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Abstract. The fractional perfect b-matching polytope of an undirected graph G is the

polytope of all assignments of nonnegative real numbers to the edges of G such that the

sum of the numbers over all edges incident to any vertex v is a prescribed nonnegative

number bv. General theorems which provide conditions for nonemptiness, give a formula

for the dimension, and characterize the vertices, edges and face lattices of such polytopes

are obtained. Many of these results are expressed in terms of certain spanning subgraphs

of G which are associated with subsets or elements of the polytope. For example, it is

shown that an element u of the fractional perfect b-matching polytope of G is a vertex

of the polytope if and only if each component of the graph of u either is acyclic or else

contains exactly one cycle with that cycle having odd length, where the graph of u is

defined to be the spanning subgraph of G whose edges are those at which u is positive.
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1. Introduction

The focus of this paper, and its expected sequels [3, 4], is the fractional perfect b-

matching polytope of a graph. For any finite, undirected graph G, which may contain

loops and multiple edges, and any assignment b of nonnegative real numbers to the ver-

tices of G, this polytope, denoted P(G, b), is defined to be the set of all assignments of

nonnegative real numbers to the edges of G such that the sum of the numbers over all

edges incident to any vertex is the prescribed value of b at that vertex.

Certain fractional perfect b-matching polytopes, or polytopes which are affinely iso-

morphic to these, have been studied and used in the contexts of combinatorial matrix

classes (see, for example, the book by Brualdi [9]), and combinatorial optimization (see,

for example, the books by Korte and Vygen [17], or Schrijver [22]). The terminology

‘fractional perfect b-matching polytope’ is derived mainly from the latter context, and

will be discussed further in Section 1.5.

1.1. Main results. The primary aim of this paper is to present general theorems con-

cerning the nonemptiness, existence of positive elements, dimension, vertices, edges and

faces of such polytopes, together with uniform, and in most cases self-contained, proofs.

The main theorems apply to an arbitrary graph G, which may be nonbipartite. However

(as is often the case with results related to matchings of graphs), many of these theorems

take simpler forms if G is bipartite, so these forms will also be given.

A list of the main results of this paper, including those which are restricted to the case

of bipartite G, is as follows.

• Conditions for P(G, b) to be nonempty: Theorem 6.

Bipartite case: Theorem 3.

• Conditions for P(G, b) to contain a positive element (i.e., one whose value at each edge

of G is positive): Theorem 7.

Bipartite case: Theorem 4.

• Results for the dimension of P(G, b): Corollaries 18 and 19.

• Results for the vertices of P(G, b): Corollary 21, and Theorems 22, 24, 29 and 39.

Bipartite case: Corollary 23.

• Results for the edges of P(G, b): Theorem 25 and Corollary 31.

Bipartite case: Corollary 26.

• Results for the faces of P(G, b): Theorems 17, 30, 32, 33, 34, 35, 37 and 38.

Bipartite case: Corollaries 20 and 36.

Several of these results are expressed in terms of certain spanning subgraphs of G (i.e.,

subgraphs of G with the same vertex set as that of G) which are associated with subsets or

elements of P(G, b). These graphs are defined in (51)–(53), and certain characterizations

of the graphs are given in Theorems 32, 33, 34, 35 and 37, and Corollary 36.
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1.2. Structure of paper. The structure of this paper, and the interdependence of its

sections, is as follows.

In Section 2, alternative forms, involving the incidence matrix or a certain generalized

adjacency matrix of G, are given for P(G, b).

In Section 3, results which give conditions for P(G, b) to be nonempty, or to contain a

positive element, are derived.

In Section 4, some relevant general results for graphs, and their incidence matrices, are

obtained.

In Sections 5 and 6, some relevant general results for polytopes, and their face lattices,

are obtained or stated.

In Section 7, results for the faces, dimension, vertices and edges of P(G, b) are derived.

The proof of each of the main results of Section 7 involves a relatively simple combination

of a general result for graphs from Section 4 with a general result for polytopes from

Section 5.

In Section 8, further results for the vertices, edges, faces and graphs of P(G, b) are

derived. The proof of each of the main results of Section 8 involves a relatively simple

application of a general result for polytopes from Section 6 to the context of P(G, b).

In Section 9, some additional results for the graphs of P(G, b) are obtained, using

certain results from Section 3.

Finally, in Section 10, results which are relevant for the case in which G contains

multiple edges are obtained. These results identify relationships between the faces and

vertices of P(G, b) and those of P(Grd, b), where Grd is a graph obtained from G by

reducing each set of multiple edges to a single edge

For the sake of completeness, this paper includes some previously-known results. How-

ever, many of these results have appeared previously in the literature only under slightly

less general conditions (for example, graphs without loops or multiple edges), in terms of

slightly different objects (for example, matrices rather than graphs), or with somewhat

different proofs (for example, those in which the aspects which depend on graph theory

and the aspects which depend on polytope theory are interspersed throughout the proof,

rather than being considered separately until the final step).

1.3. Notation and basic facts. The main notation and conventions, and some basic

facts, which will be used in this paper are as follows.

Throughout the paper, G is a finite, undirected graph which, unless stated otherwise,

may be nonbipartite, and may contain loops and multiple edges. Furthermore, V and E

are the vertex and edge sets of G, and b is a function from V to the nonnegative real

numbers.

It will always be assumed that V is nonempty, but, unless stated otherwise, that E

may be empty.

The set of all edges incident with vertex v of G will be denoted as δG(v), with the

implication that a loop attached to v appears once rather than twice in δG(v). Each edge
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of G will be taken to have two endpoints in V , with these being identical if the edge is a

loop.

The conventions used for cycles will be as follows. For a positive integer n, a cycle in G

of length n corresponds to all cyclic permutations of a sequence (v1, e1, v2, e2, . . . , vn, en),

in which v1, . . . , vn are distinct vertices of V , e1, . . . , en are distinct edges of E, any two

consecutive terms of the sequence are incident, and the endpoints of en are vn and v1. (It

follows that if n = 1 then e1 is a loop incident to v1, that if n = 2 then e1 and e2 belong

to a set of multiple edges with the same incident vertices v1 and v2, and that if n ≥ 3

then the distinctness of e1, . . . , en is implied by the distinctness of v1, . . . , vn.) With these

conventions, the following standard facts, which are often applied only to graphs without

loops or multiple edges, are valid. The graph G is bipartite if and only if G does not

contain any odd-length cycles. For a connected graph G, |E|+1 = |V | if and only if G is

acyclic (i.e., a tree), and |E| = |V | if and only if G contains exactly one cycle.

A graph which is obtained from G by reducing each set of multiple edges to a single

edge will be referred to as a reduced graph of G. More specifically, a reduced graph of G

is a graph Grd which has vertex set V , does not have multiple edges, and such that, for

any u, w ∈ V , u and w are adjacent in Grd if and only if u and w are adjacent in G. Thus,

for example, G itself is a reduced graph of G if and only if G does not have multiple edges.

Matrices and vectors whose rows and columns are indexed by finite sets will often be

used. If such a matrix or vector is written out as an explicit array of entries, then an

ordering of the elements of each associated index set needs to be chosen. However, all of

the results of this paper are independent of such choices.

The sets of nonnegative real numbers and positive real numbers will be denoted as R≥0

and R>0, respectively.

For nonempty sets S and N , the set of functions from N to S will be denoted as SN .

For N finite, as will always be the case here, the value of a function x ∈ SN at i ∈ N will

be denoted as xi, so that x is also regarded as a vector whose entries are indexed by N .

The case S∅, for S ⊂ R, will also occasionally be needed, and this will denote a set {0}

containing only the zero vector if 0 ∈ S, or ∅ if 0 /∈ S. A vector x ∈ R
N will be referred

to as positive if xi > 0 for each i ∈ N , i.e., if x ∈ R
N
>0.

The fractional perfect b-matching polytope of G can now be written, using some of the

notation above, as

P(G, b) :=

{

x ∈ R
E
≥0

∣

∣

∣

∣

∑

e∈δG(v)

xe = bv for each v ∈ V

}

. (1)

This set is a polytope in R
E since it is a polyhedron in R

E (being the intersection of

the closed halfspaces {x ∈ R
E | xe ≥ 0} for each e ∈ E, and the hyperplanes {x ∈ R

E |
∑

e∈δG(v) xe = bv} for each v ∈ V ), and it is bounded (since any x ∈ P(G, b) satisfies

0 ≤ xe ≤ bve for each e ∈ E, where ve is an endpoint of e).

It will be assumed, for some of the results of this paper, that b is nonzero. It can be

seen that this is equivalent to the assumption that P(G, b) 6= {0}.
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Note also that for the case E = ∅, P(G, b) is {0} if b = 0, or ∅ if b 6= 0.

The set of positive elements of P(G, b) will be denoted as P(G, b)>0, i.e.,

P(G, b)>0 :=

{

x ∈ R
E
>0

∣

∣

∣

∣

∑

e∈δG(v)

xe = bv for each v ∈ V

}

. (2)

For convenience, a brief summary will now be given of some further notation which will

be introduced properly later in the paper.

• IG denotes the incidence matrix of G. First used in Section 2.

• G[U,W ], for subsets U and W of V , denotes the set of all edges of G which connect a

vertex of U and a vertex of W . First used in Section 3. See also (14).

• U = W1⋒W2⋒ . . .⋒Wn, for sets U,W1,W2, . . . ,Wn, means that U = W1∪W2∪ . . .∪Wn

and that W1, . . . ,Wn are pairwise disjoint. First used in Section 3.

• supp(X) and supp(x), for X ⊂ R
N and x ∈ R

N with N a finite set, denote the supports

of X and x, respectively. First used in Section 5. See also (24)–(25).

• vert(P ), facets(P ) and F(P ), for a polytope P , denote the set of vertices, set of facets

and face lattice, respectively, of P . First used in Section 6.

• The appearance of ⊂′ within a result means that the result is valid if ⊂′ is taken to

be ⊂, and also valid if ⊂′ is taken to be =. First used in Section 6.

• gr(X), for X ⊂ R
E, denotes the spanning subgraph of G with edge set {e ∈ E |

there exists x ∈ X with xe 6= 0}, and is referred to as the graph of X . First used in

Section 7. See also (51).

• gr(x), for x ∈ R
E, denotes the spanning subgraph of G with edge set {e ∈ E | xe 6= 0},

and is referred to as the graph of x. First used in Section 7. See also (52).

• G(G, b) denotes the set of graphs of subsets of P(G, b). First used in Section 7. See

also (53).

1.4. Example. A simple example of a fractional perfect b-matching polytope will now

be introduced. This example will be used to illustrate various results later in the paper.

For the rest of this section, consider the graph, with V = {1, 2, 3} and E =
{

α, β, γ, δ, ǫ
}

,

given by

G =

• •

•

1 2

3

ǫ

β

α

γ δ . (3)

In subsequent diagrams of spanning subgraphs of G, the edges α and β will always be

represented by curves which lie below and above, respectively, the straight line between

the vertices 1 and 2, as in (3).
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The fractional perfect b-matching polytope of G for this case is

P(G, b) =
{

(xα, xβ, xγ , xδ, xǫ) ∈ R
{α,β,γ,δ,ǫ}
≥0

∣

∣

∣

xα + xβ + xγ = b1, xα + xβ + xδ = b2, xγ + xδ + xǫ = b3

}

, (4)

which gives

P(G, b) =
{

(

xα, xβ, b1−xα−xβ , b2−xα−xβ , b3−b1−b2+2(xα+xβ)
)

∈ R
{α,β,γ,δ,ǫ}

∣

∣

∣

xα ≥ 0, xβ ≥ 0, b1+b2−b3
2

≤ xα + xβ ≤ min(b1, b2)
}

. (5)

It follows immediately from (5) that P(G, b) 6= ∅ if and only if b1+b2−b3
2

≤ min(b1, b2),

which gives

P(G, b) 6= ∅ if and only if b3 ≥ |b1 − b2|. (6)

It can also be deduced that

P(G, b)>0 6= ∅ if and only if b1 > 0, b2 > 0 and b3 > |b1 − b2|. (7)

In particular, if there exists x ∈ P(G, b)>0, then b1 = xα + xβ + xγ > xα + xβ > 0,

b2 = xα+xβ+xδ > xα+xβ > 0 and xǫ = b3−b1−b2+2(xα+xβ) > 0, which gives b1 > 0,

b2 > 0 and b3 > b1 + b2 − 2(xα + xβ) > b1 + b2 − 2min(b1, b2) = |b1 − b2|. Conversely, if

b1 > 0, b2 > 0 and b3 > |b1−b2|, then setting xα = xβ =
(

max(0, b1+b2−b3
2

)+min(b1, b2)
)

/4,

xγ = b1−xα−xβ , xδ = b2−xα−xβ and xǫ = b3− b1− b2+2xα+2xβ gives x ∈ P(G, b)>0.

It can be seen, using (5), that if b1 > 0, b2 > 0 and |b1 − b2| < b3 < b1 + b2,

then P(G, b) is a quadrilateral with vertices
(

b1+b2−b3
2

, 0, b1−b2+b3
2

, −b1+b2+b3
2

, 0
)

,
(

0, b1+b2−b3
2

,
b1−b2+b3

2
, −b1+b2+b3

2
, 0
)

,
(

min(b1, b2), 0,max(0, b1 − b2),max(0, b2 − b1), b3 − |b1 − b2|
)

and
(

0,min(b1, b2),max(0, b1−b2),max(0, b2−b1), b3−|b1−b2|
)

. It can also be seen that P(G, b)

is a triangle for b1 > 0, b2 > 0 and b3 ≥ b1 + b2, a line segment for b1 > 0, b2 > 0 and

b3 = |b1 − b2|, and a single point for b1 = 0 or b2 = 0 and b3 ≥ |b1 − b2| = max(b1, b2).

• •

•

•

(0, 12 , 12 ,12 ,0)

=D

(0,1,0,0,1)

=C

( 12 ,0, 12 , 12 ,0)

=A

(1,0,0,0,1)

=B

xβ

xα

Figure 1. P(G, b), for G given by (3) and b1 = b2 = b3 = 1.
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For the specific case b1 = b2 = b3 = 1, the quadrilateral P(G, b) (or, more precisely, its

projection onto the xα, xβ plane) is shown in Figure 1. In that figure, the coordinates of

each vertex are indicated explicitly, and the vertices are also denoted as A, B, C and D,

where this notation will be used further in Sections 7–9.

1.5. Related matching polytopes. In order to place fractional perfect b-matching poly-

topes into a wider context, some related matching polytopes will now be defined.

For a graph G and a vector b ∈ R
V
≥0, define eight types of vector x ∈ R

E
≥0 which satisfy

∑

e∈δG(v)

xe ≤ bv for each v ∈ V, (8)

where the types are obtained by prefixing any of the terms ‘fractional’, ‘perfect’ or ‘b-’

to the term ‘matching’, and these terms have the following meanings. If ‘fractional’ is

omitted, then all entries of b and x are integers. If ‘perfect’ is included, then each case

of (8) holds as an equality. If ‘b-’ is omitted, then each entry of b is 1.

fractional perfect b-matching
polytope of G, for b ∈ R

V
≥0

{

x ∈ R
E
≥0

∣

∣

∣

∑

e∈δG(v) xe = bv for each v ∈ V
}

fractional perfect matching
polytope of G

{

x ∈ R
E
≥0

∣

∣

∣

∑

e∈δG(v) xe = 1 for each v ∈ V
}

fractional b-matching
polytope of G, for b ∈ R

V
≥0

{

x ∈ R
E
≥0

∣

∣

∣

∑

e∈δG(v) xe ≤ bv for each v ∈ V
}

fractional matching polytope
of G

{

x ∈ R
E
≥0

∣

∣

∣

∑

e∈δG(v) xe ≤ 1 for each v ∈ V
}

perfect b-matching polytope
of G, for b ∈ Z

V
≥0

conv
{

x ∈ Z
E
≥0

∣

∣

∣

∑

e∈δG(v) xe = bv for each v ∈ V
}

perfect matching polytope
of G

conv
{

x ∈ {0, 1}E
∣

∣

∣

∑

e∈δG(v) xe = 1 for each v ∈ V
}

b-matching polytope
of G, for b ∈ Z

V
≥0

conv
{

x ∈ Z
E
≥0

∣

∣

∣

∑

e∈δG(v) xe ≤ bv for each v ∈ V
}

matching polytope of G conv
{

x ∈ {0, 1}E
∣

∣

∣

∑

e∈δG(v) xe ≤ 1 for each v ∈ V
}

Table 1. Types of matching polytope.

For each of these types of matching, define an associated polytope as the set of all such

matchings if ‘fractional’ is included, or as the convex hull in R
E of all such matchings if

‘fractional’ is omitted. The definitions of these polytopes are given explicitly for each case

in Table 1, where conv denotes the convex hull and Z≥0 denotes the set of nonnegative
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integers. It can be seen that the current definition of the fractional perfect b-matching

polytope of G coincides with the previous definition (1). For more information on the

other seven cases of such matchings and polytopes (and further related special cases, such

as those which are ‘capacitated’ or ‘simple’), see, for example, Korte and Vygen [17],

Lovász and Plummer [19], or Schrijver [22]. Some of these cases, and certain relationships

among them, will also be considered in [3].

Note that, using the previous definitions, a matching or perfect matching x is an as-

signment xe of 0 or 1 to each edge e of G such that the sum of the numbers over all edges

incident to any vertex is at most 1, or exactly 1 in the perfect matching case. However,

using standard graph theory terminology, such an x is actually the incidence vector of a

matching (i.e., a subset M of E such that each vertex is incident to at most one edge

in M), or perfect matching (i.e., a subset M of E such that each vertex is incident to

exactly one edge in M). More specifically, xe is 1 or 0 according to whether or not the

edge e is in the matching.

1.6. Further papers. This is the first paper in a projected series of three papers on

fractional perfect b-matching polytopes.

In the second paper [3], various polytopes which are special cases of fractional perfect

b-matching polytopes, or which are affinely isomorphic to such special cases, will be con-

sidered, and results (including certain standard theorems) for these cases will be obtained

by applying the general theorems of this paper. The cases which will be considered in [3]

will include the following.

• Polytopes P(G, b) in which each entry of b is an integer.

• Polytopes defined by modifying (1) so that
∑

e∈δG(v) xe = bv is replaced by
∑

e∈δG(v) xe ≤

bv for each vertex v of G.

• Polytopes defined by modifying (1) so that additional conditions xe ≤ ce apply to each

edge e of G, where ce is a prescribed nonnegative number.

• Polytopes of b-flows (or b-transshipments) on directed graphs. See, for example, Schri-

jver [22, Secs. 11.4 & 13.2c], or Korte and Vygen [17, Sec. 9.1].

• Certain other matching polytopes, including some of those discussed in Section 1.5.

• Polytopes of magic labelings of graphs. See, for example, Ahmed [1].

• The symmetric transportation polytope N (R), and the related polytopes N (≤ R),

N≤Z(R) and N≤Z(≤ R). See, for example, Brualdi [9, Sec. 8.2] for definitions of the

notation, and further information. The cases N (R) and N≤Z(R) will also be discussed

briefly in Section 2.

• The transportation polytopeN (R, S), and the related polytopesN (≤ R,≤ S),N≤Z(R,

S) and N≤Z(≤ R,≤ S). See, for example, Brualdi [9, Secs. 8.1 & 8.4] for definitions of

the notation, and further information. The cases N (R, S) and N≤Z(R, S) will also be

discussed briefly in Section 2.
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• The polytope of doubly stochastic matrices, also known as the Birkhoff or assignment

polytope, and various related polytopes, including the polytopes of doubly substochas-

tic matrices, extensions of doubly substochastic matrices, symmetric doubly stochastic

matrices, symmetric doubly substochastic matrices, and tridiagonal doubly stochastic

matrices. See, for example, Brualdi [9, Ch. 9], and (for the tridiagonal case) Dahl [11].

• The alternating sign matrix polytope. See, for example, Behrend and Knight [5, Sec. 6],

or Striker [23].

In the third paper [4], the polytope of all elements of P(G, b) (for certain cases of G

and b) which are invariant under a certain natural action of all elements of a group of

automorphisms of G will be considered.

2. Matrix forms of P(G, b)

In this section, some alternative forms involving matrices are given for P(G, b). The

form (9) will be used first in Section 7, while the other forms, (12) and (13), will be

used in [3]. Certain matrix classes, and their relationship with certain cases of fractional

perfect b-matching polytopes, are also discussed.

The incidence matrix IG of a graph G is the matrix with rows and columns indexed

by V and E respectively, and entries (IG)ve given by 1 or 0 according to whether or not

vertex v is incident with edge e. It follows immediately from this definition, and the

definition (1) of the fractional perfect b-matching polytope of G, that

P(G, b) =
{

x ∈ R
E
≥0

∣

∣ IG x = b
}

. (9)

As an example, for G given by (3),

P(G, b) =
{

(xα, xβ, xγ , xδ, xǫ) ∈ R
{α,β,γ,δ,ǫ}
≥0

∣

∣

∣

(

1 1 1 0 0
1 1 0 1 0
0 0 1 1 1

)

(xα
xβ

xγ

xδ
xǫ

)

=

(

b1
b2
b3

)

}

, (10)

For x ∈ R
E, define the generalized adjacency matrix AG(x) of G to be the matrix with

rows and columns indexed by V , and entries given by

AG(x)vw =
∑

e∈δG(v)∩δG(w)

xe (11)

for each v, w ∈ V . Note that the sum here is simply over all edges which connect v and w,

that AG(x) is symmetric, and that if xe = 1 for all e ∈ E then AG(x) is the standard

adjacency matrix of G. It follows that

P(G, b) =

{

x ∈ R
E
≥0

∣

∣

∣

∣

∑

w∈V

AG(x)vw = bv for each v ∈ V

}

, (12)

i.e., P(G, b) is the polytope of all assignments x of nonnegative real numbers to the edges

of G such that the sum of entries in row/column v of AG(x) is bv, for each vertex v.
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As an example, forG given by (3), P(G, b) is the set of all (xα, xβ, xγ, xδ, xǫ) ∈ R
{α,β,γ,δ,ǫ}
≥0

such that the sum of entries in row/column 1, 2 or 3 of

(

0 xα+xβ xγ

xα+xβ 0 xδ
xγ xδ xǫ

)

is b1, b2 or b3,

respectively.

For the case in which G is bipartite with bipartition (U,W ), and for x ∈ R
E, define

the generalized (U,W )-biadjacency matrix A
(U,W )
G (x) of G to be the submatrix of AG(x)

obtained by restricting the rows to those indexed by U and the columns to those indexed

by W . If xe = 1 for all e ∈ E, then A
(U,W )
G (x) is the standard (U,W )-biadjacency matrix

of G. It follows that

P(G, b) =

{

x ∈ R
E
≥0

∣

∣

∣

∣

∑

w∈V

A
(U,W )
G (x)uw = bu for each u ∈ U,

∑

u∈U

A
(U,W )
G (x)uw = bw for each w ∈ W

}

, (13)

i.e., P(G, b) is the polytope of all assignments x of nonnegative real numbers to the edges

of G such that the sum of entries in row u of A
(U,W )
G (x) is bu and the sum of entries in

column w of A
(U,W )
G (x) is bw, for each u ∈ U , w ∈ W .

The relationship between certain cases of fractional perfect b-matching polytopes, and

certain matrix classes will now be considered briefly. Further details for these cases will

be given in [3].

It follows from (12) that if G does not contain multiple edges, then P(G, b) is affinely

isomorphic (using simple and obvious mappings) to the polytope of all |V |×|V | symmetric

matrices with nonnegative real entries, for which certain entries are prescribed to be zero,

and the sum of entries in any row/column is a prescribed nonnegative real number for

that row/column. An account of such polytopes is given by Brualdi in [9, Sec. 8.2].

The notation used there is that, given a vector R ∈ R
n with nonnegative entries, and a

symmetric n×nmatrix Z each of whose entries is 0 or 1, N≤Z(R) is the polytope, or matrix

class, of all n×n symmetric matrices with nonnegative real entries, for which the i, j entry

is zero if Zij is zero, and the sum of entries in row/column i is Ri. Accordingly, if G does

not contain multiple edges, then P(G, b) and N≤Z(R) are affinely isomorphic, where Z is

the adjacency matrix of G, and associated entries of b and R are equal. For the case in

which G is a complete graph with loops (i.e., a graph in which any two distinct vertices

are connected by a single edge, and a single loop is incident to each vertex), Z is a square

matrix each of whose entries is 1, and N≤Z(R) is a so-called symmetric transportation

polytope, denoted in [9, pp. 39 & 348] as N (R). It follows (using the fact that setting

a subset of a polyhedron’s defining inequalities to equalities gives a, possibly empty, face

of the polyhedron) that N≤Z(R) is a face of N (R). Similarly, for an arbitrary graph G

without multiple edges, P(G, b) is affinely isomorphic to a face of P(KV , b), where KV is

a complete graph with loops, and vertex set V .
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It follows from (13) that if G is bipartite with bipartition (U,W ), and does not contain

multiple edges, then P(G, b) is affinely isomorphic (again, using simple and obvious map-

pings) to the polytope of all |U | × |W | matrices with nonnegative real entries, for which

certain entries are prescribed to be zero, and the sum of entries in any row or column is a

prescribed nonnegative real number for that row or column. An account of such polytopes

is given by Brualdi in [9, Secs. 8.1 & 8.4]. The notation used there is that, given vectors

R ∈ R
m and S ∈ R

n with nonnegative entries, and an m × n matrix Z each of whose

entries is 0 or 1, N≤Z(R, S) is the polytope, or matrix class, of all m × n matrices with

nonnegative real entries, for which the i, j entry is zero if Zij is zero, the sum of entries in

row i is Ri, and the sum of entries in column j is Sj . Accordingly, if G is bipartite with

bipartition (U,W ), and does not contain multiple edges, then P(G, b) and N≤Z(R, S) are

affinely isomorphic, where Z is the (U,W )-biadjacency matrix of G, the entries bv with

v ∈ U are equal to associated entries of R, and the entries bv with v ∈ W are equal to

associated entries of S. For the case in which G is a complete bipartite graph (i.e., a graph

in which each vertex of U and each vertex of W are connected by a single edge), Z is a

matrix each of whose entries is 1, and N≤Z(R, S) is a so-called transportation polytope,

denoted in [9, pp. 26 & 337] as N (R, S). It follows that N≤Z(R, S) is a face of N (R, S).

Similarly, for an arbitrary bipartite graph G without multiple edges, and with bipartition

(U,W ), P(G, b) is affinely isomorphic to a face of P(K(U,W ), b), where K(U,W ) is a complete

bipartite graph with bipartition (U,W ). For further information regarding transportation

polytopes, see, for example, De Loera and Kim [12], Klee and Witzgall [16], Schrijver [22,

Sec. 21.6], or Yemelichev, Kovalev and Kravtsov [25, Ch. 6].

3. Conditions for nonemptiness of P(G, b) and P(G, b)>0

In this section, results which provide necessary and sufficient conditions for P(G, b)

and P(G, b)>0 to be nonempty are obtained (where P(G, b)>0, as defined in (2), is the set

of positive elements of P(G, b)). The conditions for P(G, b) to be nonempty take the form

of finitely-many weak inequalities for certain sums of entries of b, while the conditions

for P(G, b)>0 to be nonempty take the form of finitely-many strict inequalities and equali-

ties for certain sums of entries of b. Since P(G, b)>0 is contained in P(G, b), the conditions

for the nonemptiness of P(G, b)>0 correspond to a strengthening of the conditions for the

nonemptiness of P(G, b). The conditions for the nonemptiness of P(G, b)>0 will be used

in Section 9.

It will be simplest, in this section, to obtain results first for the case of bipartite G (in

Theorems 3 and 4), and then to use these to obtain results for the case of arbitrary G (in

Theorems 6 and 7). By contrast, in later sections of the paper, results will be obtained

first for arbitrary G, with results for bipartite G then following as corollaries.

At the end of this section, Theorems 6 and 7 will be verified for the case of the graph G

of (3).
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For subsets U and W of V , let G[U,W ] denote the set of all edges of G which connect

a vertex of U and a vertex of W , i.e.,

G[U,W ] := {e ∈ E | the endpoints of e are u and w, for some u ∈ U and w ∈ W}.

(14)

Some simple properties of such sets are that, for any U1, U2, U3 ⊂ V , G[U1, U2] = G[U2, U1]

and G[U1, U2 ∪ U3] = G[U1, U2] ∪G[U1, U3]. Also, a vertex cover of G (i.e., a subset of V

which contains an endpoint of every edge of G) is any C ⊂ V for which G[V \C, V \C] = ∅
The partitioning of a set into a union of finitely-many pairwise disjoint subsets will

be expressed using the notation ⋒. More specifically, for sets U,W1,W2, . . . ,Wn, the

statement U = W1 ⋒ W2 ⋒ . . . ⋒ Wn will mean that U = W1 ∪ W2 ∪ . . . ∪ Wn and

Wi ∩Wj = ∅ for each i 6= j.

Several of the results of this section will be expressed in terms of vertex covers of G.

However, such results could easily be restated in terms of stable (or independent) sets

of G (i.e., subsets of V which do not contain any adjacent vertices), since S ⊂ V is a

stable set of G if and only if V \ S is a vertex cover of G.

In the first proposition of this section, it is seen that there would not be any loss of

generality in the main theorems of this section if G were assumed to contain only single

edges.

Proposition 1. Let Grd be a reduced graph (as defined in Section 1.3) of G. Then P(G, b)

is nonempty if and only if P(Grd, b) is nonempty, and P(G, b)>0 is nonempty if and only

if P(Grd, b)>0 is nonempty.

This elementary result will now be proved directly. However, its validity will also follow

from later theorems which give conditions for P(G, b) and P(G, b)>0 to be nonempty, since

it will be apparent that these conditions depend only on whether or not certain pairs of

vertices of G are adjacent, rather than the actual number of edges which connect such

vertices.

Proof. First, assume that P(G, b) 6= ∅, and choose an x ∈ P(G, b). Define x′ ∈ R
E′

by

x′
e′ =

∑

e∈M(e′) xe for each e′ ∈ E ′, where E ′ is the edge set of Grd, and M(e′) is the

set of edges of G which have the same endpoints as e′. Then x′ ∈ P(Grd, b). Also, if

P(G, b)>0 6= ∅ and x ∈ P(G, b)>0, then x′ ∈ P(Grd, b)>0.

Conversely, assume that P(Grd, b) 6= ∅ and choose an x′ ∈ P(Grd, b). Define x ∈ R
E

by xe = x′
e′/m(e) for each e ∈ E, where e′ is the single edge of Grd which has the same

endpoints as e, and m(e) is the number of edges of G which have the same endpoints as e.

Then x ∈ P(G, b). Also, if P(Grd, b)>0 6= ∅ and x′ ∈ P(Grd, b)>0, then x ∈ P(G, b)>0. �

The following elementary result provides necessary conditions for P(G, b) and P(G, b)>0

to be nonempty.

Lemma 2.

(i) A necessary condition for P(G, b) to be nonempty is that
∑

v∈C bv ≥
∑

v∈V \C bv for

each vertex cover C of G.
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(ii) A necessary condition for P(G, b)>0 to be nonempty is that the condition of (i) is

satisfied, with its inequality holding as an equality if and only if V \C is also a vertex

cover of G.

Note that, by adding
∑

v∈C bv to each side, the inequality in (i) of this lemma is equiv-

alent to
∑

v∈C bv ≥
1
2

∑

v∈V bv.

Note also that, for a subset C of V , C and V \C are both vertex covers of G if and only

if (C, V \C) is a bipartition for G. Hence, if G is not bipartite, then a necessary condition

for P(G, b)>0 to be nonempty is that
∑

v∈C bv >
∑

v∈V \C bv for each vertex cover C of G.

Proof. Assume that P(G, b) is nonempty, and choose an x ∈ P(G, b). Then
∑

e∈δG(v) xe =

bv for each v ∈ V , which gives
∑

v∈C bv =
∑

e∈G[C,C] µe xe+
∑

e∈G[C,V \C] xe, for any C ⊂ V ,

where µe = 2 if e is not a loop and µe = 1 if e is a loop. Therefore,

∑

v∈C bv −
∑

v∈V \C bv =
∑

e∈G[C,C] µe xe −
∑

e∈G[V \C,V \C] µe xe, (15)

for any C ⊂ V .

Part (i) of the lemma now follows from (15), and the facts that µe xe ≥ 0 for each

e ∈ E, and G[V \ C, V \ C] = ∅ if C is a vertex cover. Part (ii) of the lemma follows

from (15) by assuming that P(G, b)>0 is nonempty, choosing x ∈ P(G, b)>0, and using the

facts that G[C,C] 6= ∅ = G[V \ C, V \ C] if C is a vertex cover and V \ C is not a vertex

cover, while G[C,C] = G[V \ C, V \ C] = ∅ if C and V \ C are both vertex covers. �

The next two results, Theorems 3 and 4, state that if G is bipartite, then the conditions

of Lemma 2 are also sufficient to ensure that P(G, b) and (for E 6= ∅) P(G, b)>0 are

nonempty.

Theorem 3. Let G be bipartite. Then a necessary and sufficient condition for P(G, b) to

be nonempty is that
∑

v∈C bv ≥
∑

v∈V \C bv for each vertex cover C of G.

It can be seen that, if (U,W ) is a bipartition for G, then the condition of the theorem is

equivalent to the alternative condition that
∑

v∈U1
bv +

∑

v∈W1
bv ≥

∑

v∈U2
bv +

∑

v∈W2
bv

for all sets U1, U2, W1 and W2 such that U = U1 ⋒U2, W = W1 ⋒W2 and G[U2,W2] = ∅.

(In particular, for C satisfying the condition of the theorem, set U1 = U ∩C, U2 = U \C,

W1 = W ∩ C and W2 = W \ C, and conversely, for U1, U2, W1 and W2 satisfying the

alternative condition, set C = U1 ∪ W1.) It can also be checked that the alternative

condition remains unchanged if its single inequality is replaced by
∑

v∈U1
bv ≥

∑

v∈W2
bv

and
∑

v∈W1
bv ≥

∑

v∈U2
bv, by

∑

v∈U bv =
∑

v∈W bv and
∑

v∈U1
bv ≥

∑

v∈W2
bv, or by

∑

v∈U bv =
∑

v∈W bv and
∑

v∈W1
bv ≥

∑

v∈U2
bv. (For example, the condition

∑

v∈U bv =
∑

v∈W bv follows from the condition of the theorem by using the vertex covers C = U and

C = W .)

It can also be seen that, if the condition of this theorem is satisfied, and if C and V \C

are both vertex covers of G, then
∑

v∈C bv =
∑

v∈V \C bv (i.e., the inequality then holds as

an equality).
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It can also be seen that, if the condition of this theorem is satisfied, and if C and V \C

are both vertex covers of G, then
∑

v∈C bv =
∑

v∈V \C bv (i.e., the inequality then holds as

an equality).

This theorem is a standard result. See, for example, Schrijver [22, Thm. 21.11]. It can

be proved using linear programming duality (as done in the proof given by Schrijver [22,

Thm. 21.11]), or using standard theorems from network flow theory. (For example, it

follows from Schrijver [22, Cor. 11.2h] by using a directed graph which is formed from G by

directing each edge from U to W , where (U,W ) is a bipartition for G). For completeness,

a proof will also be given here. This is a direct and self-contained proof, which uses an

approach based on that used by Schrijver [22, Thms. 10.3 and 11.2] for proofs of the

max-flow min-cut theorem and Hoffman’s circulation theorem.

Proof. The necessity of the condition is given by (i) of Lemma 2.

The sufficiency of the condition will be obtained by using a bipartition (U,W ) for G,

and showing that if P(G, b) is empty and
∑

v∈U bv =
∑

v∈W bv, then there exist U1, U2, W1

and W2 such that U = U1 ⋒ U2, W = W1 ⋒W2, G[U2,W2] = ∅ and
∑

v∈W1
bv <

∑

v∈U2
bv.

So, assume that P(G, b) = ∅ and
∑

v∈U bv =
∑

v∈W bv. For any x ∈ R
E
≥0, let f(x) =

∑

v∈V |
∑

e∈δG(v) xe − bv|. (Note that f(x) > 0 for all x ∈ R
E
≥0, since P(G, b) = ∅.)

Now choose an x which minimizes f over R
E
≥0, where the forms of RE

≥0 and f guaran-

tee the existence of such an x. (In particular, the polyhedron R
E
≥0 can be subdivided

into finitely-many nonempty polyhedra, on each of which f is a positive affine function.

Specifically, each such polyhedron P has the form {x ∈ R
E
≥0 | σ(P )v

(
∑

e∈δG(v) xe − bv
)

≥

0 for each v ∈ V }, for some assignment σ(P )v of −1 or 1 to each v ∈ V , so that

f(x) =
∑

v∈V σ(P )v
(
∑

e∈δG(v) xe − bv
)

for all x ∈ P . The standard fact, as given for

example in Korte and Vygen [17, Prop. 3.1], that a real affine function which is bounded

below on a nonempty polyhedron attains a minimum over the polyhedron then implies

that f attains a minimum over RE
≥0.)

Define S = {u ∈ U |
∑

e∈δG(u) xe < bu} ∪ {w ∈ W |
∑

e∈δG(w) xe > bw} and T =

{u ∈ U |
∑

e∈δG(u) xe > bu} ∪ {w ∈ W |
∑

e∈δG(w) xe < bw}. Since P(G, b) = ∅, S ∪ T is

nonempty. It then follows, using
∑

v∈U bv =
∑

v∈W bv, that S and T are each nonempty

(since S 6= ∅ and T = ∅ would give
∑

v∈U bv >
∑

v∈W bv, while S = ∅ and T 6= ∅ would

give
∑

v∈U bv <
∑

v∈W bv). Now define

S ′ = {v ∈ V | there exists s ∈ S and a path P in G from s to v satisfying

xe > 0 for each edge e corresponding to a step of P from W to U}, (16)

i.e., S ′ is the set of vertices of G which are reachable from S by a path P with the

property that xe is positive for each edge e which corresponds to a step of P from W

to U . It follows immediately that S ⊂ S ′, G[U ∩ S ′,W \ S ′] = ∅, and xe = 0 for each

e ∈ G[W ∩ S ′, U \ S ′]. Also, S ′ ∩ T = ∅, where this can be deduced as follows. If S ′ ∩ T

were nonempty, then there would exist s ∈ S, t ∈ T and a path P from s to t satisfying

the property of (16). Taking y ∈ R
E as ye = ǫ for each edge e corresponding to a step
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of P from U to W , ye = −ǫ for each edge e corresponding to a step of P from W to U ,

and ye = 0 for each edge e not in P , it would follow that, for sufficiently small ǫ > 0,

x+ y ∈ R
E
≥0 and f(x+ y) < f(x), but this is impossible since x minimizes f over RE

≥0.

Now define U1 = U \S ′, U2 = U∩S ′, W1 = W ∩S ′ and W2 = W \S ′. Then U = U1⋒U2,

W = W1 ⋒W2, G[U2,W2] = ∅, and xe = 0 for each e ∈ G[U1,W1]. Also,
∑

e∈δG(u) xe ≤ bu
for each u ∈ U2, and

∑

e∈δG(w) xe ≥ bw for each w ∈ W1 (since S ⊂ S ′ = U2 ∪ W1 and

T ⊂ V \ S ′), with strict inequality holding for at least one u ∈ U2 or w ∈ W1 (since S 6=
∅). Therefore

∑

w∈W1
bw ≤

∑

e∈G[U,W1]
xe =

∑

e∈G[U2,W1]
xe =

∑

e∈G[U2,W ] xe ≤
∑

u∈U2
bu,

with at least one of the inequalities holding strictly, so that
∑

v∈W1
bv <

∑

v∈U2
bv, as

required. �

Theorem 4. Let G be bipartite, with E nonempty. Then a necessary and sufficient

condition for P(G, b)>0 to be nonempty is that
∑

v∈C bv ≥
∑

v∈V \C bv for each vertex

cover C of G (i.e., the condition of Theorem 3 is satisfied), with the inequality holding as

an equality if and only if V \ C is also a vertex cover of G.

Note that if (U,W ) is a bipartition for G, then the condition of the theorem is equivalent

to the condition that
∑

v∈U1
bv +

∑

v∈W1
bv ≥

∑

v∈U2
bv +

∑

v∈W2
bv for all sets U1, U2, W1

andW2 such that U = U1⋒U2, W = W1⋒W2 and G[U2,W2] = ∅, with the inequality hold-

ing as an equality if and only if G[U1,W1] = ∅. Furthermore, this condition remains un-

changed if its inequality is replaced by
∑

v∈U1
bv ≥

∑

v∈W2
bv, or by

∑

v∈W1
bv ≥

∑

v∈U2
bv

(since if the condition, in any of these forms, is satisfied, then taking U1 = U , W2 = W

and U2 = W1 = ∅, or U2 = U , W1 = W and U1 = W2 = ∅, gives
∑

v∈U bv =
∑

v∈W bv).

This theorem, stated in terms of matrices, is due to Brualdi. See [7, Thm. 2.1], [8,

Thm. 2.7] and [9, Thm. 8.1.7]. The statement given by Brualdi can be translated to

that given here using the correspondence, discussed in Section 2, between P(G, b) and

N≤Z(R, S) for the case in which G is bipartite and does not contain multiple edges, and

Proposition 1.

Proof. The necessity of the condition is given by (ii) of Lemma 2.

Proceeding to the proof of sufficiency, define d ∈ R
V by dv = |δG(v)| for each v ∈ V

(i.e., dv is the degree of v), and define y ∈ R
E (where E 6= ∅ ensures that R

E 6= {0})

by ye = 1 for each e ∈ E. Then y ∈ P(G, d)>0. Therefore, using (ii) of Lemma 2,
∑

v∈C dv ≥
∑

v∈V \C dv for each vertex cover C of G, with equality holding if and only if

V \ C is also a vertex cover of G.

Now assume that the condition of the theorem is satisfied. It can then be shown that

bv > 0 for each v ∈ V with dv > 0, i.e., for each nonisolated vertex v. (More specifically,

this can be done by considering a nonisolated vertex w, and a bipartition (U,W ) for G,

with w ∈ W . Then, choosing the vertex cover C = U gives
∑

v∈U bv =
∑

v∈W bv, while

choosing the vertex cover C = U ∪ {w} gives
∑

v∈U∪{w} bv >
∑

v∈W\{w} bv, from which it

follows that bw > 0.)

Now choose an ǫ > 0 which satisfies ǫ dv ≤ bv for each v ∈ V , and ǫ (
∑

v∈C dv −
∑

v∈V \C dv) ≤
∑

v∈C bv −
∑

v∈V \C bv for each vertex cover C of G, where the conditions
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satisfied by b and d guarantee the existence of such an ǫ. It follows that b− ǫ d has all of

its entries nonnegative, and satisfies the condition of Theorem 3 (i.e.,
∑

v∈C(bv − ǫ dv) ≥
∑

v∈V \C(bv− ǫ dv) for each vertex cover C of G), so that P(G, b− ǫ d) 6= ∅. Finally, choose

an x ∈ P(G, b− ǫ d). Then it can be seen that x+ ǫ y ∈ P(G, b)>0. �

Theorems 3 and 4, which apply to the case of bipartite G, can now be used to give

analogous results for the case of arbitraryG. These results will be expressed in preliminary

forms in Lemma 5, and then restated in more compact forms in Theorems 6 and 7.

Lemma 5.

(i) A necessary and sufficient condition for P(G, b) to be nonempty is that
∑

v∈U1
bv ≥

∑

v∈W2
bv for all sets U1, U2, W1 and W2 such that V = U1 ⋒ U2 = W1 ⋒ W2 and

G[U2,W2] = ∅.

(ii) Let E be nonempty. A necessary and sufficient condition for P(G, b)>0 to be nonempty

is that the condition of (i) is satisfied, with its inequality holding as an equality if

and only if G[U1,W1] = ∅.

Note that the conditions in the lemma remain unchanged if the inequality is replaced

by
∑

v∈W1
bv ≥

∑

v∈U2
bv.

Proof. Let G′ be a bipartite double graph of G. Specifically, let G′ have vertex set V ′ =

V × {1, 2} and edge set E ′ = E × {1, 2}, where if e ∈ E connects vertices u and w

of V , then one of the edges (e, 1) or (e, 2) of E ′ connects vertices (u, 1) and (w, 2) of

V ′, while the other connects vertices (w, 1) and (u, 2) of V ′. Also define b′ ∈ R
V ′

by

b′(v,1) = b′(v,2) = bv for each v ∈ V . It can now be checked that P(G, b) 6= ∅ if and only if

P(G′, b′) 6= ∅. In particular, if there exists x ∈ P(G, b), then there exists x′ ∈ P(G′, b′)

given by x′
(e,1) = x′

(e,2) = µexe/2 for each e ∈ E, where µe = 2 if e is not a loop and µe = 1

if e is a loop. Conversely, if there exists x′ ∈ P(G′, b′), then there exists x ∈ P(G, b) given

by xe = (x′
(e,1) + x′

(e,2))/µe for each e ∈ E. It follows similarly that P(G, b)>0 6= ∅ if and

only if P(G′, b′)>0 6= ∅.
Since G′ is bipartite, with bipartition (V × {1}, V × {2}), it follows from Theorem 3

(using one of the alternative forms given after the statement of that theorem, and noting

that
∑

v∈V×{1} b
′
v =

∑

v∈V×{2} b
′
v), that a necessary and sufficient condition for P(G, b)

to be nonempty is that
∑

v∈U ′
1
b′v ≥

∑

v∈W ′
2
b′v for all sets U ′

1, U
′
2, W

′
1 and W ′

2 such that

V × {1} = U ′
1 ⋒ U ′

2, V × {2} = W ′
1 ⋒W ′

2 and G′[U ′
2,W

′
2] = ∅.

Similarly, it follows from Theorem 4 (using one of the alternative forms given after the

statement of that theorem), that a necessary and sufficient condition for P(G, b)>0 to be

nonempty is that the previous condition for the nonemptiness of P(G, b) is satisfied, with

its inequality holding as an equality if and only if G′[U ′
1,W

′
1] = ∅.

Finally, it can easily be seen that the previous two conditions are equivalent to the

corresponding conditions of the lemma. �
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Theorem 6. A necessary and sufficient condition for P(G, b) to be nonempty is that
∑

v∈V1
bv ≥

∑

v∈V3
bv for all sets V1, V2 and V3 such that V = V1 ⋒ V2 ⋒ V3 and G[V2 ∪

V3, V3] = ∅.

Note that the appearance of V2 in this theorem could be removed by rewriting the

condition as
∑

v∈V1
bv ≥

∑

v∈V3
bv for all disjoint subsets V1 and V3 of V such that G[V \

V1, V3] = ∅. Note also that G[V2 ∪ V3, V3] = ∅ is equivalent to G[V2, V3] = G[V3, V3] = ∅.

Furthermore, in the condition of the theorem, V3 can be restricted to being nonempty,

since if sets V1, V2 and V3 satisfy V = V1 ⋒ V2 ⋒ V3 and V3 = ∅, then G[V2 ∪ V3, V3] = ∅

and
∑

v∈V1
bv ≥

∑

v∈V3
bv (= 0) are automatically satisfied.

It can also be seen that, if the condition of this theorem is satisfied, and if sets V1, V2

and V3 satisfy V = V1 ⋒ V2 ⋒ V3 and G[V1, V1 ∪ V2] = G[V2 ∪ V3, V3] = ∅, then
∑

v∈V1
bv =

∑

v∈V3
bv (i.e., the inequality then holds as an equality).

Proof. It will be shown that the condition of the theorem is equivalent to the condition

of (i) of Lemma 5. (Alternatively, the necessity of the condition of the theorem could

easily be proved directly.)

First, let the condition of (i) of Lemma 5 be satisfied, and consider any sets V1, V2

and V3 for which V = V1 ⋒ V2 ⋒ V3 and G[V2 ∪ V3, V3] = ∅. Now take U1, U2, W1 and W2

to be U1 = V1, U2 = V2 ∪ V3, W1 = V1 ∪ V2 and W2 = V3. Then V = U1 ⋒ U2 = W1 ⋒W2

and G[U2,W2] = ∅, so that, since the condition of (i) of Lemma 5 is satisfied,
∑

v∈U1
bv ≥

∑

v∈W2
bv. Therefore

∑

v∈V1
bv ≥

∑

v∈V3
bv, and hence the condition of the theorem is

satisfied.

Conversely, let the condition of the theorem be satisfied, and consider any sets U1, U2,

W1 and W2 for which V = U1⋒U2 = W1⋒W2 and G[U2,W2] = ∅. Now take V1, V
′
2 , V

′′
2 , V2

and V3 to be V1 = U1∩W1, V
′
2 = U2∩W1, V

′′
2 = U1∩W2, V2 = V ′

2 ∪V ′′
2 and V3 = U2∩W2.

Then U1 = V1 ∪ V ′′
2 , U2 = V ′

2 ∪ V3, W1 = V1 ∪ V ′
2 , W2 = V ′′

2 ∪ V3, and V = V1 ⋒ V2 ⋒ V3.

Also, ∅ = G[U2,W2] = G[V ′
2 ∪ V3, V

′′
2 ∪ V3] = G[V ′

2 ∪ V3, V3]∪G[V ′′
2 ∪ V3, V3]∪G[V ′

2 , V
′′
2 ] =

G[V2 ∪ V3, V3]∪G[V ′
2 , V

′′
2 ], and therefore G[V2 ∪ V3, V3] = ∅. So, since the condition of the

theorem is satisfied,
∑

v∈V1
bv ≥

∑

v∈V3
bv, which gives

∑

v∈V1∪V ′′
2
bv ≥

∑

v∈V3∪V ′′
2
bv, and

thus
∑

v∈U1
bv ≥

∑

v∈W2
bv. Hence, the condition of (i) of Lemma 5 is satisfied. �

Theorem 7. Let E be nonempty. A necessary and sufficient condition for P(G, b)>0 to be

nonempty is that
∑

v∈V1
bv ≥

∑

v∈V3
bv for all sets V1, V2 and V3 such that V = V1⋒V2⋒V3

and G[V2 ∪ V3, V3] = ∅ (i.e., the condition of Theorem 6 is satisfied), with the inequality

holding as an equality if and only if G[V1, V1 ∪ V2] = ∅.

This theorem, stated in terms of matrices, is due to Brualdi. See [8, Thm. 3.7] and [9,

Thm. 8.2.3]. The statement given by Brualdi can be translated to that given here using

the correspondence, discussed in Section 2, between P(G, b) and N≤Z(R) for the case in

which G does not contain multiple edges, and Proposition 1.

Note that if G does not have any isolated vertices, then the condition of the theorem

taken with V1 = {u}, V2 = V \{u} and V3 = ∅, for each u ∈ V , simply gives the condition
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that b is positive (since in these cases G[V2 ∪ V3, V3] = ∅ and G[V1, V1 ∪ V2] 6= ∅, so the

condition gives
∑

v∈V1
bv >

∑

v∈V3
bv, i.e., bu > 0).

Proof. It will be shown, by extending the proof of Theorem 6, that the condition of the

theorem is equivalent to the condition of (ii) of Lemma 5. (Again, the necessity of the

condition of the theorem could easily be proved directly instead.)

First, let the condition of (ii) of Lemma 5 be satisfied, consider any sets V1, V2 and V3

for which V = V1 ⋒ V2 ⋒ V3 and G[V2 ∪ V3, V3] = ∅, and take U1, U2, W1 and W2 to be

the same as in the first part of the proof of Theorem 6. Then V = U1 ⋒ U2 = W1 ⋒W2,

G[U2,W2] = G[V2 ∪ V3, V3] = ∅, G[U1,W1] = G[V1, V1 ∪ V2], and
∑

v∈U1
bv −

∑

v∈W2
bv =

∑

v∈V1
bv −

∑

v∈V3
bv. It can now be seen that the condition of the theorem is satisfied,

since the condition of (ii) of Lemma 5 is satisfied.

Conversely, let the condition of the theorem be satisfied, consider any sets U1, U2, W1

andW2 for which V = U1⋒U2 = W1⋒W2 andG[U2,W2] = ∅, and take V1, V
′
2 , V

′′
2 , V2 and V3

to be the same as in the second part of the proof of Theorem 6. Then V = V1⋒V2⋒V3, and

∅ = G[U2,W2] = G[V2 ∪ V3, V3] ∪G[V ′
2 , V

′′
2 ], so that G[V2 ∪ V3, V3] = G[V ′

2 , V
′′
2 ] = ∅. Also,

G[U1,W1] = G[V1∪V ′′
2 , V1∪V ′

2 ] = G[V1, V1∪V ′
2 ]∪G[V1, V1∪V ′′

2 ]∪G[V ′
2 , V

′′
2 ] = G[V1, V1∪V2]

(using G[V ′
2 , V

′′
2 ] = ∅), and

∑

v∈V1
bv−

∑

v∈V3
bv =

∑

v∈V1∪V ′′
2
bv−

∑

v∈V3∪V ′′
2
bv =

∑

v∈U1
bv−

∑

v∈W2
bv. It can now be seen that the condition of (ii) of Lemma 5 is satisfied, since the

condition of the theorem is satisfied �

Theorems 6 and 7 will now be illustrated using the example of G given by (3). For

this case, the set triples (V1, V2, V3) which satisfy V = {1, 2, 3} = V1 ⋒ V2 ⋒ V3 and

G[V2 ∪ V3, V3] = ∅ are ({1, 3}, ∅, {2}), ({2, 3}, ∅, {1}) and (U, {1, 2, 3}\U, ∅), for each U ⊂

{1, 2, 3}. Therefore, using Theorem 6, and the fact (as pointed out after the statement

of the theorem) that V3 can be restricted to being nonempty (since
∑

v∈U bv ≥ 0 is

automatically satisfied for each U ⊂ V ), it follows that a necessary and sufficient condition

for P(G, b) to be nonempty is that b1 + b3 ≥ b2 and b2+ b3 ≥ b1, which coincides with the

condition already found in (6).

Among the set triples (V1, V2, V3) which satisfy V = V1⋒V2⋒V3 and G[V2∪V3, V3] = ∅,

the only one which satisfies G[V1, V1 ∪ V2] = ∅ is (∅, V, ∅), for which
∑

v∈V1
bv =

∑

v∈V3
bv

(= 0) is automatically satisfied. Therefore, using Theorem 7, a necessary and sufficient

condition for P(G, b)>0 to be nonempty is that b1+ b3 > b2, b2+ b3 > b1 and
∑

v∈U bv > 0,

for each nonempty U ⊂ V , which can be seen to coincide with the condition already found

in (7).

Further examples involving some of the conditions of this section will be considered at

the end of Section 9.

4. Relevant results for graphs

In this section, some relevant general results concerning the incidence matrix IG of an

arbitrary graph G (which may contain loops and multiple edges) are obtained. Most of

these results involve the nullity of IG with respect to the field R, i.e., the dimension of
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the kernel, or nullspace, of IG with respect to R, where this kernel is explicitly {x ∈ R
E |

IG x = 0} = {x ∈ R
E |

∑

e∈δG(v) xe = 0 for each v ∈ V }. The results will be applied

to P(G, b) in Section 7.

Note that in the literature, the field {0, 1} is often used instead of R, and in this case

the kernel of IG is the so-called cycle space of G. Note also that various results which are

closely related to those of this section have appeared in the literature. See, for example,

Akbari, Ghareghani, Khosrovshahi and Maimani [2, Thm. 2], or Villarreal [24, Cor. 3.2].

The rank and nullity of a real matrix A, with respect to the field R, will be denoted as

rank(A) and nullity(A), respectively.

Proposition 8. The nullity of the incidence matrix of G is |E| − |V | + B, where B is

the number of bipartite components of G.

Note that the fact that rank(A) = rank(AT ) = n − nullity(A), for any real matrix A

with n columns, implies that the result of this proposition is equivalent to

rank(IG) = |V | − B, (17)

and to

nullity(IG
T ) = B, (18)

where B is again the number of bipartite components of G. These results, at least for the

case of graphs without loops or multiple edges, are standard. (See, for example, Godsil

and Royle [13, Thm. 8.2.1].)

Note also that if G is bipartite and planar, then it follows from this proposition, and

Euler’s formula for planar graphs (which remains valid for graphs with multiple edges),

that the nullity of the incidence matrix of G is the number of bounded faces in a planar

embedding of G.

Proof. The validity of the form (18) of the proposition will be confirmed.

The kernel of IG
T is {y ∈ R

V | IGTy = 0} = {y ∈ R
V | yu = −yw for all pairs u, w

of adjacent vertices of G}. By considering pairs of adjacent vertices successively along

paths through each component of G, forming a bipartition (UC ,WC) for each bipartite

component C, and using the fact that a nonbipartite component contains an odd-length

cycle, it can be seen that the general solution of the equations for y is

yv =















λC , v ∈ UC ,

−λC , v ∈ WC ,

0, v is a vertex of a nonbipartite component,

where λC ∈ R is arbitrary for each C. It now follows that nullity(IG
T ) = B. �

Proposition 9. The nullity of the incidence matrix of G is zero if and only if each

component of G either is acyclic or else contains exactly one cycle with that cycle having

odd length.
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In this proposition, the choice of conditions for the components of G applies inde-

pendently to each component. An alternative statement of the proposition is that the

nullity of the incidence matrix of G is zero if and only if G has no even-length cycles

and no component containing more than one odd-length cycle. It can also be seen that

nullity(IG) = 0 is equivalent to the condition that x = 0 is the only x ∈ R
E which satisfies

∑

e∈δG(v) xe = 0 for each v ∈ V .

Note that for the case of bipartite G, it follows from this proposition, and the fact that

a bipartite graph does not contain any odd-length cycles, that the nullity of the incidence

matrix of G is zero if and only if G is a forest.

Proof. The kernel of IG is the direct sum of the kernels of the incidence matrices of its

components. Therefore, nullity(IG) = 0 if and only if nullity(IC) = 0 for each com-

ponent C of G. Applying Proposition 8, these equations are |EC | + 1 = |VC | for each

bipartite component C of G, and |EC | = |VC| for each nonbipartite component C of G,

where EC and VC are the edge and vertex sets of C. Using the fact that a connected

graph C satisfies |EC | + 1 = |VC | if and only if C is acyclic, and satisfies |EC | = |VC|
if and only if C contains exactly one cycle, it now follows that nullity(IG) = 0 if and

only if each bipartite component of G is acyclic, and each nonbipartite component of G

contains exactly one cycle. Finally, using the fact that a graph is bipartite if and only

if it does not contain any odd-length cycles, it follows that nullity(IG) = 0 if and only if

each component of G either is acyclic or else contains exactly one cycle with that cycle

having odd length. �

Propositions 8 and 9 can also be proved more directly. Such alternative proofs provide

further insight into these results, so will now be outlined briefly.

Alternative proof of Proposition 9. First, let each component of G either be acyclic or

else contain exactly one cycle with that cycle having odd length, and let x ∈ R
E satisfy

IG x = 0, i.e.,
∑

e∈δG(v) xe = 0 for each v ∈ V . It follows immediately that xe = 0 for

each pendant edge e (i.e., an edge incident to a univalent vertex). By iteratively deleting

such edges from E and considering the equation for x at each univalent vertex v in the

resulting smaller graph, it then follows that xe = 0 for all edges e of E, except possibly

those which are part of disjoint cycles, where the length of each such cycle is odd and at

least 3. But if e1, . . . , en are the edges of such a cycle, then the associated entries of x

satisfy xen + xe1 = xe1 + xe2 = xe2 + xe3 = . . . = xen−1 + xen = 0, and the fact that n is

odd implies that all of these entries are also 0. Therefore, x = 0 is the only solution of

IG x = 0, and so nullity(IG) = 0.

Now, conversely, let it not be the case that each component of G is acyclic or contains

exactly one cycle with that cycle having odd length. Then G contains an even-length

cycle or two odd-length cycles connected by a path. (It is assumed here that the two

odd-length cycles either share no vertices, or else share only one vertex, in which case

the connecting path has length zero. For if G contains two odd-length cycles which share

more than one vertex, then G also has an even-length cycle, comprised of certain segments
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of the odd-length cycles.) If G has an even-length cycle, then there exists x ∈ R
E which

satisfies IG x = 0, where xe is alternately 1 and −1 for each edge e along the cycle, and

xe = 0 for each edge e not in the cycle. If G contains two odd-length cycles connected by

a path, then it can be seen that there exists x ∈ R
E with |xe| = 2 for e in the path or for e

a loop, |xe| = 1 for e in a nonloop cycle, and xe = 0 for e not in the path or either cycle,

and where signs are assigned to the nonzero entries of x so that IG x = 0. (In the case in

which G contains two loops connected by a path, there also exists x ∈ R
E with |xe| = 1

if e is in the path or is one of the loops, and xe = 0 otherwise.) Therefore, in each of these

cases, there exists a nonzero x ∈ R
E which satisfies IG x = 0, and so nullity(IG) > 0. �

Alternative proof of Proposition 8. In this proof, the arguments used in the alternative

proof of Proposition 9 will be used to construct an explicit basis for the kernel of IG. LetH

be any spanning subgraph of G with the property that, for each component C of G, the

subgraph of H induced by the vertices of C is a tree if C is bipartite, and is connected

and contains exactly one cycle with that cycle having odd length if C is nonbipartite. The

existence of such a H is guaranteed by the facts that a connected graph has a spanning

tree and that a nonbipartite graph has an odd-length cycle. It follows from the formulae

relating numbers of edges and vertices in trees and in connected graphs with exactly one

cycle that |E ′| = |V | − B, and so |E \ E ′| = |E| − |V | + B, where E ′ is the edge set

of H and B is the number of bipartite components of G. It can also be seen that, for

each f ∈ E \ E ′, the spanning subgraph of G with edge set E ′ ∪ {f} has an even-length

cycle containing f , or two odd-length cycles (which share at most one vertex) connected

by a path, with one of those cycles containing f . Therefore, using the same argument as

in the second part of the alternative proof of Proposition 9, for each f ∈ E \ E ′, there

exists x(f) ∈ R
E satisfying the properties that IG x(f) = 0, x(f)f 6= 0, and the edges e

for which x(f)e 6= 0 are all contained in E ′ ∪ {f} and form either a single even-length

cycle or two odd-length cycles connected by a path. Choosing a particular such x(f) for

each f ∈ E \E ′, it follows immediately that these are |E| − |V |+B linearly independent

elements of the kernel of IG.

It will now be shown that these vectors also span the kernel of IG. First, let y be any

vector in the kernel of IG, and set y′ =
∑

f∈E\E′ yf x(f)/x(f)f (with y′ = 0 if E \E ′ = ∅).

Then y′e = ye for each e ∈ E \ E ′ (since x(f)e = 0 for all e ∈ E \ (E ′ ∪ {f})). Also,

IG y = IG y′ = IG(y − y′) = 0, and using the same argument as in the first part of the

alternative proof of Proposition 9, it then follows that (y − y′)e = 0 for each e ∈ E ′, so

that y = y′.

Therefore, the vectors x(f) with f ∈ E \ E ′ form a basis of the kernel of IG, and

nullity(IG) = |E| − |V |+ B. �

Proposition 10. Consider an a ∈ R
V , and for each bipartite component C of G let

(UC ,WC) be a bipartition for C. Then a necessary and sufficient condition for there to



22 ROGER E. BEHREND

exist an x ∈ R
E with IG x = a is that
∑

v∈UC

av =
∑

v∈WC

av, for each bipartite component C of G. (19)

Note that this result provides a necessary and sufficient condition for there to exist an

assignment of real numbers to the edges of G such that the sum of the numbers over all

edges incident to any vertex v is a prescribed real number av.

Proof. Consider any x ∈ R
E, and any bipartite component C of G. It can be seen that

∑

v∈UC

∑

e∈δG(v) xe =
∑

v∈WC

∑

e∈δG(v) xe, since each side is the sum of xe over all edges e

of C. Therefore,

∑

v∈WC

(

∑

e∈δG(v) xe − av

)

−
∑

v∈UC

(

∑

e∈δG(v) xe − av

)

=
∑

v∈UC
av −

∑

v∈WC
av. (20)

If IG x = a then the LHS of (20) immediately vanishes, and so (20) implies that (19)

is satisfied. Conversely, if (19) is satisfied then the RHS of (20) immediately vanishes,

and so (20) enables an equation
∑

e∈δG(v) xe = av for a single vertex v of each bipartite

component of G to be eliminated from the |V | constituent equations of IG x = a. This

leaves |V |−B equations, where B is the number of bipartite components of G. Using (17),

these remaining equations are linearly independent, and therefore have a solution. �

Proposition 11. Consider an a ∈ R
V , and for each bipartite component C of G let

(UC ,WC) be a bipartition for C.

(i) A necessary and sufficient condition for there to exist a unique x ∈ R
E with IG x = a

is that (19) is satisfied, and each component of G either is acyclic or else contains

exactly one cycle with that cycle having odd length.

(ii) If the condition of (i) is satisfied, then the unique x ∈ R
E with IG x = a is given

explicitly by

xe = ke
∑

v∈VG\e(te)

(−1)dG\e(v,te) av, for each e ∈ E, (21)

where

ke =

{

1
2
, e is an edge of a nonloop cycle of G,

1, otherwise,
(22)

te =



















the endpoint of e furthest from L, e is an edge of a component
of G that contains a single
cycle L, but e is not in L,

an arbitrarily-chosen endpoint of e, otherwise,

(23)

G\e is the spanning subgraph of G obtained by deleting edge e from G, VG\e(te) is the

vertex set of the component of G \ e which contains te, and dG\e(v, te) is the length

of the (necessarily unique) path between v and te in G \ e.



FRACTIONAL PERFECT b-MATCHING POLYTOPES 23

Note that the path between v and te in G \ e is unique since, for all cases of (21), v

and te are vertices of a component of G \ e which is acyclic.

It can also be checked that if there is choice for te in (23), which occurs if e is an

an edge of a tree or of a nonloop cycle, then the RHS of (21) is independent of that

choice. For example, consider an edge e of a tree with vertex set T , let the endpoints of e

be u and w, and denote the length of the path between any two vertices v and v′ in T

as dT (v, v
′). Then the RHS of (21) is

∑

v∈VG\e(u)
(−1)dT (v,u) av for the choice te = u, and

∑

v∈VG\e(w)(−1)dT (v,w) av =
∑

v∈VG\e(w)(−1)dT (v,u)−1 av = −
∑

v∈VG\e(w)(−1)dT (v,u) av for the

choice te = w. Therefore, since T = VG\e(u)⋒VG\e(w), the difference between the previous

expressions is
∑

v∈T (−1)dT (v,u) av, which vanishes due to the condition (19) satisfied by a.

Proof. The validity of (i) follows from Propositions 9 and 10.

Now let the condition of (i) be satisfied. Then it can be verified directly that x, as

given by (21), satisfies
∑

e∈δG(v) xe = av for each v ∈ V , and hence that (ii) is valid. The

nature of the verification process depends on whether v is a vertex of a tree, v is a vertex

with a loop attached, v is a vertex of a nonloop cycle, or v is a vertex of a component

which contains a cycle but with v not in the cycle. The details for the first of these cases

will now be given explicitly, with those for the others being similar. So, let v be a vertex

of a tree with vertex set T , for each e ∈ δG(v) choose te to be the endpoint of e other

than v, and (as before) denote the length of the path between vertices v′ and v′′ in T as

dT (v
′, v′′). Then

∑

e∈δG(v)

xe =
∑

e∈δG(v)

∑

u∈VG\e(te)

(−1)dT (u,te) au =
∑

e∈δG(v)

∑

u∈VG\e(te)

(−1)dT (u,v)−1 au

= −
∑

e∈δG(v)

∑

u∈VG\e(te)

(−1)dT (u,v) au = av −
∑

u∈T

(−1)dT (u,v) au = av,

where the second-last equality follows from the fact that T \ {v} is the union of the

mutually disjoint sets VG\e(te) over all e ∈ δG(v), and the last equality follows from the

condition (19) satisfied by a. �

Note that if a and G, as given in Proposition 10, satisfy the condition (19) in that

proposition (but not necessarily the condition of (i) in Proposition 11), then a (not nec-

essarily unique) x ∈ R
E with IG x = a (whose existence is guaranteed by Proposition 10)

can be obtained as follows. First, let H be a spanning subgraph of G, chosen to satisfy the

same properties as the H used in the alternative proof of Proposition 8. Then it follows

from (ii) of Proposition 11 (using H instead of G) that there exists a unique x′ ∈ R
E′

with IH x′ = a, where E ′ is the edge set of H . The required x ∈ R
E is then given by

xe = x′
e for each e ∈ E ′, and xe = 0 for each e ∈ E \ E ′.

Proposition 12. The nullity of the incidence matrix of G is 1 if and only if G has a

component C such that each component of G other than C either is acyclic or else contains

exactly one cycle with that cycle having odd length, while the cycle content of C is one of

the following:
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• exactly one cycle, with that cycle having even length, or

• exactly two cycles, with at least one of those cycles having odd length, or

• exactly one even-length and exactly two odd-length cycles, with any two of those

cycles sharing at least one edge.

Note that for the case of bipartite G, it follows from this proposition, and the fact that

a bipartite graph does not contain any odd-length cycles, that the nullity of the incidence

matrix of G is 1 if and only if G contains exactly one cycle.

Proof. The structure of this proof is similar to that of the proof of Proposition 9. The

fact that the kernel of IG is the direct sum of the kernels of the incidence matrices of its

components now implies that nullity(IG) = 1 if and only if there exists a component C ofG

such that nullity(IC) = 1, and nullity(IC′) = 0 for each component C ′ of G other than C.

Using Proposition 9, the equation nullity(IC′) = 0, for each component C ′ other than C,

is equivalent to the condition that C ′ either is acyclic or else contains exactly one cycle

with that cycle having odd length. Using Proposition 8, the equation nullity(IC) = 1

is equivalent to |EC | = |VC | if C is bipartite, or |EC | = |VC | + 1 if C is nonbipartite,

where EC and VC are the edge and vertex sets of C. Using the facts that a connected

graph C satisfies |EC | = |VC | if and only if C contains exactly one cycle, and satisfies

|EC | = |VC| + 1 if and only if C contains either exactly two cycles or else exactly three

cycles, with any two of the three cycles sharing at least one edge (where the latter fact can

be derived straightforwardly), it now follows that nullity(IC) = 1 if and only if C either is

bipartite and contains exactly one cycle, or else is nonbipartite and contains exactly two

cycles or exactly three cycles, with any two of the three cycles sharing at least one edge.

Finally, the conditions on the parities of the lengths of the cycles of C, as given in the

statement of the proposition, follow from the fact that a graph is bipartite if and only if

it does not contain any odd-length cycles. �

5. Relevant results for polytopes

In this section, definitions are given for supports, and some relevant standard results

involving faces, dimensions, vertices and edges of polytopes are obtained. These general

results will be applied to P(G, b) in Section 7.

Let N be a finite set, and denote the support of any X ⊂ R
N as

supp(X) := {i ∈ N | there exists x ∈ X with xi 6= 0}, (24)

and the support of any x ∈ R
N as

supp(x) := supp({x})

= {i ∈ N | xi 6= 0}. (25)

Some simple but useful properties of supports, which follow immediately from (24), are

that, for any X1, X2 ⊂ R
N ,

X1 ⊂ X2 implies supp(X1) ⊂ supp(X2), (26)
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and that, for any set R of subsets of RN ,

supp

(

⋂

X∈R

X

)

⊂
⋂

X∈R

supp(X), (27)

supp

(

⋃

X∈R

X

)

=
⋃

X∈R

supp(X), (28)

with empty intersections in (27) taken as
⋂

X∈∅X = R
N and

⋂

X∈∅ supp(X) = N . It

follows that, for any X ⊂ R
N ,

supp(X) =
⋃

x∈X

supp(x). (29)

Now let M be a further finite set, A be a real matrix with rows and columns indexed

by M and N respectively, a be a vector in R
M , and P be a polytope which can be written

as

P = {x ∈ R
N
≥0 | Ax = a}. (30)

The following results, Propositions 13, 14 and 16, will provide information regarding

the faces, vertices and edges, respectively, of the polytope P given by (30). These results

are all closely related to standard results for polyhedra.

Proposition 13. Let F be a nonempty face of the polytope P given by (30), and define

N ′ = supp(F ), A′ to be the submatrix of A obtained by restricting the columns of A to

those indexed by N ′, and

F ′ :=
{

y ∈ R
N ′

≥0

∣

∣ A′ y = a
}

. (31)

Then:

(i) F ′ is a polytope which is affinely isomorphic to F .

(ii) The dimension of F (and also the dimension of F ′) equals the nullity of A′.

Proof. The fact that any nonempty face of a polyhedron can be obtained by setting a

subset of the polyhedron’s defining inequalities to equalities (see, for example, Korte and

Vygen [17, Prop. 3.4], Schrijver [21, Sec. 8.2, Eq. (11)] or Schrijver [22, Eq. (5.16)]) means

that there exists some N ′′ ⊂ N for which

F = {x ∈ R
N
≥0 | xi = 0 for each i ∈ N \N ′′, A x = a}.

It can be seen, using N ′ = supp(F ), that N ′ ⊂ N ′′, and hence that

F = {x ∈ R
N
≥0 | xi = 0 for each i ∈ N \N ′, A x = a}.

Now consider the affine mapping from any x ∈ R
N to y ∈ R

N ′
in which yi = xi for

each i ∈ N ′, and the affine mapping from any y ∈ R
N ′

to x ∈ R
N in which xi = yi for

each i ∈ N ′, and xi = 0 for each i ∈ N \ N ′. Then these (essentially trivial) mappings,

with their domains restricted to F and F ′ respectively, are mutual inverses, and so F ′ is

a polytope which is affinely isomorphic to F , thus confirming (i).
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It follows immediately that dim(F ) = dim(F ′). It can also be seen that N ′ = supp(F ′),

so that none of the inequalities yi ≥ 0 for i ∈ N ′ in (31) is an implicit equality. Hence,

using the fact that the dimension of a nonempty polyhedron is the nullity of the matrix

associated with those of the polyhedron’s defining inequalities which are implicit equalities

(see, for example, Schrijver [21, Sec. 8.2, Eq. (9)] or Schrijver [22, Thm. 5.6]), it follows

that dim(F ′) = nullity(A′), thus confirming (ii). �

Proposition 14. Let u be an element of the polytope P given by (30), and define A′ to be

the submatrix of A obtained by restricting the columns of A to those indexed by supp(u).

Then u is a vertex of P if and only if nullity(A′) = 0.

Proof. If u is a vertex of P , then {u} is a face of P , and so, using (ii) of Proposition 13,

0 = dim({u}) = nullity(A′). Conversely, if nullity(A′) = 0, then the equation A′ y = a

has the unique solution y ∈ R
N ′

given by yi = ui for each i ∈ N ′, where N ′ = supp(u). It

then follows that {x ∈ P | xi = 0 for each i ∈ N \ N ′} = {u}, which implies that {u} is

face of P , and hence that u is a vertex of P . �

Corollary 15. Let u be a vertex of the polytope P given by (30). Then | supp(u)| ≤

rank(A).

Proof. Using Proposition 14, nullity(A′) = 0, where A′ is the submatrix of A obtained

by restricting the columns of A to those indexed by supp(u). Therefore, | supp(u)| =

rank(A′) ≤ rank(A). �

Note that, in some contexts in the literature, a vertex u of the polytope P given by (30)

is referred to as nondegenerate or degenerate according to whether or not | supp(u)| =

rank(A).

Proposition 16. Let u and w be distinct vertices of the polytope P given by (30), and

define A′ to be the submatrix of A obtained by restricting the columns of A to those

indexed by supp({u, w}). Then u and w are the vertices of an edge of P if and only if

nullity(A′) = 1.

Note that, using (28), supp({u, w}) = supp(u) ∪ supp(w).

Proof. It can be seen that supp({u, w}) = supp([u, w]), where [u, w] is the closed line

segment between u and w. Therefore, if u and w are the vertices of an edge of P , then

[u, w] is a face of P , and so, using (ii) of Proposition 13, 1 = dim([u, w]) = nullity(A′).

Conversely, if nullity(A′) = 1, then the equation A′ y = a for y ∈ R
N ′

has the general

solution y = λu′ + (1− λ)w′, where N ′ = supp({u, w}), u′, w′ ∈ R
N ′

are given by u′
i = ui

and w′
i = wi for each i ∈ N ′, and λ ∈ R is arbitrary. It then follows, since u and w are

vertices of P , that {x ∈ P | xi = 0 for each i ∈ N \N ′} = [u, w], which implies that [u, w]

is a face of P , and hence that u and w are the vertices of an edge of P . �
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6. Relevant results for polytope face lattices

In this section, some relevant, essentially standard, results concerning polytope face

lattices are outlined. In particular, for a polytope P given by (30) (with a 6= 0), three

isomorphic lattices (all partially ordered by set inclusion) are considered, namely the face

lattice of P , the lattice of vertex sets of the faces of P , and the lattice of supports of

the faces of P (where these are denoted as F(P ), V(P ) and S(P ), respectively). Various

expressions will be presented for elements of these lattices, for the meet and join of

subsets of these lattices, and for isomorphisms among the lattices. The general results of

this section will be applied to P(G, b) in Section 8.

In contrast to the results in other sections of this paper, some details of the proofs of

the results of this section will be omitted. However, full proofs can be obtained straight-

forwardly using standard polyhedron and polytope theory, as given, for example, in the

books of Brønsted [6], Grünbaum [14], Korte and Vygen [17, Ch. 3], Schrijver [21, Ch. 8–9],

Yemelichev, Kovalev and Kravtsov [25], or Ziegler [26]. The simple properties (26)–(28)

of supports are also useful for some of these proofs.

Let N be a finite set. For any subset X of RN , denote the convex hull of X as conv(X),

and for any polytope P in R
N , denote (as indicated in Section 1.3), the set of vertices

of P as vert(P ), the set of facets of P as facets(P ), and the face lattice of P as F(P ).

Some of the statements which follow will involve the notation ⊂′, where (as also indi-

cated in Section 1.3) this means that such a statement is valid if ⊂′ is taken to be ⊂, and

also valid if ⊂′ is taken to be =.

Now consider a given polytope P . Then the face lattice F(P ) is the set of all faces

of P (including ∅ and P ) partially ordered by set inclusion, where, for any H ⊂ F(P ),

the infimum or meet of H is the intersection of all the faces in H, and the supremum or

join of H is the intersection of all those faces, or alternatively facets, of P which contain

each face in H, i.e.,

inf(H) =
⋂

F∈H

F, (32)

sup(H) =
⋂

F∈F(P )
∪F ′∈HF ′⊂F

F =
⋂

F∈facets(P )
∪F ′∈HF ′⊂F

F, (33)

with an intersection over ∅ taken to be P .

Define V(P ) to be the set of vertex sets of the faces of P , i.e.,

V(P ) := {vert(F ) | F ∈ F(P )}. (34)

This can also be written as

V(P ) =
{
⋂

F∈H vert(F )
∣

∣ H ⊂ facets(P )
}

=
{

U ⊂ vert(P )
∣

∣

∣

⋂

F∈facets(P )
U⊂vert(F )

vert(F ) ⊂′ U
}

, (35)

with intersections over ∅ taken to be vert(P ).
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The mapping from each F ∈ F(P ) to vert(F ) = vert(P ) ∩ F ∈ V(P ) is bijective, with

an inverse which maps each U ∈ V(P ) to conv(U) = sup({{u} | u ∈ U}) =
⋂

F ′∈F(P )
U⊂F ′

F ′ =
⋂

F ′∈facets(P )
U⊂F ′

F ′ ∈ F(P ), and with the property that, for any F1, F2 ∈ F(P ), F1 ⊂ F2 if

and only if vert(F1) ⊂ vert(F2). Thus, V(P ) is a lattice, partially ordered by set inclusion,

which is isomorphic to the face lattice F(P ). Also, for any W ⊂ V(P ), the meet and join

in this lattice are

inf(W) =
⋂

U∈W

U, (36)

sup(W) =
⋂

U∈V(P )
∪U′∈WU ′⊂U

U =
⋂

F∈facets(P )
∪U′∈WU ′⊂vert(F )

vert(F ), (37)

with an intersection over ∅ taken to be vert(P ).

Now let P be a polytope which can be written as (30), for some real matrix A with rows

and columns indexed by finite sets M and N respectively, and some real nonzero vector a

with entries indexed by M . Note that the condition a 6= 0, or equivalently P 6= {0},

is needed to ensure the validity of some of the results which follow. For example, this

condition is needed to guarantee that ∅ is contained in the RHS of (38).

The face lattice of P can now be written as

F(P ) =
{

{x ∈ P | xi = 0 for each i ∈ N ′}
∣

∣ N ′ ⊂ N
}

. (38)

Some useful properties involving supports, as defined in (24)–(25), and faces of P are

that, for any X ⊂ P ,

supp(X) = supp

(

⋂

F∈F(P )
X⊂F

F

)

= supp

(

⋂

F∈facets(P )
X⊂F

F

)

, (39)

and so, for any x ∈ P ,

supp(x) = supp

(

⋂

F∈F(P )
x∈F

F

)

= supp

(

⋂

F∈facets(P )
x∈F

F

)

, (40)

with an intersection over ∅ taken to be P .

Also, for any X ⊂ P and F ∈ F(P ),

X ⊂ F if and only if supp(X) ⊂ supp(F ), (41)

and so, for any x ∈ P and F ∈ F(P ),

x ∈ F if and only if supp(x) ⊂ supp(F ). (42)

Note that the ‘only if’ part of (41) follows immediately from (26).
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A condition for the vertices of P in terms of supports is that an element u of P is a

vertex of P if and only if there is no other element of P whose support is contained in,

or alternatively equal to, the support of u, i.e., for any u ∈ P ,

u ∈ vert(P ) if and only if
{

x ∈ P
∣

∣ supp(x) = supp(u)
}

⊂′ {u}

if and only if
{

x ∈ P
∣

∣ supp(x) ⊂ supp(u)
}

⊂′ {u}. (43)

Furthermore, for any U ⊂ vert(P ),

{u ∈ vert(P ) | supp(u) ⊂ supp(U)} =
⋂

F∈facets(P )
U⊂vert(F )

vert(F ), (44)

from which it follows, using (35), that V(P ) can be expressed in terms of supports as

V(P ) =
{

U ⊂ vert(P )
∣

∣ {u ∈ vert(P ) | supp(u) ⊂ supp(U)} ⊂′ U
}

. (45)

By considering two-element subsets U of vert(P ) in (45), it follows that a condition for

the edges of P is that, for any distinct vertices u and w of P ,

u and w are the vertices of an edge of P if and only if
{

y ∈ vert(P )
∣

∣ supp(y) ⊂ supp({u, w})
}

⊂′ {u, w}. (46)

Now define S(P ) as the set of supports of the faces of P , i.e.,

S(P ) := {supp(F ) | F ∈ F(P )}. (47)

This can also be written as

S(P ) = {supp(X) | X ⊂ P}

= {supp(x) | x ∈ P} ∪ {∅}

= {supp(U) | U ⊂ vert(P )}

=
{

S ⊂ N
∣

∣

∣
S ⊂′

⋃

u∈vert(P )
supp(u)⊂S

supp(u)
}

. (48)

It follows from (42) that the mapping from each F ∈ F(P ) to supp(F ) ∈ S(P ) is

bijective, with an inverse which maps each S ∈ S(P ) to {x ∈ P | supp(x) ⊂ S} = {x ∈ P |

xi = 0 for all i ∈ N \ S}. Furthermore, it follows from (41) that, for any F1, F2 ∈ F(P ),

F1 ⊂ F2 if and only if supp(F1) ⊂ supp(F2). Thus, S(P ) is a lattice, partially ordered by

set inclusion, which is isomorphic to the face lattice F(P ). Also, for any T ⊂ S(P ), the

meet and join in this lattice are

inf(T ) =
⋃

S∈S(P )
S⊂∩S′∈T S′

S =
⋃

u∈vert(P )
supp(u)⊂∩S′∈T S′

supp(u), (49)

sup(T ) =
⋃

S∈T

S. (50)

In (49),
⋂

S′∈∅ S
′ can be taken as N or as supp(P ), giving inf(∅) = supp(P ).
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Combining the isomorphisms between F(P ) and V(P ), and between F(P ) and S(P ),

gives an isomorphism between V(P ) and S(P ) in which each U ∈ V(P ) is mapped to

supp(U) ∈ S(P ) and, inversely, in which each S ∈ S(P ) is mapped to {u ∈ vert(P ) |

supp(u) ⊂ S} ∈ V(P ).

The isomorphisms among the lattices F(P ), V(P ) and S(P ) are summarized in Fig-

ure 2.

S(P )V(P )

F(P )

S 7→{x∈P |supp(x)⊂S}

F 7→supp(F )F 7→vert(F )

U 7→conv(U)

U 7→supp(U)

S 7→{u∈vert(P )|supp(u)⊂S}

Figure 2. Isomorphisms among the lattices F(P ), V(P ) and S(P ).

Finally, note that the results of this section can easily be modified so as to be valid

for the more general case in which the polytope P has the form P =
⋂

i∈M Ki instead

of (30), and the supports of any X ⊂ R
N and any x ∈ R

N are defined to be supp(X) =

{i ∈ M | X 6⊂ Hi} and supp(x) = supp({x}) = {i ∈ M | x /∈ Hi} instead of (24)–(25),

where M is a finite set and, for each i ∈ M , Ki is a given closed halfspace in R
N whose

bounding hyperplane is Hi, with it being assumed that
⋂

i∈M Hi = ∅. In particular, the

modifications are that (38) becomes F(P ) =
{(
⋂

i∈M ′ Ki

)
⋂
(
⋂

i∈M\M ′ Hi

)
∣

∣ M ′ ⊂ M
}

(with an intersection over ∅ taken to be RN), the isomorphism from S ∈ S(P ) to F ∈ F(P )

becomes F = {x ∈ P | supp(x) ⊂ S} =
(
⋂

i∈S Ki

)
⋂
(
⋂

i∈M\S Hi

)

, and N in (48) is

replaced by M , with all other statements in this section remaining unchanged.

7. Results for the faces, dimension, vertices and edges of P(G, b)

In this section, graphs associated with subsets and elements of P(G, b) are defined,

and some of the main results of this paper, concerning the faces, dimension, vertices and

edges of P(G, b), are obtained by combining general results for graphs from Section 4 with

general results for polytopes from Section 5. At the end of the section, aspects of many

of these results are illustrated using the example from Section 1.4.
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Using the definitions (24)–(25) of supports (with N taken to be E), define the graph

of any X ⊂ R
E as

gr(X) := the spanning subgraph of G with edge set supp(X)

= the spanning subgraph of G with edge set

{e ∈ E | there exists x ∈ X with xe 6= 0}, (51)

and define the graph of any x ∈ R
E as

gr(x) := gr({x})

= the spanning subgraph of G with edge set supp(x)

= the spanning subgraph of G with edge set {e ∈ E | xe 6= 0}. (52)

Note that the graphs of X and x depend on the graph G, even though this is not indicated

explicitly by the notation.

It will also be useful, for Section 8, to denote the set of graphs of subsets of P(G, b)

as G(G, b), i.e.,

G(G, b) := {gr(X) | X ⊂ P(G, b)}, (53)

and to refer to the graphs in this set as the graphs of P(G, b).

Note that any element of G(G, b) is a graph of P(G, b), whereas the particular element

gr(P(G, b)) is the graph of P(G, b). However, gr(P(G, b)) should not be confused with

the polytope graph of P(G, b), i.e., gr(P(G, b)) is not the graph whose vertices and edges

correspond to the vertices and edges of the polytope P(G, b). Indeed, the graphs of P(G, b)

might be described more completely as the support graphs of P(G, b).

The standard definitions of graph union, intersection and containment will be applied to

spanning subgraphs of G in Section 8, and, to some extent, in this section. In particular,

for any set H of spanning subgraphs of G, the union and intersection of the graphs in H

are given by
⋂

H∈H H = the spanning subgraph of G with edge set
⋂

H∈H EH , (54)
⋃

H∈H H = the spanning subgraph of G with edge set
⋃

H∈H EH , (55)

where EH denotes the edge set ofH , and
⋂

H∈∅EH is taken to be E (so that
⋂

H∈∅H = G).

Similarly, for spanning subgraphs H1 and H2 of G with edge sets EH1 and EH2 , graph

containment is given by

H1 ⊂ H2 if and only if EH1 ⊂ EH2 . (56)

For example, it follows from (29) and (55) that, for any X ⊂ R
E,

gr(X) =
⋃

x∈X gr(x). (57)

The main results of this section will now be obtained. These include results which

provide formulae for the dimensions of P(G, b) and its faces (Theorem 17, and Corol-

laries 18, 19 and 20), characterize the elements of P(G, b) which are vertices of P(G, b)

(Theorem 22 and Corollary 23), give an explicit formula for a vertex of P(G, b) in terms
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of its graph (Theorem 24), and characterize the pairs of distinct vertices of P(G, b) which

form edges of P(G, b) (Theorem 25 and Corollary 26).

Certain cases of some of these results correspond to previously-known results for the

matrix classes N≤Z(R), N (R), N≤Z(R, S) or N (R, S) (using the notation discussed in

Section 2).

Theorem 17. Let F be a nonempty face of P(G, b). Then:

(i) F is affinely isomorphic to P(gr(F ), b).

(ii) The dimension of F is | supp(F )| − |V | + B, where B is the number of bipartite

components of gr(F ).

Proof. Using (9), (51), and both parts of Proposition 13 (taking P , M , N , A and a

to be P(G, b), V , E, IG and b respectively, so that A′ = Igr(F )), it follows that F is

affinely isomorphic to P(gr(F ), b), and that dim(F ) = nullity(Igr(F )). The expression for

dim(F ) in (ii) is then given by Proposition 8 (taking the graph in that proposition to

be gr(F )). �

Corollary 18. If P(G, b) is nonempty, then its dimension is | supp(P(G, b))| − |V |+B,

where B is the number of bipartite components of gr(P(G, b)).

A case of this result applied to N≤Z(R, S) is given by Brualdi [9, Lem. 8.4.3(ii)], and

a case applied to N (R, S) is given by Brualdi [9, Thm. 8.1.1], Klee and Witzgall [16,

Thm. 1], Schrijver [22, Thm. 21.16], and Yemelichev, Kovalev and Kravtsov [25, Ch. 6,

Prop. 1.1].

Proof. This result follows from (ii) of Theorem 17, by taking F to be P(G, b). �

Note that, assuming the validity of (i) of Theorem 17, Corollary 18 and (ii) of Theo-

rem 17 are equivalent, since (ii) of Theorem 17 could be obtained from Corollary 18 by

taking G in that corollary to be gr(F ).

Corollary 19. If P(G, b)>0 is nonempty, then the dimension of P(G, b) is |E|− |V |+B,

where B is the number of bipartite components of G.

Proof. This result follows from Corollary 18, and the fact that if P(G, b)>0 is nonempty,

then gr(P(G, b)) = G. �

Corollary 20. Let G be bipartite and planar. Then the dimension of a nonempty face F

of P(G, b) is the number of bounded faces in a planar embedding of gr(F ).

Proof. This result follows from (ii) of Theorem 17, and Euler’s formula for planar graphs

(which remains valid for graphs with multiple edges). �

Corollary 21. Let u be a vertex of P(G, b). Then | supp(u)| ≤ |V | − B, where B is the

number of bipartite components of G.
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A case of this result applied to N (R) is given by Brualdi [9, Cor. 8.2.2], Converse

and Katz [10, Lem.], and Lewin [18, Cor. 2], and a case applied to N (R, S) is given by

Brualdi [9, Thm. 8.1.3], Klee and Witzgall [16, Cor. 3], and Yemelichev, Kovalev and

Kravtsov [25, p. 264].

Proof. Using (ii) of Theorem 17, and the fact that {u} is a face P(G, b) with dimension 0,

it follows that 0 = | supp(u)| − |V |+B′, where B′ is the number of bipartite components

of gr(u). The result now follows from the fact that B′ ≥ B (since gr(u) is a spanning

subgraph of G).

Alternatively, this result follows from (17) and Corollary 15 (again taking P , M , N , A

and a to be P(G, b), V , E, IG and b respectively). �

Theorem 22. An element u of P(G, b) is a vertex of P(G, b) if and only if each component

of the graph of u either is acyclic or else contains exactly one cycle with that cycle having

odd length.

Note that in this theorem, as in Proposition 9, the choice of conditions for the compo-

nents ofG applies independently to each component. As also indicated after Proposition 9,

the condition of this theorem can be restated as the condition that G has no even-length

cycles and no component containing more than one odd-length cycle.

A case of this theorem applied to N≤Z(R) is given by Brualdi [9, Thm. 8.2.6], and a

case applied to N (R) is given by Brualdi [8, Thm. 3.1], [9, Thm. 8.2.1], and Lewin [18,

Thm. 2].

Proof. Using (9), (52) and Proposition 14 (again taking P , M , N , A and a to be P(G, b),

V , E, IG and b respectively, so that A′ = Igr(u)), it follows that u is a vertex of P(G, b)

if and only if nullity(Igr(u)) = 0. The condition on gr(u) is then given by Proposition 9

(taking the graph in that proposition to be gr(u)). �

Theorem 22 can also be proved more directly, using arguments from the alternative

proof of Proposition 9. This will now be outlined briefly.

Alternative proof of Theorem 22. In this proof, the fact is used that an element u of a

polytope P ⊂ R
N (for a finite set N) is a vertex of P if and only if there does not exist

any nonzero x ∈ R
N such that u− x ∈ P and u+ x ∈ P .

First, consider u ∈ P(G, b) and x ∈ R
E such that u ± x ∈ P(G, b), and let each

component of gr(u) either be acyclic or else contain exactly one cycle with that cycle

having odd length. Then IG u = IG(u ± x) = b, and so IG x = 0. Also, ue ± xe ≥ 0 for

each e ∈ E, and so if ue = 0 then xe = 0, i.e., supp(x) ⊂ supp(u). Therefore, Igr(u) y = 0,

where y ∈ R
supp(u) is given by ye = xe for each e ∈ supp(u). Using the same argument as

in the first part of the alternative proof of Proposition 9, it follows that y = 0. Hence,

x = 0 and u is a vertex of P(G, b).

Now, conversely, consider u ∈ P(G, b) and let it not be the case that each component

of gr(u) is acyclic or contains exactly one cycle with that cycle having odd length. Then
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using the same argument as in the second part of the alternative proof of Proposition 9,

there exists a nonzero y ∈ R
supp(u) which satisfies Igr(u) y = 0. Now define x ∈ R

E by

xe = ye for each e ∈ supp(u), and xe = 0 for each e ∈ E \ supp(u). Then x 6= 0, IG x = 0

and supp(x) ⊂ supp(u). Therefore, an ǫ > 0 can be chosen such that ue ± ǫxe ≥ 0 for all

e ∈ E. (In particular, 0 < ǫ ≤ min({ue/xe | e ∈ E, xe > 0}∪{−ue/xe | e ∈ E, xe < 0}).)

Hence, u± ǫx ∈ P(G, b), and u is not a vertex of P(G, b). �

Corollary 23. Let G be bipartite. Then an element u of P(G, b) is a vertex of P(G, b) if

and only if the graph of u is a forest.

A case of this result applied to N≤Z(R, S) is given by Brualdi [9, Thm. 8.1.10], and

a case applied to N (R, S) is given by Brualdi [9, Thm. 8.1.2], Klee and Witzgall [16,

Thm. 4], and Schrijver [22, Thm. 21.15].

Proof. This result follows from Theorem 22, using the fact that a bipartite graph does

not contain any odd-length cycles. �

Theorem 24. Let H be the graph of a vertex u of P(G, b). Then u is the only element

of P(G, b) whose graph is H, and it is given explicitly by

ue =











ke
∑

v∈VH\e(te)

(−1)dH\e(v,te) bv, e is an edge of H,

0, otherwise,

(58)

for each e ∈ E, where

ke =

{

1
2
, e is an edge of a nonloop cycle of H,

1, otherwise,
(59)

te =



















the endpoint of e furthest from L, e is an edge of a component
of H that contains a single
cycle L, but e is not in L,

an arbitrarily-chosen endpoint of e, otherwise,

(60)

H \ e is the spanning subgraph of H obtained by deleting edge e from H, VH\e(te) is the

vertex set of the component of H \ e which contains te, and dH\e(v, te) is the length of the

(necessarily unique) path between v and te in H \ e.

The reasons for the uniqueness of the path between v and te in H \ e, and for the

independence of the RHS of (58) on any choices of te in (60), will be given in the following

proof.

Note that the fact that if H is the graph of a vertex u of P(G, b), then u is the only

element of P(G, b) with graph H will also be given as part of Theorem 29.

Proof. Denote the edge set of H as E ′ (i.e., E ′ = supp(u)), and define u′ ∈ R
E′

by u′
e = ue

for each e ∈ E ′. It can be seen that IH u′ = b, so it follows from Proposition 10 (taking G

and a in that proposition to be H and b) that
∑

v∈UC
bv =

∑

v∈WC
bv for each bipartite
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component C of H , where (UC ,WC) is a bipartition for C. Also, since u is a vertex of

P(G, b), it follows from Theorem 22 that each component of H = gr(u) either is acyclic

or else contains exactly one cycle with that cycle having odd length. It now follows from

both parts of Proposition 11 (taking G and a in that proposition also to be H and b),

that u′ is the only vector in R
E′

with IH u′ = b, and that it is given explicitly by the RHS

of (21) (which matches the first case on the RHS of (58)). Furthermore, as discussed after

the statement of Proposition 11, the path between v and te in H \ e is unique, and the

expression for u′ is independent of any choices of te in (60). Therefore, u is given by (58),

since ue = u′
e for each e ∈ E ′ and ue = 0 for each e ∈ E \ E ′. It can also be seen that

the uniqueness of u′ as a vector in R
E′

with IH u′ = b implies that u is the only vector

in R
E with IG u = b and support E ′, and hence that u is the only element of P(G, b) with

graph H . �

Theorem 25. Let u and w be distinct vertices of P(G, b). Then u and w are the vertices of

an edge of P(G, b) if and only if gr(u)∪gr(w) has a component C such that each component

of gr(u)∪ gr(w) other than C either is acyclic or else contains exactly one cycle with that

cycle having odd length, while the cycle content of C is one of the following:

• exactly one cycle, with that cycle having even length, or

• exactly two cycles, with at least one of those cycles having odd length, or

• exactly one even-length and exactly two odd-length cycles, with any two of those

cycles sharing at least one edge.

Note that gr(u)∪gr(w) is the graph union (55) of gr(u) and gr(w), and that, using (57),

gr(u) ∪ gr(w) = gr({u, w}).

It can also be seen that the graph of the set of vertices of an edge equals the graph of

that edge. Hence, the graph of each edge of P(G, b) satisfies the condition of Theorem 25.

Proof. Using (9) and Proposition 16 (again taking P , M , N , A and a to be P(G, b),

V , E, IG and b respectively, so that A′ = Igr(u)∪gr(w)), it follows that u and w are the

vertices of an edge of P(G, b) if and only if nullity(Igr(u)∪gr(w)) = 1. The condition on

gr(u)∪ gr(w) is then given by Proposition 12 (taking the graph in that proposition to be

gr(u) ∪ gr(w)). �

Corollary 26. Let G be bipartite, and let u and w be distinct vertices of P(G, b). Then u

and w are the vertices of an edge of P if and only if gr(u) ∪ gr(w) contains exactly one

cycle.

A case of this theorem applied toN (R, S) is given by Brualdi [9, Thm. 8.4.6], Oviedo [20,

Cor. 1], and Yemelichev, Kovalev and Kravtsov [25, Ch. 6, Lem. 4.1].

Proof. This result follows from Theorem 25, using the fact that a bipartite graph does

not contain any odd-length cycles. �

Aspects of many of the results of this section will now be illustrated using the case of G

given by (3) and b1 = b2 = b3 = 1, as already considered in Section 1.4. The nonempty
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faces of P(G, b) for this case can easily be identified using Figure 1. The graphs of these

faces can then be obtained using (51), and are shown in Figure 3. The vertices of P(G, b)

will again be denoted as A, B, C and D, and the edge between vertices X and Y will be

denoted as XY .

• •

•

•

• •

•

A

• •

•

• •

•
B

• •

•

• •

•

C
• •

•

• •

•

D

• •

•

• •

•

Figure 3. P(G, b), and the graphs of its nonempty faces, forG given by (3)

and b1 = b2 = b3 = 1.

Some aspects of the results of this section which can be verified for this example are as

follows.

• The dimension of each nonempty face F of P(G, b) can be obtained directly from its

graph using the formula in (ii) of Theorem 17, noting that | supp(F )| is simply the

number of edges in gr(F ), and that |V | = 3. In particular, the graphs of vertices A

and D each have 3 edges and no bipartite components, so dim({A}) = dim({D}) =

3 − 3 + 0 = 0, the graphs of vertices B and C each have 2 edges and 1 bipartite

component, so dim({B}) = dim({C}) = 2 − 3 + 1 = 0, the graphs of edges AB, AD

and CD each have 4 edges and no bipartite components, so dim(AB) = dim(AD) =

dim(CD) = 4 − 3 + 0 = 1, and the graph of edge BC has 3 edges and 1 bipartite

component, so dim(BC) = 3− 3 + 1 = 1.

• The dimension of P(G, b) can also be obtained from (ii) of Theorem 17, or Corollary 18,

as has just been done for the other faces. Alternatively, since P(G, b)>0 is nonempty

and G has no bipartite components, Corollary 19 gives dim(P(G, b)) = |E| − |V |+0 =

5− 3 + 0 = 2.

• The inequality of Corollary 21 can be verified for each vertex of P(G, b). In particular,

for vertices A and D, the inequality is 3 ≤ 3 − 0 = 3, while for vertices B and C, the

inequality is 2 ≤ 3− 0 = 3.

• It can be observed that the graph of each vertex of P(G, b) satisfies the condition of

Theorem 22, i.e., each component either is acyclic or else contains exactly one cycle
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with that cycle having odd length. In particular, the graphs of vertices A and D each

consist of a single component, comprised of a cycle of length 3, while the graphs of

vertices B and C each consist of two components, one acyclic, and the other comprised

of a cycle of length 1.

• The explicit coordinates of each vertex of P(G, b), as given in Figure 1, can be obtained

from the graph of the vertex using the formula in Theorem 24.

Consider first the vertex A, and let (uα, uβ, uγ, uδ, uǫ) be the coordinates of A (using

the edge labels from (3)), and H be the graph of A. The second line of (58) gives

uβ = uǫ = 0, since β and ǫ are not edges of H . Using (59) to give kα = 1
2
, and the

second line of (60) to choose tα as the vertex 1, the first line of (58) then gives uα =

kα
∑

v∈VH\α(tα)
(−1)dH\α(v,tα)bv = 1

2

∑

v∈{1,2,3}(−1)dH\α(v,1)bv = 1
2

(

(−1)0b1 + (−1)2b2 +

(−1)1b3
)

= 1
2
(1 + 1 − 1) = 1

2
. It can be checked that the alternative choice tα = 2

gives uα = 1
2

(

(−1)2b1 + (−1)0b2 + (−1)1b3
)

= 1
2
, and that similar calculations give

uγ = 1
2
(b1 − b2 + b3) =

1
2
and uδ =

1
2
(−b1 + b2 + b3) =

1
2
. Hence, A = (1

2
, 0, 1

2
, 1
2
, 0).

Proceeding to vertex B, let (uα, uβ, uγ, uδ, uǫ) and H now be the coordinates and

graph of B. The second line of (58) gives uβ = uγ = uδ = 0. Using (59) to give

kα = 1, and the second line of (60) to choose tα as the vertex 1, the first line of (58)

then gives uα = kα
∑

v∈VH\α(tα)
(−1)dH\α(v,tα)bv =

∑

v∈{1}(−1)dH\α(v,1)bv = (−1)0b1 = 1.

Alternatively, the choice tα = 2 gives uα =
∑

v∈{2}(−1)dH\α(v,2)bv = (−1)0b2 = 1.

Now using (59) to give kǫ = 1, and the second line of (60) to give tǫ as the ver-

tex 3 (where this is a unique choice, since ǫ is a loop), the first line of (58) then

gives uǫ = kǫ
∑

v∈VH\ǫ(tǫ)
(−1)dH\ǫ(v,tǫ)bv =

∑

v∈{3}(−1)dH\ǫ(v,3)bv = (−1)0b3 = 1. Hence,

B = (1, 0, 0, 0, 1).

Finally, the coordinates of vertices C and D can be obtained similarly to those of

vertices B and A, respectively.

• Theorem 25 can be verified for each pair of distinct vertices of P(G, b), as follows. The

union of the graphs of vertices B and C is the graph of edge BC, which consists of

two components, one comprised of a cycle of length 1, and the other comprised of a

cycle of length 2, so the first case listed in Theorem 25 applies to the second of those

components. The unions of the graphs of vertices A and B, or C and D, are the graphs

of edges AB, or CD, each of which consists of a single component comprised of a cycle

of length 1 and a cycle of length 3, so the second case listed in Theorem 25 applies to

that component. The union of the graph of vertices A and D is the graph of edge AD,

which consists of a single component containing three cycles, one of length 2 and the

other two of length 3, with any two of those cycles sharing at least one edge, so the

third case listed in Theorem 25 applies to that component. The unions of the graphs of

vertices A and C, or B and D, are the graph G, which consists of a single component

containing four cycles (one of length 1, one of length 2 and two of length 3), so the

condition of Theorem 25 does not hold.
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8. Further results for the vertices, edges, faces and graphs of P(G, b)

In this section, further results concerning the vertices, edges, faces and graphs of P(G, b)

are obtained. The previous such results, in Section 7, combined both general results for

graphs, from Section 4, and general results for polytopes, from Section 5. By contrast,

the results of this section depend only on general results for polytopes, from Section 6,

together with the simple correspondences, as given in (51)–(52), between supports of

subsets or elements of P(G, b), and graphs of P(G, b).

In particular, this section consists of results from Section 6, in which the polytope P

of (30) is now taken to be P(G, b), in the form (9), with N , M , A and a in (30) taken to

be E, V , IG and b respectively, and with unions, intersections or containments of supports

of subsets or elements of P(G, b) now expressed as unions, intersections or containments

(as given in (54)–(56)) of graphs of P(G, b).

It will be assumed throughout this section that b is nonzero, so that the application of

the results of Section 6 to P(G, b) is valid.

Included among the results of this section are further characterizations of the elements

of P(G, b) which are vertices of P(G, b) (in Theorem 29), and of the pairs of distinct

vertices of P(G, b) which form edges of P(G, b) (in Corollary 31), several equivalent con-

ditions for a spanning subgraph of G to be a graph of P(G, b) (in Theorem 32), and a

statement that the set of graphs of P(G, b) forms a lattice which is isomorphic to the face

lattice of P(G, b) (in Theorem 33).

At the end of this section, the face lattice of P(G, b) and the lattice of graphs of P(G, b)

are considered for the example of Section 1.4.

Proposition 27. For any subset X of P(G, b),

gr(X) = gr

(

⋂

F∈F(P(G,b))
X⊂F

F

)

= gr

(

⋂

F∈facets(P(G,b))
X⊂F

F

)

. (61)

Note that F(P(G, b)) and facets(P(G, b)) are the face lattice and set of facets, respec-

tively, of P(G, b), using the notation of Section 6.

Proof. This result follows by applying (39) to P(G, b). �

Proposition 28. For any subset X of P(G, b), and any face F of P(G, b),

X ⊂ F if and only if gr(X) ⊂ gr(F ). (62)

Proof. This result follows by applying (41) to P(G, b). �

Note that (40) and (42) could also easily be applied to P(G, b), giving special cases

of (61) and (62), respectively, in which X contains a single element.

Theorem 29. Let u be an element of P(G, b), and H be the graph of u. Then the following

are equivalent.

(i) u is a vertex of P(G, b).
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(ii) u is the only element of P(G, b) whose graph is H.

(iii) u is the only element of P(G, b) whose graph is contained in H.

Note that the implication of (ii) by (i) in this theorem is also given as the first statement

in Theorem 24.

Cases of this theorem applied to N≤Z(R), N (R), N≤Z(R, S) and N (R, S) are given

by Brualdi [8, Thm. 3.1], [9, Thms. 8.1.2, 8.1.10, 8.2.1 & 8.2.6], Jurkat and Ryser [15,

p. 348], and Klee and Witzgall [16, Cor. 2].

Proof. This result follows by applying (43) to P(G, b). �

Theorem 30. Let U be a subset of vertices of P(G, b). Then U is the set of vertices of

a face of P(G, b) if and only if the elements of U are the only vertices of P(G, b) whose

graphs are contained in the graph of U .

Proof. This result follows by applying (45) to P(G, b). �

Corollary 31. Let u and w be distinct vertices of P(G, b). Then u and w are the vertices

of an edge of P(G, b) if and only if u and w are the only vertices of P(G, b) whose graphs

are contained in the union of the graphs of u and w.

Proof. This result follows from Theorem 30 by taking U to be {u, w}. (It also follows by

applying (46) to P(G, b).) �

Theorem 32. Let H be a spanning subgraph of G. Then each of the following is a

necessary and sufficient condition for H to be a graph of P(G, b), i.e., for H to be the

graph of a subset of P(G, b).

(i) H is the graph of an element of P(G, b), or H has no edges.

(ii) H is the graph of a face of P(G, b).

(iii) H is a union of graphs of vertices of P(G, b).

(iv) H is the union of the graphs of all vertices of P(G, b) whose graph is contained in H.

Note that further equivalent conditions will be added to this list in Section 9.

Proof. The necessity and sufficiency of condition (ii) for H to be a graph of P(G, b), and

its equivalence to conditions (i), (iii) and (iv), follows by applying the equality between

the first set, S(P ), in (48) (as defined in (47)) and each of the other four sets in (48)

(using (29) in the third of these), respectively, to P(G, b). �
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It follows from (53) and Theorem 32 that the set of graphs of P(G, b) can now be

written as

G(G, b) = {gr(X) | X ⊂ P(G, b)}

= {gr(x) | x ∈ P(G, b)} ∪ {the spanning subgraph of G with no edges}

= {gr(F ) | F ∈ F(P(G, b))}

= {
⋃

u∈U gr(u) | U ⊂ vert(P(G, b))}

=
{

spanning subgraphs H of G
∣

∣

∣
H =

⋃

u∈vert(P(G,b))
gr(u)⊂H

gr(u)
}

. (63)

A further equality will be added to those of (63) in (66).

Theorem 33. The face lattice F(P(G, b)) of P(G, b) is isomorphic to the set G(G, b) of

graphs of P(G, b) partially ordered by inclusion.

The natural isomorphism between these lattices maps each face F ∈ F(P(G, b)) to its

graph gr(F ), and inversely maps each graph H ∈ G(G, b) to the face {x ∈ P(G, b) |

gr(x) ⊂ H} = {x ∈ P(G, b) | xe = 0 for each e ∈ E which is not an edge of H}. In terms

of vertices of faces, F ∈ F(P(G, b)) is mapped to the union of the graphs of the vertices

of F , i.e., gr(F ) =
⋃

u∈vert(F ) gr(u) = gr(vert(F )), and H ∈ G(G, b) is mapped to the face

whose vertices are {u ∈ vert(P ) | gr(u) ⊂ H}.
For any H ⊂ G(G, b), the meet of H is the union of all those graphs of G(G, b) which

are contained in each graph in H, or alternatively the union of the graphs of all those

vertices of P(G, b) whose graphs are contained in each graph in H, and the join of H is

the union of all the graphs in H, i.e.,

inf(H) =
⋃

H∈G(G,b)
H⊂∩H′∈HH′

H =
⋃

u∈vert(P(G,b))
gr(u)⊂∩H′∈HH′

gr(u), (64)

sup(H) =
⋃

H∈H

H. (65)

Note that, for the case H = ∅ in (64),
⋂

H′∈∅H
′ can be taken as G or as gr(P(G, b)),

giving inf(∅) = gr(P(G, b)).

Note also that the dimension of a nonempty face F of P(G, b) is given by (ii) of Theo-

rem 17, with | supp(F )| in that theorem being simply the number of edges in gr(F ).

Proof. All of these results follow from the discussion, in Section 6, between (48) and

Figure 2, as applied to P(G, b). �

As an example, consider againG given by (3) and b1 = b2 = b3 = 1. The Hasse diagrams

of the face lattice F(P(G, b)) of P(G, b), and the lattice G(G, b) of graphs of P(G, b) for

this case, are shown in Figure 4. Various aspects of Theorem 33, and of certain other

results of this section, such as Theorem 30 and Corollary 31, can be verified for this case

using this figure.
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{A} {B} {C} {D}

AB BC CD AD

∅

P(G, b)

• •

•

• •

•

• •

•

• •

•

• •

•

• •

•

• •

•

• •

•

• •

•

• •

•

Figure 4. Hasse diagrams of the face lattice F(P(G, b)) of P(G, b) (left),

and the lattice G(G, b) of graphs of P(G, b) (right), for G given by (3) and

b1 = b2 = b3 = 1.

9. Further conditions for the graphs of P(G, b)

In this section, further necessary and sufficient conditions for a spanning subgraph H

of G to be a graph of P(G, b) are obtained using Theorems 4 and 7 from Section 3. In

contrast to the conditions of Theorem 32, these conditions depend only on H and b,

without any reference to P(G, b), and take the form of finitely-many strict inequalities

and equalities for certain sums of entries of b. At the end of the section, some of the

results are illustrated using certain spanning subgraphs of the graph G of (3).

It is assumed in this section that b is again nonzero.

Theorem 34. Let H be a spanning subgraph of G. Then a necessary and sufficient

condition for H to be a graph of P(G, b) is that H has no edges, or
∑

v∈V1
bv ≥

∑

v∈V3
bv

for all sets V1, V2 and V3 such that V = V1 ⋒ V2 ⋒ V3 and H [V2 ∪ V3, V3] = ∅, with the

inequality holding as an equality if and only if H [V1, V1 ∪ V2] = ∅.

A case of this theorem applied to N (R) is given by Brualdi [9, p. 353].

Proof. It will be shown that the condition of this theorem is equivalent to condition (i)

of Theorem 32.

Denote the edge set of H as EH . If EH = ∅, then the condition of this theorem and (i)

of Theorem 32 are both automatically satisfied.

So, assume that EH 6= ∅ and that (i) of Theorem 32 is satisfied. Then there exists

x ∈ P(G, b) with H = gr(x). Now define x′ ∈ R
EH by x′

e = xe for each e ∈ EH . Then

x′ ∈ P(H, b)>0. Therefore, using Theorem 7 (with G in that theorem taken to be H), the

condition of this theorem is satisfied.



42 ROGER E. BEHREND

Conversely, assume that EH 6= ∅ and that the condition of this theorem is satisfied.

Then, using Theorem 7 (with G in that theorem again taken to be H), there exists

x′ ∈ P (H, b)>0. Now define x ∈ R
E by xe = x′

e for each e ∈ EH , and xe = 0 for

each e ∈ E \ EH . Then x ∈ P(G, b) and H = gr(x). Therefore, (i) of Theorem 32 is

satisfied. �

It follows that the equalities of (63), for the set of graphs of P(G, b), can now be

supplemented by

G(G, b) =
{

spanning subgraphs H of G
∣

∣ H satisfies the condition of Theorem 34
}

.

(66)

Theorem 35. Let H be a spanning subgraph of G. If H is bipartite, then a necessary and

sufficient condition for H to be a graph of P(G, b) is that H has no edges, or
∑

v∈C bv ≥
∑

v∈V \C bv for each vertex cover C of H, with the inequality holding as an equality if and

only if V \ C is also a vertex cover of H.

Note that if (U,W ) is a bipartition for H , then the condition of this theorem is equiva-

lent to the condition that H has no edges, or
∑

v∈U1
bv+

∑

v∈W1
bv ≥

∑

v∈U2
bv+

∑

v∈W2
bv

for all sets U1, U2, W1 and W2 such that U = U1 ⋒U2, W = W1 ⋒W2 and H [U2,W2] = ∅,

with the inequality holding as an equality if and only if H [U1,W1] = ∅. Also, this con-

dition remains unchanged if its inequality is replaced by
∑

v∈U1
bv ≥

∑

v∈W2
bv, or by

∑

v∈W1
bv ≥

∑

v∈U2
bv. The reasons for these equivalences are discussed briefly after the

statements of Theorems 3 and 4 (where the graph in those remarks should now be taken

to be H).

Proof. It follows from Theorems 4 and 7 (taking the graph in each theorem to be H)

that if H is bipartite, then the condition of this theorem is equivalent to the condition of

Theorem 34. The result of this theorem is then given by Theorem 34. �

Corollary 36. Let G be bipartite, and H be a spanning subgraph of G. Then the condition

of Theorem 35 is necessary and sufficient for H to be a graph of P(G, b).

A case of this theorem applied to N (R, S) is given by Brualdi [9, p. 343].

Proof. This result follows immediately from Theorem 35, since any spanning subgraph of

a bipartite graph is bipartite. �

As simple examples, consider now the spanning subgraphs H1 and H2, of the graph G

of (3), given by

H1 =
• •

•

1 2

3
and H2 =

• •

•

1 2

3

. (67)

It can be seen directly that H1 is a graph of P(G, b) if and only if (xα, xβ, xγ , xδ, xǫ) =

(b1, 0, 0, b2 − b1, b1 − b2 + b3) is an element of P(G, b)>0, and hence if and only if b1 + b3 >

b2 > b1 > 0.
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Alternatively, the set triples (V1, V2, V3) which satisfy V = {1, 2, 3} = V1 ⋒ V2 ⋒ V3 and

H1[V2 ∪ V3, V3] = ∅ are ({2}, {3}, {1}), ({1, 3}, ∅, {2}), ({2, 3}, ∅, {1}), and (U, {1, 2, 3} \
U, ∅), for each U ⊂ {1, 2, 3}. Among these cases, the only one which satisfies H1[V1, V1 ∪

V2] = ∅ is (∅, {1, 2, 3}, ∅), for which
∑

v∈V1
bv =

∑

v∈V3
bv (= 0) is automatically satisfied.

Therefore, using Theorem 34, H1 is a graph of P(G, b) if and only if b2 > b1, b1 + b3 > b2,

b2 + b3 > b1 and
∑

v∈U bv > 0, for each nonempty U ⊂ V , which can be seen to coincide

with the condition obtained directly.

Proceeding to H2, it can be seen directly that H2 is a graph of P(G, b) if and only if

(xα, xβ, xγ , xδ, xǫ) = (0, 0, b1, b2, 0) is an element of P(G, b)>0, and hence if and only if

b3 = b1 + b2, b1 > 0 and b2 > 0.

Alternatively, the vertex covers C of H2 are {3}, {1, 2}, {1, 3}, {2, 3} and {1, 2, 3}.

Among these vertex covers, those for which {1, 2, 3} \ C is also a vertex cover of H2 are

{3} and {1, 2}. Therefore, using the fact that H2 is bipartite and Theorem 35, H2 is a

graph of P(G, b) if and only if b3 = b1 + b2, b1 + b3 > b2, b2 + b3 > b1 and b1 + b2 + b3 > 0,

which can be seen to coincide with the condition obtained directly.

It follows that neither H1 nor H2 is a graph of P(G, b) for the previously-considered

case of b1 = b2 = b3, since neither of the associated conditions is satisfied in that case.

10. Results for the case in which G contains multiple edges

In this section, results which are relevant for the case in which G contains multiple edges

(but trivial if G does not contain multiple edges) are obtained. In particular, for a reduced

graph (as defined in Section 1.3) Grd of G, the results of this section identify relationships

between the graphs of P(G, b) and P(Grd, b) (in Theorem 37), the dimensions of faces

of P(G, b) and P(Grd, b) (in Theorem 38), and the vertices of P(G, b) and P(Grd, b) (in

Theorem 39). At the end of the section, Theorems 37 and 39 are considered in the context

of the example from Section 1.4.

It is assumed in this section that b is again nonzero.

Theorem 37. Let Grd be a reduced graph of G, H be a spanning subgraph of G, and Hrd be

both a reduced graph of H and a spanning subgraph of Grd. Then H is a graph of P(G, b)

if and only if Hrd is a graph of P(Grd, b).

Proof. It will be shown that condition (i) of Theorem 32 is satisfied by H and G if and

only if condition (i) of Theorem 32 is satisfied by Hrd and Grd.

It can be seen that H has no edges if and only if Hrd has no edges. For the case in

which H and Hrd both have no edges, (i) of Theorem 32 is automatically satisfied by H

and G, and by Hrd and Grd. So, for the remainder of this proof, consider the case in which

the edge sets of H and Hrd are both nonempty.

First, assume that H and G satisfy (i) of Theorem 32. Then there exists x ∈ P(G, b)

with H = gr(x). Now define (as in the first definition in the proof of Proposition 1) x′ ∈

R
E′

by x′
e′ =

∑

e∈M(e′) xe for each e′ ∈ E ′, where E ′ is the edge set of Grd, and M(e′) is the

set of edges of G which have the same endpoints as e′. (Equivalently, x′
e′ =

∑

e∈MH(e′) xe



44 ROGER E. BEHREND

for each e′ ∈ E ′, where MH(e
′) is the set of edges of H which have the same endpoints

as e′.) Then x′ ∈ P(Grd, b) and Hrd = gr(x′), and so Hrd and Grd satisfy (i) of Theorem 32.

Conversely, assume that Hrd and Grd satisfy (i) of Theorem 32. Then there exists

x′ ∈ P(Grd, b) with Hrd = gr(x′). Now define x ∈ R
E by xe = x′

e′/m(e) for each e ∈ EH ,

and xe = 0 for each e ∈ E \ EH , where EH is the edge set of H , e′ is the single edge

of Grd (or Hrd) which has the same endpoints as e, and m(e) is the number of edges of H

which have the same endpoints as e. Then x ∈ P(G, b) and H = gr(x), and so H and G

satisfy (i) of Theorem 32. �

It can be seen that if G contains multiple edges, Grd is a reduced graph of G, and

the graphs of P(Grd, b) are known, then the graphs of P(G, b) can easily be obtained as

follows. First, choose a graph Hrd of P(Grd, b), and, for each edge e of Hrd, choose a

nonempty subset Ee of the set of edges of G which have the same endpoints as e. Then

let H be the spanning subgraph of G whose edge set is the union of the sets Ee, over

all edges e of Hrd. It follows, using Theorem 37, that H is a graph of P(G, b), and

that repeating these steps for all possible graphs Hrd, and all possible associated sets Ee,

produces each graph of P(G, b) exactly once.

It also follows that the number of graphs of P(G, b), and hence (using Theorem 33) the

number of faces of P(G, b), is given by

|F(P(G, b))| =
∑

F∈F(P(Grd,b))

∏

e∈supp(F )

(

2m(e) − 1
)

, (68)

where m(e) is the number of edges of G which have the same endpoints as edge e of Grd.

Theorem 38. Let Grd be a reduced graph of G, F be a face of P(G, b), and F ′ be a face

of P(Grd, b). If the graph of F ′ is a reduced graph of the graph of F , then

dim(F )− dim(F ′) = | supp(F )| − | supp(F ′)| ≥ 0. (69)

Note that supp(F ) and supp(F ′) are simply the edge sets of the graphs of F and F ′,

respectively.

Proof. It can be checked that F is empty if and only if F ′ is empty. For the case in

which F and F ′ are both empty, (69) is immediately satisfied.

So, assume now that F and F ′ are both nonempty. Then the equality in (69) follows

from (ii) of Theorem 17, and the observations that G and Grd each have vertex set V ,

and that gr(F ) and gr(F ′) each have the same number of bipartite components, while

the inequality in (69) follows from the observation that gr(F ) has at least as many edges

as gr(F ′). �

Theorem 39. Let Grd be a reduced graph of G, H be a spanning subgraph of G, and Hrd

be both a reduced graph of H and a spanning subgraph of Grd. Then H is the graph of

a vertex u of P(G, b) if and only if H does not have multiple edges and Hrd is the graph

of a vertex u′ of P(Grd, b). In such cases, ue = u′
e′ for each pair of edges e of H and e′

of Hrd which have the same endpoints, while all other entries of u and u′ are zero.
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Note that if H does not have multiple edges, then H and Hrd are in fact the same, up

to the labeling of their edges.

Proof. First, assume that H = gr(u), for a vertex u of P(G, b). Then, using Theorem 22,

each component of H either is acyclic or else contains exactly one cycle with that cycle

having odd length. Therefore, H does not have multiple edges (since if H had multiple

edges, then H would contain a cycle of length 2), and so each component of Hrd either is

acyclic or else contains exactly one cycle with that cycle having odd length. Now define

u′ ∈ R
EGrd (where EGrd

is the edge set of Grd) by u′
e′ = ue for each pair of edges e′ of Hrd

and e of H which have the same endpoints, with all other entries of u′ (and u) being

zero. Then u′ ∈ P(Grd, b) and Hrd = gr(u′), and so, using Theorem 22, u′ is a vertex

of P(Grd, b). Also, using the first statement in Theorem 24 or the implication of (ii) by (i)

in Theorem 29, u′ is the only element of P(Grd, b) whose graph is Hrd.

Conversely, assume that H does not have multiple edges and that Hrd = gr(u′), for a

vertex u′ of P(Grd, b). Then, using Theorem 22, each component of Hrd either is acyclic

or else contains exactly one cycle with that cycle having odd length. Therefore, each

component of H either is acyclic or else contains exactly one cycle with that cycle having

odd length. Now define u ∈ R
E by ue = u′

e′ for each pair of edges e of H and e′ of Hrd

which have the same endpoints, with all other entries of u (and u′) being zero. Then

u ∈ P(G, b) and H = gr(u), and so, using Theorem 22, u is a vertex of P(G, b). Also,

using the first statement in Theorem 24 or the implication of (ii) by (i) in Theorem 29, u

is the only element of P(G, b) whose graph is H . �

Note that an alternative approach to proving Theorem 39 would involve using Theo-

rems 37 and 38, rather than Theorem 22.

It can be seen that if G contains multiple edges, Grd is a reduced graph of G, and the

vertices of P(Grd, b) (or just their graphs) are known, then the vertices of P(G, b) (or just

their graphs) can easily be obtained as follows. First, choose a vertex u of P(Grd, b) with

graph Hrd, and, for each edge e of Hrd, choose a single edge fe from among those edges

of G which have the same endpoints as e. Then let H be the spanning subgraph of G

with edge set {fe | e is an edge of Hrd}. It follows, using Theorem 39, that H is the graph

of a vertex w of P(G, b), where wfe = ue for each edge e of Hrd, with all other entries

of w being zero (i.e., we = 0 if e is an edge of G but not H), and that repeating these

steps for all possible vertices u, and all possible associated edges fe, produces each vertex

of P(G, b) exactly once.

It also follows that the number of vertices of P(G, b) is given by

|vert(P(G, b))| =
∑

u∈vert(P(Grd,b))

∏

e∈supp(u)

m(e), (70)

where m(e) is the number of edges of G which have the same endpoints as edge e of Grd.



46 ROGER E. BEHREND

As an example, consider again G given by (3) and b1 = b2 = b3 = 1. Consider also a

reduced graph of G, with edge set
{

ω, γ, δ, ǫ
}

, given by

Grd =

• •

•

1 2

3

ǫ

ω

γ δ . (71)

In subsequent diagrams of spanning subgraphs of Grd, the edge ω will always be repre-

sented by a straight line between the vertices 1 and 2, as in (71).

It can be seen that

P(Grd, b) =
{

(xω, xγ, xδ, xǫ) ∈ R
{ω,γ,δ,ǫ}
≥0

∣

∣ xω + xγ = xω + xδ = xγ + xδ + xǫ = 1
}

=
{

(xω, 1− xω, 1− xω, 2xω − 1) ∈ R
{ω,γ,δ,ǫ}

∣

∣

1
2
≤ xω ≤ 1

}

. (72)

Therefore, P(Grd, b) is the line segment between vertices (1
2
, 1
2
, 1
2
, 0) and (1, 0, 0, 1).

The nonempty graphs of P(Grd, b) are shown in Figure 5.

• •
( 1
2
, 1
2
, 1
2
,0) (1,0,0,1)

• •

•

• •

•

• •

•

Figure 5. P(Grd, b), and the graphs of its nonempty faces, for Grd given

by (71) and b1 = b2 = b3 = 1.

The pairs of spanning subgraphs H of G and Hrd of Grd, for which Hrd is a reduced

graph of H and the conditions of Theorem 37 apply, i.e., such that H is a graph of P(G, b)

and Hrd is a graph of P(Grd, b), are shown in Table 2.

H
• •

•

• •

•

• •

•

• •

•

• •

•

• •

•

• •

•

• •

•

• •

•

• •

•

Hrd
• •

•

• •

•

• •

•

• •

•

Table 2. Graphs H of P(G, b) and Hrd of P(Grd, b), such that Hrd is a

reduced graph of H , for G given by (3), Grd given by (71) and b1 = b2 =

b3 = 1.

The pairs of spanning subgraphs H of G and Hrd of Grd, for which Hrd is a reduced

graph of H and the conditions of Theorem 39 apply, i.e., such that H is the graph of a

vertex u of P(G, b), H does not have multiple edges and Hrd is the graph of a vertex u′

of P(Grd, b), are shown, together with the vertices u and u′, in Table 3.
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H
• •

•

• •

•

• •

•

• •

•

(uα,uβ ,uγ ,uδ,uǫ) ( 1
2
,0, 1

2
, 1
2
,0) (0, 1

2
, 1
2
, 1
2
,0) (1,0,0,0,1) (0,1,0,0,1)

Hrd
• •

•

• •

•

(u′
ω ,u

′
γ ,u

′
δ
,u′

ǫ) ( 1
2
, 1
2
, 1
2
,0) (1,0,0,1)

Table 3. Graphs H of vertices u of P(G, b) and Hrd of vertices u′

of P(Grd, b), such that Hrd is a reduced graph of H , for G given by (3), Grd

given by (71) and b1 = b2 = b3 = 1.
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