
Spectral Analysis of Dirac Operators under

Integral Conditions on the Potential

Thesis submitted to

CARDIFF UNIVERSITY

for the degree of

DOCTOR OF PHILOSOPHY

by

DANIEL GORDON JOHN HUGHES

September 2012,

School of Mathematics,

Cardiff University



DECLARATION

This work has not been submitted in substance for any other degree or award at this

or any other university or place of learning, nor is being submitted concurrently in

candidature for any degree or other award.

Signed (candidate) Date

STATEMENT 1

This thesis is being submitted in partial fulfilment of the requirements for the degree of

PhD

Signed (candidate) Date

STATEMENT 2

This thesis is the result of my own independent work/investigation, except where otherwise

stated. Other sources are acknowledged by explicit references. The views expressed are

my own.

Signed (candidate) Date

STATEMENT 3

I hereby give consent for my thesis, if accepted, to be available for photocopying and

for inter-library loan, and for the title and summary to be made available to outside

organisations.

Signed (candidate) Date

STATEMENT 4: PREVIOUSLY APPROVED BAR ON ACCESS

I hereby give consent for my thesis, if accepted, to be available for photocopying and for

inter-library loans after expiry of a bar on access previously approved by the Academic

Standards & Quality Committee.

Signed (candidate) Date

i



Abstract

We show that the absolutely continuous part of the spectral function of the one-dimensional

Dirac operator on a half-line with a constant mass term and a real, square-integrable

potential is strictly increasing throughout the essential spectrum (−∞,−1] ∪ [1,∞). The

proof is based on estimates for the transmission coefficient for the full-line scattering

problem with a truncated potential and a subsequent limiting procedure for the spectral

function. Furthermore, we show that the absolutely continuous spectrum persists when an

angular momentum term is added, thus establishing the result for spherically symmetric

Dirac operators in higher dimensions, too. Finally, with regard to this problem, we show

that a sparse perturbation of a square integrable potential does not cause the absolutely

continuous spectrum to become larger in the one-dimensional case.

The final problem considered is regarding bound states, where we show that if the electric

potential obeys the asymptotic bound C := lim supx→∞ x|q(x)| <∞ then the eigenvalues

outside of the spectral gap [−m,m] must obey
∑

n(λ2
n−1) < C2

2 , where m is the constant

mass.
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Chapter 1
Introduction

Quantum mechanics is part of, and in some sense the precursor to, the body of scientific

principles that explains the behaviour of matter and its interactions with energy on the

scale of atoms and atomic particles. Classical physics, including general relativity, explains

matter and energy at the macroscopic level of the scale familiar to human experience,

including the behaviour of astronomical bodies. It remains the key to measurement

for much of modern science and technology; however, at the end of the 19th Century

observers discovered phenomena in both the large and the small worlds that classical

physics could not explain, for example the spectral distribution of thermal radiation from

a black body or the low-temperature specific heats of solids. Coming to terms with these

limitations led to the development of quantum mechanics, a major revolution in physics.

Spectral theory is an inclusive term for theories extending the eigenvector and eigenvalue

theory of a single square matrix to a much broader theory of the structure of operators

in a variety of mathematical spaces. The name spectral theory was introduced by David

Hilbert in his original formulation of Hilbert space theory. For many years, there has been

a strong connection between developments in spectral theory and the need to solve mathe-

matical problems arising in mathematical physics. Indeed one of the milestones of spectral

theory in the first half of the 20th century, the spectral representation theorem for general

self-adjoint operators in Hilbert Space ([65], [60]) was motivated by von Neumann’s and

others’ attempts to understand the mathematical structure of observables in quantum

mechanics. Hamiltonian operators describing the total energy within a quantum system,
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an example of a quantum observable, are often represented by differential operators. This

thesis will be concerned with two such differential operators: the Schrödinger operator

and the Dirac operator.

The one-dimensional time independent Schrödinger equation describes the non-relativistic

motion of a particle in a conservative force field which can be represented by a potential

energy; non-relativistic motion concerns bodies moving at less than a significant proportion

of the speed of light. We will be considering the one-dimensional form of the equation

−d
2ψ

dx2
+ q(x)ψ(x) = λψ(x) (x ∈ I) (1.1)

where I ⊂ R, q is a real valued potential function which is assumed to be locally integrable

(in the Lebesgue sense) and λ ∈ C is called the spectral parameter.

The one-dimensional Dirac equation is the relativistic counterpart of the one-dimensional

Schrödinger equation; it is the Hamiltonian of a one-dimensional relativistic particle of

(usually constant) mass m(x) moving in a conservative force field represented by potential

q. It takes the form

−iσ2
dψ(x)

dx
+
k

x
σ1ψ(x) +m(x)σ3ψ(x) + q(x)ψ(x) = λψ(x), (x ∈ I) (1.2)

where I ⊂ R, k ∈ R, m, q : I → R are given functions such that m, q ∈ L1
loc(I), λ is

the spectral parameter and σ1, σ2, σ3 are Pauli matrices. The term k
xσ1 is known as the

angular momentum term. Note that the Dirac operator is a first-order matrix valued

operator; the solutions of (1.2) consist of two components.

For fixed λ in the upper half plane, we say that the differential equation (1.1) resp. (1.2)

is in the limit point case at a singular interval end-point if there exists only one linearly

independent solution which is square integrable at that interval end-point and in the limit

circle case if all solutions are square integrable at that interval end-point. This result is

known as Weyl’s alternative (cf. [69, Theorem 5.6]). For Sturm-Liouville expressions (of

which the Schrödinger equation is an example) this result goes back to Weyl ([70]). For

Dirac systems a first proof was given by Roos and Sangren ([47], [48], [49]) (we note

that the result follows almost immediately from abstract facts about deficiency indices
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of symmetric operators, c.f. [69] Theorems 5.6, 5.7 and 5.8). The limit point and limit

circle cases are the only possibilities; this classification is independent of λ.

Let S denote the set of all functions ξ such that

(1) ξ is differentiable and ξ′ is locally absolutely continuous 1;

(2) ξ,
(
− d2

dx2
+ q(x)

)
ξ ∈ L2(0,∞);

(3)

sinαξ(0) + cosαξ′(0) = 0. (1.3)

S = − d2

dx2
+ q(x) can be defined as a self-adjoint operator in L2(0,∞) if functions in the

domain of S are also in S and if ∞ is in the limit point case ([10, Chapter 9 Problem

13]); S is in the limit point case at ∞ if for some c ∈ (0,∞) and k ≥ 0, q(x) ≥ −kx2

(x > c) ([69, Theorem 6.6]).

On the other hand, let T denote the set of all functions η such that

(1) η1, η2 are locally absolutely continuous;

(2) η,
(
−iσ2

d
dx + k

xσ1 +m(x)σ3 + q(x)
)
η ∈ L2(0,∞)2;

(3)

sinαη1(0) + cosαη2(0) = 0. (1.4)

and T̂ be the set of functions satisfying (1) and (2). Then T = −iσ2
d
dx + k

xσ1 +m(x)σ3 +

q(x) can be defined as self-adjoint operator in L2(0,∞)2 if:

(i) in the case k = 0, functions in the domain of T are also in T and ∞ is in the

limit point case; in fact ∞ is always in the limit point case for both the operator

with k = 0 and with k 6= 0 ([69, Theorem 5.7], [69, Theorem 6.8]);

(ii) in the case k 6= 0, functions in the domain of T are also in T̂ and both 0 and

∞ are in the limit point case ([69, Theorem 5.7]); 0 is in the limit point case if

|k| ≥ 1
2 and m, q ∈ L1([0,∞)) (c.f. [16]).

In applications the limit point case is the most frequent; it is also the most important

case for further development of the theory. If the singular end point at infinity is in

1A function g is described as being locally absolutely continuous, written g ∈ ACloc(I), if it can be
written in the form

g(x) = constant+
∫ x

0

h(t) dt (x ∈ I)

where h is locally integrable. The derivative of g is then almost everywhere equal to h.
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the limit point case then no boundary condition is required there to define S or T as

self-adjoint operators; in the limit circle case a boundary condition is required.

Let =λ > 0 and consider complex-valued solutions of (1.1) and (1.2), whose coefficients

satisfy the conditions required for both operators to be self-adjoint and, for this immediate

discussion, we assume that k = 0 in (1.2). Define two solutions of each equation, uα, vα

such that for the Schrödinger equation

uα(0, λ) = cosα vα(0, λ) = − sinα

u′α(0, λ) = sinα v′α(0, λ) = cosα

and for the Dirac equation

(uα)1(0, λ) = cosα (vα)1(0, λ) = − sinα

(uα)2(0, λ) = sinα (vα)2(0, λ) = cosα.

As the singular end-point at infinity is in the limit point case we can, given any λ with

=λ > 0, find a non-trivial solution f(·, λ) of (1.1) or (1.2) such that f is square integrable.

Further we know that f is unique up to a multiplicative constant. Thus f may be

expressed as a linear combination of the two solutions uα, vα for any α ∈ [0, π). Writing

f = Aαuα + Bαvα we can deduce that Aα is non-zero. Indeed, if Aα = 0 then f is a

constant multiple of vα, which satisfies the boundary condition at zero. Therefore f is

an eigenvector and λ is an eigenvalue contradicting the fact that T or S respectively are

self-adjoint operators which implies that all eigenvalues are real ([45] Theorem VI.8).

Hence, without loss of generality, we may divide through by Aα and assume that the

square integrable solution of either equation (1.1) or (1.2) is of the form

fα(x, λ) = uα(x, λ) +mα(λ)vα(x, λ). (1.5)

The coefficient mα is called the Weyl-Titchmarsh m-function; given α and λ it is uniquely

determined by the condition that f be square integrable. The m-function is a Herglotz

function; this means that it is analytic in the upper half plane with positive imaginary part.
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If α = 0 we will, for simplicity, ignore the α dependent notation, i.e. mα will simply be

written m. The mα(λ) functions for various α are related to m(λ) through

mα(λ) =
m(z) cosα+ sinα

cosα−m(z) sinα
(1.6)

(see [41]). In view of this algebraic connection between the various m-functions we shall

refer mainly to the properties of m(λ); however most results may easily be extended to

the general α case.

Herglotz functions, such as the m-function, admit an integral representation, known as

the representation theorem for Herglotz functions ([1]); in the case of the m-function

m(λ) = <m(i) +

(
lim
s→∞

=m(is)

s

)
λ+

∫
R

(
1

t− λ
− t

t2 + 1

)
dµ(t), (1.7)

where µ is a measure defined on Borel subsets of the real line. Further
∫
R
dµ(t)
t2+1

<∞. For

a given function m(λ), (1.7) uniquely determines µ. Define the function ρ(t) (up to an

additive constant) to be such that the µ measure of a finite interval µ(a, b] = ρ(b)− ρ(a);

then ρ is a monotonic non-decreasing and right continuous function. We shall call µ the

spectral measure for the differential operator associated with m(λ) and ρ will be called

the spectral function for this operator.

The m-function, mα(λ) carries the complete spectral information of its related differential

operator S or T , and the spectral measure µα is itself determined once the m-function is

known.

The spectral measure can be decomposed into its absolutely continuous (µac), singular

continuous (µsc) and pure point (µpp) parts (see also [45, Theorem I.14, Lebesgue

Decomposition Theorem])

µ = µac + µsc + µpp.

To each of µac, µsc, µd we may define a corresponding spectral function ρac, ρsc, ρpp.

Investigating the support of each part of the spectral function’s decomposition is the

means by which we gain knowledge about the location of each part of the spectrum of

the corresponding operator.
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Consider again the one-dimensional Schrödinger operator S = − d2

dx2
+ q. It is well

known that any self-adjoint realisation of S on [0,∞) has essential spectrum [0,∞) if q is

integrable at 0 and q(x)→ 0 (x→∞). It was expected that for such decaying potentials

the spectrum will be a discrete subset of R for λ ≤ 0 and continuous for λ > 0; this was

an expectation born out of the study of the hydrogen atom.

Much early work considered conditions on the potential to ensure purely absolutely

continuous spectrum for λ > 0. Under certain conditions, e.g. if q ∈ L1([0,∞)) the

spectrum can be shown to be purely absolutely continuous for λ > 0 [69, Thm 15.3].

The same result holds for potentials which may be singular at the origin, assuming for

example that
∫ 1

0 x|q−(x)|dx <∞ (q− is the negative part of q). In this case we replace

the integrability condition with q ∈ L1(a,∞) for some a > 0 [69, Thm 15.3].

Such results and examples by no means exhaust the kinds of spectral behaviours that

one may encounter; in fact they barely scratch the surface. Even for potentials satisfying

bounds of the form x|q(x)| ≤ const the point spectrum need not be confined to the negative

half-line. As an example (see [43]) take λ = 1 in (1.1) and set f(x, λ) = sin(x)
1+(2x−sin 2x)2

.

It can easily be verified that q(x) ∼ −8 sin 2x
x as x → ∞ and yet f is an eigenfunction

for S with Dirichlet boundary condition having eigenvalue λ = 1. More strikingly, in

a situation only slightly more general than the L1 case, the essential spectrum can be

far from purely absolutely continuous; indeed Naboko [38] and Simon [58] constructed

potentials such that x|q(x)| → ∞ (x → ∞) arbitrarily slowly and S has dense point

spectrum in [0,∞). In these examples dense point spectrum is overlaid with absolutely

continuous spectrum.

This can be seen from subsequent work focused on providing sufficient conditions on

the potential to ensure the existence of (not necessarily purely) absolutely continuous

spectrum. Important progress was made in a key paper of Kiselev ([31]). Using techniques

from Fourier analysis, Kiselev considered the class of locally integrable potentials subject

to a power bound |q(x)| ≤ const · x−(3/4+δ) for δ > 0. Note that this class of potentials is

defined by a pointwise bound; no assumptions on the smoothness or differentiability of q

are implied. This was significant as at the time many results about the absolute continuity

of the spectrum on the positive semi-axis for certain classes of decaying potentials, such

as potentials of bounded variation [69, Thm 15.3] or specific oscillating potentials (see,

e.g., [71, 37, 4, 26] for further references) were known but no general relations between
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the rate of decay and spectral properties, apart from the absolutely integrable class, were

known. Under this quite weak assumption, Kiselev was able to show that the entire

positive half-line belongs to the absolutely continuous spectrum. Moreover he was able to

define explicitly a subset of [0,∞) on which the singular part of the measure for λ ≥ 0, if

it is non zero, is concentrated.

Further results of a similar nature subsequently started to appear; for example, Kiselev,

Christ and Remling ([9], [8], [46]) showed that for potentials obeying |q(x)| ≤ C(1 +

|x|)−
1
2
−ε for large x (ε > 0), the absolutely continuous spectral measure of S is essentially

supported on [0,∞); note that the examples by Naboko [38] and Simon [58] above satisfy

this condition. We also note that this decay condition is in a sense optimal; indeed there

exist examples of potentials satisfying the bound |q(x)| ≤ const · x−1/2 for which the

spectrum is purely singular ([32]).

Incidentally, further examples of exotic behaviour in the singular spectrum have involved

the study of sparse potentials, that is potentials which are zero for ’most’ values of x,

but which may tend to infinity, be bounded below by some positive constant or perhaps

decay very slowly to zero, on some sequence of intervals which become more and more

separated at large distances from the origin. Such potentials may give rise to singular

continuous spectrum (see [39]; also very explicit examples are given in [59] and [32]).

In their celebrated paper [11], Deift and Killip discovered that an integral-type condition

on the potential is more natural than a pointwise bound, proving that the absolutely

continuous spectrum of the Schrödinger operator is essentially supported on [0,∞)

whenever q ∈ L2([0,∞)). This result is optimal in terms of Lp decay, as there exist

potentials belonging to Lp, for all p > 2, such that S has no absolutely continuous

spectrum [32].

More recently, Killip and Simon have given an equivalent characterisation of the spectral

measures of Schrödinger operators with square-integrable potentials which includes the

Deift-Killip result [30].

Consider again the Dirac operator. The standard Dirac operator is the fundamental

Hamiltonian in the relativistic quantum mechanics of a massive particle of spin 1/2. In

its original form, the particle mass is a positive constant, but more recently a variable
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mass, or scalar potential, has been used in relativistic models of quark confinement (c.f.

references in [73], Thaller [61] p. 305).

What about the case m = 0? This could, for example, describe the motion of a neutrino; a

neutrino is an electrically neutral, weakly interacting elementary subatomic particle with

half-integer spin. However, as a neutrino does not carry any electrical charge, the addition

of an electric potential would not be of physical interest. In the 1980s, Fröhlich, Lieb,

Loss and Yau ([21, 35]) showed that the zero eigenspace of a massless Dirac operator

with magnetic potential plays a critical role in the question of stability of matter. More

recently, massless Dirac operators with a plain electric-type potential, especially in two

space dimensions, has aroused interest as a physically relevant object in its own right;

it has been shown to give an effective description of electron movement in single-atom

carbon layers (graphene) [3]. This has been a motivation for studying the massless Dirac

operator in less than three dimensions, for example see [56].

Many results pertaining to the Dirac operator with non-constant mass term can be

derived from the work on Krein systems (c.f. [33]); indeed Krein systems can be related

to the so called canonical one-dimensional Dirac operator ([13])

D =

 0 1

−1 0

 d

dx
+

 −b(r) −a(r)

−a(r) b(r)

 .

Through this relation, many properties of Krein systems carry over to Dirac operators of

this form.

Using harmonic analysis techniques, Martin [36] was able to prove, under the assumption

a, b ∈ L2(0,∞), that the whole real line was a support for the absolutely continuous

part of the spectral measure, a result analogous to that in [11]. A weaker result was

again later proved by Denisov ([12]) using wave operator techniques (c.f. [29]), requiring

a ∈ L2(0,∞) and b ≡ 0. However, the full result with a, b ∈ L2(0,∞) was settled much

earlier by Krein in [33] (see [13] for more details).

We note that any Dirac operator can be reduced to the canonical form by a suitable

change of variables (c.f. [34] p. 48-50). Indeed, this even includes Dirac operators of the

form T with constant mass; in this case, however, the conditions required in [36], [12] or

[33] (i.e. a, b ∈ L2(0,∞)) are never satisfied.
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The subject of this thesis will be the standard one-dimensional Dirac operator, i.e. the

Dirac operator with positive constant mass, which without loss of generality we set to 1

T = −iσ2
d

dx
+
k

x
σ1 + σ3 + q(x).

It is known that the spectrum of such an operator is never purely discrete (see [54]

Proposition 5.1). Indeed, every real interval of length greater than 2 intersects the essential

spectrum of T , which is therefore unbounded above and below; that the spectrum of

the Dirac operator is unbounded below is a striking difference between the Dirac and

Schrödinger operators. As an example, if one only assumes that q(x)→ 0 (x→∞), the

essential spectrum of T is (−∞,−1]∪ [1,∞). We note, however, that as in the case of the

Schrödinger operator this essential spectrum need not be purely absolutely continuous.

There are examples of potentials such that x|q(x)| → ∞ (x→∞) arbitrarily slowly and

the operator has a dense set of eigenvalues in the whole or part of its essential spectrum

[54].

One of the most familiar Dirac systems is the Coulomb potential problem ([67] [64]);

this is the case where k ∈ Z \ 0 and q = α
x , α ∈ R in T . It was noted by Plesset [42] and

later Titchmarsh [64] that the spectrum of T for this choice of q continuously covers the

whole real axis save for the interval (−1, 1) where it is discrete.

In [64], Titchmarsh actually considered the more general system where either q(x) or

q(x)− α
x , for some constant α, is absolutely integrable towards zero and where q(x) is

either "large" or "small" near infinity; further q ∈ C1(0,∞) such that q′ ∈ ACloc(0,∞)

was required. When q is small at infinity it was found that the spectrum is discrete in

(−1, 1) and continuous elsewhere. If q is large at infinity then the continuous spectrum

covers the whole real line. We note that the case for q polynomial had already been

observed by Plesset [42]. Erdélyi [17] obtain the same result in the small potential case by

considering q as the sum of short range and long range components, q(x) = q1(x) + q2(x),

q1(x)→ 0 (x→∞) and q′1, q2 ∈ L1(x0,∞). In the large potential case Erdélyi was able

to weaken the requirements in [64] to essential q ∈ ACloc and∫ ∞
0

|q′|
q2

<∞

and still obtain the same result. It is implicit in both [17] and [64] that the continuous

spectrum is absolutely continuous, indeed continuously differentiable (cf. remarks of
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Evans and Harris [18]). In [55], Schmidt was able to extend Erdélyi’s result to prove

that if q(x) is infinite at infinity and 1/q is of bounded variation then the whole real line

is purely absolutely continuous; this extends Erdélyi’s result because the local regularity

of q is reduced from absolute continuity to bounded variation.

The aim of this thesis is to consider the absolutely continuous spectrum of the standard

Dirac operator where the electric potential is small at infinity; indeed we study the Dirac

operator where the electric potential satisfies some integrability condition. It can be

proven that if q is absolutely integrable then the standard Dirac operator has purely

absolutely continuous spectrum in the bands (−∞,−1] ∪ [1,∞) [69, Thm 16.7]. It is our

aim to progress from this to consider potentials which are square integrable, producing

an analogous result to [11]. We will then progress on to considering the standard Dirac

operator in three dimensions with a spherically symmetric potential by considering the

one-dimensional Dirac operator with an angular momentum term. We will also study the

effect of a sparse perturbation on the absolutely continuous spectrum.

This thesis is organised as follows:

Chapter 2 is motivated by the paper [11] of Deift and Killip. We show that the absolutely

continuous part of the spectral function of the one-dimensional Dirac operator on a

half-line with constant mass 1 and a real, square-integrable potential is strictly increasing

throughout the essential spectrum (−∞,−1]∪ [1,∞). This fact is proved using estimates

for the transmission coefficient for the full-line scattering problem with a truncated

potential. Indeed the majority of this proof is centred around the inequality∫
(−∞,−1]∪[1,∞)

|λ|
√
λ2 − 1 log |a(λ)|dλ ≤ π

2

∫
R
q2(x)dx,

where a is the inverse of the transmission coefficient, λ is the spectral variable and q, the

potential, is square integrable with compact support. A subsequent limiting procedure

for the spectral function then completes the proof of the main result of this section. We

also provide a proof of the main result for the Schrödinger case, giving details absent

from the paper of Deift and Killip.
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Chapter 3 draws on some well known results of spectral theory to consider the one-

dimensional Dirac operator with constant mass 1, a real, bounded, square-integrable

potential and an angular momentum term. Using the famous theory of Kato-Rosenblum

concerning trace class perturbations and wave operators ([29] Chapter 10, [28], [50], [20])

together with the Gilbert-Pearson theory of subordinacy ([22], [24]) we show that the

absolutely continuous spectrum of this operator is unitarily equivalent to the absolutely

continuous spectrum of the operator considered in Chapter 3. En route to this result we

also prove that the absolutely continuous part of the spectral function of a one-dimensional

Dirac operator on the full line with constant mass and a real, square-integrable potential

is strictly increasing throughout the essential spectrum (−∞,−1] ∪ [1,∞).

Chapter 4 extends the theory pertaining to valued distribution theory developed by

Pearson et al. (see [5, 6, 7, 41, 40]) to incorporate the Dirac operator; these results

are then used to show that the support of the absolutely continuous part of the spectral

measure of the one-dimensional Dirac operator on a half-line with constant mass 1 and

a real, L2-sparse potential is contained within R \ (−1, 1). An L2-sparse potential can

be written as the sum of a square-integrable potential and a sparse perturbation; this

chapter is thus complementary to the results contained in Chapter 2. Indeed, an L2-sparse

potential can be seen either as a square integrable perturbation of a sparse potential or

as a sparse perturbation of a square integrable potential and from either viewpoint the

results of this chapter show that the absolutely continuous spectrum does not encroach

into the spectral gap (−1, 1). Further, the strength of this result is the lack of hypothesis

required to control the sparse part of the potential.

Although the logical steps employed in this chapter are similar to those in [5, 6, 7],

significant adaptations had to be made to develop the theory to cover the Dirac operator,

not least the need to incorporate the fact that the solutions have two components. We

also expand on some of the details and steps for which the papers [5, 6, 7] are sketchy.

Chapter 5 is the first and only chapter within this thesis to consider bound states of

the one-dimensional Dirac operator with constant mass 1. We take the result of Kiselev,

Last and Simon ([32]) as motivation to prove that if the electric potential q obeys

the asymptotic C := lim supx→∞ x|q(x)| < ∞ then, for eigenvalues outside of the gap

11



[−1, 1],
∑

n(λ2
n − 1) ≤ C2

2 . The main tool used to prove this result is a modified Prüfer

transformation which was found in [54].
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Chapter 2
Half Line Schrödinger and Dirac

Operators with Square Integrable

Potentials

1 Introduction

Consider the one-dimensional Schrödinger operator

S = − d2

dx2
+ q. (2.1)

where q ∈ L1
loc(R). We assume that this operator is in the limit point case at ±∞ ([69]

Theorem 6.3) so that it has a unique self-adjoint realisation S̃ in L2(R). In this chapter we

will be interested in the self adjoint operator S on the half line [0,∞) with the boundary

condition

u(0) cosα+ u′(0) sinα = 0, (2.2)

for fixed α ∈ R. The spectral analysis of S̃ and S is based upon the study of the

corresponding Schrödinger eigenvalue equation

Su(x, λ) = −u′′(x, λ) + q(x)u(x, λ) = λu(x.λ) (2.3)

with spectral parameter λ ∈ C.

13



In the present chapter we also consider the relativistic counterpart of S, the Dirac operator

τ = −iσ2
d

dx
+ σ3 + q(x), (2.4)

where σ2, σ3 are Pauli matrices and q ∈ L1
loc(R). It is the Hamiltonian of a one-dimensional

relativistic particle of mass 1 moving in a force field of potential q. As this formal

differential expression is always in the limit point case at ±∞, it has a unique self-adjoint

realisation T̃ in L2(R)2. We are mainly interested in the self-adjoint operator T realising

τ on the half-line [0,∞) with the boundary condition

u1(0) cosα+ u2(0) sinα = 0, (2.5)

for fixed α ∈ R. The spectral analysis of T̃ and T is based upon the study of the

corresponding Dirac eigenvalue equation

τu(x, λ) = −iσ2u
′(x, λ) + σ3u(x, λ) + q(x)u(x, λ) = λu(x, λ), λ ∈ C. (2.6)

At a superficial glance, one could be inclined to think that the question about the existence

of absolutely continuous spectrum of T under the assumption of square-integrability of

q was settled long ago by the work on Krein systems, which are closely related to the

Dirac operator (cf. [33, eq. (15)]). Indeed, Denisov’s extensive reworking of Krein’s ideas

includes the result that the wave operators for the half-line operator

−iσ2
d

dx
+ a(x)σ1 + b(x)σ3 (2.7)

with a, b ∈ L2([0,∞)) relative to that with a = b = 0 exist [12], [13, Thm 13.3]. Thus

(2.7) with square-integrable coefficients will have absolutely continuous spectrum covering

the whole real axis; this had been shown directly by Martin [36] using the method

of [11]. Now τ in (2.4) can be brought into the form of (2.7) by a pointwise unitary

transformation; indeed, if Q′ = q, then

eiσ2Q τ e−iσ2Q = −iσ2
d

dx
+ e2iσ2Q σ3,

which is (2.7) with a = − sin 2Q, b = cos 2Q. But then |a|2 + |b|2 = 1, so the hypothesis

that both a and b are square-integrable on [0,∞) is never fulfilled. In fact, it would seem

that a Dirac operator (2.7) with square-integrable a, b will arise very rarely, if ever, in

14



physical situations.

The main result of the present chapter is the following analogue of Deift and Killip’s

result:

Theorem 2.1. If q ∈ L2([0,∞)), then the absolutely continuous part of the spectral

function of T is strictly increasing in (−∞,−1] ∪ [1,∞).

Alongside this we will also present a detailed proof of Deift and Killip’s result both for

interest and comparison. To this end we will also prove

Theorem 2.2. If q ∈ L2([0,∞)), then the absolutely continuous part of the spectral

function of S is strictly increasing in [0,∞).

Without loss of generality, we are able to restrict our attention to the case α = 0 in

both our boundary conditions, as the m functions for different α are related by a Möbius

transformation (1.6) (for further details see, for example, [40] Equation (4)). From this

we can deduce that the absolutely continuous parts of the spectral function for two

different values of α have the same essential supports.

Remark 2.1. Results about the stability of the absolutely continuous spectrum under

finite rank and trace class perturbations (e.g. changes in boundary condition) are well

known (c.f. [27] and [23] Section 3).

This chapter is organised as follows. In Section 2 we prove that the spectral measure

for the operators ς and τ with potential q is the limit of the spectral measures for the

operators ςn and τn with truncated potentials, which we equate to q on [0, n] and to

zero on [n,∞). This allows us to focus on the case of compactly supported potentials.

Section 3 considers the transmission coefficient and gives a proof for the central inequality

expressed in the following theorem for the Dirac case

Theorem 2.3. Let q be a real valued square integrable function on [0,∞) with compact

(essential) support. Then∫
(−∞,−1]∪[1,∞)

|λ|
√
λ2 − 1 log |a(λ)|dλ ≤ π

2

∫
R
q2(x)dx. (2.8)
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Theorem 4 presents an analogous analysis to that of Section 3 for the Schrödinger case

and proves the following inequality (where k is the non-relativistic momentum variable

defined in Section 4)

Theorem 2.4. Let q be a real valued square integrable function on [0,∞) with compact

(essential) support. Then ∫
R
k2 log |a(k)| dk ≤ π

8

∫
R
q2(x)dx (2.9)

The function a(λ) is the inverse transmission coefficient; see Section 3/4 below for details.

The underlying identities for inequalities (2.8) and (2.9) can be found in [19, Page 78].

A proof of both under additional smoothness assumptions on q is given in [72]. Finally,

in Section 5 we use these inequalities together with the observations in Section 2 to prove

Theorems 2.1 and 2.2.

2 Compactly Supported Potentials and Convergence of

Spectral Measures

For the proof of Theorems 2.1 and 2.2, we shall first prove the result for compactly

supported potentials and then treat q ∈ L2(0,∞) as a limit of truncated potentials as

the cut-off point moves to infinity. The spectral measures of the half-line operators with

truncated potentials then converge vaguely to the spectral measure of T or S respectively,

as our first lemma shows.

Let m, ρ be the Weyl-Titchmarsh m-function and the spectral function of T , respectively.

For n ∈ N, let qn = χ[0,n]q and let Tn be the self-adjoint Dirac operator associated with

the differential expression

−iσ2
d

dx
+ σ3 + qn (2.10)

on [0,∞) with boundary condition (2.5). We denote its Weyl-Titchmarsh and spectral

functions by mn and ρn, respectively.

From the following Lemma we obtain the required result about the convergence of the

spectral measures. The argument used in the proof of this Lemma follows the argument

from the book of Coddington and Levinson for the derivation of the standard inversion
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formula from Weyl theory [10, Chapter 9 Theorem 3.1]; however, rather than considering

a singular self-adjoint problem on a finite interval and considering the limit as an interval

end-point moves towards the singular limit we consider a problem with a truncated

potential and send the truncation point towards the singular end-point.

Lemma 2.1. limn→∞ ρn = ρ at all points of continuity of ρ.

Proof. Let z ∈ C \ R, and let v : [0,∞) → C2 be the solution of the initial-value

problem τ v = z v, v(0) =
(− sinα

cosα

)
. Note that the differential equations with potentials q

and qn are identical on the interval [0, n]. Thus, from Weyl theory (see [10] Chapter 9

Section 2), it is known that the limit points mn(z) and m(z) lie inside a complex circle

of radius

rn =
1

2=z
∫ n

0 |v|2
.

Hence |mn(z)−m(z)| ≤ 2rn(z)→ 0 (n→∞), as the Dirac equation is in the limit-point

case at ∞ and hence v /∈ L2(0,∞). This convergence is locally uniform; indeed, rn

depends continuously on z. Thus by Dini’s Theorem ([52] Theorem 7.13), which states

that a monotone sequence of continuous functions with continuous limit function is locally

uniformly convergent, the locally uniform convergence of mn to m follows.

We deduce from the Herglotz representation of mn (see [40] Equations 5,5’) and the

boundedness of (mn(i))n∈N that∫
R

dρn(λ)

λ2 + 1
= =mn(i) ≤ C

with a constant C independent of n. Thus, ∀x ∈ R,

|ρn(x)| =
∣∣∣∣∫ x

0
dρn

∣∣∣∣ ≤ (x2 + 1)

∣∣∣∣∫ x

0

1

1 + λ2
dρn(x)

∣∣∣∣ ≤ C(x2 + 1).

Hence, by Helly’s First Theorem, (ρn)n∈N has a subsequence, (ρnj )j∈N, which converges

pointwise to a non-decreasing function ρ̃. From this we can deduce, by Helly’s Second

Theorem, that ∀Λ > 0, ∫ Λ

−Λ

dρ̃(λ)

1 + λ2
= lim

j→∞

∫ Λ

−Λ

dρnj (λ)

1 + λ2
≤ C,

in other words ∫
R

dρ̃(λ)

1 + λ2
≤ C.
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If µ ≥ 1 and λ ∈ R such that |λ| ≥ µ then we have

µ(1 + λ2) = µ+ µλ2 ≤ µ3 + |λ|3 ≤ 2|λ|3.

Hence ∣∣∣∣∣
∫
|λ|≥µ

dρnj (λ)

λ3

∣∣∣∣∣ ≤
∫
|λ|≥µ

2

µ(1 + λ2)
dρnj (λ) ≤ 2C

µ
.

Thus, for all λ1, λ2 ∈ C \ R

=mnj (λ1)

=λ1
−
=mnj (λ2)

=λ2

=

∫
R

(
1

|λ− λ1|2
− 1

|λ− λ2|2

)
dρnj (λ)

=

∫
|λ|≤µ

(
1

|λ− λ1|2
− 1

|λ− λ2|2

)
dρnj (λ) +

∫
|λ|>µ

(
|λ2|2 − 2<λλ2 + 2<λλ1 − |λ1|2

|λ− λ1|2|λ− λ2|2

)
dρnj (λ)

=

∫
|λ|≤µ

(
1

|λ− λ1|2
− 1

|λ− λ2|2

)
dρnj (λ) +

2CK

µ

→
∫
|λ|≤µ

(
1

|λ− λ1|2
− 1

|λ− λ2|2

)
dρ̃(λ) +

2CK

µ

→
∫
R

(
1

|λ− λ1|2
− 1

|λ− λ2|2

)
dρ̃(λ),

where the first step follows from the Herglotz representation for mn, the j limit is

calculated using Helly’s Second Theorem and in the final step we sent µ→∞. K is a

constant arising in the estimate of the integrand for the integral over |λ| > µ on the third

line by K
|λ|3 . Sending j →∞ on the left hand side

=m(λ1)

=λ1
− =m(λ2)

=λ2
=

∫
R

(
1

|λ− λ1|2
− 1

|λ− λ2|2

)
dρ̃(λ),

and hence
=m(µ)

=µ
=

∫
R

dρ̃

|λ− µ|2
+ k, µ ∈ C \ R, k ∈ R.
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Conversely, let µ1 < µ2 be two points where ρ̃ is continuous, ε > 0. Then∫ µ2

µ1

=m(ν + iε)dν = ε

∫ µ2

µ1

∫
R

dρ̃(λ)

|λ− ν − iε|2
dν + εk(µ2 − µ1)

=

∫
R

∫ µ2

µ1

ε

(λ− ν)2 + ε2
dνdρ̃(λ) + εk(µ2 − µ1)

=

∫
R

∫ µ2−λ
ε

µ1−λ
ε

ds

1 + s2
dρ̃(λ) + εk(µ2 − µ1)

=

∫
R

(
arctan

µ2 − λ
ε
− arctan

µ1 − λ
ε

)
dρ̃(λ) + εk(µ2 − µ1).

Now

lim
ε→0

(
arctan

µ2 − λ
ε
− arctan

µ1 − λ
ε

)
= πχ(µ1,µ2)(λ)

uniformly outside any neighbourhood of {µ1, µ2}. As ρ̃ is continuous at µ1, µ2 we can

choose the neighbourhood of {µ1, µ2} sufficiently small so that its contribution to the

integral becomes as small as we please. Thus

lim
ε→0

∫ µ2

µ1

=m(ν + iε)dν = π

∫ µ2

µ1

dρ̃(λ), ρ̃(0) = 0, ρ̃ right continuous.

As the m-function, m, and the spectral function, ρ, are linked by the Stieltjes Inversion

formula ([10, Chapter 9 Theorem 3.1 (iv)]), we obtain that

π

∫ µ2

µ1

dρ̃(λ) = π

∫ µ2

µ1

dρ(λ), ∀µ1, µ2 ∈ R \ S,

where S is the set of points of discontinuity of ρ̃, ρ, which has measure zero. Thus ρ = ρ̃

a.e.. As all subsequences of (ρn)n∈N have the same limit ρ̃ = ρ, it follows that ρn → ρ̃ = ρ

(n→∞). �

Lemma 2.1 also holds for the Schrödinger case, with only minor cosmetic changes to the

proof.

3 Dirac Case: The Transmission Coefficient

Throughout this section, we will assume that q is a square-integrable function with

compact support in [0,∞). We shall use the function

ω(λ) =
F
√
λ+ 1

√
λ− 1 (λ ∈ C),
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where F
√ is the complex square root with branch cut along the negative real axis and

arg F
√
z ∈ (−π

2 ,
π
2 ] (z ∈ C), while √ is the standard complex square root with branch cut

along the positive real axis and arg
√
z ∈ [0, π). The function ω is the relativistic substitute

for the momentum variable k =
√
λ used in scattering analysis of the Schrödinger operator.

Clearly ω is analytic in C\{(−∞,−1]∪[1,∞)} and satisfies ω(λ)2 = λ2−1 on C. Moreover,

=ω(λ) > 0 whenever =λ > 0, and for real λ we have

ω(λ) =


−
√
λ2 − 1, λ ∈ (−∞,−1]

i
√

1− λ2, λ ∈ (−1, 1)

√
λ2 − 1, λ ∈ [1,∞).

(2.11)

By continuity, there is an open neighbourhood Ω of (−1, 1), encroaching into the lower

half plane, in which =ω > 0. ω also satisfies several other useful properties which will be

used extensively:

Lemma 2.2. Let q ∈ L1([a, b]), −∞ < a < b <∞. Then the function ω(λ) defined above

satisfies

(i) (ω + λ)(ω − λ) = −1;

(ii) ω(z) = −ω(−z), (z ∈ C+);

(iii) e±
i

ω(ω+λ)

∫ y
x q = 1 +O

(
1
|λ|2

)
(λ→∞) uniformly in x, y ∈ [a, b];

(iv) e
i

ω(ω−λ)
∫ y
x q = e2i

∫ y
x q
(

1 +O
(

1
|λ|2

))
(λ→∞) uniformly in x, y ∈ [a, b].

Proof. (i) is a simple calculation. For (ii), the case z ∈ R follows by inspection.

Let z ∈ C+. Then

ω(−z) = F
√
−z + 1

√
−z − 1 = F

√
−(z − 1)

√
−(z + 1)

=
(

F
√
−1 · F

√
z − 1

)(√
−1 ·

√
z + 1

)
= −ei

π
2

F
√
z − 1e−i

π
2

√
z + 1

= −
√
z − 1 F

√
z + 1 = −ω(z)

For (iii) we estimate

∣∣∣e i
ω(ω+λ)

∫ y
x q − 1

∣∣∣ ≤ ∞∑
j=1

∣∣∣∣ i

ω(ω + λ)

∣∣∣∣j ||q||j1j!
= O

(
1

|λ|2

)
, (λ→∞)
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uniformly in x, y ∈ [a, b]. Hence (iv) follows, as

e
i

ω(ω−λ)
∫ b
a q = e−i(1+ λ

ω )
∫ b
a q = e−2i

∫ b
a qe
− i
ω(ω+λ)

∫ b
a q = e−2i

∫ b
a q

(
1 +O

(
1

|λ|2

))
(λ→∞, x, y ∈ [a, b])

�

Now consider the Dirac equation (2.6) on the whole real line, extending q by 0 to the

negative half-line. For λ ∈ C \ {−1, 1}, the functions

u(x, λ) =

 − iω
λ−1

1

 eiωx, ũ(x, λ) =

 iω
λ−1

1

 e−iωx (x ∈ I)

(where we write briefly ω for ω(λ)) form a fundamental system of this equation on

all intervals I where q vanishes. If λ ∈ R \ [−1, 1], then ω(λ) ∈ R \ {0}, and hence

ũ(·, λ) = u(·, λ).

In particular, there is a solution y(·, λ) for such λ with the property y(x, λ) = u(x, λ) for

all x to the right of the support of q. For x to the left of the support of q this solution

can be expressed as

y(x, λ) = a(λ)u(x, λ) + b(λ)ũ(x, λ) (2.12)

with suitable constants a(λ) and b(λ). Since e±iωx represent right- and left-traveling

waves, the solution y can be interpreted as describing a scattering process of a wave

of amplitude a approaching from the left and split into a transmitted wave travelling

to the right of amplitude 1 and a reflected wave traveling to the left of amplitude b.

Correspondingly, t = 1
a and r = b

a are called the transmission and reflection coefficients ,

respectively.

For λ ∈ R\ [−1, 1], y(·, λ) is another solution of (2.6). Evaluating the constant Wronskian

of y(·, λ) and y(·, λ) both to the right and to the left of the support of q, we find that

|a(λ)|2 = 1 + |b(λ)|2. (2.13)

Thus a(λ) 6= 0, and |t|2 = 1− |r|2, expressing the conservation of the probability current

in the quantum mechanical scattering process.
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For points x to the left of the support of q, we obtain from (2.12) that

y1(x, λ)ũ2(x, λ)−y2(x, λ)ũ1(x, λ) = a(λ)(u1(x, λ)ũ2(x, λ)−u2(x, λ)ũ1(x, λ)) =
2iω(λ)

1− λ
a(λ),

so

a(λ) =
1− λ

2iω(λ)
(y1(x, λ)ũ2(x, λ)− y2(x, λ)ũ1(x, λ)) (2.14)

with arbitrary x < 0. From this formula it is apparent that a is well defined for

λ ∈ C\{−1, 1}, continuous for λ ∈ (C+∪Ω)\{−1, 1} and analytic in C+∪Ω. Furthermore,

it is immediate from (2.12) that − iω
λ−1

1

 a(λ) = lim
x→−∞

e−iωxy(x, λ) (λ ∈ C+ ∪ Ω).

The zeros of a in C+ ∪ Ω are exactly the eigenvalues of the full-line Dirac operator T̃

and hence are all real. Indeed, for such λ, y(·, λ) is square integrable at ∞, and ũ(·, λ)

is square integrable at −∞ whilst u(·, λ) is not. Thus y(·, λ) ∈ L2(R)2 if and only if

a(λ) = 0. Further, (2.13) implies that a(λ) has no zeros for λ ∈ R \ [−1, 1]. Moreover,

we have the following information about the zeros of a.

Lemma 2.3. The number of zeros of a in C+ ∪ Ω is finite. On (−1, 1), a is real-valued

and all its zeros are simple.

Proof. For the first statement, see [25, Cor. 3.2], bearing in mind that q has compact

support. If λ ∈ (−1, 1), then ω(λ) = i
√

1− λ2, so

y(x, λ) =

 √
1−λ2
λ−1

1

 e−
√

1−λ2x ∈ R2

for x to the right of the support of q. As all coefficients of the Dirac equation (2.6) are

real, y(·, λ) is real-valued throughout, in particular

a(λ)

 √
1−λ2
λ−1

1

+ b(λ)

 −√1−λ2
λ−1

1

 = y(0, λ) ∈ R2,

which implies that a(λ), b(λ) ∈ R. The last statement can be proved as [63, Lemma

2.12]. �
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Definition 2.1 (Fourier Transform). Suppose f : R→ C is an integrable function. The

Fourier transform of f is the function f̂ : R→ C given by

f̂(ξ) =

∫
R
e−2πixξf(x)dx (ξ ∈ R),

The inverse Fourier transform of f , denoted by f̌ is the function

f̌(λ) =

∫
R
e2πixξf(x)dx (ξ ∈ R).

In the proof of Theorem 2.3, we shall on several occasions use the following observation

about the function sin(2R|x|)/|x|, which is not absolutely integrable and has an R-

independent envelope, but nevertheless turns out to generate an asymptotically diagonal

integral kernel in a weak sense as R →∞. The square integral of q on the right-hand

side of the inequality (2.8) arises in this way.

Lemma 2.4. For x ∈ R the function f : x 7→


sin(x)
x , x ∈ R \ {0}

1, x = 0

is everywhere

continuous and
∫
R f(x)dx = π. Furthermore, for compactly supported q ∈ L2(R),

lim
R→∞

∫
R

∫
R

sin(2R|x− y|)
π|x− y|

q(x)dx q(y) dy =

∫
R
|q|2.

Proof. It is clear that f is continuous for x ∈ R \ {0}. For the case x = 0 we

consider the inequality

cos(x) ≤ sin(x)

x
≤ 1

cos(x)
(x ∈ R \ {0})

Since cos(x)→ 1 as x→ 0 we can infer that sin(x)
x is continuous at x = 0.

For the integral, we first note that f is an even function, so it is enough to consider the

integral on the half line. Let α be an arbitrary real constant and define the function g by

g(α) =

∫ ∞
0

e−αw
sin(w)

w
dw.

Differentiating with respect to α gives us

dg

dα
=

d

dα

∫ ∞
0

e−αw
sin(w)

w
dw.
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Now

d

dα

∫ ∞
0

e−αw
sin(w)

w
dw =

∫ ∞
0

∂

∂α
e−αw

sin(w)

w
dw = −

∫ ∞
0

e−αw sin(w)dw

Recalling that eiw = cos(w) + i sin(w) we have that

−=
∫ ∞

0
e−αweiwdw = = 1

−α+ i
−=−α− i

α2 + 1
=
−1

α2 + 1
.

Thus
dg

dα
=
−1

α2 + 1
=⇒

∫ ∞
0

dg

dα
dα =

∫ ∞
0

−1

α2 + 1
dα,

giving us

lim
ρ→∞

g(ρ)− g(0) = − lim
ρ→∞

arctan(ρ) + arctan(0).

Now,

lim
ρ→∞

g(ρ) = lim
ρ→∞

∫ ∞
0

e−ρw
sin(w)

w
dw = 0

and

− lim
ρ→∞

arctan(ρ) = −π
2
.

Thus

g(0) =

∫ ∞
0

sin(w)

w
dw =

π

2

and
∫
R

sin(x)
x dx = π follows.

Finally set qR := q( π
2R ·) and f(t) = sinπt

πt (t ∈ R \ {0}). Then

1

π

∫
R

∫
R

sin(2R(y − x))

(y − x)
q(x) dx q(y) dy =

π

2R

∫
R

∫
R

sin(π(ξ − η))

π(ξ − η)
q(
ξπ

2R
) dξ q(

ηπ

2R
) dη

=
π

2R

∫
R

(
f ∗ q

( � π
2R

))
(η)q(

ηπ

2R
)dη =

π

2R
(f ∗ qR, qR) =

π

2R
(f̂ ∗ qR, q̂R)

=
π

2R
(f̂ · q̂R, q̂R) =

π

2R

∫
R
f̂(λ)|q̂R(λ)|2dλ.

Now

q̂R(λ) =
2R

π
q̂

(
2Rλ

π

)
,

and therefore continuing from above

π

2R

∫
R
f̂(λ)|q̂R(λ)|2dλ =

2R

π

∫
R
f̂(λ)|q̂

(
2Rλ

π

)
|2dλ =

∫
R
f̂

(
πζ

2R

)
|q̂(ζ)|2dζ.
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As f̂ = χ[− 1
2
, 1
2

],

lim
R→∞

∫
R

∫
R

sin(2R|x− y|)
π|x− y|

q(x)dx q(y) dy = lim
R→∞

∫ R
π

−R
π

|q̂(ζ)|2dζ = ||q̂||2 = ||q||2.

�

We now proceed to prove Theorem 2.3. Consider λ ∈ C+ ∪ Ω; then =ω > 0, where we

write ω briefly for ω(λ). Let y be as in (2.12), and define associated functions a(x, λ),

b(x, λ) (x ∈ R, λ ∈ C \ {−1, 1}) by setting

y(x, λ) = a(x, λ)u(x, λ) + b(x, λ)ũ(x, λ)

for all x ∈ R. By comparison with (2.12), a(x, λ) = a(λ) and b(x, λ) = b(λ) to the left of

the support of q, while a(x, λ) = 1 and b(x, λ) = 0 to the right of the support of q. We

shall now derive an integral equation for the function a.

The function w(x, λ) := e−i
∫∞
x q(t)dt−iω(λ)xy(x, λ) satisfies the differential equation

w′ = (σ1 + iσ2λ− iω)w + iq(1− σ2)w.

Indeed,

w′ = [(iq−iω)y+y′]e−i
∫∞
x q−iwx = (iq−iω)w+iσ2(λ−q−σ3)w = (σ1+iσ2λ−iω)w+iq(1−σ2)w

Treating the potential term as a perturbation, we note that the equation in which the

term involving q is dropped has the fundamental system

ϕ(x, λ) = e−iωx(u(x, λ), ũ(x, λ)) =

 − iω(λ)
λ−1

iω(λ)
λ−1 e

−2iω(λ)x

1 e−2iω(λ)x

 (x ∈ R, λ ∈ C\{−1, 1}).

Writing w = ϕA, we find that A(x, λ) = e−i
∫∞
x q
(a(x,λ)
b(x,λ)

)
. In particular, A(x, λ) =

(
1
0

)
for

x to the right of the support of q, and A′ = ϕ′(1 − σ2)iqϕA. This yields the integral

equation

A(x, λ) =

(
1

0

)
− 1

ω(λ)

∫ ∞
x

q(t)Φ(t)A(t, λ)dt

with

Φ(t) :=

 i(ω − λ) ie−2iωt

−ie2iωt i(ω + λ)

 .
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Iterating this equation twice, we obtain the following identity for the top entry of A,

e−i
∫∞
x qa(x, λ)

= A1(x, λ)

= 1 +
i

ω(λ+ ω)

∫ ∞
x

qdt+
1

ω2

∫ ∞
x

∫ ∞
t

q(t)q(s)

{
e2iω(s−t) − 1

(λ+ ω)2

}
ds dt

− 1

ω3

∫ ∞
x

∫ ∞
t

∫ ∞
s

q(t)q(s)q(r)e−i
∫∞
r q

{[ i

(ω + λ)3
− ie2iω(s−t)

ω + λ
− ie2iω(r−s)

ω + λ
− ie2iω(r−t)

ω − λ

]
a(r, λ)

+

[
ie2iω(s−t−r) − ie2iωr

(λ+ ω)2
+ ie−2iωs − ie−2iωt

(ω − λ)2

]
b(r, λ)

}
dr ds dt (2.15)

Now, from the differential equation for A, we see that

A′1(x, λ) = − iq(x)A1(x, λ)

ω(λ)(ω(λ) + λ)
+
iq(x)e−2iω(λ)xA2(x, λ)

ω(λ)

A′2(x, λ) = − iq(x)e2iω(λ)xA1(x, λ)

ω(λ)
− iq(x)A2(x, λ)

ω(λ)(ω(λ)− λ)

and so, solving each as a first order differential equation,

A1(x, λ) = e
i

ω(λ)(ω(λ)+λ)

∫∞
x q −

∫ ∞
x

iqe−2iω(λ)t

ω(λ)
e

i
ω(λ)(ω(λ)+λ)

∫ t
x qA2(t, λ)dt

A2(x, λ) =

∫ ∞
x

iq(t)e2iω(λ)t

ω(λ)
e

i
ω(λ)(ω(λ)−λ)

∫ t
x qA1(t, λ)dt. (2.16)

Hence eliminating A2,

A1(x, λ) = e
i

ω(ω+λ)

∫∞
x q

+
1

ω2

∫ ∞
x

∫ ∞
t

q(t)q(s)e2iω(s−t)e
i

ω(ω+λ)

∫ t
x qe

i
ω(ω−λ)

∫ s
t qA1(s, λ)ds dt. (2.17)

We now assume that |λ|, and hence |ω|, is large enough so that
∣∣∣e i

ω(λ)(ω(λ)+λ)

∫∞
· q
∣∣∣ ≤ 2 and

1

ω(λ)2

∫ ∞
x

∫ ∞
t
|q(t)| |q(s)|

∣∣∣e i
ω(λ)(ω(λ)+λ)

∫ t
x q
∣∣∣ ∣∣∣e i

ω(λ)(ω(λ)−λ)
∫ s
t q
∣∣∣ ds dt < 1

2
;

this can be achieved in view of Lemma 2.2 (iii) and (iv), respectively. Hence, noting that

|a| = |A1|, we obtain from (2.17) that

‖a(·, λ)‖∞ ≤ 2 +
‖a(·, λ)‖∞

2
,
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which implies that ‖a(·, λ)‖∞ ≤ 4, for such values of λ. Thus, substituting (2.16) and

(2.17) into (2.15)

e−i
∫∞
x qa(x, λ) = 1 +

i

ω(λ+ ω)

∫ ∞
x

qdt+
1

ω2

∫ ∞
x

∫ ∞
t

q(t)q(s)

{
e2iω(s−t) − 1

(λ+ ω)2

}
ds dt

− 1

ω3

∫ ∞
x

∫ ∞
t

∫ ∞
s

q(t)q(s)q(r)

[
i

(ω + λ)3
− ie2iω(s−t)

ω + λ
− ie2iω(r−s)

ω + λ
− ie2iω(r−t)

ω − λ

]

×
{
e

i
ω(ω+λ)

∫∞
r q

+
1

ω2

∫ ∞
r

∫ ∞
p

q(r)q(p)e2iω(u−p)e
i

ω(ω+λ)

∫ p
r qe

i
ω(ω−λ)

∫ u
p qA1(u, λ)dudp

}
dr ds dt

− 1

ω3

∫ ∞
x

∫ ∞
t

∫ ∞
s

q(t)q(s)q(r)

[
ie2iω(s−t−r) − ie2iωr

(λ+ ω)2
+ ie−2iωs − ie−2iωt

(ω − λ)2

]
×
{∫ ∞

r

iq(p)e2iωp

ω
e

i
ω(ω−λ)

∫ p
r qA1(p, λ)dp

}
dr ds dt

= 1 +
i

ω(λ+ ω)

∫ ∞
x

qdt+
1

ω2

∫ ∞
x

∫ ∞
t

q(t)q(s)e2iω(s−t)ds dt

− i(ω + λ)

ω3

∫ ∞
x

∫ ∞
t

∫ ∞
s

q(t)q(s)q(r)e2iω(r−t)e
i

ω(ω+λ)

∫∞
r q

dr ds dt

− (ω + λ)2

ω4

∫ ∞
x

∫ ∞
t

∫ ∞
s

∫ ∞
r

q(t)q(s)q(r)q(p)e2iω(p−t)e
i

ω(ω−λ)
∫ p
r qA1(p, λ)dp dr ds dt

+O

(
1

|λ|4

)
(|λ| → ∞).

We now take the limit x→ −∞. Furthermore, using equation (2.17) we can substitute

for A1(x, λ) in the above equation. The 6-fold integral which arises can be moved directly

into the asymptotic term. Using Lemma 2.2 (iii) to handle the first term from (2.17) we

obtain:

e−i
∫∞
−∞ qa(λ) = lim

x→−∞
e−i

∫∞
x qa(x, λ)

= 1 +
i

ω(λ+ ω)

∫
R
qdt+

1

ω2

∫ ∞
−∞

∫ ∞
t

q(t)q(s)e2iω(s−t)ds dt

− i(ω + λ)

ω3

∫ ∞
−∞

∫ ∞
t

∫ ∞
s

q(t)q(s)q(r)e2iω(r−t)dr ds dt

− (ω + λ)2

ω4

∫ ∞
−∞

∫ ∞
t

∫ ∞
s

∫ ∞
r

q(t)q(s)q(r)q(p)e2iω(p−t)e
i

ω(ω−λ)
∫ p
r qdp dr ds dt

+O

(
1

|λ|4

)
(|λ| → ∞). (2.18)

Consider the anticlockwise contour in the complex upper half-plane γR parametrised

by λ(θ) =
√
R2e2iθ + 1 (θ ∈ [0, π]), with R > 1. This contour is chosen so that
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ω(λ(θ)) = Reiθ; it follows that dλ = iω(λ)2

λ dθ = ω
λ dω. Then∫

γR

λω(λ) log
[
ei

∫∞
−∞ qa(λ)

]
dλ =

∫
γR

{ iλ

λ+ ω

∫
R
qdt+

λ

ω

∫ ∞
−∞

∫ ∞
t

q(t)q(s)e2iω(s−t) ds dt

+
iλ

ω2(ω − λ)

∫ ∞
−∞

∫ ∞
t

∫ ∞
s

q(t)q(s)q(r)e2iω(r−t) dr ds dt

− λ

ω3(ω − λ)2

∫ ∞
−∞

∫ ∞
t

∫ ∞
s

∫ ∞
r

q(t)q(s)q(r)q(p)e2iω(p−t)e
i

ω(ω−λ)
∫ p
r q dp dr ds dt

+O

(
1

|λ|2

)}
dλ (|λ| → ∞). (2.19)

We now consider each integral term on the right-hand side in turn. The first one evaluates

to∫
γR

(
iλ

λ+ ω

∫
R
q dt

)
dλ = i

(∫
R
q dt

)∫
γR

λ(λ−
√
λ2 − 1) dλ =

[
2iR3

3
− 2i
√
R2 + 1

3

]∫
R
q dt,

which is purely imaginary.

To treat the second term, we apply the symmetrisation rule which states that

F ∈ L1(R2), F (x, y) = F (y, x) ((x, y) ∈ R2) =⇒
∫ ∞
−∞

∫ ∞
x

F (x, y) dy dx =
1

2

∫
R2

F.

(2.20)

Indeed notice that we are only integrating over the upper left triangle of the smallest

square of side length [inf supp(q), sup supp(q)]. Call this triangle T1 and the integral over

the triangle IT1. Then, defining λ
ωe

2iω(z−y) = f(z − y),

IT1 =

∫ ∞
x

∫ ∞
y

f(z − y)q(y)q(z)dzdy =

∫ ∞
x

∫ ∞
y

f(|z − y|)q(y)q(z)dzdy

=

∫ ∞
x

∫ ∞
z

f(|y − z|)q(y)q(z)dzdy =

∫ ∞
x

∫ ∞
z

f(y − z)q(y)q(z)dzdy = IT2

where T2 is the lower right triangle. Thus

IT1 =
1

2
(IT1 + IT2) =

1

2
(I(T1 ∪ T2)) =

1

2

∫ ∞
−∞

∫ ∞
−∞

f(|z − y|)q(y)q(z)dydz.

We also make a change of variables in the contour integral, using ω to denote the

transformed variable by a slight abuse of notation.

The transformed contour is γωR := ω(γR), in fact a simple semicircle. Since∫
γR

λ

ω(λ)
e2iω(λ)|s−t| dλ =

∫
γωR

e2iω|s−t| dω = − sin(2R|x− y|)/|x− y|,
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∫
γR

λ

ω

∫ ∞
−∞

∫ ∞
t

q(t)q(s)e2iω(s−t)ds dt dλ =

∫
γR

λ

2ω

∫
R

∫
R
q(t)q(s)e2iω|s−t|ds dt dλ→ −π

2

∫
R
q2

(R→∞) by (2.20) and Lemma 2.4. For the third integral in (2.19) notice that

λ dλ

ω2(ω − λ)
=

dω

ω(ω − λ)
= −(ω + λ) dλ

ω
= −(λ− ω + 2ω)dω

ω
=

(
−2− 1

ω(λ+ ω)

)
dω.

Hence∫
γR

iλ

ω2(ω − λ)

∫ ∞
−∞

∫ ∞
t

∫ ∞
s

q(t)q(s)q(r)e2iω(r−t) dr ds dt dλ

=

∫
γωR

i

(
−2− 1

ω(ω + λ)

)∫ ∞
−∞

∫ ∞
t

∫ ∞
s

q(t)q(s)q(r)e2iω(r−t) dr ds dt dω

= −2i

∫ ∞
−∞

∫ ∞
t

∫ ∞
s

sin(2R(r − t))
(r − t)

q(t)q(s)q(r) dr ds dt+O

(
1

R

)
(R→∞)

noting that the length of the contour γωR is O(R). This is purely imaginary up to the

error term. For the final integral term in (2.19), we have∫
γR

λ

ω3(ω − λ)2

∫ ∞
−∞

∫ ∞
t

∫ ∞
s

∫ ∞
r

q(t)q(s)q(r)q(p)e2iω(p−t)e
i

ω(ω−λ)
∫ p
r qdp dr ds dt dλ

=

∫
γR

λ
[
4ω2 + 4(λ− ω)ω + (λ− ω)2

]
ω3

×
∫ ∞
−∞

∫ ∞
t

∫ ∞
s

∫ ∞
r

q(t)q(s)q(r)q(p)e2iω(p−t)e
i

ω(ω−λ)
∫ p
r qdp dr ds dt dλ

= 4

∫
γωR

∫ ∞
−∞

∫ ∞
t

∫ ∞
s

∫ ∞
r

q(t)q(s)q(r)q(p)e2iω(p−t)e−2i
∫ p
r qdp dr ds dt dω +O

(
1

R

)
(R→∞) where we used Lemma 2.2 (iv) in the last step. By an integration by parts,∫ ∞

r
q(p)e2iω(p−t)e−2i

∫ p
r qdp = − i

2
e2iω(r−t) + ω

∫ ∞
r

e−2i
∫ p
r qe2iω(p−t)dp.

Indeed,∫ ∞
r

q(p)e2iω(p−t)e−2i
∫ p
r qdp

=
i

2

∫ ∞
r

d

dp

(
e−2i

∫ p
r q
)
e2iω(p−t)dp

=
i

2

[
lim
α→∞

[
e−2i

∫ p
r qe2iω(p−t)

]p=α
p=r
− 2iω

∫ ∞
r

e−2i
∫ p
r qe2iω(p−t)dp

]
=
i

2
lim
α→∞

{
e−2i

∫ α
r qe2iω(α−t)

}
− i

2
e2iω(r−t) + ω

∫ ∞
r

e−2i
∫ p
r qe2iω(p−t)dp.
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As =ω > 0 and α− t > 0,∣∣∣e2i
∫∞
α qe2iω(α−t)

∣∣∣ =
∣∣∣e−2=ω(α−t)

∣∣∣→ 0 (α→∞).

Thus

4

∫
γωR

∫ ∞
−∞

∫ ∞
t

∫ ∞
s

∫ ∞
r

q(t)q(s)q(r)q(p)e2iω(p−t)e−2i
∫ p
r q dp dr ds dt dω

= −2i

∫
γωR

∫ ∞
−∞

∫ ∞
r

∫ ∞
s

q(t)q(s)q(r)e2iω(r−t) dr ds dt dω

+

∫
γωR

4ω

∫ ∞
−∞

∫ ∞
t

∫ ∞
s

q(t)q(s)q(r)

[∫ ∞
r

e−2i
∫ p
r qe2iω(p−t)dp

]
dr ds dt dω. (2.21)

This leaves us with two integrals to consider. Performing the contour integral first, we

see that the first term is purely imaginary. The remaining integral can be resolved by

repeated integrations by parts, starting from the innermost integral. Observe that for

any z ∈ R and x ≥ v and by integrating by parts∫ ∞
z

q(x)e−2i
∫∞
x q

[∫ ∞
x

e2i
∫∞
y qe2iω(y−v)dy

]
dx

=
i

2
e−2i

∫∞
z q

∫ ∞
z

e2i
∫∞
y qe2iω(y−v)dy +

1

4ω
e2iω(z−v). (2.22)

Thus, by an integration by parts, the last term in (2.21) equals∫
γωR

∫ ∞
−∞

∫ ∞
t

q(t)q(s)e2iω(s−t) ds dt dω

+

∫
γωR

2iω

∫ ∞
−∞

∫ ∞
t

q(t)q(s)e−2i
∫∞
s q

[∫ ∞
s

e2i
∫∞
p qe2iω(p−t)dp

]
ds dt dω. (2.23)

Again we have two integrals to consider. Referring back to the treatment of the second

integral (page 29), after symmetrisation the first term in (2.23) tends to −π
2

∫
R q

2 as

R→∞ by Lemma 2.4. We can again apply (2.22) to the second integral in (2.23), then
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integrate by parts in the innermost integral, giving∫
γωR

2iω

∫ ∞
−∞

q(t)

∫ ∞
t

q(s)e−2i
∫∞
s q

[∫ ∞
s

e2i
∫∞
p qe2iω(p−t)dp

]
ds dt dω

= −
∫
γωR

ω

∫
R
q(t)e−2i

∫∞
t q

[∫ ∞
t

e2i
∫∞
p qe2iω(p−t) dp

]
dt dω +

i

2

∫ ∞
−∞

q

∫
γωR

dω

= −
∫
γωR

∫ ∞
−∞

q(t) e−2i
∫∞
t q

∫ ∞
t

q(p) e2i
∫∞
p q e2iω(p−t) dp dt dω

=

∫ ∞
−∞

∫ ∞
t

q(t) q(p) e2i
∫ t
p q

sin(2R(p− t))
(p− t)

dp dt.

Taking the real part, symmetrising and applying Lemma 2.5 twice, we find that

<

(∫
γωR

2iω

∫ ∞
−∞

q(t)

∫ ∞
t

q(s)e−2i
∫∞
s q

[∫ ∞
s

e2i
∫∞
p qe2iω(p−t)dp

]
ds dt dω

)

=

∫ ∞
−∞

∫ ∞
t

q(t)q(p) cos
(

2

∫ t

p
q
)sin(2R(p− t))

(p− t)
dp dt

=
1

2

∫ ∞
−∞

∫ ∞
−∞

q(t)q(p)

(
cos
(

2

∫ ∞
p

q
)

cos
(

2

∫ ∞
t

q
)

+ sin
(

2

∫ ∞
p

q
)

sin
(

2

∫ ∞
t

q
)) sin(2R|p− t|)

|p− t|
dp dt

→ π

2

∫ ∞
−∞

q2(t)

[
cos2

(
2

∫ ∞
t

q
)

+ sin2
(

2

∫ ∞
t

q
)]
dt =

π

2

∫ ∞
−∞

q2(t)dt

as R→∞. This cancels out the first term of (2.23). In summary, (2.19) comes down to

lim
R→∞

<
∫
γR

λω(λ) log
[
e−i

∫∞
−∞ qa(λ)

]
dλ = −π

2

∫
R
q2(x)dx. (2.24)

Let 0 < ε < 1 and consider the closed contour Γ̃Rε = ΓR,ε ∪ Γε ∪ γR,ε where

γR,ε = γR ∩ {λ : ε ≤ =λ}, Γε = [−1 + iε, 1 + iε], ΓR,ε = [κ−,−1 + iε] ∪ [1 + iε,κ+].

Here κ± are the points where the contour γR intersects the line =λ = ε. In ad-

dition, we consider the two-component contour γcR,ε = γR \ γR,ε. Recalling that

λω(λ) log
[
e−i

∫∞
−∞ qa(λ)

]
= O(1) (|λ| → ∞) from (2.18), we see that

<
∫
γcR,ε

λω(λ) log
[
e−i

∫∞
−∞ qa(λ)

]
dλ = O(ε) (ε→ 0).
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On the other hand, we find using Cauchy’s Integral Theorem that

−<
∫
γR,ε

λω(λ) log
[
e−i

∫∞
−∞ qa(λ)

]
dλ

= <
(∫

ΓR,ε

λω(λ) log a(λ) dλ+

∫
Γε

λω(λ) log a(λ) dλ+ log
[
e−i

∫∞
−∞ q

] ∫
ΓR,ε∪Γε

λω(λ) dλ
)
.

(2.25)

By Lemma 2.2 (ii), it is clear that <ω(−µ + iε) = −<ω(µ + iε) and =ω(−µ + iε) =

=ω(µ+ iε). Hence the imaginary part of the integrand of the last integral in (2.25) is

odd, and the logarithmic factor is purely imaginary. Thus the real part of the last term

in (2.25) vanishes.

The first integral in (2.25) can be rewritten as∫
ΓR,ε

λω(λ) log a(λ) dλ =

∫
ΓR,ε

λω(λ) log |a(λ)| dλ+ i

∫
ΓR,ε

λω(λ) arg a(λ) dλ.

Now it is clear that

lim
ε→0
=
∫

ΓR,ε

λω(λ) arg a(λ) dλ = 0,

as arg a(λ) is real and bounded and =(λω(λ))→ 0 uniformly. Thus we need only consider

lim
ε→0

∫
ΓR,ε

λω(λ) log |a(λ)| dλ = lim
ε→0

∫
(−
√
R2+1,−1]∪[1,

√
R2+1)

(t+iε)ω(t+iε) log |a(t+ iε)| dt.

In view of (2.14),

lim
λ→±1

λω(λ) log |a(λ)| = 0

for real λ; also a is continuous and has no zeros in R \ [−1, 1]. Thus (t + iε)ω(t +

iε) log |a(t+ iε)| is bounded uniformly in ε on (−
√
R2 + 1,−1] ∪ [1,

√
R2 + 1), and by

dominated convergence

lim
ε→0
<
∫

ΓR,ε

λω(λ) log a(λ) dλ =

∫
(−
√
R2+1,−1]∪[1,

√
R2+1)

λω(λ) log |a(λ)| dλ. (2.26)

Finally we consider the second integral in (2.25),∫
Γε

λω(λ) log a(λ) dλ

=

∫ 1

−1
(t+ iε)ω(t+ iε) log |a(t+ iε)| dt+ i

∫ 1

−1
(t+ iε)ω(t+ iε) arg a(t+ iε) dt.

(2.27)
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For the first of these integrals, we note that a has a finite number of distinct zeros in

the interval (−1, 1), which we label β1, . . . , βM in increasing order. The (real) logarithm

function is integrable at zero and so, by dominated convergence and (2.11), this integral

tends to the purely imaginary limit∫ 1

−1
t ω(t) log |a(t)| dt =

∫ 1

−1
it
√

1− t2 log |a(t)| dt

as ε→ 0. Concerning the second integral in (2.27), we note that, by Lemma 2.3, a(λ) is

real for λ ∈ (−1, 1). Therefore, between any two zeros of a on (−1, 1), the argument of a

is constant. Thus we need only consider the argument of a at a zero βj . We write

a(λ) = (λ− βj) b(λ),

where b is analytic and non-zero in some neighbourhood Ω of βj . The respective arguments

satisfy

arg a(λ) = arg(λ− βj) + arg b(λ)

and arg b(λ) is continuous at βj . Therefore, if we consider a(λ) on the intersection of

{λ : =λ = ε} with B√ε(βj), the ball of radius
√
ε and centre βj , the argument of b is

almost constant and thus the change in the argument of a between the left and right ends

of this interval is ∼ −2 arccos
√
ε, which tends to −π in the limit ε → 0. The limiting

values of the argument of a thus have the form

arg a(λ) = arg a(−1 + 0)− π
M∑
m=1

χ(βm,1)(λ) (λ ∈ (−1, 1) \ {βi | i = 1 . . .M}).

Thus, bearing in mind (2.11),

i lim
ε→0

∫ 1

−1
(λ+ iε)ω(λ+ iε) arg a(λ+ iε) dλ

= − arg a(−1 + 0)

∫ 1

−1
λ
√

1− λ2 dλ+ π
M∑
m=1

∫ 1

βm

λ
√

1− λ2 dλ

= −π
3

∑
m

(1− β2
m)

3
2 . (2.28)

33



Hence, by (2.24), (2.25), (2.26), (2.28) and (2.11),

π

2

∫
R
q2 = − lim

R→∞
lim
ε→0
<
∫
γR,ε

λω(λ) log
[
ei

∫
R q a(λ)

]
dλ

=

∫
(−∞,−1]∪[1,∞)

|λ|
√
λ2 − 1 log |a(λ)| dλ+

π

3

∑
m

(1− β2
m)

3
2 . (2.29)

This completes the proof of Theorem 2.3.

4 Schrödinger Case: The Transmission Coefficient

The following is a more detailed exposition of the paper of Deift and Killip [11], which

has served as a basis for the Dirac treatment in Section 3 (which is, however, more

complicated). It is included here for the purposes of comparison and also because the

paper for Deift-Killip is cursory on some of the details. We also take a slightly different

approach here in that we consider truncated approximations to the potential rather than

continuous approximations.

Throughout this section we shall again assume that q is square integrable and supported

on a compact subset of [0,∞). For each such q it is well known that for every k ∈ C,

there exists a solution to

−ψ′′(x) + q(x)ψ(x) = k2ψ(x), ∀x ∈ R (2.30)

such that ψ(x) = eikx for all x to the right of the support of q. Moreover, for each x,

ψ(x) and ψ′(x) are analytic functions of k (this follows from ψ being a solution of the

above equation with an analytic boundary condition).

To the left of the support of q, ψ must satisfy the free Schrödinger equation (i.e. (2.30)

with q identically zero) and so take the form

ψ(x) = a(k)eikx + b(k)e−ikx. (2.31)

As ψ depends analytically on k, so do a and b. Since e±ikx represents waves propagating

to the right/left in the time dependent picture, it is natural to term t = 1
a and r = b

a the

transmission and reflection coefficients respectively. We are now in a position to prove

Theorem 2.4.
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Proof. We begin by rewriting equation (2.30) as an integral equation. Let u,w be

two linearly independent solutions of the homogeneous equation

ψ′′ + k2ψ = 0. (2.32)

The inhomogeneous equation (2.30) can be written as a system of equations as follows:

 ψ

ψ′

′ =
 0 1

−k2 0

 ψ

ψ′

+

 0

qψ



We let S :=

 ψ

ψ′

 = ΦP for Φ =

 u w

u′ w′

 and some unknown P ; this is known

as the variation of constants method. Then S′ = Φ′P + ΦP ′, allowing us to deduce that

ΦP ′ =

 0

qψ

. Since u,w are linearly independent solutions, we know that det Φ is

non zero; hence Φ is invertible. Thus, as u,w are continuous q is integrable with compact

support and ψ is continuous,

P (x) = − 1

uw′ − wu′

∫ ∞
x

 −w
u

 qψ dt+ C, (x ≥ 0).

Therefore

S = Φ

 1

uw′ − wu′

∫ ∞
x

 w

−u

 qψ dt+ C


yielding the integral equation

ψ(x) = c1u(x) + c2w(x) +
1

u(x)w′(x)− w(x)u′(x)

∫ ∞
x

(u(x)w(t)− w(x)u(t)) q(t)ψ(t) dt.

(2.33)

We have assumed that u,w are any linearly independent solutions of (2.32); thus u(x) =

eikx and w(x) = e−ikx is sufficient. This gives from (2.33)

ψ(x) = c1e
ikx + c2e

−ikx +
i

2k

∫ ∞
x

(
eikx−ikt − eikt−ikx

)
q(t)ψ(t) dt.
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Multiplying by e−ikx and defining v(x) = e−ikxψ(x) we obtain

v(x) = c1 + c2e
−2ikx +

i

2k

∫ ∞
x

(
1− e2ik(t−x)

)
q(t)v(t) dt.

Since we have chosen our solution to the right of the support of q such that ψ(x) = eikx,

v(x) = 1 to the right of the support of q and so we have that c1 = 1 and c2 = 0. Thus

v(x) = 1 +
i

2k

∫ ∞
x

(
1− e2ik(t−x)

)
q(t)v(t) dt, (2.34)

is an integral form of the equation (2.30).

To proceed we first note that

v(x) = 1 +
i

2k

∫ ∞
x

[1− e2ik(y−x)]q(y)v(y)dy

=

(
1 +

i

2k

∫ ∞
x

q(y)v(y)dy

)
︸ ︷︷ ︸

E1

+e−2ikx

(
− i

2k

∫ ∞
x

e2ikyq(y)v(y)dy

)
︸ ︷︷ ︸

E2

,

where we notice that for x to the left of the support of q, E1 and E2 are constant. This

gives us by comparison with (2.31), noting that 1 and e−2ikx are linearly independent,

a(x, k) = 1 +
i

2k

∫ ∞
x

q(y)v(y)dy.

We solve this by repeated substitution for v(·) from (2.34).

a(x, k) = 1 +
i

2k

∫ ∞
x

q(y)dy − 1

4k2

∫ ∞
x

∫ ∞
y

[1− e2ik(z−y)]q(y)q(z)dzdy

− i

8k3

∫ ∞
x

∫ ∞
y

∫ ∞
z

[1− e2ik(z−y)][1− e2ik(w−z)]q(y)q(z)q(w)dydzdw

+
1

16k4

∫ ∞
x

∫ ∞
y

∫ ∞
z

∫ ∞
w

[1− e2ik(z−y)][1− e2ik(w−z)][1− e2ik(u−w)]

× q(y)q(z)q(w)q(u)v(u)dudydzdw. (2.35)

We consider in more detail the four-fold integral in (2.35). Define

f(k) :=
1

16

∫ ∞
x

∫ ∞
y

∫ ∞
z

∫ ∞
w

[1− e2ik(z−y)][1− e2ik(w−z)][1− e2ik(u−w)]

× q(y)q(z)q(w)q(u)v(u)dudydzdw.
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Then

|f(k)| ≤ 1

2

∫
supp(q)

∫
supp(q)

∫
supp(q)

∫
supp(q)

|q(y)||q(z)||q(w)||q(u)||v(u)|dudydzdw.

Choosing k large enough so that 1
|k|
∫
supp(q) q(x)dx ≤ 1

2 , (2.34) gives

||v||∞ ≤ 1 +
1

|k|

∫
supp(q)

q(x)dx||v||∞,

giving ||v||∞ ≤ 2. Thus |f(k)| ≤M for some M > 0. Thus,∣∣∣∣f(k)

k4

∣∣∣∣ ≤ M

|k|4
→ 0, k →∞

and so we can write I1 = O(k−4). Returning to the integral equation for a we have

a(x, k) = 1 +
i

2k

∫ ∞
x

q(y)dy − 1

4k2

∫ ∞
x

∫ ∞
y

[1− e2ik(z−y)]q(y)q(z)dydz

− i

8k3

∫ ∞
x

∫ ∞
y

∫ ∞
z

[1− e2ik(z−y)][1− e2ik(w−z)]q(y)q(z)q(w)dydzdw

+O(k−4)

It is now our aim to show, for γR an anticlockwise contour parametrised by k(θ) = Reiθ,

θ ∈ [0, π], that

lim
R→∞

∫
γR

k2 log a(k) dk = −π
8

∫
R
q2(x) dx

We know that for |u| < 1, log(1 + u) =
∑∞

n=1
(−1)n+1

n un. Define u = a − 1. Then

considering k initially large enough so that |a(x, k)− 1| < 1

log a(x, k) = u− u2

2
+
u3

3
+O(k−4)

=
i

2k

∫ ∞
x

q(y)dy − 1

4k2

∫ ∞
x

∫ ∞
y

[1− e2ik(z−y)]q(y)q(z)dydz

− i

8k3

∫ ∞
x

∫ ∞
y

∫ ∞
z

[1− e2ik(z−y)][1− e2ik(w−z)]q(y)q(z)q(w)dydzdw

+
1

8k2

(∫ ∞
x

q(y)dy

)2

+
i

8k3

(∫ ∞
x

q(y)dy

)∫ ∞
x

∫ ∞
y

[
1− e2ik(z−y)

]
q(y)q(z)dzdy

− i

24k3

(∫ ∞
x

q(y)dy

)3

+O(k−4).

If we consider the two-fold integral in more detail it is possible for us to perform a

symmetrisation procedure in the same way as we did for the Dirac case on page 28,

with the function f instead defined by 1− e2ik(z−y) = f(z − y). Incorporating this
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symmetrisation into our expression for log a(x, z) and introducing our chosen contour

integral and limit,

lim
R→∞

∫
γR

k2 log a(k)dk

= lim
R→∞

∫
γR

[ ik
2

∫
R
q(x)dx+

1

8

∫
R

∫
R
e2ik|x−y|q(x)q(y)dxdy

− i

8k

∫ ∞
x

∫ ∞
y

∫ ∞
z

[1− e2ik(z−y)][1− e2ik(w−z)]q(y)q(z)q(w)dydzdw

+
i

8k

∫ ∞
−∞

q(x)dx

∫ ∞
x

∫ ∞
y

[1− e2ik(z−y)]q(y)q(z)dydz

− i

24k

(∫ ∞
x

q(x)dx

)3

+O(k−2)
]
dk.

= lim
R→∞

∫
γR

[ ik
2

∫
R
q(x)dx+

1

8

∫
R

∫
R
e2ik|x−y|q(x)q(y)dxdy

− i

8k

{∫ ∞
x

∫ ∞
y

∫ ∞
z

[1− e2ik(z−y)][1− e2ik(w−z)]q(y)q(z)q(w)dydzdw

−
∫ ∞
x

q(x)dx

∫ ∞
x

∫ ∞
y

[1− e2ik(z−y)]q(y)q(z)dydz +
1

3

(∫ ∞
x

q(x)dx

)3 }
+O(k−2)

]
dk.

We will now consider each term in turn; note first that the asymptotic term vanishes in

the limit and further that

lim
R→∞

∫
γR

ik

2

∫
R
q(x)dxdk = lim

R→∞

[
−
∫ R

−R

ik

2
dk
] ∫

R
q(x)dx = 0

Recognising the term

lim
R→∞

∫
γR

1

8

∫
R

∫
R
e2ik|x−y|q(x)q(y)dxdydk = −π

8
lim
R→∞

∫
R

[∫
R

sin(2R|x− y|)
π|x− y|

q(x)dx

]
q(y)dy.

we see that we can apply Lemma 2.4 from page 23 to obtain

lim
R→∞

∫
γR

1

8

∫
R

∫
R
e2ik|x−y|q(x)q(y)dxdydk = −π

8

∫
R
q2(x)dx.
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We now have only to consider

lim
R→∞

∫
γR

[
− i

8k

{∫ ∞
x

∫ ∞
y

∫ ∞
z

[1− e2ik(z−y) − e2ik(w−z) + e2ik(w−y)]q(y)q(z)q(w)dydzdw

−
∫ ∞
x

q(x)dx

∫ ∞
x

∫ ∞
y

[1− e2ik(z−y)]q(y)q(z)dydz +
1

3

(∫ ∞
x

q(x)dx

)3 }]
dk

(2.36)

Consider the integral
∫
γR

eiαk

k dk. As ∂
∂α

(
eiαk

k

)
= ieiαk, we can write

eiαk

k
=

1

k
+ i

∫ α

0
eiskds

and so ∫
γR

eiαk

k
dk =

∫
γR

1

k
dk + i

∫
γR

∫ α

0
eiskdsdk = πi+ i

∫ α

0

∫
γR

eiskdkds

= πi− i
∫ α

0

∫ R

−R
eiskdkds = πi− 2i

∫ α

0

sin(sR)

s
ds

Now sin(sR)
s is an even function of s, and so∫
γR

eiαk

k
dk = πi− i

∫ α

−α

sin(sR)

s
ds

= i

[
π −

∫ αR

−αR

sin(y)

y
dy

]
−→ 0, pointwise as R→∞, α > 0

Consider α equal in turn to each of 2|z − y|, 2|w − z| and 2|w − y|. Then∫
γR

eiαk

k
dk → 0, almost everywhere as R→∞

and
∫
γR

eiαk

k dk has a uniform bound for all R and α. Thus uniform convergence follows

by the dominated convergence theorem. Considering (2.36) again we are now left with

lim
R→∞

∫
γR

[
− i

k

{∫ ∞
x

∫ ∞
y

∫ ∞
z

q(y)q(z)q(w)dydzdw

−
∫ ∞
x

q(x)dx

∫ ∞
x

∫ ∞
y

q(y)q(z)dydz +
1

3

(∫ ∞
x

q(x)dx

)3 }]
dk
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If we consider the integral∫ ∞
x

∫ ∞
y

∫ ∞
z

q(y)q(z)q(w)dydzdw =

∫
S
q̃(x)dx =

∫
πS
q̃(π−1x)︸ ︷︷ ︸

=q̃(x)

dx, where π ∈ S3

=
1

6

∑
π∈S3

∫
πS
q̃(x)dx =

1

6

∫
cube

q̃(x)dx

where we have used that

[inf supp(q), sup supp(q)]3 = {(x, y, z)| inf supp(q) ≤ x, y, z ≤ sup supp(q)}

= {any two or three of x, y, z are equal}︸ ︷︷ ︸
set of measure 0

∪{(x, y, z)|x 6= y 6= z 6= x}︸ ︷︷ ︸
=:S

where

S = {x < y < z}∪{y < x < z}∪{x < z < y}∪{y < z < x}∪{z < x < y}∪{z < y < x}.

Thus

lim
R→∞

∫
γR

[
− i

k

{∫ ∞
x

∫ ∞
y

∫ ∞
z

q(y)q(z)q(w)dydzdw

−
∫ ∞
x

q(x)dx

∫ ∞
x

∫ ∞
y

q(y)q(z)dydz +
1

3

(∫ ∞
x

q(x)dx

)3 }]
dk

= lim
R→∞

∫
γR

[
− i
{1

6

(∫ ∞
−∞

q(x)dx

)3

− 1

2

(∫ ∞
x

q(x)dx

)3

+
1

3

(∫ ∞
x

q(x)dx

)3 }]
dk

= 0

Collecting the above results we see that all terms in the integral expansion for log a(x, k)

vanish except one. We have thus shown that

lim
R→∞

∫
γR

k2 log a(k)dk = −π
8

∫
R
q2(x)dx

Since a may have zeros, log(a) need not be analytic in the upper half plane. However,

at any point =(k) > 0 where a(k) vanishes, equation (2.30) must have a L2(R) solution.

This follows because our solution ψ(x) outside of the support of q has the form

ψ(x) =


a(k)eikx + b(k)e−ikx, x < inf supp(q)

eikx, x > sup supp(q)

.
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Further, since we are in the limit point case, only one such solution exists (see [10] page

231 Corollary 2). This solution is an eigenfunction. Thus a(k) vanishes precisely when k2

is an eigenvalue; these eigenvalues are negative real numbers. Indeed, as we take =k > 0

and self-adjointness implies that the eigenvalues are real, k ∈ iR. Since q is compactly

supported, there are only finitely many such eigenvalues (indeed, as per [57], less than

1 +
∫
R |xq−(x)|dx). Let {iβm} enumerate the zeros of a. These zeros can only be of finite

order. Indeed, since a is an analytic function of k, we can write its Taylor expansion

around any point k0,

a(k) =
∞∑
n=0

αn(k − k0)n, αi =
f (i)(k0)

i!
6= 0 for at least one i.

Assume that a has a zero of infinite order at k = ε. Then, the Taylor expansion of a

around ε would reduce to

a(k) = a(ε) = 0, ∀k.

This is a contradiction, as a(k) = 0 only when k2 is an eigenvalue, which is a finite set of

k from above. Thus all zeros of a are of finite order. Define the corresponding Blaschke

product for the upper half plane,

B =
∏
m

(
k − iβm
k + iβm

)αm
, αm the multiplicity of the zero βm.

Note that it can be shown that alpham = 1 for all m. Then log(Bt) = log(Ba ) = − log( aB )

is analytic in the upper half plane, where t is the transmission coefficient. This follows

because a is analytic in the upper half plane, and B has zeros only at the points where

a = 0. Thus a
B is analytic in the upper half plane, and the logarithm of an analytic function

is an analytic function. Now a(−k) = a(k) and B(−k) =
∏
m

(
−k−iβm
−k+iβm

)
= (B(k)) (for

k ∈ R). Thus

=[log(B(−k)t(−k))] = =
[
− log

a(−k)

B(−k)

]
= =

[
−log

a(k)

B(k)

]
= =

[
log

a(k)

B(k)

]
= =[− log(B(k)t(k))],
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i.e. =[log(B(k)t(k))] is an odd function of k ∈ R. Thus, using that |B| = 1∫
R
k2 log |a(k)|dk =

∫
R

(log |a| − log |B|)k2dk =

∫
R

log
∣∣∣ a
B

∣∣∣ k2dk =

∫
R
< log

( a
B

)
k2dk

=

∫
R

(< log
( a
B

)
+ i= log

( a
B

)
)k2dk =

∫
R

log
( a
B

)
k2dk

=

∫
R

(log(a)− log(B))k2dk = lim
R→∞

∫
γR

[− log(a) + log(B)]k2dk

=
π

8

∫
R
q2(x)dx+ lim

R→∞

∫
γR

log(B)k2dk

where in the eighth equality we have used, in an essential way, the fact that a and B

have exactly the same zeros. Now

lim
R→∞

∫
γR

log(B)k2dk = lim
R→∞

∑
m

∫
γR

log

(
k − iβm
k + iβm

)
k2dk

Thus, for k large enough, we have

lim
R→∞

∫
γR

log(B)k2dk = lim
R→∞

∫
γR

[∑
m

αm

{
k2 log(1− iβm

k
)− k2 log(1 +

iβm
k

)
}

= lim
R→∞

∫
γR

[∑
m

αm

{(
− iβmk −

k2

2

(
− iβm

k

)2

+
k2

3

(
− iβm

k

)3 )
−
(
iβmk −

k2

2

(
iβm
k

)2

+
k2

3

(
iβm
k

)3 )
+O(k−2)

}]
dk

= lim
R→∞

∑
m

αm

[ ∫
γR

(
−2iβmk +

2iβ3
m

3k

)
dk
]

= −2π

3

∑
m

αmβ
3
m

Now
2π

3

∑
m

αmβ
3
m > 0

as =k ≥ 0 implies that βm > 0 for all m. This provides our desired estimate (2.9). �

5 Dirac Case: The Spectral Function

We now proceed to prove Theorem 2.1. We shall show that for all compact subsets

K ⊂ R \ [−1, 1] of positive Lebesgue measure, ρ(K) > 0. This implies the statement

of Theorem 2.1; indeed, assume λ ∈ R \ [−1, 1] is not a growth point of the absolutely
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continuous part of the spectral function, ρac. Then there is ε > 0 such that ρac([λ− ε, λ+

ε]) = 0. Let B ⊂ R be an open set of Lebesgue measure < ε such that ρsing(R \B) = 0.

Then K := [λ− ε, λ+ ε] \B is compact and has positive Lebesgue measure, so by the

above

0 < ρ(K) = ρac(K) ≤ ρac([λ− ε, λ+ ε]),

a contradiction.

The proof of the above statement will use the following estimate (see [11])

Lemma 2.5. Let A ⊂ R be open and let w ∈ L1
loc(Ω), w > 0. Let (ρn)n∈N be a sequence

of absolutely continuous non-decreasing functions which converge to a non-decreasing

function ρ at the points of continuity of ρ. Let K ⊂ A be compact and of positive Lebesgue

measure. Then

lim sup
n→∞

∫
K

log

(
ρ′n
w

)
w

w(K)
≤ log

(
ρ(K)

w(K)

)
, (2.37)

where w(K) =
∫
K w.

Proof. Let

φn(x) = max{0, 1− n · dist(x,K)}, (x ∈ R, n ∈ N).

Then supp(φn(x)) ⊂ [inf K−1, supK+ 1]. Further, (φn)n∈N is a non increasing sequence

converging to χK pointwise as n→∞, the characteristic function of K. Thus

ρ(K) =

∫
R
χK(x) dρ = lim

m→∞

∫
R
φm(x) dρ = lim

m→∞
lim
n→∞

∫
R
φm(x) dρn ≥ lim sup

n→∞

∫
K
ρ′n,

where the second equality follows from the monotone convergence theorem, the third by

Helly’s integration theorem and the inequality from the fact that φn ≥ χK . Thus

log

(
ρ(K)

w(K)

)
≥ lim sup

n→∞
log

∫
K

ρ′n
w

w

w(K)
≥ lim sup

n→∞

∫
K

log

(
ρ′n
w

)
w

w(K)
,

where the last inequality follows from Jensen’s Inequality (see [51] Theorem 3.3). �

From Lemma 2.1 and Lemma 2.5 we see that it is sufficient to prove that∫
K

(
− log

(
ρ′n
w

)
w

)
=

∫
K

(
− log

[
=mn(λ+ i0)

πw(λ)

]
w(λ)

)
dλ

is bounded above uniformly in n for some positive weight function w. As qn is square

integrable with compact support, the Titchmarsh-Weyl m-function for the Dirac equation
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associated with (2.10) with boundary condition (2.5) can be expressed in terms of the

solution y of (2.12),

mn(λ) =
yn,2(0, λ)

yn,1(0, λ)
= i

λ− 1

ω(λ)

an(λ) + bn(λ)

an(λ)− bn(λ)
= i

λ− 1

ω(λ)

1 + rn(λ)

1− rn(λ)
,

denoting by an and bn the coefficients of yn, and by rn the corresponding reflection

coefficient. Conversely rn(λ) = mn(λ)−i(λ−1)/ω(λ)
mn(λ)+i(λ−1)/ω(λ) . Thus

|tn(λ)|2 = 1− |rn(λ)|2 =
4<
(
mn(λ+ i0) i(λ−1)

ω(λ)

)
∣∣∣mn(λ+ i0) + i(λ−1)

ω(λ)

∣∣∣2
for a.e. λ ∈ R \ [−1, 1]. Now the spectrum is purely absolutely continuous in this set

because the potential has compact support, and so (see [24]) 0 < lim
ε→0
=mn(λ+ iε) <∞

and (λ− 1)/ω(λ) > 0. Consequently

lim
ε→0

∣∣∣∣mn(λ+ iε) +
i(λ+ iε− 1)

ω(λ+ iε)

∣∣∣∣2 =

(
λ− 1

ω(λ)
+ = lim

ε→0
mn(λ+ iε)

)2

+ (< lim
ε→0

mn(λ+ iε))2

≥
(
λ− 1

ω(λ)

)2

(λ ∈ R \ [−1, 1]). Thus we can estimate

1

|an(λ)|2
= |tn(λ)|2 ≤ 4ω(λ)

λ− 1
= lim
ε→0

mn(λ+ iε).

Now let δ > 0 and apply Lemma 2.5 withA := R\[−1−δ, 1] and w(λ) := |λ− 1|/(4π
√
λ2 − 1)

(λ ∈ A). For any compact set K ⊂ A of positive Lebesgue measure, we find using Theo-

rem 2.3 and the facts that |an| ≥ 1 and

|λ− 1|√
λ2 − 1

=

√
λ2 − 1

|λ+ 1|
≤
√
λ2 − 1

δ
(λ ∈ A)
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that

−
∫
K

log

(
ρ′n
w

)
w = −

∫
K

log

(
= limε→0mn(λ+ iε)

πw(λ)

)
w(λ) dλ

= − 1

4π

∫
K

log

(
4= limε→0mn(λ+ iε)ω(λ)

λ− 1

)
|λ− 1|√
λ2 − 1

dλ

≤ 1

2π

∫
K

log |an(λ)| |λ|
δ

√
λ2 − 1 dλ

≤ 1

2πδ

∫
R\(−1,1)

log |an(λ)| |λ|
√
λ2 − 1 dλ (2.38)

≤ 1

4δ

∫
R
q2
n ≤

1

4δ

∫
R
q2.

Thus the integral in (2.37) is bounded below independently of n ∈ N, and so ρ(K) > 0.

This concludes the proof of Theorem 2.1.

Remark The inequality (2.38) is rather a bad estimate for large values of λ; indeed, the

bounded factor |λ−1|√
λ2−1

is replaced with the upper bound |λ|δ
√
λ2 − 1, which grows as λ2

for λ→ ±∞, in order to fit the estimate (2.8).

In fact, the assertion of theorem 2.1 will already follow if∫
(−∞,−1]∪[1,∞)

λω

λ2 + 1
log |an(λ)| dλ

is bounded above. Estimating this integral by the method of Section 3 turns out to be

easier due to the better decay properties of the integrand, and gives, instead of (2.8)

∫
(−∞,−1]∪[1,∞)

λω

λ2 + 1
log(an(λ)) dλ = −

√
2π log |an(i)| − π

M∑
m=1

∫ 1

βm

λ
√

1− λ2

λ2 + 1

≤ −
√

2π log |an(i)|,

where, again, the βm, m ∈ {1, 2, ...,M}, are the zeros of a. More generally∫
(−∞,−1]∪[1,∞)

λω

λ2 + α2
log |an(λ)| dλ ≤ −

√
2π log |an(iα)|

for any α > 0. This means that to obtain an equivalent result to Theorem 2.1 (page 15)

one only needs to show that there exists an α > 0 such that |an(iα)|9 0 as the cut off

point of the potential tends towards infinity. This seems to be a very weak condition and

its relation to the L2 condition in Theorem 2.1 is somewhat obscure. Note that if we

consider a constant potential, for which the assertion of Theorem 2.1 clearly does not
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hold, then |an(iα)| → 0 for all α > 0 (n→∞).

6 Schrödinger Case: The Spectral Function

We now proceed to prove Theorem 2.2. Again it is enough to show that for all compact

subsets K ⊂ R \ [−1, 1] of positive Lebesgue measure, ρ(K) > 0. From Lemma 2.1 and

Lemma 2.5 we again see that it is sufficient to prove that∫
K

(
− log

(
ρ′n
w

)
w

)
=

∫
K

(
− log

[
=mn(λ+ i0)

πw(λ)

]
w(λ)

)
dλ

is bounded above uniformly in n for some positive weight function, w. As qn is square

integrable with compact support, the Weyl-Titchmarsh function for the Schrödinger

equation associated with (2.1) with boundary condition (2.2) can be expressed in the

form

m(λ) =
ψ′(0, λ)

ψ(0, λ)

and so (where ψ is given by (2.31))

mn(k2) = ik

(
an(k)− bn(k)

an(k) + bn(k)

)
= ik

(
1− rn(k)

1 + rn(k)

)
using r = b

a . We can rearrange this to give

rn(k) =
ik −mn(k2)

ik +mn(k2)
.

Thus for k2 ∈ K, k > 0 (i.e. λ = k2 + i0)

|tn|2 = 1− |r2
n| = 1− ik −mn

ik +mn

ik + m̄n

ik − m̄n

=
(ik +mn)(ik − m̄n)− (ik −mn)(ik + m̄n)

(ik +mn)(ik − m̄n)

=
−ikm̄n + ikmn − ikm̄n + ikmn

−|ik +mn|2
=

2k
i (mn − m̄n)

|ik +mn|2

=
4k=mn

|mn + ik|2

≤ 4=mn

k
, as |k − imn|2 = (k + =mn)2 + (<mn)2 ≥ k2
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where the last two inequalies uses the fact that =(mn) ≥ 0 for such k, as it is a Herglotz

function. Choosing w(λ) =
√
λ

4π ,∫
K

(
− log

[
=mn(λ+ i0)

πw(λ)

]
w(λ)

)
dλ =

1

4π

∫
K

(
− log

(
4=mn√

λ

)√
λ

)
dλ

=
1

4π

∫
k2∈K,k>0

(
− log

(
4=mn

k

)
2k2dk

)
≤ 1

2π

∫
k2∈K,k>0

log

∣∣∣∣ 1

tn

∣∣∣∣2 k2dk

≤ 1

π

∫
k2∈K,k>0

log

∣∣∣∣ 1

tn

∣∣∣∣ k2dk ≤ 1

π

∫
R

log

∣∣∣∣ 1

tn

∣∣∣∣ k2dk ≤ 1

8

∫
R
q2
ndx

≤ 1

8

∫
R
q2dx,

which proves the required uniform boundedness.
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Chapter 3
Spherically Symmetric Dirac Operators

with Square Integrable Potentials

As discussed in the introduction, the Dirac operator is the fundamental object in rela-

tivistic quantum mechanics. Its classical form in three-dimensions is

T3 = −iα · ∇+ α0 + V (x).

In the present chapter we are concerned the assumption that V is a spherically symmetric

function; more precisely, V (x) = q(|x|) (x ∈ R3). If this is the case then the operator T

is spherically symmetric in the sense that rotations in space lead to unitarily equivalent

operators.

In practice the one-dimensional Dirac operator most commonly arises from such a three-

dimensional Dirac operator with a spherically symmetric potential by separation of

variables in spherical polar coordinates (cf. [69, Appendix to Ch. 1]). On the other

hand T3 is then unitarily equivalent to the direct sum of the countable family of these

one-dimensional Dirac operators on the half line x > 0,

Tk = −iσ2
d

dx
+
k

x
σ1 + σ3 + q(x)

where σ1 =

 0 1

1 0

 is the third Pauli matrix and k ∈ Z \ {0} (In the case of a

rotationally symmetric two-dimensional Dirac operator, k ∈ Z − 1
2). The additional
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angular momentum term k
xσ1 introduces a singularity at 0. This singular end-point is

in the limit-point case if |k| ≥ 1
2 and q is less singular at 0; indeed q ∈ L1([0, ∗]) (which

follows from q ∈ L2([0,∞))) is sufficient to ensure limit-point case at zero [16]. As the

operator is always in the limit-point case at ∞ (see [69, Thm 6.8]), this means that it

has a unique self-adjoint realisation Tk.

The main result of this chapter is the following

Theorem 3.1. Let q ∈ L2([0,∞)) ∩ L∞([c,∞)), (c > 0). Then the absolutely continuous

part of the spectral function of T is strictly increasing in (−∞,−1] ∪ [1,∞).

Let H1,H2 be Hilbert spaces and T : H1 → H2 be a bounded linear operator. Then there

is a unique bounded linear operator T ∗ : H2 → H1, called the adjoint of T , such that

(Tx, y)2 = (x, T ∗y)1 for points x ∈ H1 and y ∈ H2 (see [68, Section 4.4]). This notion of

an adjoint operator can also be extended to the unbounded case, in which case we require

the operator T to be densely defined on H1 (see [45, Section VIII] for more details).

A bounded linear operator A over a separable Hilbert space H is said to be in the trace

class if for some orthonormal basis {φn}∞n=1 of H the sum tr|A| =
∑∞

n=1((A∗A)
1
2φn, φn)

is finite.

Further, a bounded linear operator A over a separable Hilbert space H is said to be a

Hilbert Schmidt operator if trA∗A <∞.

In the following, we denote by S1 the space of trace-class operators and by S2 the space

of Hilbert-Schmidt operators.

Amongst the set of all unbounded operators there are certain ones which admit a detailed

treatment and are important for applications; these are the closed operators. Let T be

an operator from H1 to H2, two Hilbert spaces. A sequence un ∈ D(T ) is said to be

T-convergent to u ∈ H1 if both {un} and {Tun} are Cauchy sequences and un → u. We

call T a closed operator if, for any sequence {un} ∈ D(T ) such that un → u and Tun → v

(n→∞), u ∈ D(T ) and Tu = v.

Let T be a closed operator on a Hilbert space H. A complex number λ is said to be in

the resolvent set ρ(T ) of T if λ− T is a bijection of D(T ) onto H with a bounded inverse.

For all λ in the resolvent set of T we call (λ− T )−1 the resolvent of T at λ.
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The theory attached to wave operators gives a useful set of techniques for studying the

absolutely continuous spectrum. Let T1, T2 be any two self-adjoint operators on a complex

Hilbert space H and t ∈ R. We then define Ω±(T2, T1) by the equalities

D(Ω±(T2, T1)) =

{
f ∈ H : lim

t→±∞
eitT2e−itT1f exists

}
Ω±(T2, T1)f = lim

t→±∞
eitT2e−itT1f for f ∈ D(Ω±(T2, T1))

The operators Ω±(T2, T1) are isometric; indeed this follows since eitT2e−itT1 is unitary for

all t ∈ R. Further, Ω±(T2, T1) are linear operators. Ω± are used to describe motion in

a quantum mechanical system; they are called the wave operators and S = Ω∗+Ω− the

scattering operator.

We denote by Tk,ac, k = 1, 2 the spectrally absolutely continuous parts of Tk, that is the

part of Tk in the space Hk,ac of absolute continuity for Tk. The orthogonal projection on

Hk,ac will be denoted by Pk, k = 1, 2.

In general, wave operators will not exist unless T1 has purely continuous spectrum.

However, it happens frequently that

W± = W±(T2, T1) = s-lim
t→±∞

eitT2e−itT1P1 (3.1)

exist even when the wave operators do not exist. For this reason, it is more usual

to consider the limits (3.1) rather than the proper wave operators. W± are called the

generalised wave operators associated with T1 and T2. IfW+ exists it is partially isometric

with initial set H1,ac and final set M+ ⊆ H2,ac ([29, Theorem 3.2]). If M+ = H2,ac,

W+ is said to be complete. A similar definition applies to W−. If W+ or W− exist and

are complete, T1

∣∣∣
H1,ac

is unitarily equivalent to T2

∣∣∣
H2,ac

; this is useful if the absolutely

continuous spectrum for T2 is known and results about the absolutely continuous spectrum

of T1 are required.

In order to prove Theorem 3.1 we shall use the following corollary to the Kato-Rosenblum

perturbation theorem (c.f. [29, Thm 4.4]).

Theorem 3.2 ([29, Thm 4.12]). Let H1 and H2 be self-adjoint operators in a Hilbert

space such that

(H2 − z)−1 − (H1 − z)−1 ∈ S1
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for some non-real z. Then the generalised wave operators W±(H2, H1) exist and are

complete. In particular, the absolutely continuous parts of H1 and H2 are unitarily

equivalent.

The theory of subordinacy was first developed for one-dimensional Schrödinger operators

by Gilbert and Pearson in their papers [22]/[24]; it was extended to the Dirac equation

with spherically symmetric potentials (respectively the separated Dirac operator) by

Behncke ([4]), and further to the one-dimensional Dirac operator with locally integrable

potential by Amar ([2]).

The method of subordinacy is advantageous in several respects. In the first place, only

very general requirements need to be met, for example that the electric potential is locally

integrable and the operator is in the limit point case at the singular end points. Moreover,

in principle a complete analysis of the spectrum can be achieved by considering only real

values of the spectral parameter λ. Further, and most interestingly, in order to identify

the absolutely continuous spectrum of the operator it is only necessary to consider the

behaviour of solutions at the limit end points.

Let T be an operator defined on an interval [c,∞), c > 0, which is regular at c and

singular at ∞, with the further requirement that the operator is in the limit point case at

∞. Further, we impose a boundary condition at c. Then a non-trivial solution us(x, λ)

of Tu = λu, λ ∈ R, is said to be subordinate at infinity if for every linearly independent

solution u(x, λ) of Tu = λu

lim
N→∞

||u2(x, λ)||N
||u(x, λ)||N

= 0,

where || · ||N denotes the L2[c,N ]d norm, where d = 1 in the Schrödinger case and d = 2

in the Dirac case. In the case where T is singular at both end points, the definition for a

solution to be subordinate at c is equivalent, except the L2[c,N ]d norm is replaced by

the L2[c+ 1
N ,∞]d norm.

From the Gilbert-Pearson theory of subordinacy ([24], [22]), as well as its extension to

Dirac operators ([4], [2]), it is known that a minimal support of the absolutely continuous
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spectral measure of a self-adjoint Dirac operator L on (α, β) is given by

Mac(L) = {λ ∈ R : no solution ofLu = λu is subordinate atβ} (3.2)

if α is a regular, β a singular end-point, and

Mac(L) = {λ ∈ R : no solution ofLu = λu is subordinate atβ} (3.3)

∪ {λ ∈ R : no solution ofLu = λu is subordinate atα}

if both end-points are singular. We recall that a subset S of R is said to be a minimal

support of a measure ν if ν(R \S) = 0 and ν(S0) = 0⇒ mesS0 = 0 (S0 ⊂ S), where mes

denotes the Lebesgue measure. Further define

Definition 3.1 (Essential Closure). We define the essential closure of a set Σ as

Σ
ess

= {λ ∈ R : ∀ε > 0, mes ((λ− ε, λ+ ε) ∩ Σ) > 0.},

where mes represents the Lebesgue measure.

It follows immediately that if Σ1 ⊂ Σ2, then Σ
ess
1 ⊂ Σ

ess
2 .

Lemma 3.1. The set of growth points of ρac is given byMess
ac .

Proof. Let λ be a growth point of ρac. Then, recalling the definition of a minimal

support, for all ε > 0

0 < ρac((λ− ε, λ+ ε)) = ρac((λ− ε, λ+ ε) ∩Mac).

As ρac is absolutely continuous with respect to the Lebesgue measure, this implies that

mes ((λ− ε, λ+ ε) ∩Mac) > 0,

and hence λ ∈Mess
ac . We now let λ ∈Mess

ac . Then for all ε > 0

mes ((λ− ε, λ+ ε) ∩Mac) > 0.

As [(λ− ε, λ+ ε) ∩Mac] ⊂Mac,

0 < ρac((λ− ε, λ+ ε) ∩Mac) = ρac((λ− ε, λ+ ε)),

and hence λ is a growth point of ρac. �
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(3.2) and (3.3) imply that

Mac(H) =Mac(H
−
c ) ∪Mac(H

+
c ). (3.4)

Thus

Theorem 3.3 ([22]).

σac(H) = σac(H
α
c ) ∪ σac(Hβ

c ) (3.5)

where c ∈ (α, β) and Hβ
c is the operator restricted to [c, β) and Hβ

c that to (α, c] with

some boundary condition at c

Proof. Let A,B be sets and let λ ∈ A ∪Bess. Then, for all ε > 0

0 < mes ((λ− ε, λ+ ε) ∩ (A ∪B)) = mes ({(λ− ε, λ+ ε) ∩A} ∪ {(λ− ε, λ+ ε) ∩B})

≤ mes ({(λ− ε, λ+ ε) ∩A}) + mes ({(λ− ε, λ+ ε) ∩B}) .

Thus for all ε > 0, mes ({(λ− ε, λ+ ε) ∩A}) > 0 or mes ({(λ− ε, λ+ ε) ∩A}) > 0. By

the monotonicity of measure, this implies that either mes ({(λ− ε, λ+ ε) ∩A}) > 0 for

all ε > 0 or mes ({(λ− ε, λ+ ε) ∩A}) > 0 for all ε > 0. Thus λ ∈ Aess or Bess. Hence

λ ∈ Aess∪Bess. On the other hand, as Aess ⊂ A ∪Bess and Bess ⊂ A ∪Bess we know that

A
ess ∪Bess ⊂ A ∪Bess. Hence A ∪Bess

= A
ess ∪Bess. This, together with Equation (3.4)

and Lemma 3.1, gives the result. �

Thus we can draw the following conclusion from Theorem 2.1.

Corollary 3.1. Consider the self-adjoint Dirac operator on R

T̃ = −iσ2
d

dx
+ σ3 + q (x ∈ R).

If q ∈ L2(R), then the absolutely continuous part of the spectral function of T̃ is strictly

increasing in (−∞,−1] ∪ [1,∞).

We now consider

Tk = −iσ2
d

dx
+ σ3 +

k

x
σ1 + q(x)

in L2((0,∞)), where |k| ≥ 1
2 and q ∈ L2([0,∞)) ∩ L∞([0,∞)). Then, by [53, Lemma 3],

the operators Tk and

T̃k = −iσ2
d

dx
+ σ3 + µ(x)σ3 + q̃(x),
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with µ(x) =
√

1 + k2

x2
− 1 and q̃(x) = q(x) + k

2(x2+k2)
(x > 0), are unitarily equivalent.

Obviously q̃ ∈ L2([0,∞)) ∩ L∞([c,∞)) and µ ∈ L1((c,∞)) ∩ L2((c,∞)), where c is fixed

by the hypothesis on q imposed in Theorem 3.1.

Consider also the operator on R,

H = −iσ2
d

dx
+ σ3 + µ̂(x)σ3 + q̂(x) (x ∈ R),

where q̂ is the even extension of χ[c,∞)q̃ to the whole real line and µ̂ is the even extension of

χ[c,∞)µ to the whole real line. The transformation u(x) = σ3v(−x) then turns Hu = λu

into Hv = λv (follows as both q̂ and µ̂ are even functions of x). Because of this symmetry,

the sets

{λ ∈ R : no solution ofHu = λu is subordinate at ∞}

and

{λ ∈ R : no solution ofHu = λu is subordinate at −∞}

coincide. As the differential expressions for H and T̃k are the same near +∞, (3.3) then

implies that

Mac(H) ⊂Mac(T̃k). (3.6)

Define two further operators on R, namely

H0 = −iσ2
d

dx
+ σ3 + q̂(x), H00 = −iσ2

d

dx
+ σ3.

As both H and H0 have the form H00 + F , where F is a bounded perturbation, all three

operators have the same domain. From [44, Thm XI.20] and a simple modification of its

proof, we obtain the following statement.

Lemma 3.2. Let ϕ ∈ L2(R) ∩ L∞(R). Then

ϕ(H00 − λ)−1 ∈ S2, (H00 − λ)−1ϕ ∈ S2.

Proof. Let F : L2
x(R) → L2

ξ(R) be the Fourier transform. Then F(−i ddx) = ξF ,

where ξ is the operator of multiplication with the variable in L2
ξ(R). Further FH00F−1 =

σ2ξ + σ3, and thus FH−1
00 F−1 = σ2ξ+σ3

ξ2+1
. Hence

H−1
00 = F−1

(
σ2ξ + σ3

ξ2 + 1

)
F .
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Therefore

(ϕH−1
00 f)(y) =

∫
R

∫
R
ϕ(y)e−2πi(y−x)ξ σ2ξ + σ3

|ξ|2 + 1
f(x)dxdξ

=

∫
R
ϕ(y)Ǧ(y − x)f(x)dx,

where G(ξ) = σ2ξ+σ3
|ξ|2+1

, (ξ ∈ R), and ·̌ represents the inverse Fourier transform. As

G(ξ) ∈ L2
ξ(R), Ǧ(x) ∈ L2

x(R). Thus∫
R

∫
R
|ϕ(y)|2|Ǧ(x− y)|2dxdy =

∫
R
|ϕ(y)|2

(∫
R
|Ǧ(x− y)|2dx

)
dy ≤ ||G||22||ϕ||22 <∞.

Hence, by [45, Theorem VI.23], ϕ(H00 − λ)−1 ∈ S2. To show that (H00 − λ)−1ϕ ∈ S2,

note that as ϕ ∈ L∞(R), ϕf ∈ L2(R) and so F(ϕf) is well defined. Thus

(H−1
00 ϕf)(y) =

∫
R

∫
R
e−2πi(y−x)ξ σ2ξ + σ3

|ξ|2 + 1
ϕ(x)f(x)dxdξ

=

∫
R
Ǧ(y − x)ϕ(x)f(x)dx,

where G is defined as before. Also, as before, the integral kernel Ǧ(y − x)ϕ(x) is square

integrable and hence the result follows. �

Thus, taking λ ∈ C \ R and using the Second Resolvent Identity [68, Theorem 5.1], we

find

(H − λ)−1 − (H0 − λ)−1 = (H − λ)−1(−µ̂σ3)(H0 − λ)−1

= (H − λ)−1(−µ̂σ3)(H00 − λ)−1 − (H − λ)−1(−µ̂σ3)(H00 − λ)−1q̂(H0 − λ)−1

= (H00 − λ)−1(−
√
µ̂ σ3

√
µ̂)(H00 − λ)−1 + (H − λ)−1(µ̂σ3 + q̂)(H00 − λ)−1(−µ̂σ3)(H00 − λ)−1

+ (H − λ)−1µ̂σ3(H00 − λ)−1q̂(H00 − λ)−1

+ (H − λ)−1µ̂σ3(H00 − λ)−1q̂(H00 − λ)−1q̂(H0 − λ)−1 ∈ S1.

Here we used Lemma 3.2 together with the facts that S2S2 ⊂ S1 and that S1 and S2

are invariant under multiplication with bounded operators [45, Section VI.6]. Thus, by

Theorem 3.2, the absolutely continuous parts of H and H0 are unitarily equivalent. By

Corollary 3.1, this implies thatH has absolutely continuous spectrum on (−∞,−1]∪[1,∞).

Thus (3.6) and Lemma 3.1 give

(−∞,−1] ∪ [1,∞) ⊂ σac(H) =Mess
ac (H) ⊂Mess

ac (T̃k) = σac(T̃k),
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and Theorem 3.1 follows.

Remark 3.1. We note here that the analogous result for Schrödinger operators follows

immediately from the result of Deift and Killip ([11]); indeed, the Schrödinger operator

with angular momentum term has the form

ς = − d2

dx2
+ q(x) +

C

x2
, x ∈ (0,∞)

where C is a constant. If q is square integrable then, by using Gilbert-Pearson subordinacy

to sidestep the singularity at zero, as we did in this chapter for the Dirac case, and

absorbing the angular momentum term C
x2

into the potential, the result follows.
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Chapter 4
The Dirac Operator with an L2-Sparse

Potential

1 Introduction

A real valued, locally integrable function Q defined on the half line [0,∞) is said to be

an L2-sparse potential if, given any δ,N > 0, there exists a subinterval (a, b) of [0,∞)

such that b− a = N and
∫ b
a Q(x)2dx < δ. In other words, if Q is L2-sparse, one can find

arbitrarily long intervals on which the L2 norm of Q is arbitrarily small. Any L2-sparse

potential is a sum Q1 + Q2, where Q1 is a sparse potential and Q2 ∈ L2. Here sparse

means that arbitrarily long intervals exist on which the function is identically zero. An

L2-sparse potential can thus be viewed as a perturbation of a sparse.

Given an L2-sparse potential q one can define the one-dimensional Dirac operator

τ = −iσ2
d

dx
+ σ3 + q(x), (4.1)

where σ2, σ3 are again Pauli matrices. We again note that as this formal differential

expression is always in the limit point case at ±∞, it has a unique self-adjoint realisation

T̃ in L2(R)2. In the present chapter we are interested in the self adjoint operator T on

the half-line [0,∞) with a boundary condition at zero.
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In the paper [5] it was shown that the spectral theory for the Scrödinger operator

ς = − d2

dx2
+ q, (x ∈ [0,∞), q ∈ L2-sparse)

can be closely linked to the theory of value distributions for real-valued functions, and

in particular value distributions for functions which are defined as boundary values of

Herglotz functions. It was further shown that the support of the absolutely continuous

part of the spectral measure of ς is contained within [0,∞). This was the culmination of

the papers [6] and [7], in which the results seen in [41] and [40] were extended to show

how spectral theory for Herglotz functions and differential operators is related to and

dependent on the geometrical properties of the upper half plane.

The following definition of a value distribution appears in [6], and it is the one which we

will use here. We also recall that mes(·) is used to represent Lebesgue measure.

Definition 4.1. Let A,B ⊂ R be Borel subsets. Let

M : (A,B)→M(A,B),

be a mapping satisfying the properties:

(i) A 7→ M(A,B) defines a measure on Borel subsets of R, for fixed B

B 7→ M(A,B) defines a measure on Borel subsets of R, for fixed A

(ii) M(A,R) = mes(A). Hence the measure A 7→ M(A,B) is absolutely continuous

with respect to Lebesgue measure. Indeed, if mes(A) = 0 then M(A,R) =

mes(A) = 0. The result then follows fromM(A,B) ≤M(A,R) = 0;

(iii) The measure B →M(A,B) is absolutely continuous with respect to Lebesgue

measure.

ThenM will be called a value distribution function.

Let G+ : R→ R be a Lebesgue measurable function. Let A,B ⊂ R be Borel subsets. Let

the map V : (A,B)→ R ∪ {∞} be defined by

V(A,B) = mes(A ∩G−1
+ (B))

where G−1
+ (B) = {λ ∈ R; G+(λ) ∈ B}. It is clear that V satisfies the requirements of the

Definition 4.1 and thus we call V the value distribution of G+. Indeed property (i) follows

from the properties of the Lebesgue measure; property (ii) is clear as G+ is an everywhere
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real function; property (iii) is equivalent to mes(G−1
+ (S)) = 0 whenever mes(S) = 0. We

are chiefly concerned with the important case that G+ is almost everywhere the boundary

value of a Herglotz function; in this case we can write ([6] Equations (9), (10))

V(A,B) =
1

π

∫
A

lim
ε→0+

θ(G(λ+ iε), B)dλ,

where θ(z,B) denotes the angle subtended at a point z ∈ C+ by the Borel subset B of R.

We note that we define the angle subtended by a Borel subset B ⊂ R at a point z ∈ C+

by

θ(z,B) =

∫
B
=
(

1

α− z

)
dα. (4.2)

Indeed, considering this idea geometrically for an interval B,

θ = arctan

(
x−<z
=z

)
, θ + dθ = arctan

(
x+ dx−<z

=z

)
.
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Thus

dθ = arctan

(
x+ dx−<z

=z

)
− arctan

(
x−<z
=z

)
=

1

=z
arctan′

(
x−<z
=z

)
dx

=
dx

=z
(

1 +
(
x−<z
=z
)2) =

=z dx
(=z)2 + (x−<z)2

=
=z dx
|x− z|2

= =
(

x− z
|x− z|2

)
dx = =

(
1

x− z

)
dx,

which gives us the result above.

Further, for λ ∈ R, we define θ(λ,B) = πχB(λ) where χB is the characteristic function

of B. For complex argument z ∈ C+ we define ω(·, B, F ) by

ω(z,B, F ) =
1

π
θ(F (z), B). (4.3)

Unless z1, z2 ∈ C+ are two points close to the real axis, θ(z1, B) will be close to θ(z2, B)

if z1 is close to z2. Defining an estimate of separation γ(·, ·) of points in the upper half

plane by

γ(z1, z2) =
|z1 − z2|√
=(z1)

√
=(z1)

, (z1, z2 ∈ C+), (4.4)

we can give a quantitative expression to how close θ(z1, B), θ(z2, B) are. Indeed, the

following is given in [7] (Proposition 2)

Lemma 4.1. The estimate of separation γ(·, ·) given in (4.4), may be expressed in terms

of angle subtended, given by (4.2), as

γ(z1, z2) = sup
B

|θ(z1, B)− θ(z2, B)|√
θ(z1, B)θ(z2, B)

. (4.5)

We note, however, that this measure of separation is not a metric as it does not satisfy

the triangle inequality. It can, however, be related to a metric; indeed [7, Proposition 1]

tells us that

γ(z1, z2) = 2 sinh(
1

2
D(z1, z2)),

where D(z1, z2) is the hyperbolic distance defined for z1, z2 in the upper half plane, H, to

be

D(z1, z2) = inf{lengthH(σ) : σ is a piecewise differentiable path with end points z1, z2}
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and where lengthH is defined for a path σ : [a, b] ∈ R→ H to be

lengthH(σ) =

∫
σ

1

=(z)
=

∫ b

a

|σ′(t)|
=σ(t)

dt.

Value distribution for boundary values of Herglotz functions is closely connected with the

geometric properties of the upper half plane, regarded as a hyperbolic space. To see this

if F1, F2 are two Herglotz functions satisfying

γ(F1(z), F2(z)) < ε.

for all z such that =z = d and <z ∈ A then the value distribution associated with F2,

V2(A,B), is then a good approximation to the value distribution V1(A,B) associated

with F1(z). Indeed

|V1(A,B)− V2(A,B)| ≤ εmes(A) + 2EA(d). (4.6)

(see [5] Equation (4)). EA(d) is an error estimate and, as shown in [6] and [7], EA(d) is

an increasing function of d and limd→0EA(d) = 0 for a fixed Borel set A (see Appendix

A for some further details concerning EA(d)).

Let ϕ(·, λ) be a solution of

τy = λy(x, λ) (4.7)

for =λ > 0. We will henceforth use z to denote points in the upper half plane; λ will

be reserved for real values. Let u(·, z), v(·, z) be two further solutions of (4.7) forming a

canonical fundamental system at 0, i.e. u1 v1

u2 v2

 (0, z) =

 1 0

0 1

 (4.8)

where v satisfies the boundary condition endowed to the operator at 0. As we are in the

limit point case, we can use these solutions to uniquely define the Weyl m-function by

u(·, z) +m(z)v(·, z) ∈ L2(R)2

or, for f(·, z) ∈ L2(R)2 a non trivial solution

m(z) =
f2(0, z)

f1(0, z)
. (4.9)
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It is the aim of this chapter to demonstrate that the spectral theory of the Dirac operator

can be linked to the theory of value distribution. We provide a link between the value

distribution and the m-function for points in a subset of the absolutely continuous

spectrum. This result is analogous to Theorem 1 of [6].

Theorem 4.1. Let A be a Borel subset of an essential support of the absolutely continuous

part ρac of the spectral measure ρ for the Dirac operator, T , acting in L2(0,∞)2 with

|A| <∞. Then we have, for any Borel subset B of R

lim
N→∞

[
mes

({
λ ∈ A;

v2

v1
(N,λ) ∈ B

})
− 1

π

∫
A
θ(mN

+ (λ), B)dλ

]
= 0.

This link is then used to prove

Theorem 4.2. Suppose that q is L2-sparse. Then the support of the absolutely continuous

part of the spectral measure of T is contained within (−∞,−1] ∪ [1,∞).

This chapter is organised as follows: in Section 2 we define value distributions and the

measure of separation which becomes our method of estimation. The fact that the

m-function can be defined as the ratio of solution components motivates Section 3 in

which we consider the asymptotics of v2
v1
. In Section 4 we consider estimates of the

canonical fundamental system for L1-bounded potentials, comparing them to solutions

with zero potential. In Section 5 we consider another ratio of solutions, f2
f1
, which is

closely related to the m-function for the problem with an L2-sparse potential. We are

able to relate this ratio to v2
v1

which we have in turn related to the m-function for the free

operator. In Section 6 we prove some results about value distributions and the absolutely

continuous spectrum, culminating in a proof of Theorem 4.1. In Section 7 we prove

Theorem 4.2.

2 Asymptotics of v2
v1

As discussed in the introduction and in more detail in Section 6 (see Equation (4.9)) it

is clear that the m-function is dependent on the ratio of the components of a square

integrable solution solution f(·, z) of Equation (4.7). We will not approach this ratio

directly; we will instead relate it to solutions we have a greater knowledge of. Thus, we

begin our analysis by considering such a ratio of solution components as the potential is
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varied, initially the solution v(·, z) defined above i.e. the solution satisfying the boundary

condition at zero. Bearing in mind our need to consider Herglotz functions it will

become evident that we must use the ratio −v2
v1

rather than v2
v1
. Before proceeding,

however, we require the following result; we use the notation for the Liouville bracket,

[f, g](x) = f1(x)g2(x)− f2(x)g1(x).

Lemma 4.2. Let f be a solution of the Dirac equation (4.7). Then

[f, f ](x) = 2i=z
∫ x

0
fT (t)f(t)dt+ [f, f ](0),

Further, if f1 6= 0

=
(
−f2

f1

)
(x) =

[f, f ](x)

2i|f1|2
.

Proof. The first result is a standard calculation using the fact that the components

of a solution of the Dirac equation (4.7) must satisfy

ϕ′1 = (z − q + 1)ϕ2

ϕ′2 = (1 + q − z)ϕ1.

The second result follows easily. �

Lemma 4.3. Let z ∈ C+ and let v, ṽ be solutions of (4.7) for potentials q, q̃ respectively,

satisfying the initial condition v(0, z), ṽ(0, z) =
(

0
1

)
. Then, for x ∈ (0,∞), −v2

v1
(x, z) and

− ṽ2
ṽ1

(x, z) are Herglotz functions and

γ

(
−v2

v1
(x, z),− ṽ2

ṽ1
(x, z)

)
≤

(
∫ x

0 |q(t)− q̃(t)|
2|ṽ(t)|2dt)

1
2

=z(
∫ x

0 |ṽ(t)|2dt)
1
2

. (4.10)

Further, if we assume that q ∈ L2(R) and we set q̃ = 0 and denote by v0 the solution of

(4.7) with zero potential then, for any L ≥ 1√
|z2−1|

we have the bound

γ

(
−v2

v1
(L, z),−v

0
2

v0
1

(L, z)

)
≤ C|z2 − 1|

1
4

=z

(∫ L

0
q2

) 1
2

, (4.11)

where C is a positive constant.

Proof. Let z ∈ C+. We begin by noting that, for all x0 > 0, v1(x0) 6= 0. Indeed,

if this were not the case, v1(x) would be a Dirichlet eigenfunction for the complex

eigenvalue z of a regular boundary value problem on [0, x0] with a boundary condition at
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zero. Further, by Lemma 4.2

=
(
−v2

v1

)
(x) =

[v, v](x)

2i|v1|2
=

2i=z
∫ x

0 v
T (t)v(t)dt+ [v, v](0)

2i|v1|2
=

2i=z
∫ x

0 v
T (t)v(t)dt

2i|v1|2
> 0

(4.12)

(x ∈ [0,∞)) with a similar result for ṽ. Thus, as =
(
−v2
v1

)
,=
(
− ṽ2
ṽ1

)
> 0 we can consider

γ

(
−v2

v1
(x, z),− ṽ2

ṽ1
(x, z)

)
=

|v2v1 −
ṽ2
ṽ1
|√

=(−v2
v1

)=(− ṽ2
ṽ1

)
=

∣∣∣v2ṽ1−v1ṽ2v1ṽ1

∣∣∣√
=(−v2

v1
)=(− ṽ2

ṽ1
)
.

By a similar calculation to that of Lemma 4.2

[ṽ, v](x) =

∫ x

0
(q(t)− q̃(t))v(t)T ṽ(t)dt, (x ∈ [0,∞))

and thus we have (using equation (4.12))

γ

(
−v2

v1
(x, z),− ṽ2

ṽ1
(x, z)

)
=

|
∫ x

0 (q − q̃)vT ṽ|

=z
(∫ x

0 |v|2
) 1

2
(∫ x

0 |ṽ|2
) 1

2

≤
(∫ x

0 |q − q̃|
2|ṽ|2

) 1
2

=z
(∫ x

0 |ṽ|2
) 1

2

(x ∈ [0,∞))

on application of the Cauchy-Schwarz Inequality, proving (4.10).

Proceeding to the second statement of the Lemma, we know from the first that

γ

(
−v2

v1
(x),−v

0
2

v0
1

(x)

)
≤
(∫ x

0 |q|
2|v0|2

) 1
2

=z
(∫ x

0 |v0|2
) 1

2

(x ∈ [0,∞)).

The solution of (4.7) with q = 0 can be expressed as:

ϕ(x, z) =

 α(z)

iβ(z)

 ei
√
z2−1x +

 α(z)

−iβ(z)

 e−i
√
z2−1x (4.13)

where the ratio
β(z)

α(z)
=

√
z2 − 1

z + 1

is fixed by the equation and we are considering the square root which takes values in the

upper half plane (as in Chapter 2 Section 3).
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Applying the initial conditions (4.8), we obtain an explicit expression (up to a constant

multiplier) for v0:

v0(x) =
1

2

 z+1
i
√
z2−1

1

 ei
√
z2−1x − 1

2

 z+1
i
√
z2−1

−1

 e−i
√
z2−1x, (x ∈ [0,∞)) (4.14)

We write
√
z2 − 1 = a+ ib, where a, b are real and b > 0. We also write A(z) = z+1

i
√
z2−1

.

Thus

∣∣v0
∣∣2 (x) =

1

4

 A(z)(eiaxe−bx − e−iaxebx)

(e−iaxebx + eiaxe−bx)

 A(z)(e−iaxe−bx − eiaxebx)

(eiaxebx + e−iaxe−bx)


=

1

4

[
|A(z)|2

(
e2bx − e−2iax − e2iax + e−2bx

)
+
(
e2bx + e−2iax + e2iax + e−2bx

)]
=

1

2

[
|A(z)|2 (cosh(2bx)− cos(2ax)) + (cosh(2bx) + cos(2ax))

]


=
(
|A(z)|2+1

2

) [
cosh(2bx)−

(
|A(z)|2−1

|A(z)|2+1

)
cos(2ax)

]
≤
(
|A(z)|2+1

2

)
(cosh(2bx) + 1).

Thus, using Lemma 4.3

γ

(
−v2

v1
(L),−v

0
2

v0
1

(L)

)
≤

(
∫ L

0 |q|
2(t)(cosh(2bt) + 1)dt)

1
2

=z
(∫ L

0

[
cosh(2bt)−

(
|A(z)|2−1

|A(z)|2+1

)
cos(2at)

]
dt
) 1

2

, (L ∈ [0,∞))

Considering the numerator, we find∫ L

0
q2(t)(cosh(2bt) + 1)dt ≤ (cosh(2bL) + 1)

∫ L

0
q2(s)ds.

Considering the denominator for a 6= 0, we attain∫ L

0

[
cosh(2bt)−

(
|A(z)|2 − 1

|A(z)|2 + 1

)
cos(2at)

]
dt

=

(
sinh(2bt)

2b
−

(
|A(z)|2 − 1

|A(z)|2 + 1

)
sin(2at)

2a

)∣∣∣L
0

=
sinh(2bL)

2b
−

(
|A(z)|2 − 1

|A(z)|2 + 1

)
sin(2aL)

2a
. (4.15)
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On the other hand, if a = 0, we have to consider∫ L

0

[
cosh(2bt)−

(
|A(z)|2 − 1

|A(z)|2 + 1

)]
dt

=
sinh(2bL)

2b
−

(
|A(z)|2 − 1

|A(z)|2 + 1

)
L (4.16)

We shall assume that L ≥ 1√
|z2−1|

. This condition, along with
√
z2 − 1 = a + ib,

implies that L ≥ 1√
2η
, η = max{|a|, b}. Indeed, should L < 1√

2a
and L < 1√

2b
then

|z2 − 1| = a2 + b2 < 1
L2 a contradiction. We will consider each case in turn.

First consider the case L ≥ 1√
2|a| . This case can only occur for a 6= 0 (as |a| > b > 0).

Now ∣∣∣∣∣
(
|A(z)|2 − 1

|A(z)|2 + 1

)
sin(2aL)

2a

∣∣∣∣∣ ≤
∣∣∣∣sin(2aL)

2a

∣∣∣∣ ≤ 1

2a
≤ L√

2
≤ 1√

2

sinh(2bL)

2b

and it follows that

sinh(2bL)

2b
−

(
|A(z)|2 − 1

|A(z)|2 + 1

)
sin(2aL)

2a
>

(
1− 1√

2

)
sinh(2bL)

2b

We now consider the case L ≥ 1√
2|b| , which occurs when |a| ≤ b. As sinh(x)

x is an increasing

function,
sinh(2bL)

2b
≥ L sinh(

√
2)√

2
(4.17)

whereas ∣∣∣∣∣
(
|A(z)|2 − 1

|A(z)|2 + 1

)
sin(2aL)

2a

∣∣∣∣∣ ≤
∣∣∣∣sin(2aL)

2a

∣∣∣∣ ≤ L (a 6= 0)

follows from sin(x)
x ≤ 1. On the other hand, for a = 0, it is easy to see that∣∣∣∣∣

(
|A(z)|2 − 1

|A(z)|2 + 1

)
L

∣∣∣∣∣ < L.

Thus, using equation (4.17) it follows that

L ≤
√

2 sinh(2bL)

2b sinh(
√

2)

and so we obtain as a bound for (4.15) (the a 6= 0 case)

sinh(2bL)

2b
−

(
|A(z)|2 − 1

|A(z)|2 + 1

)
sin(2aL)

2a
≥ sinh(2bL)

2b
−
√

2 sinh(2bL)

2b sinh(
√

2)

=

(
1−

√
2

sinh(
√

2)

)
sinh(2bL)

2b
, (4.18)
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and in fact obtain the same lower bound for (4.16), the a = 0 case.

Noting that sinh
√

2 < 2 we see that the bound for L ≥ 1√
2b

is also sufficient for the

L ≥ 1√
2a

case and thus we have the estimate

γ

(
−v2

v1
(L),−v

0
2

v0
1

(L)

)
≤ 1

=z

 (1 + cosh(2bL))
∫ L

0 q2(
1−

√
2

sinh(
√

2)

)
sinh(2bL)

2b

 1
2

=
1

=z

(∫ L

0
q2

) 1
2

(
1−

√
2

sinh(
√

2)

)− 1
2 (

2b
(1 + cosh(2bL))

sinh(2bL)

) 1
2

.

Now

2b
(1 + cosh(2bL))

sinh(2bL)
= 2b

(2 + cosh(2bL)− 1)

sinh(2bL)
= 2b

(
2

sinh(2bL)
+ tanh(bL)

)
< 2

(
2b

sinh(2bL)
+ b

)
≤ 2

L
+ 2b ≤ 2

√
|z2 − 1|+ 2b ≤ 4

√
|z2 − 1|,

and (4.11) follows. �

Using Equation (4.14) it is easy to see that

lim
L→∞

−v
0
2

v0
1

(L) = − lim
L→∞

e2i
√
z2−1L + 1

z+1
i
√
z2−1

(
e2i
√
z2−1L − 1

) = i

√
z2 − 1

z + 1
.

Thus we can find a bound for the difference between −v02
v01

and its asymptotic limit, in

particular a bound for the separation γ. This leads us to the following result:

Lemma 4.4. With z ∈ C+ and v0(x, z) defined as in Lemma 4.3, for any L ≥ 1√
|z2−1|

we have the bound

γ

(
−v

0
2

v0
1

(L), i

√
z2 − 1

z + 1

)
≤

√
2|z + 1|

√
a2 + b2e−bL

|a+ a<z + b=z|
√

sinh(2bL) + sin(2aL)
(

(a=z−b<z−b)
(a+a<z+b=z)

)
Proof. Explicitly, we have

−v
0
2

v0
1

(x) = − i
√
z2 − 1

z + 1

(
e−bxeiax + e−iaxebx

e−bxeiax − e−iaxebx

)
= −(ia− b)

z + 1

(
e−2bx − e2iax + e−2iax − e2bx

|e−bxeiax − e−iaxebx|2

)
=

2(ia− b)
z + 1

(
sinh(2bx) + i sin(2ax)

|e−bxeiax − e−iaxebx|2

)
, (x ∈ [0,∞))
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Thus we have

=
(
−v

0
2

v0
1

(x)

)
= =

[
2(ia− b)
z + 1

(
sinh(2bx) + i sin(2ax)

|e−bxeiax − e−iaxebx|2

)]
=

2

|e−bxeiax − e−iaxebx|2
=
[

(ia− b)
z + 1

(sinh(2bx) + i sin(2ax))

]
=

2

|e−bxeiax − e−iaxebx|2
[
=
(
ia sinh(2bx)

z + 1

)
−=

(
a sin(2ax)

z + 1

)
−=

(
b sinh(2bx)

z + 1

)
−=

(
ib sin(2ax)

z + 1

)]
=

2

|e−bxeiax − e−iaxebx|2
[
=
(
ia sinh(2bx)(z + 1)

|z + 1|2

)
−=

(
a sin(2ax)(z + 1)

|z + 1|2

)
−=

(
b sinh(2bx)(z + 1)

|z + 1|2

)
−=

(
ib sin(2ax)(z + 1)

|z + 1|2

)]
=

2

|e−bxeiax − e−iaxebx|2
{a sinh(2bx)

|z + 1|2
− b sin(2ax)

|z + 1|2
+
a<z sinh(2bx)

|z + 1|2

+
a=z sin(2ax)

|z + 1|2
+
b=z sinh(2bx)

|z + 1|2
− b<z sin(2ax)

|z + 1|2
}

=
2

|z + 1|2|e−bxeiax − e−iaxebx|2
[(sinh(2bx)(a+ a<z + b=z) + sin(2ax)(a=z − b<z − b)] .

Also

=

(
i

√
z2 − 1

z + 1

)
= =

(
ia− b
z + 1

)
= =

(
(ia− b)(z + 1)

|z + 1|2

)
=

(a+ a<z + b=z)
|z + 1|2

.

Lastly∣∣∣∣∣−v0
2

v0
1

(x)− i
√
z2 − 1

z + 1

∣∣∣∣∣ =

∣∣∣∣−v0
2

v0
1

(x)− ia+ ib

z + 1

∣∣∣∣
=

∣∣∣∣− i(a+ ib)

z + 1

(
e−bxeiax + e−iaxebx

e−bxeiax − e−iaxebx

)
− 2i(a+ ib)

z + 1

∣∣∣∣
=

√
a2 + b2

|z + 1|

∣∣∣∣((e−bxeiax + e−iaxebx) + (e−bxeiax − e−iaxebx)

e−bxeiax − e−iaxebx

)∣∣∣∣
=

2
√
a2 + b2e−bx

|z + 1||e−bxeiax − e−iaxebx|
(x ∈ [0,∞)).
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Putting these results together at x = L we find

γ

(
−v

0
2

v0
1

(L), i

√
z2 − 1

z + 1

)

=

4
√
a2+b2e−bL

|z+1||e−bLeiaL−e−iaLebL|√
8(a+a<z+b=z)

|z+1|4|e−bLeiaL−e−iaLebL|2 [(sinh(2bL)(a+ a<z + b=z) + sin(2aL)(a=z − b<z − b)]

=

√
2|z + 1|

√
a2 + b2e−bL

|a+ a<z + b=z|
√

sinh(2bL) + sin(2aL)
(

(a=z−b<z−b)
(a+a<z+b=z)

) .
�

3 Estimates of u(x, z) and v(x, z) for L1-bounded

Potentials

In this section we consider solutions u(x, z) and v(x, z) of Equation (4.7) on a fixed inter-

val 0 ≤ x ≤ N , subject to initial conditions (4.8) at x = 0. We compare these solutions

to the corresponding solutions u0(x, z), v0(x, z) with zero potential, again satisfying (4.8)

at x = 0, which we know explicitly.

In order to carry out this comparison, we will have need of the following Gronwall type

inequality:

Lemma 4.5. Let f, g : [0, ·)→ [0,∞). Let c > 0 be constant and let f, g satisfy

g(x) ≤ c
∫ x

0
f +

∫ x

0
fg, (x ≥ 0). (4.19)

Then

g(x) ≤ c(e
∫ x
0 f − 1), (x ≥ 0).

Proof. fe−
∫ x
0 f > 0, and so multiplying both sides of (4.19) by this expression and

integrating gives us∫ x

0

{
f(s)e−

∫ s
0 f(t)dtg(s)

}
ds ≤ c

∫ x

0

{
f(s)e−

∫ s
0 f(t)dt

∫ s

0
f(t)dt

}
ds

+

∫ x

0

{
f(s)e−

∫ s
0 f(t)dt

∫ s

0
f(t)g(t)dt

}
ds.
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Integrating the last term by parts:∫ x

0

{
f(s)e−

∫ s
0 f(t)dt

∫ s

0
f(t)g(t)dt

}
ds =

∫ x

0
f(s)e−

∫ s
0 f(t)dtg(s)ds−e−

∫ x
0 f(t)dt

∫ x

0
f(t)g(t)dt,

and so the above becomes∫ x

0
f(t)g(t)dt ≤ ce

∫ x
0 f(t)dt

∫ x

0

{
f(s)e−

∫ s
0 f(t)dt

∫ s

0
f(t)dt

}
ds.

Integrating the right hand side by parts twice gives∫ x

0
f(t)g(t)dt ≤ c[e

∫ x
0 f(t)dt − 1]− c

∫ x

0
f(t)dt

and again using (4.19)

g(x)− c
∫ x

0
f(t)dt ≤ c[e

∫ x
0 f(t)dt − 1]− c

∫ x

0
f(t)dt,

and the result follows. �

We will also require the following result about matrix norms.

Lemma 4.6. The Frobenius Norm

||A||2F =

n∑
i=1

n∑
j=1

|Aij |2,

is sub-multiplicative, i.e. ||AB||F ≤ ||A||F ||B||F .

Proof. Let A ∈ Cm×n, B ∈ Cn×r and x ∈ Cn. Then, using || · ||2 to denote the

Euclidean norm and Ai∗ to denote the i-th row of A,

||Ax||22 =
∑
i

|Ai∗x|2 ≤
∑
i

||Ai∗||22||x||22 = ||A||2F ||x||22,

and thus the Frobenius norm is compatible with the Euclidean norm. Thus it follows that

||AB||2F =
∑
j

||[AB]∗j ||22 =
∑
j

||AB∗j ||22 ≤
∑
j

||A||2F ||B∗j ||22 = ||A||2F
∑
j

||B∗j ||22 = ||A||2F ||B||2F

where A∗j represents the j-th column of A. �

We now use the notation | · | to represent either the Euclidean norm or Frobenius norm.

We now present a proof of the following relatively standard result which is essentially an

exercise from [10].
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Lemma 4.7. Let K be a fixed compact subset of C+, and let N > 0 be fixed. Let u(x, z)

and v(x, z) be solutions of Equation (4.7) on the fixed interval 0 ≤ x ≤ N , subject to

initial conditions (4.8) at x = 0 and let u0(x, z), v0(x, z) be the corresponding solutions

with zero potential, again satisfying (4.8) at x = 0. Then, given any ε > 0, there exists a

δ > 0 such that for any potential function q satisfying
∫ N

0 |q(t)|dt < δ, we have, for all

z ∈ K and for all x ∈ [0, N ],

|u(x, z)− u0(x, z)| < ε, |v(x, z)− v0(x, z)| < ε.

Proof. Let M be the 2 × 2 matrix given by M(x, z) = [u(x, z), v(x, z)] and let

M0(x, z) = [u0(x, z), v0(x, z)]. Now consider

d

dx
M−1

0 M = −M−1
0

dM0

dx
M−1

0 M +M−1
0

dM

dx

= M−1
0

[
dM

dx
− dM0

dx
M−1

0 M

]
= qM−1

0

 0 −1

1 0

M

We note that detM = 1. Indeed, detM is the Wronskian of two linearly independent

solutions of (4.7) forming a canonical fundamental system at 0. Hence we can show that

qM−1
0

 0 0

1 0

M = qAM−1
0 M, qM−1

0

 0 −1

0 0

M = qBM−1
0 M

where A = (−v0
1, u

0
1)T (u0

1, v
0
1) and B = (−v0

2, u
0
2)T (u0

2, v
0
2). On the other hand

M−1
0

 0 −1

0 0

 =

 0 −v0
2

0 u0
2

 .

Thus
d

dx
M−1

0 M = q(A+B)M−1
0 M,

which implies that

M−1
0 M(x) = I +

∫ x

0
q(t)(A+B)(t)M−1

0 M(t)dt.

Thus, for x ≥ 0,

|M−1
0 M(x)− I| ≤

∫ x

0
|q(t)| · |A+B|(t)dt+

∫ x

0
|q(t)| · |A+B|(t) · |M−1

0 M(t)− I|dt.
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An application of Lemma 4.5 now implies that

|M−1
0 M(x)− I| ≤ exp

(∫ N

0
|q(t)| · |A+B|(t)dt

)
− 1, (x ∈ [0, N ])

Thus, ∀x ∈ [0, N ]

|M(x)−M0(x)| ≤ |M0(x)| · |M−1
0 M(x)− I|

< |M0(x)|
(

exp

(∫ N

0
|q(t)| · |A+B|(t)dt

)
− 1

)
,

and the result follows by noting that |A|, |B| and |M0| are bounded on [0, N ] and z ∈ K,

and using that

|u− u0|(x) ≤ |M(x)−M0(x)|, |v − v0|(x) ≤ |M(x)−M0(x)| (x ∈ [0, N ]).

�

The following corollary is a straightforward consequence of the previous Lemma.

Corollary 4.1. Let K be a fixed compact subset of C+, and let N > 0 be fixed.

Then, given any ε > 0, there exists a δ > 0 such that for all potential functions q

satisfying
∫ N

0 |q(t)|dt < δ, we have for all z ∈ K and all solutions u, v, u0, v0 defined as

in Lemma 4.7. ∣∣∣∣∫ N

0
=(ūT (t, z)v(t, z))dt−

∫ N

0
=(ūT0 (t, z)v0(t, z))dt

∣∣∣∣ < ε.

4 Estimate of −f2(x,z)
f1(x,z) for Potentials Subject to an

L2-type Condition

Before proceeding with the main result of this section, we first prove the following lemma

Lemma 4.8. Let z ∈ C+. Further let u0, v0 be solutions of (4.7) with q = 0 subject to

the initial conditions (4.8). Then∫ ∞
0
=([ū0]T v0)dt =∞
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Proof. Using (4.13) and the initial conditions we can deduce that

u0(x, z) =
1

2

 1

i
√
z2−1
z+1

 ei
√
z2−1x +

1

2

 1

−i
√
z2−1
z+1

 e−i
√
z2−1x.

and so using (4.14)

[ū0(x, z)]T v0(x, z) =
1

4

 ei
√
z2−1x + e−i

√
z2−1x

i
√
z2−1
z+1

[ei
√
z2−1x − e−i

√
z2−1x]

T  z+1
i
√
z2−1

[ei
√
z2−1x − e−i

√
z2−1x]

ei
√
z2−1x + e−i

√
z2−1x


=

1

2

(
z + 1√
z2 − 1

−
√
z2 − 1

z + 1

)
sin(2x<

√
z2 − 1)

+
i

2

(
z + 1√
z2 − 1

+

√
z2 − 1

z + 1

)
sinh(2x=

√
z2 − 1).

Let
√
z − 1 = α + iβ, F

√
z + 1 = γ + iδ, where these square roots are as in Chapter 2

Section 3. Then, as z ∈ C+, α, β, γ, δ > 0. Then

z + 1√
z2 − 1

=
F
√
z + 1√
z − 1

=
(αγ + δβ) + i(αδ − βγ)

|
√
z − 1|2

,

and similarly √
z2 − 1

z + 1
=

(αγ + δβ) + i(αδ − βγ)

| F
√
z + 1|2

.

Thus, for large x,

=
(
[ū0]T (x, z)v0(x, z)

)
=

1

2

[
(αδ − βγ)

|
√
z − 1|2

− (αδ − βγ)

| F
√
z + 1|2

]
sin(2x<

√
z2 − 1)

+
1

2

[
(αγ + δβ)

|
√
z − 1|2

+
(αγ + δβ)

| F
√
z + 1|2

]
sinh(2x=

√
z2 − 1)

∼ C(z) sinh(2x=
√
z2 − 1)

where C(z) > 0, and thus =
(
[ū0]T v0

)
is not integrable. �

We also require a further lemma, which calls upon the following results. These follow by

a simple calculation using Lemma 4.2 and that the Wronskians of u, v and u, v are 1 at

the point N .

Lemma 4.9. Let u(·, z), v(·, z) be solutions of Equation (4.7) subject to initial conditions

(4.8). Let N > 0 and z ∈ C+. Then
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(1) ∫ N

0
=(uT v)dx = −1−<[u, v](N)

2=z
; (4.20)

(2)

|[u, v](N)|2 = 1−W(u, u)W(v, v) (4.21)

where for simplicity u, v represent the solutions u(·, z), v(·, z) and W represents the

Wronskian.

We now use these identities to prove the following convergence lemma, analogous to the

the result proved for the Schrödinger equation in [6].

Lemma 4.10. Let u(·, z), v(·, z) be solutions of Equation (4.7) subject to initial conditions

(4.8). Let m(1) be any constant such that =m(1) ≥ 0. Then, for any N > 0 and for all

z ∈ C+ we have the estimate

γ

(
−v2

v1
(N, z),−u2(N, z) +m(1)v2(N, z)

u1(N, z) +m(1)v1(N, z)

)
≤ 1√

I(I + 1)

where the integral I is defined by

I(N, z) = (=z)
∫ N

0
=(uT (x, z)v(x, z))dx.

Proof. Using equation (4.4) we have at x = N

γ2

(
−v2

v1
,−u2 +m(1)v2

u1 +m(1)v1

)
=

∣∣∣−v2
v1

+ u2+m(1)v2
u1+m(1)v1

∣∣∣2
=
(
−v2
v1

)
=
(
−u2+m(1)v2
u1+m(1)v1

) .
Thus, using Lemma 4.2 and W(u, v) = 1,

γ2

(
−v2

v1
,−u2 +m(1)v2

u1 +m(1)v1

)
= −

4
[∣∣∣−v2

v1
+ u2+m(1)v2

u1+m(1)v1

∣∣∣ · |v1| · |u1 +m(1)v1|
]2

[v, v](N)[u+m(1)v, u+m(1)v](N)

= − 4|W(u, v)|2

[v, v](N)[u+m(1)v, u+m(1)v](N)

=
4

−
[
[v, v](N)[u+m(1)v, u+m(1)v](N)

] .
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As m(1) ∈ C+, we can write m(1) = <m(1) + iY , Y ≥ 0. Then,

− [v, v][u+m(1)v, u+m(1)v]

= −[v, v][u, u]− 2i[v, v]=[u, v]<m(1)

− 2iY [v, v]<[u, v]− ([v, v])2[<m(1)]2 − ([v, v])2Y 2.

This is of the form A+B<m(1) + C[<m(1)]2 − α(Y ) with A,C ≥ 0 and B ∈ R. Indeed,

as we have seen,

A = −[v, v][u, u] = −
[∫ N

0
2i=z|v|2dx

] [∫ N

0
2i=z|u|2dx

]
= 4(=z)2

∫ N

0
|u|2dx

∫ N

0
|v|2dx

B = −2i[v, v]=[u, v] = −2i

[∫ N

0
2i=z|v|2dx

]
=[u, v] = 2

[∫ N

0
2=z|v|2dx

]
=[u, v]

C = −([v, v])2 = −
[∫ N

0
2i=z|v|2dx

]2

= 4(=z)2

(∫ N

0
|v|2dx

)2

We can bound A+B<m(1) + C[<m(1)]2 below by A− B2

4C , and so we obtain

γ2

(
−v2

v1
,−u2 +m(1)v2

u1 +m(1)v1

)
≤ − 4

[u, u][v, v] + 2iY [v, v]<[u, v] + ([v, v])2Y 2 + [=[u, v]]2
.

Since

[u− iY v, u− iY v] = [u, u] + Y 2[v, v] + 2iY [u, v]

=[u− iY v, v] = =[u, v]−=(iY [v, v]) = =[u, v]

we can re-write the above in the form

γ2

(
−v2

v1
,−u2 +m(1)v2

u1 +m(1)v1

)
≤ − 4

[u− iY v, u− iY v][v, v] + [=[u− iY v, v]]2
.

Considering equation (4.21) applied to the functions u−iY v, v, subtracting [<[u− iY v, v]]2

from both sides, and substituting for [=[(u− iY v, v]]2 we obtain

γ2

(
−v2

v1
,−u2 +m(1)v2

u1 +m(1)v1

)
≤ − 4

1− [<[u− iY v, v]]2
=

4

[<[u− iY v, v]]2 − 1
.
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Now,

[<[u− iY v, v]]2 − 1 = [<[u, v] + <[−iY v, v]]2 − 1

=

[
2=z

∫ N

0
=(uT v)dx+ 1 + Y =z

∫ N

0
|v|2dx

]2

− 1

=

(
=z
∫ N

0

[
2=(uT v) + Y |v|2

]
dx

)2

+ 2

(
=z
∫ N

0

[
2=(uv) + Y |v|2

]
dx

)
≥ 4I2 + 4I,

and the result then follows. �

The following three lemmas will also be required for the proof of Theorem 4.3 to follow.

Lemma 4.11. Let f(·, z) be a solution of (4.7) satisfying =
(
−f2(0,z)
f1(0,z)

)
> 0 with f1(x, z) 6=

0 (x ≥ 0). Then for all x > 0, =
(
−f2(x,z)
f1(x,z)

)
> 0.

Proof. Follows by Lemma 4.2. �

Lemma 4.12. For any ε > 0 and any K ⊂ C+ compact, we can find an N > 0 such that

γ

(
−v2

v1
(N, z),−f2

f1
(N, z)

)
≤ 1√

I(I + 1)

for all z ∈ K and solutions f of the Dirac equation (4.7) satisfying the conditions

=
(
−f2(0, z)

f1(0, z)

)
> 0 and f1(x, z) 6= 0, (x ≥ 0).

Proof. By Lemma 4.11, =
(
−f2(x,z)
f1(x,z)

)
> 0. We can write

−f2(x, z)

f1(x, z)
= −u2(x, z) +m(1)v2(x, z)

u1(x, z) +m(1)v1(x, z)

where m(1) is given by −m(1) = −f2(0,z)
f1(0,z) . Thus =m(1) ≥ 0 and the result follows from

Lemma 4.10. �

Lemma 4.13. Let z ∈ C+ and u(·, z), v(·, z) be solutions of Equation (4.7) subject to

initial conditions (4.8). Then

Ψ(N) =

∫ N

0
=(uT (x, z)v(x, z))dx

is an increasing function of N .
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Proof. Since we are in the limit point case, we have only one square integrable

solution for a given spectral parameter; v(·, z) cannot be this solution else z would be a

non–real eigenvalue in violation to the Dirac equation we are considering being self-adjoint.

Thus, v(·, z) /∈ L2([0,∞))2 and so

lim
N→∞

∫ N

0
|v(x, z)|2dx =∞,

uniformly over compact subsets of C+. Consider the ratio
∫N
0 =(uT v)dx∫N

0 |v|2dx
and its derivative.

Using Lemma 4.9 and dropping the dependence on x, z in the notation for brevity

d

dN

∫ N
0 =(uT v)dx∫ N

0 |v|2dx
=

d
dN

(∫ N
0 =(uT v)dx

) ∫ N
0 |v|

2dx− d
dN

(∫ N
0 |v|

2dx
) ∫ N

0 =(uT v)dx(∫ N
0 |v|2dx

)2

=
=(uT v)

∫ N
0 |v|

2dx− |v|2
∫ N

0 =(uT v)dx(∫ N
0 |v|2dx

)2

=

(
uT v−uT v

2i

)
1

2i=z [v, v] + |v|2 1
2=z (1−<[u, v])(∫ N

0 |v|2dx
)2

=
(uT v − uT v)[v, v] + |v|2(2− 2<[u, v])

4=z
(∫ N

0 |v|2dx
)2

=
(uT v − uT v)[v, v] + |v|2(2− [u, v]− [u, v])

4=z
(∫ N

0 |v|2dx
)2

=
(u1v1 − u1v1)W(v, v) + v1v1(2−W(u, v)−W(u, v))

4=z
(∫ N

0 |v|2dx
)2

+
(u2v2 − u2v2)[v, v] + v2v2(2− [u, v]− [u, v])

4=z
(∫ N

0 |v|2dx
)2 .

Now, using W(u(N), v(N)) = W(u(N), v(N)) = 1

(u1v1 − u1v1)[v, v] + v1v1(2− [u, v]− [u, v])

= (u1v1 − u1v1)(v1v2 − v2v1) + (v1v1(2− u1v2 + u2v1 − u1v2 + u2v1)

= (u2v1 − u1v2)v2
1 + (u2v1 − u1v2)v2

1 + 2v1v1

= −v2
1 − v1

2 + 2v1v1 = −(v1 − v1)2,
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with a similar result for the other numerator. Thus

d

dN

∫ N
0 =(uT v)dx∫ N

0 |v|2dx
=
−(v1 − v1)2 − (v2 − v2)2

4=z
(∫ N

0 |v|2dx
)2

=
(=v1(N, z))2 + (=v2(N, z))2

=z
(∫ N

0 |v(x, z)|2dx
)2 ≥ 0,

from which it follows that the ratio of integrals cannot decrease with N . �

We can now state an estimate of convergence of −f2(x,z)
f1(x,z) to i

√
z2−1
z+1 based on an L2 type

condition on the potential.

Theorem 4.3. Let K be any fixed compact subset of C+. Then, given any ε > 0, there

exist δ > 0 and N > 0 such that for all L ≥ N and for all potential functions q satisfying

the L2 bound ∫ L

0
|q(t)|2dt < δ,

the corresponding solution of (4.7), f(x, z), satisfying the condition =
(
−f2(0,z)
f1(0,z)

)
> 0,

also satisfies the estimate

γ

(
−f2(L, z)

f1(L, z)
, i

√
z2 − 1

z + 1

)
< ε (4.22)

for all z ∈ K.

Proof. Note that the separation γ(z1, z2) between two points z1, z2 ∈ C+ does not

satisfy the triangle inequality. However, we have the following substitute: If z1, z2, z3 ∈ C+

and it is given that

γ(z1, z2) < α, γ(z2, z3) < β, 0 < α, β ≤ 2

then it follows easily (see [5] Theorem 1) that

γ(z1, z3) <
√

2(α+ β).

As a simple consequence, the three inequalities γ(z1, z2) < ε
6 ,γ(z2, z3) < ε

6 and γ(z3, z4) <

ε
6 , with 0 < ε < 1, together imply that γ(z1, z4) < ε. If we define u, v, u0, v0 as in the

previous lemmas, then in order to verify (4.22) it will be sufficient to show that if z ∈ K,

we can find an N large enough so that we have the following three inequalities at x = L,
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L ≥ N ,

γ

(
−f2

f1
(L),−v2

v1
(L)

)
<
ε

6
, γ

(
−v2

v1
(L),−v

0
2

v0
1

(L)

)
<
ε

6
, γ

(
−v

0
2

v0
1

(L), i

√
z2 − 1

z + 1

)
<
ε

6
.

(4.23)

Given any ε > 0 and compact subset K ⊂ C+, we fix N to satisfy, for all z ∈ K, the

three inequalities∫ N

0
=(ūT0 v0)dt >

12

ε=z
, (4.24)

√
2|z + 1|

√
a2 + b2e−bN

|a+ a<z + b=z|
√

sinh(2bN) + sin(2aN)
(

(a=z−b<z−b)
(a+a<z+b=z)

) < ε

6
, (4.25)

N >
1√
|z2 − 1|

. (4.26)

That N may be chosen to satisfy the first of these inequalities for z ∈ K follows from

the fact that
∫∞

0 =(ūT0 v0)dt = ∞, by Lemma 4.8, and that, for fixed N , the integral∫ N
0 =(ūT0 v0)dt depends continuously on z for =z > 0. In the second inequality we have
√
z2 − 1 = a + ib, where both a and b are bounded for z ∈ K (indeed a = b = 0 iff

z ∈ [−1, 1]). We also note that 1√
|z2−1|

is bounded for z ∈ K. From Corollary 4.1 we

know that, for z ∈ K, the integral
∫ N

0 =(ūT v)dt is close to
∫ N

0 =(ūT0 v0)dt provided that∫ N
0 |q(t)|dt is sufficiently small. In particular, inequality (4.24) implies that there exists

δ0 > 0 such that, for all z ∈ K, we have∫ N

0
|q(t)|dt < δ0 =⇒

∫ N

0
=(ūT v)dt ≥

∫ N

0
=(ūT0 v0)−

∣∣∣∣∫ N

0
(=(ūT v)−=(ūT0 v0)

∣∣∣∣ > 6

ε=z
.

(4.27)

Having fixed the values of N and δ0, define δ > 0 to satisfy

δ <
δ2

0

N
, (4.28)

C|z2 − 1|
1
4

=z
√
δ <

ε

6
, ∀z ∈ K. (4.29)

Here C is defined in Lemma 4.3. Now suppose that L ≥ N and
∫ L

0 |q(t)|
2dt < δ. Using

the Cauchy-Schwarz inequality

∫ N

0
|q(t)|dt ≤

(
N

∫ N

0
|q(t)|2dt

) 1
2

< (δN)
1
2 < δ0.
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Hence (4.27) implies that ∫ N

0
=(ūT v)dt >

6

ε=z
.

By Lemma 4.10,4.12 and 4.13 we have, for any solution f of (4.7) satisfying =
(
−f2(0,z)
f1(0,z)

)
> 0,

γ

(
−f2

f1
(L),−v2

v1
(L)

)
≤ 1

=z
∫ L

0 =(ūT v)dt
<
ε

6
,

our first inequality from (4.23). The second follows from Lemma 4.3 combined with

(4.29), using
∫ N

0 |q(t)|
2dt < δ. Lemma 4.4 combined with inequality (4.25) completes the

proof of the inequalities (4.23), and the proof of the theorem. �

Remark 4.1. Generally L2 smallness is seen as a less sever restriction that L1 smallness,

but here it is used to prove L1 smallness for a particular case in order to prove that

γ
(
−f2
f1

(L),−v2
v1

(L)
)
< ε

6 (ε > 0). This gives the impression that the results of this

chapter can be proven for the case with L1-sparse potential (and, incidentally, this is true

and requires fewer preliminary results).

We now explore some consequences of Theorem 4.3 in the case of L2-sparse potentials.

Let q be an L2-sparse potential. Then a sequence of subintervals {(ak, bk) ⊂ R+}k∈N can

be found such that, with Lk = bk − ak,

lim
k→∞

Lk =∞, lim
k→∞

∫ bk

ak

(q(t))2dt = 0.

Given A ⊂ R, fixed bounded and measurable, having closure A, and given any ε > 0, we

first of all find d > 0 such that EA(d) < εmes(A)
2 . EA(d) is the error estimate defined in

(4.6), and from (4.6) we deduce that

|V1(A,S)− V2(A,S)| < 2εmes(A) (4.30)

provided γ(F1, F2) < ε for all z ∈ K, where K ⊂ C+ is compact and defined by =z = d,

<z ∈ A.

By Lemma 4.11 we can use Theorem 4.3 to define δ,N such that for all L ≥ N and for

all potentials q satisfying ||q||L2(0,L) < δ
1
2 , we have

γ

(
−f2(L, z)

f1(L, z)
, i

√
z2 − 1

z + 1

)
< ε, (4.31)

82



where f(·, z) is a solution of the Dirac equation (4.7) for which

=
(
−f2(0, z)

f1(0, z)

)
> 0.

Take k0 sufficiently large so that for k > k0 we have Lk ≥ N and such that the bound

||q||L2(ak,ak+Lk) < δ
1
2 is satisfied by our sparse potential q.

We now apply (4.31) with L = Lk, where f is a suitably chosen solution of (4.7), but

with potential modified by an appropriate change of x-coordinate. There are two separate

cases to be considered:

(1) Firstly, define f(x, z) = v(x+ ak, z) for 0 ≤ x ≤ Lk. Then for x ∈ [0, Lk], f(·, z)

satisfies (4.7) with potential q(x+ ak). Moreover, we have∫ Lk

0
(q(t+ ak))

2dt =

∫ bk

ak

(q(t))2dt < δ.

Hence (4.31) is satisfied in this case, and we have

γ

(
−v2(bk, z)

v1(bk, z)
, i

√
z2 − 1

z + 1

)
< ε.

From (4.30) we now deduce that the respective value distributions for the

Herglotz functions −v2(bk,z)
v1(bk,z)

and i
√
z2−1
z+1 differ by at most 2εmes(A) ∀k > k0.

(2) Secondly, let F (·, z) be a non-trivial solution in L2(0,∞)2 of (4.7), with sparse

potential q. Then the m-function mak(z) for the Dirac operator H = −iσ2
d
dx +

σ3 + q acting in L2(ak,∞)2 is then given by

mak(z) =
F2(ak, z)

F1(ak, z)
.

We can now define f(·, z) by

f(x, z) = σ2F (bk − x, z), 0 ≤ x ≤ Lk,

so that f(·, z) satisfies the Dirac equation with potential q(bk − x). Since

=
(
F2(bk,z)
F1(bk,z)

)
> 0, we also have

=
(
−f2(0, z)

f1(0, z)

)
> 0.

83



In this case, an application of (4.22) with L = Lk results in the estimate

γ(mak , i

√
z2 − 1

z + 1
) < ε,

and it follows as before that the respective value distributions for the Herglotz

functions mak and i
√
z2−1
z+1 differ by at most 2εmes(A) for all k > k0.

The following theorem summarises the situation regarding asymptotic value distribution

in the case of L2-sparse potentials.

Theorem 4.4. Let v(·, λ) be the solution of the Dirac equation at real spectral parameter

λ, subject to initial conditions v(0, λ) =

 0

1

, in the case of an L2-sparse potential q.

Let {(ak, bk) ⊂ R+} be a sequence of subintervals for which limk→∞(bk − ak) =∞ and

limk→∞
∫ bk
ak
|q(t)|2dt = 0. Then, for Borel subsets A,B of R, |A| <∞, we have

lim
k→∞

1

π

∫
A
θ(mak

+ (λ), B)dλ =
1

π

∫
A
θ

(
i

√
λ2 − 1

λ+ 1
, B

)
dλ

and lim
k→∞

mes

({
λ ∈ A :

v2(bk, λ)

v1(bk, λ)
∈ B

})
=

1

π

∫
A
θ

(
i

√
λ2 − 1

λ+ 1
,−B

)
dλ

5 The Absolutely Continuous Spectrum and the Value

Distribution

In this section we prove Theorem 4.1, giving a relation between the value distribution

and the m-function for points in subsets of the absolutely continuous spectrum.

For any Herglotz function, F , we define a translated Herglotz function F δ = F (z + iδ)

(δ > 0) and set

ωδ(λ,B, F ) = ω(λ,B, F δ) =
1

π
θ(F (λ+ iδ), B).

where ω, θ are defined in (4.3) (page 62) and (4.2) (page 61) respectively. Before proceeding

with the main result of this section we require two preliminary results; the first appears

in [7] (Theorem 1)
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Lemma 4.14. Let F (z) be a arbitrary Herglotz function, and let A be a set of finite

measure. Let B be an arbitrary Borel subset of R. Then we have∣∣∣∣∫
A
ω(λ,B;F )dλ−

∫
A
ωδ(λ,B;F )dλ

∣∣∣∣ ≤ EA(δ) =
1

π

∫
A
θ(λ+ iδ, Ac)dλ, (4.32)

where EA(δ) → 0 for δ → 0. Further EA(δ) is a non-decreasing function of δ. Since

EA(δ) is independent of B,F , the bound is uniform over all sets B and all Herglotz

functions F .

Lemma 4.15. Let A be a Borel subset of an essential support of the absolutely continuous

part ρac of the spectral measure ρ for the Dirac operator, T , acting in L2(0,∞)2. Let

AR,r0 ⊂ A be defined by

AR,r0 = {λ ∈ A | =m+(λ) < r or |m+(λ)| > R},

where m+(λ) = limδ↓0m(λ + iδ) and m(z) is the Weyl-Titchmarsh m-function. Then

limr→0, R→∞mes(AR,r0 ) = 0.

Proof. AR,r0 can be written as

AR,r0 = {λ ∈ A | =m+(λ) < r} ∪ {λ ∈ A | |m+(λ)| > R},

and so it is enough to prove that each of these two sets can be made small independently.

Starting with the first set, assume the contrary, i.e.

∃ε > 0 : ∀r > 0 |{λ ∈ A | =m+(λ) < r}| ≥ ε

2
.

In particular this must be true for the sequence rn = 1
n . Let αn = {λ ∈ A | =m+(λ) < rn}.

Then ∃ε > 0 : ∀n ∈ N |αn| ≥ ε
2 . Further, for all n ≥ 1, αn+1 ⊂ αn. Thus

∃ε > 0 : | ∩n∈N αn| ≥
ε

2
.

Now ⋂
n∈N

αn ⊂ {λ ∈ A | =m+(λ) = 0}.

An essential support for ρac, the absolutely continuous part of the spectral measure, is all

λ ∈ R at which the boundary value m+(λ) of m(z) exists with strictly positive imaginary

part (see [24] Proposition 1). Hence we can assume that =m+(λ) > 0 for all λ ∈ A,

providing our contradiction.
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The fact that we can choose R > 0 such that

|{λ ∈ A | |m+(λ)| > R}| < ε

2
,

follows by a similar process to the above combined with Lemma 1 of [24]. �

We now have the machinery to tackle the proof of Theorem 4.1

Let m(z) denote the Weyl-Titchmarsh m function for T . As we know, an essential support

for ρac is given as the set of all λ ∈ R at which the boundary value m+(λ) of m(z) exists

and has strictly positive imaginary part (see [24] Proposition 1). Hence we can assume

that =m+(λ) > 0 for all λ ∈ A.

Let ε > 0. We wish to form a finite partition of the set A

A = AR,r0 ∪A1 ∪A2 ∪ ... ∪An,

where Ai∩Aj = ∅, i 6= j, AR,r0 ∩Ai = ∅ for all i, mes(AR,r0 ) ≤ εmes(A) and mes(Aj) ≤ ∞,

j ≥ 1. Further, we would like to associate to each j ≥ 1 a constant m(j) with positive

imaginary part such that γ(m+(λ),m(j)) ≤ ε (λ ∈ Aj). The way in which we do this is as

follows: Points λ ∈ A at which |λ| or |m+(λ)| are large, or at which =(m+(λ)) are small put

into AR,r0 . More precisely, by Lemma 4.15 we know that ∃R, r > 0 such that we can make

mes(AR,r0 ) ≤ εmes(A). The rangem+(λ), as λ runs over A\AR,r0 , is contained in C ⊂ C+.

C = {λ ∈ A | =m+(λ) ≥ r or |m+(λ)| <≤ R} and thus, as |λ| is bounded because A is

bounded, C is bounded. The Heine-Borel Theorem then tells us that C is compact and

therefore it has a finite cover. Indeed, ∀z ∈ C, ∃rz > 0 : ∀y ∈ Brz(z), γ(y, z) ≤ ε. Then

{Brz(z) | z ∈ C} is an open cover of C. The fact that C is compact then implies that

there is a finite subcover {Brzj (zj) | zj ∈ C, j ∈ {1, ..., n}}. Thus we can find a partition,

with n <∞,

C =
n⋃
i=1

Ci,

with C1 = Brz1 (z1)∩C, Cj = (Brzj (zj)∩C) \
⋃j−1
i=1 Ci (i.e. Ci ∩Cj = ∅ (i 6= j)). Further

we have ∀j = 1, 2, ..., n

z1, z2 ∈ Cj ⇒ γ(z1, z2) ≤ ε.

Finally, take Aj = (A \A0) ∩m−1
+ (Cj) and m(j) = m+(λj) for any fixed λj ∈ Aj . This

defines a partition satisfying the above properties which we desired.
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By Lemma 4.14 we know that there exists a δ0 > 0 such that for an arbitrary Herglotz

function F , Borel set B ⊂ R, δ ∈ (0, δ0) and j = 1, 2, ..., n we have the bound∣∣∣∣∣
∫
Aj

ωδ(λ;B;F )dλ−
∫
Aj

ω(λ;B;F )dλ

∣∣∣∣∣ ≤ ε|Aj |, (4.33)

where ωδ(λ;B;F ) = 1
πθ(F (λ+ iδ), B). That δ0 can be chosen independently of j follows

from the fact that there are only finitely many sets Aj , so we just choose δ0 = min δj0.

We now complete the proof by showing that, for j ≥ 1

i) 1
π

∫
Aj
θ(mN

+ (λ), B)dλ is close to the integral 1
π

∫
Aj
θ
(
u2(N,λ)+m(j)v2(N,λ)

u1(N,λ)+m(j)v1(N,λ)
, B
)
dλ;

ii) mes
({
λ ∈ Aj ; v2v1 (N,λ) ∈ B

})
is close to 1

π

∫
Aj
θ
(
u2(N,λ)+m(j)v2(N,λ)

u1(N,λ)+m(j)v1(N,λ)
, B
)
dλ for

all N sufficiently large.

We begin with the proof of (i):

It can be shown that

mN
+ (λ) =

u2(N,λ) +m+(λ)v2(N,λ)

u1(N,λ) +m+(λ)v1(N,λ)
,

([6] Equation (5)). Hence, for fixed N,λ, the mapping from m+(λ) to mN
+ (λ) is a Möbius

transformation with real coefficients and discriminant one. By Lemma 2 of [6], the

Gamma separation is invariant under Möbius transformations, and so

γ

(
mN

+ (λ),
u2(N,λ) +m(j)v2(N,λ)

u1(N,λ) +m(j)v1(N,λ)

)
= γ(m+(λ),m(j)) ≤ ε, (λ ∈ Aj , j ≥ 1).

Using Equation (4.5) we can deduce that

sup
S

∣∣∣θ(mN
+ (λ), S)− θ

(
u2(N,λ)+m(j)v2(N,λ)

u1(N,λ)+m(j)v1(N,λ)
, S
)∣∣∣√

θ(mN
+ (λ), S)

√
θ
(
u2(N,λ)+m(j)v2(N,λ)

u1(N,λ)+m(j)v1(N,λ)
, S
) ≤ ε,

which implies that

1

π

∣∣∣∣∣θ(mN
+ (λ), B)− θ

(
u2(N,λ) +m(j)v2(N,λ)

u1(N,λ) +m(j)v1(N,λ)
, B

)∣∣∣∣∣ ≤ ε.
Integrating with respect to λ over Aj leads us to the bound

1

π

∣∣∣∣∣
∫
Aj

θ(mN
+ (λ), B)dλ−

∫
Aj

θ

(
u2(N,λ) +m(j)v2(N,λ)

u1(N,λ) +m(j)v1(N,λ)
, B

)
dλ

∣∣∣∣∣ ≤ εmes(Aj) (j ≥ 1).
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We now proceed with the proof of (ii):

For j ≥ 1 define Aδj = Aj + iδ ⊂ C+. As Aj is bounded, we know that Aδj is a compact

subset of C+. Hence Lemma 4.10 and Lemma 4.13 implies that we can find an N0 such

that ∀j ≥ 1, N > N0 and z ∈ Aδj

γ

(
−v2

v1
(N, z),−u2(N, z) +m(j)v2(N, z)

u2(N, z) +m(j)v2(N, z)

)
≤ ε.

In a similar way to part (i) we can now deduce that

1

π

∣∣∣∣∣
∫
Aj

θ

(
−v2

v1
(N,λ+ iδ),−B

)
dλ−

∫
Aj

θ

(
−u2(N,λ+ iδ) +m(j)v2(N,λ+ iδ)

u2(N,λ+ iδ) +m(j)v2(N,λ+ iδ)
,−B

)
dλ

∣∣∣∣∣ ≤ εmes(Aj).

This bound is valid for all j ≥ 1 andN > N0. Noting that both−v2
v1

and−u2(N,λ+iδ)+m(j)v2(N,λ+iδ)

u2(N,λ+iδ)+m(j)v2(N,λ+iδ)

are Herglotz functions, we see that we can use inequality (4.33) to compare these two

integrals in the limit δ → 0+. We know that

1

π

∫
Aj

lim
δ→0+

θ

(
−v2

v1
(N,λ+ iδ),−B

)
dλ = mes

({
λ ∈ Aj ;−

v2

v1
(N,λ) ∈ −B

})
= mes

({
λ ∈ Aj ;

v2

v1
(N,λ) ∈ B

})
,

and this, together with (4.33), allows us to arrive at the bound (for a suitably small

δ0 > δ)∣∣∣∣∣mes

({
λ ∈ Aj ;

v2

v1
(N,λ) ∈ B

})
− 1

π

∫
Aj

θ

(
−u2(N,λ) +m(j)v2(N,λ)

u2(N,λ) +m(j)v2(N,λ)
,−B

)
dλ

∣∣∣∣∣
≤

∣∣∣∣∣mes

({
λ ∈ Aj ;

v2

v1
(N,λ) ∈ B

})
− 1

π

∫
Aj

θ

(
−v2

v1
(N,λ+ iδ),−B

)
dλ

∣∣∣∣∣
+

∣∣∣∣∣ 1π
∫
Aj

θ

(
−v2

v1
(N,λ+ iδ),−B

)
dλ− 1

π

∫
Aj

θ

(
−u2(N,λ+ iδ) +m(j)v2(N,λ+ iδ)

u2(N,λ+ iδ) +m(j)v2(N,λ+ iδ)
,−B

)
dλ

∣∣∣∣∣
+
∣∣∣ 1
π

∫
Aj

θ

(
−u2(N,λ+ iδ) +m(j)v2(N,λ+ iδ)

u2(N,λ+ iδ) +m(j)v2(N,λ+ iδ)
,−B

)
dλ

− 1

π

∫
Aj

θ

(
−u2(N,λ) +m(j)v2(N,λ)

u2(N,λ) +m(j)v2(N,λ)
,−B

)
dλ
∣∣∣

≤ 3εmes(Aj).
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Using the identity θ(−α,−B) = θ(α,B) to obtain∣∣∣∣∣mes

({
λ ∈ Aj ;

v2

v1
(N,λ) ∈ B

})
− 1

π

∫
Aj

θ

(
u2(N,λ) +m(j)v2(N,λ)

u2(N,λ) +m(j)v2(N,λ)
, B

)
dλ

∣∣∣∣∣ ≤ 3εmes(Aj),

(as our solutions u, v are real) which holds for all j ≥ 1 and N ≥ N0 and completes the

proof of (ii). Combining the results of (i) and (ii) now yields∣∣∣∣∣mes

({
λ ∈ Aj ;

v2

v1
(N,λ) ∈ B

})
− 1

π

∫
Aj

θ(mN
+ (λ), B)dλ

∣∣∣∣∣ ≤ 4εmes(Aj), (j ≥ 1, N ≥ N0).

We chose mes(AR,r0 ) ≤ εmes(A), and so we have (for all N ≥ N0)∣∣∣∣mes

({
λ ∈ A;

v2

v1
(N,λ) ∈ B

})
− 1

π

∫
A
θ(mN

+ (λ), B)dλ

∣∣∣∣
≤

n∑
j=0

∣∣∣∣∣mes

({
λ ∈ Aj ;

v2

v1
(N,λ) ∈ B

})
− 1

π

∫
Aj

θ(mN
+ (λ), B)dλ

∣∣∣∣∣
≤ 2 mes(AR,r0 ) + 4ε

n∑
j=1

mes(Aj) ≤ 6εmes(A).

This concludes the proof of Theorem 4.1

6 Spectral Analysis

Having extended the theory pertaining to value distributions to incorporate the Dirac

operator, we can now prove Theorem 4.2.

Suppose the contrary, i.e. that we can find a subset A of [−1, 1] for which ρac(A) > 0,

where ρac is the absolutely continuous part of the spectral measure, . Then mes(A) > 0,

and we may also suppose that A is a subset of the essential support of ρac.

Now, as in Theorem 4.4, we define intervals (ak, bk) and set Nk = (ak+bk)
2 . Then Nk

can be seen as either the left hand endpoint of an interval (Nk, bk) or as the right hand

endpoint of an interval (ak, Nk). Theorem 4.4 then implies that

lim
k→∞

1

π

∫
A
θ(mNk

+ (λ), B)dλ =
1

π

∫
A
θ

(
i

√
λ2 − 1

λ+ 1
, B

)
dλ, (4.34)

whereas

lim
k→∞

mes

({
λ ∈ A :

v2(Nk, λ)

v1(Nk, λ)
∈ B

})
=

1

π

∫
A
θ

(
i

√
λ2 − 1

λ+ 1
,−B

)
dλ. (4.35)
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Since A is a subset of the essential support of ρac, we also have by Theorem 4.1 that

lim
k→∞

[
mes

({
λ ∈ A :

v2(Nk, λ)

v1(Nk, λ)
∈ B

})
− 1

π

∫
A
θ

(
i

√
λ2 − 1

λ+ 1
, B

)
dλ

]
= 0. (4.36)

Equations (4.34)-(4.36) now imply that

1

π

∫
A
θ

(
i

√
λ2 − 1

λ+ 1
, B

)
dλ =

1

π

∫
A
θ

(
i

√
λ2 − 1

λ+ 1
,−B

)
dλ (4.37)

However, i
√
λ2−1
λ+1 ∈ R− for λ ∈ A, and taking B = R− we see that the left hand size of

(4.37) is strictly positive, whilst the right hand size is zero. Hence we have a contradiction

and the theorem is proved.
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Chapter 5
Bound States of the Dirac Operator for

O(1x) Potentials

Consider the one-dimensional Schrödinger operator

κ = − d2

dx2
+ q(x). (5.1)

It is well known that any self-adjoint realisation of κ on [0,∞) has essential spectrum

[0,∞) if q(x) → 0 (x → ∞). Many results have been proven about the absolutely

continuous spectrum of this operator (see Chapter 3 Introduction for references); however,

it is also an interesting area of study to consider the bound states of this operator,

in particular finding results either bounding the maximum eigenvalue, the number of

eigenvalues or finding a bound for a sum involving the eigenvalues.

Von Neumann and Wigner [66] considered Schrödinger operators of the form (5.1) as

a means of constructing an example of a Schrödinger operator acting in L2(R3) with

specially symmetric potential which decays to zero at infinity for which there is a positive

eigenvalue, i.e. an eigenvalue embedded in the continuous spectrum; the significance of

this example was that it contradicted the physical intuition at the time. It was believed

that if the potential decayed to zero at infinity, no positive bound states could occur.

Eastham-Kalf subsequently showed that if |q(x)| = o(x−1) (x→∞), κ has no positive

eigenvalues; further, if lim supx→∞ x|q(x)| = C <∞ any eigenvalue λ must obey λ ≤ C2
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(c.f. [14, Section 3.2], the original result is due to Wallach). On the other hand, Eastham-

McLeod [15], with further developments by Thurlow [62], showed how to construct

potentials q(x) of the type q(x) = f(x)
x , with f(x)→∞ as x→∞ such that a prescribed

countable set of isolated points represents embedded positive eigenvalues of κ. Later,

Naboko ([38]) described a technique which, given an arbitrary countable (possibly dense)

set S of rationally independent numbers in R+, allows the construction of a potential q(x)

satisfying |q(x)| ≤ C(x)
x with C(x)→∞ (x→∞) monotonously at an arbitrarily slow

given rate such that the corresponding Schrödinger operator has S among its eigenvalues.

More recently Simon ([58]) described a different construction which does not require

the rational independence assumption. Kiselev, Last and Simon proved the borderline

case in [32, Theorem 4.1], showing that if q(x) obeys C = lim supx→∞ x|q(x)| <∞ then

κu = λu has at most countably many positive eigenvalues, λ ∈ R. They also showed that∑
n λn ≤

C2

2 .

We are again going to consider the relativistic counterpart of κ, the Dirac operator

τ = −iσ2
d

dx
+ σ3 + q(x) (x ∈ (0,∞)) (5.2)

with the boundary condition

u1(0) cosα+ u2(0) sinα = 0,

for fixed α ∈ R.

It is known that the spectrum of this operator is never purely discrete [54]. However, as

shown by K. M. Schmidt considered in [54], there is a suitable potential q satisfying

q(r) <
C(x)

x
, (x ∈ (0,∞)),

with limx→∞C(x) =∞ for which the operator has a prescribed set of eigenvalues dense

in the whole or part of its essential spectrum.

Our aim is to prove what could be thought of as a boundary case to [54] using a similar

method to that of Kiselev, Last and Simon [32]. We consider the Dirac operator (5.2)

where q is real valued, locally integrable and C := lim supx→∞ x|q(x)| <∞ and aim to

prove
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Theorem 5.1. Assume that C := lim supx→∞ x|q(x)| < ∞. Then
∑

n(λ2
n − 1) ≤ C2

2

(|λn| > 1).

Remark 5.1. We note that it is the intention that the summation is taken only over

eigenvalues in the essential spectrum.

As in [32], there exists an x0 ∈ R+ such that, by increasing C,

|q(x)| ≤ C

1 + |x|
(x ∈ [x0,∞). (5.3)

Indeed,

C = lim sup
x→∞

x|q(x)| = lim
x→∞

(
sup
y≥x

y|q(y)|

)
implies that for all ε > 0 there exists an x0 such that

∣∣supy≥x0 y|q(y)| − C
∣∣ ≤ ε. Thus

|q(x)| ≤ C+ε+supx |q(x)|
1+x ≤ C′

1+x (x ∈ [x0,∞)).

Before proceeding with the proof of the result we need to state three standard estimates;

we must also define a modified Prüfer transformation which is integral to the proof.

Lemma 5.1 ([32] Lemma 4.3). Let f, g ∈ C1[1,∞) such that

|g′f |+ |f ′| ∈ L1.

Then ∫ N

0
f(x)ei(kx+g(x))dx

is bounded as N →∞ for any k 6= 0.

Lemma 5.2 ([32] Lemma 4.4). Let {ei}Ni=1 be a set of unit vectors in a Hilbert space H

so that

α = N
∑
i 6=j

(ei, ej) < 1,

where (·, ·) is the inner product on H. Then

N∑
i=1

|(g, ei)|2 ≤ (1 + α)||g||2H,

for any g ∈ H.

Lemma 5.3. Let f ∈ L1(·,∞). Then lim infx→∞ x|f(x)| = 0.
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We define the standard Prüfer transformation of a solution of τu = λu by

u(x, λ) = R̃(x, λ)

 sin(ϑ̃(x, λ))

cos(ϑ̃(x, λ))

 , (5.4)

where R is called the Prüfer radius and ϑ the Prüfer angle (c.f. [69, Section 5.16]). It

can easily be shown that

ϑ̃′(x, λ) = λ− q(x) + cos(2ϑ̃(x, λ)), (5.5)

and

(log R̃)′(x, λ) = sin(2ϑ̃(x, λ)), (5.6)

where ·′ denotes differentiation with respect to x. However, this usual Prüfer transfor-

mation falls short of our requirements for the proof. Indeed, we wish the equation for

the Prüfer radius to be homogeneous in q. We therefore consider a slightly modified

transformation with |λ| > 1

u(x, λ) = R(x, λ)

 cos(ϑ(x, λ) + π
4 )

− κ
1+λ sin(ϑ(x, λ) + π

4 )

 , (5.7)

where R is called the modified Prüfer radius, ϑ the modified Prüfer angle and κ =
√
λ2 − 1.

It can be shown that (see [54] Section 2)

ϑ′(x, λ) = κ+ q(x)
λ+ sin(2ϑ(x, λ))

κ
, (5.8)

and

(logR)′(x, λ) = −q(x)

κ
cos(2ϑ(x, λ)), (5.9)

With these tools we can now proceed with the proof of Theorem 5.1; it suffices to show

that for each N <∞
N∑
n=1

(λ2
n − 1) ≤ C2

2
.

Assume that τu = λu has N distinct eigenvalues λ1, ..., λN . Define Rn(x, λ) to be the

modified Prüfer radius corresponding to the L2 solution u(x, λn); we normalise u so that

Rn(0, λ) = 1. Then, by (5.7), Rn(·, λn) ∈ L2(0,∞). Thus

N∑
i=1

|Rn(·, λn)|2 ∈ L1(0,∞),
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which implies, by Lemma 5.3, that lim infx→∞ x
∑N

n=1 |Rn(x, λn)|2 = 0. Thus there

exists a positive sequence {Bj}j∈N such that Bj →∞ (j →∞) and

Rn(Bj , λn) ≤ B−
1
2

j , (n ∈ {1, ...N}, j ∈ N).

Thus ∫ Bj

0

d

dy
logRn(y, λn)dy = logRn(Bj) ≤ −

1

2
logBj .

By (5.9), this means that∫ Bj

0

(
−q(y)

κn
cos(2ϑn(y, λn))

)
dy ≤ −1

2
logBj . (5.10)

Consider the Hilbert spaces Hj defined by

Hj = L2{(0, Bj), (1 + x)dx}.

Then in Hj we have using (5.3)

||q||2Hj =

∫ Bj

0
q2(x)(1 + x)dx ≤

∫ Bj

0

C2

1 + x
dx = C2 log(Bj + 1) = C2 logBj +O(1).

(5.11)

Consider

e(j)
n (y) = − 1√

N
(j)
n

cos(2ϑn(y, λn))

1 + y
χ[0,Bj ](y), (n ∈ {1, ...N})

where χ is the characteristic function and N (j)
n =

∫ Bj
0

cos2(2ϑn(y,λn))
1+|y| dy. Then

||e(j)
n ||2Hj =

∫ Bj

0

1

N
(j)
n

cos2(2ϑn(y, λn))

(1 + |y|)2
(1 + y)dy = 1.

Thus {e(j)
n }Nn=1 are a set of unit vectors in Hj .

Notice that ϑn(x)−κnx and 2(ϑn±ϑm)− 2(κn±κm)x have derivatives that are O(x−1),

(x→∞). Indeed

[ϑn(x)− κnx]′ = q(x)
λn + sin(2ϑn(x, λn))

κn
, (x ∈ (0,∞).
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Thus∫ Bj

0

cos(2ϑn(y)) cos(2ϑm(y))− 1
2δnm

1 + y
dy

=
1

2

∫ Bj

0

cos(2(ϑn(y)− ϑm(y))) + cos(2(ϑn(y) + ϑm(y)))− δnm
1 + y

dy

=
1

2
<
∫ Bj

0

ei(2(κn−κm)y+2(ϑn−ϑm)−2(κn−κm)y) + ei(2(κn+κm)y+2(ϑn+ϑm)−2(κn+κm)y) − δnm
1 + y

dy

= O(1) (j →∞)

by Lemma 5.1. Hence, as√
N

(j)
n N

(j)
m (e(j)

n , e(j)
m )Hj =

∫ Bj

0

cos(2ϑn(y)) cos(2ϑm(y))

1 + y
dy

=
1

2
δnm

∫ Bj

0

dy

1 + y
+O(1)

=
1

2
δnm log(Bj + 1) +O(1), (j →∞)

we can conclude that

N
(j)
i =

1

2
logBj +O(1), (j →∞) (5.12)

(e
(j)
i , e

(j)
k ) = O((logBj)

−1), i 6= k (j →∞). (5.13)

Thus, by (5.10)

(q, e(j)
n )Hj =

∫ Bj

0
−q(y) cos(2ϑn(y, λn))√

N
(j)
n

dy ≤ −κn logBj√
N

(j)
n

= − κn logBj√
1
2 logBj +O(1)

= − κn logBj√
1
2 logBj

(
1 +

2O(1)

logBj

)− 1
2

= − κn logBj√
1
2 logBj

(
1 +O

(
1

logBj

))− 1
2

= − κn logBj√
1
2 logBj

(
1− 1

2
O

(
1

logBj

))
= −
√

2κn logBj√
logBj

+O

((
1

logBj

) 1
2

)

= −
√

2κn(logBj)
1
2 +O(1). (5.14)

As N is fixed and Bj →∞ as j →∞ we may choose j large enough, by (5.13), so that

Lemma 5.2 applies. Thus

N∑
n=1

|(q, e(j)
n )Hj |2 ≤

(
1 +O((logBj)

−1)
)
||q||2Hj .
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Thus, by (5.11) and (5.14)

N∑
n=1

|
√

2κn(logBj)
1
2 +O(1)|2 ≤

N∑
n=1

| − (q, e(j)
n )Hj |2

≤
(
1 +O((logBj)

−1)
)
||q||2Hj

≤
(
1 +O((logBj)

−1)
) (
C2 logBj +O(1)

)
.

and hence

2

(
N∑
n=1

κ2
n

)
logBj ≤ C2 logBj +O(1),

so
N∑
n=1

κ2
n ≤

C2

2
.

2
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Chapter 6
Further Research

The results of this thesis have settled the question regarding the absolutely continuous

spectrum for a one-dimensional Dirac operator with a square integrable potential and

extended this to the three-dimensional case, albeit with an additional boundedness as-

sumption. Further, the techniques of value distribution theory have been modified and

applied to the one-dimensional Dirac operator to allow the study of square integrable per-

turbation of sparse electric potentials. A bound on the sum of the relativistic equivalent

of the momentum variable has also been described. However, some further prospective

areas of research have been opened.

An interesting question which arises from Chapter 2 is whether Theorem 2.1 is optimal

in terms of Lp decay. Is it the case that for all Lp spaces with p > 2 there exist examples

of electric potentials for which there is no absolutely continuous spectrum? This question

has already been answered in the affirmative by both Pearson [39] and Kiselev, Last and

Simon [32] for the Schrödinger case as detailed in Chapter 2.

Another interesting question arises from the remark at the end of Chapter 2 Section 5;

although it is possible to prove the result of Chapter 2 using this rather rough estimate,

it raises a question: is it possible to relate the transmission coefficient and potential more

effectively, and if so, could this lead to either a simpler proof or a different result?
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In [30], Simon and Killip give necessary and sufficient conditions for a positive measure

to be the spectral measure of a half-line Schrödinger operator with square integrable

potential. By doing this they were able to improve the result of Deift and Killip discussed

in Chapter 2 and bring it into the context of sum rules. It would be interesting to produce

an analogous result for the Dirac operator case.

In Chapter 3 the need to introduce an L∞ condition on the potential to proceed with

the chosen method was unfortunate. However, it is my belief that this condition is not

a requirement and thus it should be possible to have a complete analysis of the Dirac

operator with square integrable potential in up to three dimensions.

Finally in Chapter 4 the ratio of solution components, v2(x,λ)
v1(x,λ) , which occurs throughout

the chapter is a tantalising motivation towards a potential simplification of the results

of this chapter, or at least the possibility of a different approach. Indeed, if we were

to consider only real values for the spectral parameter λ, this ratio is the tangent of

the Prüfer angle and so many of the results reduce to deducing the rate of increase of

the Prüfer angle as well as the number of passes through the interval [0, π]. If some

progress could be made in this direction it would greatly simplify the theory not only by

simplifying the results themselves but by reducing the need to move into the complex

plane.
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Appendix A
The Error Estimate EA(δ)

The aim of this note is to give some further details about the error estimate EA(δ) which

appears in Chapter 4 as part of a bound for the difference between value distributions for

two different Herglotz functions. These details are due to Breimesser and Pearson and

appear in [7, 6].

Let G(z) be a Herglotz function with boundary value G+(λ) defined as in Chapter 4.

Further, let V(A,B;G) be the associated value distribution function for G as in Chapter

4.

For practical applications it is difficult to estimate V(A,B;G); indeed, if we were to use

the formula

V(A,B;G) =

∫
A
ω(λ,B;G)dλ

where

ω(λ,B,G) = lim
δ→0+

ω(λ+ iδ, B;G), (λ ∈ R), (A.1)

(see Chapter 4 for details) there would be difficulties because the determination of

ω(λ,B;G) through (A.1) requires knowledge of the behaviour of the Herglotz function

close to the real axis, where precise bounds are not easy to obtain.

In order to broach this problem, we consider a translation away from the real axis. Indeed,

define the translated Herglotz function Gδ by Gδ(z) := G(z + iδ), with δ > 0. Further,
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set

ωδ(λ,B;G) := ω(λ,B;Gδ) =
1

π
θ(G(λ+ iδ), B),

as per Equation (4.3).

An application of the Lebesgue dominated convergence theorem shows that (for mes(A) <

∞)

V(A,B;G) = lim
δ→0+

∫
A
ωδ(λ,B;G)dλ =

∫
A
ω(λ,B;G)dλ. (A.2)

The following theorem has the suprising consequence that, for any fixed A, this limit is

uniform over all Borel sets B and over all Herglotz functions G.

Theorem A.1 ([7] Theorem 1). Let G be an arbitrary Herglotz function and let A be a

set of finite measure. Let B be an arbitrary Borel subset of R. Then we have∣∣∣∣∫
A
ωδ(λ,B;G)dλ−

∫
A
ω(λ,B;G)dλ

∣∣∣∣ ≤ EA(δ) (A.3)

where EA(δ)→ 0 for δ → 0 and EA(δ) is a nondecreasing function of δ. Since EA(δ) is

independent of B and G, the bound is uniform over all sets B and all Herglotz functions

G.

The theorem shows that the convergence of the integral used in (A.2) to determine the

value distribution V is uniform over B,G. As remarked in [6], and proven in [7], an

explicit bound in (A.3) is obtained by setting

EA(δ) =
1

π

∫
A
θ(λ+ iδ, Ac)dλ (A.4)

where Ac is the complement of A. By making this choice for EA(δ) it is possible to

show that (A.3) is optimal; indeed, equality can be attained with the choice B = Ac and

G(z) = z. Further, as per [7] Corollary 1, if A is chosen to be an interval, A = (a, b), it

is straightforward to deduce using (A.4) that

EA(δ) =
2(b− a)

π
arctan

(
δ

b− a

)
+
δ

π
log

(
1 +

(b− a)2

δ2

)
.

If we consider both Theorem A.1 and Equation (A.2) together, it is clear that we are

able to carry out an estimate, the the order EA(δ), of the value distribution function V
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through the evaluation of
∫
A ω

δ(λ,B;G)dλ.

As a final remark, using (A.4), we see that EA(δ) ≤ mes(A) and, by symmetry, EA(δ) <

mes(Ac). Hence EA(δ) ≤ min(mes(A),mes(Ac)). As detailed in [7] Lemma 1, it can then

be deduced that EA(δ) is finite if and only if either mes(A) <∞ or mes(Ac) <∞.
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