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Video Completion using Tracking and Fragment Merging

Abstract Video completion is the problem of automatically
filling space-time holes in video sequences left by removal
of unwanted objects in the scene. We solve it using texture
synthesis, filling a hole inwards using three steps iteratively:
we select the most promising target pixel at the edge of the
hole, we find the source fragment most similar to the known
part of the target’s neighborhood, and we merge source and
target fragments to complete the target neighborhood, reduc-
ing the size of the hole.

Earlier methods were slow, due to searching the whole
video data for source fragments, or completing holes pixel
by pixel; they also produced blurred results due to sampling
and smoothing. For speed, we track moving objects allowing
us to use a much smaller search space when seeking source
fragments; we also complete holes fragment by fragment in-
stead of pixelwise. Fine details are maintained by use of a
graph cut algorithm when merging source and target frag-
ments. Further techniques ensure temporal consistency of
hole filling over successive frames.

Examples demonstrate the effectiveness of our method.

Keywords Video completion · Texture synthesis · Mean
shift · Graph cut · Tracking

1 Introduction

Video completion is the problem of automatically filling holes
(missing parts) in video sequences caused by the removal of
unwanted objects. We solve it by using information from
other parts of the sequence to suggest suitable in-fill. Video
completion has become viable as hardware advances, as ev-
idenced by [3,21,23,15]. It has many applications, in areas
such as video editing and film post-production.
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Image completion has been widely studied. Image in-
painting methods [4,8,17] can quickly fill small non-textured
holes in time proportional to the size of the hole. Texture syn-
thesis methods [20,5,13,11,22] are more useful for larger,
textured holes, but generally take time proportional to the
size of the image, as suitable filling material is sought else-
where in the image.

Existing methods for video completion include video in-
painting, analogous to image inpainting [3], space-time video
completion, which is based on texture synthesis and is good
but slow [21], motion layer video completion, which splits
the video sequence into different motion layers and com-
pletes each separately [23], and video repairing, which re-
pairs static background with motion layers and repairs mov-
ing foreground using model alignment [15]. Much earlier
work does not, however, adequately address important dif-
ferences between image and video completion: there is much
more data, and the visual importance of temporal inconsis-
tencies in completed video.

We overcome these issues with a new approach based on
texture synthesis. It is efficient, and produces visually ap-
pealing results. It completes each hole iteratively. Each it-
eration is divided into three steps: first we select the most
promising target pixel at the edge of the hole. A space-time
target fragment is defined around it; its contents are partially
known. Next, we find the source fragment most similar to
the known part of the target fragment in a carefully cho-
sen search region of the video. Finally, we merge the source
and target fragments to complete the latter, reducing the size
of the hole. We use rules to measure each candidate target
pixel’s merit, to select the best target. When searching for a
suitable source fragment, we track moving objects to gener-
ate a much smaller relevant search space. We complete holes
fragment by fragment instead of pixel by pixel to gain further
speed. We use a graph cut algorithm to merge source and tar-
get fragments in a way which maintains fine details. Further
steps are taken to ensure temporal consistency of completed
results over successive frames.

We survey prior work in Section 2, and outline our new
method in Section 3. Key ideas are then described in detail in
Sections 4–7: target pixel selection, tracking to quickly find
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matching source fragments from suitable parts of the video,
use of the graph cut method to merge source and target frag-
ments, and enforcement of temporal consistency. Results, a
discussion, and conclusions are given in Sections 8–10.

2 Related work

We now review prior work on image and video completion,
as well as mean shift tracking and graph cut image merging,
both used as components of our approach.

2.1 Image completion

Video completion basically extends image completion to 3D
space-time. We thus consider how existing image comple-
tion techniques are relevant to video completion.

There are two main approaches to image completion. Im-
age inpainting [4] methods use PDEs to repair minor dam-
age to images. Levin [17] extended this idea by measuring
global image statistics, and bases inpainting on prior im-
age knowledge as well as local color information. For small,
non-textured regions, such methods achieve visually satis-
factory results. However, the lack of generated texture in
larger more complex reconstructed areas is clearly visible.

Texture synthesis methods comprise the other approach.
After selecting a target pixel whose neighborhood is par-
tially inside the hole, a source fragment, with texture match-
ing the target’s known neighborhood, is sought elsewhere
in the image. This source fragment is then merged into the
neighborhood of the target pixel. Such methods are suited
to filling large holes in images. The method in [13] uses
these ideas together with hierarchical image approximation
and adaptive neighborhood sizes, leading to impressive re-
sults, but at high computational cost. Zhang et al. [22] used
a method to preferentially select pixels to be filled, choosing
better known neighborhoods having low texturing. A graph
cut algorithm is used to find the best way to merge the source
fragment with the target fragment; we also do so. This ap-
proach completes natural images smoothly and quickly.

2.2 Video completion

Video completion is more challenging for two reasons. Firstly,
the amount of data in video sequences is much larger, so tex-
ture synthesis methods cannot be directly applied to video
completion: searching for a source fragment in the whole
video dataset would be much too slow. Secondly, temporal
consistency is a necessity; it is more important than spa-
tial aliasing in images, due to the eye’s sensitivity to mo-
tion [21]. Simply completing video sequences frame by frame
using image completion methods leads to flickering, and is
inapporpriate.

Bertalmı́o et al. [3] consider extending image inpaint-
ing techniques to video sequences using ideas from fluid dy-
namics. As before, such video inpainting is useful for fill-
ing small non-textured holes in video sequences, but is un-
suitable for completing large space-time holes caused by re-
moval of macroscopic objects.

Wexler et al. [21] treat video completion as a global opti-
mization problem, to enforce global spatio-temporal consis-
tency during video completion They solve the problem itera-
tively: missing video portions are filled pixel by pixel. Multi-
ple target fragments are considered at different locations for
the unknown pixel; for each, it seeks the most similar space-
time source fragment elsewhere in the video. The fragments
are merged according to similarity criteria to complete the
unknown pixel. For speed, this method is performed from at
several scales using spatio-temporal pyramids and nearest-
neighbor search algorithms [2] are used. Overall, however,
this approach is slow, and the results appear blurred due to
the fragment merging and smoothing operations.

Zhang et al. [23] segment video sequences into differ-
ent non-overlapping motion layers, each of which is com-
pleted separately. After removal of unwanted video objects
in each layer, the method selects a reference frame in each
layer and completes that frame. The solution is then propa-
gated to other frames using the known motion parameters.
This yields good results, but is limited to rigid bodies for
which the transformation between frames can readily be de-
termined: for example, their appearance may not vary with
time by rotating in three-dimensions.

2.3 Mean shift and graph cut

Our method tracks moving objects to limit the search space
when trying to find the best source fragment for repair. We
use the mean shift algorithm [10]. It can rapidly and ro-
bustly track non-rigid objects in videos using features such
as color or texture, using a Bayesian framework to find the
most probable location for the tracked object in each frame.
The mean shift algorithm has been applied to various vision
problems, including robust feature space analysis [9], spatio-
temporal video segmentation [12], and video tooning [19].

To merge source and target fragments smoothly, we use
the graph cut technique [7] to find the best boundary be-
tween them—we wish to minimize pixel differences across
the boundary. It works by expressing the problem as hav-
ing to find the min-cut in a weighted graph. This method
was used by Boykov [6] to segment N-dimensional images,
and has later been applied to image and video texture syn-
thesis [16], foreground extraction for images [18], and pho-
tomontage [1]. It has already found use in fragment merging
for filling holes in images in [22], and is well suited to this
purpose for video completion.

The next section explains our algorithm in outline.
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3 Overview and contribution

Our algorithm is based on texture synthesis; it is both effi-
cient, and produces temporally coherent results.

The video completion problem is: given an input video
sequence V = v(x,y, t) with holes H where some unwanted
objects have been removed during a sequence of frames, rep-
resented by a matte M, a bitmask indicating locations of each
hole, our goal is to fill the holes one by one with plausible
(background) pixel values based on the known regions.

Each single hole is filled in an iterative manner. Each
time round the iteration, we complete a single video frag-
ment in the hole. A fragment is a cubical neighborhood around
some pixel. The fragment size is chosen according to the
scale of the underlying hole in the video sequence. Iteration
terminates when the hole has been filled.

A video fragment is completed using texture synthesis.
We select a target fragment T centered at a pixel at the
boundary of the hole; its pixels are partly unknown. We then
search appropriate known parts of the video for a source
fragment S having greatest similarity to the known part of T .
If the similarity is too low, we exit this iteration, otherwise,
we merge the source fragment S with the target fragment T
to fill unknown pixels in the target fragment—see later.

Video completion must address two main problems. One
is the time taken, given the large amount of data; the other
is control of temporal consistency between frames for added
pixels. We use three main ideas to resolve these issues:

– Search pruning using tracking: To avoid searching the
whole video for the best source fragment S, we use the
mean shift method to track moving objects. This quickly
determines a much smaller search space for plausible
source fragments with high similarity to the target frag-
ment. This greatly improves speed.

– Fragment completion using graph cut: We complete
holes in the video sequence fragment by fragment. When
merging the source information with the target, we use
a graph cut algorithm to ensure that pixel differences
across the boundary between the original material and
the synthesized material are kept as small as possible.
This is much faster than pixel by pixel video completion,
yet maintains fine details and produces smoothly merged
results.

– Temporal consistency: To ensure temporal consistency
of new material, and avoid flickering, we do the follow-
ing: if two target fragments T1 and T2 are neighbors in
time, we favor choosing corresponding source fragments
S1 and S2 which are also neighbors in time. This simple
method performs well.

The main contributions of this paper are thus threefold.
The first is to introduce tracking into video completion, for
two purposes. When selecting target fragments, consider-
ing whether a target is trackable is useful for comparing the
merit of different targets, in order to get a good target T . Sec-
ondly, we use tracking to limit the size of the search space
for source fragments.

Secondly, we introduce graph cut methods into video
completion, to find the best seam between a target fragment
T and a source fragment S. This enables us to merge T and S
with the least visible seam while maintaining high resolution
details. This is crucial when performing fragment by frag-
ment, rather than pixel by pixel, filling. Thirdly, we preserve
temporal consistency during video completion by ensuring
consistency of source fragments at adjacent time steps.

The next three Sections give further details of each step.

4 Optimal target selection

In order to select a good target video fragment T for each
iteration, we consider the merit of the fragment centered at
each pixel in the hole. We take into account two factors: how
much information is known in the target fragment, and how
well the target fragment can be tracked through the video
sequence. The former information is stored in an info map,
I, of the same size as the video sequence (or at least as big
as the holes), at each pixel that is at the center of a target
fragment. The latter information is stored in a similar track-
ability map, C. Both are explained further shortly. As holes
are filled incrementally, these maps can be kept quickly up-
dated locally, after initial construction.

Suppose IT stands for the info map value for a target
video fragment T , and CT for the trackability map value.
We define the overall merit OT for the target T as:

OT = IT + kCT , (1)

where an optimum choice for k seems to be about 2 or 3, to
give more importance to CT . It is simple to keep OT updated
as filling occurs, using a sorted list for all targets, allowing
us to quickly find the target fragment with maximum merit.

As explained, if a suitable source fragment cannot be
found for a given target, we ignore this target, and try again
with a new target. In practice, many target fragments have al-
most the same maximum merit value. We thus first select the
N best target fragments, and randomly choose one of them
as the target. (We set N to about 40; if no suitable source is
found we adaptively increase N.)

4.1 Info map

The idea of the info map is to tell us how much information
is known in the target video fragment T [13]. Let Mv be the
matte value at pixel v(x,y, t). The info map value IT for T is
given by:

IT = ∑
v∈T

Mv. (2)

Clearly, the info map can easily be initially calculated by
applying an all one filter of the same size as T to the matte
and multiplying the result by the negation of the matte, as
shown in Figure 2.

Figure 2 shows that larger values in the info map corre-
spond to target fragments having more known neighboring



4 Yun-tao Jia et al.

Target 

fragment

Target 

fragment
Target fragment

Frame 30 of 240 Frame 30 of 240 Frame 100 of 240

Trackable 

neighborhood

Fig. 1 Target selection.

Frame 30 of 240

Filtered matte

Matte

Info Map

Fig. 2 Top left to bottom right: a source frame, its matte, the filtered
matte, the info map. Video data from [21].

Trackable

woman
Untrackable

grass

Frame 56 of 240

Completion result

Frame 100 of 240

Completion result

Fig. 3 Top left to bottom right: 56th source frame, 100th source frame,

image completion of 56th frame, video completion of 100th frame.

pixels. Such target fragments are preferred. See Figure 1(left,
middle). Two candidate targets and surrounding video frag-
ments are marked in red. We prefer the target in the middle
figure to the left figure because there is more known infor-
mation in this video fragment. (We assume for this example
that this hole is fixed over time).

4.2 Trackability map

The trackability map measures how well a target fragment
can be tracked through the video sequence. Trackability is
computed for every candidate target fragment. For a target
fragment T it is measured by the number of unknown pixels
that are trackable in it—an unknown pixel is trackable if
and only if there is an adjacent known neighborhood which
contains an object that can be tracked through the video. Let
τv be a Boolean value saying whether pixel v is trackable.
The trackability CT is given by:

CT = ∑
v∈T,Mv=0

τv. (3)

Frame 100 of 240

Trackable  neighborhood

Trackable targets

Trackability Map

Fig. 4 From top left to bottom right: source frame, trackable target
fragments, trackable neighborhoods of target fragments, trackability
map of source frame.

Using this information during target selection allows us
to give priority to those rare objects which are trackable in
the entire video. In Figure 3, for example, a hole exists in
the video across many frames. There are two kinds of ob-
jects in this video: a trackable woman and the grass. The
left frame can be completed easily because sufficient infor-
mation (about the grass) can be obtained from many other
frames. On the other hand, only a few possibilities exist for
correctly completing the right frame, as there are far fewer
neighborhoods including the (trackable) woman in an appro-
priate stance. If we select a target for filling this space-time
hole using the left hand frame, it will be very hard to com-
plete the right frame in a globally temporally consistent way
by the time we get to it. It is better to select trackable targets
first like those shown in the right hand frame. This is even
more important than choosing a higher info map value. See
Figure 1(right). There is a neighborhood (marked with green
dashed lines) containing part of the woman, which can be
tracked in the video sequence (see Figure 5). Thus, all un-
known pixels in the target fragment are trackable, and we
prefer this target fragment, in Figure 1(right), to the one in
Figure 1(middle).

Trackability map computations are very quick for two
reasons. Firstly, all pixels inside the same fragment can be
considered to share the same neighborhood outside the frag-
ment, so have common trackability information. The track-
ability map can thus be computed per fragment, rather than
pixel by pixel, as shown in Figure 4. The colored rectangles
at the bottom left indicate trackable neighborhoods of var-
ious target fragments shown in white at the top right. Sec-
ondly, target fragments only exist at the edges of holes, lim-
iting where trackability maps needs to be processed.
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5 Source selection using tracking

After choosing a target video fragment T , we now need to
find the most appropriate source video fragment S.

We must avoid searching the whole video sequence, which
is much too time consuming. Previous solutions [21] used
spatial and temporal derivatives to estimate motion parame-
ters of video fragments. The portion of the video to search
for a suitable source fragment was restricted according to
the motion parameters of the target fragment. This avoids
much unnecessary computing, but can be improved. Spatial
and temporal derivatives are useful for separating a mov-
ing foreground from the background, but less useful for pro-
cessing static objects. Take the target in Figure 1(left) for
example: its spatial and temporal rates of change are ap-
proximately zero. Using these motion parameters to limit the
search range, all the grass must be searched. Generally, then,
the search space in [21] is still highly redundant.

Instead, we use tracking to control the search, as shown
in Figure 5. Trackable and untrackable targets are treated
differently. If a target is untrackable, as in Figure 5(1.1,right),
the known video neighborhood around it is not trackable in
the video sequence. Such a target fragment has unchanging
color and texture throughout the whole sequence, and be-
longs to the background. In Part 2 of Figure 5 for example,
the woman is trackable, but all grass remains still and un-
trackable through the video. The need for global temporal
consistency tells us that such background should be filled in
the same way in each frame. A global search of the whole
video for the best target is pointless, and instead, we just
search the frame containing the target pixel (any frame is as
good as any other): see Part 3 in Figure 5(right).

For a trackable target, e.g. the part of the woman shown
in Figure 5(left), a known trackable neighborhood N over-
laps it (shown in green). This is active through the whole
video. The target fragment belongs to a moving object in the
video sequence, separate from the stationary background. In
this situation, we apply the mean shift tracking algorithm
to follow N through the video sequence, giving a precise
space-time route for N(t). This gives a set of small windows
which include the moving N(t) in each frame, as shown in
Part 2 of Figure 5(left). The areas to be searched are exactly
determined by the tracked neighborhood, marked by green
squares in Part 3 in Figure 5(left).

In both trackable and untrackable cases, we only have to
search a small portion of the whole video to find the best
source fragment, giving high efficiency.

Apart from the two cases described above, we must also
consider the case in which we cannot find an sufficiently
similar source fragment to the target. For example, take the
target fragment shown in the first row of Figure 7. Using the
criteria in Section 4, we do not select the target illustrated
because of its low trackability map value: it only has grass
(background) in the known neighborhood around it. The dif-
ference between this target and the best source is very large
as part of the woman’s leg is present in earlier frames in the
space-time fragment. We skip such targets. See Section 7.

Fig. 6 Comparing graph cut and direct fragment update.

6 Graph cut fragment updating

After we have determined both the target and source frag-
ments T and S, we must combine them to produce an output
video fragment. Simply copying target pixels where known,
and source pixels otherwise, can lead to an obvious join in
the output. We avoid this problem by finding the least visi-
ble seam between target and source fragments in the overlap
region.

The least visible seam is the one for which pixel dif-
ferences across the seam are as small as possible. The best
seam can be found by finding the minimum cut of a weighted
graph formed by joining neighboring pixels in a difference
image. This graph cut method has already been used for
merging textures in images [16]. Note that we only apply this
method to the region of overlap, O, of the target and source
fragments, which we first have to compute: O = T ∩ S. We
compute the color difference values co, expressed as an r,g,b
vector, at each pixel o(x,y, t) in the overlap region O:

co = |ct − cs|, o(x,y, t), t(x,y, t),s(x,y, t)∈ O,T,S. (4)

We now build an undirected weighted graph G using the pix-
els in O. For each edge between a pair of connected pixels
oi and o j in O, with color differences coi and co j we define
the weight wi j of that edge to be:

wi j =

{

κ (1− exp(−
‖coi‖+‖co j ‖

2σ2 )) if N(oi,o j)
∞ otherwise

(5)

where ‖ · ‖ denotes the length of a vector, N(., .) returns true
if the pixels are six-connected, and κ and σ are constants
(about 10 and 5 in practice). This weight is less when cor-
responding adjacent pixels in T and S are similar, which is
where we want the seam to be. Thus, the best seam is the
one giving a minimum cut for graph GS.

The advantages of using the graph cut method are shown
in 2D in Figure 6. On the left is an input image of a wall, with
a hole to be filled. At the center is the completed result using
graph cut, while on the right hand side is the direct fragment
update result from [22] showing a structural discontinuity
inside the blue circle.

7 Achieving temporal consistency

Achieving temporal consistency is the other main require-
ment for video completion: people are highly sensitive to
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1.1 Target selection

1.2 Target video fragment with size 11*11*11(width*height*frames)

Trackable target fragments Untrackable target fragments

Target fragment

Frame 100 of 240

Trackable 

neighborhood

Frame 84 of 240

Target fragment

Untrackable 

2. Some frames in current video sequences in the completion process

Frame 100 of 240

Frame 45 of 240

Frame 1 of 240

Frame 84 of 240

Frame 45 of 240

Frame 1 of 240

3. Search space computed by applying tracking

+

4.1 Completed vido frament with size 11*11*11(width*height*frames)

4.2 Completed video frame

Seaching sapce Seaching sapce

Frame 100 of 240 Frame 84 of 240

Composed from

 all frames
Frame itself

Fig. 5 Source search for trackable (left) and untrackable (right) target fragments.

motion. Temporal aliasing is much more important than spa-
tial aliasing in image completion. Consider Figure 3. The
image completion result for frame 56 and the video com-
pletion result for frame 100 are incompatible in the same
video sequence. The large difference between their back-
grounds will produce obvious flicker in the output video.
In [21], temporal consistency is achieved using costly global
optimization. The objective function forces coherence of all
video fragments containing the same completed pixel. To
complete one pixel, many source fragments are considered
for many target fragments around any unknown pixel, and
source fragments are merged according to similarity. In this
way, the completed pixel maintains high coherence with all
fragments around it, but at high computational cost.

To achieve temporal consistency, we use a simpler ap-
proach which encourages the source fragments to be tem-
porally consistent with each other. The basic idea is to sup-
plement the current search space for source fragments with
an extra region R. These extra candidates which are chosen
to be temporally consistent with previously completed video
filling. R must be computed explicitly because it is not nec-
essarily included by default in the search region found by
the tracking algorithm. Take Figure 7 for example. During
the ith iteration of hole filling, we may encounter a target T
with no trackable neighborhood around it, as explained in
Section 5, and for which no appropriate source fragment can
be found, so we skip this iteration. If, later in the jth itera-
tion, we select a target fragment some frames before T , like
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Frame 121 of 240

Frame 116 of 240

Frame 121 of 240

One completion

One completion

Target fragment

i
th
 completion iteration

j
th
 completion iteration

k
th
 completion iteration

No appropriate source 

under threshold T

Quit the iteration

Target fragment

Target fragment

Fig. 7 Supplemental search region.

Last completion iteration

Current iteration Neighbor

Source

Neighbor

Search regions provided by 

using tracking method

Target T1

Target T2

Source S1

Frame containing part of Rsupplemental

Candidate 

from R

Frame 100 of 240

Frame 94 of 240

Frame 43 of 240

Frame 36 of 240

Target T2

Frame 94 of 240

Chain leading to candidate from 

supplemental search region R

Compare

BONUS

Fig. 8 Bonus for supplemental search region.

that marked in Figure 7, we can complete it successfully as
it is trackable through the video sequence (it contains part
of a moving leg). If later still, in the kth iteration, we select
T again, this time we can complete it using candidates from
the supplemental region R.

When searching for the best source fragment, we add
a bonus to the similarity measurement between the target
and source fragments in the supplemental region R. Doing
so gives greater weight to such results than ones from else-
where in the search space, providing temporal consistency
in the results.

The idea of the supplemental region is illustrated in Fig-
ure 8. Suppose during the previous completion step, we found
source fragment S1 for target fragment T1: see the top line of
Figure 8. We record T1 and S1 as a pair in a list L. When
we select a new target fragment, T2, we check the list L to
find whether there is any filled target fragment overlapping
with T2 in space, and within a certain time before or after T2.
In this example, we find T1 occurring before the current tar-
get T2, shown by the yellow arrow in Figure 8. If more than
one such target exists, we prefer ones with greater overlap
or, if equal overlap, ones which are more trackable. There
is a strong possibility that the best source fragment for T2

is somewhere just after S1 in time, in the known portion of
the video sequence, and using it will ensure temporal con-
sistency is maintained.

8 Results

Our algorithm has been applied to various videos of com-
plex dynamic scenes. Since the perceived quality of the com-
pleted video frames depends on human judgement, rather
than mathematical measures, we show some frames taken
from video sequences to demonstrate the effectiveness of
our method. Processing times are given in Table 1. The time
taken is proportional to both the hole size (pixels) and the
video length (frames). The former decides the number of fill-
ing iterations, while the latter is related to the size of search
space.

Figure 9 demonstrate the results from a two-woman video
sequence after one woman has been removed. This sequence
is tricky as the hole is large. More significantly, as well as
removing the stationary woman, we have also removed the
walking woman in and around the hole for tens of frames,
as an unwanted side-effect. We wish to keep the moving
woman, and indeed our filling method successfully puts her
back. The visual results and the performance table show that
our algorithm is efficient and robust.

9 Discussion

9.1 Comparison with Wexler’s method

Compared to Wexler’s method [21], the main advantage of
our algorithm is efficiency. If we spend the same time on
source patch searching, we can complete the video N4/K
times faster than their method, where N is the patch size in
both algorithms, typically 5, and K is their speed-up fac-
tor due to use of spatio-temporal pyramids (but which also
causes blurring), typically 8. One factor of N2 is due to pixel
by pixel completion in their case—we fill a whole fragment
at once; the second factor of N2 is due to the number of
source patches they must search for each pixel. In practice,
our algorithm can find source patches more quickly because
our search space is carefully selected by tracking, typically
at the scale of a single frame, and theirs is much larger. Our
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Table 1 Timings for video completion using a 2.4GHz Pentium 4 CPU.

Video Length Video size Hole size Time for completion
(frames) (pixels) (pixels × frames) (minutes)

Hopping (from [21]) 240 288×96 1768×240 75.25
Space 100 320×240 1942×100 16.75
Beach (from [21]) 83 180×60 609×49 12.00

Fig. 9 Top to bottom: input video, removal of stationary woman, filling results.

Fig. 10 From left to right: Frames 45, 47 of input video, one lady removed, results from [21], our results.

implementation of their algorithm takes over 4 hours for the
‘Space’ video example, whereas ours takes 17 minutes. An-
other advantage compared to [21] is that our algorithm main-
tains finer details in the output, as seen, for example, in Fig-
ure 10.

9.2 Handling dynamic cameras

We cannot currently deal with scenes from dynamic cam-
eras: scaling, rotation and other transformations occur be-
tween the target and candidate source fragments. Finding a
suitable source fragment requires knowledge of the motion
parameters of the camera, which is also a problem for [21].
Estimating motion parameters from video sequences is pos-
sible [14], but even so, the search would be more complex.

Secondly, temporal consistency would be more difficult to
maintain in dynamic scenes, as the neighborhood would need
to take into account the motion parameters of the camera.
Thus, extending our algorithm to handle dynamic cameras
is not impossible in principle, but needs further work.

9.3 Artifacts

When merging target and source fragments using graph cut,
a special case arises at the boundary of the hole. In this case,
we should not modify the known part of the video sequence
adjacent to the hole, but should leave it as it is, and only fill
in the unknown pixels. There is thus no need to apply graph
cut in this case, and we should just copy from the source
fragment to the unknown part of the target fragment. How-
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ever, this approach can lead to visible artifacts at the edge of
the holes, as there is nothing to enforce smoothness of pixel
intensities across the edge of the hole—see the discussion
earlier.

A simple approach to diminish such artifacts would be
to apply the border matting technique from [18].

9.4 Loss of Tracking

At the beginning of video completion, tracking works very
well, as our method selects targets with high trackability. As
completion proceeds, cases can arise in which we lose track-
ing, and we cannot find a good source fragment. In such sit-
uations, the supplemental regions explained in Section 7 of-
ten still provide an appropriate source fragment. If no good
source fragment is found in the supplemental region either,
we abandon filling this target fragment, and select a new tar-
get (this happens in less than 10% of cases for all three ex-
ample videos), as described in Section 3. Overall, even when
tracking fails, we still get good results.

10 Conclusions and future work

We have given a novel, efficient, and visually pleasing ap-
proach to video completion. We carefully select suitable tar-
get fragments, and limit the search for source fragments us-
ing tracking. Holes are filled fragment by fragment with a
texture synthesis algorithm, using a graph cut algorithm to
find good seams between target and source fragments. Tem-
poral consistency is achieved by further control of source
fragment selection to avoid flickering.

Good results have been achieved to date. We wish to ex-
tend the work to more complicated and dynamic scenes, in-
volving for example complex camera and object motions in
three dimensions.
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