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Abstract

This thesis comprises a theoretical study of the dynamics of indirect excitons in cou-

pled quantum wells at low lattice temperatures. The results of numerical simulations

of the exciton photoluminescence pattern are presented and compared to available

experimental data.

The in-plane transport of quantum well excitons created by laser excitation is

modeled using a non-linear drift-diffusion equation. Combined with a model of exciton

relaxation thermodynamics, a complete description of the evolution of the exciton

density and temperature is built. The optical decay of indirect excitons is included

in the modeling. This is used to make predictions of the spatial photoluminescence

patterns which have been observed experimentally.

The transport of dipole orientated excitons via externally applied electrostatic

potentials is also studied. The drift-diffusion equation is adapted to include the in-

plane electric field. This is done for some specific forms of the potential landscapes

such as a linear potential energy gradient and a propagating lattice. These correspond

to some recent experiments for which results are available. The combined theoretical

and experimental studies reveal a deeper insight into the transport properties of

indirect excitons.

Finally, the external ring structure in the indirect exciton emission pattern

is studied. Its formation is modeled using a set of coupled transport equations for

electrons, holes and indirect excitons. The Coulomb interactions between all three

species are incorporated in the model. It is shown that these interactions lead to

an instability in the external ring and are responsible for its fragmentation into a

periodic array of islands which has been observed experimentally.
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1 Introduction

Since the first theoretical predictions that excitons - bound states of electrons and

holes - may undergo Bose-Einstein condensation (BEC) [1], intensive studies have

sought to realize the phenomena experimentally [2, 3]. BEC has been observed in

atomic systems [4] and more recently in a system of microcavity polaritons [5, 6]. The

arduous journey to observe BEC in an exciton system has inspired a diverse array of

experiments and investigations [7–12]. Novel structures and techniques have been em-

ployed which, regardless of their success or failure, have deepened our understanding

of the excitonic properties of semiconductors.

In past years, quasi-two-dimensional excitons in single and coupled quantum

wells have been studied as candidates for observing BEC [13–15]. In particular, indi-

rect excitons in coupled quantum wells (CQWs) are an attractive system for investi-

gation due to their greatly extended lifetime over regular excitons. The long lifetime

allows indirect excitons to be cooled below their quantum degeneracy temperature

before decaying optically which has been an important step towards observing BEC

of excitons.

Although the challenge of observing exciton BEC has been the primary motive

behind research in this field, it is not discussed directly in this thesis. Instead, the

dynamics of the transport of excitons confined to CQWs is studied theoretically. The

main aim is to account for several striking features in the photoluminescence (PL)

pattern originating from the optical decay of CQW excitons. Images of these patterns

were first published a decade ago by two independent research groups [7, 8]. A

summary of the observed features is shown in Fig. 1.1. They included a central bright

spot which can be several times larger than the laser excitation spot. Within the

7



8 Chapter 1. Introduction

Figure 1.1: Overview of the features of the real space PL pattern originating from
the optical decay of excitons in CQW heterostructures.
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central bright spot is a ring, known as the inner ring, which surrounds the excitation

spot. In a predominantly dark region beyond the edge of the inner ring, localised

bright spots appear. These have been explained by current filaments between QW

layers caused by defects in the sample structure [16, 17]. Even further from the

excitation spot, an external ring was observed. This ring can be greater than 100µm

in diameter and encloses the other PL features. Under the correct conditions, the

external ring is found to fragment into a periodic array of islands.

A drift-diffusion equation is used to analytically and numerically model the

spatial density distribution of photoexcited excitons. In addition, the thermalisation

kinetics of two-dimensional excitons is studied. Where appropriate, the relevant heat-

ing and cooling mechanisms are included into the description. The optical decay of

excitons is also considered. This enables calculation of the spatial PL patterns which

are observed in experiments.

Where experimental data was available, numerical simulations of those exper-

iments were performed and quantitative comparisons of the observed and simulated

exciton PL pattern were made. In particular, features of the exciton PL pattern such

as the inner and external rings are successfully reproduced by the models used. The

dynamics of excitons in artificially created potential landscapes is also investigated.

All of these properties contribute to a deeper insight of exciton physics and may be

key to achieving BEC in an exciton system. In addition, it lays the groundwork for

understanding how to utilize excitons for applications in optical devices of the future.

1.1 Overview

Chapter one introduces the physics of excitons. It contains the background

information necessary for the remainder of the thesis. Indirect excitons in CQWs

are explained and brief descriptions of their transport, thermalisation and PL prop-

erties are given. Information on the relevant samples and experiments with which

comparisons are made later is also shown.

Chapter two entitled ”Transport and thermalisation kinetics in the exciton

inner ring” is about the inner ring in the indirect exciton emission pattern. It details

its origin and the evolution of its formation and collapse in terms of a model based on

exciton transport and cooling. The inner ring’s dependence on external parameters
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such as laser excitation power and energy are discussed. Also, a remarkable feature of

experiments known as the PL-jump is described. Quantitative comparisons are made

between the results of numerical simulations and experimental data.

Chapter three entitled ”Indirect excitons in applied in-plane potentials” is

a study of the transport of indirect excitons in the presence of externally applied

electric fields. Such electric fields can be used to confine and transport excitons

in a controlled way. Analytic solutions to the relevant drift-diffusion equations for

linear potential energy gradients are discussed. Comparison of numerical solutions

for exciton transport with experimental data are made for a ramp - a linear potential

energy gradient, and a conveyer - a moving electrostatic lattice.

Chapter four entitled ”Fragmentation of the external exciton ring” presents a

model to explain the physical mechanism which causes the external ring in the indirect

exciton emission pattern to fragment into a periodic array of islands. A coupled set of

drift-diffusion equations for electrons, holes and excitons is used. Terms accounting for

the Coulomb interaction between charges are included and are found to be responsible

for the fragmentation. The main conclusions and prospects for future research are

summarised in chapter five.

1.2 Excitons in semiconductors

In semiconductors, photon absorption promotes an electron from the valence

band to the conduction band, creating a hole in the valence band. The electron and

hole may form a bound complex known as an exciton. Excitons have a hydrogenic

structure. Its internal constituents, the electron-hole pair, orbit each other about a

common center of mass whilst the exciton as a whole is free to roam the semiconductor

lattice. This can be shown in the effective mass approximation by the electron-hole

Hamiltonian,

Ĥ = − ~2

2me

∆e −
~2

2mh

∆h + Eg + V (re, rh), (1.1)

where me(h) is the electron (hole) effective mass and ∆e(h) is the Laplacian operator

in the electron (hole) coordinate frame, re(h). Eg is the semiconductor band gap

energy. In bulk semiconductors, the Coulomb interaction potential is V (re, rh) =

−e2/(4πε0εr|re − rh|) where εr is the background permittivity. The Hamiltonian
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splits into two parts which results in the following two Schrödinger equations,

− ~2

2Mx

∆Rψ = Ekψ, (1.2)

[
− ~2

2µ
∆r −

e2

4πε0εr|r|

]
ϕ = Ebϕ. (1.3)

The coordinate frames R and r are the center of mass and relative coordinates re-

spectively. Mx = me + mh is the exciton mass and µ = (1/me + 1/mh)−1 is the

reduced mass. Ek is the kinetic energy associated with the exciton’s center of mass

motion and Eb is the binding energy. Equation (1.2) has plane wave solutions for

the exciton center of mass motion and equation (1.3) describes its internal structure

which reveals the exciton binding energy and Bohr radius. In bulk gallium-arsenide

(GaAs), the exciton binding energy is 4 meV and its Bohr radius is 13.5 nm, much

greater than the GaAs unit cell size of 0.56 nm.

Excitons are unstable particles with an optical lifetime typically less than 1 ns.

The overlap between the electron and hole wave functions means that there is a finite

probability per unit time of electron-hole recombination. Therefore, the presence of

excitons is observed in various semiconductors indirectly by the light emitted during

their decay. Excitons modify the emission and absorption spectra of semiconductors

and cause a peak in the PL intensity at energies just below the band gap energy at the

exciton resonance [18]. This peak is strongly defined for high-purity semiconductors

at temperatures well below room temperature where broadening due to impurities and

phonon interactions is small. In this case, spectrally resolved measurements make it

possible to distinguish the exciton PL signal from other optical transitions.

1.3 Excitons in coupled quantum wells

Quantum wells (QWs), commonly fabricated using molecular beam epitaxy,

consist of a thin semiconductor layer sandwiched between semiconductor layers with

a higher band gap energy. Electrons and holes are confined to the QW layers, the

thickness of which can be less than the particles’ de Broglie wavelength. Such confine-

ment causes quantization of energy in the growth direction. Excitons in QWs have

the advantage of being more tightly bound than in bulk materials which stabilizes

them against ionisation. Solving equations (1.2-1.3) in two-dimensional geometry

shows a reduction of the Bohr radius and an increase in binding energy. This leads to
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an enhancement of the optical effects of excitons in two-dimensional heterostructures

compared to that of bulk materials.

One of the main challenges preventing Bose-Einstein condensation of excitons

in bulk materials and in single QWs is their short radiative lifetime. To achieve

condensation, one first needs a cold exciton gas. However, photo-excited excitons

which are initially hot tend to decay optically before they can thermalise to the lattice

temperature. Increasing the exciton lifetime so as to enable effective thermalisation

before optical decay can be achieved by using indirect excitons in coupled quantum

wells (CQWs). CQWs consist of two single QWs separated by a barrier layer of higher

band gap energy (See Fig. 1.2a). The barrier layer is sufficiently thin to allow charges

to tunnel between the QW layers.

In CQWs, there are direct and indirect excitons. A direct exciton is a bound

complex of an electron and a hole in the same quantum well (Fig. 1.2b). An indirect

exciton is a bound complex of an electron and a hole in adjacent quantum wells. To

encourage all excitons to be of the latter variety, an electric field is applied perpen-

dicular to the QW plane. This shifts the electron and hole energy levels so that the

ground state exciton is indirect (Fig. 1.2c). Electrons and holes will relax into their

respective wells by tunneling through the narrow barrier layer. This results in indirect

excitons being the dominant type.

The exciton lifetime increases as the overlap between electron and hole wave

functions decreases. The indirect exciton lifetime can be orders of magnitude longer

than the direct exciton lifetime [19]. Due to the exponential decay of the wave func-

tions in the barrier region, the indirect exciton lifetime is highly sensitive to the

barrier width. Moreover, the wave function overlap can be controlled by adjusting

the electric field. In experiments, this allows the lifetime to be varied over a few or-

ders of magnitude by adjustment of the gate voltage. The lifetime can easily exceed

the time required for excitons to cool to the temperature of the lattice.

Indirect excitons in CQWs present a unique system for studying a two dimen-

sional degenerate Bose gas in solids. Through experimental and theoretical studies,

a rich variety of physical properties of indirect excitons have been uncovered [20, 21].

Some of the main concepts which are relevant throughout this thesis are outlined in

the following sections.
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Figure 1.2: (a) Schematic of the CQW sample structure. (b) CQW band diagram
without an applied electric field. The red and blue lines correspond to electron and
hole states respectively. (c) Band diagram modified due to an electric field in the
z-direction. Green lines show a direct exciton in (b) and an indirect exciton in (c).
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1.4 Two-dimensional transport

The transport of a given gas can, quite generally, be modeled by the following

kinetic equation:
∂n

∂t
= −∇ · J + Λ(t, r)− n

τ
. (1.4)

This equation describes the rate of change of density n = n(t, r) at each coordinate r

and time t. The first term on the right hand side of equation (1.4) originates from the

continuity equation. It accounts for particle transport via a flux J and guarantees the

conservation of particles during transport. In the two dimensional geometry relevant

to quantum wells, the gradient operator is ∇ = ∂/∂x êx + ∂/∂y êy where êx and êy

are the orthogonal in-plane unit vectors. The second and third terms describe the

creation and decay of particles respectively. Λ(t, r) corresponds to the time varying

profile of the particles’ source and τ is their lifetime.

Throughout this thesis, equation (1.4) is adapted several times to model the

creation, transport and decay of excitons and, in some cases, free electrons and holes.

Through modifying the flux J appropriate to each context, a variety of physical mech-

anisms can be included enabling the modeling of a broad range of exciton experiments.

The effects of externally applied potentials and particle-particle interactions between

one or more species are easily included.

1.5 Indirect exciton macroscopic dipole moment

Due to the separation of electrons and holes into their respective QWs, indirect

excitons are dipoles aligned perpendicular to the CQW plane. The dipole-dipole

repulsion between indirect excitons stabilizes them against droplet formation [22].

Also, at high density, it significantly modifies the in-plane exciton transport [23].

The indirect exciton potential resulting from dipole interaction is approxi-

mately proportional to the two-dimensional indirect exciton density, nx [24]. During

optical decay, when the electron-hole pair recombines to emit a photon, the photon

acquires the interaction energy. This has been observed in experiments as a blue shift

in the PL spectrum which increases with exciton density [25–27]. The blue shift has

maxima in the regions of laser excitation and in the minima of externally applied

potentials - areas where the exciton density is peaked.
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Indirect excitons drift due to the gradient in the dipole-dipole interaction po-

tential. This mechanism enhances their diffusion from regions of high to low density

as they distribute themselves in the QW plane so as to achieve the lowest energy

configuration. In the simplest approximation, this interaction potential is given by

u0nx with u0 approximated by the plate capacitor formula [24],

u0 =
4πe2dz
εr

. (1.5)

Here, dz is the separation between the electron and hole layers. One outcome of

the dipolar nature of excitons is their ability to screen QW disorder. Such disorder

potentials are intrinsic to any QW structures and are due to alloy fluctuations and

variations in the thickness of the wells and the barrier between them [28]. For low

intensity optical excitation where a dilute gas is created, excitons become localized in

the minima of the random disorder potential. However, at higher densities, more exci-

tons accumulate in the potential minima and the resulting effective exciton potential

is flattened by the exciton-exciton interaction [29]. As density is increased further,

additional excitons are completely unaffected by the random potential and so the QW

disorder is screened. This facilitates a localisation-delocalisation transition where the

spatial width of the exciton cloud has a threshold dependence on the generation rate.

Combined with their long lifetimes, a high density indirect exciton cloud can

extend well beyond the region of a focused laser excitation spot. This is in contrast to

the situation of no electric field perpendicular to the QW plane where direct excitons

are found only within the vicinity of the laser due to short lifetimes and reduced

transport distances.

1.6 Control of exciton transport by external

electric fields

Compared to direct or bulk excitons which possess no macroscopic dipole

moment, indirect exciton transport can be very effectively controlled via externally

applied electric fields. Although excitons are neutral particles, patterned electrodes

on the sample surface create an in-plane potential landscape which influences their

transport. This is because for a negatively charged electrode, the attracted hole

part of the exciton is closer to the electrode than the repulsed electron part meaning
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Figure 1.3: CQW structure with patterned electrodes. The red and blue circles
depict electron and hole parts of indirect excitons respectively. Inset: the exciton
potential due to the shaped electrode attached to the upper surface of the sample.

that the net force is an attractive one. Indirect excitons will tend to accumulate

underneath patterned electrodes where the applied potential has a minimum [30].

An example of this is shown in Fig. 1.3 where the exciton potential due to the shaped

upper electrode is calculated using a rigid dipole approximation of the exciton.

Nowadays, the ease with which electrodes can be patterned on QW samples

presents a freedom for experimentalists to create almost any potential landscape they

choose. Several experiments have been done to investigate indirect exciton trans-

port in various potentials including traps [31–34], elevated traps [35], lattices [36–38],

moving lattices [39], ramps [40, 41] and narrow channels [42, 43]. In many of these

experiments, localisation-delocalisation transitions have been observed. These are

similar to effect described above where excitons screen QW disorder. However, in

this case a dense enough exciton gas can screen the applied potential and delocalise

from its minima.

1.7 Optical decay of QW excitons

Due to the spatial confinement of excitons to the QW layers, there is an

absence of momentum conservation in the direction perpendicular to the QW plane.

The in-plane momentum is still conserved. Therefore, in the optical decay of two-

dimensional excitons, the emitted photon acquires the in-plane momentum of the
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Figure 1.4: Exciton (red) and photon (green) dispersion relations. The optically
active exciton states are shown by the black part of the exciton dispersion

exciton. However, the component the photon momentum in the growth direction is

unrestricted. Combining this idea with the photon and exciton dispersion relations,

one arrives at a selection rule for the optical decay of quantum well excitons. The

dispersion relations are plotted in Fig. 1.4 and are given by,

Ex = Eg − Eb +
p2
||

2Mx

, (1.6)

Eω =
c|pγ|√
εr
. (1.7)

Ex and Eω are the exciton and photon energies respectively. Eg if the band gap

energy and Eb is the exciton binding energy. Equating (1.6) and (1.7) and substituting

the in-plane momentum conservation law, one finds that for optical decay, p|| must

satisfy |p||| ≤ |pγ|. This means that only excitons inside the light cone with in-plane

momentum below a critical value can decay optically (See Fig. 1.4). This has the

following implications for the PL and thermalisation kinetics of QW excitons:

1. Initially high energy photo-excited excitons must relax to the lowest energy
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states before they may recombine to emit light. Typically, this occurs via the

emission of longitudinal-acoustic (LA) phonons.

2. Increasing the temperature of a two dimensional exciton gas suppresses optical

decay. Laser induced heating or an increase in the lattice temperature reduces

the fraction of excitons with momentum inside the light cone.

3. The temperature of a two dimensional exciton gas is increased by optical decay.

This is because the lowest energy particles are continually removed from the

system resulting in a higher energy per particle.

The above is in contrast to the case of bulk excitons where only the state with zero

translational kinetic energy may couple to the light field.

1.8 Thermalisation kinetics of QW excitons

In CQWs, non-resonant optical excitation creates unbound high energy elec-

tron - hole pairs. Within the short exciton formation time, emission of optical phonons

releases energy from the electron-hole pairs to the lattice which then bind to form

excitons. At this stage, the exciton temperature still greatly exceeds the lattice tem-

perature. Following this, cooling of the exciton gas towards the lattice temperature

is done by the emission of LA-phonons.

Similar to the case described above for photon emission, the emission and

absorption of LA phonons is modified by the spatial confinement of excitons in the

growth direction. Excitons with energy greater than a critical energy, E0 can emit

LA-phonons to relax in energy (See Fig. 1.5). The coupling of excitons to a continuum

of phonon states greatly enhances the thermalisation compared to the bulk case where

only excitons with energy E0 may emit a phonon.

In the absence of any heating, CQW excitons will rapidly cool to a temperature

of roughly E0/kB provided that the lattice temperature, Tb, is below this. This cooling

occurs within a few nanoseconds, well within the indirect exciton lifetime. If Tb is

much less than E0/kB, the cooling rate of excitons at temperatures T < E0/kB

becomes greatly reduced. This is because excitons with energy less than E0 cannot

emit LA phonons. The only way to cool further is to first absorb a LA-phonon
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Figure 1.5: Exciton (red), acoustic phonon (black) and photon (green) dispersion
relations. The energy E0 which marks the crossover of the exciton and LA-phonon
dispersions is shown by the dotted line.
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of energy ≈ E0 and then to re-emit one of greater energy. The probability of this

decreases exponentially as the lattice temperature is reduced further because of the

reduction in the density of LA-phonons. The time required for excitons to thermalise

with the lattice therefore grows exponentially with decreasing Tb below E0/kB and

can easily exceed the indirect exciton lifetime [44]. This slowing of the thermalisation

time has posed an obstacle for achieving BEC in a system of indirect excitons.

The non-resonant excitation at energies well above the indirect exciton ground

state energy creates excitons with large in-plane translational kinetic energy. The

exciton-exciton scattering time is short and rapid thermalisation to a higher effective

temperature occurs. This laser induced heating maintains an elevated temperature

only in the vicinity of the excitation spot as excitons which travel away from that

region then begin to cool towards the lattice temperature by emission of LA-phonons.

1.9 Sample structure and parameters

The samples considered throughout this thesis are those used by the group

of Prof Leonid Butov at the University of California at San Diego. The structures

were grown by molecular beam epitaxy. Two GaAs QWs, each 8 nm thick, are sepa-

rated by a 4 nm Al0.33Ga0.67As barrier. These layers sit within an undoped 1µm thick

Al0.33Ga0.67As layer which is capped at each end by an n+-GaAs electrode layer with

nSi = 1018 cm−3. A schematic of the structure is shown in Fig. 1.6. Throughout this

thesis, the physical parameters used in the modeling of CQW excitons are those corre-

sponding to the samples described here and the conditions of the relevant experiment.

A list of the parameters used and their values is given in table 1.1.

1.10 Summary

In this chapter, the basic underlying physics which is used throughout the

remainder of this thesis has been outlined. The main concepts discussed are

• In-plane transport of indirect excitons which is driven by diffusion and drift.

The drift current arises due to a well defined indirect exciton dipole moment



1.10. Summary 21

Figure 1.6: Schematic of the investigated CQW samples.
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which cause exciton-exciton repulsion and enables control of exciton transport

by patterned electrodes on the sample surface.

• Thermalisation kinetics of a quasi-two-dimensional Bose gas. Indirect excitons

thermalise with the lattice by absorption and emission of bulk LA-phonons.

Non-resonant excitation of excitons leads to laser induced heating of the exciton

gas. The rate of cooling of initially hot two dimensional excitons is more efficient

than that of bulk excitons.

• Optical decay of indirect excitons is strongly dependent on the exciton effec-

tive temperature. Only excitons with energy inside the light cone may decay

optically. This gives an enhancement of the PL signal from CQW excitons over

excitons in bulk materials. It also leads to evaporative heating of the exciton

gas.

Much of the description given in this chapter is a simple qualitative one in

order to familiarise the reader with the main concepts. In the following chapters, a

quantitative analysis of these physical mechanisms will be shown. From the more

detailed quantitative picture, numerical simulations have been constructed. Results

from these simulations will be presented and, where appropriate, comparisons with

available experimental data will be made.
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Table 1.1: List of Parameters

Symbol Value Description

me 0.067m0 Effective electron mass

mh 0.215m0 Effective hole mass

Eg 1.42 eV GaAs band gap energy

εr 12.9 GaAs relative permittivity

Mx 0.22m0 Exciton mass

Eb 4 meV Exciton binding energy

ax 13.5 nm Exciton Bohr radius

dz 12.5 nm Spacing between electron and hole layers

delec 1µm Spacing between CQWs and patterned electrodes

u0 1.6× 10−10 meV cm2 Exciton interaction energy per unit of density

U0 0.7-1.5 meV Amplitude of the CQW disorder potential

D
(0)
x 30 cm2 s−1 Indirect exciton diffusion coefficient in the

absence of the CQW disorder potential

E0 34.2µeV Energy at the intersection between exciton and

LA-phonon dispersion relations

νs 3.7× 105 cm s−1 Sound velocity in GaAs

ρc 5.3 g cm−3 GaAs crystal density

Ddp 8.8 eV Deformation potential

dQW 8 nm Quantum well thickness

Eγ 138µeV Energy at the intersection between exciton and

photon dispersion relations

τr 20 ns Intrinsic radiative lifetime

θc 30◦ Collection angle of imaging device

De 30 cm2s−1 Electron diffusion coefficient

Dh 15 cm2s−1 Hole diffusion coefficient

w 103 cm2s−1 Binding rate of free electron-pairs into

excitons per unit density

τe 50 ns Electron re-population time

n
(0)
e 0.5-1.2×109cm−2 Background electron density in CQWs



2 Transport and thermalisation

kinetics in the exciton inner ring

A prerequisite for achieving Bose-Einstein condensation of excitons is the creation

of a cold and dense exciton gas. Many studies of the exciton thermodynamics have

been done in an effort to identify a means to realise a system where the exciton

temperature is below the temperature of quantum degeneracy. For a two dimensional

gas of excitons, the quantum degeneracy temperature, T0 is given by

T0 =
2π~2

gMxkB

nx. (2.1)

For excitons in GaAs QWs, the spin degeneracy factor is g = 4 and the exciton mass

is Mx = 0.22m0 where m0 is the free electron mass. nx is the two-dimensional density

of indirect excitons. T0 =0.63 K for nx = 1010 cm−2.

In this chapter, two features of the exciton photoluminescence (PL) pattern

known as the inner ring and the PL-jump are studied. These phenomena have been

identified as signatures of the heating induced by the non-resonant optical excitation

of electron hole pairs [45, 46]. Therefore, their study provides a means to gain insight

into the thermalisation of excitons with a semiconductor lattice at very low bath

temperatures (Tb = 1 − 2 K). For a complete description necessary to make quanti-

tative comparisons with experimental data, a model of exciton creation, transport,

thermalisation and photoluminescence is used [47, 48].

24
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2.1 Background

Many previous experimental and theoretical works on the optical properties of

GaAs/AlGaAs CQWs have involved the study of the spatial PL pattern originating

from optically decaying indirect excitons. Excitons were created by a laser excitation

of the medium focused to a single point in the QW plane. In the resulting PL

pattern, a bright ring appears surrounding the excitation spot [48–50]. The origin of

this inner ring has been interpreted as follows [45, 51, 52]. First, the non-resonant

optical excitation creates free electron hole-pairs. These rapidly bind to form indirect

excitons which are high in energy. A very short equilibration time means that the

high energy injected excitons cause heating of the exciton gas at the excitation spot.

The excitons diffuse away from the laser spot and their transport is assisted by the

dipole-dipole repulsion. As they travel away from the heat source, they begin to cool

to the lattice temperature. The cooling time is longer than the equilibration time

but still rapid in comparison to the long lifetime and so excitons reach the lattice

temperature well before decaying. The key ingredient of the interpretation is that, as

discussed in chapter one, only low energy excitons with momentum inside the light

cone may decay to emit light. Therefore, the lifetime of excitons inside the region

of the excitation spot is much greater than the lifetime outside. Consequently the

exciton decay rate and hence the PL signal is suppressed by laser excitation causing

a reduction in PL signal. This leads to the appearance of the inner ring.

In the time domain, the counterpart of the inner ring is the PL-jump. Dur-

ing the continuous laser induced heating, a large population of excitons is sustained

because of the extended exciton lifetime. When the laser is switched off, the exciton

temperature rapidly drops and the entire population rapidly cools and becomes op-

tically active. This causes an abrupt jump in the PL signal [53, 54] as the exciton

optical lifetime decreases. This effect is known as the PL-jump.

2.2 Creation of excitons

The laser beam creates free electron-hole pairs which, on a sub-nanosecond

time scale, bind to form excitons. As the pumping is continuous, at every moment all

three species - namely electrons, holes and excitons - are present. In other works [55–

57], it has been suggested that in the PL experiments considered here, the underlying
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Figure 2.1: Fraction of electron-hole pairs in the bound exciton state as a function
of temperature. Each curve is for a fixed number of electrons and holes with
ne = nh.

physical picture is that of ambipolar diffusion of unbound electrons and holes. How-

ever, a quantum mass action law can be used to determine the number of electron-hole

pairs in the unbound and bound exciton states [58]. The quantum mass action law is

derived in appendix A. It states that the equilibrium exciton density, n
(eq)
x , satisfies

the following relation,

n(eq)
x =

kBMxT

2π~2
ln[1− e−Eb/kBT (eT

e
0 /T − 1)(eT

h
0 /T − 1)]. (2.2)

Equation (2.2) describes the equilibrium balance between the concentrations of ex-

citons and free electron-hole pairs. T
e(h)
0 = π~2ne(h)/(me(h)kB) is the electron (hole)

quantum degeneracy temperature where ne(h) and me(h) are the electron (hole) den-

sity and effective mass respectively. Solutions of the transcendental equation (2.2) are

shown in Fig. 2.1 for equal numbers of electrons and holes (ne = nh) and a fixed num-

ber of pairs (ne(h)+nx = constant). The equilibrium exciton density, n
(eq)
x is plotted as

a function of temperature with each curve corresponding to a fixed number of charges

in the system. The exciton density range relevant to the considered experiments has

been determined by the blue shift in the exciton line. See, for example, Refs. [25–

27, 58]. The plot shows that for these densities and temperatures below 5K, excitons

completely dominate in number over free electron hole-pairs. This suggests the PL

signal observed in the experiments considered here originates from the optical decay

of excitons rather than the recombination of free carriers. Further, an exciton system

may be distinguished from an electron-hole plasma by examining the PL line width.

The line width for a neutral two-dimensional electron-hole plasma is approximately
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the sum of the electron and hole Fermi energies, ∆EHP ≈ kBT
e
0 + kBT

h
0 . The small-

est density for an electron-hole plasma is determined by the exciton Mott transition,

which occurs due to the phase-space filling and screening at electron hole densities

greater than 1/a2
x where ax is the exciton Bohr radius [59]. For the CQW structures

considered here, one finds that the smallest line width that would be observed for an

electron-hole plasma is about 10 meV. This is much greater than the observed line

width which is typically below 2 meV for the investigated range of densities [48, 49].

The small emission line width, which is determined by the homogeneous and inhomo-

geneous broadening, is a signature of an exciton system rather than an electron-hole

plasma.

2.3 In-plane exciton transport equation

In chapter one, the equation for in-plane transport of indirect excitons was

introduced and is repeated here for clarity

∂nx

∂t
= −∇ · J + Λ− nx

τopt

. (2.3)

Here, the exciton flux has two components [24]; J = Jdiff + Jdrift. The first is a

diffusive term which is due to random scattering of excitons,

Jdiff = −Dx∇nx. (2.4)

Dx is the density and temperature dependent exciton diffusion coefficient. The second

term is the drift flux caused by the exciton-exciton interaction potential,

Jdrift = −µxnx∇(u0nx). (2.5)

µx is the exciton mobility and u0nx is the interaction energy. The remaining terms

on the right hand side of equation (2.3) account for the creation and decay of indirect

excitons. The source term Λ(r, t) is calculated using equation (2.2). The time depen-

dent Gaussian profile of the laser determines the injection rate of electron-hole pairs.

Then, the quantum mass action law determines the number of pairs in the bound

exciton state which, in turn, determines Λ. τopt is the optical lifetime of excitons.
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2.3.1 Thermionic model of the diffusion coefficient

Intrinsic to the CQW structure is a random disorder potential caused by

defects and imperfections in the sample growth. The random disorder potential,

Urand(r), acts to impede exciton in-plane transport since low energy excitons become

localised to potential minima. However, as the exciton density increases, the localised

states in the disorder potential become occupied. Due to the dipole-dipole repulsion

of indirect excitons, the disorder potential is then flattened so that additional exci-

tons may transport as if the disorder were absent. This screening of the disorder leads

to greatly enhanced exciton transport at high densities. This effect, which strongly

modifies the transport dynamics, is included in the theory by modification of the dif-

fusion coefficient, Dx. A thermionic model [24] for Dx can be derived from equation

(2.3) to give

Dx = D(0)
x exp

[
−U0

u0nx + kBT

]
. (2.6)

Here, D
(0)
x is a fit parameter and corresponds to the diffusion constant in the absence

of disorder and U0/2 =< |Urand(r)− < Urand(r) > | > is the amplitude of the disorder

potential. Equation (2.6) also includes the temperature dependence of the excitons’

ability to transport through a disorder potential. Excitons with high in-plane ki-

netic energy are less likely to become trapped in the disorder potential. Therefore,

increasing the temperature of the exciton gas has the same effect as screening of the

disorder.

2.3.2 Exciton mobility

Another addition to the transport equation (2.3) is the generalized Einstein

relation for the exciton mobility. The mobility of a degenerate gas of excitons is given

by

µx =
Dx

kBT0

(eT0/T − 1). (2.7)

A full derivation of this can be found in Ref. [60]. Essentially, it takes into account

the increase of particle flux due to applied fields as the exciton gas becomes more

degenerate. In the classical limit, when T0/T << 1 the mobility returns to the well-

known Einstein relation for a classical gas obeying Maxwell-Boltzmann statistics:

µclas =
Dx

kBT
. (2.8)
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In both cases, what is described is that lowering the temperature reduces random

scattering and therefore enhances drift currents over diffusive ones. At low temper-

ature, exciton transport is driven more strongly by particle-particle interactions and

external fields.

2.3.3 Geometry and boundary conditions

In the remainder of this chapter, only a radially symmetric laser profile is

considered. This means that the resulting exciton cloud will be radially symmetric

about the center of the laser excitation spot and therefore the transport equation is

best solved using cylindrical geometry. The gradient operator is

∇ =
∂

∂r
êr +

1

r

∂

∂θ
êθ, (2.9)

and the Laplace operator is

∇2 =
1

r

∂

∂r
+

∂2

∂r2
+

1

r2

∂2

∂θ2
. (2.10)

For the case of radial symmetry, one uses ∂/∂θ = 0. The Laplace operator appears

to diverge for r → 0. However, by considering a Taylor expansion of a cylindrically

symmetric function about the origin, one finds

(∇2)r=0 = 2(
∂2

∂r2
)r=0. (2.11)

Finally, due to the finite lifetime of excitons, we anticipate that nx → 0 as r →∞.

2.3.4 Analytic solutions of the transport equation

In the absence of source and decay terms (a fixed population of excitons) and

neglecting the QW disorder potential so that Dx = D
(0)
x , one can derive analytic

solutions to equation (2.3) in two limiting cases. The first case is where transport is

governed only by diffusion so that Jdrift = 0. For indirect excitons, this corresponds

to the case of high temperature or low density where random scattering dominates
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over the exciton-exciton interaction. The transport equation in this case is,

∂nx

∂t
= Dx∇2nx. (2.12)

This has a well known solution of a Gaussian profile which shows transport of excitons

from regions of high to low concentration:

nx =
N

2Dxt
exp

(
−r2

4Dxt

)
, (2.13)

where N =
∫∞

0
rnx(r)dr is the total exciton population. The distribution originates

from a delta function at t = 0.

The second limit is where the transport is driven by the dipole-dipole inter-

actions and diffusion is absent. This corresponds to low temperatures where ther-

mal scattering is negligible or high densities where the inter-particle interactions are

strong. In the latter case the transport equation becomes,

∂nx

∂t
= µclasu0(nx∇2nx + (∇nx)2). (2.14)

The solution of equation (2.14) is a parabola which, like the solution to the diffusive

equation (2.12), acts to minimise particle density.

nx =


√

N
2µclasu0t

− r2

8µclasu0t
if r <

√
32Nµclasu0t,

0 otherwise.
(2.15)

Plots of these solutions are given in Figs. 2.2a and 2.2b for N = 100, Dx =

10 cm2s−1, u0 = 1.6× 10−10 meV cm2 and T = 10 K. The size of the exciton cloud is

quantified by the second moment of the density distributions, M2(t) =
∫
r2nx(r, t)dr.

This is shown in Fig. 2.2c for the drift and diffusion regimes. It is seen that in the

high density limit, an initial rapid expansion of the exciton gas occurs due to the

dipolar interactions [23]. Then, at lower density, the transport becomes diffusive in

nature.
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Figure 2.2: Analytic solutions to the diffusion equation (a) and drift equation
(b). Parameters are given in the main text. The width of the exciton cloud as
quantified by M2 as a function of time for the diffusive and drift regimes (c).
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2.4 Thermalisation kinetics of indirect excitons

As summarised in chapter one, the evolution of the indirect exciton tempera-

ture at each point in the QW plane, T (r, t) is governed by three processes; (i) heating

induced by the injection of high energy excitons, (ii) cooling via a bath of bulk LA-

phonons and (iii) evaporative heating due to the optical decay of low energy excitons.

The latter turns out to be the weakest of these so that the temperature is controlled

mainly by the balance between incoming energy from the laser and energy dissipated

to the lattice. The thermalisation kinetics are modeled by the following equation,

∂T

∂t
= Spump(nx, T, Eex,Λ) + Sph(nx, T, Tb) + Sopt(nx, T ), (2.16)

where Spump, Sph and Sopt are rates of heating via optical excitation, LA-phonon

interactions and optical decay respectively. Equation (2.16) describes the evolution

of T (r, t) from an initial temperature T (r, t = 0). This initial temperature is assumed

to be Eex/kB in the vicinity of the laser excitation spot and zero elsewhere. The

parameter Eex is the excess energy acquired by excitons during their creation from

unbound electron-hole pairs and is dependent on the laser excitation energy.

2.4.1 Laser induced heating

To model the heating induced by the laser, it is assumed that the excitons

which are deposited into the CQWs are constant in energy. This energy is Eex and

relates directly to the laser energy. The rapid equilibration of injected particles with

the rest of the population means that the exciton gas can always be treated as being

in equilibrium. In this framework, the laser induced heating is given by [45, 48],

Spump =
Eex − kBTI2

2kBTI1 − kBT0I2

ΛT0 . (2.17)

Here, ΛT0 = [(π~2)/(2Mx)]Λ(t, r) where Λ(t, r) is exciton generation rate used in

equation (2.3). The integrals I1,2 = I1,2(T, T0) are given by

I1 = (1− e−T0/T )

∫ ∞
0

zdz

ez + e−T0/T − 1
, (2.18)

I2 = e−T0/T
∫ ∞

0

zezdz

(ez + e−T0/T − 1)2
. (2.19)
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The role of Spump in equation (2.16) is that it acts to restore the temperature to

Eex/kB.

2.4.2 LA-phonon assisted cooling

The energy relaxation of QW excitons via a bath of bulk LA-phonons is given

by [61–64],

Sph = −2πT 2

τscT0

(1− e−T0/T )

∫ ∞
1

ε

√
ε

ε− 1
|Fz(a

√
ε(ε− 1))|2

× eεE0/kBTb − eεE0/kBT

eεE0/kBT + e−T0/T − 1

1

eεE0/kBTb − 1
. (2.20)

where τsc is the characteristic scattering time,

τsc =
π2~4ρc
D2

dpM
3
xνs

. (2.21)

Here, ρc is the GaAs crystal density, Ddp is the deformation potential and νs is

the sound velocity. The form factor Fz originates from an infinite rectangular QW

confinement potential:

Fz(x) =
sin(x)

x

eix

1− (x/π)2
. (2.22)

The dimensionless parameter a ≈ 1 is given by a = dQWMxνs/~ where dQW is the

quantum well thickness. The derivation of equation (2.20) can be found in Ref. [61].

2.4.3 Evaporative heating

The final term in the thermalisation equation (2.16) is the heating rate due

to the decay of low energy excitons from within the light cone. As discussed in the

first chapter, only excitons that are low in energy are optically active. The result

is an evaporative heating effect - removal of the low energy particles increases the

temperature. This is analogous to evaporative cooling which occurs in a variety of

systems where usually it is only the highest energy particles that may escape from

the main body of the gas. The rate of evaporative heating is given by [45, 48],

Sopt =
kBTI2/τopt

2kBTI1 − kBT0I2

T0. (2.23)
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The integrals I1 and I2 are given in equations (2.18-2.19) and τopt is the optical lifetime

used in equation (2.3). The effect of evaporative heating is included here for com-

pleteness but is generally found to be a rather minor correction to the thermalisation

process.

2.5 Optical lifetime and photoluminescence of

QW excitons

Since only QW excitons with momentum inside the light cone may decay

optically, the optical lifetime τopt needs to be calculated accordingly. The temperature

and density dependent effective decay rate, Γopt = 1/τopt is derived in appendix B. It

is given by [61, 63, 65, 66],

Γopt =
Eγ

2τrkBT0

∫ 1

0

1 + z2

Ae−z2Eγ/kBT − 1
, (2.24)

where

A =
eEγ/kBT

1− e−T0/T
. (2.25)

Here, τr is the intrinsic radiative lifetime of ground state QW excitons with zero

in-plane momentum. Therefore τr depends only on the structure, its composing

materials and the electric field applied perpendicular to the QW plane [67, 68]. These

are constant for the experiments considered in this chapter. The energy Eγ is the

intersection of the exciton and photon dispersion relations and marks the upper bound

in energy for which two-dimensional excitons may decay to emit light. To illustrate,

Fig. 2.3 shows the effective optical lifetime τopt plotted as a function of temperature

for various densities. The lifetime is only weakly density dependent. Above 1 K, it

decreases linearly with decreasing temperature but saturates to 2τr = 40 ns at low

temperatures. The PL intensity, IPL which results from decaying excitons is given by

IPL = Γoptnx. (2.26)

The spatial profile of IPL is directly comparable with experimental measurements of

the indirect exciton emission.
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Figure 2.3: Indirect exciton lifetime as a function of temperature for various
exciton densities.

2.6 Numerical methods for solving the coupled

transport and thermalisation equations

The set of coupled equations to be solved is

∂nx

∂t
= ∇G · ∇nx +G∇2nx + Λ− Γopt(nx, T )nx, (2.27)

∂T

∂t
= Spump(nx, T ; Λ, Eex) + Sph(nx, T ;Tb) + Sopt(nx, T ), (2.28)

where the function G = G(nx, T ) is given by

G = D(nx, T ) + u0µ(nx, T )nx. (2.29)

The system of equations was solved numerically using a finite difference scheme. This

is done by discretising the transport equation onto a grid of uniformly spaced points.

At each point, the derivatives are approximated using a low order Taylor expansion

as follows:

n(r + δr) = n(r) + δr
∂n

∂r
+
δr2

2

∂2n

∂r2
+ ..., (2.30)

n(r − δr) = n(r)− δr∂n
∂r

+
δr2

2

∂2n

∂r2
+ .... (2.31)
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Subtracting equation (2.31) from (2.30), one gets(
∂n

∂r

)
r=ri

≈ ni+1 − ni−1

2δr
, (2.32)

and adding, (
∂2n

∂r2

)
r=ri

≈ ni+1 + ni−1 − 2ni
δr2

. (2.33)

where ni = n(ri) and ri = iδr with i ∈ ℵ. The first and second derivatives of a

radially symmetric function f(r) may be written in matrix form:

∂f

∂r
=

D(1)

δr
f ,

∂2f

∂r2
=

D(2)

(δr)2
f . (2.34)

where

D(1) =



0 0 0 0 · · · 0

−1 0 1 0 · · · 0

0 −1 0 1 · · · 0
...

...
. . . . . . . . .

...
...

... −1 0 1

0 0 · · · 0 0 0


and D(2) =



−4 4 0 0 · · · 0

1 −2 1 0 · · · 0

0 1 −2 1 · · · 0
...

...
. . . . . . . . .

...
...

... 1 −2 1

0 0 · · · 0 2 −2


(2.35)

2.6.1 Steady state solution

For simulations where only the final steady state solution is sought, the time

derivatives on the left hand side of (2.27) and (2.28) are set to zero. Then, using the

finite difference approximations of the spatial derivatives, the transport equation can

be expressed in matrix form as

A(nx)nx = −Λ, (2.36)

where

Aij = (D(1)G(nx,T))iD
(1)

ij + (G(nx,T))i(
D(1)

ij

ri
+ D(2)

ij)− Γiδij. (2.37)



2.6. Numerical methods for solving the coupled transport and
thermalisation equations 37

nx = (n0, n1, ..., nN) and Λ = (Λ0,Λ1, ...,ΛN) are the densities and generation rates

at each grid point respectively and (G(nx,T))i = G(ni, Ti). For a given temperature

profile T (r), equation (2.36) may be solved for the density distribution nx using a

standard Newton-Raphson library routine. Next, nx is plugged into equation (2.28)

which is solved as a transcendental equation at each grid point for Ti = T (ri) . This

process is repeated - equation (2.36) is solved again using the new temperature profile

to find a new density profile and so on. Iterating a few tens of times allows the density

and temperature profiles to converge to high accuracy. Convergence is quantified by

the following two error functionals:

e1 = ΣN
i=0 |(A(nx)nx)i + Λi| , (2.38)

e2 = ΣN
i=0 |Spump(nxi , Ti; Λi, Eex) + Sph(nxi , Ti;Tb) + Sopt(nxi , Ti)| . (2.39)

The convergence criteria used was that both e1 and e2 were required to be less than

10−5.

2.6.2 Dynamic solution

Where it was required that the time evolution of the density and temperature

distributions was known (in the modeling of the PL-jump for example), an explicit

finite difference scheme in the time domain was used [69]. To do this, the time

derivative is approximated by

∂n

∂t
≈ n(t+ δt, r)− n(t, r)

δt
. (2.40)

For sufficiently small δt, the density and temperature profiles can be evolved to a

time t from some initial conditions at t = 0 by iterating the following equation,

n(k+1)
x = n(k)

x +
δt

(δx)2

[
∇G(n(k)

x ,T(k)) · ∇n(k)
x +G(n(k)

x ,T(k))∇2n(k)
x

]
(2.41)

+δt
[
Λ− Γopt(n

(k)
x ,T(k))n(k)

x

]
. (2.42)

Here, the index k ∈ ℵ refers to the time domain (i.e. t = kδt). Each successive

density and temperature profile is found from the previous iteration. The accuracy

and stability of the solution is determined by the dimensionless constant D
(0)
x δt/(δx)2.

A value of 10−3 was used throughout the following results section. The method of

finding the dynamic solution is much simpler to implement than the method used
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to find steady state solutions. However, the computation required for the dynamic

solution is significantly greater. This is due to the very small time step, δt that is

needed for stability. Further, the computation time scales with 1/(δx)3.

Other methods were tried including the Crank-Nicolson implicit method [69].

The idea behind that scheme is that a much greater time step may be used by making

a more accurate approximation of the time derivative. However, in the case of such

strongly non-linear terms found in this set of equations, a small time step is always

needed. This causes the Crank-Nicolson method to be even slower in this case due to

the increased work needed on each time step.

2.6.3 Numerical integration

To compute the integrals in equations (2.18), (2.19), (2.20) and (2.24), an

adaptive Simpson algorithm was used. This method of quadrature uses an estimate

of the error from calculating a definite integral by the standard Simpson’s rule. Where

the error exceeds a given tolerance, the interval of integration gets subdivided into

two and the algorithm gets applied again to each subinterval. This recursive method

is much faster and more efficient for evaluating integrals as it uses fewer function

evaluations in places where the integrand is well approximated by a cubic function.

2.7 Results

The results obtained in these studies are presented in three parts. First, the

formation of the inner ring following activation of the laser is discussed. The density,

temperature and PL dynamics during the few tens of nanoseconds taken for the inner

to form are shown. The inner ring has been studied previously but only by examining

the steady state PL pattern [45]. No studies of the dynamics of its formation had

been done previously. Next, the excitation energy dependence of the inner ring is

calculated for the steady state. Finally the dynamics of the PL-jump are examined

in detail. In contrast to the results presented here, previous studies of the PL-jump

were done without spatial resolution [70]. In all cases, quantitative comparisons are

made with the available experimental data.
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Figure 2.4: Simulations of the formation of the exciton inner ring. Spatial profiles
at various time delays following laser onset of the indirect exciton density (a),
temperature (b), diffusion coefficient (c) and decay rate (d). The laser excitation
profile is shown by the dotted line in (a).

2.7.1 Formation of the inner ring

Fig. 2.4 shows numerical solutions to the coupled transport and thermalisation

equations (2.27) and (2.28) subject to a point laser excitation. In Fig. 2.4a, the exciton

density distribution is shown. It can be seen that within 30 ns, excitons diffuse tens of

micrometers away from the excitation spot. Such rapid diffusion occurs because for

high densities, QW disorder is strongly screened by exciton-exciton interaction leading

to a larger diffusion coefficient. The diffusion coefficient is plotted in Fig. 2.4c. The

sharp contrast in density for large values of r is a consequence of the reduction in

diffusion coefficient as QW disorder is not as effectively screened for lower densities.

Temperature profiles of the system are given in Fig. 2.4b. Inside the excitation spot,

the profile closely follows that of the generation rate Λ (red dotted line in Fig. 2.4a).

Outside the excitation spot, excitons are in thermal equilibrium with the lattice which

is at the helium bath temperature Tb = 1.4 K. The effect of temperature on the

exciton decay rate, Γopt is seen in Fig. 2.4d. At the excitation spot, heating due to

the laser suppresses decay and hence the PL intensity is reduced. The absence of
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Figure 2.5: Simulated (a) and observed (b) profiles of the inner ring in the exciton
PL pattern during its formation.

T and Γopt data for large r is because these quantities are not defined for nx = 0.

Suppression of the optical decay results in the formation of a bright ring in the

PL pattern around the excitation spot as shown in Fig. 2.5a. Data obtained from

experiment [48] is presented for comparison in Fig. 2.5b. The light emitted from the

CQWs was collected with 4 ns time resolution. All basic parameters of the model

were chosen to match experimental conditions and the fit parameters were used to

give the best agreement between experimental and simulated data. A good agreement

between Figs. 2.5a and 2.5b is clearly seen.

To further clarify the physics of the inner PL ring, the time dependence of the

same quantities are plotted in Fig. 2.6. Each curve shows the simulated dynamics and

corresponds to different radial positions. Following the onset of the laser excitation

at t = 0, Fig. 2.6c illustrates the rapid thermalisation of initially hot indirect exci-

tons. The gradual build-up of the density is shown in Fig. 2.6a. The exciton density

saturates as the rate at which excitons optically decay, which is proportional to the

density, becomes equal to the generation rate. The monotonic decrease in time of the

optical lifetime τopt is because of the cooling of indirect excitons (compare Figs. 2.6b

and 2.6d). The final steady-state value of the optical lifetime decreases with increas-

ing r because the laser induced heating of the exciton system decreases with the

radial distance from the laser spot center. The initial rapid decrease in the diffusion

coefficient Dx originates from the thermalisation of the exciton system. Initially hot

excitons are not bound by the QW disorder potential. As they cool, a large fraction

become localised in potential minima and do not contribute to transport. Following

the thermalisation transient, the exciton density nx increases leading to screening of

the disorder potential and a corresponding increase in the diffusion coefficient.
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Figure 2.6: Dynamics of the inner ring formation. The time dependence of the
indirect exciton density (a), temperature (b), diffusion coefficient (c) and decay
rate (d) are plotted for different radial positions.
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Figure 2.7: Simulated density (a), temperature (b) and PL signal (c) of excitons
subject to laser excitation at two different energies.

2.7.2 Excitation energy dependence of the inner ring

As discussed, the PL intensity reduction at the center of the inner ring is due to

a higher indirect exciton temperature in the region of laser excitation. This, in turn,

causes a reduction in the radiative decay rate and leads to the formation of the inner

ring. The laser induced heating, which is determined by the excess in-plane kinetic

energy of photo excited excitons, controls the contrast of the inner ring. Therefore,

studying the excitation energy dependence of the inner ring contrast provides a means

to measure the laser induced heating dependence on excitation energy. Here, this

dependence is calculated and compared to experimental observations.

In the presented model, the excitation energy is included via Eex which appears

in the laser induced heating term Spump (See equation (2.17)). The energy Eex is the

excess energy acquired by an exciton during its creation from an unbound electron-

hole pair. Following its creation, the exciton relaxes in energy by the emission of

LA-phonons and through exciton-exciton scattering. On the sub-ns timescales during

its formation, an exciton may also relax via the emission of longitudinal-optical (LO)

phonons. This is provided that its initial energy exceeds the LO-phonon energy of

ELO = 36 meV. Energy relaxation via LO-phonon emission is rapid and can be

thought of as part of the initial exciton formation process. Therefore, we may assert

an upper limit on the excess exciton energy, Eex ≤ ELO.

Fig. 2.7 shows two steady-state solutions of equations (2.27) and (2.28) for

different excitation energies. The excitation geometry is the same as in the previous

section. The density distribution (Fig. 2.7a) is mostly unaffected by the change in the

Eex. This is because the heating is restricted to within the excitation spot. Outside
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Figure 2.8: Simulated (a) and measured (b) excitation energy dependence of the
contrast of the exciton inner ring.

the excitation spot, the exciton gas is in thermal equilibrium with the lattice. The

density at the center of the excitation spot is slightly increased because of an increase

in the exciton lifetime.

The temperature profile, plotted in Fig. 2.7b, shows a great increase at the

excitation spot due to the laser induced heating. The temperature increase suppresses

further the optical decay and enhances the contrast of the inner ring in the PL pattern,

plotted in Fig. 2.7c. A greater excess energy of photo excited excitons increases the

contrast of the inner ring. The inner ring contrast may be quantified by C = (Imax−
Imin)/Imax where Imax and Imin are the PL intensities at the ring position and the

center of the excitation spot respectively. In Fig. 2.8a, the contrast is plotted against

Eex for two different exciton generation rates. Fig. 2.8b shows the experimentally

measured contrast of the inner ring [49] for two excitation powers. The laser excitation

energy, Eω relates to the excess energy by Eω = Eex+Eg−Eb and Eex = 0 corresponds

to the heavy-hole direct exciton energy.

Fig. 2.8 shows a qualitative agreement between the measured and simulated
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dependence of the inner ring contrast on excitation energy. In both cases, the con-

trast increases with photon energy due to the increasing exciton temperature within

the excitation spot. However, in the experimental data, the contrast saturates at

a lower value of about 0.5 compared to about 0.9 in simulations. To make a more

quantitative comparison requires some additions to the theory like, for example, the

exciton relaxation by emission and absorption of optical phonons is required. This

study shows that tuning the laser to the heavy-hole direct exciton resonance dras-

tically reduces the laser induced heating of the exciton gas. It was also seen in the

experimental data that this resonance coincided with a peak in the indirect exciton

population (not shown here). Therefore, it can be concluded that this is the optimal

laser energy for creating a degenerate exciton gas since it achieves the highest density

and lowest temperature.

2.7.3 The PL-jump

The temporal counterpart of the inner ring is the PL-jump. Just as the indirect

exciton PL intensity increases with increasing spatial separation from the laser, it also

increases for separation in time. A massive increase in the PL intensity occurs in the

few nanoseconds following termination of the laser. Therefore, this effect is called the

PL-jump.

Fig. 2.9 shows the exciton kinetics after laser termination. Without heating

by the laser (Spump = 0), the population is allowed to thermalize with the lattice (see

Fig. 2.9a). Although the system is heated by exciton decay as discussed earlier in the

chapter, its effect is relatively weak compared to the highly efficient cooling by phonon

interactions. Within 2 ns, the temperature at the excitation spot drops close to the

lattice temperature. Consequently, the decay rate, Γopt shown in Fig. 2.9c, increases

considerably and the large population of excitons at the excitation spot begins a fast

optical decay shown in Fig. 2.9b. The resulting PL-jump is seen in Fig. 2.9d. The

intensity approximately doubles in magnitude before beginning exponential decay.

Some previous experiments which revealed the PL-jump were performed with-

out spatial resolution. The comparisons with the time-resolved imaging presented

here confirm the prediction of the theory that the PL jump is observed predomi-

nantly within the excitation spot where the laser induced heating is at its maximum.

Fig. 2.10 a and b show the spatial PL profiles during the PL-jump from theory and
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Figure 2.9: Dynamics of the PL-jump. Time dependence of the indirect exciton
temperature (a), density (b), decay rate (c) and PL intensity (d) following ter-
mination of the laser at t = 500 ns. The black and red curves correspond to the
excitation spot and ring position respectively.
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Figure 2.10: Simulated (a) and observed (b) cross sections of the exciton inner
ring at different time delays following laser termination.

Figure 2.11: Simulated (a) and measured (b) spatial dependence of the PL-jump
contrast. The laser excitation profile is shown by the red dotted line.

experiment respectively. Within the 4 ns time resolution of the experiment, excitons

cool to the lattice temperature Tb = 1.4 K and the PL intensity reaches its maximum.

The difference in the PL signal from just before and just after laser termination is

greatest at the excitation spot. Far from the laser where the excitons are already

well thermalised to the lattice temperature, the difference in the PL signal is neg-

ligible. Both the experimental data and calculations demonstrate that the exciton

cooling time to the lattice temperature is much shorter than the exciton lifetime.

This feature is further clarified by plots of the spatial dependence of the PL-jump

contrast shown in Fig. 2.11. The PL-jump contrast is defined as (Imax − Ion)/Ion for

each radial position r where Imax is the maximum PL intensity during the PL-jump

and Ion is the PL intensity before laser termination. The discrepancy between theo-

retical (Fig. 2.11a) and measured (Fig. 2.11b) results is due to the limited temporal

resolution of the imaging device. The experimental data is consistent with the model

used.
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2.7.4 Fit parameters

Numerical simulations using the model based on transport, thermalisation and

photoluminescence of indirect excitons quantitatively reproduces the experimental

data. This is true for the following fitting parameters which can be inferred from this

study: U0 = 0.7 meV, D
(0)
x = 30 cm2s−1, Λ0 = 2× 109 cm−2ns−1 and Eex = 12.9 meV.

Although four fitting parameters were used, the procedure is well justified: (i) the

whole set of the experimental data, measured at various r and t are modeled with

the same values of the control parameters and (ii) the fitting parameters influence

different aspects of the transport and PL processes in a separate way and are inferred

independently. The pump rate Λ0 yields a maximum concentration which can be

evaluated from the blue shift of the PL line. The average energy of incoming, hot

indirect excitons, Eex, governs the contrast of the inner ring and PL-jump. The

input diffusion coefficient, D
(0)
x , determines the time-dependent radius of the inner

PL ring. Finally, the amplitude, U0, of the long-range correlated disorder potential is

responsible for the spatial pinning of the PL signal at ring edges. Note that the above

values of the control parameters are consistent with those used in previous works on

the steady-state inner ring [45] and laser-induced traps [9] studied for the same CQW

structures. Table 1.1 in the introduction lists all other basic known parameters used

in the model.

2.8 Summary

In this chapter, a study of the kinetics of the inner ring and the PL-jump

in the exciton emission pattern were presented. A theoretical model concerning the

creation, transport, thermalisation and optical decay of excitons was described. The

model includes the non-classical, quantum-statistical effects in its description. All

the main features of the inner ring and PL-jump are described within this model.

The appearance of the inner ring was attributed to the relaxation in energy of

excitons as they drift away from the region of laser induced heating at the excitation

spot. The model quantitatively predicts the experimentally measured time-dependent

PL profiles of the formation of the inner ring following the onset of laser excitation.

The excitation energy dependence of the inner ring contrast was also studied.

Increasing the excess energy of photoexcited excitons leads to increased heating at the
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excitation spot. This enhances the inner ring contrast which is an observable quantity.

The monotonic increase in contrast with increasing excess energy is confirmed by the

experimental data. There, the excess energy increases with energy of photons injected

into the CQWs.

Finally, the PL-jump was explained by rapid cooling of a dense exciton gas

following the termination of the laser excitation. Within 2 ns, the excitons reach

thermal equilibrium with the lattice and become optically active. The sharp decrease

in optical lifetime leads to the sharp jump in emission intensity and subsequent rapid

decay of the exciton density. The contrast of the PL-jump is found to be at its

maximum in the region of laser excitation. The results from simulation are in good

agreement with the available experimental data.



3 Indirect excitons in applied in-

plane potentials

3.1 Background

As discussed in the introduction, an inhomogeneous charge distribution above

the quantum well layers exerts a force on dipole orientated excitons. Although the

overall charge of an indirect exciton is zero, the charge in the upper layer closest to

the electrode will experience a stronger attractive force than the repulsive force felt

by the charge in the lower layer. This means that where there is an electrode, there

will be a minimum in the exciton potential in the QW plane beneath it. Therefore,

indirect excitons tend to accumulate beneath the electrodes [30].

Quite complex electrode patterns attached to CQW samples are now routinely

achieved [38]. Further, many electrodes at different voltages can be realised. The

voltage at each electrode, which controls the depth of the exciton potential, may also

be time varying so as to create dynamic potentials [39]. Such flexibility has enabled

a range of experiments in which the transport properties of excitons can be probed.

This has motivated the theoretical studies presented in this chapter. An outline of

the progress thus far in this avenue of research is given here.

49
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3.1.1 Traps

Motivated by the desire to observe exciton BEC, several groups have engi-

neered methods to spatially confine indirect excitons to potential traps. Without

trapping, an indirect exciton gas rapidly expands due to the strong dipole-dipole

repulsion. Since the exciton quantum degeneracy temperature is proportional to den-

sity, it can be elevated by means of a potential trap. Then, a degenerate exciton gas

becomes accessible for cryostat temperatures of a few Kelvin.

Trapping of indirect excitons by spatial modulation of the gate voltage has

been demonstrated in Refs. [31, 71–73]. An obstacle for effective trapping of excitons

is that of exciton ionization which is induced by high in-plane electric fields. For an in-

plane field F|| > Eb/ax where Eb and ax are the exciton binding energy and Bohr radius

respectively, an exciton is torn apart as its electron and hole constituents are pulled

in opposite directions. Ionization is particularly likely to occur near the electrode

edges where gradients in the exciton potential are greatest. A simple solution to this

problem was achieved by placing the CQWs much closer to the homogeneous bottom

electrode than the shaped top electrode [31]. This has the effect of smoothing the

potential landscape to prevent ionization whilst at the same time preserving the

approximate shape of the potential as well as its depth.

More accurate control over the form of the potential was shown in Ref. [32]

where a parabolic trapping was demonstrated by using a diamond-shaped electrode.

Also, in Ref. [33] a ’chute trap’ was developed to pre-cool excitons as they traveled

towards the center of the trap. In more recent work [14, 15], spontaneous coherence of

indirect excitons is claimed to have been observed in a parabolic trapping potential.

Another technique for creating electrostatic excitonic traps is by patterning

SiO2 layers between the electrode layer and the GaAs heterostructure as was done in

Refs. [34, 43, 74]. Indirect excitons became trapped in the CQWs along the perimeter

of the SiO2 layers. The confinement was explained via the electrostatic influence of

surface states in the GaAs/SiO2 interface.

Confining potentials for excitons are also realised by stress traps [75, 76, 76–

78]. An inhomogeneous force is applied to the samples, normal to the QW plane.

The stretching of the sample causes a reduction in the exciton potential. Excitons

therefore accumulate beneath point of contact between the sample and a stressor.
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Other methods of trapping excitons to high density include natural traps [11]

where excitons are confined to the defects intrinsic to CQWs, optical traps [79, 80]

where excitons are confined by light and magnetic traps [81]. A commonly observed

effect in many of these experiments is the localisation-delocalisation transition [36].

For moderate densities, excitons are localised to trap centers. However, for high

enough densities, it has been found that excitons can screen the trapping potential

because of the dipole-dipole repulsion. Then, a large fraction of the exciton population

is delocalised - they are not confined to the trap but instead can diffuse across the

QW plane unimpeded by the applied potential.

3.1.2 Narrow channels

Electrostatic traps like those described in the previous section have also been

engineered to cause strong confinement of excitons in one dimension only. This has

been done by the patterning of thin electrodes onto the CQW sample [42] and also

using SiO2 layers [34, 43]. In either case, one has narrow potential channels or wires

along which excitons propagate. In Ref. [43], it was found that exciton diffusion is

greatly enhanced in a narrow channel over regular two-dimensional diffusion. The

ability to channel energy between point locations in the QW plane by using indirect

excitons in narrow channels also has great potential for optical device applications. A

study of this was done in Ref. [42] where control of exciton fluxes in narrow channels

was utilized to form a simple integrated circuit.

3.1.3 Elevated traps

Some attempts to create an exciton condensate have been made by following

similar methods to those used in atomic physics. The study of cold Bosonic atoms

led to the first observation of a BEC in 1995 [4]. Many of the landmarks leading

to the discovery came from new techniques developed to remove energy from an

atomic gas so as to lower its temperature below the critical BEC temperature. One

method to do this, which has since been employed in an attempt to reduce the exciton

temperature below the cryostat temperature, is evaporative cooling. This has been

done by placing excitons in an elevated trap [35]. In an elevated trap, only the

highest energy excitons can diffuse beyond the edges of the trap. The excitons which
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escape are then accelerated away from the trap leaving behind only the lowest energy

excitons and thus reducing the temperature of the remaining population.

3.1.4 Ramps

An excitonic ramp is a linear slope in the exciton potential energy. It presents a

means to probe the exciton drift current and can be used to experimentally determine

the exciton mobility. In Refs. [37, 41], results from time-of-flight experiments are

done for exciton transport along a ramp. In that work, the ramp was created by a

resistive electrode with a voltage drop across it and was tens of micrometers in length.

However, the voltage difference between the ends of the electrode induced a current

which can heat the lattice and, in turn, the exciton gas. This factor can strongly affect

estimates of the temperature dependent exciton mobility. Ramps can also be created

simply by using a shaped electrode at constant voltage. A narrower electrode contains

fewer charges per unit of distance along the ramp and therefore creates a shallower

trapping potential. As the electrode widens, the trapping potential increases and the

exact shape of the electrode can be chosen to give a linear gradient in the exciton

potential. However, a ramp made in this way can only be quite small in length which

therefore makes time-of-flight experiments difficult to perform. Numerical studies of

exciton transport on a ramp created by a patterned electrode are presented later in

this chapter and also in Ref. [40].

3.1.5 Lattices

Further insight into the transport characteristics of indirect excitons is gained

by studying excitons in electrostatic lattices. In this context, the electrostatic lat-

tice is an applied electric potential that is periodic in one or both of the in-plane

coordinates. In Ref. [36], a one-dimensional lattice was studied. Similar to the trap

potentials discussed above, a localisation-delocalisation transition was observed for

high exciton density or low amplitude of the lattice potential. In Ref. [37], a similar

one-dimensional lattice was investigated and an ac voltage was applied to the elec-

trodes to demonstrate shuttling of excitons back and forth as the positions of minima

in the lattice potential oscillated. Various two-dimensional lattices were also studied

in Ref. [38]. Shown later in this chapter are theoretical studies of exciton transport in
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one-dimensional moving lattice - a conveyer [39]. In a conveyer, excitons localise to

the minima of the lattice potential and are then dragged several tens of micrometers

from the excitation spot as the conveyer propagates across the QW plane. The con-

veyer realises highly controlled transport of excitons similar to how a charge coupled

device realises controlled transport of electrons.

3.1.6 Switches

Although much of the motivation that drives the research of exciton physics

comes from the potential to study BEC, there is now also the possibility to utilize

excitons for device applications. In the quest to achieve BEC in an exciton system,

a wealth of knowledge has accumulated. With some ingenuity, this can be used in

device applications. An example of this are excitonic optoelectronic transistors [82, 83]

where the electrically controlled on/off switching of an optical signal is mediated by

indirect excitons. Another example is an all-optical excitonic transistor [84] where

the switching of light is controlled using only light by taking advantage of excitons

as an operating medium. In all of these devices, the exciton transport is controlled

via applied in-plane electrostatic potentials which is the focus of this chapter.

3.2 In-plane exciton potential due to patterned

electrodes

In order to make a good estimate of the indirect exciton in-plane potential,

excitons may be treated as point-like rigid dipoles. In this case, the potential u =

u(x, y) due to a single electron on the sample surface is given by

u(x, y) =
e2

2πε0εr

[
1√

x2 + y2 + d2
elec

− 1√
x2 + y2 + (delec + dz)2

]
, (3.1)

where delec is the distance between the QWs and the electrode layers and dz is the

dipole length. x and y are the in-plane coordinates. The total potential V (x, y, t) is

given by the integral over the entire electrode pattern:

V (x, y, t) =

∫ ∫
u(x− x′, y − y′)ρ(x′, y′, t)dx′dy′, (3.2)
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where ρ(x, y, t) is the time-dependent charge density distribution in the electrodes.

The potential is included into the exciton transport equation via the drift term. The

transport equation is

∂nx

∂t
= ∇ · [Dx∇nx + µxnx∇(u0nx + V )] + Λ− nx

τopt

. (3.3)

This equation describes the in-plane transport of a gas of dipolar excitons under the

influence of an external electric field applied via patterned electrodes on the sample

surface above the QWs.

3.3 Exciton lifetime dependence on velocity

As discussed in chapters one and two, only excitons with energies inside the

photon cone may decay optically. A high drift velocity, which can potentially be

caused by the applied in-plane electric fields, can affect the optical lifetime of two-

dimensional excitons. The momentum distribution may be shifted such that a smaller

fraction of excitons sit within the photon cone and are optically active. These effects

can be included into the model using the following expression for the optical lifetime

of excitons which is a modified form of equation (2.24), derived in appendix B,

1

τopt

=
Eγ

4πτrkBT0

∫ 1

za

dz

∫ 2π

0

dφ
1 + z2

A exp[Eγ(1− z2 + y − 2
√
y(1− z2) cosφ)/kBT ]− 1

.

(3.4)

Here, Eγ is the energy marking the crossover between the exciton and photon disper-

sions, τr is the intrinsic exciton lifetime and A = (1 − eT0/T )−1. The dimensionless

parameter, y, in the integral is calculated from vg, the group velocity of the excitons,

y = Ed/Eγ with Ed = 1
2
Mxv

2
g . To calculate optical decay, za = 0 is used for the lower

limit of integration in equation (3.4). The PL pattern collected by the detector is

also calculated using equation (3.4) but with za =
√

1− sin2(θc/2) where θc is the

collection angle of the detector.

In Fig. 3.1, τopt is plotted as a function of the exciton group velocity for dif-

ferent exciton densities. Within the range of velocities relevant to the experiments

considered here (< 10µm/ns), the correction to the optical lifetime is rather minor.

Therefore, it is neglected in the subsequent calculations. Note that for higher group

velocities, vg = 10−30µm/ns and exciton densities 109−1011cm−2, the exciton lifetime
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Figure 3.1: Exciton optical lifetime against group velocity for various exciton
densities.

increases from the intrinsic lifetime of a few tens of nanoseconds up to milliseconds

as the exciton momentum distribution moves further out of the radiative zone.

3.4 Electrostatic ramps

As discussed in section 3.1.4, the study of indirect excitons in linear potential

energy gradients (ramps) can reveal information about the exciton transport proper-

ties. This information is useful in understanding the dynamics of excitons confined

to trapping potentials. Also, this fundamental insight is necessary if indirect excitons

are to be utilised for optoelectronic device applications. In this section, analytical and

numerical studies of the transport equation are presented. The transport equation is

modified to include the externally applied ramp potential. The modeling was done

in the context of an experiment where excitons were created in a narrow potential

energy channel so that only transport along one dimension was permitted. The floor

of the narrow channel had a region of constant slope in energy. The exciton PL signal

in this region was the focus of the study.
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3.4.1 Analytic results

The contribution to the drift current as the result of a potential ramp is

Jramp = −µn ∂

∂x
(V0 − Ex). (3.5)

Here, E is the magnitude of a constant electric field pointing in the x-direction and

V0 is the potential at x = 0. A rather general homogeneous transport equation with

solution n(x, t) which has no source or decay terms may be written as

∂n

∂t
= F (n,

∂n

∂x
,
∂2n

∂x2
), (3.6)

where F is the rate of change in n(x, t) due to all other currents besides Jramp. With

the addition of the ramp, the density distribution n′(x, t) satisfies

∂n′

∂t
= F (n′,

∂n′

∂x
,
∂2n′

∂x2
)− µE∂n

′

∂x
. (3.7)

By direct substitution, one finds that the solution n′ in the presence of a constant

electric field is the same as the solution n but with the distribution having a constant

velocity in the positive x-direction:

n′(x, t) = n(x− x0 − vdriftt, t), (3.8)

where vdrift = µE is the drift velocity and x0 is the center of the distribution at t = 0.

For example, in a diffusive regime transport on a ramp is given by

∂n

∂t
= D

∂2n

∂x2
− µE∂n

∂x
. (3.9)

This is just the standard diffusion equation (2.12) in one dimension with a term added

to include drift via the ramp. It’s solution is

n =
N√

4πD(t+ t0)
exp

[
−(x− x0 − µEt)2

4D(t+ t0)

]
. (3.10)

For dipole orientated excitons on a ramp at low temperature, the transport equation

is
∂n

∂t
= µu0

(
n
∂2n

∂x2
+

(
∂n

∂x

)2
)
− µE∂n

∂x
, (3.11)
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which has solution

n =

(
3N2

32µu0(t+ t0)

)1/3

− (x− x0 − µEt)2

6µu0(t+ t0)
. (3.12)

The solutions (3.10) and (3.12) are comparable in form to the two-dimensional solu-

tions for the diffusive and drift regimes shown in (2.12) and (2.14) of chapter two.

The full transport equation for indirect excitons on a ramp, including source

and decay terms, is given by

∂nx

∂t
=

∂

∂x

[
Dx

∂nx

∂x
+ µnx(u0

∂nx

∂x
− E)

]
+ Λ− nx

τ
. (3.13)

For this equation, it is assumed that there is no transverse exciton transport (i.e.,

∂/∂y = 0). This is correct in certain situations. For example when the ramp is along

the floor of a narrow channel in the exciton potential landscape or when the excitation

geometry is homogeneous in the y-direction.

One can transform equation (3.13) into an equation for the first moment of

the density distribution M1 =
∫
xnxdx/

∫
nxdx. This is done by multiplying it by

x/N and integrating over x ∈ <. Here N = N(t) is the total number of excitons

in the system and approaches constant value for large t. Some simplifications may

be made by using the classical limit for the exciton mobility given in equation (2.8)

and neglecting the effects of QW disorder. In this case, and with a symmetric laser

focused at the origin, M1 is a solution to the following,

∂M1

∂t
=

1

N

∫
µclasnxEdx−

M1

τ
. (3.14)

The steady state solution of equation (3.14) is M1 = µEτ . The displacement of

excitons from the excitation spot is equal to the product of the in-plane electric field

strength, exciton mobility and lifetime. This provides a means to experimentally

determine the exciton mobility from the extension of the exciton cloud along the

ramp. The optical lifetime can be measured from the exciton decay time after laser

termination and is controlled by the electric field in the growth direction. Therefore,

studying the first moment of nx as a function of electric field enables estimation of

the mobility. Experimentally, one can study the first moment of the PL signal which

is approximately proportional to nx.
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3.4.2 Numerical simulations

In this section, simulation results for exciton transport via a ramp are shown.

The data is compared to experimental results where a ramp created by a shaped

electrode at constant voltage was used. Fig. 3.2a shows the potential landscape as a

result of a shaped electrode which is designed to create a ramp. The outline of the

electrode is shown by the overlaying black line. The long narrow electrode creates a

potential energy channel to which excitons are confined and may only travel along

the x-axis. The constant voltage over the entire electrode implies a constant charge

density. This means that for a wider electrode, a greater charge per unit length in

the x-direction is present and therefore the energy channel will have a greater depth.

Shown here is an electrode with width that changes linearly with x from 10− 20µm.

The potential along the line y = 0 is shown in Fig. 3.2b. The energy of indirect

excitons is constant in the flat-energy channels where the electrode width is constant.

Narrowing the electrode increases the exciton energy which creates a ramp in the

potential.

The smoothing of the potential near the electrode edges is achieved by placing

the CQWs 1µm below the top shaped electrode. If the CQWs are much closer to the

electrodes, the result is a high in-plane electric field E at the edges of the electrode

as the step in the potential from inside to outside the electrode area is greater. This

causes exciton ionisation. Similar studies of exciton transport via a ramp have been

done previously where the ramp potential was created by a voltage gradient in the

top electrode. This, however, causes an electric current through the electrode which

heats the sample. Heating by electric currents is greatly suppressed by using the

shaped-electrode-method.

In the experiment considered here, the electrode shape was designed to obtain

a ramp with a constant potential energy gradient. The height of the ramp, which is

proportional to the electrode voltage, is controllable in experiments. The transport

of excitons along the flat energy channels and ramp are modeled using a transport

equation similar to equations (2.3) and (3.13):

∂

∂x

[
Dx

∂nx

∂x
+ µxnx

∂

∂x
(u0nx + Vramp)

]
+ Λ− nx

τopt

= 0. (3.15)

The first and second terms in the square brackets account for exciton diffusion and

drift, respectively. The difference here from the equations given in chapter two is that
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Figure 3.2: (a) Potential landscape due to a shaped electrode above the CQWs.
The electrode outline is shown by the black lines. (b) The profile of the applied
exciton potential along the line y = 0.
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in the one-dimensional geometry relevant to the experiment, ∇ = ∂/∂x. Also, the

ramp potential Vramp is included in the drift term. In this work, the dynamics of the

ramp were not studied. Hence ∂nx/∂t = 0 gives the right hand side of equation (3.15).

The decay rate of excitons, 1/τopt, is given by equation (2.24). The exciton generation

rate Λ = Λ(x) is approximated as homogeneous in the y-direction. The diffusion

coefficient Dx and mobility µx are given by equations (2.6) and (2.7) respectively.

For the fit parameter U0, where U0/2 is the amplitude of disorder potential in the

structure, U0 = 1.5 meV was used.

The thermalisation equation to account for energy relaxation of photo excited

excitons is

Sph(T0, T ) + Spump(T0, T,Λ, Eex) = 0. (3.16)

Again, the time derivative is set to zero for steady-state calculations which gives the

right hand side of equation (3.16). Sph and Spump are given by equations (2.20) and

(2.17) respectively. Sph is the cooling rate due to bulk longitudinal acoustic phonon

emission, and Spump is the heating rate due to the laser excitation. The excess energy

of photo excited excitons used here is Eex = 17 meV. Note that the heating due to the

optical evaporation of low energy excitons used in chapter two is neglected here since

it was previously found to be a minor correction (a few percent) to the temperature

profile. All other parameters of the model are given in table 1.1.

The results from simulations of indirect excitons on a ramp using equations

(3.15-3.16) are presented in Fig. 3.3. The steady-state solution algorithm described

in section 2.6 was used. Figs. 3.3a and 3.3b show the temperature profiles along

the narrow channel with and without a gradient in the applied potential. The total

effective indirect exciton potential, Vx = Vramp +u0nx, is shown by the brown curve in

Fig. 3.3b. At the bottom end of the ramp, the applied potential is partly screened by

indirect excitons. Figs. 3.3c and 3.3d show the corresponding density (black curves)

and PL intensity profiles (green curves). The one-dimensional equivalent of the inner

ring is seen in Fig. 3.3c. The symmetric density distribution in Fig. 3.3c is shifted

in the positive x-direction in Fig. 3.3d due to the ramp. Excitons accumulate at the

bottom of the ramp causing a peak in density. In both cases, the emission intensities

IPL show suppression of the optical decay due to laser induced heating.
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Figure 3.3: Simulations of indirect exciton transport with (b and d) and without
(a and c) the presence of a ramp potential. The density (black) and PL intensity
profiles (green) are shown in (c) and (d). The corresponding temperature profiles
are shown by the red curves in (a) and (b). The brown line in (b) is the total
effective exciton potential due to the ramp plus the dipole-dipole interactions.
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3.4.3 Comparison with experiment

To make a quantitative comparison, the ramp potential and the parameters

of the model were chosen to match experimental conditions [40]. Fig. 3.4a shows the

effectiveness of the ramp as a function of the exciton generation rate for different

temperatures. The effectiveness of the ramp is quantified by the average transport

given by the first moment of the PL intensity, M1. At low densities, excitons are

localised to minima of the disorder potential and are not effectively transported by

the ramp. At higher densities, excitons screen the disorder potential and transport

down the ramp. The effect of QW disorder also explains the temperature dependence

of the data. In a higher temperature exciton gas, the fraction of excitons with low

enough in-plane kinetic energy to become localised in the disorder potential is smaller.

Therefore, at a higher temperature, excitons move more freely under the action of

the ramp. Fig. 3.4b shows the equivalent data from experiment. Plaser is the laser

excitation power which is assumed to scale linearly with the exciton generation rate,

Λ. Qualitatively, the same trends are seen in the experimental data as is seen in

simulations. The abrupt drop inM1 for higher Plaser is attributed to a photoexcitation-

induced reduction of the electric field in the device [40].

3.5 The electrostatic conveyer

In this section, transport of indirect excitons in a moving electrostatic lattice

(conveyer) is studied. The principle of operation of the conveyer is that indirect

excitons drift towards the minima of the conveyer potential and are then carried

by the conveyer as it propagates along the QW plane. The results are compared

to experimental work where a conveyer was created by a set of electrodes at ac volt-

ages. Moving potential lattices for excitons and polaritons realised by surface acoustic

waves have been studied by others previously [6, 85]. The advantage, however, of the

electrostatic conveyer is that its velocity is controllable by the frequency of the ac

voltages applied to the electrodes. In contrast, surface acoustic waves are restricted

to the sound velocity. For the considered system, the surface acoustic wave velocity

is 3µm/ns whereas an electrostatic conveyer velocity of up to two times greater has

been achieved. Similar experiments have also been done in atomic physics where a gas

of cold atoms was transported by a magnetic conveyer [86] and single atom transport

has been achieved using counter-propagating laser beams [87].
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Figure 3.4: Effectiveness of exciton transport via the ramp at different tempera-
tures as quantified by the first moment of the PL signal M1. (a) Simulation results
for varying the exciton generation rate and (b) experimental results for varying the
laser excitation power.
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Schematically, the conveyer consists of electrodes positioned parallel to each

other on the sample surface above the QWs. A dc bias is applied to the electrodes

so that photo excited excitons are of the indirect type. An additional ac voltage is

applied to the electrodes but with a phase delay between each electrode. This creates

a roughly sinusoidal exciton potential which propagates along the QW plane.

3.5.1 model

The following equation was used to model in-plane transport of indirect exci-

tons subject to the applied conveyer potential, Vconv

∂nx

∂t
= ∇ · [Dxnx + µxnx∇(u0nx + Vconv)] + Λ− nx

τ
. (3.17)

As in the previous section, Dx and µx are the diffusion coefficient and mobility

given in equations (2.6) and (2.7) respectively. An example of the indirect exciton

spatial PL pattern observed in experiments with and without the conveyer activated

is shown in Fig. 3.5 below. From these, one can note that in the presence of the

conveyer, the exciton cloud is greatly extended compared to when the conveyer is

off. Also, it is seen from the previous calculations in this thesis that variations in

temperature from the bath temperature are restricted only to the vicinity of the laser

excitation spot. Therefore, it is reasonable to assume that the exciton gas outside

the excitation spot will be in thermal equilibrium with the GaAs lattice. In this case

the exciton temperature can be considered constant (T = Tb) in order to simplify

calculations. To still be able to make a qualitative comparison with the experiment,

the measured PL signal can be neglected from a few µm around the excitation spot

where thermalisation effects are important. Neglecting the PL signal from this region

is also done in the calculation of M1 in simulations. Since a constant temperature

is assumed, the lifetime can also be taken as constant. According to equation (3.4),

the lifetime depends on exciton density, temperature and group velocity. However, it

is only weakly density dependent and for low temperatures and moderate conveyer

velocities, it is approximately 2τr where τr is the intrinsic lifetime of the ground state

exciton.

It can also be noted from the experimental observations that the motion of

the exciton cloud during transport via the conveyer can be decoupled into motion
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Figure 3.5: Experimental measurements of the spatial PL pattern with and with-
out the propagating conveyer potential. In each case, the excitation spot is shown
by the green circle.

along the direction of conveyer propagation (x-direction) and motion perpendicular

to conveyer propagation (y-direction). In the x-direction, transport is predominantly

driven by the external field whereas in the y-direction it is governed by diffusion and

exciton-exciton repulsion and will have a profile similar to the analytic solutions given

in (2.13) and (2.15). Hence the transport equation (3.17) need only be solved for the

x-direction. This is done by taking ∂/∂y = 0 so that ∇ = ∂/∂x and the exciton

density nx in this context is an average density over y.

For the considered experiment, the distance between the electrode centers is

2µm and the conveyer periodicity is 7 electrodes giving a wavelength of 14µm. The

total conveyer length is 380µm and its width is 80µm. The electrodes are semi-

transparent so as to allow observation of the spatial PL pattern. As in the case of

the ramp experiment, the CQWs are positioned closer to the homogeneous bottom

electrode to smooth the potential and suppresses the in-plane electric field near the

electrode edges, which can otherwise cause exciton dissociation. The geometry of the

experiment is shown in Fig. 3.6a and a plot of conveyer potential is shown in Fig. 3.6b.

This experimental setup enabled control of the amplitude of the conveyer potential

by adjusting the amplitude of the ac signal and the conveyer velocity is controlled by

the ac frequency.

The conveyer potential is shown in Fig. 3.6b. This is calculated using equation

(3.2) and is well approximated by

Vconv = (1 + Aelec cos(kelecx+ δelec))(Vg + V0 cos(kconvx− ωt)). (3.18)
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Figure 3.6: The geometry (a) and potential (b) of the electrostatic exciton con-
veyer. The laser excitation spot is shown by the red circle in (a).

The sinusoidal envelope of the conveyer potential with period 14µm is modulated

by ripples of period 2µm (kconv = 0.45µm−1 and kelec ≈ π µm−1). The ripples

originate from the spacing between the conveyer electrodes. The amplitude of the

ripples, Aelec = 0.0875, can be decreased by decreasing the width and spacing of the

conveyer electrodes. For CQWs placed 1µm below the electrodes, the ripples almost

completely vanish when the spacing between the centers of the electrodes is less than

0.5µm. The dc bias term Vg = −43.16 meV causes the regime where indirect excitons

are dominant and controls the exciton lifetime. The conveyer amplitude V0 was varied

between 0−10 meV. The conveyer potential propagates with velocity νconv = ω/kconv

where ω is the angular frequency of the ac voltages applied to the electrodes. The

constant phase term δelec = −1.53 defines the position of the electrodes with respect

to the center of the laser excitation spot.
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Figure 3.7: (a) The conveyer potential (green) and total effective exciton poten-
tial (blue). (b) The indirect exciton density (black) and time-integrated, spatially
convoluted PL intensity (red). The laser profile is shown by the purple dotted line
in (b).

3.5.2 results

The results of the simulations are presented in Fig. 3.7. The green curve in

Fig. 3.7a shows a snapshot of the bare conveyer potential and the corresponding ex-

citon density distribution is shown by the black curve in Fig. 3.7b. The amplitude

and speed of the conveyer are V0 = 8 meV and νconv = 0.7µm/ns respectively. The

Gaussian profile of the laser excitation is shown by the dotted line in Fig. 3.7b. Indi-

rect excitons accumulate in the minima of the conveyer potential and are transported

along the QW plane. The conveyer potential is partially screened by the indirect

exciton repulsive interaction. The screened conveyer potential is shown by the blue

curve in Fig. 3.7a. Note that the ripples in the conveyer potential do not propagate

since their positions are determined by the positions of the electrodes. However, the
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energy of the ripples’ minima oscillates in time as the conveyer propagates. Effec-

tively, the excitons move from one minima to another in order to minimise potential

energy. The density distribution in Fig. 3.7b shows that excitons are mainly situated

in the minima of the ripples and the highest densities are found in the minima of

the conveyer. The red curve in Fig. 3.7b shows the PL intensity, IPL for comparison

with experimental data. For the constant lifetime assumed here, the PL signal is

proportional to the the exciton density. However, the PL profile shown here is time

integrated over several periods of the conveyer to match conditions of the experiment

which were performed without time resolution. Further, the PL profile is then spa-

tially convoluted with a Gaussian of width 2µm to obtain IPL. This accounts for

the limited spatial resolution of the imaging device used. The large extension of the

exciton density in the positive x-direction reproduces well the observed PL images

shown in Fig. 3.5.

The effectiveness of the conveyer is quantified by the average exciton trans-

port distance via conveyer and is evaluated by the first moment M1 of IPL. In the

evaluation of M1, the PL signal from the region |x| < 7µm was excluded since in the

experimental data, the emission in that region was found to have originated mainly

from the bulk GaAs structure. The dependence of M1 on the conveyer amplitude and

velocity and the generation rate of excitons is discussed in following subsections and

comparisons with the experimental data are made.

3.5.3 Conveyer amplitude and velocity dependence

Fig. 3.8 shows the simulated exciton transport distance via the conveyer, M1,

as a function of conveyer amplitude V0 for different conveyer velocities. Each point

on the plot corresponds to a different numerical simulation. For a shallow conveyer,

M1 is not affected by the conveyer’s motion. This indicates that the excitons do not

follow the moving lattice - they are localised to the disorder potential and ripples in

the conveyer. They are dynamically delocalised in the lattice. For increasing conveyer

amplitudes, the excitons start to follow the conveyer - they are dynamically localised

in the lattice.

Fig. 3.8 also shows that the effectiveness of the conveyer decreases for increas-

ing conveyer velocity. This is explained as follows. Excitons can only efficiently

follow the moving conveyer potential when the conveyer velocity is less than the drift
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Figure 3.8: Simulated effectiveness of exciton transport via the conveyer against
conveyer amplitude for various conveyer velocities. The inset shows the amplitude
of the conveyer at the dynamical localisation-delocalisation transition, Aturn−on, as
a function of conveyer velocity for both simulation and experiment.
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velocity of excitons caused by the conveyer potential. To clarify, for each conveyer

amplitude, there is a characteristic time required for excitons to move to the minima

of the conveyer potential. If this time is longer than the time period of the conveyer

then excitons are unable to become dynamically localised in the moving lattice.

For low conveyer amplitudes, excitons are not localised to the minima of the

moving conveyer potential. Therefore, they do not follow the conveyer. This is be-

cause the conveyer amplitude is less than either the interaction energy associated

with the exciton dipole-dipole repulsion or the amplitude of the QW disorder poten-

tial. When the conveyer amplitude becomes larger than both the exciton interaction

energy and the disorder amplitude, excitons can become localised in the minima of

the moving conveyer potential. This results in exciton transport via the conveyer.

The transition between the two regimes, i.e. the dynamical localisation-

delocalisation transition (DLDT), is of particular interest. It is the dynamical coun-

terpart of the localisation-delocalisation for indirect excitons in static lattices [36].

The conveyer amplitude at the DLDT, Aturn−on is defined by the point at which a

linear extrapolation of the high amplitude part of the curves in Fig. 3.8 intersects the

x-axis. The inset in Fig. 3.8 shows Aturn−on as a function of the conveyer velocity

for both the simulated and experimental data. In both cases, the data shows that

Aturn−on increases with νconv. The exciton transport via the conveyer is less efficient

for higher conveyer velocities.

For comparison, the experimentally measured conveyer velocity and ampli-

tude dependence of M1 are presented in Fig. 3.9 [39]. As is the case throughout this

thesis, the parameters of the simulation have been chosen to match the conditions

of the experiment from whence the data was obtained. The experimental data and

theoretical simulations of exciton transport via conveyer are in qualitative agreement

(compare Figs. 3.8 and 3.9). The discrepancy between the simulated and measured

data for high conveyer amplitudes can be related to device imperfections. The exper-

imental data shows the same DLDT which occurs for increasing conveyer amplitude.

The simulated and measured conveyer amplitude at the DLDT, Aturn−on, which are

plotted together in the inset of Fig. 3.8 are in good agreement.
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Figure 3.9: Measured effectiveness of exciton transport via the conveyer against
conveyer amplitude for various conveyer velocities.



72 Chapter 3. Indirect excitons in applied in-plane potentials

Figure 3.10: Effectiveness of the exciton transport via the conveyer, M1, as a
function of the exciton generation rate for simulations (a) and as a function of laser
excitation power for experiments (b).

3.5.4 Exciton density dependence

In order to simplify the calculations for the analysis of the exciton density

dependence, the conveyer potential was approximated by the following cosine function

V ∗conv = ∆ + V0 cos(kconvx− ωt). (3.19)

Here, the ripples in the conveyer potential are removed. Instead, the effect of the

ripples was included in the same way as the disorder potential. The position of the

ripples is fixed, similar to the position of minima in the CQW disorder potential. The

effect of the CQW disorder and conveyer ripples on exciton transport was approxi-

mated within the thermionic model for the diffusion coefficient discussed in chapter

two. The modified diffusion coefficient, D∗x is given by

D∗x = D(0)
x exp

[
−U0 + U

(ripple)
0

kBT + u0nx

]
. (3.20)

Here U
(ripple)
0 is the ripple amplitude obtained by simulations. U

(ripple)
0 is nearly pro-

portional to V ∗conv and, therefore, it is approximated by U
(ripple)
0 = CV ∗conv (C is a

fitting constant). The simplification of calculations which results from the removal of

the ripples from the conveyer potential enables simulations to be done at high exciton

densities. For high densities, the ripples in the conveyer potential lead to numerical

instabilities which originate from the non-linear drift term in equation (3.17). The
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dependence of the effectiveness of conveyer transport on density dependence is pre-

sented in Fig. 3.10. For simulations, M1 is plotted against the exciton generation rate

and for the experimental data, M1 is plotted against the laser excitation power, Plaser.

Fig. 3.10 shows that excitons are only weakly affected by the conveyer at low densities.

This is because at low densities, the excitons are localised to minima of the intrinsic

disorder potential and ripples in the conveyer potential. The most efficient exciton

transport is achieved at intermediate densities where excitons effectively screen the

disorder and the ripples and follow the conveyer motion. Finally, exciton transport

via the conveyer is less effective at higher densities as excitons screen the conveyer

potential and travel in all directions, independent of the applied potential. The sim-

ulated density dependence of exciton transport via conveyer is in strong agreement

with the experimental data.

3.6 Summary

In this chapter, the transport of indirect excitons in externally applied electric

potential landscapes was studied. An outline of the results previously published by

various research groups was given and the motivation for this avenue of work was

highlighted. It was shown how patterned electrodes on the sample surface result in

indirect excitons experiencing an in-plane force. This force was included into the ex-

citon transport equation. Specific forms of the exciton potential landscape included

linear potential gradients (ramps) and propagating lattices (conveyers). Analytical

and numerical studies showed how these potentials modify the exciton density distri-

bution. Excitons travel towards the minima of the effective potential which is the sum

of the external potential plus the dipole-dipole potential. In the case of the ramp, this

leads to a strong accumulation of excitons at the bottom of the ramp. In conveyers,

it leads to localisation of excitons in the minima of the lattice potential and exci-

ton transport which follows the conveyer. The dynamical localisation-delocalisation

transition was captured by the theoretical model of excitons in a conveyer potential.

It was found that excitons are only effectively transported by the conveyer when the

density is sufficient to screen in the QW disorder potential. For high conveyer ve-

locities, the effectiveness of the conveyer diminishes as there is insufficient time for

excitons to localise in potential minima. The screening of the conveyer potential for

high exciton densities was also discussed. In all cases, calculations of the profile of

the exciton PL pattern were found to be in good agreement with experimental data.



4 Fragmentation of the external

exciton ring

Under optical excitation, CQWs are known to reveal fascinating features in the pho-

toluminescence pattern originating from dipole orientated indirect excitons. The sub-

ject of this chapter is a feature known as the external ring. The appearance of the

external ring has previously been attributed to macroscopic charge separation in the

quantum well plane [88–91]. Here, a classical model of non-linear diffusion is used to

account for the observed fragmentation of the external ring into a periodic array of is-

lands [92]. The model incorporates the Coulomb interactions between electrons, holes

and indirect excitons. Simulations show that at low temperatures, these interactions

lead to pattern formation similar to the experimentally observed ring fragmentation.

The fragmentation is found to persist to temperatures above the quantum degeneracy

temperature of indirect excitons.

4.1 Background

Previous studies of the external ring [90, 91, 93] have shown that it forms at

the interface between spatially separated electron-rich and hole-rich regions. This is

due to a difference in the capture efficiency of the injected electrons and holes which

results from their different masses. An abundance of holes builds around the laser

spot as some fraction of electrons leaks to the electrodes. In the presence of an electric

field, the doping in the electrode layers leads to a background electron concentration

within the wells. The result is a pool of holes surrounded by a sea of electrons with

74



4.1. Background 75

excitons forming at the boundary.

Perhaps the most remarkable feature of the indirect exciton PL pattern is

that the external ring fragments into a periodic array of islands for temperatures

below ≈ 3 K [8, 94, 95]. The transition to the fragmented ring state is as an abrupt,

strictly low-temperature one. Superficially, this evidence suggests that some kind of

novel quantum effects are at work. Since its discovery, the origin of the external

ring has been the focus of much debate and different theoretical models have been

used to explain the appearance of the external ring. One such model [96] explains the

macroscopic ordering via a process of stimulated scattering of excitons into the ground

state whilst another model [97] assumes a BEC present in the ring. Both of these

works imply that fragmentation is a signature of quantum degeneracy. An alternative

model explained the ring fragmentation in terms of attractive interactions between

excitons [98–103]. In this framework, a ring of uniform density becomes unstable and

the attractive interaction leads to droplet formation. However, measurements of the

blue shift in the exciton emission [94] reveal clear evidence that the interaction is

repulsive and that this mechanism cannot be responsible for the effect.

In this chapter, a model is presented to assess the importance of Coulomb

interactions in the external ring. It is found that at low temperatures, these inter-

actions lead to periodic modulation of the exciton density. Whilst spatial coherence

measurements suggest a statistically degenerate exciton gas is present in the ring

[13, 95, 104, 105], it is illustrated here that fragmentation can occur due to classical

mechanisms and cannot unambiguously be taken as evidence of degeneracy.

Studies of the role of Coulomb interactions in this system have been attempted

previously [106, 107] and have highlighted their effect on the appearance of the exter-

nal ring. However, due to the computational complexity of the problem, these works

have been limited to the case of one dimensional geometry or to a low density regime

and are insufficient to capture fragmentation of the ring. However, in Ref. [107], it

is shown that inclusion of Coulomb terms is necessary to explain the threshold de-

pendence of the ring radius on excitation power and confirms the significance of the

contribution made by the interactions included here.

Conceptually, it is found that at low temperatures, the diffusive nature of

carrier transport diminishes. In this regime, carriers move under the action of strong

electric fields provided mainly by the in-plane charge separation of electrons and holes.

Under these conditions, a ring of uniform density is an unstable configuration and the
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system naturally evolves to a fragmented ring as a process of energy minimization.

4.2 Coupled transport equations for electrons,

holes and indirect excitons

Based on the approach used in [91, 93, 107, 108], the following set of coupled

equations were used to model the creation, transport and decay of indirect excitons

and free electrons and holes in CQWs:

∂ne

∂t
= ∇ [De∇ne + µene∇Ue] +

n
(0)
e − ne

τe

+ Λe − wnenh,

∂nh

∂t
= ∇ [Dh∇nh + µhnh∇Uh] + Λ− wnenh, (4.1)

∂nx

∂t
= ∇ [Dx∇nx + µxnx∇Ux] + wnenh −

nx

τx

.

The solution is the density distributions of electrons, holes and excitons (ne, nh and

nx respectively). The first and second terms inside each of the square brackets are the

diffusion and drift currents respectively. De(h,x) and µe(h,x) are the diffusion coefficients

and mobilities. Each diffusion coefficient is assumed constant and the classical limit

for the mobilities given in (2.8) is used; µe(h,x) ≈ De(h,x)/(kBT ). Far from the laser

induced heating at the excitation spot, the temperature of each species is defined by

the lattice temperature, Tb. Therefore a constant temperature T = Tb is used which

greatly simplifies calculations. The potentials Ue, Uh and Ux include the Coulomb

interaction potentials between each species. To capture the fragmentation of the ring

in a numerical simulation, one has to solve equations (4.1) in the two-dimensional

geometry with ∇ = ∂/∂x êx +∂/∂y êy. This is because a fragmented ring lacks radial

symmetry and is inhomogeneous in both x and y.

Equations (4.1) resemble the exciton transport equation from previous chap-

ters. Here, the theory is extended to include free electrons and holes and their binding

into indirect excitons. The remaining terms on the right hand side of equations (4.1)

account for the creation and decay of each species. The homogeneous source term

for electrons, which is due to a constant flux through the CQWs, acts to restore a

background density, n
(0)
e in a characteristic time τe. Both n

(0)
e and τe depend on the

applied electric field. To reduce the number of control parameters, control of the

electric field was modeled by varying n
(0)
e and a fixed τe = 50 ns was used which is
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close to the experimentally determined value in Ref. [109]. Λ(r) is the injection rate

of unbound electron-hole pairs into the CQWs by the laser. The imbalance in the

generation rate of electrons and holes can be incorporated by Λe < Λ. Without loss

of generality, one can set Λe = 0 and compensate by reducing Λ. This removes the

central bright spot from simulations where the inner ring is found.

The binding rate of free pairs into excitons is proportional to the overlap of

the electron and hole densities. The fit parameter w is inversely proportional to

the exciton formation time. Here we used w = 103cm2s−1[110]. The term wnenh

is a decay channel for electrons and holes and a source term for excitons. τx is the

optical lifetime of excitons and is nearly constant with respect to nx (See sec. 2.5).

To simplify the model, a fixed τx = 50 ns was used and the effect of its dependence

on temperature or electric field has not been explored. Dx = 0.2 cm2s−1 was used for

the exciton diffusion constant. This is consistent with the model used in chapter two

where the effect of a QW disorder potential of ≈ 1 meV was included. The electron

and hole diffusion constants are De = 30 cm2s−1 and Dh = 15 cm2s−1, comparable to

experimentally measured values in [109].

4.3 Coulomb interactions

The Coulomb interactions are included into equations (4.1) via the potentials

Ue, Uh and Ux. For electrons and holes residing in adjacent quantum wells, one has

Ue = ne ∗ V0 − nh ∗ Vdz + nx ∗ (V0 − Vdz),

Uh = nh ∗ V0 − ne ∗ Vdz + nx ∗ (V0 − Vdz), (4.2)

Ux = (ne + nh + 2nx) ∗ (V0 − Vdz).

The interaction potential Vα(r) with either α = 0 or α = dz is given by the Coulomb

interaction,

Vα(r) =
e2

4πε0εr
√
|r|2 + α2

. (4.3)

In equation (4.2), ’∗’ denotes the convolution which is written explicitly as

f ∗ g =

∫
f(r− r′)g(r′)dr′. (4.4)
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Here, r is the in-plane coordinate. All calculations are made for GaAs/Al0.33Ga0.67As

CQWs studied in Ref.[7]. dz = 12 nm was used for the separation between electron

and hole layers and dielectric constant εr = 12.9. Macroscopic charge separation cre-

ates an in-plane potential gradient under which electrons and holes drift towards the

ring position. The separation of opposite charges into adjacent wells leads to repulsion

in the exciton-exciton interaction and also in the exciton-electron and exciton-hole

interactions. The interactions make a significant contribution at low temperatures

where transport due to Coulomb forces dominates over diffusive mechanisms.

4.4 Numerical solution of the coupled trans-

port equations with Coulomb interactions

An explicit finite difference scheme similar to that discussed in 2.6.2 was used

to evolve the density distributions according to equations (4.1). The finite difference

approximation of ∇ and ∇2 used here were modified to include derivatives in both

the x and y directions. On each time step, the potentials were updated according to

equations (4.2). The simulations were run until a steady state solution was achieved.

4.4.1 Fast convolution algorithm

To compute the potentials Ue, Uh and Ux given in equations (4.2), a discretized

form of the two-dimensional integral given in equation (4.4) must be evaluated. Ef-

fectively, the potential of each species at each point on a grid of size N × N has

a contribution from all other N2 points. Therefore, the computation of equations

(4.2) scales with N4. Moreover, in a dynamical scheme, the potentials need to be

re-evaluated on every time step as the density distributions evolve. It was found to

be unfeasible to calculate the potentials directly and so a fast algorithm which makes

use of the convolution theorem was used. The convolution theorem states that for

two ’well behaved’ distributions, f and g,

ˆ(f ∗ g) = f̂ · ĝ, (4.5)
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where f̂ denotes the Fourier transform of f . In two dimensions, this is given by

f̂(p, q) =

∫ ∫
f(x, y)e−ipxe−iqy dx dy. (4.6)

Using Fourier transforms, each convolution in equations (4.2) is performed in three

steps:

1. Fourier transform both f and g to get f̂ and ĝ.

2. Multiply together f̂ and ĝ which by the convolution theorem is equal to ˆ(f ∗ g).

3. Inverse Fourier transform ˆ(f ∗ g) to get f ∗ g.

Although this appears to be a great deal more work than to just compute the con-

volutions directly, one can make use of fast Fourier transform libraries (e.g. FFTW).

In two dimensions, the computation time of a fast Fourier transform scales with

(N lnN)2 where the the discretized forms of the distributions f and g are N ×N in

size. This is a massive reduction in the scale of the computation from N4 to almost

N2. For each simulation, the time independent functions V̂0 and V̂d can be calculated

once and stored. Then, on each time step, fast Fourier transforms of the densities ne,

nh and nx are computed and fast inverse Fourier transforms are used to obtain the

potentials Ue, Uh and Ux.

4.4.2 Geometry and boundary conditions

In this study, two different excitation geometries were used. Firstly, a Gaussian

profile for Λ(r) was focused on the center of the grid. In this case the electron density

is fixed to n
(0)
e and the hole and exciton densities to zero at a circular boundary well

beyond the ring position. In the second case, a line excitation was studied so as to

further understand the physical mechanism that leads to ring fragmentation. In this

geometry the laser is focused not to a single point but to a narrow line extended

across the entire sample. This causes the appearance of two parallel external lines in

the indirect exciton PL pattern, either side of the laser. On the boundaries parallel to

the excitation, the same fixed density conditions were used as in the point excitation

geometry. On the boundaries perpendicular to the line excitation, periodic boundary

conditions were used to simulate an infinitely extended excitation. In both of these
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cases, the simulations use initial conditions of uniform density ne = n
(0)
e and nh =

nx = 0.

Regardless of the excitation geometry, one has to account for the infinite sea

of electrons present in the CQW plane and its effect on charge transport. Discretiz-

ing equations (4.1) onto a grid of finite size only accounts for the free electron gas

within the simulation boundaries. This was dealt with by calculating the folowing

background potentials,

U
(e)
b = ne ∗ V0,

U
(h)
b = −ne ∗ Vdz , (4.7)

U
(x)
b = ne ∗ (V0 − Vdz),

with ne equal to n
(0)
e everywhere. On each time step, these background potentials

were added to the respective interaction potentials. The result is that in the absence

of any laser excitation, the simulated electron density remains at a constant (n
(0)
e ) in

both space and time.

4.5 Results

Fig. 4.1 shows the spatial density distributions satisfying equations (4.1) and

(4.2). An optical pump of FWHM 10µm is focused at the origin with peak generation

rate of 2×1010cm−2ns−1. Background electron density was n
(0)
e = 0.5× 109cm−2. The

density of electrons (a), holes (b) and indirect excitons (c) show a periodic modulation

along the ring. Additionally, a slight modulation of the ring radius is seen which is

not observed in experiments. Fig. 4.1d and Fig. 4.1e show cross sections along the

line y = 0 for the density distributions and potentials respectively. The pump profile

is shown by black dots in Fig. 4.1d. In-plane charge separation causes an E-field

of ≈ 2 eVcm−1 driving electrons and holes to the ring position thus enhancing the

generation rate of excitons.

A feature of the experimental data which is well reproduced by the model is

the dependence of the ring fragmentation on the lattice temperature. Fragmentation

is observed only below a critical temperature [8, 94]. This has been interpreted as the

indirect exciton degeneracy temperature where the statistics cross from the classical

to the quantum regime [96]. In the model, the lattice temperature T appears in the
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Figure 4.1: Spatial density distributions of electrons (a), holes (b) and indirect
excitons (c) in the external ring. Cross-sections along y = 0 are shown for densities
in (d) and potentials in (e). The excitation profile is shown by the black dotted
line in (d).
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denominator of the interaction terms which, as a result, become greater in magnitude

than the diffusive terms for ∇Ui > kBT (∇ni)/ni where i = e, h, x.

The temperature dependence of the simulated external ring is presented in

Fig. 4.2. The inset in Fig. 4.2a shows the exciton density profile at the ring position,

rring for various temperatures indicated by arrows in the main panel. The ring po-

sition is defined as the location of maximum exciton density for each angle θ about

the excitation spot. Ring fragmentation appears with decreasing temperature as the

drift currents dominate over the diffusive currents. This is illustrated in the main

panel where the average contrast between the peaks and dips along the ring is plot-

ted against T . The ring contrast is quantified by 〈(Imax
PL − Imin

PL )/Imax
PL 〉 where Imax

PL is

the maximum density on each island of the fragmented ring and Imin
PL is the minimum

density between each peak. The model captures the temperature dependence of the

pattern formation observed in experiments [8, 94]. The onset of fragmentation is

abrupt and a critical temperature can be identified. This temperature is deceivingly

low and could be misinterpreted as the degeneracy temperature. The critical tem-

perature varies with exciton density which can be controlled by adjusting Λ and n
(0)
e

simultaneously whilst maintaining a fixed average radius. Each curve corresponds to

a different value of n
(0)
e with Λ chosen to give a radius of 50µm. The seemingly noisy

data in Fig. 4.2a is a consequence of the state of the ring evolving to configurations

with different numbers of islands. The degenerate solutions have slightly different

contrasts and the effect is most pronounced at the highest density.

Fig. 4.2b shows the spatially averaged density in the ring against temperature

for different values of n
(0)
e . The dashed line marks the average density at each critical

temperature. Also shown is the line T = T0 where T0 is the exciton degeneracy

temperature repeated here for clarity:

T0 =
π~2nx

2MxkB

. (4.8)

The model predicts that fragmentation can occur both below and well above T0.

At the highest densities examined, an increase in exciton density is observed as the

temperature is further reduced beyond the onset of fragmentation. In PL experiments,

this manifests itself as an increase in the blue shift in the exciton spectrum which has

been observed in Ref. [94]. In that work, the blue shift was found to also increase with

temperature when above the critical temperature. The model would be consistent

with this if the temperature dependent τx described in [45] was used.
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Figure 4.2: Ring contrast (a) and average density (b) in the external ring against

temperature for various n
(0)
e . The generation rate is adjusted to give a fixed ring

radius. The inset in (a) shows profiles along the external ring corresponding to
simulations indicated by the arrows on the red curve in the main panel. The solid
line in (b) shows crossing between classical and quantum regimes. The dashed line
shows the transition between a uniform and fragmented ring.
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Due to doping, there is an abundance of free electrons in the layers surround-

ing the CQWs. Arguably, these electrons may accumulate around the excitation spot

to screen the in-plane potentials Ue and Uh which would suggest that Coulomb in-

teractions are not prominent enough to be responsible for the fragmentation of the

ring. However, on comparison of available experimental data, an alternative picture

presents itself. Ring fragmentation is seen in the work of Butov et al.[8], but not in

the work by Snoke et al.[7], where it is estimated that a much greater density of free

electrons is present in the layers adjacent to the CQWs. From this, one can deduce

that in the former there are insufficient free electrons to screen the Coulomb interac-

tions and prevent ring fragmentation. The detailed effect of a free electron gas in the

adjacent layers is beyond the scope of this work and its effect on pattern formation

is an open question.

To further understand the physical mechanism that leads to ring fragmenta-

tion, it is instructive to examine the case of a line excitation. In this geometry the

laser is focused to a narrow infinitely extended line and leads to the appearance of

two parallel external lines in the indirect exciton PL pattern, either side of the laser.

In Fig. 4.3, results are presented for this situation. The laser has a Gaussian

profile in the y direction and is homogeneous in the x direction. Periodic boundaries

along the lines x = ±128µm are used to simulate an infinitely extended line. The

background electron density was n
(0)
e = 109 cm−2. Unlike the external ring in the point

excitation geometry, the external line does not spontaneously fragment. Instead,

a small perturbation is needed to observe the effect. This is included by adding

a random disorder potential to either Ue, Uh or Ux. The density distributions in

Figs. 4.3b and 4.3a are from simulations with and without a disorder perturbation via

the electron potential Ue, respectively. The amplitude of the disorder potential used,

Arand = 1µeV is orders of magnitude smaller than the fluctuations in Ue along the

external line and the correlation length of the disorder (2µm) is a few times less than

the period of density modulation. This confirms that the density modulation is not

correlated to the disorder but disorder is required to evolve the state of the line from

the metastable solution shown in Fig 4.3a to the stable solution shown in Fig 4.3b. In

the circular geometry, the numerical discretization of equations (4.1) and (4.2) onto

a rectangular grid provides some implicit distortion that triggers the fragmentation.

Fig. 4.3c shows the exciton density at the line position with and without dis-

order. A consequence of fragmentation is the reduction in the exciton density and,
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Figure 4.3: Exciton density distribution due to a line excitation with (b) and
without (a) a random disorder potential for T = 1 K. The profile along the external
line for these two cases is shown in (c).

therefore, a lowering of the energy density associated with the dipole repulsion be-

tween excitons. It can be concluded that in the simulations, the external line buckles

into a wavy line in order to redistribute excitons over a larger area and reduce the

energy density. It was found that any non-zero perturbation triggers an energy min-

imization process, leading to fragmentation of the line.

4.6 Summary

In summary, the model presented provides insight into the role of Coulomb

interactions in the formation of the external ring in the indirect exciton PL pattern.

In this chapter it was demonstrated that within a classical framework, periodic mod-

ulation of the exciton density on macroscopic length scales can occur. In the classical

picture, fragmentation is a process of redistributing charges to minimize the poten-

tial energy associated with dipole repulsion. Strong similarities were found with the

available experimental data. In particular, the calculated temperature dependence of

the ring contrast is in strong agreement.



5 Conclusions

This chapter contains a summary of the results and conclusions presented this thesis.

Possible avenues of future research extending from these ideas are also discussed.

5.1 The inner ring and PL-jump in the exciton

emission pattern

The inner ring in the exciton emission pattern was described in chapter two.

Its appearance was explained in terms of laser induced heating within the vicinity

of the excitation spot. The heating leads to suppression of the optical decay rate of

indirect excitons and manifests itself as a dip in PL intensity and hence the apparent

ring around the excitation spot. Simulations of the inner ring was performed using a

model based on the creation, transport, thermalisation and optical decay of indirect

excitons in CQWs. The presented results showed in detail the space-time evolution of

the exciton density, temperature, diffusion constant and optical lifetime following ac-

tivation of the laser excitation. Comparison with available experimental data showed

a quantitative agreement with the theory for specific fitting parameters of the model.

The dependence of the inner ring contrast on the laser excitation energy was

studied. In agreement with experimental observations, it was found that increasing

the energy of photons injected into the CQWs leads to increased contrast of the

inner ring. The simulations confirmed that in exciton PL experiments, the inner ring

contrast enables direct observation of the exciton temperature. This is a vital tool
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for finding the optimum conditions to create a cold and dense exciton gas.

The dynamics of the inner ring following termination of the laser excitation

were studied. The simulations quantitatively reproduce the dynamics of the PL-jump

as observed in experiments. The PL-jump feature was attributed to rapid cooling of

a dense exciton gas following the abrupt deactivation of the heating source formerly

provided by the laser. The contrast of the PL-jump was found to follow closely the

laser profile and hence the temperature profile of the exciton gas.

5.2 Control of exciton transport via applied

electrostatic potentials

In chapter three, the model described in chapter two was extended to include

the effect on exciton transport of externally applied in-plane electric fields. Simula-

tions were performed in the context of an experiment where indirect excitons were

created on a ramp potential. In agreement with the experimental data, the modeling

showed a shift of the exciton cloud in the direction corresponding to the low energy,

bottom end of the ramp. The temperature and excitation density dependence of the

effectiveness of exciton transport down the ramp were described in terms CQW disor-

der. At high temperatures, excitons are not easily localised by the disorder potential

and are efficiently transported by the ramp. At low densities, excitons are localised

to minima of the disorder potential. However, their accumulation to these minima

causes screening of the disorder potential. For higher densities, the additional exci-

tons move freely through the screened in-plane disorder potential leading to improved

transport via the ramp.

The dynamics of exciton transport via an electrostatic conveyer was also stud-

ied in this chapter. To facilitate an extensive numerical study of exciton transport

in a propagating lattice potential, some simplifications were made to the theoreti-

cal model compared to that used in previous sections. It was found that excitons

transport to the minima of the conveyer potential and are then carried along the

QW plane by the conveyer. Combined with the experimental evidence, the numeri-

cal studies provided a deep insight into the transport dynamics of excitons. It was

found that the dependence of the average exciton transport distance via the conveyer

on conveyer velocity and amplitude and exciton density are all well explained using
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only a drift-diffusion equation. Even the more complex features of the experimental

data like the dynamical localisation-delocalisation transition are contained with the

simplified model of exciton transport used.

5.3 Fragmentation of the external ring in the

exciton emission pattern

The external ring in the indirect exciton emission pattern was studied in chap-

ter four. A model based on the creation, transport and decay of three species, namely

electrons, hole and excitons was employed to model the appearance of the external

ring. As concluded by others in previous studies, it was demonstrated that the ex-

ternal ring appears at the interface between electron-rich and hole-rich regions. The

electrons and holes bind forming excitons which are subsequently observed by their

optical decay. In the study presented, the full set of Coulomb interactions between all

three species was included into the drift terms of the respective transport equations.

The transport equations were then solved dynamically in a two dimensional geome-

try. It was found that the intricate interactions between electrons, holes and excitons

leads to an instability in the external ring. Triggered by any non-zero perturbation,

the system reorganizes itself into a more energy efficient configuration which involves

a modulation of the exciton density along the ring.

Multiple repetitions of the simulation for different temperatures, background

electron densities and laser powers showed that the model reproduces qualitatively

the main features of the external ring shown in previous experimental studies. In

particular, the temperature dependence of the ring contrast is in strong agreement.

The model predicts that ring fragmentation is a low temperature phenomenon oc-

curring abruptly when the system is cooled below a critical temperature. Through

studying the density dependence of the external ring fragmentation, it was found that

the fragmented state can appear both above and below the indirect exciton quantum

degeneracy temperature. This is in contrast to previous explanations of the origin of

fragmentation which argue that it is a signature of novel quantum effects and possibly

exciton BEC.
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5.4 Future work

The physics of CQW excitons described in this thesis is rich in its complexity.

Many interesting non-linear features have been discussed and a deep insight gained. A

natural progression for the direction of indirect exciton research is to begin to harness

these unique features to create some technological advancement. Some such progress

in this area has already been made in the form optical and optoelectronic transistors

[83, 84]. However, the system discussed in this thesis is one that is particularly suited

to a low temperature regime where exciton condensation is expected. It would be of

interest to examine different materials and CQW structures where excitons are stable

at room temperature and to understand how the physics translates to this regime.

For example, the creation of a fast room temperature optical transistor would have

a significant impact on the wider society because of its potential for application in

optical communications which is a ubiquitous technology of the modern world.





Appendix A Derivation of the quantum

mass action law

The quantum mass action law is derived by analyzing a Boltzmann kinetic equation

for the scattering of free electrons and holes into excitons and vice versa. The collision

integrand in the kinetic equation is proportional to

[
N e

lN
h
k(Nx

p + 1)− (1−N e
l )(1−Nh

k)Nx
p

]
δ(Ee

l + Eh
k − Ex

p + Eb), (A.1)

with N
e(h,x)
p and E

e(h,x)
p the occupation number and energy of a particle with in-plane

momentum p, respectively and Eb is the exciton binding energy. Equating equation

(A.1) to zero corresponds to the steady state Boltzmann equation which is relevant

when the distribution of electron-hole pairs in the unbound and bound exciton states

is in equilibrium. By direct substitution, one finds that the solution of the collision

integrand (A.1) equal to zero is given by the Fermi-Dirac distribution for electrons

and holes and the Bose-Einstein distribution for excitons.

N e(h)
p =

1

exp[(E
e(h)
p − µe(h))/(kBT )] + 1

, (A.2)

Nx
p =

1

exp[(Ex
p − µx)/(kBT )]− 1

. (A.3)

The distribution functions are solutions provided that there is the following relation-

ship between chemical potentials, µ(i), of electrons, holes and excitons (i = e, h, x

respectively),

µ(x) − Eb = µ(e) + µ(h). (A.4)
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The chemical potential of each species is evaluated by summing the occupation num-

ber over all possible momentum states to acquire the density:

nx =
4

(2π~)2

∑
p

Nx
p =

4

(2π~)2

∫ π

−π
dθ

∫ ∞
0

dp
p

exp[(p2/2m− µ(x))/(kBT )]− 1
, (A.5)

ne(h) =
2

(2π~)2

∑
p

N e(h)
p =

2

(2π~)2

∫ π

−π
dθ

∫ ∞
0

dp
p

exp[(p2/2m− µ(e(h)))/(kBT )] + 1
.

(A.6)

Evaluating the integrals (A.5) and (A.6) reveals the chemical potentials,

µ(x) = kBT ln(1− e−T0/T ), (A.7)

µ(e(h)) = kBT ln(eT
e(h)
0 /T − 1), (A.8)

where the quantum degeneracy temperature of electrons (holes) with effective mass

me(h) is given by

T
e(h)
0 =

π~2

me(h)kB

ne(h). (A.9)

By substituting the chemical potentials (A.7) and (A.8) into the relationship (A.4),

one arrives at the following equation for the equilibrium exciton density, n
(eq)
x ,

n(eq)
x =

kBMxT

2π~2
ln[1− e−Eb/kBT (eT

e
0 /T − 1)(eT

h
0 /T − 1)]. (A.10)

Equation (A.10) is the quantum mass action law which describes the equilibrium

balance between the concentrations of excitons and free electron-hole pairs.



Appendix B Derivation of the exciton

optical lifetime

The intrinsic radiative lifetime, τr of a ground state QW exciton with zero in-plane

momentum depends only on the choice of materials, QW structure and the electric

field applied in the growth direction. However, to include the fact that only low energy

excitons with momentum inside the light cone may decay optically one must evaluate

the density of optically active excitons. This is done by summing the product of the

exciton occupation number and the photon density of states over the range 0 ≤ p ≤ pγ

where p is the in-plane exciton momentum and pγ marks the edge of the light cone.

Hence the density of optically active in-plane transverse polarized QW excitons is

given by,

n
(T )
opt =

1

2

g

(2π~)2

∑
p

Nx
p ρ

(T )
γ (p) (B.1)

Nx
p is the Bose-Einstein occupation number given in equation (A.3). The photon

density of states ρ
(T )
γ is given by [111],

ρ(T )
γ (p) =

pγ√
p2
γ − p2

θ(pγ − p). (B.2)

Here, pγ is the momentum corresponding to the point at which the exciton and

photon dispersion intersect. It is related to Eγ by Eγ = p2
γ/2Mx. The step function

θ(x) includes the fact that only excitons with momentum inside the light cone (i.e.

p < pγ) can decay optically. It is given by

θ(x) =

1 if x > 0,

0 if x < 0.
(B.3)
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Equation (B.1) can be evaluated in integral form as

n
(T )
opt =

1

2

g

(2π~)2

∫ π

−π
dφ

∫ pγ

0

p dp
1

e−µ(x)/kBT ep2/2MxkBT − 1

pγ√
p2
γ − p2

. (B.4)

By making the substitution z2 = 1−(p/pγ)
2 and using the expression for the chemical

potential µ(x) given by equation (A.7), this reduces to

n
(T )
opt =

Eγnx

kBT0

∫ 1

0

dz

Ae−z2Eγ/kBT − 1
, (B.5)

where A(T0, T ) = eEγ/kBT/(1 − e−T0/T ). Following the same method, the density of

optically active in-plane longitudinal polarized excitons, n
(L)
opt can be evaluated by

replacing ρ
(T )
γ with ρ

(L)
γ which is given by [111],

ρ(L)
γ (p) =

√
p2
γ − p2

pγ
θ(pγ − p). (B.6)

Finally, the decay rate is the product of the intrinsic decay rate and the fraction of

excitons which are optically active. Or, in terms of the lifetime, this is

1

τopt

=
1

2τr

n
(T )
opt + n

(L)
opt

nx

=
1

2τr

Eγ
kBT0

∫ 1

0

1 + z2

Ae−z2Eγ/kBT − 1
dz. (B.7)

To evaluate the exciton lifetime dependence on the exciton in-plane group velocity νg

as discussed in Sec. 3.3, one must re-evaluate n
(T )
opt and n

(L)
opt for a macroscopic shift in

the momentum along one of the in-plane coordinates. Equation (B.1) becomes

n
(T )
opt =

1

2

g

(2π~)2

∑
p

Nx
p+pgρ

(T )
γ (p) (B.8)

where pg = Mxνg. Using the substitution y = (Mxν
2
g )/(2Eγ), the expression for τopt

reduces to

1

τopt

=
Eγ

4πτrkBT0

∫ 1

za

dz

∫ 2π

0

dφ
1 + z2

A exp[Eγ(1− z2 + y − 2
√
y(1− z2) cosφ)/kBT ]− 1

.

(B.9)
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[81] K. Kowalik-Seidl, X. P. Vögele, F. Seilmeier, D. Schuh, W. Wegscheider, A. W.

Holleitner, and J. P. Kotthaus, “Forming and confining of dipolar excitons by

quantizing magnetic fields,” Phys. Rev. B, vol. 83, p. 081307(R), 2011.

[82] G. Grosso, J. Graves, A. T. Hammack, A. A. High, L. V. Butov, M. Hanson,

and A. C. Gossard, “Excitonic switches operating at around 100K,” Nature.

Photon., vol. 3, p. 577, 2009.

[83] A. A. High, A. T. Hammack, L. V. Butov, M. Hanson, and A. C. Gossard,

“Exciton optoelectronic transistor,” Opt. Lett., vol. 32, p. 2466, 2007.

[84] Y. Y. Kuznetsova, M. Remeika, A. A. High, A. T. Hammack, L. V. Butov,

M. Hanson, and A. C. Gossard, “All-optical excitonic transistor,” Opt. Lett.,

vol. 35, p. 1587, 2010.

[85] J. Rudolph, R. Hey, and P. V. Santos, “Long-range exciton transport by dy-

namic strain fields in a GaAs quantum well,” Phys. Rev. Lett., vol. 99, p. 047602,

2007.

[86] W. Hänsel, J. Reichel, P. Hommelhoff, and T. W. Hänsch, “Magnetic conveyor
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