 

Part-cell labelling -  tip diameter 5 mm  

 

 

Manufactured in house 

Pre-pulled femtotips - Phagocytosis- tip 

diameter 1m 

WPI, UK. 

Roller mixer Stuart, Wolf-Laboratories, York, UK 

Supersignal ™ west dura system Pierce Biotechnology, Inc., Rockford, IL,  USA 

The Xcell sure lock™ protein electrophoresis 

cells(mini-cell) 

Invitrogen,UK 
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Universal containers Greiner Bio-One Ltd, UK 

UVIpro gel documentation system Wolf Laboratories, UK 

UVITech imager UVITech Inc., Cambridge, UK 

Micromanipulator    Eppendorf .Inc , UK 

WPI micromanipulator  WPI, USA 

   .  

2.1.3 Software used in this study  

Image Master 1.4b8 PTI, Surbiton, UK 

Microsoft Excel 2000 Microsoft, Redmond, USA.  

Paintshop Pro Version 4.15 SE Jacs Software Inc. 

Microsoft PhotoEditor 3.0 Microsoft, Redmond, USA.  

Microsoft Paint Version 5.1 Microsoft, Redmond, USA.  

Adobe Photoshop 7.0,  Adobe Systems Inc, USA 

Microsoft Word 2007 Microsoft, Redmond, USA.  

UVIpro Acquisition Software UVITEC, Cambridge, UK 

UVIband Software Package UVITEC, Cambridge, UK 

Image J NIH, U.S.A 

Gif Animatior (32-bit) Alchemy Mindwork Inc, Canada 
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2.2    Cell lines used  

Ten different cell lines were used in this study, in order to find a positive control for talin, 

kindlin and ezrin. HL60 cell lines were acquired from the European Collection of Animal Cell 

Culture (ECACC, Salisbury, UK) PZ-HPV-7 were obtained from the American Type Culture 

Collection (ATCC, Rockville, USA), PNT-2C2 were kindly given to us by Professor Norman 

Maitland (University of York, York, UK).  Full details of these cell lines are supplied in table 2.2.  

DMEM and RPMI media supplemented with 10% fetal calf serum and antibiotics was used to 

regularly maintain the cells.  

  

Table 2.2 Cell lines used in this study 

Cell line Origin Cell 
morphology 

Tissue type Features 

 

PZ-HPV-7 

70 year old 
Caucasian 
male 

Epithelial Non tumourogenic 
epithelial cell line 
transformed through 
HPV18 transfection 

Derived from normal 
adult prostatic 
epithelial cells 
 

 

PNT2C2 

33 year old 
Caucasian 
male 

Epithelial Normal prostatic 
epithelial cell line, 
immortalised with 
SV40 DNA  

 

HL 60 
(ECCACC No: 
88112501) 

PHLS, 
Salisbury, UK 
 

Neutrophil Blood or bone marrow  Derived from patient 
with myeloid 
leukaemia 

 
RAW 264.7cells 

LGC 
Standards, 
UK 

Monocyte-
marcrophage 
Cell line 

Mouse muscle Established from a 
tumor induced by 
Abelson murine 
leukemia viru 

 
MAC cells 

LGC 
Standards, 
UK 

Lymphocytes Mouse muscle 
(myloma) 

Established from a 
tumor induced by 
Abelson murine 
leukemia virus 

 
MCF7 

LGC 
Standards,  
UK 

Lymphocytes Mouse muscle 
(myloma) 

Immunoglobulin; 
monoclonal antibody; 
against human 
mammary tumor cells 

PLB-985 cells 
 

LG Standars, 
UK 

Neutrophils Peripheral blood  From human acute 
myeloid leukemia  

 
3T3 cells 

LGC 
Standards, 
UK 

Fibroblast Mus musculus 
(mouse) 

Embryo 

 
HUVEC 

ICLC, 
Genova, Italy 

Endothelium Umbilical cord Human Caucasian  

 
HeLa  

ICLC, 
Genova, Italy 

Epithelial –like 
morphology 

Human cervix  Carcinoma 
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2.3    Antibodies used 

2.3.1 Primary antibodies 

 Complete information of the various primary antibodies used in the research is given in 

table below. 

     Table 2.3.1. List of primary antibodies 

Antibody name Source 
Molecular 
weight 
(kDa) 

Supplier 
Product 
code 

Anti-kindlin3 
Mouse 
polyclonal 
antibody 

76 Abcam, Inc 
AB 
67928 

Anti- talin head 
group (H-300) 

Rabbit 
polyclonal 
antibody 

206 
Santa Cruz 
Biotechnology, 
Inc. 

SC-
15336 

 

Anti-talin tail group  

(8-D4) 

Mouse 
monoclonal 
antibody 

190 
Santa Cruz 
Biotechnology, 
inc. 

SC-
59881 

Anti- ezrin (3C12) 
Mouse 
monoclonal 
antibody 

81 
Santa Cruz 
Biotechnology, 
inc. 

SC- 
58758 

 

Anti – actin  

( phalloidin) 

Mushroom 
conjugated with 
tetra methyl 
rhodomine 

78 
Sigma-Aldrich 
Company Ltd. 
Pool, UK 

P2141 

 

Phycoerthythrin or 
fluorescein 
labelled antibody 
to CD11b 

Raised against 
human and 
mouse CD11b 

 
Miltenyi Biotec , 
UK 

130-081-
240 

Fluorescein- 
labelled antibody 
to CD18 

Raised against 
human and 
mouse CD11b 

 
Miltenyi Biotec, 
Uk 

130-081-
201 
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2.3.2 Secondary antibodies 

The secondary antibodies used for western blotting technique were horseradish 

peroxidise (HRP)-conjugated goat anti-mouse IgG and goat anti-rabbit IgG both supplied by 

by Santa-Cruz Biotechnology (Santa-Cruz, USA). Those used for immunocytochemistry were  

either goat anti-rabbit IgG or goat anti-mouse IgG conjugated either with FITC or CY3 

supplied by Santa-Cruz Biotechnology (Santa-Cruz, USA) and  Zymed laboratories. Inc, UK. 

Details regarding secondary antibody used in this study is given in the table 2.3.2. 

        Table 2.3.2.: List of secondary antibodies used in this study. 

Anti- rabbit  IgG FITC 
conjugated 

Goat antibody 
Depended on 
primary 

Santa cruz 
Biotechnology, 
Inc. 

SC- 2012 

Anti- mouse IgG- 
FITC conjugated 

Goat antibody 
Depended on 
primary 

Santa Cruz 
Biotechnology, 
Inc 

Sc-  2047 

Anti- mouse IgG- 
CY3 conjugated 

Goat antibody 
Depended on 
primary 

Zymed 
laboratories,Inc. 

Lot : 
80140333 

 

Anti- rabbit  IgG CY3 
conjugated 

Goat antibody 
Depended on 
primary 

Zymed 
laboratories,Inc 

Lot 
no:8064200
5R 

Anti-rabitt 

(whole molecule) IgG 

peroxidase conjugate 

Goat 

antibody 

Depended on 
primary 

Santa Cruz 
Biotechnology, 
Inc 

Sc- 2004 

Anti-mouse 

(whole molecule) IgG 

Peroxidase conjugate 

Goat 
polyclonal 
antibody 

Depended on 
primary 

Santa Cruz 
Biotechnology, 
Inc 

Sc- 2005 
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2.4    Solutions and reagents 

2.4.1 Neutrophil isolation  

Venous blood neutrophil isolation 

Balanced Salt Solution (BSS) 

BSS, (0.13M-NaCl, 2.6mM-KCl, 8.0MM-Na2HPO4 and 1.83mM-KH2PO4, pH 7.4), was 

conveniently made in 5L batches with double distilled water, using following quantities 40g-NaCl, 

1g-KCl, 5.75g-Na2HPO4 and 1.0g–KH2PO4. This was then adjusted to pH 7.4 using NaOH, 

aliquoted and heat autoclaved 20Psi for 30mins. 

Hepes Buffered Krebs medium (HBK) 

HBK, (120mM-NaCl, 4.8mM-KCl, 25mM-Hepes, 1.2mM-KH2PO4, 1.2mM-MgSO4), 1.3mM-

CaCl2.2H2O and 0.1% bovine serum albumin (fraction V), pH7.4, was made up in the following 

stock solutions with double distilled water 1.2M-NaCl (35.2g/500ml), 2.5M-Hepes (29.8g/50ml), 

0.48M-KCl (3.58g/100ml),0.12M-KH2PO4 (1.63g/100ml), 0.12M-MgSO4.7H2O (2.95g/100ml), 

0.13M-CaCl2.2H20(1.9g/100ml), stored at 4ºC until needed, diluted accordingly and made up to in 

100ml aliquots with the addition of a 100µl of frozen 10% solution of bovine serum albumin 

(fraction V). This was then adjusted to pH7.4 using NaOH. 

Dextran 

6 grams of dextran (80k) was dissolved in 100ml of BSS. This is used for erythrocyte 

sedimentation. 

Oral salivary neutrophils isolation 

 Phosphate Buffered Saline (PBS) 

PBS, 0.58M-Na2HPO4, 0.17M-NaH2PO4, 0.68M-NaCl, pH 7.4, was made up in as 1L of 10x stock 

with double distilled water as follows: Na2HPO4 (82.33g), NaH2PO4 (23.45g), NaCl (40.0g). This 

was stored at 4°C until needed and diluted 1:10. The buffer had a pH of 7.3-7.4. 

Neutrophil isolation from gingival crevicular fluid  

The gingival crevicular fluid collected from the isolated tooth was emptied into a 50µl of 1% 

phosphate buffered saline which had 1µl of heparin (i.e. 250IU). Later, the cells were fixed in 
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suspension using 100µl of 4% formaldehyde. Then these cells were processed for 

immunocytochemistry in order to identify the subcellular position of various membrane linker 

proteins of interest. 

 

2.4.2   Solutions used for cell culture and protein work 

0.05M EDTA 

1g KCl, 5.72g Na2HPO4, 1g KH2PO4, 40g NaCl and 1.4g EDTA was dissolved in 5L distilled 

water, adjusted to a pH of 7.4, autoclaved and stored until further use.     

Trypsin (25mg/ml) 

This solution was made up by dissolving 500mg trypsin in 0.05M EDTA, before being mixed and 

filtered through  a 0.2μm minisart filter (Sartorius, Epsom, UK).  This solution was then aliquotted 

into samples of 250µl and stored at -20°C until further use. When required for cell culture work, 

one of these aliquots was further diluted in 10ml 0.05M EDTA and used to detach cells. 

Balanced Saline Solution (BSS) 

79.5g NaCl, 2.1g KH2PO4 (BDH Chemical Ltd, Poole,  UK), 2.2g KCl (Fisons Scientific 

Equipment, Loughborough, UK) and 1.1g of Na2HPO4 (BDH Chemical Ltd. UK) was dissolved in 

10L of distilled water, and the pH amended to 7.2, using 1M NaOH (Sigma-Aldrich, Inc. UK) 

Neutrophils lysis buffer  

50mM of Hepes (200μl of 10x stock solution), 150mM of NaCl (200μl of 10x stock solution), 10% 

glycerol (200μl), 1% Triton X100 (200μl), 1.5mM MgCl2 (200μl of 10x stock solution), 5mM of 

EGTA (200μl of 100x stock solution), 5mM EDTA (200μl of 100x stock solution), 1mM of Na3VO4 

(200μl of 100x stock solution), 1.5mM NaF (200μl of 100x stock solution), 0.1%SDS (1ml of 10% 

stock solution). 

Cell lysis buffer 

This was made up by dissolving 2mM CaCl2, 0.5% Triton X-100, 1mg/ml aprotinin, 1mg/ml 

leupeptin and 10mM sodium orthovanadate in 50ml double distilled water.  The solution was 

then stored at 4°C until further use. 
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Protease inhibitor cocktail 

A mixture of protease inhibitors with broad specificity for the inhibition of serine, cysteine, 

aspartic proteases and aminopeptidases. Contains 4-(2-aminoethyl)benzenesulfonyl fluoride 

(AEBSF), pepstatinA, E-64, bestatin, leupeptin and aprotinin, with no metal chelators. Supplied 

by Sigma-Aldrich, UK. 

Stripping buffer 

7.5g glycine, 0.5g SDS and 5ml of Tween20 made up to 500ml with double distilled water and 

pH of 2.2 by using HCL. Used for reprobing membranes for talin tail group. 

Running buffer (for SDS-PAGE) 

NuPAGE® Tris-Acetate SDS running buffer (20X) from Invitrogen, UK. was used for 

electrophoresis NuPAGE® Novex tris-acetate gels are made with high-purity, strictly quality-

controlled reagents: Tris base, acetic acid, acrylamide, bis-acrylamide, TEMED, APS and highly 

purified water. They do not contain SDS.  To perform electrophoresis this solution was further 

diluted to 1X concentration by adding double distilled water. 

Sample reducing buffer 

 NuPAGE® Reducing Agent (10x) from Invitrogen, UK was used to reduced protein samples for          

protein gel electrophoresis. It contains 500 mM dithiothreitol (DTT) at a 10X concentration.  

Sample loading buffer 

NuPAGE® Novex LDS sample buffer from Invitrogen, UK was used which provide the best 

separation and resolution of small to medium-sized proteins by utilizing a neutral pH 

environment which minimizes protein modifications.  

Antioxidant 

The NuPAGE® Antioxidant is a proprietary reagent that helps maintain proteins in a reduced 

state during protein gel electrophoresis. The NuPAGE® Antioxidant is added to the running 

buffer in the upper (cathode) buffer chamber. The NuPAGE® Antioxidant migrates with reduced 

proteins during gel electrophoresis, preventing the proteins from reoxidizing and keeping the 

proteins in a reduced state. It protects sensitive amino acids, such as methionine and 

tryptophan, from oxidizing.  
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Transfer buffer 

1.82g of 0.03M Tris, 1g of  2% SDS (w/v),  7.51g of 0.2M of Glycine and 50ml of 10% methanol 

was dissolved in 500ml of distilled water.  

 Tris-acetate gel  

Precasted NuPAGE® Novex 3-8% triacetate gel, with 15 well and 1.0mm in thickness 

(Invitrogen, UK) was used. It is made with high-purity, strictly quality-controlled reagents: Tris 

base, acetic acid, acrylamide, bis-acrylamide, TEMED, APS and highly purified water.  

Tris Buffered Saline (TBS) 

 24.228g Tris and 80.06g NaCl was dissolved in 1L of distilled water in order to make a 10x 

TBS (0.5M Tris, 1.38M NaCl, pH 7.4) stock solution.  The pH was then adjusted to 7.4 using 

HCl and stored until further use.   

 Ponceau S stain 

Supplied directly by Sigma-Aldrich, Inc. UK 

Coomasie blue stain 

100g Coomassie Brilliant Blue (Sigma-Aldrich, Inc. UK) was dissolved in 100ml acetic acid 

(Fisher Scientific, Leicestershire, UK) and 250ml ethanol (Fisher Scientific, Leicestershire, UK), 

which was then added to 650ml distilled water. 

Coomasie blue destain  

500ml of methanol was mixed with 100ml acetic acid and then added to distilled water to make 

up a final volume of 1L.  

Amido black staining  

0.5% amido black solution was prepared by dissolving 2.5g of amido black 50ml of acetic acid 

and 125ml of ethanol, in 325ml of distilled water. 

Amido black destainer 

100ml of 10% acetic acid,  250ml of 25% of ethanol dissolved in 1liter of distilled water. 

Silver staining kit  

Supplied by Thermo Scientific, USA. 

Fixating solution (for silver staining the Nupage gel). 
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50ml of 50% ethanol and 5ml of 5% acetic acid added in to 100ml of distilled water. 

2.4.3   Solution used for purification of plasmids  

LB broth 

10g tryptone, 10g NaCl and 5g yeast extract was dissolved in 1L of distilled water.  The pH of 

the solution was then adjusted to 7.0 and after being autoclaved was left to cool.  Antiobiotics 

were then added and the solution stored at room temperature. 

Elution buffer 

To prepare 8ml elution buffer, 1ml 8x PBS was mixed with 2ml 2M imidazole and topped with 

distilled water to a volume of 8ml.  The pH was then adjusted to pH 7.4-7.6, and the final 

solution filtered.  

Machery-nagel nucleobond midi kit 

 The NucleoBond® midi kit was purchased from Abgene, UK. The kit contain resuspension 

buffer, lysis buffer, neutralization buffer, equilibration buffer, wash buffer, elution buffer RNaseA 

(lyophilized), NucleoBond Xtra Midi colums and filters, NucleoBond finalizers, 30ml, 1ml 

syringes and TRIS buffer.  

 

Amaxa nucleofection 

 A total of 2x10 6 cell/ml of RAW 264.7 were counted, centrifuged and resuspended in 100µl of 

Nucleofector kit V (according to the manufacturer protocol). 8µg of ezrin plasmid (pH421-GFP) 

was added to the cell suspension and then transferred to a sterile cuvette (provided by the 

manufacture). Program D-023 was used to insert ezrin plasmid (ph421-GFP) into RAW 264.7 

cell line by nucleofection. Cell were recovered in 500µl pre-warmed DMEM before being divided 

between 3 glass bottom dishes (Fisher Scientific, Leicester, UK), each containing 500µl pre-

warmed DMEM. Cells were incubated at 37ºC in 5% CO2 for 3 hours, before they were 

observed under the Confocal laser scanning microscopy(CLSM) to assess the transfection 

frequency and protein distribution. 
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Plasmid pH421 

    The plasmid details were obtained from Addgene data base 

Gene/insert name Ezrin  

Alt name EZR  

Insert size 1758  

Species H. sapiens (human)  

GenBank ID NM_003379  

Entrez Gene EZR (CVL, CVIL, VIL2, MGC1584, 

FLJ26216, DKFZp762H157) 

Fusion protein or tag GFP  

Terminal C terminal on backbone  

Vector backbone: pEGFP-N1 

Vector type Mammalian expression  

Backbone size w/o insert 4700  

Cloning site 5' EcoRI  

Site destroyed during cloning No  

Cloning site 3' SalI  

Site destroyed during cloning No  

5' Sequencing primer GTGCACAAGTCTGGGTAC 

3' Sequencing primer GTGAGCTACCATGTCCAG  

Bacterial resistance Kanamycin 

Growth strain DH5α 

Growth temperature (℃) 37  

High or low copy High copy  
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Selectable markers Neomycin  

 

2.4.4 Solutions used for immunocytochemistry 

40%formaladehyde:  diluted to 4% formaldehyde by adding 1X PBS. Used for fixing neutrophils 

and other cells. 

10X Triton: diluted to 0.1% concentration using PBS.Used for permeabilization of neutrophils.  

Horse serum: diluted to 4% using 1X PBS. Used for blocking non-specific binding of antibody.  

Primary and secondary antibodies used to detect the subcellular position of membrane linker 

protein are given in table 2.3.1 and table 2.3.2. 

Confocal microscopy was used to detect the subcellular location of membrane linker protein. 

 

2.5    General methods 

2.5.1 Isolation of neutrophils from human blood 

Neutrophils were isolated from the heparinized blood of healthy adult volunteers as described 

by Hallett et al. (1990). 

1. Heparinised blood (100l/20ml blood; final concentration of 20IU per ml of blood) was mixed 

with 5ml Dextran (6% 80KDa in BSS) and allowed to sediment at room temperature for 30-45 

minutes at 25°C. 

2. After sedimentation, the middle layer (buffy coat) containing white cells and plasma, was 

carefully removed and centrifuged (1900rpm, 2 minutes). Red blood cells were removed by 

hypotonic lysis, by resuspending the cells in 1ml double distilled water for 10 seconds, then 

restoring the osmolarity by diluting to 25ml with pH 7.4 BSS. This was centrifuged at 1900rpm 

for 2 minutes. 
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3. Polymorphonulcear leukocytes was separated from the other white blood cells, such as 

lymphocytes and monocytes, on the basis of densities, by Ficoll-Paque density gradient 

centrifugation. The pellet was resuspended in 5ml Hepes buffered Krebs (HBK) medium 

(+Bovine serum albumin) and overlaid on to 5ml of Ficoll-Paque. After centrifugation (1000rpm, 

25 minutes), the supernatant was removed and the pellet containing the neutrophils (fig 2.5.1) 

washed to remove any Ficoll by resuspending in HBK, centrifuging (2000rpm, 1minute) and 

resuspending in HBK (1ml). The cell number, type and viability were then assessed by cell 

counting, typan blue exclusion, nuclear staining, phagocytosis assay and by assessing 

neutrophils response to FMLP by measuring calcium signalling. The average cell concentration 

produced from 20 ml of blood was found to be approximately 2-3x 107, of which 90% were seen 

to be polymorphonuclear leukocytes by nuclear staining. The cells were then kept on ice for 

further use. 

2.5.2 Isolation of extravasted neutrophils – in vivo method 

2.5.2.1 Isolation of salivary neutrophils 

Salivary neutrophils were isolated from healthy volunteers with no clinically diagnosable 

oral inflammatory conditions and were used as a source of extravasted neutrophils. The original 

oral rinse techniques described by Ashkenazi and Dennison (1989) and Cheretakis et al. (2005)  

were modified for use in this project. The subjects were asked to rinse their oral cavity for 1 

minute with 10ml of 4X PBS and samples were collected for 4 – 5 minutes. The samples were 

pooled into a universal container. Neutrophils were isolated by centrifuging the samples at 

1900rpm for 2 minutes. To the pellet 1ml of HKS solution was added and the samples were either 

used immediately or kept on ice until required. 

 

 



 
 

 

Chapter 2  119 
 

 

 

 

 

 

 

 

 

 

 

2.5.2.2 Isolation of neutrophils from gingival crevicular fluid 

 Capillary tube technique was followed to collect gingival crevicular fluid from both 

clinically inflamed gingival, as well as from clinically healthy gums. First, the tooth with clinical 

signs of acute gingivitis was identified and isolated using cotton roles. Following this, a sterile 4 

cm glass capillary tube with a internal diameter of 2- 3 mm which could accommodated 10µl of 

fluid, was inserted into the entrance of the gingival crevice of the isolated tooth for 5 minutes and 

gingival crevicular fluid was collected for 15 to 20 minutes. The amount of fluid collected was 

measured by placing each capillary tube with the collected gingival cervicular fluid against a 

measuring ruler. Later, the collected fluid was emptied into a sterile eppendorff tube which 

contained 1µl of heparin (250IU) diluted in 50µl of 1X PBS. Using 4% formaldehyde, the cells 

were fixed in suspension. The cells were then force on to a glass cover slip using microtome 

(5000rpm for 5 minutes). These cells were later stained with specific primary antibody using 

Figure 2.5.1. Isolation of neutrophils from venous blood. Schematic diagram shows the 

various steps involved in isolation of neutrophils from venous blood 

 

5ml of Ficoll-

Paque 

STEP 3 

STEP 2 
STEP 1 
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immunocytochemistry, as described in Section 2.5.6.1. This technique was used by Skapski 

(1976), Courts et al. (1977), Wilton 1977).   

2.5.3 Ex vivo isolation of neutrophils after transendothelial migration  

Transendothelial migration was performed to collect neutrophils that were extravasated 

under experimental condition. In this setup, neutrophils isolated from blood were allowed to pass 

through a monolayer of human umbilical vein endothelial cells (HUVEC cell line) which were 

grown in a sterilized insert and placed over 6 well cell culture plate. The cells that are collected at 

the bottom of the well represented extravasated neutrophils. Immunocytochemistry and western 

blotting techniques were used to detect membrane liner protein, talin, ezrin and kindlin. Cell 

tracker conjugated with FITC or CY3 was used to differentiate between the two groups of 

neutrophils in a mixed sample. The protocol described by Greiner Bio-One Ltd. and the 

technique described by Lyck et al. (2006) and Luscinskas et al. (2008) was used in this project. 

Preparation of HUVEC cell line  

HUVEC cells were cultured in 25cm2 and 75cm2 culture flasks (Greiner Bio-One Ltd. 

Gloucestershire, UK) with a loosely fitted cap in incubators at 37°C, 98% humidification and 5% 

CO2. Cell confluence was visually assessed using a light microscope. If the cells were not 

confluent, the flasks were left in the incubator to grow until they reached sub-confluency (2-3 

days).  All handling of cells was carried out aseptically, using a Class II Laminar Flow Cabinet 

with autoclaved and sterile equipment. Once the cell reached a confluency of approximately 80-

90%, the medium was aspirated  and the cells briefly rinsed with sterile EDTA in order to remove 

any remaining serum which has an inhibitory effect on the action of trypsin. Adherent cells were 

then detached from the tissue culture flask using 1-2ml of Trypsin/EDTA (0.01% trypsin and 

0.05% EDTA in BSS buffer) by incubating the cells at 37⁰C for approximately 5 minutes. Once 

detached, the cell suspension was then poured into 20ml universal containers (Greiner Bio-One 
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Ltd, Gloucestershire, UK) before being centrifuged at 1,600 rpm for 5 minutes, in order to pellet 

the cells.The excess liquid was then aspirated and the cell pellet resuspended in an appropriate 

amount of medium. The cells were either counted for use in immediate experimental procedures 

or transferred into fresh tissue culture flasks for re-culturing. 

Preparation of insert and neutrophils 

ThinCert™ cell culture inserts with porous membrane size of 3μm supplied by Greiner 

Bio-One, UK) were used.  Each insert was supplied with 6 multi-welled cell culture plates.. Three 

inserts were used as control in order to establish the influence of TNFα on the extravasation of 

neutrophils across the endothelial cell line. Each insert were coated with 100μl of 1:200 dilution 

of matrigel and allowed to dry at room temperature. After this each insert was rehydrated by 

rinsing twice with 200μl of DMEM tissue culture medium. Both outer and inner compartment of 

the setup was filled with DMEM medium in such a way that the level of the medium in both 

compartments was at the same level (fig 2.5.3A & B). 100μl of HUVEC (1x105cells/ml or 

1x104cells/ml) were added to each insert and left in the incubator for 3 to 4 days to adhere and 

become confluent. Once the cells reach confluency, 13nM/ml TNFα was added to the outer 

compartment of the test inserts (i.e excluding the inserts which were used as control). TNFα was 

used to upregulate ICAM1 in the endothelial cell line. The setup was left in the incubator 

overnight. 1x105 neutrophils /ml of DMEM medium was added to each insert and left to adhere 

for 30 minutes in the incubator, so that all the neutrophils will settle down along the endothelial 

cell lining (fig 2.5.3A &B). The remaining isolated neutrophils from the venous blood were 

suspended in 1ml of DMEM and kept in the incubator. This sample represents non-extravasted 

neutrophils. The DMEM medium from the outer compartment of the insert was replaced with 

fresh medium mixed with 1μM of FMLP, prepared from 1mM stock solutions. Each time, the level 

of the medium in the two compartments were checked and maintained at same level.This setup 

was left in the incubator for 45 minutes and the cells which cross the endothelial cell layer were 
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collected from the outer compartment, either on  a glass cover slip (to use for 

immunocytochemistry) or in suspension (for western blotting technique).  

 

. 

 

 

 

 

 

 

2.5.4 Assessment of viability of isolated neutrophils 

Viability experiments were carried out on neutrophils isolated from venous blood and saliva using 

trypan blue exclusion techinique, as well as calcium signaling efficiency in these cells using 

FMLP as a stimulus. Viability of these two groups of neutrophils were also assessed by 

evaluating the capacity of phagocytosis and chemotactic response in single cells, as well as in 

populations of neutrophils. 

 

A 

B 

Figure 2.5.3.a. Schematic diagram of the transendothelial migration assay. 1x10
5 

neutrophils/ml were 

added over the insert wich has coated with a monolayer of TNFα-treated endothelial cells. 1µM of FMLP 

was used to set in a chemical concentration gradient which enables the neutrophils to cross the 

endothelial monolayer. The migrated cells were collected on a glass cover slip placed at the bottom of 

the outer well or collected in suspension. The entire experiment was performed set at 37
 
C for45 minutes-

1 hou. The collected cells were then fixed and stained with respected primary antibodies. Figure 2.5.3.B. 

shows the aerial view diagram of the transendothelial migration assay. The inner compartment has the 

harvested   monolayer of endothelial cells, to this compartment isolated neutrophils and FMLP was 

added. Migrated neutrophils were collected from the outer compartment.   

A 
B 

Inner 

compartment 
outer 

compartment 
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2.5.4.1 Trypan blue exclusion 

This method relies on the observation that dead cells or cells with damaged membranes become 

stained by a deep blue color, due to their inablilty to exclude the dye. 

1. 10 µl of cells in HBK were placed on a microscope slide and mixed with an equal volume 

of trypan blue stock (0.2% w/v in PBS). This was incubated for 2-3 minutes at room 

temperature. 

2. The cells were then examined by light microscopy and the number of blue cells per field 

were counted and expressed as a percentage of the total.  

Using the above mentioned technique, typical viabilities of neutrophils isolated from venous 

blood was 95-99% and 90% for salivary neutrophils. 

2.5.4.2 Evaluation of Phagocytosis in neutrophils 

Phagocytic competence of populations of neutrophils was assessed by incubating cells with 

opsonized zymosan, before fixing and staining cells; and calculating the percentage of 

phagocytic cells. Phagocytic competence of single neutrophils was assessed by recording the 

ability of neutrophils to engulf an opsonised zymosan particle using a micropipette and 

micromanipulator. Zymosan particles (10mg/ml) were opsonised either with human serum or 

purified human C3bi. 

2.5.4.2.1 Phagocytosis assessment in neutrophil population  

1. Neutrophils were allowed to adhere to glass slides for 10 minutes at 37ºC.  

2. Non-adhered material was washed away and fresh HBK/BSA medium applied. 

3. 100μl of 0.1mg/ml C3bi opsonised zymosan particles was added to the neutrophils and 

slides incubated at 37ºC for 7, 15 or 30 minutes. 
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Figure 2.5.4.2.1a.  Phagocytosis assessment in 

blood neutrophils. Light microscopic picture of 

phagocytosis by neutrophils isolated from venous 

blood (incubation - after 7 minutes) 

Figure 2.5.4.2.1b.  Phagocytosis assessment in 

salivary  neutrophils. Light microscopic picture 

of phagocytosis by neutrophils isolated from 

saliva- after 7 minutes 

4. After incubation, non-adhered material was washed away with HBK/BSA and cells 

were fixed and stained using Giemsa staining kit for 15 minutes, according to the 

manufacturer’s protocol. 

5. Slides were mounted with glass coverslips, allowed to dry, and assessed by light 

microscopy for phagocytic uptake (ie. number of cells having undergone phagocytosis 

and number of particles internalized per cell). See fig 2.5.4.2.1a & b. Out of 200 

neutrophils isolated from venous blood counted nearly all the cells had atleast 1zymosan 

partical. Similar finding was found in neutrophils isolated from saliva. 

 

 

 

 

 

 

 

2.5.4.2.2 Phagocytosis assessment in single neutrophils - micropipette       

manipulator 

The micropipette manipulator supplied by Eppendorf (Hamburg, Germany,) has two 

components: the injectman which moves the micropipette in three dimensions; and the 

femtojet which creates negative pressure inside the glass micropipette. This pressure enables 
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you to pick one opsonised zymosan and place it at close proximity to the selected neutrophil. 

Video studio movie wizard was used to record the entire phagocytosis event.   

1. Neutrophils were allowed to adhere to glass slides for 10 minutes at 37ºC.  

2. Non-adhered material was washed away and fresh HBK/BSA medium. 

3. 10μl of 0.1mg/ml C3bi opsonised zymosan particles was added to the neutrophils and a 

healthy neutrophil was selected using light microscopy.  

4. Using the micropipette manipulator, a zymosan particle was picked up and delivered to the 

selected neutrophils and the entire event was recorded using movie wizard video studio 

software. 

 Similar steps described above were followed to evaluate the phagocytosis capacity of salivary 

neutrophils. Both groups of neutrophils were efficient at engulfing opsonised zymosan 

particles. This confirms that isolated neutrophils were healthy and retained their functional 

ability. 

2.5.4.3 Cytosolic free Ca2+ measurement in neutrophils 

 Fura-2 was used for this experiment. Fura-2 is a calcium chelator that displays a marked 

shift in fluorescent excitation spectrum when it binds to Ca2+. Both Ca2+ bound and unbound 

forms of Fura2 are fluorescent and two wavelengths are usually selected either side of the 

isoemissive point which represent the two different Ca2+ binding state of the probe (340nm and 

380nm). When Fura2 is unbound, it fluoresces maximally with 380nm excitation. When it  binds 

to Ca2+, the spectrum shifts so that the 380nm signal decreases, but the fluorescence excited at 

340nm increases. The emission wavelength for both Fura2 states is 505nm (fig 2.5.4.3B). 

Ratiometric fluorimetry uses these properties of Fura2 to quantify the changes in the cytosolic 

concentration of free Ca2+. Both free and bound Fura2 molecules in cells are monitored by a high 
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power light source that alternates between 340nm and 380nm; and the 505nm light that is 

emitted by the two separate excitation wavelengths is collected. Computer software is 

programmed to calculate the ratio between the bound (340nm) / free (380nm) Fura2. When the 

free Ca2+ concentration increases in cells, the amount of unbound Fura-2 decreases as it binds 

to the free Ca2+. There, is therefore, a decrease in the signal produced by 380nm light, which is 

mirrored by an increase in the signal from the 340nm light, resulting in an increase in the bound: 

free (340/380) Fura2 ratio (fig 2.5.4.3C & D).  

1. Fura-2 loaded neutrophils were allowed to adhere for 2-3 minutes to glass cover slips 

maintained at 37°C, using a temperature controlled microscope stage heater. 

2.  The coverslip was washed twice with HBK/BSA solution to remove unbound cells, debris 

and excess Fura-2-AM in the solution; and approximately 100l HBK (BSA) returned to the 

coverslip.  

3. Fura-2 is a calcium chelator that displays a marked shift in its fluorescent excitation 

spectrum when it binds to Ca2+ (fig 2.5.4.3A).  

4. Cells were viewed under a 100X objective of an inverted microscope (Nikon), and the 

excitation wavelengths (340nm and 380nm) selected using a rapid monochromator (Delta 

RAM, PTI, Surbiton, UK), which was connected to a Nikon Eclipse inverted microscope. The 

images at each excitation wavelength were collected using an intensified CCD camera 

(IC100 PTI, Surbiton, UK) and the ratio image calculated using Image Master software (PTI, 

UK). Ratio images were acquired with 16 frame averaging and threshold background 

subtraction at a rate of at least 0.6 frames/second. The ratiometric (Ca2+) images were 

pseudo-colored according to the scale shown in fig 2.5.4.3 (blue to green) and the average 

ratio value of the pixels was calculated and plotted over the time course. The stimulus was 

added to the cells under view whilst recording continuously. The calcim signal was effectively 

absorbed in neutrophils isolated from both blood and saliva. 
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Figure 2.5.4.3 Fura Red as calcium indicator 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5.4.3. Cytosolic calcium change measured by fura2 probe. The Fura2 probe can be used to 

ratiometrically measure changes in the cytosolic free Ca
2+

 concentration in cells. (A) Cells are loaded with Fura2 

as its AM-ester which is able to cross the cell membrane. Intracellular esterases cleave the AM component 

allowing Fura2 to bind to available free cytosolic Ca
2+

 (pink star) (B). (C) The excitation and emission spectra for 

Ca
2+

 bound Fura2 and Ca
2+

 free Fura2 is shown. The excitation spectrum for unbound fura2 displays a left shift 

when it binds to Ca
2+

. Fluorescence of both states is detected at 505nM. (D) Two wavelengths are selected 

either side of the isoemissive point (I) to differentially excite the 2 states of the Fura2 probe. 380nm is used to 

excite Ca
2+

-free Fura2 and 340nm selected for Ca
2+

 saturated Fura2. Increasing [Ca
2+

]i results in an increase in 

the number of Ca
2+

-bound-fura2 molecules at the expense of free Fura2. This causes a change in the detected 

fluorescence intensity for the 2 excitation wavelengths and can be measured as an increase in the ratio of 

340/380nm excitation. 
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2.5.4.4 Evaluation of chemotaxis efficiency of neutrophils  

 A transendothelial migration assay was used to test the chemotaxis efficiency of both 

salivary neutrophils, as wells as venous blood neutrophils. Two separate transendothelial 

migration assays were setup as described in Section 2.5.3. Each experimental setup had two 

inserts treated with TNFα and two not treated with TNFα as a control. 1x105cells/ml of 

neutrophils isolated form venous blood, as well as from saliva, were added to each insert and left 

in the incubator for 45 minutes -1 hour. 1μM of FMLP was added to the outer compartment to 

create difference in concentration gradient.  Neutrophils that had crossed the monolayer of 

endothelial cells were collected onto a glass coverslip placed at the bottom of the outer 

compartment. After fixing and staining these neutrophils with Giemsa stain, the number of cells 

per field was counted separately under light microscope (table 2.5.4.4). Both groups of 

neutrophils were able to extravasate through the monolayer of endothelial cells which gives 

sufficient evidence that both groups of neutrophils were functionally active and healthy. 

Moreover, there was significant difference in number of migrated salivary neutrophils counted in 

each insert pair that were not treated with, TNFα when compared to the number of migrated 

venous blood neutrophils (table 2.5.4.4). This difference might indicate the presence of 

cytoplasmic memory in these cells as they would have crossed both the venous blood 

endothelial, as well as oral epithelial cells, before shedding into the oral cavity. The result 

provided below was from venous blood obtained from one subject. This experimental set up was 

repeated 5 times using venous blood obtained from various individuals and each time similar 

finding was noted. 
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Table 2.5.4.4. Chemotaxis efficiency of neutrophils.  

Neutrophils  Number of neutrophils counted 

TNFα treated insert (2 inserts) 

Number of neutrophils counted  

Without TNFα treated insert (2 nserts)  

Venous blood 
neutrophils 

16253 134 

Salivary 
neutrophils 

11174 1876 

 

 

2.5.5  Cell culture, maintenance and storage 

2.5.5.1 Preparation of growth media and cell maintenance 

 Cell lines listed in table 2.2 were either grown in Dulbecco’s Modified Eagle’s medium (DMEM/ 

Ham’s F-12 with L-glutamine, E15-813, PAA Laboratories,UK) is supplemented with 10% heat 

inactivated Foetal Bovine Serum (PAA Laboratories, UK) and an antibiotic cocktail. Roswell Park 

Memorial Institute medium (RPMI medium) supplemented with 10% heat inactivated FCS, 5mM 

glutamine, 100µg/ml streptomycin and 100µg/ml penicillin at 37ºC in 5% CO2. 

 HL60 cells lines and PLB cell lines are immature immortalized myeloid cells and 

immortalized, so they were grown continuously in RPMI medium supplemented with 10% 

heat inactivated FCS, 5mM glutamine, 100μg/ml streptomycin and 100μg/ml penicillin at 

37ºC in 5% CO2. 

 3T3 cells, RAW264, Hela, PZ-HPV-7, PNT-2C2, MAC and MCF7 cell lines were grown in 

DMEM supplemented with 10% heat inactivated FCS, 5mM glutamine, 100μg/ml 

streptomycin and 100μg/ml penicillin at 37ºC, 5% CO2.  

1. All the cell lines were cultured in 25cm2 and 75cm2 culture flasks (Greiner Bio-One Ltd, 

UK) with a loosely fitted cap in incubators at 37⁰C, 98% humidification and 5% CO2.  
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2. Cell confluence was visually assessed using a light microscope and approximating the 

percentage of cells covering the surface of the tissue culture flasks.  If needed for experimental 

work, the cells were left to grow until they reached sub-confluence (2-3 days).  All handling of 

cells was carried out aseptically, using a Class II Laminar Flow Cabinet with autoclaved and 

sterile equipment.  Cells were routinely sub-cultured when they had reached a confluence of 80-

90% (5-7 days), as explained in section 2.3.2.  

3. Once the cells had reached a confluency of approximately 80-90%, the medium was 

aspirated. 

4. 3T3, NIHcells, RAW264, PZ-HPV-7, PNT-2C2, MAC cells and MCF7 cells lines are 

adherent cells and were detached from the tissue culture flask using plastic cell scapers. 

5. Once detached, the cell suspension was then poured into 20ml universal containers 

(Greiner Bio-One Ltd, UK) before being centrifuged at 1000 rpm for 15 minutes, in order to 

pellet the cells. 

6. The excess liquid was then aspirated and the cell pellet resuspended in an appropriate 

amount of medium and the cells were used in immediate in experimental procedures or 

transferred into fresh tissue culture flasks for re-culturing.   

 

2.5.5.2 Cell storage and cell resuscitation 

1. For long term storage cells were frozen in either 10% DMSO, 90% medium supplemented 

with FCS (HL60, NB4 3T3 and RAW cells) or FCS with 10% DMSO (MyPH8B6 cells).  

5x106 (1 confluent flask) cells were frozen per cryovial. 

2. A stock solution of 20% DMSO in medium was prepared.  Cells were centrifuged at 

1600rpm for 4 minutes and resuspended in 500µl medium and added to cryovial along with 
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500µl stock medium and DMSO solution, so that final concentration of DMSO is 10% and 

cells are exposed to DMSO for as little time as possible.  Cryovials were frozen down slowly 

(1ºC per minute) in -80ºC freezer overnight.  Cells are then moved to the liquid nitrogen 

stores for long term storage. 

3. To defrost cells were thawed quickly under warm running water and transferred into 15 ml 

pre-warmed RPMI/DMEM to dilute the DMSO.  Cells are allowed to recover for approx 20 

minutes in 37º/5% CO2 incubator.  Cells were centrifuged at 1600rpm for 4 minutes and 

then resuspended in 5 ml warm RPMI/DMEM and placed in a flask. 

 

2.5.6 Methods of detection of membrane linker protein 

2.5.6.1 Immunocytochemistry  

Immunocytochemistry was used to assess the presence of talin, kindlin and ezrin protein (ie. 

cytoskeletal linker proteins) in neutrophils by using monoclonal mouse or polyclonal rabbit 

antibody as primary antibody and secondary antibody conjugated with FITC or Cy3b were used 

to visualize the bounded primary antibody under confocal microscope. 

1. 100μl of isolated neutrophils were added onto glass cover slip and allowed to adhere at 

37ºC for 10 minutes. 

2. Unbounded cells and cell debris were removed by washing the cells twice with HBK 

solution. 

3. The cells were fixed for 15 minutes at room temperature using 100 μl of 4% 

formaldehyde, prepared from a stock of 40% formaldehyde using 1X PBS buffer. 
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4. Excess of formaldehyde was removed by washing the slide with 1XPBS buffer three 

times 

5. The cells were permeabilized for 4 minutes using 100μl of 0.1% Triton dissolved in 

1XPBS and excess solution was removed by washing the slide with PBS buffer. 

6. 100μl of 4% horse serum was used to block any non-specific binding sites and left at 

room temperature for 2 hours Cells were then washed twice with 4% horse serum. 

7. Primary antibody was diluted at a concentration of 1:100 using 4% horse serum and left 

overnight at 4ºC. 

8. After overnight incubation, the slides were washed three times with 4% horse serum and 

100μl of secondary antibody (1:20 concentration) was added and left at room temperature for 1 

hour in a dark foil. 

9. The slides were washed twice with 1XPBS and left at 4°C until observing under a 

confocal microscope. 

2.5.6.2 Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS PAGE) 

2.5.6.2.1  Protein extraction and preparation of cell lysates 

    Once cells had reached an adequate confluence, the cells were scraped off using BSS and a 

cell scraper.  The cell suspension was then transferred into a universal tube.This was followed 

by centrifugation at 2,000rpm for 5 minutes, before the supernatant was poured off and the cell 

pellet resuspended in 200-300µl (depending on pellet size) of lysis buffer. Protease inhibitor 

were added and left on ice for one hour. At 15 minutes intervals, the samples were vortexed in 

order to increase the efficiency of lysis. The samples were then heated at 100ºC for 15-20 

minutes, followed by centrifugation at 140,000rpm for 5 minutes. The pellet was discarded 10X 
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NuPAGE reducing agent and 4X NuPAGE sample buffer was added to the supernatant. These 

were then either quantified for SDS-PAGE as explained below, or stored in -20ºC until further 

use.The above mentioned steps were followed for extracting protein from neutrophils isolated for 

saliva, as well as from the blood. The neutrophil cell lysates were not stored in -20ºC, but rather 

directly quantified for SDS-PAGE.  

 

2.5.6.2.2 Protein quantification and preparation of samples for SDS-PAGE 

In order to standardise the protein sample concentration for western blotting, the amount 

of protein in each sample was quantified by following the protocol outlined in the Bio-Rad DC 

Protein Assay kit (Bio-Rad Laboratories, Hamel Hempstead, UK). In a 96 well-plate, 10mg/ml of 

bovine serum albumin (BSA) standard (Sigma Ltd, UK) was serially diluted in lysis buffer to a 

concentration of 0.005mg/ml and used to set up a standard curve of protein concentration. 5µl of 

either protein sample or standard was then pipetted into fresh wells before 25µl of ‘working 

reagent A’ (prepared by adding 20µl of reagent S per millilitre of reagent A) and 200µl of reagent 

B was added to each well. After mixing the samples, the plate was left at room temperature for 

30-45 minutes, in order to allow the colorimetric reaction to take place.  Once this was complete, 

the absorbance of each of the wells was measured at 620nm, using the ELx800 Plate Reading 

Spectrophotometer (Bio-Tek, Wolf Laboratories, York, UK). Using the absorbance of the 

standards, a standard curve was set up and by comparing this to the absorbancies of the 

samples, sample concentration was determined.  The samples were then diluted in an 

appropriate amount of lysis buffer in order to normalise them to the protein extracted from the 

neutrophils. To this, 4x Lamelli sample buffer concentrate and 10x reducing agents in a ratio of 

1:1 before the samples were denatured by boiling at 100⁰C for 5 minutes; and either loaded onto 

an SDS-PAGE gel or stored at -20°C until further use.   
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2.5.6.2.3 Sodium dodecyl sulphate polyacrylamide gel electrophoresis. 

The method of SDS-PAGE used during this course of research was based on that of 

Laemmli(1970).  

1. The system used to carry out SDS-PAGE in this study was the The Xcell sure 

Lock™ Protein Electrophoresis Cells (mini-cell) supplied by Invitrogen, UK (fig 2.5.6.2.3i). 

2.  Precast NuPAGE® Novex 3%-8% tris-acetate gels 1.5 mm, 15 well were used for 

protein separation. Each gel was supplied in clear pouch with 10ml of packing buffer 

which contain low levels of residual acrylamide monomer and 0.02% sodium azide (fig 

2.5.6.2.3.II) 

3. The gel was washed with double distilled water and locked in the Xcell tank. 

4.  Gels were run in NuPAGE® running buffer (Invitrogen) diluted 1:20, prepared by 

mixing 25ml of the running buffer stock solution with 500ml of distilled water. 200ml of this 

mix was taken separately in a glass beaker. To this, 500μl of NuPAGE® antioxidant 

reagent (Invitrogen) was added. The NuPAGE® tris-acetate discontinuous buffer system 

involves three ions: 

 Acetate (-) is supplied by the gel buffer and serves as a leading ion due to its high 

affinity to the anode as compared to other anions in the system. The gel buffer ions 

are Tris+ and Acetate- (pH 7.0). 

 Tricine (-) serves as the trailing ion from the running buffer. The running buffer 

ions are Tris+, Tricine and dodecylsulphate (-) (pH 8.3). 

  Tris (+) is the common ion present in the gel buffer and running buffer. The Tris-

acetate system also operates at a significantly lower operating pH of 8.1 during 

electrophoresis. 

5. Running buffer with antioxidant was added to the middle compartment of the 

electrophoresis tank and the rest of the buffer was poured in the outer compartment as 
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per manufacturers’ instructions. 500μl of Nupage® antioxidant reagent (Invitrogen, UK) 

was also added to the gel tank.  

6. Gels were run for 1 hour at 150V constant and at current of 40-55 mA/gel (start); 25-40 

mA/gel (end). 
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Figure 2.5.6.2.3i. Picture of The Xcell sure lock™ protein electrophoresis tank system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5.6.2.3II. Picture of NuPAGE® Tris-acetate mini gel. 
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2.5.6.2.4 Preparation of pre-stained molecular weight marker  

 1. HiMark™ pre-stained protein standard  

 HiMark™ pre-stained protein standard from Invitrogen, UK, consists of 9 protein 

bands in the range of 30-460 kDa; and is designed for use with NuPAGE® Novex 3-8% 

Trisacetate (fig 2.5.6.2.4a & b). It allows easy visualization of protein molecular weight 

range during electrophoresis and evaluation of western transfer efficiency. 10- 12μl of 

this marker was added to the gel during electrophoresis. 

          Figure  2.5.6.2.4a                        Figure  2.5.6.2.4b 

 HiMark™ Pre-stained Protein Standard            Biotinylated protein ladder system 

 

 

 

 

 

 

 

 

2. Biotinylated protein ladder system 

         This protein ladder was bought from Cell Signaling Technology, UK and was used 

to visualize the ladder during chemiluminescent western detection procedures (fig 

2.5.6.2b). The biotinylated protein ladder was supplied  in 65mM Tris-HCl (pH 7.0 at 

25°C), 35mM NaCl, 1mM Na2EDTA, 2%SDS (w/v), 1mM NaN3, 40mM dithiothreitol 

(DTT), 0.01% (w/v) phenol red and 10% glycerol. Store at –20°C. The protein ladder 

consists of 10 proteins ranging in apparent molecular weight from 9 to 200kDa. The 9 

kDa protein is derived from aprotinin purified from bovine lung. The proteins from 20-50 
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kDa are paramyosin fragments; the higher molecular weight proteins are fusions of 

maltose binding protein (MBP) with paramyosin or paramyosin/lacZ fragments. Anti-

biotin, HRP-linked Antibody was Supplied in 10 μM sodium HEPES (pH 7.5 at 25°C), 

150 mM NaCl, 100 μg/ml bovine serum albumin (BSA) and 50% glycerol. Before loading 

the ladder into the NuPAGE gel, the biotinylated protein ladder was thawed on ice. After 

mixing well, the desired amount of the protein ladder (10 μl) was aliquotted into a 

separate tube. The ladder was heated to 95-100°C for 2 minutes and after a quick 

microcentrifuge spin, was loaded directly onto the gel. Before adding the secondary 

antibody, anti-biotin HPR antibody was added to the secondary antibody at a dilution of 

1:1000; and protein probing steps described later in this section were followed. 

 

2.5.6.2.5  Western blotting: transferring proteins from gel to nitrocellulose 

membrane 

1. Once SDS-PAGE was completed, protein samples were transferred to Hybond™ 

ECl™ P 0.45μm nitrocellulose blotting membrane. The electrophoresis equipment was 

disassembled and the gel along with the casing was placed in the running buffer until 

the western blotting model (XCell II™ blotting module from Invitrogen) was set (Fig 

2.5.6.2.5a, b & c). 

2. 5 sponges, 4 piece of Whatman number 1 filter paper (GE Healthcare, UK) and 1 

piece of blotting membrane was soaked in transfer buffer for 30 minutes prior to 

electroblotting. 

3. Transfer buffer was prepared by dissolving 1.82g 0.03M Tris, 1g 2% SDS (w/v), 

7.51g of 0.2M glycine and 50ml of 10% methanol in 500ml double distilled water.  
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4. Three of the sponges that were soaked in transfer buffer were placed into the 

blotting module, followed by two soaked pieces of Whatman number 1 filter paper. 

5. The gel was separated from the plastic casing and was placed on top of the filter 

papers, followed by Hybond blotting membrane. Finally two more sponges and two 

more filter papers were placed on top of the blotting membrane, ‘sandwich’. Proteins 

were transferred for 1 hour at 30V and 220mA. 

 

a         b 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5.6.2.5a, b, and c. Western blotting system and setup 
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C 

 

 

 

 

 

 

 

 

 

 

2.5.6.2.6 Protein staining 

Staining membranes in ponceau S   

Ponceau S is a reversible and re-usable protein stain that does not interfere with any 

subsequent immunoprobing.  Its main use is to confirm that protein transfer from the 

polyacrylamide gel to the nitrocellulose membrane has been successful but can also be 

used to aid in membrane sectioning for multiple immunoprobing.  The protocol was 

carried out as follows:  

 After the transfer was completed and before probing began, the membrane was 

immersed in Ponceau S solution for a few minutes at room temperature.   

Figure 2.5.6.2.5a, b & C. Photographic picture of XCell II™ blot module from Invitrogen was used 

to transfere the protein from the gel into the membrane. Figure 2.5.6.3b: Photographic picture 

showing the way the module is place into the XCell Sure lock™ system. Figure 2.5.6.3c. Schematic 

diagram representing the western blotting set up, the protein runs from cathode (gel) to anode 

(membrane), wet blotting technique was followed. The gel and membrane was sandwiched 

between two spongs and two Whatmans filter paper and sealed inside the XCell™Blot module and 

set at 30V and 220mA for 1hour.   

Direction of transfer 
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 The solution was then washed off with distilled water until the bands become visible.  

If required, the membrane was then cut into several sections using a sharp and clean 

scalpel. 

 Once the Ponceau S was completely washed off, it placed in 10% milk solution.  

Coomasie blue staining of polyacrylamide gels 

Coomasie blue is used to stain polyacrylamide gels following SDS-PAGE.  This allows 

for visualisation of protein bands if no immunoprobing is required and can be used as a 

way of semi-quantifying the volume of the protein bands.  The protocol was carried out 

as follows: 

 The gel was immersed in Coomassie blue stain for approximately 30 minutes before 

being repeatedly washed in destain solution until the background staining disappears, 

and the protein appears as blue bands.  The gel can then be photographed or 

analysed. 

 

2.5.6.2.7 Protein detection using specific Immuno-probing 

 Once any staining was completed, the membrane was transferred into 50ml falcon 

tubes (Fisher-Scientific, Leicestershire, UK), ensuring that the membrane surface that 

had been in contact with the gel was facing upwards.  10% milk blocking solution was 

then added to the membranes and incubated for an hour at room temperature on a 

roller mixer (Stuart Wolf-Laboratories, York, UK). 

 Once this was done, the 10% milk solution was poured off and replaced with fresh 

10% milk solution; and the falcon left in the fridge for 14 hours.   

 Next day, the milk in the falcon was replaced with fresh 10% milk and left in the roller 

for an hour. 
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 Then the membrane was washed three times with 3% milk (3 grams of milk power in 

100ml of tris-buffered saline with 200μl of tween 20. Each wash lasted for 10 minutes 

 This was followed by incubation of the membranes for an hour at room temperature, 

with primary antibody diluted 1:1000 (for talin) or 1:100(for ezrin) in 5ml of 3% milk 

solution.   

 After pouring off the primary antibody solution, any remaining unbound antibody was 

washed off three times in 3% milk solution at 15 minute intervals.   

 Once washing was completed, the membranes were further incubated with 5ml of 

1:1000 HRP-conjugated secondary antibody (of the same species) diluted in 3% milk.  

This was carried out for an hour at room temperature on a roller mixer.    

 This was followed by two 15 minute washes in 10ml of 3% milk solution; and two 15 

minute washes with  Tween TBS (0.1% Tween 20 in TBS) in order to wash off any 

unbound secondary antibody.   

 A final two 15 minute washes with solely TBS was carried out so as to remove any 

residual detergent, before placing the membrane in weighing boats containing TBS 

solution, ready for chemiluminescent detection. 

 

2.5.6.2.8 Chemiluminescent protein detection 

Chemiluminescent protein detection was carried out using the Supersignal ™ West Dura 

system  from Pierce Biotechnology Inc., Rockford, USA (fig 2.5.6.6a), which consists of a 

highly sensitive chemiluminescent substrate that detects the horseradish peroxidise (HRP) 

used during the western blot.  The protocol was carried out as follows: 

  The two reagents provided were added in a 1:1 (normally 4ml of each for a mini gel) 

ratio into the weighing boat containing the membrane to be analysed.  After 5 minute 
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incubation at room temperature with constant agitation, the membrane was carefully 

removed from the solution using forceps. 

 Any excess solution on the membrane was then drained over a piece of tissue paper 

and transferred into a fresh weighing boat.  The chemiluminescent signal was detected 

using a UVITech Imager (UVITech Inc., Cambridge, UK) (fig 2.5.6.2.8b), which contains 

both an illuminator and a camera linked to a computer which then captured and stored 

the image. 

 Each membrane was subjected to varying exposure times until the protein bands 

were sufficiently visible.  These images were then captured and further analysed with 

the UVIband software package (UVITEC, Cambridge, UK) which allowed for protein 

band quantification. 

 In this study, β-actin was used as a housekeeping gene and run alongside any other 

proteins to be detected, so as to allow for additional normalisation of the samples and 

to compensate for any other negligible inaccuracies which may have occurred during 

the process.  The cytokeletal protein β-actin is used due to its highly abundant and 

conserved nature within eukaryotic cells; and is one of the most widely employed and 

accepted internal controls in scientific research. 

In order to confirm reliability of the results, each western blot was carried out three 

times and the protein bands quantified and standardised separately, followed by 

calculation of mean values and graphical presentation of the results.  Each sample 

was blotted along with prestained high molecular weight marker supplied by 

Invitrogen, UK.     
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Figure 2.5.6.2.8a &b: Supersignal™ West Dura system  and  Chemiluminescent signal  

 Deduction system 

  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 2.5.6.2.8c. Principle of chemiluminescent. A secondary antibody, conjugated to 

horseradish peroxidase (HRP) binds to a primary antibody directed towards the protein of 

interest. The blot is incubated with a chemiluminescent substrate, which is converted by 

HRP into a light emitting luminescents which is detected and recorded by the UVI band 

detecting system. 
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2.5.6.2.9 Determination of molecular weight of unknown protein 

 Determination of the molecular weight of an unknown protein was made by 

comparing the unknown proteins relative mobility (Rf) with that of several prestained high 

molecular weight markers (Invitrogen). After the membrane had been exposed to the 

chemilluminescent probe, the distance from the bottom of the well and to the position of the 

red tracking dye was measured using Image j Software. This is done before the membrane 

was stained. After staining the distance of each protein, including the markers from the 

bottom of the well was measured. Thus the relative mobility, (Rf), relative to the solvent front 

was calculated:- 

Rf = migration distance of protein from bottom of the well/ total distance travelled by the 

tracking dye 

 After calculating a plot of log of molecular weight of each of the protein standards 

against their respective Rf values showed a linear relationship. Unknown molecular weight 

were estimated via linear regression analysis on the calibration curve thus obtained using 

the following equation in the form of y= mx+c were :- 

Y= log mwt of unknown protein 

M= gradient of the calibration curve 

X= Rf value of unknown protein 

C= interception of curve with x axis 
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2.5.6.2.10 Method for reprobing the membrane after chemiluminenscent 

detection 

After using the chemiluminescent protein detection system (Pierce Biotechnology Inc., 

Rockford, USA), it was possible to reprobe a membrane several times. This was important 

as valuable membrane samples could be reprobed several times with a variety of 

antibodies. Using the following method derived by Kaufmann et al. (1987), it is possible to 

completely remove both primary and secondary antibodies and reprobe the membrane 

several times. 

1. After immunodetection, the membrane was placed in a falcon tube and 5ml of 

stripping buffer with pH of 2.2, made by mixing 7.5g glycine, 0.5g SDS, 5ml Tween 20 

added to 500ml of double distilled water. This was left in the roller to mix for 30 

minutes. 

2. After this the membrane was washed three times with TBS Tween 20(100ml of TBS 

with 200μl of Tween 20). Each wash lasted for 10 minutes. 

3. Then, the membrane was then soaked in 10% milk and left in the roller spin for an 

hour. Then, this milk was replaced with fresh 10% milk and left in the fridge overnight. 

4. Then next day fresh 10% milk was added to the membrane and left in the roller spin 

for and one hour. The membrane was processed as described in section 2.5.6.2.5. 

2.5.6.2.11 Irreversible staining of western blotting membrane 

After immunoprobing and detection, in order to compare the resultant Supersignal™ 

West Dura system with the total protein on the transfer blot, the anionic dye amido 

black was used. Protein bands showed up as dark bands on a light blue background. 
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This staining method was not compatible with the immunodetection of proteins and so 

permanent staining of membranes did not allow the membrane to be reprobed. 

1. Amido black working solution was prepared by dissolving 100mg of 

napthalene black in 100ml of 10% acetic acid and 25% propanol solution. The 

membrane was immersed in this solution for an hour on a shaker.  

2. After this amido black destaining solution prepared by dissolving 100ml of 

10% acetic acid, 250ml of 25% of ethanol dissolved in 1Liter of double distilled water. 

The membrane was left in this solution overnight on the shaker. 

2.5.6.3 Preparing immunoprecipitates 

Immunoprecipitation was used to extract all the targeted membrane linker protein from the 

neutrophil samples, in order to get the sequence of the cleaved and intact portion of the 

target protein using mass spectrometry. The process involves adding a specif ic antibody 

targeted against a protein of interest within a cell lysate.  This then mixed with sepharose or 

agarose bonded staphylococcal protein A, protein G or both, in order to collect the ensuing 

protein-antibody complexes. These complexes were then centrifuged to induce precipitation, 

run on an SDS-PAGE gel and evaluated using immunoprobing.  The process is carried out 

as follows:  

 Neutrophils isolated from venous blood here lysed as described in section 

2.5.6.2b. Before adding NuPAGE sample buffer and NuPAGE reducing agent, 

primary antibody targeted against a protein of interest was added to the cell lysate 

samples, before being incubated at 4°C for 1 hour on a rotating wheel. 

 Following incubation, 50µl of conjugated A/G protein agarose beads (Santa 

Cruz Biotechnology, supplied by Insight Biotechnologies Inc, UK) was added to each 
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sample and placed back on the wheel for another hour or overnight, in order to allow 

for the antibody-protein complexes to bind to the beads.  

  Centrifuging at 8,000rpm for 5 minutes then acts as a way of removing any 

unbound protein or excess antibodies present in the supernatant.  The protein pellet 

was subsequently washed twice with 300µl lysis buffer before being resuspended in 

40-60µl of 10x sample buffer and boiled for 5 minutes.  The resulting samples were 

then run on SDS-PAGE gels as explained below.  

 

2.5.6.4    Mass spectrometry 

A) Sample preparation  

The immunoprecipitate samples were prepared as explained in section 2.5.6.3  and 

were run using The Xcell Sure Lock™ protein electrophoresis cells (mini-cell) supplied 

by Invitrogen,UK, using Precast NuPAGE® Novex 3%-8% tris-acetate Gel 1.5 mm. 

The technique described in section 2.5.6.2 was followed. Once the electrophoresis is 

complete:  

1. The gel was fixed by using 100ml of fixative solution (50ml methanol, 10ml 

acetic acid, 40ml deionized water) and left in shaker at room temperature for 10 

minutes.  

2. Once the gel had fixed, Colloidal Coomassie Blue Staining Kit from Invitrogen 

was used to stain the gel following the manufacturers protocol, explained in brief 

below. 

3. After the gel was fixed, staining solution was prepared by using methanol 

(20ml), Stainer A (20ml) mixed in 55ml of deionized water. This mix was added to the 

gel and left in the shaker at room temperature for 10 minutes. 
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4. To this setup, 5ml of stainer B was adder and the gel left overnight in the 

shaker at room temperature. Protein bands start to appear within 2-3 hours in this set 

up but was left over night for better results. 

5. The following day, the stainer solution was washed away with deionised 

water and the gel was scanned before the spots were picked. 

 

B) Trypsin digestion of the sample 

Trypsin digestion was done in order to recover the peptide from 1DE or 2DE gels for 

analysis by mass spectrometry.  Spots were cut manually using Ettan Spot picker 

pipette. Spots were picked from the mid-portion of the protein band on the gel, for 

multiple plugs /spots they were picked from either end of the protein band along 

with mid-portion. Each plug was treated separately. Plugs were also picked from the 

protein ladder as a quality control. In this project we took plugs from β-galactosidase 

(16.3kDa); phosphorylase B (97.4kDa); bovine serum albumin (66.3kDa); glutamate 

dehydrogenase (55.4kDa); lactate dehydrogenase (36.5kDa); or carbonic 

anhydrase (31.0kDa).  

     Each plug was placed separately in a 96 well-plate and the position of the spots on 

the plate noted. Once the spots were picked the gel was again scanned for discussing 

the results of the mass spectrometry.  

     The reagents listed in the table 2.6 were prepared and used for preparation of 

peptides from the picked plugs. Acetonitrile and solutions of acetonitirile require 

storage in glass containers. The rest of the reagents were prepared freshly. 
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              Table 2.6. Reagents used for trypsin digestion of the sample 

Compound 
Molecular 
weight 

Amount per 
ml 

Amount to make 

100mM  ammonium bicarbonate 
NH4HCO3 in water. Made up 2 
days in advance of use. 

79.06 7.91mg  396mg in 50ml 

25mM ammonium bicarbonate 
NH4HCO3 in water. Made up fresh.  - - 

10ml of 100mM stock 
and 30ml of water 

10mM dithiothreitol DTT (in 
25mM NH4HCO3). Made up fresh. 

154.2 1.542mg  1.542mg in 1 ml 

55mM iodoacetamide (in 25 mM 
NH4HCO3). Made up fresh. 

185.0 10.175mg  10.175mg in 1ml 

100mM sodium thiosulphate in 
water. Use within 2 weeks. 

248.2 24.83mg  248.3mg in 10ml 

30mM potassium ferricyanide in 
water. Made up fresh. 329.2 9.976mg  9.976mg in 1ml 

μ-cyano-4-hydroxycinnamic acid 
(in 50% (v/v) acetonitrile in 0.1 % 
(v/v) trifluoroacetic acid (TFA). 
Made up fresh. 

 5mg  5mg in 1ml 

 

 

 
 

 

 

 

 

 

 



 
 

 

 Chapter 2  151 
 

 

 

 

 

 

 

3 CHAPTER 3 

The role of talin in neutrophil morphology 

change 
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3.1 Introduction 

It is a well known fact that neutrophils rapidly change shape from spherical to a flattened 

morphology in order to achieve firm adhesion to the endothelial lining. Also during 

transmigration through the endothelium, irrespective of whether it is through the endothelial cell 

or between the endothelial cells (Ley et al. 2007), flattening onto the endothelial lining cells is a 

crucial first step.  This morphology change is associated with a massive increase in the surface 

area of the leukocytes (Dewitt et al. 2007). It has been suggested that the extra reservoir of 

plasma membrane needed in order to adapt to the change in shape and surface area is 

provided by unfolding of wrinkles present in the plasma membrane of the neutrophils. The 

various possible mechanisms that might cause unfolding of membrane wrinkles in neutrophils 

have been discussed in detail in section 1.7.1. 

3.1.1  Membrane linker proteins in cell surface wrinkles 

 The wrinkles found on the plasma membrane of the neutrophils resemble “microvilli” 

seen in lymphocytes (Shao et al. 1998). These wrinkles may be held in place by protein such as 

talin, kindlin-3 and ezrin. These proteins act as membrane-cytoskeletal linkers which form a 

bridge between membrane proteins, such as L-selectin and β2 integrin; and the underlying actin 

cytoskeleton. This bridge may be formed between areas of plasma membrane outside the 

wrinkles or between the plasma membrane which form the wrinkles (fig 3.1.1) (Dewitt et al. 

2007). 
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3.1.2 Mechanism which release membrane wrinkles 

It has been shown that uncaging cytosolic calcium (Pettit and Hallett, 1998) or IP3, triggers an 

elevation of cytosolic Ca2+ (Dewitt et al. 2007) causes an accelerated rate of neutrophil 

flattening. This suggests that an elevation of cytosolic Ca2+ is involved in the flattening of the 

wrinkled membrane present on the cell membrane of neutrophils. Moreover, a similar 

relationship between cytosolic Ca2+ and membrane expansion has been established during 

pseudopodia extension (Dewitt and Hallet  2002). Under these conditions, unfolding of wrinkles 

was dependent on the activity of µ-calpain, a calcium-activated protease (Dewitt and Hallet 

2002), µ-calpain cleaves substrates in vitro and within the cells. Talin and ezrin are the 

substrates which get proteolysed by calpain in vitro (Dewitt et al. 2008). If this occurs within 

neutrophils, this would cause cleavage of cross-linking between the cell membrane and 

cytoskeleton, which would provide a mechanism for releasing the wrinkles on the surface of 

neutrophils. The calpain cleavage site in both talin and ezrin lies between the FERM domain, 

binding to membrane-associated protein and an actin-binding domain, linking to the 

cytoskeleton. Moreover, under inert condition, the integrin binding site of talin (F3 domain in 

the head group) is covered by the tail end of talin (C-terminal) (fig 3.1.2a, Moser et al. 2009). In 

a similar way to talin, ezrin may also exist in a self-inhibited form when the cells are inactive 

(Critchley D et al. 2008; Moser et al. 2009). Cleavage of talin by calpain exposes the integrin 

binding site which binds to the cytoplasmic domain of intergin.  This proteolysis of talin by µ-

calpain not only enables binding of the talin N-terminal to integrin but also increases its binding 

affinity from 6-fold to 100-fold (Yan 2001; Franco et al. 2004; Calderwood et al. 2004). So the 

proteolytic actions of µ-calpain on talin enable talin to form a bridge between the β2 intergin 

and underlying actin cytoskeleton. Activation of µ-calpain by calcium would thus lead to the 

coupling of the link formed by talin between the membrane and the underlying actin 
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cytoskeleton. By itself, this would not necessarily provide addition membrane to be released 

from wrinkled region of the plasma membrane. 

 

 

 

 

 

 

 

 

Kindlin3 is similar to talin and shares many structural similarities, both having a FERM domain 

with three subdomains (figure 3.1.2.b). It also regulates the activation of integrin (PTB fold in 

F3 subdomain). However, there are several features which distinguish the FERM domains 

within kindlin from that of talin, including  the location of FERM domain (in the C-terminal in 

kindlin) (Larjava et al. 2008), the presence of a pleckstrin-homology domain (bisecting the F2 

subdomain) and kindlin binds to the membrane-distal NxxY motif of  β- integrin while talin binds 

on the membrane proximal NPxY motif of β integrin (fig 3.1.2 .c & d) (Yan 2001; Moser et al. 

2009).  It has been proposed that attachment of kindlin to integrin enhances the integrin 

binding affinity of talin, but this concept is yet to be confirmed. A role for kindlin as a regulator 

and activator of integrin has been established in platelet and in mouse PMN; and is associated 

with LAD in humans, where neutrophil spreading is affected (Plow et al. 2009; Karakose  et al. 

2010). 

 

 

Figure 3.1.2a. The molecular structure of talin. This 

diagram shows the  inactive state of talin, where the 

integrin binding site is masked by the C-terminal 

(rod end of talin). The FERM domain forms the 

head which has three subdomain, F1-F3. This 

picture is taken from Science, 2009, 324; 895-899. 

David R. Critchley)   
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Figure 3.1.2b. Molecular picture of kindling. This diagram shows the FERM domain (kindlin) 

depicted as a ball subdivided into three subdomains, F1 to F3, a PH domain inserted into 

the F2 subdomain. Fig 3.1.2c  & d. Molecular picture showing the interaction of kindlin (c) 

and talin (d) with the cytoplasmic domain of β integrin.  Talin binds to the membrane 

proximal NPxY motif of integrin while Kindlin binds to membrane distal NxxY motif of 

integrin. This picture was taken from  Science, 2009, 324; 895-899. 

  

 

 

 

 

 

 

 

3.2 Aims 

The aims of the work described in this chapter were therefore to investigate whether the 

subcellular location of talin and kindlin was altered during neutrophil morphology changes, 

especially during spreading, polarization, phagocytosis and trans-endothelial migration.  

 

3.3 Methods  

3.3.1 Labeling neutrophils to study the relationship of the linker protein with 

actin        

Neutrophils were isolated as described in section 2.5.1. After incubation with the primary 

antibody specific for either talin subdomain or kindlin-3 and then secondary fluorescently- 

conjugated antibody, the coverslip was washed twice with 1XPBS inorder to remove any 

excess secondary antibody and 2.5µl of rhodamine phallodin (Invitrogen INC)  was added 

b 
c d 
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in 100µl of the neutrophil sample and left at room temperature for 20 minutes. Excess 

phallodin reagent was removed using 1X PBS. Rhodamine phallodin is an high affinity 

probe for F-actin made from mushroom toxin conjungated to an orange-fluorescent dye, 

tetramethyl rhodamine (TRIC). The approximated fluorescent excitation and emission is 

540-565nm. Image J pluging colocalization software was used to determine where talin 

and kindlin exists in relation to actin and integrin CD11b. In this project venous blood was 

collected form 73 volunties who had no medical conditions and were not under any 

medications. Salivary samples were collected from 107 volunties who had no 

inflammatory oral condition, no dental caries and had no systemic diseases conditions.  

3.3.2 Labeling the neutrophils with CD11b antibody 

Neutrophils from venous blood were isolated as described in the section 2.5.1 and were 

fixed and probed for the sub domains of talin and kindlin-3, as described in section 

2.5.6.1.  CD11b monoclonal antibody conjugated with phycoerythrin (Miltenyi Biotec Inc, 

Germany) was used to detect the integrin in the neutrophils isolated from the venous 

blood.  This antibody reacts with the 170kDa αM subunit of CD11b/CD18 heterodimer 

and recognizes the human, mouse and non-human primate CD11b antigen. 1µl of this 

antibody was added to 100µl of the isolated neutrophils in suspension and these cells 

were incubated at -4ºC for 30 minutes. Then, these cells were left over the cover slip for 

7 minutes to allow the neutrophils to adhere to the glass cover slips. Formylated pepetide 

(1µM FMLP) was used as a stimulus to polarize the neutrophils. 1µl of FMLP was added 

to these cells and the left for 5 minutes at room temperature. 1XPBS buffer was used to 

remove excess FMLP before the cells were fixed, and permeablised and probed for the 

linker proteins.    



 
 

 

Chapter 3  157 
 

3.3.3 Labeling polarized neutrophils to study the location of membrane linker 

protein 

100µl of neutrophils isolated from venous blood (1x106 cells/ml) were allowed to adhere 

over the glass cover slip for 5-7 minutes. After washing away all the dead and unattached 

neutrophils.  1µM of FMLP was added and incubated at room temperature for 5 minutes. 

Excess of FMLP was removed by washing the cover slip with krebs buffer and the cells 

fixed and probed for talin and kindling, as discussed in section 2.5.6.2.1.  

3.3.4  Estimating the molecular weight of talin – Western blotting 

To measure the molecular weight of talin, immunoblotting technique was used. 

Neutrophils isolated from blood were lysed using lysis buffer. The techniques and 

composition of reagents used to prepare the samples to run electrophoresis using 

NuPAGE® 3-8% tris-acetate precast mini gel system and western blotting using 

Invitrogen’s XCell II™ Blot Module is discussed in detail in section 2.5.6.2.  Neutrophil 

samples were run along with cell lysate of HL60, RAW cells, MCF7, PZHPV7, HECV, 

PNTC7 and MAC cells (as a control sample to determine the sensitivity and specificity of 

the talin primary antibody) under denaturing condition. Once the cell lysates were 

prepared, the amount of protein present in each sample was quantified using BSA assay 

technique, as described in section 2.5.6.2.2.  The amount of protein present in each 

sample used to detect the molecular weight of talin is given below (graph 3.3.4 a) and the 

final working protein concentration used to run electrophoresis is given in the table 

3.3.4b.  The difference in amount of protein in each cell lysate was equalized by adding 

cell lysis buffer. About 20μl of each sample mixed with sample buffer (NuPAGE® Novex 

LDS sample buffer) and reducing agent (NuPAGE® Reducing Agent (10x), were loaded 

into the mini gel and run for 1hour at 150V, at constant current of 55mA.   
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In order to make the proteins accessible to antibody detection, they are transferred by 

electroblotting from the gel onto a nitrocellulose membrane, as the  protein binds depending 

upon hydrophobic interaction as well as charge interactions between the membrane and protein 

and prevents reoxidation of reduced samples during protein transfer. The immunoblotting was 

carried out for an hour at 30 V, at constant current of 220mA.  The entire procedure involved 

during electroporesis and immunoblotting is in depth in section 2.5.6.2.5.   

 

 

Samples HL60 MCF7 NEUTRO MAC PZHPV7 PNTC7 RAW HECV 

Optical density 1 0.157 0.232 0.175 0.192 0.338 0.233 0.334 0.327 

Optical density 2 0.23 0.413 0.179 0.182 0.323 0.414 0.346 0.221 

Average 0.1935 0.3225 0.177 0.187 0.3305 0.3235 0.34 0.274 

Concentration 

(μg/ml) 1314.9 4674.2 885.2 1145.6 4882.5 4700.2 5129.9 3567.4 

Concentration 

(μg/μl) 1.3 4.7 0.9 1.1 4.9 4.7 5.1 3.6 

y = 2604.1x - 340.43 
R² = 0.9847 
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Table  3.3.4b. Final concentration of protein used to run electrophoresis- talin 
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After the protein was transferred on to the membrane, the uniformity and overall 

effectiveness of transfer of protein from the gel to the membrane was checked by the ponceau 

S dye membrane staining, as discussed in section 2.5.6.2.6. The protein transfer is detected 

using immunodetection technique (section 2.5.6.2.8) during this last process, the target protein 

is detected using a specific antibody targeted against talin and appear as a band on the film.  

The position of the bands was dependent on the molecular weight of the target protein (talin), 

whereas the band intensity depends on the amount of target protein present (talin). This is 

achieved after the transferred membrane has been blocked inorder to avoid non-specific 

interaction of the antibody; and was followed by probing the membrane with the primary 

antibody, to detect the tail group of talin, by incubating the membrane at 4°C overnight with the 

talin antibody. After the unbound primary antibody was washed away, the membrane is 

exposed to secondary talin antibody (goat anti-mouse IgG-HRP from Santa Cruz biotechnology, 

Inc) at a dilution of 1:2000 which is linked to horseradish peroxidase, The membrane is 

incubated with this secondary antibody for an hour at room temperature. A chemiluminescent 

agent (Super Signal West Dura Extended Duration Substrate Solution From Thermo Scientific, 

UK) is used as a substrate that will luminescent when exposed to the HRP on the secondary 

antibody. This reaction produces luminescence in place and in proportion to the amount of 

probed protein. The light is then detected by photographic film. The generic step-by-step 

procedure is provided in section 2.5.6.2.7 & section 2.5.6.2.8.    

3.4 Results 

3.4.1 Distribution of talin in neutrophils 

In order to investigate the subcellular location of talin in neutrophils isolated from blood, an anti-

talin antibody which was directed against the tail of tailn was used. To test the sensitivity and 

specificity of the primary antibody, neutrophils were fixed and incubated overnight (i) without the 
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primary anti talin antibody and (ii) without both primary and secondary talin antibody. There was 

little or no fluorescent staining under these conditions (fig 3.4.1A from a1-b2), and it was thus 

concluded that autofluorescence from the cytoplasmic components of neutrophils would not 

interfere with specific detection of talin. With anti-talin and secondary detection antibody, 

approximately 92% of neutrophils had peripheral cell membrane staining (fig 3.4.1a). Talin in 

platelets was also detected by this antibody. (fig 3.4.1a c1-d2).  

In order to determine whether the subcellular location of talin changes during 

physiological stimulation, neutrophils were stimulated with FMLP (1µM) before fixation. Under 

these conditions, talin was detected at the plasma membrane. In cells which had formed 

pseudopodia, talin had accumulated within the pseudopodia and was lost from other plasma 

membrane locations. (fig 3.4.1b).  In order to determine whether such a localized effect was 

observable with other morphological events, neutrophils were stimulated to undergo 

phagocytosis by incubating them with C3bi opsonized zymosan particles. Under these 

conditions, talin was detected on the phagosomal membrane and on the membrane of the 

forming phagocytic cup (fig 3.4.1c). These findings indicate that when neutrophils are in a 

resting state, talin is uniformly distributed at the cell plasma membrane but when they locally 

expand their surface area at sites of pseudopodia formation during polarization or phagocytosis, 

talin location co-incides with regions of plasma membrane expansion. 
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 Figure 3.4.1a. Antibody staining of tail group of talin in neutrophils isolated from blood. Neutrophils were allowed to 

spread over the glass coverslip. (a1, a2) Isolated neutrophils were incubated overnight without primary and secondary tail 

talin antibody to test for autofluorescence, which was absent (b1, b2). In order to test the specificity of the tail talin antibody, 

neutrophils were incubated in the absence of primary anti-talin antibody, but with the secondary antibody step. Again there 

was an absence of fluorescence.When incubated the remaining isolated neutrophils with both primary antibody for tail group 

of talin and secondary antibody (fig c1,c2, d1 and d2), it was found that in nearly 92% of neutrophils, the tail group of talin 

was seen evenly distributed along the periphery of the cell membrane (indicated by white arrow mark) and several platelets 

were identified as positive for the tail group of talin (indicated by white dotted arrow in fig c2 and d2). 
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Figure 3.4.1c. Antibody staining of tail group of talin polarized neutrophils. Neutrophils 

were allowed to spread over the glass coverslip and before fixing them, they were incubated at 

room temperature with 1µM of FMLP for 5 minutes and probed for the tail group of talin. Nearly 

all polarized neutrophils had talin localized only along the lamellipodia (indicated by arrows). 

 

  

 

 

 

Figure 3.4.1.2c. Antibody staining of tail group of talin in neutrophils that have 

undergone phagocytosis. Neutrophils were incubated at 37ºC with C3bi opsonized zymosan 

for 20 minutes before fixing and probing them for talin. The tail group of talin was seen only 

along the phagocytic cup and also along the phagosomes (indicated by arrows), indicating the 

tail group of talin changes its subcellular position in phagocytic  neutrophils. 
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3.4.2 The relationship between talin, actin and CD11b in neutrophils 

It was important to discover whether this change in subcellular location of talin was related 

to the position of CD11b and/or cytoskeletal actin, as talin forms cross links between the 

membrane protein (CD11b) and cytoskeletal actin. The neutrophils were prepared and 

labeled with CD11b (section 3.3.2) and actin, as described in section 3.3.1. FMLP was used 

to activate the neutrophils before they were fixed. Images of neutrophils stained for talin and 

either CD11b or actin were analyzed using colocalization Image J plugin software. The 

subcellular location of both CD11b and actin was very highly correlated with the subcellular 

location of talin in polarized neutrophils (p=0.0017) (Fig 3.4.2a; Fig 3.4.2b). This finding 

suggests that talin distribution may simply reflect the localization of actin and integrin and 

thus not give additional information about its role in membrane expansion.  
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Figure 3.4.2a: shows evidence of the relationship between the tail group of talin and CD11b. Neutrophils were incubated at room temperature for 15 

minutes with CD11b antibody conjugated with phycoerthythrin before adding 1µM of FMLP and fixing them. The tail group of talin was seen as high 

intensity staining along the laminopodia of the neutrophils (A & E-similar to the result obtain in the previous experiment), which corresponds to the antibody 

staining for CD11b (fig B & F). In order to confirm this visual finding, both the selected images were smoothed out and back ground noises removed using 

image J. Colocalization analysis was done, where  first the both blue and green signals from the images are made to overlap each other (dye overlay 

technique –qualitative colocalization technique), and the pixels which coincide are represented as yellow or white pixels (figure C&G) and the frequency  

plots (figure D&H) displays the relationship between the red and green pixels as an intensity– scatter plot, where the X-axis represents the pixels from the 

tail group of talin(green) and the y-axis represents the CD11b antibody (blue). Nearly 80% of pixels from both green fluorescence (tail group of talin) and 

the blue florescence (CD11b) overlapped each other and pearson coefficient value of 0.17 was obtained, which shows both tail group of talin and CD11b 

had a high probability of  colocalization. 
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and red pixels) 

k1(overlap r of 

green channel) 

k2(overlapr of 

red channel) 

Slope (intensity between green 

and red pixels) 

intercept 

0.233102 0.928616 1.943452 0.4437095 0.5216 97.5239 

\       

pearsons pr over lap r (ration of 

green and red pixels) 

k1(overlap r of 

green channel) 

k2 (overlapr of 

red channel) 

Slope (intensity between 

green and red pixels) 

intercept 

0.286374 0.936381 1.340012 0.654329 0.5387 87.9316 

Figure 3.4.2.b. Shows evidence of the relationship between tail group of talin and actin. After incubation with antibody to the tail group of talin, neutrophils were 

stained with phalloidin for 20 minutes at room temperature inorder to stain the actin cytoskeleton. FMLP was again used as physiological stimulus. High intensity 

staining for the tail group of talin (A & E) was seen along the laminopodia of neutrophils (similar to the results obtain in previous experiments), which corresponded to 

the phalloidin staining of actin cytoskeleton (fig B & F). In order to confirm this visual finding, the selected images were smoothed out and back ground noises removed 

using Image J. Colocalization analysis was done, were  first the both red and green signals from the image were made to overlap each other (dye ovelay technique –

qualitative colocalization technique) and the pixels which coincide are represented as yellow or white pixels (fig C & G) and the frequency  plots (fig D & H) displays 

the relationship between the red and green pixels as an intensity–scatter plot, were the X-axis represents the pixels from the tail group of talin (green) and the y-axis 

represents the phalloidin staining of actin cytoskeleton (red). Nearly 80% of pixels from both green florescent (tail group of talin) and the red florescent (actin) 

overlapped each other and a pearson coefficient value of 0.2 was obtained, which shows both tail group of talin and actin cytoskeleton  are  colocalized  with each other.  
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3.4.3 Distribution of talin in neutrophils after extravasation ex vivo 

In order to establish whether the change in subcellular location of talin during neutrophil 

FMLP induced polarization on glass would occur under more physiological conditions, 

neutrophils were examined after they had undergone trans-endothelial migration ex vivo. The 

transendotheial migration assay was performed, as described in section 2.5.3 (fig 3.4.3a). 

The neutrophils which had crossed the endothelial monolayer had lost the characteristic 

plasma membrane staining and instead talin was detected in the cytosol (fig 3.4.3b & c). In 

order to be certain that the staining conditions were not in someway responsible for this 

dramatic difference, the location of talin in transmigrated and non-migrated neutrophils were 

compared in cells on the same side and thus, stained under identical condition. Cells which 

had migrated across the endothelium were stained with cell tracker to distinguish them from 

cells which had not. This approach demonstrated that neutrophils which had undergone 

transmigration had lost talin from its plasma membrane location. When the difference in the 

intensity of talin between cell membrane and cytosole in both the group of neutrophils was 

quantified, there was a significant difference in the intensity of talin between the two group of 

cells (graph 3.4.3 1 to 3). This gave strong evidence that the subcellular location of talin 

changes from cell membrane to the cytosol as the neutrophils cross the endothelial 

monolayer under experimental (ex vivo) conditions. This loss of detectable talin from the 

plasma membrane was consistent with cleavage of talin in such a way that the head of talin 

(the region recognized by the antibody) was no longer associated with either plasma 

membrane or the cortical actin network.  
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   FIGURE 3.4.3 

               TRANS ENDOTHELIAL 

                          ASSAY 

 

 

 

   

 

  

 

 

 

 

Figure 3.4.3. Subcellular location of the tail group of talin as neutrophils extravasted 
under ex vivo conditions. A) Schematic   representation of the transendothelial migration 

assay setup (described in section 2.5.3). Migrated neutrophils were loaded with cell tracker dye 
conjugated with PE to differentiate between these two groups of cells. The non-migrated and 
migrated neutrophils were then mixed on a glass cover slip, then fixed and probed for the tail 
group of talin. Non migrated neutrophils retained the tail group of talin at the cell membrane (fig 
B & C), while the migrated cells lost the peripheral talin staining, giving evidence that talin 
relocated away from the plasma membrane as neutrophils undergoes exvivo extravasation.  
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Neutrophils (mean gray value) Average difference Standard deviation Z test  and T-test 

Non-migrated cells 14.49627273 9.100626301 <0.001  

Migrated cells -6.66341667 7.455793096 <0.001 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

Image J was used to quantify the difference in the fluorescent intensity of tail group of talin 

between the cytosole and the plasma membrane in both migrated as well as non migrated cells 

(Graph 1-3) and confirmed there was a statistically significant difference in the intensity of tail 

group of talin between the migrated and non migrated cells. This gave evidence that talin 

relocates away from the cell membrane into the cytsol as the neutrophils extravasated under 

experimentalcondition).
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3.4.4   Distribution of talin in neutrophils after extravasation in vivo 

To test whether talin relocation accompanies transendothelial migration, the subcellular 

location of talin in neutrophils which had extravasated in vivo and thus, under physiological 

condition were examined. Neutrophils were isolated from saliva, as explained in section 

2.5.2.1. Salivary neutrophils are an excellent representation of extravasted neutrophils under 

physiology condition and are easily accessible. It was found that approximately 92% of salivary 

neutrophils lacked cell membrane talin staining (Fig 3.4.4A1- B2). Quantifying the difference in 

fluorescence intensity between the cytosol and plasma membrane, confirmed that talin is 

distribution in the cytosol of salivary neutrophils, while the blood neutrophils had a plasma 

membrane location of talin (graph 3.4.4 1 &2).  Inorder to establish if this finding was due to the  

pH of saliva or any oral environment conditions, 100µl of blood neutrophils were loaded with 

cell tracker (conjugated with phycoerthythrin), mixed with 100µl of salivary neutrophils and both 

the group of neutrophils were fixed together by 4% formaldehyde. The blood neutrophils  

(positive for cell tracker) retained talin at the plasma membrane, while nearly all salivary 

neutrophils (negative for cell tracker) had cytoplasmic staining of the tail group of talin (fig 3.4.4 

C1-C2). To make sure that the dye (cell tracker) that was used to differentiate between the two 

group of cells was not blocking the relocation of talin away from the plasma membrane, the 

reverse labeling experiment was performed by loading the salivary neutrophils with cell tracker 

conjugated with phycoerthythrin. As before salivary neutrophils had cytosolic talin while  blood 

neutrophils had talin at the plasma membrane (fig 3.4.4D1-D2).  There was a statistically 

significant difference in the amount of membrane talin between salivary neutrophils and blood 

neutrophils (graph 3.4.4.3-4 & 5). This gives evidence that talin relocated away from the 

plasma membrane into the cytosol, as the neutrophils extravasated under physiological 

condition.  
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Figure 3.4.4a. Subcellular location of the tail group of talin in extravasated neutrophils 

under physiological  conditions. Neutrophils isolated from saliva are a good representation of 

physiological neutrophildiapedesis. Cells were fixed and stained for the tail group of 

talin,revealing that nearly all salivary neutrophils lacked the peripheral  plasma membrane 

position of talin; and rather had cytosolic location (fig A1- B2). This indicated that as the 

neutrophils underwent extravasation, the tail group of talin relocated away from the plasma 

membrane into the cytosol. ImageJ was used to quantify the intensity of the tail group of talin 

between the cytosol and plasma membrane in both sailvary neutrophils and blood neutrophils, 

(fig 3.4.1.5. graph 1 & 2), and confirmed there was a significant difference (p>0.001) in the 

intensity of talin in both groups of cells. 
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Figure 3.4.4b. Shows the consistent subcellular position of ezrin in salivary neutrophils. To find whether the physiological condition in the oral cavity influences 

the cytosolic location of tail group of talin, both blood neutrophils (loaded with cell tracker-blue) and salivary neutrophils were mixed and fixed on the same glass 

coverslip and probed for the tail group of talin. Cells which were positive for cell tracker (blood neutrophils-blue) had talin located at the plasma membrane (fig C1) 

while the cells which were negative for cell tracker (salivary neutrophils) (fig C2) had cytosolic location of talin. In order to make sure that the dye which used to 

identify the two groups of neutrophils was not interfering with the change in subcellular position of talin, instead of loading the blood neutrophils with cell tracker, 

salivary neutrophils were stained with cell tracker (blue) but the there was no change in subcellular location of tail group of talin in both the group of neutrophils 

(fig D1 & D2).  

sa 

Graph 3.4.4. Using Leica software, the intensity of tail group of talin was 

measured in both salivary neutrophils and blood neutrophils and when the 

difference between the plasma membrane and cytosol was measured 

between the two group of neutrophils, a statistically significant difference 

was noted in the location of tail group of talin between salivary neutrophils 

and blood neutrophils (graphs 3, 4 & 5). 
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3.4.5 Detection of the head group of talin in fixed neutrophils  

 The data for the loss of talin at plasma membranes was consistent with the cleavage of 

talin in such a way that the tail of talin (as identified by the antibody used) was no longer 

associated with the plasma membrane. In order to investigate whether this was the case, 

the location of the head group of talin was investigated. If the head and tail regions of talin 

occupied different cellular locations, this would provide evidence for cleavage of talin. 

However, the antibodies which recognized the head group of talin failed to stain talin in 

resting neutrophils (fig 3.4.5). Interestingly, the antibody detected the head group of talin 

in platelets (Fig 3.4.5C2 & D2). When stimulated with FMLP, again the head group of talin 

was not detectable in neutrophils, but was seen in platelets (Fig 3.4.5C2 & D2). This 

finding shows that the head group of talin in the neutrophils (but not in platelets) was 

inaccessible to antibody or unable to bind due to stereotypic hindrance, perhaps because 

the head of talin was hidden deep inside its binding partner or the cell membrane. If this 

where the case, it must be concluded that  the release of the tail of talin from the plasma 

membrane was not accompanied by ‘exposure’ of the head of talin to allow its detection 

by antibody. (Fig 3.4.5 D2).  

3.4.6 Detection of the subcellular location of kindlin in neutrophils 

 Kindlin-3 is membrane of the same ‘family’ as talin and is structurally similar to the head 

of talin. In order to test whether the proposal that the talin head was inaccessible to 

antibody staining, kindlin-3 was thus used a surrogate. It was found that kindlin-3 also 

could not be detected in neutrophils (Fig 3.4.6C2), while it could be detected in platelets 

(Fig 3.4.6D2). Kindlin-3 could also be detected in HeLa cells (Fig 3.4.6E1) which had a 

characteristic plasma membrane staining. It was, therefore, clear that the antibody was 

effective in other cells types and again suggested that the FERM domain which is present 
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in both kindlin-3 and  the head group of talin was either buried deep inside the plasma 

membrane inneutrophils or other location such that stereotypic hindrance prevented 

antibody binding of neutrophils.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                         

                           

 

Figure 3.4.5. Detection of the subcellular location of the head group of talin in neutrophils isolated from 

venous blood.  Neutrophils which were isolated from 10ml of venous blood were allowed to spread over the 

glass cover slip for 5 minutes. These neutrophils were then incubated on the glass cover slip with 1µM of 

FMLP for 5 minutes.Excess of FMLP was washed with 1X PBS before fixing and probing these neutrophils 

for the head group of talin. Inorder to test the sensitivity and specificity of the primary antibody for head group 

of talin, neutrophils were fixed in absence of primary antibody (fig A1 & A2) or in the absence of primary as 

well as secondary antibody, in order to rule out the auto-fluorescence nature of the cytoplasmic components of 

neutrophils (fig B1 & B2). When probed for the head group of talin, all the platelets were positive for the head 

group of talin (indicated by white arrow) was located along the cell membrane of these platelets (fig C1 & C2). 

However, it was not detectable in the neutrophils (fig D1 & D2). The arrow mark indicates the subcellular 

location of head group of talin in neutrophils (fig D1 & D2) and in platelets (fig C1 & C2).  
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Figure 3.4.6. Subcellular location of kindlin-3 in neutrophils isolated from venous blood. Neutrophils 

isolated from venous blood were stimulated with 1μM of FMLPfor 5minutes at room temperature before they 

were fixed and probed for kindlin-3. Nearly all the neutrophils were negative (arrow) for kindlin—3 (fig C1 to 

D2), while the platelets had cell membrane staining of kindlin-3 (white arrow) (fig C1 to D2). Moreover, to test 

the specificity and sensitivity of primary anti-kindlin-3 antibodie, HeLa cells were fixed and probed for kindlin-3. 

The majority ofHeLa cells were positive for kindlin3 (white arrow) (fig E1 & E2). The arrow mark indicates the 

subcellular location of kindlin-3 in platelets (fig D2) and HeLa cells (fig E1) and also indicates the negative 

staining of kindlin-3 in neutrophils (fig C2). Figs A1 & A2 are the control samples where the neutrophils were 

incubated without the primary antikindlin-3 antibody; and figures B1 & B2 indicate the absences of auto- 

fluorescence in neutrophils (no primary or secondary antibody). This give evidence that the primary antikindlin-3 

antibody is sensitive and specific for detecting. 
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log molecular weight = (slope)(mobility or Rf of the target protein) + y-intercept 

3.4.7 Determining the molecular weight of talin in neutrophils isolated from 

blood 

 The inability to detect the head group of talin by immunohistochemistry meant that that 

approach would not be useful in establishing whether talin cleavage had occurred. A molecular 

approach (western blotting) was therefore adopted to measure the molecular weight of full 

length talin and establish whether it was truncated (by cleavage) during neutrophil activation. 

Section 3.3.4 explains the western blotting technique, followed to determine the molecular 

weight of talin. The primary antibody that was used for western blotting was 8D4 (Santa Cruz 

Biotechnology, Inc). This was raised against talin of chicken, but detects the intact talin 

molecule from a number of species and also its proteolytic product 190kDa fragment of human 

and rat. The talin was detected as two separate bands in all the cell lysate, used except in the 

neutrophil cell lystate (fig 3.4.7a). After marking on the film the position of the stained protein 

standard bands from the membrane, Image J was used to plot the log of each molecular weight 

of the protein standards (y-axis) against their corresponding relative mobility (x-axis). Relative 

mobility (Rf) is the term used for the ratio of the distance the protein has moved from its point of 

origin (top of the gel) relative to the distance the tracking dye or a low molecular weight marker 

has moved (the gel front).  The regression line of the standard curve to obtain values for slope 

and y-intercept. The molecular weight (size) of talin was estimated using its Rf and the following 

modified equation: 

 

 

 The talin detectable as two separate band had molecular weight of 231kDa (1st band) and 

224kDa (2nd band), which corresponds to the expected 230kDa molecular weight of talin, in all 

the control samples (fig 3.4.7 table 1 & graph 1). It was not clear why talin could not be detected 
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in neutrophils, but detection of talin tail group by immunohistochemistry clearly showed that talin 

was expressed.  
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                          Figure 3.4.7. Determining the molecular weight of talin   

 

 

        

 

 

  Table 3.4.7(1). Determining the molecular weight of the (talin) protein bands using image J programme 

Cell 
lysate 

Distance 
travel by 
1st  
band(mm) 

Distance 
travel by 
2nd 
band(mm  

Rfvalue 
for 1st 
band 

Rf value for 
2nd band 

Log of 
mol.weight 
for  1st 
band 

Estimated 
mole 
weight for 
1st band 
(kDa) 

Log of 
mole.weight 
for  2nd  
band 

Estimated 
mole 
weight for 
2nd  band 
(kDa) 

HL60 83 87.01 0.2338028 0.245098592 2.365458 231.9 2.350807 224.2 

RAW  82.2 86.15 0.2315493 0.242676056 2.368381 233.5 2.353949 225.9 

MCF7 80.01 89 0.2253803 0.250704225 2.376382 237.8 2.343537 220.5 

PZHPV7 82.01 86.01 0.2310141 0.24228169 2.369075 233.9 2.354461 226.1 

MAC 83.3 88 0.2346479 0.247887324 2.364362 231.3 2.34719 222.4 

HECV 81.03 86.01 0.2282535 0.24228169 2.372655 235.8 2.354461 226.1 

PZHPV7 83.02 89 0.2338592 0.250704225 2.365385 231.9 2.343537 220.5 

y = -1.297x + 2.6687 
R² = 0.9694 
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Figure: 3.4.7. On immunoblotting the cell lysates, talin was detected as two separate band  in all the cell lysate other than neutrophils. Using image J the 

distance traveled by each protein band from including the  protein ladder standard was determine  and using the formula above, the molecular weight of all 

the protein band was calculated. The molecular weight of the  1st protein band of talin was around 231kDa (indicated by arrow) and the estimated molecular 

weight of the 2nd protein band  (indicated by arrow) was 226kDa.  
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3.5 Discussion 

Talin and kindlin-3 are well-known membrane linker proteins, which form crosslinks 

between membrane associated protein like integrin and the under lying actin 

cytoskeleton. It has been proposed that wrinkles which are seen on the cell membrane of 

neutrophils are held in place by these membrane linker proteins. As a substrate for the 

calcium-dependent enzyme µ-calpain, it is possible that proteolysis of talin might cause 

the unfolding of wrinkles on the surface of neutrophils and provide an extra reservoir of 

membrane which the neutrophils might use to accommodate the change in shape and 

increase  in surface area associated with extravasation. It is possible that taliin and 

kindlin-3 might be a ‘biological memory’ in extravasted neutrophils. When neutrophils 

isolated from venous blood were fixed and probed for the tail group of talin, nearly all 

resting neutrophils had peripheral membrane staining which relocated to the laminopodia 

in polarized neutrophils. This gave a clue that talin might be involved when the cell 

changes its shape. The peripheral distribution of the tail group of talin was lost in 

neutrophils which had extravasted both under experimental conditions and under 

physiological condition (salivary neutrophils). This relocation of the tail group of talin from 

the cell membrane into the cytosol as the neutrophils changed its shapes and during 

extravasation, indicates that the tail group of talin has a role to play in neutrophil 

morphology changes. When the neutrophils were probed for head group of talin, it was 

not detectable in neutrophils and this was same with kindlin-3 which also belongs to the 

FERM family and is similar to talin both structurally and functionally. It was also not 

possible to measure the molecular weight of talin in neutrophils. This might be due to 

sterotypic hiderance or talin might be present deep inside the cell membrane of the 

neutrophils which might not be possible for the antibody to bind. Even though the 

subcellular location of talin changes from plasma membrane to the cytosol as the 

neutrophils change shape, neither talin nor kindlin 3 can be used as a biological marker to 

identify extravastated neutrophils, as its subcellular position was shown to be associated 
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with integrin (CD11b) and actin cytoskeleton and moreover, it is difficult to measure their 

molecular weight as they are not available for the antibody to bind.  
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4 CHAPTER 4 

The role of ezrin in neutrophil morphology 

change 
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4.1 Introduction 

 The ezrin/radixin/moesin (ERM) protein family act as linkers between cortical actin 

filaments and plasma membranes. ERM proteins have attracted a great deal of interest. 

They are involved in formation of microvilli, cell adhesion sites, ruffling membranes and 

cleavage furrows (Bretscher, 2002; Bonilha, 2007). They have also been shown to be 

regulated by the Rho signaling pathway, as explained in depth in section 1.8.3.   

The ERM family consists of three closely related proteins, ezrin, radixin and moesin. Ezrin 

(∼82kDa) is involved in maintaining cellular projections like microvilli (Saotome, 2004) and 

was first isolated from chicken intestinal brush borders as a component of microvilli. 

Molecular cloning revealed that ezrin was identical to cytovillin, which was enriched in 

microvilli of human placental syncytiotrophoblasts. ERM proteins consist of three domains: a 

globular N-terminal membrane-binding domain (FERM domain or N-ERMAD), followed by 

an extended α-helical domain and a positively charged C-terminal actin-binding domain (C-

ERMAD). Moreover, ezrin is proteolysed by the calcium-dependent proteolytic ezyme 

calpain. 

 The ERM proteins are structured in such a way that intramolecular interaction 

between the N-terminal and C-terminal domains masks protein–protein interaction sites 

maintaining the protein in an inactive state in the cytoplasm (Bretscher et al. 1997).  Ezrin 

gets unfolded and becomes activated in response to binding the phospholipid PIP2 and 

phosphorylation of a conserved threonine residue within the C-terminal domain. When 

ERMs are activated, the N-terminal FERM (four-point-one, ezrin, radixin, moesin) domain 

can bind directly to the cytoplasmic portion of transmembrane proteins, such as CD44 and 

ICAMs, or indirectly through a cytoplasmic membrane scaffolding protein, EBP50. The 

central region of the ERMs contains an α helical domain that has been shown to be 

important for PKA association and the C-terminal domain contains a filamentous 
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actin/FERM binding domain important for regulating F-actin and intramolecular interaction 

(fig 1.8.3).  

ERMs are believed to function in a variety of cellular and developmental contexts, 

including organization of the apical cortex in differentiating epithelial cells, stiffening of the 

cell cortex during cytokinesis, epithelial integrity; and lumen morphogenesis in epithelial 

tubes (Louvet–Vallée, 2000). Since ezrin, like other ERM protein, has a structure which 

includes actin binding and plasma membrane binding regions, it may function as a cross-

linker between actin filaments and the plasma membranes. It might, therefore, have a role to 

play in holding the plasma membrane wrinkles in place on the surface of neutrophils. 

Furthermore, since ezrin is a substrate for µ-calpain, it is possible that unfolding of wrinkles 

may occur when calpain is activated. This would enable the neutrophils to increase their 

apparent surface area and so permit the rapid cell morphology changes which are required 

for neutrophil spreading, transendothelial migration and phagocytosis. If ezrin plays such a 

role, its subcellular distribution may act as a biological marker to identify extravasted 

neutrophils. 

4.2 Aims   

The aim of the work presented in this chapter is to establish the subcellular location of 

ezrin in unstimulated neutrophils and whether this changes during phagocytosis, 

transendothelial migration and in response to elevated cytosolic calcium 

concentration. 

1. To determine the subcellular location of ezrin in ex vivo extravasated neutrophils.  

2. To determine the subcellular location of ezrin in in vivo extravasted neutrophils. 

3. To determine the effect of a change in the cytosolic calcium concentration on the 

subcellular location of ezrin. 
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4. To determine the effect of subcellular location of ezrin for change in cytosolic level of 

calcium and effect of calpain and calpain inhibitor. 

 

4.3  Methods 

4.3.1 Detection of ezrin in fixed neutrophils 

In order to study the subcellular location of ezrin in neutrophils which were isolated from 

venous blood, 100µl of 1x106cells/ml of neutrophils were allowed to adhere to the glass 

coverslip for 10 minutes at 37oC; and the cells were fixed and permeabilised, as described in 

section 2.5.6.1. 4% Horse serum was used as a blocking reagent and the cells were 

incubated with this for 1-2 hours at room temperature. After washing, the cells were 

incubated with primary anti ezrin antibody (diluted 1/100 in 4% horse serum) overnight at 

4oC. The anti-ezrin antibody (ezrin 3C12) is a mouse monoclonal antibody raised against 

amino acids 362-585 of ezrin of human origin. After overnight incubation, the cells were 

washed with blocking agent (4%horse serum) to remove any left over primary antibody. To 

this, anti-mouse secondary antibody conjugated with FITC was added at the concentration 

of 1:20 and incubated at room temperature for 1hour. Before viewing the cells under the 

confocal microscopy, excess secondary antibody was removed by washing the cells with 

sterile 1X PBS buffer.  

4.3.2 Elevation of cytosolic calcium 

To  increase the calcium level in neutrophils,  a cocktail mixture of 1µM of thapsigargin (an 

inhibitor of SER calcium pumps which prevent uptake of calcium into storage sites within 

the cells), 1µM of ionomycin (to increase the influx of calcium into the cells)  and 13mM 

calcium chloride (to elevate extracellular calcium level). This cocktail mixture of high 

calcium was added to neutrophils (venous blood neutrophils) which were isolated in 
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presences of 1mM of EGTA, These cells were later fixed and stained with ezrin antibody, 

as discussed in section 4.3.1. 

4.3.3  Evaluating the effect of calpain on ezrin 

Calpain inhibitor I ,also know as ALLN , Ac-LLnL-CHO, MG-101, N-Acetyl-Leu-Leu-Norleu-

al, N-Acetyl-L-leucyl-L-leucyl-L-norleucinal,  was used to determine the effect of calpain on 

ezrin in neutrophils. ALLN has a empirical formula C20H37N3O4  and a molecular weight of 

38.35kDa. It inhibits calpain I (Ki = 190 nM), but also calpain II (Ki = 220 nM), cathepsin B 

(Ki = 150 nM) and cathepsin L (Ki = 500 pM). Neutrophils isolated from the venous blood 

were incubated at 4ºC for 30 minutes with 1µM ALLN and these neutrophils were allowed 

to adhere to the glass cover slip and fixed and probed for ezrin, as described in section 

4.3.1. 

4.3.4  Effect of extravasation on the subcellular position of ezrin 

Transendothelial migration assays were performed as described in detail in section 2.5.3. 

Neutrophils isolated from venous blood were allowed to cross a monolayer of endothelial 

cells, which were grown in a tissue culture insert. 1µM of FMLP was added to the outer 

chamber of the insert, in order to create a chemotactic gradient. The migrated neutrophils 

were collected on a glass coverslip and 100µl of a 1x105 cells/ml cell suspension of non-

migrated neutrophils loaded with 1mM of cell tracker conjugated with phycoerthythrin dye; 

was added to the same coverslip. The cells were allowed to adhere to the coverslip, were 

fixed and then were probed for ezrin antibody, as described in section 4.3.1. 

4.4 Results 

4.4.1 The subcellular location of ezrin in venous blood neutrophils 

Neutrophils were prepared and stained with ezrin antibody, as described in section 4.3.1. 

To test the sensitivity and specificity of primary antibody, neutrophils were fixed and 
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incubated overnight without the primary anti ezrin antibody, or with no anti-ezrin antibody 

and secondary antibody. This enables the level and location of the auto-fluorescence 

signal to be determined. This was very low and no correction was observed with ezrin 

specific staining. Ezrin was located at the neutrophil periphery in the majoriy of cells 

examined (65/77) (fig 4.4.1A1). On close examination, it was seen that this peripheral 

staining of ezrin was not uniform, but was absent from areas of the cell membrane where 

there were cell protrusions (fig4.4.1B1). This suggested that ezrin might be involved during 

changes in neutrophil morphology. In order to test this, localised pseudopodia were 

stimulated to form by inducing phagocytosis of C3bi opsonised zymosan particles. Again, 

the peripheral staining of ezrin was absent in the protrusion which form the phagocytic 

cup, as well as around formed phagosomes (fig 4.4.1F1- H1). This gave further evidence 

that ezrin moves away from the cell membrane as the neutrophil changes its shapes and 

when the plasma membrane undergoes dynamic changes. 
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Figure 4.4.1.Subcellular position of ezrin in neutrophils isolated from venous blood 
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100µl of a suspension of 1x106cells/ml neutrophils were fixed and probed for ezrin. The majority (65/77) neutrophils 

observed had cell membrane staining of ezrin (fig A1). This staining was irregularly distributed around the cell 

membrane, as shown in fig B1(arrow marked) and there were areas in the cell membrane which were devoid of ezrin 

(arrow marked). Image J was used to measure the difference in intensity of fluorescence of ezrin between the cell 

membrane and cytsol, the area to be measured was selected as shown in the Figure C which shows an example of the 

areas selected and measured. Out of 77cells counted, 65 cells ezrin staining at the  membrane (fig D) and often the 

intensity of fluorescence in cytosol was half as intense as the cell membrane (fig E) out of the  remaining 12 cells 

counted, the neutrophils showed no difference in the intensity of ezrin between the cytosol and plasma membrane. 

The irregular peripheral staining of ezrin might give evidence that ezrin changes its subcellular position, when the 

neutrophils changes its shape or when there is dynamic change in the plasma membrane.  
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Figure 4.4.1. Effect of the subcellular position of ezrin as the plasma membrane 

changes its dimension 
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 100µl of a suspension of 1x105 cells/ml neutrophils isolated from venous blood were allowed to 

undergo phagocytosis by incubating these cells with 100μl of 0.1mg/ml C3bi opsonised zymasan 

particals at 37°C for 15minutes. When these cells were fixed and stained for ezrin, the membrane 

staining of ezrin was lost around the phagosomes membrane as well as along the membrane of 

the phagocytic cup (fig 4.4.1.F1,G1& H1). This gave an indication that ezrin relocates away from 

the cell membrane when there is change in dimension or change in shape of the cells. When the 

fluorescent intensity of ezrin around the phagocytic cup and the rest of the plasma membrane 

was measured, the  intenisty of ezrin around the plasma membrane was twice as intense than 

around the phagocytic cup (graph I). The Image J programme was used to measure the intensity 

of ezrin. 
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4.4.2 The subcellular location of ezrin in transendothelial migrated 

neutrophils ex vivo 

As ezrin changes its subcellular location from the peripheral membrane into the 

cytosol when there is a change in cell shape, the question arises whether a similar 

change occurs in other neutrophil activities, such as during transendothelial migration. 

Transendothelial assays were, therefore, performed to address this. In contrast to 

unstimulated neutrophils, nearly all the transendothelial migrated neutrophils (55/57) had 

a cytosolic subcellular position of ezrin (fig 4.4.2 A1 & A2). This was obvious in double-

stained cells, where non-migrated neutrophils, were identified under the same fixation 

and staining conditions, but retained ezrin at the plasma membrane (positive for cell 

tracker, fig 4.4.2 A1 & A2).  In order to make sure that the cell tracker is not blocking this 

change in subcellular location of ezrin between these two groups of neutrophils, instead 

of loading the non-migrated neutrophils with cell tracker, the neutrophils that had crossed 

the endothelial monolayer were loaded with cell tracker conjugated with phycoerythrin. 

Migrated cells again retained the cytoplasmic location of ezrin (fig 4.4.2 B1 & B2) while 

the non-migrated cells retained the plasma membrane staining (fig 4.4.2 B1 & B2). This 

finding confirms that the membrane linker protein ezrin relocated away from the plasma 

membrane into the cytosol as the neutrophils extravasated under exvivo conditions.  

When the difference in the fluorescence intensity of ezrin between the non-migrated and 

the migrated neutrophils was measured (fig 4.4.2, graph 1 & 2), there was a distinct and 

statistically significant difference in the distribution of ezrin between these two group of 

cells fig 4.4.2, graph 3, 4 & 5). 
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Figure 4.4.2. Subcellular location of ezrin in extravasated neutrophils ex vivo. Neutrophills isolated from 
venous blood (1x10

5
cells/ml) were stimulated to cross a monolayer of endothelial cells (HUVEC cells 

grown over an insert) under the influence of chemical gradient set by 1μM of FMLP (top diagram). In 
order to differentiate between the two groups of neutrophils, the non-migrated neutrophils were loaded 
with cell tracker conjugated with phycoerythrin by incubating these cells with the 1μM of the dye at room 
temperature for 15 minutes. Both the non-migrated cells (positive for cell tracker) as well as migrated 
cells (100µl ) were mixed and fixed on a glass cover slip  and probed for ezrin (A1, A2). The non-
migrated cells had peripheral staining of ezrin and were positive for cell tracker, while the migrated cells 
lost the cell membrane staining of ezrin and were negative for cell tracker. To confirm that this change in 
subcellular loaction of ezrin was not influenced by the cell tracker dye used, the transendotheial 
migration assay was done in reverse: migrated cells were stained with the dye and mixed and fixed with 
nonmigrated neutrophils and when probed from ezrin, the non-migrated neutrophils (negative for cell 
tracker) had plasma membrane staining of ezrin, while the migrated neutrophils (positive for cell tracker) 
had cytosolic location of ezrin (B1,B2).  
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Figure 4.4.2. The intensity of ezrin between the cell membrane and cytosol was measured (ImageJ) in the migrated and 

non-migrated cells. The intensity of ezrin was consistently greater in the cytosol than the cell membrane in the migrated 

neutrophils (graph 1), whereas the reverse was seen in the non-migrated cells (graph 2). There was a significant 

difference in the distribution of ezrin in the two groups of neutrophils (graphs 3-5). This indicates that ezrin relocated 

from the cell membrane into the cytosol as the neutrophils extravasated under experimental conditions. 
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Graph 1: Comparison of intensity of ezrin between the cell 

membrane and the cytosol in non-migrated neutrophils. Cell 

membrane intensity of ezrin was more than the cytosol. 

Graph 2: Comparison of intensity of ezrin between the cell 

membrane and the cytosol in migrated neutrophils. Cytosolic 

intensity of ezrin was more than the plasmamembrane.  

Graph 3: Graphical representation of the difference in subcellular 

location of ezrin in migrated and non-migrated cells 

Graph 4 and 5: Showthe statistical significancein the distribution 

of ezrin betweenthe migrated and non-migrated cells 
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4.4.3 The subcellular location of ezrin in extravasted cells 

 The relocation of ezrin away from the plasma membrane into the cytosol in tran- 

endothelially migrated neutrophils was established under experimental conditions. In order 

find evidence of a similar phenomenon under physiological conditions, neutrophils were 

isolated from saliva, as described in section 2.5.2.1. Approximately 87% of salivary 

neutrophils had lost the peripheral membrane staining of ezrin and had the characteristic 

cytosolic location of ezrin (fig 4.4.3 A1 & B1), seen previously in experimentally induced 

transmigration. The difference in the fluorescent intensity of ezrin between the cell 

membrane and cytosol in each salivary neutrophil was measured and showed that the 

cytoplasmic staining of ezrin was greater than the cell membrane (graph 1 & 2). It was 

important to exclude the possibility that the oral environmental conditions like the salivary 

buffer system, pH of the saliva, or the techniques used to isolate these neutrophils were 

not influencing the cytoplasmic position of ezrin. Neutrophils from venous blood were 

therefore mixed with the salivary neutrophils on a glass cover slip and the two groups of 

cells processed together. Cell tracker conjugated with phycoerythrin was used to 

differentiate the venous blood neutrophils from the salivary neutrophils. Neutrophils which 

were positive for cell tracker (venous blood neutrophils) (fig 4.4.3 D1 & D2) had peripheral 

membrane location of ezrin, while the salivary neutrophils which were negative for cell 

tracker (fig 4.4.3 D1 & D2), had cytoplasmic staining of ezrin. To make sure the cell tracker 

dye which was used to differentiate between the two groups of neutrophils was not 

influencing the subcellular location of the ezrin, instead of loading the venous blood 

neutrophils with cell tracker dye, salivary neutrophils were load with cell tracker. The 

cytoplasmic location of ezrin persisted in salivary neutrophils (fig 4.4.3 C1 & C2), while the 

venous blood neutrophils retained the plasma membrane location of ezrin (fig 4.4.3 C1 & 

C2). Using Image J, the cytosol/membrane intensity of ezrin in blood neutrophils and 

salivary neutrophils were compared (fig 4.4.3, graph 3 & 4). There was a distinct and 

significant difference in the subcellular distribution of ezrin between these two group of 
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neutrophils (figure 4.4.3 graph 5&6). This finding provided confirmation that ezrin relocated 

away from the plasma membrane into the cytosol as the neutrophils extravasated under 

both experimental as well as physiological condition.  Since the change in ezrin location 

was persistent and detectable in salivary neutrophils, these findings also give evidence 

that this change in subcellular location of ezrin associated with extravasation might be due 

to proteolytic action of calpain or an other mechanism which might cause this relocation of 

ezrin. 
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Figure 4.4.3. To find evidence that subcellular location of ezrin in salivary neutrophils is not 

influenced by oral environmental condition. 60/62 blood neutrophils counted had peripheral 

membrane staining of ezrin (fig C1&C2) and were negative for cell tracker, while 75/83 salivary 

neutrophils counted had cytoplasmic ezrin, with no detectable staining of ezrin  at the cell membrane 

(fig C1&C2). There was no change in the subcellular location when the oppositepopulation was 

stained with cell tracker (salivary neutrophils had cytoplasmic position of ezrin and were positive for 

cell tracker and the blood neutrophils retained its plasma membrane staining of ezrin and were 

negative for cell tracker) (Fig D1&D2). 

Figure 4.4.3.: Subcellular location of ezrin in extravasated neutrophils. 79/87 cells had greater 

cytoplasmic than membrane staining of ezrin (fig A1 & B1). In the remaining 8 cells, 5 had 

homogenous staining of ezrin (no difference in the cell membrane staining and cytosol) and 3 

cells could not be quantified because the staining was too weak. When the intensity of ezrin was 

measured between the cell membrane and cytosol, this greater trend towards cytoplasmic ezrin 

was quantified, but there was no statistical difference in the fluorescence intensity (graph 1&2). 

Image J was used to measure the intensity of ezrin in salivary neutrophils.  
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When the difference in the intensity of ezrin was measured using Image J, there was a 

statistically significant difference in the intensity of ezrin between the blood neutrophils and 

salivary neutrophils (Graphs 3, 4 & 5).  
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4.4.4 The effect of elevated cytosolic calcium and calpain inhibitor on the 

subcellular location of ezrin  

  It is a well know fact that ezrin is a substrate for the calcium-activated proteolytic 

enzyme, calpain. If the relocation of the subcellular position of ezrin during extravasation 

and during change in shape of the cell was due to the proteolytic effect of calpain, an 

elevation in cytosolic level of calcium would be required. In order to study the influence of 

cytosolic calcium on the subcellular location of ezrin, the blood neutrophils were treated 

with a calcium elevation cocktail, as discussed in section 4.3.2. This caused approximately 

97% of neutrophils to lose ezrin from the plasma membrane (237/245 cells counted) (fig 

4.4.4A & B). In contrast, 88% of neutrophils (69/78) treated similarly but with extracellular 

calcium removed and replaced by EGTA (1mM) had the classical cell membrane staining 

of ezrin (fig 4.4.4C). This provided evidence for a role of cytosolic calcium as a trigger for 

the subcellular relocation of ezrin. In order to establish whether a similar response was 

triggered by physiological triggered cytosolic calcium rise, the receptor agonist FMLP was 

used. Similar results were obtained when neutrophils were fixed after stimulation with 

FMLP (1µm). 83% of neutrophils (48/58 cells) counted lost the cell membrane staining for 

ezrin (fig 4.4.4A). These data showed that calcium had a significant effect on the 

subcellular location of ezrin.  

In order to establish this possible relationship, the effect of a calpain inhibitor, 

ALLN, was investigated. After treatment with the inhibitor and stimulation with FMLP, 48% 

of neutrophils (42/87 cells) lost ezrin from the plasma membrane (fig 4.4.4D). This must be 

compared with 83% of untreated neutrophils and represents approximately 40% inhibition 

(figure 4.4.4, graph 1) 
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Figure 4.4.4A. The effect of FMLP on subcellular location of ezrin 

 

 

 

 

 

 

 

 

Figure 4.4.4B. The effect of elevating cytosolic calcium on subcellular location of ezrin 

 

 

 

 

 

 

Once the neutrophils were isolated from venous blood, these cells were stimulated with a 

‘cocktail’ of thapsigargin and ionomycin with high extracellular calcium (13mM). 237/245 

neutrophils lost the characteristic plasma membrane location of ezrin  (indicated by white 

arrow in figure a1 & b). The remaining 8 cells retained the peripheral subcellular location of 

ezrin (indicated by orange arrow figure a1 & b). This gave evidence that relocation of ezrin 

away from the cell membrane might be triggered by a high level of calcium. 

 

 

After stimulation of blood neutrophils with FMLP (1µM), 48/58 cells examined had no membrane staining 

for ezrin (figure a1&b1 indicated by arrow). Only 10 cells retained their membrane staining of ezrin (fig a1 

& b1 indicated by white arrow). Moreover, the cells with peripheral membrane staining of ezrin were 

smaller in diameter (10µm), while the cells with cytoplasmic location of ezrin were 14µm in diameter. This 

might be due to polarization of neutrophils under the influence of FMLP and this finding suggested that as 

the neutrophils undergo polarization, ezrin relocates away from the cell membrane into the cytosol. 
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                      Figure 4.4.4.C.: The effect of absence of calcium on subcellular location of ezrin. 

                                   

Before fixing the neutrophils isolated from venous blood, these cells were resuspended in 1mM of 

EGTA which is dissolved in PBS buffer. This setup was left at room temperature for 15 minutes. 

About 100µl of these neutrophils (1x10
5
cells/ml) were allowed to adhere to a glass coverslip for 4 

minutes, before these cells were probed for ezrin. 69/78 cells retained their plasma membrane 

location of ezrin and were smaller in size (indicated by orange arrow), when compared to the cells 

which had cytoplasmic staining of ezrin (9 cells, indicated by white arrow). This gave evidence that 

absence of calcium in the cells inhibits the relocation of ezrin away from the cell membrane and also 

inhibits polarization of the cells, which could be the reason for the neutrophils with peripheral 

membrane staining of ezrin to appear smaller in dimension when compared to the cells with cytosolic 

position of ezrin. 

               Figure 4.4.4.D The effect of calpain inhibitor (ALLN) on subcellular location of ezrin. 

                 

 

Approximately 48% of calpain inhibited neutrophils lost ezrin from the plasma membrane in response 

to FMLP (42/87 cells) (fig a, b & c indicated by orange arrow). The rest of the cells had plasma 

membrane staining of ezrin (figure a, b & c indicated by white arrow).  
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Figure 4.4.4.(1). Change in peripheral membrane position of ezrin under various 

conditions. It is clear from the information given in the above histogram that the loss of 

characteristic cell membrane staining of ezrin seen in both in experimentally extravasted 

neutrophils (in vitro transendothelial migration), as well as during physiological extravasation 

(oral neutrophils), is due to an increase in the cytosolic level of calcium and might be due to 

the proteolytic activation of calpain. 

 

4.5  Discussion 

Ezrin is one of the ERM family of proteins which may be involved in maintaining cell 

surface projection like microvilli, by forming a crosslink between the plasma membrane 

and underlying actin cytoskeleton(Bonilha 2007). Moreover, ezrin is a substrate for the 

calcium-dependent proteolytic enzyme, calpain.  Ezrin in neutrophils isolated from 

venous blood generally had a cell membrane location, but was notably absent from 

areas where there was a change in the curvature or dimension of the plasma membrane 

Figure 4.4.4. Graph 1. Change in peripheral membrane position of ezrin 

under various conditions.  
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(near the laminopodia, phagocytic cup and phagosomes). This suggested that ezrin 

might have a role in cell shape. Similarly, neutrophils which had migrated across the 

endothelium either under experimental conditions or under physiological condition 

(salivary neutrophils), lost their cell membrane staining of ezrin while the non-migrated 

neutrophils retained their cell membrane staining of ezrin. This gave a confirmatory 

finding that ezrin relocates away from the cell membrane into the cytosol as the 

neutrophils extravasate and when there is dimensional change in the plasma membrane. 

To establish a possible mechanism involved behind this relocation of ezrin, a role for 

calcium was investigated. Nearly 97% of cells lost the cell membrane staining of ezrin, 

when cytosolic calcium was elevated either experimentally or in response to receptor 

stimulation (83%). This was reduced to 50% by pre-incubation with a calpain inhibitor. 

This indicates that a change in the sub cellular location of ezrin away from the plasma 

membrane might be due to the protolytic effect of calpain stimulated by rise in cytosolic 

calcium level. As the sub-cellular location of ezrin is significantly different between the 

extravasted and non-migrated cells, ezrin may be used as a biological marker to identify 

extravasted neutrophils. 
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5.1 Introduction 

In the previous chapter, it was shown that ezrin subcellular distribution was affected by 

strategies which elevated cytosolic Ca2+. In the resting neutrophils, ezrin was located at 

the cell membrane; whereas after elevation of Ca2+ both artificially or as a result of 

stimulation or extravsation, ezrin was lost from this location and relocated to the cytosol. 

One possibility was that the relocation of the immunologically recognised ezrin was the 

result of a Ca2+ - activated proteolysis.   

Ezrin, also known as cytovillin, belongs to ERM family proteins and as a member 

of  the band 4.1 superfamily, by virtue of the presence of a shared FERM domain at the 

amino terminus. This protein provide a regulated linkage between the filamentous (F)-

actin in the cortex to membrane proteins on the surface of cells.  The ERM groups of 

proteins are ~75% identical in amino acid sequence. By regulating the linkage between 

the actin and membrane protein, ezrin may regulates cell shape, phagocytosis and 

chemotaxis. Moreover, this protein is also involved in membrane-protein localization, 

membrane transport and signal transduction (Bretshcher 2002). 

  

5.1.1 Regulation of ezrin 

As discussed in section 1.8.3 ezrin is recruited to the plasma membrane via its NH2-

terminal domain (300 residues), which contains both protein and phosphatidylinositol 4,5-

bisphosphate (PIP2) binding sites (Algrain et.al.1993; Niggli et al.1995). It binds to F-actin 

through the last 34 amino acid of their COOH-terminal domain (Turunen et al.1994). In 

the cytoplasm, ezrin maintained in an inactive conformation through an intra-molecular 

interaction between their NH2 -terminal ERM association domain (N-ERMAD) and the last 

100 residues of the COOH-terminal ERM association domain (C-ERMAD). This 

interaction masks the membrane and F-actin binding sites (Gary and Bretscher 1995; 

Magendantz et al.1995). Activation of ezrin, therefore, requires unmasking of the protein 

binding site which in turn enables ezrin to establish a link between actin and membrane 
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protein.  The activation of ERM proteins, resulting in the unmasking of their functional 

binding sites, occurs through conformational changes triggered by events including the 

binding to PIP2 and the phosphorylation of a conserved threonine in the actin binding site 

of the C-ERMAD (T567 in ezrin).  From the data presented in chapter 4, it is clear that 

neutrophils isolated from the venous blood had peripheral membrane ezrin, indicating that 

ezrin exist in “active” form in human neutrophils and that when the neutrophils expand 

their plasma membrane, this active membrane binding is lost. This might indicate that 

ezrin was proteolytically cleaved by a Ca2+ -dependent protease such as calpain. Ezrin is 

a known substrate of Calpain (Shcherbina et al. 1999). Proteolytic cleavage of ezrin by 

calpain has the capacity to disrupt membrane-cytoskelton linkage (Ya et al.1993).  

5.2 Aims  

The aim of this chapter was to seek biochemical evidence that ezrin proteolysis had 

occurred during neutrophil activation and elevation of cytosolic Ca2+. It was therefore 

necessary to do the following:-  

 1. Determine the molecular weight of ezrin in neutrophils. 

2. Detect the proteolytic products of ezrin in neutrophils in which cytosolic Ca2+ has         

been elevated. 

3. Detect the proteolytic products of ezrin in neutrophils which had undergone a 

morphological change. 

5.3 Material and Methods 

5.3.1 Materials  

a) Primary ezrin antibody  

  Ezrin (3C12), from Santa Cruz Biotechnology, was the primary ezrin antibody used 

in Western blotting, to detect the molecular weight of ezrin in neutrophils and cell lines. 
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This antibody is a mouse monoclonal antibody raised against amino acids 362-585 of 

human ezrin and was used at the dilution of 1:500 in 3% and 10% of milk TBS. Once the 

proteins were transferred onto the nitrocellulose membrane, the membrane was 

incubated in 3% milk, which had 100µl of Tween 20 and 1% TBS buffer in presence of 

1:500 dilution of primary ezrin antibody at 37ºC for 1hour on a rotator wheel. 

b) Secondary ezrin antibody 

The secondary antibody was a goat anti-mouse IgG-horseradish peroxidise conjugate 

(Santa Cruz Biotechnology), used at 1:1000 dilution in 3% milk. 

 

5.3.2 Methods 

a)  Cell lysate preparation and Novex® NuPAGE® SDS-PAGE Gel System 

 3-8% precast NuPAGE Tris-acetate gel from Invitrogen was used to separate the protein 

according to the molecular weight. HiMark™ Pre-Stained High Molecular Weight Protein 

Standards (Invitrogen) was used as protein standard against which the proteins from the 

cell lysate were separated. HL60 cells, RAW cells,  3T3 cells,  PLB cells and PZHPV7 

cells were used as positive control cell lines, to test the specificity and sensitivity of ezrin 

antibody (mouse monoclonal IgG1 from Santa Cruz Biotechnology). The cells were 

counted using cell counting chamber in cell counter (Cellometer®cell counting chamber 

SD100; Cellometer™ Auto T4 from PeQ Lab Biotechniologie GmbH) before lysing with 

50mM of HEPES, 150mM NaCl, 10% glycerol, 1% Triton X100, 1.5mM MgCl2, 5mM 

EGTA, 5mM EDTA, 1mM Na3VO4, 1.5mM NaF, 0.1% SDS and 1:1000 dilution of 

protease inhibitor cocktail (Sigma Aldrich) at 4ºC for 1 hour.  The amount of lysis buffer 

used depended on the size of the pellet or number of cell counted, for instance to lysis 

cells like HL60, RAW cells and neutrophils from venous blood, 1ml of lysis buffer was 

used. 500µl of lysis buffer was used to lyse neutrophils isolated from saliva but the 
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protease inhibitor cocktail was always used as 1:1000 dilutions.  The cell lysate were 

centrifuging at 14,000rpm for 5 minutes and the pellet was discarded. The amount of 

protein in each cell lysate was quantified using the BSA assay. Each cell lysate was then 

boiled at 90ºCfor 10-15 minutes along with NuPAGE® LDS Sample Buffer (4X) and 

NuPAGE® Reducing Agent (10X). A mini 1.0mm thick, 15 well triacetate gels 

(NuPAGE®pre cast 3-8% tris acetate gel) was used. To each well, 20µl of cell lysate with 

atleast 5µg/ml of protein was added with 15µl of prestained protein ladder. The NuPAGE® 

SDS-PAGE gel system was set at 55mA, 120mV, for 1hour, in XCell SureLock™ Mini-

Cell tank system, the inner chamber of the tank was filled with 200ml of NuPAGE® Tris-

Acetate SDS  running buffer (10X) and 500µl of NuPAGE® antioxidant, the outer chamber 

of the tank was filled with 300ml of NuPAGE® Tris-Acetate SDS  running buffer(10X).  

 

b) Immunoblotting 

The protein was transferred to nitrocellulose membrane (Hydrobond-ECL; Amersham 

Biosciences) at constant 220mA at 30V for 1 hour, using XCell SureLock™ Mini-Cell 

tank system. The efficiency of protein transferred was evaluated using ponceau S 

staining. Then, the membrane was blocked (3% milk) with monoclonal mouse anti- 

ezrin antibody at dilution of 1:500 in 3%milk/0.5% Tween-20 for one hour. The 

membrane was washed and incubated overnight at 4ºC with goat anti-mouse antibody, 

conjugated with horseradish peroxide at dilution of 1:1000, then washed and exposed 

to chemiluminescent protein detection using Supersignal™ West Dura system (Pierce 

Biotechnology Inc., Rockford, USA), The chemiluminescent signal was detected using a 

UVITech Imager (UVITech Inc., Cambridge, UK), which contains both an illuminator 

and a camera linked to a computer which then captures and stores the image. Each 

membrane was subjected to varying exposure times until the protein bands were 

sufficiently visible.  These images were then captured and further analysed with the 

UVIband software package (UVITEC, Cambridge, UK), which allowed for protein band 
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quantification. In order to confirm reliability of the results, each western blot was carried 

out three times. Each sample was blotted along with a prestained high molecular weight 

marker supplied by Invitrogen. Image J was used to measure the RF value, the detailed 

procedure involved in obtaining the RF value is explained in section 2.5.2.9. 

c) Estimating the molecular weight of ezrin in neutrophils 

Neutrophils isolated form venous blood were counted using the cell counting chamber 

(Cellometer®cell counting chamber SD100) in an automatic cell counter (Cellometer™ 

Auto T4 from PeQ Lab Biotechniologie GmbH).  1x106 of neutrophils were lysed using 

1000µl of lysis buffer and 1:1000 dilution of protease inhibitor cocktail for 1hour at 4°c. 

At every 15 minute interval, the cell lysate were vortex. Then, the cell lysates were 

boiled at 90ºC for 10 minutes, and centrifuged at 14,000 rpm for 5minutes, the cell 

debris was removed and the  protein in the supernatant was quantified using the BSA 

protein assay. A similar method was followed to isolated protein from the HL60, RAW 

cells, PLB cells, 3T3 cells and HPZHPV7 and protein obtained from these cell line were  

diluted using the lysis buffer to equality to the amount of protein isolated from the 

neutrophils. 15-20µl of cell lysate was added into each well and the technique described 

in section 5.3.2a & b was followed. A similar technique was followed to identify ezrin in 

neutrophils isolated from saliva.  

 

d) Ca2+ elevating experiments   

Ionophore increases intracellular calcium by transporting Ca2+ across the plasma 

membrane.  Thapsigargin increases intracellular Ca2+ by inhibiting the CaATPase on 

the endoplasmic reticulum, which leads to depletion of Ca2+ from the intracellular stores 

and causes the Ca2+ channels to open in the plasma membrane causing Ca2+ influx. 

FMLP cause a physiological Ca2+ signal in neutrophils. FMLP binds to the formyl 

peptide receptor (FPR),  a G protein coupled receptor (Selvatici et al.2006) which 

initiates the release of Ca2+  from intracellular stores and  the opening of Ca2+ channels 
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in the plasma membrane. The neutrophils were treated both in presence of Ca2+ and in 

absence of added Ca2+ and in presence of EGTA (1mM). A Ca2+ elevating “cocktail” 

was used to increase Ca2+ and inhibit its uptake into intracellular organelles (19M 

ionophore, 19M thapsigargin and 26mM CaCl2 ). Ca2+ elevation was also achieved non-

chemically using probe sonication, which permeablised the membrane and so allowed 

Ca2+ entry. Sonication was used for 5-10 seconds before treatment with cell lysis buffer 

and protease inhibitors. The protein from these samples was separated using the 

technique discussed in section 5.3.2a & b.   

          

5.4  Results 

5.4.1 Prediction of ezrin fragments of calpain proteolysis 

Using CaMPDB (Calpain Modulatory Proteolysis Database) and multiple kernel learning 

programme designed by DuVerle et al (2011), one can predict potential calpain cleavages 

site in ezrin. Standard peptide cutter programmes which use simple algorithms fail to 

accurately predict substrate cleavage by calpain. However, this programme, which is a 

recent extension to the classic support vector machines framework, employs machine-

learned algorithms and has greatly improved predictive ablility. This approach showed 

significant specificity difference across calpain sub-types, despite previous assumptions to 

the contrary. Prediction accuracy was futher successfully validated using, an unbiased test 

set, mutated sequences of calpastatin (endogenous inhibitor of calpain) modified to no 

longer block calpain’s proteolytic action. In depth information regarding how these program 

work can be found (DuVerle et al. 2009) and accessed at http//calpain.org. In order to 

predict the possible calpain cleavage sites of ezrin, the sequence of ezrin obtained using 

UniProtKB/Swiss-Prot data base was loaded in the CaMPDB, Calpain Modulatory 

Proteolysis Database and multiple kernel learning Programme in FASTA-style format. 

Three possible cleavage site of calpain in ezrin obtained using this database are given in 

the table below.  
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Table 5.4.1 

a)  P15311 (EZRI_HUMAN)  UniProtKB/Swiss-Prot 

  
b) The possible cleavage site of ezrin by calpain  
 
10 Best scores: 

1. Pos. 71 - Score: 0.16 
2. Pos. 487 - Score: 0.14 
3. Pos. 572 - Score: 0.13 
4. Pos. 504 - Score: 0.12 
5. Pos. 319 - Score: 0.12 
6. Pos. 324 - Score: 0.12 
7. Pos. 171 - Score: 0.11 
8. Pos. 467 - Score: 0.11 
9. Pos. 348 - Score: 0.11 
10. Pos. 493 - Score: 0.11 

 

 
 

Protein names  

Recommended name: 

 Alternative name(s): 

 

Ezrin  

Cytovillin 

Villin-2 

p81 

Gene names Name: EZR 
Synonyms: VIL2 

 

Organism Homo sapiens (Human) 

Taxonomic identifier 9606 [NCBI] 

Sequence length 586 amino acid 

Post translatory 

modicatuin 

Phosphorylated by tyrosine-protein kinases. Phosphorylation by 

ROCK2 suppresses the head-to-tail association of the N-terminal and 

C-terminal halves resulting in an opened conformation which is 

capable of actin and membrane-binding 

Sequence  MPKPINVRVTTMDAELEFAIQPNTTGKQLFDQVVKTIGLREVWYFGL

HYVDNKGFPTWLKLDKKVSAQEVRNPLQFKFRAKFYPEDVAEELIQ

DITQKLFFLQVKEGILSDEIYCPPETAVLLGSYAVQAKFGDYNKEVHK

SGYLSSERLIPQRVMDQHKLTRDQWEDRIQVWHAEHRGMLKDNAM

LEYLKIAQDLEMYGINYFEIKNKKGTDLWLGVDALGLNIYEKDDKLTP

KIGFPWSEIRNISFNDKKFVIKPIDKKAPDFVFYAPRLRINKRILQLCM

GNHELYMRRRKPDTIEVQQMKAQAREEKHQKQLERQQLETEKKRR

ETVEREKEQMMREKEELMLRLQDYEEKTKKAERELSEQIQRALQLE

EERKRAQEEAERLEADRMAALRAKEELERQAVDQIKSQEQLAAELA

EYTAKIALLEEARRRKEDEVEEWQHRAKEAQDDLVKTKEELHLVMT

APPPPPPPVYEPVSYHVQESLQDEGAEPTGYSAELSSEGIRDDRNE

EKRITEAEKNERVQRQLLTLSSELSQARDENKRTHNDIIHNENMRQG

RDKYKTLRQIRQGNTKQRIDEFEAL 



 
 

 

Chapter 5                                 208 
 

 

 

 

 

 

 

 

 

    c) The most probable proteolytic products of ezrin amino acid sequence 

 

 

Fragment  1  

 MWt 8237.545 Da 

MPKPINVRVTTMDAELEFAIQPNTTGKQLFDQVVKTIGLREVWYFGLHYV

DNKGFPTWLKLDKKVSAQEVR 

Fragment 2 

MWt 61193.159 Da 

KENPLQFKFRAKFYPEDVAEELIQDITQKLFFLQVKEGILSDEIYCPPETAV

LLGSYAVQAKFGDYNKEVHKSGYLSSERLIPQRVMDQHKLTRDQWEDRI

QVWHAEHRGMLKDNAMLEYLKIAQDLEMYGINYFEIKNKKGTDLWLGVD

ALGLNIYEKDDKLTPKIGFPWSEIRNISFNDKKFVIKPIDKKAPDFVFYAPRL

RINKRILQLCMGNHELYMRRRKPDTIEVQQMKAQAREEKHQKQLERQQL

ETEKKRRETVEREKEQMMREKEELMLRLQDYEEKTKKAERELSEQIQRA

LQLEEERKRAQEEAERLEADRMAALRAKEELERQAVDQIKSQEQLAAELA

EYTAKIALLEEARRRKEDEVEEWQHRAKEAQDDLVKTKEELHLVMTAPPP

PPPPVYEPVSYHVQESLQDEGAEPTGYSAELSSEGIRDDRNEEKRITEAE

KNERVQRQLLTLSSELSQARDENKRTHNDIIHNENMRQGRDKYKTLRQIR

QGNTKQRIDEFEAL 

Fragment 3 

MWt 49596.558 Da 

KENPLQFKFRAKFYPEDVAEELIQDITQKLFFLQVKEGILSDEIYCPPETAV

LLGSYAVQAKFGDYNKEVHKSGYLSSERLIPQRVMDQHKLTRDQWEDRI

QVWHAEHRGMLKDNAMLEYLKIAQDLEMYGINYFEIKNKKGTDLWLGVD

ALGLNIYEKDDKLTPKIGFPWSEIRNISFNDKKFVIKPIDKKAPDFVFYAPRL

RINKRILQLCMGNHELYMRRRKPDTIEVQQMKAQAREEKHQKQLERQQL

ETEKKRRETVEREKEQMMREKEELMLRLQDYEEKTKKAERELSEQIQRA

LQLEEERKRAQEEAERLEADRMAALRAKEELERQAVDQIKSQEQLAAELA

EYTAKIALLEEARRRKEDEVEEWQHRAKEAQDDLVKTKEELHLVMTAPPP

PPPPVYEPVSYHVQE 
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5.4.2 Molecular weight of ezrin in neutrophils 

Neutrophils isolated from venous blood were counted using cell counting chamber 

(Cellometer®cell counting chamber SD100) in a cell counter (Cellometer™ Auto T4 from 

PeQ Lab Biotechniologie GmbH). 9 x 107 cells/ml were lysed in presence of lysis buffer 

and 1:1000 dilution of protease inhibitor. A similar procedure was carried out to prepare 

the cell lysate for various cell line (HL60, RAW cells and PLB cells). Once the cell lysate 

were prepared, the amount of protein present in each sample were quantified using BSA 

assay (Graph 5.4.2a & Table 5.4.2b), The amount of protein in each cell lysate was 

equalized using cell lysis buffer in order to make sure that the difference in the intensity of 

ezrin protein band between each cell lysate is not due to the amount of protein in each 

sample used. The sample were run in denatured form by adding NuPAGE® LDS Sample 

Buffer (4X) and NuPAGE® Reducing Agent (10X) and boiling the sample at 90ºC for 10 

minutes. The protein from the samples were separated and transferred into nitrocellulose 

membrane, as discussed in the section 5.3.2a & b. The apparent molecular weight of 

ezrin in all cell samples was determined using Image J programme. First, the capture 

membrane image was inverted in order to quantify the band intensity, using image J. The 

distance travelled by the standard protein in the pre-stained protein ladder (HiMark™ 

prestained protein standard) was calculated first and the RF value and the log of the 

protein standard were plotted. Similar steps were followed to calculate the RF value of 

protein band observed in each sample. Using the formula generated from the protein 

standard, the molecular weights of each protein band in the entire cell lysate sample were 

determined (Table 5.4.2d and Graph 5.4.2e).  This gave an estimated molecular weight of 

ezrin in “immune cell lines” HL60, PLB and RAW cells and in  “non-immunological cell 

lines” 3T3, HECV and prostate cancer cell lines of 80 KDa, similar to that reported for 

other cells, However, in primary neutrophils, the ezrin band was 72kDa  (Figure 5.4.2.c). 

While ezrin often runs near 80Kda and is known as p81, its amino acid calculated weight 

is actually 69kDa. 
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 Figure 5.4.2a. Protein quantification -BSA assay 

 

 

 

 

 

 

 

Table 5.4.2b. Calculation used to quantify the (ezrin) protein in each samples 

Sample Optical 

density 1 

Optical 

density 2 

Average Conc 

(µg/ml) 

Conc (µg/µl) 

Lysis buffer 0.08 0.07 0.07 422.63 Xxx 

Neutrophils 0.15 0.15 0.15 6157.70 6.15 

PLB 0.30 0.26 0.28 6323.11 6.32 

HL60 0.31 0.37 0.34 7092.26 7.09 

RAW 0.51 0.46 0.49 7229.83 7.22 

3T3 0.30 0.26 0.28 6425.21 6.42 

HECV 0.51 0.47 0.49 7329.25 7.32 

PZHPV7 0.32 0.38 0.35 7087.27 7.08 

P2CTV2 0.35 0.42 0.38 6333.11 6.33 

y = 1113.9x - 121.52 
R² = 0.9779 
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Graph 5.4.2.a shows the protein 

quantification obtained by using BSA 

assay. The formula obtained from the 

assay was used to calculate the amount 

of protein present in each sample (Table 

5.4.2.b). In order to make sure the 

amount of protein present in each 

sample (equalised to the amount of 

protein present in neutrophils sample), 

cell lysis buffer was used and the 

samples were run along with sample 

buffer and reducing agent provided by 

Invitrogen 

 



 
 

 

Chapter 5                                                                                           211 
 

Figure 5.4.2c. Determining the molecular weight of ezrin in neutrophils:  

3-8% Tris-acetate gel was used to separate the protein from the cell lysates and the proteins were transferred 

on to nitrocellulose membrane. Monoclonal mouse anti-ezrin was used to detect the ezrin protein band; 

chemiluminescence technique was used to exposed the protein band. Despite repeating the experiment three 

times with neutrophils isolated from different donors, the evident difference in the position of ezrin in 

neutrophils and the cell-line lysates was consistent (indicated by arrows). Using Image J, the RF value and the 

molecular weight of ezrin was determined (Table 5.4.2.d and Graph 5.4.2.e), ezrin measured around 72kDa in 

neutrophils while in other cell lines it was 80kDa. The gel shown is representative of at least three repeats.   

 

 

 

 

                                    

 

 

 

 

 

  

 

 

 

 

 

 

Samples 

Distance 

travel by 1st 

band (mm) 

RF value 

1st band 

Log 

value 

1st  

Antilog 

1st band 

(mol wt 

in kDa) 

HL60 215 0.64 1.90 80 

PLB 216 0.64 1.89 79.33 

Neutrophils 227.14 0.67 1.85 71.90 

RAW 211.02 0.63 1.90 80.54 

3T3 212.51 0.64 1.90 79.52 

HECV 215.01 0.64 1.90 80.00 

PNT2C2 216.01 0.64 1.89 79.32 

PZHPV7 214.07 0.63 1.90 80.64 

y = -1.2304x + 2.6928 
R² = 0.9848 
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Table 5.4.2.d 

Figure 5.4.2.c:  

Graph.  5.4.2.e 

Table. 5.4.2.d 

Table 5.4.2.d and Graph 5.4.2e. The RF value of the protein ladder. Using  this 

the molecular weight of ezrin in the cell lysate and neutrophils were determined. 

72kD

a 

80kD

a 

2 minutes exposure tine 
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5.4.3 Proteolytic products of ezrin in neutrophils 

Bands of “ezrin” with lower molecular weight (approx 55kDa) were often noticed in 

preparations of neutrophils. Interestingly, in HL60 cells, despite the full length ezrin running 

at 81kDa, a second band also had a 55kDa molecular weight (Fig 5.4.3a). Although 55kDa 

was not predicted to be one of the most likely proteolytic fragments (see section 5.3.1), it 

may have resulted from proteolysis during inadvertent cell activation. Deliberate cell 

activation was therefore explored using FMLP and Triton X-100. 

 

 

 

 

 

 

 

 

 

 

a. Deliberate cell activation using FMLP and Trition X-100 

    Stimulation of neutrophils with FMLP (1µM,  1 hour,  room temperature) also produced 

two immunoreactive “ezrin” bands, with RF values corresponding to the molecular weights of 

69kDa (the full length amino acid sequence weight) and 51 kDa the potential fragment 

observed earlier (figure 5.4.3b). Permeabilising the neutrophils with Triton X-100 (1%, 1 hour 

at room temperature) also produced a band with an RF value corresponding with 51KDa. 

Interestingly, no 72KDa band was detectable, but instead there was a band at 69KDa (the 

Figure 5.4.3a. 3-8% tris acetate gel probed for detecting ezrin protein 

2minutes exposure 

55kDa 72kDa 

55kDa 

81kDa 
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molecular weight of the amino acids) (fig 5.4.3c). It is possible that the apparent higher 

molecular weight of ezrin was the result of post-translatory modification and especially 

glycosylation. As TritonX-100 releases the contents from neutrophil granules, which include 

glycosylases, it is possible that the shift down to 69KDa was the result of deglycosylation.      

(fig5.4.3b, graph 5.4.3c & table 5.4.3.d).  

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Sample 

Distance 
travel by 
1st band 
(mm) 

RF value 
-1st 
band 

log 
value-
1st band 

Estimated 
mol wt 
(kDa)-1st 
band 

Distance 
travel by 
2nd 
band 
(mm) 

RF 
value- 
2nd 
band 

log 
value- 
2nd 
band 

Estimated 
mol 
wt(kDa) 

Neutrophils- 
FMLP 

279.41 0.71 1.83 68.92 314.87 0.80 1.71 51.98 

Neutrophils-
Triton-x100 

279.03 0.71 1.83 68.96 315.23 0.80 1.70 51.14 

Neutrophils-
FMLP 

280.01 0.71 1.82 68.43 314.27 0.80 1.71 51.48 

y = -1.341x + 2.7936 
R² = 0.9862 
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Figure 5.4.3b 3-8% Tris acetate gel probe for detecting proteolytic products of ezrin 

c) 

Figure 5.4.3b. The neutrophils isolated from venous blood were lysed in presence of 1µM of FMLP and 

Triton x-100%, separately and the protein were separated in 3-8% tris acetate gel and transferred onto the 

nitrous cellulose membrane. Two protein bands with molecular weight of 69kDa and 51kDa were observed. 

Inspite of repeating this experimental twice, the protein bands were consistent. These two protein band 

observed might be the proteolytic products of ezrin. The graph c and table d show the way the molecular 

weight of the protein band were estimated. 

51kDa 

69kDa 

d) 
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5.4.4 Effect of Ca2+ and calpain dependency of ezrin proteolysis 

When the membrane was permeabilised by sonication in the presence of extracellular Ca2+, 

there was a dramatic change in the molecular weight of the ezrin. The 69/72kDa form of 

ezrin (full length) was lost and a new band at 49kDa appeared (fig 5.4.4a). A calpain 

cleavage product at 49kDa may correspond to fragment 3 (see table 5.4.1) a predicted 

calpain cleavage product (MWt= 49596.55). In the absence of extracellular Ca2+ (ie media 

containing no added Ca2+ and EGTA, 1mM), the 49Kda fragment was reduced and the full 

length ezrin returned (Fig5.4.4b). Similarly, incubated with ALLN (50µM), a calpain inhibitor 

(detail about this inhibitor are given in section 4.3.4) for 15 minutes before probe sonication,  

protected the  69kDa (full length) and reduced the 49kDa band. It was interesting that an 

additional band at 49kDa were still detected under these conditions, as was the 51kDa 

band.  The 51KDa band may therefore be a calpain/Ca2+ independent product. However, 

proteolysis of ezrin to generate a 49kDa fragment was shown to be both Ca2+ and calpain 

dependent. 

Figure 5.4.4a                  Figure 5.4.4b 

 

 

 

 

 

 

 

Figure 5.4.4a and 5.4.4b. The possible proteolytic products of ezrin. Neutrophils isolated from venous blood 
was homogenized in presence of cocktail mixture of high calcium (thapsigargin, ionomycine and calclum 
chloride), 1mM of EGTA  and 50µM of calpalin inhibitor (ALLN) before lysing them by adding lysis buffer and 
in presence of protein inhibitor. Cells prepared in presence of high level of calcium and only one protein 
band with molecular weight of 51kDa while the sample prepared in absence of calcium (EGTA)  and 
prepared in presence of calpain inhibitor had protein bands with molecular weight of 69kDa band and 
49kDa, in addition to 51kDa. The results obtained were consistent. 
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Samples Distance 

traveld (mm) 

RF value Log value Estimated 

molecular 

weight        (kDa) 

Sonicated- EGTA    

1st band 327.64 0.73 1.84 69.23 

2nd band 368.63 0.82 1.70 51.22 

3rd band 372.71 0.83 1.69 49.71 

Sonicated - cocktail high Ca2+   

1st band *** *** *** *** 

2nd band 367.03 0.82 1.71 51.83 

3rd band *** *** *** *** 

Sonicated-calpain inhibitor 

1st band 328.03 0.73 1.83 69.03 

2nd  band 367.01 0.82 1.71 51.83 

3rdband 371.07 0.82 1.70 50.68 

y = -1.4267x + 
2.886 

R² = 0.9999 
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The graph b and table c shows the 

method used to determine the molecular 

weight of the protein band observed 

when probed for ezrin . 
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0 

0.1 

0.2 

0.3 

0.4 
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51kDa 
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0.35 
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69kDa(sonicated) 

Intact  s-ca++  s-EGTA  s-CI 

5 minutes exposure 

Graph 5.4.4.i, ii, & iii. Using image J the intensity of possible proteolytic product 

of ezrin (69kDa, 51kDa & 49KDa) was measured. It is clear from the graph that 

the fully cleaved ezrin (49kDa) and full length ezrin (69kDa) are unique to 

neutrophils prepared in presence of calpain and absence of calcium (EGTA)  while 

the partially cleaved ezrin product (51kDa) were not affected by presence of 

calcium or calpain inhibitor. Intact (non sonicated samples), S-Ca++ (samples 

prepared in cocktail mixture of high calcium and sonicated), S-EGTA (samples 

prepared in presence of EGTA and sonicated), S-CI (samples preapared in 

presences of calpain inhibitor and sonicated). 

Graph 5.4.4.ii Graph 5.4.4.i 

Graph 5.4.4.iii 
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5.4.5  Proteolysis of ezrin in migrated neutrophils  

In order to find whether similar proteolytic product of ezrin are detectable in 

extravasated neutrophils, both neutrophils which had crossed an endothelial barrier 

experimentally (in vitro) and physiologically (oral extravasated neutrophils) were 

investigated.  When probed for ezrin, as before, non-migrated neutrophils had two 

separate protein bands with molecular weight of 72kDa and 55kDa, while neutrophils 

which had crossed the endothelial monolayer in vitro had lost the 72kDa protein band and 

had only one protein band detectable with molecular weight of 55kDa (fig 5.4.5a). This 

gives strong evidence that ezrin had undergone extensive proteolysis as the neutrophils 

extravasted.  The absence of the full length ezrin was a striking finding and larger than 

could be produced pharmacologically. 

Oral neutrophils which has extravasted under physiological condition, were also 

examined. Although the number of cell recovered from the oral cavity was low , when 

probed for ezrin, again no full length ezrin was detectable in extravasted neutrophils and 

only the protein fragment at  55kDa was observed  (fig 5.4.5b). 
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Figure 5.4.5a. Estimating the molecular weight of ezrin in extravasated neutrophils- ex 

vivo  

Sample 

 

Distance 

travel (mm) 

RF value Log value Estimated 

mol wt 

(kDa) 

Non-migrated 

Neutrophils 307 

 0.718 

1.85 

 

72.06 

 1st protein band 

2nd protein band 338.01 0.79 1.74 55.04 

Migrated 

Neutrophils 

 

 

*** 

 

 

*** 

 

 

*** 

 

 

*** 1st band 

2nd band 334.01 0.79 1.74 55.16 

y = -1.5603x + 
2.9795 

R² = 0.992 
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1) 
2) 

Neutrophils isolated from the venous blood were allowed to cross a monolayer of 

endothelial cells (HECV cells), grown on a sterile insert by applying a concentration 

gradient set by 1µM of FMLP. The migrated neutrophils were collected in suspension 

(1x105cells/ml) and protein extracted from these cells were separated and transferred in to 

a nitrocellulose membrane and run along with the non-migrated neutrophils 

(1x105cells/ml). This experiment was repeated twice. Graph2 and table 3 shows the way 

the molecular weight of protein band were estimated. 

 

 

3) 

72 kDa 
55 kDa 
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1) 

   Figure 5.4.5.b. Estimating the molecular weight of ezrin in extravasated neutrophils-     

in vivo salivary neutrophils. 

 

  

 

 

 

 

 

 

 

 

 

       Samples Distance travel  

(mm) 

Rf value Log value Estimated mol 

wt (kDa) 

Sonicated-EGTA 331.01 0.76 1.73 54.90 

Sonicated-HIGH 

Ca2+ 330.04 0.76 1.74 55.31 

Unsonicated 329.07 0.76 1.74 55.72 

Sonicated- 

calpain inhibitor 332.09 0.76 1.73 54.86 

y = -1.4408x + 2.8457 
R² = 0.9994 
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Figure 5.4.4b (1) The protein extracted from neutrophils (1x10
5
cells/ml)  isolated from saliva and sonicated in 

thepresence of 1mM of EGTA, calpain inhibitor(ALLN), cocktail mixture of thaspigargin, ionomycin and CaCl2 

(sonication was used as an external stimuli) and few neutrophils were isolated with no external stimuli 

(unsonicated). The proteins were separated using 3-8% tris-acetate gel and they were transferred onto a 

nitrocellulose membrane. When probed for ezrin, irrespective of the conditions under which the neutrophils were 

isolated, a protein band of 55kDa was observed consistently, this gave evidence that one of the proteolytic 

products has a molecular weight of 55kDa and this process is  irreversible. Graph 2 and the Table 3 shows the 

way the molecular weight of the protein bands was estimated. To make ensure the reproducible nature of the 

experiment, this experiment was repeated three times with cells isolated from different individuals. The result 

obtained were consistent and the protein band was detected each time at 55kDa.  

 

4) 

2) 

55kDa 
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5.4.6 Identification of ezrin fragments 

Although the loss of full length ezrin was a striking finding, and suggestive of extensive 

proteolysis under milder conditions, two fragments were commonly observed, one at 55kDa 

and the other at 49kDa. In order to investigate whether these were genuinely ezrin 

fragments, peptide fingerprinting was attempted.  Mass spectrum analysis of the initiate 

uncleved fragment at 72kDa was always contaminated with myeloperoxidase (MPO, MWt 

83kDa), the major protein in neutrophils accounting for nearly 10% of all its protein. This 

made it difficult to assign particular small peptides in the other bands to those belonging to 

ezrin. However, several peptides were generated which did not belong to MPO and could be 

used to confirm that the 49kDa fragment was from ezrin (fig 5.4.6). It was concluded that the 

49kDa band was genuinely of ezin orgin. 

         Figure 5.4.6a. 3-8% gel from which plugs were picked for mass spectrometry 

analysis.

Figure 5.4.6a The 3-8% tris acetate gel from 

which spots were picked and trypsin digestion 

was carried out, the samples picked were taken 

for mass spectrum analysis  
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Table 5.4.6b. Sequences detected by agreement between predicted trypsin fragment 

and weight of fragment generated  

 

Sequence Trypsin digested 

fragment 

Fragment size detected (Da) 

 

EELMLR       

 

790.4127 

 

790.41345 

VMDQHK      757.3661 757.38007 

FGDYNK       743.3359 743.37567 

SGYLSSER      898.4265 898.47327 

LFFLQVK             894.5447 894.43652 

QQLETEK       875.4621 875.45618 

DQWEDR              848.3533 848.46552 

NISFNDK       837.4101 837.43054 

 AQEEAER     832.3795 832.43097 

ALQLEEER           987.5105 987.49408 

LQDYEEK       924.4309 924.47821 

EAQDDLVK 917.4574 917.45172 

 1720.8331 Not Found 

 1651.8173 Not Found 

 1493.6914 Not Found 

 1316.6878  Not Found 

APDFVFYAPR 1182.5942 1182.58716 

IQVWHAEHR 1175.6068 1175.54846 
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5.4.6c. Frequences detected shown on the predicted 49kDa fragment (sonicated in  

high Ca2+). 

KENPLQFKFRAKFYPEDVAEELIQDITQKLFFLQVKEGILSDEIYCPPETAVLLGSYAVQAKF

GDYNKEVHKSGYLSSERLIPQRVMDQHKLTRDQWEDRIQVWHAEHRGMLKDNAMLEYLKI

AQDLEMYGINYFEIKNKKGTDLWLGVDALGLNIYEKDDKLTPKIGFPWSEIRNISFNDKKFVI

KPIDKKAPDFVFYAPRLRINKRILQLCMGNHELYMRRRKPDTIEVQQMKAQAREEKHQKQL

ERQQLETEKKRRETVEREKEQMMREKEELMLRLQDYEEKTKKAERELSEQIQRALQLEEE

RKRAQEEAERLEADRMAALRAKEELERQAVDQIKSQEQLAAELAEYTAKIALLEEARRRKE

DEVEEWQHRAKEAQDDLVKTKEELHLVMTAPPPPPPPVYEPVSYHVQE 

 

5.5 Discussion  

The data in this chapter shows that ezrin in neutrophils is susceptible to proteolytic 

cleavage by high Ca2+ in a manner which is dependent on calpain activity. These artificial 

ways of activating cytosolic calpain were less effective than physiologically activating 

neutrophil to cross endothelial monolayers. Under these conditions, virtual no full length 

ezrin was detectable (72kDa).  This was dramatic finding which points strongly to a link 

between ezrin cleavage and the process of neutrophil transendothelial migration. Ezrin was 

detectable in neutrophils as a protein with a molecular weight of 69-72kDa.  69kDa is the 

weight of the entire amino acid sequence of ezrin. On stimulating these cells in presence of 

physiological stimuli (FMLP) or experimental procedures, this band is reduced and bands at 

49kDa and 51kDa were observed. In order to find evidence whether these two protein band 

are the proteolytic produces of ezrin, isolating the neutrophils in a solution with altered 

calcium level (EGTA and calpain inhibitor), produced three protein bands with molecular 

weight of 69kDa, 51kDa and 49kDa, which were not observed in neutrophils isolated in 

presence of high calcium level. This gave evidence that the three protein bands might be 
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the proteolytic products of ezrin and were sensitivity to the presence of calcium and calpain. 

To find evidence of such proteolysis in extravasted neutrophils, probing the neutrophils 

from saliva for ezrin, a protein band of molecular weight of 55kDa was noted moreover 

even by altering the level of calcium in these neutrophil samples, 55kDa remains the same 

and no other additional bands were observed. This gave evidence that proteolysis of ezrin 

might be a irreversible reaction under physiological conditon. However, on probing the 

migrated neutrophils under experimental condition (tranendothelial migration assay), the 

non-migrated neutrophils had two ezrin protein band with molecular weight of 72kDa and 

55kDa, while the migrated neutrophils had only one ezrin protein band (55kDa). This gave 

further evidence that ezrin undergoes proteolysis in presence of calcium and calpain and 

produce two proteolytic products and this proteolysis process is irreverisble in nature under 

physiological conditon. 

 The cleavage of ezrin may explain the release of ezrin from the plasma membrane 

reported earlier in chapter 4.   
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6 CHAPTER 6 

        Dynamic change in ezrin imaged during cell 

activation 
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6.1  Introduction 

In the previous chapters, it was shown that ezrin relocates away from the cell 

membrane into the cytosol as the neutrophils changed shape and after transendothelial 

migration, both under physiological and experimental condition. This was shown to also 

occur during changes in the cytosolic level of calcium. This may result from a proteolytic 

effect of the calcium-activated enzyme, calpain. In order to further study the relocation 

process dynamically, a neutrophil-similar cell model was used. RAW cells were 

transfected with GFP-tagged constructs of ezrin (pEGFP-N1 vector and pHJ421), so that 

its subcellular location could be followed. RAW cells were selected as these cells had 

similar functional qualities to neutrophils, but were capable of expressing transfected 

protein, unlike neutrophils. 

6.1.1 GFP tagged ezrin plasmid  

6.1.1.1  pHJ421  

 In order to achieve a useful cell model, a plasmid containing ezrin-GFP was 

required. pHJ421 is the plasmid for ezrin with insert size of 1758  tagged with GFP at the  

C-terminal of ezrin. It is tranducted into a mammalian expression vector backbone 

(pEGFP-N1) without insert size of 4700. Its cloning sites are 5'.EcoRI and at the SaII. The 

sequencing primer is GTGCACAAGTCTGGGTAC, the entire plasmid sequence is given 

below. The plasmid is resistance to kanamycin and the growth strain is DH5α, which 

produce high copies of plasmid. The selectable marker for this plasmid is neomycin. This 

plasmid was created and used by Stephen Shaw and has been used by Hao et al. 

(2010). To determine the possible mechanism involved in activation of ezrin in 

lymphocytes. 
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Commonly Used Primers 

CMV Forward  
CGCAAATGGGCGGTAGGCGTG (Invitrogen) 
Human CMV immediate early promoter, forward primer  

LKO.1 5’  
GACTATCATATGCTTACCGT (Weinberg Lab) 
Human U6 promoter, forward primer  

LucNrev  
CCTTATGCAGTTGCTCTCC 
5’ end of luciferase, reverse primer  

M13 Reverse  
CAGGAAACAGCTATGAC 
In lacZ gene  

MSCV  
CCCTTGAACCTCCTCGTTCGACC (BD Biosciences) 
Murine stem cell virus, forward primer  

pBABE 5’  
CTTTATCCAGCCCTCAC (Weinberg Lab) 
Psi packaging signal, 5’ of MCS in pBABE vectors, forward primer  

pGEX 5’  
GGGCTGGCAAGCCACGTTTGGTG 
3’ end of glutathione-S-transferase, forward primer  

SP6  
ATTTAGGTGACACTATAG 
SP6 promoter, forward primer  

T3  
GCAATTAACCCTCACTAAAGG 
T3 promoter, forward primer  

T7  
TAATACGACTCACTATAGGG 
T7 promoter, forward primer  

 

Figure 6.1.1a.  Schematic diagram of ezrin plasmid pHJ421. This diagram also shows the  sites where the 

ezrin sequence, GFP and E.coli vector were included. This information was obtained from Addgene, USA. 

Figure 6.1.1b. schematic diagram showing the  restriction digestion enzyme band. These enzymes were 

used to cut the ezrin plasmid. This picture and the information was obtained from website of Addgene, USA 

(www.addgene.org/) 



 
 

___________________________________________________________________________________ 
227 

Chapter 6 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.1.1.2 pEGFP-N1 vector 

pEGFP-N1 encodes a red-shifted variant of wild-type GFP, which has been optimized for 

brighter fluorescence and higher expression in mammalian cells. Excitation maximum = 

488nm; emission maximum=507nm.). pEGFP-N1 encodes the GFPmut1 variant which 

contains the double-amino-acid substitution of Phe-64 to Leu and Ser-65 to Thr. The 

coding sequence of the EGFP gene contains more than 190 silent base changes which 

correspond to human codon-usage preferences. Sequences flanking EGFP have been 

converted to a Kozak consensus translation initiation site to further increase the 

LOCUS       pHJ421 Sequencing Result 646 bp   

DEFINITION  pHJ421 Sequencing Result  
 ORGANISM  other sequences; artificial sequences; vectors. 
 FEATURES             Location/Qualifiers   
 source          1..646 
                     /organism="pHJ421 Sequencing Result" 
                     /mol_type="other DNA" 
     CDS             complement(57..605) 
                     /label="ORF frame 3" 
/translation="MPHLDPVLPLVPGKFVLVHHSLRDQPLRAEVPRLVHFFVVVPKL              

GLHSVGPQEHGSLRGAVDLIAKDSFLHLEEEKFLGDVLDELLSHIFRVELGPELELEGILLPDLLGRHLLIQLQPG

RKSFIIHIVEAKVPHFPEADSLYHLIKKLFSSCIWLDCKL QLCIHGGNSDIDWFRHFREFEA*" 

 

1 GAGCTGGTTT AGTGAACCGT CAGATCCGCT AGCGCTACCG GACTCAGATC 50 

51 TCGAGCTCAA GCTTCGAATT CCCGAAAATG CCGAAACCAA TCAATGTCCG 100 

101 AGTTACCACC ATGGATGCAG AGCTGGAGTT TGCAATCCAG CCAAATACAA 150 

151 CTGGAAAACA GCTTTTTGAT CAGGTGGTAA AGACTATCGG CCTCCGGGAA 200 

201 GTGTGGTACT TTGGCCTCCA CTATGTGGAT AATAAAGGAT TTCCTACCTG 250 

251 GCTGAAGCTG GATAAGAAGG TGTCTGCCCA GGAGGTCAGG AAGGAGAATC 300 

301 CCCTCCAGTT CAAGTTCCGG GCCAAGTTCT ACCCTGAAGA TGTGGCTGAG 350 

351 GAGCTCATCC AGGACATCAC CCAGAAACTT TTCTTCCTCC AAGTGAAGGA 400 

401 AGGAATCCTT AGCGATGAGA TCTACTGCCC CCCTGAGACT GCCGTGCTCT 450 

451 TGGGGTCCTA CGCTGTGCAG GCCAAGTTTG GGGACTACAA CAAAGAAGTG 500 

501 CACAAGTCTG GGTACCTCAG CTCTGAGCGG CTGATCCCTC AAAGAGTGAT 550 

551 GGACCAGCAC AAACTTACCA GGGACCAGTG GGAGGACCGG ATCCAGGTGT 600 

601 GGCATGCGGA ACACCGTGGG ATGCTCAAAG ATAATGCTAT GTTGGA 646 
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translation efficiency in eukaryotic cells. The MCS in pEGFP-N1 is between the 

immediate early promoter of CMV (PCMV IE) and the EGFP coding sequences. Genes 

cloned into the MCS will be expressed as fusions to the N-terminus of EGFP, if they are 

in the same reading frame, as EGFP and there are no intervening stop codons. SV40 

polyadenylation signals downstream of the EGFP gene direct proper processing of the 3' 

end of the EGFP mRNA. The vector backbone also contains an SV40 origin for 

replication in mammalian cells expressing the SV40 T antigen. A neomycin-resistance 

cassette (Neor), consisting of the SV40 early promoter, the neomycin/kanamycin 

resistance gene of Tn5 and polyadenylation signals from the Herpes simplex virus 

thymidine kinase (HSV TK) gene, allows stably transfected eukaryotic cells to be selected 

using G418. A bacterial promoter upstream of this cassette expresses kanamycin 

resistance in E. coli. The pEGFP-N1 backbone also provides a pUC origin of replication 

for propagation in E. coli and an f1 origin for single-stranded DNA production. This vector 

was used by Hao et al. (2010), in order to define the mechanisms controlling the 

disassembly of ezrin/radixin/moesin (ERM) proteins in lymphocytes. 

 

 

 

 

 

 

 

 

591         601       611                   621                           631                     641                       651                   661            
.              .               .                        .                              .                            .                           .                           . 
G CTA GCG CTA CCG GAC TCA GAT CTC GAG CTC AAG CTT CGA ATT CTG CAG TCG ACG GTA CCG  
                              .                                                 EGFP 
  671            

CGG GCC CGG GAT CCA CCG GTC GCC ACC ATG GTG 
 

Figure 6.1. Restriction map and multiple cloning site (MCS) of 

pEGFP-N1 vector. 

The figure shows the various restriction sites which are unique for  

this plasmid. All restriction sites shown are unique. The Not I site 

follows the EGFP stop codon. The Xba I site (*) is methylated in 

the DNA provided by BD.  These details are obtained by 

Biosciences Clontech. This plasmid for was  stable transfected 

with CMV as its promoter. The plasmid size is 4700bp, CMV-F 

and EGFP-N as sequencing primer 

(5'd[CGTCGCCGTCCAGCTCGACCAG]3'. The plasmid can be 

quantified using kanamycin and neomycin to avoid any bacterial 

contamination. Further information about this plasmid can be 

obtained from BD Biosciences Clontech  Protocol # PT3027-5 

GenBank Accession #U55762 (addgene) Catalog #6085-1. This 

plasmid was amplified in E.coli . 
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6.2 Aims 

The aim of the work in this chapter is to establish a model by which the dynamic of ezrin 

translocation can be studied and specifically to:- 

1. Investigated the effect of elevation of cytosolic calcium on the subcellular     

 location of ezrin. 

2. To evaluate the change in the subcellular location of ezrin during change in focal 

dimension of plasma membrane. 

 

6.3  Materials and Methods 

6.3.1 Materials 

1) Confocal microscopy 

Confocal imaging of cells was taken using a Leica SP2 confocal microscope, using a x64 oil 

immersion objective. Fura red calcium indicator and green fluorescent proteins were excited 

using the 488nm laser. Emission was detected at the appropriate wavelength for the 

fluorophore being imaged. Where more than one fluorophore was being imaged in the same 

sample sequential imaging techniques were employed. Sequential imaging allows for 

simultaneous imaging at two different wavelengths, whilst minimising interference and 

‘crosstalk’ between the two images by recording the image for the different wavelengths 

sequentially between frames. 

2) Fura Red 

Fura Red™AM (Invitrogen F3020 ) is a visible light—excitable fura-2 analog that offers 

unique possibilities for ratiometric measurement of Ca2+ in single cells by microphotometry, 

imaging or flow cytometry when used with single excitation, green-fluorescent calcium 

indicators. The acetoxymethyl (AM) ester form is useful for non-invasive intracellular loading. 
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The below figure (fig 6.3.1.2) shows the absorption and fluorescence emission spectra for 

fura red. 

 

 

 

 

 

 

 

Fura Red™ was loaded into the cells in an AM form using the same method described in 

section 2.5.4.3 for Fura2 (fig 2.5.4.3). Fura red is a non-ratiometric calcium indicator, which 

is excited at the same wavelength in both the calcium free and calcium bound forms. 

Calcium free fura red is excited by 488nm light and emits light at 650nm. Calcium bound 

fura red is excited at 488nm light and emits light at 650nm but at a lower intensity.(fig 

2.6.1.2), Changes in cytosolic calcium concentration can be detected by the decrease in 

fluorescence intensity of the indicator. The calcium concentration in the cell at any given 

time can be calculated from the fluorescence intensity if the indicator using the following 

equation:  

   [Ca2+]i = Kd x (Fmax ÷ F) – 1 

 Where, Fmax is the maximum fluorescence intensity of the indicator and F is the 

fluorescence of the indicator at any given point, relative to the minimum value of zero. 

 

3) Nucleofector™ technology 

 A nucleofector™ from Lonza Walkersville Inc, USA, was used to transfect the GFP-tagged 

ezrin plasmid into the RAW cells. Nucleofector™ Technology is a highly efficient non-viral 

Figure 6.3.1.2. Fluorescence 

spectrum for Fura Red.  Absorption 

and fluorescence emission (excited 

at 488nm) spectra of Ca2+-

saturated (A) and Ca2+-free (B) 

Fura Red™ in pH 7.2 buffer. 
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Cat. AAD-1001 

Weight 2.6 kg 

Dimensions 30 x 23 x 11 cm 

Power Supply 110 VAC +10%/-20% or 

230 VAC +10%/-20% 50-60 Hz 

Power Consumption 20 VA/fuse 0.4 A 

Protection IP 22 

 

method for transfection. It is based on two components: Nucleofector™ Device that 

delivers unique electrical parameters which delivers the genetic material straight to the 

nucleus of primary cells; and  Cell Line Nucleofector™ Kits, that contain cell-type-specific 

Nucleofector™ Solutions (VVCA-1003 Cell Line Nucleofector® Kit V (100 RCT), which 

enables the  highest transfection efficiencies with lowest mortality. The electrical 

parameters of the Nucleofector™ are different from any other commercially available 

electroporation device. Each electrical setting is displayed as a distinct program which has 

been adapted to the requirements of a particular cell type. As the electrical settings are 

pre-programmed into the Nucleofector™, optimization of the electrical parameters by the 

user is not necessary. The programme used to transfect RAW cell was program D-023. 

The description about the device is given below (fig6.3.1.3). 

 

  

 

 

 

Figure 6.3.1.3.  Nucleofector™ Device. Technical information and picture of the 

Nucleofector™ Device (Lonza Walkerville Inc, USA) used for transfection of RAW cells. 

 

4) Harvesting RAW cell lines 

The detailed steps followed in harvesting the RAW cells were explained in section 2.3.6  

and the materials used to harvest RAW cell were listed in section  2.1.2.  A cell scrapper 

was used to detach the RAW cells from the tissue culture flask. 

 

5) PLC inhibitor (U73122) 

U73122 is an aminosteroid that is reported to act as a specific inhibitor of phospholipase 

C. It inhibits the hydrolysis of PPI to IP3, which in turn leads to a decrease in cytosolic free 
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calcium. It also inhibits the coupling of G protein-phospholipase C activation, while 

remaining unaffected by production of cAMP. This inhibitor is also used to establish the 

link between phospholipase C activation and cellular Ca2+ signalling. 

 

6.3.2 Methods 

6.3.2.1 Purification of plasmid DNA 

 As the plasmid pHJ421 has already seeded with in E-coli, in order to increase the 

amount of plasmid. The product was seeded in 5ml of LB medium with 50µg/µl of 

kanamycin. This set up was incubated at 37ºC in a shaker (200RPM) for 4-5hours. Later, 

200ml of LB and 200µl of kanamycine was added in order avoid any contamination. This 

flask was incubated at 37ºC in a shaker (200RPM). Once the flask was confluent, the ezrin 

plasmid was retrived using Machery-Nagel Nucleobond R Extra Maxi kit.  

 

6.3.2.2 Purification and retrieving the plasmid 

  Ezrin plasmid was purified using Machery-Nagel NucleobondR Maxi kit (Abgene, 

UK), the methods as listed by the manufacturer were followed. In brief, the bacterial cells  

from the LB medium were pelleted by centrifugation at 4500- 6000RPM for 15 minutes at 

4ºC, to this pellet 12ml of resuspension buffer and RNAse (provided by the manufacture) 

was added and the pellet was resuspended gently to avoid any lump formation. In order to 

break the phospholipid bilayer, the protein on the surface of the membrane was denatured 

by adding lysis buffer (supplied along with the Maxi kit) and incubating the mix at room 

temperature for 5minutes. Plasmid DNA was separated from other nucleic acids and 

proteins through anion exchange. The solution was applied to an anion exchange column 

made from anion exchange resin which consisted of hydrophilic, porous silica beads with a 

methyl-aminoethanol (MAE) group. This functional group has an overall positive charge 

which means that under acidic conditions, the negatively charged phosphate backbone of 
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the DNA binds to the resin. Large double stranded chromosomal DNA was denatured by 

the addition of an acidic solution to neutralise the column. In its single stranded form, 

chromosomal DNA will be washed from the column at a lower pH than the double 

stranded plasmid DNA. Increasing concentrations of salt buffer were added to the column 

to wash off any protein, RNA and chromosomal DNA. The more interactions that molecule 

can make with the resin the higher salt concentration is required to wash it off. Small 

nucleic acids and single stranded DNA make fewer interactions than the double stranded 

plasmid DNA and so are washed off at a lower pH. A high salt concentration elution buffer 

was then applied to the column finally to wash off the plasmid DNA. The plasmid DNA is 

then recovered from the supernatant by ethanol precipitation. This precipitate was then re-

suspended in a buffer of double distilled water. Plasmid were digested with a mix of 

multicore buffer (Promega), 1µl of ECORI, 1µl of XBAL and 15 µl of double distilled water. 

1µl of ezrin plasmid was added to this mixture and incubated at 37ºC for 1hour. In order to 

check plasmid integrity and cut plasmid, the plasmid was run on a 0.8% agarose gel at 

100 volts for approx 45 minutes. Plasmids were quantified (0.035µg/µl) using a 

spectrophotometer to analyse absorbance at 260nm. Where plasmid concentration was 

too low, plasmids were precipitated using sodium acetate precipitation were 10% of the 

sample volume of 3M sodium acetate (pH 5.2) was added to the plasmid along, with 

double the sample volume ice cold 100% ethanol. Sample was vortexed and centrifuged 

for 15 minutes at maximum speed at 4oC. The supernatant was removed carefully without 

disturbing the pellet and resuspended in double distilled water and the plasmid was stored 

at 4oC until used. 

 

6.3.2.3 Preparation of RAW cells for transfection 

 As RAW cells were naturally adherent, a cell scrapper was used to remove all the 

cells from one of the T-25 tissue culture flask, before transfecting these cells with GFP 
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tagged ezrin, the cells were counted using a Cellometer cell counting instruments. 1x106 

RAW cells/ml were centrifuged at 750rpm for 10minutes and to this pellet 100µl 

Nucleofector® Solution and 10µl of purified ezrin plasmid was added and the entire mixture 

of solution was transferred into a cuvette (supplied with Cell Line Nucleofector® Kit V).  

The cuvette was placed in the Nucleofector® device and program D-023 was selected 

(Nucleofector® Solution and programme with the highest efficiency and lowest mortality). 

Once the trasfection was completed, 500µl of fresh warm DMEM medium was added 

immediately to the cuvette and with a sterile plastic pipettes (Cell Line Nucleofector® Kit V), 

the transfected cells were added into a sterile glass-bottomed petridish which has pre-

incubated at 37ºC with 2ml of fresh DMEM medium. The transfected cells were then 

incubated at 37ºC for 4-6 hours, after which the entire medium was replaced with 1000µl of 

fresh DMEM medium, containing 1mM of Fura Red™. After incubation at 37ºC for 45 

minutes, excess Fura Red™ was removed by washing with DMEM medium and the 

transfected cells were kept on a heating staged (37ºC)  and viewed under a confocal 

microscope. The exitaction wavelength used for the pHJ421 and Fura Red™ are explained 

in section 6.3.1. 

 

6.3.2.4 Altering the calcium level  

Ionophore increases intracellular calcium by creating artificial calcium channels in the 

plasma membrane which allows calcium to enter the cell. Thapsigargin increases 

intracellular calcium by inhibiting the CaATPase on the sarcoplasmic and endoplasmic 

reticulum. This increases intracellular calcium by stopping the cell from pumping calcium 

from the cytoplasm into the intracellular calcium stores. Depletion of calcium from the 

intracellular stores then causes the plasma membrane calcium channels to open, causing 

further calcium influx. A cocktail mixture of ionophore, thapsigargin and calcium chloride 

was used to study the effect of calcium on the subcellular location of ezrin. Cells were then 
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treated with 19µM ionophore, 19µM thapsigargin and 26mM CaCl2 was added 50:50 to 

their medium bathing the cells, so that the final concentration of CaCl2 in the medium was 

13mM to further increase the intracellular calcium. Fura Red™ was used to quantify the 

change in intracellular calcium levels. 

  

6.3.2.5 Opsonization of zymosan particles with mouse serum 

1mg of zymosan powder was mixed in 50µl of krebs buffer and to this, 50µl of mouse 

serum was added and the setup was left in the incubator at 37 ºC for 30 minutes to enable 

opsonisation to take place. Excess serum was removed by repeatedly centrifuging the 

sample at 2000rpm for 10 minutes and resuspending in krebs buffer until the supernatant 

was clear (approximately 3 spins). The final pellet was resuspended in 500µl of krebs 

buffer and kept at -20ºC until further use. 

 

6.4 Results 

6.4.1 Change in cytosolic calcium levels in RAW cells 

  Before evaluating the effect of Ca2+ on the subcellular position of ezrin, the Ca2+ 

signal in RAW cells was determined to make sure that these cells can produce Ca2+  

signals with the stimulating cocktail (ionomycine and thapsigargin). RAW cells which were 

cultured in T-25 tissue culture flasks were detached using a sterile cell scrapper and the 

number of RAW cells counted by Cellometer. 1x106cell/ml were added into a glass-

bottomed sterile petri dish in 2ml of pre-incubated (37°C, 5% CO2) DMEM medium. This 

set was left in the incubator for 4-6 hours at 37ºC, before adding the calcium indicator 

(Fura Red™), the dead and non-adherent RAW cells were removed by washing the petri 

dish with sterile DMEM medium. 1μM of Fura Red was added and the petridish was 

incubated at 37ºC for 45minutes. Using a confocal microscope, a field of well adhered 
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RAW cells was selected; the DMEM medium from the petri dish was removed and 

replaced by 1ml of fresh DMEM medium. Whilst recording, the cocktail mixture of 

ionophore, thapsigargin and CaCl2 was added to the cells and the change in fluorescence 

intensity of Fura Red was used to evaluate the calcium signalling in RAW cells. The entire 

experiment was carried out by confocal microscopy (Fura Red excited using 488nm laser). 

The fig 6.4.1a shows the recorded calcium signal in RAW cells measured using Fura Red. 

To test the reproducibility of this calcium signal in these cells, this experimental set up was 

repeated three times and calcium signals were measured with Fura Red and  also with 

Fluo 4 (fig 6.4.1b).The calcium signal was observed and recorded consistently.
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 Figure 6.4.1.a. Measurement of calcium signal in RAW cells using Fura Red as indicator. 

 

     

 

 

 

 

   

 

 

 

 

 

 

The above sequential images show the change in calcium level following calcium altering stimulation. RAW cells were grown on a glass bottomed petri dish and 
incubated for 45minutes with 1μM Fura Red at 37

º
C (fig A & A1). Addition of a cocktail mixture of 19µM ionophore, 19µM thapsigargin and finally 13mM CaCl2 to 

these cells (time frame of 300sec, figure B & B1) resulted in a gradual increase in calcium level, indicated by decrease in the fluorescent intensity of Fura Red (time 
frame 342sec- 645sec, fig C & C1), when the high cocktail medium was replaced by normal medium, a slow recovery of calcium was noted as shown in fig D1. The 
associated graph quantifies the recorded change in fura red intensity in RAW cells. Out of 11 cells counted, 8 cells showed calcium signal which was indicated by 
change in fluorescence of Fura Red. This experiment indicated that the RAW cells were capable of exhibiting calcium signals as other similar phagocytic cells, like 
neutrophils. This gave sufficient evidence that the RAW cell model could be used as a substitute to study the change in subcellular position of ezrin during change in 
dimension of plasma membrane in neutrophils. 
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                   Figure6.4.1b. Measurement of calcium signal in RAW cells using -Fluo 4 as indicator 

 

 

 

 

 

 

 

 

 

 

 
 
The above sequential images shows the change in calcium level following stimulation. RAW cells were grown on a petridish and incubated for 45minutes with 1μM of 
Fluo4 at 37

º
C (figA & A1). When a cocktail mixture of  19µM  ionophore, 19µM thapsigargin and finally 13mM CaCl2  was added to these cells (time frame of 263sec, 

fig B & B1), a gradual increase in calcium level was noted as indicated by increase in the fluorescent intensity of Fluo4 (time frame 301sec- 4025sec, fig C&C1)). 
When the high cocktail medium was replaced by normal medium, a slow recovery of calcium was noted as shown in fig D1 (time frame 410sec). The associated 
graph quantified the change in fluo 4 intensity in RAW cells. Out of 7 cells counted, all cells showed calcium signal which was indicated by change in fluorescence of 
Fluo4. This experiment indicated that the RAW cells were capable of exhibiting calcium signals as other similar phagocytic cells like neutrophils. This gave sufficient 
evidence that a RAW cell model can be used as a substitute to study the change in subcellular position of ezrin during change in dimension of plasma membrane in 
neutrophils 
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6.4.2 Mobility of ezrin-GFP in RAW cells 

In order for ezrin-GFP to provide a useful indicator of dynamic changes in ezrin within cells, 

it was first important to examine its mobility within RAW cells. Obviously, if ezrin-GFP were 

covalent bound or immobilised in some way, it would not be possible to see dynamic 

changes. Local fluorescence recovery after photobleaching (FRAP) experiments were 

therefore performed. 

Cells with  peripheral staining of ezrin  and well adhered to the glass petri dish were 

selected and laser photobleaching of one region of plasma membrane was performed (fig 

6.4.2a). By approximately 65 sec, ezrin-GFP in the bleached area had been restored to 

levels in the non-bleached zones. However, it was found that localised photobleaching had 

an effect on the whole cell fluorescent signal, an effect known as FLAP (fluorescence loss 

after photobleaching). This indicates that molecules were free to move from within the 

bleaching zone (at the plasma membrane) to the cytosol. Thus, it seemed likely that 

recovery of fluorescence at the plasma membrane after bleaching was the result of 

molecular movement from the cytosol to the plasma membrane. In order to test this, ezrin 

fluorescence was quantified in different zones within cells during the post-bleach recovery 

period. It was found that the ezrin in the membrane of the non-bleached zones also 

declined (fig 6.4.2a). This finding indicated that ezrin at the plasma membrane was in 

equilibrium with the cytosolic ezrin and moved relatively freely to restore fluorescent ezrin at 

the bleached membrane. The association of ezrin with the plasma membrane was therefore 

not static, but was dynamic.  
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Figure 6.4.2a. Effect of photobleaching on membrane position of ezrin.   
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Figure 6.4.2b. Measuring the effect of photobleaching on the subcellular position of ezrin   

  

 

 

 

 

 

 

 

In order to measure the effect of photobleaching on the subcellular position of ezrin, Leica lite software was used to quantify the difference in the intensity of 
fluorescence of ezrin between the bleached and unbleached area (in both plasma membrane and cytosol A, B) The entire process of bleach recovery was 
measured, revealing the intensity of ezrin around the plasma membrane of the cells unbleached area gradually decreased (purple box/line) which was 
associated with increases in the ezrin intensity in the cytosol of the cells (green & orange, graph A and B). This finding was confirmed when the fluorscence 
intensity of ezrin present on the cell membrane (orange) and cytosol (blue) was compared in three different areas on the same cell during recovery phase 
(graph C ,D & E). This showed that as the cell recovers from the bleaching effect, there was gradual decrease in the fluorescence of ezrin on the plasma 
membrane associated with increase in the cytosolic staining of ezrin, this indicates that translocation of ezrin is dynamic in nature

RAW cells transfected with GFP-tagged ezrin plasmid were allowed to adhere on a sterile petri dish; and cells with peripheral staining of 
ezrin were selected. After removing dead and unadhered cells by washing and replacing the tissue culture medium, one part of the cells was 
exposed to high intensity laser power for less than 1 sec(time 011 sec), which was sufficient to bleach the entire fluorescence on the 
exposed part of the cells. The outcome of this bleaching effect was recorded in real time. This brief period of photobleaching caused the 
disassociation of ezrin from the cell membrane of unbleached area of the cell which moved towards the bleached area of the cells (time 025- 
072sec); and this change was associated with increase in the cytosolic staining of ezrin. The process of recovery from the bleaching took 
approximately 62sec.. 
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6.4.3 Changes in cytosolic Ca2+ lead to changes in subcellular location of ezrin 

In order to evaluate the effect of a change in the calcium concentration over the 

subcellular location of ezrin, RAW cells which were cultured in a T25 tissue culture flask (as 

discussed in section 6.3.2.3) were detached using cell scraper. 1x106 cells/ml of RAW cells 

were resuspended in transfection reagent, added into a cuvette and were transfected with 

GFP-tagged ezrin plasmid, as described in section 6.3.2.3 and transferred to glass bottom 

petri dishes. After an incubation period of 4-6hours, the DMEM medium was replaced with 

1ml of fresh medium and to this medium 1μM of Fura Red was added and left in the 

incubator for 45minutes at 37ºC. The cells which were now loaded with Fura Red and stuck 

to the bottom of the petri dish were mounted on a heating stage which had been set at 37ºC. 

The remaining experimental setup was carried out using confocal microscopy and the 

change in cytosolic calcium level, as well as associated change in subcellular location of 

ezrin were recorded in real time. Before adding a ‘cocktail’ mixture of high calcium, all the 

dead and detached cells were removed by washing and replacing medium with 1ml of fresh 

tissue culture medium. The efficiency of transfection was noted, in nearly 60% of transfected 

RAW cells, the ezrin was present along the plasma membrane. Only those cells which had 

peripheral membrane staining of ezrin and which were loaded with Fura Red were selected 

for this experiment. To these cells, a ‘cocktail’ mixture of ionophore, thapsigargin and CaCl2 

was added to increase the intracellular calcium. As the cytosolic calcium level increased in 

these cells (indicated by decrease in the fluorescent intensity of Fura Red), there was a loss 

of peripheral membrane ezrin and an increase in cytosolic ezrin (fig 6.4.3a). Ezrin relocated 

away from the plasma membrane into the cytosol and inspite of replacing the high calcium 

medium with normal medium to restore cytosolic Ca2+, this relocation of ezrin was not 

reversible. Since the photobleaching experiments showed that ezrin rapidly re-equilibrated 

to the membrane, this showed that the membrane ‘binding sites’ for ezrin were absent or 

blocked by truncated (non-fluorescent) ezrin in this area. This indicated that the change in 
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subcellular position of ezrin was irreversibly associated with increase in cytosolic level of 

calcium. Similar results were observed when the cells were treated with ionophore, 

thapsigargin and CaCl2 separately. The subcellular shift in position of ezrin was slower than 

the cells treated with cocktail mixture of above mentioned reagents. These finding indicates 

that subcellular shift in position of ezrin was associated with increase in cytosolic calcium 

level (500nM to 1200nM).  ImageJ software programme was used to measure and compare 

the difference in fluorescent intensity of ezrin between the cell membrane and cytosol as the 

calcium level increased within the cells. Fig6.4.3a shows the recorded sequential image 

showing the calcium signal and associated changes in position of ezrin and the associated 

graph shows the change in fluorescent intensity between the cell membrane and the cytosol 

as the calcium level increased (Leica confocal software was used to capture images, fig 

6.4.3b). 
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Figure 6.4.3a.Change in subcellular position of ezrin with increase in cytosolic level of calcium.    

        

 

 

 

     

 

RAW cells were harvested from tissue culture flasks and 1x10
6
cell/ml were transfected with GFP-tagged Ezrin plasmid, and left in the incubator in a sterile 

petridish for 4-6 hours. After removing the dead and unattached cells by washing with fresh tissue culture medium, 1μM of Fura Red indicator was added 
to these cells and incubated at 37°C  for 45minutes. The petridish with the transfected cells were mounted over a heating stage which was maintained at a 
temperature of 37ºC under the confocal microscope. RAW cells with plasma membrane staining of ezrin and loaded with Fura Red were selected (a1, b1 
& c1 time 071sec). To these cells, a ‘cocktail’ mixture of ionophore, thapsigargin and finally 26mM CaCl2 was added 50:50 to their existing medium so that 
the final concentration of the CaCl2 in the medium was 13mM (figure a2, b2, c2, time 172 sec).  
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As the cytosolic calcium level increased, as indicated by decrease in the fluorescence of Fura Red (a3, b3, c3), the plasma membrane staining of ezrin 
was progressively lost (time 191sec to 221sec) which was associated with increase in cytosolic staining of ezrin (a4, b4, c4). Despite replacing high 
calcium medium with normal medium (a5,b5,c5, time 224 sec) with ordinary tissue culture medium, the subcellular change in position of ezrin away from 
the plasma membrane into the cytosol was irreversible (a6,b6,c6,time 278sec). This gave evidence that the change in subcellular position of ezrin was 
associated with increase in cytosolic level of calcium. 

 

Figure 6.4.3b. Measuring calcium levels associated with change in subcellular position of ezin  

 

 

 

 

 

    

  

Two areas of interest on the RAW cells were marked using Leica lite software (fig A) and the difference and the change in the fluorescence of ezrin in 

both the plasma membrane and the cytosol was calculated over time (graph1). The cytosolic calcium concentration was quantified over time and related 

to this relocation of ezrin (graph 2).As the cytosolic calcium level inside the cells increased, the fluorescence of ezrin in the plasma membrane 

decreased (graph1) and this was associated with a corresponding increased in the fluorescence of ezrin in the cytosol (graph 1).  
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6.4.4 Local expansion of the plasma membrane and relocation of ezrin 

As it has established that change in calcium level causes a change in subcellular location 

of ezrin away from the cell membrane into the cytosol, to determine whether similar 

changes occur when there is local change in dimension of plasma membrane, 

phagocytosis was induced in transfected RAW cells. The RAW cells which were cultured 

in T25 tissue culture flask were detached using cell scrapper (section 6.3.2.3) and 

1x106cells/ml were transfected with GFP-tagged ezrin plasmid, as described in section 

6.3.2.3. Zymosan particles which were oposonized with mouse serum was used for this 

experiment (section 6.3.2.5). 10µl of the stock opsonized zymosan were suspended in 1ml 

of tissue culture medium. Before mounting these cells on heated stage (maintained at 

temperature of 37ºC), the dead and unattached RAW cells were removed by washing and 

replacing the tissue culture media with 1ml of fresh normal medium and to these cells, 

1μM of Fura Red calcium indicator was added and incubated at 37ºC for 45minutes.  100µl 

of opsonized zymosan particles was added to these cells and allowed to settle down. 

Using a micropipette controlled by a micromanipulator (Eppendorf Injectman), one single 

zymosan particle was picked and positioned next to a transfected RAW cell which had 

peripheral staining of ezrin and the entire phagocytosis sequence was recorded at real 

time by confocal microscopy (fig 6.4.4a). As the pseudopodia formed, the peripheral 

staining of ezrin was lost along the phagocytic cup. When formed, the phagosome 

consequently was devoid of membrane ezrin. Image J was used to quantify the change in 

intensity of Fura Red (calcium concentration) and change in intensity fluorescence of ezrin 

around the developing phagosome. This revealed that the loss of membrane location of 

ezrin at the pseudopodia/phagosome was associated with an increase in calcium level 

(graph 6.4.4b). Fig6.4.4a shows the phagocytosis sequence recorded in transfected RAW 

cells.  
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Figure 6.4.4.a. Effect of change in plasma membrane dimension (phagocytosis) over the subcellular position of ezrin.    
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1x10
6
cells/ml RAW cells were transfected with GFP-tagged ezrin plasmid and were incubated in a sterile petridish at 37

º
C for 4-6hours. 

After washing away dead and unattached cells, to the remaining cells 1μM of Fura Red was added and incubated at 37°C further for 

45minutes. The petri dishes were then mounted over a heated stage (temperature maintained at 37°C) and viewed by confocal 

microsocopy. RAW cells with peripheral membrane staining of ezrin and positive for Fura Red were selected, and using a micropipette (fig 

a1, arrow), a zymosan particle opsonized with mouse serum was selected and placed near the cell. The entire process of phagocytosis 

was recorded in real time. As the pseudopodia (fig b2) was stretched towards the opsonized zymasan particle, the peripheral ezrin was lost 

at this site and it was lost around the developing phagocytic cup (fig b3-6) aswell as around the phagosome (fig b8), while rest of the 

membrane (which are not involved in phagosome formation retained its peripheral membrane staining of ezrin. This shift in the position of 

ezrin was in association with an increase in the cytosolic calcium level, indicated by decrease in fluorescence intensity of Fura Red (c1-11). 

This indicated that a change in the plasma membrane dimension stimulates the relocation of ezrin away from the cell membrane into the 

cytosol. Images a1-a11 are the bright field. 
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The above three picture are the enlarged figs 6.3.4a – b3, b5 and b10, to show the change 

in the subcellular position of ezrin in area of cell membrane (indicated by arrow) involved in 

phagocytosis in ezrin-GFP tagged trasfected RAW cells. 

 

Figure 6.4.4.b. Measuring the change in membrane ezrin with change in the cytosolic level 

of calcium 
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The change in fluorescence of ezrin around the plasma 

membrane involved in phagocytic cup formation was 

compared with the change in level of calcium level 

(Leica Lite software and Image J software programme). 

The above graph demonstrates that the loss of 

peripheral membrane position of ezrin was associated 

with the timing of the calcium increase (associated with 

formation of phagocytic cup).  
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6.4.5  Mechanism of the relocation of ezrin 

The data here shows that ezrin moves away from the cell membrane into the cytosol 

with an elevation of cytosolic Ca2+. Since ezrin binding to the plasma membrane involves 

PIP2 (see section 1.6.7), and PIP2 is reduced by PLC, the possibility existed that Ca2+ 

elevation which activates PLC, may reduce PIP2 levels sufficiently to release ezrin. This 

possibility was investigated by testing the effect of a PLC inhibitor (U73122). The 

characteristics of this inhibitor are described in section 6.3.1.5. RAW cells with peripheral 

GFP-ezrin were selected and treated with U73122 (Sigma Aldrich) for 15minutes before 

addition of the Ca2+ elevating cocktail (section 6.3.2.4).  Despite the presence of the PLC 

inhibitor, ezrin moved away from the plasma membrane into the cytosol, as the cytosolic 

level of calcium increased (indicated by a decrease in fluorescent intensity of Fura Red). 

This showed that relocation of ezrin involved a mechanism which does not require activation 

of PLC (fig 6.4.5a). In order to determine whether the proteolytic action of calpain over ezrin 

might cause the change in its subcellular position, RAW cells transfected with GFP-tagged 

ezrin which have loaded with Fura Red™ were treated with calpain inhibitor (ALLN at room 

temperature for 15 minutes) before addition of the Ca2+   elevating  cocktail . Again, ezrin 

moved away from the plasma membrane into the cytosol. This results were consistent (5/5 

experiments) indicating that proteolysis of ezrin might not involve activation of calpain or that 

the inhibitor used was inefficient or unable to block the activation of calpain activation at the 

Ca2+ influx sites.  
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Figure 6.4.5a. Effect of calpain inhibitor (ALLN) on the subcellular location of ezrin: 
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Figure 6.4.5a. RAW cells transfected with GFP- tagged ezrin were incubated with 1mM of ALLN (room temperature for 

15minutes) and the excess reagent was removed. The cells were loaded with 1μM of Fura Red and incubated at 37°C for 

40minutes before mounting the cells on a heated staged. Cells with peripheral membrane staining of ezrin were selected 

and to these cells a cocktail mixture of high calcium was added (time 50sec). Despite presence of calpain inhibitor, an 

increase in cytosolic calcium level induced a shift in the subcellular position of ezrin away from the cell membrane in to the 

cytsol (figure a2-a5, graph). This indicated that calpain might not play a major role in translocation of ezrin. The figure 

shows sequential images recorded by confocal microscopy. Figs a1-a5 are the GFP- tagged ezrin plasmid, figs b1-b5 are 

the corresponding bright field images and figs c1-c5 are the Fura Red images. The Leica Lite program was was used to 

measure the difference in fluorescent intensity between the cell membrane and cytosol throughout the experiment (graph). 
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Figure 6.4.5b: Effect of PLC inhibitor (U73122) on the subcellular location of ezrin. 
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removed by replacing with fresh ordinary tissue culture medium, then to these cells 1mM of U73122 was added and left at room temperature 
for 15minutes, before the excess of reagent was removed. Before mounting the cells on the heating staged of the confocal microscope, cells 
were loaded with 1μM Fura Red and incubated at 37°C for 40minutes. Cells with peripheral membrane staining of ezrin were selected and to 
these cells a cocktail mixture of high calcium was added (time 30sec), Despite the presence of PLC inhibitor, an increase in the cytosolic 
calcium level induced a shift in the subcellular position of ezrin away from the cell membrane in to the cytosol (figs b2-b4, graph). This indicates 
that calpain might not play a major role in translocation of ezrin. figs a1-a4 are the GFP- tagged ezrin plasmid, figs b1-b4 are the corresponding 
bright field images, both captured by confocal microsopy. 
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6.5 Discussion 

From the previous chapters using fixed cells, it has been established that ezrin moves away 

from the cell membrane into cytosol when the cell changes its shape or when the cell is 

active. In order to establish the mechanism behind this change in subcellular position of 

ezrin, RAW cells which had been transfected with GFP-tagged ezrin were used. These 

transfected cells had fluorescent ezrin located along the cell membrane (similar to 

neutrophils). When the calcium level inside the cell increased, the ezrin moved away from 

the cell membrane into the cytosol. What was noted moreover, this change in position was in 

discrete portions, ie this shift in position of ezrin from the cell membrane was not uniform. 

This might show that only in those area of cell membrane where there is unfolding of 

wrinkles, there was shift in position of ezrin. This shift in position of ezrin is an irreversible 

process (replacement of high calcium medium with original medium). When phagocytosis 

was induced in transfected RAW cells, peripheral staining of ezrin was lost only at the cell 

membrane which was in contact with the zymosan, pseudopodia, phagocytic cup, as well as 

along the phagosome also. This gave a clue that relocation of ezrin is associated with 

change in dimension of plasma membrane. This finding was further confirmed when 

photobleaching was performed in one region of plasma membrane, ezrin from the remaining 

portion of plasma membrane moved not only into the cytosol, but also moved to fill the 

bleached region in the cell membrane. This indicates that relocation of ezrin is a dynamic 

process and is unidirectional. But when these transfected RAW cells were treated with a 

cocktail mixture of high calcium in presence of PLC inhibitor, as well as in the presence of a 

calpain inhibitor, still the relocation of ezrin was not inhibited. This observation might indicate 

that movement of ezrin away from cell membrane into cytosol might not depend on PLC 

pathways nor activation of calpain in phagocytic cells; or this might be due to use of less 

efficient inhibitors which might not block completely the activation of PLC or calpain.   
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7.1 Introduction 

From the previous chapter, evidence has been provided that relocation of ezrin away from 

the plasma membrane into cytosol occurs in neutrophils which have extravasated both 

under experimental conditions (transendothelial migration in vitro) and under physiological 

conditions (in vivo in the mouth, ie salivary neutrophils). Moreover, evidence has been 

provided that this change in subcellular position of ezrin is triggered by raised cytosolic Ca2+ 

and accompanies the apparent expansion of the plasma membrane (eg during phagocytosis 

in transfected RAW cells). Neutrophils taken from clinically inflamed gums and synovial 

fluids (osteoarthritis knee joint) were therefore studied in order to establish whether a similar 

event occurs during extravastion of neutrophils into pathologically inflamed regions. Such a 

change in subcellular location of ezrin would identify neutrophils which had extravasted from 

blood and thus, act as a marker of extravasation rate.   

7.1.1   Gingivitis 

Gingivitis is an inflammatory condition of the soft tissues surrounding the gingiva and is a 

direct immune response to the dental microbial plaque building in and on the teeth. It is 

characterized clinically by gingival redness, oedema, bleeding, changes in contour, loss of 

tissue adaptation to the teeth and increased flow of gingival crevicular fluid (GCF) (KInane D 

2001). The development of gingivitis requires the presence of plaque bacteria, which are 

thought to induce pathological changes in the tissues by both direct and indirect means. 

These bacteria are capable of synthesizing products like collagenase, hyaluronidase, 

protease, chondroitin sulfatase or endotoxin that cause damage to epithelial and connective 

tissue cells, as well as to intercellular constituents, such as collagen, ground substance and 

glycocalyx (cell coat). This result in widening of the spaces between the junctional epithelium 

(which lines the gingival space) which permits injurious agents derived from bacteria or 
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bacteria themselves, to gain access to the connective tissue. These microbial products 

activate both innate and acquired immunity which may lead to complete removal of the 

microorganisms and the resolution of gingivitis. If not, it may lead to periodontits. Page and 

Schoreder (2003) developed a system to categorize the clinical and histopathological 

observations by subdivision of gingivitis into 4 stages (appendix 1). The initial lesion appears 

as an acute inflammatory response with characteristic infiltration by neutrophils. Vascular 

changes, epithelial cell changes and collagen degradation are also apparent. These initial 

changes are probably due to chemotactic attraction of neutrophils by bacterial constituents 

and direct vasodilatory effects of bacterial products, as well as activation of host systems, 

such as the complement and kinin systems and arachidonic acid pathways. If the etiology 

causing gingivitis (dental plaque) is not removed or if the host immune system is inefficient in 

clearing the microbes, periodontitis may result (Keisari Y et.al.1997). 

7.1.2 Gingival crevicular fluid (GCF). 

The presence of gingival crevicular fluid (GCF) has been known since the nineteenth 

century, but the pioneering works of Waerhayg and Brill (1959) and Krasse (1982) 

elucidated its composition and possible role in oral defence mechanisms more than half a 

century ago. However, there is still controversy over whether GCF is inflammatory exudate 

or transudate. According to Alfano and Pashely (1974), GCF in gingival health is a tissue 

fluid like transudate that enters the gingival crevice through the basement membrane and 

the relatively wide intercellular spaces of the variable thickness junctional epithelium and 

sulcular epithelium. As the gingival inflammation sets in, due to increase in permeability of 

the extensive capillary network that directly underlies the junctional and sulcular epithelium, 

the GCF turns into an inflammatory exudates. This results in both an increase in the flow of 

GCF and a change in its composition to that of plasma-like inflammatory exudate, rich in 

immunoglobulin and inflammatory cells. In humans, about 2-3ml of GCF flows in the mouth 
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daily. The clinical significance of  increases not only in inflammatory processes, but also in 

physiological situation like circadian periodicity (increase from 6am to 10pm and a decrease 

afterwards), pregnancy, ovulation and hormonal contraceptives all increase gingival fluid 

production. Furthermore, mechanical stimulation like chewing and gingival brushing will 

increase GCF flow. Smoking and periodontal therapy also increases the flow. The main 

function of gingival fluid is as a host defence, initially through the flushing action in the 

vulnerable gingival crevice and which keep it free from microorganisms, their products and 

other noxious substances. Secondly, gingival fluid helps in differentiation of junctional 

epithelium by providing nutrition (healthy conditions) and also by exposing them to various 

bacterial and immunological components during pathological condition. Moreover, the GCF 

are characterized both by enzymatic and by non-enzymatic components as well as cellular 

and non-cellular components (listed in appendix 2), which play a vital role in host defence. 

Many compounds found in GCF can be host-derived or produced by the bacteria in the 

gingival crevice, but their sources can be hard to elucidate. Much research efforts have 

attempted to use GCF components to detect or diagnose active disease to predict patents 

at risk for periodontal disease.  

7.1.3 Origin of gingival neutrophils       

Fresh saliva contains three easily recognized cellular elements, namely bacteria, epithelial 

cells and leukocytes. Prior to the 1960s, the origin of these leukocytes and the mechanism 

of their entry into the oral cavity were unknown. Stephens and Jones (2007) observed that 

erratic populations of inflammatory cells were found in oral fluids, while numbers of these 

cells circulating in the peripheral blood remained fairly constant. It was also demonstrated 

that the number of leukocytes found in the saliva decreased as patients lost teeth, resulting 

in very few white blood cells being found in the saliva of edentulous patients, compared to 

those of dentate individuals. Leukocytes have also been detected in both clinically healthy 
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and diseased tissue of experimental animals and humans. In 1960, Sharry and Krasse 

determined that 47% of all cells obtained from the gingival sulcus were leukocytes, while 

these cells represented less than 2% of cells isolated from various other extra-oral and 

intra-oral sites. This led to the theory that the major route of entry into the oral cavity for 

these cells was via the gingival sulcus, which was later confirmed by numerous subsequent 

studies (appendix III). The neutrophil was the predominant inflammatory cell type isolated 

from the GCF (reviewed by Van Dyke. 1985, and Van Dyke et .al.1985). These cells exit 

the inflamed vessels of the microcirculation and migrate along a gradient of 

chemoattractant through the connective tissues and junctional epithelium, to form a barrier 

between the subgingival microbial plaque and the gingival tissue. The neutrophils in the 

oral cavity can be divided into two major groups: (1) gingival or crevicular PMNs (GPMNs), 

which are found in the gingival crevice, before migrating into the oral cavity (Sharry and 

Krasse,1960) and (2) salivary PMNs (SPMNs 82%), which are found in saliva and originate 

mainly in gingival crevices (GPMN 47%) (Schiott and Lue1970). GPMNs have been 

comprehensively investigated, and their role in periodontal health and disease is well-

established (Miller et.al.1984; Genco and Slots.1984; Cohen et.al.1985; Fine and 

Mandel.1986). In histological sections of clinically healthy or slightly inflamed gingival, 

these cells are found in the intercellular spaces of the junctional epithelium and 

occasionally along the tooth surface in close proximity to aggregates of plaque. These 

inflammatory cells appear most numerous at the base of the sulcus and decrease in 

number towards the entrance of the sulcus. The persistent emigration of these cells from 

the peripheral blood circulation and their localization in the region of the gingival sulcus are 

believed to be initiated by chemotactic factors   generated by the bacteria found in the local 

plaque mass and in saliva. 

 In health, neutrophils are found to reside in the superficial layer of the epithelium and at 

the sulcus base while the mononuclear cells are located predominately in the basal and 
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supra-basilar positions of the junctional epithelium. The proportion of the neutrophils to 

mononuclear cells has been shown to be independent of the degree of inflammation, but 

the absolute numbers of all these cells increase with the severity of the inflammatory 

process. During the development of gingivitis, the number of leukocytes migrating to the 

sulcus increases and under inflamed conditions, 60% or more of the junctional epithelium 

space can be occupied by neutrophils. It has been demonstrated that while there was a 2.1 

fold increase of neutrophils during a 21 day period of experimental gingivitis, the GCF flow 

increased almost 5.5 fold during the same period. In addition, leukocytic infiltration was 

seen throughout the junctional epithelium and neutrophils were always found in the sulcus, 

even in clinically healthy situations where the flow of GCF was relatively low. This would 

lead to the conclusion that inflammatory cell transmigration through the junctional 

epithelium and the flow of GCF were two distinct phenomena although they occur 

concomitantly. In addition, migration of inflammatory cells from the gingival connective 

tissue, through the junctional epithelium and into the sulcus is an active and continuous 

process, directed along gradients of chemoattractants. In the sulcus, the concentration of 

neutrophils can far exceed the concentration of these cells in the peripheral blood. Once in 

the sulcus, neutrophils begin to create a leukocyte wall, forming aggregates of 

inflammatory cells along the margins of the advancing plaque front. At this point, 

neutrophils may attempt to phagocytose and eliminate pathogens or may elaborate and 

secrete an armoury of enzymes to destroy these microorganisms without internalizing 

them. 

7.1.4  Osteoarthritis 

Osteoarthritis (OA), also known as degenerative arthritis or degenerative joint disease or 

osteoarthrosis, is a group of mechanical abnormalities involving degradation of joints  
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(Sandell and Aigner 2001), including articular cartilage and subchondral bone. Symptoms 

may include joint pain, tenderness, stiffness, locking and sometimes an effusion. A variety 

of causes hereditary, developmental, metabolic and mechanical, may initiate processes 

leading to loss of cartilage. When bone surfaces become less well protected by cartilage, 

bone may be exposed and damaged. As a result of decreased movement, secondary to 

pain, regional muscles may atrophy, and ligaments may become more lax (Conaghan 

2008). Treatment generally involves a combination of exercise, lifestyle modification and 

analgesics. If pain becomes debilitating, joint replacement surgery may be used to improve 

the quality of life. OA is the most common form of arthritis. Osteoarthritis can be classified 

into either primary, which is a chronic degradative disorder caused by changes associated 

with inflammatory changes in joint capsule; or the other type of OA is secondary, which is 

due to known or unknown identifiable underlying causes like diabetes, inflammatory 

diseases, injury, obesity, etc. Even though this inflammatory condition is not mediated by 

neutrophils, the neutrophils which are collected in the synovial fluid have extravasted from 

blood vessels, so they form a good source of extravasted neutrophils. 

 

7.2 Aims 

The aims of this chapter were to establish whether changes in the subcellular location of ezrin 

could be identified in neutrophils which had extravasated pathologically, either into the gingival 

crevicular fluid or synovial fluid.  The particular goals were:- 

1. To determine the subcellular position of ezrin in neutrophils collected in gingival 

crevicular fluid. 

2. To determine the subcellular position of ezrin in neutrophils collected in the synovial fluid 

of patients with oesteoarthritis of the knee. 
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3. To determine whether ezrin can be used as a biological marker to identify extravasated 

neutrophils. 

7.3 Methods and Materials  

7.3.1 Collection of GCF  

GCF was collected using a fine glass capillary, with inner dimension of 2 mm and 4 cm in length 

(from Sigma- Aldrich UK), 10µl of heparin (CP Pharmaceuticals Ltd, Wrexham, UK), sterile 

eppendorff tubes, cytospin, glass slides, primary ezrin antibody and secondary antibody were 

discussed in sections 2.3.1.& 2.3.2. All materials used for immunocytochemistry to study the 

position of Ezrin in these neutrophils were discussed in section 2.4.4.The collection of GCF 

samples was ethically approved (Study title: Gingival crevicular fluid as a source of 

extravasated human neutrophils for the study of neutrophil behaviour and molecular signalling 

Project ID: 11/DEN/5063, REC number:11/,WN0152). 

7.3.2 Collection of synovial fluid from Osteoarthritis patients 

The Osteoarthritis samples used in this study were from the synovial joint of knee from patients 

who were undergoing knee replacement surgery. The samples and the study were ethically 

approved (Study Title: Arthritis Research UK Biomechanics and Bioengineering Centre-Multi 

Project Ethical Submission, REC reference number: 10/MRE09/28, Protocol: 2.) 

7.3.3  Isolation of neutrophils from GCF 

Capillary tube collection, otherwise known as micropipette technique, was used to collect GCF. 

After obtaining consent from the patients, an overall assessment of gingival and periodontal 

condition of the patients was done using BPI index (appendix IV). Only those subjects who had 

PI scores of 1 to 2; and clinical signs of early gingivitis and early periodontitis were selected. 
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GCF was collected only from the maxillary front teeth (to avoid contamination from saliva) and 

from only those teeth which showed clinical signs of gingivitis (bleeding on probing). As an 

internal control sample, GCF was also collected from teeth which were clinically healthy gingiva 

(same subject). First the tooth from which GCF to be collected was isolated using cotton roles 

and dried using cotton. The capillary tube was inserted into the entrance of the gingival crevice 

(fig7.4.1) for an interval of 2minutes and GCF was collected for 10-15 minutes from the selected 

tooth. GCF was collected from two different surfaces of the selected tooth. The GCF flow from 

the crevice migrates into the tube by capillary action.  At the end of 2 minutes, the capillary 

tubes were immediately emptied into an eppendoff which had 1µl of heparin (250 IU/ml) 

dissolved in 50µl of Krebs buffer. Heparin is used inorder to prevent blood clot formation. All the 

GCF collected for 10-15minutes were pooled into a sterile new eppendorff and the cellular 

content of GCF was fixed using 4% formaldehyde for 15 minutes before forcing the cellular 

content on to a glass slide using cytospin (2500rpm for 5minutes). Following this, the samples 

were processed for immunocytochemical staining (described in section 2.5.6.1). A similar 

method was used to process samples collected from health gingiva (internal control).  

 

 

 

 

 

 

 

Figure 7.3.3A. Method of collecting 

GCF. Schematic diagram shows the 

way of collecting GCF from 

gingival.The micropipette was 

placed inside the gingival crevices 

to collect GCF from both gingivitis 

area as well as healthy gums.  

Figure B. Clinical picture of GCF 

collection. Photo showing the 

collection of GCF using 

micropipeette technique, GCF flows 

inside the pipette by capillary 

action. A 
B 
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7.3.4 Isolation of neutrophils from synovial fluid 

Synovial fluids received from patients undergoing knee replacement surgery for 

osteoarthritis of the knee in Cardiff & Vale hospitals in Wales, were collected and used for 

this study. Those samples which had obvious blood contamination were discarded. As the 

synovial fluid received were too viscous, the samples were diluted with 15ml of Krebs 

buffer and the cellular content was pelleted out by centrifuging at 2000rpm for 10minutes; 

and the pellet was resuspended in 500µl of Krebs buffer. The cells in the sample were 

fixed in suspension by adding 4%formaldehye, later these cells were forced onto a glass 

slip using a cytospin (2000 rpm for 5minutes). These cells were then processed for 

immunocytochemistry (section 2.5.6.1). 

7.4 Results 

7.4.1 Subcellular location of ezrin in neutrophiils isolated from GCF 

Neutrophils isolated from GCF, as described in section 7.4.1, were stained with ezrin 

antibody (section 2.5.6.1). 7 GCF samples were collected from clinically inflamed gingival. 

As an internal control, GCF was also collected from teeth with clinically healthy gingiva in 

the same patients. Neutrophils from inflamed gingiva included both cells with peripheral 

ezrin (19 cells in total, maximum of 4/5 cells per sample, fig 7.4.1a) as well as cytoplasmic 

ezrin (17 cells in total, maximum of 5-6 cells per sample, fig 7.4.1a). In contrast, 

neutrophils from GCF isolated from internal control sites (healthy gingiva) only 

cytoplasmic ezrin was noted (25 cells in total, figure 7.4.1b & c). This observation 

indicated that some neutrophils present in the area of gingivitis must have extravated 

through the endothelial lining (indicated by the cytosolic location of ezrin), but others (with 
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peripheral ezrin) had not crossed the endothelial lining, possible arriving in the fluid as a 

result of micro-bleeding (a histological feature of early gingivitis). On the other hand, all 

neutrophils in health had crossed both the endothelial lining, as indicated by the cytosolic 

location of ezrin.  
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Figure 7.4.1. Subcellular position of ezrin in neutrophils isolated from GCF: The above two pictures (a&b) are 

representative images of cells from the same patient who had clinical signs of gingivitis.The neutrophils were isolated 

from GCF collected from (a) a tooth with inflamed gingiva (labial surface of maxillary incisor,FDI 11) and (b)from a tooth 

with healthy gums in the same patient (labial surface of maxillary left canine FDI 23). Neutrophils from the inflamed site 

(a) showed both peripheral plasma membrane staining of ezrin (non-migrated neutrophils), as well as cytoplasmic 

staining of ezrin (migrated neutrophils). On the other hand, neutrophils collected from the control site (healthy gums, b) 

had predominantly cytoplasmic staining of ezrin. In this participant, the total number of cells counted (healthy gingival- 

internal control) were 5/5 cells had cytoplasmic staining of ezrin (fig b). GCF collected from individual with healthy gum 

(fig c), neally all cells had cytoplasmic staining of ezrin. In this participant, out of 7 cells counted, 6 cells had cytoplasmic 

staining of ezrin while the remaining 1 cell had plasma membrane staining of ezrin. Similar results were observed when 

neutrophils were isolated from all the subjects with healthy gums (fig c). 

c-healthy gums  

a- Gingivitis 

b-healthy gums 

(internal control) 

Migrated neutrophils 

Non -migrated 

neutrophils 

Migrated 

neutrophils 

 Migrated 

neutrophils 

10µm 
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7.4.2 Subcellular location of ezrin in neutrophils isolated from synovial fluid of 

osteoarthritis patients 

Neutrophis were isolated from synovial fluid of knee from 5 osteoarthritis patients. Out of 27 

cells counted in all the osteoarthritis samples, 18 cells had cytoplasmic staining of ezrin while 

the remaining 9 cells had peripheral staining of ezrin. This observation again indicated that two 

different pattern of ezrin indicated two different group of neutrophils [migrated neutrophils - 

cytoplasmic staining of ezrin (fig 7.4.2a), non-migrated neutrophils - plasma membrane staining 

of ezrin (fig 7.4.2b&c)]. This finding again indicates that change in subcellular position of ezrin 

occurs when the neutrophils extravates into the pathological site and dynamic change in 

position of ezrin may be used to identify extravasated group of neutrophils.   Though OA is not 

an inflammatory reaction caused primarily by neutrophils, neutrophils are often the predominant 

cellular components which infiltrate the synovial fluid. These samples represent one source of 

extravasted neutrophils, which was reason why they were used in this study. From the results 

observed from neutrophils isolated from both GCF and OA, it can be said that the characteristic 

cell membrane staining of ezrin is lost when the neutrophils extravasated. This proves that ezrin 

acts as a‘biological memory’ left behind by extravasted neutrophils and thus, can be used as a 

marker to identify extravasted neutrophils. 

 

 

 

 

 

c- Healthy gums 
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Figure 7.4.2. Subcellular position of ezrin in neutrophils isolated from synovial fluid of OA patients. The below 

three ezrin antibody staining images are of neutrophils isolated from the synovial fluid collected from three 

different patient who underwentknee replacement surgery for osteoarthritis. Neutrophils both with plasma 

membrane staining of ezrin, as well as cytoplasmic staining of ezrin, was observed. The neutrophils which had cell 

membrane staining of ezrin represent non-migrated neutrophils  and those neutrophils which had cytosolic staining 

of ezrin indicated migrated neutrophils. 
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7.5  Discussion  

It has been established from the previous chapter that ezrin relocated away from the cell 

membrane into the cytosol when the neutrophils crossed an endothelial monolayer either 

under experimental conditions or under physiological conditions. Moreover, it has been 

shown that this change in subcellular position of ezrin occurs when there is a change in 

dimension of the plasma membrane and this change in position of ezrin is a dynamic 

process (see chapter 6). In order to provide evidence that ezrin can be used as a biological 

marker to identify extravasated neutrophils, neutrophils isolated from two different 

pathologically inflamed sites - gingiva (gingivitis, GCF) and knee (osteoarthritis, synovial 

fluid) were studied. In both conditions, neutrophils with plasma membrane ezrin, as well as 

cytoplasmic ezrin, were observed. On the other hand, neutrophils with only cytoplasmic 

ezrin were observed in neutrophils from healthy gingival, as well teeth with healthy gums, in 

patients with early stage of gingivits (internal control). These findings confirm that ezrin can 

be used as a biological marker to identify the extravasated group of neutrophils. However, 

the number of neutrophils and samples obtained in this study was not sufficient to undertake 

ezrin protein isolation (for western blotting). Moreover, the number of neutrophils found in 

both the conditions was few and make statistical analysis difficult. However, the results 

observed were convincing and suggested that ezrin location may act as a “biological 

memory” within extravasated neutrophils.   
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8.1 Summary of results presented in this thesis  

Before discussing the implications of the results in this thesis, I will briefly summarise the main 

findings.  

8.1.1 Subcellular location of talin and kindlin in neutrophils 

The peripheral plasma membrane location of talin observed in neutrophils isolated from blood 

was lost after they had extravasated across an endothelial cell layer, either under in vitro 

conditions and in vivo, under physiological conditions (salivary neutrophils). Surprisingly, 

antibodies to the head group of talin were unable to detect talin in neutrophils but could in other 

cells.  

 Kindlin-3, which is structurally similar to the head group of talin also, could not be detected in 

neutrophils. It is possible that the head group of talin (and kindlin3) was associated with 

integrins in such a way that the head group of talin was either hidden deep within integrin or it 

was otherwise sterically hindering the binding of antibody.     

8.1.2 Subcellular location of ezrin in neutrophils 

Ezrin in blood neutrophils was located at the cell membrane but when stimulated with FMLP or 

cytosolic Ca2+ was elevated artificially, the ezrin at the membrane was lost. The loss of plasma 

membrane ezrin was also observed in neutrophils which have extravasted both under 

physiological (salivary neutrophils) and under experimental conditions (in vitro transendotheial 

migration). The cell membrane location of ezrin was also locally lost in areas of pseudopodia, 

formed during phagocytosis.  This was consistent with a role for proteolytic cleavage of the 

bridges between the cell membrane and ezrin during activation. It was suggested that 

proteolysis might be by activation of calpain by elevated Ca2+ during cell stimulation.  
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8.1.3 Proteolytic products of ezrin 

Ezrin extracted from neutrophils had a molecular weight of 72kDa, (or 69kDa if totally de-

glycosylated). However, after the cells were permeablised in the presence of Ca2+, bands at 

55kDa and 49kDa were formed.  A similar fragmentation of ezrin was detected in neutrophils 

which had crossed endothelial barriers. This suggested that the loss of ezrin from the plasma 

membrane was a consequence of a proteolytic step. 

8.1.4 Mechanism of proteolysis of ezrin 

RAW cells expressing ezrin-GFP showed a clear peripheral location for ezrin. This was lost 

when cytosolic Ca2+ was elevated. This change is an irreversible process and was dependent 

on the dynamic nature of ezrin association-dissociation (shown by photo bleaching). The 

relocation of ezrin into the cytosol was also observed in those areas of cell membrane 

undergoing active expansion with localised loss of peripheral ezrin at forming pseudopoodia, 

phagocytic cups and around formed phagosomes.  

8.1.5  Ezrin location as biological maker of extravasated neutrophils 

The majority of neutrophils isolated from healthy gingival fluid had cytoplasmic, rather than 

peripheral, ezrin. It was probable that this was result of transendothelial migration, suggesting 

that normally cells must cross the endothelial barrier to reach the gingival space. In contrast, 

nearly all the neutrophils isolated from pathologically inflamed gingival crevicular fluid of inflamed 

gingiva or synovial fluid of osteoarthritis knee had cell membrane associated ezrin. The cells 

which retained a membrane location of ezrin may therefore have arrived at the inflamed site by 

another route (eg via microbleeding from blood vessels). The subcellular position of ezrin thus 
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gives some indication of the previous history of the neutrophil, and may be a useful biological 

marker to distinguish the routes by which neutrophils arrive at inflamed sites.  

8.2 Further research  

These findings could be exploited in several ways. For example, in determining dental    

prognosis and in understanding the basic cell biology of neutrophils. 

 

8.2.1 Prognosis of patients with periodontal pathologies 

Many studies has been done to show that prognosis of periodontal disease is retarded by 

amount of neutrophils entering the sulcus. If the number of neutrophils entering the sulcus 

through micro-bleeding is identified (using subcellular ezrin relocation) as a marker, they could 

be treated accordingly. Further clinical research would be required to test this. However, it will 

be possible to collect gingival fluid from patients to establish whether the ezrin status predict the 

prognosis of the periodontal diseases.  

 

8.2.2   Knock-out house model 

Knock-out mouse model, either ezrin-null or with aberrant ezrin resistant to calpain,  could be 

designed to evaluate the characteristics of neutrophils which lack ezrin or lack the abilty to 

release ezrin from there plasma membranes. It is predicted that these defects would have a 

significant influence on the functional properties of neutrophils. 
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8.3 Conclusion  

Neutrophils are the first cells to infiltrate into inflammatory site by crossing the endothelial lining.  

They do so by interacting with various cell membrane receptors present on the endothelium, as 

well as on the neutrophils, which are regulated by various membrane linker protein like ezrin.  

From the results obtained from this study, ezrin undergoes proteolytic cleavage in the presence 

of elevated cytosolic Ca2+ which might leads to unfolding of wrinkles present on the neutrophil 

surface, enabling cell shape changes which involve expansion of the plasma membrane 

including phagocytosis and extravastion. Because proteolysis is irreversible, the location of 

ezrin within neutrophils may act as a biological molecular “memory” left behind in extravasted 

neutrophils. This memory may be important as the extravasated cells would be more ready to 

undergo phagocytosis (as observed during priming). It also has an important implication, as the 

subcellular location of ezrin could serve as a molecular marker for identifying extravasted 

neutrophils in inflamed sites under various conditions.  
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10 Appendix  I . Stages of Gingivitis 

 

 

 

Stage Time  
(days) 

Blood 
vessels 

Junctional & 
sulcular 
epithelium 

Predominant 
immune cells 

Collagen Clinical finding 

Initial stage 
(sub clinical 
gingivitis) 

2-3 Vascular 
dilatation, 
vasculitis. 

Infiltration by 
PMN. 

PMN Perivascular 
loss. 

Gingival fluid 
flow. 

Early lesion. 4-7 Vascular 
proliferation. 

Same as 
stage 1, rete 
peg formation 
atrophic 
areas. 

Lymphocytes Increased 
loss around 
infiltrate. 

Erythema 
bleeding on 
probing. 

Established 
lesion. 

14-21 Same as 
stage1 pluse 
blood stasis. 

Same as 
stage 1 but 
more 
advanced. 

Plasma cells Continued 
loss. 

Changes in 
color, size, 
texture, etc. 

Advance lesion. Extension of lesion into alveolar bone, phase of periodontal breakdown. 
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11 Appendix II: Composition of GCF 

 

Inflammatory /innate 
components 

Cellular components Humoral 
componts  

soluble 

Prostaglandins, 
leukotrients, IL-1α,IL-
1β.IL2,IL6,IL-8, interferons 
α, colony stimulating factor 
α, acute-phase proteins, 
transferring 

PMN, leukocytes, 
monocytes,T cells, B cells 

IgG,  IgM , 
IgA 

Complement components, 
prealbumin, albumin, 
fibrinogen, ceruloplasmin, 
transferring, haptoglobin, 
hemopexin, β- lipoprotein, 
cytokines, chemokines, 
prostanoids 

Cellular elements   Epithelial   
cells,Leuckocytes (95%-
97% PMNs,1-2% 
lymphocytes 2-
3%monocytes),Bacteria 

  

Electrolytes 

 

Calcium,Sodium, 
Potassium, Fluoride 

  

Organic compound 

 

Carbohydrate,Lipid, 
Protein,Complement, 

Immunoglobulin 

 

  

Metablolic and 
bacterial 

products 

 

Lactic acid, Hydroxyproline 
Prostaglandins,Urea, 
Endotoxins, vytotoxic 

substance 

 

  

Antibacterial factors 

 

Enzymes and enzymes 
inhibitors, acid 
phosphatase. alkaline 
phosphatase,pyrophosphat
ase,glucoronidase,lysozym
es, hyaluronidase, 
Proteloytic enzymes,Lactic 
dehydrogenase, 

collagenase 
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12 Appendix III: Various researches done to determine the features of 

oral neutrophils 

Researchers 
 

Finding Year 

Stephens and Jones Fluctuation in neutrophils 
count in the saliva and not in 
blood 

1934 

Calonius and Calonius and 
Berg 

Leucocyte count is low in 
edentulous persons 

1958 

Gilerson and Rovelstad No relationship between 
caries and neutrophils 

1958 

Kolliker  Neutrophils are found in 
saliva not in the salivary 
glands and the duc 

1865 

Wrught Confirmed the above finding 1959 

Pfluger No neutrophils in the salivary 
gland 

1871 

Jassinowski Cells from the throat are 
swallowed and hardly likely 
to enter the anterior part of 
the mouth. Neutrophils count 
increase during gingivitis 

1925 

Isaacs and Danielian Leucocytes appear in saliva 
through the mucous 
membrane 

1927 

Mitsui Gingival margin as well as 
the palatine tonsils are the 
most significant sites of 
origin of salivary neutrophils 

1949,1952 

Sasaki Gingival sulcus or pocket 
was the predominant 
intraoral site of origin of 
these white blood cells 

1952 
 

Venzin Neutrophils emerge from 
blood vessels in the mucous 
membrane 

1953 

Wright Salivary neutrophils arouse 
from blood vessels in the oral 
cavity 

1959 

Maclendon and Arnim  Chief sources of the red and 
white blood cells are the 
gingival fluid and gingival 
sulcus 

1959 

Calonius and Berg Neutrophils enter oral cavity 1958 
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via the blood capillaries in 
the oral cavity 

 
 

Orban and Glickman Neutrophils are found in the 
connective tissue of all 
marginal gingiva in both 
health and inflamed condition 

1948,1953 

Lundquist  The sulcular epithelium is 
rarely intact and this lack of 
integrity could be the site of 
transfer of leucocytes from 
subepithelial tissue of the 
sulcus 

1940 

Bill Tissue fluids pass through 
pocket epithelium but not 
throught other normal oral 
epithelium and the various 
means it enter the gingival 
sulcus  

 

Dewar  and Trot Sulcular epithelium is not 
keratinized 

1955, 1957 

Duran- Reynals and Mccrea Both sulcular epithelium and 
connective tissue are highly 
permeable during injury 

1953 

Florey  Active movements probably 
insinuating snall processes 
into the junctions between 
the endothelial cells which is 
used by neutrophilis to 
extravasate 

1958 

Brill Salivary neutrophils are 
those which are transported 
from the gingival sulcus 

1959 

Waerhaug Anatomy of the sulcus and 
its transformation into a 
gingival pocket during the 
course of periodontitis 

early 1950s 

Brill physiology of GCF formation 
and its composition 

late 1950s and early 1960s  

Löe use of GCF as an indicator of 
periodontal diseases 

 

Egelberg analyze GCF ,studies on the 
dentogingival blood vessels 
and their permeability as 
they relate to GCF flow 

 

Schroeder Listgarten understanding dentogingival 
structure and physiology  

1970s. 

Attström  Migration of neutrophils and 
their function in gingival 

1970 
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tissue and GCF 

Sueda, Bang and Cimasoni  Presence and functions of 
proteins, especially enzymes 
in GCF 

1987 

   

Ohlsson, Golub and Uitto Discovered that collagenase 
and elastase in GCF are 
derived primarily 
from human cells, most 
notably neutrophils, and that 
their activity is correlated 
with gingival inflammation 
and gingival pocket depth 

1992 
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13 Appendix IV:  Basic periodontal  Index 

Periodontal Index (PI) 

This Index was developed by Russell A.L. (1956) to assess the prevalence and severity 

of gingivitis and destructive periodontal disease.The PI was intended to estimate deeper 

periodontal disease by measuring the presence or absence of gingival inflammation and its 

severity, pocket formation and masticatory function. The scale of value for the PI ranges from 0 – 

8 with increasing prevalence and severity of disease. The PI is a composite index because it 

records both the reversible changes due to gingivitis and the more destructive; and presumably 

irreversible changes brought by deeper periodontaldisease.Because of this, it is an 

epidemiological index with a true biological gradient.All the teeth present are examined. Gingival 

tissue is assessed for gingival inflammation and periodontal involvement.Third molars are not 

taken into consideration. 

Instruments used  Mouth mirror and explorer are supplemented by CPITN probe. 

Scoring Criteria 

Russell chose the scoring values (0,1,2,4,6,8) in order to relate the stages of the disease in an 

epidemiological survey to the clinical conditions observed. 

Calculation of the index 

The PI score per individual is obtained by adding all of the individual scores and dividing by the 

number of teeth present or examined. i.e. PI score per person = Sum of individual 

scores/number of teeth. PI score per group = Sum of scores of all individuals/number of 

individuals. 
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Criteria for clinical studies 

 

SCORE Criteria Additional radiographic 

criteria  

0 No overt inflammation, nor loss of function due to 

destruction of supporting tissue. 

Normal appearance. 

1 Mild gingivitis – an overt area of inflammation in 

free gingival, not circumscribing the tooth. 

Normal appearance. 

2 Gingivitis, inflammation completely 

circumscribing the tooth. No apparent break in 

the epithelial attachement. 

Normal appearance. 

4 Used only when radiographs available. Early notch like resorbtion of 

alveolar crest. 

6 Gingivitis with pocket formation. The epithelial 

attachment has been broken and there is a true 

pocket. There is no interference in mastication. 

The tooth is firm and not drifted. 

Horizontal bone loss in whole of 

the alveolar crest, up to half of 

the length of the tooth root. 

8 Advanced destruction with loss of masticatory 

function. The tooth may be losse, drifted with dull 

sound on percussion or may be depressible in its 

socket. 

Advanced bone loss involving 

>1/2 of tooth root or a definite 

infrabony pocket with widening 

of periodontal ligament. There 

may be root resorption or 

rarefaction of apex. 

 


