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Abstract 

 

The mechanism of action of IPL in acne treatment is not clearly understood, but an 

immunomodulatory role has been suggested. Furthermore, inflammatory cytokines and 

matrix degrading enzymes play a key role in acne pathogenesis. Therefore, curbing the 

production of these mediators may assist acne resolution. In photorejuvenation studies, IPL 

has been shown to induce the expression of a key immunomodulatory cytokine, TGF-β. 

Interestingly, TGF-β has been demonstrated to mediate immunosuppression, inhibition of 

keratinocyte proliferation and MMP-1 repression through a Smad3-mediated signalling 

pathway. Therefore, we sought to investigate the in vivo effects of IPL used for acne 

treatment. Biopsies obtained from 20 patients with inflammatory acne vulgaris at baseline 

and post-IPL treatment (48 hrs after the first treatment and 1 week after the final treatment) 

were immunohistochemically analysed to investigate the expression of TGF-β1, TGF-β2, 

TGF-β3, Smad3, MMP-1 and IL-8. Digital images were semi-qualitatively assessed using 

image analysis software. In addition, quantitative PCR analysis of TGF-β1, Smad3 and IL-

8 was performed on biopsies from seven cases. Immunohistochemical analysis 

demonstrated that IPL elicited a statistically significant increase in epidermal TGF-β1 

expression. However, no statistically significant difference was observed in the expression 

of TGF-β2/β3. Increased nuclear immunolocalisation of Smad3 was demonstrated in the 

post-IPL biopsies, which was statistically significant. Although not statistically significant, 

both IL-8 and MMP-1 expression showed a downward trend in the majority of cases. No 

statistically significant change was detected in the gene expression of TGF-β1, Smad3 and 

IL-8, which may be attributed to the small sample in which PCR was carried out. The data 

from this study suggests that Smad3-mediated TGF-β1 signalling may play a role in IPL-

induced resolution of acne vulgaris. The therapeutic effect of TGF-β1 in inflammatory 

acne vulgaris could be attributed to its immunosuppressive effect and its ability to inhibit 

matrix degradation and keratinocyte proliferation. 
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Chapter 1: The Pathogenesis of Acne Vulgaris: Current 

Concepts 

 

1.1 Introduction 

 

This thesis is divided into seven chapters. Chapter 1 reviews our current understanding 

of acne vulgaris and its pathogenesis. Chapter 2 describes the mechanisms of intense 

pulsed light (IPL) in the skin and its use in acne vulgaris. Chapter 3 gives us an insight 

on transforming growth factor beta (TGF-β). Chapter 4 explores the potential role of 

TGF-β in acne. Chapter 5 (Materials and Methods) outlines the research methodology 

employed to complete this study. Chapter 6 (Results) summarises the data gathered 

from the experiments carried out. Finally, Chapter 7 (Discussion) provides insights 

based on these results and how these results relate to the available literature. It also 

speculates on the potential impact of this research on acne management and what 

future studies may be undertaken. 

 

1.2 Acne vulgaris 

 

Acne vulgaris is a chronic inflammatory cutaneous condition involving the 

pilosebaceous unit (a structure that comprises the hair follicle and sebaceous gland). It 

commonly occurs in adolescence and young adulthood
1,2

. However, acne per se can 

affect all ages ranging from neonatal and infantile acne to adult-onset acne
2
. It is 

clinically characterized by seborrhoea and the formation of a variety of lesions ranging 

from non-inflammatory comedones [closed (whiteheads) or open (blackheads) 

comedones] to inflammatory papules, pustules and cysts that predominantly occur on 

the skin of the face, the upper back and the upper chest
3
. In addition to these features, 

acne has been reported to impact the psychological and social well being of the 

affected individuals
1,3

.The severity of acne may range from the mild comedonal form 

to severe nodulocystic acne.
4
 The severity is generally assessed by the number, type, 

and distribution of lesions
4
. There are currently many grading systems available for 

assessing the severity of acne
4
.  However, none of them have been  accepted as the 

globally standardized grading system
4
. 
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1.2.1 Pathogenesis 

 

Despite its common occurrence, the pathogenesis of acne is not completely 

understood
5
. Nevertheless, it is generally considered to be a multifactorial disease that 

involves
6
:  

 

 Abnormal follicular hyperkeratinisation and differentiation  

 Enlargement of the sebaceous gland and increased sebum production as a result 

of increased androgen sensitivity 

 Colonisation of the pilosebaceous unit with Propionibacterium acnes (P. 

acnes), and 

 Inflammation and immunological host reaction 

 

Currently, there is increasing evidence on the involvement of hereditary factors, 

hormones, skin lipids, inflammatory signalling, and neuropeptides in this multifactorial 

process
7
. Recent studies and advances in molecular genetics have shed additional light 

on the pathophysiology of this complex disease. This chapter summarises the current 

understanding of the pathogenesis of acne vulgaris.  

 

1.2.1.1 Genetic factors 

 

Family
 
studies have demonstrated a strong familial clustering of acne vulgaris and have 

suggested that hereditary factors may be important
 
in determining acne susceptibility

8-

10
. Furthermore, a prospective epidemiologic study on 151 acne patients with or 

without a family history of acne reported that presence of a positive family history of 

acne was associated with an earlier onset of acne, increased number of comedones and 

was therapeutically more challenging
11

.  Interestingly, two recent studies showed that 

an increase in the risk of developing moderate to severe acne was associated with a 

positive maternal history of acne suggesting that a potential X-chromosome-linked 

genetic risk factor may have an influence on acne susceptibility and severity
10,11

. 

 

Nevertheless, it is a well understood fact that clustering of diseases in families may be 

attributed to either shared genetic or environmental influences
12

. Therefore, it is 
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difficult to draw definitive conclusions from these studies. In contrast, twin studies 

comparing monozygotic and dizygotic twins permit approximate estimation of the 

environmental and genetic contribution to the disease
12

. 

 

Kirk KM et al
13

 reported high heritability for facial acne in adolescent twins recruited 

from an Australian twin registry, with estimated heritability (genetic 

variance/phenotypic variance) for acne risk and severity between 0.5 and 0.9 for girls, 

and between 0.7 and 0.8 for boys. 

 

Furthermore, Bataille et al
14

 conducted a large adult twin study on 458 pairs of 

monozygotic and 1099 pairs of dizygotic twins (all women; mean age: 46 years) to 

investigate the relative contribution of genetic and environmental factors on acne. 

Genetic modelling using acne scores showed that 81% of the variance of the disease 

was attributable to additive genetic effects and the remaining 19% was attributed to 

environmental factors
14

. This study suggested a strong genetic basis for acne vulgaris. 

However, the data for this study was collected retrospectively
14

.  

 

Evans et al
3
 conducted a prospective twin study of acne development in a large sample 

of twins (n = 778 pairs) during adolescence and reported that the severity of acne at all 

of the involved sites in this age group (12 to 16 years) was strongly influenced by 

genetic factors. This research group are also currently performing a genome scan to 

identify individual susceptibility loci
3
.    

 

In an earlier twin study, which investigated sebum excretion in 40 pairs of adolescent 

acne twins, it was suggested that sebum excretion may be under genetic control but the 

development of clinical lesions is influenced by environmental factors
15

.  However, it 

is difficult to draw conclusions from this study as it was limited by its small sample 

size. 

 

Although family and twin studies have reported a genetic influence, its precise effect 

has not been elucidated. A few candidate genes have been proposed to be associated 

with the pathogenesis of acne vulgaris (Table 1.1). Most of these are gene 

polymorphisms of cytokines involved in the initiation and maintenance of the immune 

response in acne lesions such as interleukin-1α (IL-1α), toll-like receptor (TLR) and 
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tumour necrosis factor-α (TNF-α) gene polymorphisms
16-19

. The other polymorphisms 

identified are related to steroid hormone metabolism such as the human androgen 

receptor gene CAG repeat length polymorphisms and CYP17 -34C/C homozygote 

(also known as cytochrome P450 17A1 is a member of the cytochrome P450 

superfamily and is a key enzyme involved in steroid hormone biosynthesis)
20-23

.  

 

Recently, Tasli et al
24

 conducted a study on 115 acne patients and 117 healthy subjects 

at the Pamukkale University Hospital, Turkey and reported that the frequency of an 

insulin-like growth factor-1 (IGF-1) polymorphism was significantly different in acne 

patients when compared to healthy controls (p = 0.0002). They also found a significant 

association between the IGF-1 (CA) 19 polymorphism and severity of acne (p = 

0.015)
24

. These results suggest that this IGF-1 polymorphism may be involved in 

determining the susceptibility to and severity of acne vulgaris in Turkish patients. 

However, further studies on a larger sample and in different populations are warranted 

to corroborate these findings.  
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Table1.1 Genetic polymorphisms associated with acne vulgaris 

Gene Polymorphism Comment Reference 

Interleukin-1α 

(IL-1α) 

Minor T allele of 

the IL1A 

+4845(G>T) 

Positive association with 

susceptibility for acne vulgaris and 

severity in Caucasian population 

from Romania 

Szabó et al
16

, 

2010 

Toll-like 

receptor-2 

(TLR-2)  

753Gln allele of 

TLR2 Arg753Gln 

Risk factor for acne vulgaris in 

Chinese Han patients 

Tian et al
17

, 

2010 

Tumour 

necrosis factor-

α (TNF-α) 

196R allele of 

TNFR2 M196R 

 

TNFα -857 minor 

T allele  

 

TNFA-308 G/A 

polymorphism 

Risk factor for acne vulgaris in 

Chinese Han patients 

 

Protective factor for acne in 

Caucasian population from 

Romania  

 

Predisposition to acne in Turkish 

population and in a  female 

Caucasian population from 

Romania 

Tian et al
17

, 

2010 

 

Szabo et al
18

, 

2011 

 

 

Baz et al
19

, 2008 

Szabó et al
18

, 

2011 

Androgen 

receptor 

CAG repeat length 

polymorphism 

 

 

 

 

 

Short CAG and 

GGN 

polymorphism 

Acne susceptibility in the male 

Chinese Han population.  

 

May affect androgen mediated 

gene expression in hair follicles 

and sebaceous glands in 

androgenic skin disorders 

 

Associated with acne risk in a 

North-east Chinese population.  

Yang et al, 

2009
20

 

 

 

Sawaya et al
22

, 

1998 

 

 

 

Pang Y et al
21

, 

2008  

Cytochrome 

P450 17A1 

CYP17 -34C/C 

homozygote 

Associated with significantly 

increased risk of developing severe 

acne in a Chinese male population 

He L et al
23

, 

2006 

Insulin-like 

growth factor-1 

(IGF-1)  

IGF-I (CA) 19 

polymorphism 

May be involved in determining 

the susceptibility to and severity of 

acne vulgaris in Turkish patients 

Tasli et al
24

, 

2011 
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The presence of acne lesions in a few complex genetic syndromes may broaden our 

understanding of the influence of genetics in acne pathogenesis
25

. Apert syndrome is 

an inherited autosomal dominant condition characterised by craniofacial and limb 

deformities due to synostoses of the bones of the distal extremities, vertebra and 

cranium. In addition to these features, patients with this syndrome were also found to 

have moderate to severe acne involving their forearms, face, back, and chest
26

. 

 

The mutations of Apert syndrome are gain of function mutations, which increases 

fibroblast growth factor receptor 2 (FGFR2) interactions and its affinity for fibroblast 

growth factors
25

. This FGFR2-gain of function mutation (Ser252Trp mutation) was 

also noted in unilateral acneiform naevus, a variant of naevus comedonicus, which is 

characterised by acneiform lesions, hypopigmentation and hypotrichosis
27

. The 

increased FGFR2b-signalling consequent to this mutation is considered to be 

responsible for the dermatological manifestations in these two conditions
26

. FGFR2b is 

predominantly expressed in the spinous layer of the epidermis and is also expressed in 

sebaceous glands and hair follicles
26

. It has been reported to play a significant role in 

regulating epithelial proliferation and differentiation
27

.  

 

Interestingly, an elevated expression of interleukin-1 alpha (IL-1α), one of the 

cytokines implicated in the early stages of acne development, was observed in 

Ser252Trp FGFR2 mutated human osteoblasts
28

. Moreover, androgens are reported to 

stimulate the expression of FGF7 and FGF10
27

. These two ligands interact with 

FGFR2b and regulate epithelial proliferation
27

. Based on these findings, it has been 

proposed that in acne vulgaris, androgen-induced overstimulation of  cutaneous 

FGFR2b signalling may induce IL-1α and this could in turn result in the 

hyperproliferation and activation of infundibular keratinocytes and sebocytes
26

. 

Furthermore, in a recent detailed review by Melnik et al
29

 it has been suggested that 

some of the currently used treatments for acne (such as anti-androgens, benzoyl 

peroxide, azelaic acid , tetracyclines, erythromycin and retinoids) may exert their 

therapeutic effects by attenuating FGFR2 signal transduction. The data available so far 

appears promising but is far from being conclusive. Future studies that are conducted 

in acne patients are necessary to evaluate the potential role of FGFR2-signalling 

pathways in acne pathogenesis. 
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The available literature on the genetic influence of acne is limited. A better 

understanding of the genetic determinants involved may assist in clarifying the 

molecular events leading to the development of acne and in identifying novel 

therapeutic avenues for this complex disease. In addition, it may help explain the 

variability of acne in terms of presentation and the response to treatment. Although, 

genetic susceptibility cannot be ruled out
 
in the pathogenesis of acne, genetic factors 

alone do not fully account for the acne risk. Environmental influences may also play a 

role and may potentially act as modifiers of gene expression.  

 

1.2.1.2 Dietary and lifestyle factors 

 

As discussed above, the results of genetic studies support the role of environmental 

influences in addition to genetic predisposition in the aetiology of acne. Diet may 

figure as one of these environmental influences. Until recently, diet was considered to 

have no association with acne
30

. However, a recent spate of studies conducted in the 

latter half of the last decade reinvigorated the interest in the association between diet 

and acne
31-35

.  

 

Population-based studies suggest
 
that the prevalence of acne is lower among rural, non-

westernised
 
populations when compared to urban, westernised populations, and that 

acculturation affects acne prevalence as a result of change in environmental factors 

such as dietary habits
36,37

. Western diets that are rich in refined carbohydrates and low 

in omega-3 fatty acids have been implicated in acne
33

. Moreover, milk, dairy products 

and high-glycaemic index foods have been linked with acne risk
34-36

. Diets including 

these products are said to stimulate insulin and IGF-1, which in turn potentiates 

androgen signalling and results in increased sebaceous gland activity and probably 

acne
33

. On the contrary, low-glycaemic-index foods have been shown to reduce 

androgen levels
31,32

. 

 

Smith et al
31,32

 conducted a prospective, controlled, 12-week, parallel, dietary 

intervention study to compare the effect of a low glycaemic-load diet with a high 

glycaemic-load diet on the clinical and endocrine aspects of acne vulgaris in 43 male 

patients with mild-to-moderate acne. At 12 weeks, there was a reduction in total lesion 
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counts, free androgen index and weight and an increase in insulin sensitivity and 

insulin-like growth factor binding protein-1 in the low glycaemic-load diet group when 

compared with the high glycaemic-load diet group. However, the authors could not 

rule out the contribution of weight loss to the overall effect
31,32

. These findings 

suggested that dietary factors could play a role in acne pathogenesis, but further studies 

are needed to validate these findings and to determine the independent effects of 

weight loss and dietary intervention. 

 

The available evidence does not prove that diet has a causal role in acne but 

demonstrates that it may influence it to a certain degree. Further well-designed 

prospective, randomised trials are essential to fully clarify the role of dietary factors in 

acne.  

 

1.2.1.3 Hormones 

 

Various hormones such as androgens [testosterone, dehydroepiandrosterone sulphate 

(DHEAS) and dihydrotestosterone (DHT)], progesterone, growth hormone, insulin, 

insulin-like growth factor-1 (IGF-1) and corticotropin-releasing hormone (CRH) have 

been implicated in acne pathogenesis
6,38

. Acne onset coincides with adrenarche when 

there is a surge in the production of DHEAS, a testosterone precursor
39

. With the onset 

of puberty, androgen-mediated stimulation of the sebaceous gland results in increased 

sebum production in both sexes
39,40

. Androgens are thought to play a vital role in the 

pathogenesis of acne by influencing the proliferation and differentiation of sebocytes 

and infrainfundibular keratinocytes and by inducing lipogenesis
7
. Androgens are 

considered to regulate the genes responsible for sebaceous gland growth and sebum 

production
6
. DHT is produced from testosterone within the skin, by the action of the 

type 1 isoenzyme of 5α-reductase
41

. These androgens then form a complex with the 

nuclear androgen receptors and interact with DNA to regulate genes involved in cell 

growth and lipid production
38

. 

 

Infrainfundibular keratinocytes and sebocytes in the pilosebaceous unit possess 

androgen receptors and the androgen metabolising enzyme system that have the ability 

to synthesize androgens de novo from cholesterol or by converting weaker androgens 
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to more potent ones
41

. The activity of these enzymes have been reported to be 

increased in the sebaceous glands of patients with acne
41

. 

 

Although conditions of androgen excess and hyperandrogenism have been associated 

with acne, most of the patients with acne have normal circulating androgen levels
40,42

. 

It is hypothesised that the local excess androgen production in the skin and/or the 

elevated expression and sensitivity of androgen receptors in the pilosebaceous unit may 

contribute to the formation of acne lesions
7
.  Interestingly, androgen-insensitive 

subjects who lack functional androgen receptors do not produce sebum nor do they 

develop acne
43

. Furthermore, acne-prone skin has been demonstrated to possess a 

higher androgen receptor density and 5α-reductase activity than uninvolved skin
44-46

. 

Therefore, alterations in androgen metabolizing enzymes and androgen receptor levels 

may be implicated in acne pathogenesis. 

 

To determine whether DHT has a potential role in the production of inflammatory 

cytokines, Lee et al
47

 compared the expression of IL-1, IL-6, and TNF-α before and 

after addition of DHT to cultured sebocytes using immunohistochemistry and reverse 

transcription polymerase chain reaction (RT-PCR).  Up-regulation of IL-6 and TNF-α 

after addition of DHT compared with the control were observed with both the 

techniques
47

. This study suggests that DHT may not only be involved in sebum 

production but may also contribute to the production of pro-inflammatory cytokines in 

acne
47

.  

 

Apart from androgens, other hormone systems such as Insulin/IGF-1 (as discussed in 

the previous section) and CRH have been demonstrated to potentiate androgen 

signalling and promote lipogenesis and sebocyte differentiation
38

. More details on the 

role of CRH will be discussed in the following section. 

 

1.2.1.4 Stress  

 

Emotional or psychosocial stress has been reported to initiate or exacerbate acne
48,49

. 

However, the exact mechanism by which it does so is not clear
48

. There are two 

potential explanations: hormonal changes and/or neuropeptide production. Hormones 
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that exacerbate acne, such as glucocorticoids and adrenal androgens are believed to be 

released during periods of emotional stress
49

. Current evidence suggests that 

neuropeptides with hormonal and non-hormonal activity may influence the 

development of inflammation in acne, which in turn might partially explain the 

pathologic significance of neurogenic and psychogenic aspects in the disease process
50

 

 

Neuropeptides (NP) are a heterogenous group of biologically active peptides, present 

in neurons that may contribute to the cross-talk between the nervous and immune 

systems of the skin
48

. Cutaneous NPs are either directly derived from sensory neurons, 

from keratinocytes or from mast cells
48

. Stress has been demonstrated to elicit the 

release of a NP called substance P that can induce inflammation by the release of pro-

inflammatory cytokines and chemokines
48

. Immunohistochemical studies revealed that 

substance P-immunoreactive nerve fibers are found in close apposition to the 

sebaceous glands
50

. Facial skin specimens from acne patients showed more numerous 

substance P-containing nerve fibers around the sebaceous glands and an increase in 

expression of neutral endopeptidase (the principal proteolytic substance P-degrading 

enzyme) compared to healthy controls
50

. Moreover, in vitro experiments using 

sebaceous gland organ cultures, demonstrated that substance P stimulated the 

proliferation and differentiation of sebaceous glands and upregulated lipogenesis in 

sebaceous cells
48

. The findings of these studies suggest that substance P and its 

degrading enzymes may be involved in acne pathogenesis. Taking into account that 

stress can elicit substance P release from peripheral nerves, it is tempting to speculate 

that this neuropeptide could be partially involved in stress-induced exacerbation of 

acne
48

.  

 

Corticotropin-releasing
 
hormone (CRH), a neuropeptide and central coordinator for 

stress responses, has been demonstrated to increase sebaceous lipogenesis, stimulate 

androgen signalling and affect immune and inflammatory processes
51

. The existence of 

a complete CRH system in human sebocytes has been established
51,52

.  Furthermore, 

the expression of the complete CRH system was found to be more abundant in the 

sebaceous glands of acne-involved skin, when compared to sebaceous glands of 

uninvolved and normal skin
52

.  
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These findings suggest a role for neuropeptides in the pathopysiology of acne. These 

neuropeptides possibly activate immune and inflammatory processes in response to 

stress leading to the development and/or exacerbation of acne. Future studies should 

explore this association and determine whether stress management strategies could 

prevent or assist in the resolution of acne. 

 

1.2.1.5 Sebum and sebaceous lipids 

 

The association between sebum and acne development is still ambiguous. It is 

generally accepted that sebum provides an anaerobic, lipid-rich environment for the 

proliferation of P. acnes
53

. In addition to this, increasing amount of data seem to 

confirm the presence of alterations in sebum constituents in acne patients
54

. The 

components of human sebum include cholesterol, cholesterol esters, squalene, fatty 

acids, diglycerides, triglycerides, and wax esters
53

. Apart from decreased amounts of 

linoleic acid in sebum from acne patients, modifications of the sebum composition due 

to altered ratio between saturated and unsaturated fatty acids and lipid peroxidation by-

products, particularly squalene peroxide have been implicated in acne 

pathogenesis
54,55

. These qualitative alterations in sebum are considered to play a role in 

comedo formation
54

. Furthermore, lipid peroxidation products are also capable of 

triggering an inflammatory response by inducing the production of pro-inflammatory 

cytokines (IL-6 and IL-8) and are capable of activating peroxisome proliferator-

activated receptors (PPARs)
56

. PPARs are members of the nuclear hormone receptor 

family
55

. Three receptors have been identified in sebocytes: PPAR-α, PPAR-γ and 

PPAR-δ
55

. PPAR activation is reported to regulate differentiation and proliferation, 

lipid metabolism, inflammation, and apoptosis
57,58

. With respect to its role in 

sebaceous lipogenesis, there have been contradictory results, with some studies 

showing that it stimulates sebaceous lipogenesis and others reporting an inhibition of 

sebaceous lipogenesis with PPAR activation
57,59

. This may be attributed to the different 

in vitro models used in these studies. Further studies are warranted to elucidate the 

specific effects of PPAR isoforms on lipogenesis. 

 

Recently, Schuster et al
58

 reported that PPAR activators, particularly activators of 

PPAR-δ, have an anti-apoptotic effect in SZ95 sebocytes in vitro. The authors 
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suggested that activators of PPAR-δ may induce a sebostatic effect through the 

inhibition of sebocyte apoptosis involved in holocrine secretion and this may be 

beneficial in acne vulgaris
58

.  

 

Further in vivo studies are needed to confirm the distinctive effect of each subtype of 

these receptors and to determine whether agonising or antagonising the activation of 

these receptors would mediate a therapeutic effect in acne vulgaris. 

 

1.2.1.6 Propionibacterium acnes 

 

Propionibacterium acnes (P. acnes) is a gram-positive anaerobic bacteria that is 

considered as a skin commensal and normally found in the sebaceous follicles
60,61

. 

Increased numbers of P. acnes have been commonly found in the follicles of acne 

patients
61

. P. acnes has been implicated in the pathogenesis of acne for several years. 

The improvement of acne with the use of antibiotics and failure to improve with 

antibiotic resistance had reaffirmed this belief
62

. However, antibiotics used in the 

treatment of acne are known to have anti-inflammatory properties as well
62

. 

Furthermore,  the presence of P. acnes as a member of the resident microbial flora of 

healthy human skin and the lack of an association between cutaneous P. acnes density 

and the severity of acne has made its role in acne pathogenesis debatable
61

. 

 

Advances in molecular genetics and the decoding of the P. acnes genome have revived 

the interest in its potential role in acne pathogenesis
63

. The decoding of the P. acnes 

strain KPA171202 genome has corroborated some of the previously held views on the 

role of P. acnes in acne pathogenesis (such as involvement of bacterial lipases in 

breaking down sebum and biofilm formation to protect the organism) and has also 

suggested additional mechanisms (tissue-degrading enzyme systems such as 

endoglycoceramidases and sialidase/neuraminidases that may contribute to follicular 

wall damage) for its action in acne
63

. Lomholt and Killian
64

 recently performed 

phylogenetic reconstruction and genetic analysis on 210 isolates of P. acnes from 

patients with acne, those with opportunistic infections, and from healthy carriers. They 

demonstrated that particular clones of P. acnes are strongly associated with moderate 

to severe acne while others are associated with health. More recently, Brzuszkiewicz et 
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al
60

 carried out genomic and transcriptomic analysis of distinct P. acnes strains that 

highlighted the genomic basis for strain diversity and suggested that the pathogenic 

potential of different P. acnes strains in acne is determined by the phylotype of the 

causative strain, favourable growth conditions and genetic predisposition of the host to 

respond immunologically to P. acnes. 

 

Current research focuses on whether the immunopotentiating role of P. acnes is 

relevant to acne pathogenesis. P. acnes strains belonging to different phylotypes are 

reported to differ in their immunostimulatory activity, suggesting that the severity of 

acne may depend upon the phylotype of the causative strain
60

. This assumption has 

been reinforced by immunological observations in several in vitro and in vivo studies, 

demonstrating that distinct strains of P. acnes induce different inflammatory responses 

in host keratinocytes, sebocytes, and monocytes that selectively triggers the secretion 

of various pro-inflammatory cytokines, chemokines and antimicrobial peptides and 

also influences the growth and differentiation of these cells
65-69

. These distinct immune 

responses may probably influence the clinical course of acne
65

. 

  

In addition to triggering inflammation by the release of bacterial enzymes (such as 

lipases, proteases and hyaluronidases), P. acnes is also considered to activate these 

responses through a group of pathogen-associated pattern recognition receptors known 

as Toll-like receptors (TLRs)
70

. They are involved in recognizing microbial 

components and thereby initiating and regulating cutaneous immune responses
7
. 

Eleven TLRs have been identified so far in humans
7,70

. Of these, TLR-2 and TLR-4 

have been implicated in acne pathogenesis
71

. TLRs are expressed on keratinocytes, 

sebocytes, monocytes/macrophages, Langerhans cells, T- and B-lymphocytes, mast 

cells and endothelial cells
7,67,70,71

. Activation of TLRs by their ligands results in the 

initiation of several signalling cascades and also activates transcription factors such as 

nuclear factor-κB (NF-κB) and AP-1 (activator protein-1), which, in turn, promotes the 

expression of genes responsible for production of chemokines (e.g. IL-8), cytokines 

(e.g. TNF-α, IL-1β, IL-6 and IL-12), anti-microbial peptides (e.g. human beta-

defensins), and adhesion molecules
65,67,69-71

.  

 

New targeted therapies and vaccine-based strategies against P. acnes are currently 

being investigated. Nakatsuji et al
72,73

 explored the possibility of using vaccination 
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against P. acnes as a potential management option. This group developed a heat-

inactivated P. acnes vaccine
72

 and another vaccine targeting P. acnes surface 

sialidase
73

, which were administered intranasally into mice. Immunisation of the mice 

with either of these vaccines provided in vivo protective immunity against intradermal 

P. acnes challenge and also decreased P. acnes-induced IL-8 production
72,73

. Although 

the concept of acne vaccines appears promising, the question of whether it would 

confer protective immunity in humans and more so prevent the development of acne 

lesions is still not answered. 

 

Apart from its role in the inflammatory phase of acne, P. acnes also influences the 

differentiation and proliferation of keratinocytes, and P. acnes extracts have been 

implicated in the augmentation of sebaceous lipogenesis
68,74,75

. Isard et al
74

 recently 

reported that P. acnes can induce comedone formation by stimulating the IGF-1 

system, which in turn induces keratinocyte proliferation. It has also been proposed that 

P. acnes may contribute to microcomedone formation via its biofilm, which may act as 

an adhesive that holds the shed keratinocytes together forming a plug in the 

infundibulum of the hair follicle
76

. 

 

Although much information about P. acnes has been gathered with the advent of 

genomics, its exact role and extent of involvement in acne pathogenesis is yet to be 

completely determined. 

 

1.2.1.7 Immunological factors 

 

The real challenge is to identify the initiating event of acne vulgaris. Follicular 

hyperproliferation and hyperkeratinization leads to the formation of the 

microcomedone, the earliest subclinical acne lesion
7,77

. The exact mechanism 

responsible for hyperproliferation (of basal keratinocytes) and abnormal 

hyperkeratinization of the follicular epithelium has still not been clearly defined. 

Microcomedo formation has been attributed to several factors including interleukin-1 

alpha (IL-1α), androgens, P. acnes, abnormal integrin expression and qualitative 

sebum lipid alterations
55,78-80

. 
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Inflammation was previously considered as a secondary event, but has been 

demonstrated to occur as an early event in acne development
77

. Jeremy et al
77

 provided 

evidence for involvement of inflammatory events in the initial stages of acne 

development. They revealed an increase in CD4+ T-cells, macrophages and IL-1α 

activity in the skin around the uninvolved pilosebaceous follicles obtained from acne 

patients compared to normal control skin and reported that subclinical inflammatory 

events occur in the clinically uninvolved skin of acne patients prior to 

hyperproliferative or abnormal differentiation events
77

. These findings substantiate the 

necessity to apply topical treatments not just to the clinically observable lesions but to 

the apparently non-involved skin in order to curb acne progression. 

 

IL-1α secreted by infundibular keratinocytes is considered to stimulate comedo 

formation and induce an innate immune response
55,78

. However, the trigger for 

increased IL-1α secretion is not known. It has variably been attributed to local 

irritation, release of substance P, release of bacterial heat shock proteins and increased 

FGFR2-signalling
25,55

. 

 

The receptor for IL-1α belongs to the same family as TLRs and TLR activation mimics 

the action of IL-1α to a certain extent and also induces its synthesis
25

. As discussed in 

the previous section, P. acnes have been demonstrated to trigger the release of pro-

inflammatory cytokines via TLRs by activating transcription factors such as NF-κB 

and AP-1
65,67

. 

 

Kang et al
5
 provided in vivo evidence for the activation of NF-κB and AP-1 in acne 

lesions.  Consistent with NF-κB and AP-1 activation, they found a marked increase in 

inflammatory cytokines (TNF-α, IL-1β, and IL-8) and matrix metalloproteinases 

(MMPs), in acne lesions
5
.  

 

TNF-α and IL-1β upregulate the expression of adhesion molecules such as ICAM-1 

(intercellular adhesion molecule 1) and VCAM-1 (vascular cell adhesion molecule-1) 

on endothelial cells that are required to slow the flow of circulating inflammatory cells 

for their eventual diapedsis into the inflamed tissue
5
.  
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Trivedi et al
81

 performed gene array expression profiling on skin biopsies obtained 

from acne patients, which revealed that genes involved in inflammatory pathways and 

extracellular matrix remodelling were upregulated in acne lesions. Of these, MMP-1 

(92-fold), MMP-3 (64-fold) and IL-8 (52-fold) were the genes with the greatest fold 

increase in expression in acne lesions
81

.  

 

Therefore, among the several mediators involved in the acne inflammatory process this 

thesis will focus on IL-8 and MMP-1. 

 

Interleukin-8 

 

Interleukin-8 (IL-8) is a member of the CXC chemokine family and is also referred to 

as CXCL8 (Chemokine, CXC motif, ligand 8)
82

. Chemokines are chemotactic peptides 

that play a crucial role in the regulation of immunological responses
82

. IL-8 is 

produced in the skin by a variety of cell types in response to inflammatory stimuli, 

including macrophages, monocytes, keratinocytes, sebocytes and endothelial cells
82-84

. 

It is one of the major mediators of the innate immune response, and apart from being a 

potent chemoattractant for inflammatory cells such as neutrophils it also functions as 

an angiogenic factor, activates inflammatory cells and promotes keratinocyte 

growth
83,84

. IL-8 has been implicated in mounting an inflammatory response in acne 

lesions
5,81

. Upregulation of IL-8 expression in acne is predominantly attributed to NF-

κB activation and it is further induced by pro-inflammatory cytokines  such as IL-1α, 

TNF-α and IL-1β
5,66,83

.  

 

Furthermore, contact of keratinocytes with microbial agents was demonstrated to 

significantly induce IL-8 production
83

. The effect of P. acnes on IL-8 production has 

been the focus of several studies. P. acnes has been demonstrated to induce IL-8 

production and IL-8 mRNA expression in human monocytic cells, keratinocytes and 

sebocytes through the activation of TLR-2 and transcription factor NF-κB
65-67,85

. 

Additionally, P. acnes vaccines attenuated IL-8 production in human sebocytes
72,73

. 

Recently, reactive oxygen species produced by P. acnes stimulated keratinocytes were 

also shown to induce IL-8 production
86

. A detailed understanding of the pathways 

regulating IL-8 production is necessary to delineate its role in acne pathogenesis. 
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In acne, IL-8 is considered to stimulate the recruitment and accumulation of 

neutrophils in to the follicles, which in turn results in the formation of pustules and 

destruction of the follicular walls by proteases released from the neutrophils
87

. Abd El 

All and team
88

 found significantly increased expression of IL-8 in lesional skin 

compared to non-lesional skin of patients with acne vulgaris. Significant associations 

existed between IL-8 immunoreactivity and the degree of epidermal hyperplasia and 

follicular hyperkeratosis. Further, dermal IL-8 expression correlated with dermal 

angiogenesis and the extent of dermal inflammatory infiltrate
88

.  

 

These studies reveal that inflammatory processes play a vital role in the development 

of acne, and targeting inflammatory mediators such as IL-8 may be a viable therapeutic 

option in treating this condition. 

 

Matrix metalloproteinases 

 

Matrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases, 

which can degrade a wide variety of extracellular matrix (ECM) components
89

. MMPs 

play an important role in the human skin both during physiological and pathological 

states
89

. They are implicated in normal tissue remodelling as well as during 

inflammatory matrix remodelling, neovascularization, wound healing, and malignant 

transformation
90

. They can be produced by diverse cell types in the skin (such as 

fibroblasts, keratinocytes, macrophages, endothelial cells, mast cells, neutrophils and 

eosinophils) and their activity can be specifically inhibited by TIMPs (tissue inhibitors 

of metalloproteinases)
89

. In addition, MMP activity can be regulated by a variety of 

cytokines and growth factors such as IL-6, TNF-α, epidermal growth factor (EGF), 

platelet-derived growth factor (PDGF), fibroblast growth factor (FGF) and 

transforming growth factor-beta (TGF-β) depending upon the cell type
89

. According to 

their substrate specificity and primary structure they are classified as collagenases 

(MMP-1, -8, -13 and -18), gelatinases (MMP-2 and -9), stromelysins (MMP-3, -10, 

and -11), matrilysins (MMP-7 and -26) and membrane type MMPs (MT-MMPs)
90

. 

 

Significant upregulation of MMPs (MMP-1, MMP-3 and MMP-9) have been 

demonstrated in skin obtained from acne patients
81,90,91

. AP-1 is a critical regulator of 

induced expression of MMP-1, -3, and -9
5
. MMP-1, also referred to as interstitial 
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collagenase, plays a vital role in mature collagen degradation as it has the distinctive 

capacity to initiate site-specific cleavage of the triple helix of type I and other fibrillar 

collagens
5
. Kang et al

5
 demonstrated a significant 2.6-fold increase (p < 0.04) in 

degraded/fragmented collagen in acne lesions compared to normal skin. Thereby, 

providing evidence of matrix degradation in inflammatory acne. 

 

The precise role of MMP in acne pathophysiology is still unclear. It probably 

participates in abnormal hyperproliferation, rupture of the pilosebaceous follicle wall, 

dissemination of inflammation and in the genesis of scars
55,90

.  

 

Papakonstantinou et al
90

 investigated the expression of MMPs and TIMP in facial 

sebum specimens obtained from acne patients, and reported that the sebum contains 

proMMP-9, MMP-1, MMP-13, TIMP-1, and TIMP-2, possibly originating from 

keratinocytes and sebocytes. Thus, suggesting that MMP and TIMP of epithelial origin 

may be involved in acne pathogenesis.  

 

In a subsequent in vitro study, P. acnes was demonstrated to induce MMP-9, MMP-1, 

and TIMP-1 transcript in primary human monocytes
92

. This was further supported by a 

more recent study, which showed that the protease activity of P. acnes could induce 

the expression of MMP-1, -2, -3, -9, and -13 via the activation of protease-activated 

receptor-2 (PAR-2) that are present on keratinocytes
91

. Based on these findings, the 

authors proposed that on exposure to P. acnes with protease activity, PAR-2-induced 

AP-1 activation may stimulate keratinocytes to produce MMPs
91

. This study also 

demonstrated that keratinocytes are an important source of MMPs in acne. 

 

Therefore, curbing the activity of these matrix degrading enzymes or the molecular 

pathways leading to their production would be desirable in controlling inflammation 

and preventing scarring in patients with acne vulgaris. The immunopathogenesis of 

acne vulgaris is illustrated in Figure 1.1. 
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Figure 1.1 Schematic representation of the current understanding of the 

immunopathogenesis of acne vulgaris. Triggering of TLR-2 by P. acnes may lead to 

the activation of NF-κB and AP-1, which leads to the release of pro-inflammatory 

cytokines, chemokines and matrix degrading enzymes that may ultimately result in 

inflammation and scarring. Also, illustrated is the effect of diet and androgen 

signalling on the sebocytes and infundibular keratinocytes. 

 

1.2.1.8 Forkhead box O transcription factor 1 

 

Based on the premises that Forkhead box O transcription factor 1 (FoxO1) plays a 

pivotal role in the negative regulation of the several factors that are implicated in acne 

pathogenesis (androgen receptor activation, cell proliferation, apoptosis, lipid and 

glucose metabolism, oxidative stress and innate immunity), Melnik
93

 recently proposed 

a hypothesis that nuclear deficiency of FoxO1 may be responsible for acne 

development. The author proposed that activation of the phosphoinositol-3-kinase 

(PI3K)/Akt kinase pathway by growth hormone signalling (puberty) or increased 

insulin/IGF-1 signalling (dietary) resulted in export of FoxO1 from the nucleus to the 

cytoplasm. As a result of the decreased nuclear levels of FoxO1, its effect on the 

various target genes is lost, leading to androgen receptor mediated signal transduction, 
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follicular keratinocyte hyperproliferation, augmented sebaceous lipogenesis, activation 

of immune responses (due to upregulation of TLR2) and increased MMP activity. 

Subsequently, the same author proposed that the upregulation of nuclear FoxO1 is the 

mechanism by which systemic isotretinoin exerts its therapeutic effect
94

. This 

hypothesis is certainly appealing, but it is based on indirect evidence and at this point 

of time there is no direct data available to support this hypothesis. 

 

1.2.2 Targeting the inflammatory component of acne vulgaris 

 

Currently, a wide range of treatments are available for acne, both topical (such as 

retinoids, benzoyl peroxide and antibiotics) and systemic (such as isotretinoin, 

antibiotics and hormonal therapy). The findings from the aforementioned studies 

suggest that targeting the inflammatory component of acne, such as pro-inflammatory 

mediators and ECM degrading enzymes, is crucial for the management of acne 

vulgaris.  

 

Inadequate control of inflammation in acne may lead to the undesirable sequelae of 

scarring
5
. Therefore, in addition to alleviating the clinical symptoms and the associated 

psychological stress, prevention of scarring is also a vital goal of acne treatment. 

 

With the growing body of evidence on the involvement of inflammatory events from 

the very early stages of acne development up to the stage of scarring, it would be 

intriguing to assess the currently available acne treatments and the newer promising 

options on their potential to modulate these events. 

 

Apart from modulation of cell proliferation and differentiation (anticomedogenic 

effect), topical retinoids also possess anti-inflammatory properties
95,96

. In several in 

vitro and in vivo studies, topical retinoids have been demonstrated to have an inhibitory 

effect on the activity of leukocytes and on the production and release of inflammatory 

mediators
95-97

. However, the exact mechanism by which the anti-inflammatory 

response occurs has not been completely clarified. 
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The systemic retinoid, isotretinoin, is considered to be the most effective treatment 

available for the management of severe inflammatory acne
5
. It is considered to exert its 

effect by suppressing sebaceous gland activity, by normalising abnormal follicular 

keratinisation, and by inhibiting inflammation
7
. Despite its effectiveness, the use of 

isotretinoin in acne management is limited because of its teratogenic potential and its 

alleged risk of depression/suicidal ideation
5
. In recent years, interest has been 

generated on the effect of retinoids on the expression of matrix metalloproteinases
90,92

. 

These studies showed that retinoids can modulate MMPs (MMP-9 and MMP-1) and 

TIMP expression and this may be responsible for shifting from a matrix-degradative 

phenotype to a matrix-preserving phenotype
90,92

. Therefore, the anti-inflammatory 

effect of retinoids may in part be attributed to inhibition of MMPs. 

 

Both topical (clindamycin, erythromycin, and tetracycline) and oral (mainly macrolides 

and tetracycline) antibiotics are used to treat inflammatory acne. In addition to their 

antibacterial effect, these agents also have demonstrated anti-inflammatory activity
98,99

.  

A few studies have suggested that their anti-inflammatory effect may be attributed to 

the inhibition of bacterial lipases, chemotactic factors, reactive oxygen species 

generation by neutrophils, pro-inflammatory cytokines and matrix-degrading 

collagenases (MMP-1)
7,98-101

. However, development of bacterial resistance has raised 

considerable concerns on the use of antibiotics in the management of acne
102

. 

 

Furthermore, benzoyl peroxide was found to modulate the immune response by 

impeding the release of reactive oxygen species from human polymorphonuclear 

leucocytes in a dose-dependent manner
103

. 

 

In depth understanding of the various treatment modalities at the molecular level is 

necessary to explain their mechanisms of action and also to develop newer treatments 

for acne vulgaris. 
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1.3 Summary  

 

The pathogenesis of acne is complex and probably involves the interaction of genetic, 

hormonal, immunological and environmental aspects (Figure 1.2). These interactions 

may trigger an innate immune response and result in inflammation. The recent findings 

may have enhanced our understanding of acne pathogenesis, but many elements of this 

complex disease still remain unsolved. The exact mechanism triggering the 

development of acne, and the precise sequence of events involved in acne development 

and in its remission continues to be shrouded in mystery. In addition, the discordance 

in the therapeutic response from one patient to another and the variability in clinical 

presentation among patients need to be explained.  Ongoing research is attempting to 

clarify these issues. Nevertheless, the improved understanding of the key players in 

acne pathogenesis has given a boost to the research on the available and novel acne 

treatment modalities.  

 

 

Figure 1.2 Interaction of the various factors contributing to acne pathogenesis. 
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Treatment of acne is tricky as the multifactorial character of acne has to be considered. 

Although conventional acne treatments such as retinoids and anti-microbials form the 

cornerstone of therapy, their use has been constrained due to the rise of antibiotic 

resistance, increased patient compliance issues and severe adverse effects such as 

teratogenicity. Light and laser therapy are increasingly being recognised as an 

alternative treatment option with a better safety profile. However, there are very few 

well-designed trials evaluating these treatments. Scientific evidence demonstrating the 

mechanism of action of these treatments would facilitate our judgement on their use in 

treating acne. In this thesis we attempt to determine the effect of intense pulsed light on 

acne-affected skin, with particular emphasis on the expression of cutaneous TGF-β, the 

role of which will be discussed in the later chapters. The next chapter throws light on 

the mechanisms of intense pulsed light in the skin and its use in acne vulgaris. 
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Chapter 2: Intense Pulsed Light 

2.1 Introduction  

 

It has been known for some time now that exposure to sunlight has a favourable effect 

on most cases of acne, which is probably attributed to its anti-inflammatory effect on 

follicular Langerhans cells or its potential for P. acnes destruction
104,105

. However, the 

wavelengths contributing to this beneficial effect have not been completely 

deciphered
105

. UVA and UVB treatment were found to have only a minimal beneficial 

effect in acne, which is overridden by its potential for carcinogenicity
106

. On the other 

hand, visible light therapy has been demonstrated to have a favourable effect on acne, 

but without the potential risks of UV irradiation
105,107

. Moreover, visible light has 

better penetration than UV irradiation. Sigurdsson et al
107

 demonstrated a significant 

reduction in acne severity with visible light therapy. There was an overall reduction of 

14% for full spectrum (p > 0.10), 22% for green (p < 0.05) and 30% for violet light (p 

< 0.02)
107

. Improvement was predominantly observed in the inflammatory lesions
107

.  

 

Various light-based therapies are currently being evaluated for the treatment of acne. 

These treatments are aimed at providing acne patients with non-invasive, effective, and 

more convenient therapy that produce rapid results with minimal downtime and 

relatively few adverse effects
108-110

. Furthermore, in comparison with lasers, light 

treatments are considered to be more convenient, cost-effective and minimally 

invasive
110

.  Among these light therapies, much interest has been generated on the use 

of intense pulsed light (IPL) sources in the recent years. This chapter addresses the role 

of IPL therapy in the treatment of acne vulgaris. 

 

2.2 Intense pulsed light (IPL) 

 

IPL devices are high-intensity light sources that emit polychromatic, non-coherent 

visible light in the broad wavelength range of 515 to 1200 nm
111

. These devices use 

xenon flash lamps (gas-discharge lamps of high intensity filled with xenon gas) and 

computer-controlled capacitor banks, and band pass filters to generate pulsed 

polychromatic light of desired duration, intensity, and wavelength
112,113

. When an 
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electrical current is passed through the xenon gas in the flash lamp, bright light is 

produced
113

. Thus, these lamps convert electrical energy stored in capacitor banks into 

optical energy in a pulsed mode
113

. The wavelengths can be optimized depending on 

the target structure, its depth and the patient’s skin type by using different convertible 

cut-off filters or adjusting the lamp type, or current density
111-113

. Owing to its 

flexibility in configuring the various parameters, IPL on its own or along with other 

therapeutic agents can be used for a wide range of dermatological indications, such as 

vascular lesions, pigmentary lesions, unwanted hair growth (photoepilation), 

photoaging or photodamaged skin, rosacea, hypertrophic scars or keloids, skin 

rejuvenation, and actinic keratoses
114-119

. Recently, IPL has been demonstrated to be 

beneficial in acne vulgaris as well
108-110,120-128

. 

 

The clinical effect of IPL is dependent upon both the properties of the light that 

irradiates the skin and the skin, itself. Therefore, a thorough understanding of the 

interactions between light and skin is important for the safe and effective use of IPL 

devices.  

 

2.2.1 Light-skin interactions 

 

Intense pulsed light emits light within the visible and near-infrared components of the 

electromagnetic spectrum
119

. Visible light (400–760 nm) is that portion of the 

electromagnetic spectrum that is perceptible to the human eye
129

. Light incident on the 

skin is absorbed, reflected, scattered, or transmitted (Figure 2.1), and the degree to 

which it is reflected, absorbed, and scattered determines the depth of penetration
130

. 

Incident light must pass through the stratum corneum before it reaches the underlying 

viable skin. Characteristics of the stratum corneum such as its thickness, composition 

and morphology affect the amount of light that passes through it
130

. In general, the 

reflectance of an incident beam from normal skin ranges from 4 to 7 %, and around 93 

to 96 % may be either absorbed or scattered by the skin
130

. Scattering of light by the 

skin varies inversely with wavelength
131

. Hence, scattering decreases with the use of 

light of longer wavelengths. The absorption of light is mainly responsible for the 

desired biological effects on the tissue
129

.  
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Figure 2.1 Schematic representation of the optical pathway in skin (Adapted from 

Anderson and Parish
130

, 1989) 

 

Chromophores are tissue structures that absorb photons, and the level of light 

absorption by the skin is determined by the type, concentration, amount and 

distribution of these chromophores
130

. The most common chromophores encountered 

in the skin are: haemoglobin and its derivates, melanin, and water
129

. The others 

include lipids, bilirubin, foreign tattoo ink etc.,
129,132

. These chromophores are 

wavelength-dependent and have unique absorption coefficients (degree of absorption 

by the chromophores at a particular wavelength)
129

. The absorption spectrum of the 

three major skin chromophores is depicted in Figure 2.2
133

. Melanin and haemoglobin 
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are the predominant chromophores in the visible spectral range
132

. Whereas, water and 

lipids are the main chromophores in the infrared spectral range
132

. The depth of 

penetration is also wavelength-dependent, the longer the wavelength of light the deeper 

the skin penetration
129

. The main target structures for Intense Pulsed Light treatment 

are melanin and blood vessels
129

. 

 

 

Figure 2.2 The absorption spectrum for the three main skin chromophores 

(Haemoglobin, Melanin & Water). Adapted from Kaufman
133

, 2009 

 

Most IPL devices have a number of parameters, which are configured by the operator 

according to the patient’s skin type and skin condition. To enhance our understanding 

on the effects of IPL on skin, it is necessary to define some of these parameters: 

 

Fluence: is defined as the total energy discharged per unit area of the target tissue in a 

single pulse
129,134

. It is measured in Joules (J) per unit area (cm
2
) and is expressed as 

J/cm
2
.  

                         

              Fluence =   Power (W) x Time (s)       

                                Cross-sectional area of 

                                  the laser beam (cm
2
) 

 

Power: measured in watts (W=J/s) represents the amount of energy delivered over a 

certain period of time
129,135

. 
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Irradiance (sometimes referred to as intensity): rate of energy delivery per unit area to 

an object (watts/cm
2
)
134

. 

 

Thermal relaxation time (TRT): is the time required for 50% of the heat generated in 

the target structure by absorption of a laser/light pulse to diffuse into the surrounding 

tissue
129

. The TRT is approximated by the formula, TRT = d
2
 /gκ, where d = size of the 

target, κ = thermal diffusivity (about 2 × 10
−3

 cm
2
/s for dermis), and g = geometrical 

factor
136

. The thermal relaxation time is influenced by the size of the target. The TRT 

is approximately equivalent to the square of the target size i.e., TRT (ms) ≈ d
2
 (cm

2
)
129

. 

 

Pulse duration:  represents the time duration of exposure to the light beam in 

milliseconds (ms)
137

. The selection of the pulse duration is influenced by the thermal 

relaxation time of the target
129,134

. The pulse duration should be lower than or equal to 

the TRT of the target structure to prevent non-specific thermal damage to the 

surrounding tissue
112

. When the pulse is equal to or shorter than the TRT, the thermal 

damage is confined to the target structures
129

. In contrast, when the pulse is longer than 

the TRT, the heat diffuses into the surrounding structures resulting in non-specific 

thermal damage
129

. 

 

Wavelength (λ): is the distance between two successive crests or troughs of the light 

wave
135

. It is measured in nanometres (nm). IPL devices have different cut-off filters 

that allow the desired range of wavelengths to enter the skin
111

. To exert maximum 

effect, the wavelength range should be near the peak absorption of the target 

chromophore and of adequate length to penetrate to the depth of the target
129

. 

 

Footprint (spot size): the spot size is equivalent to the cross-section of the beam of 

light
134,135

.  It plays a role in the depth of penetration of light into the tissue. The larger 

the spot size, the greater the depth of penetration (Figure 2.3)
129,134

.  
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Figure 2.3 Association between spot size and depth of penetration (Fodor et al, 

2011
129

) 

 

Pulse delay:  represents the time interval in between pulses. This period is important as 

it allows the skin and blood vessels to cool down, while the heat is retained inside the 

target structure
129

.  

 

Shape of the pulse (spectral shape or output): the shape of the pulse is also an 

important parameter to be taken into consideration. The traditional IPL systems had 

variations in energy and spectral distribution of the beam during the pulse, producing a 

non-uniform pulse with the ends of the pulse more in the red/infrared spectrum and the 

middle of the pulse in the blue spectrum
137

. A significant amount of the energy 

discharged is wasted due to this uneven wavelength distribution
138

. Compared to the 

traditional IPL devices, the second generation IPL devices have a computer system that 

minimizes this so called “spectral jitter” and produces a “square pulse” 

(Figure.2.4)
113,137

. With a square pulse, the intensity does not reach peak levels and is 

constant over the entire pulse duration
137

. Therefore, a square pulse produces the 

lowest possible intensity for a given fluence and reduces the risk of side effects and 

may offer improved clinical efficacy
137

. 
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Figure 2.4 Differences in spectral output of Traditional vs. Modern IPL systems. 

(Town et al
138

, 2007) 

 

Cooling technology: Skin cooling during and/or after treatment helps to protect the 

epidermis from unwanted thermal injury and reduces the inadvertent transfer of heat to 

adjacent, non-target tissues
129,139

. Moreover, cooling enables the delivery of higher 

fluences and also reduces pain
139

. The cooling can be performed using cooling gels, ice 

gels, contact spray cooling, or cooling systems integrated into the handpiece
111,140

. 

 

Effects of light-skin interaction can be categorised into: 

 

Photothermal – The light energy absorbed by skin chromophores is mostly converted 

into heat, which can result in thermal effects such as tissue coagulation or 

vaporization
129,132

. As the temperature is raised, various molecular changes take place 

as enlisted in Table 2.1
132

.  

 

     Table 2.1 Photothermal effects of light-tissue interaction
131,132,135

   

Temperature Effect 

42-50ºC Hyperthermia and conformational changes 

Above 60ºC Protein and collagen denaturation; coagulation necrosis 

Above 70ºC DNA denaturation and membrane permeabilisation 

Above 100ºC Vaporization and ablation 

Around 120ºC Thrombosis of the blood vessels and necrotizing vasculitis 

                         

“Square pulse” IPL Traditional IPL 
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The temperature and duration of exposure influences the effects of heating on the 

target structure
129,132

. Photothermal effects are beneficial to the target tissue, but if 

allowed to diffuse into the surrounding tissue it may be detrimental
129,132

. The collagen 

and elastin-rich dermis is thermally more stable than the epidermis
129

.  

 

Selective photothermolysis – The concept of photothermolysis was introduced 

by Anderson and Parrish in 1983
131

. It is the site-specific, thermal injury of 

microscopic target tissue with minimal effect on the surrounding tissues by 

selectively absorbed pulses of radiation
131

. 

 

The three criteria necessary to produce selective photothermolysis include
131

: 

• Absorption of a specific wavelength by the target structures 

• An exposure time less than or equal to the time of cooling of the target 

structures (i.e. pulse duration ≤ TRT) 

• Optimal fluence to generate sufficient temperature within the target 

structures to achieve the desired effect 

 

Photochemical – Photo-excited molecules are likely to undergo chemical reactions by 

direct interaction with chemical bonds or by interaction with endogenous or exogenous 

photosensitizing agents
129

. Photodynamic therapy (PDT) utilizes this effect through the 

interaction of photosensitizing agents, light, and oxygen
132

.  

 

Photoimmunological – energy of photons when absorbed in cells or tissue may affect 

cellular metabolism and signalling pathways
141

. This may in turn modulate the level of 

cytokines and growth factors
142

.  

 

Photomechanical – light induced expansion or disruption of tissues
129,135

. 

 

The benefits and drawbacks of use of IPL devices are listed in Table 2.2  
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Table 2.2 Advantages and disadvantages of IPL
112,113,137

 

Advantages Disadvantages 

Owing to its versatility, it can be adapted 

to different skin types and skin 

conditions. 

 

Broad-wavelength spectrum allows the 

three key skin chromophores 

(haemoglobin, melanin, water) to be 

activated with one single light exposure. 

 

The large spot size or footprints of IPL 

allows rapid treatment and more 

coverage. 

 

Lower cost and more robust technology 

compared to lasers.  

 

More eye-safe than lasers. However, eye 

protection is recommended for both 

operator and patient. 

 

Emitted spectrum and fluence can be 

inconsistent from pulse to pulse (or during 

the pulse) 

 

Variations in fluence, wavelength ranges 

and spectral shapes and other treatment 

settings between different manufacturers 

and devices.  

 

The size and weight of the hand-piece 

limits its manoeuvrability  

 

Adequate experience is required to operate 

this device because of its different 

parameters and applications. 

 

Gel application and the direct skin contact 

with the hand-piece makes it difficult to 

observe the immediate local response.  

 

Risk of hair reduction due to the broad 

spectrum in patients who do not desire 

reduction of their hair. 

 

 

2.2.2 IPL and acne vulgaris 

 

In the past seven to eight years, a few studies have been published on the use of IPL 

monotherapy in the treatment of acne vulgaris. This section includes a brief overview 

of these studies
108-110,120-128

. 
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Various IPL systems have been reported to treat inflammatory acne vulgaris
143

. The 

first IPL system to report benefits in acne was the ClearTouch™ system (Radiancy Inc. 

now known as the SkinStation
®
)
143

. Elman and Lask
120

 evaluated the safety and 

efficacy of the LHE technology (combining pulsed light and heat energy, LHE) in the 

treatment of acne vulgaris. Nineteen patients (12 female and 7 males; aged 13 to 28 

years) with mild to moderate acne underwent twice‐weekly treatments for four weeks 

using the ClearTouch
TM

 system (λ= 430-1100 nm, spot size: 22 x 55 mm, average 

fluence: 3.5 J/cm
2
, and pulse width: 35 ms)

120
. Clinical assessment and acne severity 

grading were performed at baseline and at one and two months after the last session. 

Improvement in acne severity and lesion counts were observed as early as two weeks 

after commencement of treatment. Inflammatory lesions improved by 50% at the end 

of treatment, by 74% one month later and by 87% after 2 months
120

. Similarly, non-

inflammatory lesions improved by 63%, 79% and 85%, respectively. No adverse 

effects were reported. The authors concluded that the ClearTouch pulsed light and heat 

energy (LHE) technology is effective and safe for the treatment of acne vulgaris
120

. 

However, this study did not specify the location of the acne lesions. This may affect 

the integrity of this study, taking into consideration the notion that different sites may 

respond differently to treatment. 

 

Dierickx
121

 investigated the safety and efficacy of a variable-filtration IPL system 

(EsteLux™, Palomar Medical, Inc., Burlington, MA) for facial and dorsal acne using a 

Lux V™ hand-piece (400-700 and 870-1200 nm). Fourteen patients with mild to 

moderate inflammatory acne vulgaris received five treatments (2 to 3 passes, average 

fluence: 10 J/cm
2
) at two to four week intervals. At one month post-treatment, the acne 

clearance for the non-inflammatory and inflammatory lesions was 66% and 53%, 

respectively. This increased at six months to 72% and 73%, respectively. Post-

inflammatory erythema and/or scarring that occurred secondary to acne also improved 

significantly. There was no recurrence or partial recurrence for 3-6 months after the 

last treatment. No adverse effects were noted during or after treatment. Thus, 

suggesting that multiple pass Lux V™ technique with a variable-filtration IPL system 

may be safe and effective for the treatment of acne vulgaris
121

. Nevertheless, this study 

was limited by its small sample size. 
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Santos and colleagues
122

 designed a spilt-face clinical trial comparing the efficacy of 

ALA-PDT (ALA plus IPL) and IPL alone in acne vulgaris. Thirteen individuals with 

varying degrees of acne were treated with 20% topical ALA hydrochloride (DUSA 

Pharmaceuticals, Wilmington, MA, USA) on one half of the face, and after a 3-hour 

incubation period, the whole face was exposed to IPL (Quantum SR, Lumenis, Santa 

Clara, CA, USA; 560 nm cut-off filter, fluence: 26-34 J/cm
2
, with a double pulse of 2.4 

and 6.0 milliseconds, pulse delay: 25 ms, two sessions at 2 to 4 week intervals). The 

patients were clinically evaluated on the second, fourth, and eighth weeks. No 

improvement was observed at the second week on either sides of the face. By the 

fourth week, however, most of the patients experienced visible improvement of facial 

acne that was more significant on the ALA-treated side of the face. Ten of the subjects 

had a decrease in the formation of inflammatory acne on the ALA-treated side, and this 

improvement persisted until the eighth week post-treatment. Although patients 

perceived an improvement in facial appearance on both sides of the face, the facial half 

treated with IPL-only showed no significant improvement at the eighth week compared 

to baseline. All patients complained of a slight stinging and burning sensation on both 

sides of the face during the procedure. Post-procedure, the ALA-treated side showed 

oedematous erythema, crusting with exfoliation and slight darkening of the skin that 

resolved within 10 days. On the contrary, the facial half treated with IPL alone showed 

very minimal transient erythema immediately after the procedure. Although sebum 

production was not measured, an apparent reduction in sebum excretion was also noted 

on either side, which was more significant on the ALA side. This study reported that 

IPL alone was ineffective in the treatment of acne vulgaris, but along with ALA pre-

treatment it produced a significant improvement in the lesions of acne vulgaris
122

. 

However, this study failed to report a statistical analysis of its results. In addition, there 

was no randomisation or blinded assessment. Therefore, questioning the reliability of 

these results. 

 

On the contrary, Rojanamatin and Choawawanich
109

 reported a beneficial effect of IPL 

monotherapy for inflammatory acne, although a greater improvement was obtained for 

IPL combined with topical ALA. They evaluated the efficacy and safety of short 

contact topical ALA plus IPL and IPL alone in the treatment of inflammatory facial 

acne. Fourteen patients (10 females and 4 males; aged: 16 to 27 years; Fitzpatrick skin 

phototypes III to V) with inflammatory facial acne vulgaris (≥ 10 active inflammatory 
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lesions) were treated with ALA-free placebo on the left side and 20% topical ALA 

(Biosynth, Staad, Switzerland) on the right side of the face for 30 minutes under 

occlusion. After removal of topical application, the entire face was treated with IPL 

(Quantum SR, ESC Medical Systems Ltd., Yokneam, Israel; λ = 560-590 nm, fluence: 

25-30 J/cm
2
, double-pulse mode: 1

st
 pulse 2.4-3.6 ms and 2

nd
 pulse 4-6 ms, with pulse 

delay: 20-40 ms). Treatments were administered for three sessions at three to four 

week intervals. Clinical photographs were taken and lesion counts were performed for 

evaluation. All the patients experienced a diminution in number of inflammatory acne 

lesions on both sides of the face. The reduction of acne lesion counts was noticed three 

weeks after the first treatment and continuously improved after second and third 

treatments. There was a statistically significant improvement in inflammatory facial 

acne lesion counts on both IPL (66.8% reduction; p < 0.01) and ALA-IPL (87.7% 

reduction; p < 0.01) treated sides at 12 weeks after the last treatment. The degree of 

improvement was much better on the ALA-IPL treated side than the IPL side (p < 

0.05). Most patients developed transient erythema and minimal crusting. Mild oedema 

developed on the ALA-IPL treated side. Although IPL alone showed some beneficial 

effect in the treatment of inflammatory facial acne, the degree of improvement was 

more and lasted longer with the ALA-IPL treatment
109

. 

 

A prospective, randomised, single blind, split-face clinical trial was performed to 

evaluate the efficacy and safety of IPL alone and a combination of IPL and topical 

methyl aminolevulinate (MAL) in Chinese subjects with moderate facial acne vulgaris 

(> 10 inflammatory acne lesions)
123

. Thirty acne patients (skin phototypes IV or V) 

were randomly assigned to receive half-facial treatments with PDT (IPL plus 16% 

MAL cream), IPL alone, or as controls in the ratio of 1:2:1. All subjects applied 

adapalene 0.1% gel every night on the whole face until the last treatment session. The 

IPL (Ellipse Flex system, DDD, HØrsholm, Denmark; λ = 530-750 nm, fluence: 7.0 to 

9.0 J/cm
2
, spot size: 10 x 48 mm without overlapping, Single passes with double 

pulses, pulse delay: 10 ms and pulse duration: 2.5 ms) and MAL-IPL treatments were 

given four times at three-week intervals. Standardized photographs were taken for the 

assessment of acne lesions. Of the 30 patients, 23 completed the study. No significant 

improvement of inflammatory acne lesions were noted in the IPL or MAL-IPL treated 

sides 12 weeks after the last treatment, when compared with the control group. This 

could be attributed to the fact that all subjects applied adapalene gel on the entire face 
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throughout the treatment period. However, there was a delayed but statistically 

significant reduction of non-inflammatory lesions in the MAL-PDT (38%, p = 0.05) 

and IPL groups (43%, p = 0.00) 12 weeks after treatment. Whereas, the control group 

experienced a 15% increase in non-inflammatory lesions (p = 0.36) 12 weeks after 

treatment. IPL treatment was well tolerated, but 25% of the subjects in the PDT group 

withdrew from the study because of intolerance to treatment. Adverse effects included 

stinging, burning, erythema, and oedema, which resolved in 1-2 days. The results of 

this study showed no significant efficacy of IPL alone or IPL-MAL for moderate 

inflammatory acne vulgaris. However, this study is limited by the small sample size, 

reduced statistical power and use of adapalene by all the study participants, which may 

have confounded the results
123

. Robust prospective, randomised, controlled trials on a 

larger sample size and evaluating the long-term effects of IPL in acne are required. 

 

In another split-face study, Chang et al
108

 evaluated the efficacy of IPL for the 

treatment of inflammatory lesions of facial acne vulgaris. Thirty Korean patients 

(female; age: 23–32 years) with mild-to-moderate acne (Grade 2 of Korean acne 

grading system) were instructed to use topical benzoyl peroxide gel once a day on all 

facial lesions. One randomly selected side of the face was treated with IPL (Ellipse 

Flex, DDD; 530-750 nm filter, fluence: 7.5–8.0 J/cm
2
, pulse duration: 2.5 ms, double 

pulse with pulse delay: 10 ms; three sessions at three week intervals). Baseline and 

post-treatment (three weeks after third session) lesion counts of papules and pustules 

were performed by two blinded investigators. Red macules were assessed with digital 

photography and a colorimeter. Irregular brownish pigmentation and skin tone were 

evaluated using photographs. All patients perceived a reduction in inflammatory 

lesions on both sides of the face. Three weeks after the final session, there was no 

significant difference in the mean lesion (papule plus pustule) counts between IPL-

treated and untreated sides of the face (-3.2 vs.-3.1; p > 0.05). Nevertheless, 

improvement of red macules (63% vs. 33%) and irregular pigmentation and skin tone 

(63% vs. 16.7%) were observed on the IPL-treated side in comparison with the 

untreated side. No significant adverse effects were encountered. This study concluded 

that IPL effectively improved acne red macules, irregular pigmentation and skin tone, 

but had no effect on inflammatory acne in Asian skin
108

. However, the use of benzoyl 

peroxide gel on the entire face may have confounded the results of this study.  
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Sami et al
124

 designed a study comparing the effectiveness of laser (pulsed dye laser, 

PDL) and non-laser light sources (IPL and light-emitting diode, LED) in moderate to 

severe acne vulgaris. Forty-five patients of skin type III and IV with moderate to 

severe acne (according to Burton classification) were randomly divided into three 

equal groups. Group 1 was treated with a 595 nm PDL (Vbeam®, Candela 

Corporation, Wayland, MA), group 2 was treated with IPL (EPI-C/plus®, Espansione 

Group, Bologna, Italy; 550-1200nm filter, fluence: 22 J/cm
2
,spot size: 2.5 x 4.5 cm, 

and pulse duration: 30 ms), and group 3 was treated with a blue-red combination LED 

(Young Again®, Espansione Group). Unilateral weekly treatments were continued 

until a ≥ 90% clearance of inflammatory lesions was achieved. Clinical assessments 

were conducted at baseline, after 1 month, and after the final treatment session. The 

PDL group reached a ≥ 90% clearance after a mean of 4.1 +/- 1.39 sessions, whereas 

the IPL group required a mean of 6 +/- 2.05 sessions, and the LED group required a 

mean of 10 +/- 3.34 sessions. At one month, the reduction in acne lesions was ≥ 90% 

with PDL, 41.7% with IPL and 35.3% with LED. In comparison with IPL and LED, 

PDL required fewer sessions to achieve clearance. All treatments were well tolerated 

with minimal and usually self-limiting adverse events. The drawbacks of this study are 

its small sample size and short follow-up period. The authors suggested that laser and 

non-laser phototherapy may be beneficial for the treatment of moderate to severe acne, 

and that further studies are required to evaluate the different devices with a larger 

sample size and a longer follow-up period
124

. 

 

In a randomised, prospective, split-face clinical study, 20 Korean patients (4 men, 16 

women; aged 18-30 years; Fitzpatrick skin type III or IV) with moderate to severe acne 

were randomised to receive either short incubation ALA plus IPL (30 minutes, n=9) or 

long incubation ALA plus IPL (3 hours, n=11) on one half of the face and IPL alone 

(n=20) on the other half
125

. After short or long contact ALA application to one side of 

the face, the whole face was exposed to IPL (BBL, Sciton Inc., Palo, Alto, CA; 590-nm 

cut-off filter, fluence: 12-15 J/cm
2
, pulse duration: 30 ms, pulse delay: 20 ms). Patients 

underwent three sessions at four week intervals. Inflammatory lesion counts were 

performed at baseline and post-treatment, and a sebumeter was used to measure sebum 

secretion. Improvement in inflammatory acne lesions occurred in all subjects after 

three sessions of ALA-PDT (short or long incubation) or IPL alone (p < 0.001 in all 

groups). At four weeks after the last treatment, mean reduction of lesions was 84.4% in 
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the long incubation time group, 72.6% in the short incubation time group, and 65.9% 

in the IPL-only group. At twelve weeks after treatment, it was 89.5%, 83.0%, and 

74.0%, respectively (p < 0.001 in all cases), suggesting that the therapeutic effect of 

PDT and IPL was sustained even 12 weeks after treatment completion. Improvement in 

inflammatory acne lesions was more pronounced in the long incubation group 

compared to the other groups. However, the difference in this reduction was 

statistically significant only between the long incubation and the IPL-only group (p = 

0.01). Decreased sebum secretion was noted in all three groups after three sessions (p < 

0.001 in all groups), but the between groups differences were not statistically 

significant. Transient erythema and mild oedema were the only adverse events reported 

for all treatment groups, and prolonged incubation time did not result in more adverse 

effects than short incubation time. In this study, significant improvement in 

inflammatory acne vulgaris was observed with ALA-PDT (short or long incubation) 

and IPL, and this effect was maintained even 12 weeks after completion of 

treatment
125

. Further studies with a larger sample size are required to validate these 

findings. 

 

Most studies performed on IPL therapy for acne in Asian skin did not include blue 

light regions (400–500 nm) of the spectrum. Therefore, Kawana et al
126

 designed a trial 

to evaluate the efficacy and safety of IPL with dominant wavelength ranges of 400 to 

700 nm and 870 to 1,200 nm for the treatment of acne vulgaris in Asian skin. Twenty-

five Japanese patients of skin phototypes II to V with moderate to severe acne were 

treated with five sessions of IPL (Medilux Plus with a LuxV handpiece, Palomar 

Medical Technologies, Burlington, MA; λ =  400–700 nm and 870–1,200 nm, 

fluence:13 J/cm
2
) at weekly intervals. Non-inflammatory and inflammatory lesions 

counts and acne grade pre- and post-treatment were evaluated. After the first session, 

non-inflammatory and inflammatory acne lesions were reduced by 36.6% and 43.0%, 

respectively (p < 0.05). After the final session, they reduced to 12.9% and 11.7%, 

respectively, of their baseline values (p < 0.01). Also, acne grade improved 

significantly over the course of the treatment (p < 0.01). Most patients experienced 

transient erythema and burning or stinging, but no major adverse reactions were 

observed. This study demonstrated that broad-band smooth-pulsed IPL has a potent 

effect on both inflammatory and non-inflammatory acne lesions in Asian skin. The 

authors claim that the ability of the IPL system used in this study to deliver broad-band 



39 

 

pulsed light in one smooth pulse and its photon recycling effect (recapturing of 

scattered energy) make it more efficacious in the treatment of acne
126

. However, long-

term follow-up is necessary to observe the course of acne after treatment completion 

and to determine the need for maintenance therapy.  

 

Choi and group
110

 carried out a split-face, single-blind, randomised trial comparing the 

therapeutic effects of PDL and IPL for the treatment of facial acne vulgaris. Twenty 

patients (1 male and 19 females; aged 20-37 yrs; Fitzpatrick skin phototypes III to V) 

with active inflammatory facial acne were randomised to non-overlapping pulses of 

585-nm PDL (Cynergy; Cynosure, Inc. Chelmsford, MA, USA; parameters: λ = 585 

nm, fluence: 8–10 J/cm
2
, spot size: 10 mm, two passes, pulse duration: 40 ms) on one 

side of the face and IPL (Ellipse Flex System; DDD, Horsholm, Denmark; parameters: 

λ = 530-750 nm, fluence: 7.5-8.3 J/cm
2
, pulse duration: 2.5 ms, triple light pulse with a 

9.0 ms interval and two passes) on the contralateral side. Four sessions were 

administered at two-week intervals. Assessment of response to treatment included 

lesion counts, acne severity, patient subjective self-assessments of improvement, and 

histopathological examination. Both IPL and PDL produced improvements in 

inflammatory and non-inflammatory acne lesions. However, the course of 

improvement differed for the two treatments, particularly for inflammatory lesions. 

IPL treatment resulted in a rapid improvement (50% reduction compared to baseline 

after 1
st
 session; p < 0.05 and 66% reduction compared to baseline after 4

th
 session; p < 

0.05). However, a slight rebound was observed eight weeks after the final treatment 

session. In contrast, PDL had a gradual but more sustained course of improvement 

(36% reduction after 1
st
 session; p < 0.05 and 62% after 4

th
 session; p < 0.05). 

Furthermore, significant improvements were observed at eight weeks (84% reduction; 

p < 0.05) after the final treatment session. Improvement in non-inflammatory lesions 

was also greater on the PDL-treated side. Acne severity grades improved with both 

treatments, but no significant difference was evident. Patients were satisfied with 

treatment results, and the satisfaction scores increased with time on both sides. 

Histopathologically, there was a reduction in the inflammatory reaction and an increase 

in transforming growth factor-β (TGF-β) expression with both treatments, which were 

more evident for the PDL-treated side. No significant adverse effects were observed. 

Both, PDL and IPL were found to be effective in treating acne, but PDL showed a 

more pronounced effect
110

. 
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As previously discussed, adjustment of the various IPL parameters such as fluence, 

pulse duration, and pulse delay allow flexibility in treatment
127

. IPL devices discharge 

light in single- (fluence delivered in single shot) and burst-pulse (fluence is delivered 

in multiple pulses with a delay between the pulses) modes
127

. Kumaresan et al
127

 

compared the efficacy of burst-pulse mode with single-pulse mode IPL in the treatment 

of facial acne vulgaris. Ten patients (skin type IV; grade 1 to 4 facial acne vulgaris) 

were subjected to four sessions of IPL monotherapy (V care Medical Systems, 

Bangalore, Karnataka; parameters: 420 nm cut-off filter, fluence: 15-21 J/cm
2
, auto 

mode, pulse width: 12 ms) at weekly intervals. The right side of the face was exposed 

to burst-pulse mode IPL (5 pulses; pulse delay: 6 ms), and the left side to single-pulse 

mode. Acne grading was done at baseline and at the end of the treatment period by a 

blinded investigator using Michelsons acne severity index. Clinical digital photographs 

were also obtained for evaluation. Results were statistically analysed using paired t-

test. All patients experienced a reduction in acne lesions on both sides of the face. 

There was a 49.19% reduction in the acne severity score after four sessions of IPL. The 

burst-pulse mode treated side showed more improvement in acne severity compared to 

the single-pulse mode treated side (56.66% vs. 40.17% reduction after four sessions). 

No adverse effects were observed during treatment and post-treatment. IPL as a 

monotherapy showed significant beneficial effect in treatment of facial acne. Burst-

pulse mode was demonstrated to be more efficacious than the single-pulse mode in 

treating acne. The authors suggested that combining IPL with other topical and 

systemic anti-acne treatments may further enhance the efficacy of IPL. This study was 

limited by a small sample size, lack of randomisation and lack of a control arm. Further 

studies with a robust design and large sample size are required to establish these 

findings. 

 

More recently, Barikbin et al
128

 compared two different pulse durations (55 ms and 101 

ms) for IPL monotherapy (KE-Medical Hair & Skin IPL; λ = 572 nm and fluence: 35 

J/cm
2
) in fifteen female patients with facial acne vulgaris in a single-blind, split-face 

clinical study and found that although both parameters led to approximately 30% 

clearance of lesions there was no significant difference in IPL efficacy between the two 

pulse durations. Taking into consideration the greater risks associated with lower pulse 

duration, they recommended the use of longer pulse durations in darker skin types
128

. 
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From the aforementioned studies it is clear that the degree of improvement of acne 

lesions with IPL is less convincing compared to lasers and PDT. Also, lasers and PDT 

have a more sustained effect than IPL. Nevertheless, IPL seems to have a better safety 

profile and was well-tolerated by the study participants. Also, its additional benefit of 

improving acne sequelae such as scarring, post-inflammatory pigmentation and 

erythema make it more appealing to patients.  

 

Many of the studies mentioned here have a small sample size, making interpretation of 

these results ambiguous. Moreover, the differences in the IPL manufacturers, settings 

and parameters, and in the sample population make it difficult to compare the clinical 

outcomes of the various studies mentioned above. Therefore, further research is 

required to determine the optimal IPL device and parameters required to treat acne 

vulgaris and also to evaluate its long-term effects. In addition, it is necessary to 

delineate how IPL works in the treatment of acne vulgaris. 

 

2.2.2.1 Potential mechanism for IPL in acne 

 

Despite many studies investigating light treatment in acne, its underlying mechanism 

of action is not clear. There may be multiple targets for light in acne treatment. These 

targets are potentially considered to be P. acnes, sebaceous glands, infundibulum and 

the infra-infundibular components of the sebaceous follicle
144

.  IPL sources probably 

target acne by photochemical, photothermal (selective photothermolysis or generalised 

water heating), photoimmunological (modulation of inflammatory response) or a 

combination of these tissue interactions
126,144

. There is no unique chromophore for 

acne lesions. Therefore, IPL devices may target various chromophores, such as 

endogenous porphyrin from P. acnes, dilated vessels, and oxyhemoglobin
126

. In 

addition, superficial desquamation of the epidermis may contribute to the improvement 

of non-inflammatory comedones by IPL
126,145
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Photochemical/photodynamic effect 

 

Specific wavelengths of visible light have been proposed to produce highly reactive 

free radicals including singlet reactive oxygen species by activating endogenous 

porphyrins (such as coproporphyrin III and protoporphyrin IX) resulting in oxidative 

damage of the lipid layers in the cell membrane of P. acnes and damage of the cells of 

the sebaceous gland, and thereby leading to a reduction of P. acnes colonisation and 

improvement of acne lesions
112,146,147

. Theoretically the most effective visible 

wavelength for photoactivation of the major endogenous porphyrin component of P. 

acnes is in the blue light region, at approximately 410 or 415 nm (called the Soret 

band, the strongest porphyrin photoexcitation band), but blue light has poor depth of 

skin penetration
105,146

. Although photochemical reactions are most profound in this 

region, it is not limited to this region. Several weaker absorption peaks (Q bands; 505, 

540, 580, and 630 nm) are present at longer wavelengths
126

.  

 

The main limitation of this mechanism is the ability of P. acnes to repopulate rapidly, 

despite reduction
148

. Therefore, treatment will be needed to be administered more 

frequently to maintain therapeutic effects, which is not a very practical solution
148

. 

Also, acne has been demonstrated to improve with light therapy even before bacterial 

reduction occurred
149

, suggesting that additional mechanisms exist for their beneficial 

effect. 

 

Photothermal effect 

 

Photothermal effects may also play a role by utilizing the concepts of selective 

photothermolysis or generalised water heating
144,150

. The multitude of longer 

wavelengths of IPL can reach and thermally target multiple chromophores at different 

depths. Based on the principle of selective photothermolysis, IPL may reduce sebum 

secretion rate by targeting blood vessels that supply sebaceous glands
112

. The 

hypervascularity of inflamed acne lesions that occurs as a result of accumulation of 

numerous red blood cells in the dilated vessels supplying the sebaceous glands serves 

as a selective target for IPL treatment
108,109

. The resultant photothermal reaction in the 

hyperaemic acne lesions causes selective thermal damage of the sebaceous glands at 
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the sites of acne lesions leading to improvement and reduction of inflammatory acne 

lesions
109

. 

 

However, it appears that reduction of P. acnes and sebaceous gland activity alone are 

not sufficient for a therapeutic effect in inflammatory acne lesions
151,152

. Several laser 

and light treatments have shown therapeutic benefit without any reduction in P. acnes 

and sebum secretion, suggesting that alternative mechanisms exist for the therapeutic 

effect of light on inflammatory acne vulgaris
151,152

. Moreover, instead of targeting 

individual acne lesions, it would be interesting to determine whether IPL therapy with 

its broad-spectrum is able to interrupt acne pathogenesis and prevent the occurrence of 

new lesions
144

.  

 

Photoimmunological effect (modulation of immune responsiveness) 

 

Although not conclusively proven, some studies have suggested that light-based 

techniques may be able to improve acne through the modulation of epidermal and 

dermal immune responses
110,148,152

. In comparison with blue light, the green, yellow, 

and red light regions are less effective at activating porphyrins, but penetrates more 

deeply into the skin and may have anti-inflammatory effects by inducing cytokine 

release from macrophages
142

.  

 

Boros-Gyevi and team
153

 conducted a study to determine whether IPL therapy 

influences delayed type hypersensitivity reaction in photodamaged skin, and 

demonstrated a tendency in delayed type hypersensitivity reaction to be higher after 

IPL treatment. On histological analysis, the number of Langerhans cells also tended to 

be higher after IPL treatment. The authors concluded that IPL therapy may also affect 

the immunological functions of the skin
153

. 

 

Recently, a few in vitro and photorejuvenation studies have attempted to delineate the 

mechanisms underlying the clinical effects of IPL
140,145,154-158

. The general notion is 

that the photothermal injury induced may stimulate the dermal vasculature to initiate 

an inflammatory response and liberate cytokines that induce dermal remodelling via 

fibroblast proliferation and upregulation of collagen expression
159

.  
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In photorejuvenation studies, IPL has been demonstrated to diminish the elastosis and 

stimulate neocollagenesis showing a “fibrillar” orientation, mainly at the level of the 

papillary and upper reticular dermis
145,155

 Significant upregulation of collagen type I 

and type III have been observed
140,156

. Also, resolution of the superficial dermal 

inflammatory infiltrate have been noticed
155,160

. One study suggested that the aesthetic 

improvement of photodamaged skin following IPL treatment may be secondary to 

clearing of Demodex organisms and the reduction of associated lymphocytic 

infiltrate
160

 

 

Furthermore, the heating of the dermal microvasculature is also considered to produce 

a heat shock response
157,161

. Exposure of the skin of rats to IPL (fluence: 34 J/cm
2
, in 

triple pulses with pulse duration of 4, 5 and 6 ms, respectively, and pulse delays of 20 

and 25 ms) induced the expression of heat shock protein-70 (HSP-70)
157

. HSP-70 

immunoreactivity was observed on day 1 in the epidermal keratinocytes, sebaceous 

gland cells and endothelial cells. The staining peaked on day 7 and gradually weakened 

and disappeared by day 30.  In another study, Preito et al
161

 suggested that HSP-70 

may induce neocollagenesis via thermal damage of collagen fibres
161

. They 

demonstrated that IPL irradiation (560 nm cut-off filter, fluence: 28-35 J/cm
2
, spot 

size: 8 x 35 mm, pulse duration: 2.4/4.2 ms, pulse delay: 15 ms) of photodamged skin 

induced the expression of HSP-70 and procollagen 1 by dendritic cells that are 

scattered in the papillary and upper reticular dermis
161

. Heat-induced dermal activation 

of these cells may be the underlying mechanism of collagen deposition
161

. Further, 

HSP-70 may play a role in the expression of growth factors such as transforming 

growth factor beta (TGF-β)
162

.
 

  

Apart from enhancing collagen production, IPL irradiation has also been demonstrated 

to impede collagen degradation by downregulating matrix metalloproteinases 

(MMPs)
163-165

. In an in vivo study, Luo et al
163

 investigated the molecular effects of 

IPL on BALB/c mouse skin. The dorsal skin of BALB/c mice was exposed to two 

sessions of IPL (Lumenis One, USA; λ = 560-1200nm, fluence: 15 J/cm
2
, spot size: 8 x 

35 mm, pulse duration: 4 ms, and pulse delay: 30 ms) with a two week interval. The 

post-IPL sections showed dermal thickening, increased collagen (types I and III; p < 

0.05) accompanied with improved organization, and the mRNA expression levels of 

the procollagen types I and III had also increased (p < 0.05). MMP-1 and MMP-2 
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mRNA levels progressively decreased after IPL irradiation (P < 0.05) in a time-

dependent fashion
163

. Further, an in vitro study, investigated the effects of IPL on 

MMPs by irradiating human dermal fibroblasts cultured in contracted collagen lattices 

with IPL (PhotoDerm VL/PL system, Lumenis Ltd., Israel; 570-nm cut-off filter, 

fluence: 20, 50, and 75 J/cm
2
, triple pulses of pulse duration: 7 ms and pulse delay: 

70 ms)
164

. The protein and mRNA levels of MMP-2 were measured at 24, 48 and 72 

hours following irradiation. After 24 hours, MMP-2 protein (reduced by 13%, 33% and 

61% for 20, 50, and 75 J/cm
2
, respectively) and mRNA levels (reduced by 11%, 18% 

and 40%, respectively) decreased in a dose-dependent manner. This inhibitory effect of 

IPL on MMP-2 was sustained up to at least 72 hours
164

. Subsequently, Chen et al
165

 

investigated whether IPL treatment alters the expression of MMP-1 and demonstrated 

that IPL irradiation (λ = 560-1200 nm, fluence: 15 J/cm
2
) of human skin fibroblasts 

decreased the MMP-1 expression level by 11.47-fold, when compared to the control. 

These investigators also suggested that IPL may downregulate the UVB-induced AP-1 

expression by illustrating a decrease in expression of the AP-1 components, c-Jun and 

c-Fos following IPL irradiatiom
165

. Paradoxically, Gu et al
166

 demonstrated an 

upregulation of MMP-1, MMP-3 and MMP-12 following IPL irradiation (Lovely II, 

Alma; λ = 570-950 nm, fluence: 15 J/cm
2
, spot size: 8 x 35 mm, 2 pulses of pulse 

duration: 12 ms, and pulse delay: 30 ms) in human skin. Further in vivo studies are 

needed to determine precisely the effect of IPL on the expression of MMPs.  

 

Several inflammatory mediators have been considered to be responsible for the 

therapeutic action of the various lasers and light sources. Some hypothesize that the 

photothermal injury induces a wound healing response via a complex network of 

inflammatory mediators
159,167

. TGF-β is one of the key cytokines involved in wound 

healing and in inflammatory responses.  A few studies on laser and light devices have 

suggested a potential mechanistic role for TGF-β
110,152,154,158,168-170

. 

 

A recent study by Wang and colleagues
158

 evaluated the effect of IPL on TGF-β1 

mRNA expression in rat skin. Three regions of the skin of fifteen rats were exposed to 

IPL (Quantum SRTM; λ = 640nm, fluence: 34 J/cm
2
; triple pulses for a pulse duration 

of 4, 5, and 6 ms; pulse delay = 20 or 25 ms). In situ hybridization was used to detect 

TGF-β1 mRNA expression in the skin biopsies obtained from the treated (1, 3, 5, 7, 15, 

and 30 days after exposure) and non-treated areas. In the IPL-irradiated skin, strong 
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TGF-β1 mRNA expression was detected in the epidermal keratinocytes and dermis 

(endothelial and inflammatory cells) on day 1, which gradually increased on days 3 

and 5, and peaked on day 7. There was a gradual decrease in mainly the epidermal 

expression from day 15, and by day 30 there was only weak expression in the dermis. 

This expression pattern was similar to that observed in normal cutaneous wound 

healing. The non-exposed regions did not express TGF-β1 mRNA. In addition, 

increased expression of HSP-70 & TIMP-1 was also observed. This study 

demonstrated that IPL enhances cutaneous TGF-β1 mRNA expression both in the 

epidermis and dermis of rat skin. The authors concluded that TGF-β1 may be involved 

in IPL-induced dermal remodelling and photorejuvenation
158

. 

 

Using reverse transcriptase-polymerase chain reaction and enzyme linked 

immunosorbent assay, Byun and group
154

 demonstrated an increase in the in vitro 

expression of IL-10 protein (up to 5.95 fold) and TGF-β1 mRNA (up to 1.17 fold) and 

protein (up to 1.5 fold) in cultured keratinocytes (HaCaT cells) following exposure to 

IPL (Ellipse FLEX®, VL-2; λ: 555-950 nm, fluence: 4, 8, and 12 J/cm
2
). They 

suggested that the induction of IL-10 and TGF-β1 may contribute to the anti-

inflammatory effect of IPL in inflammatory dermatoses
154

. 

 

In another study, Wong et al
168

 investigated the effects of IPL on extracellular matrix 

(ECM) proteins and TGF-β1 by exposing human dermal fibroblasts cultured in 

contracted collagen lattices to IPL (PhotoDerm VL/PL system, Lumenis Ltd., Yoknem, 

Israel; 570-nm cut-off filter, fluence: 20, 50, and 75 J/cm
2
, triple pulses of pulse 

duration: 7 ms and pulse delay: 70 ms). After 24 hours, mRNA and protein levels of 

extracellular matrix proteins and TGF-β1 were analysed using quantitative real-time 

PCR and ELISA, respectively. They found that the mRNA levels of collagen III 

(increased to 171%, 257%, and 272% of the control, corresponding to fluences of 25, 

50, and 75 J/cm
2
, respectively; p = 0.02) and the TGF-β1 mRNA (increased to 116%, 

113%, and 145, respectively; p = 0.02) and protein levels (increased to 102%, 109%, 

and 134%, respectively; p = 0.04) in dermal fibroblasts were upregulated. Taking into 

consideration the results of this study and that of a previous study that showed down-

regulated MMP expression following IPL treatment
164

, the authors provided a potential 

explanation for the cutaneous effects of IPL. They suggested that it involves the 

inhibition of extracellular matrix destruction by reducing MMP expression directly by 
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IPL irradiation and indirectly via IPL-induced TGF-β1 expression and also involves 

enhanced extracellular matrix construction by upregulation of collagen III and TGF-

β1
168

.  

 

Interestingly, in a recent in vitro study
169

, depending on the fluence setting there was a 

bidirectional influence of IPL (Miracle Laser Ltd., China; λ = 560-1200 nm, fluence: 0, 

10,18, 27, 36, 72 J/cm
2
, spot size: 8 x 34 mm, triple pulse of pulse duration: 4.2 ms and 

pulse delay: 40 ms) on the secretion of MMP-1 (only enhanced secretion at 10 J/cm
2
) 

and TGF-β1 (inhibited at fluence ≤ 36 J/cm
2
, but enhanced at 72 J/cm

2
) by human skin 

fibroblasts
169

. 

 

As mentioned in the previous section, Choi et al
110

 demonstrated an increase in TGF-β 

expression following IPL treatment in patients with facial acne vulgaris. However, the 

study by this group is the only one that has investigated the molecular effect of IPL in 

acne vulgaris
110

. Further studies are needed to corroborate these findings. On the basis 

of these facts, it would be interesting to understand the molecular biology and effects 

of TGF-β and to explore its association with the resolution of acne vulgaris. 

 

At this point of time, data on the molecular effects of IPL is minimal and mostly 

anecdotal. Robust studies using similar IPL parameters, having adequate sample size 

and correlating clinical efficacy of IPL with its molecular effects are warranted to 

ensure that the interpretation of the post-treatment changes are more comparable and 

more reliable. Almost all the studies investigating its underlying mechanism are based 

on its photorejuvenation effect. Thus, emphasizing the requirement of future studies to 

look more closely at IPL’s mechanism of action in the treatment of acne vulgaris. 
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Chapter 3: Transforming Growth Factor-Beta 

3.1 Introduction  

 

Transforming growth factor beta (TGF-β)  belongs to a family of multifunctional 

peptide growth factors that comprise of the TGF-β subfamily, bone morphogenetic 

proteins (BMPs), activins, inhibins, nodals, mullerian inhibitory factor and various 

other structurally related members 
171

. They regulate a myriad of biological functions 

such as growth and development (both adult and embryonic), repair and remodelling, 

and inflammation and host immunity
172,173

. TGF-β is ubiquitously expressed by nearly 

all cells and exerts a diverse and broad range of effects through a complex cell
 
surface 

receptor system in a context-dependent manner
174

. 

 

Structurally, TGF-β is composed of several extended β-sheets stabilized by a common 

structural knot motif (“cysteine knot”) composed of six cysteine residues that form 

three intrachain disulfide bonds
175,176

. Active TGF-β is a 25 kDa dimer stabilized by 

hydrophobic interactions and by an interchain disulfide bond formed by the seventh 

free cysteine of each monomeric unit
176

. 

 

Three structurally nearly identical (76-80% amino acid sequence homology) isoforms 

of TGF-β have been currently identified in mammals: TGF-β1, TGF-β2 and TGF-

β3
177,178

. Among these isoforms, TGF-β1 is the one that has been predominantly 

researched in most tissues, including skin
179,180

. Despite a high level of sequence 

similarity and some overlapping functions, the three isoforms have been demonstrated 

to exert distinct biologic effects in vivo. The differences in the effects of the TGF-β 

isoforms are most clearly defined in data from studies conducted on transgenic 

knockout mouse models
181-184

.  

 

TGF-β1 knockout mice die by 3 to 4 weeks of age due to the development of a wasting 

syndrome and severe autoimmune-like multifocal inflammatory reaction resulting in 

multi-organ failure
181,182

. Targeted disruption of TGF-β2 resulted in perinatal mortality 

due to multiple developmental defects that are incompatible with life after birth
184

. 

These include cardiopulmonary, craniofacial, limb, spinal column, visual, auditory, 

neural and urogenital defects
184

. Mice lacking TGF-β3 had delayed pulmonary 
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development and cleft palate with no other craniofacial anomalies and died 

immediately after birth due to an inability to suckle effectively
183

. These differences in 

phenotypic expression suggest that these TGF-β isoforms have different roles in vivo.  

 

Furthermore, the temporal-spatial expression of the TGF-β isoforms have been 

reported to be very different
185,186

. In normal skin, TGF-β1 expression in the epidermis 

was mild to moderate and was mainly localised to the upper differentiated layers, the 

stratum granulosum and stratum corneum 
185,186

. Among the appendageal structures, it 

was present only in the inner keratinizing layers of the hair follicles and was not 

detected in the sweat glands or sebaceous glands
185

. TGF-β1 was absent in all dermal 

mesenchymal structures
185

. In contrast, TGF-β2 and, to a lesser extent, TGF-β3 were 

expressed throughout the epidermis and in both the outer and inner root sheaths of hair 

follicles
185,186

. Sebaceous glands showed immunoreactivity that was particularly strong 

for TGF-β3. Neither TGF-β2 nor TGF-β3 was present in sweat glands. TGF-β2 and 

TGF-β3 immunoreactivity were observed in smooth muscle cells of dermal arteries 

and arrector pili muscles
185

. TGF-β3 immunoreactivity was more extensive in the 

dermis with strong immunostaining in most dermal fibroblasts
185

. In addition, TGF-β 

isoforms have been shown to be differentially expressed (both spatially and 

temporally) during embryogenesis, differentiation, tissue repair, and in disease 

states
185-192

. This indicates that the TGF-β isoform expression in human skin is 

differentially regulated, and their distribution is varied and complex. The relative roles 

of different TGF-β isoforms in vivo may be influenced by their local availability 

and/or the regulation of their conversion from latent into active form
193

. 

 

3.2 Latent TGF-β (LTGF-β) 

 

TGF-β is secreted from cells in a latent form (LTGF-β) that is composed of 390-414 

amino acids
171

. The liberation of TGF-β from this latent state is critical for signalling 

(Figure 3.1)
194

.  
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Figure 3.1 Processing of Latent TGF-β to form small and large latent complexes 
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The precursor form is converted to pro-TGF-β by cleavage of its amino terminal 

hydrophobic peptide signal region
171,195

. This pro-TGF-β undergoes cleavage between 

amino acids 278 and 279 in the trans-golgi by furin convertase to form a pro-peptide 

and mature TGF-β
196

. However, the propeptide remains non-covalently associated with 

the mature TGF-β, and this interaction maintains the latency 
194,195

. This latent form 

cannot interact with its receptors and requires activation for biological activity
197

. 

There are two forms of latent TGF-β (Figure 3.1), which are: 

 

 Small latent complexes (SLC), in which the active TGF-β dimer is 

noncovalently associated with a propeptide, the dimeric latency-associated 

peptide (LAP). 

 Large latent complexes (LLC), which are composed of the active TGF-β dimer, 

LAP, and the latent TGF-β -binding protein (LTBP), which is disulphide 

bonded to the LAP.  

 

3.2.1 Latency-associated peptide (LAP) 

 

The propeptide that is noncovalently associated to TGF-β at the N-terminal is referred 

to as the latency associated peptide or LAP
195

. It is a homodimer that confers latency to 

TGF-β, and also ensures proper folding and secretion of TGF-β
198

. LAP consists of 

three N-glycosylated asparagine residues, of which two have mannose-6 phosphate 

groups that can interact with cell surface mannose-6-phosphate/insulin-like growth 

factor II receptors
195

. They have 3 cysteine residues at positions 33, 223 and 225 
199

. 

Cys
33

 is involved in binding to the LTBP, whereas Cys
223

 and Cys
225

 are required for 

dimerisation of LAP monomers
199

. Brunner et al
199

 demonstrated that substitution of 

cysteine with serine at positions 223 and 225 of the LAP resulted in the release of  

bioactive TGF-β1, suggesting that dimerisation of LAP may be necessary for latency. 

Mutations in the region of these cysteines of LAP cause an autosomal dominant 

disorder called Camurati-Engelmann disease that is characterised by hyperosteosis and 

sclerosis of the diaphysis of long bones
200

. All these mutations affect the dimerisation 

of LAP, consequently impairing its ability to keep TGF-β in its latent form
200

. 
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LAP also imparts latency to TGF-β by concealing the type II receptor binding site on 

the mature TGF-β dimer
201

.There are 3 key regions in the LAP that contribute to the 

assembly and stability of latent TGF-β, which are the N-terminus TGF-β binding site, 

the LTBP binding site and the point of LAP dimerisation at the C-terminal
201

. In a 

recent study, Walton and co-workers
201

 used in vitro mutagenesis and functional 

analyses and identified the residues in these key regions of the LAP (Table 3.1). 

 

Table 3.1 Residues at the key LAP regions that facilitate assembly of LLC 

Key LAP regions Residues 

TGF-β binding site Ile
53

-Leu
59

  

LTBP binding epitope Arg
45

, Arg
50

, Lys
56

 and Arg
58 

LAP dimerisation interphase Trp
195

-Cys
225

  

(Adapted from Walton et al
201

, 2010) 

 

In an animal model for scleroderma, Zhang et al
202

 demonstrated that LAP could 

prevent TGF-β1 induced fibrosis. This effect could be due to the fact that association 

with LAP will keep TGF-β1 in the latent form and prevent TGF-β signalling. 

However, the immunoregulatory effect of TGF-β1 was not inhibited by LAP as 

opposed to anti-TGF-β1 antibodies, which abrogate both the pro-fibrotic as well as the 

immunoregulatory activities of TGF-β1
202

. The authors attributed this unperturbed 

immunomodulatory effect to previously synthesized TGF-β1 that is present bound to 

the tissue matrix, and suggested that LAP may not have a role in immunoregulation. 

 

On the contrary, subsequent studies demonstrated that LAP does have an 

immunomodulatory effect
203-205

. Gandhi and co-workers
203

 demonstrated that 

immature dendritic cells may inhibit T-cell activation by surface expression of LAP, in 

a TGF-β-dependent manner. More recently, this group identified a novel population of 

regulatory T-cells that express LAP (CD4
+ 

LAP
+ 

T-cells) and exhibit in vitro TGF-β 

and IL-10-dependent suppressive activity
204

. 

 

Moreover, Ali and colleagues
205

 suggested that LAP has immunomodulatory activity 

independent of TGF-β1, which was demonstrated by TGF-β1-independent monocyte 
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chemotaxis both in vitro and in vivo, and suppression of delayed type hypersensitivity 

reaction in vivo.  

 

3.2.2 Latent TGF-β -binding protein (LTBP) 

 

Latent TGF-β is usually secreted as a large tripartite complex, which is formed by the 

linking of the small latent complex (TGF-β and LAP) to the latent TGF-β -binding 

protein (LTBP)
195

. LTBP does not confer latency, but serves to bind TGF-β to the 

extracellular matrix and to enable its proteolytic activation
177

.  

 

LTBPs are high molecular weight glycoproteins that share structural homology with 

fibrillins, and together they comprise the LTBP/fibrillin protein
 
family

206
. So far, four 

isoforms of LTBP (LTBPs 1-4) and several splice variants have been identified
206

. 

Based on their ability to bind to LAP, LTBP-1, LTBP-3 and LTBP-4
 
form a subgroup 

within this family
207

. Fibrillins and LTBP-2 do not bind to LAP
207

. LTBP-1 & -3 bind 

to the SLC of all 3 TGF-β isoforms, whereas LTBP-4 binds weakly only to the SLC of 

TGF-β1
207

.  

 

LTBPs are characterized by multiple EGF-like
 
repeats and 8-Cys residues/domains

208
. 

The structure of all LTBPs is composed of four parts, the N-terminal region, the hinge 

domain, central core of epidermal growth factor (EGF)-like
 
repeats and the C-terminal 

region (Figure 3.2)
209

.  
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Figure 3.2 Schematic illustration of structure of the Latent TGF-β Binding 

Protein 

 

The N-terminal region is composed of two to three EGF-like repeats and two 8-Cys 

domains, of which the first domain from the N-terminal end is called the hybrid 

domain (sequence similar to both EGF-like
 
repeats and 8-Cys residues)

209,210
. This N-

terminal region is mostly involved in interaction with the extracellular matrix as it 

contains transglutaminase substrate motifs, and transglutaminase is essential for 

extracellular matrix association of LTBP
209,210

. The third 8-Cys domain of LTBP-1,-3 

and -4 has been identified as the LAP binding site
207

. The exact functions of the 

remaining 8-cys domains are not known. They probably facilitate the localisation of 

LTBPs
 
to the extracellular matrix

206
.  

 

Chen and colleagues
211

 using fluorescence resonance energy transfer analysis revealed 

that negatively charged amino acids surrounded the 2, 6 disulphide bond in the TGF-β-

binding 8-cys domain, and these contributed to the electrostatic forces that initiate 

interaction of the SLC with the TGF-β-binding 8-cys domain. As previously 

mentioned, Walton et al
201

 recently identified positively charged residues (Table 3.1) 

at the LTBP binding epitope of LAP corresponding to the negatively charged residues 

identified by Chen et al
211

. These findings suggest that initial electrostatic interactions 

between the LAP and LTBP precede covalent bonding between these two molecules. 
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The key role of LTBP is to target or localise latent TGF-β to the ECM
212

. Owing to the 

structural similarity with fibrillins, LTBPs are also thought to be a structural 

component of the ECM
194,212

. In addition, LTBPs interact with several ECM 

components such as collagen, fibrillin and fibronectin
213,214

.  

 

To evaluate the role of LTBP in TGF-β regulation, Yoshinaga and colleagues
194

 bred 

mutant mice in which the cysteine residue (Cys
33

) that binds TGF-β1-LAP to LTBP 

was substituted with serine, thereby preventing formation of the LLC. These mutant 

mice had multiorgan inflammation, lack of skin Langerhans cells, a reduced lifespan, 

and tumours of the stomach, rectum, and anus. The observed phenotype was consistent 

with decreased TGF-β1 levels, but was not as severe as with TGF-β1(
-/-

) null mice
194

. 

The findings of this study suggest that association with LTBP is important for efficient 

TGF-β1 functioning.  

 

In the absence of LTBP, the SLC is secreted slowly and is misfolded due to aberrant 

covalent bond formation between the Cys
33

 of the LAP and a cysteine in mature TGF-

β
215

. Therefore, LTBPs are considered to enhance the secretion of SLC and ensures its 

proper folding by correct disulphide bonding
215

. 

 

Interestingly, a considerable amount of LTBPs are secreted by cells without TGF-β, 

indicating that LTBPs may have some other functions that are independent of TGF-

β
216

. Moreover, LTBP-2 does not bind to the SLC suggesting that it has a role 

unrelated to TGF-β regulation
216

.  

 

In brief, LTBPs may function as localisers of TGF- β to the ECM, structural 

components of the ECM, enhancers of SLC secretion, and as regulators of TGF-β 

availability. 

 

3.2.3 Activation of latent TGF-β 

 

Active TGF-β is essential for TGF-β signalling to take place. Therefore, activation of 

TGF-β plays an important role in controlling its biological activity
197

. Activation of the 

latent forms of TGF-β can occur either by cleavage of the LAP (by various proteases, 
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such as plasmin, thrombin, plasma transglutaminase, or endoglycosylases) or by 

conformational changes of the latent TGF-β complex (by physical interactions of LAP 

with proteins, such as thrombospondin-1) that exposes the TGF-β receptor binding 

site
177,197,217

. This allows release of bioactive TGF-β and its subsequent interaction with 

specific receptors. In vitro, the latent forms of TGF-β can be activated by various 

mechanisms such as increases in temperature, extremes of pH, chaotropic agents (urea, 

guandine hydrochloride), and detergents
197,218

.  

 

Barcellos-Hoff et al
219

 demonstrated that production of reactive oxygen species either 

in vitro (using ionizing radiation or metal ion-catalyzed ascorbate reaction) or in vivo 

(by exposure to ionizing radiation) activated latent TGF-β. This type of activation 

probably involves site specific oxidation of certain amino acids (cysteine or 

methionine) residues in the LAP, which elicits a conformational change and releases 

free active TGF-β
219

.  

 

Several other agents have also been implicated as activators of TGF-β, such as 

retinoids, glycosidases, vitamin D3 derivatives, and glucocorticoids
195,208,220,221

. All 

these data suggest that multiple mechanisms exist for latent TGF-β activation. 

Decoding the mechanism of activation of latent TGF-β is essential for a better 

understanding of the action of this cytokine. The proper regulation of latency and 

activation of TGF-β is vital for the functioning of this cytokine, as any dysregulation 

may lead to dire pathological consequences
222

. Therefore, understanding latency, 

targeting and activation of this molecule is important.  

 

3.3 TGF-β receptor 

 

TGF-β elicits its cellular responses by binding to a family of transmembrane cell 

surface receptors that have intrinsic serine/threonine kinase activity
223

. They form an 

exclusive ligand-receptor system, as the TGF-β receptor family is the only known 

signalling receptor for TGF-β and these receptors can be activated only by ligands of 

this family
208

. The TGF-β receptors are subdivided into type I (TGF-βRI) and type II 

(TGF-βRII) receptors
224

. Structurally, they are composed of a cysteine-rich 

extracellular ligand binding domain, a hydrophobic transmembrane region and an 
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intracellular serine/threonine kinase domain. A characteristic GS domain formed by the 

SGSGSG (glycine-serine repeat) sequence is present in the juxtamembrane domain of 

type I, but not in type II receptors
225

. TGF-βRI and II exist as homodimers on the cell 

surface, but on ligand binding they assemble together as a heteromeric complex
208

. 

 

TGF-βRII is a constitutively active
 
kinase, whereas the kinase activity of TGF-βRI 

needs to be activated
 
by TGF-βRII

224,225
. TGF-β1 and TGF-β3 binds with high affinity 

to TGF-βRII, whereas TGF-β2 does so weakly
226

. This differential isoform binding 

affinity of TGF-βRII was investigated by De Crescenzo et al
226

, and they attributed the 

low affinity binding of TGF-β2 to three amino acid residues at the ligand-receptor 

interface. 

 

In normal skin, TGF-βRI is abundantly expressed in the upper differentiated layers of 

the epidermis
227

. TGF-βRII is moderately expressed in all epidermal layers and in the 

follicular epithelium
192,228,229

. Weak expression of TGF-βRI and TGF-βRII was found 

in dermal fibroblasts and endothelial cells
228,230

. The ratio of TGF-βRII to TGF-βRI 

may also influence TGF-β-mediated responses, more of which will be discussed later 

on
231

.  

 

3.3.1 Accessory receptors 

 

A third cell surface transmembrane receptor, betaglycan also known as TGF-βRIII is a 

highly glycosylated protein consisting of a large extracellular region and a short 

cytoplasmic tail that does not have any kinase activity
208

. Betaglycan enhances TGF-β-

mediated signalling by allowing high-affinity binding of TGF-β to TGF-βRII
232

. 

However, it has no intrinsic signalling activity. It enhances the receptor binding 

affinity of TGF-β2, which otherwise binds to TGF-βRII with low affinity. Betaglycan 

possibly alters the conformation of TGF-β2 to facilitate this interaction
232

. 

 

This function of betaglycan was further supported by the findings of a study conducted 

by Stenvers and colleagues
233

, in which primary fibroblasts generated from TGF-

βRIII-null mice embryos revealed significantly
 
reduced responsiveness to TGF-β2, in 

terms of reduction in growth inhibition,
 
reporter gene activation, and Smad2 nuclear 
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localisation. In contrast, the response to the other TGF-β isoforms was not significantly 

altered
233

.  

 

In contrast to the abovementioned membrane-bound form of betaglycan, the soluble 

form (formed by release of the extracellular domain from the cell surface) has been 

shown to sequester and inhibit TGF-β function in cell cultures
234

. Adding more 

ambiguity to the issue, another study showed that membrane-bound betaglycans that 

have undergone glycosaminoglycan modifications, can inhibit TGF-β signalling in 

epithelial cells by preventing the association between TGF-βRI and TGF-βRII
235

. It is 

evident from the contradictory findings of these studies that the role of betaglycan still 

remains to be clarified. It is also possible that betaglycan functions in a context 

dependant fashion either as an enhancer or inhibitor of TGF-β signalling. 

 

Endoglin is a homodimeric glycoprotein that is highly expressed in endothelial cells 

that binds to TGF-βRI and TGF-βRII. It is structurally related to betaglycan but lacks 

glycosaminoglycan chains. The exact function of endoglin in TGF-β signalling is not 

known, but it is considered to have a role in vascular development, remodelling and 

homeostasis
236

. Furthermore, in mouse skin carcinogenesis, endoglin was shown to act 

as a suppressor of malignancy
236

. Several other accessory receptors such as 

glycosylphosphatidylinositol (GPI)-anchored proteins may also serve as accessory 

receptors for TGF-β. 

 

3.4 TGF-β signalling 

 

TGF-β initiates signalling by binding to the type II receptor (TGF-βRII), which in turn 

recruits, forms a complex with and phosphorylates the type I receptor (TGF-βRI)
176

. 

The activated TGF-βRI then phosphorylates downstream mediators, the Smad 

proteins
176,237

.  

 

Smads are intercellular mediators or signal transducers of the TGF-β signalling 

pathway. They are derived from the Sma and MAD (mothers against decapentaplegic) 

gene homologues in Caenorhabditis elegans and Drosophila melanogaster, 

respectively
238,239

. The Smads are transcription factors that in the basal state are
 
mostly 
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localized in the cytoplasm
237,240

. Eight Smads have been identified in the mammalian 

genome
208

. 

 

 

Figure 3.3 Classification of mammalian Smad proteins 

 

Smad proteins are classified into three functional groups (Figure 3.3)
176,177,217

:  

 Receptor-associated Smads (R-Smads), which directly interact with activated 

type I receptors in a ligand-specific manner (SMAD1, 2, 3, 5, and 8). Based on 

the type of receptor they are phosphorylated by, R-Smads are further 

subdivided into BMP-Smads (Smad1, Smad5 and Smad8 are phosphorylated 

by BMP type I receptors) and TGF-β-Smads (Smad2 and Smad3 are activated 

by TGF-β and activin type I receptors). 

 Co-mediator Smad (Co-Smad), a common mediator of all TGF-β family 

members (Smad4), and 

 Inhibitory Smads (I-Smads), SMADs (SMAD6, 7) that antagonise the 

signalling function of R-Smads & Co-Smad. Smad 6 inhibits BMP signalling, 

whereas Smad 7 can inhibit both TGF-β and BMP signalling. 
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linked 

Smad 2 

Smad 3 
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Unlike the targeted disruptions of Smad2 and 4 that are embryonically lethal, the 

targeted disruption of Smad3 resulted in the birth of viable mutant mice
241,242

. The 

Smad3 null mice are smaller than their wild-type littermates and were demonstrated to 

have limb deformities
2
. These mutant mice develop a progressive wasting illness, with 

an onset around the time of weaning and typically die between one to eight months of 

age. The lethality of these Smad3 knock-out mice have been attributed massive 

inflammation due to leukocytosis, reduced T-cell responsiveness to TGF-β, and 

impaired mucosal immunity
241

. In addition, Smad3 disruption was also demonstrated 

to abrogate the antiproliferative effect of TGF-β
242

. Collectively, these findings suggest 

that Smad3 plays an important role in mediating the antiproliferative and 

immunomodulatory effects of TGF-β. 

 

 

Figure 3.4 Schematic representation of the structure and functions of R-Smads 

 

Smad proteins consist of two globular highly conserved MAD homology (MH) 

domains (Figure 3.4), referred to as MH1 (N-terminal) and MH2 (C-terminal)
243,244

. 

The MH1 domain is highly conserved among R-Smads and co-Smads
245

. In contrast, 

the N-terminal of I-Smads have only slight similarity to MH1 domains of the other 

Smads
245

. The MH1 domain of R-Smads and co-Smads have DNA-binding activity
244

. 

The crystal structure of the MH1 domain constitutes a compact globular fold, with four 

α helices, six short β strands, and five loops
244

. A DNA-binding motif, the β hairpin 

loop present in this structure interacts with the major groove in DNA
244

. One exception 

is Smad2, which has an insertion encoded by exon3 that does not allow DNA 

binding
246

. Deletion of exon3 from Smad2 enabled DNA binding. The MH1 domain 
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also interacts with various DNA-binding proteins and transcription factors
243

. 

Furthermore, in R-Smads and Smad4 this domain has a nuclear localisation signal 

(NLS) that may regulate nuclear import (translocation of the protein from the 

cytoplasm to the nucleus)
247,248

. 

 

The MH2 domain is highly conserved among all Smads
245

. The MH2 domain is 

responsible for protein-protein interactions (with cytoplasmic anchors, nuclear proteins 

and other Smads) and in the case of R-Smads for receptor binding
245

. The R-Smads 

have a characteristic Ser-Ser-X-Ser (SSXS) motif at their C-terminal end, the two most 

C-terminal
 

serine residues of which are phosphorylated by the activated TGF-

βRI
249,250

.  The co-Smads cannot be phosphorylated by TGF-βRI as they lack the SSXS 

motif
208

.  

 

The MH1 and MH2 domains are connected by an intervening proline-rich linker region 

that is highly variable in its size and sequence
208

. Key regulatory peptide motifs exist in 

this region such as the proline-tyrosine (PY) motif (bind ubiquitin ligases of Smurf) 

and several phosphorylation sites for mitogen-activated protein kinases, 

Ca
2+

/calmodulin-dependent protein
 
kinase II (CamKII) and protein kinase C

 
(PKC)

245
. 

 

The R-smads remain inactive in the basal state due to a mutual autoihibitory interaction 

between the MH1 and MH2 domains
171,251

. They are made accessible to the TGF-βRI 

for phosphorylation by a protein known as the Smad anchor for receptor activation 

(SARA) 
208

. Microtubules also serve as a cytoplasmic anchor for inactive
 
Smads

245
. 

Phosphorylation of the serine residues at the C-terminal of the R-smads leads to 

activation of R-Smad and also a change in its conformation, which ultimately leads to 

its dissociation from TGF-βRI and from its cytoplasmic anchors (SARA, microtubular 

network)
217

. In addition, receptor-mediated phosphorylation exposes various epitopes 

on the Smad surface such as those involved in nuclear import and transcription 

regulation, and enhances the affinity of R-Smads for Smad 4
245

.  Smad
 
oligomerisation 

is also thought to occur following phosphorylation
245

. The phosporylated R-Smads 

then recruit the Co-Smad, Smad 4 to form a complex with it that facilitates nuclear 

translocation
243

. Unphosphorylated R-Smads are considered to exist as monomers
245

. 

However, the stoichiometry of the R-Smad-Co-Smad complexes is controversial and 

needs to be further clarified with structural studies
245

.  
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In the nucleus this Smad complex interacts with various co-activators or corepressors 

and associates with the DNA-binding co-factor to bind to the DNA, and ultimately lead 

to target gene transcription. The TGF-β signalling pathway is schematically illustrated 

in Figure 3.5. 

 

 

Figure 3.5 TGF-β/Smad signalling pathway 

 

Depending on the cellular context and type, the activated Smad complex may 

positively or negatively regulate the expression of various target genes
208

. As 

previously discussed, the β-hairpin loop of the MH1 domain of R-Smads (with the 
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exception of long form of Smad2) and Smad4 possess intrinsic DNA-binding 

activity
244

. This β-hairpin loop was demonstrated to interact  through the incorporation 

of hydrogen bonds with a specific DNA sequence, 5′-GTCT-3′, or its complement 5′-

AGAC-3′, called the Smad-binding element (SBE)
244,252

. Smads have also been 

described to bind to GC-rich sequences in promoters
 
of certain genes

253
. Owing to their 

relatively low DNA binding affinity, Smads must interact with other DNA binding co-

factors/transcription factors
208

. The interaction of Smads with these transcription 

factors facilitates both high-affinity DNA binding and localisation of the Smad 

complex to a precise promoter region to elicit specific transcriptional responses
208

. 

Numerous transcription factors have been demonstrated to interact with Smads
243

. The 

diversity of the Smad-interacting transcription factors and their availability in different 

tissues or cells may in part be responsible for the varied response to TGF-β in each cell 

type and in different contexts
243

. Additionally, the Smad transcriptional complexes 

regulate transcriptional activity by recruiting co-activators or co-repressors to the 

promoter region
224

. Co-activators facilitate Smad transcription by bringing sequence-

specific transcription factors in close proximity to the RNA polymerase II 

complex
208,254

. Some of these transcriptional co-activators such as p300 and CBP 

possess intrinsic histone acetyltransferase (HAT) activity that facilitates target gene 

transcription by acetylation of histones and chromatin remodelling
208,224

. On the other 

hand, co-repressors repress Smad transcription
224

. Some transcriptional co-repressors 

(e.g., c-Ski, SnoN, and TGIF) recruit histone deacetylases (HDAC) to Smad 

complexes, thereby inhibiting Smad transcription
255,256

. Additionally, they can also 

repress transcription by competing with CBP/p300 for Smad interaction
255,256

.Another 

corepressor c-Myc directly associates with Smad2 and Smad3 at the promoter region 

and physically represses transcription
208

. These corepressors may also control the 

magnitude and duration of TGF-β signalling
257

. In the basal state, Ski and SnoN are 

associated with Smad3 and upon TGF-β stimulation they are rapidly degraded. 

However, their expression is rapidly induced by TGF-β, possibly contributing to the 

negative feedback loop
257

.  

 

The I-Smads act in an opposing manner to R-Smads in that they antagonise TGF-β 

signalling
208

. Although they have a conserved MH2 domain they differ structurally 

from the other Smads in that their N-terminal region only shows weak sequence 

homology with the MH1 domain of R-Smads and Co-Smads, and they lack the SSXS 
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motif
208

. They appear to exert their antagonistic action by various mechanisms. I-

Smads compete with R-Smads for binding to activated type I receptors and thus inhibit 

phosphorylation of R-Smads
258

. In addition to functioning as competitive inhibitors, 

they promote TGF-β receptor ubiquitination and degradation by recruiting E3-

ubiquitin ligases, known as Smad ubiquitination regulatory factor 1 (Smurf1) and 

Smurf2, to the activated type-I receptor, resulting in termination of signalling
259,260

. 

Recently, Shi and co-workers
261

 reported that Smad7 recruits a complex of GADD34 

(a regulatory subunit of the protein phosphatase 1 holoenzyme) and the catalytic 

subunit of protein phosphatase 1 (PP1c) to the activated TGF-βRI to dephosphorylate 

and inactivate it. In the basal state, I-Smads are predominantly nuclear in location and 

nuclear export of I-Smads occurs on ligand stimulation
262

. Further, ligand stimulation 

also induces I-Smad mRNA transcription, suggesting that they may act as 

autoregulatory negative-feedback signals in TGF-β signalling
263

. 

 

3.4.1 Termination of signalling 

 

Duration and intensity are important determinants for the signalling specificity of TGF-

β
264

. Taking into consideration the numerous functions of TGF-β, tight regulation of 

this pathway is essential for achieving normal cellular responses and for maintaining 

homeostasis
265

. Therefore, it is important to find out how TGF-β signalling is 

attenuated and terminated
264

. As previously discussed, inhibitory Smads (Smad6 and 7) 

and transcriptional co-repressors (c-Ski and SnoN) play an important role in the 

termination of TGF-β signalling. They are stimulated by TGF-β signalling and 

participate in a negative feedback mechanism so as to fine tune the duration and 

intensity of signalling
265

. The potential mechanisms considered to terminate Smad 

signalling in the nucleus are phosphatase-mediated dephosphorylation and 

ubiquitination- mediated proteosomal degradation of R-Smads
265

. Dephosphorylation 

is an important mechanism of Smad inactivation as phosphorylation plays a key role in 

the signalling pathway
208

. PPM1A (a metal ion-dependent protein phosphatase) was 

recently identified as a nuclear R-Smad phosphatase that directly dephosphorylates C-

terminal phosphorylated Smad1, 2 and 3
264

. Whether other Smad phosphatases exist, 

remain to be determined. R-Smads have been found to be ubiquitinated by various 

classes of E3 ubiquitin ligases known as Smad ubiquitination regulatory factor 
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(Smurf)
264

. The ubiquitinated proteins are then targeted for proteasomal degradation
264

. 

Smurf in association with I-Smads also mediates ubiquitination of activated TGF-β 

receptors, leading to their preoteosomal degradation
208

. 

 

Apart from the canonical Smad signalling pathway several non-Smad pathways are 

also considered to be involved in TGF-β signal transduction, such as the MAP kinase 

pathway, Rho-like GTPase signalling pathway, and phosphatidylinositol-3-

kinase/AKT pathway
208

. Although the knowledge on the Smad-independent pathways 

is limited at this point of time, it has been suggested that the disruption of the canonical 

Smad signalling pathway may unmask the stimulatory effects of TGF-β via the non-

Smad pathways
266

. 

 

3.5 Biological effects of TGF-β 

 

TGF-β is a pleiotropic cytokine that has a profound effect on various cellular processes 

including extracellular matrix formation, cell growth, apoptosis, differentiation, 

angiogenesis, and immune responses
208,267

. 

 

3.5.1 Effects of TGF-β on extracellular matrix  

 

The extracellular matrix (ECM) is a complex macromolecular structural network of 

proteins that serves as a structural scaffold for cells in tissues
208

. TGF-β is a key 

regulator of ECM remodelling and also a potent fibrogenic factor
268

. It regulates ECM 

composition by controlling matrix production and degradation and also regulates the 

adhesive interactions between cells and the ECM
208

. It controls matrix production 

through contextual regulation of the expression of ECM proteins
269-271

.  

 

TGF-β is the major regulator of extracellular matrix synthesis in human skin
272

. It is 

known to stimulate dermal fibroblast proliferation and causes fibroblasts and 

keratinocytes to increase production of the extracellular matrix components such as 

collagen, elastin, fibrillin, fibronectin, laminin, and integrins, while inhibiting 

extracellular matrix degradation
187,270,271,273-278

. 
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TGF-β1 and TGF-β2 are potent inducers of collagen gene expression and they regulate 

type I procollagen gene (COL1A2) transcription via the canonical Smad signalling 

pathway as well as alternate non-Smad pathways
275,276

. TGF-β1 and TGF-β2 also 

stimulates the expression of collagen VII, a major structural component of the 

cutaneous anchoring fibrils
271,277

. Furthermore, TGF-β1 and TGF-β2 may be involved 

in regulation of elastin expression during foetal development and tissue repair, as well 

as in pathological conditions
270

. 

 

Besides playing a role in matrix production, TGF-β also influences matrix degradation 

by downregulating the expression of enzymes that degrade the matrix such as 

interstitial collagenases and plasminogen activator, and by increasing production of 

protease inhibitors such as PAI-1 (plasminogen activator inhibitor type 1), TIMP-1 

(tissue inhibitor of metalloproteinases-1) and TIMP-3
279-282

.  Elevated matrix 

degrading activity was observed in transgenic mice with genetic disruption of TGF-β 

signalling, underscoring the role of TGF-β signalling in the negative regulation of 

matrix degrading enzymes
283

. This was further established in primary cultures of 

human dermal fibroblasts, where TGF-β was demonstrated to abrogate MMP-1 

activity
266

. The repression of MMP-1 activity by TGF-β has been demonstrated to be 

mediated via Smad3
266

. Therefore, the pathological matrix degradation that is 

characteristic of several diseases may be attributed to aberrant or impeded TGF-

β/Smad3 signalling. 

 

TGF-β can also modulate the expression of cell adhesion proteins and their receptors 

that mediate the interaction of the cells with ECM proteins
284

. As a result of its effects 

on ECM composition and cell-ECM adhesion, TGF-β plays a role in cell migration, 

invasion, wound healing and fibrosis
208

. 

 

3.5.2 Effects of TGF-β on cell proliferation 

 

The effect of TGF-β on cell proliferation is a significant and considerably researched 

area, particularly in epithelial cells. TGF-β is a potent regulator of cell proliferation, 

and its effects depend on the type of the target cells
285

. It inhibits proliferation of 
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epithelial, endothelial and hematopoietic cells, whereas it stimulates the growth of 

some mesenchymal cells, such as fibroblasts
285-287

. In epithelial cells, TGF-β exerts its 

cytostatic effects by downregulation of c-myc and/or the induction of cyclin dependent 

kinase inhibitors, resulting in cell cycle arrest at the G1 phase
288,289

. This growth 

inhibition has been demonstrated to be Smad3 dependent in epithelial cells
290

.  

 

Selective association of TGF-β1 with nonproliferating keratinocytes in the suprabasal 

layers of the epidermis and its exclusion from the proliferating keratinocytes in the 

basal layer suggest that it may be a physiological regulator of keratinocyte 

proliferation
291

. Moreover, keratinocytes in TGF-β1-deficient mice showed a higher 

proliferative index than the corresponding wild-type cells
292

. Sellheyer et al
293

 

demonstrated that transgenic mice with expression of TGF-β1 targeted to the epidermis 

had taut, shiny skin, they were rigid with restricted movement and breathing, and they 

died within 24 hours of birth. This skin phenotype demonstrates that  TGF-β1 

overexpression leads to inhibition of both normal skin development and epithelial cell 

proliferation
293

. 

 

In skin keratinocytes, TGF-β1 has been demonstrated to rapidly inhibit c-myc 

transcription
286,287

. Further, antisense c-myc oligonucleotides inhibit keratinocyte 

proliferation as effectively as TGF-β1, suggesting that repression of c-myc expression 

at the level of transcriptional initiation may be essential for TGF-β-induced growth 

inhibition
3,287,294-296

. It has been demonstrated that TGF-β1 induced growth inhibition 

involves synthesis or modification of a protein that may interact with the c-myc gene, 

resulting in inhibition of transcriptional initiation
287

. A few studies have suggested that 

the protein product of the retinoblastoma gene (pRB), or related proteins may be 

essential for TGF-β1 suppression of c-myc transcription
286,296,297

. TGF-β1 induced 

growth inhibition leads to a G1 growth arrest, and this inhibition is reversible
287,296,298

. 

TGF-β1 arrested growth of normal human keratinocytes within 52 hours and 79% of 

the growth-arrested cells were in the G0/G1-phase of the cell cycle, a situation that 

approaches that of the normal epidermis
299

.  

 

TGF-β1 also mediates cell cycle arrest through the induction of cyclin dependent 

kinase (CDK) inhibitors
288

. TGF-β1 treatment or Smad3 over-expression in mouse 

keratinocytes induced the expression of two CDK inhibitors, p16(ink4a) and 
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p19(ARF), whereas Smad3 depletion or Smad7 over-expression blocked their 

induction
288

. Thus, indicating that Smad3 is essential for the induction of p16
ink4a

 and 

p19
ARF

 by TGFβ1. Furthermore, inactivation of the genetic cdkn2a (ink4a/arf) tumor 

suppressor locus reduced sensitivity to TGF-β1 mediated cell cycle arrest, suggesting 

that the loss of TGF-β1 sensitivity may promote tumour development
288

. 

 

TGF-β markedly inhibited the growth of keratinocytes in the same manner under low 

and high Ca
2+

 conditions, suggesting that it is a strong growth inhibitor in both low and 

high Ca
2+

 environments
295

. These data indicate that growth inhibition of human 

keratinocytes by TGF-β is direct and not induced by differentiation
295

.  

 

In contrast, TGF-β exerts a differential proliferative effect on human dermal 

fibroblasts, which was found to be concentration-dependent, but isoform-

independent
300

. TGF-β regulates the proliferation of normal human skin fibroblasts 

depending on their developmental origin
285,300

. It strongly inhibits foetal fibroblast 

proliferation, whereas it stimulates the proliferation of adult fibroblasts
285,300

. 

Curcumin, a natural product used for wound healing was found to completely abrogate 

the inhibitory effect of TGF-β1 on human foetal skin fibroblasts, without affecting the 

stimulatory action on fibroblasts from adult donors, suggesting that the response of 

foetal and adult normal human skin fibroblasts to TGF-β may be regulated by distinct 

signalling pathways
285,300

. Moreover, the differential proliferative response of foetal 

and adult human skin fibroblasts to TGF-β, possibly mirrors the differences in their 

wound healing responses
300

. 

 

Interestingly, TGF-β1 can stimulate proliferation of fibroblasts at low concentration, 

but inhibit cell proliferation at  high concentrations of TGF-β1
301

. The exact 

mechanism underlying this bi-directional modulation of TGF-β1 in fibroblast 

proliferation is not known, but c-Ski a major co-repressor of TGF-β signalling is 

considered to play a role
301

. c-Ski expression decreased at high concentrations of TGF-

β1, but increased at low concentrations of TGF-β1
301

. In addition, knockdown of c-Ski 

abolished the bi-directional role of TGF-β1 on fibroblast proliferation
301

.  
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The growth regulatory effect of TGF-β is vital for tissue homeostasis, and escape from 

this response is characteristic of many tumour cells and hyperproliferative 

disorders
291,302

.  

 

3.5.3 Effects of TGF-β on apoptosis (programmed cell death) 

 

Depending on the cell type, state of differentiation and cellular context, TGF-β can 

exert either pro-apoptotic or anti-apoptotic effects. However, in most cases the 

response is pro-apoptotic
208

. TGF-β induced apoptosis is vital in the removal of 

damaged or abnormal cells from normal tissues 
303

.  

 

TGF-β potently induces apoptosis of epithelial cells, including interfollicular and 

follicular epithelium
304

. TGF-β2 appears to initiate catagen (regression) phase of the 

mammalian hair cycle via induction of apoptosis in anagen hair follicles 
304-307

. It can 

induce apoptosis in several other cell types as well, and this effect is often 

accompanied with growth inhibition
308

. 

 

3.5.4 Effects of TGF-β on cell differentiation 

 

In addition to being a potent inhibitor of keratinocyte growth, TGF-β can alter the 

differentiation pathway undertaken by keratinocytes
309

. Many studies have extensively 

investigated the growth inhibitory effect of TGF-β on keratinocytes. However, its role 

in regulating keratinocyte differentiation is still poorly defined
310

.   

 

Keratinocyte differentiation involves a complex sequence of morphological and 

biochemical modifications that ultimately terminally differentiate to form the stratum 

corneum
190

. The existence of a calcium gradient is key to normal epidermal 

differentiation
311

. The effect of TGF-β on human keratinocyte differentiation is Ca
2+

 

dependent, as it enhances keratinocyte differentiation  under high Ca
2+

 conditions, but 

inhibits it under low Ca
2+

 conditions
295

. There were isoforms-specific differences in 

keratinocyte differentiation
190

. TGF-β1 expression increased during calcium-induced 

differentiation, whereas TGF-β2 and TGF-β3 expression decreased during 
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differentiation suggesting that TGF-β1 may be associated with a more differentiated 

state
190

.  

 

Buschke et al
310

 demonstrated that impaired Smad signalling impeded epidermal 

differentiation, resulted in epidermal-to-mesenchymal transition and switched to an 

alternative differentiation program. Therefore, active Smad signalling is essential for 

terminal epidermal
 
differentiation

310
.   

 

In addition, TGF-β signalling plays an important role in mesenchymal differentiation, 

and in redirecting epithelial cells into mesenchymal differentiation (Epithelial-

Mesenchymal transition, EMT)
312

. TGF-β can either induce or repress differentiation 

of a cell by switching on or switching off the expression of differentiation marker 

genes in various cell types
208

. EMT is essential for normal embryonic development and 

can also be linked with pathological conditions such as cancer and fibrosis in adults
312

. 

 

The balance between cell growth and maturation is key to maintaining epidermal 

homeostasis
310,313

. Hence, TGF-β signalling plays an important role in maintaining 

homeostasis of the epidermis
299,309

. 

 

3.5.5 Effects of TGF-β on the immune system 

 

TGF-β1 is the predominant isoform within the immune system, and is a potent 

regulator of the immune response
314,315

. In the skin, TGF-β1 is produced by 

keratinocytes, fibroblasts and resident and infiltrating cells of the immune system
316

. 

As emphasized in studies on TGF-β knockout mice, TGF-β1 plays a key role in the 

maintenance of immune homeostasis
182,317

. It can modulate the proliferation, 

differentiation, and function of most classes of immune cells such as lymphocytes, 

macrophages, and dendritic cells
224

. It is predominantly considered to be an 

immunosuppressive molecule
224

. However, it exerts both positive and negative effects 

on inflammation and immune responses, depending on the cell type, the state of 

differentiation of the cells and the cytokine mileu
172

.  
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The bipolar effect of TGF-β on cells of the immune system is rather perplexing. At the 

early stages of an immune response TGF-β is released from local platelet stores and 

acts as a potent chemoattractant
316

. Subsequently, it also plays a role in resolution of 

inflammation by downregulating the inflammatory response through the inhibition of 

proliferation and inhibition of cytokine production by activated cells and by promoting 

apoptosis
267

. TGF-β inhibits T-cell proliferation by inhibiting IL-2 production via 

Smad3 and by downregulating the expression of cell cycle regulators such as cdk and 

c-myc
267,318,319

. TGF-β also antagonises IL-1 dependent T-lymphocyte proliferation 

and possibly exerts profound immunosuppressive effects on lymphocyte function in 

healthy human skin
320,321

. Furthermore, TGF-β inhibits differentiation of effector T-

cells by inhibiting the expression of transcription factors T-bet and GATA-3
322,323

. 

TGF-β also inhibits B-cell proliferation and differentiation
315

. Apart from inhibiting 

the function of inflammatory cells, TGF-β also suppresses immune responses by 

promoting the function of regulatory T-cells (Treg cells, also known as suppressor T-

cells) by inducing the expression of Foxp3 (forkhead box P3)
324,325

. Foxp3 suppresses 

the function of activated T-cells by inhibiting the expression of pro-inflammatory 

cytokines such as IL-2, IFN-γ, and IL-4
326

. In addition, to inhibiting pro-inflammatory 

cytokines it also promotes the production of the anti-inflammatory cytokine, IL-10
327

.  

 

In contrast, TGF-β in combination with IL-6/IL-21 induces the differentiation of pro-

inflammatory Th17 cells via Smad2
328

. However, the differentiation of Th17 cells is 

highly context dependent as it is impeded by several cytokines
315

. It has also been 

suggested that TGF-β is not directly required for Th17 cell differentiation, and that its 

inhibition of Th1 and Th2 differentiation indirectly promotes the differentiation of 

Th17 cells
329

. Recent studies on human cells indicate that murine Th17 cell 

differentiation differs from that in human Th17 cells
330,331

. These studies demonstrated 

that the cytokine combination essential for the priming of human Th17 cells differ 

from those needed to prime murine Th17 cells
330,331

. In humans, TGF-β was shown to 

inhibit Th17, Th1 and Th2 differentiation
331

. Further studies are required to clarify the 

role of TGF-β in Th17 cell differentiation. 

 

As with the TGF-β knock-out models, the Smad3 knock-out mice have also 

demonstrated immune dysregulation
241

. The T-cells in Smad3 knock-out mice were 

demonstrated to have an activated phenotype and a reduced responsiveness to TGF-
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β
241

. Furthermore, in a murine model of contact dermatitis, Smad3 deficiency enhanced 

the expression of pro-inflammatory Th2 and Th17 type cytokines
332

. These findings 

suggest that the immunosuppressive effects of TGF-β may be mediated via Smad3. 

 

3.6 Role of TGF-β in wound healing 

 

From the abovementioned data it is clear that TGF-β plays an important role in 

maintenance of epidermal homeostasis. Wound healing is one of the major homeostatic 

mechanisms that attempts to restore the structural and functional integrity of tissues
285

. 

In collaboration with several other growth factors and cytokines, TGF-β is involved in 

the different stages of wound healing and affects all participating cell types
333,334

. 

Following injury, TGF-β1 is released within wound tissues by keratinocytes, platelets, 

monocytes, macrophages and fibroblasts, and exerts many important functions, 

including reepithelialisation, fibroblast proliferation, wound contraction, inflammation, 

angiogenesis, and ECM deposition and remodelling
185,191,301,333-335

. TGF-β1 is also 

essential for initiating granulation tissue formation
334

.  

 

Of the three isoforms, TGF-β1 and TGF-β2 contribute to the healing process by 

improving tensile strength through an increase in synthesis of collagen and other 

matrix proteins, whereas TGF-β3 has been shown to reduce connective tissue 

deposition
189,334

. Consequently, TGF-β1 and TGF-β2 may induce cutaneous scarring, 

whereas TGF-β3 may prevent scarring
189

. There is a strong induction of TGF-β3 

expression at the later stages of wound healing after completion of the proliferative 

phase, which may be responsible for limiting the fibrotic response
191

. Increased 

expression of TGF-β3 during the early phase of wound healing could lead to inhibition 

of epithelial cell proliferation and delay in reepithelialization
191

. Smad3 may impede 

wound healing as it is involved in the inhibition of re-epithelialization
241,336

. In 

contrast, Smad4-deficient wounds had delayed wound closure and remodelling
337

.  

 

Profound differences exist between foetal and adult wound repair strategies. Foetal 

skin wounds heal without contraction and scarring, and with a minimal inflammatory 

response and normal collagen architecture
187,338

. TGF-β1 and β2 play a more 

prominent role in adult wound healing, whereas TGF-β3 is elevated in foetal 
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wounds
339

. The mechanism of scarless repair is not completely understood but is 

considered to involve differential expression of TGF-β isoforms, receptors and 

signalling mediators, and also involves coordinated keratinocyte-fibroblast cross-

talk
187,340,341

.  

 

Mucosal wound healing is similar to foetal wound healing in that both are 

characterised by rapid healing and a lack of scarring
342

. Comparable to foetal wound 

healing, altered levels of TGF-β1 and -β3 play a key role in the healing of the oral 

mucosa
342

. Reduced TGF-β1 expression along with an increase in the TGF-β3 to TGF-

β1 ratio is observed in oral wounds
342

. Therefore, the TGF-β3 to -β1 ratio appears to 

determine healing outcomes, with higher ratios leading to scar formation and lower 

ratios leading to scar reduction
189

. 

 

3.7 TGF-β in skin disorders 

 

Despite its potential involvement in the regulation of various physiological processes, 

TGF-β has also been linked to various pathological conditions. The dysfunction of 

TGF-β regulation has been demonstrated in developmental disorders, fibroproliferative 

diseases, cancer, various inflammatory diseases and in autoimmune diseases
343

. 

Increased or decreased TGF-β activity, due to alterations in the expression or 

mutations in the genes for the TGF-β isoforms or its signalling components are 

considered responsible for these conditions. 
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3.7.1 Cancer 

 

As previously discussed, TGF-β is a potent inhibitor of proliferation of epithelial cells 

and is responsible for apoptosis and differentiation. Owing to these functions, the 

elements of the TGF-β signalling pathway play a pivotal role in tumour 

suppression
236,288,344-346

. Consequently, a deficiency of TGF-β or a lack of 

responsiveness to TGF-β is associated with hyperproliferation and an increased risk for 

malignant conversion
292

. Paradoxically, many tumours over-express TGF-β
347

. The 

general assumption is that TGF-β acts as a tumour suppressor at the early stages of 

carcinogenesis, but switches to a tumour promoter mode at the late stages of 

carcinogenesis
344

. This role reversal from a tumour suppressor to a tumour promoter 

may be attributed to a cellular insensitivity to TGF-β-induced growth inhibition in the 

later stages
348-350

. Resistance of malignant cells to TGF-β has been linked to aberrant 

expression or mutations in the receptors, signalling proteins and/or transcription factors 

involved in the TGF-β pathway
345,346,348,350-352

. After escaping from growth inhibitory 

constraints, TGF-β facilitates tumour progression through increased angiogenesis, 

epithelial-mesenchymal transition and by evading immune surveillance
344,347,348,353

.  

 

Several reports have shown that TGF-β receptors are downregulated in malignant skin 

tumours. A decrease in the expression of TGF-βRII and to a lesser extent TGF-βRI has 

been demonstrated in squamous cell carcinomas (SCC) 
230,354-356

. This may be 

associated with a loss of responsiveness to TGF-β, suggesting that aberrant TGF-βRII 

expression is a contributing factor to the pathogenesis of SCC. The expression of TGF-

βRI and TGF-βRII also correlated with the level of differentiation of SCC, as the 

expression decreases when the tumours become more aggressive and less 

differentiated
230,354

.  Similar alterations in TGF-β receptors have also been described in 

other malignant skin tumours such as basal cell carcinoma, dermatofibrosarcoma, 

cutaneous T-cell lymphoma and Kaposi's sarcoma 
350,357-359

. In addition to the TGF-β 

receptors, mutations or alterations in the expression of the Smads and other 

downstream mediators of TGF-β have also been identified in skin tumours
346,359

. In 

contrast with the above mentioned tumours, no aberrations in the TGF-β signalling 

mediators have been identified in melanoma that could explain their resistance to the 

growth inhibitory activity of TGF-β
347,360

. One potential explanation for specific 

escape from the antiproliferative activity of TGF-β is that melanoma cells express high 
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levels of both c-Ski and SnoN, which are negative regulators in the TGF-β signalling 

pathway 
351,361

.  

 

The dual role of TGF-β in carcinogenesis is still not completely understood. Its effects 

are complex and may depend on several factors such as the type and the stage of the 

tumour, the genetic makeup of the cells, and the tumour microenvironment
355,362

. But 

the general paradigm is that in early tumour stages, transformed epithelial cells are 

usually sensitive to TGF-β-mediated growth inhibition and in later stages the epithelial 

cells frequently escape from TGF-β growth control and TGF-β may act as a tumour 

progression promoter
362

. 

 

3.7.2 Scarring and Fibrosis 

 

Both positive and negative influences of TGF-β1 on wound healing have been 

reported
333

. Excessive and prolonged TGF-β1 at the wound site does not benefit wound 

healing, but may lead to dermal scarring and fibrosis
333,335

. TGF-β1 and -β2 are 

considered to be profibrotic, whereas TGF-β3 is thought to reduce scarring by 

promoting ordered dermal remodelling
189,363

. 

 

TGF-β has been linked to fibrotic diseases such as keloids, hypertrophic scarring, and 

scleroderma.  Overproduction of profibrotic TGF- β1 and -β2 can result in excessive 

deposition of scar tissue and fibrosis, whereas TGF-β3 is thought to reduce scarring
189

. 

The TGF-β signalling components (TGF-β isoform, receptor, Smad) and collagen type 

I have increased expression with increasing gestational age in keratinocytes
187

.  

 

A number of studies have reported that the expression of TGF-β1 and TGF-β2 are 

elevated in keloid fibroblasts, while the expression of TGF-β3 was downregulated 

188,364-366
. In addition to the ligands, TGF-β receptors (types I and II) and Smad3 

phosphorylation were increased and Smad7 expression was decreased in keloids, 

suggesting that increased TGF-β signalling has a potential profibrotic role in keloid 

pathogenesis
364,367

. Also, TGF-βRI/TGF-βRII ratio was increased in keloid fibroblasts 

and these keloid fibroblasts show a unique sensitivity to TGF-β ligand stimulation
366

. 

In hypertrophic scars, the expression of TGF-β1, TGF-β2, TGF-βRI and TIMP-1 were 
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increased, whereas expression of TGF-β3 and TGF-βRII were decreased when 

compared with normal skin
368-370

. These findings suggest that TGF-β signalling has a 

pivotal role in the pathogenesis of keloids and hypertrophic scars. However, genetic 

studies performed to date have not found any association between TGF-β 

polymorphisms and the risk of keloid and hypertrophic scar formation
371,372

. 

 

TGF-β has also been linked to the pathogenesis of scleroderma, a generalized or 

localized connective tissue disorder characterized by inflammation and fibrosis of the 

skin and/or other target organs
373-375

. Mast cell counts, particularly degranulating mast 

cells which secrete TGF-β are elevated in the skin of patients with scleroderma 
376,377

. 

The expression of TGF-β, particularly TGF-β2, and TGF-β receptors are increased and 

also p300 expression is elevated in lesional tissue suggesting that dysregulated TGF-β 

signalling may be involved in the pathologic fibrotic process of scleroderma
373,376,378-

382
. 

 

3.7.3 Impaired wound healing 

 

In contrast, low expression of TGF-β or its mediators may impede the healing process. 

TGF-β signalling is deranged in the setting of chronic, nonhealing ulcers
383

. TGF-β1 

expression is essential for re-epithelialization of human skin wounds
227

. Lack of TGF-

β1 expression in chronic wounds may be linked with their delayed or impaired healing 

response
227,384

. The elevated TGF-β1 expression observed in acute wound healing is 

absent in chronic non-healing ulcers, whereas TGF-β3 expression is enhanced in 

chronic ulcers
384

. This may partly contribute to the chronicity of such wounds
384

. 

Chronicity may also occur as a result of reduced expression of TGF-β receptors (TGF-

β1 and TGF-βRII) in chronic ulcers, rendering these ulcers unresponsive to TGF-

β1
385,386

. 

 

Further, the wound healing defect seen in glucocorticoid-treated animals has been 

attributed to the reduced expression of TGF-β1, TGF-β2, and TGF-βRII and increased 

expression of TGF-β3 and TGF-βRI
191

. Therefore, an imbalance in the levels of the 

elements of the TGF-β pathway may contribute to impaired wound healing responses.  
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3.7.4 Psoriasis  

 

Psoriasis vulgaris is a chronic inflammatory skin disorder characterized by 

hyperproliferation of keratinocytes
387

. TGF-β is considered to play a role in the 

pathogenesis of psoriasis, and this is supported by the fact that TGF-β regulates both 

keratinocyte growth as well as differentiation
291,388,389

. Apart from affecting 

keratinocyte growth and differentiation, several other functions of TGF-β may also be 

modulated by the pathomechanisms of psoriasis. TGF-β1 can impede adhesiveness of 

T lymphocytes to dermal microvascular endothelial cells, so reduction of its signalling 

may lead to lymphocyte infiltration into psoriatic plaques
390

. Also, TGF-β inhibits the 

acanthotic and degenerative effects of TGF-α and downregulates proliferative IL-2 

signalling
387,389,391

.  Moreover, calcipotriol, UV-B treatment and peptide T used in the 

treatment of psoriasis, induce the expression of TGF-β
392-394

. Thereby, suggesting that 

the antiproliferative and anti-inflammatory effects of TGF-β may partly contribute to 

the resolution of psoriatic lesions by these treatment modalities
392-394

.  

 

Dysregulation of TGF-β signalling in psoriasis has been reported in many 

studies
180,190,192,291,387,392,395-397

. The expression of TGF-β isoforms, Smads and 

particularly TGF-β receptors (TGF-βRI and II) have been reported to be decreased in 

the psoriatic epidermis
190,192,392,396,397

. Thus, suggesting that attenuated TGF-β-

signalling contributes to development of psoriasis. Contrastingly, a few reports 

reported an increase or no change in TGF-β1 expression in psoriatic skin compared to 

normal skin
180,291,387,395

. Further, Baran et al
398

 reported that there is no association 

between TGF-β1 polymorphisms and psoriasis susceptibility. 

 

Increased serum TGF-β1 concentration was observed in patients with psoriasis, which 

correlated significantly with psoriasis area and severity index (PASI)
389,399

. In contrast, 

TGF-β1 concentration in scales decreased with the degree of the disease severity
389

. 

Transgenic mice that over-express human TGF-β1 in basal keratinocytes (K5.hTGF-β1 

transgenic mice) have been reported as having a psoriasis-like disease, suggesting that 

TGF-β1 over-expression may play a pathological role in psoriasis
395

. However, the 

inter-species differences and the fact that the inflammatory skin condition in K5.TGF-

β1 transgenic mice is T-cell independent, limits their suitability as a model for the 

immunopathogenesis of human psoriasis
400,401

. 
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The available data are insufficient to make a definitive conclusion on the role of TGF-

β1 in the pathogenesis of psoriasis. Further studies are needed to decide whether or not 

the TGF-β-Smad signalling pathway is directly involved in the development of 

psoriasis. 

 

3.7.5 Atopic dermatitis 

 

Atopic dermatitis is a chronic, pruritic and eczematous inflammatory skin disorder
402

. 

A few studies have shown that low expression of TGF-β is implicated in atopic 

dermatitis pathophysiology
402-406

.  Deficiency of TGF-β1 in the skin possibly leads to a 

cutaneous immune response characteristic of this condition
403

. Atopic dermatitis is 

linked with a TGF-β1 genotype known to be associated with lower production of this 

cytokine
403

. In addition, the mRNA expression of TGF-β was significantly lower in 

peripheral blood mononuclear cells of atopic dermatitis patients in comparison to 

controls
404

. Gambichler et al
405

 observed significantly decreased levels of Smad3 and 

Smad4 in skin of atopic dermatitis patients, when compared to healthy skin of controls. 

Interestingly, the Smad3/4 levels significantly increased after narrow band UVB 

phototherapy and this correlated with a significant improvement of the skin lesions
405

. 

Furthermore, an immunohistochemical study demonstrated reduced TGF-β staining in 

lesions of atopic dermatitis compared to that of healthy controls
406

. Treatment of these 

lesions with tacrolimus, increased the expression of TGF-β to levels observed in the 

normal skin
406

. In contrast to the abovementioned reports, one study showed that TGF-

β and its receptors were significantly expressed in lesional skin of atopic dermatitis
407

. 

However, a majority of the studies have demonstrated a lower expression profile for 

TGF-β in lesions of atopic dermatitis.  These findings were further supported by 

studies that suggested that the TGF-β/Smad pathway may play a role in the resolution 

of atopic dermatitis
402,406,408-410

.  More on this aspect will be discussed in the 

therapeutics section of this chapter. 

 

3.7.6 Photoaging  
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Skin aging results from the disintegration of cutaneous collagenous networks, chiefly 

by reduction in the expression of type I collagen, the most abundant protein in the 

dermis 
411,412

. Photoaging in the skin is caused by chronic ultraviolet (UV) irradiation 

from the sun
413

. UV irradiation reduces production of type I procollagen (COLI)
414

. 

TGF-β/Smad pathway is the major regulator of type I collagen synthesis in human 

skin
412,414

. UV irradiation attenuates TGF-β/Smad pathway in human skin by 

downregulation of TGF-βRII and Smad3/4 and by upregulation of Smad7
229,272,414,415

. 

This prevents downstream signalling and consequently reduces expression of type I 

procollagen
229,272,414,415

. These findings suggest that there is a lower responsiveness to 

TGF-β in photoaged skin.  

 

3.7.7 Hair disorders 

 

TGF-β signalling to a certain extent contributes to male pattern baldness
416

. Male 

pattern baldness is the result of premature entry of hair follicles into catagen due to 

androgens
416

. This involves dihydrotestosterone (DHT) induced  synthesis of TGF-β2 

in dermal papilla cells, which in turn suppresses epithelial cell proliferation and 

promotes activation of the intrinsic caspase network, resulting in apoptosis of the 

epithelial cells 
416

. Thus, contributing to the shortening of the human hair cycle
416

.  

 

Retinoid-induced telogen effluvium is one of the most frequent adverse effects of 

treatment with systemic retinoids (isotretinoin, acitretin)
417

. TGF-β may act as a 

mediator of retinoid-induced hair growth inhibition
417

. All-trans retinoic acid (ATRA) 

can induce a catagen-like stage in human hair follicle and this involves premature 

upregulation of TGF-β2 in the dermal papilla
417

. TGF-β2 neutralizing antibody 

partially abrogated the hair growth-inhibitory effects of ATRA
417

. 

 

Alterations/ dysregulation in TGF-β signalling has been reported in several other skin 

conditions as well, a few of which are rhinophyma, acquired reactive perforating 

collagenosis, leprosy, discoid lupus erythematosus and aplasia cutis congenita
418-422

. In 

all these conditions a disruption in the TGF-β signalling pathway was involved, 

underscoring the importance of this pathway in maintaining the homeostasis of the 

skin. 
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3.8 TGF-β based treatment approaches 

 

Taking into consideration the fact that the components of the TGF-β pathway are 

altered in disease states, several studies looked into their role as potential therapeutic 

targets. In conditions where there was insufficient TGF-β activity, exogenous TGF-β 

or treatments that enhance its signalling were looked into, and in conditions of TGF-β 

over-activity, blocking agents for this pathway were investigated. This section will 

look at both novel and currently used drugs targeting this pathway. 

 

3.8.1 Therapeutic agents that antagonize TGF-β activity 

 

Fibroproliferative diseases such as keloids, scarring and scleroderma that express 

excessive TGF-β and several late stage
 
tumours that over-express TGF-β are potential 

candidates for TGF-β blocking therapies.
 
 

 

Several TGF-β antagonising drugs such as neutralizing antibodies, soluble TGF-β 

receptors, antisense oligonucleotides, small interfering RNA (siRNA), serine/threonine 

kinase inhibitors and inhibitors of Smad transcriptional activation are currently being 

developed to treat these conditions
189,287,423-425

.  Encouraging results have been 

obtained for these agents in animal models and in vitro studies 
189,287,423-425

. In addition, 

current treatments such as UVA phototherapy used in the treatment of fibrotic skin 

conditions resulted in significant downregulation of TGF-β
272,426

.  

 

Some studies have described the effects of peroxisome proliferator-activated receptor-γ 

(PPAR-γ) on connective tissue homeostasis and suggested that they may have a 

beneficial effect on dermal scarring and fibrosis
427-430

. Troglitazone, a PPAR-γ agonist 

significantly decreased the expression of connective tissue growth factor (CTGF), 

TGF-β1 and collagen I in skin fibroblasts
428,429

.  Therefore activation of PPAR-γ may 

represent a novel therapeutic approach to target profibrotic responses of TGF-β by 

abrogating TGF-β-induced stimulation of collagen gene expression
427,430

.  
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Similarly, in patients who have TGF-β-producing tumours,
 
blocking TGF-β activity 

may induce an immune response and impede metastasis
178

. 

 

As previously highlighted, suppression of TGF-β2 activity is considered to inhibit the 

transition from anagen to catagen and to prolong the anagen phase
417,431

. Taking this 

into consideration, Sasajima et al
431

 investigated the effect of trans-3,4'-Dimethyl-3-

hydroxyflavanone (t-Flavanone), a hair growth enhancing compound  on TGF-β levels 

in cocultures of human hair papilla cells and human keratinocytes. They demonstrated 

that t-flavanone suppresses TGF-β2 activation and therefore suggested that it is likely 

to be beneficial in alopecia
431

.  

 

3.8.2 Therapeutic agents that enhance TGF-β activity 

 

The potential of TGF-β to promote
 
healing and its potent

 
immunosuppressive effects 

provides rationale for the use
 
of TGF-β ligands or agents that enhance its activity in the 

management of
 
several diseases. Diseases associated with insufficient TGF-β activity, 

such as impaired wound healing, some inflammatory diseases and autoimmune 

diseases may be amenable to these therapeutic strategies. 

 

Exogenous TGF-β application improves the rate of healing and wound strength in 

animal models of impaired healing,
 
such as glucocorticoid-treated animals

191
.
 
In 

addition, administering treatments that enhance TGF-β activity such as human 

placental extracts or aloe vera improved the wound healing response
432,433

. In contrast, 

the topical application of TGF-β1 on the healing of chronic ulcers was ineffective
385

. 

Reduced responsiveness due to the disruption of TGF-β receptors or signalling 

mediators may be responsible for the inefficacy of exogenous TGF-β in chronic 

wounds
385,23

.  

 

As opposed to PPAR-γ, PPAR-δ induces TGF-β1 expression
434

. PPAR-δ plays an 

important role in cutaneous wound healing by accelerating ECM-induced cellular 

interactions via TGF-β1/Smad3 signalling-dependent or -independent pathways
434

. In a 

mouse model, administration of a PPAR-δ ligand promoted wound closure and 



82 

 

significantly increased the expression of collagen types I and III, phosphorylated 

Smad3 and TGF-β1
434

.  

 

TGF-β3 is a key regulator of the scar-free healing of foetal and mucosal wounds
341,342

. 

In a murine model of skin wounding, localized intradermal transduction of active TGF-

β3 reduced scar tissue formation by reducing the re-epithelialization density and 

myofibroblast transdifferentiation within the wound area
363

. Moreover, intradermal 

injection of exogenous TGF-β3 following cutaneous wounding in adult rats promoted 

regeneration of normal skin and reduced scarring
189

. The scar-reducing potential of 

avotermin (Juvista; Renovo, Manchester, UK) a recombinant, active, human TGF-β3 

has been demonstrated in pre-clinical and human Phase I and II clinical trials
435,436

. It 

restores the dermal architecture to a state that more or less resembles normal 

unwounded skin
435,436

. The treatment was safe and well tolerated in humans
436

. It is 

currently being evaluated in Phase III trials
437

. 

 

The potent immunosuppressive effects of TGF-β make
 
it a potential therapeutic agent 

in the treatment of inflammatory (e.g. psoriasis and atopic dermatitis) and autoimmune
 

diseases (e.g. DLE) with low TGF-β activity
420

.  Interestingly, standard treatments 

such as calcipotriol and UVB phototherapy and others like peptide T that have been 

shown to improve psoriasis, induce the expression of TGF-β
392-394

. Studies that 

correlate the activity of TGF-β to the clinically observed improvement in response to 

these treatments are required to determine its exact role in psoriasis. 

 

Sumiyoshi et al
408

 demonstrated that in HaCaT cells, TGF-β1 inhibited the production 

of IFN-γ and TARC/CCL17 (thymus and activation regulated chemokine), a TNF-α-

induced Th2 chemokine which is known to be upregulated in lesional atopic dermatitis 

skin. This effect was mimicked by the overexpression of Smad2/3, suggesting that the 

TGF-β/Smad signalling pathway may play a role in the resolution of atopic dermatitis. 

Furthermore, in a mouse model of atopic dermatitis, subcutaneous injection of 

recombinant TGF-β1 suppressed eczematous skin lesions with attendant reduction of 

serum immunoglobulin E (IgE) levels
402

. Histological analysis showed that TGF-β1 

significantly inhibited the infiltration of mast cells and eosinophils into the skin of 

these mice
402

. These results suggest that TGF-β1 may have a therapeutic potential in 
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atopic dermatitis
402

. Studies on humans are needed to confirm these findings and rule 

out interspecies differences. 

 

In addition, the findings from several studies have suggested that the upregulation of 

TGF-β1 probably contributes to the therapeutic efficacy of tacrolimus 

ointment
406,409,410,438,439

. These studies have proposed that tacrolimus-induced TGF-β1 

may act at several levels such as by producing Treg cells, regulating langerhan cell 

development and function, and by inhibiting IgE-dependent mast cell activation and 

dampening mast cell-mediated inflammatory responses 
406,409,410,438,439

. Further studies 

are warranted to validate these findings. 

 

In addition to all of the above, TGF-β also has a role in photorejuvenation
411,440,441

. 

Therapeutic modalities used for photoaging such as superficial dermabrasion, α-Lipoic 

acid (α-LA) and topical creams incorporating TGF-β1 in them, enhances type I and 

type III collagen synthesis in the papillary dermis through the activation of Smad 

signalling by a TGF-βRI kinase-dependent pathway
411,440,441

. The resultant TGF-β1 

induced remodelling improves the visual appearance of the skin
441

. 
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3.9 Summary 

 

The TGF-β signalling pathway is a tightly controlled pathway that plays a regulatory 

role in a multitude of biological effects. The various factors that may influence these 

effects have been depicted in Figure 3.6. 

 

 

Figure 3.6 Factors influencing the biological effects of TGF-β 

 

Disruption in the TGF-β signalling pathway in the various pathological skin conditions 

underscores the importance of this pathway in maintaining the homeostasis of the skin. 

Several new and promising treatments targeting this pathway are currently being 

developed. Although, these treatments may alleviate the pathology of the concerned 

diseases, considering the TGF-β pathway as a therapeutic target is questionable in view 

of its diverse biological role in a variety of cellular functions. Blocking or enhancing 
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TGF-β to contain the detrimental effect, may in turn disrupt the other normal 

homeostatic actions of TGF-β. The surrounding normal cells or tissues may also be 

affected by these therapeutic agents leading to undesirable consequences. Local,
 
as 

opposed to systemic treatment is more favourable in this context. However, localizing
 

the desired effect to only the pathological tissue or cell type is challenging and 

warrants the development of
 
targeted drug delivery systems.

 
As a result of these 

complex issues, the use of TGF-β based therapeutic strategies should be cautiously 

approached and their long term effects should be thoroughly evaluated.   

 

This chapter attempted to summarise the TGF-β biology and its association with skin 

diseases so as to have a better understanding of this molecule and its correlation with 

the skin. 
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Chapter 4: TGF-β and Acne Vulgaris 

 

A few studies have suggested that the upregulation of TGF-β may be linked to the 

resolution of inflammatory acne lesions. TGF-β may contribute to acne resolution by 

reducing inflammation and by inhibiting keratinocyte proliferation
110

.  

 

Furthermore, Downie et al
442

 conducted an in vitro study to determine the effects of 

TGF-β1, TGF-β2 and TGF-β3 on the proliferation and differentiation of human 

sebaceous glands
442

. They demonstrated that TGF-β2 and TGF-β3 significantly 

inhibited sebaceous gland function by inhibition of lipogenesis and cell proliferation in 

sebaceous gland organ cultures
442

. Based on these findings, the authors suggested that 

TGF-β may mediate the effects of anti-acne agents such as retinoic acid on sebaceous 

glands
442

. This section explores the purported association between TGF-β signalling 

and some of the currently used treatments and other potential agents used in the 

treatment of acne vulgaris. 

  

4.1 Retinoids and TGF-β in the skin 

 

Retinoids as systemic or topical agents are clinically important therapeutic modalities 

for several dermatologic disorders, such as acne vulgaris, psoriasis, ichthyosis, and 

palmoplantar keratoderma
417,443

. It is also used for the chemoprophylaxis of skin 

cancers
444

. In the skin, retinoids have been shown to suppress sebum production, 

sebocyte proliferation, and keratinization, and to enhance keratinocyte differentiation 

and ECM production, and to exert anti-inflammatory effects
417,444

. The underlying 

mechanisms through which retinoic acid exerts its effects on the abovementioned skin 

disorders are unknown
445

.  

 

Retinoids and glucocorticoids are known to have a potential to modulate the expression 

of TGF-β
444

. Several studies have shown a notable overlap in the biological actions of 

retinoic acid and TGF-β, particularly on epithelial cell proliferation and ECM 

regulation
446

. Thus, raising the possibility of significant interactions between these two 

molecules
446

.  
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The first evidence for the interesting link between retinoic acid and TGF-β in the skin 

was uncovered by Glick et al in 1978
447

. This group explored the interaction between 

topical retinoic acid and TGF-β in a mouse model, and found that topical retinoic acid 

induced expression of TGF-β2 mRNA and protein in cultured mouse keratinocytes (in 

vitro) and in intact mouse epidermis (in vivo). The upregulated TGF-β2 was in the 

biologically active form, suggesting that the TGF-β induced by retinoic acid in vivo is 

functional. Blocking antibodies to TGF-β2 partially reversed (~30%) the ability of 

retinoic acid to inhibit keratinocyte DNA synthesis in cultured keratinocytes
447

. 

Nuclear run-on transcription experiments showed that the retinoic acid-induced 

increase in TGF-β2 peptide and transcripts occurred through a posttranscriptional 

mechanism
447

. The authors concluded that the antiproliferative effect of topical retinoic 

acid is at least partially mediated through the induction of active TGF-β2, and that 

retinoids may utilize this mechanism in the control of proliferative skin diseases and in 

the prevention of cancer
447

. Extending these findings to human tissue, a subsequent 

study showed that all-trans retinoic acid enhances the inhibitory effect of TGF-β on 

DNA synthesis and cell growth in human epidermal keratinocyte cultures as well
448

. 

 

Using the vitamin A-deficient rat as a model, Glick and colleagues
449

 

immunohistochemically analysed the expression of different TGF-β isoforms under 

conditions of vitamin A deficiency and also with systemic administration of retinoic 

acid. Expression of all three isoforms was minimal in the vitamin A-deficient rat
449

. 

However, treatment with retinoic acid induced a rapid and transient increase in the 

expression of TGF-β1, TGF-β2 and TGF-β3 in the epidermis
449

. The specificity of the 

staining was confirmed by using blocking peptides to each of the isoforms
449

. The 

increase in expression of TGF-β isoforms was mostly limited to the epidermis with 

negligible change in the dermis
449

.  In comparison to the initial study by Glick and 

colleagues
447

, increase in the expression of the TGF-β1 isoform was observed in this 

study, which may be attributed to either a species specific response or a difference in 

the route of drug delivery
449

. 
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Subsequently, Fisher and co-researchers
450

 investigated the effects of topical retinoic 

acid on the expression of TGF-β1 and TGF-β2 in human skin and in cultured human 

keratinocytes.  Human subjects were treated with Retin-A cream (0.1% retinoic acid) 

for four days under occlusion. Immunoreactivity and mRNA levels for TGF-β1 and 

TGF-β2 were measured
445,450

. Immunohistochemistry revealed increased expression of 

TGF-β1 in retinoic acid-treated skin compared to vehicle-treated skin
450

. Epidermal 

TGF-β1 expression was most marked in the suprabasal layers of the epidermis
450

. No 

changes were detected in its mRNA level, suggesting that a post-transcriptional 

mechanism may be responsible for the enhanced expression of TGF-β1 protein
450

. 

Treatment of cultured adult human keratinocytes with retinoic acid resulted in a 50% 

increase in TGF-β1 expression
450

. Contrary to the results obtained in the study by 

Glick et al
447

 that used a mouse model, no detectable change in the expression of the 

TGF-β2 isoform was noticed in retinoic acid-treated human skin or cultured adult 

human keratinocytes
450

. This could probably be attributed to interspecies variation
450

. 

The TGF-β1 and TGF-β2 expression patterns observed in retinoic acid-treated skin 

were also observed in skin treated with the irritant sodium lauryl sulphate, suggesting 

that the TGF-β1 modulation induced by retinoic acid was non-specific and may be 

related to topical irritation
450

. However, mucin deposition, which is TGF-β-induced, 

was specifically elevated in retinoic acid-treated skin, but not in sodium lauryl 

sulphate-treated skin
450

. 

 

More recently, Leivo et al
444

 examined the effect of oral isotretinoin on the expression 

of TGF-β1 and TGF-β2, in suction blister fluid and serum obtained from acne patients. 

A statistically significant 19% increase (p = 0.037) in suction blister fluid TGF-β1 was 

observed after six weeks of isotretinoin treatment
444

. In contrast, betamethasone-17-

valerate treatment caused a statistically significant 17% decrease in suction blister fluid 

TGF-β1
444

. Isotretinoin had no affect on the serum TGF-β1 and TGF-β2 levels
444

. 

Increase in suction blister fluid TGF-β1 with no change in serum TGF-β1 after 

isotretinoin treatment, suggests that isotretinoin probably mediates its cutaneous effects 

via local interstitial fluid TGF-β1 modulation
444

. Future studies need to determine 

whether the locally induced TGF-β has a role in isotretinoin-mediated acne resolution 

by correlating its levels with the clinical manifestations. 
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Increased FGFR2 signalling has been linked with the development of acne in Apert 

syndrome and unilateral acneiform nevus and has recently been hypothesized to be 

involved in acne pathogenesis
29

. In the scenario that this signalling pathway plays a 

role in acne, agents that attenuate FGFR2 signalling may be effective in treating acne, 

and anti-acne drugs that have been found to be effective may potentially act in this 

manner. TGF-β signalling has been demonstrated to suppress downstream FGFR-

signalling in fibroblast cultures by inducing the regulatory protein Sprouty, an 

important FGFR antagonist
451

. Moreover, all-trans-retinoic acid is also reported to 

attenuate increased FGFR2b signalling via upregulation of Sprouty
452

. It would be 

interesting to investigate whether the retinoic acid-induced Sprouty upregulation is 

mediated via TGF-β. Further research on the role of FGFR2 signalling in acne 

pathogenesis and treatment is needed to validate these findings.  

 

As mentioned in the previous chapter, all-trans retinoic acid via a premature 

upregulation of TGF-β2 in the dermal papilla can induce a catagen-like stage in human 

hair follicles
417

. Furthermore, topical retinoic acid enhances collagen gene expression 

in photodamaged skin
453

. In the epidermis of UVB-irradiated hairless mice, retinoic 

acid induced an increase in TGF-β1 expression, and to a lesser extent TGF-β2 

expression without any associated changes in mRNA levels
453

. Retinoids also rectify 

steroid-impaired
 
healing by restoring TGF-β and IGF-I levels,

 
which consequently 

stimulates collagen production
454

. Therefore, the effect of retinoids on photodamaged 

skin or dermal repair may be mediated through TGF-β produced by the epidermal 

cells, which in turn stimulates dermal fibroblasts to synthesize collagen
453,454

. In 

addition to enhancing collagen biosynthesis, retinoids can correct impaired 

homeostasis of dermal tissue by interacting synergistically with TGF-β to stimulate the 

production of tissue inhibitor of metalloproteinases and to a lesser extent by 

downregulating collagenase production in human skin
455,456

. Neutralising antibodies to 

TGF-β can block these responses
456

.  

 

Moreover, retinoic acid enhances TGF-β/Smad3 signalling and this induces Foxp3 

(Forkhead box p3) expression, thus promoting the conversion of naive CD4
+
 T-cells 

into potent suppressive Foxp3
+
 Treg cells

457-460
. Further, retinoic acid signalling 

through RAR receptors in the T-cell suppresses the inhibitory effects of pro-

inflammatory cytokines, such as IL-6/IL-21/IL-23, on the TGF-β mediated Foxp3 
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induction
457,460

. Thus, retinoic acid suppresses pathogenic IL-6/IL-21/IL-23-driven 

Th17 signalling and enhances suppressive Treg cells by inducing TGF-β/Smad3 

signalling
460

. 

 

Retinoids have also shown potential as chemoprophylactic agents
461

. A synthetic 

retinoid, N-4-hydroxyphenyl retinamide (4-HPR) induced apoptosis in immortalised 

human epidermal keratinocytes, whereas this effect diminished in the more aggressive 

tumour cell lines
462

. Interestingly, TGF-β-induced growth inhibition was also reduced 

in the more aggressive cell lines
462

. 4-HPR was also demonstrated to increase the 

amount of active TGF-β in the culture medium
462

. Blocking of TGF-β signalling 

attenuated 4-HPR-induced apoptosis, whereas addition of TGF-β1 and TGF-β2 

enhanced 4-HPR-induced apoptosis and growth inhibition
462

. Thus suggesting that the 

chemopreventive action of 4-HPR is modulated by TGF-β
462

. Furthermore, using an in 

vitro model of cancer progression (human keratinocytes immortalized by HPV16 

DNA, HKc/HPV16), it was demonstrated that retinoic acid treatment of HKc/HPV16 

resulted in a dose-and time-dependent induction (up to 3-fold) of TGF-β
461

. Similar to 

the previous study, the loss of growth inhibition by retinoic acid paralleled the loss of 

TGF-β sensitivity in this study as well
461

. In addition, retinoic acid-treated tumours 

were demonstrated to express higher levels of TGF-β1
463

. These studies suggest that 

retinoic acid may prevent tumour progression via TGF-β induction, but tumours 

resistant to retinoic acid may have altered sensitivity to TGF-β signalling
446,461-464

. 

 

All these findings suggest that TGF-β may be a local mediator of retinoid action in the 

skin. However, the mechanism of interaction between these two regulatory molecules 

is largely unknown
454,465

. Retinoids could regulate TGF-β at several levels of its 

signalling, including modulation of TGF-β receptor expression or sensitivity, 

activation of latent TGF-β, phosporylation of Smad3 or by enhancing mRNA stability 

or processing
446,454,465-467

. The lack of an identifiable retinoid response element in the 

promoter region of the TGF-β genes, supports the interpretation gathered from the 

results of nuclear
 
run-on experiments that this interaction is post-transcriptional rather 

than transcriptional
417,447,465

. Hence, the elevated TGF-β expression may result from an 

increased half-life of the TGF-β mRNAs and from increased translational
 
efficiency

454
. 

Furthermore, a significant proportion of the TGF-β induced by retinoids is in the 

biologically active form, which has a comparatively shorter half life than its latent 
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form, suggesting that the retinoid-induced TGF-β may be limited to local action at the 

site of production
220,221,466

. In certain cases, this can be correlated with the ability of 

retinoids to increase the expression of transglutaminase,
 
one of the elements involved 

in the activation of latent TGF-β
454,468

. 

 

Although TGF-β isoforms have been reported to be induced by retinoids in the skin (in 

vitro and in vivo) of animal and human subjects
445,447,449,450

, these molecules have 

several independent effects as well
313,469

. Downregulation of TGF-β2 has been reported 

in mouse embryos with retinoic acid-induced malformations
443

. Furthermore, in some 

cases retinoids were shown to decrease or not induce TGF-β at all in keratinocyte 

cultures
469,470

. These discrepancies could be explained by the differences in species, 

cell type, culture condition or the type of retinoid used in these studies. Further studies 

are required to determine the effects and the mechanism for the complex interactions 

between TGF-β and retinoids in skin.  

Up to now only the study by Leivo et al
444

 has examined the association between 

retinoids and TGF-β in acne patients. Further research concentrating on its role in acne 

is warranted. 

In addition, future studies should clarify whether the induction of TGF-β is a non-

specific effect of retinoid treatment or whether it actually mediates the therapeutic 

effects of retinoids in acne vulgaris.  

 

4.2 TGF-β and other acne treatment modalities 

 

A randomised, prospective, split-face, double-blind, vehicle-controlled trial was 

recently conducted to evaluate the clinical efficacy and safety of 1% nadifloxacin 

cream (a fluoroquinolone with broad-spectrum antibacterial activity) in the treatment 

of mild to moderate facial acne in thirty-four Korean patients
471

. In addition, the 

histopathological changes (haematoxylin and eosin staining; IL-8 and TGF-β 

immunostaining) after nadifloxacin treatment were evaluated
471

. All participants were 

treated with 1% nadifloxacin cream on one-half of the face and vehicle cream on the 

contralateral side, twice daily for eight weeks
471

. At the end of the treatment period, 

inflammatory lesions were reduced by 70% on the nadifloxacin-treated skin compared 
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to the 13.5% increase in the vehicle-treated skin. Non-inflammatory acne lesions were 

reduced by 48.1% in nadifloxacin-treated skin and by 10.1% in vehicle treated skin
471

. 

In comparison with the vehicle-treated skin, the nadifloxacin-treated skin demonstrated 

significant reductions in inflammatory reaction and the expression of IL-8
471

. These 

findings corresponded with the treatment response
471

. However, no statistically 

significant changes were detected in TGF-β expression after eight weeks of treatment. 

In keeping with the early and transient action of TGF-β, its upregulation may have 

been initiated during the first few weeks of nadifloxacin treatment
471

. However, in this 

study the post-treatment biopsy was obtained after eight weeks of commencement of 

treatment, which may have been too late to observe TGF-β changes
471

.  

 

Inhibitors of dipeptidyl peptidase IV (DP IV) and aminopeptidase N (APN), a 

promising therapeutic strategy for acne was shown by Thielitz and co-researchers
472

 to 

suppress T-cell proliferation and IL-2 production and enhance the expression of the 

TGF-β1 in P. acnes-stimulated peripheral blood mononuclear cells (PBMC). TGF-

β/Smad3 signalling is known to inhibit T-cell proliferation by inhibiting IL-2 

production and by downregulating the expression of cell cycle regulators
267,318,319

. 

Therefore, it would be interesting to investigate whether the anti-proliferative and 

immunosuppressive effects of DP IV and APN inhibitors are mediated via TGF-β. 

Future in vivo studies are warranted to corroborate these findings. 

 

Non-ablative laser and light therapy used for the purpose of photorejuvenation was 

shown to increase cutaneous TGF-β1 expression
473,474

.  They have been reported to 

induce dermal remodelling and neocollagenesis
152

. In addition to their use in 

photorejuvenation and scarring, non-ablative laser therapies have been increasingly 

used in recent years for the treatment of inflammatory acne vulgaris 
475-477

. The 

mechanism for their therapeutic effect is unknown, but has been proposed to occur 

secondary to damage of P. acnes and the sebaceous gland
170

.  

 

A study by Seaton et al
152

 explored the in vivo effects of a short pulse duration non-

ablative pulsed-dye laser (NA-PDL) on cytokine production, P. acnes colonization 

density (using a scrub-wash technique and culture at 0 and 24 h) and sebum excretion 

rate (using absorptive tape at 0, 2, 4, 8 and 12 weeks)
152

. NA-PDL (NliteV; 

Chromogenex Light Technologies, U.K.) had no effect on P. acnes or sebum excretion 
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rate. Hence, destruction of P. acnes or sebaceous glands may not be the explanation for 

the therapeutic effect of this device in acne vulgaris
152

. To assess the effect on cytokine 

expression reverse transcription-polymerase chain reaction (RT-PCR) was performed 

on biopsies obtained from the gluteal skin of eight subjects at 0, 3 and 24 hours 

following laser therapy
152

. A rapid and significant increase in TGF-β1 mRNA levels 

was observed in all subjects. An increase in levels of TGF-β1 mRNA was apparent as 

early as 3 hours after laser therapy, however this was not statistically significant (p = 

0·093). A fivefold increase (p = 0.012) was observed after 24 hours with a 15-fold 

increase in two subjects
152

. TGF-β is known to be a potent stimulus for neocollagenesis 

and a potent immunosuppressive cytokine
152

. Therefore, the upregulation of TGF-β by 

NA-PDL may stimulate dermal remodelling and collagen synthesis and may also be 

involved in the inhibition of inflammation in acne
152

. This study not only offered a 

potential explanation for the action of laser therapy in inflammatory acne vulgaris, but 

also provided a foundation for conducting similar studies using other non-ablative laser 

and light devices. However, the results of this study should be interpreted with caution 

as this study was conducted on a small sample and the biopsies were taken from an 

area not normally involved in acne
152

. Moreover, there was no clinical correlation of 

the obtained results as the study was conducted in healthy adult volunteers
152

. Further 

studies with different non-ablative systems, larger sample size, in subjects with 

inflammatory acne lesions and on skin sites involved in acne need to be conducted to 

corroborate these results. 

 

More recently, Jung and co-workers
170

 conducted a 12-week, double-blind, 

randomised, prospective, split-face trial that compared the efficacy and safety of PDL 

with combined 585/1,064-nm laser therapy in sixteen patients with mild to moderate 

facial acne vulgaris. The patients underwent three treatment sessions at 0, 2 and 4 

weeks, and were followed up at 8 and 12 weeks
170

. Haematoxylin and eosin staining 

and immunohistochemical staining for IL-8 and TGF-β were performed on 2-mm 

punch biopsies taken from treated areas at baseline and at the final visit
170

. Both 

treatments were found to be effective in treating inflammatory and non-inflammatory 

acne lesions
170

. On histopathological analysis, the inflammatory reaction and IL-8 

immunostaining were found to be significantly reduced (mean staining at 

baseline=3.00; PDL=2.25, p=0.03; 585/1,064-nm laser =2.00, p=0.01) and TGF-β 

expression was significantly increased (mean staining at baseline = 1.67; PDL = 2.33, 
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p = 0.01; 585/1,064-nm laser = 2.08, p = 0.005) following treatment with either of the 

two approaches. The histopathological findings corresponded with the clinical 

improvements. Both treatments were demonstrated to be safe and effective in the 

treatment of inflammatory and non-inflammatory acne lesions of acne vulgaris, with 

the combined 585/1,064-nm laser being significantly better than PDL in treating non-

inflammatory acne. The authors concluded that inflammatory lesions showed greater 

and more rapid improvements than non-inflammatory lesions for either treatment. 

However, this study failed to mention which isoform of TGF-β was upregulated. 

Further research is required to identify the down-stream effects of laser induced TGF-β 

in the treatment of acne vulgaris. 

 

More recently, Choi et al
110

 carried out a randomized split-face, single-blind trial to 

compare the safety and therapeutic efficacy of PDL and IPL for the treatment of acne 

vulgaris
110

. Twenty patients with facial acne were randomized to receive a series of 

four treatment sessions of 585-nm PDL (Cynergy; Cynosure, USA; parameters: 585-

nm wavelength, 10-mm spot size, 40 ms pulse duration, 8–10 J/cm
2
 energy fluence and 

two passes) on one side of face and IPL (Ellipse Flex System; DDD, Denmark; 

parameters: photorejuvenation filter 530–750 nm, 7.5–8.3 J/cm
2
 energy fluence, 2.5 ms 

pulse duration, triple light pulse with a 9.0-ms interval and two passes) on the 

contralateral side at 2-week intervals
110

. Assessment of lesion counts, acne severity, 

and subjective scoring of improvement were performed to determine therapeutic 

efficacy
110

. In addition, a 2 mm punch biopsy of inflammatory lesion was obtained 

from all patients at baseline and final visits
110

. H&E staining and TGF-β 

immunostaining were performed on these biopsies
110

. TGF-β staining intensities were 

graded from 0 (not stained) to 4 (intensively stained)
110

. Both treatments produced 

clinical improvements by reducing inflammatory and non-inflammatory lesions
110

. For 

inflammatory lesions, IPL treatment resulted in a rapid and marked improvement, but a 

rebound aggravation of acne was observed 8 weeks following the final treatment 

session
110

. In contrast, PDL produced a gradual improvement and this improvement 

was sustained even at 8 weeks after the final treatment
110

. Reduction of inflammatory 

reactions and an increase in TGF-β expression was observed with both treatments on 

histopathological examination
110

. These changes were more prominent for PDL-treated 

sides (TGF-β immunostaining intensity at 8 weeks after treatment: IPL = 2.5, PDL = 

2.9 vs. baseline intensity of 2.2). However, the differences were not statistically 
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significant
110

. The greater induction of TGF-β with PDL may be attributed to a more 

pronounced heat shock response via a greater photothermal effect
110

. Both PDL and 

IPL were found be effective and safe for the treatment of facial acne vulgaris
110

. 

Overall, PDL produced better results and showed a more sustained effect
110

. The 

authors suggested that the observed clinical improvement and decrease in 

inflammatory reaction after either treatment may be a result of the immunomodulatory 

effect of the photothermally induced TGF-β
110

. 

 

4.3 Role of TGF-β in acne resolution 

 

All these findings based on some of the therapeutic modalities used in acne, suggest 

that TGF-β may have a potential role in the resolution of acne lesions. Further, its 

inhibitory effect on keratinocyte proliferation may hamper microcomedo formation 

which occurs as a result of keratinocyte hyperproliferation.  

 

Moreover, TGF-β is a potent immunosuppressive cytokine that inhibits inflammatory 

cytokine production and promotes resolution of inflammation. This inhibitory action is 

abrogated in Smad3 deficiency suggesting that the immunosuppressive effect of TGF-β 

is Smad3-mediated. Smad3 signalling has been shown to play an important role in 

mediating the antiproliferative effects of TGF-β on keratinocytes and also in mediating 

its stimulatory effects on ECM by dermal fibroblasts
478-480

. It has also been 

demonstrated to be critical in mediating the immunomodulatory effects of TGF-

β
241,242,336

. In Smad3 deficiency states, immune cells become insensitive to TGF-β 

mediated inhibition of pro-inflammatory cytokines and chemokines
241,242,481

. Targeted 

deletion of Smad3 results in a viable mouse that ultimately dies from a progressive 

illness involving massive inflammation and impaired mucosal immunity at 1–6 months 

of age
241,242

. These Smad3-knockout mice exhibit immune dysregulation, altered 

mucosal defence mechanisms, and reduced ECM production
241,336,478

. In a murine 

model of contact hypersensitivity, Smad3 deficiency resulted in increased pro-

inflammatory, Th2 and Th17 type response in the skin and increased neutrophil 

infiltration into the skin
332,482

.  
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In addition to inflammatory cytokines such as interleukin (IL)-8, matrix degrading 

enzymes (MMPs) also play a key role in the development of inflammatory lesions of 

acne vulgaris
81

. Enhanced production of matrix degrading enzymes, particularly MMP-

1 and MMP-3 have been implicated in acne pathogenesis
81

. TGF-β has been 

demonstrated to regulate metalloproteinase and tissue inhibitors of metalloproteinase 

(TIMP) expression
483

. It is a potent inhibitor of MMP expression and a stimulator of 

TIMP in mesenchymal cells, particularly dermal fibroblasts
266,455,484,485

. TGF-β 

suppresses inflammatory cytokine-induced expression of MMP-1 and MMP-

3
266,375,455,484-487

.  

 

Consistent with the aforementioned findings, Yuan and Varga
266

 reported that TGF-β 

prevented IL-1β -induced MMP-1 gene and protein expression, and ectopic expression 

of Smad3 or Smad4 reproduced this response in dermal fibroblasts. However, Smad1 

or Smad2 were not involved in MMP-1 repression
266

. Furthermore, the inhibitory 

Smad7 and dominant negative mutants of Smad3 or Smad4 blocked the TGF-β-

induced repression of MMP-1 transcription
266

. In Smad3-deficient murine embryonic 

fibroblasts, TGF-β potentiated MMP-1 expression instead of suppressing it
266

. Overall, 

these results demonstrate that the TGF-β-induced negative regulation of MMP-1 is 

mediated through Smad3 and Smad4 in dermal fibroblasts
266

. Thus, TGF-β/Smad3-

mediated repression of MMP-1 expression may be important for preventing excessive 

matrix degradation induced by inflammatory cytokines in acne.  

 

As TGF-β has been demonstrated to inhibit MMP-1 gene expression and inflammatory 

cytokine production through a Smad3-mediated signalling pathway it would be 

reasonable to investigate whether IPL used for acne treatment induces TGF-β/Smad3 

signalling and whether it has a potential role in acne resolution.  
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Chapter 5: Materials and Methods 

 

5.1 Background:  

 

Current evidence suggests that inflammation plays a key role in the pathogenesis of 

acne vulgaris
5,77,81,488,489

. Inflammatory cytokines such as interleukin (IL-8) and matrix 

degrading enzymes (MMPs) have been shown to be prominently upregulated in 

inflammatory acne lesions
5,81

. Curbing the production of these inflammatory mediators 

may assist the resolution of acne. Improvement of lesions of acne vulgaris with the use 

of various intense pulsed light (IPL) sources has been demonstrated in a few 

studies
109,110,120,121,124-128

. However, its mechanism of action has not been elucidated. 

Recent studies have suggested that IPL therapy may affect the immunological 

functions of the skin
153

. Animal and in vitro studies have attributed the therapeutic 

effect of IPL to transforming growth factor beta (TGF-β)
154,158,168

. Furthermore, when 

used for photorejuvenation IPL enhances the expression of TGF-β1
473,474

.  Retinoic 

acid, one of the main modalities of treatment in acne vulgaris, has been demonstrated 

to induce the cutaneous expression of TGF-β1, TGF-β2 and/or TGF-β3
445,447-450,453

. In 

addition, non-ablative laser therapy for acne vulgaris was also shown to increase 

cutaneous TGF-β1 expression
152

. TGF-β is a key anti-inflammatory and 

immunomodulatory cytokine
172

. It has also been shown to arrest keratinocyte growth 

and may therefore interfere with microcomedo formation
287

. TGF-β has been 

demonstrated to prevent cytokine-induced MMP-1 gene expression and inflammatory 

cytokine production through a Smad3-mediated signalling pathway
266,332

. Taking these 

facts into consideration, we carried out a study to determine whether intense pulsed 

light used for the treatment of inflammatory acne vulgaris alters the in vivo expression 

of the TGF-β isoforms, Smad3, MMP-1, and IL-8.   

 

5.2 Objective: 

 

This study aims to determine whether TGF-β is involved in the mechanism of action of 

intense pulsed light in the treatment of acne vulgaris by examining changes in the in 

vivo expression of the TGF-β isoforms (TGF-β1, β2 & β3), translocation of the 
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transcription factor Smad3 to the nucleus, and changes in the expression of two 

potential downstream targets, IL-8 and MMP-1.  

 

More specifically: 

 

1. To determine whether IPL upregulates TGF-β expression. 

2. To determine whether IPL activates TGF-β signalling via Smad3 by evaluating 

the percentage of Smad3-stained nuclei. 

3. To determine whether IPL impedes matrix destruction by downregulating the 

matrix degrading enzyme, MMP-1. 

4. To determine whether IPL downregulates the expression of IL-8, a pro-

inflammatory cytokine. 

5. To correlate the results of these laboratory experiments with the clinical results 

obtained from the study conducted by Dr. Marisa Taylor. 

 

5.3 Materials and methods 

 

5.3.1 Tissue 

 

This study was a continuation of a previous clinical study (conducted by Dr. Marisa 

Taylor, Department of Dermatology), wherein 28 patients with mild to moderate acne 

vulgaris were treated with four sessions of IPL (VPL Energist Ultra®; 530-950 nm 

Settings: 40 J/cm
2
, 2 passes, 15 pulses, 5 ms duration, 20 ms delay) at two week 

intervals. Clinically, the patients experienced an overall reduction in the number of 

inflammatory lesions after IPL irradiation (28.04 % reduction; p = 0.002). To compare 

the histological effects of IPL treatment, punch biopsies (4 mm) of skin were obtained 

from the upper back of patients (n=29) at baseline (B1), 48 hours after the first IPL 

treatment (B2) and 1 week after the final treatment (B3). To avoid the practical 

difficulties involved in timing an acne lesion throughout its evolution, the biopsies 

provided were taken from an area adjacent to the inflammatory lesions. 
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5.3.2 Sample size and power calculation 

 

Due to the longitudinal nature of this study, it was derived that a sample size of 20 

would enable the detection of a shift of 0.63 times the standard deviation of within-

subject differences with a power of 80% at the conventional 5% alpha level. This 

calculation could apply to any of the inflammatory markers studied. 

 

5.3.3 Processing  

 

In immunohistochemical analysis, antigen preservation is superior in frozen sections 

when compared to paraffin sections
490

. In addition, the processing of the biopsies is 

simple and more rapid
491

. Also, as fixation is done later on with cryostat sections, the 

fixative used can be optimised according to the antigen of interest
490

. Although the 

morphological detailing is inferior to paraffin embedded sections, it is within 

acceptable standards
491

. Moreover, from past experience with immunohistochemistry 

in our laboratory, it was noted that the antigen retrieval step employed for paraffin 

embedded sections severely damaged the morphology
492

. 

 

Therefore, the punch biopsies were embedded in Tissue-tek OCT (Optimal Cutting 

Temperature embedding Matrix; RA. Lamb, East Sussex, UK) and then snap frozen in 

a liquid hexane bath (Fisher Scientific, Loughborough, UK) cooled on dry ice. These 

frozen biopsies were then stored in liquid nitrogen at the Dermatology Research 

Laboratory (Cardiff University). Serial sections (6 μm) of these biopsies were obtained 

from the frozen tissue blocks using a Thermo Scientific Cryotome FSE cryostat. The 

sections were then mounted on SuperFrost® Plus glass slides (catalog no. 

J1800AMNZ; Menzel GmbH, Braunschweig, Germany). The SuperFrost® Plus glass 

slides are made by a process wherein a permanent positive charge exists on standard 

microscope slides, which aids in the electrostatic attraction of frozen tissue sections on 

to the slide
493

. These slides were left to air dry for 30 minutes. After drying, they were 

labelled and wrapped back to back in aluminium foil and then stored in the freezer at -

80˚C until the time of staining. 

 



100 

 

5.3.4 Immunohistochemistry 

 

Immunohistochemistry is a procedure that is used for the detection and localisation of a 

cellular protein or other antigen within cells or tissues using an antibody specific for 

the desired antigen
491

. Immunohistochemical techniques are broadly classified as direct 

or indirect
491

. The direct method is a simple one-step staining procedure that involves 

direct interaction of the antigen with a specific labelled primary antibody
490

. However, 

this method can lack sensitivity
490

. Whereas, indirect immunohistochemistry involves 

using a labelled secondary antibody (must be raised against an immunoglobulin of the 

same type and species as the primary antibody) or a secondary antibody and labelled 

tertiary compound, that binds to the unlabelled primary antibody-antigen complex
491

. 

This indirect approach is more sensitive as it generates an amplified signal
490

. In order 

to further amplify the signal, various three-step methods have been developed such as 

the peroxidase anti-peroxidase, alkaline phosphatase-anti-alkaline phosphatase and 

avidin-biotin based methods
491

. In this study the avidin-biotin based method has been 

utilised. In this method, the first layer is an unlabelled primary antibody, the second 

layer is a biotinylated secondary antibody and the third layer is either a complex of 

avidin-biotin peroxidase (ABC method) or an enzyme-streptavidin conjugates 

(Streptavidin method)
491

. 

 

Cryostat sections from twenty cases were analysed by immunohistochemistry using the 

primary antibodies specified in Table 5.1. The antibodies specific for the markers of 

interest were identified by researching the available literature for 

immunohistochemical studies of the respective markers conducted on frozen sections 

of human tissue. The individual antibodies were selected on the basis of the quality of 

the staining produced in the published pictures. The protocols used in these 

studies
92,229,494,495

 were then tested on normal skin sections and modified according to 

the results obtained until good positive staining was detected and all the non-specific 

staining and background were minimised. 
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Table 5.1 Antibody panel and immunostaining conditions used in this study 

Antibody 

(Cat. No) 
Host 

Source. (Lot. 

No) 
Block Diluent 

Pri Ab 

dilution 

(incubatio

n period) 

Sec Ab (1:200) 
Blocking 

peptide 
Tertiary 

TGF-β1 (sc-

146) 

Rabbit 

polyclonal 

Santa Cruz 

biotech  

(H0509) 

10% donkey serum 

Avidin/Biotin blocking  

1% BSA & 1% 

marvel in PBS-TX 

(0.1% Triton X-100 

in 1x PBS) 

1:200 

(1 hour) 

Anti-rabbit biotinylated 

(from donkey) 

sc-146P  ABC kit 

TGF-β2  

(sc-90) 

Rabbit 

polyclonal 

Santa Cruz 

biotech 

(E0509) 

10% donkey serum 

Avidin/Biotin blocking 

1% BSA & 1% 

marvel in PBS-TX 

1:800 

(1 hour) 

Anti-rabbit biotinylated 

(from donkey) 

sc-90P ABC kit 

TGF-β3 (sc-

82) 

Rabbit 

polyclonal 

Santa Cruz 

biotech 

(D2709) 

10% donkey serum 

Avidin/Biotin blocking  

1% BSA & 1% 

marvel in PBS-TX 

1:500 

(1 hour) 

Anti-rabbit biotinylated 

(from donkey) 

sc-82P  ABC kit 

Smad3 (51-

1500) 

Rabbit 

polyclonal 

Invitrogen 

(609945A) 

10% donkey serum 

Avidin/Biotin blocking 

1% BSA in 1x PBS 1:150 

(1 hour) 

Anti-rabbit biotinylated 

(from donkey) 
_ 

ABC kit 

IL-8 

(BMS-136) 

Mouse 

monoclonal 

BenderMed 

Systems 

(51169000) 

10%  sheep serum 

Avidin/Biotin blocking 

1% BSA & 1% 

marvel in 1x PBS  

1:200 

(Overnight 

at 4ºC) 

Anti-mouse 

biotinylated (from 

sheep) 

_ 

Streptavidin 

(1:100) 

MMP-1 

(MAB3307 

clone 41-1E5) 

Mouse 

monoclonal 

Millipore 

(NG1735413) 

10%  sheep serum 

Avidin/Biotin blocking 

1% BSA & 1% 

marvel in 1x PBS 

1:250 

(Overnight 

at 4ºC) 

Anti-mouse 

biotinylated (from 

sheep) 

_ 

ABC kit 
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5.3.4.1 Preparation of buffer 

 

Five litres stock of 10 x PBS solution (phosphate buffered saline, pH 7.2) was prepared 

and stored in bottles (Table 5.2). 

 

Table 5.2 Constituents for preparation of 10 x Phosphate Buffered Saline solution 

Constituents Amount (in grams) 

required for 1 Litre 

(L) 

Amount (in grams) 

required for 5L 

Sodium chloride, NaCl 80 400 

Disodium hydrogen phosphate (dodecahydrate), 

Na2HPO4.12H2O 

35.8 179 

Potassium dihydrogen phosphate (anhydrous), 

KH2PO4 

2.4 12 

Potassium chloride, KCl 2 10 

Distilled water To make up to 1L To make up to 5L 

 

A 1x PBS buffer solution was prepared from this stock for washes and for preparing the 

diluent. PBS with 0.1% Triton-X-100 (1ml of Triton-X-100 in 1000 ml of 1 x PBS, PBS-

TX) was used as the buffer solution in the TGF-β1, -β2 and -β3 staining protocols, 

whereas, 1 x PBS without detergent was used for Smad3, MMP-1 and IL-8. The diluent 

(intended for dilution of the primary antibody, secondary antibody and the tertiary reagent, 

and also used as a negative control) was prepared by adding 0.25 g of BSA (bovine serum 

albumin) and/or 0.25 g of Marvel (non-fat milk protein) to 25 ml of the buffer. BSA and 

Marvel were added to prevent non-specific binding of the primary antibody (reduces the 

background by minimising non-specific interactions between the primary antibody and 

non-target cellular proteins).  

 

5.3.4.2 Fixation  

 

Slides were taken out of the freezer and allowed to reach room temperature, before 

removing the foil. The slides were then labelled and immersed for 15 minutes in a fixative 

(dry acetone for MMP-1 and IL-8 or 4% paraformaldehyde in PBS for TGF-β1, -β2, -β3 

and Smad3). The acetone-fixed slides were air dried for 15 minutes to allow evaporation of 
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excess acetone followed by three five-minute washes in the buffer solution (1x PBS/PBS-

TX). The paraformaldehyde-fixed slides were directly rinsed in the buffer solution. 

 

5.3.4.3 Blocking  

 

Each of the sections on the slides were encircled with a water-repelling wax pen (Dako 

Pen, Glostrup, Denmark) and placed in a humidified chamber (a shallow plastic box with a 

moistened paper towel placed at the bottom). To reduce non-specific binding of the 

secondary antibody, the slides were incubated with 10% normal serum (from the same 

species, in which the secondary antibody was raised) for an hour at room temperature. This 

was followed by three five-minute washes in the buffer solution. To suppress endogenous 

biotin activity it is necessary to block it with avidin and then block the unoccupied biotin 

binding-sites of avidin with biotin. Therefore, an avidin/biotin blocking kit (Vector 

Laboratories, Burlingame, CA) was used. The slides were incubated with avidin for fifteen 

minutes followed by fifteen minutes incubation with biotin with brief rinses (x 3) in the 

buffer solution in between.   

 

5.3.4.4 Primary antibody 

 

The sections were incubated with an optimum dilution of the primary antibody or blocking 

peptide-antibody mix (blocking peptides were available for TGF-β1, -β2 and -β3 and were 

preincubated with the antibody for 30 minutes) for an hour at room temperature (TGF-β1, 

-β2, -β3 and Smad3) or overnight at 4˚C (MMP-1 and IL-8). Slides incubated with plain 

diluent without any primary antibody were run in parallel as a negative control for each 

case and time point. This was followed by three five-minute washes in the buffer solution.  

 

5.3.4.5 Secondary antibody and tertiary immunoperoxidase step 

 

The sections were then incubated with a relevant biotinylated secondary antibody for 30 

minutes, followed by incubation with either streptavidin biotinylated horseradish 

peroxidase complex (RPN 1051; GE Healthcare UK Limited, Buckinghamshire, UK) (IL-8) 

or reagents of the avidin-biotinylated enzyme complex kit (Vectastain ABC kit, Vector 
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Laboratories Inc.) for a further 30 minutes. The ABC reagent was prepared at least thirty 

minutes before being used by adding 1 drop of reagent A and 1 drop of reagent B to 2.5 ml 

of the diluent. The sections were then washed in the buffer solution three times and 

developed with 0.25% horse radish peroxidase substrate solution (0.5 ml of 3, 3’ 

Diaminobenzidine, 4.5 ml of PBS and 6 μl of H202) for 10 minutes to produce colorimetric 

immunoprecipitates. 

 

5.3.4.6 Counterstaining and mounting 

 

The sections were then rinsed in tap water and counterstained with haematoxylin for 5 

minutes and washed again in tap water.  Finally, all sections were dehydrated through a 

graded series of alcohol solutions (1 x 70%, 1 x 90%, and 3 x 100% industrial methylated 

spirit; Genta Medica, York, UK) for 5 minutes each, and cleared in three changes of 

xylene (Genta Medica, York, UK) for 5 minutes each. The slides were then carefully 

mounted with a cover slip using DPX mounting medium (a mixture of distyrene, a 

plasticizer, and xylene; RA Lamb, East Sussex, UK) and then left to dry overnight.  

 

5.3.4.7 Visualisation and photography 

 

The following day, the slides were observed under a Nikon optiphot microscope for 

detection of positive staining. Positive staining (or antibody binding) was visualised as 

brown staining. Digital images were captured with an Axiocam camera system (Zeiss) and 

Axiovision software (Zeiss) under different magnifications using three objectives (10x, 

20x, and 40x). Four fields of view were captured per section. Standardised settings were 

used on the microscope and image capturing software to allow accurate comparisons. 

The steps for the immunohistochemical analysis carried out are summarised in Figure 5.1. 
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Figure 5.1 General simplified workflow for immunohistochemistry procedure.  
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5.3.4.8 Image analysis 

 

The digital images that were captured were semi-quantitatively assessed using Image Pro 

Plus image analysis software (IPP version 6.0; Media Cybernetics, Bethesda, MD, USA). 

To quantify the immunostaining (for TGF-β isoforms, MMP-1 and IL-8), integrated 

optical density (IOD) of the visible staining was obtained for the epidermis and dermis. 

The integrated optical density (IOD) refers to the total amount of antigen present (as 

detected by the brown staining) and is equal to the mean optical density multiplied by the 

area of positive staining
496

. Also, the area and length of the epidermis and dermis were 

measured to normalise the data. 

 

In order to quantify the staining, it is necessary to ensure that the images are calibrated. 

This involved capturing images of a stage micrometer scale with the same optical settings 

as for the data images for each objective (4x, 10x, 20x and 40x). These images were then 

loaded on to the image analysis software and the calibration settings were entered and 

saved for each objective. The image file was opened and the objective-specific calibration 

setting was applied. The image intensity format was converted from the default free form 

to standard optical density. 

 

The area of interest (epidermis or dermis) was outlined or traced out using a wand tool. 

After selecting the area of interest, the measurement parameters were selected, which 

include IOD, area, and length. The pixels to be analysed were defined using the select 

colours tool. The count option was clicked on to obtain measurements of the selected 

parameters. These measurements were then exported to a Microsoft Excel spreadsheet.  

 

ImageJ image-analysis software program (ImageJ v1.42q, National Institutes of Health, 

Bethesda, MD) was used to count Smad3-stained nuclei and total nuclei. These values 

were exported to a Microsoft Excel spreadsheet and the percentage of Smad3-stained 

nuclei was calculated. 
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5.3.4.9 Statistical analysis:  

 

The results were collected, tabulated, normalised and statistically analysed using the SPSS 

17.0 statistical software. All data were expressed as mean ± SEM (standard error of mean). 

Repeated-measures one-way analysis of variance (ANOVA) was used to determine if there 

was a difference in cytokine expression between any of the groups (B1, B2 & B3), and to 

determine which pair of groups were statistically different, a post hoc Bonferroni test was 

used. The differences were considered statistically significant at p < 0.05. 

 

5.3.5 Western Blotting  

 

Western blotting (also called immunoblotting) is a procedure that employs specific 

antibodies to identify proteins that have been separated from one another according to their 

size by gel electrophoresis. The term "blotting" refers to the transfer of biological samples 

from a gel to a membrane and their subsequent detection on the surface of the membrane.  

As, cognate blocking peptides were not available for Smad3, IL-8 and MMP-1, western 

blotting was carried out to validate the specificity of the antibodies used for the detection 

of these three markers. 

 

5.3.5.1 Electrophoretic separation of the proteins 

 

The first step in a western blotting procedure is to separate the protein using 

polyacrylamide gel electrophoresis (PAGE). For this a resolving gel has to be prepared. 

The percentage of acrylamide to be used in the resolving gel depends upon the size of the 

protein of interest (large proteins require less concentrated gel and vice versa). The 

proteins we were examining were ranging in size from 10 to 60 KDa, therefore a 12% gel 

solution was prepared from the reagents listed in Table 5.3 and loaded into two Novex 

disposable plastic cassettes (Catalogue no. NC2010; Invitrogen, Paisley, UK) up to a level 

of about 2 cm below the top of the cassette. The resolving gel was then carefully layered 

with water to ensure a flat top surface. While the resolving gel was allowed set, the 

solution for the stacking gel was prepared (Table 5.4).  
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Table 5.3 Constituents for preparation of resolving gel 

Constituents Amount required 

for 12% gel 

1.5M Tris pH 8.8 3.75 ml 

Acrylamide/Bis-acrylamide, 30% gel solution 6 ml 

10% Sodium dodecyl sulphate 100 µl 

Distilled water 5.1 ml 

10% Ammonium persulphate* 75 µl 

N,N,N′,N′-Tetramethylethylenediamine (TEMED)* 7.5 µl 

* Should be added just prior to pouring gel into cassette 

 

Table 5.4 Constituents for preparation of stacking gel 

Constituents Amount required 

for 4% gel 

0.5M Tris pH 6.8 1.25 ml 

Acrylamide/Bis-acrylamide, 30% gel solution 0.65 ml 

10% Sodium dodecyl sulphate 50 µl 

Distilled water 3.05 ml 

10% Ammonium persulphate* 50 µl 

TEMED* 10 µl 

* Should be added just prior to pouring gel into cassette 

 

Once the resolving gel was set, the water from the top was drained off and the stacking gel 

was loaded on to the cassette. A comb was immediately inserted into the liquid stacking 

gel. Once set, the comb was carefully removed and the wells were rinsed with distilled 

water. The white strip at the lower end of the cassettes was removed and the cassettes were 

placed in the electrophoresis cell (XCell SureLock™ Mini-Cell Electrophoresis System, 

Invitrogen, Paisley, UK) with the wells facing inwards and locked in place. Following this 

a 1x running buffer (prepared from the 10x stock solution described in Table 5.5) was 

loaded into the wells.  
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Table 5.5 Constituents for preparation of 10x running buffer 

Constituents Amount required 

Tris (molecular weight 121.1) 30 g 

Glycine 144  g 

Sodium dodecyl sulphate (SDS) 10 g 

Distilled water To make up to 1L 

 

Low-range prestained SDS-PAGE molecular weight marker (5 µl; Bio-Rad Laboratories, 

Richmond, CA) was loaded into the assigned wells. Extracts (15µl) from the MDA-MB-

231 human breast cancer cell line (a kind gift from Dr. Afnan Bugis, PhD Student, Cancer 

and Genetics) and HaCaT keratinocyte cell line (CLS, Cell Lines Service, Eppelheim, 

Germany) were loaded in to the assigned wells. The chamber between the gels and the 

outer chamber of the apparatus were then filled with the 1x running buffer. The 

electrophoresis apparatus was then connected to a power pack and run at a starting voltage 

of 150V and a constant current of 50 mA (25mA per gel) until the tracking dye reached the 

bottom of the gel. The cassettes were unlocked and removed from the apparatus, after 

which they were carefully dismantled by breaking the seal around them using the supplied 

novex spatula. The stacking gel and the lower portion of the resolving gel were cut off. 

 

5.3.5.2 Transfer of proteins to a membrane 

 

Following electrophoresis, the protein must be transferred from the electrophoresis gel to a 

membrane. For this, western blotting buffer was prepared using a stock 25x blotting buffer 

(Table 5.6 and 5.7). 
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Table 5.6 Constituents for preparation of 25x blotting buffer 

Constituents Amount required 

Tris (molecular weight 121.1) 18.2 g 

Glycine 90 g 

Distilled water To make up to 500 ml 

 

Table 5.7 Constituents for preparation of western blotting buffer 

Constituents Amount required to make 

up 500 ml 

25 x blotting buffer 20 ml 

Methanol 100 ml 

Distilled water 380 ml 

 

 

Four pieces of filter paper and two pieces of polyvinylidene difluoride (PVDF) membrane 

(Immobilon-P Transfer Membrane, Catalogue number: IPVH00010 Millipore Ltd, 

Watford, UK) were cut according to the dimensions of the gel (6 cm x 8 cm). The filter 

paper and 4 pads were allowed to soak in the western blotting buffer. The hydrophobic 

membrane was made hydrophilic by immersing it in methanol for 10 seconds followed by 

two five minute washes in distilled water.  The gel membrane sandwich was assembled on 

the cathode plate of the blotting apparatus in the following order: pad, filter paper, gel, 

membrane, filter paper, pad, filter paper, gel, membrane, filter paper and the remaining 

two pads (Figure 5.2).   
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Figure 5.2 Illustration of a gel-membrane sandwich for a single gel 

 

The other plate of the module was placed on top and closed. The assembled module (Xcell 

II Blot Module; Invitrogen, Paisley, UK) was then inserted into the tank of the blotting 

apparatus. The inner blotting chamber was filled with 1x western blotting buffer and 

distilled water was added into the outer chamber of the blotting apparatus for cooling 

during the electrophoresis. It was then run at 25 V constant voltage (around 100 mA 

starting current) for 2 hours. 

 

5.3.5.3 Blocking and antibody incubation 

 

After 2 hours, the membranes were carefully removed and placed in a Petri dish and 

washed once in PBS-T20 (Table 5.8) for 5 minutes. All the washing, blocking, and 

primary and secondary antibody incubation steps were performed on an orbital shaker to 

ensure proper contact with the membrane. 

 

 

 

 

 

 



112 

 

Table 5.8 Constituents for preparation of PBS-T20 

Constituents Amount required to make up 

500 ml  

PBS (10x) 50 ml 

Tween-20 0.5 ml 

Distilled water 449.5 ml 

 

The PVDF membrane used in western blotting has a high affinity for proteins. Therefore, 

after the transfer of the proteins from the gel, it is important to block the remaining surface 

of the membrane to prevent any nonspecific binding of the antibodies to the membrane 

surface in subsequent steps. Therefore, the membranes were then placed in blocking buffer 

(5 g of Marvel in 100 ml of PBS-T20) for an hour.  

 

Following this, the membranes were placed in 1:1000 dilution of the primary antibody 

(Smad3, MMP-1 or IL-8) diluted in 5% Marvel in PBS, overnight at 4° C. The next day 

the membranes were washed in PBS-T20 (3 times for 5 minutes) to remove unbound 

reagents and reduce background.  

 

The membranes were placed in 10 ml of 1:1000 dilution (diluted with 5% Marvel in PBS) 

of the secondary antibody (species corresponding to the primary antibody) conjugated to 

horse radish peroxidase (Dako UK Ltd, Ely, UK) for one hour. This was followed by 

washes in PBS-T20 (twice for thirty seconds, once for 15 minutes and then thrice for 5 

minutes). 

 

5.3.5.4 Chemiluminescent detection 

 

To visualise the protein signals, an enhanced chemiluminescence (ECL) technique was 

employed, which has to be performed in a dark room. The membranes were placed on 

cling film with the protein side up and a 1:1 mixture of solution I (Table 5.9) and solution 

II (Table 5.10) were added to the membranes (approximately 2 ml per membrane) and it 

was left for 5 minutes.  
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Table 5.9 Constituents for preparation of solution I 

Constituents Amount required  

Luminol (250 mM in dimethyl sulfoxide, DMSO) 1 ml 

Coumaric acid (90 mM in DMSO) 0.44 ml 

Tris (pH 8.5) 10 ml 

Distilled water To make up to 100 ml 

 

Table 5.10 Constituents for preparation of solution II  

Constituents Amount required  

30 % Hydrogen peroxide  64 µl 

Tris (pH 8.5) 10 ml 

Distilled water To make up to 100 ml 

 

Following this the excess solution was drained off and the membranes were placed protein 

side down on fresh cling film, wrapped up and placed in an X-ray cassette with the protein 

side facing upwards. The lights in the dark room were switched off and an X-ray film 

(Amersham Hyperfilm ECL, catalogue number: 28-9068-35; GE Healthcare UK Limited, 

Buckinghamshire, UK) of appropriate dimension was placed over the wrapped membranes 

in the cassette. The exposure time ranged from 1 to 5 minutes. The film was removed from 

the cassette and placed in the developer solution till clear bands appeared, following which 

it was briefly immersed in the stop solution (water) and then in the fixer for around 30 

seconds. The films were washed in distilled water for 15 minutes and then allowed to dry. 

Once dried the size of the bands on the film were determined by comparing it with the pre-

stained molecular weight marker. The procedure followed for western blotting is 

illustrated in Figure 5.3. 

 

 



114 

 

Figure 5.3 Simplified workflow for western blotting procedure 

 

5.3.6 Real-time RT-PCR  

 

Reverse transcription combined with polymerase chain reaction (RT-PCR) is a robust 

technique for quantitative estimation of gene expression
497

.  Over the past few years, real-

time PCR technology has been used to perform quantitative RT-PCR and due to its 

accuracy and sensitivity, real-time RT-PCR has become the preferred method for 

quantifying changes in gene expression
498

. Quantitative real-time PCR is based on the 

detection of a fluorescent signal produced proportionally during the exponential 

amplification phase
499

. Various methods of real-time PCR are currently available such as 

the TaqMan® method, the molecular beacon method and the SYBR® Green method
500

. 

The TaqMan® real-time PCR involves the use of a TaqMan probe in addition to the PCR 

primers
499

.  This probe is an oligonucleotide with a fluorescent dye reporter attached to the 

5' end and a non-fluorescent quencher attached to the 3' end
499,501

. They are designed to 

anneal to the target sequence between the forward and reverse primers
499

. In the intact 

probe, the proximity of the reporter dye to the quencher suppresses reporter fluorescence 

signal primarily by Förster resonance energy transfer (FRET)
500,501

. However, during PCR 

the Taq polymerase activity cleaves the probe, releasing the reporter dye and resulting in 

fluorescence
499

. The amount of fluorescence is proportional to the amount of PCR product 

generated in each cycle
499

. This probe-based real-time PCR technique increases the 
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specificity of detection as it does not detect non-specific amplifications and allows 

accurate measurement of the reporter dye fluorescence
500

. It is reported to be a rapid and 

reproducible method for quantification of cytokine and growth factor genes expressed at 

low levels in small samples
500

.   

 

Taking these facts into consideration, gene expression of TGF-β1, Smad3 and IL-8 was 

determined using a quantitative real-time-PCR assay based on TaqMan® Low Density 

Array technology (TLDA, Applied Biosystems) (Figure 5.4). The TLDA assay uses 

micro-fluidic cards that allows testing of many independent genes at the same time. Each 

TLDA card has eight separate loading ports and 384 wells. Each well contains primers and 

probes, capable of detecting a single gene and supplied by 8 ports in total. Reverse 

transcription and TLDA-based real-time PCR was carried out by Dr. Claudia Consoli at 

the Central Biotechnology Services (CBS) Facility, Cardiff University.  The expression of 

candidate genes were measured using the TLDA Human Immune Panel (Format 96a, Part 

Number: 4370573, Applied Biosystems). This TLDA panel included 90 target genes and 6 

housekeeping genes. 

 

5.3.6.1 RNA extraction 

 

The initial and key step is to obtain high quality, intact RNA. 750µl of Trizol (Invitrogen, 

Paisley, UK) was added to at least 600µm of cryosections from each biopsy in the fume 

hood. The samples were briefly vortexed and allowed to incubate for 5 min and then 200µl 

of chloroform was added to it and mixed vigorously by hand for 15 to 20 seconds and 

allowed to stand on the bench for 3 minutes. Samples were then centrifuged for 15 minutes 

at 12,000 x g relative centrifugal force (RCF) and at a temperature of 4°C.  After 

centrifugation, the mixture separates into 3 phases: Red (phenol-chloroform) phase, 

interphase and the upper aqueous (colourless) phase. The colourless supernatant 

(containing the RNA) was carefully removed into an RNAase/DNAase free 

microcentrifuge tube and 200µg of glycogen was added as per the manufacturer’s 

instructions. 500 µl of isopropyl alcohol (Fisher Scientific) was added to the solution 

which was then briefly vortexed. It was then allowed to precipitate at room temperature for 

10 minutes and then centrifuged at 12,000 x g for 10 minutes at 4°C. The RNA formed a 

tiny pellet on the side or bottom of the tube. The supernatant was then removed with a 1ml 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1867577/figure/F1-6360/
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pipette taking care not to disturb the pellet. The pellet was then washed with 1 ml of 75% 

ethanol (prepared with RNAase/DNAase free water) and centrifuged at 7500 x g for 5 min 

at 4° C.  The supernatant was again discarded and washed with 70% ethanol and 

centrifuged at 7500 x g for 5 min at 4°C. Following this, all the remaining ethanol was 

removed and the pellet air-dried by leaving the tube open for about 5 minutes. The RNA 

pellet was then dissolved in 40 µl of RNAase-free water and stored at -80ºC 

 

5.3.6.2 RNA analysis 

  

All RNA samples were ‘cleaned’ using an RNeasy MinElute Cleanup Kit (Qiagen Ltd., 

Crawley, UK) to remove any impurities or enzymatic inhibitors that may affect target 

amplification efficiency. The RNA concentration was determined following analysis of the 

ratio of the optical densities at 260 and 280 nm, using a NanoDrop-1000 

spectrophotometer (Thermo Fisher Scientific, USA). RNA integrity was assessed by the 

Agilent 2100 Bioanalyzer using the RNA Nano LabChip kits and the Eukaryote total RNA 

assay. RNA samples were stored at -80°C until further use. 

 

5.3.6.3 Reverse transcription  

 

Total RNA from each sample was reverse-transcribed with a High Capacity cDNA 

Reverse Transcription Kit as per the manufacturer’s protocol (Applied Biosystems, 

California, USA). A master mix was made up using 2 µl of 10x RT Buffer, 0.8 µl of 25x 

dNTP mix (deoxyribonucleotide triphosphate, 100mM), 2 µl of 10x RT Random Primers, 

1 µl of MultiScribe Reverse Transcriptase, 1 µl of RNase Inhibitor and 3.2 µl of Nuclease-

free H2O. To this master mix 10 µl of RNA sample (300-500 ng) was added to make up a 

final volume of 20 µl. The tube was then placed in the GeneAmp PCR System 9700 

thermal cycler (Applied Biosystems) and the reverse transcription reaction was performed
 

according to the optimised conditions prescribed by the manufacturer: 25C for 10 min, 

37C for 120 min, 85C for 5 min, and hold at 4C. The cDNA was then aliquoted and 

stored at -20ºC. 
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5.3.6.4 Real-time PCR 

 

Microcentrifuge tubes were labelled for each sample-specific PCR mix. cDNA was 

removed from the freezer and allowed to thaw. The cDNA was diluted (5x) and then 

gently vortexed and centrifuged. Sample-specific PCR mix was prepared by adding 10 µl 

of the specific diluted cDNA sample, 40 μL of RNase-free water and 50 μL of 2× TaqMan 

Universal PCR Master Mix (Applied Biosystems) into the labelled microcentrifuge tube. 

The tube was gently vortexed for thorough mixing and then centrifuged to eliminate air 

bubbles. The TaqMan Array was carefully removed from its packaging and placed on the 

bench foil side down. 100 μl of the desired sample-specific PCR mix was loaded into the 

fill port (larger hole on the left arm of each fill reservoir) of the array with the pipette at an 

angled position. The arrays were then centrifuged twice (1200 rpm for 1 minute) to 

distribute the samples to the reaction wells. Following this the arrays were sealed and the 

fill reservoirs were cut off from the array. The plate document was then set up on the 

Sequence Detection System software.  

 

The prepared array was placed in the instrument tray of the ABI 7900HT Real-Time PCR 

System (Applied Biosystems) and the PCR amplification was carried out under the 

following thermal cycler conditions: 2 min at 50°C, 10 min at 94.5°C, 30 s at 97°C and 1 

min at 59.7°C for 40 cycles. Each sample was run in triplicate to ensure accuracy, 

precision and reproducibility of results. 

 

5.3.6.5 Calculations and analysis of real time PCR data 

 

The TLDA data were analysed using the RQ Manager 1.2 software of the ABI Sequence 

Detection System version 2.3 software package (Applied Biosystems). The threshold cycle 

(Ct) values calculated by the RQ Manager software were imported into a Microsoft Excel 

spreadsheet. The Ct value corresponds to the cycle number at which the amount of 

amplified target reaches a fixed threshold
502

. The relative quantification method (2
-ΔΔCT

 

method) was used to analyse and calculate the PCR data.  This method analyses the 

relative changes in gene expression from real-time quantitative PCR experiments by 

comparing the PCR signal of the target gene in the treatment group to that of another 

sample such as an untreated control
498

. The data are presented as fold change in gene 



118 

 

expression normalised to an endogenous control and relative to an untreated control or a 

sample at time zero in a time-course study
498

. An endogenous control is a housekeeping 

gene that is consistently expressed in all samples and used as an active reference for 

normalisation. The TLDA card included glyceraldehyde 3-phosphate dehydrogenase 

(GAPDH), β-actin (ACTB), human transferrin receptor (p90, CD71) (TFRC), human β-

glucuronidase (GUSB), human phosphoglycerate kinase 1 (PGK1), and 18S ribosomal 

RNA as housekeeping genes. The Ct values were normalised using the most stable 

housekeeping gene to obtain the ΔCt values [ΔCt = Ct (target gene) – Ct (housekeeping 

gene)]. To determine the stability of the housekeeping genes, the geNORM Visual Basic 

application was used (Dr. Peter Giles, CBS, Cardiff University). Then, ΔΔCt values were 

calculated by subtracting the calibrator (untreated/baseline sample) from the mean ΔCt 

values of each target. The average “-fold” change in expression relative to baseline was 

then calculated using the formula RQ = 2
-ΔΔCt

. The procedure followed for PCR is 

illustrated in Figure 5.4. 
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Figure 5.4 Workflow for real-time-PCR assay based on TaqMan® Low Density 

Array technology 

 

Statistical analysis was carried out using the by repeated-measures ANOVA and the post-

hoc bonferroni test to determine if there was a significant difference in gene expression 

between any of the groups (B1, B2 & B3). The differences were considered statistically 



120 

 

significant at p < 0.05. The presence of statistical significance in gene expression values 

signified differential expression of that particular gene (either upregulated or 

downregulated). The absence of statistical significance signified unchanged expression of 

that gene.  All data were expressed as mean ± SEM.  

 

In summary, the methods used for this study were:  

 

 Immunohistochemistry and image analysis to determine if IPL induced any 

changes in protein expression 

 Western blotting to verify the specificity of the antibodies for which there were no 

blocking peptides, and  

 TLDA-based PCR to determine if there were any changes in gene expression 
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Chapter 6: Results 

 

 Effects of IPL on acne-prone skin 
 

This study was carried out to investigate the in vivo effects of intense pulsed light (IPL) on 

acne-prone skin using an immunohistochemical approach. The effect of IPL was 

investigated on the expression of TGF-β isoforms (TGF-β1, TGF-β2 and TGF-β3), Smad3, 

IL-8 and MMP-1 in human skin in vivo. Three biopsies from each of the 20 patients (60 

biopsies in total) were available for immunohistochemical analysis.  

 

6.1. Effects on TGF-β/Smad3 signalling 

 

6.1.1 TGF-β1 

 

The expression of TGF-β1 was immunohistochemically analysed on frozen sections 

obtained from patients with mild to moderate acne vulgaris at baseline (B1), 48 hours after 

the first IPL treatment (B2) and 1 week after the final treatment (B3). The particular TGF-

β1 antibody (sc-146) used was selected due to the availability of  a cognate blocking 

peptide and based on its previous use for immunohistochemical analysis of frozen human 

skin sections as demonstrated in a study conducted by Quan et al
229

.  

 

An increase in TGF-β1 staining was observed in the post-treatment sections in the majority 

(17 out of 20 cases) of the cases (Figure 6.1 and 6.2). However, in a few cases (3 out of 

20 cases) there was a decrease in staining post-IPL (Figure 6.3). The localisation of the 

staining is as described below. 
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Epidermis and its appendages 

 

The epidermis showed mild to moderate TGF-β1 immunoreactivity that was cytoplasmic 

and most intense in the upper differentiated layers of the epidermis, the stratum 

granulosum and the stratum corneum (Figure 6.1). Appearing like a distinct brown band 

beneath and in the lower layers of the stratum corneum (Figure 6.2), this pattern of 

expression was consistent with previous reports on the spatial and temporal localisation of 

TGF-β1 in normal human skin
185,186

. There was low intensity immunostaining of hair 

follicles and sebaceous glands in some cases (Figure 6.4). The epidermal appendages were 

excluded from the analysis because they were not present in all sections. 

 

Dermis 

 

Immunoreactivity in the dermis was negligible.  

 

Negative control and blocking peptide 

 

The sections incubated in the absence of the TGF-β1 antibody did not show any 

immunoreactivity (Figure 6.1, top panel). In addition, preincubation of TGF-β1 antibody 

with the cognate blocking peptide (Santa Cruz Biotechnology, catalogue no. sc-146 P) 

resulted in no detectable staining (Figure 6.1, bottom panel). Thus, verifying the 

specificity of the TGF-β1 antibody used. 
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 TGF-β1 

Blocking 

peptide 

Figure 6.1 Immunohistochemical analysis of TGF-β1 showing increased staining in the post-IPL sections. Representative 

photomicrographs of TGF-β1 staining with antibody alone (middle panel), with blocking peptide (bottom panel) and without the primary 

antibody (top panel) at baseline (B1), 48 hours following 1
st
 IPL session (B2), and 1 week after the 4

th
 session of IPL treatment (B3).  
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Figure 6.2 TGF-β1 immunoreactivity depicted by the brown band beneath and in the lower layers of the stratum corneum (as 

indicated by the arrows). 
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Figure 6.3 Immunohistochemical analysis of TGF-β1 showing decreased staining in the post-IPL sections. Photomicrographs of one of 

the three cases wherein there was a downregulation of TGF-β1 expression post-IPL. 
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Figure 6.4 TGF-β1 immunoreactivity in the epidermal appendages. Representative photomicrographs from one case showing the 

immunoreactivity in the sebaceous glands (top panel). One photomicrograph (B2) from the same case demonstrated staining in the 

infundibular region of the hair follicle (bottom panel, no comparable sections from B1 or B3).    
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6.1.1.1 Image analysis 

 

Quantification of the immunohistochemical staining was carried out using Image Pro Plus 

image analysis software, version 6.0 (Media Cybernetics, Bethesda, MD, USA). On 

quantification, it was demonstrated that the epidermal expression of TGF-β1 was 

upregulated in seventeen of the twenty cases and downregulated in remaining three cases 

48 hours after the first treatment and the same trend was observed one week after the final 

treatment session (Table 6.1). 

 

Table 6.1 Effect of IPL on the expression of TGF-β1 in the 20 cases 

Isoform 

48 hrs after 1
st
 treatment vs. 

Baseline (B2 vs. B1) 

1 wk after 4
th

 treatment vs. 

Baseline (B3 vs. B1) 

Upregulation  Downregulation  Upregulation  Downregulation  

TGFβ1 17/20* 3/20 17/20* 3/20 

*Statistically significant at p < 0.05 

 

6.1.1.2 Statistical analysis 

 

The data was analysed and compared using a one-way repeated measures analysis of 

variance (ANOVA) with time of measurement (B1 vs. B2 vs. B3) as a within-subjects 

factor. The sphericity assumption was met (Mauchly's test did not show a violation of 

sphericity). The ANOVA revealed that the mean difference in TGF-β1 expression was 

statistically significant between the different time points (B1, B2 and B3), F(2, 38) = 

10.789, p = 0.000195. ANOVA indicates if there was an overall significant difference 

between the means at the different time points, but it does not indicate amongst which 

groups those differences occurred. However, post-hoc tests such as the Bonferroni 

correction does indicate which specific means differed. Post hoc comparisons were 

performed using the Bonferroni adjustment for multiple comparisons with the p value set 

at 0.05.  
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The Bonferroni correction revealed that IPL treatment elicited an increase (1.6-fold/63%) 

in TGF-β1 expression (Figure 6.5) from baseline to 48 hours after first treatment session 

(Mean + Standard error of mean, SEM; 2.2 ± 0.4  vs. 3.58 ± 0.51, respectively) which was 

statistically significant (p = 0.004). Similarly, there was a statistically significant increase 

(1.6-fold/62%) in TGF-β1 expression from baseline to 1week after the last treatment 

session (increased to 3.55 ± 0.46; p = 0.007). However, there was no statistically 

significant difference between B2 (48 hours after the first IPL treatment) and B3 (1 week 

after the final treatment) (p > 0.05).  

 

 

 

Figure 6.5 Effect of IPL on TGF-β1 expression. IOD: integrated optical density; Error 

bars denote standard error of mean, SEM; the red star denotes a statistically significant 

difference between baseline and post-IPL expression. 

 

We can, therefore, conclude that IPL elicits a statistically significant increase in epidermal 

TGF-β1 expression 48 hours following the first treatment session and this increase was 

sustained until 1 week after the last treatment session.  
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6.1.2 TGF-β2 

 

As for TGF-β1, the TGF-β2 antibody (sc-90) was selected according to the 

immunohistochemistry protocol employed in the study by Quan et al
229

. No specific trend 

in TGF-β2 staining was observed when comparing the baseline and the post-treatment 

sections. The localisation of the staining is as described below. 

 

 

Epidermis and its appendages 

 

Immunoreactivity to TGF-β2 was observed to be cytoplasmic. Staining was present in all 

the layers of the epidermis. However, it was most intense in the basal layer of the 

epidermis (Figures 6.6 and 6.7). In addition there was immunostaining of hair follicles, 

sweat glands and sebaceous glands (data not shown). 

 

Dermis  

 

TGF-β2 immunoreactivity was also observed in the dermis. Staining was moderate to 

intense in the dermal fibroblasts, inflammatory cells, and in the smooth muscle fibres of 

dermal vessels and arrector pili muscles. 

  

Negative control and blocking peptide 

The sections incubated in the absence of the TGF-β2 antibody (negative control) did not 

show any staining in any of the structures (Figure 6.6, top panel). In addition, 

preincubation of TGF-β2 antibody with the specific blocking peptide (Santa Cruz 

Biotechnology, catalogue no. sc-90 P) did not demonstrate any detectable staining (Figure 

6.6, bottom panel). 
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Figure 6.6 Immunohistochemical staining for TGF-β2 demonstrating increased intensity of staining in the post-IPL sections. 

Representative photomicrographs of TGF-β2 staining with antibody alone (middle panel), with blocking peptide (bottom panel) and without 

the primary antibody (top panel) at baseline (B1), 48 hours following 1
st
 IPL session (B2), and 1 week after the 4

th
 session of IPL treatment 

(B3).  
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Figure 6.7 Immunohistochemical staining for TGF-β2 demonstrating a decrease in staining intensity from B1 to B3. 
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6.1.2.1 Image analysis 

 

On quantification, it was demonstrated that the epidermal and dermal expression of TGF-

β2 did not show any significant trends post-treatment at either of the two time points 

(Table 6.2). 

 

Table 6.2 Effect of IPL on the expression of TGF-β2 in the 20 cases 

TGFβ2 

Isoform 

48 hrs after 1
st
 treatment vs. 

Baseline (B2 vs. B1) 

1 wk after 4
th

 treatment vs. 

Baseline (B3 vs. B1) 

Upregulation  Downregulation  Upregulation  Downregulation  

 EPI                 10/20 10/20 11/20 9/20 

DERM 8/20 12/20 11/20 9/20 

 

6.1.2.2 Statistical analysis 

 

Repeated-measures ANOVA did not detect any statistical significance between the groups 

hence the post hoc Bonferroni test was not required in this scenario. 
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6.1.3 TGF-β3 

 

The expression of TGF-β3 was studied by using a TGF-β3 antibody (sc-82) and similar to 

the other isoforms the immunohistochemistry protocol was based on the study by Quan et 

al
229

. 

 

As with TGF-β2 staining, no specific trend in TGF-β3 staining was observed when 

comparing the baseline and the post-treatment sections. The localisation of the staining is 

as described below (Figure 6.8 and 6.9). 

 

Epidermis and its appendages 

 

TGF-β3 immunoreactivity was predominantly cytoplasmic, however, in some cases 

speckled perinuclear staining was noted (Figure 6.9). Mild to moderate staining was 

present in all the layers of the epidermis. Staining was also present in the hair follicles, 

sebaceous glands and in sweat glands (not shown). 

 

Dermis  

 

TGF-β3 immunoreactivity was present in the dermis. There was mild to moderate staining 

of some dermal cells, probably inflammatory cells and fibroblasts.  

 

Negative control and blocking peptide 

The sections incubated in the absence of the primary antibody did not show any staining 

(Figure 6.8, top panel). In addition, preincubation of TGF-β3 antibody with the associated 

blocking peptide resulted in no detectable staining (Figure 6.8, bottom panel). 
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Figure 6.8 Immunohistochemical staining for TGF-β3. Representative photomicrographs of TGF-β3 immunohistochemitry are shown 
from one patient (middle panel). No detectable staining in the absence of the primary antibody (top panel) or with the corresponding blocking 

peptide (bottom panel). 
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Figure 6.9 Representative photomicrographs of TGF-β3 immunoreactivity depicting a case wherein perinuclear speckling was 

present in addition to cytoplasmic staining 

 TGF-β3 
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6.1.3.1 Image analysis 

 

Akin to TGF-β2 protein, TGF-β3 did not show any specific trends post-treatment at either 

of the two time points (Table 6.3) 

 

Table 6.3 Effect of IPL on the expression of TGF-β3 in the 20 cases 

TGFβ3 

Isoform 

48 hrs after 1
st
 treatment vs. 

Baseline (B2 vs. B1) 

1 wk after 4
th

 treatment vs. 

Baseline (B3 vs. B1) 

Upregulation  Downregulation  Upregulation  Downregulation  

 EPI                 11/20  9/20  11/20  9/20  

DERM 9/20  11/20  8/20  12/20  

 

6.1.3.2 Statistical analysis 

 

Repeated-measures ANOVA did not detect any statistical significance between the groups 

hence the post hoc Bonferroni test was not required in this scenario. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



137 

 

6.1.4 Smad3 

 

To determine whether TGF-β signalling had been activated the immunolocalisation of 

Smad3 to the nucleus was evaluated. An affinity-purified rabbit polyclonal antibody 

against a 20 amino acid synthetic peptide derived from the central portion of the linker 

domain of human Smad3 was utilized. The antibody was selected based on a staining 

procedure described in a publication by Kalinina et al
494

.  

 

Immunoreactivity 

 

Pronounced nuclear staining for Smad3 was observed in the post-treatment sections 

(Figure 6.10, bottom panel and Figure 6.11). Immunolocalisation of Smad3 to the nucleus 

was observed in both epidermal and dermal cells. However, it was more predominant in 

the epidermis and the epidermal appendages (Figure 6.12). Smad3 immunoreactivity was 

only present in the nuclei of a few cells in the dermis, which were probably inflammatory 

cells and/or fibroblasts. 

 

Negative control 

 

Smad3 immunoreactivity was not detectable when sections were incubated in the absence 

of the primary Smad3 antibody (Figure 6.10, top panel). There was no blocking peptide 

available for this antibody. 
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Figure 6.10 Immunolocalisation of Smad3 to the nucleus in the post-IPL sections (B2 and B3). Representative photomicrographs of 

smad3 staining are shown from one patient (bottom panel). No detectable nuclear staining in the absence of the primary antibody (top panel). 
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Figure 6.11 Representative photomicrographs of Smad3 staining from another case. Enhanced nuclear localisation of Smad3 in the post-

IPL sections (B2 and B3). 
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Figure 6.12 Smad3 immunoreactivity in the pilosebaceous unit. Representative photomicrographs (B1 and B2) from one case. Comparable 

photomicrograph for B3 was not available. 

B1 B2 
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6.1.4.1 Image analysis 

 

The immunoratio plugin of the ImageJ image-analysis software (available at: 

http://imtmicroscope.uta.fi/immunoratio/) was used to count the Smad3-stained nuclei and 

total nuclei, and the percentage of the Smad3 stained-nuclei was calculated.  

 

In majority of the cases, there was an increase in the translocation of Smad3 into the 

nucleus post-IPL when compared to baseline (Table 6.4). 

 

Table 6.4 Effect of IPL on the nuclear localisation of Smad3 in the 20 cases 

Nuclear 

Smad3 

48 hrs after 1
st
 treatment vs. 

Baseline (B2 vs. B1) 

1 wk after 4
th

 treatment vs. 

Baseline (B3 vs. B1) 

Upregulation  Downregulation  Upregulation  Downregulation  

 EPI                 18/20*  2/20  19/20*  1/20  

DERM 16/20*  4/20  15/20*  5/20  

*Statistically significant at p < 0.05 
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6.1.4.2 Statistical analysis 

 

The one-way repeated measures ANOVA revealed that the mean nuclear translocation of 

Smad3 differed significantly between the different time points, [epidermis: F (2, 38) = 

23.884, p = 0.000000192 and dermis: F (2, 38) = 8.601, p = 0.001]. The Post hoc 

Bonferroni correction revealed that IPL treatment elicited a statistically significant 

increase (epidermis: 1.45-fold and dermis: 1.14-fold) in the nuclear translocation of Smad3 

from baseline to 48 hours after first treatment session in both the epidermis (Mean + SEM; 

48.9 + 3.6 vs. 71 + 3.05, p = 0.000055, respectively) and dermis (Mean + SEM; 57.18 + 

3.08  vs. 65.19 + 2.65,  p = 0.014, respectively). Similarly, there was a statistically 

significant increase (epidermis: 1.38-fold and dermis: 1.18-fold) in nuclear translocation of 

Smad3 from baseline to 1week after the last treatment session in the epidermis (increased 

to 67.35 + 2.66; p = 0.00024) and dermis (increased to 67.4 + 2.48; p = 0.008). However, 

there was no statistically significant difference between B2 (48 hours after the first IPL 

treatment) and B3 (1 week after the final treatment) (p > 0.05).  

 

   

Figure 6.13 Effect of IPL on nuclear immunolocalisation of Smad3. IOD: integrated 

optical density; Error bars denote standard error of mean, SEM; the red star denotes a 

statistically significant difference between baseline and post-IPL expression. 

 

We can, therefore, conclude that IPL irradiation results in the nuclear translocation of 

Smad3.  
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6.2 Effects on pro-inflammatory mediators IL-8 & MMP-1 

 

6.2.1 Interleukin-8 (IL-8) 

 

To determine whether IPL has an effect on the pro-inflammatory mediators implicated in 

acne pathogenesis, the expression of IL-8 was immunohistochemically evaluated using a 

mouse monoclonal antibody against human IL-8. The antibody selected and the staining 

protocol employed were based on a previous publication by Arici et al
495

.  

 

The trend of IL-8 expression at the various time-points was quite variable. A decrease in 

IL-8 staining was observed in the post-treatment sections in most of the cases (Figure 

6.14). However, in a few cases there was an increase in staining post-IPL (Figure 6.15). 

The localisation of the staining is as described below. 

 

Epidermis and its appendages 

 

Immunoreactivity to IL-8 was observed to be both intracellular and intercellular. Moderate 

to intense staining was present in all the layers of the epidermis. However, it was more 

prominent in the upper layers of the epidermis (Figures 6.14). In addition there was 

staining of the hair follicles, sebaceous glands (Figure 6.16) and sweat glands.  

 

Dermis  

 

Immunoreactivity to IL-8 was moderate to intense in some cells in the dermis (probably 

inflammatory cells and fibroblasts). Prominent staining of the endothelial cells of the 

dermal vasculature was observed. In addition there was staining of the arrector pili muscle.  

 

Negative control and blocking peptide 

There was no detectable staining in the sections incubated in the absence of the primary 

IL-8 antibody (Figure 6.14, top panel). There was no blocking peptide available for this 

antibody. 
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Figure 6.14 Immunohistochemical staining for IL-8 showing decreased staining in the post-IPL sections. Representative 

photomicrographs of IL-8 immunoreactivity in one case (bottom panel). No detectable staining in the absence of the primary antibody (top 

panel).  

B1 
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Figure 6.15 Immunohistochemical staining for IL-8 showing an increase in staining in B2 and a subsequent decrease in B3. 
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Figure 6.16 IL-8 immunoreactivity in the pilosebaceous unit. Representative photomicrographs (B1 and B3) from one case. Comparable 

photomicrograph for B2 was not available. 

 

B1 B3 
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6.2.1.1 Image analysis 

 

Quantification of the staining was carried out using Image Pro Plus 6.0 image analysis 

software. IL-8 expression showed a downward trend post-IPL in majority of the cases 

(Table 6.5). 

 

Table 6.5 Effect of IPL on the expression of IL-8 in the 20 cases 

IL-8 

48 hrs after 1
st
 treatment vs. 

Baseline (B2 vs. B1) 

1 wk after 4
th

 treatment vs. 

Baseline (B3 vs. B1) 

Upregulation  Downregulation  Upregulation  Downregulation  

 EPI                 6/20 14/20 5/20 15/20 

DERM 4/20 16/20 7/20 13/20 

 

6.2.1.2 Statistical analysis 

 

Although a downward trend was observed (Figure 6.17), repeated-measures ANOVA did 

not detect any statistical significance between the groups hence the post hoc Bonferroni 

test was not required in this scenario. 

 

  

Figure 6.17 Effect of IPL on IL-8 expression. IOD: integrated optical density; Error bars 

denote standard error of mean, SEM. 
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6.2.2 Matrix Metalloproteinase-1 (MMP-1) 

 

To determine whether IPL has an effect on matrix degrading enzymes that may play a role 

in acne inflammation and scarring the immunohistochemical evaluation of MMP-1 

expression was carried out. A mouse monoclonal antibody against a synthetic peptide 

corresponding to amino acids 332-350 of human MMP-1 was utilised. We selected this 

particular MMP-1 antibody based on its previous use for immunohistochemical analysis in 

frozen sections of human skin as reported in a publication by Jalian et al
92

.  

 

Epidermis and its appendages 

 

Moderate to intense immunoreactivity to MMP-1 was observed in all the layers of the 

epidermis (Figure 6.18-6.20). The staining was predominantly cytoplasmic but in some 

cases staining was observed both in the nuclei and in the cytoplasm (Figure 6.19) 

consistent with previous reports
503,504

. Moreover, Limb et al
504

 reported that intracellular 

association of MMP-1 to the nuclei and mitochondria of cells confers resistance to 

apoptosis in those cells, which may contribute to cell survival. In addition there was 

staining of the hair follicles, sebaceous glands (Figure 6.21) and sweat glands.  

 

Dermis  

 

Immunoreactivity to MMP-1 was moderate to intense in some cells in the dermis. 

Prominent staining of dermal cells that appear morphologically similar to fibroblasts was 

observed.  

 

Negative control and blocking peptide 

Staining was not detectable in the sections incubated in the absence of the primary MMP-1 

antibody (Figure 6.18, top panel). There was no blocking peptide available for this 

antibody.
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Figure 6.18 Immunohistochemical staining for MMP-1. There is an initial decrease in staining in B2 followed by a subsequent increase in 

B3 (bottom panel). No detectable staining in the absence of the primary antibody (top panel). 
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Figure 6.19 Immunohistochemical staining for MMP-1 demonstrating a case wherein staining was observed both in the nuclei and in 

the cytoplasm 
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Figure 6.20 Immunohistochemical staining for MMP-1 demonstrating a progressive decrease in staining from B1 to B3. 
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Figure 6.21 MMP-1 immunoreactivity in the sebaceous gland. Representative photomicrographs (B1 and B3) from one case. Comparable 

photomicrograph for B2 was not available. 

 

B1 B3 
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6.2.2.1 Image analysis 

 

Quantification of the staining was carried out using Image Pro Plus 6.0 image analysis 

software. MMP-1 expression showed a downward trend post-IPL in most of the cases 

(Table 6.6). 

 

 

Table 6.6 Effect of IPL on the expression of MMP-1 in the 20 cases 

IL-8 

48 hrs after 1
st
 treatment vs. 

Baseline (B2 vs. B1) 

1 wk after 4
th

 treatment vs. 

Baseline (B3 vs. B1) 

Upregulation  Downregulation  Upregulation  Downregulation  

 EPI                 6/20 14/20 5/20 15/20 

DERM 6/20 14/20 4/20 16/20 

 

 

 

6.2.2.2 Statistical analysis 

 

On statistical analysis using the repeated-measures ANOVA, the mean MMP-1 expression 

in the epidermis was found to be significantly different between the different time points, 

F(2, 38) = 3.322, p = 0.047. However, on applying the post-hoc Bonferroni test no 

significance was found (p > 0.05 between all groups). This discordance could be attributed 

to a Type I error in the ANOVA or it could be due to the fact that the post hoc Bonferroni 

correction is quite a conservative test. 

 

On the other hand, in the dermis repeated-measures ANOVA did not detect any statistical 

significance between the groups and hence the post hoc Bonferroni test was not required. 
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Figure 6.22 Effect of IPL on MMP-1 expression. IOD: integrated optical density; Error 

bars denote standard error of mean, SEM. 
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6.3 Western blotting 

 

For the TGF-β isoforms, the corresponding blocking peptides were available to validate 

the specificity of their antibodies. However, blocking peptides were not available for the 

antibodies against Smad3, IL-8, and MMP-1. Therefore, to confirm the specificity of these 

antibodies western blotting was performed on cell lysates obtained from a breast cancer 

cell line and a HaCaT keratinocyte cell line.  

 

6.3.1 Smad3 

 

A band of approximately 52 kDa was detected (Figure 6.23) in the breast cancer cell line, 

consistent with the expected molecular weight of Smad3 (Molecular weight: 49-55 kDa).  

 

 

 

Figure 6.23 Western blot analysis of the antibody against Smad3. Lane 1: HaCaT 

keratinocyte cell line, Lane 2: Breast cancer cell line and Lane 3: low-range prestained 

SDS-PAGE molecular weight marker. 

 

 

6.3.2 IL-8 

 

There was a lot of cross-reactivity with this antibody and the bands did not correlate with 

the predicted molecular weight of IL-8 (Data not shown). Nevertheless, as per the 

company documentation this antibody is only suitable for performing 

immunohistochemistry.  
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6.3.3 MMP-1 

 

No bands were detected for MMP-1 in any of the samples tested. This may be because 

MMP-1 was not expressed at detectable levels in these cells in culture or the epitope was 

destroyed during protein preparation for gel electrophoresis, thus affecting its ability to 

interact with the antibody. 

 

Therefore, only the specificity of the Smad3 antibody could be validated from the western 

blotting analysis. 

 

6.4 TaqMan low density array (TLDA) based quantitative real-time PCR 

 

To evaluate the gene expression of TGF-β1, Smad3 and IL-8 a highly sensitive 

quantitative real-time-PCR assay based on TLDA technology was used. Based on the 

geNORM Visual Basic application, Glyceraldehyde-3-Phosphate Dehydrogenase 

(GAPDH) was found to be the house-keeping gene with the most stable expression over 

the three time-points and was used as the endogenous control (active reference for 

normalisation). The threshold cycle (Ct) for each gene was measured in triplicate. The 

mean ΔCt values obtained by normalising the Ct values to the GAPDH levels were used to 

calculate the relative gene expression levels using the formula: RQ = 2
-ΔΔCt

 (comparative 

Ct method). Gene expression is shown as fold change in average Ct value relative to 

expression levels at baseline. Due to a limited availability of samples there was only 

sufficient RNA from 7 cases. 

 

There was a 1.33-fold increase in the expression of TGF-β1 at 48 hours following the first 

treatment, and one week after the final treatment session there was a 1.23-fold increase in 

expression (Figure 6.24) 

 

6.4.1 Statistical analysis 

 

Repeated-measures ANOVA did not detect any statistical significance between the groups 

hence the post hoc Bonferroni test was not required in this scenario. This may be attributed 

to the small sample size of seven cases, which violates the assumptions of parametric 
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testing. Hence, a non-parametric equivalent of the repeated-measures ANOVA, the 

Friedman’s ANOVA test was applied to the data. However, the data was found not to be 

significant even with this test.  

 

 

 

Figure 6.24 Mean fold-change in TGF-β1 gene expression at the different time-points. 

The data are represented as mean + SEM relative to baseline and relative to the reference 

gene; RQ = relative quantity 

 

Similarly, no statistically significant difference in gene expression were detected for 

Smad3 (Figure 6.25) or IL-8 (Figure 6.26). Nonetheless, for Smad3 our main focus was 

nuclear localisation rather than a change in gene expression. The data was included as 

Smad3 was present on the TLDA panel. 
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Figure 6.25 Mean fold-change in Smad3 gene expression at the different time-points. 

The data are represented as Mean + SEM relative to baseline and relative to the reference 

gene; RQ = relative quantity 

 

 

 

Figure 6.26 Mean fold-change in IL-8 gene expression at the different time-points. 

The data are represented as Mean + SEM relative to baseline and relative to the reference 

gene; RQ = relative quantity 
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6.5 Correlation of results with clinical parameters 

 

Correlation of the data on the expression of the various markers with the various clinical 

parameters such as inflammatory lesion count, non-inflammatory lesion count, sebum 

excretion rate and Leeds score (data kindly provided by Dr Marisa Taylor who conducted 

the clinical part of the study) were carried out using Pearson's product-moment correlation 

coefficient test. However, no significant correlation was found for any of the markers with 

any of the clinical parameters. One example is depicted in the graph below (Figure 6.27).  

 

 

Figure 6.27 Representative graph of the correlation between change in inflammatory 

lesion count and TGF-β1 expression after 4 sessions of IPL treatment. There was no 

significant correlation between the two variables (p > 0.05); r represents the Pearson's 

product-moment correlation coefficient 
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6.6 Summary: 

 

Immunohistochemical evaluation performed on the biopsies obtained from the 20 cases 

demonstrates that IPL upregulated the epidermal expression of TGF-β1 by 1.6 fold (p = 

0.004) at 24hrs after the first treatment session and this increase was sustained at one week 

after the fourth and final treatment session (p = 0.007). The specificity of the staining was 

confirmed by using a blocking peptide to TGF-β1. However, the gene expression of TGF-

β1 did not show a statistically significant change with IPL treatment (Table 6.7) 

 

Table 6.7 Fold-change in TGF-β1 protein and mRNA expression after IPL treatment 

TGF-β1 48 hrs after 1
st
 treatment vs. 

Baseline (B2 vs.B1) 

1 wk after 4
th

 treatment vs. 

Baseline (B3 vs. B1) 

Protein   1.6*   1.6* 

mRNA 1.3 1.2 

*Statistically significant at p < 0.05 

 

IPL did not seem to affect the expression of the other TGF-β isoforms (TGF-β2 and TGF-

β3). 

 

Smad3 was demonstrated to be immunolocalised to the nucleus in the post-IPL samples 

when compared to baseline, suggesting activation of Smad3 and thus TGF-β signalling. 

The specificity of the Smad3 antibody used for immunohistochemistry was confirmed by 

western blotting. 

 

Although not statistically significant, both IL-8 and MMP-1 expression showed a 

downward trend post-treatment in the majority of the cases. However, the specificity for 

either of these antibodies could not be confirmed by western blotting.  

 

The next chapter discusses the implications of these results and also speculates on what 

future studies may be undertaken based on these findings. 
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Chapter 7: Discussion 

 

7.1 Introduction 

 

Light treatment is increasingly being considered as an alternative or complementary 

treatment option in the management of acne vulgaris. However, the research on this device 

is still in the infantile stages and the mechanisms responsible for clinical improvement are 

not clear. Most studies have laid emphasis on the clinical effect of intense pulsed light 

rather than elucidating its mechanism of action. There is a striking lack of studies in the 

literature that have investigated the molecular changes associated with intense pulsed light 

(IPL) treatment in acne. Only one other study could be detected within the search ranges 

used for this thesis
110

. The unregulated use of IPL by untrained medical staff and by non-

medical operators in beauty establishments further warrants the need for understanding its 

underlying effect. This study attempted to contribute to the mechanistic explanation for use 

of IPL in acne-prone skin at the molecular level. This chapter discusses the general 

considerations drawn from the results and outlines the future studies that may be 

undertaken. 

 

7.2 Interpretation of results 

 

We hypothesized that IPL-induced TGF-β may play a potential role in the resolution of 

acne vulgaris, and therefore investigated the expression of the three mammalian TGF-β 

isoforms in skin biopsies obtained from twenty patients with mild to moderate 

inflammatory acne before (B1) and after IPL treatment (B2: 48 hours after the first IPL 

treatment and B3: 1 week after the fourth and final treatment).  We have also examined the 

expression of one of the TGF-β signal transducers, Smad3 and two of the pro-

inflammatory mediators implicated in acne pathogenesis, MMP-1 and IL-8. This was 

achieved by immunohistochemically evaluating and quantifying the expression of these 

markers by using image analysis software. In addition, quantitative PCR was employed to 

corroborate some of the data obtained from immunohistochemical analysis. 

 

In this study the induction of TGF-β1 was epidermal and limited to the upper differentiated 

layers of the epidermis (the stratum granulosum and the lower layers of the stratum 
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corneum). This was consistent with the expression pattern reported by Levine et al
185

 in 

normal skin.  

 

Most of the currently published laser and IPL-photorejuvenation studies have usually 

focused on the expression of TGF-β1, and have not specified the effect on the individual 

isoforms. In this study, we have, for the first time, looked at the effect of IPL on the 

expression of the other two mammalian TGF-β isoforms as well. 

 

The immunostaining for the TGF-β2 and TGF-β3 isoforms were much more intense and 

widely distributed than that for TGF-β1. The differential expression or localisation of the 

three TGF-β isoforms may be attributed to their differing receptor affinities and the 

distribution of receptors and may also be suggestive of their divergent functions in the 

skin. The specific role of each of the TGF-β isoforms in the human skin remains to be 

elucidated. 

 

Based on quantification of the immunohistochemistry results by using image analysis 

software and statistical analysis, this study demonstrated that the epidermal TGF-β1 

expression was significantly increased by 63% after the first treatment session and by 62% 

a week after the fourth session when compared to baseline, without any significant 

changes in the other isoforms. This may be due to the fact that the regulation of TGF-β2 

and TGF-β3 expression is different from the regulation of TGF-β1 expression
267

 . Further 

supporting the differences in the regulation of the TGF-β isoforms, a study conducted by 

Quan et al
229

 reported that each TGF-β isoform was regulated differently by UV irradiation 

in human skin in vivo.  

 

To determine whether the altered expression of TGF-β1 observed following IPL treatment 

was associated with changes in TGF-β1 gene expression, a TLDA based qRT-PCR was 

performed on the biopsies from seven cases. No significant differences in TGF-β1 mRNA 

levels were found in the post-IPL samples when compared to baseline. The modulation of 

TGF-β1 expression by IPL occurred in the absence of any significant changes at the 

mRNA level consistent with the TGF-β1 modulation by retinoic acid as reported by Fisher 

et al
445

. They demonstrated that treatment of human skin with Retin-A cream (0.1% 

retinoic acid) resulted in increased expression of epidermal TGF-β1 at the protein level but 

no changes were detected at the mRNA level
445

. 
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Based on the data obtained by using keratinocyte-specific transgenic mouse models, Li et 

al
179

 reported that the spatial pattern of TGF-β1 overexpression may determine its effects. 

They reported that suprabasal TGF-β1 overexpression was involved in inhibition of 

keratinocyte proliferation and suppression of cutaneous carcinogenesis at early stages, but 

promoted tumour invasion at later stages. Whereas, TGFβ1 overexpression in the basal 

layer of the epidermis and hair follicles resulted in a severe inflammatory and 

hyperproliferative skin disorder in the murine model
179

. Whether this is applicable to 

humans has not been determined and still needs to be investigated. 

 

Enhanced TGF-β protein expression does not necessarily indicate increased TGF-β 

signalling. Therefore, to determine whether this increased TGF-β1 expression in the 

epidermis corresponds to increased activity, we examined the expression and 

immunolocalisation of one of its signalling transducers, Smad3 by immunohistochemistry 

in acne-prone skin. As discussed in Chapter 4, Smad3 signalling has been shown to play 

an important role in mediating the anti-proliferative effects of TGF-β on keratinocytes and 

also in mediating its stimulatory effects on ECM by dermal fibroblasts
478-480

. In addition, it 

has been demonstrated to be critical in mediating the immunomodulatory effects of TGF-β 

and also the TGF-β-induced negative regulation of MMP-1 is mediated through 

Smad3
241,242,266,336

. 

 

The presence of Smad3 in the nucleus is a direct indication of TGF-β signalling as nuclear 

translocation of Smad3 is an immediate response to TGF-β receptor activation 
306

. This 

study has demonstrated for the first time an enhanced nuclear translocation of Smad3 

following IPL treatment in the skin.  

 

The increased percentage of nuclear staining of Smad3 in the post-IPL sections compared 

to baseline indicated that Smad3 was activated by stimulation of the TGF-β receptors by 

its ligand and was translocated to the nucleus. Thus, the data suggested that the IPL-

irradiated acne-prone skin received signals of TGF-β in vivo. In addition, the 

immunolocalisation of Smad3 antibodies allowed direct visualisation of the cells that are 

responding to TGF-β signals. TGF-β1 was generally detected at the granular layer in the 

epidermis, whereas nuclear staining of Smad3 was seen in other epidermal layers, in the 

epidermal appendages and in a few dermal cells as well. Whether this observed 
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discrepancy was as a result of the contributions that were made from other isoforms 

remains to be determined. Nevertheless, the nuclear translocation of Smad3 following IPL 

irradiation suggests activation of the TGF-β signalling pathway. 

 

Both IL-8 and MMP-1, which are implicated in acne pathogenesis showed a downward 

trend in their expression post-treatment in the majority of the cases. However, the changes 

were variable between different cases and therefore not statistically significant for either of 

these mediators. The failure to reach statistical significance may be attributed to the 

considerable variability in responses of the relatively small number of patients in the study. 

In addition, various extrinsic and intrinsic patient-related factors such as sun exposure, 

stress, hormones and characteristics of the stratum corneum may influence treatment 

effects and contribute to variability in responses. 

 

Furthermore, the specificity for either of these antibodies could not be confirmed on 

western blotting. Due to the insufficient availability of frozen sections from the biopsies, 

alternative antibodies for these markers could not be tested. Therefore, these results need 

to be interpreted with caution. 

 

TGF-β signalling has received much less attention in the context of acne vulgaris. Based 

on the understanding from the currently available literature, it has been suggested that 

TGF-β may play a role in resolution of inflammation in acne vulgaris by downregulating 

the inflammatory response via inhibition of pro-inflammatory cytokine production and 

through inhibition of the proliferation and differentiation of inflammatory cells
152,267,318,319

. 

Yuan and Varga
266

 demonstrated that TGF-β/Smad3 repressed NFκB-specific gene 

transcription in dermal fibroblasts. TGF-β is also known to mediate the apoptosis and 

clearance of inflammatory cells
505

.  In addition, TGF-β suppresses immune responses by 

promoting the function of regulatory T-cells by inducing the expression of Foxp3
324,325

. 

The suppressive role of regulatory T-cells and apoptotic cell clearance are described to be 

important in the resolution of innate and adaptive host immune responses
505

. In this respect 

it would be interesting to determine whether regulatory T-cells play a role in acne 

resolution. 

 

TGF-β1 has also been demonstrated to suppress inflammatory cytokine-induced 

expression of MMP-1 and MMP-3
266,375,455,484-487

. Both of these matrix degrading enzymes 
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have been implicated in acne inflammation and scarring
5,81

. Hahm et al
283

 demonstrated 

constitutive elevation of matrix degrading activity in mice with genetic disruption of TGF-

β signalling. Thus, emphasizing the significance of TGF-β signalling in the repression of 

these enzymes. Moreover, TGF-β also induces the production of inhibitors of these 

metalloproteinases such as TIMP-1 (tissue inhibitor of metalloproteinases-1) and TIMP-

3
279-282

. Therefore, TGF-β may also be involved in suppressing inflammation and 

extracellular matrix degradation mediated by MMPs in acne pathogenesis. 

 

In addition, TGF-β1 has been demonstrated to be a potent inhibitor of keratinocyte 

proliferation in several studies
286,287

. Freedberg et al
506

, suggested that TGF-β restores the 

IL-1 activated hyperproliferative keratinocytes to a healthy normal phenotype. TGF-β1 

may therefore be involved in inhibiting the abnormal hyperproliferation of 

infrainfundibular keratinocytes seen in acne vulgaris and may interfere with microcomedo 

formation.  

 

All of these effects of TGF-β have been demonstrated to be mediated through Smad3. 

Therefore, we hypothesised that IPL-induced TGF-β/Smad3 signalling may play a role in 

the resolution of acne vulgaris by inhibition of inflammation and keratinocyte 

proliferation, and by suppressing matrix degrading enzymes (Figure 7.1). Furthermore, 

increased FGFR2 signalling has recently been suggested to play a role in acne 

pathogenesis and TGF-β signalling has been reported to suppress downstream FGFR2 

signalling by inducing the regulatory protein Sprouty, an important FGFR antagonist
451

. 
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Figure 7.1 Schematic illustration of the proposed mechanism of action of intense pulsed light in acne vulgaris.

IPL 
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How IPL irradiation induces TGF-β1 production is not clear. It probably could be 

attributed to its photothermal action. In photorejuvenation, IPL is considered to induce 

heat-mediated cytokine activation
160

. Some hypothesise that it is induced as a wound 

healing response to photothermal injury
159,167

. Induction of TGF-β by heat shock proteins 

as a result of a heat-shock response has also been proposed
110

. Furthermore, TGF-β has 

been reported to be activated from its latent form by increases in temperature in vitro
218

. In 

addition, Fujimoto et al
507

 demonstrated that keratinocytes cultured at a higher temperature 

(around 39°C) stimulate TGF-β1 production and suggested that under hyperthermal 

conditions, the epidermis can influence the functions of skin fibroblasts and matrix 

synthesis. This potential epidermal-dermal interaction may occur due to a paracrine 

influence of the TGF-β1 secreted from the keratinocytes. Future studies need to look into 

the activation mechanism responsible for the induction of TGF-β1 by IPL. 

 

Modulation of TGF-β expression for attaining some of its therapeutic effects does not 

come without the possibility of triggering other undesirable effects such as the potential to 

induce fibrosis or to influence tumour initiation or progression
172,179

. The possibility of 

these effects underscores the need to understand the long-term effects of IPL treatment. It 

appears unlikely that the limited increase in IPL-induced TGF-β1 in the epidermis as 

demonstrated in this study would have the potential for mediating fibrosis. However, 

future studies need to address these issues.  

 

The only study that evaluated the carcinogenic potential of IPL was a study conducted by 

Hedelund et al
508

 in hairless, lightly pigmented female mice. This group reported that IPL 

treatment (Ellipse Flex system, DDD, Denmark; λ = 530-750 nm, fluence: 9.0 J/cm
2
, spot 

size: 10 x 48 mm, single passes with double pulses, pulse delay: 10 ms and pulse duration: 

2.5 ms) has no carcinogenic potential on its own and does not influence ultraviolet (UV)-

induced carcinogenesis. Nevertheless, further long-term research is justified to assess 

whether IPL has a carcinogenic potential in human subjects. 

 

Clinically, four sessions of IPL treatment (VPL Energist Ultra®; 530-950 nm Settings: 40 

J/cm
2
, 2 passes 15 pulses, 5 ms duration, 20 ms delay ) at two week intervals resulted in an 

overall 28% reduction (p = 0.002) in the number of inflammatory lesions (data kindly 
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provided by Dr Marisa Taylor who conducted the clinical part of the study). However, the 

reduction in non-inflammatory lesions and sebum excretion rate were not statistically 

significant. An attempt was made to correlate the laboratory findings with the various 

clinical parameters. However, it did not show statistical significance, which may be 

attributed to the relatively small sample size and considerable variations between patients. 

In addition, the fact that the parameters were lesional and our findings were related to the 

non-lesional acne prone skin may also explain this discrepancy.  

 

The increase in TGF-β1 expression demonstrated in this study although significant was not 

as profound as that reported in association with pulsed dye lasers and this may potentially 

be the explanation for the better clinical efficacy of pulse dye lasers when compared to IPL 

in treating acne vulgaris
110

.  

 

7.3 Limitations 

 

This study is not without its limitations, some of which are mentioned in this section. 

The quantification of protein expression was based on immunohistochemistry, which is 

semiquantitative. Although other methods such as western blotting and ELISA are more 

quantitative, they require pulverisation of the tissue resulting in the loss of morphological 

and spatial information. On the other hand, immunohistochemical analysis displays where 

the protein is expressed and in certain cases gives information about its bioavailability.  

However, if there were sufficient samples it might have been beneficial to do western 

blotting to obtain more reliable quantification. 

 

The reproducibility and standardisation of immunohistochemistry has been questionable 

due to the diverse potential sources of variability including fixation conditions, specimen 

processing, reagents, detection methods, and interpretation of results
509

. To increase the 

accuracy of immunohistochemistry, this study has attempted to reduce the variability as far 

as possible by accurately following the staining protocol steps and timings, by using 

similar lot numbers of the antibodies and other reagents, by preparing a stock of the 

reagents that can be stored and by using standardised camera and computer settings for 

image acquisition. In addition, the system of grading specimens as either negative or 

positive or grading by the use of the pathologists 3- or 4-point scale is not considered 
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accurate or reproducible due to the high degree of intra-observer and inter-observer 

variability
509

. Moreover, these systems do not provide a truly continuous scale of 

measurement of protein expression
509

. The computer-assisted automated analysis programs 

eliminate some of these limitations to a considerable degree
509

. For these reasons, the 

Image Pro Plus image analysis software was utilised here. In addition, to minimising 

observer bias, the use of automated software for image analysis relinquishes the need to 

recruit personnel to analyse the results.  

 

In view of the practical difficulties involved in timing the lesions, the biopsies that were 

available for analysis were taken from acne prone non-lesional skin in the vicinity of the 

lesion rather than lesional skin. Furthermore, for the purpose of accuracy in the 

comparative assessment of the sections, the epidermal appendages were excluded from the 

analysis because they were not present on all sections. Therefore, we were unable to 

visualise the effects of IPL on the expression of the various markers at the exact site of the 

lesion. Nevertheless, Jeremy et al
77

 demonstrated that the pathology in acne vulgaris not 

only exists in the areas of the visible lesion, but also in the surrounding apparently normal 

looking skin.  

 

There were only biopsies available from seven cases for studying the gene expression by 

PCR analysis. This may have introduced a type 2 error, which implies that the small 

sample size may have undermined the treatment effect by missing a true difference 

between the groups. 

 

Overall, our study was relatively small in scale, and a larger sample would provide more 

robust analysis. Moreover, the study did not institute a control group, which would have 

allowed us to compare the specific molecular effects at the various time intervals between 

biopsies obtained from IPL-treated versus untreated skin.  

 

Furthermore, the molecular effects were only examined up to 1 week after the last 

treatment session. Therefore, we do not have any idea about the long-term molecular 

effects of IPL treatment. 

 

In retrospect, the western blotting employed for determining the antibody specificity 

should have been ideally carried out before performing the immunohistochemistry rather 
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than after. If the western blotting had been carried out prior to immunohistochemical 

analysis alternative antibodies could have been employed for IL-8 and MMP-1. 

 

Interpreting dynamic processes by analysing biopsy material is challenging and the lack of 

a suitable animal model for acne hinders this process. Various attempts have been made by 

acne researchers to overcome this issue by using the syrian hamster flank organ and SZ95 

sebocytes and by inducing P. acnes inflammation in mice
51,73,75

. However, these models 

are unable to reproduce the entire complexity of this disease. 

 

7.4 Conclusion and Future Directions 

 

The present study has provided some evidence on the potential molecular mechanisms that 

may be involved in the action of IPL on acne-prone skin. At this point we cannot make 

definitive conclusions, but can speculate that IPL-induced TGF-β1/Smad3 could assist in 

the resolution of inflammatory acne by inhibiting inflammation, matrix degradation and 

keratinocyte proliferation. This preliminary evidence although promising, needs further 

investigation as several questions still remain to be answered. Some specific areas that 

need be addressed in future studies are discussed below.  

 

An important area of future research is to determine whether the TGF-β/Smad3 signalling 

pathway is directly involved in resolution of acne vulgaris. Clinical correlation and further 

experiments on the downstream effects of TGF-β1/Smad3 signalling need to be carried out 

to clarify whether the induction of TGF-β1 is a non-specific effect of IPL treatment or 

whether it actually mediates the therapeutic effects of IPL in acne-vulgaris. The full 

significance and the functional ramifications of TGF-β1/Smad3 signalling need to be 

further characterised. The effects of TGF-β1 on target mediators can potentially be 

investigated in organ cultures obtained from lesional and non-lesional skin from acne 

patients. Our data demonstrating nuclear translocation of Smad3 occurs due to TGF-β 

induced receptor-activation. Therefore, it would be interesting to look at the effect of IPL 

on the expression of the various TGF-β receptors. In addition, it would be intriguing to 

investigate the immunolocalisation of the inhibitory Smad, Smad7. At this point, we have 

not accounted for any non-canonical pathways due to limited knowledge on the effect of 

these pathways. As a result of practical constraints this study had a relatively small sample 
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size, did not have a control group and did not assess the long-term consequences of 

treatment. Therefore larger, controlled and blinded comparative trials with an extended 

follow-up are necessary to overcome these shortcomings and validate these initial findings.  

 

It would also be particularly informative to have an idea about the timeline of the 

molecular effects by acquiring tissue samples at more frequent intervals during and also 

after the treatment period. Characterisation of the molecular events after treatment would 

also be needed to assess the long term consequences and the potential adverse effects. In 

addition, well-designed safety studies assessing the long-term effects would be prudent to 

explore whether IPL-induced TGF-β1 has a “dark” side such as any potential risks for 

fibrosis or carcinogenesis. 

 

The molecular mechanisms involved in IPL treatment of acne vulgaris must be far more 

complex than the mere upregulation of TGF-β1 and may involve the interplay of several 

other cytokines, growth factors, and matrix degrading enzymes. Future studies should 

examine the effect of IPL on heat shock proteins and other inflammatory mediators of acne 

such as IL-1α, IL-1β and TNF-α.  As more pieces of the puzzle are put together in context 

the picture will become a lot clearer. 

 

Optical treatments have been reported to improve inflammatory acne on a short-term 

basis
510

. If this effect is confirmed to be mediated by TGF-β it could be explained by the 

fact that the active TGF-β induced by these treatments has a much shorter half life than its 

latent form and therefore its action is limited to the immediate therapeutic period. Future 

studies need to determine whether more sessions or more frequent sessions of treatment 

would be necessary to improve the treatment response. 

 

The role of IPL in acne as a monotherapy is increasingly becoming questionable due to the 

temporary benefits and incomplete remission. The available literature suggests that 

combining it with other treatments would be more practical. In view of the fact that the 

inflammatory lesions showed a better response to IPL treatment compared to non-

inflammatory lesions (as demonstrated in the clinical part of the study conducted by Dr 

Marisa Taylor) it would be advisable to combine the treatment with topical keratolytic 

agents to treat the non-inflammatory lesions. 
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Methodological constraints in both acne and IPL research have made evidence-based 

assessment of treatment challenging. Optimal settings for IPL in acne still remain to be 

established. To draw more meaningful and reliable comparisons from the data assimilated, 

future studies should have adequate sample size and need to address the issue of 

standardisation of the device, its parameters (fluence, number of passes, number of 

treatment sessions, interval between treatment sessions and technique employed) and the 

parameters for interpretation of outcomes. Moreover, our understanding of the contribution 

of various factors to acne development, exacerbation and remission is still incomplete. 

Knowledge on the light-based approaches will improve as the acne pathophysiology 

becomes better understood. Additional studies on the photoimmunomodulatory nature of 

light may enhance our understanding of optical treatments for acne as well as help improve 

the design and functions of future devices. In addition, well controlled studies that 

compare IPL with conventional acne therapies are needed. 

 

This study may serve as a reference point for future studies and these findings could be 

extrapolated by performing similar studies with other devices and treatments used for acne. 

Understanding the mechanisms of the various treatments is necessary to overcome the 

current limitations of acne therapy. These findings could also be significant to the action of 

IPL in the treatment of other skin conditions. 

 

In chapter 4 we have discussed the potential association between TGF-β signalling and 

some of the currently used treatments such as retinoids and other potential agents used in 

the treatment of acne vulgaris. It would be intriguing to explore this association in future 

studies. If it is conclusively proven to have a role in the resolution of acne vulgaris and 

found to be safe, it would be reasonable to develop potential strategies to modulate 

endogenous cutaneous TGF-β to control acne. 

 

The application of IPL in the treatment of acne vulgaris is still a young and developing 

area. Much of the data from the currently available literature on IPL used for acne 

treatment are anecdotal or of suboptimal quality. Although, IPL seems to have a better 

safety profile and is well-tolerated by patients, its efficacy and sustainability appear to be 

inferior to the available conventional treatments. Moreover, the improvement of acne 

lesions with IPL is less convincing and less sustained when compared to that obtained with 

lasers and PDT. In one study, it was demonstrated that IPL effectively improved acne 
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sequelae such as red macules, irregular pigmentation and skin tone, but had no effect on 

the acne lesions
108

. This makes one contemplate whether the observed small improvement 

with IPL in acne is as a result of the improved appearance of the skin rather than from 

targeting the pathology.  

 

Taking into account these facts, many obstacles still remain in the implementation of IPL 

therapy in acne management. Nevertheless, due to the limitations of the conventional acne 

treatments such as antibiotic resistance, patient compliance issues and teratogenicity, and 

the better tolerability of IPL it still has a potential role in acne management. At present its 

role is limited to the treatment of those who do not respond to conventional therapy, 

patients who are unable to tolerate the available conventional treatment options, patients 

who are non-compliant or in patients who specifically request this treatment. Further 

research and optimisation of the device parameters may broaden the horizons for IPL 

therapy in acne vulgaris. In view of the multifactorial nature of acne and the limited and 

short-lived efficacy of IPL, it would be beneficial to combine IPL with other conventional 

treatments or with ALA (ALA-IPL). We are still far from a thorough understanding of the 

molecular and signalling mechanisms involved in the action of this device due to 

considerable gaps in the understanding of acne pathogenesis, IPL treatment and TGF-β 

signalling. Therefore, the mechanisms underlying IPL action in acne vulgaris deserve 

further exploration as this may aid in the optimisation of this device and may assist in the 

clinical prerogative on its use in acne management. In addition, improved understanding of 

its mechanisms may provide clues on the pathogenesis of acne and may also provide novel 

insights into developing new therapeutic strategies for the management of this condition. 

Overall, it is clear that more research on a number of areas need to be carried out, to meet 

the increasing demand for a novel acne treatment that is effective, convenient to use, 

minimally invasive, well-sustained, has a rapid onset of action and has relatively few 

adverse effects. 
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