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Summary of Thesis: 

Chemotaxis and cell migration are important processes for life, involved in organism development 

and homeostasis and implicated in a number of disease states. Dictyostelium discoideum, an 

amoeba, is a useful model for investigation of chemotaxis and development, due to its ability to 

undergo chemotactic aggregation and development upon starvation. Although cell migration has 

been well described on planar transparent surfaces, it is uncertain how well these conditions replicate 

the natural environment of a cell. However, attempts to better replicate these environments generally 

make use of opaque substrates and 3D matrices, in which it is more challenging to image cell 

migration. 

 

Protocols were developed to enable optical coherence tomography, a 3D structural imaging 

technique which requires no sample processing or staining, to be successfully employed in imaging 

Dictyostelium cell migration in time-lapse on non-transparent substrata and within an agarose gel. I 

compared the effects of two substrates, a nitrocellulose filter and a polystyrene Petri dish on 

aggregating cells and found differences in speed but not persistence. Extension of this to include 

cells within agarose revealed that these cells exhibited less directed migration, but their velocity was 

unaffected. I showed that cells lacking myosin II failed to complete development within an agarose 

gel and had significantly reduced velocity and directional migration when compared to their parent 

strain. Furthermore, the velocities of cells migrating within agarose gel were bimodally distributed, 

potentially indicating two distinct cell populations, fast and slow, and fast movement was shown to be 

largely myosin II dependent. Great potential therefore exists for cell-substrate and cell-matrix 

interactions to affect the migration character of cells, even those, such as Dictyostelium, which do not 

form strong focal adhesions. Moreover a properly ordered cytoskeleton is implicated in enabling cells 

to effectively utilise different modes of cell motility.  
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Abstract 

Chemotaxis and cell migration are important processes for life, involved in organism 

development and homeostasis and implicated in a number of disease states. Dictyostelium 

discoideum, an amoeba, is a useful model for investigation of chemotaxis and development, due 

to its ability to undergo chemotactic aggregation and development upon starvation. Although 

cell migration has been well described on planar transparent surfaces, it is uncertain how well 

these conditions replicate the natural environment of a cell. However, attempts to better 

replicate these environments generally make use of opaque substrates and 3D matrices, in 

which it is more challenging to image cell migration. 

Protocols were developed to enable optical coherence tomography, a 3D structural imaging 

technique which requires no sample processing or staining, to be successfully employed in 

imaging Dictyostelium cell migration in time-lapse on non-transparent substrata and within an 

agarose gel. I compared the effects of two substrates, a nitrocellulose filter and a polystyrene 

Petri dish on aggregating cells and found differences in speed but not persistence. Extension 

of this to include cells within agarose revealed that these cells exhibited less directed 

migration, but their velocity was unaffected. I showed that cells lacking myosin II failed to 

complete development within an agarose gel and had significantly reduced velocity and 

directional migration when compared to their parent strain. Furthermore, the velocities of 

cells migrating within agarose gel were bimodally distributed, potentially indicating two 

distinct cell populations, fast and slow, and fast movement was shown to be largely myosin II 

dependent. Great potential therefore exists for cell-substrate and cell-matrix interactions to 

affect the migration character of cells, even those, such as Dictyostelium, which do not form 

strong focal adhesions. Moreover a properly ordered cytoskeleton is implicated in enabling 

cells to effectively utilise different modes of cell motility.  
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1.1 Why explore chemotaxis on non-transparent surfaces and in 4D 

(3D with time) 

Tissues, formed during development, grow and are remodelled throughout life40,56,172,201,461,517. 

These processes, which are crucial for the creation of multicellular organisms and their 

continued existence, arise from the organization of cells by physical, mechanical and chemical 

cues40,56,172,201,461,517. One of the key ways in which cells are guided to their required location, for 

example during oocyte fertilization, gastrulation, immune response, inflammation and wound 

healing, is by chemotaxis, directed migration in response to a chemokine or 

chemoattractant98,141,171,242,289,517,532,551,558,634. Chemokines have also been implicated in apoptosis, 

the process of programmed cell death, which is critical for proper regulation of cell 

proliferation163,671. In addition to normal physiological roles, chemotaxis is also involved in 

disease states, ranging from arthritis and allergies to tumour metastasis in 

cancer8,232,246,295,342,527,532,537,653,677. Hence, due to this widespread involvement in diverse 

biological processes, understanding of the mechanisms of actions of chemokines and 

chemoattractants and the process of chemotaxis is of great interest to the scientific 

community98,141,161,171,242,289,295,517,532,558,634,642.  

A great deal of research has focused on unravelling the processes and mechanisms of 

eukaryotic chemotaxis161,257. However, the majority of these studies have relied on the use of 

cells, grown and experimented on in 2D monolayer cultures on planar surfaces of glass or 

plastic for ease of visualisation and good levels of cell viability, which is a very different 

environment from that which cells experience in nature40,119,164,172,257,299,478. This may result in 

oversimplified or incorrect models of cell migration195,513,677. For example, it has been shown 

that PI3Kγ is required for the migration of neutrophils on surfaces coated with fibrinogen, 

but is not required for their migration on glass184. Experimentation solely on glass surfaces 

may have led the authors to conclude that PI3Kγ (phosphatidylinositol-3-kinase) plays no role 

in cell migration. Cells have also been shown to preferentially adhere to certain materials, 

which can have effects on morphology and cytoskeletal organisation94,433. The effects of 

substrata on cell behaviour have been studied since the early 20th century, with recent 

advances in technology leading to much wider application of this research, for example 

investigation of the effects of biomaterials, as well as studies into cell behaviour within three-

dimensional matrices18,103,130,172,248,305,368. 
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1.1.1 The effects of the substratum on cells 

The natural environment of mammalian cells is tissue, an intricate structure composed of 

both other cells and non-cellular material, such as collagen118,164,478. These structures expose 

the cell to a complex topography on both the macroscopic and microscopic scale118,478,688. The 

same can be said for Dictyostelium, where the natural environment is soil55,299. One might expect 

that, living in a complex environment, cells are able to detect and respond to these topological 

environmental cues as they also respond to chemical and photonic cues; and indeed, the first 

studies of the effect of surface morphology on cells led to the discovery of ‘contact 

guidance’106,118,152,660. This is a process where, when placed on an etched surface, cells align 

themselves along the grooves, remaining in contact with both the upper and lower surfaces 

simultaneously106,118 More recently, controlled studies with manufactured topographies of 

known size and shape have indicated that cells can detect and react to steps in a surface of 

between 50 nm and 100 nm depending on the cell type107,118,491,678,688. Atomic force microscopy 

images show that new tissue culture dishes, which are made with the plastic polystyrene, have 

nanometre-scale ridges, as do freshly-cleaned glass surfaces possibly as a result of the 

manufacturing process, and aspiration and pipetting of cells can lead to surface scratches on a 

larger scale107,506,548. Therefore, it can be seen that at all times, whether in the body, in the soil 

or in culture, cells are constantly being exposed to small or larger variations in topology, 

which can have significant effects on their behaviour, even when the temperature, chemical 

environment and amount and quality of light remains the same118. 

In addition to guiding cell migration, the topography of the environment has been shown to 

have a number of effects on cells, such as affecting gene expression, increasing proliferation, 

directing differentiation, modifying adhesion, increasing or decreasing motility and 

modulating cellular morphology14,24,95,118,300,361,477,491,577. In addition, charge, pH, surface 

chemistry and biomechanical properties of the environment, such as shear force, stretching, 

and elasticity can play a role, potentially through altering adhesion of the cell to the 

substratum258,300,606,661,684. However, even though these more complex environments can help 

to further unravel the mechanics of cell-substrate interactions and context-dependent cell 

behaviour, and can potentially approximate the natural cellular environment better than 

planar glass or plastic substrata, they still lack the third-dimension found in 

nature18,184,237,329,433,461,477. 
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1.1.2 The effects of a three-dimensional environment on cells 

Although, for convenience, cells are frequently cultured and studied on 2D transparent 

surfaces, as the cells have high levels of viability and are easy to visualise, it is widely 

recognised that 3D matrices offer a closer approximation to the natural 

environment40,130,195,479,483,698. Cells have been found to exhibit different phenotypes and 

genotypes when cultured in 3D as opposed to on 2D substrates40,461,477. There are many 

examples of this in a range of different cell types. Migratory fibroblasts grown in 2D have 

different morphology and adhesion foci patterns, than those cultured in 3D environments116. 

Breast cancer cells have been shown to differ from non-cancerous cells, by the manner in 

which they respond to a 3D environment224. Epithelial cells grown in 3D form more natural 

hollow tubular structures when grown in 3D as opposed to the flat monolayers formed when 

grown in 2D699. Hepatic cells show increased survival in 3D culture when compared to 2D228. 

Hepatic and epithelial cells retain their differentiation better in 3D228,699. Gene expression is 

also affected by growing cells in 3D, as has been shown in melanoma cells and in endothelial 

cells, possibly by epigenetic modulation of chromatin by the matrix36,46,221,661. Thus, it can be 

seen that the environment of a cell has great potential to affect its behaviour482.  

The rapidly emerging field of mechanobiology attempts to unravel the mystery of how cell 

behaviour is affected by environment by focusing on the forces a cell exerts on its 

environment, for example through focal adhesions43,133,195,258,482. The motility of cells in 2D has 

been shown to be affected by the both the adhesivity and the elastic properties of the 

substrate, and while this has been shown to also play a role in 3D cell migration within a 

matrix, research thus far has shown this to be a complex area and the features of this 

migration remain to be fully elicidated248,258,482,513. Cell projections differ within 3D matrices 

when compared to on 2D surfaces195. Cells have been shown to create multiple matrix 

protrusions and use them all to generate traction rather than having one and stabilising it, as 

on 2D substrata195. Focal adhesions, features of cell-substrate interactions in 2D cell 

migration, are not seen in cells in 3D matrices or on soft substrates195,514. In cells embedded in 

a 3D matrix, the proteins involved in formation of focal adhesions are found distributed 

throughout the cytoplasm, whereas in 2D migration they are found tightly localised to the 

cytoplasm117,195. Conversely, a recent study has suggested that these can form in 3D, but may 

often be masked by background fluorescence324  

Nonetheless, while some of the differences in cell behaviour between 3D and 2D 

environments may in fact be attributable to differences in composition and therefore 
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physiochemical properties between the commonly used solid glass or plastic substrata and the 

deformable elastic 3D matrices, a study comparing 2D and 3D cell migration in 

fibrocarcinoma cells utilising the same material for both conditions, showed that it was the 

added dimensionality which resulted in the different features of cell migration between the 

two conditions, rather than differences in the composition of the matrix and substrata195. This 

indicates that, although physiochemical properties of a surface may certainly play a role in 

modulating cell behaviour, the addition of an extra dimension can also exert effects on cells 

independent of this. These effects may be mediated by the fact that the cell is in contact with 

matrix on both the dorsal and ventral sides, as fibroblasts in this configuration have been 

shown to change from the flattened morphology seen on 2D surfaces, to the more in vivo-

like morphology38,116. 

Different modes of movement of tumour cells have been found to exist, owing to the use of 

3D environments, and the mode of migration can additionally be controlled by the 

dimensionality of the environment203,479,533,537,677,679. Not only does this have important 

implications for understanding the process of tumour metastasis, but also in cell migration in 

general, as two distinct patterns of migration have also been shown in fibroblasts and 

switching between them seems to solely depend on the elasticity of their matrix479. While 

some modes of cell migration in 3D appear to rely on degradation of the matrix by matrix 

metalloproteinases, lymphocytes have been shown to migrate in 3D independent of this, and 

it is therefore likely that degradation of the matrix is a side effect of 3D migration, but not  

requirement, or that it is only important under certain conditions680,698. 

In general, migration depends on stiffness of the matrix, adhesion of the cells to the matrix 

and the ability of cells to degrade the matrix, particularly when the pore size is small479,483,698. 

Despite this, leucocytes move independently of integrins within a 3D matrix, illustrating that 

there are other modes of migration in 3D in which the role of cell adhesion may be less 

significant43,248,332. However, although there is general consensus that the above factors play a 

role in 3D cell migration, and that the effects and mechanisms appear to differ from those 

seen with 2D planar substrates, the complex mechanics of cell-matrix interactions within 

three-dimensional environments currently remain unelucidated129,248,483,639,698. 
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1.2 Dictyostelium discoideum 

Dictyostelium discoideum are eukaryotic social amoebae, which in the wild live in soil55. In the 

absence of a signal, Dictyostelium extends pseudopods at locations all around the cell, and cells 

move around randomly, often changing direction197,230,295,478,583,646. In this case, the cell has to 

enable and properly regulate cell motility machinery, in order for the cell to be mobile. This 

non-directional cell movement, called chemokinesis, can be increased, in intrinsically motile 

cells, or stimulated, in intrinsically non-motile cells, by a chemical factors295,478. In their natural 

environment they are chemotactic to pterins released by their food source, bacteria, a process 

mediated through G-protein-coupled receptors regulated by the GTPases Rac and 

cdc4272,161,350,682. Once food supply is exhausted, they enter a developmental program where 

the expression of many genes is rapidly altered. One of the results of these changes in gene 

expression is that the cells begin to secrete the chemoattractant cyclic adenosine 3’, 5’ 

monophosphate (cAMP) in a coordinated manner. Propagation of these waves of cAMP 

creates a gradient, which the cells orient with respect to and migrate up, a process known as 

chemotaxis55,72,390,463. The cells therefore migrate together and aggregate, forming multicellular 

structures comprising up to 2x105 cells. They then begin to differentiate into different cell 

types with defined roles55,134,676. This process, which takes approximately 24 hours to 

complete, culminates in the formation of a fruiting body, consisting of a stalk which holds up 

a sorus (comprised of multiple spores), and subsequent sporulation, allowing the Dictyostelium 

to move to a new location and try to locate additional food (Figure 1.1)13,55,72. 
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Figure 1.1: Life cycle of Dictyostelium discoideum 

 
Figure 1.1: The developmental life cycle of Dictyostelium discoideum. Under starvation conditions, 

single cells aggregate to form multicellular aggregates, culminating in the formation of a fruiting body. 

The cells then sporulate allowing them to move to a new location and seek food. Adapted from a figure 

in Coates et al, Journal of Cell Science, 2001109. 

 

1.2.1 Dictyostelium discoideum as a model system 

Current phylogenetic trees place Dictyostelium as having diverged from the metazoan branch 

after the split between plants and metazoa occurred29,160,271. As a eukaryote which is easy to 

culture and easily accessible to genetic manipulation and also capable of robust 

differentiation, chemotaxis, and development; Dictyostelium is a useful model system, 

possessing a cytoskeleton and number of cellular transduction mechanisms which bear many 

similarities to those of other eukaryotes including mammalian cells160,466,544,599,704. Therefore, 

Dictyostelium has been used as a model organism to study diverse biological processes including 

virulence, altruism, parasitology, lipid metabolism, bipolar disorder and autophagy 
72,74,82,134,207,251,308,309,424,543. Nonetheless, it is still best known and has been widely and rigorously 

studied as a model system for the investigation of chemotaxis202,309,390,444,544,583,599. 
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1.3 Overview of chemotaxis in Dictyostelium discoideum 

Chemotaxis is a key component of cell behaviour and is found in eukaryotes from single 

celled amoebae to humans161,202. Budding yeasts such as Saccharomyces cerevisiae, often used as 

models to investigate eukaryotic cell signalling, do not undergo chemotaxis573. However, 

Dictyostelium cells do, and are able to respond to even the smallest gradients of 

chemoattractant, down to a 2% difference between the front and rear of the cell191,402. As 

such, Dictyostelium has been extensively used in studies of chemotaxis, guided cell movement 

to a chemoattractant gradient, and the basic mechanisms and processes by which this occurs 

have been reasonably well described; although the exact mechanism remains to be fully 

elucidated, and competing models have been proposed134,197,295,444,544,599,642. 

The amoeboid movement of Dictyostelium towards the chemoattractant cAMP can be 

considered as composed of three phases, namely directional sensing, pseudopod extension 

and polarization135,269,539,642,644. Directional sensing is the ability of the cell to detect a 

chemoattractant spatial gradient, pseudopod extension is the creation and extension of 

pseudopodia by the cell, and polarization is the establishment of polarity in the cell, with the 

anterior end (the leading edge) having different properties to the posterior end. Dictyostelium 

cells are able to respond when the direction of the source of chemoattractant is moved295,601. 

If the gradient is strong, then the cell reorients by creating a new pseudopod towards the 

direction of chemoattractant and begins moving in this direction295,601. However, in a weak 

chemoattractant gradient, the cell will instead retain the same pseudopod and leading edge 

when the chemoattractant source is moved, and will make a ‘U-turn’ to reorient towards the 

chemoattractant295. This ‘U-turn’ behaviour is also seen in neutrophils710. 

 

1.4 Cell motility in Dictyostelium discoideum 

While chemotaxis deals with directed cell migration in the presence of a chemoattractant 

gradient, many cells, including Dictyostelium, are motile, either intrinsically or in the presence of 

chemokines18,43,410,541. There are two common modes of migration exhibited by mammalian 

cells, that of ‘mesenchymal’ migration, and ‘amoeboid’ migration43,537. Dictyostelium, in common 

with leucocytes and neutrophils as well as some types of cancer cell, exhibits amoeboid 

migration, which is characterised by the extension of actin rich protrusions from the front of 

the cell, and the retraction of the rear of the cell mediated by myosin-driven 

contraction279,295,537. 
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1.4.1 Actin driven cell motility 

Cells move by the process of actin polymerization at the leading edge of the cell275. During 

cell migration, pseudopodia are extended at the leading edge of the cell, creating an anchor 

towards which the rest of the cell can move. Pseudopods are either generated by splitting of 

an existing pseudopod, or by formation of an entirely new pseudopod from a different part of 

the cell12,646. Pseudopod extension is governed by remodelling of the actin cytoskeleton, 

thought to be driven by small GTPases, through activation of the WASP and SCAR/WAVE 

protein complexes (members of the WASP, Wiskott-Aldrich syndrome protein, family) and 

the Arp2/3 (actin-related protein-2/3) seven-subunit complex161,225,275,304,384,450,469,487,495,599,631,673. 

The Arp2/3 complex is not intrinsically active and therefore relies on interaction with 

SCAR/WAVE to become activated275,487,631. The VCA domains of this regulatory complex are 

sufficient to promote actin polymerization, but as the SCAR/WAVE complex is intrinsically 

active, the other subunits are necessary for proper regulation of this process, mediated 

through signalling molecules such as small GTPases, phosophoinositides and 

dephosphorylation by protein kinases275,316,420,486,631. Clearly, actin polymerization at the leading 

edge must be balanced by depolymerization, in order to replenish the stores of actin 

monomers. This is thought to be mediated through ADF/cofilins (actin-depolymerizing 

factor) binding ADP bound actin filaments and promoting their depolymerisation, and 

enhancing actin remodelling into thick bundles by severing actin filaments6,385,450,486,632. Cofilin 

is inactivated by phosphorylation with protein kinases or by binding PIP2 

(phosphatidylinositol-4,5-biphosphate)266,317,536. PIP2 is a phosphoinositide molecule 

implicated in directional sensing a chemoattractant gradient, offering a potential explanation 

for how actin polymerization is restricted to the leading edge of the cell during chemotaxis317. 

During chemotaxis, the Arp2/3 complex is translocated to the cytoskeleton, where it binds 

actin monomers to begin filament nucleation272,275,336,486. The complex has two actin-like 

motifs, which bind actin monomers and result in the formation of this new filament. In the 

presence of the actin polymerization inhibitor latrunculin, recruitment of the Arp2/3 complex 

to the membrane has been shown to be inhibited, suggesting that Arp2/3 is bound to actin 

filaments already present, rather than to a signalling complex336. The result is that the new 

filament is generated on the side of the pre-existing filament, causing a bifurcated 

structure275,486. Therefore, this actin polymerization directly under the membrane at the ‘front’ 

of the cell, leads to the formation of a network of branching filaments which results in the 

extension of pseudopodia161,350,469. The organisation of the network of the 
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(fibrillar/filamentous) F-actin filaments within these membrane-bound protrusions is 

responsible for the shape and form of the extensions formed304,350,644. Importantly, pseudopod 

extension does not occur at the back and sides of the cell so that resources are not wasted on 

formation of unnecessary extensions642,646. Pseudopod suppression on the back and side of the 

cell may also play a role in cell polarization, as one mechanism by which the cell defines its 

polarity197,350,644. The cell could also retain its polarity by positive feedback loops dependent on 

the actin cytoskeleton, as cells treated with actin polymerization inhibitors such as latrunculin 

A are able to alter their polarity more rapidly when there is a change in chemoattractant 

gradient direction197,284,539,644. 

Dictyostelium cells also extend other actin rich protrusions termed filopodia587. These have 

previously been postulated to have a sensory role in addition to involvement in cell 

motility363,406,582. This extension is not mediated through Arp2/3, but instead by processive 

multidomain proteins called Formins, which stimulate profilin mediated actin monomer 

addition to the barbed end of the actin filament, preventing capping, which results in the 

elongation of actin filaments472,486,524,587. Formins, which are intrinsically active are thought to 

be regulated by autoinhibition, mediated by small GTPases and have been postulated to have 

a role in blebbing-driven cell motility173,229,524,561.  

 

1.4.2 Blebbing driven cell motility 

Blebs are extensions of the cell membrane, which occur as a result of increased hydrostatic 

pressure within the cell335,693. They form as a result of the extrusion of hemispherical 

protrusions at points of weakness between the cell cortex and membrane which either 

ruptures the actin cortex or causes the membrane to detach from the cell cortex92,335,693. Thus 

they are devoid of cortical components, until expansion of the membrane and cytosol slows 

and cytoskeletal remodelling begins92,335,693. Blebs have been seen to occur in Dictyostelium cells 

exposed to a high uniform concentration of cAMP, which led the authors to postulate a role 

for blebbing in chemotaxis335. Since then, blebbing has been shown to play a role in cell 

migration and to be found at the leading edges of migrating cells47,693. Although the molecular 

mechanisms behind this process are currently unknown, calcium influx occurs prior to 

blebbing, and Rho GTPase signalling has also been implicated, as RacB Dictyostelium 

mutants show increased blebbing173,346. SCAR/WAVE may also be involved as it has been 

shown that SCAR null cells move largely by blebbing631. Accumulation of ezrin at the rear of 
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the cell may play a role in defining the direction of bleb-driven cell motility377. Additionally 

myosin is known to be critical for blebbing to occur, as cells lacking myosin, either through 

mutation or pharmacological treatments such as blebbistatin, are unable to move by 

blebbing47,568,693. This may be because they are unable to retract the bleb, the final stage in 

blebbing cell motility92,173. 

Tumour cells and white blood cells have been shown to use blebbing to migrate within 3D 

environments, and it is postulated that blebbing may play a role in cell migration in 3D 

matrices, by aiding cells to squeeze through small pores in matrices92,204,377,520,586. It has been 

suggested that cells may move through a combination of blebbing and pseudopod extension, 

switching between the two dependent on circumstances, and this type of cell motility could 

play a role in tumour cells metastasis and inflammation in vivo92,204,586. 

 

1.5 Myosin II in Dictyostelium discoideum 

Myosin II is a conventional non-muscle myosin which has been shown to be involved in 

many processes ranging from cell division to cell motility278,310,668. Unlike mammalian systems 

where there are three isoforms, Dictyostelium has a single myosin II which is comprised of two 

heavy chains, two essential light chains and two regulatory light chains60,73,99. It is found 

distributed throughout the cytoplasm of the cell and is translocated to the cell cortex on 

stimulation with cAMP, where it is thought to play a role in strengthening the actin 

cytoskeleton39,209,438. This idea is supported by the fact that a constitutively unphosphorylated 

myosin II mutant overassembles cortical myosin II and has increased cortical tension158,378. It 

also has roles in maintenance of a single frontal pseudopod, as it is transiently found in 

retracting pseudopods, and is crucial in proper retraction of the rear of the cell, a necessary 

step for the cell to move forwards39,209,255,279,328,350,428,438,668. In addition to a role in cell motility, it 

is involved in formation of the cleavage furrow during cytokinesis, although Dictyostelium 

myosin II null cells are still able to divide on a solid substratum through a myosin II 

independent mechanism60,278,310. 

 

1.5.1 Regulation of myosin II in Dictyostelium discoideum 

Despite its similar roles within the cell, myosin II appears to be differentially regulated in 

Dictyostelium and mammalian cells89. For proper full function, myosin II must be assembled 
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into long contractile bipolar filaments (ATPase function alone is insufficient). This filament 

formation, from a soluble pool of myosin II is regulated by the phosphorylation state of the 

myosin heavy chain (MHC) at three threonines present on the tail of this molecule, with 

dephosphorylation promoting filament formation60,115,255,509,593,628. This is supported by the fact 

that mutants which express a constitutively unphosphorylatable form of the myosin heavy 

chain, achieved by conversion of the threonines to alanines (3XALA), overassemble myosin 

II in the cortex157,255,593. Recruitment of myosin II to the cytoskeleton of the cell, on 

stimulation with cAMP requires phosphorylated MHC, and cGMP (cyclic guanosine, 3’,5’ 

monophosphate) may also play a role58,197,582. This recruitment is additionally thought to be 

actin-mediated, as fluorescence labelling imaging experiments revealed that cells treated with 

the actin polymerization inhibitor latrunculin A, did not localise myosin filaments to the 

cortex, although the filaments were continuously formed356. Furthermore cells with deletion 

of the myosin head domain, which is known to interact with actin filaments, showed the same 

defect356. 

MHC phosphorylation is regulated by the protein kinases, MHCK A-C (myosin heavy chain 

kinase), which are all thought to act by the same mechanism, phosphorylation of the 

threonines on the tail of the MHC, as 3XALA mutants do not disassemble myosin filaments 

on overexpression of any of these MHCKs197,696. There is also an MHCKD, with similar 

sequence homology, but its role, if any, is as of yet unclear696. MHCKs A-C are all 

differentially localised within the cell and therefore may perform different regulatory 

functions696. MHCKA undergoes autophosphorylation, interacts with and is activated by F-

actin, and may play a role in supressing formation of myosin filaments at the leading edge 

during pseudopod formation and in regulation of actin by cross-linking of filaments115,156,531,588. 

MHCKC, myosin II dependent and localised to the rear of the cell where it may act to 

depolymerise myosin at the uropod, may also undergo autophosphorylation, due to 

similarities in sequence60,115,439. Both MHCKA and MHCKC require their WD (tryptophan-

aspartic acid)-repeat section for targeting and subsequent phosphorylation of MHC628. 

However, MHCKB, has been shown to have an additional independent mechanism for 

targeting MHC, indicating that it may be regulated independently of the other MHCKs, and 

could therefore be involved in maintaining a basal level of MHC phosphorylation60,519,628. 

Upstream regulation of these kinases is currently not fully established, however, cGMP may 

play a role57,58,350. Furthermore, it has been suggested that PakA (p21-activated kinase) is 

required for the activation of myosin II, although this may be mediated through alteration of 

the F-actin cytoskeleton, rather than through one of the MHCKs60,350. 
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MHC dephosphorylation is mediated by a PP2A (protein phosphatase 2A) cytosolic 

holoenzyme435,509,653,696. This process may occur continuously in an unregulated manner as 

PP2A activity has not been shown to change on cAMP stimulation of cells60,347. However, a 

Ras signalling complex including PP2A has been shown to be involved in regulation of F-

actin at the leading edge of a chemotaxing cell, indicating a potential role for PP2A to be 

regulated by cAMP stimulation91. Furthermore, a recent study showed a role for Dictyostelium 

huntingtin in assembly of myosin II filaments and regulation of the phosphorylation state of 

myosin II through PP2A, indicating that this protein may play a role in controlling PP2A 

mediated MHC dephosphorylation653. Additionally, Par-1/MARK (Partitioning defective-1, 

MAP/Microtubule Affinity Regulating Kinase), a serine-threonine kinase involved in cell 

polarity, from a family of small GTPases has been shown to control myosin phosphatase in 

Drosophila, although there is no current evidence of a role for this kinase in Dictyostelium409,457.  

The motor activity of myosin II plays a role in cytokinesis, completion of development and 

proper localisation and disassembly of myosin filaments97. It is regulated by the 

phosphorylation state of the regulatory light chain (RLC) at a serine residue233,702. This 

phosphorylation is enhanced by cAMP stimulation, resulting in increased actin-activated 

ATPase activity and motor function209,702. Although this phosphorylation is not required for 

myosin II function, as the phenotype of cells lacking the RLC can be rescued by constitutively 

unphosphorylated alanine replacing the serine, it is required for the appropriate response to a 

temporal cAMP gradient, cellular depolarization and proper pseudopodial regulation in basic 

cell motility454,702. cGMP is an important regulator of MLC (myosin regulatory light chain), 

through enhancing the activity of an autophosphorylated myosin light chain kinase, MLCKA 

(myosin regulatory light chain kinase A) 197,575,605. This is potentially mediated through the 

activity of GbpC (cGMP binding protein), as cells lacking GbpC show similarly reduced RLC 

phosphorylation to cells lacking cGMP57,58. 

 

1.6 Directional sensing in Dictyostelium discoideum 

Although Dictyostelium cells are intrinsically motile, in the presence of a chemoattractant 

gradient they migrate persistently up the gradient towards the source55. The method by which 

they detect this gradient is known as directional sensing. Directional sensing in Dictyostelium is 

a complex process, which is not yet fully understood. 
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1.6.1 cAMP binding and signal propagation 

The process of directional sensing is initiated by binding of a molecule of cAMP to a cAMP 

receptor on the cell surface membrane140. Dictyostelium has four different G-protein coupled 

cAMP receptors (cARs), each of which are expressed at different points in development140. 

The first receptor to be expressed is the cAR1 receptor140. Its expression levels rise after 

initiation of starvation, peaking at around 4 hours542. It is the receptor thought to be primarily 

responsible for aggregation, as cAR1 null cells are unable to aggregate, although as they have 

been shown to respond to high levels of cAMP140. This is thought to occur through cAR3 as a 

mutant lacking both of these receptors has been shown to be unable to respond to 

cAMP276,580. Furthermore, both cAR1 and cAR 3 have been shown to activate the same G-

protein subunit, Gα2, although the folate receptor is Gα2 independent and possibly activates 

Gα4239,276. This signal cascade is eventually thought to result in the release of Ca2+ from 

intracellular stores, possibly through the second messenger IP3 (inositol triphosphate), created 

by PLC mediated hydrolysis of PIP2 (phosphatidylinositol-4,5-biphosphate), binding IP3 

receptors (iplA in Dictyostelium, by sequence homology)382,489,545. This release of calcium ions 

can ultimately affect motility and differentiation of Dictyostelium cells, potentially via PLC 

(phospholipase C), tyrosine phosphatases, calmodulin, IQGAPS (scaffolding proteins 

involved in cytoskeletal regulation) and membrane-associated G-proteins16,350,489,545,562. 

On stimulation with cAMP, Dictyostelium cells propagate the signal by release of additional 

cAMP323,570. The relay of this extracellular cAMP signal occurs in a wave-like manner, with 

periods of approximately 6 minutes between releases121,140. This periodicity is caused by the 

receptor becoming insensitive to cAMP for a period of 30-120 seconds after binding a 

molecule by C-terminal phosphorylation121,140. The pattern of response to cAMP changes 

dependent on the developmental stage, and this is thought to be due to changes in the 

activation profiles of downstream effectors of cAMP signalling, resulting in reduced 

sensitivity to cAMP121. The process of relaying the signal is mediated by ACA (adenylyl 

cyclase) localising to the uropod (rear of the cell) and synthesising cAMP28,323,570. Activation of 

ACA is thought to be dependent on PI3K (phosphatidylinositol 3-kinase) activation of CRAC 

(cytosolic regulator of adenylyl cyclase), which has been shown to localise to the front of 

chemotaxing cells, and Pianissimo (Pia), a subunit of TorC2 (target of rapamycin complex 

2)80,90,112,121. Much of the intracellular cAMP is released extracellularly, but some is retained 

within the cell and activates protein kinase A (PKA) and its downstream effectors, resulting in 

changes in gene expression which cause cell development28,392 
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Interestingly, cAMP receptor expression and signalling has been shown to require the actin 

cross-linking proteins cortexillin I and II, and ACA translocation to the rear of the cell has 

been shown to be inhibited by an aberrantly organised cytoskeleton, indicating the complex 

interplay of intracellular signalling in response to a chemoattractant requires a properly 

ordered cytoskeleton323,569,570. 

 

1.6.2 Sensing the gradient 

Although directional sensing could be most easily explained by differential expression of 

cAMP receptors between the front and rear of chemotaxing cells, this is not the case, as these 

are always found to be uniformly distributed682. Several competing models have been 

suggested to attempt to explain the cellular processes behind directional sensing in 

Dictyostelium269,415,430,465. Of these, one of the most well-known is that of local excitation-global 

inhibition (LEGI), and several models built on this basic principle have been 

proposed354,358,465,599,682. In this model, chemotaxis is regulated by two signals, a local fast 

response, which affects the front of the cell, promoting the formation and extension of 

pseudopodia, and a global inhibitory response, which affects the rest of the cell, suppressing 

pseudopod formation354,358,465.  

The LEGI model in its simplest form, i.e. that of receptor occupancy, with receptors closest 

to the chemoattractant having more chemoattractant bound than those at the rear, is unable 

to explain the extreme polarity seen in a chemotaxing cell which has an extremely well-

defined front and back, with certain subcellular components bound to the membrane at the 

front and not at the rear of the cell284,464,539. If a simple amplification of the gradient of cAMP 

sensed by the cell were solely responsible for this polarization, then a more gradual cell 

polarization would be expected. Levine et al modified the model to also include a balanced 

inactivation in order to attempt to account for this discrepancy, by addition to the model of a 

membrane bound inactivator, activated by the global inhibitory pathway, which antagonises 

and is antagonised by the response mediated through the local excitation pathway358. 

However, this balanced-inactivation model is unable to account for the fact that chemotaxis is 

remarkably robust despite the presence of ‘background noise’ from conflicting signals, such as 

those generated from additional chemoattractant sources or from the random nature of 

biochemical pathways, as in this case it predicts inaccuracy of pseudopod generation273,594.  
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Therefore, an alternative hypothesis is that, rather than chemoattractant signalling directly 

causing pseudopod formation, pseudopods are instead continuously formed by the cell, 

largely splitting off from existing pseudopodia, and the chemoattractant acts only to bias the 

direction of pseudopod formation59,273,444,657. In support of this, vegetative (unstimulated) 

Dictyostelium cells are motile and this motility is characterised by extension of pseudopodia, 

and cells in shallow gradients of chemoattractant do not generate new pseudopodia of 

different size or at a faster rate than unstimulated cells12,18,59. Furthermore, cells lacking the G-

protein coupled receptor subunit Gβ, display no chemotactic response, but exhibit random 

motility of the same speed as wild-type cells, which indicates that pseudopod generation 

occurs independently of chemotaxis474. A computational model generated of this view of cell 

chemotaxis, characterised by biasing of pseudopodial dynamics, agrees well with experimental 

observations, further lending support for this idea444. 

It was originally thought that gradient sensing was mediated through coordination of PIP3 

(phosphatidylinositol-3,4,5-triphosphate) by PI3K and PTEN (phosphatase and tensin 

homologue deleted on chromosome ten) as it was one of the first molecules discovered to be 

non-uniformly distributed in a chemotaxing cell135,214,215,469,644. PI3K catalyses a reaction that 

phosphorylates PIP2 and produces PIP3, and PTEN conversely converts PIP3 to 

PIP2214,215,350,469,642. In general, PI3K is found to be bound to the plasma membrane at the 

‘front’ of a chemotaxing cell, and PTEN to the ‘rear’214,215,599. This pattern has been seen in 

Dictyostelium, neutrophils and fibroblasts and results in the accumulation of PIP3 at the front 

of the cell252,464,560. This localised expression of PIP3 at the leading edge of a chemotaxing cell, 

the direction of the chemoattractant source, recruits proteins, such as CRAC and PhdA 

(pleckstrin homology domain A) to the membrane at this leading edge and coincides with 

pseudopod formation214,317,350,469,642,646.  

PIP signalling cannot, however, be the only mechanism by which the cell maintains polarity 

or senses the chemoattractant gradient as it has been previously shown that when all five 

PI3K genes and PTEN were knocked out in a Dictyostelium cell, so that all of the currently 

known signalling pathways which are able to create a PIP3 gradient at the cell membrane of 

the cell were eliminated, the cells were able to chemotax effectively, although their speed was 

reduced5,259. As the speed of random movement was reduced more than the speed during 

chemotaxis, a role was postulated for PIP3 in cell motility, rather than chemotaxis, possibly in 

creation or maintenance of pseudopodia12,96,259. Subsequently, two independent studies 

discovered that a second lipid signalling pathway, PLA2 (Phospholipase A2), appeared to 
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mediate chemotaxis in PI3K null cells, likely through a PIP3 independent mechanism5,96,643. In 

another study it was observed that after 7 hours starvation, cells with both PI3K and PLA2 

genetically deleted, or pharmacologically inhibited, chemotaxed well. 646. A third PI3K/PLA2-

independent chemotaxis pathway mediated by a soluble GC (guanylyl cyclase) (activated by 

cAMP) was postulated, active in polarized cells, in order to account for this525,643,646. This 

pathway is thought to be able to effect two separate signals646. The first is through the 

localisation of the protein product of this gene to the leading edge of a cell, where it can 

interact with the actin cytoskeleton, which occurs when the cell is within a gradient of 

cAMP646. This indicates a potential role for this protein in signalling at the front of a 

chemotaxing cell, or in splitting of pseudopods from existing pseudopodia. The second is 

through the cGMP product of the enzyme, which appears to play a role in pseudopod 

suppression at the back and sides of the cell, likely through induction of myosin filament 

formation by its target protein GbpC12,60,259,637,646. Of these two signalling pathways controlled 

by sGC, the first results in cells which chemotax but do not polarize, while the second yields 

cells which are polarized but do not chemotax646. This supports the hypothesis that the first 

pathway is involved in sensing of the chemoattractant gradient, and indicates that pseudopod 

suppression at the sides and rear of the cell is insufficient for directed cell migration, but is 

involved in cell polarization646. 

TorC2, a highly evolutionarily conserved serine-threonine protein kinase, has also been 

proposed as a strong candidate for involvement in gradient sensing91,349,369,370. It forms a 

complex with the scaffolding protein Sca1, RasGEF (Ras guanine nucleotide exchange 

factors), RasGEFH (Aimless) and PP2A, which translocates to the leading edge of cells 

exposed to a chemoattractant gradient where the RasGTPase is subsequently activated91,540. 

This TorC2 protein complex is tightly regulated by RasC activation which has been shown to 

occur downstream of G-protein activation as cells lacking G-proteins show abnormal Ras 

mediated signalling91,274,349,540. The complex is involved in the regulation of the two Dictyostelium 

homologs of Akt/PKB, PKBa (protein kinase B alpha) and PKBR1 (protein kinase B-related 

kinase), which in turn negatively regulate association of the Ras complex to the membrane by 

phosphorylation91,349,540. As, Dictyostelium cells lacking RacC show impaired directional motility, 

this negative regulation is important for directional sensing80. Interestingly, myosin II null cells 

show similarly extended Ras activation, indicating that myosin plays a role in regulating this 

Ras-mediated signalling process350. The role of the PP2A protein in the TorC protein complex 

is currently unknown; however, as PP2A is also involved in dephosphorylation of the myosin 
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II heavy chain, involvement of the cytoskeleton in regulation of this process is potentially 

further indicated435,509,653,696. 

PKB and PKBR1 are activated downstream of both the PI3K and TorC2 pathways292,293,370. 

Signalling through these protein kinases is emerging as an important step in cAMP mediated 

chemotaxis370. PKB is thought to be localised to the membrane by binding of its PH domain 

(pleckstrin homology domain) by PIP3, a step required for its full activation, although it 

shows some residual activity independent of this292,293. PKBR1 has no PH domain and is 

constitutively membrane bound292. Although it is not known how these signalling events act 

to direct cell migration in chemotaxis, they may be mediated through downstream effectors of 

the PKBs. The PKB kinases have many phosphorylation substrates in Dictyostelium, including 

TalinB, a protein involved in cell adhesion, Ras GTPases, PakA (p21-activated kinase A) 

which is involved in myosin II filament assembly, and a PI5K (phosphatidylinositol-5-kinase), 

some or all of which may be involved in the regulation of Dictyostelium chemotaxis105,448,599,622 

To summarise, four pathways have been proposed to be involved in the regulation of 

chemotaxis in Dictyostelium. Due to the intricate nature of cell signalling and requirement for 

proper regulation of complex processes, involving different parts of the cell acting in concert, 

these pathways cannot truly considered to be independent and are likely controlled and 

triggered by common signalling molecules, and involve a great deal of crosstalk and cross-

regulation between pathways5,539,646,651. 

1) PI3K and PTEN mediated phospholipid signalling (PIP3 and PIP2), with PI3K 

activated by Ras GTPases96,215,259,464,643,646. 

2) A PLA2 mediated parallel pathway259,643,646. 

3) Soluble GC signalling, involved in regulating the front and rear of a cell58,60,646,651. 

4) Activation of TorC2 by Ras GTPases, a signalling pathway which shares regulatory 

proteins with the PI3K/PTEN pathway and could regulate and be regulated by this 

pathway via feedback and feedforward loops91,369,370,651. 

 

1.7 Optical Coherence Tomography  

Much of the information currently known about the molecular mechanisms and signalling 

pathways involved in cell migration and chemotaxis comes from imaging studies165,231,295,611. 

Many types of microscopy have been used to image cells and, depending on the intended 
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application, each has its strengths and limitations142,432,461. Optical Coherence Tomography 

(OCT), pioneered in 1991, is now a well-established imaging technique for acquiring images 

of the eye, particularly retina147,180,265,353,535. The first images of in vivo tissue were acquired in 

1993181,600. In terms of resolution and depth penetration, OCT lies somewhere between 

confocal fluorescence microscopy and ultrasound, with a deeper penetration and axial range 

than confocal fluorescence microscopy and a higher resolution than ultrasound imaging208. 

The performance of the technologies obviously varies between instruments and is constantly 

being improved and developed, however, in the original publication in 1991, the retinal 

images produced had an axial resolution of ~15 µm, approximately 10 times the resolving 

power of ultrasound, and a depth-penetration of ~2 mm, which was, at the time, 

approximately 6 times the penetration of confocal microscopy265. More recently, technological 

developments have led to increases in resolution of up to 1 µm axially with state-of-the art 

light sources and 1-2 µm transversally with high NA objectives148. New instruments and 

detection techniques have led to the potential for data acquisition rates of up to 5 million 

samples per second, increasing to 20 million samples per second when 4 beams are used 

(multi-spot imaging)10,499,672. Consequently, in recent years the technique has expanded into 

other areas, for example, skin imaging, aiding in cancer diagnosis, cardiac imaging, 

endomicroscopy and developmental biology4,7,101,110,208,243,353,559,602,609. Modified forms of OCT 

allow attainment of different kinds of information, for example Doppler OCT which allows 

acquisition of flow and structural information concurrently and therefore has applications in 

haemodynamics; and Polarization-sensitive OCT, which brings out contrast in certain 

structures, e.g. collagen, allowing them to be much more easily seen and identified than with 

conventional OCT326,352. New advances in technology leading to faster acquisition times and 

better resolutions have enabled cellular-level resolution volumetric images of tissue to be 

acquired with conventional OCT56,315,499,620,687. With increasing interest in growing, developing 

and exploring the behaviour of cells in 3D, OCT is emerging as a promising technique for use 

in the field of tissue engineering, as it enables label-free imaging of cells within three-

dimensional scaffolds56,208,353,461,504,513,606,687. 

 

1.7.1 Principles of Optical Coherence Tomography 

In Optical Coherence Tomography (OCT), low temporally coherent broadband light, usually 

from a laser or super luminescent diode is used in conjunction with a standard Michelson-

Morley interferometer to generate structural images of tissues and other specimens based on 
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refractive index variations within the sample.71,147,148,265. The technique requires no staining or 

sample processing, therefore artefacts are reduced and cell viability is increased, particularly 

when imaging over long periods of time56,148,208. Samples can be probed to depths of between 

1 mm and 2 mm, due to the wavelength of light used and the interferometric detection 

technique, which results in suppression of photons which have been multiply scattered148,208. 

The light source is raster scanned across the surface of the sample to be imaged and the 

magnitude and echo time delay of the backscattered light is measured at each sampling 

point180,208. This is achieved by splitting the illuminating light with a beam splitter so that some 

of the light is passed to the sample arm of the system and the rest is passed to the reference 

arm180,208. When the two beams are in phase (the path lengths of the light are the same), and 

the back reflected light from the sample is interfered with the light from the reference arm, 

constructive interference occurs between the beams and creates maximum signal180,549. This 

point is called the ‘zero delay’ point as there is no delay between the light from the sample 

and the light from the reference arms. If the beams are not exactly in phase, a reduced signal 

is created. This signal weakens the further the sample is from the zero delay point, until 

eventually no signal can be detected above the noise floor180,265,549. 

The size of the raster scan and number of sampling points can be set to an appropriate value 

for the type of sample being measured. At each sampling point, the light backscattered from 

each axial position in depth is collected and comprises a single A-scan208. By scanning the light 

source across the surface of the sample transversally, a B-scan, made up from a series of A-

scans, is acquired. Finally a volume, comprising a series of B-scans, can be acquired by raster 

scanning the light180,208,549. 

As the light is scanned when it passes through the objective, in general OCT systems use scan 

lens objectives, which are designed to be telecentric208,615. Such lenses are usually more 

expensive and heavier than the more common entocentric lenses as they are usually more 

complex and contain more optical elements, however, they have a number of advantages155. 

These include eliminating magnification changes caused by object displacement from the lens 

objective (parallax) by ensuring that all the chief rays in the lens system are parallel to the 

optical axis of the system, and thereby reducing distortions in the image by creating a flat 

imaging plane155,264,615. A flat imaging plane is particularly important when a beam is scanned 

across a lens, as the image is formed from beams of light which go through the edges of the 

lens as well as beams which go through the centre. If an endocentric lens was used, the centre 

of the image would remain undistorted, however, the edges of the image would be subject to 
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more severe lens aberrations and, due to being viewed from a different angle to the centre, 

the shape of an object at the edge of the lens would appear distorted155,253,264,427,615. 

Furthermore, telecentric lenses also keep the magnification the image constant across the field 

of view, which is of particular importance when imaging a sample at different 

depths155,253,264,427,615. 

 

1.7.2 Theory of Optical Coherence Tomography 

In OCT the spectral interferogram is generated by mathematical description of the incoming 

light, of wavelength λ, in terms of its wavenumber � = ��
�
 (the spatial frequency), its angular 

frequency � = 2�	 (the temporal frequency), the electric field amplitude as a function of the 

wavenumber and angular frequency, 
(�, �), and the wavefunction ��(�����) where z= 

distance t= time and i= square root of negative 1180,265,281. Figure 1.2 illustrates this, showing 

the electric fields of the beam path of a simple OCT system using a Michelson interferometer. 

��������	����� =  � = 
(�, �)	��(�����)......................................................................(i) 

The incident power  � is divided into two beams at the beam splitter. Each of these beams 

has an electric field amplitude of 
!"
√�
, a reflection constant r, and wavefunction ����. The $% 

and $& also seen in the power on the diagram (Figure 1.2) are the distances between the 

beamsplitter and the reference reflector and the beam splitter and the sample reflectivities 

respectively. Usually, the reference reflector is a perfect mirror, having an �% (reference path 

reflection constant) as close to 1 as possible281. This is the ideal case as it simplifies the 

reflectivity function. The sample arm reflectivity function is significantly more complex, due 

to the multiple reflectivities from the sample, at different values of $'. Therefore, the 

reflectivity profile is depth-dependent and, although it is in actuality a continuous function 

due to the fact that the sample always has a continuously varying refractive index, and can be 

complex encoding the phase in addition to the sample, it can be written as a series of N 

discrete real delta functions where reflectivity �' is a function of sample depth $'180,182,265,281. 

�'($') = 		( �&)*($& − $&)
,
)-. ).........................................................................................(ii) 

The primary objective of the low coherence interferometry in OCT is to approximate the 

value of �'($') as closely as possible, as this variable encodes all of the depth information 
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about the sample. As power reflectivity of each reflector is given by the modulus of the 

electric field reflectivity squared, the function we want to reconstruct can also be written as 

/0&($&), where 0& is the power reflectivity281,549. 

 

Figure 1.2: Beam path of a simple OCT system 

 

Figure 1.2: The beam path of a simple OCT system utilising a Michelson interferometer. The electric 

fields are shown on the diagram indicating that the information we wish to obtain to reconstruct a 

tomogram of the sample is r2(z2), the depth dependent reflections in the sample, which will need to be 

extracted from the electric field returning from the sample, E2 =
56
√�
7r2(z2) ∗ e:�;<=>. Figure adapted 

from a figure from Optical Coherence Tomography, Eds W. Drexler and J.G. Fujimoto281. 
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In order to obtain this reflectivity profile, we assume discrete reflectors in the sample arm and 

perform the phase convolution �'($') ∗ �����? , essentially multiplying the wavefunction by 

each of the reflections in the sample and giving the resultant returning electric field  ' =
!"
�
∑ �&),
)-. �����?A . In the case of biological tissues and samples, the reference reflectivity 

generally dominates the sample reflectivity, as the reflections from the sample are much 

weaker than those from the reference reflector, which is usually a mirror. The returning 

electric fields  % and  & pass though the beam splitter once more and are therefore halved in 

power (in the case of a 50/50 beam splitter). They then interfere at the detector where the 

detected photocurrent is proportional to the square modulus of the sum of the incident 

electric fields. This can be expressed by the multiplication of the complex conjugate by itself, 

where 	B is the response of the detector based on its quantum efficiency and the angled 

brackets represent time averaging performed by the detector, related to its exposure time, 

which usually can be manually set180,281,549. 

�C(�,�) =
D
�
〈| % +  &|�〉 =

D
�
〈( % +  &)( % +  &)∗〉…..............................................(iii) 

Setting the spatial origin z=0 at the surface of the beamsplitter and inserting the expressions 

for  % and  & into the above equation gives an equation for the detector current. As the 

wavelengths at which OCT operate, typically between 800 nm and 1300 nm, oscillate faster 

than the response time of the detector; when the modulus function is expanded, the terms 

which are dependent on angular frequency, � are eliminated, leaving only temporally 

invariant terms remaining. Simplification then results in the terms below147,281,549. 

The spectral interferogram consists of three main separate components,  

A. The DC terms 

�C(�)-DI[&(�)[%KL%?ML%?NL⋯.QQ
 

B. The cross-correlation terms 

+ D
�
[R(�) ∑ /0%0&),

)-. (cos	[2�($% − $&))])] 

C. The auto-correlation terms 

+ D
I
[R(�)∑ /0&)0%,

)VW-. (cos[2�($&) − $&W)QQ…...................................................(iv) 
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A. This term is made up of a constant current offset proportional to the reflectivity of the 

reference mirror added to the sum of the reflectivities in the sample. It is independent of the 

path length of either the reference or the sample arm281,549. 

B. A cross-correlation component that describes the position of the sample reflectivities with 

respect to the path length of the reference mirror, which is known ($% − $&)). This is the 

component which is of interest for OCT imaging. It is often dominated by the DC term as 

the cross-correlation terms are proportional to the square root of the sample reflectivities, 

however this method of detection is still considered superior to direct detection due to the 

increased gain281,549. 

C. The autocorrelation terms describe the interference between different reflectors within the 

sample, ($&) − $&W) and create artefacts within the image, which can be reduced by correct 

selection of the reference reflectivity rendering this term significantly smaller than the other 

terms25,123,281,549. 

If the spectral interferogram �C(�) is plotted for a single sample reflector (0&.) 
[%KL%?MQ

�
 

against wavenumber (�), an impression of the type of results seen with OCT can be gained147. 

The oscillations in this wavenumber spectrum reveal the position of the reflecting surface, 

defined by the cross-correlation terms which are present on top of the DC term. How easily 

the spectral fringes are seen, i.e. the amplitude of the spectral modulations is dependent on 

the reflectivity of that particular reflection within the sample. In the case of multiple sample 

reflectivities, as is usually the case with a biological sample, a superposition of multiple 

cosinusoidal waves is seen, each with different frequencies (positions on the spectral 

interferogram) and amplitudes, depending on the position and reflectivity of that reflection. 

Auto-correlation components also appear, but these usually have a frequency higher than the 

cross-correlation terms due to the fact that the reflectors in the sample ($&) − $&W) generally 

have a much smaller distance between them than the distance between the sample and the 

reference retro-reflector ($% − $&))180,281,549. 

 

1.7.3 Resolution of Optical Coherence Tomography 

In OCT, axial resolution is entirely decoupled from lateral resolution and is dependent on the 

bandwidth of the light source rather than, as in conventional microscopy, the NA (numerical 

aperture) of the objective147,549. 
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Lateral resolution, as in other forms of microscopy, is related to the NA of the objective and 

is the diffraction limited spot size on the sample, which is determined by the optics in the 

system that focus the light on to the sample. The equation governing this resolution is given 

below 

∆Y = I�Z
�
∙
\]^_
`
…....................................................................................................................(v) 

where ab is the central wavelength of the light source, cdef is the focal length of the objective 

lens and � is the diameter of the spot on the backplane of the objective lens208,253. The depth 

which can be penetrated into the sample is also related to the lateral resolution, so there is a 

trade-off between lateral resolution and depth into the sample which can be probed208,281. 

The equation linking axial resolution (*$) to the coherence length (gh) of the light source has 

been defined as 

*$ = gh =
�ij(�)
�

∙ �Z
N

∆�
….........................................................................................................(vi) 

where ∆a is the Gaussian shaped spectral bandwidth of the light source147,208,281. 

 

1.7.4 Frequency domain Optical Coherence Tomography 

The original incarnation of OCT, time domain OCT (TD-OCT), requires the reference 

mirror to be scanned, in order to have a zero-delay at all points of the sample and therefore 

ensure that signal is acquired from the entire depth range of the sample180,208,549. This places a 

physical limitation on the speed at which volumes can be acquired due to the mechanical 

nature of the lateral and axial scanning aspects of the system, making three-dimensional 

imaging of in vivo tissues difficult and of moving objects impossible182,208,549. Frequency or 

spectral domain OCT (FD-OCT) was first described by Fercher et al in 1995182. As the depth 

information is encoded in frequency rather than time, the reference reflector is stationary and 

the acquisition process is speeded up considerably182,549. The principle is similar to time 

domain OCT in that the maximum signal from the interferometer is achieved when the path 

lengths of the reference and sample arm are equal. In this case, however, the entire spectrum 

is recorded at once on a detector array placed at the output of a spectrometer50,549. 

The recorded output on the spectrometer is an oscillating frequency spectrum encoding the 

detector current as a function of wavenumber (k), which is called a spectral interferogram281. 
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This sample reflectivity profile and hence depth information is approximated from an 

inversely Fourier transforming the spectrally resolved interference fringes in the sample arm 

of the interferometer281,549. After inverse Fourier transform, the sample reflectivity profile is 

embedded in the cross-correlation terms as described above, however, it is surrounded by 

several other terms, which must be appropriately dealt with in order to reconstruct an 

accurate image50,281. 

Important considerations in FD-OCT when interpreting the data to reconstruct the image are 

that the distance both to and from the sample reflector and the beamsplitter is measured by 

the interferometer, doubling the apparent position of each sample reflection from the 

reference mirror281,549. Additionally, the apparent depth dependent sample reflectivities, 

(/|0&($&)), are amplified by the reference reflectivity (a strong signal) and the zero position 

must be considered as the position of the reference reflector rather than the beamsplitter. 

Furthermore, each one of these is convolved with the point spread function (PSF)281. The 

axial PSF of an OCT system (employing an objective with relatively low NA) is dominated by 

the inverse Fourier transform of the spectral term R(�) from equation (iv), known as the real 

space coherence function, (k($)), with the full width half maximum (FWHM) of this 

coherence function being equal to the coherence length of the light source gh71,281. Each cross-

correlation term in the inversely Fourier transformed spectral interferogram (the calculated 

spatial domain) is therefore broadened by the coherence length of the light source and the 

direct relationship between axial resolution of the system and the broad bandwidth of the 

illuminating light source can be seen147,281. More serious artefacts in the spectral interferogram 

are caused by the DC and auto-correlation terms549. The DC terms result in a large artificial 

signal being detected at the point where there is no difference between the sample and 

reference path lengths. As this is convolved by the PSF of the system, it is Gaussian shaped 

and the edges of its spectrum can drown out desired signals281,549. The easiest way to 

overcome this is to measure the background signal from the reference arm with the sample 

arm blocked and then subtract this amplitude value from each spectral interferogram 

acquired. The auto-correlation terms give rise to artefacts at and near to the zero delay 

position. As mentioned above they can usually be reduced by correct selection of reference 

reflectivity281,553. Finally, because the detected interferogram is real, the resultant inversely 

transformed signal contains two mirror images, one each side of the zero delay (the point of 

zero path length difference). These are complex conjugates of one another and so this is 

termed the complex conjugate artefact261,262,281. This artefact can either be overcome by simply 
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displaying only the positive or negative distances, which is acceptable when the images do not 

overlap, or can be reduced or removed by signal processing at the same time as the Fourier 

transform is performed, by a number of different approaches123,261,262,281,549. 

As with other forms of optical microscopy, FD-OCT suffers from the problem of chromatic 

dispersion50,179,261,262. Introduced by the optics in the system, this is tolerable when dispersion is 

equal in both arms of the interferometer, however, it becomes a particular problem when the 

dispersion is mismatched and broad bandwidth light sources are used because when there is 

dispersion, each frequency in the spectrum experiences a slightly different phase velocity, 

resulting in the inversely Fourier transformed data being warped183,253. This manifests mainly 

in loss of sensitivity, and axial blurring and therefore loss of resolution in the OCT image. It 

usually arises due to the refractive index difference between the sample and reference arms 

introduced when a sample is placed in the sample arm179. It can be compensated for by 

achromatic lenses and mirrors, however at broad bandwidths it is not possible to completely 

eliminate and can be a major problem179,208,365. Various approaches have been taken to the 

problem, including compensation by introduction of defined phase shifts, and iterative 

computation of quadratic dispersion terms. It has also been shown to be possible to utilise 

dispersion mismatch to deal with the problem of the complex conjugate mentioned 

above50,183,261,262,366,624. 

As previously mentioned, the output from an FD-OCT system is recorded using a 

spectrometer. The speed of acquisition is partially controlled by the exposure time of the 

camera, which can be manually set. Higher exposure times result in the collection of more 

pixels and therefore a stronger signal (until saturation), however, they also increase the 

acquisition time of a tomogram. The best compromise between signal and acquisition time 

varies depending on the sample type and individual requirements of each experiment. In 

addition high power laser light sources are also commonly used in order to increase the signal 

to noise ratio (SNR). The spectral resolution of the spectrometer and the spacing of the pixels 

on the CCD array mean that there is a finite limit to the maximum spectral resolution 

physically achievable147,281. Due to a decrease in the visibility of the higher fringe frequencies, 

this results in a significant reduction in sensitivity with depth into the sample, as these fringe 

frequencies correspond to lower depths262,281,624. Therefore it is practical, when measuring, to 

locate samples as close to the zero delay as possible in order to maximise the signal from the 

sample’s various reflection interfaces50,624. 
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Finally, it is relevant to note that, while a 2D TD-OCT image (B-scan) can be reconstructed 

by alignment of A-Scans, FD-OCT data first requires Fourier transformation. Fourier 

transforms are an extremely processor-intensive task and therefore time taken between 

tomogram acquisition and viewing the final image is significantly increased. FD-OCT has 

greatly benefitted from rapid increases in the performance of central processing units, 

graphical processing units, RAM and the availability of multicore processors in standard 

desktop computers362,367,655,703. 

1.7.5 Light Sources for Optical Coherence Tomography 

The light source is one of the most important components of an OCT system because, as 

touched on in the previous section, it is responsible for both the signal power, related to 

signal to noise ratio, for the penetration depth into the sample, and for the axial resolution of 

the system147,208,281. OCT requires a source with high intensity, Gaussian spectral shape and 

broad bandwidth630. Sources commonly used include femtosecond pulsed lasers, 

superluminescent diodes (SLDs), Amplified spontaneous emission light sources (ASEs) and 

incandescent white light sources (halogen lamps)147,208. Although white light lamps have 

extremely broad bandwidths, they do not have very high power density levels and therefore 

are not able to achieve as high brightness levels as focused sources. SLDs and ASEs also do 

not achieve as high power levels as lasers, nor as broad bandwidth levels, however they are 

usually cheaper and more reliable sources. Lasers are commonly used as the light source as 

they have a high power output which can be focused to a small point. One of the major 

properties of lasers, which is undesirable in OCT, is that of their long coherence length, a 

measure of how long a light source maintains an unbroken modulation without phase 

changes. As mentioned above, OCT relies on the phase of reference and sample beams being 

equal in order to create an image147,208. If the coherence length is longer than a single 

wavelength, as is the case with lasers, the two beams are completely in phase at multiple 

points and will therefore interfere at those points as well making the exact location of the 

reflective surface in the sample unknowable208. The longer the coherence length of the light 

source, the greater the number of the in phase positions resulting in rapid deterioration in the 

resolution of the system. In order to overcome this, lasers with extremely broad bandwidths 

are used, proportionately reducing the coherence length, the distance the unbroken wave 

travels, gh	 as seen in equation (vii)147,208 
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gh =
h

)∆�
….............................................................................................................................(vii) 

Where c is the speed of light in a vacuum, n is the refractive index of the medium through 

which it travels, and ∆λ is the bandwidth of the light source208. 

One of the common ways of achieving a broad bandwidth high power laser is mode-

locking208. Mode-locking involves generation of concentrated power ultrashort (usually 

femtosecond) optical pulses, which are obtained by selection of a desired frequency mode or 

a small number of modes which are then forced to oscillate in a phase related manner. When 

the phase difference between the modes approaches zero, pulses of femtosecond duration 

and high intensity can be generated630. There have been many methods for generating mode-

locking in solid state lasers developed. The current most commonly used method is referred 

to as Kerr lens mode-locking, which relies on the self-focussing of Gaussian beams which 

occurs when strong nonlinear refraction occurs at high peak intensities630. This usually has to 

be initiated by a change in the laser cavity which is enough to remove the other longitudinal 

modes of the laser and allow mode-locking to occur630. Spectral shaping can be implemented, 

by both physical and signal processing methods, to compensate for the fact that the spectrum 

generated by a laser is not an exact Gaussian shape, as a non-Gaussian source spectrum 

results in side lobes in the point spread function, which causes a reduction in axial resolution 

and sensitivity in the OCT image generated84,281,398,652. 

Another important property of the light source in OCT is that of the central wavelength147. 

This is because the shorter the central wavelength, the higher the resolution of the system (as 

seen in equations v and vi)7,170,630. A further important consideration when imaging cells and 

tissues is the absorption of light by water (a major cell and tissue component). This is low for 

light in the visible range and near infrared range, below a peak which occurs at ~970 nm241,500. 

The most commonly used wavelength in OCT for imaging of tissue and other biological 

samples is ~800 nm, which lies within this range and has good availability of broad-

bandwidth sources146,208,500. A second narrow bandwidth dip in the absorption spectrum of 

water of approximately 100 nm around 1000 nm wavelength is also seen500. This wavelength is 

considered to be of particular use for imaging the choroid and ocular vasculature170,500,501. 

OCT is also frequently performed using sources with central wavelength of 1300 nm, 

particularly when imaging the skin, because of the increased penetration into tissue seen at 

this longer wavelength due to decreased light scatter, at the cost of reduced resolution7,630.  
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1.7.6 Noise in Optical Coherence Tomography 

With OCT, as with other imaging techniques, it is desirable to obtain the highest SNR 

possible in order to obtain the images with the best appearance and resolution. There are 

many potential sources of noise in an OCT system, which can adversely affect the SNR. Some 

of these originate because the spectrometer detects light by use of a charge-coupled device 

(CCD) camera. This noise is contributed to by read out noise, dark noise, shot noise and 

relative intensity noise and can be reduced by diverting optimum light source power to the 

reference arm, careful choice of camera parameters, such as integration time, and use of post-

processing filters after image acquisition50,218,399. As the image in OCT is reconstructed from 

modulations in the recorded spectrum, artefacts in OCT images are caused by any effects 

which also cause modulations in this spectrum208,399. Many of these effects are constant and so 

are present in any spectra acquired. This fixed pattern noise is usually eliminated by averaging 

of many images, or by blocking of the sample arm and recording a reference spectrum which 

is then subtracted from the final image. This last approach is sometimes used in combination 

with a low-pass filter, which assists in removing some of the stronger signals generated by 

fixed pattern noise50,399. 

In OCT images, one of the major noise issues seen in the final postprocessed images is that 

of speckle noise, reducing sample probing depth and SNR218,408,550. Resulting from the 

interference of mutually coherent wavelets of random phases and amplitudes generated by 

scattering within the sample, speckle in OCT is of slightly reduced contrast when compared 

to laser speckle, but is caused by the same factors179,408,550. One of the main ways suggested for 

speckle reduction in OCT is the taking of two separate images and averaging the results, or 

indeed averaging any two (or more) images where the laser speckle is uncorrelated179,494. This 

is not always practical, therefore many speckle suppression techniques have been proposed to 

combat the problem179,399,550. The main issue with removal of speckle is that speckle which is 

noise must be removed or reduced, while speckle which originates in the sample and 

therefore contains information about the sample structure should be retained. The most 

commonly used methods attempt to determine the probability that particular speckles are 

noise or genuine signal and to remove those classified as noise399,408,550. Wavelet filters are 

commonly used and give reasonable results, although there is always some loss of signal 

where noise frequencies and signal frequencies overlap179,399,408,550. 
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1.8 Comparison of Optical Coherence Tomography and other 

microscopic techniques used in cell biology 

Many imaging systems currently available, particularly those involved in clinical imaging, are 

based on the interaction of electromagnetic radiation with biological tissue, through physical 

processes such as reflection, scattering, absorption and attenuation175. Although many of the 

available imaging technologies give only structural information, it is also possible in some 

cases to obtain functional information reflecting the physiological processes of the imaged 

structure22,234,352,484. Molecular imaging allows access to this functional information through 

labelling with biomarkers, which alter contrast in images through chemical interaction with 

molecular processes175,556. For example, in PET (positron emission tomography), a 

radiolabelled glucose analogue is injected, which is then taken up into tissues and concentrates 

in areas of high metabolic activity175,556. Fluorescence can also be used to provide molecular 

information. Fluorochromes can be introduced which have an affinity for a particular ligand. 

They bind this ligand and then provide an indirect readout of the location of this protein452,458. 

Additionally, introduction of a reporter gene encoding a fluorescent protein into a cell or 

organisms results in an indirect readout of the expression of this gene. This can be used to 

explore gene expression patterns and changes452. FRET (Förster/Fluorescence resonance 

energy transfer) can be used to detect and quantify interactions between labelled molecules458. 

Furthermore, it is possible to image with molecular resolution, through TIRF (total internal 

reflection fluorescence) microscopy, STED (stimulation emission depletion) microscopy and 

AFM (atomic force microscopy)144,405,534. Nonetheless, for tracking living cells in time-lapse, 

the major requirements of an imaging technique are that it has suitable spatial resolution and 

contrast to resolve single cells and that it be suitable for use in cells which are alive, and not 

cause disruption to cellular processes or cell death during the course of the experiment. 

Differential Interference Contrast (DIC), also known as Nomarski Interference Contrast 

(NIC), and Phase contrast microscopy are commonly used to image cells on transparent 

backgrounds, particularly in time-lapse611,669. No sample manipulation is required because 

intrinsic optical properties of the imaged samples, usually cells or small organisms, are used to 

generate contrast253. As the illumination is not very powerful, there is also minimal risk of 

phototoxicity over long periods of acquisition. These imaging techniques cause a few artefacts 

to appear in images (discussed later) largely due to the methods by which contrast is 

generated. In addition, they are only capable of imaging relatively thin samples on transparent 
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surfaces and are not generally suitable for 3D imaging, although some 3D DIC microscopy 

techniques have been proposed19,277,502,598. 

Probably the current most widely used three-dimensional live cellular and sub-cellular imaging 

technique in the biological sciences is confocal fluorescence microscopy473,552. Two-photon-

microscopy, a form of non-linear optical microscopy is also widely used particularly when a 

deeper sample penetration is required256,473. CARS (coherent anti-Stokes raman spectroscopy) 

microscopy, also a nonlinear microscopy technique, that enables molecular information about 

a sample at cellular resolution to be acquired, is gaining popularity64,421,484. Other techniques, 

for example ultrasound, magnetic resonance imaging (MRI) and computed tomography (CT) 

are useful for live imaging but lack the spatial resolution to resolve cellular structures81,288,429. 

Conversely, electron microscopy gives excellent subcellular resolutions, due to the much 

smaller wavelength of electrons than photons, but requires the samples to be heavily 

processed and is therefore not suitable for live imaging193. 

 

1.8.1 Phase Contrast and Differential Interference Contrast 

microscopy 

The original and simplest form of microscopy is bright field microscopy. In this 

configuration, a sample is illuminated from below and a magnified image is viewed from the 

top253,417. Contrast is introduced by dense structures in the sample, which absorb the light, so 

the final image appears as a dark sample on a light background417,434. The sample is often seen 

with low contrast as the contrast in the image arises due to changes in the amplitude of the 

incoming light and as many biological structures are transparent, they do not cause many 

amplitude variations253. One way in which this has been overcome is to decrease the 

amplitude of transmitted light by the use of sample stains, e.g. haematoxylin and eosin (H and 

E). Unfortunately many of these stains require sample fixation prior to staining, which can 

introduce artefacts into the sample and importantly renders the technique unusable in live cell 

imaging417. 

Due to the low contrast seen in samples with this technique, in 1934, Fritz Zernike pioneered 

the use of changes in the phase of light passing through a sample to enhance contrast77,434. 

Transparent objects, for example cells, while they do not create many changes in the 

amplitude of incoming light, do alter the phase of this light. This is due to the refractive index 

of the sample differing from that of the surrounding medium and creating proportional 
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changes in the velocity of the light417,434. The human eye is not sensitive to phase variations in 

light, only to the energy of light reaching the retina, and therefore these objects appear almost 

invisible253.  

Zernike discovered that interference between a probe beam and a reference beam could be 

used to translate these phase changes into amplitude changes visible to the eye434. This was 

achieved by the introduction of two additional optical elements into the microscope design417. 

A phase ring is introduced into the rear focal plane of the objective. The phase plate is usually 

designed to adjust the phase by ¼λ, sometimes achieved by etching rings on the lens. It can 

also be coated to reduce the amplitude of light77,434. A condenser annulus, of the same 

diameter as the phase plate, is placed into the front focal aperture of the condenser, a 

conjugate plane to the back focal plane of the objective434. The light, emerging from this 

annulus as a divergent beam, is focused to infinity by the condenser. Some of the light passes 

through the sample and is scattered, diffracted and retarded in phase according to the 

refractive index of the sample, whereas other light does not and continues straight onward 

unchanged417. These are focused differently by the objective with the rays diffracted by the 

sample (probing beam) being focused on to the imaging plane while the light which does not 

pass through the sample (reference beam) forms a bright ring in the back focal plane of the 

objective, which is superimposed on the phase plate77. The phase plate therefore affects 

probing light while leaving most of the sample beam unaffected417. Because the surrounding 

and probing beams of light are spatially separated in the back focal plane of the objective, 

altering the phase of one does not affect the phase of the other. The phase (and usually also 

amplitude) of the probing beam is changed by the plate, resulting in amplitude changes seen 

in the image plane due to constructive or destructive interference (dependent on the phase 

changes introduced by the phase plate) between the probe and sample beams77,434.  

Phase contrast images suffer from a haloing artefact seen around the edges of specimens and 

from shading off, where a pattern of light and dark patches are seen in the specimen434,690. 

These have two causes, the phase ring affecting a small proportion of the diffracted light from 

the sample (sample beam) and some of the reference beam not passing through the phase 

plate. Phase contrast microscopy is also unsuitable for imaging thick structures as the multiple 

phase altering structures at different layers in the sample produce a confusing superimposed 

image417,434,690. 

DIC is an improvement on phase contrast microscopy as it does not suffer from the artefact 

of the bright halo which surrounds phase contrast microscopy images and therefore gives a 
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better idea of the 3D structure of the sample (albeit in two dimensions)19,417. Other artefacts 

are reduced as well due to the fact that the reference and signal beams have the same 

resolution. The resolution of the system is also slightly increased over phase microscopy, as in 

phase contrast microscopy a part of the objective is occupied by the phase ring reducing the 

effective NA of the objective. DIC works on a similar principle to phase contrast microscopy, 

but uses a different method to achieve contrast, namely polarization277,434. A polarized (at 45º) 

light source is split into two beams orthogonal to one another (by use of a Wollaston prism) 

and these are focused by the condenser to take different routes through the sample, less than 

a µm apart (usually approximately the resolution of the microscope)434. The difference in 

polarization means that they cannot interfere until they are recombined, using a second 

Wollaston prism253. As they have different optical path lengths, when they are recombined 

they interfere to produce an image with the phase differences in the sample observable as 

intensity and colour differences19,277,434. 

The image is generated due to the fact that the two rays generate two bright-field images 

which are slightly out of phase, caused by the fact that they have taken slightly differing paths 

through the sample434. These rays interfere, but because the illumination of the paths is 

slightly offset they interfere with rays that did not go through the same point but went 

through an adjacent point417,434. The changes in optical path length (phase) are converted to 

changes in amplitude, by interference. The interference pattern reflects the optical path length 

difference between the beams19. The apparent illumination of the object, i.e. whether it 

appears to go into or out of the sample plane, is dependent on the direction of the slope of 

the phase difference. Where it is positive, the object appears to go into the plane and where it 

is negative the object appears to come out of the plane277,417,434. 

DIC, like phase contrast microscopy, has the advantage of being able to be performed in 

unstained samples. However, it cannot be achieved with thick samples or pigmented cells434. 

Due to the properties of the Wollaston prism, parallel features to the apparent illumination 

direction cannot be observed until the sample is rotated, and orientation dependent artifacts 

are sometimes observed417,434. Unlike phase contrast microscopy, DIC is sensitive to 

polarization and birefringence effects and so artefacts can be caused by use of plastic tissue 

culture dishes when imaging. It is therefore also unsuitable for imaging samples which are 

polarizing19,417. 
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1.8.2 Fluorescent confocal microscopy 

Prior to imaging with a fluorescence microscope, fluorophores must be introduced into the 

sample to create contrast in the image. Many fluorophores are currently available to target 

many different cellular structures and molecules and at many different excitation and emission 

wavelengths allowing different molecules to be simultaneously visualised473,697. Originally 

immunofluorescence (labelling a secondary antibody with a fluorescent dye and coupling it to 

a primary antibody which has been raised to the molecule of interest) was used although due 

to localisation problems and interference with cellular functions it has largely been superseded 

by fluorescent tagging. A current commonly used fluorophore is green fluorescent protein 

(GFP), which is derived from a species of jellyfish Aequorea victoria86,87,407,697. Other fluorescent 

proteins have been developed in different colours to allow more than one molecule to be 

stained simultaneously and easily visualised697. These include yellow fluorescent protein (YFP) 

and red fluorescent protein (RFP), also derived from Aequorea victoria, which have different 

excitation and emission spectral characteristics to GFP, and synthetic fluorophores, which are 

of small size and readily chemically modifiable and available with a wide variety of emission 

spectra407,635. 

As mentioned above GFP can be used to label molecules of interest within a cell or 

organism86,473. GFP tagged molecules are made by tagging GFP DNA to the 5’ or 3’ end of 

the DNA of the gene of interest (the GFP is rarely also placed in the middle of the gene but 

this is more likely to interfere with function), to create a fusion protein86,151,473. The GFP 

thereby acts as a reporter for gene expression of this protein of interest, being driven by the 

same promoter and regulatory elements85,87. Upon exposure to light of appropriate 

wavelength to excite the GFP (usually UV light), fluorescence appears at the locations where 

the protein of interest is expressed473. Use of a reporter gene in time-lapse fluorescent 

microscopy can thereby allow visualisation of the temporal dynamics of the expression and 

localisation of the protein of interest436,473. GFP can also be tagged to a constitutively active 

promoter, in which case it is always transcribed and the cell or organism fluoresces 

independent of gene expression, or to a promoter which is inducible under certain 

circumstances, which allows fluorescence to be triggered when certain experimental 

conditions are met268,345,473. The activity of a particular promoter can also be assessed by 

quantification of the fluorescence intensity of a promoter tagged with GFP in comparison to 

a tagged promoter of known activity334,473. Using two (or more) different fluorescent proteins 

to tag different genes of interest, enables two (or more) proteins to be simultaneously labelled 
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and visualised in the same image, within the same cell or organism. This is of particular 

interest in enabling visualisation of the expression patterns of two proteins simultaneously, 

for example to determine if two potentially interacting proteins are localised within the same 

subcellular compartment of a cell153,473. 

The fluorescent microscope is a primarily 2D imaging technique and so is not useful for 

imaging structures at an imaging plane which lies at great depth into scattering samples or for 

imaging volumes473. Fluorescent molecules are detected by shining UV (ultraviolet) light onto 

the sample (this cannot be visible light as it does not contain enough energy to excite the 

fluorophores). A wavelength of light corresponding to the excitation wavelength of the 

fluorophores is used to excite a target fluorescent molecule. The energy from the photons is 

absorbed by the fluorescent molecule and transferred to electronic excitation causing an 

electron to jump to a more excited state. The energy is party dissipated and then re-emitted as 

a photon of a different energy, namely the emission wavelength473. The entire process takes a 

fraction of a second697. An excitation filter is used to filter out certain wavelengths ensuring 

that the light is as monochromatic as possible close to the excitation wavelength of the light. 

Detection filters are also used to filter out light emitted of wavelengths other than the 

emission wavelength of the fluorophores473. Where more than one dye is used, the different 

channels can be detected by different photodetectors, allowing filters for the appropriate 

emission wavelengths to be placed in front of each one697. 

Fluorescence microscopy allows in vivo imaging of cells, however, a dye must first be 

introduced into the organ to be imaged231,380. Unfortunately, fluorescence microscopy suffers 

from the problem of photobleaching. Another problem is that the UV light does not only 

excite the fluorophores but excites other molecules in the sample473,508. These then emit some 

out of phase fluorescence which causes interference and results in a blurred image473. This can 

be overcome by the use of confocal fluorescence microscopy which limits the light source to 

a tightly focused laser beam of a single wavelength508. 

Fluorescence microscopy can also be phototoxic to living cells and organisms. UV light, 

commonly used to excite the fluorophores, has been shown to have detrimental effects on 

cells, resulting in the formation if free radical oxygen species and causing single nucleotide 

polymorphisms and changes to protein structure and function471,473. Furthermore, 

fluorophores can themselves be toxic when in an excited state both through production of 

radical oxygen species, and through affecting enzyme activity within the cell102,138,473. This is a 
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particular problem when viewing cells in time-lapse as cellular damage accumulates over time 

and can result in the death of the cell138,473.  

Confocal fluorescence microscopy uses many of the same principles as fluorescence 

microscopy. Light of the appropriate excitation wavelength passes through a beamsplitter and 

on to the sample. It then passes back through the beamsplitter, separating the emitted light 

from the sample fluorophores from the excitation light508. Light of the emission wavelength is 

passed to the detection arm where a pinhole is place in front of the detector. This excludes 

out of focus light, an important factor in improving image quality, and results in increased 

resolution over conventional fluorescence microscopy, although photobleaching can still be a 

problem473,508. Confocal microscopy, like conventional widefield microscopy, is limited in 

resolution by diffraction (determined by the diameter of the Airy disk) and can be 

approximated as the FWHM of the PDF473. The improvement in resolution seen with 

confocal microscopy is by a factor of √2 when the pinhole diameter is of less than the 

diameter of the Airy disk9,473. This is due to a reduction in the spread of the PSF, caused by 

the fact that due to the pinhole illumination and detection fluorescence is only detected where 

the PSF of the illumination and detection overlap, so the resultant PSF is the product of these 

two independent PSFs473,508. Interestingly, recent advances in technology have allowed the 

diffraction limit to be overcome by various methods217,547. These microscopic techniques are 

known collectively as super-resolution microscopy and enable visualisation of subdiffraction 

sized structures and intracellular motions in live cells217,547. 

Volumetric 3D confocal fluorescence microscopy images can be obtained by raster scanning a 

laser over the surface of the sample (x-y) and taking many images from a confocal microscope 

at different horizontal levels, by z-scanning the sample stage and stopping at set points to 

acquire a 2D image (x-z) for each sampling point in x-y. Images are taken at all required 

sampling points, each axial sampling point at a different focal plane, and amalgamated by a 

computer to make a 3D image473,508. The requirement for the physical movement of the 

sample stage is time consuming, resulting in increased acquisition time, particularly when 

imaging over a large depth volume with many sampling points508. Penetration depth is limited 

by absorption of incident photons all along the beam path and sample scattering of the 

excitation and emission photons. The pinhole detection results in a reduction in the number 

of detected photons and so a decrease in image contrast473. In order to overcome this, higher 

excitation powers can be used, but this increases the risk of photobleaching and phototoxicity 

to the cell473. 
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These problems have been partially overcome, in recent years, by the use of a Nipkow 

scanning disk, a series of pinholes on a disk, two of which are spun in tandem during image 

acquisition, allowing for simultaneous acquisition from all of the pinholes (parallel acquisition) 

as opposed to scanning a laser across the surface of the sample (serial acquisition), and can 

therefore speed up imaging, as well as increase effective pixel dwell time so that a lower 

excitation intensity is required thereby reducing phototoxicity and photobleaching159,697. 

However, this technique does bring its own set of problems. These include slightly reduced 

axial resolution due to out of focus light reaching the detector from adjacent pinholes 

(pinhole crosstalk), and low contrast due partially to low light transmission through the 

Nipkow disk and partially to increased background from reflected light from the disk159,473. 

Although this technique significantly reduces the acquisition time by speeding up acquisition 

of the sample in the x-y plane, it should be noted that acquisition of a 3D image requires z-

scanning of the sample stage159,473. 

Many time domain OCT systems use also confocal gating to improve resolution, involving 

the placement of a pinhole in front of the detector, reducing background noise by preventing 

some of the out-of-focus light from reaching the camera208,549. In fiber optic based FD-OCT, 

the sample arm of an OCT microscope can be considered as a scanning reflection confocal 

microscope, as the single mode fiber optic cable is a pinhole in both the illumination and 

detection paths of the microscope208,281. 

 

1.8.3 Two-photon microscopy 

Two-photon microscopy is an improved alternative to confocal microscopy. Rapid focused 

infrared laser pulses, separated by at least one pulse to eliminate interference, are fired at the 

sample159,529. The use of infrared photons increases sample penetration and reduces 

photobleaching as the photons are lower energy697. Two coincident photons are required to 

cause nonlinear excitation of the fluorescent molecule tagged to the sample and result in the 

emission of a photon. In the case of multiphoton microscopy, three-photon excited 

fluorescence, second- and third-harmonic generation can also be used for excitation473. This 

technique does not require the pinhole used in confocal microscopy, as excitation occurs only 

at the focus of the excitation beam473,529. The advantages of two-photon microscopy are that 

phototoxicity is reduced and there is deeper tissue penetration. It can be performed in vivo 

and be used to penetrate the tissue to up to a depth of one millimetre. The use of an infrared 
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laser with a longer wavelength reduces the scattering of the beam as it passes through the 

sample making the image higher resolution159,529. A disadvantage is that the chance of two 

photons being simultaneously absorbed is very low so many exciting photons need to be put 

in to the system and a special microscope is required to withstand the intense laser pulses 

required to generate good image contrast. Image acquisition time is also quite long and 

therefore is a problem for tracking moving living structures307,529. 

 

1.8.4 Comparison Summary 

In summary, while phase contrast, DIC, confocal and two-photon microscopy have vastly 

better resolution than OCT, for tracking whole cells such high resolutions are not required, 

and the ~5 µm lateral and ~4.5 µm (in air) axial resolutions of our OCT microscope are 

sufficient for this application. DIC and phase contrast are not suitable, in general, for 

acquisition of 3D datasets nor for imaging on opaque samples. Confocal and multiphoton 

microscopy can be used for 3D and 4D imaging, however, it is important to note that very 

high lateral resolutions are achievable only when a very high NA objective is used and this 

severely limits depth of field. In any case effective penetration depth with fluorescent 

confocal microscopy is limited to about 300 µm into scattering samples, due to the 

wavelength of the light required to excite the fluorophores, and dependent on the choice of 

objective (and its working distance)473,529. Two-photon microscopy is able to penetrate deeper, 

to about twice this, which can be a problem with thicker specimens529. These techniques are 

also able to achieve high axial resolutions, but again this comes at a cost, increased acquisition 

time and reduced depth acquired. Acquisition time is also reduced by the mechanical 

movement of z-scanning the sample stage in order to acquire 3D volumetric data. In fast 

moving cells such as Dictyostelium, this could result in blurring of the sample due to it moving 

while being imaged. Finally both confocal and two-photon microscopy require the use of 

endogenous fluorophores, which may interfere with the biological processes taking place 

within the cell508. OCT does not require cells to be stained or prepared in any way for 

visualisation and is completely non-invasive resulting in a very low chance of cellular damage. 

Furthermore, axial information is acquired by low-coherence interferometry so the sample 

stage is not moved during image acquisition. OCT can penetrate up to 2 mm into scattering 

tissue, dependent on the objective used148,208. 
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1.9 Objectives of the project 

The objectives of this thesis are to investigate the utility of Optical Coherence Tomography 

for probing cell chemotaxis under environments that are not readily accessible to commonly 

used conventional microscopy techniques, such as within 3D environments and on opaque 

2D substrates, in time. Throughout the project existing experimental protocols were modified 

and new methods developed in order to facilitate this aim. The methods and protocols 

developed were then used to investigate the effects of different substrata on Dictyostelium cell 

motility in 2D with time; how Dictyostelium aggregates and chemotaxes within a 3D 

environment; and the chemotaxis of Dictyostelium cells lacking the gene encoding the myosin 

heavy chain, an important cytoskeletal component, within this 3D environment209. The 

approaches taken and results are discussed within the thesis, wherein I explore how 

Dictyostelium cell migration and behaviour differ between the commonly used experimental 

environments of on 2D plastic or glass transparent surfaces, and within a more natural and 

challenging 3D environment and what these differences may tell us about cell migration and 

chemotaxis. 
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2.1 Cell culture and experimental set-up 

Ax2 cells were from lab stocks. JH10 (deposited by Jeffrey Hadwiger, Department of 

Microbiology and Molecular Genetics, Oklahoma State University, Oklahoma, USA) and 

myosin heavy chain null cells (mhcA-) (JH10 parent strain, deposited by Doug Robinson, 

John Hopkins University School of Medicine, Maryland, USA) were obtained from the 

dictyBase ‘Dicty Stock Center’1,185,238,530. Cells were initially grown using standard methods on 

SM agar plates (10 g/L proteose peptone, 1 g/L yeast extract, 10 g/L glucose, 1.9 g/L 

KH2PO4, 1.3 g/L K2HPO4.3H2O, 0.4 g/L MgSO4, 17 g/L agar) on a bacterial lawn of 

Klebsiella aerogenes, then transferred, at least 24 hours prior to experimentation, and grown 

axenically in HL-5 growth media (ForMedium, UK) (14 g/L proteose peptone, 7 g/L yeast 

extract, 13.5 g/L glucose, 0.5 g/L Na2HPO4, 0.5 g/L KH2PO4, pH 6.4) on 10 cm diameter 

plastic Petri dishes and harvested at the log-growth phase, approximately 2x106 cell/ml186,670. 

For the JH10 cells, the medium was supplemented with 200 µg/ml thymidine, as these cells 

are thymidine auxotrophs393. The mhcA- cells were grown in HL-5 medium supplemented 

with maltose instead of with glucose on advice from the Dicty Stock Center, following 

problems with cells becoming contaminated with yeast at the Center565. The recipe used was 

supplied by personal communication by Kerry Sheppard of dictyBase and is originally from 

Pierre Cosson’s lab (Department of Cell Physiology and Metabolism- University of Geneva, 

Switzerland) (See Appendix 1 for recipe)565. 

For the 3D (2D+time) experiments, on the nitrocellulose filter, 1x107 cells were taken, 

pelleted by centrifugation at 700 x g for 2 minutes and washed three times in KK2 buffer 

(16.5 mM KH2PO4, 3.8 mM K2HPO4, pH 6.2). They were then resuspended in 0.5 ml KK2 

buffer and evenly dispersed over a 47mM diameter 0.45 µm pore nitrocellulose filter 

(Millipore, Merck KGaA, Germany), prewashed and pre-soaked in KK2 buffer and sitting on 

two saturated Millipore prefilters (Millipore, Merck KGaA, Germany). The same protocol was 

used to seed cells onto 1.8% non-nutrient agar, made with KK2 buffer, where an area of the 

same size as the nitrocellulose filters (47 mm diameter) was marked out and seeded with the 

cells. For the cells under buffer experiments, 3.24x107 cells were taken and washed and 

pelleted as described above and resuspended in 3.2 ml KK2 buffer. The cell-buffer 

suspension was then transferred to a ~90 mm diameter plastic cell culture dish. In both cases, 

the cells were then left to develop for 6 hours and imaged for 4 hours at 30 second intervals.  

For the 4D (3D+time) development experiments, a 1% agar (w/v) solution was made up, 

poured into a 10 cm diameter plastic cell culture dish (BD Biosciences, UK) and set at room 
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temperature. 1.9x107 cells were taken, pelleted at 700 x g for 2 minutes and washed 3 times in 

KK2 buffer. They were then gently mixed with 3 ml of a 0.5% low gelling temperature 

agarose solution (w/v) (Sigma-Aldrich, UK), which had been equilibrated in a water bath to a 

temperature of approximately 25ºC. This was further mixed by pipetting to ensure even 

dispersal of the cells. The cell-agarose mixture was added to the top of the 1% agar (w/v) and 

immediately set at ~6ºC. Just prior to imaging, the dish was covered over with clingfilm to 

keep the sample from drying out. Ax2 cells were imaged 600 minutes (10 hours) after setting 

and JH10 and mhcA- cells were imaged 480 minutes (8 hours) after setting, at 2 minute 

intervals over 2 hours. Imaging was performed using a custom-built OCT microscopy system 

in a temperature controlled room kept at between 21 ºC and 22.5ºC, as Dictyostelium cells are 

sensitive to changes in temperature and chemotaxis will be affected by this55. Temperatures in 

excess of 27ºC risk cell death222. The lights were turned off for the duration of the imaging, as 

light has been shown to affect multicellular cell movement in Dictyostelium55,423. 

For the 4D (3D+time) chemotaxis experiments, 5x107 cells were pelleted at 700 x g for 

2 minutes and washed three times in KK2 buffer. These cells were made chemotactically 

competent by being resuspended in 10 ml KK2 buffer and subjected to 100nM cAMP pulses 

at intervals of 6 minutes for 5 hours403. At approximately 4 hours 30 minutes into pulsing, a 

1 µm solution of cAMP agar was made up using 1% cell culture tested agar (w/v) (Sigma-

Aldrich, UK), poured into 10 cm diameter Petri dishes and set at ~6ºC. This was equilibrated 

to room temperature after it was set. 1.9x107 pulsed cells were taken and gently mixed with 

3 ml of a 0.5% low gelling temperature agarose solution (w/v) (Sigma-Aldrich, UK), and set 

and imaged as described above for the 4D (3D+time) development experiments, after 

30 minutes had elapsed, to allow for a cAMP gradient to establish through the agarose. Figure 

2.1 shows photographs of the cells on a nitrocellulose filter and seeded within the 1% agarose 

gel. The cells give the agarose a coarse appearance when viewed by eye (Figure 2.1B). 
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Figure 2.1: Photographs of cells on a nitrocellulose membrane and cells within agarose 

 

Figure 2.1: Photographs of (A) 107 cells on a 45 mm diameter 0.45 µm pore nitrocellulose filter (B) 

1.9x107 cells suspended in 0.5% agarose on a 1% agar base, for illustration of the experimental set up. 

The cells give the agarose a granular appearance to the naked eye. 

 

2.2 Electron Microscopy 

Samples were prepared for imaging by Dr Christopher Von Ruhland, Medical Microscopy 

Services, Central Biotechnology Services, Institute for Translation, Innovation, Methodology 

and Engagement, School of Medicine, Cardiff University83. The agar sample was dehydrated 

by use of increasing concentrations of ethanol with the sample placed for 3 hours in each 

concentration beginning with 50% and finishing with 3x3 hours in 100% ethanol. The ethanol 

was then removed by means of the critical point drying technique, using an Emitech K850 

critical point dryer11. The HMDS (hexamethyldisiliazane) solvent evaporation technique was 

also trialled, but this caused excessive sample shrinkage (from 10x5 mm to 4x2 mm, 

compared to 10x5 mm to 7x3.5 mm with critical point drying)17,65,67,440. The samples were then 

attached to double-sided carbon tape and spin coated with gold in an EMscope chamber 

vacuum sputter coater. Imaging was subsequently performed by Dr Von Ruhland with a 

JEOL 840A scanning electron microscope using an accelerating voltage of ~5kV. 
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2.3 Optical Coherence Microscopy 

The OCT system used was a frequency domain fiber-based OCT system utilising FiberCore 

SM750 single mode fibers with a cut off wavelength of 650 µm and a 90/10 beamsplitter 

(Ipitek Inc, USA). The light source was a Femtolasers Femtosource Integral OCT Titanium 

Sapphire laser (Femtolasers, GmbH, Austria) with a central wavelength of 820 nm and a 

bandwidth of between 130 and 150 nm. The power on the sample was kept between 1.1 and 

1.5 mW, in order to minimise the chance of cellular damage426,473. The sample arm comprised 

galvanometric scanners built into a microscope with a Thorlabs LSM02-BB broadband 

telecentric scan lens (Thorlabs, Inc., USA) of 7.5 mm working distance and ~0.11NA and 

controlled by a Field Programmable Grid Array (FPGA) integrated with a CameraLink frame 

grabber. Some of the pilot data was taken using a telecentric objective which was custom-built 

and designed by Dr Boris Považay of the Biomedical Imaging group at OPTOM, Cardiff 

University with NA of ~0.1 and a working distance of approximately 15mm. A moveable 

stage with a gold-coated retro-reflector was built into the reference arm to allow adjustment 

of the reference delay. An attenuator in the reference arm allowed the signal to be manually 

adjusted to be kept close to but below the saturation level of the spectrometer, an ATMEL 

AViiVA M2 CL 2048 pixel CCD camera (ATMEL Corp, USA) operating at 20,000Hz. 

Polarization was manually adjusted to match between the reference and sample arms (by 

maximisation of fringe visibility) using paddles containing rolled fiber optic cable from both 

the reference and sample arms. Acquisition, real-time display, FPGA, galvanometers and data 

storage were controlled by software custom written by members of the Biomedical imaging 

group at OPTOM, Cardiff University, in LabVIEW (National Instruments, USA). The 

acquired images were saved on a striped RAID array (RAID0) to speed up saving time. The 

resolutions of the system were measured to be ~5 µm laterally and ~4.5µm axially in air and 

~3.25 µm in agarose (approximately 4.5 µm/n when in a medium with a refractive index 

other than air, where n is refractive index)253,654. A simple schematic of the system is shown in 

Figure 2.2. 
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Figure 2.2: Schematic of the OCT microscope 

 

Figure 2.2: A simplified schematic of the OCT microscopy system employed showing the constituent 

parts which comprise the instrument. Adapted from an image created by Dr Boris Považay. 

 

2.4 Data acquisition and processing 

A sample holder was made to hold the sample in a plastic 10 cm diameter dish in place on the 

microscope and to keep the sample at a roughly constant slight tilt. This tilt enabled the 

reduction of the intensity of the specular reflections from the surface in the tomograms 

acquired. This was necessary in order that the intensity changes caused by the cells on the 

surface of the sample were not masked by the very strong signal from the surface. Figure 2.3 

shows the difference in appearance of the same sample, cells on a nitrocellulose filter, in the 

enface plane, created by reslicing and summing over ~15 µm around the surface of the filter, 

untilted and after adding a slight tilt (between ~15º and ~25º from horizontal is optimum). 

When the tilt is added the cells are clearly seen on the surface (Figure 2.3B). Otherwise they 

are masked by background from the highly scattering surface of the nitrocellulose filter 

(Figure 2.3A). 
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Figure 2.3: Cells on a flat surface and cells on a tilted surface 

 

Figure 2.3: Ax2 cells seeded on a 45 mm diameter 0.45 µm pore nitrocellulose filters at 1 hour after 

seeding. Images cropped, resliced to enface and summed over ~15 µm. (A) Appearance if the filter is 

not tilted. (B) Appearance if the filter is tilted by about 15º from horizontal. Scale bars are 20 µm. 

 

Volumes were collected in stacks of tomograms. The 3D (2D+time) data consisted of 576 x 

576 pixels over 900 µm transversally (1.56 µm per pixel). The 4D (3D+time) data consisted of 

800 x 800 pixels over 1000 µm transversally (1.25 µm per pixel). The depth always remains 

constant at 1024 pixels and 1433 µm in air (0.7 µm per pixel in air). Software custom written 

in Matlab (The MathWorks, Inc, USA) by members of the Biomedical imaging group at 

OPTOM, Cardiff University, was used to convert to the spatial domain, remove background 

and to correct for spectral shape, dispersion and camera nonlinearities260-262,624. Parallel 

processing code developed by Dr Alexandre Tumlinson, formerly of the Biomedical imaging 

group at OPTOM, Cardiff University was used to spread the processing task over several 

cores, utilising the Condor and Merlin computer clusters (ARCCA, Cardiff University, UK) to 

vastly speed up the time taken for the processing of large sets of 3D time-lapse images. With 

use of the clusters, processing a typical 3D time-lapse series took several hours. The code 

running serially on a single dual-core computer took between two and three days to process 

the same number of tomograms. Subsequently, ImageJ (NIH, USA) was used for further 

post-processing. 

ImageJ macros were written to iterate though an entire time series of tomograms, unskew the 

images (all unskewing was performed using the TransformJ ImageJ plugin by Erik 

Meijering)412,413, further remove the mean background intensity, suppress speckle, and crop 

the images. Rescaling was also performed so that the post-processed image was isotropic in 

the axial and transversal directions, as the initially captured tomograms were differently scaled 

in the axial and transversal directions due to different sampling rates. This was unavoidable as 

the axial sampling density is a property of the camera used for imaging and cannot be varied, 
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and choosing this sampling density for the transversal directions would have involved 

excessive oversampling and increased image acquisition time (discussed in chapter 3, section 

3.3)281. The results of this post-processing are shown in Figure 2.4. Figure 2.4 shows single 

side-on images of a single slice taken from the image stack A) before batch post-processing 

and B) after batch post-processing. Where additional post-processing was required on a stack 

by stack basis, ImageJ was also used. 

 

Figure 2.4: Post-processing with ImageJ 

 

Figure 2.4: Example tomogram to illustrate post-processing showing the Ax2 cells and multicellular 

aggregates within 0.5% agarose on an agar base layer. (A) Single B-scan from the middle of the stack 

after conversion of the tomogram from the spectral to the spatial domain, note the anisotropic scale 

bar as the axial and transverse scaling were different prior to rescaling. (B) The same single B-scan 

after cropping, unskewing, rescaling and additional noise removal using ImageJ (NIH, USA). Image 

acquired 8 hours after seeding. Scale bars are 20 µm. 
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The stage of the microscope appeared to shift downwards throughout the period of 

acquisition of the time series, and this could not be prevented by fixing the microscope stage 

in place, (discussed in chapter 3, section 3.8). Therefore 4D (3D+time) tomograms were then 

registered across the time series by an ImageJ macro written to align all of the stacks to the 

central stack, or to align sequential stacks using the ImageJ plugins TurboReg (Thévenaz P., 

Swiss Federal Institute of Technology, Lausanne, Switzerland) and PoorMan3dReg (Liebling, 

M., California Institute of Technology USA), adjusting the minimum value in the TurboReg 

code, using a macro to align the stacks by a different method involving finding the interface 

between the agarose and agar base layer, detailed later in section 3.8, and finally manually 

aligning any stacks where necessary364,613. 

For easy visualisation of the cells on the substrata, and for compatibility with the tracking 

software used, the 3D data were collapsed into the enface plane at the surface of the 

substrate. Initially this was done manually with the use of an ImageJ macro written to unskew, 

remove noise and allow for manual selection of a region of interest around the surface, which 

was then resliced, summed using the ‘sum slices’ projection in ImageJ, and saved to give an 

enface view around the surface of the substrate (see Appendix 2 for macro). This was rather 

time consuming as it required manual input for every tomogram of the time series. In order to 

overcome this, a macro was written in ImageJ to automatically find the surface of an image 

which had been previously unskewed, denoised and cropped and crop a region of interest 

comprising 20 pixels (~25 µm) around the surface. This cropped area was then resliced, 

summed, using the ‘sum slices’ projection in ImageJ, and saved. The operation was repeated 

on all of the images from the time series to generate an enface view of the cells on the 

substratum for each time point over the entire time. 

A summary of the horizontal and vertical movement of the cells in the 4D (3D+time) time-

lapse images was obtained by collapsing the 3D volumetric data similarly into 2D images, 

collapsing regions of interest in the images into the enface and transversal (B-scan) views and 

then importing each of the collapsed 2D time points into ImageJ for visualisation as a 3D 

(2D+time) image sequence. The enface images over a region of interest were obtained as 

described above (giving horizontal motion) and the B-scan images (transversal view) were 

obtained by selecting an area of interest within a single 3D time point and summing the slices 

over that area, using the ‘sum slices’ projection in ImageJ, then applying the same operation 

to each image stack of the time series (giving vertical motion). In some cases these images 
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were given false colour in Corel Photo Paint (Corel Corporation, Canada), colour-coding 

selected time points for ease of visualisation. 

In order to give a visual representation of the paths which the cells had travelled in a single 

image, the previously summed 2D collapsed image sequences (described above), were 

imported as a stack and then summed again, this time over all time-points, using either the 

‘sum slices’ or ‘standard deviation’ projection in ImageJ (sometimes one gave better 

performance than the other). As the image is stored within ImageJ as an array of pixel 

intensity values, the ‘sum slices’ projection sums the values of each of the pixels stored at the 

same location in the array while the ‘standard deviation’ projection calculates the standard 

deviation of these values, for all of the images in the stack, and outputs the resulting intensity 

values into an array, i.e. a summed single image. This allows the positions of the cells and 

multicellular aggregates at each time-point to be superimposed on to the same image, thus 

giving a representation of the movement of the cell or multicellular aggregate over time. 

Collapsing a 4D (3D+time) time series to a 3D (2D+time) time series results in loss of data, 

therefore, in order to visualise a volumetric 4D (3D+time) sequence, a trial version of Amira 

software (Visage Imaging, USA) was used. Within this software the volumetric data stack 

could be viewed from several angles and all of the time points imported as a series so that the 

motion of the cells within the agarose in time could be seen. 

The time series of tomograms were imported into Amira as a series of stacks in the Tiff 

format with each stack representing a single time-point. The ‘Volren’ option was then 

selected. This module performs volume rendering; addition of texture, colour, lighting and 

shading to a model arranged with appropriate spatial orientation to give a realistic 2D 

approximation of 3D data62,192,647. Rendering can be performed using a number of different 

methods, some optimised for speed, for real-time rendering, and others for quality, when 

media is pre-rendered62,192,485. Nonetheless, all of these methods attempt to do the same thing, 

summarised in the rendering equation first published by Kajiya in 1986, model the path and 

interaction of photons within the scene (or object) to be rendered, based on knowledge of the 

behaviour of light62,192,291,485. Amira offers three user-selectable options for projecting the 

volume647. These methods are; texture-based direct volume rendering (VRT), where a transfer 

function is used to determine the colour and level of absorption (opacity) of each point in the 

volume; digitally reconstructed radiograph (DRR), a computed simulation of x-ray data (this 

can be computed using a number of volume rendering techniques, such as ray casting); and 

maximum intensity projection (MIP), which involves tracing a ray from the viewpoint of the 
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volume along the line-of-sight and projecting the voxels with maximum intensity192,418,647,649. 

The maximum intensity projection was used, as by iteration it gave the best view, by eye, of 

the cells within the volume. The depth perception of the volumes, which is not well 

represented using maximum intensity projection due to a lack of visual depth cues, was 

enhanced by manual outlining of the volumes with guidelines delineating the edges of the 

volumes, in CorelDraw (Corel Corporation, Canada)62,649. These guidelines were defined by 

manual rotation of the Amira-generated projections, allowing the edges of the volumes to be 

seen by eye due to the changes in perspective62,649. 

A viewpoint to best show the 4D motion of the cells within the 3D gel was selected and the 

Amira generated time-lapse images were exported as 3D (2D+time) MPEG files. These were 

then converted to AVI files using VirtualDub (Avery Lee, released under GNU General 

Public License) for further processing with ImageJ, as ImageJ cannot import MPEG files344. 

This method of presenting the data gave a more useful visualisation, in most cases, and more 

complete overview of the 4D data than the alternative method (collapsing into 2D vertical 

and horizontal images at a chosen plane), although it is also a 3D projection of 4D data and 

therefore involves some loss of data. 

These Amira-generated projections were further processed using ImageJ. The images were 

converted to 8-bit greyscale; then objects were thresholded from the background using the 

'Threshold' plugin in ImageJ and outlined using the 'Analyse Particles' plugin in ImageJ. This 

plugin outlined the objects found by the thresholding step, more clearly showing the borders 

of individual objects and making objects easier to see as individuals when a time series was 

summed together. The resulting image stack was projected using the ‘standard deviation’ 

projection in ImageJ (z-project) to show the paths which the cells had travelled, as described 

above. 

Visualisation of optical density waves was enhanced by performing image subtraction in 

ImageJ. Enface images were obtained from the 3D volumetric image stacks, as described 

above Each image in the time series was subtracted from the subsequent image in the time 

series using the ‘Image Calculator' built-in plugin, in order to achieve better visualisation of 

the wave fronts143. 
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2.5 Quantitative Analysis 

2.5.1 2D-DIAS software- quantitative analysis of 3D data 

Quantitative analysis of 3D (2D+time) data was performed over 20 minutes after the cells 

had been developed for 6 hours. This time point was chosen as there were chemotactically 

competent single cells available for analysis. By later time points, single cells had joined 

together to form multicellular structures and could not therefore be identified as separate 

structures and tracked. In conventional chemotaxis assays, cells are generally tracked for 

between 10 and 15 minutes, therefore 20 minutes was thought to have good possibility of 

giving sufficient time to see any trends in the data611,669. The cell motion across the surface of 

the substrate was analysed using 2D-DIAS (Soll Technologies Inc, Iowa, USA) from enface 

images created as described above669. Motile cells were discriminated from the background by 

eye and manually outlined using a mouse at each time point, as the ‘automatic outline’ 

software algorithm built in to 2D-DIAS was unable to discriminate between the cells and the 

background for the OCT images. Subsequently the 2D-DIAS generated centroid-based tracks 

were saved and the persistence and speed were calculated for each cell and exported for 

additional analysis. 

 

2.5.2 Volocity software- quantitative analysis of 4D data 

Quantitative analysis of 4D (3D+time) data was performed using Volocity Quantitation 

software (PerkinElmer, USA). Due to memory limitations in computer hardware, stacks were 

downscaled prior to importing into Volocity, by a factor of 2, in order that analysis would 

complete successfully. The entire 2 hour time series, evenly temporally sampled every 

2 minutes, was imported into the software. Objects were then selected from the background, 

within the volume, using intensity thresholding, restricted to a region of interest to exclude 

the camp agar at the bottom, and included and excluded on the basis of volume476. 

The number of slices and pixel spacing (1.25 µm/pixel) were entered into the software, along 

with the time between image stacks. A region of interest was drawn to exclude the cAMP agar 

at the bottom as otherwise the program found many objects within the agar due to its grainy 

appearance when imaged by OCT. The ‘Measurements’ tab was opened and the ‘Find 

Objects’ protocol was selected which automatically plotted a histogram of the intensities 

found within the current volume. The automatic setting for thresholding relies on Otsu’s 
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method to automatically separate signal from background, which on a basic level involves 

reducing grayscale images to binary data455,476. 

Otsu’s method requires a greyscale image with a bimodal histogram of greyscale intensities, 

i.e. that the background intensity be separated from the object intensity with few objects 

corresponding to intensities in between these two extremes. The algorithm regards the 

histogram of the intensity data as a normalised probability distribution and assumes two 

classes, separated by a threshold, where everything with an intensity value below the threshold 

is assigned to one class and everything above to the other455,480. In Volocity, the two classes 

defined by this threshold are objects and background476. The algorithm attempts to define the 

optimum threshold between these classes (�) by finding regions of high homogeneity. As 

highly homogenous regions have low variance this can be achieved by minimising the 

variance within each of the classes. Because the weighted within-class variance is calculated by 

addition of the variances of each of the classes weighted by their estimated probabilities, the 

greyscale value in the histogram at which this sum of variances minimises gives the optimum 

value of the threshold (�)188,455,480. It is possible to obtain this threshold value by iteratively 

testing each value until the minimum is found, but this is time consuming. Otsu’s method 

exploits the fact that the sum of weighted variance is constant, independent of the threshold 

(�), and therefore for any given value of the threshold, the minimum between-class variance 

corresponds to the maximum inter-class variance455,480. Therefore the threshold (�) can be 

calculated by maximising the between-class variance rather than by minimising the within-

class variances. This is useful because the between-class variance can be computed from the 

means of the two classes, rather than the variances, which simplifies the calculation. 

Furthermore, the values required to calculate this between-class variance (estimated 

probability and mean) can be recursively computed as the algorithm iterates through the 

greyscale values to find the maximum455,480.  

The ‘automatic’ setting in Volocity recalculates the classes for each time-point, therefore it is 

suggested to be the best method to use for time resolved data, where there might be 

differences, however minor, between stacks476. With the OCT data, however, this results in 

Volocity picking out features from the agarose gel as objects to be tracked and classifying the 

bright spots representing cells to a single large object with the agarose features (Figure 2.5). It 

is possible to enter a manual offset to alter the classification algorithm. An offset of between 

60-80% was found to work well with the OCT data, exact value dependent on the particular 

set of image stacks, resulting in the agarose background being excluded and picking out many 
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of the cells (Figure 2.5). The cells within the agarose which were touching other cells or 

forming multicellular structures were excluded from the analysis of single cell behaviour by 

volume thresholding, approximated by assuming a perfect sphere and using l�g = I
m
��m, 

where r is the radius, and taking the diameter of a single cell to be between ~8 µm and 

~17 µm. Settings in the software allowed volumes of objects of volumes outside of the range 

350 µm3 to 3000 µm3 and outside of our selected region of interest to be excluded from 

analysis. This size of object was found to correspond well to the cells, observed and selected 

as cells qualitatively by eye, using this imaging method and this method and software for 

volume estimation. Objects were then measured for all time points and tracked using the 

‘Track Objects’ protocol in the ‘Measurements’ tab. The ‘Shortest Path’ model was chosen, 

which attempts to match the centroids of the objects found between time points. New 

objects were excluded and the track start position was restricted to within the region of 

interest. The software can join broken tracks if an object is missing from one time point due 

to noise or changes in image contrast in certain parts of the image. It will only do this if the 

trajectory of the two tracks is consistent. This option was selected, as it had previously been 

noted in the 3D (2D+time) data that when cells became long and thin they became more 

difficult to see in the OCT images. Finally, the model was restricted by the maximum distance 

between objects, which was manually set to 35 µm, based on the maximum average speed of a 

wild type Dictyostelium cell at ~10±3 µm/min and refined by iteration596,611,666. The tracks were 

automatically plotted by the software and the parameters calculated and recorded were 

exported for further analysis.  
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Figure 2.5: Selecting objects from the background with Volocity® 

 

Figure 2.5: Images of one time point of JH10 cells seeded within a 0.5% agarose gel on a 1 µM cAMP 

agar base layer (I) entire cell volume in 3D, (II) enface view (x and y), (III) B-scan view (x and axial), 

(IV) transversal view in the other dimension (y and axial). (A) No offset in the intensity thresholding, 

many of the brightest objects, cells, are considered to be part of a large object including features in the 

agarose (yellow). (B) A thresholding offset of 70% applied; features in the agarose are now assigned to 

the background and the bright spots (cells) are picked out and highlighted, in false colour, as object of 

interest to be tracked. Scale bars are 20 µm. 
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2.5.3 Statistical Analysis 

Box and whisker plots were generated of mean speed and persistence for the 3D (2D+time) 

data and for mean velocity and meandering index for the 4D (3D+time) data using Origin 8 

(OriginLab, MA, USA). Probability density plots were generated by use of the R statistical 

package (released under the GNU General Public License)387,505. The observed data were 

tested for normality by both visual inspection of the plotted probability distribution and using 

the Anderson-Darling test in Minitab 14 (Minitab Inc., PA, USA), a goodness-of-fit test 

which compares the distribution of the observed data with a normal distribution of the same 

variance and mean, thereby providing a probability value of the degree of normality of the 

data154,188,591. Statistics were calculated using an unpaired two-tailed Student’s T-test for 

comparison of normal data, a Mann-Whitney rank-sum test for comparison of non-normal 

data and a Kruskal-Wallis rank-sum test for comparison of more than two non-normal sets of 

data, using IBM SPSS Statistics 19 (IBM, USA)188,391. Hartigan’s dip tests of unimodality, a test 

to discover whether there is more than one mode in a distribution, were performed using the 

R statistical package (released under the GNU General Public License). This test compares 

the distribution of the observed data (the empirical distribution) with a unimodal distribution 

chosen to be closest to this empirical distribution. The greatest difference between the 

empirical distribution and the chosen unimodal distribution is the dip test statistic. The 

significance of this test statistic is calculated by comparison of the statistic with a distribution 

generated by repeated sampling, using the same number of sampling points as number of 

observations, of the uniform distribution (argued by Hartigan and Hartigan to have the largest 

dip value of all of the unimodal distributions and therefore to be the best null unimodal 

distribution). If the test statistic is greater than the sampled values at the 95% confidence 

interval, then the empirical distribution is statistically non unimodal247,387,505.  

 

2.5.4 Quantitative chemotactic parameters 

For the 3D (2D+time) data, speed and persistence were measured. These parameters, 

calculated using 2D-DIAS software, describe the 2D migration of the cells in time over the 

surface of the substrates669. Speed was calculated from the total path length in µm per minute. 

Persistence is a measure of how much a cell turns while migrating, i.e. how much the cell 

continues to move in the same direction. A higher persistence means that a cell is moving 

more directly. Persistence, measured in units of µm/min-degrees, was calculated by division 
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of the speed by the direction change of the cell at each time-point. Therefore if a cell is not 

turning the persistence will be equal to the speed669. 

For the 4D (3D+time) chemotaxis data, chemotactic parameters describing the 3D migration 

of the cells in time were calculated using the Volocity software. Velocity was calculated from 

the total path length in µm per second. Meandering index provides a measure of how much 

the track of the cell deviates from a straight line. The maximum possible meandering index 

value is 1 which indicates a perfect straight line. It was calculated from the displacement rate 

(displacement divided by time) divided by the velocity (total path length divided by time)476. 

Displacement differs from total path length as total path length describes the entire distance 

the cell has travelled while displacement is a measure of how far the cell has displaced from its 

original starting point in a straight line (Figure 2.6A)476. Hence meandering index provides a 

quantitative measure of how much the cell deviates from the shortest possible route between 

the start point of its track and the end point of its track. 

Chemotactic index provides a quantitative measure of how much the track of the cell deviates 

from the source of the chemoattractant i.e. the accuracy of a cell’s chemotaxis213,295. 

Chemotactic index was manually calculated by taking the cosine of the angle between the 

trajectory of the cell and a reference line which points from the cell directly towards the 

chemoattractant, i.e. the angle of deviation from the direction of the cAMP source (Figure 

2.6B)213,295. A value of 1 indicates that the cell is moving directly towards the source, while a 

value of -1 indicates movement in the opposite direction. As the cAMP agar was directly 

underneath the agarose gel in which the cells were suspended, in this case the reference line 

points straight downwards.  

The angle between the trajectory of the cell and the up axis of the stack is output by the 

Volocity software (as ‘Angle’) in degrees. Volocity calculates this angle from the inverse 

cosine of the dot product of the normalised vectors of the trajectory of the cell and the up 

axis, which is defined as the vector (0, -1, 0) in Volocity475,476,557. The vector of the cell 

trajectory is not made accessible to the end user, only the value ‘Angle’. Therefore, the 

chemotactic index with respect to the bottom of the stack, the location of the cAMP agar 

chemoattractant source, was calculated by multiplying the cosine of the ‘Angle’ (the 

chemotactic index with respect to the top of the stack) by -1476,557. 
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Figure 2.6: Illustration of chemotactic parameters 

 

Figure 2.6: (A) Illustration of the difference between total path length, from which Velocity is 

calculated, and displacement, from which displacement rate is calculated. (B) The calculation of the 

chemotactic index from the cosine of the angle between the trajectory of the cells and the direction f 

the chemoattractant source (*). 

 

Where plots were generated comparing the velocity and meandering index of Ax2 cells on a 

nitrocellulose filter, Ax2 cells under buffer on a Petri dish, and Ax2 cells in agarose, speed 

output from 2D-DIAS software (for the 3D (2D+time) data) was converted from µm per 

minute to µm per second. Meandering index was calculated manually for the 3D (2D+time) 

data by first calculating the displacement rate from displacement (called net path length by 

2D-DIAS) by dividing the displacement by the time over which the experiment was 

performed in seconds and then dividing the displacement rate by the speed (in µm per 

second). 
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3.1 Chapter 3 Aims 

The aim of this chapter was to develop and refine methods for Optical Coherence 

Tomography imaging of cell movement on opaque surfaces in 3D (2D+time) and in 4D 

(3D+time). Optical Coherence microscopes vary in resolutions and performance depending 

on a number of factors including optical design and light source wavelength and bandwidth, 

therefore it was important to determine that the system was suitable for imaging of the 

relatively small (~10 µm diameter) and relatively fast moving Dictyostelium cells208,611. I needed 

to adapt some existing experimental protocols in order to suit this imaging method and 

develop new experimental protocols. Once I had acquired the initial test images and found 

resolution and signal-to-noise satisfactory for cell visualisation, I made refinements to the 

imaging protocols and equipment, to improve performance for this particular application. 

 

3.2 Resolutions of the Optical Coherence Microscopy system 

3.2.1 Transversal Resolutions 

The crucial starting point for this project was determination of the suitability of OCT for 

tracking cells in 4D (3D+time) and in 3D (2D+time) on non-transparent surfaces. An 

important first step was to determine whether the two resolutions of the system (both axial 

and transversal) were sufficient for this purpose. Initially the OCT system had a custom-built 

objective designed and manufactured by Dr Boris Považay from the Biomedical Imaging 

group at OPTOM, Cardiff University. The numerical aperture (NA) of the objective was 

approximately 0.1NA, the maximum possible theoretically calculated resolution of the 

objective was ~3 µm and the measured resolution achieved with this objective was ~5 µm. 

NA was approximated using 
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Theoretical resolution was approximated using 

0 = 0.37 ∙ �
,�
………………………….………………………………………….(ix) 

Where λ is the wavelength of the light and NA is the numerical aperture of the objective253,281. 
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The resolution was measured by imaging a 1951 USAF Hi-Resolution target (Edmund 

Optics, Inc., USA), reslicing the images in the enface plane and manually selecting the 

smallest line pairs which could be distinguished. 

 

3.2.1.1 Replacement of the Objective lens 

It was noted that in some of the tomograms which were taken and processed that aberrations 

appeared towards the edges of the image. This was particularly noticeable in enface summed 

images of cells on a nitrocellulose surface (Figure 3.1A) and presents a problem for accurate 

tracking (potential variations in magnification across the image and inability to accurately 

determine the centroid of a cell)389. The aberrations resembled coma (comatic aberration), an 

optical aberration where point becomes blurred to a comet-like shape, illustrated in Figure 

3.2253,389. Coma increases towards the edges of the lens (with increasing angle between the off-

axis light ray and the optical axis) and therefore primarily affects the periphery. It is caused by 

off-axis rays of light, which pass through the lens at an angle, being refracted to focus at a 

different position when they pass through the centre of the lens compared to when they pass 

through the periphery, in accordance with Snell’s law253,389.  

 

Figure 3.1: Cells on nitrocellulose before and after objective lens replacement 

 

Figure 3.1: Enface (summed over ~15 µm) images of Ax2 cells on 45 mm diameter 0.45 µm pore 

nitrocellulose filters at 1 hour after seeding. (A) With the custom built objective, (B) With the 

handheld probe, (C) With the Thorlabs objective (LSM02-BB). Yellow circles denote cells which are 

spread out, due to optical aberrations. Scale bars are 20 µm. 
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Figure 3.2: Illustration of comatic aberration 

 

Figure 3.2: Illustration of coma showing off-axis light rays being refracted differently by the lens 

depending on the position at which they hit the lens. The rays which got through the edges of the lens 

are not focused correctly on the image plane. The ‘comet-like’ shape of the image generated in the 

image plane is shown to the right of the image. 

 

This observation led to the idea that there was a possible problem with the optics of the OCT 

microscope. As at the time no alternative objectives were available in the lab which were 

suitable for use with this OCT system, this was experimentally tested by imaging cells on a 

nitrocellulose filter after replacing the microscope part with a handheld probe, usually used 

for dermal imaging. In this case these aberrations were not seen (Figure 3.1B) confirming that 

the problem was indeed with the microscope optics of the OCT system. If it were due to 

other factors, then the aberrations would still be seen, as the rest of the OCT system 

remained the same. The original objective was replaced by a broadband telecentric scan lens 

objective LSM02-BB (Thorlabs, Inc., USA) specifically designed for laser scanning 

applications615. With the new objective, the aberrations were significantly improved (Figure 

3.1C). 

Although the NA of this objective was calculated to be ~0.1NA, giving a theoretical 

resolution of ~2.75 µm, it is important to note that we cannot use the entire NA of the 

objective with frequency domain OCT, resulting in a slightly smaller NA for the entire system 

than for the objective used. This is because frequency domain OCT requires the beam to be 

raster scanned across the sample. If we were to scan a beam which was already filling the back 

plane of the objective, the edges of the scan would overlap the sides of the objective. 
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Therefore, the optics prior to the objective are designed to have a beam diameter which is 

smaller than the pupil size of the objective. This beam diameter was measured to be 

~3.5 mm. Using the beam diameter instead of the pupil size in equation (i) above, the NA of 

the system can be found to be ~0.09NA and, using equation (ii), subsequently the 

approximate theoretical transversal resolution of the system can be calculated to be 

approximately 3.3 µm. Using a 1951 USAF Hi-Resolution target (Edmund Optics, Inc., USA), 

reslicing the images in the enface plane and manually selecting the smallest line pairs which 

could be distinguished, the resolution was measured to be ~5 µm. 

 
3.2.2 Axial Resolution 

The major difference between OCT and other forms of optical microscopy is that in OCT 

the axial image is formed by a ranged measurement with low coherence interferometry281,549. 

Axial resolution of an OCT system is decoupled from the lateral resolution and is a property 

of the light source208. It is therefore not dependent on the objective used. 

Axial resolution for an OCT system is calculated using 
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where lc is the coherence length of the light source, λ0 is the central wavelength of the light 

source and ∆λ is the bandwidth of the light source281. The theoretical axial resolution of our 

system was calculated to be ~2.3 µm in air. 

Axial resolution was measured by imaging a mirror and plotting the intensity profile of the 

image for one slice of the stack, a roughly Gaussian curve. This Gaussian curve shows the 

step up to the signal from the mirror, the signal from the mirror, and the step down again. If 

the resolution were perfect both the step up and the step down would be straight lines, 

connected by a straight line at the maximum intensity, i.e. a rectangular shape. As the 

resolution is non-perfect, a roughly Gaussian shape is seen. The axial resolution can be 

therefore seen to be the difference between half of the Gaussian curve and a straight line (i.e. 

one surface reflex). Therefore, half of the full-width half-maximum is the measured axial 

resolution of the system281. 

The measured axial resolution of the OCT system in air was found to be ~4.5 µm. The 

optical path length is greater in agarose than in air, due to the larger refractive index of 
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agarose (nagarose=1.34, nair=1)
253,654. This results in the retardation of the light which passes 

through the agarose. The frequency of the light is unchanged, and therefore we can see from  

l = ac.……………………………………………………………...………….…(xi) 

where v=velocity of the light, λ=wavelength and f=frequency, that the wavelength of the light 

is also reduced253. This means that for any given physical distance, the light will experience a 

greater number of wavelengths in agarose (when the refractive index is higher) when 

compared to in air. As can be seen from equation (iii), axial resolution in OCT is related to 

wavelength. Therefore, the axial resolution in agarose is higher than the resolution in air. The 

achieved axial resolution of the OCT system is therefore ~3.25 µm in agarose and ~4.5 µm in 

air. 

It can be seen from the above numbers that the OCT microscope has a suitable resolution for 

imaging whole cell structures such as the ~10 µm diameter Dictyostelium cells. However, 

chemotactic cells are not rounded but instead have an elongated shape (Figure 3.3)669. The 

diameter in one direction is therefore much smaller than the diameter in the perpendicular 

direction. Cells therefore have different equatorial (~5 µm) and polar (~20 µm) diameters 

when chemotaxing. Figure 3.3 shows a cropped enface image of starved and aggregating 

Dictyostelium cells seeded onto a carbon nanotube surface (provided by E. Brunner, University 

of Surrey, UK). A single elongated polarized cell is highlighted (Figure 3.3B) and, as shown, 

can be resolved with our OCT microscope. 
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Figure 3.3: Image of an elongated chemotaxing cell with OCT 

 

Figure 3.3: (A&B) En face images of a single time-point of a cell chemotaxing towards a multicellular 

aggregate. The cell has an elongated shape, so the diameter is smaller in one direction compared to the 

perpendicular direction. Cells of this shape can be resolved with the OCT microscope. (B) Cell outlined 

in yellow for visibility. Scale bars are 10 µm. 

 

3.3 Size of scan area and sampling density 

The next step was to decide on the size of the area to be imaged and the sampling density of 

the images. The axial size and sampling density are always the same, as they are a property of 

the camera used for imaging, however the lateral parameters can be varied281. In order to 

properly resolve structures at the resolution limit, the pixels must be at least two times smaller 

than the resolution379,473. This is known as critical or Nyquist sampling379. For our system, in 

order to avoid undersampling, sampling should take place at least once every 2.5 µm, as the 

measured lateral resolution is ~5 µm. As can be seen from this, larger scan areas require more 

sampling points, resulting in a limit being placed on the maximum size which can be acquired. 

Added to this is the consideration that larger scan areas and higher sampling densities 

produce larger tomograms, and larger tomograms take longer to acquire and save. Therefore 

there is a trade-off between total image size, at critical sampling rate or better, and image 

acquisition and saving time. Sampling more points than critical sampling is known as 

oversampling, which results in the acquisition of more data per resolution point and can 

therefore reduce background noise, particularly shot noise473. For the 3D (2D+time) 

experiments (Chapter 4), a sampling rate of 1.56 µm per pixel was chosen with a total image 
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size of 900 µm, as this enabled cells to be easily distinguished from the substrata on which 

they were seeded while still allowing an acquisition rate of 2 images per minute. The 4D 

(3D+time) experiments (Chapters 5 and 6) required a slightly larger area in order to be sure 

that the visual field was of sufficient size to include cell streams and multicellular aggregates 

when they formed. In this case, a sampling rate of 1.25 µm per pixel was chosen with a total 

image size of 1000 µm, which allowed cells to be seen as bright spots within the agarose 

background. 800 x 800 was the largest isometric number of sampling points possible to 

acquire, equating to a ~2.25GB file when the image size was 1000 µm and rising to ~3GB 

when the image size was ~1300 µm, as the acquisition software initially saved the image file to 

the virtual memory (a write buffer) before reading it out on to the RAID array. Although the 

acquisition computer had a 64-bit processor and a 64-bit operating system, LabVIEW 

(National Instruments, USA), the software used to write the acquisition software, was only 

available in a 32-bit version at that time (LabVIEW 8.5) and 32-bit versions of LabVIEW are 

limited to accessing 3GB of virtual memory441,442. Therefore images in excess of 3GB caused 

LabVIEW to crash on saving442. An acquisition rate of every 2 minutes per image was used 

for the 4D (3D+time) experiments because of the increased acquisition and saving time. 

For the 3D data, acquisition of one time point, a ~1.26 GB file, took ~20 seconds and saving 

took ~4.5 seconds. For the 4D data, acquisition of one time point, a ~2.25 GB file, took 

~40 seconds and saving ~8 seconds with the ATMEL AViiVA M2 CL 2048 pixel CCD 

camera operating at 20,000Hz. Bearing in mind costs in time and money for designing and 

aligning a new spectrometer, and some signal to noise problems which were occurring with 

the faster cameras when used for OCT imaging, it was decided to continue to use this camera 

although faster speed cameras were available at the time and would have enabled a slightly 

faster acquisition rate. 

 

3.4 Optimisation of background subtraction 

Originally our OCT cell images suffered from some troublesome background artefacts 

(Figure 3.4). Artefacts were more severe when a highly scattering, fairly opaque surface was 

present, such as nitrocellulose or agar (Figure 3.4A), but they were still a problem with the 

diffuse bright spots of cells within agarose, and reflective agarose surface when the cells were 

set within an agarose gel (Figure 3.4C). The main causes of these issues were camera fixed 

pattern noise and artefacts introduced by errors in the background subtraction. A method to 
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supress the time varying fixed pattern camera noise and to reduce these artefacts was 

proposed and implemented by Dr Bernd Hofer of the Biomedical imaging group at OPTOM, 

Cardiff University260. Briefly, the camera noise caused broad horizontal stripes to appear in 

the image because the camera noise is not constant across the pixel array. The horizontal 

stripes are broad because of the spectrometer resampling in wavenumber (�) space, which 

occurs as part of image transformation to the time domain, and is necessary because the 

spectrometer does not evenly sample in � space50,624. This noise was suppressed by use of a 

binary filter mask designed to block the worst of the noise. The filter mask was created and 

used prior to spectral resampling as at this point the stripes are un-broadened. The filtered 

tomogram was then converted to the spatial domain260. The background noise of the 

tomogram is usually calculated from the mean of the signal acquired when the sample arm is 

blocked and is then subtracted from the image. Horizontal lines appear in the image when 

this method is used with cells on a substrate because the surface is highly scattering, resulting 

in a skewed distribution of amplitudes. The result is that the mean is not a good estimate of 

the distribution’s background260. Instead the median is used, obtained after spectrometer 

resampling for better effect, and applied to the tomograms in the frequency domain, as this 

excludes the outliers in the amplitude distribution created by the strongly scattering surface of 

the substrate. The result of using both of these methods is tomograms where artefacts are 

considerably reduced (Figure 3.4B&D)260. 
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Figure 3.4: Difference between mean and median subtraction for cells on agar 

 

Figure 3.4: Ax2 cells (A-B) on a 45 mm diameter 0.45 µm pore nitrocellulose filters at 6 hours after 

seeding (C-D) within a 0.5% agarose gel. Images summed over ~25µm. (A&C) Processing with mean 

subtraction and no camera noise suppression. (B&D) Processing with median subtraction and camera 

noise suppression260. Scale bars are 20 µm. 

 

The new methods of noise reduction add additional steps into the FD processing and so are 

more time consuming than the original method of transformation to the time domain. 

However, the artefacts were obscuring some of the cells, making them difficult to see and 

select by eye. Additionally, automated post-processing of images and selection of cells failed 

to function correctly260. The benefits of this additional processing, for cellular imaging, 

therefore outweigh the cost of increased image processing time. 
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3.5 Seeding densities of cells 

In Chapter 4, the effects of two different conditions and substrata on the migration 

characteristics of Dictyostelium cells in 3D (2D+time) are explored. In these experiments, cells 

were seeded for development on a nitrocellulose filter and on a plastic petri dish under KK2 

buffer. The cells were seeded at 1x107 cells in 0.5 ml KK2 buffer on a nitrocellulose filter, a 

protocol commonly used for assessing cell development. The diameter of the Petri dish used 

for the development of the cells under buffer was ~90 mm compared to ~40 mm of the 

nitrocellulose filters. Using a ratio of the diameters of the filter and the petri dish respectively, 

the number of cells used when the cells were developed in a Petri dish under buffer was 

scaled up to 3.24x107, under 3.2 ml KK2 buffer. This kept the density of cells fairly consistent 

between the two conditions. As cell density has been shown to affect cell behaviour and 

chemotaxis in Dictyostelium, it was necessary, for the 4D (3D+time) experiments, to select a 

reproducible density which allowed a sufficient number of single cells to be identified within 

the agarose for visualisation and any subsequent quantification282,396,638. There also needed to 

be enough cells for aggregation to occur, as previous work has shown that Dictyostelium cell 

development does not occur if cells are too widely spaced250. A standard chemotaxis assay in 

3D (2D+time), on a glass Zigmond chamber and imaging with a DIC microscope, uses cells 

at 1.25x104 cells/ml (Harwood lab protocol)308,611. By iteration, a similar dispersal of cells to 

that of the Zigmond chamber was obtained when a 40 mm diameter nitrocellulose filter was 

seeded with ~5x106 cells in 0.5 ml KK2 buffer. 

In the 4D (3D+time) experiments (Chapters 5 and 6), the chemotaxis and development of 

Dictyostelium cells within a three-dimensional environment, agarose, are examined (section 3.7 

covers this in more detail). As a cAMP agar base was used as chemoattractant (section 3.9), it 

was important to ensure that the depth of the agarose was approximately the same in all 

experiments, so that the gradient of chemoattractant would remain constant between 

experiments. By observation, I determined that the OCT microscope was able to image with 

good signal-to-noise and focus to a depth of approximately 700 µm with the type of sample I 

would be using, by imaging 6 µm glass beads seeded in agarose gel. In order to give a little 

leeway I aimed for a depth of approximately 500 µm in the agarose, By iteration, it was 

determined that 3 ml agarose, evenly distributed, resulted in a depth of approximately 500 µm 

in the middle of a 100 mm diameter Petri dish (data not shown). Based on the number of 

cells/ml used for the nitrocellulose filter and the volumetric ratio obtained between the filter 

and the agarose (1:6), 3x107 cells were originally mixed into the agarose for the 4D 
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experiments (Figure 3.5). Due to the number of cells, it proved difficult to assess individual 

cell behaviour, partly because when there were a great number of cells the cells tended to 

clump together more. It is also important to not have too many cells, as a previous study has 

shown that Dictyostelium cell streams break apart when there are too many cells, which would 

disrupt cell aggregation226. Therefore the number of cells seeded within the agarose was 

dropped to 1.9x107, which made individual cells easier to see and reduced the number of cells 

in contact with other cells. 

 

Figure 3.5: A higher density of Ax2 cells within 0.5% agarose 

 

Figure 3.5: (A-B) Ax2 cells seeded at a higher density than usually used, at 3x107 cells in 3 ml 0.5% 

agarose viewing from different angles. Many cells can be seen, both as individual cells and as clumps of 

cells. The number of cells makes it difficult to examine the behaviour of individual cells. Green 

guidelines indicate the edges of the images for ease of visualisation. Scale bars are 20 µm. 

 

3.6 Automatic selection of the area around the interface for 3D cell 

migration 

In order to reduce the need for user input and speed up the process of attaining an enface 

representation of the 3D time series data for analysis, it was necessary to find a way to 

automatically locate the surface of the substratum on which the cells were seeded. For the 

cells to be clearly resolved against the substratum, it was necessary to crop the image close to 

the surface and to reslice only this small area and sum. If a larger area was resliced and 

summed, most of the detail in the image was lost and the cells became impossible to see, 

masked by background signal. Figure 3.6 illustrates this, showing an enface view from 

reslicing a B-scan image stack, (A) cropped and resliced at ~25 µm around the interface 

compared to (B) cropped and resliced at ~563 µm around the interface. The signal from the 
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cells is almost completely lost in Figure 3.6B. Initially a region was selected around the surface 

for the first time point, the indices of the positions on the image recorded and applied to the 

entire time series. However, due to the focus slippage seen with the microscope, the 

substratum surface shifted downwards with each successive time point, resulting in the enface 

image for later time points no longer being of the surface of the substratum, but rather of the 

air above the surface (see chapter 3, section 3.10 for elaboration on the focus slippage). This 

was overcome in the first instance by user input defining the surface manually. Unfortunately, 

this was time consuming, and so an approach to automate the process of selection of the 

surface was taken to speed up the process and remove the need for user input. 

 

Figure 3.6: Enface summed images over a large area and small area around a region of 

interest 

 

Figure 3.6: Enface images of Ax2 cells on a 45 mm diameter 0.45 µm pore nitrocellulose filter at 

6 hours after seeding. Original B-scan images were identical. (A) Summing ~25 µm around the 

interface. (B) Summing over ~563 µm and including the surface; the background noise masks the 

signal from the cells. Scale bars are 20 µm. 

 

Initially, the TurboReg plugin for ImageJ (Thévenaz P., Swiss Federal Institute of 

Technology, Lausanne, Switzerland) (discussed in section 3.10) was used to attempt to align 

the 3D (2D+time) stacks, however, this method was unable to reliably align these stacks 

successfully. A macro was written in ImageJ that located the surface of the substratum. A 3D 
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image, representing a single time point of the time series, which had already been unskewed, 

cropped and denoised using a previous macro, was loaded and collapsed into a 2D side-on 

view of the image (B-scan) by summation of the slices in a z-projection. The intensity profile 

of this resulting 2D image was plotted and the intensity value of each pixel in the 2D image 

was output in a matrix, where the indices of the matrix correspond to the x and y positions of 

the pixel within the 2D image. The differences between each value of the matrix were 

calculated and outputted in a second matrix. The maximum of this matrix was found and the 

index at which it is located was the surface of the sample. The indices of the surface were 

then recorded and output to the original 3D image. A region of interest comprising 18 pixels 

(~13 µm) around the surface of the 3D image was then selected, resliced, summed and saved. 

The macro then iterated through the entire time series and the resulting images were a time 

series of an enface view of the cells on the substratum (see Appendix 2 for macro). 

 

3.7 Setting up cells for 4D cell migration 

In the wild, Dictyostelium live in soil at the air-water interface299. Originally cultured in dung, 

developments since allowed them to be grown on bacterial lawn and finally mutants to be 

grown in liquid media299,670. Many previous time-lapse studies into cell behaviour and 

chemotaxis have taken place on 2D transparent surfaces, due to limitations of imaging 

techniques and the practice of culturing cells on glass and plastic surfaces 172,669. There is great 

current interest in a comparison of the behaviour of cells on 2D surfaces and cells in 3D 

environments, such as the mammalian body or the soil of Dictyostelium, in order to determine 

the differences and similarities between cells in a more natural 3D environment and in a 2D 

environment such as is commonly found in the laboratory195,236. 

The extension of 2D assays to the third dimension has resulted in the need for scaffolds and 

matrices in which to set cells237. With mammalian cells there is the consideration of the effects 

of different cell types which would be found in vivo around the cultured cell type40,237. 

Fortunately this is not necessary in Dictyostelium as the vegetative cells spontaneously 

differentiate into different types of cell as a part of development676. Matrigel (BD 

Biosciences), a commonly used scaffold for mammalian cells which mimics the extracellular 

matrix (ECM), is not suitable for use with Dictyostelium as their natural environment is not 

ECM, although they do secrete an ECM at the slug stage, which shares some similarities with 

animal ECM397,456,633,675. Nonetheless, it sets between 22ºC and 35ºC, an ideal temperature for 
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mammalian cells, but slightly above the required range for our experiments with 

Dictyostelium35,222. 

In looking for a 3D cellular scaffold for the Dictyostelium cells, the major considerations were; 

that it be biocompatible, having no adverse effects on cell behaviour and proliferation and 

permeable to oxygen; that it be solid enough so that cells do not sink, but not so solid that 

they are unable to move through it, i.e. a gel; that it be set at between 21ºC and 23ºC, the 

maximum temperature variation experienced during the course of the experiments; that it be 

transparent to OCT, enabling the cells to be seen within; and that it be easily obtainable320,592. 

Ease of use was another important consideration, as performing multiple experiments in 

order to refine conditions and procedures is easier when protocols are kept simple. Cell-

culture-tested high-purity agarose gel, commonly used in laboratories, meet all of the above 

requirements in addition to having been successfully previously used with Dictyostelium for 

growth and development and chemotaxis studies312,320,329,592,616,656,682. 

The cells needed to be mixed with the agarose while the agarose was still quite liquid, so that 

the cells would be evenly dispersed. In order to accomplish this without subjecting the cells to 

heat shock, low melting point high purity agarose (Sigma-Aldrich, UK) was used as 

Dictyostelium cells are quite temperature-sensitive463. This agarose was found to remain liquid at 

a temperature of 25ºC at concentrations less than and including 1% (w/v), unlike 

conventional agarose which was found to set quite rapidly at this temperature even at these 

low concentrations. 

A strong signal is obtained in OCT from surface reflections of glass and plastic. In order to 

prevent the higher order images from the bottom of the Petri dish from appearing in the 

OCT image and creating noise or drowning out parts of the image, a separation layer of agar 

between the agarose and the plate was introduced. This may also act to help keep the agarose 

hydrated312. Agar, unlike agarose, did not appear transparent to OCT so the delineation 

between the agar and the agarose layer was able to be easily seen. Agar is also too thick for the 

Dictyostelium cells to penetrate so this surface provided a barrier to their movement in much 

the same way as the bottom of the dish would otherwise. 

This experimental setup allows for the investigation of the movement of Dictyostelium cells 

within an agarose gel, at the agarose-air interface and at the agarose-agar interface. All of these 

are of potential interest in elucidating the behaviour of Dictyostelium in 4D (3D+time), 
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potentially giving insights into the differences between what is observed in the laboratory in 

2D and 3D (2D+time) and the more natural 4D environment. 

 

3.8 Concentration of agarose for 4D experiments 

Having selected agarose as the 3D scaffold in which to set the cells to observe their behaviour 

in 4D (3D+time), the optimum concentration of this agarose needed to be determined. In 

order to set up an assay which would enable difference in behaviour between different strains 

of cells, including knockouts and drug-treated cells to be seen, the wild-type Ax2 cells must be 

able to move freely within the agarose. Initially cells were set in 0.2%, 0.3%, 0.4%, 0.5% and 

0.6% low melting point agarose (w/v) and looked at through a conventional phase contrast 

microscope. Cells were seen to sink almost immediately at the lowest concentrations (0.2% 

and 0.3% (w/v)) and the gel at these concentrations was not well set and very liquid604. From 

0.4% (w/v) on, the agarose was reasonably well set and the cells were not seen to immediately 

sink. To experimentally test the effects of varying the concentrations of agarose on the ability 

of Dictyostelium cells to migrate, in order to experimentally determine the optimum 

concentration of agarose to use for my experiments, concentrations of 0.4%, 0.5%, 0.7% and 

1% (w/v) low melting point agarose were seeded with 1.9x107 Ax2 cells harvested at the log 

growth phase, which had been rendered chemotactically competent by exposure to 100nM 

cAMP pulses at intervals of 6 minutes over 5 hours (pulsed), and set on 1 µM 1% (w/v) 

cAMP agar.  

Figure 3.7 shows the paths of the cells (cell tracks) through the agarose. To achieve this, all of 

the individual time points (already collapsed into either the enface or side-view) are summed 

together. As can be seen below in Figure 3.7, during the 2 hours of imaging time, at 1% 

(w/v), Figure 3.7A and D, the Ax2 cells are not able to move within the agarose, at 0.7% 

(w/v), Figure 3.7B and E, cells are able to move down but are relatively restricted in their 

transversal motion. However, at 0.4% (w/v), Figure 3.7C and F, cells are moving well in both 

the lateral and axial directions. A concentration of 0.5% (w/v) was chosen as the best 

compromise because the gel was well set and the cells were able to move freely in both the 

lateral and axial directions (Figure 3.8). 
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Figure 3.7: Cells set in different concentrations of agarose 
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Figure 3.7: Ax2 cells pulsed for 5 hours and set in different concentrations of agarose on a 1 µM cAMP agar base layer, for experimental determination of the 

optimum concentration of agarose to use in future experiments, and imaged for 120 minutes, sampling every 2 minutes. (A-C) Enface images are summed over 

~10 µm and then all of the time points are summed using the standard deviation projection allowing the tracks of the cells to be seen. (D-F) B-scan side view 

images are summed over ~50 µm and then all of the time points are summed using the standard deviation projection allowing the tracks of the cells to be seen. 

(A&D) in 1% agarose, the cells do not exhibit any significant migration. (B&E) in 0.7% agarose, the cells exhibit horizontal motion, but lateral motion appears 

restricted. (C&F) in 0.4% agarose, the cells appear to move freely in both the horizontal and lateral directions Yellow arrows point to some of the tracks seen in 

the images. Scale bars are 20 µm. 
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Figure 3.8: Tracks of Ax2 cells moving within a 0.5% agarose gel 

 

Figure 3.8: Ax2 cells pulsed for 6 hours, seeded within a 0.5% agarose gel on a 1 µM cAMP agar base. 

Imaged over 2 hours sampling every 2 minutes. All of the time points are superimposed by use of the 

standard deviation projection in ImageJ. This enables cell tracks to be seen within the agarose (yellow 

arrows show some examples). (A) En face view with slices summed over ~10 µm at ~75 µm above the 

cAMP layer. (B) B-scan (side-on) view at the middle of the stack, summed over 25 µm. Horizontal and 

lateral migration of the cells can be seen to occur. Scale bars are 20 µm. 
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3.9 4D chemotaxis- establishing a chemoattractant gradient 

Cells were set in agarose as described above, and originally a spot of 1µM 1% cAMP agar, 

dyed blue with bromophenol blue for visibility and easy location, was placed at a point on the 

surface of the agarose in order to set up a cAMP gradient. A major difficulty with this 

experimental set-up was that the direction and extent of the cAMP gradient through the 

agarose was difficult to assess and problematic to accurately model in 4D496,513. Therefore cells 

within the agarose were exposed to different concentrations of cAMP in an unknown 

manner, making a quantitative assessment of their response to the signal difficult. In order to 

overcome these problems, the base layer of 1% agar (w/v) was replaced with a base layer of 

1 µM 1% cAMP agar (w/v). Diffusion of the cAMP remains approximately constant 

throughout the agarose, therefore the cells as the bottom are initially exposed to a greater 

concentration of cAMP than the cells nearer the top of the agarose, however, the 

concentration should be roughly constant for all cells at a certain depth into the agarose496,682. 

Additionally a recent study indicated that the strength of the cAMP signal only weakly affects 

the ability of Dictyostelium cells to respond to the chemoattractant signal by moving towards it 

when the cells are capable of signalling to one another, such as would be expected from the 

cells used in my experiments410. Other frequently used chemotaxis assays also use this 

diffusion-based method to establish gradients, such as the micropipette assay, under-agarose 

assay and Zigmond, Dunn and Boyden chambers41,63,449,708,710. Additionally, mammalian cells in 

vivo and Dictyostelium cells in the wild also experience gradients generated by diffusion, for 

example during development or immune response, where a chemokine, or chemoattractant is 

released from a population of cells, which then diffuses and is detected and in some cases 

propagated by other cells134,143,302,383,496. Agarose has been shown to be a useful material in 

which to establish a gradient, as it is capable of stabilizing chemoattractant gradients, both 

spatially and in time338,341. 

In Dictyostelium cell chemotaxis assays using a Zigmond chamber, cells are usually left for 

20 minutes after the cAMP gradient is set up, before imaging is begun, to allow the gradient 

to establish611. Additionally a mathematical model of the diffusion of cAMP within a 

Zigmond chamber indicated that a stable gradient takes between 10 and 20 minutes to 

establish496. As the volume of agarose used in my experiments was greater than the volume of 

buffer used in Zigmond chamber assays, but smaller than that used in under agarose 

chemotaxis assays (~3 ml (3000 µl) agarose in my experiments, ~135 µl buffer in a Zigmond 

chamber and ~4 ml (4000 µl) in under agarose folate assays), I waited 30 minutes for the 
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gradient to establish, before commencing imaging329. By iteration, this time was optimum, as it 

allowed a gradient to establish and cells to be imaged chemotaxing (see results section, 

chapter 5), without wasting time and hard drive space acquiring images of motionless or non-

chemotactic cells, and was not too late to miss single cell movement, when chemotaxis would 

have already occurred and only multicellular aggregates, or cells sitting atop the cAMP agar 

would remain to image. Moreover this allowed ample time for the cells to be taken to the 

OCT microscope and the microscope to be set up for imaging. 

In this experimental configuration of a base layer of cAMP agar, the expected perfect 

direction of cell chemotaxis is much easier to determine than when a spot of cAMP was 

placed on the surface of the agarose, as it should be straight downwards until the agar layer is 

reached. The cells are unable to penetrate the agar layer as the 1% agar is too solid for them 

to penetrate (see results section, chapter 5). This method therefore potentially also allows for 

investigation of the behaviour of cells at this agarose-cAMP agar interface in addition to 

providing a simple experimental setup for investigation of 4D (3D+time) chemotaxis. 

 

3.10 4D Stack Registration 

A common problem with time-lapse microscopy is that of focus drift78,322,473. This can be 

caused by a number of factors, most commonly the microscope focus mechanism 

slipping322,613. This problem was encountered in the images acquired using the custom build 

OCT microscope, with the extent of the slippage between ~10 µm and ~150 µm dependent 

on the experiment. In an OCT B-scan (a side-on view), the focus drift appears as the image 

moving downwards over time. A fix was attempted, holding the stage in a fixed position by 

using pieces of metal to prop it up once the focus was found, however, although this worked 

to a certain extent and reduced the magnitude of the slippage (to approximately 50 µm 

maximum), some sample drift still remained, which required correction before cells could be 

accurately tracked. 

A comparison between the axial positions of the first (0 minutes) and last (130 minutes) of an 

example stack is shown in Figure 3.9. Before software stack registration, the stack can be 

clearly seen to have shifted position in the side on view (Figure 39A). This movement is not 

seen after registration (Figure 3.9B).  
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Figure 3.9: Focus drift- original stack and corrected stack 

 

Figure 3.9: Superimposed false colour images of Ax2 cells pulsed for 5 hours, suspended in 0.5% 

agarose gel on a 1 µM cAMP agar base layer and imaged. Images are B-scan (side-on) views of slices 

summed over ~25 µm. The first time point, 0 minutes is yellow and the final time point, 130 minutes is 

blue. Magenta is seen where the yellow and blue exactly overlap. (A) Before software stack 

registration. (B) After software stack registration. The difference in position of the first and last slices 

on the tomogram is denoted with grey arrows. Scale bars are 20 µm. 
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Correction of this sample drift was attempted using software to align the stacks to one 

another after the tomograms were acquired and converted to the spatial domain. The first 

approach taken was to align sequential stacks to one another, beginning with the central stack, 

using a macro written in ImageJ. This macro made use of the plugins TurboReg, which aligns 

two images to one another, and StackReg, an extension of TurboReg, to align an entire stack 

of images sequentially, (Thévenaz P., Swiss Federal Institute of Technology, Lausanne, 

Switzerland), and PoorMan3Dreg which itself makes use of the aforementioned plugins 

(Liebling, M., California Institute of Technology, USA)364,613 (see Appendix 3 for macro). 

TurboReg uses an iterative algorithm, which attempts to determine the match between the 

two images and then distort the source image so that features in the source image are mapped 

to those in the target image612,613. It uses one of a number of user-specified transforms, which 

are implemented by use of matrix multiplication, and utilises polynomial spline interpolation, 

which the authors argue offers a good compromise between accuracy and speed, to align the 

source image with respect to the target image613. The transforms which the user can select 

between are a translation, rigid body, scaled rotation or affine transform. All of these 

transforms are performed by use of an affine transformation matrix, but vary in their degrees 

of freedom, so if a translation, rigid body or rotation is specified then the transform is 

restricted accordingly. For example, if, by inspection, the stacks only appear to move with 

respect to one another and do not warp or skew (as seen with the stage slippage) a translation 

would be sufficient for alignment223,613. Choice of 'affine transform' under these circumstances 

could result in artefacts as the algorithm attempts to correct some of the motion between the 

stacks by shearing, skewing, rotation etc. By use of 'translation', the algorithm is restricted in 

how it can transform the image to be registered; in this example, to a translation. 

The TurboReg algorithm uses an image pyramid approach to register the images based on 

their pixel intensities613. This method is designed to reduce the time and computational cost of 

pattern recognition by separation of the original image into a set of images filtered into spatial 

frequency bands. This is achieved by iteratively subsampling the image. In order to avoid 

aliasing, the original image is smoothed (by convolution with a low pass filter) to remove the 

high frequency components prior to resampling. The algorithm uses a polynomial spline 

approach to generate the pyramid, as for the geometric transforms applied, in order to ensure 

internal consistency of the algorithm613,629. The patterns in the images are first matched using 

the lowest resolution image in the pyramid to register the coarse features in the image. The 

transformations applied are then passed to the higher resolution level of the pyramid, with 
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appropriate scale factors, so that only small corrections to accommodate the finer details 

present in the higher resolution images. This reduces the time and computational cost of 

pattern matching, as the majority of the iterations for registration use the low resolution 

images which are greatly reduced in amount of data. Additionally, it also reduces the chance 

of incorrect registration, which could occur if only the highest resolution images were 

registered because of the algorithm having an increased possibility of finding a local match 

between the images, a false minimum difference, which is not actually the optimum global 

match3,613,629. 

The degree of match between the two images is measured as the integrated squared difference 

of the intensity values between the source and the target image, i.e. the residual variance 

between the intensities of the source image and the target image (��)75,613. This can be written 

as a function  

 �� = �c%(Y) − �s�c�(Y)��
�
.………………………………...……………..……(xii) 

where c% is the reference data (target image), c� is the test data (source image to be 

registered), and �s�c� is a spatial transformation of parameters represented by �75,360,613. At 

each point of comparison the transformation parameters (�) are updated and applied to the 

test data (c�), to find the optimum transformation to match the two images. Therefore, when 

the images match, the value of this function (��) should be at a minimum with respect to �. 

The authors use an algorithm based on the Levenberg-Marquardt algorithm to calculate this 

minimum, by solving ��� *�⁄ = 075,613,694. 

The Levenberg-Marquardt algorithm, postulated initially by Levenberg in 1944 and 

rediscovered and improved upon by Marquardt in 1963, is a widely used optimisation 

algorithm which provides a solution minimising a non-linear function, using a least squares 

approach to assess the fit75,400,613. This algorithm initially approximates a steepest descent 

approach, a slow but robust method, until the solution is close to a local minimum and the 

residuals are small so that a quadratic estimation of the local curvature can be made, 

whereupon it then becomes the Gauss-Newton optimisation, a faster but less stable method. 

This switch between methods is achieved by use of a damping factor (a), which is updated at 

each step to become smaller if the residuals decrease sufficiently and increased if the residuals 

do not. In this way, the Levenberg-Marquardt algorithm provides a stable and fast solution to 

nonlinear least squares minimisation400,694. 
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The first step involves providing the algorithm with an initial estimate for �, the parameter 

vector. In this case, the initial condition is � = �b, i.e. no transformation applied. It should be 

noted that if there are multiple minima and the initial estimate is far from the final solution, 

the algorithm will fail to converge. The multiresolution pyramid approach reduces the chance 

of this, as mentioned above400,613. 

The aim of the algorithm is to iterate and at each step produce values of �, updated by a step 

of *s, which aims to minimise �� and therefore converge to a local minimum. The algorithm 

must be constrained by some pre-set parameters in order to define when iteration stops. 

These are the degree to which the match should be perfect (a minimum �� value) and the 

lower limit in the amount of improvement gained between iterative steps (a minimum *s 

value)612,613. When the algorithm stops, the last updated parameter vector (*s) is taken to be 

the solution. In brief, the algorithm performs the calculation to determine the incremental 

step *s by taking the first order approximation (linear approximation) of the model curve and 

then calculating the Jacobian matrix (�), which represents the first order partial derivatives. 

The Hessian (�), a matrix containing the second order partial derivatives, which gives the 

local curvature of a function, can be obtained from the Jacobean matrix, under this linear 

approximation400,694. Solving for the minimum by setting the derivative with respect to *s to 

zero yields linear equations, which can be solved for *s694. The equation to determine the 

update between iterations, which blends elements of gradient descent and Gauss-Newton 

iteration is  

 � + *s = � − (� + a����[�Q) ��� *�⁄ .……………………………......………(xiii) 

� + *s is the updated parameter. � is the current parameter vector. a is the damping factor, a 

factor which is updated with each iteration of the algorithm and reduces the influence of the 

gradient descent part of the algorithm. This value is increased when the error is reduced. 

����[�Q is the diagonal of the Hessian matrix, which scales the gradient by the curvature of 

the function acting to create larger increments in � + *s where the gradient is smaller; and 

��� *�⁄  is the derivative of �� with respect to �400,512,694. 

In TurboReg, the transformation applied, to minimise the difference between the images, 

thus registering them, is saved, and can be called by other ImageJ plugins612,613. Specific details 

of the modifications to the Levenberg-Marquardt algorithm applied in the TurboReg 
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algorithm, implemented to improve the speed of the algorithm, are outlined in the paper 

Thévenaz, P. et al, 1998613. 

PoorMan3Dreg works by collapsing each time point to a single image by use of a projection 

and aligning the projected stacks using the TurboReg plugin. The user is given the choice of a 

translation, rigid body, rotation or affine transform to align the data and a choice of ‘average 

intensity’, ‘max intensity’ or ‘sum slices’ for the projection. The ‘maximum intensity’ 

projection and a translation were found to work best with my OCT data. The plugin requires 

all of the slices from the stacks to be aligned and the reference stack to be placed into a single 

stack, which was achieved using ImageJ. The number of slices in each of the original stacks to 

be aligned must also be specified, in order for the plugin to know where in the concatenated 

stack one original stack ends and the other begins. After selection of transformation and 

projection type, the stack to be aligned and the reference stack are projected and the 

transformation is calculated by TurboReg and saved. The transformation, calculated for a 

projected single image, is then sequentially applied to each slice of the original stacks, resulting 

in alignment of these two stacks in the y-direction (up and down in an OCT B-scan) and the 

x-direction (left and right in an OCT B-scan). As this plugin is not able to align the stacks in 

the z-direction (into and out of the plane in an OCT B-scan), due to this dimension being 

collapsed down (z-projected) in the initial part of the plugin, it cannot be said to register truly 

in 4D364. However, as the drift in the OCT images is largely axial, this method worked well on 

the OCT image stacks. In any data set where there was any drift in the z-direction, the stack 

was resliced from the right, aligned using the above method, and resliced again to return it to 

its original orientation. 

Sequential alignment of the stacks was seen to result in some jitter between stacks, so a macro 

was written to align all of the stacks iteratively to the central stack, which performed better 

(see Appendix 4 for macro), removing the jitter. 

In some cases it was necessary to adjust the ‘minimum’ parameter in the TurboReg plugin, 

which describes the minimum resolution which the lowest resolution image in the 

multiresolution pyramid can be, in order to achieve a better alignment of the stacks612,613.  

Unfortunately, in several cases, the algorithm used in the TurboReg failed to properly align 

the stacks. In this case, stacks were aligned using a macro based on a modified version of the 

macro to find the substratum location used with the 3D data (see Appendix 5 for macro). 

This macro first crops the image in half, keeps the bottom half, and then finds the interface in 

the manner described above for the 2D data (finding the maximum intensity value). It is 
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necessary to crop the image in half first so that only one interface is detected, as the images 

contain two interfaces and both interfaces cause high peaks of approximately the same value 

in the intensity spectrum of the pixels. Due to variations between images within a stack, the 

maximum value in one stack might be the bottom interface and the maximum in another 

stack being the top interface. This would result in the top of one image within the stack being 

aligned to the bottom of the other image. The bottom half was chosen for cropping merely 

because in the 4D chemotaxis experiments this was the location of the chemoattractant. The 

alignment works on a simple basis, taking the indices of the found maximum and cropping a 

certain area around it. The result is stacks of the same size with the maximum at the same 

pixel indices on each stack. 

One problem with this method is that it was necessary to keep the total height of the stacks 

the same for proper comparison between time points. If the macro were to simply crop at the 

interface, the size of the stacks would increase, as the index of the maximum, and the position 

of the image on the stacks descended. In order to overcome this, a set size was cropped 

around the interface, resulting in aligned stacks of the same height. Furthermore, this method 

is unable to compensate for any motion other than axial focus drift. If the stacks aligned by 

this method had any lateral motion between time points (this was rare, but some small lateral 

drift was sometimes seen), the stacks were then aligned again using the method which uses 

the TurboReg plugin, which appears to perform best on my OCT images when there are only 

small differences between temporally adjacent image stacks.  

Finally, if stacks were unable to be aligned by any of the above automated methods, an 

ImageJ macro was written to allow shifting of all of the slices of a stack by an amount which 

is input by the user. This method requires manual input for each stack as the amount of shift 

(in pixels) has to be previously measured by comparison of the stack to be shifted with a 

reference stack by eye, and input into the macro manually (see Appendix 6 for macro). 

Therefore, this method is extremely time-consuming for the user, as it requires constant 

manual measurement and input, but is useful for final alignment of stacks which failed to be 

properly aligned using the other methods. 
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3.11 Chapter 3 Summary 

Resolutions were calculated and measured for our OCT microscope in order to ensure that 

they were sufficient for imaging ~10 µm diameter Dictyostelium cells. Sampling areas were 

decided on by trying different areas and choosing one that allowed a number of cells and 

desired features, such as streams and mounds, to be seen. Once this was a set, an appropriate 

sampling density was chosen in order to ensure a good SNR and meet the resolution limit of 

the system. The first problem identified as a part of the project was that of aberrations seen in 

the images caused by the objective lens. This lens was replaced with a stock telecentric 

objective manufactured by Thorlabs (Thorlabs, Inc., USA) which improved the distortions 

seen in the images. Another unanticipated problem was that of the standard image processing 

algorithm introducing striping artefacts into the images. This was solved by Dr Bernd Hofer 

of the Biomedical Imaging group at OPTOM, Cardiff University260. In order to image cells in 

4D, it was necessary to set the cells in a 3D construct. Agarose was chosen as a suitable 

material in which to suspend cells, due to its melting and gelling temperature, among other 

considerations, while a base of 1 µM cAMP agar provided the chemoattractant source for 

chemotaxis experiments. 

The final major issue identified during the course of the project was the most troubling one 

and proved to be the most challenging to overcome. The focus drift in the microscope was 

initially negligible and became worse in time, likely due to mechanical wear and tear in the 

focusing mechanism. This issue only became noticeable when comparing images from 

consecutive time points. Due to the processing times required (for the data stacks to be 

transformed from the spectral to the spatial domain and then further processed for easy 

visualisation of 3D time-lapse, involving collapsing the volumetric data to a single transversal 

image for all of the time points and then importing the 2D images as a time series), a number 

of image sequences were taken before this issue was noticed. The first approach to fix the 

stage in place failed to completely solve the issue, although an improvement was seen, so 

software solutions were investigated and attempted. Using these it was possible to register the 

stacks, with some iteration. 

The development of these methods and protocols enable Optical Coherence Tomography to 

be used as a method to investigate cell migration and aggregation in 3D (2D+time) and in 4D 

(3D+time), revealing insights into cell behaviour and the mechanisms regulating cell motility 

under these conditions, which are inaccessible to conventional microscopy techniques 

without staining or otherwise tagging the cell. 



Chapter 4: Dictyostelium cells on opaque substrates Page 88 

 

 

 

 

 

 

Chapter 4: Ax2 Dictyostelium cells on opaque substrates 
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4.1 Chapter 4 Aims 

As investigations into the multicellular behaviour of Dictyostelium largely use nitrocellulose or 

agar surfaces, on which cells are developed, and studies of individual cell behaviour are usually 

performed on glass or plastic substrates with the cells suspended in KK2 buffer, any effects 

that these differing substrates and experimental conditions have on the behaviour of the cells 

are relevant when direct comparisons between results from these different assays are made. 

This chapter aims to answer the question of whether OCT is a useful tool for studying cell 

migration on opaque substrates and obtaining quantitative data describing this process, and 

whether the differing experimental conditions of two commonly used assays have any effect 

on Ax2 Dictyostelium cell migration. 

 

4.2 Cells and their surrounding environment 

The effects of substratum and surrounding environment on cell behaviour have been of 

interest to cell biologists since the early twentieth century106,118,164,244,660. As outlined in the 

introduction, the environment in which cells are grown can have a great effect on their 

behaviour, morphology, adhesion and proliferation24,95,119,419,477,577,707. However, many of these 

environments and engineered substrates are opaque, and therefore inaccessible to 

conventional microscopy techniques. Therefore, due to limitations in imaging and other 

technologies, this area of research remained a niche, with most cells being grown and 

experimented on, on glass or plastic surfaces. With the advent of new technologies in more 

recent years, great interest has been shown in the effects of environment on cells, and in the 

potential to drive cell behaviour to the desired outcome using biomaterials and other 

engineered substrates.14,24,124,283,305,554. 

Research into this area is largely concentrated on mammalian cells, particularly directed 

differentiation and increasing cell viability, driven by the tissue engineering and stem cell 

industries283,305,311,419,688. Studies of cell migration have been fewer, and often predominantly 

focused on cancer cell invasion232,626,663. However, the phenomenon of contact guidance has 

long been known and it is recognised that cell migration can be influenced by environment 

and substratum topography106,118,137,152,240,303,305,482. The effects of different substrates on cell 

behaviour have been explored for many years, yet the detailed mechanisms behind this 

complex process have yet to be fully elucidated14,106,468.  
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OCT is an imaging technique which was initially used for imaging the eye, but has since 

diversified into other areas, particularly skin, dental and cardiac imaging7,567,609. Due to there 

being no requirement for cell labelling and the non-invasive nature of the technique, it has 

shown promise for imaging cells and tissue on opaque surfaces as well as for characterisation 

of scaffold and substrate properties56,359,371,467,597,606,608,689.  

 

4.3 Dictyostelium discoideum, development, environment and 

assays 

The environment surrounding the cell is able to have an effect on the character of its 

migration. In addition to the chemoattractant cAMP, phototaxis towards light can play a role 

in the directed migration of Dictyostelium cells55,423. Temperature and chemical cues (for 

example, the presence or absence of oxygen and pH) can also have effects, as can micron-

scale topographical features18,55,150. Dictyostelium mutants with deficits in aggregation and 

development have been created in order to aid understanding of the processes within a cell 

that regulate chemotaxis and migration530,651. The behavioural effects of these mutations, or 

the effects of pharmacological treatments, are studied either by development assays on 

nitrocellulose or agar where the cells aggregate and develop naturally; or by chemotaxis assays 

involving individual cells on glass or plastic143,651,709. 

 

4.3.1 Dictyostelium developmental assays 

The behaviour of Dictyostelium cells in a large cell population is commonly observed by 

seeding of cells onto a surface of either agar, or 0.45 µm pore nitrocellulose filters resting on 

prefilters, soaked to saturation55,492. Under these conditions the cells are in contact with buffer 

underneath, but are in contact with air above. The behaviour of the multicellular aggregates 

can then observed by inverted light microscopy, imaging though the agar, or with a stereo 

microscope and a time series can be recorded with an appropriate camera143,569. Dictyostelium 

cells can also be developed under KK2 buffer, often on glass or plastic Petri dishes, allowing 

for easier imaging, for example with DIC microscopy, although this is less common128,648. The 

above assays allow comparison of the multicellular behaviour of Dictyostelium mutants or drug-

treated cells with the expected behaviour seen in their parent wild-type strain or untreated 
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cells143,488,595,648 and often focus on any morphological differences which can be seen in the 

mounds, slugs (if formed) and culminants488,530,595,651.  

 

4.3.2 Dictyostelium chemotaxis assays 

Typical Dictyostelium chemotaxis assays focus on the observation of the behaviour of single 

cells on a glass or plastic substratum416,611,651,669. These cells are rendered chemotactically 

competent, often by artificial pulses of 100 nM cAMP at 6 minute intervals, the approximate 

interval at which Dictyostelium cells are exposed to their own intrinsic signal during 

development611,625. This enables all of the cells to experience the same level of cAMP 

stimulation; something which may not happen during starvation and subsequent 

development, due to the cells being different distances from the origin of the local cAMP 

oscillations. Cells are then placed into a transparent chamber for imaging, usually made of 

glass or plastic completely immersed in a buffer611,669,708,709. After the cells have settled, 

chemoattractant is placed at one side, with buffer at the other, and the movement of single 

cells towards the chemoattractant is observed and/or imaged with light microscopy, 

frequently DIC microscopy611,709. The behaviour of individual cells is often quantified, by use 

of tracking software, and comparisons between the behaviour of individual wild-type and 

mutant or drug-treated cells are frequently performed611,665. 

 

4.4 The two different experimental configurations 

I have considered two common assays with Dictyostelium, which have been briefly outlined; on 

a smooth surface such as glass or plastic, and on a surface with a rougher texture, a 

nitrocellulose filter. The surfaces, nitrocellulose, agar and polystyrene plastic imaged with 

scanning electron microscopy (SEM), as outlined in the methods section, are shown in Figure 

4.1. The difference in roughness (caused by differences in the scale of the irregularities in the 

material) between the surfaces (Figure 4.1A-C) and structure of the nitrocellulose surface can 

be clearly seen (Figure 4.1B, E, G)24. Both the agar and plastic Petri dishes have smooth 

surfaces under SEM at low and medium magnifications (Figure 4.1 A&C, D&F). It should be 

noted, however, that the agar required dehydration prior to SEM imaging11,440. As a 1.8% 

KK2 agar gel (as used for experimentation) is ~98% KK2 buffer, which itself is largely 

comprised of water, much of the original content of the agar is lost due to this dehydration, 
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and the structure may  appear different due to shrinkage306,603,650. Although texture has 

previously been seen in images of agar and agarose, it has emerged that this porosity may 

itself be an artefact of dehydration, as hydrated samples imaged by use of an environmental 

SEM do not show these pores306,443,603. Additionally atomic force microscopy of agar surfaces 

has indicated that agar surfaces are of a smoothness comparable to glass584. The nitrocellulose 

appears completely different to the agar and plastic surfaces under SEM, with a grainy 

appearance at low magnification (Figure 4.1B), which at medium magnification is rough in 

appearance and mesh-like (Figure 4.1E). At high magnification the nitrocellulose filter can be 

seen to be comprised of multiple pores (Figure 4.1E&G). A yellow scale marker of 10 µm 

shows the approximate diameter of Dictyostelium cells, to give an idea of the scale of the pores 

and surface features of the nitrocellulose relative to the cells (Figure 4.1G).  
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Figure 4.1 Electron microscopy images of nitrocellulose filter and plastic Petri dish 
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Figure 4.1: Electron microscopy images (enface) of (A&D) Agar (B, E, H) Nitrocellulose filter (C&F) 

Polystyrene Petri dish. (A-C) At low magnification (D-F) Medium magnification (H) High 

magnification, nitrocellulose only, as the polystyrene and agar images did not reveal any additional 

detail. (B, E, G) The nitrocellulose filter is grainy in appearance. At higher magnification levels the 

pores comprising the filter can be resolved. (G) A 10 µm scale bar in yellow shows the approximate 

diameter of a Dictyostelium cell to give an idea of the scale of the features on the nitrocellulose filter 

relative to the size of the cell. 

 

The above assays, for development and chemotaxis, can be performed alone or in parallel to 

examine the motility and morphology of a mutant or drug-treated cell line, but a comparison 

with the expected behaviour, i.e. the behaviour of the untreated wild-type parent strain, is 

important for proper analysis of the functional effects611,665. While this is a valid test of the 

effects of the drug or mutation under certain controlled conditions, what is not taken account 

of are any effects of the different substrata on the cell behaviour. Most often, studies of 

multicellular aggregates of Dictyostelium are performed when the cells are on a substratum of 

agar or nitrocellulose, while the behaviour of individual cells is considered when the substrate 

is of glass or plastic143,395,416,595,611,708. Due to the non-transparency of the nitrocellulose 

substrate, and to a certain extent agar, single cell imaging on a nitrocellulose filter is 

inaccessible to the types of microscopy commonly used for imaging of single cell behaviour in 

glass chambers or on plastic Petri dishes, namely DIC, or occasionally phase contrast 

microscopy665,669,682. While it is possible to image single cells on opaque surfaces with 

epifluorescent microscopy techniques, this requires the introduction of additional processing 

steps into the experimental protocol473. It is also possible for dyes to interfere with the normal 

functioning of a cell, or introduce artefacts49,126,473. Therefore, single cell analysis is generally 

performed on glass or plastic transparent surfaces. 

In order to see if there is an effect of the environment on the behaviour of the cells under 

these conditions, which are frequently used assays, cells have been imaged with OCT, which 

allows visualisation of cells on opaque substrates, on a nitrocellulose filter resting on pre-

soaked (with KK2 buffer) Millipore prefilters and under KK2 buffer on a plastic Petri dish. 

The cells were seeded at the same density under both conditions, tracked using 2D-DIAS 

software, and subjected to subsequent statistical analysis. A nitrocellulose filter was chosen for 

these comparative experiments instead of agar, as the surface of the filter appears more 

different in texture, stiffness and topography to the plastic polystyrene, from which cell 

culture dishes are made, than agar, under SEM (Figure 4.1). The rationale behind this was that 
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the supposition that the greater the difference between the topography and texture of the 

surfaces, the increased likelihood of their having different effects on cell behaviour. 

 

4.5 Ax2 cells imaged with OCT on a nitrocellulose filter, on KK2 

agar and on a plastic Petri dish 

Ax2 Dictyostelium cells were imaged on a nitrocellulose filter, KK2 agar and under KK2 buffer 

on a plastic Petri dish using the OCT microscope. Software written automatically collapsed 

the images into the enface plane at a small area around the substrate (~25 µm) for ease of 

visualisation. En face images were required to track the migration of the cells over the surface 

of their substrata with 2D-DIAS. OCT images of the enface and side-on appearance, and a 

3D projection by Amira (Visage Imaging, USA) of these substrata, with Ax2 Dictyostelium cells 

seeded on them, are shown in Figure 4.2. The surfaces appear to have a different texture, with 

the nitrocellulose filter surface having a brighter and grainier appearance than the agar, and 

the plastic surface appearing almost invisible, but the differences between the nitrocellulose 

and the other surfaces is not as obvious as under electron microscopy, and the pores of the 

filter cannot be resolved (Figure 4.2). The appearance of the agar is rougher under OCT 

microscopy than that of the polystyrene plastic surface (Figure 4.2B-C). This is not seen in the 

SEM images (Figures 4.1B-C), and may appear in the OCT images due to light scatter from 

the arrangements of cross-linked and aggregated polymers which comprise the agarose 

gel306,330,589,603,636. The enface images also show a more textured appearance to the nitrocellulose 

surface, when compared to the agar, with the polystyrene Petri dish having almost no visible 

texture (Figure 4.2). The Ax2 Dictyostelium cells of approximately 10 µm diameter, which 

become longer and thinner when polarized, appear in the OCT images as bright spots against 

a darker (less scattering) background, on the agar, nitrocellulose and plastic Petri dish surfaces 

(Figure 4.2). These can be followed in time-lapse to obtain information about the 

characteristics of migration in the cell followed. 
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Figure 4.2 OCT images of agar, nitrocellulose and plastic surfaces seeded with Ax2 cells 

 

Figure 4.2: (A-C) Enface (one slice at the surface), (D-F) B-scan (side) (one slice from the beginning of the stack) and (G-I) 3D Projection OCT images (with Amira 

software (Visage Imaging, USA)) of (A, D, G) KK2 agar, (B, E, H) a nitrocellulose filter and (C, F, I) a plastic Petri dish, all seeded with Ax2 cells. The bright spots 

are cells and cellular debris, an example cell is indicated with a yellow arrow in each 3D image.  The surfaces appear different in these images, but surface details 

cannot be properly resolved. Scale bars are 20 µm. 
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4.6 Ax2 Dictyostelium cells under two different conditions 

Images of Ax2 Dictyostelium cells migrating on a nitrocellulose filter and on a plastic Petri dish 

under KK2 buffer were acquired every 30 seconds. These two surfaces were chosen as they 

are commonly used substrates for assaying development of Dictyostelium cells. As these assays 

generally allow the cells to intrinsically signal to one another after starvation, and do not rely 

on extrinsic application of cAMP, the Ax2 cells were seeded under starvation conditions 

6 hours prior to imaging and allowed to spontaneously release waves of cAMP, their natural 

response to these conditions. 20 minutes of time-points were used for analysis, as this is 

sufficient time for visualisation of chemotaxis of Dictyostelium cells (slower moving cells would 

require much longer times to track effectively)215,348,611. The image stacks were collapsed into 

the enface plane by use of ImageJ macros prior to tracking and subsequent analysis, as 

described in the Methods section.  

For the nitrocellulose filter surface, three different experiments performed on different days 

were used for the analysis, while for the plastic Petri dish substrate, two different experiments 

performed on different days were used. In order to determine if any effects of surface were 

restricted to cells exhibiting migration of a certain character, cells were assigned to two 

different groups based on features of their migration, and then manually outlined and tracked. 

These groups were called ‘chemotaxis’ or ‘random movement’. Dictyostelium cells are motile 

when they are not chemotactic, but this motion is characterised by different features to 

chemotaxis18,196,304,657. It is a non-directional movement and involves pseudopods being 

extended at points all over the cell membrane196,657,682. The result is a cell which crawls around, 

exploring its environment in a seemingly random manner, although it has been argued that 

this process is not in fact entirely random196,304. It should be noted that although this usually 

refers to cells which are unstimulated, i.e. in the vegetative state, whilst the cells in my 

experiment had all been allowed to develop for 6 hours and so should have received some 

stimulation with cAMP18,143. The cells which I classified as randomly moving, for the purpose 

of this experiment, were those which were not moving directly towards a source of 

chemoattractant, but were motile. 

The criteria used for classifying the type of movement were as follows: 1) the cells were 

motile, 2) cells which were moving towards a large multicellular aggregate, or towards a 

stream were classified as chemotactic, as the multicellular aggregate acts as a focal point for 

chemoattractant release in Dictyostelium, where the cAMP signal can be relayed from cell to cell 

over a distance of ~50 µm between cells111,134. Cells which were not moving towards a 
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multicellular aggregate or stream were classified as moving randomly. Cells which were 

possible to track with confidence through all the time-points were chosen for analysis. The 

same criteria were used for both conditions. Enface images of Ax2 cells on nitrocellulose 

filters are shown in Figure 4.3 and on Petri dishes under KK2 buffer in Figure 4.4. On the 

right hand side of the image, the tracks for randomly moving cells are shown in blue and for 

chemotaxing cells in yellow, superimposed on the first time point of the experiment. On the 

left hand side of the image, all of the time-points (41 acquisitions over 20 minutes) were 

summed together. This shows the general trend of the cell movement over the course of the 

time-points analysed, including cell streaming and location of formation of multicellular 

aggregates. Figure 4.5 shows the tracks superimposed on to one another, all starting from the 

same starting point (indicated by a yellow circle). The tracks have been reoriented so that the 

main direction of migration points upwards. The differences between the chemotactic cells 

and the randomly moving cells can be clearly seen with the chemotactic cells moving faster 

and more directly than the randomly moving cells. Any differences between the cells on the 

nitrocellulose filter and on the plastic Petri dish are difficult to visualise or assess qualitatively. 

Therefore quantitative analysis was performed. 

For these experiments, speed was chosen as the first parameter for quantitative measurement 

as it has previously been shown to be affected by substrate topography on a nanoscale, with 

the trend that increased surface roughness increases cell migration speed118,683. Persistence, a 

measure of how directly the cell moved i.e. how much the cell turned while it was migrating 

with a higher value indicating more direct movement, was selected as the second parameter; 

as it was anticipated that, with the phenomenon of contact guidance in mind, topographical 

features on the surface could affect the cell’s direction of motion, either by impeding it, or by 

providing additional surface for the cell to grip on to106,118,683. Indeed, the persistence of 

Schwann cells has previously been shown to be affected by alignment of strongly defined 

topographical features such as grooves and plateaus422. The speed of the cells in µm/min and 

the persistence of the cells, in µm/min-degrees, were calculated from tracks using 2D-DIAS 

(Soll Technologies Inc, Iowa, USA). These measured speeds and persistences, of the Ax2 cells 

under the two conditions of on a nitrocellulose filter and under KK2 buffer on a plastic Petri 

dish, are shown in Table 1 for randomly moving cells and for chemotaxing cells. 

  



OCT in Cell Migration Page 99 

Figure 4.3: Ax2 cells on nitrocellulose filters 

 

Figure 4.3: Ax2 cells imaged every 30 seconds over 20 minutes, 6  hours after seeding on a pre-soaked 

nitrocellulose filter. Stacks were collapsed into the enface plane and summed over ~20 µm for each 

time point. Three different experiments, (A-B) Experiment 1 (B-C) Experiment 2 (D-E) Experiment 3. 

(A, C, E) Cell tracks traced by 2D-DIAS superimposed on an image of the initial time point of the 

experiment. Yellow- chemotaxis tracks, Blue- random cell movement tracks. (B, D, F) Enface images 

summed over all time points with ImageJ showing the movement of the cells. Scale bars are 20 µm. 
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Figure 4.4: Ax2 cells under buffer on a plastic Petri dish 

 

Figure 4.4: Ax2 cells imaged every 30 seconds over 20 minutes, 6  hours after seeding on a plastic Petri 

dish under KK2 buffer. Stacks were collapsed into the enface plane and summed over ~20 µm for each 

time point. Two different experiments, (A-B) Experiment 1 (B-C) Experiment 2. (A&C) Cell tracks 

traced by 2D-DIAS superimposed on an image of the initial time point of the experiment. Yellow- 

chemotaxis tracks, Blue- random cell movement tracks. (B&D) Enface images summed over all time 

points with ImageJ showing the movement of the cells. Scale bars are 20 µm. 
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Figure 4.5: Ax2 cell tracks on nitrocellulose and on a plastic Petri dish- chemotaxis and 

random movement 

 

Figure 4.5: Superimposed tracks of Ax2 cells all starting from the same point and oriented so that the 

main direction of migration points upwards. Each track generated using 2D-DIAS software. Yellow dot 

indicates the starting point of the cell track. (A&C) On nitrocellulose. (B&D) On plastic Petri dish under 

KK2 buffer. (A-B) Chemotaxis. (C-D) Randomly moving cells. The cells can be seen to have moved 

further and more directly (i.e. turned less) when chemotactic than when randomly moving. Scale bars 

are 20 µm. 
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Table 1: Ax2 cells on two different surfaces- Chemotaxis, Random movement and Results of Statistical Analyses 

Condition Speed 

(µm/min) 

Nitrocellulose vs 

plastic Petri dish Ax2 

cells 

Speed 

Persistence 

(um/min-

degrees) 

Nitrocellulose vs 

plastic Petri dish 

Persistence 

Chemotaxing vs 

Randomly moving Ax2 

cells 

Speed 

Chemotaxing vs 

Randomly moving Ax2 

cells# 

Persistence 

Ax2 on 

nitrocellulose 

filter 

-random 

3.35±1.21 

(2.96±0.99) 

Random movement 

U=38 

Z=|2.96| 

p=0.03* 

0.28±0.13 

(0.26±0.15) 

Random movement 

U=66 

Z=|1.78| 

p=0.075 

Nitrocellulose 

Filter 

U= 10 

Z=|4.00| 

Nitrocellulose 

Filter 

U= 8 

Z=|4.09| 

Ax2 on plastic 

Petri dish 

-random 

5.03±1.86 

(4.31±1.38) 

0.40±0.20 

(0.30±0.25) 

p<0.001* p<0.001* 

Ax2 on 

nitrocellulose 

filter 

-chemotaxis 

6.95±1.99 

(6.52±1.24) 

Chemotaxis 

U=24 

Z=|2.40| 

p=0.017* 

0.81±0.36 

(0.70±0.51) 

Chemotaxis 

t=|-1.49| 

(dF=20 ) 

p=0.150 

Plastic Petri dish 

U= 13 

Z=|3.26| 

Plastic Petri dish 

U= 8 

Z=|3.57| 

Ax2 on plastic 

Petri dish 

-chemotaxis 

9.08±2.20 

(8.30±3.9) 

1.06±0.45 

(1.00±0.51) 

p<0.001* p<0.001* 

Table 1: Grand means (±SD) and medians (±interquartile range) calculated from the mean values obtained for each cell. Medians in brackets. Random movement- 

Nitrocellulose filter n=18. Plastic Petri dish under buffer n=12. Chemotaxis- Nitrocellulose filter n=11. Plastic Petri dish under buffer n=11. Summary of the results 

of statistical analysis for Ax2 cells under two different conditions and between the two different conditions, * indicates significance at 95% CI. 
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In order to confirm that there were significant differences between the speed and persistence 

of the chemotactic cells and the randomly moving cells, i.e. that the two groups exhibiting 

different migration characteristics were significantly different from one another and therefore 

should not be combined into a single group, Mann-Whitney tests were performed, as the data 

were non-normal by inspection of a plot of the distribution and by Anderson-Darling tests at 

the 95% confidence level. The results show significance between the two groups (random vs 

chemotaxis) at a 95% confidence interval (CI) under all conditions (speed and persistence on 

a filter and speed and persistence on a polystyrene Petri dish) and are summarised in Table 1. 

The chemotactic group moved further and faster than the random movement group, and also 

turned less. This indicates that, regarding speed and persistence, the cells in the two groups 

were moving in a significantly different manner from one another, and could therefore be 

considered as two separate groups with different migration characteristics. The effect of 

substrata (nitrocellulose vs plastic) and environment (air vs KK2) on speed and persistence in 

these two cell populations was then assessed by statistical analysis. Where data were normal, a 

two-tailed T-test was used for statistical analysis and where data were not normal a Mann-

Whitney rank-sum test was used188. 

Box and whisker plots showing the distributions of speed and persistence of the cells on the 

two different substrata are shown in Figure 4.6. These plots illustrate the differences seen 

between the conditions diagrammatically. Here it can be seen that there appears to be a larger 

difference in speed between the cells on the nitrocellulose and the cells on the plastic Petri 

dish than in persistence. Differences between the randomly moving and chemotactic cells can 

also be visualised by comparison across graphs, with the randomly moving cells having slower 

speed and decreased persistence.  
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Figure 4.6 Box and whisker plots of Ax2 cells in 3D (2D+time) under different conditions 

 

Figure 4.6: Box and whisker plots to show the distributions of speed (A&C) and persistence (B&D) of 

Ax2 cells left to aggregate for 6 hours under KK2 buffer on a plastic Petri dish and on a nitrocellulose 

filter. (A&B) show chemotaxing cells and (C&D) show cells moving in a random manner. The box 

shows the interquartile range, with the median value as a line across the middle. The small square box 

inside the boxplot is the mean. Whiskers represent the 5th-95th percentile of the data. Crosses 

represent the 1st and 99th percentile of the data. Data were obtained on three separate days for the 

cells on a nitrocellulose filter and on two separate days for the cells under buffer on a plastic Petri 

dish. 
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From Table 1, it can be seen that the speed of the randomly moving cells on the plastic 

polystyrene surface was greater than the speed on the filter by 1.68±3.07 µm/min and the 

persistence was also higher, with a value of 0.40±0.20 µm/min-degrees for the cells on the 

plastic surface and 0.28±0.13 µm/min-degrees on the nitrocellulose. This indicates that the 

randomly moving cells in the Petri dish under buffer were moving faster and turning less than 

on the nitrocellulose surface. For statistical analysis, the distribution of results for the speed 

on both the nitrocellulose filter and the Petri dish were significantly non-normal (Anderson-

Darling test at 95% confidence, Nitrocellulose filter- p=0.021, Petri dish- p=0.019) The 

distribution of the results for the persistence was normal for the nitrocellulose filter but not 

for the Petri dish (Anderson-Darling test at 95% confidence, Nitrocellulose filter- p=0.422, 

Petri dish- p=0.005), so Mann-Whitney non-parametric rank-sum tests were used to test both 

parameters. The results of statistical analysis of the effect of the different conditions on the 

speed and persistence of randomly moving Ax2 Dictyostelium cells are summarised in Table 1. 

No significant difference is seen in the persistence between the two conditions of a 

nitrocellulose filter and a plastic Petri dish for randomly moving cells, as U=66, Z=|1.78| 

p=0.075, which is outside the 95% confidence level for significance (nitrocellulose n=18, 

Petri dish n=12). However, a significant difference at the 95% confidence interval is seen 

between the speed of the randomly moving cells under the two different experimental 

configurations, U=38, Z=|2.96|, p=0.03 (nitrocellulose n=18, Petri dish n=12). 

From Table 1, it can be seen that the speed is 2.13±4.19 µm/min greater for the chemotaxing 

cells on the Petri dish than for those on the nitrocellulose. The persistence is 

0.25±0.81 µm/min-degrees higher for the chemotaxing cells on the Petri dish, which 

indicates that the cells on the nitrocellulose filter were turning more. The distribution of the 

speed of the chemotaxing cells on the nitrocellulose was normal, but the cells on the Petri 

dish were non-normal (Anderson-Darling test at 95% confidence, Nitrocellulose filter- 

p=0.178, Petri dish- p=0.044) so a Mann-Whitney test is used for statistical analysis. The 

distributions for the persistence of both the nitrocellulose filter and the Petri dish conditions 

were normal (Anderson-Darling test at 95% confidence, Nitrocellulose filter- p=0.345, Petri 

dish- p=0.495) and a Levene’s test indicated that the variances were equal (Levene’s test 

p=0.576 (>0.05), F=0.324). Therefore a two-tailed Student’s T-test was performed to see if 

the different conditions had any significant effect on the persistence of the cells. Table 1 

summarises the results of statistical tests to see the effect of two different experimental 

conditions on the speed and persistence of chemotactic Ax2 cells. The Student’s two-tailed T-

test indicated that there was no significant difference at the 95% confidence level between the 



Chapter 4: Dictyostelium cells on opaque substrates Page 106 

persistences of the two groups of chemotactic cells, as p=0.150 (>0.05) (t=|-1.49|, 20 dF). A 

significant difference was found between the speed of the chemotaxing cells at the 95% 

confidence level, U=24, Z=|2.40|, p=0.017 with n=11 for the nitrocellulose filter and n=11 

for the Petri dish.  

 

4.7 Chapter 4 Discussion 

Dictyostelium cells were successfully resolved and imaged with OCT at 800 nm wavelength on 

both transparent and opaque surfaces of agar, nitrocellulose and polystyrene plastic. The cells 

appeared to be well-adhered to the substrate in each case, and did not float away or become 

detached, even when disturbed, e.g. by moving the plate to the microscope for imaging. The 

differences in the textures of these surfaces were shown by use of electron microscopy and 

were also seen to a lesser extent in the OCT images. It was proposed that the different 

topological, chemical and other features of the surfaces may influence the migration of 

Dictyostelium cells. 

In order to probe the effects of different environments on the behaviour and migration 

characteristics of cells, it is not enough to simply image the cells. The cells must be imaged 

with sufficient spatial and temporal resolution to enable tracking of cells with confidence 

throughout the duration of the required experimental period. The resolutions in my 

experiments were sufficient to allow manual outlining of motile cells by eye and the 

subsequent creation of tracks from these outlines with 2D-DIAS software . In addition, the 

technique used to visualise the cells should not interfere with the behaviour and vitality of the 

cells. OCT is widely considered to be a non-invasive technique which does not require any 

labelling or preparation of the cells149,208,337. Furthermore, in my experiments, laser power on 

the sample was kept below 1.8mW and switched off automatically between acquisitions, in 

order to keep any effect of laser light on the cells to a minimum. The cells were imaged 

migrating in time-lapse on both a nitrocellulose filter and on a polystyrene plastic Petri dish 

under KK2 buffer and subsequently successfully imported into software for cell-tracking (2D-

DIAS), tracked, and analysed to obtain quantitative information. This chapter demonstrates 

that OCT microscopy can be used to image migrating cells on non-transparent substrates, 

resolving them with sufficient power to allow them to be tracked, chemotactic parameters to 

be measured and differences between experimental conditions detected. For example, 

between the speed and persistence of cells classified as chemotactic (moving more directly 
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and more rapidly) and randomly moving (moving more slowly and turning more); and 

between the speed and persistence of cells in different extracellular environments within these 

groups. 

The experiments in this chapter show that, while these experiments do not detect a significant 

effect of the different surfaces (plastic Petri dish or nitrocellulose filter) and different 

conditions (surrounded by buffer vs on buffer and surrounded by air) on the persistence of 

Ax2 cells starved and subsequently allowed to develop for 6 hours, speed of these cells was 

shown to be significantly higher on the plastic surface under buffer than on the nitrocellulose 

filter. This effect was seen for both chemotactic and randomly moving cells, suggesting that 

the effect of surface seen here is not dependent on whether cells are moving slowly and 

turning more, or faster and in a more directional manner. This suggests an effect on basic cell 

motility rather than specifically on directional migration. 

Prior experiments, by Arcizet et al with vegetative state Dictyostelium cells on microscale 

polydimethylsiloxane (PDMS) indicated an effect of topography on these cells, reducing the 

amount of directed cell motion when compared to flat surfaces, and therefore resulting in 

decreased persistence18. Speed was also found to be reduced overall when micropillars were 

present, although when the cells were moving in a more directed manner, the cells on the 

micropillar surface exhibited increased velocity18,21,410. It should be noted, however, that these 

experiments focused on comparisons of the effects of microfabricated structures against flat 

surfaces manufactured of the same material on cells in the vegetative state18. The structure of 

the nitrocellulose pores in my experiments is on the order of nanometres and the cells have 

been starved. Experiments by Li et al with aggregation stage Dictyostelium cells on amine 

functionalised surfaces found that the speeds of these cells were similar to those of similar 

cells on glass18,361. It would therefore seem that the effects of topography on Dictyostelium cells 

are considerably variable, depending on the physical, mechanical and chemical properties of 

the surfaces on which they are seeded and environments in which they are placed; and 

additionally on their developmental stage, as certain genes are developmentally 

regulated333,528,646.  

In the context of the scope of literature on the influence of macro-, micro- and even nano-

topography on cell behaviour, it may seem somewhat surprising that no effect was seen on 

the persistence of Dictyostelium cells under the two different environmental conditions, 

however, much of these studies have focused on viability, growth, adhesion and 

differentiation, rather than specifically on migration, with increased surface roughness on the 
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submicron- to nano-scale having positive effects on these processes24,95,118,688. Nevertheless, 

contact guidance is a well-known phenomenon, and alignment of cells along topological 

features would certainly be expected to interfere with the persistence of the migration path 

taken by a cell, and this has been shown to be the case in the response of Dictyostelium cells to 

an etched glass interface212. Additionally, some studies have found that increased surface 

roughness can have positive effects on cell motility, increasing movement speed118,119,327,626. 

However, the elastic and chemical properties of the surface, as well as the scale and type of 

patterning have been shown to affect contact guidance327,62688,200,373,482,510,626. Nitrocellulose 

filters may not have the correct features for the occurrence of this phenomenon in 

Dictyostelium. Although contact guidance has been seen with ridges and grooves of down to 

approximately 70 nm, almost an order of magnitude smaller than the 450 nm (0.45 µm) pore 

sizes of the nitrocellulose filters, possibly other features of the surface do not promote this 

behaviour in Ax2 Dictyostelium cells327,373,610. Additionally, most of the literature available on 

cell-substrate interactions and contact guidance focuses on mammalian cells, largely due to 

the stem cell, biomaterial and tissue engineering industries; furthermore, on many different 

types of cells and cell lines, from neurones through muscle cells to leucocytes, with particular 

emphasis on tissue engineering applications24,283,422,456. It should not be forgotten that the 

effects of surface topography and functionalization on cells has been shown to vary by cell 

type, even among mammalian cells, and that, while Dictyostelium shares many cellular signalling 

molecules with higher eukaryotic organisms, there are still a number of differences at the 

genetic level and in protein sequences88,134,200,373,510. For example, in the context of cell-

substrate interactions, no homologs of integrins have yet been found in Dictyostelium, although 

other adhesion receptors have been discovered, and force traction experiments have clearly 

shown that Dictyostelium cells are able to adhere to and generate force on their 

substrata37,43,109,114,187,376. The natural environments of Dictyostelium cells and mammalian cells 

are also quite unalike55. It may not be appropriate to apply information gained from 

mammalian cells to Dictyostelium and vice versa. Caution should also be applied in the 

interpretation of the results within the narrower context of Dictyostelium migration, and 

development assays, for example, these results for a nitrocellulose filter resting on saturated 

prefilters cannot be applied to cells on a dry nitrocellulose filter, as these physical and 

hydration properties can affect cell behaviour24,118.  

Broadly, there are two possible reasons why no significant differences are seen in cell 

persistence between the two environments, either the environments exert exactly the same 

effect on persistence, or they exert several different effects which in some manner interact to 



OCT in Cell Migration Page 109 

the same effect on the cellular scale. The surfaces appear different to the human eye, and 

under electron (Figure 4.1) and atomic force microscopy, and also different in texture when 

touched by a human finger. Nonetheless, it cannot be said whether all of these textural 

differences necessarily translate well to the cellular level118,548. It should be noted here that is 

possible to quantify the roughness of a surface from an image of that surface, by use of 

texture analysis, a process whereby a surface can be described in terms of deviation from the 

ideal by a number of mathematical parameters125,285,401,437,481. Although these parameters have 

been reasonably well-characterised for 2D-surfaces and are used in some national standards, 

texture can be difficult to define285,401,437,481. Therefore, although texture analysis was not used 

here, as it can be complex, often utilising various methods of statistical analysis to select 

appropriate texture features to suit the particular application; it may represent a useful avenue 

for future study when investigating the effects of surfaces on cell behaviour285,290,481. 

An analysis of the physical and chemical properties of the two surfaces was considered to be 

outside the scope of this experiment and therefore was not undertaken, but by observation it 

was seen that the nitrocellulose was more flexible and deformable than the polystyrene. The 

literature reveals that cells migrate faster on stiffer substrates, and this was seen in this 

chapter, with cells moving faster on polystyrene plastic surfaces. However, this appears to 

refer primarily to gels and matrices, and while it was possible to bend the nitrocellulose filter 

by hand, it is a solid material and is unlikely to be significantly deformable136,303,372,626,662,688. 

Neither material could be considered to be ‘soft’, which may cause problems with the stability 

of cell-substrate interactions, as they become disrupted by the traction force generated by the 

moving cell24,167. Extremely high hydrophilicity may also disrupt the formation of cell-surface 

interactions, as cell-surface binding proteins are not well adsorbed under these conditions24,453. 

From the manufacturer’s website, nitrocellulose was said to be a hydrophilic surface, although 

the degree of hydrophilicity is not given166. The polystyrene Petri dish is also likely to be 

hydrophilic, due to it being manufactured for cell culture24,516. Cells adhere optimally to 

reasonably (i.e non-extreme) hydrophilic surfaces, because of adsorption of any proteins 

mediating cell-substrate interactions24. Both the nitrocellulose filter and polystyrene Petri dish 

are likely to fall into this category, as they are designed for cellular compatibility. The porosity 

of nitrocellulose was given as 79%, as it is composed of small pores of 0.45 µm. The 

polystyrene Petri dish does not have pores of this size, as can be seen from the EM 

microscopy images (Figure 4.1)166. Osteoblasts and corneal epithelial cells display increased 

adherence when seeded on a membrane with nano- and sub-micron- scale pores240,707. 

However, this could be because the basement membrane on which mammalian cells typically 
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rest in vivo is on the order of tens to hundreds of nanometres and the artificial structure 

mimics their natural environment240. Dictyostelium cells are not found on this type of structure 

in nature and so potentially have not developed this type of response. 

Dictyostelium cells have been shown to be able to swim when not adhered to a substrate, 

however, this is not likely to be occurring in the experimental configurations used here as the 

cells were left to attach to their substrata for 6 hours prior to imaging27,32,640. Therefore, the 

living cells should be adhered to their substrates and not swimming freely in buffer187. 

Additionally, the OCT images were cropped at 25 µm around the interface, so any cells which 

were seen in the enface images were at a maximum of 25 µm from the substratum, which 

makes the cells which appear in the analysed images having no contact with the substratum 

improbable. Finally, the speed at which Dictyostelium swim was discovered to be in the region 

of 1 µm/min, a much slower speed than their speed of migration on glass, or their speed of 

migration measured in my experiments27,32,309. It is possible that the Dictyostelium cells on the 

plastic substrate under KK2 buffer are slightly less well adhered to the surface than those on 

the nitrocellulose filter. Cancer, epidermal melanocytes and Dictyostelium move slowly on 

cleaned glass because of very strong attachment, which can be reduced by coating with 

(human serum albumin) or mica (a non-adhesive mineral)548,663. Vegetative Dictyostelium sadA- 

mutants, which lack an adhesion receptor and are therefore poorly adhered to substrata are 

able to migrate, moving faster when compared to their wild-type counterparts187,206. Similarly 

TalinA mutants which have cytoskeletal defects and attach poorly to surfaces also show 

increased migration speed79,448,622. Potentially the Ax2 cells may be more strongly attached to 

the nitrocellulose surface than to the plastic Petri dish surface, resulting in a reduced 

movement speed640. This explanation does not, however, account for the fact that no 

significant difference was seen between the persistences of the cells under the different 

experimental conditions. The sadA- mutants also exhibit reduced persistence187. Therefore, it 

might be expected that the faster moving cells on plastic under KK2 buffer might have 

similarly reduced persistence. This was not seen, with mean persistence actually being higher 

for the cells on the plastic Petri dish than on the nitrocellulose filter, although this difference 

was not found to be significant at the 95% confidence level.  

An alternative possibility to explain the reduced speed of Dictyostelium cells on a nitrocellulose 

surface relative to that seen on a plastic Petri dish surface, is that on this substratum the cells 

take increasing time to anchor to the surface, resulting in a slower measured speed. The edges 

of the pores of the filter are thin (<0.5 µm wide) and separated by holes which are microns 
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apart. This is illustrated in Figure 4.7, the nitrocellulose filter at the highest magnification with 

the edges reproduced here and marked with orange arrows, for clarity. Dictyostelium 

pseudopodia have been shown to be approximately 5 µm in size59,581,582,641. Because of these 

large gaps and the relatively small size of the edges of the pores, the pseudopodia may have to 

extend further or possibly even alter direction in order to adhere to the substratum properly, 

subsequently allowing the cell to move210,582,640,657. Bunemann et al have argued that the 

process of cell adhering to the substratum plays only a small role in the migration speed of 

Dictyostelium cells, postulating a model whereby detachment of the cell from the substratum is 

the rate-limiting step in cell migration speed, which contradicts what I have outlined here76,287. 

However, their model relies on there being a fixed number of potential adhesion points 

randomly distributed around the membrane of the cell, which are always located at a point 

where they are able to easily attach to the substrate76,210. As I have suggested, this may not be 

the case on the nitrocellulose surface. 

 

Figure 4.7: Electron microscopy image of the nitrocellulose filter 

 

Figure 4.7: Electron microscopy image at high magnification from Figure 4.1 made larger and 

annotated for clarity of explanation. Orange arrows show the approximate edges of two pores which 

appear to exceed 1 µm in diameter. A scale bar showing the approximate diameter of a Dictyostelium 

cell is shown beneath the image in yellow.  
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Another possible explanation for an observed reduction in speed, but not in persistence of 

the Dictyostelium cells on the nitrocellulose filter is that the cells moved through the pores of 

the filter instead of over the top of the surface. It is possible for cells to squeeze through gaps 

of up to 10% of their diameter and, although the pore size of the filter is stated as 0.45 µm 

diameter, the electron microscopy images revealed a meshwork structure of several layers 

with pores on each layer of a couple of microns in diameter (Figure 4.7, orange arrows)48,145. 

As I have tracked the cells on the surface in the enface plane only and have summed around 

the surface over approximately 20 µm, I have tracked only the motion of the cells over the 

surface. If the cells are migrating through the pore of the nitrocellulose rather than directly 

over the surface, with motion in the horizontal as well as lateral plane, then their actual path 

length exceeds that which has been tracked by this method (Figure 4.8). If this is the case, 

then their actual speed may not be reduced but only the apparent speed, calculated from this 

method of tracking, because they have actually moved a greater distance than has been 

tracked (i.e. their displacement over the surface is less than their actual path length, Figure 

4.8). It is not possible to determine whether or not this is the case with this microscopy 

technique as the nitrocellulose filter too highly scattering, making it extremely difficult to 

resolve cells from the background within its pores, and the resolution of the system is 

insufficient to resolve the pores of the nitrocellulose. 

With Dictyostelium being a commonly used model for the study of chemotaxis and cell motility, 

and a significant difference in speed between both chemotaxing and randomly moving 

Dictyostelium cells on two different commonly used substrata seen, caution should be applied 

when comparing results from cell migration experiments performed on different substrates. 
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Figure 4.8: Diagram of cell migration through nitrocellulose pores 

 

 

Figure 4.8: Schematic of a cell migrating through pores of nitrocellulose below the surface. The actual 

distance the cell moves is shown in red, while the measured distance by which the cell displaces 

across the surface is shown in blue. The measured distance is less than the actual distance moved by 

the cell, which results in a lower measured speed for this cell than the actual speed. 

 

  



Chapter 4: Dictyostelium cells on opaque substrates Page 114 

4.8 Chapter 4 Summary 

Chapter 4 aimed to explore the possibility of imaging single migrating Dictyostelium cells on 

opaque surfaces, which is not readily achievable without staining for conventional light 

microscopy techniques; and subsequently to use this tool and the methods and protocols 

developed to investigate the effects of two different experimental conditions on Ax2 cell 

migration, both random motion and chemotaxis. The motivation behind this was to allow for 

a fairer comparison of results obtained, as individual cells are usually studied on glass, while 

the behaviour of multicellular aggregates is commonly explored on nitrocellulose filters or 

agar surfaces. Initially the utility of the label-free non-invasive technique of OCT for imaging 

motile cells on opaque substrates with sufficient spatial and temporal resolution to enable 

them to be tracked and subjected to quantitative analysis with complimentary software tools 

was demonstrated. Subsequently experiments comparing the effects of two commonly used 

development assays on the speed and persistence of Ax2 Dictyostelium cells were performed. It 

was discovered that there was no effect of substrate (nitrocellulose or plastic) and 

surrounding medium (plastic and KK2 buffer or nitrocellulose and air) on the persistence of 

Ax2 cells classified into groups as randomly moving or chemotactic, but a significant 

difference was found between the speeds of the cells in both groups, with the cells on the 

plastic Petri dish moving faster. This result should be considered when drawing conclusions 

from cross-comparisons of cell motility experiments under different conditions and on 

different substrates. 
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Chapter 5: Ax2 Dictyostelium migration and chemotaxis in 4D 

(3D+time) 
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5.1 Chapter 5 Aims 

As the natural environments of both Dictyostelium (soil) and mammalian cells (tissue) are 

complex three-dimensional (3D) environments, bearing little resemblance to the planar glass 

substrates commonly used for cell culture and experiments, there is increasing interest in both 

culturing and experimenting with cells within 3D environments55,172,606. The goals of this 

chapter were to image Ax2 Dictyostelium cells within the three-dimensional environment of an 

agarose gel, and follow their migration in time-lapse. This was in order to explore whether 

this environment offers a useful way to present Dictyostelium cells in 3D and if OCT can be 

used to effectively study cell migration under these conditions. Additionally, to determine 

what information can be obtained from these OCT images on the character of cell migration 

in four-dimensions (3D+time) and how this migration and chemotaxis compares to what is 

seen on 2D surfaces. 

 

5.2 Dictyostelium discoideum aggregation- why a 3D environment 

As mentioned in chapter 4, one of the common methods by which cell chemotaxis and 

motility is investigated in Dictyostelium is through development assays, whereby starved 

Dictyostelium cells aggregate by chemotaxis and come together to form 3D multicellular 

structures comprised of thousands of cells143. Throughout this process, cells are attracted to 

one another by the chemoattractant cAMP propagating in waves over long 

distances140,571,572,667. Successful development is dependent on the proper control of cell 

migration and gene expression by this dynamic signal, so investigation of the mechanisms of 

this signal is essential for a full understanding of Dictyostelium chemotaxis and 

development140,667. To this end, these propagating waves can be visualised in both brightfield 

and darkfield microscopy images, although darkfield microscopy is most commonly used as 

the waves are more visible in this configuration140,143,521. The cAMP signals can be seen as 

waves because of the response of the cells to this signal522. After they receive the cAMP signal 

the cells respond by first rounding up (the cringe response) and then by releasing cAMP 

themselves, polarizing and moving directly towards the source216,521,659,667. However, after a few 

minutes, they stop both responding to and releasing cAMP, becoming insensitive to this 

signal667. Meanwhile, the local cAMP molecules diffuse away and the cells secrete a cAMP 

phosphodiesterase, which degrades the local cAMP26,357. The cAMP concentration begins to 

fall, which causes the cells to become re-sensitized to cAMP, in preparation for the arrival of 
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the next wavefront of cAMP466,667. The result of this is that cells switch between being 

polarized (more scattering) and unpolarized (rounded and less scattering) with the 

propagation of the cAMP waves, and this change can be visualised under microscopy as 

changes in light scattering caused by the population of cells changing morphology in a co-

ordinated manner104,388,571,572,667. 

The processes of chemotaxis, aggregation and development of Dictyostelium have been well-

studied on 2D planar surfaces, and to a certain extent within more complex environments, 

such as on soil plates, microstructured surfaces or under-agarose18,142,492,544,682. Although it is 

generally known that cells experience a complex three-dimensional environment in nature, 

and efforts have been made to replicate this in the laboratory, often there has been significant 

difficulty in visualising motile cells within these environments, due to the opacity of the 

matrix and the need to obtain rapid volumetric images614,691. Furthermore, some experimental 

protocols require destruction of the sample at the experimental end-point, precluding the 

possibility for time-lapse analysis63,172,513,614,682. 

In chapter 4, I have shown that Dictyostelium cell behaviour differs depending on the substrata 

on which the cells rest. This is likely due to differences in the physical properties of the 

surfaces in question (nitrocellulose and polystyrene plastic)11,100,108,18. Exploration of the effects 

of substratum topography and physiochemical properties on cell behaviour can be extremely 

useful, particularly in directed differentiation of stem cells, and development of biomaterials. 

Additionally, these investigations could go some way towards unravelling the mechanisms of 

cell motility and chemotaxis, particularly with reference to cell-substrate adhesion419-421. 

However, in collapsing the natural 3D environment of a cell to only 2D some information 

will be lost142. Furthermore, it appears that mammalian cells exhibit different behaviour and 

genetic expression on 2D surfaces than in their more natural 3D 

environment15,30,45,95,221,461,477,607. As Dictyostelium shares many genes and signalling molecules in 

common with mammalian cells, and a similar paradigm of cell movement, most markedly 

with leucocytes and neutrophils, the added dimensionality of a 3D environment may have an 

effect on the migration and chemotaxis of Dictyostelium cells202,466,497. Indeed, growth of 

Dictyostelium mutant cells on soil plates, a more natural 3D environment, has previously 

revealed phenotypes which were not apparent on 2D planar agar surfaces492. Therefore, in 

order to investigate the potential of an agarose gel, a widely available frequently used 

biocompatible substance, to act as a 3D environment in which to place Dictyostelium cells, Ax2 

Dictyostelium cells were seeded within an agarose gel and imaged aggregating and chemotaxing 
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with OCT, which offers a non-invasive, label-free method for investigation of cell behaviour 

within 3D matrices56,411,606. To explore the possibility for this 3D environment to exert effects 

on cell migration, the time-lapse images were tracked and quantitative information on cell 

motility parameters was obtained, which was then compared to cells on 2D substrata. 

 

5.3 Agarose- a 3D environment for Dictyostelium cells 

Agarose is a hydrocolloid, originally derived from red algae and seaweeds515. Purified from 

agar, which consists of agarose (the gelling fraction) and agaropectin, it is a complex 

polysaccharide where the exact structure is dependent on the species from which it was 

originally derived. However, it is mainly comprised of alternating, galactose residues, linked 

together to form long polysaccharide chains, which aggregate to form double helices, joined 

together by hydrogen bonds20,194,306,589,604. It is frequently used in molecular biology and tissue 

engineering because of its biocompatibility and useful physical properties, such as thermo-

reversibility, formation of resistant gels at low concentrations, the ability to vary the size of 

the mesh by alteration of the concentration of the agarose, and high hysteresis (difference 

between melting and gelling temperature)174,286,312,339,443,451,515,616. Low melting-point agarose was 

chosen as the material in which to place the Dictyostelium cells because of these properties, as 

discussed in chapter 3.  

 

5.4 Ax2 cell aggregation and development in a 0.5% agarose gel 

Figures 5.1 and 5.2 show Ax2 Dictyostelium cells which were placed within the three-

dimensional environment of a non-nutrient 0.5% agarose gel, and imaged after 10 hours had 

elapsed with OCT, as described in the methods section, migrating and coming together in 

time-lapse (Figure 5.1A-F&K-P, Figure 5.2A-F over 2 hours). This demonstrates that 

Dictyostelium cells are able to signal to one another effectively, as they spontaneously undergo 

aggregation, and migrate within the three-dimensional environment of an agarose gel, and can 

form multicellular structures under these conditions312,492. The cells are shown at the streaming 

stage of development, and, although the majority of the streams formed at interfaces, either 

between the agarose and the air (Figure 5.1) or between the agarose and agar (Figure 5.2), 

some of the streams clearly extended through the agarose (Figure 5.1A-B&K-L) yellow 

arrows), confirming that Ax2 Dictyostelium cells are able to migrate through agarose in 
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multicellular cell streams. Streaming typically occurs at around 8-10 hours post-starvation in 

Ax2 Dictyostelium cells109,190,492. Multicellular formation had already begun by the initial 

acquisition time point, at 10 hours after starvation, with mound formation at around 12 hours 

of development (the final acquisition time-point), which is approximately the same time-scale 

as seen in development of these cells on a 2D surface109,139,186,492. As OCT is non-invasive and 

there is no fluorescent tagging of the cells, so photobleaching cannot occur, it is possible to 

follow the cells for a long time-period with no loss of signal intensity473,508. Figure 5.1G-J, 

shows Ax2 cells followed over a period of 5 hours of imaging (acquisition every 2 minutes). 

By the final time-point of the experiment, 15 hours after seeding within the non-nutrient 

agarose, the cells had formed a tight aggregate which had displaced approximately 50-60 µm 

from its original position (Figure 5.1I). The formation of a tip can be clearly seen (Figure 

5.1I), indicating that the prestalk cells are able to differentiate and become sorted in this 

experimental configuration139,572. Dictyostelium development was not followed for any longer in 

this experiment due to limited space on the acquisition computer’s hard drive for saving 

images. 
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Figure 5.1: Ax2 Dictyostelium cell streaming at the agarose surface 
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Figure 5.1: Two experiments from two different days showing Ax2 cells in 0.5% agarose on an agar 

base layer imaged ~10 hours after seeding. Images were acquired every 2 minutes (120 seconds). Cell 

streams are clearly seen at the surface of the agarose and within the agarose. (A-B&K-L) Volumetric 

renderings of the cells within and on the surface of the agarose generated using Amira software 

(Visage Imaging, USA). All of the time points are summed together using standard deviation in ImageJ 

to show the general trend of cell movement. Grey guidelines denote the edges of the image for ease of 

visualisation. Yellow arrow points to an example stream which extends below the surface of the 

agarose. (C-F&G-J&M-P) Images collapsed into the enface plane and summed over ~20 µm. (C,G&M) At 

0 minutes (D&N) At 60 minutes (1 hour) (E&O) At 120 minutes (2 hours) (H) at 150 minutes 

(2.5 hours) (I) at 300 minutes (5 hours). (F&P) Superimposed enface false colour images of slices 

summed over ~20 µm, blue- 0 minutes, magenta- 60 minutes (1 hour) and yellow- 120 minutes 

(2 hours). (J) Superimposed enface false colour images of slices summed over ~20 µm, blue-

 0 minutes, magenta- 150 minutes (2.5 hours) and yellow- 3000 minutes (5 hours). Scale bars are 

20 µm. 

 

Figure 5.2: Ax2 Dictyostelium cell streaming at the agarose- agar interface 

 

Figure 5.2: Ax2 cells in 0.5% agarose on an agar base layer imaged ~10 hours after seeding. Images 

were acquired every 1 minute over 120 minutes. Cell streams can be clearly seen at the interface 

between the agarose and the agar base. (A-B) Volumetric renderings of the cells within and on the 

surface of the agarose. Grey guidelines denote the edges of the image for ease of visualisation. (C-E) 

Images collapsed into the enface plane and summed over ~20 µm. (C) At 0 minutes (D) At 60 minutes 

(E) At 120 minutes. (F) Superimposed enface false colour images of slices summed over ~20 µm, blue-

 0 minutes, magenta- 60 minutes and yellow- 120 minutes. Scale bars are 20 µm.  
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5.5 Ax2 cell-cell signalling within a 0.5% agarose gel 

As the Ax2 cells aggregated in a manner comparable to that seen on 2D substrata, it has been 

inferred that they were able to signal effectively through the agarose gel312,338. Under starvation 

conditions, during multicellular development, cAMP pulses are released by Dictyostelium cells, 

and these pulses synchronise with one another, resulting in extracellular waves of cAMP 

originating from the centre of each aggregation point572. These waves can be visualised as 

optical density waves during development143,571,572. The optical density waves are caused by 

coordinated changes in cell morphology and motility occurring in a synchronous fashion in 

multiple cells as a result of cAMP signalling and can therefore give insights into the 

mechanisms of cell-cell signalling during the process of aggregation and development143,357,572. 

In order to see if these waves could be visualised propagating through the cells within a 3D 

environment in the OCT images, image subtraction was performed, whereby each image was 

subtracted from the following one. This was to enhance the differences between the two 

images, enabling the waves to be seen more clearly142,572. Figure 5.3 shows these wave fronts 

visualised as dark and light stripes seen within the streams, occurring at the surface of (Figure 

5.3A-H, yellow arrows) and within the agarose (Figure 5.3A-B&I-J, orange arrows and yellow 

arrows), moving in time, demonstrating that Ax2 cells are able to signal to one another 

through the agarose and that the optical density waves, which represent the propagated cAMP 

signal as experienced by the cells, can be visualised using OCT357,522. 
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Figure 5.3: Ax2 cells in 0.5% agarose cAMP waves 

 

Figure 5.3: Optical density waves seen in a stream of Ax2 cells suspended within 0.5% agarose gel on a 

base of agar. Image subtraction has been used to enhance the visibility of these waves572. Yellow 

arrows show an example of a dark area (less scattering) consisting of multiple cells acting in a 

coordinated manner within the stream moving in time. Orange arrow indicates the remains of a 

stream which was below the surface of the agarose. (A-D) Streams occur largely on the surface of the 

0.5% agarose, so images were collapsed into the enface plane using ImageJ and summed over ~30 µm 

round the surface of the agarose. A representative sample of 4 images is shown starting from 

approximately 680 minutes (11.33 hours) after initiation of starvation. 5 minutes elapse between 

consecutive images. (E-H) 3D projections from 2 different angles (E&G and F&H), created using Amira 
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software at the initial time point (E-F) and final time point (G-H) shown in the enface images. Grey 

guidelines show the edges of the volume for ease of visualisation. (I-J) Two volumetric images (Amira 

generated) from a different experiment on a different day, 5 minutes apart showing the movement of a 

dark area of cells in time, within a stream within inside the agarose gel. Scale bars are 100 µm. 

 

5.6 Chemotaxis of Ax2 cells in 4D within a 0.5% agarose gel 

Having explored the motility of Ax2 Dictyostelium cells within a 0.5% agarose gel and shown 

that cells are able to signal through the agarose and aggregate together to form streams and 

multicellular aggregates, I decided to attempt to visualise the chemotaxis of these cells within 

the agarose. Individual cell behaviour was difficult to assess in the previous experiments, as 

there were few single cells remaining outside of multicellular aggregates by the 

commencement of imaging. Additionally, previous work had suggested that sometimes cells 

fail to develop within an agarose gel, and that when development did occur, different colonies 

were not found to be at the same developmental stage312. Although I did not see this in my 

development experiments with Ax2 cells, this did not preclude the possibility of this 

happening. Therefore, in order to ensure that all of the cells were at the same developmental 

stage and were not aggregated by the initiation of imaging, the cells were pulsed prior to 

imaging, as described in the methods section, and subsequently placed within 0.5% agarose 

on a layer of 1 µM cAMP agar, which acted as a chemoattractant. The result was a diffusion-

based gradient of cAMP from the bottom of the agarose to the top, as discussed in chapter 3 

(illustrated for clarity in Figure 5.4)341. 
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Figure 5.4: The cAMP gradient 

 

Figure 5.4: The 1 µm cAMP agar below the 0.5% agarose. The cAMP diffuses from the base agar layer 

through the agarose establishing a diffusion-based gradient. 

 

Cells were imaged 30 minutes after they were set within the agarose, in order to allow a 

gradient to establish. As can be seen in Figure 5.5, the Ax2 Dictyostelium cells began moving 

from the initial acquisition time-point (Figure 5.5A&B) indicating that the cAMP gradient was 

established by the beginning of the time-lapse experiment. Cells near the top of the agarose in 

these experiments were able to detect the cAMP signal and move downwards towards the 

cAMP agar both near the beginning (Figure 5.5A&B) and throughout the entire time course 

of the experiment (Figure 5.5C). 

With OCT microscopy, Ax2 Dictyostelium cells can be resolved as bright spots within the 

darker background of the agarose gel (Figure 5.6). For some cells, cell shape can also be 

resolved, i.e. elongated morphology instead of rounded morphology can be seen. An example 

elongated cell can be seen indicated with a yellow arrow in Figure 5.6B. With the spatial 

resolution limit of the system measured at ~5 µm, however, on occasion the cells appeared as 

bright spots of less discernible morphology (Figure.5.6D&F). Yet this is sufficient for tracking 

population cell migration, as it allows the cell to be localised within the volume and its 

movement within the volume followed576,685. 
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Figure 5.5: Ax2 cell chemotaxis within a 0.5% agarose gel- the cAMP gradient 

 

Figure 5.5: Volumetric images of Ax2 cells chemotaxing within 0.5% agarose gel. (A-B) over 10 minutes (C) over 120 minutes (2 hours). (A) Superimposed false 

colour image, blue- 0 minutes, magenta- 5 minutes, yellow- 10 minutes) (B) images from 0 minutes to 10 minutes summed over all time points using the 

standard deviation projection in ImageJ. Yellow and orange arrows point to tracks from cells moving downwards over this time period (yellow- cells high up 

within the agarose, orange- cells lower down within the agarose), showing that the cells within the agarose are able to detect and respond to the cAMP gradient 

from the beginning of acquisition. (C) images from 0 minutes to 120 minutes (the entire period of acquisition) summed over all time points using the standard 

deviation projection in ImageJ. Yellow arrow indicates an example track from a cell, high up within the agarose (Far from the cAMP source) moving downwards, 

showing that the cells seeded high up within the agarose are able to detect and respond to the cAMP gradient. Grey guidelines show the edges of the volumetric 

images (generated using Amira software (Visage Imaging, USA)). Scale bars are 20 µm. 
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Turning to temporal resolution, volumetric images were acquired of 1000x1000 µm with 

800x800 sampling points (in x and y). This size was initially chosen to capture the 

multicellular stages of Dictyostelium cell development. However, the number of sampling 

points necessitated by an image of this size, in order to meet desired sampling levels 

(discussed in chapter 3), and the subsequent time required to save tomograms of this size 

meant that the images could only be acquired at 2 minute (120 second) intervals, even with 

use of a striped RAID array139,379. Although it may have been possible to acquire images every 

105 seconds with this spatial sampling density (800x800), if saving were delayed for any 

reason, for example due to the computer processor and RAM being occupied with other 

tasks, imaging of the next tomogram would not start until saving of the previous tomogram 

had completed. Practically, when this was trialled, it resulted in image sequences with time-

points which were an unknown time apart, anywhere from the specified 105 seconds up to 

115 seconds apart, dependent on how long the previous tomogram had taken to complete the 

full acquisition and saving sequence. Therefore 120 seconds was chosen between time-points, 

by experimental iteration, for acquiring time-lapse images of volumes with 800x800 sampling 

points, as it allowed imaging to commence at the specified time, and not to be delayed by any 

increased time saving the previous tomogram. This temporal resolution, combined with a 

spatial resolution of ~5 µm, which allowed cells to be resolved at a minimum as spherical 

bright spots (Figure 5.5), is sufficient for localising chemotaxing cells and tracking them 

within an agarose gel, as I will show in this chapter. 
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Figure 5.6: Ax2 Dictyostelium cells suspended within a 0.5% agarose gel 

 

Figure 5.6: 3D projections of Ax2 cells seeded within a 0.5% agarose gel, generated with Amira 

software (Visage Imaging, USA). Grey guidelines delineate edge of volumes for ease of visualisation. (A, 

C, E) Entire volume acquired. Yellow area indicates area magnified in (B, D, F). (B) Chemotaxing cell 

with elongated shape. (D&F) Chemotaxing cells which can be seen as single bright points. Scale bars 

are 20 µm.  
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5.7 Chemotaxis of Ax2 cells in 4D within a 0.5% agarose gel- 

temporal resolution 

Although tracking cells can be accomplished when cells are resolved as bright spots with a 

temporal resolution of 120 seconds (2 minutes), some more detailed information is 

unfortunately lost such as more detailed information about the shape of the cell track and 

information about cell shape changes within the two minute intervals. With this in mind, a 

tomogram was acquired with the size of the volume decreased to 100x1000 µm (in x and y), 

by setting the galvanometric mirrors to scan over a smaller area. 80x800 sampling points were 

acquired to keep the spatial sampling density identical to that of the larger volumetric images. 

This sampling density permits image stacks to be acquired and saved successfully every 

10 seconds, allowing for experimental determination of the trade-off between increased 

temporal resolution, and decreased size of volume acquired. 

Figure 5.7 shows a volumetric image of Ax2 cells within a 0.5% agarose gel on a base of 1 µM 

cAMP agar, acquired with a reduced size and an increased temporal sampling rate (to every 

10 seconds). The initial time-point is shown in Figure 5.7A&B with the tracks of the 

migrating cells, generated using the Analyse Particles plugin in ImageJ, in Figure 5.7(C&D). 

As seen in the previous 4D chemotaxis time series (Figure 5.5), the general trend of cell 

movement was in the downwards direction, towards the cAMP agar (Figure 5.7A-D). A 

section outlined in green in Figure 5.7C is magnified in Figure 5.7(E-G). These magnified 

images show the appearance of a selected area of cells suspended within the agarose gel. The 

contrast between the cells and the background was made clearer by use of a thresholded 

binary mask (in ImageJ) (Figure 5.7F), enabling the cells to be more easily distinguished from 

the background by eye, and the morphology of the cells clearer. The tracks of the cells in this 

magnified area are shown in Figure 5.7G, moving down towards the cAMP agar. The yellow 

box in Figure 5.7(E-F) was further magnified in Figure 5.7(H-K). The cells were thresholded 

from the background using a binary mask and then outlined using the Analyse Particles plugin 

in ImageJ. A bicellular aggregate was followed over a 20 second period, during which it split 

to form two single cells (Figure 5.7H-J). This aggregate split and re-formed several times over 

the entire experimental time course (2 hours, data not shown). The outline of this aggregate, 

traced from 5940 seconds (99 minutes) after image acquisition begun to 7200 seconds (over a 

period of 1260 seconds (21 minutes)) is shown in Figure 5.7K. Its morphology at each time-

point can be seen, superimposed over the cell outlines from the other time-points. Its general 

trend of motion was in the downwards direction, towards the cAMP agar, however, it stops 
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migrating downwards and instead migrates laterally for a short period (Figure 5.7K, orange 

arrow) of approximately 85 seconds. This period of only lateral movement is shown in Figure 

5.7L, where the morphology of the migrating bicellular aggregate is shown over this reduced 

timespan. The bicellular aggregate did not change position with respect to the cAMP agar, but 

was limitedly motile, changing shape (Figure 5.7L). 
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Figure 5.7: Ax2 cell chemotaxis within 0.5% agarose- temporal resolution of 10 seconds 

 

Figure 5.7: Ax2 cells within 0.5% agarose on a base layer of 1 µM cAMP agar. Images acquired every 

10 seconds for 7200 seconds (2 hours). Grey guidelines delineate the edges of the larger volumetric 

images for ease of visualisation. (A-D) Volumetric images of the Ax2 cells within the agarose from two 

different angles. (A-B) Initial time point. (C-D) Objects thresholded from the background and outlined 

using the Analyse Particles plugin in ImageJ followed by summing using the standard deviation 

projection over all time points. The tracks of the cells can be seen. (E-G) zoomed in area, indicated by 

green box in (C). (E) Initial time-point. (F) Initial time-point with a binary mask applied to outline the 

cells. (G) All of the time-points (7200 seconds, 2 hours) summed together using the standard deviation 

projection in ImageJ to show the cell tracks and overall pattern of cell migration. (H-K) Zoomed in 
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images of a bicellular aggregate, which splits to form two cells, over the course of 20 seconds from the 

area outlined with the yellow box in (E-G). Outlines of the cells generated in ImageJ using a binary 

mask and then outlined using the Analyse Particles plugin. (H-J) An example single cell at 

5940 seconds (99 minutes, 1.65 hours) after the beginning of image acquisition- blue, and for 

20 seconds afterwards (5950 seconds- magenta, 5960 seconds- yellow). (K) 5940 seconds 

(99 minutes, 1.65 hours) to 7200 seconds (120 minutes, 2 hours) after commencement of image 

acquisition summed together using the standard deviation projection in ImageJ. The morphology of 

the cells and the migration path of the cells can be seen. Orange arrow indicates a point where the cell 

stops migrating downwards and shifts position in the same vertical position, before resuming motion 

downwards towards the cAMP agar. (L) Bicellular aggregate from 6550 seconds (~109 minutes, 

~1.82 hours), followed over 100 seconds. The cell does not significantly displace from its original 

starting point towards the cAMP agar, but is motile, changing shape and shifting position. Scale bars 

are 20 µm. 

 

Returning to the entire imaging area of 100x1000 µm, cell tracks generated using a binary 

mask to separate the cells from the background and then outlined using the Analyse Particles 

plugin in ImageJ are shown from two different angles in Figure 5.8A-B. The time-series, 

obtained by acquiring every 10 seconds over 7200 seconds (2 hours), was imported into 

Volocity software for tracking, as described in the methods section, in order to obtain 

quantitative information describing cell chemotaxis. The tracks generated from this volume 

calculated by Volocity are shown in Figure 5.8C, from two different angles. It appears from 

the output generated by Volocity (Figure 5.8C) that certain cells have been considered by the 

software as two separate objects, with one terminating partway through the time-sequence 

and the other beginning at this point (Figure 5.8C indicated by orange arrows and yellow 

arrow). This is likely explained by the fact that cells which become multicellular and then 

disaggregate again to single cells, such as the example shown in Figure 5.7H-J cannot be 

tracked during the bicellular stage as the volume then exceeds the volume thresholding 

applied within the Volocity software; which was applied to restrict analysis to objects of the 

approximate size of single cells (see methods section for details of this thresholding). This was 

a necessary step to ensure tracking of only individual cells, and exclude any multicellular 

aggregates which formed during the course of the experiment, as a natural response of the 

Dictyostelium cells to the presence of cAMP. Cells were excluded from analysis if their track did 

not span the entire timespan of the chosen experimental duration, in order to ensure a fair 

comparison, as there may be differences in the experimental conditions (i.e. altered cAMP 

gradient and levels of enzymes released by the cells) between the beginning time-point and 
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end time-point of the experiment682. Thus cells which are not tracked for the entire duration 

may be subject to different experimental conditions and exhibit differences in the grand mean 

quantitative chemotactic parameter values as a direct result of this. Unfortunately, this also 

results in the exclusion from analysis of cells such as those shown in Figure 5.7H-J, even 

though if their tracks were summed together they would span the whole course of the 

experiment. Evidently, constraining the tracking algorithm by size and also filtering the results 

in this manner excludes cells which become multicellular aggregates during the course of the 

experiment, and cells which come into contact with other cells at any point during the 

experiment. The main outcome of this is in severely reducing the number of tracks which 

meet the volume and track time-span criteria and thus are available for analysis. 

Figure 5.8D-E shows plots of the tracks, generated with Volocity software, which span the 

entire time-course of the experiment (2 hours). Only 4 tracks from a total of 77 successfully 

tracked objects were tracked for the entire experiment (2 hours). The mean velocity of these 

tracked cells was 0.10±0.04 µm/second (median 0.10±0.05 µm/second) and the mean 

meandering index was 0.03±0.04 (median 0.01±0.01). Meandering index is a measure, 

between 1 and 0, of how much a cell deviated from a straight path while migrating and is 

calculated from displacement/track length. A value of 1 indicates that a cell was moving in a 

straight line. These chemotactic parameters were chosen, because both of these parameters 

have previously been shown to be affected by the substratum and environment of a 

cell106,119,410,483,563,683. Additionally, between them these parameters describe the path of a cell. 

For example, path length can be simply calculated from velocity over a known time. From 

this value, with a known meandering index, displacement could also be calculated. It can 

therefore be seen that velocity, describing how fast a cell was moving, and meandering index, 

describing how directly a cell moved towards its destination, together provide a good 

description of cell migration. The values obtained for these few successfully tracked Ax2 

Dictyostelium cells indicated that these cells were able to migrate through the agarose, but did 

not take a very direct path, so their translocation from their starting point was small, as can be 

seen in Figure 5.8D-E.  
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Figure 5.8: Ax2 cell chemotaxis within 0.5% agarose- temporal resolution of 

10 seconds- Quantitation 

 

Figure 5.8: Ax2 cells chemotaxing within a 0.5% agarose gel on a base of 1 µM cAMP agar. (A-B) 

Volumetric images of the Ax2 cells within the agarose from two different angles generated using 

Amira software. Objects thresholded from the background and outlined using the Analyse Particles 

plugin in ImageJ followed by summing using the standard deviation projection over all time points. 

The tracks of the cells can be seen, for comparison with (C) Output from Volocity showing the cell 
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tracks calculated by the software- Top left- entire volume (surface), Top right- enface view (single 

plane), Bottom left- X-Y view (B-scan), Bottom right X-Z view. Orange arrows point a track which has 

been split by the software into two separate tracks. Yellow arrow points to another track which has 

been split. (D-E) Plots of 4 cell tracks from two different angles calculated using Volocity software, 

which could be tracked over the entire 7200 seconds (2 hour) timespan. X axis is black, Y axis is green, 

Z axis is blue. Scale bars are 20 µm. 

 

5.8 Chemotaxis of Ax2 cells in 4D within a 0.5% agarose gel- 

tracking and quantification 

Although I have shown that OCT can be used to image a few cells with increased temporal 

resolution, which potentially gives access to more detailed information on cell morphology 

and the temporal dynamics of cell chemotaxis, the periodicity of a naturally occurring cAMP 

wave has previously been shown to be 5-7 minutes, which suggests that a temporal resolution 

of 2 minutes is sufficient to track the overall pattern of cell chemotaxis542,619. A major 

drawback of increasing the temporal resolution was the corresponding decrease in the volume 

of the image stack which could be successfully acquired and saved. This, in combination with 

the necessity to constrain the tracking algorithm to exclude artefacts, resulted in very low 

numbers of cells successfully tracked throughout the entire time course of the experiment. To 

properly represent the typical behaviour of Ax2 cells within an agarose gel, and to reduce the 

effect of any cells exhibiting unusual behaviour (i.e. outliers), which may be seen within a 

population, it was necessary to track larger numbers of cells than could be acquired with this 

reduced volume188,410. Therefore, larger volumes of 1000x1000 µm (with 800x800 sampling 

points, in x and y) were acquired, with image stacks 2 minutes (120 seconds) apart. These 

were the same imaging parameters as chosen for observation of multicellular development, 

earlier in this chapter. 

The cells were set within 0.5% agarose on a bed of 1 µM cAMP agar, as described in the 

methods section, with images acquired on three different days to show repeatability of results. 

Chemotaxis of these cells is shown over a period of 2 hours in Figure 5.9. At the initial time-

point, many individual cells were seen (Figure 5.9A,C,E- blue colour). By the final time-point 

(120 minutes) (Figure 5.9A,C,E- yellow colour) there were far fewer individual cells and more 

multicellular aggregates, most commonly located on the cAMP agar base. Figure 5.9 (B,D&F) 

shows all of the images, acquired over the entire 120 minutes, summed together indicating the 

general trend of cell motion, and also some distinct cell tracks (Figure 5.9B,D,F- yellow 
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arrows). As expected, the cell movement was mostly in the downwards direction, towards the 

chemoattractant. Once the cells reached the cAMP agar layer, which was too solid for them 

to penetrate, they started to aggregate, streaming along this layer and forming clumps of many 

cells, the mound stage of development This was not unexpected, as primed by cAMP, 

Dictyostelium development was initiated143. 

By inspection, by 1 hour, the majority of the cells present in the images acquired at the 

beginning of these experiments had aggregated and formed multicellular structures, 

particularly at the agarose-cAMP agar interface, and far fewer single cells were available for 

tracking (Figure 5.10A-C, experiments performed on three different days). As I was interested 

in exploring individual cell migration, and had set parameters within the Volocity software to 

exclude objects above this size, cells could not be tracked once they were no longer individual 

units. Although more individual cells which were originally outside of the imaging area 

entered the acquisition volume during the time-lapse experiment, new objects appearing in 

the images were excluded. Tracks which did not cover the entire time span of the experiment 

were also excluded. These restrictions were introduced to reduce the possibility of artefacts 

from non-cellular object being tracked. Therefore, Ax2 cells were tracked for a time period of 

1 hour, to obtain information on the characteristics of individual Ax2 cell chemotaxis within a 

3D environment. Over this 1 hour period, the grand mean velocity of the cells was 

0.13±0.06 µm/s (median= 0.13 µm/s, interquartile range= 0.05 µm/s). The grand mean 

meandering index, a measure of how directly a cell moved, i.e. how much it deviated from 

moving in a straight line, was found to be 0.18±0.09. (median= 0.17, interquartile range= 

0.12). The chemotactic index was calculated as described in the methods section. This was 

found to be -0.16±0.55 (grand mean) (median= -0.22., interquartile range= 0.87). 
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Figure 5.9: Ax2 cells chemotaxing within a 0.5% agarose gel on a 1 µM cAMP agar base 

 

Figure 5.9: Three different experiments performed on different days showing Ax2 cells within a 0.5% 

agarose gel on a base of cAMP agar. Time-lapse experiments of the cells migrating images every 

2 minutes over 2 hours (A-B) First experiment (C-D) Second experiment (E-F) Third experiment. (A, C, 

E) Superimposed false colour images of the first and last time point of the experiment. 0 minutes- blue, 

120 minutes (2 hours)- yellow. Magenta indicates stationary objects or objects that are located in the 

same area in the first and final images. (B, D, F) All of the time points summed together using the 

standard deviation projection in ImageJ. Yellow arrows point to an example of a track in each 

experiment which can be clearly seen. Grey guidelines show the edges of the acquired volumes, for 

ease of visualisation. Scale bars are 20 µm. 
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Figure 5.10: Ax2 cells in 0.5% agarose at 1 hour and 0 hours after initial time-point 

 

Figure 5.10: (A-C) Ax2 cells imaged chemotaxing in time-lapse within a 0.5% agarose gel. Volumes 

rendered using Amira software (Visage Imaging, USA). Superimposed false colour coded images- Blue- 

0 minutes, Yellow- 60 minutes (1 hour). Magenta is seen where objects overlap (are in the same 

position) at both time-points. There are more individual blue objects than yellow or magenta objects 

indicating that there are more individual cells at the initial time point than at 60 minutes (1 hour). 

There are more multicellular aggregates in yellow- 60 minutes (1 hour) into imaging. Grey guidelines 

show the edges of the volumes for ease of visualisation. Scale bars are 20 µm.  
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5.9 Ax2 cells under different conditions- velocity and meandering 

index 

In Chapter 4, Ax2 cells were imaged migrating and chemotaxing on two different substrata. 

In this chapter this has been extended into the 4th dimension, and chemotaxing cells have 

been imaged within an agarose gel. In Chapter 4 I showed an effect of the surrounding 

environment on the cell speed, but not on persistence. Here, this analysis is extended to 

include the agarose environment. The parameters chosen for comparison were velocity (in 

µm per second) and meandering index. Velocity was calculated from the speed (in µm per 

minute) output by 2D-DIAS software. Meandering index is a measure of how directly a cell 

moves. The higher the value, the less a cell deviates from a straight line while migrating. It 

was calculated manually for the data on the 2D surfaces using meandering index= 

displacement/track length, with data output from 2D-DIAS476. As cells selected from the 

time-lapse images in Chapter 4 were assigned to the chemotaxis group only if they were 

moving directly towards a source of chemoattractant, the tracks generated for the Ax2 cells 

chemotaxing within the agarose were subjected to a filter based on chemotactic index, 

calculated as described in the methods section from the cosine of the angle between the cell 

track and the direction of the chemoattractant source. Cells with a chemotactic index of less 

than +0.75 were excluded, so that only cells with a trajectory where the vector pointed mostly 

downwards, i.e. towards the cAMP agar, were analysed. This was to ensure fair testing, that 

cells from the 3D (2D+time) and 4D (3D+time) data were subjected to the same selection 

criteria. As the experiments from chapter 4 spanned a time period of 20 minutes, only 

20 minutes of time-points for the Ax2 cells within the agarose were tracked and subsequently 

analysed. The results are summarised in Table 2. 
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Table 2: Ax2 cells chemotaxing on two different surfaces and within a 0.5% agarose gel- 

Results and Statistical Analyses 

Condition Velocity 

(µm/s) 

Meandering Index 

Ax2 on nitrocellulose filter 0.12±0.03 

Median: 0.11±0.02 

0.59±0.19 

Median: 0.65±0.27 

Ax2 on plastic Petri dish 0.15±0.04 

Median: 0.14±0.07 

0.62±0.12 

Median: 0.56±0.20 

Ax2 in agarose gel 0.14±0.04 

Median: 0.14±0.06 

0.36±0.19 

Median: 0.34±0.25 

Ax2 nitrocellulose filter vs 

agarose 

t=|1.650| 

dF=127 

p=0.10 

U=262 

Z=|3.26| 

p=0.001* 

Ax2 plastic Petri dish vs 

agarose 

U=547 

Z=|0.86| 

p=0.39 

U=172 

Z=|4.23| 

p<0.001* 

Table 2: Grand means (±SD) and medians (±interquartile range) calculated from the mean values 

obtained for each cell. Nitrocellulose filter n=11. Plastic Petri dish under buffer n=11. Agarose n=118. 

Summary of the results of statistical analysis between Ax2 cells within agarose and Ax2 cells on two 

surfaces, a nitrocellulose filter and a plastic Petri dish. * indicates significance at 95% CI. 

 

The mean velocity was highest on the plastic Petri dish surface at 0.15±0.04 µm/s, 

0.01±0.08 µm/s, higher than within the agarose gel. The mean velocity in the agarose gel was 

0.02±0.07 µm/s higher than on the nitrocellulose filter. The mean meandering index was 

highest on the plastic surface at 0.62±0.12, 0.03±0.31 higher than on the nitrocellulose filter. 

The meandering index is lowest on the agarose surface at 0.36±0.19, 0.23±0.38 lower than on 
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the nitrocellulose filter. Box plots showing the distributions for all of the above conditions 

and summarising the data are shown in Figure 5.11. 

 

Figure 5.11: Ax2 cells under different experimental conditions 

 

Figure 5.11: Box and whisker plots showing the distributions of velocity (A) and meandering index (B) 

of Ax2 cells chemotaxing on a nitrocellulose filter, on a plastic Petri dish and within a 0.5% agarose gel 

over 1200 seconds (20 minutes). The box shows the interquartile range, with the median value as a 

line across the middle. The small square box inside the boxplot is the mean. Whiskers represent the 

5th-95th percentile of the data. Crosses represent the 1st and 99th percentile of the data. Data were 

obtained on three separate days for the cells on the nitrocellulose filter and within the 0.5% agarose 

and on two separate days for the cells under buffer on the plastic Petri dish. 

 

The distributions for the velocity of both the nitrocellulose filter and the agarose conditions 

were normal (Anderson-Darling tests at 95% confidence, Nitrocellulose filter- p=0.178, 

Agarose- p=0.310) and a Levene’s test indicated that the variances were equal (Levene’s test 

p=0.90(>0.05), Test Statistic=2.923). Therefore a two-tailed Student’s T-test was performed 

to compare the velocity of the cells under these two conditions. The distribution for the 

velocity on the Petri dish was non-normal (Anderson-Darling test at 95% confidence, 

p=0.044, (<0.05)), so a Mann-Whitney U test was performed to compare the velocity of the 

agarose and the Petri dish. The results of the statistical analyses are summarised in Table 2. A 

Kruskal-Wallis one way analysis of variance by ranks was performed between all of the 

conditions, and there was found to be no significant difference between all of the groups at 

the 95% confidence interval, H=5.01, dF=2, p=0.82. Subsequently, Mann-Whitney tests 

revealed that the velocities of the cells on the nitrocellulose filter and within the agarose, and 
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also between the cells on the plastic Petri dish surface and within the agarose did not appear 

to be different (Table 2) (nitrocellulose vs agarose t=|1.65|, dF=127, p=0.10, Petri dish vs 

agarose U=547, Z=|0.86|, p=0.39). The mean (and median) velocity of the cells within 

agarose lies between the values for the cells on the nitrocellulose and plastic surfaces. Hence, 

although there is a significant difference between the velocity of Ax2 cells on a nitrocellulose 

filter and on a Petri dish (chapter 4), the differences in velocity between the cells on both of 

these surfaces and the cells within the agarose are insufficient to reach significance at the 95% 

confidence level188. 

The distribution of the meandering index on the nitrocellulose filter was normal (Anderson-

Darling test at 95% confidence, p=0.217), but the distributions for the Petri dish and the 

agarose were non-normal (Anderson-Darling tests at 95% confidence, Petri dish- p=0.032, 

Agarose- p=0.005, (<0.05)), so Mann-Whitney rank sum tests were performed for 

comparison of the cells suspended in the agarose with cells on the nitrocellulose filter and 

Petri dish. The results are summarised in Table 2. A Kruskal-Wallis one way analysis of 

variance performed between all of the conditions, revealed significant differences between the 

conditions at the 95% confidence level, H=24.71, dF=2, p<0.001. Subsequent Mann-Whitney 

U-tests indicated significant differences between the meandering indices of the cells in 

agarose and on both the nitrocellulose at the 95% confidence interval (U=262, Z=|3.26|, 

p=0.001) and the plastic Petri dish (U=172, Z=|4.23|, p<0.001) surfaces. 

 

5.10 Chapter 5 Discussion 

5.10.1 Ax2 cell development in 4D 

The processes of both individual and collective cell migration are important in multicellular 

organisms, such as mammals, for development and organogenesis, and also play a role in 

ongoing physiological processes such as wound healing270,294,461,518. Furthermore, aberrant 

collective migration may also be involved in the metastasis of cancer cells270,294. Therefore, an 

understanding of these processes is of great interest. Many studies have explored the process 

of single cell and collective cell migration on 2D surfaces, but it is recognised that this 

environment does not necessarily provide a good model of cells within their natural 

environments61,142,172,461,493,572,659. Dictyostelium, which lies at the interface between single celled 

and multicellular organisms, undergoes a developmental process of aggregation, involving 

individual cell migration and collective cell migration such as cell streaming, which shares 
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features with mammalian cell collective migration29,410,526,658. In combination with its robust 

nature and accessible genetics, Dictyostelium is therefore a useful model organism to investigate 

this process. 

I have shown that Ax2 Dictyostelium cells are able to signal to one another through an agarose 

gel, as they undergo spontaneous aggregation, and that the propagation of this signal, cAMP 

waves, can be visualised as optical density waves. I have also shown that they are able to 

migrate and come together within the three-dimensional environment of an agarose gel as 

both individual cells and as multicellular aggregates. Although a previous study had shown 

that development of Ax2 cells under these conditions was asynchronous and that some 

groups of cells failed to develop at all, this was not seen in my experiments312,447. There are 

several possible explanations for this discrepancy. The first is that of measurement bias. I 

began imaging at 10 hours after initiation of starvation conditions, by which point some cell 

aggregation had already taken place. When selecting an area for imaging in my experiments, I 

selected an area which contained a multicellular aggregate, but between these aggregates there 

were many areas which contained very few or no cells. It may be that in this way I selected 

out areas which failed to develop, although visual inspection of the sample by eye before and 

after imaging revealed that multiple aggregates formed and were at approximately the same 

stage of development. A photograph illustrating an example of this is shown in Figure 5.12; 

orange arrows indicate examples of cell streaming. By eye the cells appear to have been at 

approximately the same stage of development (Figure 5.12). 
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Figure 5.12: Photograph of Ax2 cell streaming in 0.5% agarose 

 

Figure 5.12: Ax2 cells within a 0.5% agarose gel at approximately 12 hours after seeding. Examples of 

cell streaming seen on the surface of the agarose are indicated with orange arrows. By eye the cells 

over the entire plate appear to be at approximately the same developmental stage. 

 

The second possible reason is that I used a lower concentration of agarose to that used in the 

other study. I used 0.5% agarose, while Knecht et al used 1% agarose602. Properties of agarose 

gels such as pore size and strength of the gel are known to depend on the concentration of 

the agarose31,286,515. Therefore, it is possible that the 1% agarose exerted effects on the 

Dictyostelium cells such as preventing some cells from aggregating and delaying development, 

because of its increased rigidity or smaller pore size of the polysaccharide network, which are 

not seen when the concentration is reduced to 0.5%. Additionally, although both studies used 

low melting point agarose (which is high-purity) the origins of the agarose may be different, 

resulting in slightly different chemical compositions42,515. As chemical properties of the 

environment are able to exert effects on cell behaviour, it is possible that the presence or 

absence of certain chemical groups in the polysaccharide chain, or increased or decreased 

numbers of these could contribute to the difference in observed behaviour327,62688,200,373,510,626. 

Thirdly I used 1.9x107 cells in 3 ml of agarose, while Knecht et al used 3-5x105 cells in 5-10 ml 
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of agarose. Dictyostelium cells have a mechanism by which they are able to sense their own 

density, both as vegetative cells and as starving cells. The secreted glycoprotein conditioned 

medium factor (CMF) is released by cells which are starved at high densities, but not by those 

starved at low cell densities108,227,250. This factor is essential for cAMP signalling and cell 

aggregation227,250,695. The differences in cell density may therefore contribute to the differences 

seen in Dictyostelium development. Finally, Knecht et al originally used agarose which 

contained growth medium, so the cells were not plated under starvation conditions and did 

not begin to develop for several weeks. The cells could have originally been plated at varying 

densities throughout the agarose or divided at different rates and therefore exhausted their 

supply of medium at different rates, potentially explaining the asynchronous development. As 

my cells were seeded within the agarose under starvation conditions, these factors would not 

influence cell development in my experiments312. 

It was thought that the gel may present a more challenging environment to the cells than 

simply moving through air or buffer, as these are environments of minimal resistance, and 

therefore potentially impede the cells and slow development329,682. However, this was not seen 

to be the case, with the timescale of development of the Ax2 Dictyostelium cells within agarose 

similar to that of these cells previously observed on 2D surfaces, at least for the period of 

time the cells were followed with OCT (5 hours)211,286,369,371. This indicates that it is likely that 

the cells do not find the 0.5% agarose to be an impediment to either their movement or their 

signalling. Dictyostelium cells can be developed under agarose and imaged by inverted light 

microscopy682,263,368,389. While this does not represent a true 3D environment, as the cells are 

not completely surrounded by agarose and the cells move in a single plane along their glass 

substratum and furthermore are artificially flattened by the agarose layer, it should be noted 

that under these conditions Dictyostelium has been shown to fail to develop beyond aggregates, 

unless the agarose is removed, although contrary to this Nicol et al reported successful 

formation of flattened slugs under 2% agarose2,302,447,682. In my experiments, Dictyostelium did 

develop past the aggregation stage, as I observed, by eye, that fruiting bodies had formed by 

the following day after experimentation. However, it is most likely that, as seen during the 

course of my imaging, the cells moved up to the surface during aggregation, and completed 

their development in the air, as the fruiting bodies appeared to be on the surface of the 

agarose (data not shown, as the full fruiting body was too large to completely capture). 

Nonetheless, the occurrence of fruiting bodies on the surface of the agarose is not a 

surprising finding, as previous studies have shown that developing Dictyostelium cells are able 

to migrate up a gradient of oxygen (within agar) and orient themselves in a particular pattern 
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with respect to this gradient592. However, it therefore cannot be said from my experiments 

whether Dictyostelium is able to complete development fully within an agarose gel. 

It has been shown in this chapter that Dictyostelium cells seeded under starvation conditions 

within an agarose gel on a base of KK2 agar preferentially form streams at interfaces, either 

the agarose-air interface or the agar-agarose interface. The movement of the cells towards the 

air is unsurprising, as in the wild Dictyostelium cells must sporulate to disperse to other areas in 

search of additional food sources160. This distribution of spores is aided when at the surface of 

the soil as the spores can then attach themselves to the coat of a passing animal55,66. It would 

therefore be expected that Dictyostelium cells would preferentially migrate upwards towards the 

surface, and up the gradient of oxygen, as it has been shown that they are chemotactic to 

oxygen493,585,592. However, previous studies have shown that in the absence of other cues 

Dictyostelium in fact migrates downwards during development, potentially due to the effect of 

gravity52,160. This finding is explained by the fact that Dictyostelium is phototactic and 

thermotactic, suggesting that in the wild the organism uses light and heat as environmental 

cues during development52,53,55,249,578,674. It is thought that it is at this slug stage of Dictyostelium 

development, a later stage than in my experiments, that Dictyostelium orients itself towards the 

surface of the soil, using these thermotaxis and phototaxis as guidance cues52,55,249,674. 

Nonetheless, Dictyostelium single cells have also been shown to be phototactic, and the brief 

duration of the scanning laser light source may be enough to bias the motion of cells near the 

top of the agarose upwards301. This would result in an accumulation of cells at the top surface 

of the agarose, potentially explaining why aggregates form there. One way in which this could 

be tested would be by assessing the response of both chemotactically competent and 

vegetative Dictyostelium cells within an agarose gel to different wavelengths and intensities of 

light, from a variety of different directions. As to why the cells also form streams along the 

bottom of the agarose at the agar-agarose interface, it may be that some migrating cells reach 

this interface and, unable to migrate further in the vertical direction as when migrating 

downwards they cannot penetrate the agar layer, they instead migrate along it, until sufficient 

numbers accumulate to form an aggregation centre. As Arcizet et al have previously found 

that vegetative Dictyostelium cells are attracted to micropillars, it may be that the cells have an 

attraction to the agar layer which, upon localising to it by chance, induces them to stay along 

this surface, rather than returning to the agarose environment18. Nonetheless, although 

streaming also occurs largely at these interfaces, streams can also form through the agarose. 

This is probably caused by the chemotaxis of cells that had not already reached the interface 
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towards the larger concentration of cells which had, which comprised the aggregate and 

therefore centre of local chemoattraction.  

The patterns of darkfield waves have previously been used to study the mechanisms by which 

Dictyostelium cells aggregate and differentiate to form fruiting bodies elevated by a stalk 

comprised of vacuolated stalk cells, as these waves reflect the propagated chemoattractant 

signal143,460,571,572. This type of propagating wave is also relevant to other systems, such as 

multicellular organisms, as spiral waves have been found to be a general feature of excitable 

systems, and have been shown in diverse organs and organisms, from xenopus oocytes to 

cardiac muscle and mammalian neocortex122,267,343. I have shown that with the aid of image 

subtraction to enhance the differences between subsequent images, OCT could potentially be 

used to investigate the signalling of Dictyostelium cells within the three-dimensional 

environment of an agarose gel, which could help to unravel the mechanisms of how cells 

signal to one another within a three-dimensional environment, and whether the patterns and 

characteristics of propagated cell-cell signalling waves vary when cells are in a more natural 

three-dimensional environment, compared to on 2D surfaces382,460,571. 

 

5.10.2 Ax2 cell chemotaxis in 4D 

As Ax2 Dictyostelium cells had been shown to be motile within an agarose gel and additionally 

to be capable of cell-cell signalling through the gel with subsequent aggregation, agarose was 

determined to be a useful material in which to set Dictyostelium cells for investigation of cell 

motility. However, simply placing the cells within a non-nutrient agarose gel and allowing 

them to aggregate through a process of natural chemotaxis has several drawbacks; such as 

lack of control on the developmental stage of the cell, as it is possible cells may develop at 

different rates within the agarose; a lack of individual cells to follow, as most of the cells 

comprise multicellular aggregates; and inability to establish a reproducible cAMP gradient 

within the agarose, as the cells may aggregate at either the top or the bottom of the agarose, as 

I have shown. In order to overcome these limitations, the cells were pulsed prior to setting 

within the agarose, in order to ensure that all cells were aggregation competent and at the 

same developmental stage; the cells were imaged at 30 minutes after setting within the 

agarose, so there were still many individual cells to follow; and a base layer of 1 µM cAMP 

agar was used to establish a diffusion based gradient. Agarose has been shown to be a useful 

material in which to establish a gradient, as it is capable of stabilizing chemoattractant 
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gradients, both spatially and in time338,341. Previous studies have made use of this property of 

agarose, either by placing cells on an agar or agarose surface at a certain distance from a drop 

of chemoattractant and allowing diffusion to establish the gradient, or by placing cells on agar 

or agarose made with a set concentration of chemoattractant and allowing the cells to 

naturally degrade the chemoattractant by secretion of enzymes, resulting in a gradient of 

chemoattractant increasing away from the cells54,318,329,523,617. These methods have proved 

useful for analysis of multicellular cell behaviour, for example Dictyostelium cell streaming, but 

individual cell behaviour is difficult to assess, in part due to the difficulty of acquiring images 

of sufficient resolution with conventional microscopy techniques, such as DIC microscopy410. 

To this end, OCT was employed to image individual cells chemotaxing within agarose, as 

described in the methods section. 

To investigate the potential for investigation of detailed behaviour of individual cells within 

an agarose gel with OCT, Ax2 cells were imaged chemotaxing within an agarose gel with 

images acquired every 10 seconds. From these images it can be seen that the morphology of 

individual cells can be determined and cells can be seen to be elongated, oriented downwards 

towards the cAMP, indicating that Dictyostelium cell polarization occurs under these 

experimental conditions. Individual cells and aggregates of two or three cells can be seen to 

migrate vertically, then pause in their migration, making only small lateral movements, and 

then continue migration at speed (an example was shown in Figure 5.7K-L). This pause may 

correspond to the peak of the passing cAMP wave, as this has previously been shown to be 

inhibitory to cell translocation, although in my experiments, the bicellular aggregate followed 

was still motile, moving around a confined local area in a lateral direction619,667,701. More likely, 

this stationary period, which is approximately 85 seconds long, instead corresponds to the end 

of the tail of the cAMP wave, where the cAMP gradient is low and falling, as prior 

experiments have indicated that cell migration towards an aggregation centre occurs over a 

period restricted to the rising portion of the cAMP wave213,619,667,701,702. The cAMP waves in 

Ax2 cells have a periodicity of approximately 5-7 minutes542. Therefore it is possible be that 

this period corresponds to a gap between the cAMP waves, where the cell aggregate is unable 

to detect a cAMP gradient and is therefore not directly chemotaxing at this point, but remains 

motile, as motility is intrinsic to Dictyostelium cells142,416,542,664. Nonetheless, chemotaxis in 

Dictyostelium cells has previously been shown to be oscillatory, with periods of approximately 

1-2 minutes between peak velocities, and it appears from my results that cells within agarose 

exhibit similar cyclical periods of migration132,143,216,664,667. 
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It is also possible, with this temporal resolution of 10 seconds, to see individual cells coming 

together and moving as bicellular aggregates for a short while, before parting again and 

moving as separate entities. This may indicate that the cells find it easier to migrate through 

the gel when they exert additional force as an object of larger mass. Alternatively it could be 

due to the ability of the cells to sense one another in the local vicinity and exhibiting a natural 

tendency to aggregate at this developmental stage108,143. It may also be that the cells are not in 

actual fact aggregated, but that one cell is very closely following the other for a period of time 

and the cells merely appear as a single object due to lack of spatial resolution. This may 

indicate that one cell acts as a trailblazer, carving a path through the agarose, which the other 

cell then follows, rather than creating a path of its own. As to why the cells sometimes split 

apart again, this could be due to initially sensing one another and aggregating, but then 

receiving a signal of different characteristics, larger, and perhaps with different temporal or 

spatial dynamics, originating from the local multicellular aggregate, which overrides the signal 

mediating local aggregation and the cells move towards the larger aggregate658,667. It should be 

noted that this explanation implies that the spatial gradient of chemoattractant set up by the 

cAMP from the cAMP agar diffusing through the agarose can be overridden by local cell-

mediated cAMP signalling. Alternatively it may be that it is easier for individual cells to move 

through the increased challenge of a 3D agarose environment due to having reduced surface 

area and reduced mass as individual cells. The cells may struggle to co-ordinate the application 

of appropriate forces to migrate efficiently as bicellular or multicellular aggregates, as co-

ordination of forces has shown to play an important role in Dictyostelium 

migration133,279,374,381,414.  

Although acquisition of images every 10 seconds enabled detailed information about 

individual cell migration of a selected few cells to be obtained, it did not allow many cells to 

be successfully tracked with the tracking software employed (Volocity, PerkinElmer), with 

only 4 out of 77 tracks generated that spanned the entire image acquisition period. I have 

previously mentioned in the results section that this is due to the necessity to constrain the 

tracking algorithm to exclude multicellular aggregates from analysis, in combination with the 

tendency of the cells to periodically form bicellular aggregates, and have shown an example of 

a track which has been split by the software into two separate tracks because of this. 

Therefore, ensuring sufficient numbers of cells tracked to allow for an overview of the 

characteristics of Ax2 Dictyostelium cell chemotaxis within an agarose gel required a 

corresponding increase in the size of volume acquired, which in order to keep the spatial 

sampling density constant necessitated a reduction in the temporal sampling frequency. This 
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meant that volumes could be acquired at intervals of every 2 minutes, which as Ax2 cAMP 

wave have previously been shown to have a period of 5-7 minutes (a minimum of 4 minutes 

by completion of aggregation), is sufficient to track the overall trajectory and speed of 

migration, even though access to more detailed information, such as what behaviour the cell 

exhibits between these two time-points, is unfortunately lost135,542,658,664. 

Imaging of Ax2 Dictyostelium cells for 1 hour within an agarose gel at 2 minute intervals, 

allowed a total of 470 tracks to be generated from 3 separate experiments performed on three 

separate days, all of which spanned the entire 1 hour period. The grand mean velocity was 

found to be 0.13±0.06 µm, which equates to ~7.8 µm/min, which is approximately the same 

speed as cells chemotaxing on glass surfaces640. This indicates that it is unlikely that the cells 

are swimming through the agarose as the speed at which they swim is much lower (1-

3 µm/min, or ~4 µm/min, dependent on the experimental configuration), providing support 

for the fact that the cells do not perceive the agarose as a liquid27,32,640. The cells also do not 

move fast enough to be ‘gliding’ (~17 µm/min), and are therefore likely adhered to the 

agarose gel640. The grand mean chemotactic index was -0.16±0.55. This means that, although 

it appeared as though the net direction of motion was in the downwards direction, in actuality 

approximately half of the cells were moving in an upward net direction, away from the cAMP 

agar, over the 1 hour period. This could be because the cells which were migrating 

downwards reached the cAMP agar layer during the course of this 1 hour and then began 

moving laterally or reversed direction and moved upwards. This would result in an overall 

trajectory which was not directly downwards. This idea is supported by the grand mean 

meandering index being 0.18±0.09, indicating that the cells which were tracked were not 

migrating in very straight lines and changed direction during their translocation. Another 

possibility is that the multicellular aggregates formed during the course of the experiment, as a 

natural response of Dictyostelium cells to the presence of cAMP, began producing cAMP waves 

of their own, which resulted in additional sources of chemoattractant, potentially interfering 

with the ability of the individual cells to respond to the spatial gradient of cAMP set up by 

diffusion of cAMP from the agar through the agarose213. However, recent work by McCann et 

al showed that, if a signal is propagated by cell-cell signalling, such as has been shown to 

occur in Ax2 cells within agarose in my development experiments, the cells should merely 

propagate the signal from the cAMP source410. Therefore, alternatively it may be that the cells 

which migrated first, possibly even before commencement of imaging, perturbed the gradient 

of cAMP through the agarose, firstly by merely passing through the agarose and disturbing 

the agarose itself, and secondly through degradation of the cAMP by secreted cAMP 
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phosphodiesterases26,538. If this occurred, following cells would therefore experience an 

uncertain gradient of cAMP. Not only could this directly result in less direct chemotaxis for 

the following cells, as the direction of the source of the chemoattractant is less certain, but 

could also result in the following cells then responding to secreted gradients of cAMP 

released by neighbouring cells, promoting cell aggregation and indirectly causing less directed 

migration towards the known source of the cAMP, the cAMP agar, because these cells will 

move away from this cAMP source towards other more local sources, and therefore change 

direction during chemotaxis. This idea is supported by the observations of Laevsky et al who 

directly saw this effect of reduced directionality and chemotactic index in ‘follower’ 

Dictyostelium cells migrating under 0.5% agarose, which the authors attributed to disturbance 

of the gradient by the leading cells329. 

In chapter 4, I investigated the effects of two different substrata on the motility of Ax2 

Dictyostelium cells and discovered an effect on cell speed but not on cell persistence. In this 

chapter I have extended this analysis to compare the velocity and meandering indices of these 

cells chemotaxing within an agarose gel with chemotaxis on a nitrocellulose filter and on a 

polystyrene Petri dish over a period of 20 minutes. I have discovered that the agarose does 

not appear to present an impediment to the velocity of Ax2 cells, as no significant difference 

was found between the cells within the agarose gel and the cells on either the polystyrene 

plastic or on the nitrocellulose surfaces. Although there is a significant difference between the 

velocities of cells on these surfaces (chapter 4), the cells within the agarose had a velocity 

which lies between these two values and so no significant difference is seen when the cells in 

the agarose are compared to either of these two conditions. However, although the cells 

within the agarose appeared to move as rapidly as on 2D surfaces, they did not move as 

directly, with significant differences seen between the meandering indices for the cells within 

agarose and the cells on the plastic and on the nitrocellulose surfaces. By 20 minutes into 

image acquisition, the cAMP gradient between the agar and agarose would have established 

and should not have yet been degraded, and by inspection of the volumes by eye in time-

lapse, it can be seen that not many multicellular aggregates had formed, so it is unlikely that 

there were any significant confounding cAMP signals present496. Therefore it appears that the 

agarose presents an impediment to Dictyostelium cells chemotaxing in a straight line. This may 

either represent a problem with the propagation or detection of the cAMP gradient within the 

gel, or with the motility of the cell through agarose. The latter seems the most likely 

explanation, as the experiments with developing Dictyostelium showed that cAMP waves could 

be visualised propagating through cells within agarose. Additionally, when the image sequence 
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is viewed by eye, a dramatic downwards migration of the cells is seen under these 

experimental conditions, which is not seen in the absence of cAMP agar, indicating that the 

cells are able to both detect and respond to the chemoattractant gradient. 

As agarose gels have been shown to be non-homogenous in structure, it is possible that, 

during the course of their migration through the gel, cells encountered patches of the agarose 

which they were unable to penetrate, or which they chose not to penetrate, perhaps preferring 

to take a less challenging route, which forced them to change direction174,589. This agrees with 

the effects of micropillars on directly moving vegetative state Dictyostelium cells scale seen by 

Arcizet et al18,21. Although their experiments used vegetative state cells, these cells are known 

to have two distinct modes of migration, directed migration and randomly moving 

migration21,258,410,657. While the randomly moving cells preferred to localise to micropillars 

rather than to the planar surface because of the increased surface area available to them in this 

location, the cells which were moving more directly and therefore more similarly to the 

chemotaxing cells in my experiments were deflected by the micropillars, which reduced their 

directional movement18. Alternatively, as Dictyostelium cells have previously been shown to 

respond to cyclic stretching of their substratum with changes in both speed and direction of 

migration, local changes in the elastic properties of the agarose could result in changes in cell 

orientation, such as those seen in my results, although it should be noted that a 30% 

stretching ratio was used in these experiments and it would be unlikely to find such large 

differences in elasticity between two adjacent areas within agarose280,372,443,616. Additionally, cells 

exert a force on their substratum when they migrate, which could also cause local changes to 

the elasticity of the agarose gel, which in turn may exert an effect on the chemotaxing cells. 

Due to the relative magnitude of the forces involved this is not likely to occur with individual 

cells, but may play a role when many cells are migrating together such as in multicellular 

aggregates or cell streams132,329,374,443.  

While there have been a number of studies investigating the migration of mammalian cells 

within 3D environments, the breadth of different cell types, from fibroblasts to tumour cell 

lines, and the number of different matrices in which the cells are set make comparisons 

difficult to draw48,172,461,479,677,680,698. For example, mammalian fibroblasts migrate more 

directionally in three-dimensions, which the authors suggest is an effect of the structure of the 

matrix in which the cells were placed462. This directly contradicts my findings with Dictyostelium 

within an agarose gel, but it cannot be said if this is a result of the fact that different cell types 

were used, or that these cells were set within different gels. Just because we have included 
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another dimension does not negate the previous research showing the importance of 

physiochemical surface properties on cell behaviour24,88,95,118,172,200,373,510,626,688. Additionally, it is 

not always possible to say whether a characteristic of cell migration within a 3D matrix is as a 

result of the fact that the cells are set within a 3D environment and are therefore surrounded 

on all sides by substrate, or whether it is that the environment has very different physical, 

chemical and rigidity properties to the more commonly used 2D planar surfaces. In light of 

the research indicating the potential for restrictive environments to alter gene expression and 

cause cytoskeletal remodelling and the range of effects of biomaterials on cell behaviour, it 

seems most likely that both the different properties of the materials in which cells are 

embedded in 3D, generally gels and matrices, as opposed to the more rigid 2D surfaces, and 

the fact that the cell is surrounded on all sides, play a role in establishing the morphology, 

migration and other behaviour of a cell within a 3D matrix36,172,305,340,372,443,446,554,677,681,698.  

Chemotaxis assays can be performed under agarose, and these assays have previously been 

used to investigate Dictyostelium chemotaxis120,329,338. This environment appears to present an 

environment of increased challenge to Dictyostelium, as certain mutants display an impaired 

ability to move under these conditions338,339,445. It may more closely approximate the natural 

conditions of Dictyostelium than studies performed on 2D surfaces such as glass, plastic or 

nitrocellulose as the cells are in contract with the agarose above and the plastic surface of the 

Petri dish beneath. However, these conditions, which usually utilise 1-2% agarose, cause 

Dictyostelium cells to become flattened, resulting in the redistribution of myosin II and 

actin329,446. Although it has been argued that the under agarose assay may approach the 

conditions which Dictyostelium cells find themselves within their natural environment of soil, it 

should be noted that one of the differences which has been found between cells grown in 2D 

and cells grown within the more natural environment of 3D matrices is that cells in 3D are 

rounder and less flattened and spread than cells on 2D surfaces117,235,329,479,579,679,680,682. Therefore 

the flattening of the cells by the agarose seen in the under agarose chemotaxis assays utilising 

higher concentrations of agarose may not in fact be found within a truly 3D environment. 

However, chemotaxis assays with cells under 0.5% agarose have also been performed, and 

under these conditions the cells are less flattened (8 µm tall rather than 4 µm tall under higher 

concentrations of agarose). NC4A2 cells under 0.5% agarose were shown to move 

consistently at speeds of 6.4 µm/min, however, Ax2 cells were found to move at 7.4µm/min, 

which is similar to their speed within a 0.5% agarose gel (7.8 µm/min)328,329. These under 

agarose experiments showed direction changes of approximately 16.7 degrees between time 

steps of 1 minute indicating that the cells were migrating in a direct manner, which does not 
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agree with my measurements of meandering index of Ax2 cells chemotaxing within 0.5% 

agarose328. While this may reflect an effect of the different environments of the two assays, 

because the under agarose studies used the chemoattractant folate rather than cAMP which 

interacts with a different cell surface receptor on the Dictyostelium cell membrane, it is not 

possible to draw any firm conclusions about environmental effects from this 

comparison69,129,239,329,639. 

As growing cells within three-dimensional environments has been shown to have a variety of 

different effects on their behaviour, probably due both to the dorsal side of the cell being 

constrained and to the physiochemical and elastic properties of the matrix in which they are 

placed, and the natural environment of Dictyostelium cells is a three-dimensional one, the 

potential of an agarose gel to offer a three-dimensional environment in which to investigate 

the migratory behaviour of Dictyostelium cells has been demonstrated31,248,513. Furthermore, the 

utility of the non-invasive interferometric imaging technique of OCT for imaging of cells 

under these conditions, in order to obtain qualitative and quantitative data on the features of 

cell migration within this matrix has been shown56. 
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5.11 Chapter 5 Summary 

Multicellular aggregation, followed by development, is an important stage in the life cycle of 

Dictyostelium, as the culmination of this process leads to dispersal in search of new food 

sources51,55. While this process has been well studied in time-lapse on 2D substrata, this 

aggregation has not yet been explored within true 3D environments142,329,658. This chapter has 

shown that OCT can be used to follow the aggregation and development of Dictyostelium cells 

within a 3D agarose gel, including the potential to image propagating optical density waves, 

representing the propagating cAMP signal, and to investigate the manner in which 

Dictyostelium cells aggregate in this more complex environment. As the cells are not labelled in 

any way, there is no toxicity to the cell or photobleaching, indicating that this microscopy 

technique could potentially be used to follow this process over extended periods of time. 

Chemotaxis within this 3D agarose gel environment was accomplished, by setting up a 

diffusion-based gradient within the agarose, by use of a base of 1 µM cAMP agar. The images 

acquired were subjected to qualitative assessment and subsequently imported into tracking 

software and tracked to obtain quantitative information on the character of cell chemotaxis 

within a 3D environment. The exploration of environment on Dictyostelium cell behaviour 

begun in chapter 4 was then extended to the fourth dimension, and an effect of this 3D 

agarose environment on the meandering index, a measure of how directly a cell moved during 

its translocation, was found. No effect was seen on the velocity of the cells, which indicated 

that the cells are able to move through the gel at normal speed but find direct motion 

somewhat impeded, potentially due to the increased challenge of navigating this 3D 

environment. 
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6.1 Chapter 6 Aims 

This chapter aimed to explore the effects of the three-dimensional environment of an agarose 

gel on the migration and chemotaxis of Dictyostelium cells lacking the gene encoding Myosin II. 

This was in order to determine if this 3D assay was a useful method to investigate phenotypes 

of Dictyostelium mutant cell strains; moreover, to assess the possibilities offered by this 3D 

environment to probe the migration and chemotaxis of mutant cells, and to obtain 

quantitative information to describe these migration characteristics. 

 

6.2 Motility of Myosin II null cells in Dictyostelium 

Cell motility is a complex process regulated by remodelling of the actin-myosin cytoskeleton. 

Much of what is known about cell motility comes from the creation of Dictyostelium mutants 

and observation of their phenotypes. This is due to their rapid growth, ease of culture and 

conserved signalling pathways with mammalian cells, in combination with the relative ease of 

generation of mutants271,299,544. Visualisation and comparison of the behaviour of mutant cells 

with their parent strain, particularly mutations in cytoskeletal components or known signal 

transduction molecules, can be useful to determine the role of the missing protein in cell 

aggregation and development.  

Dictyostelium cells lacking the myosin heavy chain have a pronounced mound-arrest 

phenotype128,313. Pre-spore cells are able to differentiate, but tip formation does not occur and 

development never proceeds beyond the tight aggregate stage139,314. When mixed with wild-

type cells, in a chimeric aggregation assay, mhcA- (Myosin heavy chain A null) cells will 

complete development, but the number of fruiting bodies is far fewer than would be expected 

for the initial number of cells313. Imaging studies have revealed that the mhcA- cells localise to 

the edges of streams where they are apparently dragged along with the wild-type cells in order 

to complete the developmental process and have also shown that they are absent from the 

mound tip313,314,564. At the mound stage, mhcA- cells have been shown to become stuck in 

place, ‘jiggling’ on the spot139. Previous work has indicated that mhcA- cells have difficulty 

moving in under 0.5% agarose assays, with only a few cells entering the more restrictive 

environment of the agarose, and most of them remaining in the trough cut into the agarose in 

which they were originally placed328. Those that do enter the agarose, show significantly 

reduced ability to chemotax, stopping at a distance of 500 µm after approximately 4 hours and 

not chemotaxing any further, over the duration of the 9 hour experiment, compared to the 



Chapter 6: Myosin II in Dictyostelium 4D migration and chemotaxis Page 158 

wild-type cells covering a distance of 3000 µm over the same time period328,329. MhcA- cells 

under 1% agarose do not enter the under-agarose environment of the assay, indicating that, 

despite the presence of chemoattractant on the other side of the agarose, this environment is 

too restrictive for them to penetrate328. The above phenotypes have been attributed to a lack 

of cortical integrity of mhcA- cells helping to explain why they struggle to migrate under 0.5% 

agarose and are unable to move within the restrictive environments of mounds and under- 

1% agarose139,314,328. Furthermore, myosin II plays a critical role in retraction the uropod, the 

rear of the cell, and mhcA- cells have been seen to have difficulty retracting their uropod both 

under agarose and under buffer, slowing their migration, and sometimes resulting in cell 

fragmentation279,328,414. 

Examination of mhcA- cells on glass under buffer has revealed that these cells exhibit 

reduced speed, reduced persistence, both when chemotaxing and in basic cell motility, and 

reduced chemotactic index in response to a chemoattractant gradient255,374,582,593,702. While 

myosin II is not thought to be directly involved in the generation of pseudopodia, it does 

appear to have a role in the regulation of this complex process255,582,593,702. Myosin heavy chain 

null mutants extend pseudopodia all over the cell and not just localised to the leading edge, 

which may be due to misregulated spatial localisation of Ras and its downstream signalling 

molecules197,350. The result is that they exhibit chemotactic defects, involving increased turning 

and reduced speed197,582,668. Cells lacking myosin II have also been shown to have impaired 

ability to respond to a spatial chemoattractant gradient and complete inability to respond to a 

temporal gradient, such as those released by aggregation centres during Dictyostelium 

development, which may contribute to their developmental defects255,668,702. Recent work has 

shown the importance of a properly organised cytoskeleton in both the synthesis of cAMP 

and response to a cAMP gradient, which may help to explain this impairment569. Moreover, 

traction force cytometry measurements have revealed that these cells exert abnormal patterns 

of force on their substrata and show delays in the cycles of force generation required for cell 

translocation132,374,414.  

Therefore, although the mechanisms behind myosin II function in Dictyostelium remain to be 

fully elucidated, it has been established to be essential for fast and directed cell migration on 

2D substrata, both in basic cell motility and in response to a chemoattractant. 
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6.3 mhcA- cell development in 0.5% agarose gel 

MhcA- (Myosin heavy chain A null) Dictyostelium cells were set within 0.5% agarose and 

imaged 8 hours later, with images acquired every 3 minutes (180 seconds) over a 2 hour 

(120 minutes, 7200 second) period, as described in the methods section. Figure 6.1(A-C) 

shows volumetric images of the mhcA- cells within the agarose from three different angles. 

All of the acquisition time-points (2 hours) have been summed together using the ‘standard 

deviation’ projection in ImageJ, as described in the methods section. This allows tracks to be 

seen from moving objects (as shown in Chapter 5 and later in this chapter). Cell tracks from 

cells moving on the surface of the agarose indicated by yellow arrows are shown in Figure 

6.1B. Figure 6.1A-C shows the cells and multicellular aggregates within the agarose gel, which 

appeared stationary over the acquisition period. Figures 6.1A&B show the edges of the 

volumetric image better, while Figure 6.1C better shows the cells inside the agarose gel. 

Superimposed colour-coded enface images at the surface of the agarose, and at ~50 µm 

below the surface (both summed over ~10 µm) in Figure 6.1D(I) and E respectively; blue- 

0 minutes, red- 60 minutes (3600 seconds) and yellow- 120 minutes (7200 seconds), show that 

there was motion seen on the surface of the agarose (Figure 6.1D(I)), but not within the 

agarose (at ~50 µm depth) (Figure 6.1E). A white arrow in Figure 6.1D(I) points to a motile 

cell on the surface of the agarose. The cross-sectional view (Figure 6.1D(II)) indicates that 

there was no lateral movement seen over the entire experimental time-period (2 hours). 

In order to see if cell development and motility was arrested or merely delayed, the same 

experimental sample of mhcA- cells within 0.5% agarose was kept hydrated and covered 

overnight, and was imaged at 24 hours after commencement of the initial imaging, over 

2 hours, acquiring every 3 minutes (Figure 6.2). All of the time-points were summed together 

using the standard deviation projection in ImageJ, which shows any tracks generated by 

moving objects (Figure 6.2). The entire volume is shown in Figure 6.2A. No tracks were seen 

within the agarose in Figure 6.2A. Enface images from the volume at the surface (Figure 

6.2B) and at ~50 µm below the surface of the agarose (slices summed over ~10 µm) (Figure 

6.2Ci) show cells still moving on the surface (Figure 6.2B) indicated with a yellow arrow, but 

not within the agarose (Figure 6.2C(I&II)). A cross-sectional view (slices summed over 20 µm 

from the middle of the stack) reveals that there was no lateral motion of the objects within 

the agarose (Figure 6.2C(II)). 
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Figure 6.1: mhcA- cell aggregation in agarose 
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Figure 6.1: mhcA- cells in 0.5% agarose on an agar base layer imaged every 3 minutes over 120  minutes (A) Volumetric rendering (using Amira) of mhcA- cells 

summed over all time points (120 minutes) using the standard deviation projection in ImageJ. The cells within the agarose do not move. (B) Same image as A 

from a slightly different viewpoint showing the surface better. Yellow arrows point to examples of tracks created by cells moving on the surface of the agarose. 

(C) Volumetric rendering from a third viewing angle, better showing the cells within the agarose. All time-points summed over 120 minutes using the standard 

deviation projection in ImageJ. No cell tracks are seen within the agarose. (D-E) Superimposed false colour images (A) blue- 0 minutes, red- 60 minutes 

(3600 seconds) and yellow- 120 minutes (7200 seconds) (D(I) Enface image of mhcA- cells on the surface of the agarose, slices summed over ~10 µm, some cell 

movement is seen on the surface of the agarose. An example of this motion is indicated with a white arrow. (D(II)) Cross-sectional sum of B-scans over ~20 µm 

from the middle of the stack showing mhcA- cells do not appear to move vertically within the agarose. (E) Colour coded enface image of mhcA- cells summed 

over ~10 µm at ~50 µm below the surface of the agarose, no motion is seen. Scale bars are 100 µm. 
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Figure 6.2: mhcA- cell aggregation in agarose- 24hr 

 

Figure 6.2: mhcA- cells within 0.5% agarose at 24 hours after the initial imaging point shown in the 

previous figure. Images acquired every 3 minutes (180 seconds) over 0-120 minutes (7200 seconds) 

(A) Volumetric image generated with Amira software showing all of the time-points of the experiment 

summed together using the standard deviation projection in ImageJ. (B) En face image (slices summed 

at ~10µm around the surface) of all of the time points of image acquisition (2 hours) summed using 

the standard deviation projection in ImageJ. Yellow arrow shows a moving cell on the surface of the 

agarose. (C(I&II)) Sum of all time points, every 3 minutes over 0-120 minutes in (I) en face (slices 

summed at ~10µm at ~50 µm below the surface) and (II) cross-sectional (slices summed over ~20 µm 

from the middle of the stack) planes at 24 hours after seeding. mhcA- cells have not developed within 

the agarose. No movement is seen over the course of the imaging. Scale bars are 100 µm. 
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While most of the experiments so far have focused on the axenic mutant of Dictyostelium Ax2, 

the parent strain of the myosin null cells, which I used for my experiments was JH10, an 

axenic thymidine auxotroph238. Therefore the results from experiments with the mhcA- cells 

have been compared with behaviour of JH10 cells (grown in axenic medium supplemented 

with thymidine), in order to ensure a fair comparison. Differences have previously been 

shown to exist in the behaviour of migrating axenic and true wild-type (solely bacteriovore) 

strains of Dictyostelium and in the gene expression profiles of cells grown under different 

conditions (on bacteria or in Axenic medium)55,297,574. The JH10 strain is originally derived 

from the Ax3 strain of Dictyostelium238,404. This strain is independent in origin from the Ax2 

strain and is different genetically199,375. Therefore, the relevant parent strain (in this case JH10) 

should be used when comparing mutant and wild-type cell behaviour394. 

Although JH10 cells have previously been found to move poorly in under-agarose assays, they 

appear to move with comparable speed and directionality to Ax2 cells when placed within a 

0.5% agarose gel328. This could potentially be attributed to the need for the cells to exit the 

trough in the under-agarose assay, whereas in my experimental configuration the cells are 

already set within the agarose and do not need to move from a less restrictive environment to 

an environment of increased challenge but merely need to exert enough force to initiate 

migration within the gel. 

JH10 and mhcA- cells were seeded within a 0.5% agarose gel, as described in the methods 

section, and left under these starvation conditions for 8 hours prior to imaging. Image 

sequences were acquired over a 2 hour (120 minute, 7200 second) period at 2 minute 

(120 second) intervals. Volumetric images are shown in Figure 6.3. Figure 6.3A-B JH10 cells, 

and Figure 6.3C-D mhcA- cells. Experiments performed on two separate days for both 

strains. All of the time-points were summed together using the standard deviation projection 

in ImageJ, which shows tracks generated by moving objects. Tracks can be clearly seen in the 

JH10 images and some example tracks are indicated by yellow arrows (Figure 6.3A-B). The 

single JH10 cells were able to signal to one another and migrate within the agarose (Figure 

6.3A-B- yellow arrows), aggregate together, and move as multicellular aggregates within cell 

streams (Figure 6.3A-B- orange arrows), and outside of cell streams (Figure 6.3A-B- pink 

arrows). The objects within the agarose in the mhcA- volumes appear stationary and no cell 

streaming was seen. (Figure 6.3C-D).  
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Figure 6.3: JH10 and mhcA-cell aggregation in agarose 
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Figure 6.3: (A-B) JH10 and (C-D) mhcA- cells suspended in 0.5% agarose on an agar base layer, images 

acquired on two separate days for each of the cell strains. Images acquired every 2 minutes 

(120 seconds) over 2 hours, (120 minutes, 7200 seconds). Volumetric images generated using Amira 

software. Grey guidelines delineate the edges of the volumetric images for ease of visualisation. 

Images were acquired every 2 minutes over 120 minutes. Images summed over all time-points 

(2 hours) using standard deviation in ImageJ over 120 minutes to show the tracks of the cells and the 

general trend of cell motion. Yellow arrows illustrate tracks of cells moving in time in the JH10 images. 

Orange arrows indicate streams seen within the JH10 images. Pink arrows indicate tracks generated 

by migrating multicellular aggregates. No tracks are seen in the mhcA- images. Scale bars are 20 µm. 

 

The evidence up to this point may lead one to conclude that mhcA- cells are unable to move 

within a three-dimensional 0.5% agarose gel environment; and as this is a challenging 

environment to navigate and these mutants have severe cytoskeletal deficits, this may not 

seem surprising18,209,329,445,682. However, a closer inspection of the volumes reveals that this is in 

fact not the entire story. Figure 6.4 shows the volumes from Figure 6.3, with the colour-coded 

areas (yellow, orange and pink) outlined by the boxes in Figure 6.4A&B magnified in Figures 

6.4C-H. In Figures 6.4C&E, three example multicellular aggregates, by size comprised of two 

or three cells (Figure 6.4C- indicated by orange arrows) or a few more cells (Figure 6.4E- 

indicated by pink arrows), are shown over 4 minute (240 second) periods. The cells are 

colour-coded and superimposed with blue as the first time-point, magenta 2 minutes (120 

seconds) later and yellow a further 2 minutes later. The multicellular aggregates change shape 

and morphology, in Figure 6.4C, migrating a short distance, and in Figure 6.4E briefly 

contacting another multicellular aggregate (yellow). Figures 6.4D&H show the multicellular 

aggregates from Figures 6.4C&E respectively, summed over the entire image acquisition time 

(2 hours). From these images it can be seen that the smaller multicellular aggregates indicated 

by the orange arrows in Figure 6.4C-D, although they changed shape and migrated a short 

distance, did not move far from their initial position over the entire 2 hour acquisition period, 

and so appeared to have not moved when considering the entire time-sequence collapsed to a 

single image. The larger aggregates indicated with pink arrows in Figure 6.4E-F changed 

morphology and even contacted another multicellular aggregate briefly, but did not shown 

any translocation from their initial position. Therefore, although the majority mhcA- 

multicellular aggregates do not translocate within agarose, it can be seen from Figure 6.4C-F 

that they were motile, changing morphology, and that the smaller aggregates could migrate, 
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although only over a short distance. Furthermore, these motile cells do not form cell streams 

or progress further with development (as seen previously in Figures 6.1&6.2). 

Turning to the behaviour of single mhcA- cells within agarose, a single migrating mhcA- cell 

is shown, as an example, in Figure 6.4G-H. All of the time-points of the image acquisition 

(every 2 minutes for 2 hours) were summed together to show the tracks of moving objects. 

The beginning and end of the cell’s track is indicated by yellow arrows in Figure 6.4G, and the 

path taken by the cell has been manually traced on the image in Figure 6.4H for clarity. The 

cell entered the magnified area of the image at 70 minutes (4200 seconds) after image 

acquisition begun, so the track of the cell spans 50 minutes (3000 seconds). This is one 

example of a few migrating mhcA- cells within the volumes, but there are not many, and there 

are certainly far fewer than seen with the JH10, parent strain, which is why on inspection of 

the whole volume it did not appear as though mhcA- cells were able to move within 0.5% 

agarose gel, as these few motile cells were easily missed. Therefore, in order to properly 

explore the motility of mhcA- cells within an agarose gel, quantitative information about the 

characteristics of this migration must be obtained. 
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Figure 6.4: mhcA-cell aggregation in agarose- additional details 
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Figure 6.4: Volumetric images generated using Amira software of mhcA- cells suspended in 0.5% 

agarose on an agar base layer. Grey guidelines delineate the edges of the volumetric images for ease of 

visualisation. Images were acquired every 2 minutes (120 seconds) over 120 minutes (7200 seconds). 

(A-B) mhcA- cells within agarose- entire volume. Image sequences acquired on two separate days. 

Outlined areas magnified in: yellow and orange, (G-H) and (C-D) respectively; pink, (E-F). (C) Three 

superimposed colour-coded images, 2 minutes (120 seconds apart), from 26 minutes (1560 seconds) 

to 30 minutes (1800 seconds) after the beginning of image acquisition, 26 minutes- blue, 28 minutes 

(1680 seconds)- magenta, 30 minutes- yellow. The cell aggregate changes shape and moves a small 

distance. (D) All time-points, 120 minutes, summed together using the standard deviation projection 

in ImageJ. The object followed over 4 minutes (240 seconds) in C appears stationary in D, so does not 

move any further than the short distance shown in C, over the entire acquisition time. (E) Three 

superimposed colour-coded images, 2 minutes (120 seconds apart), from 7 minutes (420 seconds) to 

11 minutes (660 seconds) after the beginning of image acquisition, 7 minutes- blue, 9 minutes 

(540 seconds)- magenta, 11 minutes- yellow. The cell aggregates indicated by pink arrows change 

shape, but do not migrate any distance. (F) All time-points, 120 minutes, summed together using the 

standard deviation projection in ImageJ. The objects followed over 4 minutes (240 seconds) in E, 

indicated by pink arrows appear stationary in F, so do not move any distance from its initial starting 

point. (G-H) a single mhcA- cell motile within the agarose magnified. Yellow arrows indicate the 

approximate beginning and end of the track. (G) All time-points, 120 minutes, summed together using 

the standard deviation projection in ImageJ. The cell appears in the cropped image area at 

~70 minutes (4200 seconds) after the beginning of acquisition and the track extends from this time 

point until the end of acquisition (120 minutes) (H) With a yellow track, manually generated, showing 

the path of the cell (which is seen over a time period of 50 minutes (3000 seconds) from 70 minutes 

(4200 seconds) after the beginning of image acquisition, for ease of visualisation.  Scale bars are 

20 µm. 

 

6.4 JH10 and mhcA- chemotaxis in 0.5% agarose gel 

To further explore the motility of mhcA- cells, as compared to their parent strain JH10, 

within a 0.5% agarose three-dimensional environment, it was necessary to track cells within 

the agarose and obtain quantitative information on the characteristics of the cell migration. As 

seen above, JH10 cells formed small, then larger multicellular aggregates, and began cell 

streaming, while mhcA- cells left under starvation conditions for the same amount of time 

formed small cell aggregates. In order to eliminate any variation in chemoattractant signalling 

and concentration which may arise as a result of these marked differences and to ensure that 

all cells were at the same stage of development, cells were exposed to extrinsic pulses of 

cAMP at regular intervals for 6 hours. They were then suspended within a 0.5% agarose gel, 



OCT in Cell Migration Page 169 

which was resting on a 1 µM cAMP agar base layer. A diffusion based extrinsic cAMP 

gradient was then allowed to establish for 30 minutes prior to the commencement of image 

acquisition, with images then acquired every 2 minutes for 2 hours. Experiments were 

performed on three separate days for both the JH10 and mhcA- cells. Image stacks were 

subsequently imported into Volocity Quantitation software (PerkinElmer, USA) for tracking 

and to obtain quantitative information on the character of cell chemotaxis within an agarose 

gel, and to allow for a comparison of the migration of JH10 and mhcA- cells under these 

conditions. The tracking algorithm was constrained by the parameters outlined in the 

methods section, to restrict tracking of objects to single cells and to minimise potential 

artefacts. 

Figure 6.5 shows the JH10 (Figure 6.5A-C) and mhcA- (Figure 6.5D-F) cell stacks used for 

analysis. A volumetric rendering of the images, summed together over all time-points 

(2 hours) using the standard deviation projection in ImageJ to show the cell tracks, is shown 

in Figure 6.5Ai-Fi). An example of a cell track is indicated in each volume with a yellow 

arrow. Figure 6.5Aii-Fii shows the tracks generated by the Volocity software: top left- volume, 

top right- enface image, bottom left- side view (X-Y), bottom right side view (X-Z). By 

inspection it can be seen that the tracks generated by the software appear longer for the JH10 

cells than for the mhcA- cells. Table 3 is a summary of the velocity and meandering index of 

the JH10 and mhcA- cells tracked chemotaxing within agarose. In order to reduce errors from 

tracks generated by artefacts, only cell tracks which spanned the entire image acquisition 

period were included in the analysis. These parameters were chosen for analysis, as together 

they describe the track of a cell, in terms of how fast a cell is able to move, and how much it 

deviates from migrating in a straight line, as discussed in chapter 5. 
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Figure 6.5: JH10 and mhcA- cells in agarose tracked with Volocity software over 2 hours 
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Figure 6.5: JH10 and mhcA- cells pulsed for 5 hours and seeded within 0.5% agarose on a bed of 1 µM cAMP agar. Images were acquired every 2 minutes over 

120 minutes. Grey guidelines delineate the edges of the volumetric images for ease of visualisation. (A-C) JH10 cells, images acquired on three separate days. (D-F) 

mhcA- cells, images acquired on three separate days. (A-F(I)) Volumetric rendering of cells within the agarose summed using standard deviation projection in 

ImageJ for visualisation of tracks. Yellow arrows point to example tracks seen. (A-F(II)) Output from Volocity software after tracking showing the objects Volocity 

finds from the input parameters, and the tracks plotted by the software- Top left- entire volume (surface), Top right- enface view (single plane), Bottom left- X-Y 

view (B-scan), Bottom right X-Z view. By visual inspection the mhcA- tracks can be seen to in general be shorter than the JH10 tracks. Scale bars are 100 µm. 
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The results are summarised in Table 3, from which it can be seen that the mean velocity of 

the JH10 cells was 0.13±0.03 µm/s, 0.09±0.08 µm/s more than the mhcA- cells, where the 

mean velocity was 0.04±0.05 µm/s. The meandering index of the JH10 cells was also higher 

than that of the mhcA- cells, at 0.12 ±0.06, 0.04±0.12 higher than for the mhcA- cells, which 

had a meandering index of 0.08±0.06. 

As there were a number of multicellular aggregates within the agarose, particularly in the JH10 

experiments, which release cAMP as part of the natural developmental process of 

Dictyostelium, it is possible that some cells within the JH10 experiments were exposed to a 

cAMP gradient originating from these aggregates, and rather than move towards the cAMP 

agar instead moved towards these aggregates, as discussed for the Ax2 cells in chapter 5. 

Alternatively, the leading cells may disrupt the chemoattractant spatial gradient in the agarose, 

resulting in less directed migration for those following, as discussed in chapter 5. This also 

may happen to a certain extent within the mhcA- experiments, although this is less likely, as 

we have seen above that mhcA- cells are impaired in cell development within an agarose gel 

and fewer cells are motile (Figures 35-37). This reduced motility, resulting in the formation of 

fewer aggregation centres and less disruption of the cAMP spatial gradient, may offer an 

explanation for why the chemotactic index of mhcA- cells (mean= 0.40±0.49, median= 

0.55±0.71) was found to be 0.399±1.03 higher than that of JH10 cells (mean= 0.001±0.54, 

median= 0.02±0.90) under these conditions. This difference is significant at the 95% 

confidence interval (Mann-Whitney test U= 187032, Z= 14.17, p<0.001). 

To exclude the possibility of the differences in the chemotactic parameters between the JH10 

and mhcA- cells being mediated by differences in proportion of actively chemotaxing cells 

(cells moving towards the cAMP source) and cells which were moving in other directions, the 

data were subjected to a filter on the basis of chemotactic index, calculated as described in the 

methods section. Cells with a chemotactic index of less than 0.75 (not moving towards the 

cAMP agar) were excluded from analysis in the CI filtered data, so that only cells where the 

general direction of motion was towards the cAMP agar were included in the analysis for this 

filtered data. The means and medians for this data are summarised in Table 3 (CI filter). The 

differences seen in chemotactic parameters between the JH10 and mhcA- cells persisted in 

the data filtered in this way, with the CI filtered JH10 cells having a mean velocity of 

0.19±0.04 µm/s, which was 0.17±0.06 µm/s higher than that of the mhcA- cells, at 

0.02±0.02 µm/s; and also a higher meandering index of 0.10±0.06, 0.03±0.11 higher than the 

0.07±0.05 meandering index of the mhcA- cells.  
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In order to see if there was any effect of filtering the data on the basis of chemotactic index 

on the chemotactic parameters of each cell strain, i.e. to test if filtering had any significant 

effect on the velocity and meandering indices of the cells, the filtered datasets were compared 

to the unfiltered datasets, for both the JH10 and mhcA- cells. All distributions of the data 

were significantly non-normal (Anderson-Darling tests p<0.005 for all), so Mann Whitney 

tests were performed by way of comparison. The JH10 cells showed significant differences at 

the 95% confidence level between the unfiltered and filtered data for both velocity (U=56639, 

Z=|2.81|, p=0.005) and meandering index (U=49549, Z=|4.69|, p<0.001). The mhcA- cells 

also showed significant differences at the 95% confidence level (velocity- U=32398, 

Z=|5.69|, p<0.001; meandering index- U=39517.5, Z=|2.66|, p=0.008). This shows that 

the cells which were chemotaxing directly downwards towards the cAMP source had different 

velocities and meandering indices than the whole (unfiltered) population of cells, which 

indicated that there are potential differences between the migration character of cells within 

an agarose gel chemotaxing directly towards the known source of cAMP agar, and those 

where the overall trajectory was not towards this known source. 

The differences between the JH10 and mhcA- cells, both unfiltered and chemotactic index 

filtered were tested using Mann-Whitney tests, as all of the probability distributions of the 

data were significantly non-normal (Anderson-Darling tests, all: p<0.005). The results are 

summarised in Table 3, with significant differences at the 95% confidence interval seen 

between the JH10 and the mhcA- cells for velocity and meandering index in both the 

unfiltered and data filtered on the basis of chemotactic index (p<0.001). Box plots of the 

velocity and meandering index of JH10 and mhcA- cells, for both the unfiltered and 

chemotactic index filtered data are shown in Figure 6.6. Figure 6.6A-B unfiltered data, A- 

velocity, B- meandering index; Figure 6.6C-D chemotactic index filtered data, C- velocity, D- 

meandering index. 
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Figure 6.6: Box and whisker plots of chemotaxis parameters of JH10 and mhcA- cells 

within 0.5% agarose- over 2 hours 

 

Figure 6.6: Box and whisker plots showing the distributions of (A&C) velocity and (B&D) meandering 

index of chemotaxing JH10 and mhcA- cells pulsed for 6 hours, suspended within 0.5% agarose on a 

1 µM cAMP base layer, and imaged over 2 hours (120 minutes, 7200 seconds). Acquisition was every 

2 minutes (120 seconds). (A-B) Unfiltered data. (C-D) Data filtered on the basis of chemotactic index, 

to include only tracks where the net direction of motion was in the downwards direction, towards the 

cAMP agar (excluded tracks with a chemotactic index of <0.75). The box shows the interquartile range, 

with the median value as a line across the middle. The small square box inside the boxplot is the mean. 

Whiskers represent the 5th-95th percentile of the data. Crosses represent the 1st and 99th percentile 

of the data. Data were obtained on three separate days. The data were truncated to exclude any tracks 

which did not span the entire 2 hour image acquisition period. 
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Table 3: JH10 cells and mhcA- cells migrating within a 0.5% agarose gel over 2 hours- 

Results and Statistical Analyses 

Condition Velocity 

(µm/s) 

CI filter 

Velocity 

(µm/s) 

Meandering 

Index 

 

CI filter 

Meandering 

Index 

JH10 in 

agarose gel 

0.13±0.03 

(0.14±0.03) 

0.19±0.04 

(0.13±0.03) 

0.12±0.06 

(0.12±0.07) 

0.10±0.06 

(0.09±0.06) 

mhcA- in 

agarose gel 

0.04±0.05 

(0.02±0.02) 

0.02±0.02 

(0.02±0.009) 

0.08±0.06 

(0.06±0.07) 

0.07±0.05 

(0.05±0.05) 

 

JH10 vs mhcA- 

in agarose 

 

 

U=79223.50 

Z=|25.37| 

P<0.001* 

 

U=751.00 

Z=|13.13| 

P<0.001* 

 

U=179290.50 

Z=|14.97| 

P<0.001* 

 

U=5181.00 

Z=|6.49| 

P<0.001* 

Table 3: Grand means (±SD) and medians (±interquartile range), in brackets, calculated from the mean 

values obtained for each cell. JH10 in agarose n=1159. mhcA- in agarose n=558. JH10 in agarose 

chemotactic index filtered n=116. mhcA- in agarose chemotactic index filtered n=164. Summary of the 

results of statistical analysis for JH10 cells and mhcA- cells, * indicates significance at 95% CI. 
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6.5 JH10 and mhcA- aggregation in agarose- bimodal velocity 

Plots of the probability density functions of the JH10 and mhcA- cell velocities reveal two 

peaks, indicating that the data may be bimodal. This was also found for the data which had 

been filtered by chemotactic index (CI >0.75, as described in the previous section). 

Furthermore the density plots for both filtered and unfiltered data have similar patterns 

(Figure 6.7). This indicates that this bimodal pattern of motion was not restricted by 

chemotactic index of the migrating cells, i.e. that this bimodality does not arise as a result of 

differences in velocity between cells which are moving directly towards the cAMP source and 

cells which are not. 

Hartigan’s dip tests were performed which indicated that the velocity of the cells was 

significantly bimodal at the 95% confidence interval for all of the data. JH10 unfiltered data 

p= 0.01, mhcA- unfiltered data p=0.04, JH10 CI filtered data p=0.03, mhcA- CI filtered data 

p=0.02 (all <0.05)247,387,505. This may indicate that there were two populations of cells, a slow 

moving group and a faster moving group within the overall motile cell population. 
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Figure 6.7: Probability density plots of the velocity of JH10 and mhcA- cells within 0.5% 

agarose over 2 hours 

 

Figure 6.7: Probability density plots, generated, using R statistical software, of the velocity of (A) JH10, 

(B) mhcA-, tracked over 2 hours (C-D) Data filtered to exclude data with a chemotactic index of less 

than 0.75. (C) chemotactic index filtered JH10 cell velocity. (D) chemotactic index filtered mhcA- cell 

velocity, tracked over 2 hours. 
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The data for the overall population of cells were divided into two groups by velocity, in 

roughly the middle, with cells with a velocity greater than or equal to 0.075 µm/s placed into 

the high velocity filtered group, and cells with a velocity of less than 0.075 µm/s placed into 

the low velocity filtered group. Out of an initial population of 1159 tracks, 1074 of the JH10 

cells (92.7%) had a velocity ≥0.075 µm/s and 85 (7.3%) had a velocity <0.075µm/s. Of the 

original 558 mhcA- cells, successfully tracked over the entire 2 hour time-series, 107 (19.2%) 

had a velocity ≥0.075 µm/s and 451 (80.8%) had a velocity <0.075µm/s. In order to see 

whether the large difference in velocity of the overall population of cells seen between the 

JH10 and mhcA- cells may be due to this difference in proportion of fast-moving to slow-

moving cells, rather than due to any difference in the ability of cells to migrate, the velocity 

and meandering indices of the JH10 and mhcA- cells were compared for both slow-moving 

and fast-moving cells, filtered as described above. The data and results of statistical analysis 

are summarised in Table 4. Box plots of the data are shown in Figure 6.8.  

The distributions of the high velocity filtered JH10 cells were non-normal at the 95% 

confidence level (velocity p=0.013, meandering index p<0.005, chemotactic index p<0.005), 

so although the distributions for the mhcA- cells were normal for velocity and meandering 

index (Anderson-Darling tests at 95% confidence, velocity p=0.176, meandering index 

p=0.052, chemotactic index p=0.018), Mann-Whitney tests were used to compare the data. 

The distributions for both the JH10 and mhcA- low velocity filtered cells were non-normal 

for all of the chemotactic parameters to be compared (Anderson-Darling tests at 95% 

confidence interval, velocity, meandering index and chemotactic index for both JH10 and 

mhcA-, p<0.005), therefore Mann-Whitney tests were used to compare the velocity, 

meandering index and chemotactic index between the two cell strains. 

The mean velocity of the fast moving JH10 cells was 0.14±0.02 µm/s, 0.03±0.07 µm/s higher 

than that of the fast moving mhcA- cells, which had a mean velocity of 0.11±0.05 µm/s. This 

difference in velocity was not found to be significant at the 95% confidence level, U=55633.0, 

Z=|0.56|, p=0.58. 

The mean velocity of the slow moving cells was 0.03±0.02 µm/s for the JH10 cells and 

0.02±0.01 for the mhcA- cells, a difference of 0.01±0.03. Despite the fact that this difference 

is small, a Mann-Whitney test revealed that it was significant at the 95% confidence level, 

U=10764.5, Z=|6.42|, p<0.001. This is likely attributable to the fact that the Mann-Whitney 

test is a comparison of the sum of ranks and is therefore not only sensitive to changes in the 

absolute values of medians, but also to the spread and shape of the distributions being 
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compared188,245. These distributions are summarised as box plots in Figure 6.8 from which it 

can be seen that the shape and spread of the distributions of the mean velocities between the 

fast-moving JH10 and mhcA- cells are quite similar, but that they are quite different for the 

slow-moving cells. The above Mann-Whitney tests indicate that the fast moving mhcA- move 

with the same velocity as the fast moving JH10 cells, but the slow moving mhcA- cells move 

significantly slower than the slow JH10 cells. 

No significant difference was seen between the meandering indices for the slow moving cells 

(U=18647.0, Z=|0.40|, p=0.69). However, although there is not much apparent difference 

between the absolute values of mean and median, a significant difference was found to exist 

between the meandering indices of the fast moving cells (U=49269.0, Z=|2.45|, p=0.01), 

with the JH10 cells moving more directly with a mean meandering index of 0.12±0.05, 

compared to the mhcA- cells mean meandering index of 0.11±0.05. As the Mann-Whitney 

test is a rank-sum test, which involves ranking the data and then summing the ranks for each 

variable, this significant difference likely reflects a difference in the distribution of results, 

with the JH10 cells having a significantly higher number of large values for meandering index 

(mean rank=599.17) than the mhcA- cells (mean rank=514.46)188,245,391. Although this is not 

readily apparent upon inspection of the box plots by eye (Figure 6.8), it should also be noted 

that a large number of samples increases the statistical power of a test thereby reducing the 

chance of a type II error, where no significant difference is found even if one exists188,189. 
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Figure 6.8: Box and whisker plots of the velocity and meandering index of JH10 and 

mhcA- cells within 0.5% agarose over 2 hours- velocity filters 

 

Figure 6.8: Box and whisker plots showing the distributions of (A&C) velocity and (B&D) meandering 

index of chemotaxing JH10 and mhcA- cells pulsed for 6 hours, suspended within 0.5% agarose on a 

1 µM cAMP base layer, and imaged over 2 hours (120 minutes, 7200 seconds). Acquisition was every 

2 minutes (120 seconds). Data filtered on the basis of velocity. (A-B) high velocity filter (fast moving 

cells) >0.75 µm/s. (C-D) low velocity filter (slow moving cells <0.75µm/s). The box shows the 

interquartile range, with the median value as a line across the middle. The small square box inside the 

boxplot is the mean. Whiskers represent the 5th-95th percentile of the data. Crosses represent the 1st 

and 99th percentile of the data. Data were obtained on three separate days. The data were truncated 

to exclude any tracks which did not span the entire 2 hour image acquisition period. 
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Table 4: JH10 cells and mhcA- cells migrating within a 0.5% agarose gel over 2 hours 

filtered by velocity- Results and Statistical Analyses 
Condition High velocity filter 

(≥0.075) 

Low velocity filter 

(<0.075) 

 Velocity 

(µm/s) 

Meandering Index 

 

Velocity 

(µm/s) 

Meandering 

Index 

 

JH10 in 

agarose gel 

0.14±0.02 

(0.14±0.02) 

0.12±0.05 

(0.12±0.07) 

0.03±0.02 

(0.03±0.02) 

0.10±0.10 

(0.06±0.11) 

mhcA- in 

agarose gel 

0.11±0.05 

(0.13±0.07) 

0.11±0.05 

(0.10±0.07) 

0.02±0.01 

(0.02±0.01) 

0.07±0.06 

(0.05±0.06 

 

JH10 vs mhcA- 

in agarose 

 

 

U=55633.00 

Z=|0.56| 

P=0.58 

 

U=49269.00 

Z=|2.45| 

P=0.01* 

 

U=10764.50 

Z=|6.42| 

P<0.001* 

 

U=18647.00 

Z=|0.40| 

P=0.69 

Table 4: Grand means (±SD) and medians (±interquartile range), in brackets, calculated from the mean 

values obtained for each cell. High velocity filtered JH10 in agarose n=1074. mhcA- in agarose n=107. 

Low velocity filtered JH10 in agarose n=85. mhcA- in agarose n=451. Summary of the results of 

statistical analysis for JH10 cells and mhcA- cells, * indicates significance at 95% CI. 

 

Mann-Whitney tests revealed significant differences in the meandering indices between the 

two velocities for both the JH10, U=29148.5, Z=|55.6|, p<0.001, and mhcA- cells, 

U=12525.5, Z=|7.7|, p<0.001, indicating that the fast-moving cells moved more directly 

than the slow moving cells. The significance of the difference in meandering indices can be 

better understood by inspection of the displacement of the two populations of cells, both 

fast-moving and slow-moving. Box plots of the displacement for the slow-moving and the 

fast-moving JH10 and mhcA- cells are shown in Figure 6.9. These illustrate that although 

there were a few slow-moving cells in both the JH10 and the mhcA- cell populations which 
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translocated over 100 µm, indicating that they moved with a consistently slow pace, mainly in 

a single direction, the majority of the slow moving cells were almost non-motile, displacing 

only a few microns from their starting point. Conversely, although there were a few fast 

moving cells which did not translocate far, the majority of the fast moving cells displaced over 

100 µm from their starting points for both the JH10 and mhcA- cells. 

 

Figure 6.9: Box and whisker plots of the displacement of JH10 and mhcA- cells within 

0.5% agarose over 2 hours- velocity filtered 

 

Figure 6.9: Box and whisker plots showing the distributions of displacement of chemotaxing JH10 and 

mhcA- cells pulsed for 6 hours, suspended within 0.5% agarose on a 1 µM cAMP base layer, and 

imaged over 2 hours (120 minutes, 7200 seconds). Acquisition was every 2 minutes (120 seconds). 

(A) low velocity filter (slow moving cells <0.75µm/s). (B) high velocity filter (fast moving cells) 

>0.75 µm/s. The box shows the interquartile range, with the median value as a line across the middle. 

The small square box inside the boxplot is the mean. Whiskers represent the 5th-95th percentile of the 

data. Crosses represent the 1st and 99th percentile of the data. Data were obtained on three separate 

days. The data were truncated to exclude any tracks which did not span the entire 2 hour image 

acquisition period. 

 

Dictyostelium mhcA- cells were seen above to have a strong bias towards slow movement, with 

only a small (<20%) proportion exhibiting fast movement. This is contrary to the behaviour 

of their parent strain where >90% of the cells are classified as fast-moving. Earlier in this 

chapter I have shown differences in the behaviour of multicellular aggregates between JH10 

and mhcA- cells, whereby mhcA- aggregates were unable to move and do not form cell 

streams, but JH10 aggregates could move, and form streams. Over the 2 hour time course of 

the chemotaxis experiment, cell aggregates can be seen to have formed by the end of the 

2 hour time period (Figure 6.10). In order to ensure that the differences between the 
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proportion of slow-moving to fast-moving cells seen above cannot be attributed to the 

differences in behaviour of JH10 and mhcA- in response to the presence of multicellular 

aggregates, or to cells joining multicellular aggregates during the course of the experiment and 

thus being eliminated from analysis, cells were additionally tracked over a period of 

30 minutes. By 30 minutes into acquisition, not many multicellular aggregates had formed, 

streaming had not begun in the JH10 datasets, and the numbers of multicellular aggregates or 

clumps of cells were similar for the JH10 and mhcA- cells (Figure 6.11). 
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Figure 6.10: JH10 and mhcA- cells within 0.5% agarose at 2 hours after acquisition began- multicellular aggregates within the agarose 

 

Figure 6.10: Volumetric rendering of JH10 (A-C) and mhcA- (D-F) cells generated using Amira software within 0.5% agarose on a base of 1 µm cAMP agar. Grey 

guidelines indicate the edges of the volumes for ease of visualisation. Three different experiments performed on three different days. The cells at 120 minutes 

(2 hours) after commencement of image acquisition. There are differences in the number of multicellular aggregates and the pattern of their distribution. The 

JH10 volumes show a few large aggregates and cell streams. There are many more aggregates in the mhcA- volumes and they are smaller. There are also no cell 

streams. JH10 and mhcA- cells. Scale bars are 20 µm.  
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Figure 6.11: JH10 and mhcA- cells within 0.5% agarose at 30 minutes after acquisition began 

 

Figure 6.11: Volumetric rendering of JH10 (A-C) and mhcA- (D-F) cells generated using Amira software within 0.5% agarose on a base of 1 µm cAMP agar. Grey 

guidelines indicate the edges of the volumes for ease of visualisation. Three different experiments performed on three different days. The cells at 30 minutes 

after commencement of image acquisition. There are not many multicellular aggregates and the number and size of aggregates is similar for both the JH10 and 

mhcA- cells. Scale bars are 20 µm. 
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Hartigan’s dip tests indicated that the velocity of the cells was significantly bimodal at the 

95% confidence interval for all of the data over the course of 30 minutes. JH10 unfiltered 

data p= 0.02, mhcA- unfiltered data p=0.03, JH10 CI filtered data p=0.02, mhcA- CI filtered 

data p=0.03 (all <0.05)247,387,505. Therefore the bimodal behaviour of the velocity of the cells 

was still seen over this truncated time period and was also seen in cells over this truncated 

time period which were moving directly towards the cAMP agar (CI filter >0.75, as before), 

as can be seen from the probability density plots (Figure 6.12). This indicates that this pattern 

of cell velocity can be seen both in cells which are moving directly towards the cAMP source 

and the entire population as a whole, and over 30 minutes as well as over 2 hours. 

 

Figure 6.12: Probability density plots of the velocity of JH10 and mhcA- cells within 

0.5% agarose over 30 minutes 

 

Figure 6.12: Probability density plots, generated, using R statistical software, of the velocity of (A) 

JH10, (B) mhcA-, tracked over 30 minutes (C-D) Data filtered to exclude data with a chemotactic index 

of less than 0.75. (C) chemotactic index filtered JH10 cell velocity. (D) chemotactic index filtered 

mhcA- cell velocity, tracked over 30 minutes.  
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The velocity and meandering indices of the JH10 and mhcA- cells over 30 minutes and the 

results of the statistical analyses are shown in Table 5. All data were significantly non-normal 

(Anderson-Darling tests at 95% confidence level, all p<0.005), so Mann-Whitney U tests were 

performed. Box plots of the velocity and meandering indices of the JH10 and mhcA- cells 

tracked over a period of 30 minutes are shown in Figure 6.13, graphically illustrating the 

differences in the population chemotaxis parameters between the two cell strains. As before, 

both the velocity and meandering index of the JH10 cells was significantly higher at 

0.16±0.06 µm/s and 0.27±0.13 respectively (grand mean values) than that of the mhcA- cells 

at 0.07±0.07 µm/s and 0.21±0.14 respectively (grand mean values), showing that the JH10 

cells moved faster and more directly than the mhcA- cells. 

 

Figure 6.13: Box and whisker plots of the velocity and meandering index of JH10 and 

mhcA- cells within 0.5% agarose over 30 minutes  

 

Figure 6.13: Box and whisker plots showing the distributions of (A) velocity and (B) meandering index 

of chemotaxing JH10 and mhcA- cells pulsed for 6 hours, suspended within 0.5% agarose on a 1 µM 

cAMP base layer, and imaged over 30 minutes (1800 seconds). Acquisition was every 2 minutes 

(120 seconds). The box shows the interquartile range, with the median value as a line across the 

middle. The small square box inside the boxplot is the mean. Whiskers represent the 5th-95th 

percentile of the data. Crosses represent the 1st and 99th percentile of the data. Data were obtained 

on three separate days. The data were truncated to exclude any tracks which did not span the 

30 minutes period of tracking. 
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Table 5: JH10 cells and mhcA- cells migrating within a 0.5% agarose gel over 

30 minutes- Results and Statistical Analyses 
Condition Velocity 

(µm/s) 

Meandering 

Index 

 

JH10 in 

agarose gel 

0.16±0.06 

(0.17±0.06) 

0.27±0.13 

(0.26±0.18) 

mhcA- in 

agarose gel 

0.07±0.07 

(0.04±0.11) 

0.21±0.14 

(0.17±0.18) 

 

JH10 vs mhcA- 

in agarose 

 

 

U=464238.50 

Z=|33.16| 

P<0.001* 

 

U=949492.50 

Z=|15.73| 

P<0.001* 

Table 5: Grand means (±SD) and medians (±interquartile range), in brackets, calculated from the mean 

values obtained for each cell. JH10 in agarose n=1469. mhcA- in agarose n=1855. Summary of the 

results of statistical analysis for JH10 cells and mhcA- cells, * indicates significance at 95% CI. 
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6.6 Chapter 6 Discussion 

Previous experiments have shown that although Dictyostelium cells deficient in myosin II are 

motile, they exhibit impaired chemotaxis on 2D planar surfaces, having a reduced speed, 

reduced cell polarisation and lower chemotactic indices than their parent strain314,668. They 

have additionally been shown to exert abnormal patterns of force on their substrata and 

greatly slowed cycles of force generation in comparison to wild-type cells374,414. The more 

restrictive environment of an under-agarose assay has also revealed impaired migration under 

these conditions, with cells lacking myosin II unable to move under agarose concentrations of 

greater than 0.5% and migrating slowly and translocating only a short distance under 0.5% 

agarose328,682. I have extended the study of the phenotypes of myosin II null cells to the third-

dimension, to investigate what this environment of increased challenge can reveal.  

 

6.6.1 mhcA- development in 4D 

I have shown that mhcA- failed to complete development within agarose, never progressing 

beyond the stage of aggregates, and did not form cell streams within agarose, unlike their 

wild-type counterparts. As aggregation has previously been shown to be delayed in mhcA- 

cells, unsurprisingly considering their lower chemotactic speed and efficiency, the sample of 

mhcA- cells within agarose was imaged again at 24 hours after initiation of starvation, to see if 

further development had occurred255,314,394,593,668. No further development was seen in within 

the agarose throughout the duration of this image sequence, indicating that the mhcA- cells 

were not merely delayed in this process of development, but that development is completely 

arrested at this point, although a motile cell seen on the surface of the agarose shows that the 

mhcA- cells were still alive and motile. This is additionally supported by the fact that, 

although by eye I frequently observed fruiting bodies on the surface of the agarose of both 

Ax2 and JH10 cells the day after imaging, I did not see this with the mhcA- cells. This result 

agrees with the well-known mound-arrest phenotype that Dictyostelium myosin heavy chain 

null cells have been shown to exhibit and with the observation of Laevsky et al, that mhcA- 

cells stop chemotaxing after a period of approximately 4 hours, possibly due to reduced 

cortical integrity of these cells caused by their cytoskeletal deficits128,313,328. Although mhcA- 

cells under buffer have previously been shown to be able to form streams, the cells within the 

streams have been shown to be disordered, in contrast to wild-type cells which show some 

patterns of organisation162. Although, it should be noted that this organisation may not be an 
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important factor in development, as Doolittle et al did not see this ordered pattern in their 

experiments with Ax2 cells, which completed development normally139. More recently Heid et 

al found that mhcA- cells were unable to form streams in buffer, although the cells were able 

to form multiple aggregates255. This agrees with what I have seen with mhcA- cells within 

agarose, as under these conditions no cell streaming was seen, but aggregates were formed. 

Furthermore, Heid et al demonstrated the inability of mhcA- cells to respond to temporal 

gradients of cAMP, such as those released from aggregation centres during the natural 

development process; an observation supported by Driscoll et al who observed wave-like 

characteristics in the migration of wild-type cells responding to a wave of cAMP, but did not 

see these waves in mhcA- cells, and further contributing to a possible explanation for why 

this strain fails to complete development within an agarose gel150,255,328,701,702.  

Multicellular aggregates within the 0.5% agarose initially appeared to be fully immobile. 

However, closer inspection of the images revealed that the smaller mhcA- multicellular 

aggregates were motile, but did not translocate far from their original position, while the 

larger multicellular aggregates, composed of three to four cells by size, changed morphology 

on the spot but did not translocate. This agrees with the observations of Doolittle et al, who 

fluorescently labelled some mhcA- cells and imaged the process of development139. They 

observed that the cells became stuck at the mound stage, once the cells became tightly 

packed, and ‘jiggled’ on the spot139. Indeed, from my results, it seems as though when mhcA- 

cells formed aggregates of more than two or three cells (by size), they became stuck in the 

agarose and jiggled on the spot. Doolittle et al, and others, attribute the jiggling of the mhcA- 

cells within the mound to a lack of cortical integrity in mhcA- cells, possibly caused by the 

inability of the mhcA- cells to properly regulate crosslinking of F-actin and stabilise the 

cytoskeleton during motility314,374,414. Although F-actin has been shown to move towards the 

rear of the cell independently of the action of myosin II, this movement is five times 

slower211,686. Therefore, while mhcA- cells are able to regulate F-actin to a certain extent, 

possibly through the action of cortexillin I or other actin binding proteins, involved in 

maintaining cytoskeletal integrity, such as the bundling protein α-actinin and gelation factor 

ABP120, it appears as though proper regulation of the actin cytoskeleton is a myosin II 

dependent process127,211,255,381,414,425,450,686. Consequently, although there is no question that the 

cytoskeleton of mhcA- cells is impaired, and that this lack of cortical integrity is likely to play 

a role in the impaired migration exhibited by mhcA- cells, it cannot be said from 

developmental assays whether the multicellular aggregates are unable to translocate far within 

agarose, or whether this lack of translocation can be attributed to an inability of the cells to 
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respond to the temporal dynamics of naturally occurring cAMP waves, as has previously been 

shown in this mutant strain by Heid et al255. However, from observation of the mhcA- cells in 

volumetric images in time-lapse placed within an extrinsic spatial gradient of cAMP, it can be 

seen that the multicellular aggregates exhibit the same behaviour as in the development assays, 

with the smaller aggregates translocating a short distance and the larger aggregates jiggling on 

the spot. This lends support to the idea that it is not impairment in response to a signal which 

dictates this behaviour of mhcA- cells, but rather a physical difficulty in traversing their 

environment. 

At first glance it appeared as though individual mhcA- cells were also trapped within the 

agarose gel, unable to migrate, with cell movement seen only on the top surface. However, 

closer inspection revealed that certain individual mhcA- cells were able to migrate within the 

3D environment of a 0.5% agarose gel. The numbers of migrating cells were far fewer than 

seen in the corresponding parent strain, JH10, explaining why they are easily missed and 

indicating a clear phenotype of these cells in 3D migration. Moreover, it appears that the 

mhcA- individual cells were able to move a significant distance within the agarose. The 

migration also exhibited a period of direct movement, before the cell changed direction 

repeatedly for a short while before migrating more directly again, but in a different direction. 

This pattern of periods of increased cell speed and persistence has been observed in 

unstimulated mhcA- cells has by Heid et al255. In their experiments, the faster and more 

persistently moving mhcA- were shown to have single pseuodopods, which, although they 

were abnormal in shape and size when compared to the parent strain, JH10, contrasted with 

the slower and more randomly moving mhcA- cells, which were seen to form several 

pseudopods concurrently255. Lombardi et al have also observed that some vegetative mhcA- 

cells are able to move as fast as some of the slower moving parent strain374. They attributed 

these periods to the development of an asymmetry of forces between the front and rear of 

the cell, arising by chance in mhcA- cells, which in their model is what allows a cell to propel 

itself along a surface374. This contrasts with the forces generated by non-directionally motile 

mhcA- cells which are not asymmetric, but instead distributed all around the membrane of 

the cell414. It is conceivable that a similar asymmetry of forces is required to propel the cell 

during 3D cell migration, and development of these by chance, potentially aided by 

gravitational forces in a 3D environment, could explain the periods of rapid and directed 

migration seen in a few starved individual mhcA- cells within an agarose gel204,205,414. 
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Although certain individual mhcA- cells appeared to be able to move within 0.5% agarose, 

during development, the numbers of motile cells were severely reduced in comparison to the 

number of motile cells seen during JH10 development. Multicellular behaviour was also 

compromised, with the mhcA- cells exhibiting no cell streaming, impaired motility of 

multicellular aggregates, and failure to progress in development beyond the stage of 

aggregates. A marked difference was seen in the cell behaviour during natural development 

between the mhcA- cells and their parent strain, JH10, showing that development of mutant 

cell lines within an agarose gel may prove a useful tool for qualitative investigation of mutant 

phenotypes within a three-dimensional environment. 

 

6.6.2 mhcA- chemotaxis in 4D 

I have shown that the velocity of individual mhcA- cells was significantly reduced within an 

agarose gel compared to that of JH10 cells, the parent strain. The speed of mhcA- cells has 

been previously seen to be reduced both in cells under buffer on glass surfaces, cells on 

gelatin surfaces and cells under agarose on polystyrene surfaces328,374,414,668. The impairment in 

migration speed is thought to be due to difficulty of mhcA- cells in retracting their rear, and 

in maintaining single dominant pseudopod although a potential additional role of myosin II in 

extension of pseudopodia has been recently postulated76,279,381,414. MhcA- cells also display 

delayed cycles of force generation and migration and unusual patterns of cell contractility. 

This is potentially due to impaired cytoskeletal integrity, in addition to difficulties in retraction 

of the cell rear. Impaired cortical integrity could result in inability to properly stabilise the 

forces which govern cell motility, resulting in dysregulation of these forces and reduced cell 

velocity131,374,414,582. However, it should be noted that this low group velocity may also arise 

because many of the mhcA- cells simply never initiate movement. MhcA- cells under agarose 

and on gelatin surfaces have previously been shown to exhibit low numbers of migrating 

cells131,328.  

The population meandering index of mhcA- cells was similarly significantly reduced in 

comparison to their parent strain. Previous work has shown that mhcA- cells have 

misregulated pseudopodial dynamics, which result in them generating a number of secondary 

pseudopods in addition to their primary pseudopod255,582,593,668. They also show abnormal 

morphology and aberrant patterns of contractile force exerted on their substrata, which may 

correspond to a deficit in cell polarity254,374,414. Therefore their low directionality is likely due to 
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an inability to supress formation of new pseudopodia and to retract existing ones, resulting in 

changes in direction as the different dominant pseudopods arise255,350,582,657,668.  

The observed reduction in speed and directness of mhcA- cell migration agrees with previous 

work with these cells on glass under buffer, on plastic under agarose and on gelatin surfaces 

in air254,314,374,414,593,668. This indicates that setting cells within agarose can be used as an assay to 

obtain quantitative information on the characteristics of cell migration within a 3D 

environment, allowing for comparison of mutant phenotypes with their parent strain. 

I have found that the chemotactic index is higher for the mhcA- cells than for the JH10 cells. 

However, by eye, the mhcA- cells were overwhelmingly non-motile, and quantitative data 

revealed a large proportion of very slow moving cells, which did not translocate far from their 

original position and additionally did not migrate with a very straight path. As the measured 

resolution of my OCT microscope was ~5 µm, mean displacement of mhcA- cells was 

6.14±9.1 µm and the median was 1.84±5.9 µm, the trajectories of these cells calculated using 

the Volocity software are unlikely to represent any significant attempt to move towards the 

cAMP source, and rather to be artefacts generated from attempting to calculate a trajectory 

for an almost non-motile cell which changes morphology (and therefore potentially centroid 

position) in time (illustrated in Figure 6.14). Therefore, although chemotactic index 

(calculated as described in the methods section) may represent an effect of chemotaxis, as 

mhcA- cells have previously been shown to be weakly chemotactic, gravity may be playing a 

role in biasing these cells towards movement in the downwards direction, and it is 

questionable whether chemotactic index, has any real meaning for these non- or extremely 

limitedly-motile cells, which do not translocate from their original position52,55,255. 
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Figure 6.14: Tracking a cell which does not translocate 

 

Figure 6.14: Illustration of tracking the centroid of a cell which does not migrate. The drawing 

represents the boundary of the cell with the centroid in the middle. (A) The centroid position of the 

cell shifts as the cell changes morphology; different time-points are illustrated by different colours. (B) 

The centroids are tracked and an overall track of the cell is generated. (C) The overall trajectory of this 

track is generated, which does not necessarily reflect any net migration of the cell in this direction.  

 

Nonetheless, in order to be certain that the differences seen between the mhcA- and JH10 

cells could not potentially be attributed to differences in the numbers of cells migrating 

directly towards the source and cells which were moving in other directions, the data were 

filtered to exclude cells which were not migrating directly towards the chemoattractant source. 

As a side-effect, this showed that there were significant differences in the velocity and 

meandering indices between the cells which were moving directly towards the cAMP agar and 

the whole population of cells. The velocity of the JH10 cells was higher in the cells moving 

towards the chemoattractant, but the meandering index was lower. This indicates that the 

cells moving directly towards the source were faster, but did not move as directly. The 

increase in speed is likely explained by elimination of cells which were not able to sense the 

chemoattractant gradient and were therefore not chemotaxing, as chemotaxing cells have 

been shown to move faster than cells which are not exposed to a gradient of 

chemoattractant645. The decrease in directed movement could be attributed to the presence of 

multicellular aggregates on the cAMP agar, which formed over the course of the 2 hour 

duration of the experiment. This resulted in cells initially migrating directly downwards 

towards the cAMP agar and then changing direction to orient towards a multicellular 

aggregate. Furthermore cells which initially migrated directly downwards could not penetrate 

the cAMP agar layer and once they reached it were therefore forced to change orientation and 

move along it. Both the velocity and the meandering index were significantly reduced in the 

mhcA- cells with the highest chemotactic indices, but, as discussed above, in a population of 
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largely non-motile cells, this parameter does not necessarily describe useful information about 

the migration character of the cell, and therefore could potentially be explained by chance 

variation. However, although attempts were made to exclude cells on the cAMP base layer 

from analysis by selection of an ROI for analysis which did not include this area, it is possible 

that some cells which were using the cAMP agar base as an aid to migration, i.e. a substratum 

on which to rest, were tracked, potentially resulting in increased motility and directionality in 

cells which rather than moving directly downwards were moving in the perpendicular 

direction, along the agar base layer. Even so, the differences between the JH10 and mhcA- 

cells were apparent, and similar in pattern in both the cells filtered on the basis of chemotactic 

index and the unfiltered entire population of cells. Therefore, the differences in velocity and 

meandering index between the two strains are likely to be a feature of impaired motility of 

mhcA- cells within an agarose gel, rather than attributable to differences in the proportion of 

cells responding to the spatial chemoattractant gradient.  

The probability density function of the mhcA- cell velocity showed a small proportion of the 

cells which were able to move almost as fast within the agarose as the JH10 cells. The 

meandering index of these fast-moving mhcA- cells was significantly reduced in comparison 

to the JH10 fast-moving cells, potentially indicating that although this population of cells was 

able to move as fast as the JH10 fast moving cells, they still did not move as directly, 

indicating a possible role of myosin II in directed cell migration. This lack of directionality in 

mhcA- cells has been postulated to arise from pseudopods forming all around the cell 

membrane and not being restricted to the leading edge150,350,593. Traction cytometry 

experiments are consistent with this, revealing that motile mhcA- cells generate force on their 

substratum by contracting all around the cell membrane, unlike wild-type cells which generate 

force-asymmetries between front and back374,414. Although mhcA- cells exhibiting faster 

migration have previously been shown to extend a single pseudopod, rather than the multiple 

pseudopodia seen in the average slower moving and less directional mhcA- cells, these 

pseudopods were broader in shape and extended from the dorsal surface of the cell body, 

unlike the pseudopods extended by wild-type cells255. The pseudopodia of these faster mhcA- 

cells additionally showed far less stability than the pseudopods of their wild-type 

counterparts255. As cells have been shown to orient themselves towards their dominant 

pseudopod, dynamically changing pseudopodia arising from a lack of proper cytoskeletal 

organisation and inability to correctly retract pseudopodia could account for reduced 

directionality of fast-moving mhcA- cells150,255,279,381,414,465,569,657. 
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Lombardi et al have previously found that vegetative mhcA- cells are able to move as fast as 

wild-type cells for short periods of time (<3 minutes) on gelatin surfaces374. This has been 

similarly observed by Heid et al, who also saw periods of increased cell persistence in mhcA- 

cells on glass under buffer255. However, I have shown that a proportion of the mhcA- cells 

exhibit this fast-moving phenotype over a 2 hour time period, indicating that the ability of 

certain mhcA- cells to move rapidly within a 3D environment is not restricted to transient 

bursts, but holds for a period of at least 2 hours. This is a surprising finding for a number of 

reasons. Primarily, previous work has shown that mhcA- cells are impaired in chemotaxis and 

migration speed both on 2D planar surfaces under buffer and under-agarose254,287,374,414. 

Secondly, mhcA- cells have been shown to exhibit abnormal pseudopodial dynamics and 

show poor co-ordination of forces required to generate movement133,254,287,374,414. Thirdly, cells 

lacking myosin are thought to be incapable of bleb-driven cell migration, which has been 

proposed as a mechanism by which cells may migrate within restrictive 

environments92,204,520,586,693. Finally, these cells are thought to lack the cortical integrity to 

migrate effectively within restrictive environments as they are unable to sufficiently deform 

the agarose gel to migrate beneath it287,328,414. Therefore, while in this context it is unsurprising 

that a large proportion of the mhcA- cells are non- or limitedly-motile, the question arises of 

why a proportion of the cells are able to consistently migrate for a 2 hour period with speeds 

similar to those of their wild-type parent strain within the 3D environment of a 0.5% agarose 

gel. 

Myosin II has been shown to play an important role in retraction of the rear of the cell during 

chemotaxis279,287. Indeed, Laevsky et al noted in their under 0.5% agarose chemotaxis assay, 

that mhcA- cells had difficulty in retraction of the rear of the cell, an observation since 

supported by experimental observations of pseudopodial dynamics of mhcA- cells under 

buffer and with traction force microscopy255,279,328. Under agarose, this impaired retraction 

appeared to result in elongated cells, which were caused by the body of the cell continuing to 

migrate, while the rear of the cell remained adhered to the substratum328. In some cells this 

was observed to result in cellular fragmentation because of the rupture of the elongated 

stretch of cell, however, other mhcA- cells did not break apart328. Laevsky et al also observed 

in their under-agarose chemotaxis assay, that the mhcA- cells which successfully exited the 

trough and penetrated the agarose had a speed of approximately 2/3 of the wild-type 

strain328,329. Wessels et al showed in their initial experiments that mhcA- cell speed in 

chemotaxis to a spatial gradient of cAMP was reduced by approximately 1/3, which was again 

seen by Heid et al255,328,668. Therefore, it appears as though mhcA- cells may be able to migrate 
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faster when their dorsal surface is in contact with agarose. Possibly the agarose provides a 

support mechanism for the cells, aiding them to stabilise their impaired cytoskeleton, and also 

providing additional points of anchorage for the cell to its surrounding material. This in turn 

could allow them to more rapidly generate sufficient force to retract their uropod than on 2D 

substrata, although the negative side of this increased cortical tension would be that it 

occasionally results in cellular fragmentation, which was seen by Laevsky et al328. Extending 

this to the third-dimension where the cell is completely surrounded by agarose potentially 

provides additional support, as well as additional anchorage points for the cell to adhere to 

the environment, which could potentially offer an explanation for why the mhcA- fast-

moving cells are not significantly reduced in speed. It should be noted, however, that the 

under-agarose assay may be intrinsically biased towards fast-moving cells as, if these cells are 

phenotypically different in some manner from the general population of mhcA- cells which 

allows them to better overcome the barrier of the agarose gel, then only these cells would 

contribute to the measurement of population speed, and this could be an alternative reason 

for the observed smaller reduction in mhcA- cell speed in the under-agarose assay when 

compared to under buffer. 

Myosin II null cells are known to have difficulties in retracting their rear, both on 2D glass 

surfaces and under agarose on plastic, a required step for cell migration279,328,414. However, 

agarose provides a more deformable and elastic environment than glass or polystyrene31,616. 

Differences in adhesion of the cells to the 2D glass or plastic surface and the 3D agarose gel, 

may result in retraction of the rear of the cell, a myosin mediated process, being of less 

importance or less difficult, and therefore less of an impediment to cell speed during 

chemotaxis137. Cell migration additionally requires proper co-ordination of forces, and this is 

impaired in cells lacking the myosin heavy chain279,374,414. Generation of opposing forces 

between the front and the rear of the cell have been shown to be important for the cell to 

move374,414. The generation of these forces has been shown to occur in a cyclical manner, and 

one of the reasons for the slow migration speed of mhcA- cells is that these cycles are 

reduced in frequency150,414. Potentially, being held within a 3D gel allows asymmetry of forces 

to develop more easily, due to the extra dimensionality allowing for extra axes along which 

asymmetries can develop. These prior force cytometry studies have, however, relied on cells 

exerting forces on a 2D substratum. In this experimental configuration cells have defined 

pseudopods and uropods as well as defined dorsal and ventral surfaces. In 3D the dorsal and 

ventral surfaces are all in contact with and potentially adhered to the matrix in which the cell 

is embedded. This may affect the manner in which a cell defines a rear and a front. 
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Furthermore the forces exerted by these structures in 3D may differ from models established 

from measurements in 2D. Novel 3D traction force microscopy could potentially enable 

measurement of the forces applied by mhcA- Dictyostelium cells within 3D gels, enabling 

exploration of the mechanisms behind their 3D migration and chemotaxis198,351. 

Nonetheless, it appears as though the difference in speed between the JH10 and mhcA- cells 

within an agarose represents a difference in proportion of slow-moving to fast-moving cells, 

rather than an absolute reduction in population speed in the mhcA- cells. Therefore there 

may be two phenotypically different populations of cells migrating within the agarose, a slow-

moving group and a fast-moving group. 

 

6.6.3 Two cell populations? 

The probability density functions of the velocity of both the JH10 and mhcA- cells within an 

agarose gel were found to be significantly bimodal, indicating that there may be two distinct 

populations of cells characterised by different velocities. To see if this pattern was simply a 

result of cells moving directly towards the cAMP source moving faster than cells moving in 

other directions, as chemotaxing cells have been previously shown to move faster than non-

chemotaxing cells, a chemotactic index filter was applied to the data to exclude cells which 

were not moving directly towards the cAMP agar645. The bimodal pattern persisted in the 

filtered data, indicating that this bimodality cannot be explained by differences in the 

behaviour of cells which are directly chemotaxing towards the cAMP source and those which 

are not. 

In their under- 0.5% agarose chemotaxis assay, Laevsky et al noted that mhcA- cells were able 

to migrate for 4 hours before ceasing to migrate, which may be caused by a gradual 

breakdown in the structure of the cells, due to their cytoskeletal deficits328. As the 3D 

environment may have presented an increased challenge to the cells than the under-agarose 

assay, it was considered possible that the reason for the increased number of non-motile 

mhcA- cells could have been attributed to breakdown of the fast-moving cells over the 2 hour 

course of the experiment, resulting in apparently low velocity, i.e. a fast-moving phase 

followed by a non-motile phase after cell breakup. Although the size constraints placed on the 

algorithm precluded this, as small cell fragments would not be tracked, and only cells where 

the tracks spanned the entire 2 hour time course were tracked, the cells were additionally 

tracked over a 30 minute period, to eliminate this possibility. The pattern of bimodality was 
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seen to persist in cells tracked for only 30 minutes, which confirmed that the large number of 

slow-moving cells is unlikely to be due to fast-moving cells breaking apart and ceasing 

movement. Additionally, as there are very few multicellular aggregates within the agarose at 

30 minutes, this indicates that the presence or absence of multicellular aggregates and any 

potential confounding signals generated by these do not play a role in this bimodal behaviour 

of cell velocity. 

Dictyostelium cells have recently been shown to be able to swim, by using their pseudopods and 

other small actin-rich structures as ‘paddles’, which have previously been termed eupodia210,627. 

The speed of this swimming has been found to vary between ~1-4 µm/min, dependent on 

the conditions of the experimental work27,32,640. The grand mean velocity of the slow-moving 

population of cells in my experiments was found to be 0.02±0.01 µm/s or 1.2 µm/min. 

Although the grand mean displacement of both the JH10 and mhcA- cells in my experiments 

was small, at 15.3 µm over a 2 hour period (JH10 grand mean= 31.3±40.9 µm, mhcA- grand 

mean= 12.3±14.5 µm), it can be seen from the box plots generated that a few cells displaced 

much further, up to ~150 µm, meaning that they migrated in a relatively straight path at a 

consistently slow speed. These cells could potentially be swimming through the agarose rather 

than undergoing a more conventional form of motility. This would mean that they are less 

adhered to their environment than the faster-moving population of cells, which crawl through 

the agarose32. Although it is not possible to determine why these cells may choose to make 

use of this alternative mechanism of cell motility characterised by less adherence and slower-

motility, fibroblasts have recently been shown to alter their migration characteristics 

dependent on the elastic properties of their matrix, therefore, local differences in the agarose 

could potentially contribute to the mode of migration selected by the Dictyostelium cells479. 

However, although there are a few cells which migrate with a consistently low velocity, yet 

eventually cover distances in excess of 100 µm, the majority of the cells do not translocate 

very far from their original position. As velocity is a measure of total cell displacement over 

total time, tracking the centroid of a cell which jiggles about in place, or moves around in the 

same local area would result in a cell measured as having a slow velocity. Therefore the 

majority of the slow-moving population of cells could represent cells which are, either 

through choice or necessity not moving within the agarose, but are jiggling, i.e. changing 

morphology and making small motions, and occasionally making small translocation within 

the agarose, but not migrating far from their original position, similar to the behaviour of the 

mhcA- bicellular aggregate in the development section of the results. Therefore, it seems that 
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the majority of cells exhibit two modes of motility within an agarose gel, a fast-moving 

motility characterised by large cell displacements and a slow-moving motility characterised by 

very small cell displacements. This pattern is also seen in cells filtered on the basis of 

chemotactic index, indicating that this effect is independent of whether the overall trajectory 

of the cells is directly towards the source of chemoattractant or in another direction. This 

points to a feature of basic cell motility rather than in chemoattractant sensing, although a 

role of directional sensing cannot be completely excluded as all of this experimental work was 

done in the presence of a spatial chemoattractant gradient. 

The bimodality could potentially be explained by the inhomogeneity of the agarose gel 

reported by Stellwagen et al, resulting in some cells becoming trapped in particular parts of 

the agarose gel589. MhcA- cells have previously been shown to be unable to migrate on 

adhesive surfaces, becoming trapped, when wild-type cells were motile287. Furthermore, a lack 

of cytoskeletal tension and integrity, and inability to retract the rear of the cell could 

potentially explain why more mhcA- cells become trapped than JH10 cells, which may be able 

to free themselves and move onward287,328,414,589. However, as these inhomogeneities were 

found to be on the order of the size of molecules, on the order of nm rather than cells, on the 

order of µm, this likely does not provide a comprehensive explanation590. 

A bimodal distribution of motility has been previously found to exist in freshly starved 

Dictyostelium cells, which was shown to correspond to differences in intracellular calcium 

levels23,230. Cells with a low calcium content were found to move at ~7 µm/min and cells with 

a high calcium content at ~10 µm/min230. These differences in cell speeds were postulated to 

be caused by slower moving cells being partially differentiated down the pre-spore pathway 

and faster moving cells down the pre-stalk pathway, as high calcium ion levels have previously 

been shown to result in an increase in stalk cells in the fruiting body and low levels to an 

increase in spore cells in the fruiting body33,230. Although these differences in motility are less 

than seen in my experiments, where the slow moving cells had a grand mean velocity of 

0.02±0.01 µm/s or 1.2 µm/min (JH10= 0.03±0.02 µm/s; mhcA-=0.02±0.01 µm/s) and the 

fast moving 0.13±0.02 µm/s or 7.8 µm/min (JH10= 0.14±0.02; mhcA-= 0.11±0.05 µm/s), it 

may be that the agarose acts to impair both fast-moving and slow-moving cells somewhat, 

with the slow-moving cells more affected by the increased challenge of the 3D environment 

than the fast-moving population, especially as Laevsky et al observed similar speeds of their 

wild-type cells (Ax2) under 0.5% agarose (7.4±1.9 µm/min)328. The chemical properties of the 

agarose could also differentially affect these populations of cells, as ammonia (NH3) has 
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previously been shown to differentially affect the response of two distinct populations of 

cells, prestalk cells and anterior-like cells (ALC) to a cAMP gradient and the differential 

effects of physical and chemical properties of an environment on cells have been well 

documented118,130,177,355. The troughs in between the peaks in velocities seen in the probability 

density functions of the slow-moving and fast-moving cell groups appeared more 

pronounced in the cells tracked over 2 hours compared to the cells tracked over 30 minutes. 

This indicates that there may be a progressive increase in the difference between the two 

populations of cells, fast-moving and slow-moving, over time, which is consistent with 

increased cell differentiation over time, potentially along the prestalk and prespore pathways. 

However, prestalk cells, which are the faster moving, have previously been shown to 

comprise less than 20% of the final number of cells in mounds, and while this is 

approximately the percentage of fast-moving cells seen within the mhcA- image sequences, 

the JH10 fast-moving cells make up greater than 90% of the total population190,230,447,621. 

Therefore, rather than myosin II biasing cells towards slower movement, it may be that 

agarose biases cells towards the faster-moving stalk differentiation pathway through a myosin 

II dependent mechanism. As prestalk and prespore cells have been shown to be differentially 

adhesive, perhaps this effect could be mediated through surface adhesion as cells within 

agarose are potentially adhered to the agarose on all sides, compared to on 2D surfaces where 

only the ventral surface is in contact with the environment176,331,470. Prespore cells have been 

shown to be more adhesive than prestalk cells, so potentially could become more easily 

trapped within the restrictive environment of an agarose gel, helping to explain why the slow-

moving cells do not translocate great distances176,331,459. Still, this explanation of the cells being 

differentiated down different pathways is unlikely as, by eye, the JH10 cells formed fruiting 

bodies which were normal in appearance, whereas, if the fast-moving cells become stalk cells, 

a stalk-heavy phenotype would be expected to emerge296,298,386,447. However, it could potentially 

be possible for a more normal pattern of prespore to prestalk cells to establish within the 

JH10 cell population later in development, as transdifferentiation between prestalk and 

prespore cells has been shown to be able to occur at the slug stage of development386,507. 

Potentially, treatment of the cells with DIF-1 prior to setting within the agarose, inducing the 

stalk phenotype, could help to support or rule out this explanation319,431. 

Cells have previously been shown to be capable of varying mechanisms of movement and 

morphology dependent on the circumstances and environment in which they find themselves. 

Cell adhesion, matrix elasticity and stiffness, matrix composition and contractility of the cell 

have all been shown to cause cells to change morphology and migration mode, demonstrating 
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that cells have significant plasticity in their modes of motility, potentially aiding them to 

migrate in restrictive environments and contributing to the metastasis of 

cancer203,462,479,490,537,679. Membrane blebbing has recently attracted attention as a novel way in 

which cells are able to move, and this type of motion has been shown in Dictyostelium cells, as 

well as in a variety of mammalian cells173,203,335,377,537. While this mode of cell migration is 

postulated to play a role in the migration of cells in restrictive environments, potentially 

providing a way for them to squeeze through pores in matrices and migrate directionally in a 

3D environment, blebbing is not found to occur in the absence of myosin II and therefore 

cannot explain the ability of mhcA- Dictyostelium cells to migrate within the 3D environment 

of an agarose gel92,93,173,204,377,520,586,693. However, if this type of motility aids cell migration within 

a 3D matrix, the lack of blebbing-mediated motility in mhcA- cells may help to explain the 

reason that this cell population is biased towards slow-moving cells with very low 

displacement, while the JH10 cells, potentially able to make use of this mode of motility, 

exhibit a large population of highly motile cells. Myosin II has been shown to be important at 

the stage of retraction of the bleb93. Therefore it is possible that the jiggling motion exhibited 

by the mhcA- cells within the agarose, with small periodic translocations, arise from extension 

of blebs, which the cell is then unable to properly retract due to lack of myosin II mediated 

cortical tension92,93,287. 

Petrie et al have recently discovered a novel lobopodial based cell migration mode in 

fibroblasts, which was dependent on both the dimensionality (i.e. 2D vs 3D) and the elasticity 

of the matrix in which the cells were placed479. This type of migration was shown to be 

myosin II dependent, and therefore cannot be used by mhcA- cells to migrate in 3D, but may 

potentially be used by JH10 cells692. Cells were demonstrated to be able to switch between 

two modes of migration, dependent on the changing properties of the environment in which 

they were placed479. Although this type of cell migration may not be present in Dictyostelium 

cells, it illustrates the potential of 3D environments to aid in uncovering previously unknown 

forms of cell migration. 

Therefore, although it appears that the reason for this bimodal behaviour and mechanisms 

behind it, and the reason for the bias in the mhcA- cell experiments towards slow movement 

remain to be fully elucidated, the possibility for 3D environments to reveal additional 

phenotypes and potentially uncover new modes of migration in motile cells demonstrates the 

importance of microscopic techniques for visualisation of 3D cell migration and chemotaxis. I 
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have shown that OCT offers a non-invasive technique to achieve this, without the need for 

sample staining and processing. 
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6.7 Chapter 6 Summary 

Myosin heavy chain null cells (mhcA-) exhibit known and well-characterised deficits in 

chemotaxis and development on 2D surfaces and under-agarose139,255,328,668. The exploration of 

their phenotype was further explored within the increased challenge of a 3D agarose gel. The 

mhcA- cells did not complete development, arresting at the stage of aggregates, which agreed 

with previously observed multicellular phenotypes of mhcA- cells139. MhcA- cells additionally 

showed an inability to move when in aggregates of a few cells, restricted mobility in 

aggregates of two or more cells, and slowed mobility as individual cells and bicellular 

aggregates. These phenotypes have been previously attributed to a lack of cortical integrity in 

mhcA- cells caused by their cytoskeletal deficits328. A small proportion of mhcA- individual 

cells were discovered to be motile within the agarose, so a diffusion-based chemoattractant 

gradient of cAMP was established within the agarose to investigate further. 

Directionality and speed of chemotaxing mhcA- cells were found to be significantly reduced 

in comparison to their parent strain JH10. This pattern persisted in cells filtered to exclude 

cells which were not moving directly towards the chemoattractant, indicating that it likely 

primarily represents a deficit in cell motility rather than specifically in proportion of cells 

responding to the chemoattractant. However, a number of the mhcA- cells were found to 

move with the same speed as the JH10 cells. The reason for this is currently unclear, although 

it may potentially be due to differences in patterns of cell adhesion in 3D compared to 2D, or 

to the support of the agarose gel aiding stabilisation of the cell cortex.  

Differences in population speed between the mhcA- cells and the JH10 cells were found to be 

due to different numbers of fast-moving and slow-moving cells within the whole population, 

rather than due to consistently slower migration of mhcA- cells. This indicated the existence 

of two populations of cells characterised by low and high velocities respectively, with myosin 

Ii acting to bias cells towards faster migration. This could potentially be the result of cells 

selecting two different modes of migration characterised by different levels of adhesion to 

their environment. Although the reason for this bimodal distribution of population velocities 

and the bias of mhcA- cells towards slow-movement remains to be elucidated, this chapter 

aimed to demonstrate that setting cells within agarose provides a potentially useful three-

dimensional environment in which to explore both multicellular and individual cell motility of 

Dictyostelium mutant strains and potentially uncover new patterns of cell migration. 

Furthermore, that these phenotypes can be visualised without the need for cell labelling, using 

OCT. 
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7.1 Aims of this work 

The main aim of this work is to assess the utility of Optical Coherence Tomography for 

visualisation of cells on non-transparent 2D surfaces and within 3D structures and to develop 

methods and protocols by which this can be accomplished. In addition, to subsequently 

explore the migration and chemotaxis of cells under these conditions and obtain quantitative 

information on the character of this motility, in order to establish what can be learned about 

cell migration using this microscopic technique. 

 

7.2 Optical Coherence Tomography 

Throughout this thesis, I have explored the potential of Optical Coherence Tomography as a 

tool for cell biology. As a microscopic technique which gives access to structural information, 

it is ideal for studying the dynamics of whole cell migration, particularly on opaque substrates 

and within 3D environments. Technology is continually progressing and these advances can 

improve the performance of OCT microscopes. For example, CCD cameras have become 

faster and more sensitive since the beginning of this project which would allow more rapid 

acquisition of images. Solid state drives have become faster and offer larger storage capacities, 

enabling saving time to be sped up. Furthermore, light sources have become increasingly 

more stable, and capable of broader bandwidths, resulting in increased axial resolution178,630. 

Novel signal processing techniques have been developed, which can enable superior depth 

penetration and reduced loss of focus with increasing depth i.e. interferometric synthetic 

aperture microscopy, and offer increased imaging depth range, i.e. dispersion encoded full 

range OCT262,511. Due to advances in laser technology, swept source OCT has now overtaken 

FD-OCT in terms of speed and, in combination with the reduced signal roll-off seen with this 

configuration, offers a significant advantage over FD-OCT for 3D volumetric imaging in 

time-lapse498,672. 

However, OCT does not allow access to functional information. Investigation of biological 

processes has benefited greatly from a drive towards multimodal imaging. Combining 

techniques with different depth penetrations, different resolutions and different contrast can 

enable a sample to be understood in much greater detail or from different 

perspectives56,64,70,687,700. OCT has recently been combined with confocal fluorescent 

microscopy, multiphoton microscopy, photoacoustic tomography and CARS 

microscopy56,68,700,705. As the technique requires no staining or sample processing, it lends itself 
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well to combination with other similar non-invasive techniques, as well as imaging modalities 

requiring staining such as fluorescent microscopy, for imaging of both in vivo and in vitro 

samples. As a primarily structural imaging technique, OCT can be useful not only for whole 

cell tracking as an independent modality, but also in multimodal microscopes for combination 

with techniques which yield functional but limited or no structural information. Although 

there are a number of potential challenges associated with designing and creating multimodal 

microscopes, such as less precisely optimised optics and increased image acquisition time, the 

possibilities offered by the simultaneous acquisition from two different imaging modalities 

make this an attractive area for future research606,705. 

 

7.3 Experimental configuration 

Due to difficulties in establishing an extrinsic spatial chemoattractant gradient on a 

nitrocellulose filter, the experiments in chapter 4 made use of the natural propensity for 

Dictyostelium cells to create a temporal gradient as part of their developmental programme, and 

explored the response of the cells to this gradient. However, better control of the 

chemoattractant gradient is desirable because cell behaviour in response to different 

concentrations and to spatial and temporal gradients varies582,583,667. Therefore, an avenue of 

research for future investigation of cell motility on opaque 2D substrata is in establishing a 

repeatable and controllable gradient of chemoattractant. Microfluidic techniques potentially 

offer a method by which a highly reproducible gradient can be created over a wide 

concentration range41,169,546. Furthermore, the gradient can be varied both spatially and in time, 

giving great flexibility and allowing for investigation of cell responses to precisely controlled 

chemoattractant gradients41,169,546. Additionally, as the chemoattractant gradient is established 

and maintained by continuous flow, there is no possibility for factors secreted by the cells to 

influence their behaviour113,638. Therefore, a future direction in the investigation of Dictyostelium 

single cell migration on 2D substrata is the design of a microfluidic chamber, which allows 

different materials to be placed within, so that the response of cells to repeatable and well 

controlled gradients can be measured on different surfaces. 

Agarose offered a simple 3D environment in which to present the cells for imaging. 

Furthermore, the physical and chemical properties of this gel can be altered, for example the 

elastic properties of agarose can be varied by addition of gelatin443,706. As differences in 

elasticity have been shown to affect cell migration and differentiation, agarose potentially 
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offers a useful gel in which the effects of different matrix properties on Dictyostelium cells 

could be investigated168,280,479,563. However, agarose unfortunately suffers from shrinkage as it 

dehydrates, a problem which, despite covering my experimental sample with clingfilm, I 

observed in some datasets. Other biocompatible gels and matrices are available, such as 

Matrigel™, reconstituted basement membrane, PuraMatrix™, a peptide-based hydrogel, and 

CyGel™, a micellular gel34,35,555,616. As discussed in chapter 3, Matrigel™ does not set at the 

required temperature for Dictyostelium cells35. PuraMatrix™, has low pH of 2-2.5, which 

requires time to equilibrate, so is not suitable for setting cells within just prior to imaging34,555. 

However, CyGel™ is liquid when cooled and gelatinous when warmed to room temperature, 

and could potentially offer an alternative matrix in which to present Dictyostelium cells for 

imaging within a 3D environment, although it is unknown if this gel may also dehydrate and 

shrink44,503. Additionally, there are a number of synthetic matrices in which cells can be set, for 

example, polyethylene glycol (PEG)616. The advantages of such matrices is that they allow for 

great control over the mechanical properties of the gel and these properties are very 

reproducible616. Experiments investigating the effects of 3D environments on cells have made 

use of various different matrices, of varying properties616. In light of the growing body of 

evidence that matrix properties such as elasticity, stiffness and matrix composition can affect 

the adhesion and motility of cells, future work should attempt to determine the optimum 

reproducible matrix for observation of 3D Dictyostelium cell behaviour168,280,479,563. 

Time-lapse microscopy is known to suffer from problems with focus drift, and the problem 

of registering stacks to compensate for this is not trivial in 4D (3D+time)78,263,322,473. The 

potential advantages of tracking cells within a 3D environment, as it enables cells to be 

studied in a more natural context and potentially enables access to additional information 

about cell migration such as the discovery of different modes of migratory behaviour, have 

been established198,479. Therefore, while it is possible to manually register stacks, this is time 

consuming and becomes a near impossible task with increasing number of experimental time-

points, and so there is a clear need for automated stack registration in 4D. I have made use of 

several different methods and ImageJ plugins to align my stacks during this work, including 

collapsing the entire stack to a 2D image prior to registration, cropping images at a set 

distance around the agar-agarose interface and manual registration, and have written ImageJ 

macros to accomplish this364,613. However, these methods are not fully robust and a need to 

develop a robust algorithm for 4D stack registration is indicated from this work. 
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7.4 Concluding Remarks 

I have discovered in chapter 5 that Dictyostelium cell development is not delayed within an 

agarose gel. Furthermore, the cells preferentially form aggregates and cell streams at 

interfaces. The reason for this is currently unclear, but longer term imaging, from the 

initiation of starvation through to culmination, may enable capture of the initial formation of 

these aggregation centres, which could aid understanding of the mechanisms behind this 

process. Similar to the phenotype previously seen on 2D surfaces, in chapter 6 Dictyostelium 

cells lacking the myosin heavy chain failed to complete development or form cell streams 

within an agarose gel, unlike their parent strain, JH10139,255. This phenotype has been 

attributed to difficulty of the cells migrating within the restrictive multicellular environment of 

the mound139. Agarose appears to present an impediment to motility of cells lacking the 

myosin heavy chain, as these cells are overwhelmingly non- or limitedly-motile. It therefore 

potentially offers an environment of varying restrictiveness, dependent on the concentration 

of agarose, in which to further explore the reasons for this lack of motility.  

The potential for commonly used substrates for aggregation and development of Dictyostelium 

to affect the speed of cell migration and chemotaxis on 2D surfaces was uncovered in chapter 

4. Moreover, this was extended to exploration of migration and chemotaxis in 3D in chapter 

5, wherein it was discovered that Dictyostelium cells within an agarose gel are not significantly 

slowed, but are impaired in their ability to migrate in a straight line. In chapter 6, I have 

uncovered two distinct populations of Dictyostelium cells characterised by different velocities, a 

slow-moving group and a fast-moving group. Additionally, I have found that myosin II plays 

an important role in the migration of Dictyostelium cells within an agarose gel, as cells lacking 

myosin II are biased towards slow movement. Although, a small proportion of cells lacking 

myosin II were able to move with speeds similar to their parent strain, indicating that the role 

of myosin II in 3D cell migration in Dictyostelium is more complex than in allowing fast 

migration by increasing cortical tension and rather pointing to a role in the facilitation of fast 

migration. 

In mammalian cells, myosin II contraction mediated contraction has been shown to play a 

role in the formation of mature focal adhesions, but not in transient ones formed during cell 

migration100,325. Dictyostelium cells migrate rapidly and therefore do not form these longer 

lasting cell-substrate contacts, which may help to explain why Dictyostelium mhcA- cells are 

able to migrate in 3D, while myosin IIA was found to be required for epithelial cell 

migration202,566. Nonetheless, Dictyostelium cells do form attachments to their substrata, which 
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are likely to be important in enabling them to exert forces required for cell migration on their 

surrounding environment, particularly on 2D substrates of complex topography, such as their 

natural environment of soil, and within 3D matrices. Although no homologs of integrins have 

been found in Dictyostelium, a number of other molecules involved in cell-substrate adhesion 

have been uncovered. TM9/Phg1 and SadA have both been shown to be involved in 

substrate adhesion in Dictyostelium37,187. SadA is also associated with the actin cytoskeleton 

through association with cortexillin I and ABP50, actin binding proteins321. TM9/Phg1 (a 

kinase) and SadA, have recently been shown to exert their effects on cell-substrate adhesion 

through regulating expression and stability of Sib (similar to Integrin Beta) and also 

controlling its translocation to the cell membrane206. Sib, so called because it shares some 

features in common with Integrins, known cell-surface adhesion receptors in mammalian 

systems, may mediate its effects by interaction with Talin113,114,206. Talin, known to be involved 

in the formation of focal adhesions in mammalian cells, also plays an important role in 

Dictyostelium cell-substrate adhesion as mutants lacking this gene display reduced adhesion to 

surfaces, aberrant transmission of force to their substratum and a fast ‘gliding’ 

motility220,448,622,623,640. An unconventional myosin of class VII, has also been shown to play a 

role in Dictyostelium cell adhesion and in regulation of the actin cytoskeleton219,618. Moreover, 

cell-substrate adhesions have been shown to be affected by the adhesivity of the environment 

in which the cell was grown, where a more adhesive substratum appears to downregulate 

expression of proteins involved in adhesion113. Furthermore, Dictyostelium cells secrete a factor 

inhibiting adhesion, which results in cells at high densities being less adhesive than cells at low 

densities113.  

What emerges is that there is a complex interplay between the dynamics of the cell 

cytoskeleton and the formation of adhesions between a cell and its surrounding environment. 

The mechanisms behind this process are currently not well understood, and contradictory 

information is sometimes obtained from different studies, potentially due to differences in 

matrix properties or cell types248. However, it is clear that further exploration of the 

mechanisms of cell-environment interactions, with cytoskeletal and adhesion mutants, both in 

3D and on 2D non-transparent surfaces has the potential to uncover additional modes of cell 

motility and probe the mechanisms behind them18,479,520. Dictyostelium, a system of reduced 

complexity in comparison to mammalian systems, but with conserved cellular transduction 

mechanisms, represents a useful model in which to investigate how cell behaviour can be 

affected by the dimensionality of its environment, and enable greater understanding of the 

mechanisms and processes underlying chemotaxis and basic cell motility544. Furthermore, with 
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the methods and protocols developed in this work, OCT offers a valuable microscopic tool 

for visualisation of cell motility and chemotaxis under these conditions. 

 

7.5 Final Summary 

For convenience of visualisation with conventional light microscopy, such as phase contrast 

or DIC, studies of chemotaxis and cell behaviour have generally relied on the use of 

monolayers of cells on 2D transparent substrates, usually glass or plastic, although it is 

increasingly apparent that this observed behaviour does not necessarily relate well to the 

behaviour of cells within their more natural 3D environment461,583,611,665. OCT has been 

demonstrated as a valuable microscopic technique for the visualisation of both individual and 

multicellular migration and chemotaxis on 2D substrates and within 3D environments. The 

volumetric images obtained were subjected to analysis with tracking software and differences 

were shown in the migratory characteristics of cells under three different environmental 

conditions. Furthermore, the potential for this technique, with the developed experimental 

protocols, to probe the migration and chemotaxis of mutant cell strains within 3D 

environments and compare it to that of the parent strain was shown. The methods and 

protocols developed within this work enable investigation of the behaviour and migration of 

cells in 4D and on 3D non-transparent surfaces, allowing assessment of the effects of 

different substrata and different environments on cells and potentially enabling greater 

understanding of the processes of cell migration, aggregation and morphogenesis. 
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Appendices 

Publications and Conference Presentations 
Publications as first author: 
Sara M Rey, Boris Považay, Bernd Hofer, Angelika Unterhuber, Boris Hermann, Adrian 

Harwood, Wolfgang Drexler, Three- and four-dimensional visualization of cell migration using 

optical coherence tomography, Journal of Biophotonics, 6-7, p370-379 (2009). (Attached at end 

of Appendices). 

Oral Presentations: 
Sara M. Rey, Adrian Harwood, Boris Považay, Bernd Hofer, Angelika Unterhuber, Boris 

Hermann, Wolfgang Drexler, Visualization of 3D cell migration using high speed ultrahigh 

resolution optical coherence tomography (Invited Paper), OCT in Tissue Engineering and 

Regenrative Medicine III, SPIE Photonics West 2009 

Sara M. Rey, Adrian Harwood, Boris Považay, Bernd Hofer, Boris Hermann, Angelika 

Unterhuber, Wolfgang Drexler, Visualization of 3-D and 4-D Cell Migration Using Three-

Dimensional Ultrahigh Resolution Optical Coherence Tomography, Optical Coherence 

Tomography and Coherence Techniques, European Conferences on Biomedical Optics 

(ECBO), 2009 

Rey, Sara M., Považay, Boris, Hofer, Bernd, Unterhuber, Angelika, Harwood, Adrian John and 

Drexler, Wolfgang, Mutant and wild type cell chemotaxis in 3D and 4D with ultrahigh- 

resolution optical coherence tomography in Optical Coherence Tomography and Coherence 

Domain Optical Methods in Biomedicine XIV, SPIE Photonics West 2010. 

Sara M. Rey, Boris Považay, Bernd Hofer, Adrian Harwood, Wolfgang Drexler, Chemotaxis and 

migration of mutant and wild-type cells in 3D and 4D using ultra-high-resolution optical 

coherence tomography, Optical Interactions with Tissue and Cells XXII, SPIE Photonics West, 

2011. 

Poster Presentations: 
Sara Rey, Boris Považay, Bernd Hofer, Wolfgang Drexler and Adrian Harwood, Four-

dimensional chemotaxis of Dictyostelium cells using optical coherence tomography in Dicty 2010, 

Annual International Dictyostelium Meeting, 2010. 
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Appendix 1: HL-5 medium with maltose 
HL-5 Medium for Dictyostelium 
For 1 liter  
Bactopeptone 
[Oxoid L37]     14.3 g  
Yeast extract     7.15 g  
[Sigma Y-1625 or Difco 0127-17-9] 
Maltose monohydrate    18 g  
[Sigma M-5895] 
Na2HPO4 . 2H2O     0.641 g  
[Merck 6580] (3.6mM) 
KH2PO4 (3.6mM)     0.490 g 
[Fluka 60220] 
Complete to desired volume with autoclaved ddH2O. 
Dissolve by stirring. 
Check the pH : approx. 6.65 
Autoclave and keep at 4°C. 
 
Appendix 2: ImageJ macro to find the substrate, crop and area around it and 
produce summed enface images 
//Macro selects the ROI round the interface,crops it, reslices it and saves it 

 

cropped=18; //Enter number of slices want to sum round the interface over 

 

//Opens a ready deskewed, denoised, cropped .tif file 

base = "filepath\\filename-"; //Filepath and first part of the filename 

startNum = 1; //Enter first volume number 

numVol = 61; //Enter final volume number 

 

fileloc= "filepath"; //Enter filepath for saving 

 

for (i=startNum; i<=numVol; i+=1) {  

open(base + toString(i)+" affined.tif"); //Opens the files one by one 

 

//Duplicates the image and rotates it 

t = getTitle(); 

width=getWidth(); 

height=getHeight(); 

sliceno=getSliceNumber(); 

slices=nSlices; 

 

run("Duplicate...", "title=["+t+"-profile.tif] duplicate range=1-+sliceno+"); //duplicates the image and 

names it title-profile.tif 

selectWindow(""+t+"-profile.tif"); 

run("Rotate 90 Degrees Right"); 
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s = getTitle(); 

 

run("Z Project...", "start=1 stop=slices projection=[Average Intensity]"); 

run("Select All"); 

selectWindow(""+s+""); 

close(); 

 

//Outputs the profile as an array 

selectWindow("AVG_"+t+"-profile.tif"); 

profile = getProfile(); 

 

//Closes the average of the stack   

selectWindow("AVG_"+t+"-profile.tif"); 

close(); 

 

//Outputs the differences between two stacks into an array  

number=0; 

diff=newArray(height); 

len=lengthOf(profile)-1; 

 for (number=0; number<len; number++) { 

   

 diff[number]= (profile[number] - profile[number+1]); //= ArrDiff 

 } 

 

//Returns the maximum of the profile array 

  min=0; 

 for (number=0; number<lengthOf(diff); number++) { 

   min=minOf(diff[number], min); 

  } 

  max=min; 

 for (number=0; number<lengthOf(diff); number++) { 

   max=maxOf(diff[number], max); 

  } 

   

  

  

//Returns the pixel number at which the maximum is found 

  for (a=0; a<lengthOf(diff); a++) { 

   if (diff[a]==max) { 

    b=a+1; 
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    } 

   } 

    

   

//Applies the above to the stack 

selectWindow(""+t+"");  

 

rec=(height-b);  

part=cropped*(3/4); 

rectangle=(rec-part); //Starts the ROI a little bit offset from the interface (downwards) 

makeRectangle(0, rectangle, width, cropped); 

 

run("Crop"); 

ID =  getImageID(); 

run("Reslice [/]...", "output=1.000 start=Top"); 

selectImage(ID); 

close(); 

ID =  getImageID(); 

run("Z Project...", "start=1 stop=18 projection=[Sum Slices]");  

selectImage(ID); 

close(); 

 

ID =  getImageID(); 

t = getTitle();  

 

saveAs("Tiff", fileloc + ""+t+".tif"); //Saving z projection   

   

selectImage(ID); 

close();     

} 

 

Appendix 3: Sequential stack registration using ImageJ plugins 
//This macro counts through the stacks backwards from startNum and ends at the final set stack 

(numVolfirst) 

- the beginning in this case- opening two stacks for a comparison and then the next set stack etc... 

 

base = "base = "filepath\\filename-"; //Filepath and first part of the filename 

numVol = 66; 

numVolfirst= 1; 

sliceStart = 1; 
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numSlice = 800; 

sumOver= 20; //Set variable to number of slices to sum over 

count=1; 

i=1; 

 

//Finds the central stack or if an odd number rounds up 

if ((numVol%2)==0) { 

startNum= (numVol-(numVolfirst-1))/2 +(numVolfirst-1); 

} 

else{ 

startNum=((numVol-(numVolfirst-1) +1)/2) +(numVolfirst-1); 

} 

numVolsub=startNum-1; 

numVolsub2=startNum+1; 

 

//Enter the savefile location 

fileloc= "filepath"; //Enter filepath for saving 

filelocb= ""+filepath+"\\Bscan\\"; 

 

//Opens the files sequentially in descending order 

for (i=startNum; i>=numVolfirst&&i<numVol; i-=1) {  

   fList = getFileList(base + toString(i)); 

 open(base + toString(i)+" affined-1.tif"); //Opens the files one by one 

 run("8-bit"); 

 slicesNum=nSlices; 

 midslice=nSlices/2; 

 doubleSlice=2*slicesNum; 

 newStackslicesNum= slicesNum+1; 

 w= getWidth(); 

 h= getHeight(); 

 ww= (w+50); 

 hh= (h+50); 

 numSlice = nSlices; 

sliceHalf = numSlice/2; 

startHalf= sumOver+1; 

stopHalf= numSlice-sliceHalf; 

 

setSlice(midslice); 

  

//Rename file to remove bits on the end and duplicate tif  
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 s=getTitle(); 

  short = substring(s,0,indexOf(s,'-')+1);  

  title= ""+short+i; 

  rename(title); 

   

//Opens a second stack on the first iteration 

if (count==1) {       

  

for (j=i-1; j>=numVolsub; j-=1) { 

fList = getFileList(base + toString(j)); 

ID = getImageID(); 

t = getTitle();    //First iteration so name the just opened file as the first one i.e. t 

open(base + toString(j)+" affined-1.tif"); 

i-=1; 

  

run("8-bit"); 

  

//Rename file to remove bits on the end and duplicate tif 

s=getTitle(); 

short = substring(s,0,indexOf(s,'-')+1);  

title= ""+short+i; 

rename(title); 

t2 = getTitle(); 

   

setSlice(midslice); 

   

//Concatenates the stacks and use the PoorMan3DReg plugin to align the two opened stacks 

  

run("Concatenator ", "stack_1=["+t+"] stack_2=["+t2+"] title=["+i+"]"); 

run("PoorMan3DReg ", "transformation=Translation number="+slicesNum+" projection=[Max 

Intensity]"); 

ID =  getImageID();    

run("Substack Maker", "slices="+sliceStart+"-"+slicesNum+"");  //Takes out the first loaded stack 

from the concatenated stacks 

   

 

//Saves the first loaded stack from the concatenated stacks 

saveAs("Tiff", fileloc + ""+t+".tif"); //Saving first loaded stack from concatenated stacks 

run("Slice Remover", " first="+sliceStart+" last="+sliceHalf+" increment=1"); 

run("Slice Remover", "first="+startHalf+" last="+stopHalf+" increment=1"); 
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ID =  getImageID(); 

run("Z Project...", " start=1 stop="+sumOver+" projection=[Sum Slices]"); 

saveAs("Tiff", filelocb + ""+t+".tif"); 

close(); 

   

selectImage(ID); 

close(); 

   

wait(5); 

ID =  getImageID(); 

run("Substack Maker", "slices="+newStackslicesNum+"-"+doubleSlice+"");  //Takes out the 

second loaded stack from the concatenated stacks 

selectImage(ID); //Selects the concatenated stacks 

close(); 

   

//Saves the second loaded stack from the concatenated stacks 

saveAs("Tiff", fileloc + ""+t2+".tif"); //Saving second stack 

run("Duplicate...", "title=tempsubstack duplicate range=+sliceStart+-+slicesNum+");   

run("Slice Remover", "first=1 last=142 increment=1"); 

run("Slice Remover", "first=21 last=658 increment=1"); 

ID =  getImageID();  //Small stack with slices removed 

run("Z Project...", "start=1 stop=20 projection=[Sum Slices]"); 

saveAs("Tiff", filelocb + ""+t2+".tif"); 

close(); 

   

selectImage(ID); //Selects the Small stack with slices removed 

close(); 

 

t = getTitle(); //Reassigns the second stack to be the new first stack 

count++; 

  } 

 } 

 

//If it is not the first iteration 

else{ 

 

//Rename file to remove bits on the end and duplicate tif 

s=getTitle(); 

short = substring(s,0,indexOf(s,'-')+1);  

title= ""+short+i; 
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rename(title); 

t2 = getTitle(); 

  

setSlice(midslice); 

run("Concatenator ", "stack_1=["+t+"] stack_2=["+t2+"] title=["+i+"]"); 

run("PoorMan3DReg ", "transformation=Translation number="+slicesNum+" projection=[Max 

Intensity]"); 

ID =  getImageID(); 

run("Substack Maker", "slices="+newStackslicesNum+"-"+doubleSlice+""); 

selectImage(ID); //Selects the concatenated stacks 

close(); 

  

//Saving the next stack in the series 

//selectImage(ID); 

saveAs("Tiff", fileloc + ""+t2+".tif"); //Saving Stack-24 

run("Duplicate...", "title=tempsubstack duplicate range=+sliceStart+-+slicesNum+");   

run("Slice Remover", "first=1 last=142 increment=1"); 

run("Slice Remover", "first=21 last=658 increment=1"); 

ID =  getImageID();  //Small stack with slices removed 

run("Z Project...", "start=1 stop=20 projection=[Sum Slices]"); 

saveAs("Tiff", filelocb + ""+t2+".tif"); 

close(); 

   

selectImage(ID); //Selects the Small stack with slices removed 

close(); 

 

t = getTitle(); //Reassigns the second stack to be the new first stack 

ID =  getImageID(); //Just for in the case of the final stack in the series (1 prob) 

count++; 

 

if (i==numVolfirst) { //Close the final stack loaded (first one) 

close(); 

  } 

} 

 

//New part for starting again from middle stack  

if (i==numVolfirst) {  

 

count=1; //Reset count to 1 
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//Opens files sequentially in ascending order 

 for (i=startNum; i<=numVol; i+=1) {  

 fList = getFileList(base + toString(i)); 

 open(base + toString(i)+" affined-1.tif");  

 run("8-bit"); 

  slicesNum=nSlices; 

  midslice=nSlices/2; 

  doubleSlice=2*slicesNum; 

  newStackslicesNum= slicesNum+1; 

   

  newStackslicesNum= slicesNum+1; 

  w= getWidth(); 

  h= getHeight(); 

  ww= (w+50); 

  hh= (h+50); 

   

   

  count++; 

 

 

  

//Rename file to remove bits on the end and duplicate tif  

s=getTitle(); 

short = substring(s,0,indexOf(s,'-')+1);  

title= ""+short+i; 

rename(title); 

  

t2=getTitle(); //Necessary for the second iteration- in the 'else' case. Otherwise it is overwritten 

anyway 

  

if (count==2) {   //Opens a second stack on the first iteration ascending    

   

for (j=i+1; j<=numVolsub2; j+=1) { 

fList = getFileList(base + toString(j));  

ID = getImageID(); 

t = getTitle(); //Assigns t to already opened stack 

open(base + toString(j)+" affined-1.tif"); 

i+=1; 

  

run("8-bit"); 
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//Rename file to remove bits on the end and duplicate tif 

s=getTitle(); 

short = substring(s,0,indexOf(s,'-')+1);  

title= ""+short+i; 

rename(title); 

t2 = getTitle(); 

   

setSlice(midslice); 

   

//Concatenates the stacks and use the PoorMan3DReg plugin to align the two opened stacks   

run("Concatenator ", "stack_1=["+t+"] stack_2=["+t2+"] title=["+i+"]"); 

run("PoorMan3DReg ", "transformation=Translation number="+slicesNum+" projection=[Max 

Intensity]"); 

ID =  getImageID();    

run("Substack Maker", "slices="+sliceStart+"-"+slicesNum+"");  //Takes out the first loaded stack 

from the concatenated stacks 

   

 

//Saves the first loaded stack from the concatenated stacks 

  saveAs("Tiff", fileloc + ""+t+".tif"); //Saving first loaded stack from concatenated stacks 

  run("Slice Remover", "first=1 last=142 increment=1"); 

  run("Slice Remover", "first=21 last=658 increment=1"); 

  ID =  getImageID(); 

  run("Z Project...", "start=1 stop=20 projection=[Sum Slices]"); 

  saveAs("Tiff", filelocb + ""+t+".tif"); 

  close(); 

   

  selectImage(ID); 

  close(); 

   

  wait(5); 

  ID =  getImageID(); 

  t = getTitle(); 

  run("Substack Maker", "slices="+newStackslicesNum+"-"+doubleSlice+"");  

 //Takes out the second loaded stack from the concatenated stacks 

  selectImage(ID); //Selects the concatenated stacks 

  close(); 
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//Saves the second loaded stack from the concatenated stacks 

  saveAs("Tiff", fileloc + ""+t2+".tif"); //Saving second stack 

  run("Duplicate...", "title=tempsubstack duplicate range=+sliceStart+-+slicesNum+");

   

  run("Slice Remover", "first=1 last=142 increment=1"); 

  run("Slice Remover", "first=21 last=658 increment=1"); 

  ID =  getImageID();  //Small stack with slices removed 

  run("Z Project...", "start=1 stop=20 projection=[Sum Slices]"); 

  saveAs("Tiff", filelocb + ""+t2+".tif"); 

  close(); 

   

  selectImage(ID); //Selects the Small stack with slices removed 

  close(); 

 

//Rename file to remove bits on the end and duplicate tif 

s=getTitle(); 

short = substring(s,0,indexOf(s,'-')+1);  

title= ""+short+i; 

rename(title); 

t = getTitle(); //Reassigns the second stack to be the new first stack 

count++; 

  } 

 } 

 

else{ 

//Concatenates the stacks and use the PoorMan3DReg plugin to align the two opened stacks  

run("Concatenator ", "stack_1=["+t+"] stack_2=["+t2+"] title=["+i+"]"); 

run("PoorMan3DReg ", "transformation=Translation number="+slicesNum+" projection=[Max 

Intensity]"); 

ID =  getImageID(); 

run("Substack Maker", "slices="+newStackslicesNum+"-"+doubleSlice+""); 

selectImage(ID); //Selects the concatenated stacks 

close(); 

  

//Saving the next stack in the series 

saveAs("Tiff", fileloc + ""+t2+".tif"); //Saving Stack-24 

  run("Duplicate...", "title=tempsubstack duplicate range=+sliceStart+-+slicesNum+");

   

  run("Slice Remover", "first=1 last=142 increment=1"); 

  run("Slice Remover", "first=21 last=658 increment=1"); 
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  ID =  getImageID();  //Small stack with slices removed 

  run("Z Project...", "start=1 stop=20 projection=[Sum Slices]"); 

  saveAs("Tiff", filelocb + ""+t2+".tif"); 

  close(); 

   

  selectImage(ID); //Selects the Small stack with slices removed 

  close(); 

   

  //Rename file to remove bits on the end and duplicate tif 

  s=getTitle(); 

  short = substring(s,0,indexOf(s,'-')+1);  

  title= ""+short+i; 

  rename(title); 

  t = getTitle(); //Reassigns the second stack to be the new first stack 

  ID =  getImageID(); //Just for in the case of the final stack in the series (1 prob) 

  count++; 

  } 

   

  if (i==numVol) { //Closes the final stack 

  close(); 

    }  

  

 } 

}  

} 

 

Appendix 4: Alignment of all stacks to the central stack using ImageJ plugins 
//This macro counts through the stacks backwards from startNum and ends at the final set stack 

(numVolfirst)-  

the beginning in this case- opening two stacks for a comparison and then the next set stack etc... 

 

base = "base = "filepath\\filename-"; //Filepath and first part of the filename 

startNum = 1; 

numVol = 66; 

numVolfirst= 1; 

sliceStart = 1; 

numSlice = 800; 

sumOver= 20; //Set variable to number of slices to sum over 

count=1; 

i=1; 
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//Finds the central stack or if an odd number rounds up 

if ((numVol%2)==0) { 

j= (numVol-(numVolfirst-1))/2 +(numVolfirst-1); 

} 

else{ 

j=((numVol-(numVolfirst-1) +1)/2) +(numVolfirst-1); 

} 

numVolsub=startNum-1; 

numVolsub2=startNum+1; 

 

//Enter the savefile location 

fileloc= "filepath"; //Enter filepath for saving 

filelocb= ""+filepath+"\\Bscan\\"; 

 

 

for (i=startNum; i<=numVol; i+=1) {  

open(base + toString(j)+" affined-1.tif"); //Open the middle stack 

run("8-bit"); 

 

numSlice = nSlices; 

sliceHalf = numSlice/2; 

startHalf= sumOver+1; 

stopHalf= numSlice-sliceHalf; 

w=getWidth(); 

h=getHeight(); 

ww=(w+50); 

hh=(h+50); 

  

//Rename file to remove bits on the end and duplicate tif 

s=getTitle(); 

short = substring(s,0,indexOf(s,'-')+1);  

title= ""+short+j; 

rename(title); 

t = getTitle(); 

 

fList = getFileList(base + toString(i)); 

open(base + toString(i)+" affined-1.tif"); //Opens the files one by one 

run("8-bit"); 

slicesNum=nSlices; 
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midslice=nSlices/2; 

doubleSlice=2*slicesNum; 

newStackslicesNum= slicesNum+1; 

  

//Rename file to remove bits on the end and duplicate tif 

s=getTitle(); 

short = substring(s,0,indexOf(s,'-')+1);  

title= ""+short+i; 

rename(title); 

t2 = getTitle(); 

   

//If the second file opened is the same as the first- save 

if(i==j){ 

close(); 

saveAs("Tiff", fileloc + ""+t2+".tif"); //Saving reference stack   

  run("Slice Remover", "first="+sliceStart+" last="+sliceHalf+" increment=1"); 

run("Slice Remover", "first="+startHalf+" last="+stopHalf+" increment=1"); 

ID =  getImageID();  //Small stack with slices removed 

run("Z Project...", "start=1 stop="+sumOver+" projection=[Sum Slices]");  saveAs("Tiff", 

filelocb + ""+t2+".tif"); 

  close(); 

   

  selectImage(ID); //Selects the Small stack with slices removed 

  close(); 

}   

 

//In all other cases concatenate and register the stacks 

else{ 

//Register the stacks   

run("Concatenator ", "stack_1="+t+" stack_2="+t2+" title="+i+""); 

run("PoorMan3DReg ", "transformation=Translation number="+slicesNum+" projection=[Max 

Intensity]"); 

run("Substack Maker", "slices="+newStackslicesNum+"-"+doubleSlice+"");   //Takes out 

the second loaded stack from the concatenated stacks 

   

//Save the second lot from the concatenated stacks 

saveAs("Tiff", fileloc + ""+t2+""); //Saving second stack 

wait(10);  

run("Slice Remover", "first="+sliceStart+" last="+sliceHalf+" increment=1"); 

run("Slice Remover", "first="+startHalf+" last="+stopHalf+" increment=1"); 
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ID =  getImageID();  //Small stack with slices removed 

run("Z Project...", "start=1 stop="+sumOver+" projection=[Sum Slices]"); saveAs("Tiff", filelocb + 

""+t2+""); 

wait(10); 

close(); 

   

selectImage(ID); //Selects the Small stack with slices removed 

close(); 

   

selectWindow(""+i+""); //Selects the concatenated stacks 

close(); 

   

} 

} 

 

Appendix 5: ImageJ macro to align stacks by finding the interface between 
agarose and agar 
//Macro selects the ROI round the interface,crops it, reslices it and saves it 

 

//Opens a ready cropped .tif file 

base = "base = "filepath\\filename-"; //Filepath and first part of the filename 

startNum = 1; 

numVol = 61; 

 

sliceStart = 1;//First slice of the stack. Nearly always 1. 

offset= -5;//Set to give some offset form the exact interface at the camp agar. NOTE Must be less 

than smallest index of maximum 

offset2= -30;//Gives leeway at top of the stack to compensate for differences in height. NOTE Larger 

size makes shorter (height) stack 

sumOver= 20; //Set variable to number of slices to sum over 

 

//Enter the savefile location 

fileloc= "filepath"; //Enter filepath for saving 

filelocb= ""+filepath+"\\Bscan\\"; 

 

for (i=startNum; i<=numVol; i+=1) {  

open(base + toString(i)+".tif"); //Opens the files one by one 

 

//Rename file to remove bits on the end and duplicate tif 

s=getTitle(); 
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short = substring(s,0,indexOf(s,'-')+1);  

title= ""+short+i; 

rename(title); 

 

//Duplicates the image and rotates it 

t = getTitle(); 

width=getWidth(); 

height=getHeight(); 

sliceno=getSliceNumber(); 

slices=nSlices; 

 

heightcrop=(height/2); 

fullheight=(height-heightcrop); 

 

run("Duplicate...", "title=["+t+"-profile.tif] duplicate range=1-+sliceno+"); //duplicates the image and 

names it title-profile.tif 

selectWindow(""+t+"-profile.tif"); 

run("Rotate 90 Degrees Right"); 

s = getTitle(); 

run("Z Project...", "start=1 stop="+slices+" projection=[Average Intensity]"); 

run("Select All"); 

selectWindow(""+s+""); 

close(); 

 

//Outputs the profile as an array 

selectWindow("AVG_"+t+"-profile.tif"); 

makeRectangle(0, 0, heightcrop, width); 

run("Crop"); 

selectWindow("AVG_"+t+"-profile.tif"); 

run("Select All"); 

profile = getProfile(); 

   

//Closes the average of the stack   

selectWindow("AVG_"+t+"-profile.tif"); 

close(); 

 

//Finds the difference between numbers in the array  

number=0; 

diff=newArray(height); 

len=lengthOf(profile)-1; 
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for (number=0; number<len; number++) { 

   

 diff[number]= (profile[number] - profile[number+1]); //= ArrDiff 

 }  

 

//Returns the maximum of the profile array 

min=0; 

 for (number=0; number<lengthOf(diff); number++) { 

   min=minOf(diff[number], min); 

  } 

  max=min; 

 for (number=0; number<lengthOf(diff); number++) { 

   max=maxOf(diff[number], max); 

  } 

  

//Returns the pixel number at which the maximum is found 

  for (a=0; a<lengthOf(diff); a++) { 

   if (diff[a]==max) { 

    b=a+1; 

    } 

   } 

selectWindow(""+t+"");  

   

//Having found the interface- crop the image a set point around it to encompass the entire ROI 

rec=(height-b);  //Point at which the interface lies 

rectangle= rec+20; //Want to add in a bit off the camp agar- have added about 20px here 

bot= (b-20);  //20 gives a little leeway 

 

//Runs for the first iteration  

if (i==startNum){ 

top= (height-b); //top sets the number of pixels to remain constant 

 

run("Flip Vertically", "stack"); 

makeRectangle(0, bot, width, top); 

run("Crop"); 

run("Flip Vertically", "stack"); 

 

ID =  getImageID(); 

 

//Saves the registered file 
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saveAs("Tiff", fileloc + ""+t+""); //Saving cropped tif   

run("Slice Remover", "first="+sliceStart+" last="+sliceHalf+" increment=1"); 

run("Slice Remover", "first="+startHalf+" last="+stopHalf+" increment=1"); 

ID =  getImageID();  //Small stack with slices removed 

run("Z Project...", "start=1 stop="+sumOver+" projection=[Sum Slices]"); 

saveAs("Tiff", filelocb + ""+t+""); 

   

close(); 

   

selectImage(ID); //Selects the Small stack with slices removed 

close();  

} 

 

//Runs in all other cases than the first iteration 

else{ 

 

run("Flip Vertically", "stack"); 

makeRectangle(0, bot, width, top); 

run("Crop"); 

run("Flip Vertically", "stack"); 

 

ID =  getImageID(); 

 

//Saves the registered stack 

saveAs("Tiff", fileloc + ""+t+""); //Saving cropped tif   

run("Slice Remover", "first=1 last=10 increment=1"); 

run("Slice Remover", "first=21 last=49 increment=1"); 

ID =  getImageID();  //Small stack with slices removed 

run("Z Project...", "start=1 stop=20 projection=[Sum Slices]"); 

saveAs("Tiff", filelocb + ""+t+""); 

   

close(); 

   

selectImage(ID); //Selects the Small stack with slices removed 

close();      

} 

}  
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Appendix 6: ImageJ macro to align stacks by inputting shift manually 
//Macro to shift every slice by entered amount (negative numbers for the opposite direction) 

//Additions required to attempt to automate detection of differences between stacks and auto load 

them 

//Load stack to be shifted 

waitForUser("Open stack to be shifted"); 

 

fileloc= "N:\\3D STACKREGED\\DEVELOPED\\20100617 Ax2 agarose - StackReg2 - Copy - Copy\\"; 

//Make this variable set the filesave location so don't keep having to change it 

filelocb= ""+fileloc+"\\Bscan\\"; 

t = getTitle(); 

w = getWidth(); 

h = getHeight(); 

sliceno=getSliceNumber(); 

numSlice=nSlices(); 

sumOver= 20; //Set variable to number of slices to sum over 

 

w=getWidth(); 

h=getHeight(); 

ww=(w+50); 

hh=(h+50); 

numSlice = nSlices; 

sliceHalf = numSlice/2; 

startHalf= sumOver+1; 

stopHalf= numSlice-sliceHalf; 

 

xshift=0 

yshift=0 

 

//Enter the shifts x 

Dialog.create("Enter x shift") 

Dialog.addNumber("by # to the right", xshift) 

Dialog.show(); 

xshift = Dialog.getNumber(); 

 

//Enter the shifts y 

Dialog.create("Enter y shift") 

Dialog.addNumber("by # down", yshift) 

Dialog.show(); 

yshift = Dialog.getNumber(); 
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for (i=0; i<numSlice; i++){ 

setSlice(i+1); 

run("Translate...", "x="+xshift+" y="+yshift+" interpolation=Bicubic slice"); 

} 

 

//Optional save- comment out if don't want 

 

//Tick a box if you don't want to save and want the macro to exit instead 

//(useful if you are not happy with the result) 

 

leave=false; 

if(leave==false){ 

 

Dialog.create("Save?") 

Dialog.addCheckbox("Tick to not save", false) 

Dialog.show(); 

 xshift = Dialog.getNumber(); 

 leave = Dialog.getCheckbox(); 

 

if(leave==false){ 

 

waitForUser("Pressing ok will save file"); //Double checks that the file should be saved 

 

saveAs("Tiff", fileloc + ""+t+""); //Saving stack 

wait(10);   

run("Slice Remover", "first="+sliceStart+" last="+sliceHalf+" increment=1"); 

run("Slice Remover", "first="+startHalf+" last="+stopHalf+" increment=1"); 

ID =  getImageID();  //Small stack with slices removed 

run("Z Project...", "start=1 stop="+sumOver+" projection=[Sum Slices]"); 

saveAs("Tiff", filelocb + ""+t+""); 

wait(10); 

close(); 

   

selectImage(ID); //Selects the Small stack with slices removed 

close(); 

} 

else{ 

close(); 

} 




