
 

 

SUMMERTIME IMPACT OF CLIMATE CHANGE ON MULTI-OCCUPANCY BRITISH 
DWELLINGS 

 

 

Authors: 

Shariful Shikder*1, Monjur Mourshed1, Andrew Price1 

 

 

1School of Civil and Building Engineering, Loughborough University, Loughborough Leicestershire, 

LE11 3TU, United Kingdom 

 

*Corresponding author. Email: s.h.shikder@lboro.ac.uk  



Abstract 

Recent climate change projections estimate that the average summertime temperature in the 

southern part of Great Britain may increase by up to 5.4°C by the end of the century. The general 

consensus is that projected increases in temperature will render British dwellings vulnerable to 

summer overheating and by the middle of this century it may become difficult to maintain a 

comfortable indoor environment, if adaptation measures are not well integrated in the design and 

operation of new dwellings, which are likely to remain in use beyond the 2050s. The challenge is to 

reduce overheating risks by integrating building and user adaptation measures, to avoid energy 

intensive mechanical cooling. Developing guidelines and updating building regulations for 

adaptation, therefore, requires an understanding of the baseline scenario; i.e. the performance of 

existing buildings in future climates. 

This paper aims to investigate the performance of new-build multi-occupancy British dwellings for 

human thermal comfort in the present-day and projected future climates in four regional cities: 

Birmingham, Edinburgh, London and Manchester. Evaluations are carried out by a series of 

dynamic thermal simulations using widely adopted threshold temperature for overheating, as well 

as adaptive thermal comfort standards. This study thus offers a unique perspective on regional 

variations of performance and provides a clearer snapshot because of the use of more appropriate 

adaptive comfort standards in the evaluations.  Finally, the paper sheds light on possible personal 

and building adaptation measures to alleviate overheating risks.    

Keywords: Adaptive thermal comfort, climate change, adaptation, thermal performance, building 
simulation  



1. Introduction 

In light of compelling evidence for rapid anthropogenic climate change, there is a gradual shift 

towards adapting buildings and cities to the inevitable climate change, while mitigating its impacts. 

The basis for investigating climate change impact, vulnerability and adaptation in the UK is the 

scenarios projected by the United Kingdom Climate Impacts Programme (UKCIP). The projected 

UKCIP medium emissions scenario suggests that average summer temperature will increase by up 

to 5.4°C in the southern part of England by 2080s (Murphy et al. 2009). Concerns over rising 

temperature has, therefore, resulted in a growing awareness of the need for embedding adaptation 

in the design and operation of a building in the UK and around the globe. A number of recent 

publications, including the ones from the Chartered Institution of Building Services Engineers 

(CIBSE) (CIBSE 2005) have investigated the impact of climate change in buildings, indicating that 

the UK has a high probability of experiencing overheating in buildings in future.   

1.1. British dwellings and need for adaptation 

A significant number of new dwellings are built every year in the Britain. According to the 

Department for Communities and Local Government (DCLG), 1.6 million new dwellings were built 

in the UK between 1997 and 2006. Although new construction has fallen since the economic 

downturn, it is expected to be temporary. The household numbers are also projected to grow to 

27.8 million in 2033 – an increase of 5.8%, compared to 2008 (DCLG 2009). Increasing household 

numbers will require additional dwellings to be built, which will constitute a significant part of the 

total dwelling stock in coming decades. Moreover, there is a tendency in the UK towards building 

flats in multi-occupancy buildings rather than single-occupancy traditional houses. Flats accounted 

for 46% of total new dwellings in 2008-09 (DCLG 2009). 

British dwellings are mostly naturally ventilated and heating dominated, which can make them 

vulnerable during hot weather or sudden heat waves, in particular in future climates with increased 

temperatures. According to CIBSE (2005), it will be difficult to maintain indoor conditions within 

comfort zone in many residential buildings, in particular in bedrooms, in some parts of the country. 

Therefore, the challenge is to adapt to the warming climate without the aid of energy-intensive 

mechanical cooling. Understanding the performance of the new-build dwellings in future climates is 

the logical first step in developing strategies and guidelines for adaptation. 

1.2. Thermal comfort assessment methods 

A key issue while investigating the thermal performance is the evaluation criteria used in previous 

studies. CIBSE has published several guidelines on environmental and design of buildings in 

current and projected climates. CIBSE (2005, 2006) recommended temperature benchmarks or 

thresholds to identify building overheating. One of the key criticisms is that this temperature 

threshold remains same, irrespective of the time of year and geographical location. Past research 

on thermal comfort suggests that the comfort range is significantly influenced by the outside 



temperature and people can adapt to a wider range of temperatures depending on their thermal 

experience of previous days and available adaptation opportunities (de Dear and Brager 1998; 

Nicol and Humphreys 2002). This provides a wider range of acceptable temperatures specifically 

for naturally ventilated buildings, also known as adaptive thermal comfort standards (ASHRAE 

2010; BS 2007).  

1.3. Aim and objectives 

This paper aims to investigate the performance of new-build multi-occupancy British dwellings for 

human thermal comfort in the present-day and projected future climates in four regional cities: 

Birmingham, Edinburgh, London and Manchester. Evaluations are carried out by a series of 

dynamic thermal simulations using widely adopted threshold temperature for overheating, as well 

as adaptive thermal comfort standards. This study thus offers a unique perspective on regional 

variations of performance and provides a clearer snapshot because of the use of more appropriate 

adaptive comfort standards in the evaluations.  Finally, the paper sheds light on possible personal 

and building adaptation measures to alleviate overheating risks.    

1.4. Previous studies and adaptation strategies 

A considerable number of studies have identified the impact of climate change on buildings thermal 

performance and energy demand (CIBSE 2005; Holmes and Hacker 2007; Jentsch et al. 2008; de 

Wilde and Tian 2010, 2012; Lomas and Giridharan 2011; Mourshed 2011; Gupta and Gregg 2012). 

Although earlier studies have only considered the simple overheating criteria proposed by CIBSE, 

there is considerable interest among researchers to explore the application of adaptive thermal 

comfort standards in this domain and has been applied in later studies. Previous publications also 

discussed various adaptive opportunities to mitigate the impact of overheating. The type of 

adaptive opportunities can be divided into two groups, one is directly associated with the occupant 

behaviour and activity; the other one is adaptation opportunity/measures of the building. Studies 

revealed that the infiltration rate is one of the most important design factors in defining the annual 

heating and cooling loads. In addition, other passive design strategies such as building materials, 

solar gain controls, etc. needs to be considered (CIBSE 2005; Hamilton-MacLaren et al. 2012; 

Holmes and Hacker 2007; Mourshed et al. 2005).  Although most previous studies have discussed 

the adaptation of building itself, aspects related to occupants’ behavioural adaptation have not 

been addressed in detail. However there is a considerable amount of personal adaptive 

opportunities that may be helpful in controlling building overheating. Key personal adaptive 

opportunities are related to the occupant’s ability to open windows, control solar glare, turn lights 

off, use portable fan and change clothing, as well as individual control of HVAC rather than group 

control. In few cases, personal adaptive opportunities and building adaptation measures are 

closely linked. For example, if an occupant intends to open windows during hot weather, the 

building must be equipped with operable windows to facilitate this.  



2. Simulation model 

The selected case study is a new two-storey purpose-built residential building containing two 

identical flats in each of the two floors. Each flat comprised two bedrooms, one hall, one bathroom 

and one open-plan kitchen and a lounge (Figure 1a). The building was specified to satisfy the 

requirements of the current building regulations, specifically Part L1A (NBS 2010). 

 

Figure 1: The case study building. (a) Plan. (b) 3D simulation model. 

The tool selected for the study is Autodesk Ecotect Analysis 2010, a whole building simulation 

program. The software uses the CIBSE Admittance Method to calculate heating and cooling loads 

for individual zones. Further, it can calculate direct and indirect solar gains, internal gains, inter-

zonal heat flow, hourly internal temperatures, various loads breakdowns, impact of thermal mass 

and annual temperature distributions, etc. (Autodesk 2012). Simulation parameters for this study 

are discussed below. 

U-value: U-values of the materials satisfy the requirements of current building regulations for new 

dwellings, as stipulated in the Approved Document L1A (NBS 2010).   

Internal gains: Internal heat gain values were acquired from CIBSE Guide A (2006) to apply in the 

simulation model. A sensible and latent heat gains for human for seated/sedentary works were 

considered 70 and 45 W respectively. Table 1 states the rate of heat gains considered for this 

study. This data was used to derive the internal gains (W/m2) for each zone. 

 

 

 

 

 



Table 1: Internal heat gains of various rooms. 

Room/Zone Equipment  Rate of heat 

gains (W) 

Operation 

hours  

Bed1 Light  

Laptop  

Small TV/monitor  

18  

50 

50 

2000 – 0100 

2100 – 2300 

2100 – 2200 

Bed2 Light  

Desktop computer 

with monitor  

18 

250 

2000 – 2300 

2100 – 2200 

 

Lounge + 

Kitchen 

Light  

Range  

Microwave oven 

Toaster 

Refrigerator 

(small) 

Water supply 

36 

1280 

1000 

790 

350 

37 

1900 – 0000 

1900 – 2000 

2000 – 2030 

0700 – 0800 

0000 – 0000 

1800 - 0900 

 

Air change rate: In this study air change rate per hour (ACH) is used to define the infiltration and 

ventilation rate of the building. Selected flats are naturally ventilated and with heating provisions to 

run during winter. Depending on the window size in open states, ACH can vary from 0.5 to 10 in 

small-scale residential buildings. Cross ventilation typically results in higher the ACH. ACH can be 

calculated using equation (1), 

 
 

(1) 

where,  = air change rate per hour, q = fresh air flow through the room (m3/s), and v = volume of 

the room (m3).  

Again air flow rate (Qw) for a single aperture in a room can be calculated by the following equation 

(2): 

  (2) 

where,  is the air flow rate per hour,  is the area of the apertures and  is the wind velocity. 

Average air change rate for first floor and ground floor bedroom are 2.83 and 2.34 respectively. 

This was calculated using Equation (1) and (2) considering the open-able window area of 0.5 m2 

(1.10 m2 total glazing area) and average outside wind velocity of 1.80 m/s. 

v
qn ×= 3600

n

WW VAQ ××= 025.0
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ACH is highly variable depending on the aperture of the opening, outside wind velocity and 

ventilation system of the building. There can be higher ACH during hot weather compared to winter 

as windows are usually open for longer period during hot weather. In this study ACH ranged from 2 

to 10 have been used to evaluate the building thermal performance. ACH was modelled by the 

approximate percentage of window opening and closed states, where 100% indicates window was 

fully open. It was considered the window was open for 14 hours (1800 to 0800) in a day during hot 

weather.  

2.1. Weather data 

CIBSE developed two types of standard weather data files for use in building performance 

assessment: Test Reference Year (TRY) for systems planning and Design Summer Year (DSY) for 

summer overheating prediction and analysis (CIBSE 2005). Current climate DSY weather files 

were adopted in this study, which was then used to generate projected weather data using the tool 

Climate Change Weather Generator (CCWeatherGen) (Jentsch et al. 2008). 

3. Analysis methods 

3.1. Overheating criteria 

Definition of the overheating criteria is based on acceptable operative temperature, and frequency 

and duration of excessive temperatures (above the acceptable temperature). CIBSE Guide A 

(CIBSE 2007) suggests in summer time 25°C may be acceptable where fewer people will be 

uncomfortable. However for dwellings, recommended temperature level is 25°C for living rooms 

and 23°C for bedrooms. Sleep may be impaired at temperatures above 24°C.  

For residential buildings CIBSE recommended benchmark peak temperature of 28°C for living 

spaces and 26°C for bedrooms. The building will be overheated when peak temperature exceeds 

more than 1% of annual occupied hours above 26°C for bedrooms and 28°C for living rooms.   

3.2. Adaptive comfort standards  

Other than the recommended temperature benchmarks from guides, the adaptive comfort index 

provides a wider acceptable range of temperatures for occupants. Adaptive comfort standards 

indicate the degree of dissatisfaction of the occupants not only based on the current temperature, 

but also on the thermal environment experienced in previous few days.  

Adaptive comfort standards have been generated by statistical analysis of collected data over a 

long period of time from various locations of the world. This has caused variations in the quality of 

data and analysis methods proposed by various researchers. Although key principles are same, 

ASHRAE (2010) and BS/CIBSE have different adaptive thermal comfort standards. As this has 

been a widely accepted standard and included in the international and national standards, it is 

necessary to identify the adaptive comfort standards for future climate, and explore the extent of 



adaptation opportunity occupants require. In this study adaptive thermal comfort ranges have been 

calculated based on BS 15251 (BS 2007).  

Following equation was used to determine the running mean of outdoor temperature, 

  (3) 

where, is the running mean temperature in °C for the day under investigation,  is the daily 

mean external temperature (°C) for the previous day;  is the daily mean external temperature 

(°C ) for the previous day and  is a constant between 0 and 1, and recommended to use 0.8. 

Outdoor running mean temperature ( ) was calculated considering previous 7 days by applying 

Equation 3.  to  was calculated using temperature data from CIBSE DSY weather files, 

and  = 0.8 was used. Adaptive comfort bands were calculated by applying  in Equations (4) 

and (5) for upper and lower values of the band respectively. 

  (4) 

  (5) 

where, is the upper limit and  is the lower limit of the adaptive comfort band in°C.  is the 

distance between the thermally neutral temperature and upper or lower values of adaptive comfort 

bands.  varies depending on the application of the index. For example,  of 2°C refers to 

category I of adaptive comfort index in BS 15251 and corresponds to less than 6 % Percentage 

People Dissatisfied (PPD), for category II is 3°C and corresponds to less than 10 % PPD. 

4. Results and analysis 

4.1. Performance in present climate 

Figure 2(a) presents the current climate (1990s) hour by hour temperature distribution of four 

regional cities. The result shows that London and Birmingham have higher tendencies of suffering 

with temperatures over the acceptable comfort limit (23°C). Figure 3 describes the annual 

percentage of occupied hours (1800 to 0800), which remain above 23°C, 24°C and 26°C for 

ground floor bedroom. These results show that the London is marginally falling into the CIBSE 

overheating criteria (annual 1.13% of occupied hours). The temperature remains over 24°C for a 

considerable period of time during peak summer, which is 4.69% of annual occupied hours. Total 

hour over acceptable operative temperature (23°C) is 952 (39 days) among which 589 hours are 

within occupied hours. Birmingham has 183 hours (8 days) over 23°C among which 119 hours are 

occupied. The longest duration temperature remains above 26°C is approximately 4.8 days 

θRM = (1−α){θed−1 +α.θed-2 +α
2θed-3....}

RMθ 1ed−θ

2-edθ

α

RMθ

1−edθ 7-edθ

α θRM

θU = 0.33θRM +18.8+θR

θL = 0.33θRM +18.8−θR

θU θL θR

θR θR

θR



continuously (Table 2). Table 2 shows that number of occurrences (frequency) of high temperature 

and maximum duration are higher in southern half of the country as expected. 

Table 2: Frequencies of high temperature for four cities in 1990s. 

 

Above 23°C Above 24°C Above 26°C 

 

Frequency 

Max. 

duration 

(hours) Frequency 

Max. 

duration 

(hours) Frequency 

Max. 

duration 

(hours) 

London 34 235 4 97 4 74 

Birmingham 10 160 2 115 7 15 

Manchester 22 124 7 72 3 12 

Edinburgh 7 75 2 82 1 25 

 

4.2. Performance in future climate 

Results show that London is already falling within the overheating criteria defined by CIBSE. In 

2020s this rises to 2.13% for London and 1.11% for Birmingham. This stipulates that Birmingham 

has strong bias to be overheated during 2020s. In 2050s not surprising that annual percentage of 

occupied hours above 26°C will rise well above 1% for three cities: London (7.34%), Birmingham 

(1.53%) and Manchester (1.50%) (Figures 2 and 3).  



 

Figure 2: Hour by hour temperature distribution of four cities in different climatic scenarios in 

summer.  

 



 

Figure 3: Annual percentage of occupied hours above temperature benchmarks. 

Average temperatures of the 4 bedrooms of the selected study for different periods are presented 

in Table 3. The results showed that the average increment of indoor operative temperature ranges 

from 1.15°C (from 1990 to 2020) to 1.89°C (2050 to 2080), which shows non-linear trends of 

temperature rises from present time to the end of the century.  

Table 3: Average temperature of bedrooms in different climatic conditions and locations. 

Year London Birmingham Manchester Edinburgh 

1990 20.63 18.70 18.58 16.89 

2020 21.78 19.76 19.50 17.70 

2050 23.06 20.93 20.53 18.60 

2080 24.95 22.65 22.41 19.91 

4.3. Evaluation of adaptive thermal comfort ranges 

Results show variable temperature ranges as comfort criteria for selected 4 cities. Table 4 presents 

the upper limit of category II adaptive comfort range of these locations. Results show that London 

has higher adaptive comfort upper limit compared to other cities. For both London and Birmingham 

this is above the CIBSE recommended 26°C maximum temperature benchmark to predict 

overheating criteria. This can indicate that using the adaptive comfort bands for cooling purposes 

(for mechanically cooled buildings) can consume lower energy compared to recommended 

temperature benchmark overheating. 



 

Table 4: Adaptive comfort range (category II) upper limit.  

 

1990 2020 2050 2080 

London 28.10 28.32 28.73 29.32 

Birmingham 27.59 27.79 28.17 28.72 

Manchester 24.33 24.54 24.92 25.47 

Edinburgh 23.72 23.89 24.18 24.61 

In London although most of the time operative temperature remains within the category II comfort 

band, sudden peak is seen in the month of July rising above 4°C in 1990s (Figure 4a). The 

tendency of remaining above category II thermal comfort band becomes higher in future climates, 

where it remains above the comfort band for 1.35% of annual occupied hours in 2020s (Figure 4a, 

4b and 4c). In 2020s and 2050s the maximum difference between the adaptive comfort neutral 

temperature and the operative temperature is 5.6°C and 6.9°C respectively. This can stipulate that 

even for short period peak temperature can go well beyond acceptable limit and cause extreme 

thermal discomfort. Similar trend is also seen for Birmingham during 2050s, where more than 

1.22% of annual occupied hour remain above the upper limit of the comfort band (Figure 5 and 

Figure 6).  

Again building guides suggest (CIBSE 2005, 2006; BS 2007) when indoor operative temperature is 

above 25°C, air velocity can be increased to compensate the high temperature. In this case the 

maximum temperature can be increased to few degrees provided adequate air velocity has been 

achieved. This indicates the provision of increasing air velocity (by fans or natural ventilation) 

should be a key point in future design recommendations.  



 

Figure 4: Adaptive comfort range and indoor operative temperature for 1990s (a), 2020s (b), 2050s 

(c) and 2080s (d) for London. 



 

Figure 5: Adaptive comfort range and indoor operative temperature for 1990s (a), 2020s (b), 2050s 

(c) and 2080s (d) for Birmingham. 



 

Figure 6: Percentage of annual occupied hours above 2 and 3°C of thermally neutral temperature. 

4.4. Impact of air change rate (ACH) 

All data presented so far are with an average ACH of 2 for the bedrooms. It is obvious that ACH 

can have significant impact on the thermal performance of the building, where increased ACH will 

help in maintaining the indoor operative temperature within the comfort range in hot weather. A 

comparison of variable ACH and indoor temperature performance is presented in Figure 7 for 

Birmingham and London. 

 

Figure 7: Impact of air change rate in percentage of annual occupied hours for London (a) and 

Birmingham (b) in four climatic scenarios. 

Results show that a minimum of 4 ACH can reduce the overheating criteria within the acceptable 

range for Birmingham in 2050s. However to maintain the overheating criteria in 2080 air change 

rate as high as 10 is not enough, and leaving 1.41% of annual occupied hours over 26°C. For 

London a minimum of 6 ACH is expected to prevent overheating in 2020s, however this might not 

enough after this period. This indicates that additional adaptation measures are necessary for 

London area well before 2050s compared to other parts of the country.  

Again user behaviour associated with ventilation can have an impact on the thermal performance 

of the building. A comparison of 3 scenarios of window opening duration (8, 15 and 24 hours/day 



considering 6 ACH for Bedroom1) during hot weather (May to September) are investigated in the 

study. Results identified that, opening duration ranging from 8 hour to 24 per day can reduce the 

annual duration of excessive temperature (over 23°C) by 286 hours (11 days) for London area by 

2050.  

 

Figure 8: Thermal performance comparison of variable window opening duration. 

5. Discussion 

This study presented a computer simulation based evaluation of thermal performance of a multi-

occupancy dwelling located in four regional cities in Britain in four time slices. Computer simulation 

is proved to be an efficient method for assessing environmental performance of buildings, including 

lighting, thermal, airflow, energy consumption, etc. (Mourshed et al. 2003b; Shikder et al. 2009) 

and recommended for demonstrating compliance with building regulations (CIBSE 2006).  

The study clearly identified that thermal performance of a similar building can vary considerably in 

different regions. The findings highlight two key issues: dwellings need to adapt to cope with future 

climatic scenarios; and specific design guidelines/strategies are required for specific regions. Only 

satisfying the requirements of current building regulations may not lead to an adaptable design, 

even for a particular region. Underperforming designs can lead to increased energy consumption 

and discomfort, and can be a burden over time – making the building inhabitable without the aid of 

mechanical cooling system. This suggests the necessity of developing region specific design 

guidelines. 

Adaptive standards are now considered as part of the key international and national building 

standards (BS 2007; ASHRAE 2010); hence including this index into the evaluation process is 

recommended. However this process needs careful assessment of the extent of adaptation 

opportunities available for the occupants. Higher temperature will require increased air velocity to 

keep occupants within the comfort zone. There can be question of how much air velocity is 

required to compensate the high temperature, as previous studies have identified that increasing 

the air velocity within the comfort zone are exponentially related with the temperature increment 



(deDear and Brager 1998). It is, however, evident that occupants will require a higher degree of 

adaptive opportunities to increase indoor air speed in future climate.  

Ventilation of the building plays an important role in increasing indoor airflow and controlling 

temperature within the comfort range. Results identified that providing only 6 ACH (recommended 

by CIBSE) might not be enough for London area in 2020s and may require higher ventilation 

opportunities and other adaptation measures. However, improving the overall ventilation 

performance might demand additional change or refurbishment to existing buildings as it is highly 

dependent on the size of the aperture, outside wind velocity and ventilation strategy. This can pose 

challenge for many existing buildings and there can be question to what extent older buildings can 

adapt to this strategy. The situation becomes challenging in dense urban areas where outside wind 

velocity is low. It can be recommended that architects/designers should consider the provision of 

natural ventilation prospects while designing new dwellings. With a changing climate, provision of 

cross ventilation seems necessary in future, specifically for the southern half of the country.  

Personal adaptive behaviour associated with ventilation can also have an impact on the overall 

thermal performance of the building. Keeping the window open for longer in a day can reduce the 

duration of overheating during hot weather (Figure 8). Although this study has investigated a single 

adaptive opportunity, there are number of other personal and behavioral adaptive opportunities 

that can impact on occupants’ thermal experience. It is evident that a combination of personal and 

building adaptation will be able to minimize the impact of overheating in future climate.  

Figure 9 demonstrates that solutions for climate change adaptation to maintain acceptable indoor 

environment involve the consideration of multi-disciplinary aspects. Evidence also suggests that 

indoor environment requirement can vary for specific group of people (e.g. ageing population) 

depending on their physical and psychological condition (Shikder et al. 2012). To develop 

appropriate modelling and simulation approach of the scenario, it is necessary to acquire a robust 

understanding of the human behavioural, physical and psychological aspects, and other building 

physical parameters involved in the process. In addition, the application of advanced computer 

visualization and optimization techniques can enhance the decision making process of such multi-

disciplinary design problems (Mourshed et al. 2003a, Mourshed et al. 2011, Shikder et al. 2010). 

Scope remains for further research on how to model and optimize the climate change adaptation 

strategies that integrates various personal and building adaptation opportunities.  



 

Figure 9: Various personal adaptive opportunities and building adaptation measures for existing 

naturally ventilated buildings due climate change overheating. 

6. Conclusion 

To minimize the impact of overheating risks in future climate, design recommendations with 

adequate adaptation strategies are required for specific regions rather than a single standard for 

the whole country. This study identified that average indoor operative temperature of multi-

occupancy new-build residential buildings can increase by around 1.89°C by the end of the century 

in medium emission scenario. This trend of temperature rise can cause an excess of around 6.9°C 

in 2050s for London than adaptive comfort neutral temperature of that time, which indicates the 

maximum temperature can go well beyond acceptable temperature limits even for short or specific 

period of the year and render the dwelling inhabitable. Such situation will require either mechanical 

cooling system and/or additional adaptation strategies.  

The study also identified that the indoor thermal comfort is also influenced by the duration of 

window opening (ventilation) in a day. Keeping the window open for longer period proved to be 

effective in minimizing the overall temperature rise during summer period. Windows open for 24 

hour in hot weather can reduce the annual duration of excessive temperature (over 23°C) by 286 

hours compared to windows open for only 8 hours for London area in 2050s. Therefore, 

opportunities for better ventilation are a key adaptive measure to face the challenge of overheating 

in future. 

Finally the study highlighted the complex relationships between various adaptive opportunities to 

compensate the high temperature in future. Although this study has discussed about the prospect 

of ventilation only, other passive design features and adaptation strategies should be also 

considered to minimise the impact of hot weather in combination with personal adaptive 



opportunities. Further studies should focus on identifying the combinatorial solution of various 

adaptive measures to optimise design strategies to mitigate overheating in future. 
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